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Abstract

There has been a trend of miniaturization in recent technological advances, particularly
through the development of microelectromechanical systems (MEMS). To cope with the
demand for increasing performance from ever smaller components, alternatives to tradi-
tional scaling techniques is required, for example, by exploiting scale-dependent material
properties. The investigation of material behaviour through computer simulations is an
attractive alternative to experimental techniques which are limited by scale and cost.

Metallic crystalline solids are commonly the material of choice for MEMS components.
The majority of a metal’s capacity for deformation is irreversible, otherwise known as
plasticity. The dislocation — a defect in the crystal structure at the atomic level — acts
as the microscopic carrier of plasticity. The Discrete Dislocation Dynamics (DD) family
of numerical models serves as a bridge between an atomistic and a continuum description
of plasticity at the mesoscale. In continuum models, plasticity is captured through the
homogenization of localized effects induced by dislocation activity. With DD models, the
activity of discrete dislocations is instead explicitly simulated. Conventional DD models
are purely mechanical and are based on a quasi-static formulation. For the purpose of high
strain-rate loading scenarios, they fail to capture the localized thermal effects which emerge,
as well as the inertial effects which are particularly relevant. As such, the fully Dynamic and
coupled Thermo-Mechanical Dislocation Dynamics model (DTM-DD) was developed in
this thesis to address the limitations of existing DD models in the context of high strain-rate
plasticity. Inertia was included via an elastodynamic description of material behaviour and
the consideration of dislocation mass; and thermal influences, through thermo-mechanical
coupling and the temperature dependence of dislocation parameters.

Using the DTM-DD, the high strain-rate plastic behaviour of metals was investigated. The
interaction and interference of elastic waves was observed; and the implications and con-
vergence of dynamic dislocation motion was determined. The framework of extension load
testing was presented to investigate the influence and strain-rate sensitivity of system and
dislocation parameters to inertial and thermal effects. The selection of the thermal bound-
ary condition was identified to significantly influence the simulated material response. The
nature of temperature dependence, as investigated through parameter studies of dislocation
drag and nucleation strength, was shown to be a competition between influences causing
material softening and hardening. The DTM-DD was extended to investigate the effect
of loading rate on the nano-indentation of a thin film sample. Loading rate-dependent
propagation of dislocation nucleation and slip as a plastic front was observed. Ultimately,
the investigations using the DTM-DD demonstrate that the interplay between inertial and
thermal effects are highly complex in a fully dynamic and thermo-coupled system.
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Chapter 1

Introduction

Within the last few decades of research in materials science, a significant paradigm shift
has occurred: the focus of contemporary research has shifted from pure experimentalism
to focus on computer simulations [1]. This is not a surprise given the trend of miniatur-
ization in recent technological advances. Progress in computational simulation techniques
has advanced hand-in-hand with the explosive growth in the research and development
of microelectromechanical systems (MEMS) [2]. MEMS, and more recently nano-systems
(NEMS), are ubiquitous in the engineered technology which pervade our everyday lives.
Their use is widespread, with applications in the automotive industry, biomedical tech-
nologies, and the development of consumer electronics, to name just a few. In the drive
towards continued miniaturization, it is no longer feasible to continue with only tradi-
tional scaling techniques, i.e. simply making components smaller. Rather, it is necessary
to address the properties of the materials being used themselves, for example, to exploit
scale-dependent material properties, or even the realization of novel materials with engi-
neered scale-dependent characteristics [3]. Due to the scale of the engineering problem
as well as increasing costs, computer simulations for virtual testing and design are an at-
tractive alternative to traditional experimental techniques. As such, materials modeling
naturally arises from the need to understand material behaviour. The development of an
accurate and realistic simulation tool with predictive capacity is requisite to establish the
theory behind, as well as comprehensively characterize, material behaviour.

Metallic crystalline solids (metals) possess highly desired thermal, mechanical, or electri-
cal attributes; hence their prevalence in MEMS components. The focus of the research
presented in this thesis is to understand the behaviour of metals through the development
of computer models. To fully characterize the behaviour of a material requires an under-
standing of both the reversible elastic, and the irreversible inelastic — otherwise known as



plastic — behaviour. For metals in particular, elastic behaviour is expressed only for small
deformations. In this way, linear elasticity theory describes a small fraction of a metal’s
capacity for deformation; and plasticity, the remaining majority.

Plasticity theory arose from the study of metals in the late 19* century. First, through
experimental trials by Tresca in 1864; then followed by development of yield criteria and
flow rules by Saint-Venant, Levy, Von Mises, Hencky, and Prandtl [1]. By the mid-1940s,
Prager, Hill, Drucker, and Koiter among others, united plasticity under a single comprehen-
sive framework of the classical theory established through macroscopic investigations [1].
In parallel, beginning with Volterra in 1907, Taylor, Orowan, Polanyi, and finally codified
by Hirth and Lothe [5] in their seminal book entitled “Theory of Dislocations”, studied the
role of dislocations — defects in the crystal structure at the atomic level — as the microscopic
carrier of crystal plasticity [0].

The creation of, by the words of Van der Giessen [7], an “ultimate theory of plasticity”
requires the treatment of plasticity at multiple scales. In numerical simulation, each char-
acteristic spatial and temporal scale requires a different type of model (Fig. 1.1). The
behaviour of an individual dislocation is captured at the atomic level through Molecular
Dynamic (MD) simulations. Moving up to the continuum mesoscale, dislocation mecha-
nisms, the interactions of hundreds to thousands of dislocations, are explicitly modeled in
Discrete Dislocation Dynamics (DD) simulations. Alternatively, the influence of a collective
of dislocations is homogenized at the continuum scale, forming continuum mechanics-based
(CM) crystal plasticity models. Crystal plasticity then scales to macroscopic phenomeno-
logical models by recognizing that metals are simply an aggregate of grains, or a polycrystal;
and the scale transition is a further homogenization from the continuum level [¢].

A multi-scale approach to plasticity requires understanding of scale-specific behaviour,
scale-dependent material properties, and the multiphysical phenoma which arise at each
characteristic length scale [8]. As the size and physical time of simulations have increased
due to improvements in the performance of numerical methods and computing power, the
length- and time-scales of the three previously independent model types (MD, DD, and
CM) now overlap [9].

The greatest challenge in unifying the size-scale transitions along this spectrum of plas-
ticity models remains at the scale of DD, where discrete dislocation effects are significant
but the relevant length- and time-scales are too large for MD simulation [9]. DD pro-
vides a framework to explicitly simulate the motion and interaction of dislocations at the
mesoscale. Ideally, parameters of a DD model would be derived from a fundamental de-
scription of atomic structure via MD. DD then allows for the bridging between the atomistic
and the continuum descriptions of plasticity by providing the quantitative input for the
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phenomenological constitutive rules in crystal plasticity (CM).

A wide variety of DD models have been developed to date to investigate the response of
metals under loading [10]. In experimental trials, ex. by [ 1, 12], material response was ob-
served to transition from loading rate — specifically, strain-rate — independent to dependent
behaviour as loading rate was increased. Multiphysical phenomena that are not apparent
at lower rates, for example localized temperature increase and thermal softening due to
dislocation motion, emerge during this transition and increase the complexity of material
behaviour [6]. As such, simulations to date tend to overestimate material strength. Fur-
thermore, as the loading rate is increased, inertial considerations are required to accurately
capture the finite traveling time of elastic waves propagating through a medium.

Conventional DD models neglect both thermal and inertial considerations as they are typ-
ically purely mechanical, and the term “dynamics” in Dislocation Dynamics refers to the
time evolution of the dislocation structure as opposed to elastodynamics. Attempts have
been made to address the elastodynamics of the high strain-rate plasticity problem but
neglect thermal effects, ex. by [13-15]. Conversely, the Thermo-Mechanically coupled DD
model (TM-DD) introduced by [6] addresses thermal effects but instead neglects inertial
considerations. As such, the fully Dynamic and Thermo-Mechanically coupled DD model
(DTM-DD) presented in this thesis fills this gap in existing DD development by simulta-
neously considering both inertial and thermal effects. The inertial considerations required
at high strain-rate loading are incorporated through dynamic terms. Strain-rate sensi-
tive thermal effects are captured through thermo-mechanical coupling. The competing
influences of thermal, inertial, and strain-rate effects are investigated under the unifying
framework of the DTM-DD. Ultimately, the DTM-DD serves as a systematic improvement
to the predictive accuracy and realistic complexity in the simulation of high strain-rate
plasticity.

1.1 Research Objectives

The primary research goal of this thesis is to investigate material properties and multi-
physical phenomena specific to the mesoscale, particularly thermal and inertial effects and
strain-rate sensitivity, at high strain-rates. A fully Dynamic coupled Thermo-Mechanical
Dislocation Dynamics model (DTM-DD) is developed to simulate high strain-rate plastic-
ity.

The primary research objectives are as follows:

1. Formulation and development of the DTM-DD
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In order to capture inertial effects in a DD simulation, the description of the equilibrium
of forces acting at a material point, which forms the basis of the computational model,
must include inertia. The strong and weak forms are formulated for the initial boundary
problem which describes the fully dynamic coupled thermo-mechanical system. The dis-
crete form is derived using the eXtended Finite Element Method (XFEM) and considers
a collection of edge dislocations in the continuum. The mechanical, thermal, and coupled
thermo-mechanical constitutive relationships and boundary conditions are identified. The
existing TM-DD framework by Skiba [0] is recast with elastodynamics to form the fully
Dynamic coupled Thermo-Mechanical Dislocation Dynamics model (DTM-DD) and im-
plemented in MATLAB™.

2. Formulation and development of dislocation mechanisms for the DTM-DD

Dislocation behaviour — which includes its motion, heat generation, and interactions — is
explicitly simulated in the DTM-DD. A set of dislocation parameters and mechanisms is
developed for the DTM-DD to characterize and regulate the behaviour of a collection of
edge dislocations in a continuum. Thermal and inertial considerations are incorporated
into the description of dislocation behaviour: temperature dependence is incorporated into
dislocation parameters; and dynamics, into dislocation motion for a consistent dynamic
perspective in the DTM-DD.

3. Utilize the DTM-DD to investigate thermal and inertial effects on high
strain-rate material behaviour

The role of thermal and inertial effects on the high strain-rate plastic behaviour of metallic
solids is investigated using the developed DTM-DD model. Inertial considerations are
independently incorporated firstly in the description of material behaviour, and secondly
in dislocation motion. The former allows externally-induced and dislocation-generated
wave behaviour to be captured in simulation. As such, the resulting wave interaction
and interference patterning is studied. The latter has a strong influence on dislocation
behaviour; and so, the impact of dynamic dislocation motion with respect to strain-rate is
investigated. The DTM-DD is then applied to the framework of extension load testing to
explore the sensitivity of dislocation parameters to strain-rate and temperature dependence
through parameter studies. Finally, the DTM-DD is extended to investigate loading rate
effects through the simulation of the nano-indentation of a thin film specimen.



1.2 Scope of Study and Research Limitations

The scope of this research is to present a coupled thermo-mechanical Dislocation Dynam-
ics model with inertial considerations. The developed model provides a framework to
investigate material behaviour particularly under high stain-rate loading.

For simplicity, simulations are limited to the small deformation of isotropic, homogeneous
materials in two-dimensions with thermo-mechanical coupling. Macroscale constitutive
models for isotropic response, also with thermo-mechanical coupling, are used to describe
the mesoscopic elastic response.

Plasticity is captured through the simulation of explicit dislocation mechanisms at the
mesoscale using the framework of Dislocation Dynamics. A planar approach for Dislocation
Dynamics imposes an additional plane strain constraint to the simulations.

Dislocation behaviour in three-dimensions is highly complex. The simplification to two-
dimensions most significantly reduces the scope of applicable dislocation mechanisms and
the complexity of their implementation. The focus of this thesis was not to develop an
exhaustive list of subroutines to fully characterize dislocation behaviour. Rather, several
key dislocations mechanisms are presented in detail, the implementation discussed, and
their strain-rate and temperature sensitivity investigated in the context of high strain-rate
scenarios.

Ultimately, the goal of this research is to characterize the strain-rate regimes where inertial
and temperature effects, in particular strain-rate and temperature dependency, become
crucial for greater accuracy in the depiction of material behaviour at high strain-rates.



Chapter 2

Background and Research Context

The plastic deformation of crystalline solids is attributed to the mechanisms of crystallo-

graphic defects — known as dislocations — at the atomic level [16]. The manifestation of
plastic flow is the direct consequence of the generation and collective motion of individual
dislocations within an elastic continuum [15]. The creation, behaviour, and interaction of

dislocations at this scale is characterized by the so-called Theory of Dislocations [5].

A variety of computational models have been developed to simulate plasticity across a
spectrum of characteristic spatial and temporal scales, from the behaviour of single dislo-
cations to continuum-level crystal plasticity. The method of Dislocation Dynamics (DD)
at the mesoscale provides a bridge between atomic and continuum plasticity models [17].
This family of models is characterized by the explicit simulation of a collective of discrete
dislocations. The term “dynamics” in DD referring to the time-dependent evolution of
dislocation structures [10].

In this chapter, first, the Theory of Dislocations is presented. Dislocations are introduced to
provide context for a subsequent discussion of their simulation in the DD framework. The
numerical implementation of the dislocation features discussed in this chapter are provided
in Ch. 4. Next, an overview is provided of established DD techniques and computational
models implemented in both two- and three-dimensions. Particular attention is paid to
models based on the eXtended Finite Element Method (XFEM) as it forms the basis of
the research presented in this thesis. Finally, the discussion is directed to the effect of
strain-rate on material behaviour, with a focus on high strain-rates, within the context of
DD simulations.



2.1 Dislocation Theory

The structure of crystalline solids (crystals) is defined by the ordered, symmetric, and
periodic nature of its constituents, ex. atoms and molecules [18]. The lattice structure of
an ideal crystal is described by the repetitive translation of a unit cell, the smallest group
of constituents that contains the repeating pattern.

In 1907, Volterra introduced continuum theory describing the elastic fields generated by
crystallographic defects in an otherwise perfectly ordered crystal lattice [19]. Subsequently,
Taylor [20], Orowan [21-23], and Polanyi [21] independently postulated in 1934 that the
movement of these defects at low stress levels allows for permanent deformation without
fundamentally altering the crystalline nature of the lattice. The term “dislocation” was
coined by Taylor to refer to these defects at the atomic scale [20]. The study of dislocations
and their behaviour have since become central in understanding the strength and plasticity
of crystalline materials.

Hirth & Lothe [5] present a mesoscale theory describing dislocation interaction mechanisms,
termed Theory of Dislocations. Plasticity in crystalline materials is attributed to the
generation, movement, and interactions of dislocations which occur on specifically oriented
slip planes based on the packing arrangement of the crystal structure [25]. The yield point
of a material is the threshold where its behavior under loading transitions from elastic to
plastic, i.e. from recoverable to permanent deformation. In the Theory of Dislocations,
this transition corresponds to a stress of state where dislocations and their interactions
activate [5]. As a material is loaded past its yield point, the density of dislocations increases
and the motion of dislocations becomes hindered by inter-dislocation interactions. In this
way, the impedance of plastic deformation at the microscale is reflected in the relative
hardening of the material at the macroscale.

The topics of crystal structure, dislocations, and their properties are extensively and com-
prehensively covered in a variety of foundational texts, for example, [5,25,26]. Here, for
context, an overview of the main features of dislocations is provided: dislocations, their
types, and the Burgers vector is introduced; and dislocation mobility is presented.

2.1.1 Types of Dislocations and the Burgers Vector

Dislocations are classified into two main types: edge and screw. In reality, dislocations are
typically "mixed” in three-dimensions, having characteristics of both edge and screw; or
decomposed into “partial” dislocations to facilitate movement through the crystal structure
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An edge dislocation is where an additional half plane of atoms is introduced into (or
removed from) the crystal lattice, schematically shown in Fig. 2.1a. The dislocation line
runs along the bottom of the inserted plane. The dislocation “core” refers to where the
distortion to the crystal structure is greatest which, for an edge dislocation, is at the
dislocation line. The character of the atomic planes is preserved but the neighbouring
crystal structure is distorted. In contrast, a screw dislocation is a line discontinuity in the
crystal structure, schematically shown in Fig. 2.1b. The atom planes perpendicular to the
dislocation line are turned into a spiral ramp [10].

Half plane

Dislocation line Burgers circuit

Dislocation core Dislocation line
(a) (b)

Figure 2.1: Schematic of dislocation of the (a) Edge type, with the half plane and core
shown; and (b) Screw type. The dislocation line for each dislocation type is
indicated in red.

The Burgers vector of a dislocation describes the magnitude and direction of the dislo-
cation’s distortion to the crystal lattice. In Fig. 2.2, a circuit is drawn around an edge
dislocation core, and below it, another around perfect crystal. If the same atom-to-atom
sequence is followed for the circuit enclosing the core as for the one not, i.e. the same num-
ber of jumps in each direction, it is apparent that the start and end atoms are not the same
for the two loops. The loop is called the Burgers circuit, and the Burgers vector is defined
as the closure failure [16]. For an edge dislocation, the Burgers vector is perpendicular to
the dislocation line (Fig. 2.1a); and for a screw dislocation, it is parallel (Fig. 2.1b).



O
C
C
O
O

O
1y
C
J
e
O

C D)

Figure 2.2: Definition of the Burgers vector via the closure failure of the Burgers circuit
for an edge dislocation. Adapted from [16].

2.1.2 Modeling of Dislocations

The three-dimensional physical problem is simplified into a two-dimensional one through
the assumption of plane strain conditions following the method proposed by Van der
Giessen & Needleman [27]. The planar method is discussed in detail in Sec. 2.2.1. The
treatment of dislocations in the planar method is adopted in the DTM-DD model. Presently,
it is important to note the implications of this method on the scope of simulatable dislo-
cations and dislocation mechanisms. Most importantly, the planar simplification reduces
the scope of the simulated dislocations to infinite, straight edge dislocations. In this way,
screw dislocations are implicitly assumed to not govern dislocation effects. We then focus
on the theory and implementation of mechanisms pertinent to edge dislocations only for
the purpose of discussion in this chapter.

2.1.3 Mobility of Dislocations

The movement of dislocations is directly manifested in plastic deformation of crystalline
solids. The characterization of dislocation mobility is then critical in defining the character
of dislocation motion in DD. Contributions to the elastic fields in a system are from (1) long-
range stress fields originating from boundary conditions or other external stimuli, and (2)
short-range fields from the lattice distortion generated by the presence of dislocations. The

10



minimization of the elastic energy in the system is the driving mechanism for dislocation
movement. Thus, dislocation motion is a dissipative process, which occurs in such a way
to minimize the energy within the system [5].

Dislocation motion is classified primarily into glide or climb motion which is defined with
respect to the direction of motion and the crystal structure. The collective movement of
dislocations generates “slip” which is manifested in the plasticity of a crystalline solid. The
deformation of crystals by slip tends to occur on atomic planes with the greatest planar
packing density (close-packed planes); and also in the directions with the highest linear
packing density (close-packed directions) [5]. Dislocation glide is motion on-, and climb is
motion perpendicular to such a crystallographic plane. Climb is a diffusion-assisted process
which, particularly under high strain-rate loading, is too slow to be significant [10]. In this
way, dislocation climb is neglected in this work and only glide motion is simulated.

A glide plane is described as a line of motion in a slip direction on a slip plane. A dislocation
moves in the direction perpendicular to its dislocation line, and individual atoms slip in the
direction parallel to the Burgers vector. In the case of an edge dislocation, the dislocation
moves in the same direction as its Burgers vector (Fig. 2.3a). The sense of the Burgers
vector is governed by the slip direction. A slip system is the set of all parallel glide planes
on a particular slip plane. This motion causes one half of the crystal to be displaced relative
to other, or a shear displacement which gives rise to shear strains.

The set of slip systems are unique to each type of crystal structure. For example, the
preferred slip planes of face-centered cubic (fcc) crytals are along the “face diagonals”.
Planes {111} are the most densely packed, and the {111} < 110 > directions in particular
have been identified as the primary slip system in fcc crystals (Fig. 2.4) [5]. Four slip
planes with three slip directions on each plane results in twelve possible slip systems for
fce crystals.

In the planar DTM-DD model, slip systems are defined as straight lines within the domain
of study, oriented to resemble the crystallography of the material. Sources and obstacles
are represented as points on these slip plane lines. Edge dislocations are similarly modeled
as points with its additional half-plane of atoms extending out-of-plane.

Schmid [29] postulated that the dislocation slip which drives plastic deformation occurs
when the applied shear stress, resolved along the slip direction on the slip plane, reaches a
critical value 7..;; and also that material yield will occur on the slip system first to reach
Terit [29]. The critical resolved shear stress of single crystals under applied tensile stress
has been determined experimentally through the measurement of yield stress as a function
of crystal orientation. The resolved shear stress on a slip plane parallel to the slip direction

11



Direction of
dislocation motion

Direction of
dislocation motion

Figure 2.3: Glide motion of a dislocation of (a) Edge type, and (b) Screw type. The
direction of motion of the dislocation line is indicated in red. The net plastic
deformation of the two dislocation types is equivalent. Adapted from [25].

is determined by Schmid’s Law (Fig. 2.5):
T = 0COSPCOSA = mo (2.1)

where 0 = F'/A is the applied tensile stress, where I is the applied force, and A is the
cross-sectional area; ¢ is the angle between the applied stress and the normal to the slip
plane; A is the angle between the applied stress and the slip direction; and m is known as
the Schmid factor. The resolved shear stress serves as an activation criteria for dislocation
nucleation.
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Figure 2.4: (a) Reference cube of face-centered cubic crystal with slip plane {111}. (b)
Assumed glide plane orientation on slip plane {111}.
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Figure 2.5: The resolved shear stress acts on the slip plane parallel to the slip direction as
determined by Schmid’s Law.
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2.1.4 Dislocation Sources

Dislocation multiplication occurs through several mechanisms, for example, from Frank-
Read sources and Bardeen-Herring climb sources; or via cross-slip mechanisms, among
others [5]. The current work is based on the planar DD assumption that cross-slip mecha-
nisms are not dominant. As well, diffusive dislocation climb motion was assumed to be too
slow to be significant in a high strain-rate setting. As such, we focus on the Frank-Read
source as the mechanism for dislocation nucleation following [27]. The Frank-Read process
is described in detail by [5].

The Frank-Read source is a dislocation segment pinned at its ends. Under applied stress,
the segment bows out on its glide plane. For a shear stress state under a critical value, the
segment maintains a metastable equilibrium due to the balancing force of the line tension
in the segment. Conversely, when the resolved stress state acting on the segment exceeds
the critical activation stress 722 ie. |7|> 7L2 no stable equilibrium state exists and the
segment continues to bow out into a loop. Finally, a critical configuration is reached when
a portion of the resulting loop is annihilated, creating a stable closed loop and restoring
the original configuration of the pinned segment. The Frank-Read process occurs over a
time period of t,,. and the dislocation dipole is generated at a mutual distance of L in

nuc
the configuration shown in Fig. 2.6.

2.2 Techniques of Dislocation Dynamics

Dislocations are crystallographic defects which distort an otherwise perfectly ordered crys-
tal lattice. Each dislocation can be comprehensively described by the position and ori-
entation of its core (the centre of the dislocation line where the distortion effect is the
greatest) and the direction of its motion. In DD, the dislocations are treated as singulari-
ties within an elastic continuum representing the crystal. Long-range interactions between
dislocations are governed by overlapping self-induced elastic fields, as well as fields due to
external tractions. Short-range interactions are regulated by dislocations mechanisms (e.g.
pinning, annihilation) between proximate dislocations [5].

Short-range interactions are governed by constitutive rules: typically activation or occur-
rence criteria are specified, for example, in the form of a critical separation distance or
limiting stress state. In a similar fashion, the motion of dislocations as induced by external
loads is governed by mobility laws. As well, the generation of dislocations is subject to a set
of nucleation rules which define the conditions which activate the generation mechanism,
the process by which it happens, and the state of new dislocations. These constitutive rules
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Figure 2.6: The pinned dislocation segment of a Frank-Read source in two-dimensions (a)
is pinned at ends A and B; (b) bowed out in a metastable equilibrium; and
(c) and (d) reaching the critical configuration of the Frank-Read mechanism.
The dislocation dipole is generated at a mutual distance of LEE for a resolved

shear stress 7 > 0 in the convention shown. For 7 < 0, the signs of the Burgers
vector b is reversed. Adapted from [5,27].

regulate the evolution of the dislocation microstructure and are specific to each particular
implementation of the DD method.

A large variety of DD models have been developed to date. Three-dimensional models
(ex. [17,30-33]) are fairly robust due to their ability to accommodate many degrees of
freedom and types of dislocation interactions, and to provide realistic results. However,
their accuracy is associated with a large computational expense, and hence trade-offs in
model size and complexity, as well as simulation runtime [10,31]. For this reason, two-
dimensional models (ex. | ]) are an attractive alternative. The motion of dislocation
lines in three-dimensional space is reduced to the planar motion of points. However, realis-
tic dislocation motion is appreciably impacted by line tension and interaction mechanisms
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which can only be captured in three-dimensions. In this way, two-dimensional models have
a limited capacity to fully capture the physics of crystal plasticity in a truly accurate and
quantitative manner. Instead, since two-dimensional models are relatively simple and not
constrained in the same manner as three-dimensional models with respect to computa-
tional expense, they are an excellent tool to study plasticity trends qualitatively. As such,
two-dimensional models have been extensively used to investigate a variety of dislocation-
dependent features, for example, size and geometric effects, fracture mechanics and crack
propagation, fatigue, and creep [10].

The majority of DD models may be grouped under two main techniques of implementation:
(1) models based on the principle of superposition; and (2) models based on the eXtended
Finite Element Method (XFEM). As the current work falls under the XFEM family, greater
emphasis is placed on the discussion of XFEM and XFEM models.

2.2.1 Models of Superposition

In DD models based on the principle of superposition, dislocation slip is modeled as strong
discontinuities in a continuum displacement field of a finite domain [39]. The resulting elas-
tic problem is difficult to treat both analytically and numerically. Analytical solutions are
known to introduce 20 — 30% error for crystal lattices, as in the two-dimensional isotropic
models by Schwarz [5,32]. For three-dimensional models, ex. by Kubin et al. [10], analytical
solutions take the form of Green’s functions which were historically not readily available
for complex boundaries, material interfaces, or anisotropic mediums [11]. Additionally,
the solution of infinite domain integrals for anisotropic materials is very computationally
demanding even in single material systems [12]. In this way, earlier superposition mod-
els were highly restricted in their flexibility and capability. However, recent superposition
models utilize current developments of Green’s functions and significantly improve on their
predecessors. For example, recent models have been presented that incorporate anisotropic

elasticity [13—16]. Superposition models remain widely used primarily due to the relative
ecase of use.

The image field model - or the so-called Planar DD method (DDP) — introduced by Van der
Giessen & Needleman [27] simplifies the system into two-dimensions using an assumption

of plane strain. The planar approximation restricts the DDP to the simulation of infinite
straight edge dislocations and implicitly assumes that cross-slip does not govern dislo-
cation mechanisms [27]. In the conventional formulation, plasticity is described through
the collective quasi-static motion of dislocations explicitly represented as line singularities
within a linear-elastic solid [15]. Thus, slip systems are defined as straight lines within the
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domain of study, oriented to resemble the crystallography of the material. Sources and
obstacles are represented as points on these slip plane lines; and edge dislocations, also
as points with its additional half-plane of atoms extending out-of-plane [15]. The primary
components in the evolution of the dislocation system are: (1) dislocation motion i.e. the
translation of dislocations along their slip plane via glide; (2) nucleation of dislocation
pairs from discrete sources; and (3) dislocation interaction which includes the pinning of
dislocations at obstacles and the annihilation of opposing dislocations [27].

The complex elastic problem is decomposed using the principle of linear superposition
(Fig. 2.7). First, the analytical infinite domain solution of each individual dislocation is
considered. The analytical solutions are known, and the result of the interaction between
dislocation fields is easily determined [10]. Second, an “image” stress field is numerically
determined using standard finite elements. It is imposed to correct the collective infinite
domain solutions for the true boundary conditions of the finite domain [17]. Although the
DDP introduces restrictions to the setup of the model as well as the types of dislocations
and dislocation mechanisms that can be simulated, it is relatively simple and robust in its
implementation, and flexible enough to accommodate arbitrary boundary conditions [10].

a=u,— 1

u, 2
00
a : 0 +
T
T,

T=T,-T

Figure 2.7: Principle of superposition: the solution of the domain with dislocations is
decomposed into analytical infinite domain solution fields for the dislocations

(e) and the “image field” (o). Adapted from [27].

In spite of its advantages, computational expense is an inherent weakness of superposition
models due to the use of superposition. The driving force of each of the ny dislocations
in a domain requires the superposition of ny infinite domain solutions. This results in an
n? dependence in computational costs [12]. Due to the use of standard finite elements,
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it is also computationally expensive to (1) determine the “image” stress field; and (2)
capture the slip across a glide plane, i.e. the displacement discontinuity within a single
element caused by a dislocation, even only in an average sense [12]. When dislocation cores
approach a boundary, the computational cost is further compounded by the large amount
of quadrature points required for the accurate numerical integration of tractions at the
boundary [12].

2.2.2 eXtended Finite Element Method Models

The application of the eXtended Finite Element Method (XFEM) to DD is a relatively
recent development. This family of models can model material anisotropy, arbitrary in-
terfaces, and grain boundaries with relative ease without the use of analytical solutions or
superposition principles [12]. XFEM was first applied to two-dimensional crack propagation
problems in elastic domains to avoid remeshing of the domain [18,19], and subsequently ex-
tended to three-dimensional crack modelling [70], nonlinear fracture mechanics [51], shear
band growth [52], among other applications.

The classical finite element (FE) mesh requires that element edges coincide with domain
boundaries and discontinuities [12]. This requirement is particularly troublesome for prob-
lems based on evolving discontinuities. The domain must be constantly remeshed to con-
form to the changing geometry of a discontinuity network which is computationally ex-
pensive [53]. Thus, the principle advantage of the XFEM is the ability to model arbitrary
discontinuities in a finite element mesh without remeshing.

Interpolation in the classical FE method uses standard shape functions based on poly-
nomials through the Partition of Unity Method (PUM) by Babuska & Melenk [51]. The
functions N;(x) form a partition of unity in a n-dimensional domain €2 through the rela-
tionship
Y ON(x) =1 (2.2)
jes
where S is a set of mesh nodes.

Based on the PUM, enrichments can be locally introduced to improve the discrete ap-
proximation based on the physics of the problem, for example, to reflect singularities or
jumps [53]. In planar XFEM models, dislocations are represented as points of singularity
within an elastic continuum following the Volterra description of the dislocation [19,55,50].
In the Volterra model, an elastic solid is cut and the two surfaces of the cut are displaced
and reattached generating an elastic field (Fig. 2.8). The cut corresponds to the dislocation
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Figure 2.8: Volterra description of the dislocation. The magnitude of the lattice distortion
is represented by the relative displacement of the two sides of the reattached
cut. Adapted from [12]

plane of motion, and the relative displacement between the cut surfaces is a measure of
dislocation strength. The distortion in the crystal structure generated by the presence of
a dislocation is represented by its Burgers vector, b [12].

Ventura et al. [56] apply the PUM to correct a standard displacement approximation from
classical FE by incorporating the discontinuous displacement fields in the Volterra model
using enrichments. The enriched displacement approximation in XFEM takes the standard

form of
u'(x) =Y Nix)ui+ > Nj(x)p(x)a;,  xe€Q (2.3)

€S jes
————

J/

FEM XFEM enrichment

where 9(x) is the enrichment function; N; and u;, and N;(x) and a;, are the shape functions
and degrees of freedom corresponding to the standard and enriched nodes 7 and j in sets S
and S, respectively. The first term on the right-hand-side corresponds to the classical FE
approximation and the second term is the enrichment. In order to maintain the correct
displacement approximation at element edges, the enrichment field is shifted such that the
enrichments disappear at element edges:

u’(x) = Z Ni(x)u; + Z N;®)[p(x) —v(xi)la;,  xe (2.4)

€S je8
The terms in the resulting discrete form are expressed as integrals. Depending on the choice
of enrichment function, the smoothness of the integrals may be affected and it becomes

difficult to evaluate them numerically using standard Gauss quadrature [0]. Gracie et
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al. [12] proposed the use of tangential enrichments to explicitly model edge dislocations as

interior discontinuities. Subsequently, Gracie et al. [57] and Ventura et al. [58] investigated
core enrichments and suggested alternatives for enrichment schemes. A Heaviside step
function enrichment is used in Belytschko et al. [59] to describe the jump in displacement

across a crack line which is highly analogous to the strong displacement discontinuity of
the Volterra dislocation model. Weak form integrals simplify to polynomials using a step
enrichment function and can be easily evaluated using standard Gauss quadrature [0].

The XFEM treatment of Gracie et al. [12] and Belytschko et al. [59] is blended in the work
by Skiba through the use of tangential Heaviside enrichment functions to explicitly model
edge dislocations as interior discontinuities [6]. Skiba presents a novel thermo-mechanical
coupling in an XFEM DD model (the TM-DD) which captures heat generation by disloca-
tion motion as well as includes the effect of heat conduction [6]. Deformation of crystalline
solids was investigated at rates between 10% s~! and 10* s7!. The increasing importance of
thermal effects corresponding to increasing strain-rates was observed. Thermocoupling is

necessary for increased accuracy of DD models, particularly for high rate simulations [6,60)].
The work presented in this thesis follows the method behind the TM-DD.

2.3 Effect of Strain-Rate

The division of material behaviour into two distinct strain-rate regimes is readily apparent
in the relationship between yield point and strain rate in Fig. 2.10. Yield point behaviour
is logarithmically-linear to strain-rate at low strain rates under 10° s=! (Fig. 2.9) [11].
Experimental trails and mesoscale plasticity studies are largely performed at these lower
rates [10]. A small amount of hardening is apparent at low rates but experimental results
indicate that the system generally hardens with increasing strain-rates [01].

At low strain-rates, a system is perturbed slowly enough such that the timescale of load
application is significantly greater than that of the signal transmission through the domain.
Although there is in fact a finite time required for elastic signals to travel, it reasonable to
assume that the elastic fields of both the external tractions and of the moving dislocations
are propagated instantaneously throughout the entire medium [15]. In the same manner,
dislocations may be assumed to instantaneously reach terminal glide velocity [15]. As
such, the system effectively evolves from one state of mechanical equilibrium to another.
Consequently, a quasi-static assumption is well-justified for simulations at low strain-rates.

Comparatively the timescale of the application is instead less than the that of the signal
transmission through the domain under high strain-rate loading. Elastic fields cannot be
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Figure 2.9: Schematic of stress-strain curves at low strain-rates ¢ < 103 s7!. Yield point
is logarithmically-linear to strain-rate in this regime. Adapted from [10].

assumed to be transmitted instantaneously throughout the domain. Instead, the system
evolves through the propagation and interaction of elastic waves, as opposed to between
states of mechanical equilibrium. Thus, systems under high strain-rate loading are fully
dynamic. The inclusion of inertial terms which capture the finite traveling time of elastic
signals is necessary to fully describe wave propagation behaviour through the medium.

A transition region between strain-rates of 10* s~ and 10® s~! occurs where the yield-point-
strain-rate behaviour suddenly upturns and material behaviour becomes highly strain-rate
dependent (Fig. 2.10). This implies that the fundamental mechanism of plastic flow is

different between the two strain-rate regimes [10]. Several theories attempt to explain
the shift in mechanism, for example by [03,64]. Follansbee et al. [11] and Reggazoni et
al. [12] propose a particularly well-received theory: this change in mechanism is due to

a corresponding change in the regime of dislocation motion, from thermally activated to
drag-controlled. Multiphysical phenomena that are not apparent at lower rates emerge
during this transition and increase the complexity of material behaviour [6]. For example,
significant localized heating and overall thermal softening in material behaviour has been
observed with the formation of localized shear bands at high rates [65-(7].

21



1000 | @ Copper @
m Iron /
/
L /
E 800 -
E High strain-rates II
600 T "
o I o
E 400 4
> /
|
L ]
200 Transition B
Low strain-rates
0 &—0—-.0--*7‘*“.'"' . .
10 102 10° 10? 10* 10° 108

Strain-rate ¢ [s7!]

Figure 2.10: Experimentally determined yield point behaviour for copper and iron with
respect to strain-rate. A sudden upturn in the yield stress occurs in region of
¢ =10* s7!. Adapted from [10,62].

2.4 High Strain-Rate Dislocation Dynamics Models

Conventional DD models (including DDP) are (1) based on a quasi-static formulation,
neglecting inertial terms; and (2) purely mechanical, neglecting or underestimating the
significance of thermal softening.

Recognizing that a quasi-static formulation is not necessarily justified at high strain-rates,
some attempts have been made to address the dynamics of a high rate problem. Implicitly
so, Roos et al. [13] modified the elastic dislocation solutions to reflect the higher dislocation
velocities associated with high strain-rate loading. Shehadeh et al. [1] employed a hybrid
quasi-static dynamic implementation of the superposition method for single crystal copper
simulations shocked at strain-rates greater than 106 s=1. The elastic fields of the medium
were adjusted for dynamics, i.e. an elastodynamic solution, but a quasi-static description
of dislocation fields was retained [10].

The Dynamic Discrete Dislocation Plasticity (D3P) model by Gurrutxaga-Lerma et al. [15]
was first to treat elastic dislocation fields as fully time-dependent within an elastodynamic
continuum. The D3P is a purely mechanical model based on the superposition method
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and was applied to shock loading scenarios with strain-rates in the excess of 10% s71. A
comparative study between quasi-static and dynamic formulations utilizing D3P concluded
that non-physical phenomena arise as an artefact of the quasi-static approximation [15].
Most notably, it was observed that sources were activated by dislocation fields transmitted
ahead of the plastic front. They conclude that this artefact can be avoided by simply solving
the elastodynamic equations in lieu of the elastostatic ones used in the conventional DD
formulation. Thus, the quasi-static assumption is not a justifiable one for high strain-
rate simulations and it is then necessary to capture dynamic effects in corresponding DD
models.

This presents a clear direction for the systematic improvement of existing DD models, for
example, the TM-DD as proposed by Skiba [0]. In the context of high strain-rate plastic-
ity, the inclusion of thermal effects through thermo-mechanical coupling was identified as
crucial for simulation accuracy. However, for simplicity as a novel method, the TM-DD
was formulated based on the conventional quasi-static assumption which is not justified
given the simulation context. As such, the research presented in this thesis aims to ad-
dress this discrepancy: the existing TM-DD is augmented with inertial terms such that the
full dynamics required for the investigation of high strain-rate plasticity is captured while
thermal influences are preserved.
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Chapter 3

Formulation and Numerical
Implementation

In this section, the strong, weak, and discrete forms are developed for the initial boundary
value problem of the fully dynamic thermo-mechanically coupled system in the presence
of dislocations using the eXtended Finite Element Method (XFEM).

3.1 Strong Form

Consider a domain €2 which contains n, dislocations and is bounded by I' (Fig. 3.1). The
boundary I' is decomposed into the sets I'r, ['y, ', and I';, such that

FTﬂFh:Q) and FTUF}L:F

3.1

where the subscripts T', h, u, and t correspond to the part of the boundary of the domain
with temperature, flux, displacement, and surface traction conditions, respectively. For
dislocation «, let the active part of the glide plane (i.e., where slip has occurred) and its
core location be denoted as I'§ and €29, respectively. Following this, we denote I'y = U,I'§
and Q,; = U,Qg for a € [1,ny4]. The strain energy is unbounded in the core region and
bounded elsewhere (£24/€) [12].
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€9

Figure 3.1: Definition of system boundary and domain. Adapted from [6,53]

The differential equations that govern the coupled model are the heat equation and the
equation of motion: .

Cop®(x,t) +V-q=5(x,1) (3.2)

V-o+g=pu (3.3)

where O is the absolute temperature change from a stress-free reference temperature 0, at

the point x € 2 at time ¢, q is the heat flux density, S is the body heat source which varies

with position and time, the superimposed dot represents the material time derivative,

o is the Cauchy stress tensor, g is the body force, and 1 is the acceleration. Material

properties of the body including mass density, specific heat capacity, and coefficient of
thermal conductivity are denoted as p, C,, and k, respectively.

The differential equations are constrained by their respective boundary conditions. The
Dirichlet and initial boundary conditions are:

O(x,t) =T on Iy (3.4)

O(x,tg) =Ty on Q (3.5)
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u(x,t)=d on T, (3.6)
u(x,tp) =dp on € (3.7)
Similarly, the Neumann conditions are:
qg-n=h on T, (3.8)
oc-n=t on I} (3.9)
where the heat flux h and surface traction t are imposed quantities on the applicable

boundaries.

The modeling of edge dislocations is based on the dislocation models of Volterra [19] and
Eshelby [55]. An elastic solid is cut and reattached such that the two surfaces of the cut are
displaced relative to one another (Fig. 2.8). The internal discontinuity in the displacement
field represents a measure of the magnitude of the lattice distortion as described by the
Burgers vector of the dislocation. For an edge dislocation, the Burgers vector — and so also
slip — is along its glide plane. As such, the system is additionally subjected to an internal
boundary condition

[lul] =b"€¢; =b* on TIY (3.10)

where [|u]] is the jump in displacement across 'S, €; is the unit vector tangent to the
glide plane, and b® is the Burgers vector of dislocation «. The strong of the coupled
thermomechanical problem is presented in (3.2) to (3.10).

The constitutive relation of heat flux q and stress o are defined by Fourier’s Law and
Hooke’s Law in (3.11) and (3.12), respectively.

q=—kVO(x,1) (3.11)

oc=C:e— 2O (3.12)

where k is the thermal conductivity; VO is the temperature gradient; A = C : 7; and C and
~ is the tensor of elastic moduli and coefficients of linear thermal expansion, respectively.

A small strain, linear elastic formulation was adopted from [12] such that strain is expressed
using the symmetric displacement gradient

€= % (Viu+ Vu) (3.13)

Finally, the body heat source S in (3.2) is defined over domain and time. First introduced
by Skiba [6], the heat generation within the domain is characterized by the motion of

26



individual dislocations The total heat generated is expressed as a linear combination of
dirac-delta functions:

S(x,t) = Z Sa(t)d(x — Xq4) (3.14)

where s,(t) and x, is the heat generated and the position of dislocation a at time ¢,
respectively.

3.2 Weak Form

The weak form is to find O(x,¢) and u(x,t) that the initial conditions in (3.5) and (3.7)
are satisfied and

/prp@dQ+/Vw(kV@)dQ:/wS(X,t)dQ—/ whdl', YweWw (3.15)
0 Q 0

Ty

/ng-c : (Vsu)dQ—/VCT-)\@dQ+/gT-pﬁdQ
0 0 (3.16)

Q
:/ gT-’EdFJr/CT-ng, Ve e X
I Q

Functions ©, u, w, and ¢ belong to suitable function spaces W, 3, Wy, and Xy, respectively.

3.3 Discrete Form

3.3.1 Temperature Field

The temperature field is assumed to be continuous over the domain and described by the
standard finite element approximation:

O"(x,t) = > N{(x)T;(t), VxeQ (3.17)

1eS

where N? are the standard finite element shape functions corresponding to temperature,
T7 is the time dependent nodal temperature change, and S is the set of all nodes in the
domain.
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3.3.2 Displacement Field

In the XFEM approach to DD, enrichments are prescribed in addition to the standard
finite element approximation for displacement to satisfy the internal boundary condition
in (3.10) [12,57]. The enrichments reflect the discontinuities created by the presence of
edge dislocations.

An edge dislocation « is described by the location of its core, the orientation of its glide
plane, and its Burgers vector b* [6,12]. Level set functions are used to describe the position
of the core relative to the glide plane, as well as specify the active part of the glide plane
(i.e. where slip has occurred). Corresponding to each dislocation a, let there be two affine
functions f*(x) = ap + a;x; and g*(x) = [y + Bix; such that f*(x) L ¢g*(x). The glide
plane of dislocation « is defined as the signed distance f*(x) = 0; and the location of the
core, by where f*(x) = 0 and ¢g“(x) = 0 intersect. The active part of the glide plane I'§ is
defined where f*(x) = 0 and ¢g*(x) > 0 (Fig. 3.2).

f>0
Cn f:O
X/, f<0
€t
O .-~
g>0-+g9g<0
€2 g=20
€1

Figure 3.2: Illustration of level set functions f and g for a dislocation. The magnitude
of the lattice distortion generated by the presence of the edge dislocation is
represented by Burgers vector b. Adapted from [12].

The XFEM enrichment introduces a jump in the displacement field across the glide plane in
the manner of the Volterra model. For an edge dislocation, this lattice distortion is defined
in the direction tangential to the slip plane, i.e. in the direction of the Burgers vector
b®. The tangential step enrichment following Gracie et al. [12,57] is adopted and locally
applied only to the nodes of elements intersected by the active part of the glide plane. Let
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Figure 3.3: Illustration of enriched elements and nodes. Nodes in the set S are represented
by blue circles. Shaded elements contain one or more enriched nodes.

the subset S* € § as the set of nodes with supports cut by I'] as illustrated in Fig. 3.3.
The XFEM local displacement approximation for a domain with ny edge dislocations is

=Y Np(x)d;(x,t) + Zb‘“ZN“ H(f(x,t)) — H(f*(xs,1))]  (3.18)

\1 es =1 JesS« P
FEM XFEM enrichment
1 ,ifz>0
H(z) = ’ . 1
(2) { 0 ,otherwise (3.19)

where N} are the standard FEM shape functions, d; are the nodal degrees of freedom, b®
are the Burgers vectors of dislocation a, x; are the coordinates of node J, f¢ is the signed
distance fo I'§, and H is the Heaviside step function in (3.19).

Acceleration is approximated as the derivative of (3.18) with respect to time. Since the
Burgers vector of the dislocation remains constant in time, the enriched term evaluates to
zero and acceleration is defined as in standard FEM.
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3.3.3 Discrete Form

The semi-discrete system of equations is obtained using Galerkin’s method with field ap-
proximations (3.17) and (3.18) and weak forms (3.15) and (3.16):

e e e [ e [{8 ) e
SEGANEN

where u = [ d d, .. d, }T and © = [ T Ty ... T, ]T are the standard displace-
ment nodal degrees of freedom and the nodal temperature changes, respectively, for n
number of nodes. The sub-matrices are individually defined in (3.21) to (3.30). The struc-
tural damping term C** is introduced to the discrete equation but is not explicitly part
of the strong form. It is noted that Burgers vector b* are to be prescribed and so appear
on the right hand side of (3.20) in F*. The external nodal forces induced in the elastic
continuum through the introduction of dislocation « is represented by F¢.

MYy = AN?TpNng, I,J€S (3.21)
Cy4 =My + K%,  1,JeS (3.22)
Co9 = /Q NOTC pNOdQ, I,JesS (3.23)
Ky = / B'CBYdQ, I,J€S (3.24)
Q

Ky9 = /Q BY"AN9dQ, I,JeS (3.25)
K99 = /Q B kBOd0, I,JeS (3.26)
Fpet= [ NY"tdl + | N¥TgdQ, €S (3.27)

Tt Q
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FOcat — _ / No"har, IesS
I'n
FIY = — / No'S(x,t)dQ, IeS
Q

nq
F$ = Z/QB}‘TCngadQ Ies
a=1

where
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3.4 Time Integration

Equation (3.20) is solved sequentially. First, given nodal displacements u® and temperature
©° at time t°, a Crank-Nicolson scheme is used to obtain nodal temperature @*! at time

571 [68]. The solution scheme of the parabolic thermal problem is as follows:
K '@ = F*s! (3.38)
where .
S oo , At oo
K= |C”™ + 7K (3.39)
. At -\ AL s
Fs,sfl — C@@ (@ + 7@) + 7 (FG),e;ct + FTM) (340)

where At denotes the size of the time step; the superscripted s indicates the time step, i.e.
(e)**! denotes time ¢ & At.; and the superimposed dot represents the first material time
derivative.

Next, given the nodal displacements d* and d*~!, and nodal temperatures @**! a second-
order explicit central-difference method is used to update the mechanical problem. Thus,
a one time-step lag in the thermal effect is introduced to the mechanical solution. The
solution scheme of the hyperbolic mechanical problem is as follows:

i = Mfl ((Fu,ext + Fa)s . Cuul-lsf% _ Kuuus) (341)
w2 = w2 acAr (3.42)
wtt = w4 wtt2A (3.43)

where At denotes the size of the time step; the superscripted s indicates the time step, i.e.
(e)**! denotes time t £ At; and the superimposed dot and double dot represent the first
and second material time derivative, respectively.

3.4.1 Ciritical Time Step and Damping

The critical time step for the elastic domain problem At} is limited by the maximum
cigenfrequency of the system wy,q, and influenced by damping [69]. The linear eigenfre-

quencies of the system w; are obtained by assuming a solution (3.44) for the free vibration
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equation of motion for the system (3.45) and solving the expression of the determinant in

(3.46).

u = Usin(w;t + a) (3.44)
MJii + [KJu = F*! (3.45)
K — w?M|=0 (3.46)

A small amount of numerical damping is provided to control high frequency oscillations.
Damping was assumed to be of the Rayleigh type, i.e. linearly proportional to mass and
stiffness through the relationship in (3.22). The proportionality coefficients a® and ¢ for
material damping term C** are determined as follows

ﬁg _ Q(flwn,l - 526%,2) (3‘47)

2 2
wn,l - wn,2

af = 28w, — fPwl (3.48)

where & and & are the damping ratios, and w,; and w, s are the eigenfrequencies of the
first and second modes of vibration. Due to a lag in velocity using a second-order explicit
method, the critical time step is decreased due to damping [09]:

A, = 2 (JETT-¢,) (3.49)

n,max

where ¢ is the primary damping ratio.
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Chapter 4

Implementation of Dislocation
Theory

The conventional DD formulation describes plasticity through the collective motion of
dislocations in a linear-elastic solid [10]. The behaviour of dislocations is explicitly sim-
ulated and regulated by interaction mechanisms described in the Theory of Dislocations
by [5]. The DTM-DD follows the planar method of the DDP proposed by Van der Giessen
& Needleman [27] whereupon the three-dimensional physical problem is simplified into
a two-dimensional one. As a result of this spatial simplification, only infinite straight
edge dislocations are simulated under plane strain conditions as cross-slip mechanisms are
implicitly assumed to not govern dislocation mechanisms.

Edge dislocation lines are reduced to points on the planar domain and are characterized
by the location of its core and the orientation of its Burgers vector. Dislocation motion is
assumed to be restricted along its glide plane in the form of glide-only motion; collectively,
this motion is manifested as slip. Slip systems are defined as straight lines within the
domain and oriented to resemble the crystallography of a chosen material. Dislocation
sources and obstacles are also modeled as points on slip plane lines.

In this chapter, the implementation of key dislocation mechanisms in the DTM-DD is
discussed. First, the topic of dislocation mobility is addressed: the phenomenological
equations and significant terms within are presented, ex. the Peach-Koehler driving force,
dislocation mass, and dislocation drag. Commentary is provided on the definition of dis-
location parameters and selection of values used in simulation. The characterization of
a dislocation as a moving heat source, and the mechanisms of dislocation nucleation and
interaction are introduced. Finally, the computational algorithm of the DTM-DD is pre-
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sented.

4.1 Mobility

The concept of dislocation motion was introduced in Sec. 2.1.3. As the DTM-DD is in-
tended for high strain-rate simulations, climb motion is neglected and only glide motion, i.e.
along dislocation slip planes, is considered. The phenomenological equation of dislocation
motion is presented with its numerical scheme, and key terms are discussed. Newtonian
physics presents a balance between applied force and induced motion. The induced motion,
in reality, is fully dynamic. The DTM-DD captures the dynamics of dislocation motion in
addition to the elastodynamics in the thermocoupled domain. The force driving dislocation
motion is expressed by the Peach-Koehler force which includes both thermal and dynamic
effects. Consideration of inertia also requires the consideration of the mass of the object in
motion; hence, dislocation mass is presented. Intuitively, obstacles and interactions aside,
dislocations will not perpetually remain in motion. Energy dissipation is expressed as dis-
location “drag”, a form of damping, which we present in the DTM-DD as temperature
dependent.

4.1.1 Equation of Motion and the Viscous Drag Law

Dislocation motion is characterized into three distinct regimes: thermally-activated, drag-
controlled, and relativistic behavior [12]. The thermal activation regime is associated
with low applied stresses (and low strain-rates up to & = 103 s7!) whereupon dislocation
motion is hindered by the intrinsic resistance of the crystal lattice [10,70]. In contrast,
the relativistic regime is associated with ultra-high strain rates, typically in the excess of
10'° s71, where dislocation velocities approach the transverse speed of sound and the effect
of the change of mass is referred to as relativistic behavior [10]. In this thesis, particular
interested is paid to the intermediary strain-rates between ¢ = 10® to 10° s~ where the
glissile motion of dislocations in crystalline metals is, in the same manner as fluid motion,
impeded by a viscous drag force in a drag-controlled regime [10]. Dissipation of energy
through transfer of momentum occurs when phonons and conduction electrons in metals
are scattered through interactions with moving dislocations [5].

The motion of dislocation « is described as viscous-drag controlled using the phenomeno-
logical equation of motion
mv*+B.v® =F* (4.1)
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where m® is the mass of dislocation a; B = B(x*, ©(x%, 1)) is the tensor of dislocation drag
which is dependent on the temperature at the location of dislocation o, x*; F® is the force
per unit length that must be applied to dislocation a to maintain a uniform velocity of v¢;
and v is the acceleration of dislocation «. The conventional formulation of dislocation
motion as used in [0, 10,17] is quasi-static which assumes that motion is overdamped. The
inertial term v in (4.1) is neglected and the force-velocity is linear, i.e. B - v® = F<.

In the three-dimensional DD simulations by Wang et al. [01], and also earlier in two-
dimensions by Roos et al. [13], the fully dynamic dislocation equation of motion in (4.1)
was implemented and compared to conventional quasi-static formulation for a range of
strain-rates. For the lower end of drag-controlled strain rates between 10% s~ and 103 s71,
results from the fully dynamic and quasi-static simulations were found to be minimally
different. However, at strain-rates between 10% s7! and 10° s™!, Wang et al. [61] observed
that the inclusion of inertial terms for dislocation motion captures dislocation motion much
more accurately than the overdamped approximation. They conclude that the finite time
required for dislocations to change velocities under an applied force is non-negligible for
high strain-rate simulations. Thus, the full equation of motion with inertial terms was
adopted in this investigation.

A first-order explicit Forward Euler scheme was adopted following Wang et al. [61] to
determine dislocation velocity and subsequently displacement, i.e.

Ve = (m%) 7 (FY = B-vY)
Vi = Vs + VL As (4.2)
(0% « 1 e «
s+1 — ds + i(vs + Vs—i—l)AS

where As denotes the size of the time step; the subscripted s indicates the time, i.e. (@)
denotes time s + As; and the superimposed dot represents the material time derivative.

4.1.2 The Peach-Koehler Force

The force acting on a defect singularity within a continuum is influenced by both externally
applied loads as well as the internal stress fields generated by other such singularities within
the medium [26]. The eponymous Peach-Koehler force expresses the force on a dislocation
in a continuum in its most general form: the force F for the unit length of a dislocation
line ds is

F=—-¢&x(6-b)is (4.3)
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where £ is a unit vector along the dislocation line s, & is the stress at ds from all sources
except self-stress along s, and b is the Burgers vector [12].

Eshelby [55] (and independently by Cherepanov [71]), developed a surface integral to de-
termine the force on a singularity for the generalized three-dimensional case. Rice’s path-
independent J-integral reduces the surface integral to a two-dimensional contour integral
(4.4) [72]. The J-integral has been extensively used in fracture mechanics applications,
particularly with crack-tip propagation. The Eshelby tensor — also known as the energy-
momentum tensor — is integrated over a path-independent contour enclosing the singularity:

1
F = / <§Uij5z’j6kl - Uz‘k“i,l) ngdl (4.4)

where I'; is any closed contour around a dislocation core with an outward normal n [12,72].

For a plane crack extension problem, the J-integral is equivalent to the strain energy release
rate per unit fracture surface area, i.e.

J=G= 94 (4.5)
where U is the potential energy available for crack growth, and A is the crack area (or
length for two-dimensional problems). In a simply connected domain, i.e. if the domain
contains no stress singularities, the J-integral evaluates to zero. Physically, the J-integral
represents the force driving a crack to propagate [73]. In the case of a dislocation, the J-
integral is the change in potential elastic energy with respect to the change in dislocation
position, and is equivalent to the Peach-Koehler force.

Kishimoto et al. [73] provide an extension to Rice’s original definition of the path-independent
J-integral. Their extended path-independent J -integral (4.6) accounts for thermal strains,
body forces, and inertial forces. The j—integral represents the energy release rate in an
arbitrary material during crack extension and is equivalent to the Peach-Koehler force in
a dynamic and thermoelastic system. [73]. The Peach-Koehler force acting on dislocation
« is defined as

: ou,; Ol ou,;
FY=J. = Weén, — TZ—Z dre ,—“ i; — F; — L dO” 4.6
o, /{ m- T pare+ [ Loy s i - my g daor wo

where W€ is the elastic strain energy density function (4.8). The first integral on the right-
hand-side reflects the coupled elasto-static contribution; and the second term, contributions
from additional forms of strain energy, inertia, and body force. The strain tensor g;; is
decomposed into elastic and eigen-strain components &j; and &j;, respectively, as in (4.7).
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Eigen-strains are inelastic and stress-free, and are inclusive of thermal or plastic strain
components [73].
e *
€ij = &5 T & (4.7)
e

We = / " oydet, (4.8)
0

We assume that the eigen-strains of the system is wholly exemplified by elastic thermal
strains in the form £5; = 7;;0, where for an isotropic assumption v;; = 0;;71© [73]. In
the case of plane strain, 7, = (1 4 v)~, where v is Poisson’s ratio and = is the coefficient
of linear thermal expansion. The thermo-coupling in the system is incorporated in two
ways. First, the elastic strain in the energy density function (4.8) is replaced with thermo-
coupled strain, which results in an elastic strain energy density function in the form of
(4.12). Second, the thermal contribution to the J-integral in (4.6) translates to a domain
integral

Fk(? = jk@ = / ’Yl(sijo'ij@,dea = / ’ylgii@7kd9a (49)
Similarly, body force contributions are in the form of a domain integral

F]?ody _ j:ody - _ / gt A" (4.10)

The extension of the crack tip is time dependent: the crack tip area and boundary, A and
', respectively, translate with the crack tip. Then (4.6) expands to the following form:

By =Jk ! (4.11)
= {We — O'Z‘]gui’k + épu,uz}nde? + {puzuuk — puzuz’k} an -+ j]? + j:Ody
Iy Qo
. 1
W =5 (03 (4 — 01 0)) (4.12)

where 'Y is any closed contour about the core of dislocation a; Q¢ is the area bounded
by I'?; n is the outwards unit normal to I'Y; the superimposed dots on u represent the
material time derivatives. Inertial effects are incorporated within the contour integral as

well as through the additional domain integral.
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4.1.3 Dislocation Mass

The effective mass of a moving edge dislocation m® was defined by Hirth et al. [71] based
on expressions of total energy II, kinetic energy Il, and strain energy Il for a unit length
of dislocation. The total energy Il is a function of dislocation drag B which, if temperature
effects are considered, is implicitly a function of temperature. Although temperature de-
pendence was recognized by Hirth et al. [71], B as well as other material elastic constants
are assumed to be temperature independent in the definition of dislocation mass.

The thermodynamic inertial force F'is defined as a function of velocity where

dIl\ dv dv
F(v) = = me! 4.13
() = (dv) at ~ " at (4.13)

where m® is the effective mass for a moving dislocation. For an edge dislocation moving
at a velocity v [71],

I1,C2
m(v) = z (=99 — 209 + 4773 + Ty + 257 — 11773 + 3779) (4.14)

where Ilj is energy of the stationary system or the "rest energy factor” (4.15); C; and C
is the transverse and longitudinal sound velocity, respectively (4.16); v, = (1 — v?/C?)'/?,

and v = (1 —v?/C?)'/2,

1b? R

Iy = —1I 4.15
0= 47 " < 0) ( )

1/2 At 9\ 2
C, = (/_‘> C = < + ”) (4.16)

Po Po

where p is the shear modulus, b is the magnitude of the Burgers vector, and R and r are
the outer and inner radii in the integration of energy terms [5]. Typically, o = b is chosen

to exclude the dislocation core; and R, to make Iy = ub?.

At small velocities (v up to 0.1C}), the effective mass of an edge dislocation simplifies to

o _ b Cy
m* =Gz (1 + @ (4.17)
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4.1.4 Temperature Dependence of the Drag Coefficient

At high strain-rates, dislocation motion is described as viscous-drag controlled as in (4.1),
and viscous forces are described by the viscous drag coefficient, B [75]. The characterization
of parameter B in close-packed metals has been accomplished through three main types of
experimental techniques: indirectly through the measurement of internal friction, and of
stress versus strain-rate; and directly through the measurement of dislocation displacement.
For a good overview of these experimental techniques and theories of viscous drag, we refer
to [75] and [76]. Most of the literature on drag and temperature dependence refer to single-
and poly-crystalline aluminum.

The attenuation of the vibrations in a dislocation network is indirectly used to measure B
with the internal friction method. A dislocation network is vibrated using low amplitude
alternating stresses. The energy dissipated through viscous damping is reflected by the
decay in the stress amplitude, and B is then determined from the energy decrement be-
tween cycles [75]. Although this method does not require presupposition of the geometry
of the dislocation network, for example knowledge of the pinning points along dislocation
lengths, it requires an assumption of the mobile dislocation density, p,, [75,77]. Using mea-
surements of internal friction, Mason & Rosenberg [78], Mason [79], and Sylwestrowicz [30]
investigated single crystal aluminum; and Hutchinson & Rogers [1], poly-crystals. Simi-
larly, Alers & Thompson [32] investigated single crystal copper; results were subsequently
refined by Mason [78] and Jassby & Vreeland [75]. The dislocation velocities prompted
by this technique are typically less than 107! m/s, which correspond to low strain-rate
loading.

Conversely, B may also be indirectly determined through the measurement of stress and
strain. Particularly for high strain-rate experiments (10 to 105 s7!), dislocation velocity
typically exceed 10 m/s and is controlled by drag only. Then B is determined through
the linear relationship B = «ap,,b? [75], where parameter « is experimentally determined
through a linear relationship between stress and strain-rate as identified by Kumar &
Kumble [83]. Again, p,, is an estimated value and is here independent of stress [31].
Yoshida & Nagata [35] investigated B via measurements of stress and strain-rate for high
strain-rate single- and polycrystal copper and noted that, for T" < 293K, drag decreases
with decreasing temperature. Ferguson et al. [381] report values for single crystal aluminum
obtained at strain rates of 10* s71; and Nadgornyi [36], for high velocity dislocations.

In contrast, B may be directly determined through the measurement of dislocation displace-
ment as a result of an applied stress pulse with known duration and amplitude. Torsional
stress pulses have been particularly effective for obtaining results for copper, as in the re-
sults by Jassby & Vreeland [75,87]. The amplitude of the stress pulse must be sufficiently
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large to produce viscous-controlled velocity. Thus, this method requires that the applied
stress is significantly greater than both internal and critical unpinning stresses otherwise
B is overestimated. Additionally, this technique becomes impractical when dislocation
density high and difficult to employ when dislocation velocities reach the speed of sound.
Paramswaran et al. [88] and Gorman et al. [77] report measurements for single crystal
aluminum using a direct displacement measurement technique.

Hikata et al. [89,90] utilize a variant of the internal friction method by measurement of
ultrasonic attenuation changes resulting from a “dynamic bias stress”.This method does
not require knowledge of dislocation density or features of the dislocation network a priori.
Olmsted [91] conducted MD simulations replicating trials by Hikata et al. [39,90]. Exper-
imental results from the various discussed techniques for aluminum and copper, as well as
the MD simulation results by [91] are replicated in Fig. 4.1.

As noted by Jassby & Vreeland [75] and Parmeswaran et al. [88], the absolute values of
B measured by the various investigators differ by an order of 102, which is too large to
be ascribed to experimental error. Generally for T' 2 100K, B increases with increasing
temperature. At low temperatures however, ex. T" < 100K, experimental results may be
grouped into three main behavioural trends. First, Mason & Rosenberg [78], Mason [79],
Ferguson et al. [31], and Hutchinson & Rogers [31] are in qualitative agreement with the
behaviour predicted using theory of electron drag as presented by [78]: at low temperatures,
B increases with decreasing temperature. A key assumption of this theory is that the
wavelength of lattice strain is significantly less than the mean free path of an electron.
This assumption is violated at a moving dislocation core where most of the energy is
dissipated [38]. However, the same trend is also reported in the results by Parmeswaran et
al. [38] which uses the displacement measurement technique as opposed to internal friction.
Additionally, [$8] report this behaviour in dislocations within other fce-type materials
including lead and potassium. Comparatively, the trends of results from Alers & Thomspon
[82], Gorman et al. [77,92], and Vreeland [93] appear to qualitatively agree with the theory
of phonon drag by Mason & Rosenberg [78] where, at low temperatures, B is expected
to decrease with decreasing temperatures. Lastly, Hikata et al. [39] find no temperature
dependence of B at low temperatures.

Thus, the behaviour of B at low temperatures is directly contradictory between experi-
mental techniques, and cannot be theoretically verified using the current understanding of
drag mechanisms [75]. In this thesis, investigations are performed at moderate tempera-
tures above 100K where experimental trends are more consistent. Mobility is assumed to
be temperature dependent, analogous to the electro-mechanical DD model by [6]. Following
experimental trends, the drag coefficient of dislocation «, B*, was assumed to be positively
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correlated to temperature change. For simplicity, a linear correlation was assumed:
B® = By + B16(t) (4.18)

where By is the dislocation drag corresponding to the reference temperature ©g; By is the
rate the drag coefficient grows with the increase in temperature (B; > 0); O,(t) is the
temperature rise with respect to ©q at the position of dislocation «, x,, at time ¢; and
O(t) = O4(t) + ©p. In implementation, each dislocation is subjected to a different value
of drag. The characterization of B* can be refined using a non-linear description of its
temperature dependence.

A significantly larger set of experimental data is required to fully characterize parameter
B;. However, due to the limited relevant experimental data, the statistics of the available
data were considered indicative of the magnitude of drag-temperature dependence. In
particular, the experimental data for aluminum was utilized as it forms a larger fraction
of the available data. Linear regression was performed on each set of experimental data
in Fig. 4.1a, for a subset of each data set with 7" > 100K. The data set from Ferguson
et al. [31] was considered an outlier due to the negative temperature-drag dependence
as compared to the positive dependence observed in all other sampled data. A linear
temperature dependence of B; in the order of 10~7 Pa - s with maximum and minimum
values of 81077 Pa-s/K and 0.2-1077 Pa-s/K, respectively, was observed. Collectively,
the experimental subsets yield a mean and standard deviation for By of 1.70-1077 Pa-s/K
and 2.63 - 1077 Pa - s/K with an average R? value of 0.942.

At room temperature, Kubin et al. [10] report values of B = 5-107% Pa-s and 10™* Pa-s for
the simulation of copper and aluminum, respectively. However, a value of B = 107* Pa-s is
generally assumed as a representative parameter for copper, ex. [0,27,91]. For the purpose
of this thesis, a value of By = 10™* Pa- s was similarly assumed for copper for temperature
independent models, i.e., B; = 0. In comparison, we assume By = 5-10~° Pa - s for
the temperature dependent models. The sensitivity of the dependence relationship with
respect to material response may be investigated by performing a parametric study on By,
as in Sec. 5.3.3.

4.2 Dislocations as a Heat Source

A feature of the thermomechanical DD model proposed by Skiba [0] is the treatment of
dislocations as individual heat sources. The heat generated by each moving dislocation «,
5%, is described by the rate of work done by the Peach-Koehler force on the dislocation,
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Figure 4.1: Experimental and simulation test data for temperature dependence of the drag
coefficient for (a) Aluminum and (b) Copper.
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1.e.

S = B(E (1) -v* (1)) (4.19)

where v® is the velocity and F¢ is the Peach-Koehler force on dislocation «, respectively.
The initial rate of work for all simulations is assumed to be zero due to the assumption
that all dislocations are initially static.

The fraction of plastic work done that is converted into heat is described by coefficient .
Continuum studies, for example [95], indicate that this fraction is strain and strain-rate
dependent. In the current work, /3 is assumed to be strain-rate independent with a a value
between 0.8 and 1.0, inclusive, based on the observations of [96,97].

4.3 Nucleation

The Frank-Read source was introduced as the method of dislocation nucleation in Sec. 2.1.4.
The Frank-Read source itself is a dislocation segmented pinned at its ends. As such, in the
DTM-DD sources are modeled as points on dislocations in the same manner as dislocations.
In simulation, they are randomly generated at a prescribed density pg,.. on dislocation slip
planes. The Frank-Read process is activated when the resolved shear stress acting on
a Frank-Read source exceeds the critical activation stress (or nucleation strength), i.e.
|7|> 7EEand occurs over a time of ¢,,.. The nucleated dislocation dipole is characterized
by the size of the critical configuration LEE and the orientation of the Burgers vectors
based on the sign of the stress state on the source. Neglecting thermal effects, LEE is

nuc
approximated as

mue = gx(l— 1?) TER

(4.20)

where F is the material Young’s modulus, v is Poisson’s ratio, b is the magnitude of Burgers

vector of the Frank-Read source, and 752 is the nucleation strength [27].

Nucleation strength was assumed to be temperature dependent. Yield strength-temperature
dependence, an observable material parameter, was used as an indicator towards the tem-
perature dependence of nucleation strength, which is a simulation parameter. Experi-
mentally determined yield strength of polycrystalline copper with average grain diameters
between 0.020 mm and 0.120 mm is reported from [98-100] in Fig. 4.2 and display an
overall negative relationship between yield strength and temperature. This trend is also
observed by [101] in a numerical investigation of the nucleation rate of dislocations in bulk
copper as a function of temperature and stress from a thermodynamic perspective using a
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MD framework. They report a similar negative relationship between nucleation stress and
temperature under constant shear loading at 4 = 1073 s7L.

The relationship between nucleation strength and temperature was assumed to be a N-th
order polynomial, i.e.

{7FEAVY — 7ERON (1) 4+ 75R ON V(1) 4 ... + 7TROL(t) + 7R (4.21)

where 7{"% is the critical activation stress corresponding to the reference temperature ©y;

O.(t) is the temperature rise with respect to g at the position of dislocation « x,, at time
t; and 7%, is the rate the critical activation stress grows with the increase in the (N — 7)™
degree of temperature, O ¢ for 0 < i < N — 1. Polynomial regression was performed
on the data in Fig. 4.2 and N = 3 was found to provide a good fit for the data with a
coefficient of determination of R? = 0.8817. Using a third order polynomial regression, the
yield stress tends towards a constant value for temperatures below 273K and above 1000 K
as the material reaches its melting point, which we intuitively expect.

A value of 50 M Pa is used as a representative value for nucleation strength in [6,27, 10,
, 102]. In order to prevent sources from simultaneously nucleating in simulation, sources
are assigned a nucleation strength from a distribution function: traditionally Gaussian, as
in [6,15,94,102], with average T, and standard deviation &,,.; or log-normal, in [103,101].
In this thesis, the nucleation strength of a Frank-Read source is described as a third-order

polynomial:
T = RO () + 1 TO(t) + i PO) + g (4.22)

where O(t) = O,(t) + Op; 741 = 0.1476; =f' = —258.87; [ = 64,123; and 7%
is assumed to have a Gaussian distribution with an average and standard deviation of
Toue = 50 - 10% Pa and 7., = 1-10° Pa, respectively. The sensitivity of the material
response on the nucleation strength may be investigated by performing a parametric study
on the coefficients in (4.22) as in Sec. 5.3.4.

4.4 Interaction and Obstacles

Two forms of dislocation interaction mechanisms were implemented in the DTM-DD: (1)
the interaction between dislocations; and (2), between dislocations and obstacles. Two edge
dislocations with Burger’s vectors equal in magnitude but opposite in sign, i.e. a dipole,
will annihilate, presumably due to self-stresses, when sufficiently close to one another. This
was implemented by assigning a material-dependent critical distance L. = 6b, where b is
the magnitude of the Burgers vector [27].
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Figure 4.2: Experimental yield strength of copper fitted using third-order polynomial re-
gression.

Obstacles or inclusions within the medium serve to obstruct the motion of dislocations
along their slip plane. The leading dislocation — that is, the one closest to the obstacle — is
“pinned” against the obstacle. Due to the obstruction of movement, a queue of dislocations
form against an obstacle; this phenomena is termed dislocation pileup [5]. Pileup can
also occur against grain boundaries in polycrystalline specimens. The leading dislocation
is acted on by externally applied stresses, as well as by the cumulative forces from the
dislocations in the queue. Pileup continues until the force on the leading dislocation is
sufficient to overcome the barrier to pass through the obstacle.

In the DTM-DD, obstacles are modeled as points and are randomly generated at a pre-
scribed density pgs on dislocation slip planes. Obstacles are characterized by critical
strength 7,,s. The pileup mechanism continues until the stress on the leading dislocation
is sufficient to overcome 7,5. The dislocation then passes through the obstacle over a time
period of t,e.

Dislocation position within a pile-up is highly unstable and introduces significant oscillatory
behaviour to dislocation velocity [105]. Following Agnihotri & Van der Giessen [101], the
shear wave speed C; = \/u/p (where p is the shear modulus a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>