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Abstract

In this thesis, we incorporate shipment scheduling decisions into hub location problems.

Our aim is to determine optimal locations of hubs, hub network structure, and the number

of vehicles to operate on the hub network as well as the time period of dispatching each

vehicle from a hub. We develop mathematical models for different versions of this problem.

We initially propose a mixed-integer shipment scheduling hub network design model where

the costs of holding freight are negligible. We then expand the model to keep track of the

holding decisions where the holding costs are not negligible. We further analyze the ship-

ment scheduling model with holding costs when different types of vehicles are available to

operate on the inter-hub links. We investigate the impact of shipment scheduling decisions

and holding costs on hub network configurations, routing decisions, and total cost of the

network. We solve the models on instances from a new USAF dataset with real data.

Keywords: Hub location, Shipment scheduling, Economies of scale, Holding costs.
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Chapter 1

Introduction

A special type of networks, so called hub-and-spoke network, is designed to serve flows

of commodities, people, or information between a large set of origins and destinations.

Hubs are central transshipment facilities that provide switching, sorting or connecting,

and consolidation/break-bulk functions (O’Kelly and Bryan, 1998). This configuration

allows carriers to exploit economies of scale on inter-hub transportation costs through

bundling flows. Hub location models are widely used for many applications such as air

transportation, ground freight transportation, postal, and parcel delivery. These models

provide an optimal structure for the hub network and routing decisions with minimum

total costs.

Operational characteristics of parcel delivery companies stimulate the primary motiva-

tion of this study. Parcel delivery networks use a hub-and-spoke network structure where

branch offices are typically referred to as origins/destinations or spoke nodes. Parcels are

routed from the originating branch office through at least one hub, known as an operation

center, to the consignee branch office. Every branch office is allocated to a single operation

center. This is referred to as single allocation in the literature. Parcels dropped at branch

offices customarily travel relatively short distances to arrive at the origin’s operation center.
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They are consolidated with other parcels, loaded onto vehicles with large capacities, and

destined toward consignees’ operation centers. Each parcel delivery company ordinarily

uses its own private fleet of vehicles to serve the inter-hub links.

Growing competition leads delivery companies, such as Fedex, UPS, and DHL, to pro-

vide express services such as same-day or next day-delivery. Such services are provided in

response to urgent freight and just-in-time production schedules in which cost efficiency

is also important. Parcel delivery networks adopt a hub-and-spoke network structure to

reduce transportation costs. Such networks take advantage of economies of scale through

consolidation of freight shipments at hub facilities. To do so, delivery companies need

to schedule the shipments in between hubs. Individual shipments might be held at hub

facilities to dispatch a consolidated load at a later time. In this way, by efficiently schedul-

ing the shipments, economies of scale can be exploited. Introducing shipment scheduling

into hub location problems is essential to efficiently design hub networks, as consolidation

decisions may have an effect on the optimal hub locations. Nevertheless, this issue has not

been addressed in the literature to date.

In this thesis, we incorporate shipment scheduling decisions into hub location problems.

Our aim is to determine optimal locations of hubs, optimal hub network structure, and the

optimal number of vehicles to operate on the hub network as well as the time of dispatching

each vehicle from a hub. We develop mathematical models for different versions of this

problem. We initially propose a mixed integer shipment scheduling hub network design

model where the costs of holding parcels are negligible. We expand the model to keep

track of the holding decisions where the holding costs are not negligible. We aim to

investigate the impact of shipment scheduling decisions and holding costs on optimal hub

configurations, routing decisions, and total cost of the network. We further analyze the

shipment scheduling model with holding costs when different types of vehicles are available

to operate on the inter-hub links. We solve the models on instances from a new USAF

dataset and interpret the results.
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The remainder of the thesis is organized as follows. Chapter 2 addresses the relevant

literature. In Chapter 3, we provide the formal problem definition, notations and math-

ematical formulations for the hub location and shipment scheduling problem. Chapter

4 contains the results of the computational experiments with the proposed models. We

present our concluding remarks in Chapter 5.
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Chapter 2

Literature Review

In this chapter, we review hub location problems in five main sections. Section 2.1 addresses

the hub location problems in general contexts. In four following sections, we specifically

address the bodies of literature most relevant to this research. We also point out how this

thesis can be distinguished from the literature. In Section 2.2, we focus on approaches to

modeling economies of scale in hub location problems. Multi-period hub location problems

are studied in Section 2.3. We review service network design problems in Section 2.4.

Section 2.5 provides the studies on shipment scheduling in hub location problems.

2.1 Classical Hub Location Problems

The work of O’Kelly (1986a,b) pioneered the research on hub location problems. O’Kelly

(1986a) proposed location models for two cases; continuous and discrete single hub net-

works, and a continuous two-hub network, in order to serve a set of interacting nodes. In

addition, he showed that the single-hub location problem is equivalent to a Weberian least

cost location model. O’Kelly (1986b) developed a heuristic method to find locally optimal

locations of hubs, and realized that applying a discount factor on transportation costs of
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inter-hub links furthers a wider hub facility configuration. The publication of the seminal

paper by O’Kelly (1987), who proposed the first mathematical formulation for a general

p-hub median problem, has triggered several papers that addressed hub location problem

with a fixed or variable number of hubs (see e.g., Campbell, 1996; Skorin-Kapov et al.,

1996; Ernst and Krishnamoorthy, 1999; Ebery, 2001; Mar̀ın et al., 2006). p-hub location

problems aim at serving the demands through a predetermined number of hub facilities

(p) at minimum total transportation cost. The p-hub median models usually ignore the

fixed costs of opening hub facilities. O’Kelly (1992) introduced the single allocation hub

location problem with fixed costs, where the number of hubs is a decision variables. He

formulated the problem as a quadratic integer program and proposed a two-step procedure

to find a good upper and a tight lower bound.

Early surveys on hub location problems go back to the works of Campbell (1994) and

O’Kelly and Miller (1994). The interested reader may refer to more recent surveys (see

e.g., Campbell et al., 2002; Alumur and Kara, 2008; Campbell and O’Kelly, 2012; Farahani

et al., 2013; Contreras, 2015) for thorough reviews on hub location problems.

The literature contains a few data sets that have been used extensively with hub location

models. O’Kelly (1987) introduced the Civil Aeronautics Board (CAB) data set that

consists of the airline passenger interactions between 25 cities in United States in 1970.

The unit transportation costs in the CAB dataset correspond to the air distances between

cities. Three decades later, Ernst and Krishnamoorthy (1996) contributed Australia Post

(AP) data that includes 200 postal districts for the postal (ground) delivery network in

Sydney, Australia. Tan and Kara (2007) introduced the Turkish dataset that contains 81

demand centers. This dataset includes travel distances, travel times, flow values, and fixed

link costs between 81 cities in Turkey. All these three datasets are readily accessible in the

OR Library (Beasley, 1990). Additionally, Karimi and Setak (2016) generated the Iranian

Roads Network (IRN) dataset that includes 20 cities. They calculated the fixed cost of

hubs by the procedure proposed by Tan and Kara (2007). They also used a population-
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based function to find origin-destination demands. The IRN dataset is available in Karimi

(2016).

2.2 Economies of Scale in Hub Location Problems

The economies of scale is known as one of the primary motivations for designing hub

networks. Hub networks allow carriers to take advantage of economies of scale through

consolidation of human, commodity or information flow at hubs. Most of the hub location

models in the literature apply a constant discount factor α, where 0 ≤ α < 1, to the unit

transportation costs between hubs. However, modeling economies of scale by a discount

factor α which is independent of flows contradicts the underlying motivation of hub net-

works. Some studies attempted to resolve this drawback by modeling economies of scale

in different ways.

O’Kelly and Bryan (1998) replaced the constant factor α by a concave function, 1 −

θXβ
km where 0 < θ ≤ 1, β > 0 and Xkm indicates flow passing through interhub link (m,k)

totalflow
. They

approximated the nonlinear function by a piecewise linear function as shown in Figure 2.1.

Figure 2.1: Piecewise linear approximation function (O’Kelly and Bryan (1998))
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Bryan (1998) further extended the model discussed in O’Kelly and Bryan (1998) by

considering economies of scale on all links. He used the same piecewise linear approximation

method to model economies of scale.

Horner and O’Kelly (2001) also applied a nonlinear cost function dependent on link

flow that rewards economies of scale on all links in the network. Unlike O’Kelly and Bryan

(1998), however, they analyzed this nonlinear concave function instead of its piecewise

linear approximation function.

Podnar et al. (2002) used a threshold-based discounting factor to formulate economies

of scale. They assumed that if the amount of traffic on a given link is large enough (or

exceeds a predetermined value), then the cost of this flow is discounted by a factor α.

Figure 2.2 demonstrates the cost function of flow routed through a given link (k,m).

Figure 2.2: The cost as a function of flow through link (k,m) (Podnar et al. (2002))

Kimms (2006) proposed an alternative way to model economies of scale by considering

flow-independent fixed costs and a unit total cost. The economies of scale is simply incor-

porated into the cost model, such that an increase in flow reduces the unit handling cost.

He considered the economies of scale for all links in a multiple allocation p-hub median

problem with direct services. He further took capacity constraints of trucks into account.

Operating each truck on a given link incurs a fixed cost. Figure 2.3 illustrates the cost
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structure proposed by Kimms (2006), where cfih, c
t
ih, and cvih denote a fixed cost, a truck

fixed cost, and a unit handling cost, respectively.

Figure 2.3: Cost structure with fixed costs (Kimms (2006))

Kimms (2006) also considered a more general setting of the model where M trans-

portation modes are available to operate on each link. He decided on the required number

of vehicles of each type. They extended the model by adding a set of constraints on the

number of modes serving the links, as well.

Cunha and Silva (2007) introduced the discount factor as a function of the total amount

of freight between hubs. The function might take any form including continuous, discrete,

nonlinear, linear, symmetric, and asymmetric. They designed a hub network for a less-than-

truckload company in Brazil. They proposed a genetic algorithm (GA) with an efficient

local search to solve the model, since GA allows high degree of flexibility to define the

discount-factor function.

Chen et al. (2014) analyzed a hybrid hub-and-spoke network for less-than-truckload

freight by minimizing the total operation costs: transportation costs and transfer costs at

hubs. They proposed an incremental quantity discount factor α. They further formulated

economies of scale by the weighted average unit discount rate, based on the discount rates

of intervals and the amount of flows that adopt the discounts of the intervals. They also
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expanded the model by imposing capacity constraints on links.

In this thesis, we introduce a stepwise constant cost function to formulate transporta-

tion costs on inter-hub links. This function includes two costs: i) fixed cost of dispatching

a vehicle and ii) operational cost per vehicle that varies with distance. This cost model,

together with the vehicle capacities, can simply overcome the weakness of using a con-

stant flow-independent discount factor. We illustrate our fixed cost-oriented formulation

in Figure 2.4, where η indicates the vehicle capacity.

Figure 2.4: Stepwise constant cost function

Since benefiting from economies of scale requires freight to be consolidated at hub

facilities, we also introduce the dimension of time into our hub location problem. The next

section addresses dynamic hub location problems.

2.3 Multi-Period Hub Location Problems

Research on dynamic hub location problems began with the pioneering work of Campbell

(1990). He proposed a continuous-approximation model to locate/relocate freight carrier

terminals in response to increasing demand. The shipment origins and destinations are
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randomly dispersed over a fixed service region. The model aimed to keep low cost terminal

configurations through the trade-off between transportation costs, location and relocation

costs of the terminals. He examined the performance of myopic strategies which are based

on current demands and terminal locations. The results showed that a myopic strategy is

nearly optimal when relocation is not expensive, and provides lower and upper bounds on

the transportation cost for the optimal strategy.

Contreras et al. (2011) analyzed a dynamic (multi-period) uncapacitated multiple al-

location hub location problem over a finite discrete time planning horizon. For given sets

of commodities in each time period, all single-period demand of a particular commodity

is fully routed through a distinct set of hubs toward the destinations. They developed a

branch-and-bound (BB) algorithm that yielded optimal solutions for a set of benchmark

instances with up to 100 nodes and 10 time periods. A Lagrangian relaxation approach

was employed to provide tight lower and upper bounds at each node of the BB tree. To

reduce the number of nodes of the tree, they used an effective partial enumeration phase

to explore the solution space.

Classical hub location models primarily address long-term strategic location and allo-

cation decisions. Gelareh et al. (2015) illustrated certain applications such as maritime

and land transport dealing with seasonal decisions. Since hub facilities are leased, the

locations of the hubs can change when the current contracts conclude. They developed

a mathematical model for a multi-period uncapacitated multiple allocation hub location

problem with a budget constraint. The mixed-integer linear model is solved by CPLEX

for small-sized instances. They proposed a meta-heuristic and a Bender’s decomposition

algorithm to solve large scale instances.

Alumur et al. (2016) studied other multi-period versions of hub location problems.

Taking construction time into consideration, they presumed that the hub network is

progressively constructed over time and its operating capacity may increase, gradually.

They proposed mixed-integer linear programming formulations for multi-period modular-
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capacitated hub location problems for both single and multiple allocation versions. Re-

ducing hubs’ capacities and closing existing hubs are not allowed. Operating inter-hub

links incurs fixed costs and might change over time, even if the set of hubs remains the

same. They improved the models through several sets of valid inequalities. Using CPLEX

software, they solved the models for moderately-sized instances. They developed a mea-

sure for the value of the multi-period solution that compares the optimal value of the

multi-period formulation with feasible one achieved by solution to static (single period)

counterpart of the problem. Computational tests revealed the importance of integrating

the time dimension into hub location problems.

Analogous to multi-period hub location models, in this study we assume that the plan-

ning horizon is discretized into a set of time periods. However, as the planning horizon is

assumed to be short (e.g., a couple of days), the resulting structure of the hub network

remains steady over all time periods. Moreover, it is assumed that every parcel is delivered

to a hub facility (consignee operation centers) by the end of the planning horizon. To take

advantage of economies of scale through shipment scheduling, any parcel might be held at

a hub facility for one or more time periods. Hence, as opposed to the static hub location

model, here the flows on inter-hub links might change over different time periods.

2.4 Service Network Design

Another relevant subject area might be the service network design problem (SNDP). SNDP

addresses operational and tactical decisions associated with vehicle routing, service sched-

ules, consolidation, repositioning of empty vehicles, and vehicle stops as well as waiting

times using preexisting terminals. SNDP problems provide consolidation-based transporta-

tion systems with a service plan for all demands. SNDP problems are NP-Hard, and are

generally formulated as mixed-integer multi-commodity, capacitated network models (see

e.g., DallOrto et al., 2006; Wang and Lo, 2008).
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Early research on SNDP goes back to the work of Crainic and Rousseau (1986). They

analyzed the multi-mode, multi-commodity freight transportation problem when the same

authority regulates or plans the supply of transportation services, and also makes the

routing decisions. They defined a set of possible itineraries (the sequence of terminals

for a given traffic class) and efficiently solved the model by a decomposition-and-column

generation-based algorithm.

Armacost et al. (2002) proposed a new formulation for the express shipment service

network design problem using composite variables to solve realistic size instances. They

combined aircraft route and package flow variables as a single composite variable. The LP

relaxation of the composite-based formulation provides stronger lower bounds. The model

was applied to the Next Day Air network of the United Parcel Service (UPS).

Sung and Song (2003) introduced cross-docking (CD) centers into a service network

design problem. They simultaneously decided on the locations of CD centers and the

number of vehicles for each origin-CD and CD-destination direct service. Two types of

vehicles are considered to serve the links. Vehicle assignments are subject to restrictions

on capacity and service time. The authors formulated the problem by using a path-based

model. They proposed tabu-search-based algorithm along with tightened lower bounds

that are derived by a set of strong valid inequalities.

Lai and Lo (2004) proposed a single ferry type service network design problem with

ferry capacity constraints. They considered two types of time-space networks: i.e. a ferry

and passenger flow network, to formulate the problem. Origin-destination demands and

their arrival patterns at the piers are assumed to be known. Their mixed-integer model

determined the optimal fleet size, ferry routes, and departure schedules. They developed

a two-phase heuristic algorithm that exploited the polynomial-time performance of the

shortest path algorithm. They applied the heuristic to efficiently solve instances of ferry

services in Hong Kong under two scenarios: morning peak period and entire day.
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Andersen et al. (2009) studied multiple fleet coordination within service network de-

sign. They aimed at synchronizing both new services and existing connected services to

determine the departure times of each. A service is identified by its origin, possible inter-

mediate stops, and its destination. Characteristics such as capacity, speed, and priority

can distinguish particular services. They solved the mixed-integer programming model

using a commercial solver, applying the model to real-life data for a network of 17 nodes

within a planning horizon of 84 time periods of 2 hours. The authors obtained solutions

within an optimality gap of 10% after 24 hours of running time, as the LP-relaxation of

the model is weak. To speed up the solution process, they used additional strong forcing

constraints and also eliminated some specific arcs. The model eventually was optimally

solved within 12 hours.

Pedersen et al. (2009) addressed asset management considerations in a generic ser-

vice network design problem. They developed both arc- and cycle-based formulations for

a designed-balanced service network design problem. The aim was to transport origin-

destination demands within their time windows. The model picked services, determined

their schedules and routed assets to be available at terminals. Here, the term “asset” may

refer to crews, tractors, ships, trucks, etc. The authors proposed a tabu search algorithm

that includes two local-search phases to solve the arc-based formulation. They solved sev-

eral network design problem instances from the literature by implementing the tabu search

algorithm. Comparing the results with exact solutions obtained by a commercial solver

showed the efficiency of that algorithm.

Teypaz et al. (2010) proposed a new formulation for service network design with fleet

assignments that take the carrier’s profit into consideration. They presumed that any

demand can be completely or partially rejected by the carrier. In addition, different types

of vehicles are available to be operated during predetermined time windows. A three-phase

heuristic decomposition method was developed to solve large-scale instances.

Ng and Lo (2016) proposed robust models for service network design under demand
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uncertainties. The authors basically assumed that the mean and upper bound are the only

known information on passenger demands. This information is further supplemented by

a lower bound, and the variance of demand, as two separate cases. They compared and

analyzed two models using a ferry transportation service data in Hong Kong.

An interested reader may refer to Crainic (2000) and Wieberneit (2008) for thorough

reviews on this area. Our study and service network design problem come close in spirit

to network design problem. SNDP derives an optimal transportation plan on a network of

terminals where freight is to be delivered within a delivery deadline. However, our study

mainly focuses on an optimal design of the network including locations of the hub facilities

and allocation of the demand nodes to hubs subject to shipment scheduling decisions.

2.5 Hub Location and Scheduling

The literature on scheduling in hub location problems is scarce. Yaman et al. (2012)

proposed release-time scheduling and hub location problems for next-day delivery. They

investigated a single allocation p-hub median problem under release-time decisions for

trucks from each demand node, with a predetermined service level. They presumed a

given closing time at all centers for receiving packages from their customers. In addition,

all trucks must leave a demand center at the same time. The authors aimed at improving

service quality at minimum total routing cost. They extended their model by considering

uniform and piecewise linear arrival patterns, release-time dependent cargo arrival patterns,

and multiple service levels. Applying a set of valid inequalities, they solved their models

using CPLEX for CAB and Turkish data instances in a reasonable computation time.

Karimi and Setak (2016) analyzed an incomplete hub location problem subject to ser-

vice time constraints. They proposed an integer programming model to decide the loca-

tions of hub facilities, allocation of non-hub nodes to hub nodes, and departure times at

the nodes. It was assumed that direct connections are allowed and there are no capacity
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restrictions on hubs. The authors reduced the problem size by carrying out a set of prepro-

cessing steps. They further solved their model using CPLEX on instances from the CAB

and AP data sets, as well as a new data set called Iranian Roads Network (IRN).

To the best of the author’s knowledge, the present research is the first attempt at

modeling simultaneously the decisions on hub location with those on shipment scheduling.

Economies of scale are achieved through consolidating freight at hubs by the scheduling of

shipments between those hubs. A consolidated shipment results from the accumulation of

freight that is held at hubs over one or more time periods. We take the capacity of vehicles

into consideration, and decide on the number of dispatches on each inter-hub link during

each time period, in addition to the locations of hubs.

We develop mathematical models for different versions of this hub location and shipment

scheduling problem. These variations are described at the start of the next chapter.
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Chapter 3

Problem Definition and

Mathematical Formulations

In this chapter, we first incorporate the stepwise constant cost function into a classical

hub location problem. Then, we extend the model by considering the impact of shipment

scheduling decisions on hub configurations. We initially define the hub location and ship-

ment scheduling problem and further propose three different mathematical formulations

for it. The first model is applicable when holding costs at hub facilities are negligible,

whereas the second incorporates holding costs at hub facilities. In the third model, we

include the possibility of using different types of vehicles.

3.1 Hub Location Model with stepwise constant cost

function

In this section, we use the multi-commodity flow-based formulation proposed by Ernst

and Krishnamoorthy (1996). We modify the inter-hub cost expression by introducing our

16



proposed cost function (see Section 2.2) into the model. The fleet is considered to be ho-

mogeneous. The sets, parameters, and variables required for the formulations are defined

as below.

Sets

N Set of demand nodes.

H Set of candidate hub nodes.

T Set of time periods.

Parameters

wij The flow originating from node i ∈ N destined to j ∈ N , at

the beginning of the planning horizon.

η Capacity of a vehicle serving an inter-hub link.

fk The fixed setup cost associated with locating a hub facility at

node k ∈ H.

f̄ Fixed cost to dispatch a vehicle.

c̄kl Variable transportation cost from hub k ∈ H to hub l ∈ H

per vehicle including operational costs.

cij The cost of sending one unit of flow from node i ∈ N to j ∈ N

on an allocation connection.

To simplify the notation, let Oi denote the total flow originating at node i ∈ N that is

available in the beginning of the time horizon. Under the assumption of single allocation,

Oi =
∑

j∈N wij. Likewise, let Di =
∑

j∈N wji, where Di denotes the total flow destined to

node i ∈ N .

Variables

xik =

1 If node i ∈ N is assigned to hub k ∈ H

0 o.w.

(xkk = 1 denotes that node k ∈ H is a hub node.)
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yikl The total amount of flow of node i ∈ N (i.e., traffic originating

from node i ∈ N) routed through the hub link from k ∈ H to

l ∈ H.

zkl The number of dispatches required from hub k ∈ H to hub

l ∈ H.

The hub location problem with the stepwise constant cost function (SHLPSCF) is

formulated as follows:

[SHLPSCF ] Minimize
∑
k∈H

fkxkk +
∑
i∈N

∑
k∈H

cikOixik +
∑
k∈H

∑
l∈H

(f̄ + c̄kl)zkl

+
∑
i∈N

∑
k∈H

ckiDixik (3.1)

Subject to

(3.7),(3.8),(3.13)∑
l∈H

yikl −
∑
l∈H

yilk = Oixik −
∑
j∈N

wijxjk ∀i ∈ N,∀k ∈ H (3.2)

∑
i∈N

yikl ≤ ηzkl ∀l 6= k ∈ H, (3.3)

yikl ≥ 0 ∀i ∈ N, ∀k, l ∈ H (3.4)

zkl ∈ Z+ ∀l 6= k ∈ H (3.5)

The third term in objective function (3.1) accounts for inter-hub shipping cost. Equa-

tions (3.2) guarantee flow balance. Constraints (3.3) ensure sufficient capacity on hand to

ship flows between hubs. Constraints (3.4) and (3.5) are non-negative and integer require-

ments on their corresponding decision variables.
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3.2 Hub Location and Shipment Scheduling Problem

The problem is to design a parcel delivery network to serve a given set of demand nodes

denoted byN . Several hub location studies assume that a number of potential hub locations

are identified (see e.g., Yaman et al., 2007; Alumur et al., 2012; Peker et al., 2016). Likewise,

we define H to indicate a set of candidate hubs. A hub network is to be designed by

determining at which of the candidate locations a hub will be operated, and allocating

the demand nodes to those hubs. Shipments are then to be scheduled within a given

planning horizon on this hub network that is designed. The planning horizon, T , is finite

and discretized into |T | time periods, i.e., t = 1, ..., |T |. The first time period corresponds

to the time interval [0,1), the second one to [1,2), etc. It is assumed that the planning

horizon is relatively short (e.g., two days considering a next-day delivery service, or several

days), hence the location and allocation decisions do not change over time.

Each demand node can send flow to any other node through this network, which is

referred to as the full-cross-traffic assumption. A quantity of freight, wij, originating from

node i ∈ N and destined to node j ∈ N becomes available at its origin at the beginning of

the time horizon. All nodes send or receive flow through a single hub node which is referred

as single allocation. Freight is to be shipped from the originating demand node to its hub

during the first time period [0,1). Due to short distances between demand nodes and their

respective hubs, freight is assumed, without loss of generality, to become available at the

originating hubs at time t = 1. Shipment schedules are to be determined only within the

inter-hub network. Initially, we assume that a set of homogeneous vehicles V operate on

the inter-hub links, each with limited capacity η.

It is important to note that, in this thesis, the term vehicle denotes a particular entity

for transportation. Between any two hubs in the network, freight is said to be carried by

a vehicle. In our numerical examples below, inter-hub movements occur by plane. In this

context, a “vehicle” thus denotes an aircraft.
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The problem is to decide on the number of vehicle dispatches. Each vehicle traverses an

inter-hub link from k ∈ H to l ∈ H in transit time τkl. Hence, flow entering an inter-hub

link (k, l) at time t ∈ T , arrives at l ∈ H at time t+τkl. The literature on dynamic network

flow assumes that the flow over time has time horizon T . Analogously, we presume that

the latest time that flow can enter the inter-hub link (k, l) is T − τkl.

Upon arrival at hubs, the freight gets unloaded, sorted, consolidated either immediately

or during a later period, and loaded onto vehicles. If freight stays at a hub facility to be

shipped in a later time period, then inventory holding costs may be incurred. For each

time period, we need to determine the quantity of freight to be shipped from each hub and

the number of vehicles to dispatch on each inter-hub link.

The problem is thus to design the hub network and schedule the shipments of a single

parcel-delivery company, at minimum total cost. It is assumed that the company employs

its own private fleet to serve the inter-hub links. There is a fixed cost to dispatch a vehicle,

and a variable transportation cost per unit distance consisting of fuel, long-term, and

regular maintenance costs. Given the distances between nodes, variable transportation

costs can be computed for each vehicle trip. Introducing predefined fixed costs and vehicle

variable costs as the sources for economies of scale, total cost incurred on inter-hub links

is calculated by the number of vehicles serving the inter-hub links times the summation of

vehicle fixed costs and variable costs. On the other hand, routing the flow on allocation

links, i.e. links in which either origin or destination is non-hub, incurs a cost proportional

to the amount of flow.

Retaining all other sets and parameters, we need to define a new set and parameter to

formulate the problem as follows.

Sets

T Set of time periods.

Parameters

τkl Transit time between hub k ∈ H and hub l ∈ H.
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Note that all cost parameters should be scaled considering the length of the planning

horizon. In the next two sections, we introduce different mathematical formulations of this

problem.

3.2.1 Problem formulation with no holding costs

We initially assume that freight holding costs at hub facilities are negligible. Since the

planning horizon is assumed to be short, it may be reasonable to assume that holding

freight for an even shorter period of time (e.g., for a half day) at a hub facility incurs no

cost. To this end, retaining xik, where i ∈ N and k ∈ H, we define the following variables

to formulate the problem.

yitkl The total amount of flow of node i ∈ N (i.e., traffic originating

from node i ∈ N) entering the hub link from k ∈ H to l ∈ H

at the beginning of the time period t ∈ T .

ztkl The number of dispatches required from hub k ∈ H to hub

l ∈ H in time period t ∈ T .

ritk Total amount of flow originating at node i ∈ N , and remaining

at hub node k ∈ H by the end of the time period t ∈ T .

The shipment scheduling hub location problem with no holding costs is formulated as

[SSHLP ] Minimize
∑
k∈H

fkxkk +
∑
i∈N

∑
k∈H

cikOixik +
∑
t∈T

∑
k∈H

∑
l∈H

(f̄ + c̄kl)z
t
kl

+
∑
i∈N

∑
k∈H

ckiDixik (3.6)

Subject to∑
k∈H

xik = 1 ∀i ∈ N (3.7)
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xik ≤ xkk ∀i ∈ N,∀k ∈ H (3.8)

ri1k =
∑
j∈N

wijxik −
∑
l∈H
l 6=k

yi1kl ∀i ∈ N,∀k ∈ H (3.9)

ri,t−1
k +

∑
{l:t−τlk>0}

l 6=k

yi,t−τlklk = ritk +
∑
l∈H
l 6=k

yitkl ∀i ∈ N, ∀k ∈ H,∀t = 2, ..., T (3.10)

riTk =
∑
j∈N

wijxjk ∀i ∈ N,∀k ∈ H (3.11)

∑
i∈N

yitkl ≤ ηztkl ∀l 6= k ∈ H,∀t ∈ T (3.12)

xik ∈ {0, 1} ∀i ∈ N, ∀k ∈ H (3.13)

ztkl ∈ Z+ ∀l 6= k ∈ H,∀t ∈ T (3.14)

yitkl ≥ 0 ∀i ∈ N,∀l, k ∈ H, ∀t ∈ T (3.15)

ritk ≥ 0 ∀i ∈ N, ∀k ∈ H, ∀t ∈ T (3.16)

The objective function (3.6) represents overall cost of the network consisting of setup

costs for locating the hub facilities, the fixed and variable transportation costs. Constraints

(3.7) indicate that each node either is a hub or is allocated to a hub node. Relation (3.8)

ensures that each node is allocated to an operating hub facility. Equalities (3.9)-(3.11) refer

to the flow conservation. Constraints (3.9) calculate the total amount of freight available

to be shipped at a hub node by the end of the first time period. Equation (3.10) represents

flow divergence, written for each period excluding the first. Constraints (3.11) assure that

all demand becomes available at the destination’s hub by the end of the planning horizon.

Inequalities (3.12) calculate the total number of vehicles required on each inter-hub link.

Relations (3.13)-(3.16) represent the binary, nonnegative integer, and real variables.
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3.2.2 Problem formulation with holding costs

In the previous formulation, we incorporated the dimension of time into a hub location

problem, which made possible the scheduling of shipments. However, this model might

result in holding freight at hub facilities for some periods of the planning horizon. In a

more general application setting, the cost to hold freight at hubs might not be negligible.

Therefore, for a delivery company, keeping track of carrying costs at hubs may become

important. As a matter of fact, a trade-off between holding costs and transportation costs

determines the optimal design of hub networks. To address the stated issue, we propose

another formulation for the problem.

Let hk indicate the holding cost per unit at hub node k ∈ H; this remains constant over

all periods. Retaining the previous assumptions and variables, we need to introduce the

following additional decision variables to keep track of the amount of freight being held at

each hub facility during each time period:

vitkj The demand originating at node i ∈ N destined to node j ∈ N

in period t ∈ T , via hub k ∈ H as the last hub on the route.

qitk The amount of freight originating from node i ∈ N to be held

at hub k ∈ H in time period t ∈ T .

We propose the shipment scheduling hub location problem with holding cost (SSHLPH)

as follows.

[SSHLPH] Minimize
∑
k∈H

fkxkk +
∑
i∈N

∑
k∈H

cikOixik +
∑
t∈T

∑
k∈H

∑
l∈H

(f̄ + c̄kl)z
t
kl

+
∑
i∈N

∑
k∈H

ckiDixik +
∑
t∈T

∑
i∈N

∑
k∈H

hkq
it
k (3.17)

Subject to

(3.7)-(3.16)∑
t∈T

vitkj = wijxjk ∀i, j ∈ N, ∀k ∈ H (3.18)
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qitk = ritk −
∑
j∈N

t∑
t′=1

vit
′

kj ∀i ∈ N,∀k ∈ H,∀t ∈ T (3.19)

vitkj ≥ 0 ∀i, j ∈ N, ∀k ∈ H, ∀t ∈ T (3.20)

qitk ≥ 0 ∀i ∈ N, ∀k ∈ H, ∀t ∈ T (3.21)

The last term in the objective function (3.17) accounts for the holding costs. Constraints

(3.18) ensure that demands between all pairs of nodes are met. Equality (3.19) calculates

the amount of freight originating from an individual node that is held at each hub in each

time period. Constraints (3.20) and (3.21) ensure the non-negativity of the quantities held.

In a more general setting, a heterogeneous set of vehicles, each with different capacities,

might be available to be operated on the inter-hub links. To consider this situation, we

can extend the SSHLPH model by modifying corresponding parameters and variables. Let

M denote the set of vehicle types, with respective capacity ηm,m ∈M , that are available

to serve the inter-hub links. Let f̄m indicate the fixed cost to dispatch a vehicle of type

m ∈M . The cost c̄klm represents the variable transportation cost from hub k ∈ H to hub

l ∈ H for a vehicle of type m ∈ M . Retaining all other decision variables, we need to

define only one new variable ztklm as follows.

ztklm The number of dispatches of vehicle type m ∈ M required

from hub k ∈ H to hub l ∈ H in time period t ∈ T .

The shipment scheduling hub location model with holding costs and different types of

vehicles (SSHLPHV) can be formulated as:

[SSHLPHV ] Minimize
∑
k∈H

fkxkk +
∑
i∈N

∑
k∈H

cikOixik +
∑
m∈M

∑
t∈T

∑
k∈H

∑
l∈H

(f̄m + c̄klm)ztklm

+
∑
i∈N

∑
k∈H

ckiDixik +
∑
t∈T

∑
i∈N

∑
k∈H

hkq
it
k (3.22)

Subject to
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(3.7)-(3.11),(3.13),(3.15),(3.16),(3.18)-(3.21)∑
i∈N

yitkl ≤
∑
m∈M

ηmz
t
klm ∀l 6= k ∈ H,∀t ∈ T (3.23)

ztklm ∈ Z+ ∀l 6= k ∈ H,∀t ∈ T,∀m ∈M (3.24)

The third term in the objective function (3.22) calculates the total cost of shipments on

inter-hub links, considering all types of vehicles. Constraints (3.23) compute the number

of vehicles of each type required on each inter-hub link. Relations (3.24) assure integrality

of the variables.

3.3 Size of the Models

In this section, we demonstrate the number of variables and constraints in each of the

formulations. Let |N | = n, |H| = h, |T | = t̄, and |M | = µ. As can be seen from

Table 3.1, for all four models, the number of binary variables is the same and equals

O(nh). The number of integer variables follows O(h2) for single allocation hub location

with the stepwise constant cost function (SHLPSCF). The number of integer variables

for the shipment scheduling hub location models with negligible holding costs (SSHLP)

and non-negligible holding costs (SSHLPH) increases to O(h2t̄). When multiple types

of vehicles are available to operate between hubs (SSHLPHV), the formulation involves

O(h2t̄µ) integer variables.

The SHLPSCF formulation with O(nh2) has the least number of continuous variables.

The SSHLP formulation has O(nh2t̄) continuous variables, while SSHLPH and SSHLPHV

models have O(n2ht̄). The number of constraints in SHLPSCF formulation follows O(n2).

The SSHLP formulation has O(nht̄) constraints, whereas the SSHLPH and SSHLPH for-

mulations contain O(n2h+ nht̄).

As can be observed, the SSHLPH formulation consists of more continuous variables
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and constraints than the SSHLP. Although the SSHLPHV model has as many constraints,

binary and continuous variables as the SSHLPH model does, the SSHLPHV model has more

integer variables. To sum up, we expect that the SSHLP formulation is computationally

less demanding than SSHLPH and SSHLPHV formulations. Furthermore, SHLPSCF is

expected to be computationally far less demanding formulation than the other.
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Chapter 4

Computational Analysis

In this section, we perform extensive computational tests of the models SHLPSCF, SSHLP,

SSHLPH, and SSHLPHV. We begin by describing our procedure for estimating and gen-

erating the problem data in Section 4.1. In Section 4.2, we address the results of the

SSHLPSCF model. We report the results of the SSHLP and SSHLPH models in Sections

4.3 and 4.4, respectively. In Section 4.5, the sensitivity of the models are further discussed,

in relation to demand and length of the planning horizon. Results of the SSHLPHV model

are presented in Section 4.6.

4.1 Parameter Estimation and Data Generation

We generated a new data set to be referred as the United States Air Flow (USAF) dataset,

with 15 nodes (225 O-D pairs) and 20 nodes (400 O-D pairs), to test the shipment schedul-

ing hub location models. This dataset is available in Masaeli (2017). Locations of demand

nodes in this dataset correspond to the first 15 and 20 cities in the Civil Aeronautics Board

(CAB) dataset used in O’Kelly (1987) (see Appendix, Table 1, for a list of those 20 cities,

with corresponding node numbers). We extracted the values of demands (wij) from the
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Freight Analysis Framework (2016) developed by the Center for Transportation Analysis.

That framework provides values of the commodity flows shipped between domestic origins

and destinations in the United States. The flow data with value and weight are reported

for 34 different commodity types and seven modes of transportation. At the time of this

study, the data available were for the year 2014. Among the seven transportation modes,

we considered only shipments by air. For each pair of cities, we summed the flow values

over all commodities to calculate the total demand between each pair of nodes in the USAF

dataset.

We generated a set of candidate hub locations from among the set of demand nodes.

We adopted one of the best-performing node-importance measures, reported in Peker et al.

(2016) for the CAB data set, to pick promising locations for hubs. We used the measure

(Oi + Di)Ci where Ci =
∑

j∈N dij. For a given node i ∈ N , the summation of incoming

and outgoing flow represents the magnitude of demand at the node. Ci indicates the

node’s centrality measure, calculated by summation of the Euclidean distances between

node i ∈ N and all other nodes. For instance, by applying the node importance measure

on the USAF dataset with 15 nodes, the first eight cities as potential hub locations in

descending order of their importance are Los Angeles, Miami, Chicago, Memphis, Dallas,

Atlanta, Detroit, and Cleveland. The list of eight candidate hub locations when there are

20 nodes remains almost the same, except that the last three cities are replaced by New

York, Philadelphia, and Boston.

Fixed cost per dispatch (f̄) is associated with purchasing/leasing costs of aircraft. We

calculated this cost by assuming that the lifespan of a plane is 20 years and that it traverses

four legs per day on average. Variable transportation cost per vehicle (c̄kl) corresponds

to operating costs that include flying operations, maintenance, and fuel costs per plane.

We estimated the values of the fixed costs and variable costs per flight according to the

costs and airplane operating characteristics reported by Coyle et al. (2011) for two different

types of cargo planes: B747-F and B747-100. We make an inflation-adjusted estimate of
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the costs by using inflation factors reported by the Bureau of Statistics (2017). Table 4.1

shows values of the fixed cost per flight and the capacity of airplanes.

Table 4.1: The capacity of airplanes and corresponding fixed costs.

Type
Capacity, η

(tons)

Fixed cost

per flight, f̄ ($)

B747-F 72.58 9247

B747-100 46.34 8082

We determine the value of transportation costs on allocation links (cij) based on average

operational costs of trucking per mile, reported by American Transportation Research

Institute (2015). The capacity of a truck serving allocation links is assumed to equal the

average capacity of a large straight truck. That capacity is taken as 14000 lbs, as reported

by FedEx (2017). Hence, the operational cost of trucking is estimated as $0.24 per ton

per mile. Table 4.2 compares the cost per ton of using a B747-F aircraft vs a truck, for a

number of sample origin-destination pairs. From Table 4.2, we observe that after a certain

distance, approximately 1900 miles, it is cheaper to operate a B747-F than to use a truck.

Table 4.2: Cost comparison between airplane and truck.

Origin-Destination
Distance

(mile)

Airplane cost

($/ton)

Truck cost, cij

($/ton)

Atlanta-Baltimore 577 201 161

Atlanta-Denver 1208 371 337

Atlanta-Los Angeles 1937 518 541

Boston-Los Angeles 2600 652 726

To test different values for holding cost, we picked four product types that cover a

wide range of values from among the 34 types provided by the Freight Analysis Framework
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(2016). These are pharmaceutical, electronics, plastics or rubber, and furniture. Holding

costs are often computed yearly and expressed as a percentage of the value of the inventory

item. Assuming the percentage holding cost is r = 0.25$/$/yr, and with 365 days/year,

we calculate the holding cost per ton per day for each category in Table 4.3. The resulting

values represent four holding cost classes ranging from high to low.

Table 4.3: Holding cost classes.

Class Range Example products
Holding cost (hk)

($/ton/day)

A high pharmaceutical 286

B medium-high electronics 124

C medium-low plastics or rubber 19

D low furniture 9

To analyze the effect of the fixed setup cost of hub facilities on location, routing, and

holding decisions, we vary hub setup costs such that fk ∈ {5000, 10000, 25000} for all

k ∈ H. These costs are estimated upon the information in Civil Aviation Forums (2002)

and Ferraiuolo (2014).

The travel time between cities is calculated by assuming an average cruising speed of

550 miles/h. Moreover, it is assumed that the sorting, loading, and unloading times are

embedded in the traveling time. We initially consider a planning horizon of three time

periods in our computational results. Each period corresponds to a half-day. We round

the travel times up to the nearest whole number of periods. We further conduct some

numerical experiments with four time periods (2 days), as well.

We solve all four models: those for single allocation hub location with the stepwise

constant cost function (SHLPSCF), shipment scheduling hub location (SSHLP), shipment

scheduling hub location with holding costs (SSHLPH), shipment scheduling hub location
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with holding costs and hetergeneous vehicles (SSHLPHV). CPLEX version 12.6.3 is em-

ployed on a server with 16xAMD Opteron 2.61 GHz and 40 GB RAM. In order to obtain

acceptable results within a reasonable amount of computational time, we impose a five-hour

CPU time limit for the 15-city dataset.

For the 20-city dataset, we set the CPU time limit to eight hours and also set an

optimality gap of 2.00% for the last three models. The CPLEX solver terminates, once

either the time or gap condition holds, for these 20-city instances.

4.2 SHLPSCF Model Results

Results of the single allocation hub location model with the stepwise constant cost function

for 15-node and 20-node networks are given in Tables 4.4 and 4.5, respectively.

Table 4.4: Results of SHLPSCF model on the 15-node network

Type Setup cost Obj. Value Hub locations No. of flights CPU time (s)

5000 540,386 4,12,13 11 36.35

B747-F 10000 551,821 4,13 7 8.55

25000 567,393 4 - 0.93

5000 532,970 4,12,13 16 19.01

B747-100 10000 547,970 4,12,13 16 18.43

25000 567,393 4 - 0.22

The model tends to open a greater number of hub facilities in Table 4.5 than in Table

4.4. This is because more demand nodes in the network are to be served. Optimal locations

of hubs vary with the type of aircraft and setup-cost values. For example, when the B747-

100 is employed and setup costs equal $5,000, the network is expanded to include 6 hubs

at Chicago, Dallas, Los Angeles, Memphis, Miami, and New York, and operate 38 flights.

The last column of Tables 4.4 and 4.5 show that required CPU times are sensitive to
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Table 4.5: Results of SHLPES model on the 20-node network

Type Setup cost Obj. Value Hub locations No. of flights CPU time (s)

5000 843,220 4,12,13,14,17 24 172.21

B747-F 10000 863,270 4,12,13,17 20 60.77

25000 923,270 4,12,13,17 20 19.56

5000 842,722 4,7,12,13,14,17 38 2848.55

B747-100 10000 870,175 4,12,13,14,17 35 2096.25

25000 937,270 4,12,13,17 31 100.09

the type of aircraft and also to setup costs. All instances on 15-node network are solved to

optimality within at most one minute. For 20-node network, B747-F instances are solved

on average within 85 seconds. However, for B747-100 instances, the average CPU time is

significantly higher. Among them, those under $5,000 and $10,000 setup costs are around

45 minutes as the model tends to open more hubs and use flights more frequently. By

increasing the setup cost values to $25,000, the CPU time drops to about 2 minutes as

fewer hubs tend to be opened.

We further compare the results for SSHLPSCF model with those for SSHLP and

SSHLPH models in Sections 4.3 and 4.4.

4.3 SSHLP Model Results

Tables 4.6 and 4.7 show results of the shipment scheduling hub location model for the

USAF dataset with three time periods, and 15 or 20 cities, respectively. The first columns

of these tables indicate the type of plane operating on the inter-hub links. For each type,

we test three different values of setup costs for hub facilities so as to investigate the impact

of these values on location and routing decisions, and the CPU times in each case. For

each problem instance, Tables 4.6 and 4.7 report the respective objective function value,

33



the locations of hub facilities, the total number of flights operating on the network over

the planning horizon, and the CPU time requirements in seconds.

Table 4.6: Results of SSHLP model on the 15-node network.

Type Setup cost Obj. Value Hub locations No. of flights CPU time (s)

5,000 540,386 4,12,13 11 768

B747-F 10,000 551,821 4,13 7 209

25,000 567,393 4 - 3

5,000 532,970 4,12,13 16 959

B747-100 10,000 547,970 4,12,13 16 362

25,000 567,393 4 - 2

Table 4.7: Results of SSHLP model on the 20-node network.

Type Setup cost Obj. value Hub locations No. of flights CPU time (s)

5,000 843,270 4,12,13,17 20 3,670

B747-F 10,000 863,270 4,12,13,17 20 1,185

25,000 923,270 4,12,13,17 20 623

5,000 849,020 4,12,13,14,17 35 28, 800∗

B747-100 10,000 874,020 4,12,13,14,17 35 22,852

25,000 937,270 4,12,13,17 31 4,372

* This instance failed to the achieve the optimality gap within the time limit. Reported gap

is 2.28%.

The resulting hub locations in Table 4.6 are affected by both setup costs and airplane

types. In the case of operating B747-F on inter-hub links, the number of hub facilities

gradually decreases from three to one with increasing setup costs. However, in the case of

operating the B747-100, hub configurations remain the same for the first two setup-cost

values. When the setup cost exceeds a certain threshold, the model locates only a single
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hub. In this case, we no longer can take advantage of economies of scale through installing

a hub network. Since airplanes operate only on inter-hub links, the hyphen (-) indicates

that all flow is shipped by truck when the model locates just a single hub facility. It is

also noteworthy to mention that, regardless of parameter values, Chicago is always picked

as an optimal hub location.

As can be seen in Table 4.1, the B747-100 has less than two-thirds the capacity of a

B747-F. However, in light of the fixed cost per flight and the variable costs, the latter is

roughly twice as expensive to operate. Therefore, more flights are operated on the network

when B747-100 type aircraft are employed (see Tables 4.6 and 4.7).

CPU times reported in these tables show that the computational difficulty of the prob-

lem is very sensitive to parameter values. B747-100 instances are computationally more

demanding than the B747-F instances, as the model tends to operate more flights in the

former case. In addition, for a given airplane type, we observe that setting the fixed

cost parameters to 25,000 decreases the CPU time significantly, as fewer hubs tend to be

opened. In Table 4.7, the B747-100 instance with a $5,000 setup-cost value could not be

solved within eight hours; the gap reported by CPLEX at the end of that running time was

2.28%. The resulting hub networks in Table 4.6 are quite identical to those in Table 4.4.

In other words, disregarding the time dimension in the 15-city USAF dataset with negligi-

ble holding costs fails to affect the optimal hub locations and total number of dispatches

during the planning horizon. This is not surprising, since travel time between any pair of

Chicago, Los Angeles, and Memphis takes only a single time period while airplanes are

operated. When it comes to the network with slower transport modes or farther distances

between nodes, it is expected that taking the time dimension into account would result in

a different hub network.

The number of opened hub facilities is greater in Table 4.7 than in Table 4.6. For a

given value of setup costs, more cities must be served within the planning horizon for the

20-node dataset, whose total demand is almost twice that of the 15-node case. Therefore,
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the model tends to open additional hub facilities to serve all demands within the same

given planning horizon. Comparing locations in Tables 4.6 and 4.7 for a given aircraft

type, we observe that the resulting hub networks in the 20-node case are less sensitive to

the setup-cost variations. Four cities: Chicago, Los Angeles, Memphis, and New York are

the most frequently chosen locations of hub facilities.

4.4 Results for SSHLPH Model

Next, we solve the model for shipment scheduling hub location with non-negligible holding

cost (SSHLPH) for the 15-node and 20-node USAF datasets by varying the holding costs

from low to high. We report results in Tables 4.8 and 4.9 (holding-cost values and their

designation are as in Table 4.3).

As can be seen in Table 4.8, the optimal hub networks (optimal locations of hub facilities

and numbers of flights) are influenced by all three parameters: type of airplane, setup cost,

and holding cost. Therefore, it is difficult to draw general conclusions about the effect

of each parameter on the resulting networks. For the B747-F instances, as setup costs

increase to $10,000, the model tends to open fewer hub facilities. As a result, an increased

amount of freight is shipped by truck and consequently, the model operates fewer flights

on the network. However, in the case of B747-100 instances, the same hub facilities are

operated under both setup-cost values except for the last instance listed in Table 4.8 (only

a single hub, Chicago, is operated in the case of high holding cost).

We also tested instances when setup costs equal $25,000. In this case, with either

aircraft type and under all holding-cost values, the model locates a single hub in Chicago,

with the objective function value of $567,393.

The resulting hub networks in Table 4.8 are quite different in some cases from those in

Table 4.4. For the B747-F instances, while the optimal network under a $5,000 setup-cost
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Table 4.8: Results for SSHLPH model on the 15-node network.

Type Setup cost Holding cost Obj. value Hub locations No. of flights CPU time (s)

5,000 low 540,524 4,12,13 11 6,908

medium-low 540,678 4,12,13 11 5,705

medium-high 541,821 4,13 7 1,635

B747-F
high 541,821 4,13 7 1,192

10,000 low 551,821 4,13 7 4,621

medium-low 551,821 4,13 7 2,029

medium-high 551,821 4,13 7 570

high 551,821 4,13 7 324

5,000 low 533,272 4,12,13 16 4,556

medium-low 533,608 4,12,13 16 11,434

medium-high 537,131 4,12,13 16 10,860

B747-100
high 540,927 4,12,13 17 8,353

10,000 low 548,272 4,12,13 16 4,620

medium-low 548,608 4,12,13 16 1,782

medium-high 552,131 4,12,13 16 2,510

high 552,393 4 - 1,090

in Table 4.4 comprises three hub facilities, the number of hubs decreases to two under

medium-high and high holding costs in Table 4.8. In the case of B747-100 instances under

a $10,000 setup cost, both the SHLPSCF and SSHLPH models tend to open three hubs

and to operate 16 flights, except when holding freight incurs a high cost. In that case, the

SSHLPH model tends to open a single hub at Chicago.

For some problem instances, we analyzed the amount of freight held at hubs. In the case

of B747-F, when setup costs are $5,000 and holding costs are either low or medium-low,

the same quantity of freight is held in the SSHLPH model as in the SSHLP model: 30.76

tons at Memphis at the beginning of the second time period. All demands are met by the

end of the third time period. As the holding costs increase to medium-high, the model

ships all freight in the beginning of the second time period. Hence, fewer hub facilities are
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needed. In addition, all demands are served by the end of the second time period. For

B747-F instances when setup costs are $10,000, the model opens two hubs, in Chicago and

Memphis, under all holding costs, and does not hold freight at any hubs. For this reason,

the objective function values reported in Table 4.8 for B747-F and $10,000 are all the same.

When the B747-100 are employed and the setup cost is $5,000, the model ships freight

through a network with three hubs located in Chicago, Los Angeles, and Memphis under

all holding costs. However, optimal allocation decisions do change. Figure 4.1 illustrates

location and allocation decisions under low and high holding costs. In this figure, a hub

facility is shown by a solid square. Thin and thick lines depict allocation links and inter-

hub links, respectively. A curved arrow presented on top of a hub indicates that freight

was held there during a particular time period. As can be observed from this figure, the

demand nodes: Baltimore, Boston, and Denver, are allocated to different hubs under low

and high holding costs. Note also that no freight is held in the latter case.

The last column of Table 4.8 shows that required CPU times are sensitive to the type

of airplane and also to the setup and holding costs. Increasing the holding costs to a high

value results in reduction of CPU times, since the model tends to hold less inventory at

hub facilities. For instances in which the SSHLPH model holds no inventory at hubs, the

CPU time requirement is less than the required CPU time of instances that result in freight

being held.

We calculate the average CPU times reported in Tables 4.6 and 4.8 for $5,000 and

$10,000 setup costs. These averages are 384 and 4,291 seconds, respectively. Comparison

of results for the two models reveals that the SSHLPH model is computationally more

demanding than the SSHLP model. This is not surprising, as the SSHLPH model includes

additional variables and constraints to keep track of freight held at hubs. We should point

out that the optimal solution of the SSHLP model provides a lower bound on the optimal

solution of SSHLPH as the former does not include any holding costs. In some cases, this

lower bound may turn out to be an optimal solution to the SSHLPH model. For example,
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(a) Low holding cost, second time period [1,2)

(b) High holding cost, second time period [1,2)

Figure 4.1: Location and allocation decisions on 15-node USAF dataset by operating B747-

100 airplane under fk = 5, 000.

the objective function values in Tables 4.6 and 4.8 for B747-F instances with a $10,000

setup cost value are exactly the same ($551,821). This is because no freight is held at hubs

in these instances. Note also that, in this case, both models yield the same hub locations.

Hence, solutions of the SSHLP model can be used to give some intuition into the solutions
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of the SSHLPH model.

Next, we solve the SSHLPH model for the 20-node network. Results in Table 4.9 show

that hub structures are resilient to the variation in both setup and holding costs. For

all B747-F instances, the model ships freight through a network with four hub facilities

located in Chicago, Los Angeles, Memphis, and New York. Hub locations are almost the

same for the case of operating the B747-100. For the latter, however, when setup costs are

set to either $5000 or $10,000 and holding costs are low, the model establishes one more

hub in Miami. This is not surprising, since operating B747-100 airplanes is less expensive

than operating B747-F, hence the model has more incentive to use a greater number of

hubs when operating costs are low enough. In that case, the number of required flights

increases as a greater amount of freight is to be shipped through the inter-hub network.

For all B747-F instances except those under high holding costs, the model holds freight

in Chicago, Memphis, and New York. In the case of high holding costs, the model tends

to hold less freight at hubs: about half the preceding amount is then held at Chicago and

Memphis, and none in New York. The main motivation to hold freight at hub facilities is

to consolidate that flow with freight that will arrive in a later period. In the case of B747-F

instances under high holding costs, the model tends to ship more freight in the second time

period, since holding freight incurs a greater carrying cost. Therefore, the total number of

required flights increases

The last column of Table 4.9 presents the gap reported by CPLEX at the end of eight

hours. As can be observed, the SSHLPH model is very difficult to solve to optimality.

However, given that we use deterministic values for all parameters, and considering that

the actual data contains uncertainty, a gap of 2-3% is reasonable, in our opinion.

We demonstrate some of the solutions in Figure 4.2. We pick two instances from

Table 4.9; B747-F instances with $10,000 setup cost when holding costs are high (e.g.,

pharmaceutical products) and low (e.g., furniture). Figures 2a-d show the locations of
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Table 4.9: The results of the SSHLPH model on the 20-node network.

Type Setup cost Holding cost Obj. Value Hub locations No. of flights Gap (%)

5,000 low 844,036 4,12,13,17 20 2.89

medium-low 844,888 4,12,13,17 20 2.00

medium-high 853,830 4,12,13,17 20 2.54

high 861,853 4,12,13,17 21 2.00

B747-F 10,000 low 864,036 4,12,13,17 20 2.61

medium-low 864,888 4,12,13,17 20 2.00

medium-high 873,830 4,12,13,17 20 1.55

high 881,853 4,12,13,17 21 2.00

25,000 low 924,036 4,12,13,17 20 2.13

medium-low 924,888 4,12,13,17 20 2.00

medium-high 933,830 4,12,13,17 20 1.80

high 941,853 4,12,13,17 21 2.00

5,000 low 849,687 4,12,13,14,17 35 3.48

medium-low 857,697 4,12,13,17 31 3.20

medium-high 860,056 4,12,13,17 31 3.72

high 863,696 4,12,13,17 31 3.58

B747-100 10,000 low 874,687 4,12,13,14,17 35 2.89

medium-low 877,697 4,12,13,17 31 3.04

medium-high 880,056 4,12,13,17 31 3.80

high 883,696 4,12,13,17 31 3.60

25,000 low 937,472 4,12,13,17 31 3.17

medium-low 937,697 4,12,13,17 31 3.12

medium-high 940,056 4,12,13,17 31 2.55

high 943,696 4,12,13,17 31 2.00

hub facilities and the holding decisions in the second and third time periods for these two

instances.

During the first time period, [0,1), freight is shipped from the supply nodes to hubs,
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so that all freight is available at the corresponding hub facilities at the beginning of the

second time period. In both instances depicted in Figure 4.2, there is a flight from each

hub to every other hub during the second time period. The model establishes four hub

facilities, and operates a total of 16 flights with low holding costs, and 19 flights when those

costs are high. However, during the third time period, delivery services are not provided

between some hubs. The number of flights decreases from 16 to 4, for low holding costs,

and from 19 to 2 for high holding costs. No hub facility holds freight in the third time

period (Figure 4.2-b,d).

(a) Low holding cost, second time period [1,2) (b) Low holding cost, third time period [2,3)

(c) High holding cost, second time period [1,2) (d) High holding cost, third time period [2,3)

Figure 4.2: Resulting hub configurations with B747-F airplane and fk = 10000.

Observe from Figure 4.2 that, whether holding cost is high or low, the locations of hubs

are unchanged. However, that cost value does affect the holding decisions and consequently
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the number of required flights. For the case of low holding cost, the model holds around

2.4% of total demand at three hub facilities: Chicago, Memphis, and New York (Figure

4.2-a) in the second time period. With high holding costs, only about 0.5% of the total

demand is held in Chicago and Memphis , and no freight is held in New York (Figure

4.2-c). Thus, no flights are operated between New York and Memphis in the third time

period. Compared with the low-holding-cost instance, more flights (19 vs 16) are required

to ship freight in the second time period in the case of high holding cost. However, during

the third time period, the number of required flights is decreased from 4 to 2.

Let us now consider some details of the routing in various periods, for the cases of

both low and high holding costs, for the instances of Figure 4.2. According to the demand

data, 0.22 tons of freight is to be shipped from Boston to Houston. When the holding

cost is low, the entire demand is shipped to New York within the first time period. That

freight arrives there at the beginning of the second time period, and is held in New York

during this period. At the beginning of the third time period, freight is consolidated with

the shipment from Chicago. During period 3, the consolidated freight is shipped on the

same flight to Memphis. At the end of the third period, freight is shipped to Houston and

demand is met. With high holding costs, on the other hand, the Boston-Houston demand

is served by the end of the second time period. During period 1, freight arrives in New

York. At the beginning of the second period, freight is shipped to Memphis and demand

is met by the end of that period. As can be observed, the routing decisions and times

of delivery for the demand from Boston to Houston are affected by the values of holding

costs.

Another example is the demand to be shipped from Boston to Denver. Under both

low and high holding costs, the entire demand is shipped from New York to Los Angeles

at the beginning of the second time period, and demand is met by the end of period 3.

So, the routes of this origin-destination pair remain the same under the two holding-cost

scenarios.
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4.5 Sensitivity Analysis of Demand and Length of

Planning Horizon

To observe the effect of demand on the resulting hub configurations, we increased all

demand values by 50%. Table 4.10 shows the optimal solutions obtained by the SSHLPH

model with increased demand on the 15-node USAF dataset with B747-F aircraft. Note

that the model opens three hubs, in Chicago, New York, and Memphis, and operates 15

flights to ship freight for all instances listed in Table 4.10. As opposed to the B747-F

instances presented in Table 4.8, the resulting hub network (hub locations and required

number of flights) is quite robust against variations in setup and holding-cost values. Even

when the setup costs increase to $25,000, the model still takes advantage of economies of

scale in designing a hub network. The required number of flights to ship freight through

the network increases as the demands grow.

Table 4.10: Results of SSHLPH model with B747-F when demands are increased by 50%.

Setup cost Holding cost Obj. Value Hub locations No. of flights CPU time (s)

5,000 low 762,851 4,12,13 15 11,370

medium low 763,160 4,12,13 15 13,642

medium high 766,402 4,12,13 15 1,946

high 771,406 4,12,13 15 529

10,000 low 777,851 4,12,13 15 2,145

medium low 778,160 4,12,13 15 1,702

medium high 781,402 4,12,13 15 444

high 786,406 4,12,13 15 303

25,000 low 822,851 4,12,13 15 817

medium low 823,160 4,12,13 15 358

medium high 826,402 4,12,13 15 356

high 831,406 4,12,13 15 197
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Next, we investigate the sensitivity of the resulting networks and the CPU time to the

length of the planning horizon. We solve both models, i.e., SSHLP and SSHLPH, on the

15-node USAF dataset over four time periods. Table 4.11 reports the results of operating

B747-F where setup costs are set to $5,000 and $10,000. Observe that the resulting hub

networks and the corresponding costs remain exactly the same as those presented in Tables

4.6 and 4.8, because all demand is served by the end of either the second or third time

periods. So, although the models allow shipping freight over a longer time horizon with

four time periods, no flow is shipped during the last period. Actually, the three-time-period

solutions are all feasible for the problem with four time periods. In this case, solutions

of the three-period problem are actually optimal for the 15-node USAF dataset with four

time periods.

Table 4.11: Results of operating B747-F within a planning horizon of four time periods.

Model Setup cost Holding cost Obj. Value Hub locations No. of flights CPU time (s)

SSHLP
5,000 - 540,386 4,12,13 11 18, 000∗

10,000 - 551,821 4,13 7 18, 000∗

5,000 low 540,524 4,12,13 11 18, 000∗

medium low 540,678 4,12,13 11 18, 000∗

medium high 541,821 4,13 7 6,214

SSHLPH high 541,821 4,13 7 2,830

10,000 low 551,821 4,13 7 18, 000∗

medium low 551,821 4,13 7 7,581

medium high 551,821 4,13 7 773

high 551,821 4,13 7 301

* The instance reached the time limit.

Increasing the number of time periods from three to four drastically raises the CPU

times. The models are solved on average within 45 minutes when there are three time

periods, whereas the average CPU time grows to three hours with four time periods. In

half the instances listed in Table 4.11, optimal solutions could not be obtained within the
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time limit. The average optimality gap for those instances is around 1.20%. Results for

CPU time show that extending the planning horizon makes the instances computationally

more demanding, especially for the case of low holding costs.

4.6 Results of SSHLPHV Model

We additionally tested the SSHLPHV model on the 15-node USAF dataset where both

types of aircraft, B747-F and B747-100, can operate on the inter-hub links. Table 4.12

reports the objective function values, locations of hub facilities, the required number of

flights for each type of plane, and required CPU times in seconds.

Table 4.12: Results of the SSHLPHV model with two aircraft types.

Setup cost Holding Cost Obj. Value Hub locations
No. flights

CPU time(s)
B747-F B747-100

5,000 low 513,532 4,12,13 4 9 18, 000∗

medium low 513,751 4,12,13 4 9 18, 000∗

medium high 514,367 4,12,13 4 9 5,743

high 514,367 4,12,13 4 9 519

10,000 low 528,532 4,12,13 4 9 18, 000∗

medium low 528,751 4,12,13 4 9 7,565

medium high 529,367 4,12,13 4 9 1,029

high 529,367 4,12,13 4 9 351

* The instance reached the time limit.

Observe from the hub locations given in Table 4.12 that Chicago, Los Angeles, and

Memphis are always selected as hub facilities under all values of setup and holding cost. In

every instance, the model ships freight by operating four B747-F flights and nine B747-100

flights on the inter-hub links. Note that if the B747-100 airplane flies at full capacity,

operating that aircraft will be cheaper than the B747-F. Since full capacity is the case, the
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model tends to use B747-100 more frequently.

CPU time requirements in the last column show that, on average, the model is solved

within 2.7 hours. Only three out of eight instances could not reach an optimal solution

within the time limit. The average gap reported by CPLEX for those instances is around

0.53%.

Let us compare the optimal hub locations in Tables 4.8 and 4.12. It can be inferred that

the hub network which results from SSHLPHV model is most robust against variations in

setup and holding costs. In addition, Chicago and Los Angeles are always picked as hubs.

As observed from Tables 4.8 and 4.12, the locations of hub facilities are identical for

some instances. However, it should be noted that the shipment strategies are different for

such instances. In addition, comparison of the objective function values reveals that the

SSHLPHV model is able to serve demands at a lower cost through employing two different

types of planes.

Figure 4.3 illustrates the locations of hub facilities, allocation of demand nodes to hubs,

and flights on inter-hub links with B747-F and B747-100 aircraft.

Figures 4.3-a and 4.3-b depict the resulting hub networks under low and high holding

costs during the second time period [1,2). Solid thick lines indicate the inter-hub links

served by both types of airplanes, whereas the dashed line implies operating only B747-

100 on the link. The allocation decisions under both holding costs are the same except

for Baltimore. When the holding costs are low, Baltimore is allocated to the hub facility

at Chicago and freight is held at Memphis. However, under high holding costs, Baltimore

is allocated to Memphis and freight is no longer held at any hub. From Table 4.12, it

is interesting to note that the objective function value for the case of high holding costs

is greater than that for low holding costs, even though no freight is held at hubs. This

difference is due to the change in the shipment structure, as the same number of flights

are operated under the two holding-cost cases.
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(a) B747-F and B747-100, low holding costs

(b) B747-F and B747-100, high holding costs

Figure 4.3: Resulting hub network of 15-node USAF dataset under fk = 5, 000, second

time period [1,2).
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Chapter 5

Conclusion

In this thesis, we introduced hub location and shipment scheduling problem. Shipments

are to be delivered within a given planning horizon on the hub network to be established.

Freight might be held at hubs to be consolidated with other shipments at a later time

period. Economies of scale are exploited by scheduling consolidated shipments.

We developed several mixed-integer programming models incorporating shipment schedul-

ing decisions into hub location problems. The models aim to determine the optimal loca-

tions of hubs, design of the hub network, and the number of vehicles to operate on that

network in each time period. We initially proposed a model where there is negligible cost

to hold freight at hubs. We then extended this model to keep track of the holding decisions

when holding costs are non-negligible. Moreover, we provided a third model allowing for

a heterogeneous fleet of vehicles to operate between hubs.

We generated a new dataset, referred to as the USAF dataset, consisting of real data

to test our models. As an initial effort toward solving shipment scheduling hub location

models, we used CPLEX to conduct the computational experiments. All instances were

solved optimally within reasonable computational times, or terminated with acceptable

optimality gaps.
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Results showed the computational difficulty of a problem to be very sensitive to the

values of parameters. For example, higher fixed-cost values can reduce the CPU time

significantly, as fewer hubs tend to be opened. The lower the holding costs, the greater

the CPU time. In addition, instances with lower operational cost are computationally

more demanding, as the models tend to operate more flights. CPU time is also increased

when the planning horizon is extended. The numerical experiments also revealed that the

SSHLPH model is computationally more demanding than the SSHLP model. This is not

surprising, since the former model contains extra variables and constraints to keep track

of the freight held at hubs.

We analyzed the effect of shipment scheduling decisions and holding costs on optimal

hub network configurations, routing decisions, and total cost of the network. Optimal

hub networks, including the locations of hub facilities and the number of dispatches, are

influenced by the type of vehicle, setup cost, holding cost, and demand. When there

are more cities to be served, a higher demand to be met within the planning horizon, or

operational costs are low, the model has greater incentive to use a larger hub network. The

resulting network is also quite robust against variations in setup and holding costs.

Results of the SSHLPHV model showed that hub networks operating a heterogeneous

fleet are more resilient against changes in setup and holding costs. We also tested both

the SSHLP and SSHLPH models over a longer planning horizon. Interestingly, our results

showed that solutions for the shorter horizon might be feasible, and even optimal, for the

longer-horizon problem.

Future research may concentrate on developing exact solution methodologies or heuris-

tic algorithms to solve large-scale instances. In addition, one might develop the model by

taking asset management considerations into account. For example, vehicle-flow conser-

vation constraints might be added to the set of existing constraints. Another extension is

to formulate the problem under a continuous planning horizon. Further investigation can

focus on different transportation modes operating on allocation and inter-hub links along
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with their corresponding travel times. The model also can be expanded by considering

direct connections or multiple allocation assumptions.

Less-than-truckload (LTL) carriers check for freight and modify improper classes and

weights to reduce shipping costs. One interesting possible future direction is formulating

economies of scale by combining threshold-based discounting factor that is proposed by

Podnar et al. (2002) with fixed costs that are proportional to distance, and taking bumping

clause phenomenon into account.
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APPENDIX

List of 20 Cities in the CAB Dataset

Table 1: 20 cities with corresponding node number

No. City No. City

1 Atlanta 11 Kansas City

2 Baltimore 12 Los Angeles

3 Boston 13 Memphis

4 Chicago 14 Miami

5 Cincinnati 15 Minneapolis

6 Cleveland 16 New Orleans

7 Dallas- Fort Worth 17 New York

8 Denver 18 Philadelphia

9 Detroit 19 Phoenix

10 Houston 20 Pittsburgh
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