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Summary

The heritability of chronic diseases can be effectively studied by examining the nature and ex-
tent of within-family associations in disease onset times. Families are typically accrued through
a biased sampling scheme in which affected individuals are identified and sampled along with
their relatives who may provide right-censored or current status data on their disease onset times.
We develop likelihood and composite likelihood methods for modeling the within-family associ-
ation in these times through copula models in which dependencies are characterized by Kendall’s
τ . Auxiliary data from independent individuals are exploited by augmentating composite likeli-
hoods to increase precision of marginal parameter estimates and consequently increase efficiency
in dependence parameter estimation. An application to a motivating family study in psoriatic
arthritis illustrates the method and provides some evidence of excessive paternal transmission of
risk.
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1 INTRODUCTION

The hereditary nature of diseases can be inferred by the structure and extent of within-family depen-
dencies in some feature of the disease process. Family studies employing biased sampling schemes
are often advocated as a cost-effective approach to estimate these dependencies and provide a frame-
work for exploring the effects of genetic attributes (Laird and Lange, 2006). In such studies families
are typically recruited by selecting an affected individual in a disease registry called the proband,
and subsequently recruiting their consenting family members for examination (Burton, 2003). The
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proband often provides more detailed disease history than non-probands; it may only be known, for
example, whether the non-probands have the condition at their age of assessment.

If there is considerable variation in the age of onset and the age of assessment, analyses based
simply on the known disease status of individuals is problematic. Specification of multivariate models
for the time of disease onset enables one to reflect the time varying nature of the disease status.
Mixed-effect models have been studied in this context (Li and Thompson, 1997, Hsu and others,
2004) but they do not yield appealing dependence measures in non-linear settings. Copula functions
(Nelsen, 2006) yield dependence measures which are functionally independent of the parameters in
the marginal onset time distribution and therefore offer a more appealing framework.

We develop marginal models for the disease onset time distribution and use a Gaussian copula to
model the role of kinship in the strength of within-family associations (Liang and Beaty, 1991). Co-
variate effects can be studied in marginal and second-order regression models in the spirit of Prentice
and Zhao (1991). Likelihood and composite likelihood (Cox and Reid, 2004) are examined where the
latter can offer important simplifications and reduce computational burden when dealing with large
families.

The remainder of this paper is organized as follows. In Section 2, we define notation and formu-
late the joint model for event times of family members. Likelihood and composite likelihood methods
for response-biased data are given in Section 3 where asymptotic and empirical studies investigate the
relative efficiency of the proposed methods. Extensions are discussed in Section 4 which accom-
modate a combination of right-censored and current status observation schemes for non-probands.
Approaches for making use of auxiliary data on the marginal onset time distribution are also devel-
oped and assessed empirically. An application to the motivating family study on the genetic basis for
psoriatic arthritis (PsA) is given in Section 5 where important insights are made on excessive paternal
transmission of risk. Concluding remarks are given in Section 6.

2 SECOND-ORDER DEPENDENCE MODELS FOR DISEASE ONSET TIMES IN FAM-
ILY STUDIES

Let Tij denote the time of disease onset for individual j in family i comprised of mi individuals, and
Zij denote the covariate vector, j = 1, . . . ,mi; we let Ti = (Ti1, . . . , Timi

)′ and Zi = (Z ′i1, . . . , Z
′
imi

)′,
i = 1, . . . , n. We assume T1, . . . , Tn are mutually independent given Z1, . . . , Zn and Ti ⊥ Z(−i)|Zi,
where Z(−i) = {Zi∗ : 1 ≤ i∗ ≤ n, i∗ 6= i}. The marginal survivor function is F(t|Zij; θ) = P (Tij >
t|Zij) and we let F (t|Zij; θ) = 1−F(t|Zij; θ), where θ is a p×1 parameter vector. A joint model for
the event times in family i can be constructed by specifying an mi dimensional copula function (Joe,
1997), a multivariate cumulative distribution function with uniform [0, 1] margins. If Uij ∼ unif(0, 1)
and Ui = (Ui1, . . . , Uimi

)′, the joint cumulative distribution function C(ui1, . . . , uimi
; γ) = P (Ui1 ≤

ui1, . . . , Uimi
≤ uimi

; γ) defines a copula indexed by a q × 1 parameter vector γ. We construct the
survivor function for Ti|Zi by setting Uij = F(Tij|Zij; θ) and defining it through the survival copula
specification (Joe, 1997),

P (Ti1 > ti1, . . . , Timi
> timi

|Zi;ψ) = C(F(ti1|Zi1; θ), . . . ,F(timi
|Zimi

; θ); γ) , (2.1)

where ψ = (θ′, γ′)′. The Clayton copula, for example, has the form

C(ui1, . . . , uimi
; γ) =

(
u−γi1 + · · ·+ u−γimi

−mi + 1
)−1/γ

, γ ∈ [−1,∞) \ {0} , (2.2)

where γ is a scalar and Kendall’s τ is given by τ = γ/(γ + 2) (Nelsen, 2006), having a range over
[−1, 0) ∪ (0, 1].
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The Gaussian copula, which could accommodate different pairwise associations through specifi-
cation of a general correlation matrix, is given by

C(ui1, . . . , uimi
; γ) = Φmi

(Φ−1(ui1), . . . ,Φ
−1(uimi

); γ) , (2.3)

where Φ−1(·) is the inverse cumulative distribution function of a standard normal (r.v.) and Φmi
(·; γ)

is the cumulative distribution function of an mi × 1 multivariate normal r.v. with mean zero and
mi ×mi covariance matrix Σi(γ) = Σi with off-diagonal entries σijk. This gives

P (Ti1 > ti1, . . . , Timi
> timi

|Zi;ψ) =

∫ ri1

−∞
· · ·
∫ rimi

−∞

exp
(
−s′i Σ−1i si/2

)√
(2π)mi |Σi|

dsi1 . . . dsimi
, (2.4)

where Si ∼ MVNmi
(0,Σi), si is a realization, and rij = Φ−1(F(tij|Zij; θ)), j = 1, . . . ,mi. The

association between Tij and Tik conditional on (Zij, Zik) is measured by Kendall’s τ , given here by
τijk = 2 arcsin(σijk)/π, 1 ≤ j < k ≤ mi, i = 1, . . . , n.

Flexible modeling of the within-cluster association can be achieved by specifying a second-order
regression model of the form g(τijk) = v′ijkγ, where g(·) is a 1-1 differentiable link function mapping
Kendall’s τ onto the real line and vijk is a q×1 covariate vector representing family-level or individual-
level features, or information on the structural relation between individuals j and k in family i. The
Fisher transformation g(τ) = log ((1 + τ)/(1− τ)) is a natural choice for g(·), giving the second-
order model

g(τijk) = log ((1 + τijk)/(1− τijk)) = v′ijkγ , (2.5)

which determines the structure of the positive definite covariance matrix. For a given vijk then τijk =
g−1(v′ijkγ) = (exp(v′ijkγ) − 1)/(exp(v′ijkγ) + 1) which can be estimated by inserting an estimate of
γ on the right-hand side.

3 LIKELIHOOD AND COMPOSITE LIKELIHOOD CONSTRUCTION UNDER BIASED

SAMPLING

3.1 MAXIMUM LIKELIHOOD ESTIMATION AND INFERENCE

We consider the setting in which families are sampled through a proband. Without loss of generality,
we assign the proband the label 0 and increase the dimension of the response and covariate vectors
accordingly to mi + 1, i = 1, . . . , n. If Ti0 denotes the disease onset time for the proband in family i
and Ci0 is the corresponding clinic entry time, the proband enters a registry if Ti0 < Ci0. Members of
the registry can then be randomly sampled into family study and if themi family members of proband
i have event times Ti1, . . . , Timi

we assume here that they are observed subject to right censoring at
their assessment times Ci1, . . . , Cimi

, respectively. We let Xij = min(Tij, Cij) and Yij = I(Tij <
Cij), j = 0, . . . ,mi. If Zi = (Z ′i1, . . . , Z

′
imi

)′, we let Z̄i = (Z ′i0, Z
′
i)
′ denote the full vector of

covariates for family i, and similarly let T̄i = (Ti0, T
′
i )
′, X̄i = (Xi0, X

′
i)
′, C̄i = (Ci0, C

′
i)
′ and

Ȳi = (Yi0, Y
′
i )
′.

Censoring is assumed to be conditionally independent such that T̄i ⊥ C̄i|Z̄i, and non-informative,
so the likelihood contribution from family i is

Li(ψ) ∝ P (X̄i, Ȳi|C̄i, Z̄i, Ti0 < Ci0;ψ) = P (X̄i, Ȳi|C̄i, Z̄i;ψ)/P (Ti0 < Ci0|Ci0, Zi0; θ) , (3.1)

which can be expressed in terms of (2.1). An example is given in Appendix A (see supplemen-
tary material available at Biostatistics online) where we illustrate how to construct the likelihood for
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response-biased family data based on a copula model for the slightly more general type of data dis-
cussed in Section 4.1. From (3.1), the contribution to the score vector and information matrix from
family i are

Si(ψ) =
∂ logLi(ψ)

∂ψ
=
∂ logP (X̄i, Ȳi|C̄i, Z̄i;ψ)

∂ψ
− ∂ logF (Ci0|Ci0, Zi0; θ)

∂ψ
, (3.2)

and

Ii(ψ) = − ∂2 logLi(ψ)

∂ψ∂ψ′
= −

[
∂2 logP (X̄i, Ȳi|C̄i, Z̄i;ψ)

∂ψ∂ψ′
− ∂2 logF (Ci0|Ci0, Zi0; θ)

∂ψ∂ψ′

]
, (3.3)

respectively; the age of onset of the proband is contained in the vector X̄i asXi0 = Ti0 and Yi0 = 1 by
the sampling condition. The maximum likelihood estimator ψ̂ solves

∑n
i=1 Si(ψ) = 0 and

√
n(ψ̂−ψ)

is asymptotically normally distributed with mean zero and variance I−1(ψ), where I(ψ) = E[Ii(ψ)].
The term ∂2 logF (Ci0|Ci0, Zi0; θ)/∂ψ∂ψ′ subtracted in (3.3) represents the loss of “information”
about the marginal parameters due to the response-biased sampling.

3.2 COMPOSITE LIKELIHOOD UNDER BIASED SAMPLING

When family size mi is large, it can be challenging to compute and maximize the full likelihood;
see Appendix A (supplementary material available at Biostatistics online). We consider the use
of composite likelihood (Lindsay, 1988, Cox and Reid, 2004) comprising contributions based on
lower-dimensional subsets of individuals in each family. Working with lower-dimensional distri-
butions leads to considerable simplifications in the analytical expressions and computation. Let
Sir = {(0, j(s)1 , . . . , j

(s)
r ), s = 1, . . . ,mir} denote the set of (r + 1)−tuples of individuals in fam-

ily i containing the proband with size mir = mi!/[r!(mi − r)!], r = 1, . . . ,mi. For example,
Si1 = {(0, j), j = 1, 2, . . . ,mi}, Si2 = {(0, j, k), 1 ≤ j < k ≤ mi} and Simi

= {(0, 1, 2, . . . ,mi)}.
We then define a composite likelihood for family i as

CLri(ψ) ∝
mir∏
s=1

P (W̄
(r)
is |C̄

(r)
is , Z̄

(r)
is , Ti0 < Ci0;ψ) , (3.4)

whereWij = (Xij, Yij)
′, W̄ (r)

is = (W ′
i0,W

′
ij

(s)
1

, . . . ,W ′
ij

(s)
r

)′, and the other vectors are likewise defined.
For example, if r = 1 a simple “pairwise” conditional composite likelihood

CL1i(ψ) ∝
mi∏
j=1

P (W̄ij|C̄ij, Z̄ij, Ti0 < Ci0;ψ) , (3.5)

is obtained requiring only the use of bivariate distributions, where W̄ij = (Wi0,Wij)
′, C̄ij = (Ci0, Cij)

′

and Z̄ij = (Z ′i0, Z
′
ij)
′. If r = 2, a composite likelihood based on all triplets of family members in-

cluding the proband is obtained:

CL2i(ψ) ∝
∏

1≤j<k≤mi

P (W̄ijk|C̄ijk, Z̄ijk, Ti0 < Ci0;ψ) , (3.6)

where W̄ijk = (Wi0,Wij,Wik)
′, C̄ijk = (Ci0, Cij, Cik)

′, and Z̄ijk = (Z ′i0, Z
′
ij, Z

′
ik)
′. See Appendix

A (supplementary material available at Biostatistics online) for an illustrative example on composite
likelihood construction.

The score functions arising from (3.5) and (3.6) are of the form Ur(ψ) =
∑n

i=1 Uri(ψ) where
Uri(ψ) = ∂ log CLri(ψ)/∂ψ denotes the corresponding score function contributed from family i. If
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ψ̃ denotes the maximum composite likelihood estimator from (3.5) or (3.6), then, under standard
regularity conditions,

√
n(ψ̃ − ψ) converges in distribution to multivariate normal with mean vector

zero, and covariance matrix

asvar(
√
n(ψ̃ − ψ)) = A−1(ψ)B(ψ)[A−1(ψ)]′ , (3.7)

where A(ψ) = −E{∂2 log CLri(ψ)/∂ψ∂ψ′} and B(ψ) = E{Uri(ψ)U ′ri(ψ)}. This can be estimated
by âsvar(

√
n(ψ̃ − ψ)) = A−1(ψ̃)B(ψ̃)[A−1(ψ̃)]′, where A(ψ) = −n−1

∑n
i=1 ∂

2 log CLri(ψ)/∂ψ∂ψ′

and B(ψ) = n−1
∑n

i=1 Uri(ψ)U ′ri(ψ).

3.3 ASYMPTOTIC RELATIVE EFFICIENCY OF THE COMPOSITE LIKELIHOODS

Here we examine the asymptotic relative efficiency of the composite likelihood estimators compared
to maximum likelihood as a function of the strength of the within-family association. We suppose
that ascertained families are comprised of two generations made up of two parents and their children
and assume that all family members have a common marginal onset time distribution with F(tij; θ) =
exp(−(λtij)

κ), j = 0, 1, . . . ,mi; where θ = (λ, κ)′. We let κ = 1.2 and choose λ to give a median
of 45 years of age. One of the family members is selected at random as the proband (with equal
probability) and assigned the index j = 0. Their clinic entry time Ci0 is normally distributed with
mean µ = 50 and variance σ2 = 20, and conditional on this right-truncation time we generate
Ti0|Ti0 < Ci0. The latent onset times for the non-probands are then generated as Ti1, . . . , Timi

|Ti0 and
the observed family data are created following the generation of the assessment times. Specifically,
for non-probands in the first and second generations of family i, the random age of contact follows
N(µ = 60, σ2 = 10) and N(µ = 40, σ2 = 10), respectively; the age at contact for all individuals are
truncated at 90 years. We consider an exchangeable association structure based on the Clayton copula
with Kendall’s τ varying from 0.05 to 0.6, reflecting small to strong within-family association; model
(2.5) simplifies to log

(
(1+τijk)/(1−τijk)

)
= γ0, 0 ≤ j < k ≤ mi. The expected information matrix

I(ψ) for the likelihood analysis and expected matrices A(ψ) and B(ψ) in (3.7) are approximated by
Monte Carlo simulation based on 10,000 samples. We define the asymptotic relative efficiency of
the composite likelihood approach as the ratio of the asymptotic variance of the maximum likelihood
estimator to that of the composite likelihood estimator.

Figure 1 displays the trends in the asymptotic relative efficiencies of the two composite likelihood
estimators compared to the maximum likelihood estimator for three settings. We consider the case in
which all families are comprised of four individuals (mi = 3, top row), all families are comprised of
seven individuals (mi = 6, middle row), and family sizes are random where Mi has a multinomial
distribution with P (Mi = m) = 0.25, 0.25, 0.20, 0.20 and 0.10, for m = 2, 3, 4, 5 and 6, respec-
tively (bottom row). It is apparent that for small families (top row) composite likelihood (3.6) yields
quite efficient estimators for all parameters but the estimators based on (3.5) are far less efficient;
the greatest relative efficiency arises when the within-family dependence is high. This general trend
of greater efficiency under higher within-family association is intuitive because as the association
becomes greater, the incremental value of information obtained by using higher dimensional joint
models is naturally smaller. With large families (middle row) the relative efficiency of a composite
likelihood estimator is lower, which is again intuitively reasonable as much more higher order infor-
mation is lost when we only consider contributions from bivariate or trivariate models; the second
composite likelihood (3.6) retains as much as 70-80% efficiency however. When families are of vari-
able size, the efficiency loss based on (3.6) is greater than in the previous scenario and use of (3.5)
again incurs a substantial loss of precision unless the within-family dependence is very strong. We
conclude that dependence modeling should be based on (3.6) as it balances computational simplicity
with good efficiency.
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Figure 1: Asymptotic relative efficiency of the first (CL1) and second (CL2) composite likelihood es-
timators compared to maximum likelihood estimators for all parameters of the Weibull-Clayton cop-
ula model as a function of the within-family dependence (Kendall’s τ ) for family data under response-
biased sampling in the presence of random right censoring; Monte Carlo approximations used for the
Fisher information and expectations in (3.7) based on 10,000 samples; families have mi = 3 (top
row), mi = 6 (middle row) or variable size (bottom row) with Mi ∼ Multinomial((2, 3, 4, 5, 6), p =
(0.25, 0.25, 0.2, 0.2, 0.1)).
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3.4 FINITE SAMPLE STUDY OF COMPOSITE LIKELIHOOD METHODS

Here we report on simulation studies designed to assess the validity of the likelihood and two compos-
ite likelihoods along with the empirical relative efficiency. The parameter settings are as in Section 3.3
with mi = 3. For the Clayton copula we let Kendall’s τ = 0.4, but to accommodate a more general
within-family dependence structure, we also consider a Gaussian copula of the form (2.3) involv-
ing three types of association: between-parents, between-siblings and parent-child, with Kendall’s
τ denoted by τpp, τss and τps, respectively. We set τpp = 0.1, τss = 0.4 and τps = 0.2, with the
relative sizes of these measures compatible with the setting where genetic factors may contribute to
the aetiology of this disease; the association between parents reflects the possible result of shared
enviromental exposures. Therefore, vijk = (1, vijk1, vijk2)

′ in the second-order model (2.5), where
vijk1 = I((j, k) pair are siblings), vijk2 = I((j, k) pair is parent− child), 0 ≤ j < k ≤ 3.

One thousand datasets of n = 1000 families were then generated and analysed with likelihood
(3.1) and composite likelihoods (3.5) and (3.6). The empirical results are summarized in Table 1 for
both dependence structures. For all three methods, the biases are negligible, the empirical standard
errors (ESEs) agree with the average standard errors (ASEs), and the empirical coverage probabil-
ity (ECP) of nominal 95% confidence intervals (the proportion of simulated samples for which the
nominal 95% confidence interval contained the true value) are all within an acceptable range. The
ASEs are the smallest for all parameters under the likelihood analysis followed by those of the second
composite likelihood and then those of the first composite likelihood, in alignment with expectations
based on Section 3.3.

In some settings the mechanism for selecting families may be misspecified. We report on further
simulation studies in Appendix B (see supplementary material available at Biostatistics online) de-
signed to investigate the empirical biases of estimators in three scenarios involving misspecification
of the ascertainment.

4 EXTENSIONS DEALING WITH OBSERVATION AND SAMPLING CHALLENGES

4.1 ACCOMMODATION OF RIGHT-CENSORED AND CURRENT STATUS OBSERVATION

Information on disease onset time for non-probands is often collected retrospectively by a review of
medical records or patient recall. For some non-probands determined to have the disease at the time
of recruitment, however, no such information is available; this may arise when they are diagnosed for
the first time upon recruitment, or if there are no medical records available. Such individuals furnish
current status data with respect to their disease status (Sun, 2006), since all that is known is whether
they have the condition at the time of recruitment and clinical examination. We let Rij indicate
that individual j in family i is under a right-censored observation scheme (due to the availability
of a medical history) where Rij = 0 if the individual is under a current status observation scheme;
let Ri = (Ri1, . . . , Rimi

)′ and R̄i = (Ri0, R
′
i)
′; since the probands are in a clinical registry where

detailed information is available; Ri0 = 1, i = 1, . . . , n. For notational convenience we let Xij = Cij
if Rij = 0, so Xij denotes the time of the assessment for such individuals under a current status
observation scheme; as before we let Yij = I(Tij < Cij). We can then write the likelihood as

Li(ψ) ∝ P (X̄i, Ȳi|R̄i, C̄i, Z̄i, Ti0 < Ci0;ψ) , (4.1)

and the analogous composite likelihoods as

CLri(ψ) ∝
mir∏
s=1

P (W̄
(r)
is |R̄

(r)
is , C̄

(r)
is , Z̄

(r)
is , Ti0 < Ci0;ψ) , r = 1, 2 , (4.2)



Augmented composite likelihood for copula modeling in family studies under biased sampling 8

Table 1: Empirical properties of estimators based on the full likelihood, the first (CL1) and the second
(CL2) composite likelihoods for family data under response-biased sampling in the context of random
right censoring; for the Clayton copula Kendall’s τ = 0.4 and for the Gaussian copula τpp = 0.1,
τss = 0.4, τps = 0.2; n = 1000, nsim = 1000.

Composite likelihood

CL1 CL2 Full likelihood

BIAS ESE ASE ECP BIAS ESE ASE ECP BIAS ESE ASE ECP

Clayton copula

log λ -0.004 0.099 0.099 0.936 -0.004 0.075 0.075 0.950 -0.004 0.073 0.074 0.956
log κ 0.001 0.022 0.023 0.953 0.001 0.019 0.020 0.952 0.001 0.019 0.019 0.952
γ0 0.001 0.133 0.133 0.947 0.003 0.089 0.090 0.957 0.003 0.085 0.086 0.965
τ -0.001 0.055 0.055 0.947 0.000 0.037 0.037 0.957 0.001 0.035 0.036 0.963

Gaussian copula

log λ -0.001 0.047 0.047 0.942 -0.001 0.041 0.041 0.940 -0.000 0.041 0.041 0.947
log κ 0.001 0.020 0.020 0.956 0.001 0.018 0.019 0.956 0.001 0.018 0.019 0.956
γ0 -0.003 0.075 0.075 0.957 -0.002 0.054 0.054 0.952 -0.001 0.052 0.052 0.951
γ1 0.007 0.091 0.088 0.944 0.005 0.065 0.063 0.942 0.002 0.061 0.061 0.934
γ2 0.003 0.064 0.066 0.947 0.002 0.043 0.044 0.951 0.001 0.040 0.042 0.959

τpp -0.002 0.037 0.037 0.956 -0.001 0.027 0.027 0.954 -0.001 0.026 0.026 0.949
τss 0.001 0.027 0.027 0.948 0.001 0.021 0.021 0.956 0.000 0.020 0.020 0.953
τps -0.000 0.024 0.024 0.957 -0.000 0.019 0.019 0.943 -0.000 0.019 0.019 0.939

ESE is empirical standard error; ASE is the average robust standard error; and ECP is the empirical coverage probability
of nominal 95% confidence intervals.
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where R̄(r)
is = (Ri0, Rij

(s)
1
, . . . , R

ij
(s)
r

)′. The asymptotic properties of estimators based on the full
likelihood and the composite likelihoods are similar to those developed in Section 3. Simulation
studies reported in Appendix A (see supplementary material available at Biostatistics online) demon-
strate good empirical performance of estimators based on (4.1) and (4.2) with a combination of right-
censored and current status family data.

4.2 USE OF AUXILIARY DATA ON THE MARGINAL INCIDENCE AND TWO-STAGE ESTIMATION

Since the onset times of probands are right-truncated and the prevalence of disease among non-
probands is typically low, there is often little information about the marginal onset time distribution
in family studies. Auxiliary data are often available, however, which may be exploited to reduce
bias and/or improve efficiency (Pitkäniemi and others, 2009). Readily available auxiliary data in our
setting is the right-truncated disease onset times of individuals not selected from the registry for the
family study; we will show how these can be incorporated when participants are randomly selected.
We also have current status data on disease onset times from a cross-sectional survey (Gelfand and
others, 2005) and explore the use of this data under the assumption that the auxiliary processes share
parameters with the processes governing the family data.

Let F denote the set of indices for probands in the family study and A the set of indices for
individuals in an auxiliary sample. The augmented composite likelihood is

ACLr(ψ) =
∏
i∈F

mir∏
s=1

P (W̄
(r)
is |R̄

(r)
is , C̄

(r)
is , Z̄

(r)
is , Ti0 < Ci0;ψ)

∏
a∈A

P (Xa, Ya|Ca, Za, Ta ∈ Ba; θ) ,

(4.3)

where Ba denotes the selection condition for individual a in the auxiliary sample. If we consider the
auxiliary sample as comprised of unselected individuals from the original registry, then individuals in
the auxiliary sample have right-truncated onset times like the probands; e.g. Ba = (0, Ca) for a ∈ A .
For current status data from a cross-sectional survey there is no truncation, so Ba = (0,∞). Note that
we can re-express (4.3) as ACLr(ψ) = ACLr1(θ)× ACLr2(ψ), where

ACLr1(θ) =
∏
i∈F

P (Ti0|Ci0, Zi0, Ti0 < Ci0; θ)
∏
a∈A

P (Xa, Ya|Ca, Za, Ta ∈ Ba; θ) (4.4)

is comprised of contributions from independent individuals and

ACLr2(ψ) =
∏
i∈F

mir∏
s=1

P (W
(r)
is |R̄

(r)
is , C̄

(r)
is , Z̄

(r)
is , ti0;ψ) , (4.5)

is based on correlated responses. If θ is high dimensional, we can consider a two-stage estimation
(Shih and Louis, 1995) procedure by which (4.4) is maximized to obtain θ̆ (stage 1), θ̆ is plugged
into (4.5), which is then maximized with respect to γ to obtain γ̆ (stage 2). A derivation of the
limiting distribution of ψ̆ = (θ̆, γ̆)′ is given in Appendix C (see supplementary material available at
Biostatistics online).

4.3 FINITE SAMPLE STUDY OF AUGMENTED COMPOSITE LIKELIHOOD METHODS

We carry out a simulation study to illustrate the performance of augmented composite likelihood using
both simultaneous estimation and two-stage estimation procedures. We consider the same parameter
setting of Section 4.1 with two types of auxiliary data: right-truncated individual data (to mimic the
PsA registry data) and current status data (to mimic the national PsA survey data). The same marginal
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disease onset time distribution is assumed for all individuals from the auxiliary samples. The clinic
entry times Cr follow the same distribution as that for the proband in the family study for individuals
in the right-truncated auxiliary sample and the same distribution is used for the assessment times of
the current status auxiliary sample. We generate the right-truncated event time by Ta ∼ T |T < Ca,
and the auxiliary data consist of {Ta, Ca, Ya = 1; a = 1, . . . , nA}, where nA is size of the auxiliary
sample. For the current status sample, the resulting data are {Ca, Ya; a = 1, . . . , nA}. One thousand
replicates were generated with the sample size of the family study set to nF = 1000 and the size
of the auxiliary sample set to nA = 1, 000 or 20, 000. Both simultaneous and two-stage estimation
procedures were carried out and the empirical properties of estimators are summarized in Table 2 for
the Gaussian copula.

We find that when the size of the auxiliary sample increases, both simultaneous and two-stage es-
timation can lead to improved precision; simultaneous maximization leads to more efficient estimates
than the two-stage procedure in all cases and so is recommended when feasible. When the auxiliary
sample is large, the two-stage procedure can yield estimators almost as efficient as those obtained by
simultaneous estimation. Current status auxiliary data in our settings lead to more efficient estimators
than the right-truncated auxiliary data.

5 APPLICATION TO THE PSORIATIC ARTHRITIS FAMILY STUDY

The incidence of PsA is reported to be between 0.3 and 1.0% (Gladman and others, 2005) and some
studies have suggested that close blood relatives of individuals affected by PsA have a higher risk
of developing this disease compared to the general population. Particular interest lies in assessing
whether there is a higher rate of paternal, rather than maternal, transmission of the disease, reflecting
the so-called “parent of origin” effect (Burden and others, 1998). While no genetic markers for PsA
have been linked to the sex chromosomes, it is speculated that there may be sex-linked epigenetic
markers which mediate transmission and penetrance (Pollock and others, 2015).

Here we consider data from a family study of PsA conducted in the Centre for Prognosis Studies
in the Rheumatic Diseases at the University of Toronto. Probands were selected from members of the
University of Toronto Psoriatic Arthritis Registry (UTPAR) based on consecutive presentation at the
clinic for regularly scheduled appointments as part of an ongoing cohort study. A total of 169 families
were recruited which range in size from 2 to 7 individuals; 54 families were comprised of only one
non-proband (i.e. mi = 1). There are 369 proband-non-proband pairs that can be constructed in
the full dataset and among the 115 families with at least three members, a total of 332 triples can
be formed which include the proband. Among the 538 distinct individuals in the dataset only 194
were diagnosed with PsA. The data on the onset time is of a mixed type, since while the event time is
available for the proband, for other family members it may only be known whether they are diseased
or not at the time of assessment; See Appendix D (supplementary material available at Biostatistics
online) for more information on the PsA family study.

We begin with a descriptive analysis and plot the estimated cumulative hazard of PsA based on
a non-parametric analysis (Sun, 2006) using the current status data from the survey of Gelfand and
others (2005). A Weibull model is then fitted to the same data as well as the data obtained by pooling
the current status survey data with data from the UTPAR; these estimates are plotted in the left panel of
Figure 2. Since the onset times of all patients in the UTPAR are right-truncated, there is insufficient
information to estimate (λ, κ) based on this data alone; the right panel of Figure 2 illustrates the
flatness of the likelihood with respect to λ and hence the critical role of the auxiliary data in this
setting. Similarly flat profile composite likelihoods are obtained when incorporating data from the
family members of selected probands (not shown).

We maintain the Weibull model for the marginal onset time distribution and use a Gaussian copula
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Figure 2: Non-parametric and parametric (Weibull) estimates of the cumulative hazard for the onset of
PsA using data from the survey of the National Psoriasis Foundation (Gelfand and others, 2005) alone
and pooled with data from the UTPAR (left panel); Log-likelihood contours for Weibull parameters
(λ, κ) based on right-truncated disease onset times from the UTPAR (right panel).

with a second-order regression model given by

log((1 + τijk)/(1− τijk)) = γ0 + γ1vijk1 + γ2vijk2 + γ3vijk3 , (5.1)

where vijk1 = I((j, k) pair are siblings), vijk2 = I((j, k) pair is father− child), and vijk3 = I((j, k)
pair is mother− child). The test of the null hypothesis that the father-child association is the same
as the mother-child association can be specified by H0 : γ2 = γ3 vs. HA : γ2 6= γ3. We consider
estimation based on augmented composite likelihoods ACL1 and ACL2 making use of auxiliary data
on the marginal onset time distribution from n = 734 unselected individuals in the UTPAR who
provide right-truncated onset times, and the current status data of n = 15, 307 respondents in the
national survey of Gelfand and others (2005). The augmentation term in (4.3) based on individuals
in the survey has the form

P (Xa, Ya|Ca, Za, Ta ∈ Ba; θ) = F Ya(Ca|Za, Ca; θ)F1−Ya(Ca|Za, Ca; θ) .

Even with the augmented data, since only 8 pairs of parents contribute terms to the first composite
likelihood it is not possible to estimate the intercept in (5.1), so we fix γ0 = 0 (or equivalently,
τpp = 0) to reflect the scenario that there is no environmental familial effect on the occurrence of PsA,
and focus on the parent of origin hypothesis.

The top of Table 3 summarizes the estimates for the association parameters based on the aug-
mented composite likelihoods with Weibull margins based on simultaneous and two-stage estima-
tions. The results for the various methods are generally in close agreement. There is moderate
association between siblings with Kendall’s τss around 0.23, suggesting a genetic influence on the
PsA onset time. Furthermore, the estimated Kendall’s τ for father-child association is quite differ-
ent from that for mother-child pairs, which suggests that there might be different effect of parents’
disease status on children. The Wald statistic for testing a parent of origin effect is given below the
estimates along with the associated p-value, and we see that simultaneous or two-stage analyses based
on ACL2 yields borderline significant evidence of a parent-of-origin effect (p = 0.046). The bottom
of Table 3 summarizes the results of fitting a marginal model with piecewise constant hazards with
four cut points chosen to be the 20%, 40%, 60% and 80% quantiles of the right-truncated onset time
of PsA in the clinical cohort samples giving five pieces (PWC-5); these results are in broad agreement
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with those based on the model with the Weibull margins. Specifically the p-values for the Wald-
based parent-of-origin hypothesis tests are p = 0.049 and 0.048 for the simultaneous and two-stage
procedures, respectively. Based on these analyses, we reject the null hypothesis and conclude that
father-child association in the onset time of PsA is significantly greater than the mother-child associ-
ation. The corresponding p-values are all larger than 0.05 based on ACL1 which may be due to the
loss of efficiency explored in Section 3.

Table 3: Estimates of association parameters and Wald tests of the parent-of-origin hypothesis based
on augmented composite likelihoods ACL1 and ACL2, using second-order regression model with
γ0 = 0; augmentation samples include unselected individuals from the University of Toronto Psoriatic
Arthritis Clinic and the data from Gelfand and others (2005).

ACL1 ACL2

Simultaneous Two-stage Simultaneous Two-stage

Estimates S.E Estimates S.E Estimates S.E Estimates S.E

Weibull model for onset time

γ1 0.4387 0.0936 0.4381 0.0935 0.4685 0.1046 0.4673 0.1047
γ2 0.1764 0.0895 0.1752 0.0892 0.1440 0.0929 0.1441 0.0933
γ3 -0.0330 0.1081 -0.0340 0.1078 -0.1270 0.0999 -0.1275 0.0998

τss 0.2159 0.0446 0.2156 0.0446 0.2301 0.0495 0.2295 0.0496
τfc 0.0880 0.0444 0.0874 0.0443 0.0719 0.0462 0.0719 0.0464
τmc -0.0165 0.0540 -0.0170 0.0538 -0.0634 0.0498 -0.0637 0.0497

Statistic 1.490 1.489 1.995 1.995
p-value 0.136 0.136 0.046 0.046

Piecewise constant (PWC-5) model for onset time

γ1 0.4137 0.0967 0.4102 0.0965 0.4457 0.1094 0.4406 0.1097
γ2 0.1891 0.0938 0.1891 0.0933 0.1583 0.0980 0.1622 0.0977
γ3 -0.0242 0.1092 -0.0242 0.1088 -0.1138 0.0994 -0.1122 0.0997

τss 0.2039 0.0464 0.2023 0.0463 0.2192 0.0521 0.2168 0.0523
τfc 0.0943 0.0465 0.0943 0.0462 0.0790 0.0487 0.0809 0.0485
τmc -0.0121 0.0546 -0.0121 0.0544 -0.0568 0.0495 -0.0561 0.0497

Statistic 1.478 1.481 1.967 1.976
p-value 0.140 0.139 0.049 0.048

An important issue is whether the population sampled from the survey of Gelfand and others
(2005) is the same as the population being sampled from for the UTPAR. To investigate the robustness
of our findings, we let θa = (log λa, log κa)

′ denote the Weibull parameters for the model in the
population being sampled from in Gelfand and others (2005); we retain θ = (log λ, log κ)′ as the
parameters for the population sampled from for the creation of the UTPAR. The contour plot in the
right panel of Figure 2 illustrates the paucity of information regarding λ which cannot be estimated
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based only on the registry data, but we can carry out a 1 d.f. likelihood ratio test of H0 : κ = κa
by fitting a model with separate κ parameters for the registry and survey data. We reject the null
hypothesis with p < 0.05 and therefore repeat all of the analyses based on the generalized model with
common λ but different κ parameters. When testing the parent-of-origin hypothesis based on this
more general model, we obtain p = 0.068 for both simultaneous and two-stage estimation based on
ACL2. The lack of robustness of the conclusions suggests larger family studies are warranted which
will depend less critically on auxiliary data and thereby furnish more robust evidence.

These findings, while mixed, are suggestive of a greater possible father-child association com-
pared to the mother-child association. This is in broad agreement with findings in the current body
of literature; see Pollock and others (2015) for a recent discussion and causal explanation for their
effect.

6 DISCUSSION

One purpose of this paper is to highlight the utility of copula models for obtaining interpretable mea-
sures of within-family dependence. Gaussian copula models, in particular, allow one to accommodate
elaborate dependence structures that can provide insight into the genetic basis of disease. We feel that
dependence modeling is much more natural via copulas than based on models with conditional in-
dependence assumptions given shared or correlated frailties because the dependence is functionally
independent of the parameters in the marginal model. Moreover, while we have not emphasized this
in the simulations or applications, copula models furnish estimates of covariate effects with simple
marginal interpretations.

The efficiency loss incurred by use of composite likelihood can be modest when either family sizes
are small or the within-family associations are modest. In these, and other settings where the loss can
be more appreciable (i.e. when family sizes tend to be larger), this loss can be offset by exploitation
of auxiliary data when it is available. In the motivating study this auxiliary data plays a crucial role in
that there is limited information about the marginal onset time distribution because the onset times in
the registry are all subject to right truncation; this lack of information also means that it is difficult to
fully assess the compatability of the onset time distributions in the registry and the survey data. We
carried out analyses allowing the trend parameters to differ in the two samples; it was not possible to
do this with the rate parameters and we acknowledge this limitation. The lack of information on the
onset time distribution is not an issue in analyses based on the binary disease status of participants, and
in such settings there is little need for auxiliary data. We feel, however, that such models are typically
based on invalid assumptions (i.e. that individuals with identical covariates but very different ages
have the same cumulative risk of disease) and therefore yield uninterpretable measures of within-
family association when the ages at assessment differ substantially. A generalization of the proposed
method accommodating a non-susceptible fraction of individuals offers an alternative representation
of this process and would enable one to model the within-family association in both the latent “at risk”
indicator along with the time to disease onset among susceptible individuals. The bivariate model of
Chatterjee and Shih (2001) could be extended to deal with larger cluster sizes and biased sampling
with this in mind.

The construction of the complete data likelihood involving the unknown number of “potential
probands” offers an alternative way of conceptualizing the optimization problem through a pseudo-
augmentation approach which obviates the need for conditioning (Turnbull, 1976). Actual supple-
mentary data can also be integrated into the complete data likelihood yielding a combination of pseudo
and real data augmentation to improve efficiency. This approach can be computationally advantageous
as the number of parameters in the marginal disease onset time distributions increases, particularly
if software is available for semiparametric maximization of the likelihoods in untruncated samples
(Lawless and Yilmaz, 2011). Clayton (2003) proposed an alternative approach to data augmentation
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for response-biased samples which simply aims to correct naive score functions by estimating their
expectation under the selection conditions via simulation. Auxiliary data can also be used for the es-
timation of sampling weights to facilitate weighted likelihood-based analyses as discussed by Iversen
and Chen (2005); we are exploring this in ongoing work but both of the latter approaches are not fully
efficient.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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APPENDIX A: LIKELIHOOD AND COMPOSITE LIKELIHOOD CONSTRUCTION

APPENDIX A.1: AN ILLUSTRATION OF LIKELIHOOD AND COMPOSITE LIKELIHOOD CONSTRUC-
TION

Here we give an illustrative example showing how the likelihood and composite likelihood can be
constructed for a particular family under biased sampling. Consider a nuclear family involving two
parents and two siblings where

1. the father is the proband with onset time T0 and clinic entry time C0.
2. the mother is disease-free at assessment time C1.
3. the first sibling had a disease onset time prior to his/her age at contact C2 but the disease onset

time is unknown (current status).
4. the second sibling is disease-free at his/her age of contact C3.

For simplicity, we do no consider covariates, and adopt a Weibull distribution for onset time with
survival function F(t) = exp(−(λt)κ); the density is f(t) = λκ(λt)κ−1 exp(−(λt)κ). Using the
notation of Section 4, for the proband, (X0 = T0, C0, Y0 = I(T0 < C0) = 1) and R0 = 1; for the
mother, (X1 = C1, Y1 = 0), and R1 = 1; for the first sibling, since he/she is under a current status
observation scheme, then (X2 = C2, Y2 = 1) and R2 = 0. The second sibling is also disease-free at
their assessment time, so (X3 = C3, Y3 = 0) and R3 = 1. The full likelihood (4.1) for this family can
therefore be written as

L(ψ) = P (X0, X1, X2, X3, Y0 = 1, Y1 = 0, Y2 = 1, Y3 = 0|T0 < C0, C̄, R̄)

= P (T0, T1 > C1, T2 ≤ C2, T3 > C3|T0 < C0, C̄)

=
P (T0, T1 > C1, T2 ≤ C2, T3 > C3|C̄)

P (T0 < C0|C0)

=
P (T0, T1 > C1, T3 > C3|C̄)− P (T0, T1 > C1, T2 > C2, T3 > C3|C̄)

P (T0 < C0|C0)
. (A.1)
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The full likelihood involves a four-dimensional random variable. Under a Gaussian copula (2.3),
a joint survival function can be written as

P (T0 > t0, T1 > C1, T2 > C2, T3 > C3|C̄) =

∫ r0

−∞
· · ·
∫ r3

−∞
φ4(s0, s1, s2, s3; Σ)ds0 . . . ds3 , (A.2)

where r0 = Φ−1(F(t0)) and rj = Φ−1(F(Cj)), j = 1, 2, 3, and φ4(s0, s1, s2, s3; Σ) is the density of a
r.v. S = (S0, S1, S2, S3)′ ∼ MVN(0,Σ). Then by taking the negative derivative of (??) with respect
to t0, we obtain

P (T0, T1 > C1, T2 > C2, T3 > C3) = − d

dt0
P (T0 > t0, T1 > C1, T2 > C2, T3 > C3)

=

[∫ r1

−∞
· · ·
∫ r3

−∞
φ4(r0, s1, s2, s3; Σ)ds1 . . . ds3

]
· φ−1(r0)f(t0)

= Φ3(r1, r2, r3;µ∗,Σ∗)f(t0) , (A.3)

where Φ3(· ;µ∗,Σ∗) is the CDF of a three-dimensional multivariate normal distribution with mean
µ∗ and covariance matrix Σ∗. The last equation is because of the fact that the conditional distribu-
tion of (S1, S2, S3)|S0 is still multivariate normal if (S0, S1, S2, S3) is multivariate normal and the
explicit expressions of µ∗ and Σ∗ can be easily obtained by the normal distribution theory. Note that
P (T0, T1 > C1, T3 > C3) can be derived in a similar way, or one can simply set r2 = ∞ in (??).
Therefore by plugging (??) into (??), the full likelihood for this nuclear family can be written as

L(ψ) =
[Φ3(r1,∞, r3;µ∗,Σ∗)− Φ3(r1, r2, r3;µ∗,Σ∗)] · f(t0)

F (C0)
. (A.4)

To construct a composite likelihood, we first need to decide on the dimension(s) of the subsets Sr.
If r = 1, then S1 = {(0, j), j = 1, 2, 3} and if r = 2, then S2 = {(0, j, k), 1 ≤ j < k ≤ 3}. Therefore
the first composite likelihood (CL1) can be written as

CL1(ψ) =
3∏
j=1

P (X0, Y0 = 1, Xj, Yj|C̄j, R̄j, T0 < C0)

= P (T0, T1 > C1|C̄1, T0 < C0)P (T0, T2 ≤ C2|C̄2, T0 < C0)P (T0, T3 > C3|C̄3, T0 < C0)

= P (T0, T1 > C1|C̄1, T0 < C0)(1− P (T0, T2 > C2|C̄2, T0 < C0))P (T0, T3 > C3|C̄3, T0 < C0) ,

where

P (T0, Tj > Cj|C̄j, T0 < C0) =
P (T0, Tj > Cj|Cj)
P (T0 < C0|C0)

=
−dF(t0, Cj)/dt0

F (C0)
= Φ

rj − σ0jr0√
1− σ2

0j

 · f(t0)

F (C0)
,

where σ0j is the corresponding entry of Σ. From the expression of CL1, we know that the first com-
posite likelihood only involve pairs of family members, and it is therefore much easier to determine
its closed form. Similarly, the second composite likelihood based on triples (CL2), can be written as

CL2(ψ) =
∏

1≤j<k≤3

P (X0, Y0 = 1, Xj, Yj, Xk, Yk|C̄jk, R̄jk, T0 < C0)

= P (T0, T1 > C1, T2 ≤ C2|C0, C1, C2, T0 < C0)× P (T0, T1 > C1, T3 > C3|C0, C1, C3, T0 < C0)

×P (T0, T2 ≤ C2, T3 > C3|C0, C2, C3, T0 < C0)

=
P (T0, T1 > C1|C1)− P (T0, T1 > C1, T2 > C2|C1, C2)

F (C0)
× P (T0, T1 > C1, T3 > C3|C1, C3)

F (C0)

×P (T0, T3 > C3|C3)− P (T0, T2 > C2, T3 > C3|C2, C3)

F (C0)
.
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We have already shown how to obtain P (T0, Tj > Cj|Cj) and P (T0, Tj > Cj, Tk > Ck|Cj, Ck)
based on the copula function. The second composite likelihood involves triples of family members
and requires to work on three-dimensional distribution. It is more complicated than CL1 but easier
than the full likelihood, in terms of both writing out and maximizing the objective function.

The benefits of using composite likelihood instead of full likelihood is more obvious when the
family size is large and variable, and also when the family data are under complex censoring schemes.
To illustrate this point, consider a study with families of 7 individuals comprised of two parents and
5 children. Furthermore, we assume the non-probands are all under a current status observation
scheme, then the data we have are {(Ti0, Ci0, Yi0 = 1, Xij, Yij); j = 1, . . . , 6, i = 1, . . . , n}, and the
full likelihood is of the form

L(ψ) =
n∏
i=1

P (Ti0, Yi1, . . . , Yi6|C̄i, Ti0 < Ci0) =
n∏
i=1

P (Ti0, Yi1, . . . , Yi6|C̄i)/F (Ci0) ,

where P (Ti0, Yi1, . . . , Yi6|C̄i) involves 26 = 64 possible combinations. It is tedious and time con-
suming, although possible, to write out the probability expressions for all these combinations and to
maximize the function. Under composite likelihood, however, we require 21 = 2 or 22 = 4 probabil-
ity expressions corresponding to the first or second composite likelihood respectively. Of course, the
ease is at the cost of statistical efficiency loss. We therefore compare the asymptotic relative efficiency
of composite likelihoods with full likelihood for different family sizes in the paper to give guidance
on the consequences of adopting the composite likelihoods.

APPENDIX A.2: COMPOSITE LIKELIHOOD UNDER RIGHT-CENSORED AND CURRENT STATUS

OBSERVATION

Here we conduct a simulation study to assess the performance of the methods with right-censored
and current status family data. Again we consider two-generation families comprised of two par-
ents and two children. A Weibull distribution is adopted for the onset times for all family members;
F(tij; θ) = exp(−(λtij)

κ), j = 0, 1, 2, 3; θ = (λ, κ)′. The clinic entry time distribution for the
probands and examination time distribution for the non-probands are as in Section 3. We further
generate a random binary indicator Rij for non-probands, j = 1, 2, 3, which indicate their respective
observation scheme with probability P (Rij = 1) = P (Rij = 0) = 0.5; if Rij = 1, then a medical
history is available for this member and we observe Xij = min(Tij, Cij) and Yij = I(Tij < Cij);
otherwise, only current status data are available and we observe Yij = I(Tij < Cij) and Cij . For the
within-family association structure, a Clayton and a Gaussian copula are used. For the latter, three
types of associations (between-parents, between-siblings and parent-child) are specified as they were
in Section 3.4. Although the full likelihood is more efficient than the composite likelihood, writing
out, computing, and maximizing the full likelihood are burdensome when the family size is large,
the within-family association structure is complex or the family data are of a mixed type. Moreover,
the second composite likelihood is quite efficient so we only apply the extended composite likeli-
hoods (4.2) with r = 1 and 2 to the mixed-type family data with response-biased sampling under
the exchangeable and more general within-family structures, respectively; the empirical properties
of estimates are summarized in Table ??. We find that the biases are all negligible, the empirical
standard errors (ESE) agree with the average robust standard errors (ASE), and the empirical cover-
age probabilities (ECP) of nominal 95% confidence intervals are within the acceptable range for all
parameters. The ASE under the second composite likelihood are smaller than those under the first
composite likelihood. These findings support the validity of the extension of our proposed composite
likelihood approaches to the mixed-type family data subject to the response-biased sampling.
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Table A.1: Empirical properties of estimators based on composite likelihoods CL1 and CL2 for a
50:50 mix of right-censored and current status family data under response-biased sampling; for the
Clayton copula Kendall’s τ = 0.4 and for the Gaussian copula τpp = 0.1, τss = 0.4, τps = 0.2;
n = 1000, nsim = 1000.

Composite Likelihood CL1 Composite Likelihood CL2

PARAM TRUE BIAS ESE ASE ECP BIAS ESE ASE ECP

Clayton Copula

log λ -4.112 -0.005 0.112 0.109 0.942 -0.001 0.084 0.081 0.947
log κ 0.182 -0.000 0.027 0.027 0.955 -0.000 0.023 0.023 0.953
γ0 0.847 0.002 0.149 0.148 0.958 -0.001 0.102 0.100 0.944
τ 0.400 -0.001 0.062 0.062 0.948 -0.001 0.042 0.042 0.945

Gaussian Copula

log λ -4.112 -0.001 0.049 0.049 0.951 -0.001 0.043 0.043 0.954
log κ 0.182 0.000 0.024 0.024 0.952 0.000 0.022 0.022 0.950
γ0 0.201 -0.001 0.083 0.083 0.950 0.001 0.064 0.063 0.937
γ1 0.647 0.003 0.096 0.097 0.950 -0.000 0.073 0.073 0.951
γ2 0.205 0.001 0.071 0.073 0.955 -0.001 0.052 0.052 0.948

τpp 0.100 -0.000 0.041 0.041 0.950 0.000 0.032 0.031 0.938
τss 0.400 0.001 0.029 0.030 0.949 -0.000 0.023 0.024 0.959
τps 0.200 0.000 0.028 0.027 0.942 -0.000 0.022 0.021 0.937



Yujie Zhong and Richard J. Cook 5

APPENDIX B: THE EFFECT OF MISSPECIFYING THE ASCERTAINMENT CONDI-
TION

Here we examine the effect of misspecification of the ascertainment condition on estimation under a
composite likelihood. We adopt a Weibull marginal model as before with a Gaussian copula having
τss = 0.4, τps = 0.2 and τss = 0.1 and consider studies involving n = 1000 families with mi = 3,
i = 1, . . . , n. The analyses are based on the ascertainment condition Ti0 < Ci0, but we generate data
under three ascertainment conditions which are different from this.

CASE I: HIGH RISK FAMILIES ARE ASCERTAINED

Here we consider the case in which the proband must satisfy Ti0 < Ci0 but in addition at least one
non-proband must also be diseased at the time of their assessment. This is somewhat similar to a
multiplex sampling scheme but with the proband retaining a special designation. In statistical terms
the family ascertainment condition is then Ti0 < Ci0 and

∑3
j=1 Yij ≥ 1. The actually ascertained

families will suggest a higher risk of developing disease than has been accounted for by the naive
model since the condition Ti0 < Ci0 is not sufficient. A consequence is that the marginal hazard for
disease onset will be over-estimated; this is demonstrated empirically in Figure B.1 where the average
estimated hazard is displayed under the misspecified model. The effect of this misspecification on the
association parameters is less clear but the empirical biases for this particular model are shown in
Table B.1.

CASE II: SAMPLING OF PROBANDS WITH EARLY AGE OF ONSET

Here we suppose that there is an assessment time of the proband generated from normal distribution
with mean 40 and variance 50, but sampling of probands requires them to have an early age of onset,
so the real ascertainment condition is that Ti0 < min(Ci0, Ei0) where we take E0 = 40. Misspeci-
fication of the ascertainment condition in this setting should lead to an overestimation of the hazard
and hence an underestimation of the survivor function; see Figure B.1. The consequences on the
inferences regarding the within-family dependence parameter estimation is less transparent but the
empirical results displayed in Table B.1 show that the biases can be substantial. The biases become
larger when the early age of onset is less than 40.

CASE III: NO PROBAND IDENTIFIED a priori
Here we suppose that while one person is nominally identified a priori as the proband in the analysis,
the actual ascertainment condition is simply that one or more individuals must be affected by the
condition in the family. i.e.

∑3
j=0 Yij ≥ 1. The requirement that

∑3
j=0 Yij ≥ 1 is less restrictive than

the requirement that Ti0 < Ci0; note that the index j = 0 does not correspond to “the” proband in
this setting. As a result, families are more likely to be selected under this scheme. The plots of the
average cumulative hazards in Figure B.1 show that this misspecification leads to an under-estimation
of the cumulative hazard and overestimation of the survivor function. The empirical results on point
estimation of the association parameters given in Table B.1 are less intuitive but clearly biases can be
appreciable.

In summary there is little robustness that can be claimed for this type of analysis to misspecification
of the ascertainment condition, and while the direction of the consequent biases in the marginal pa-
rameters can be anticipated in some cases, a general intuition on the nature of the induced bias for
association is elusive.
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Figure B.1: Estimated survivor and cumulative hazard functions for event time based on composite
likelihoods when the ascertainment condition is misspecified; Gaussian copula, τpp = 0.1, τps = 0.2
and τss = 0.4; mi = 4, nsim = 1000.
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Table B.1: Empirical properties of estimates based on composite likelihoods when the ascertainment
condition is misspecified; Gaussian copula, τpp = 0.1, τps = 0.2 and τss = 0.4; mi = 4, nsim =
1000.

CL1 CL2

PARAM TRUE MEAN ESE ASE ECP MEAN ESE ASE ECP

CASE I: Ti0 < Ci0 and
∑3

j=1 Yij ≥ 1

log λ -4.1121 -3.8890 0.0319 0.0315 0.000 -3.8613 0.0250 0.0243 0.000
log κ 0.1823 0.2017 0.0199 0.0197 0.825 0.2048 0.0183 0.0180 0.749
γ0 0.2007 0.1609 0.0812 0.0775 0.898 0.1021 0.0524 0.0499 0.500
γ1 0.6466 0.5912 0.0945 0.0937 0.905 0.6078 0.0648 0.0633 0.908
γ2 0.2048 0.1604 0.0762 0.0749 0.904 0.1623 0.0469 0.0466 0.854
τpp 0.1000 0.0802 0.0403 0.0385 0.899 0.0510 0.0261 0.0249 0.504
τss 0.4000 0.3590 0.0282 0.0282 0.702 0.3406 0.0216 0.0211 0.197
τps 0.2000 0.1592 0.0219 0.0221 0.544 0.1314 0.0171 0.0167 0.026

CASE II: Ti0 < Ci0 and Ti0 < 40

log λ -4.1121 -4.0148 0.0438 0.0459 0.428 -4.0583 0.0404 0.0423 0.730
log κ 0.1823 0.1640 0.0192 0.0194 0.859 0.1648 0.0177 0.0180 0.851
γ0 0.2007 0.1089 0.0693 0.0722 0.771 0.1574 0.0512 0.0526 0.880
γ1 0.6466 0.6914 0.0845 0.0842 0.909 0.6703 0.0623 0.0615 0.931
γ2 0.2048 0.2181 0.0624 0.0622 0.947 0.2118 0.0433 0.0430 0.952
τpp 0.1000 0.0543 0.0345 0.0359 0.775 0.0785 0.0254 0.0261 0.881
τss 0.4000 0.3797 0.0270 0.0272 0.905 0.3915 0.0203 0.0206 0.939
τps 0.2000 0.1619 0.0240 0.0244 0.646 0.1825 0.0180 0.0187 0.842

CASE III:
∑3

j=0 Yij ≥ 1

log λ -4.1121 -4.4895 0.0682 0.0645 0.000 -4.5684 0.0695 0.0666 0.000
log κ 0.1823 0.1514 0.0209 0.0216 0.704 0.1449 0.0195 0.0202 0.538
γ0 0.2007 0.1653 0.0675 0.0649 0.897 0.2471 0.0653 0.0630 0.878
γ1 0.6466 -0.0626 0.2536 0.2490 0.227 0.6557 0.0746 0.0711 0.937
γ2 0.2048 0.3021 0.0554 0.0539 0.559 0.2361 0.0450 0.0438 0.877
τpp 0.1000 0.0824 0.0335 0.0322 0.898 0.1228 0.0321 0.0310 0.876
τss 0.4000 0.0504 0.1252 0.1224 0.233 0.4228 0.0229 0.0231 0.823
τps 0.2000 0.2293 0.0289 0.0276 0.790 0.2369 0.0226 0.0217 0.610
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APPENDIX C: ASYMPTOTIC PROPERTIES WITH AUGMENTED COMPOSITE LIKE-
LIHOOD

Here we prove the asymptotic properties of the two-stage estimator for the augmented composite
likelihoods proposed in Section 4. The augmented composite likelihoods can both be expressed as
the product of two functions, the first is a function only of the marginal parameter θ as in (4.4), and
the second is a function of ψ = (θ′, γ′)′ as in (4.5).

We consider a set of independent individuals P for whom there is complete data and from which
subjects are sampled for inclusion in the family study; let the number of individual in the set P be n.
Let nR and nC denote the number of individuals in the registry data and survey data, then n = nR+nC .
Without loss of generality, we assume the first nR individuals are in the registry and the last n − nR
are in the survey. In Section 4, we assume that individuals are selected by simple random sampling
from the registry data and the second part of the augmented composite likelihood is constructed based
on the sampled families only of size nF . We let ∆i indicate that individual i is sampled for the family
study which occurs with probability π = P (∆i = 1), where π > 0, for individuals in the registry;
then we let nF/nR → π, as nF →∞ and nR →∞. The estimating functions for θ and γ are

U1(θ) =
n∑
i=1

Ui1(θ) ,

and

U2(ψ) =

nR∑
i=1

Ui2(ψ) =

nR∑
i=1

∆i

π
· U∗i2(ψ) ,

respectively, with

Ui1(θ) =
∂

∂θ
logP (Xi0, Yi0|Ci0, Zi0, Ti0 ∈ Bi; θ) ,

where Bi = (0, Ci0) if individual i is in the registry or Bi = (0,∞) if they belong to the survey and
yield current status data. The function Ui1(θ) is just the score function for truncated failure times or
current status data, so we have E[Ui1(θ)] = 0.

For the first augmented composite likelihood (r = 1),

U∗i2(ψ) =

mi∑
j=1

∂

∂γ
logP (Wij|R̄ij, C̄ij, Z̄ij, ti0;ψ) ,

and for the second augmented composite likelihood (r = 2),

U∗i2(ψ) =
∑

1≤j<k≤mi

∂

∂γ
logP (Wijk|R̄ijk, C̄ijk, Z̄ijk, ti0;ψ) .

Under simple random sampling,

E[Ui2(ψ)] = EDi
{E∆i

[∆iU
∗
i2(ψ)/π|Di]} = EDi

{U∗i2(ψ)} = 0 ,

where Di is the data from family i. So both estimating functions are unbiased.
If ψ̆ = (θ̆′, γ̆′)′ denotes the solution to U1(θ) = 0 and U2(γ ; θ) = 0, then

√
n(θ̆ − θ) ≈

[
− 1

n

∂U1(θ)

∂θ′

]−1
1√
n
U1(θ)→ I−1

11

1√
n
U1(θ) , (C.1)
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as n→∞, where I11(ψ) = E[−∂Ui1(θ)/∂θ]. Also

U2( γ̆; θ̆ ) = U2(γ; θ̆) +
∂U2(γ; θ̆)

∂γ′
(γ̆ − γ) + op

(
1
√
nR

)
,

and

U2(γ; θ̆) = U2(γ; θ) +
∂U2(γ; θ)

∂θ
(θ̆ − θ) + op

(
1
√
nR

)
.

Therefore as nF , nR →∞,

− 1

nR
· ∂U2(γ; θ̆)

∂γ
→ E[−∂U2(γ; θ)/∂γ] = I22(ψ) ,

and

− 1

nR
· ∂U2(γ; θ̆)

∂θ
→ E[−∂U2(γ; θ)/∂θ] = I21(ψ) .

Moreover as nF , nR, n→∞, we have

1√
n
U1(θ)→ Z1 ∼ N(0,B11(ψ)) ,

and
1
√
nR
U2(γ ; θ)→ Z2 ∼ N(0, E(∆2

iU
∗
2iU
∗′
2i/π

2) = N(0,B22(ψ)/π) ,

where B11(ψ) = E[Ui1(θ)U ′i1(θ)] and B22(ψ) = E[U∗i2(ψ)U∗
′
i2 (ψ)]. Since

E

[
1
√
nR
U2(γ ; θ)

1√
n
U ′1(θ)

]
=

1
√
n nR

E

[
nR∑
i=1

n∑
j=1

∆iU
∗
i2(ψ)U ′j1(θ)/π

]

=
1

√
n nR

{
E

[
nR∑
i=1

nR∑
j=1

∆iU
∗
i2(ψ)U ′j1(θ)/π

]
+ 0

}

=

√
nR
n
E[U∗i2(ψ)U ′i1(θ)],

then E[Z2Z
′
1] =

√
α B21(ψ) where B21(ψ) = E[U∗i2(ψ)U ′i1(θ)], so as nF , nR, n → ∞, and we let

nR/n→ α,

√
nR (γ̂ − γ) = I−1

22 (ψ)

{
1
√
nR
U2(γ; θ)− I21(ψ)

√
nR (θ̆ − θ)

}
= I−1

22 (ψ)

{
1
√
nR
U2(γ; θ)− I21(ψ)

√
nR
n
I−1

11 (ψ)

(
1√
n
U1(θ)

)}
= I−1

22 (ψ)
{
Z2 −

√
αI21(ψ)I−1

11 (ψ)Z1

}
. (C.2)

Based on (??) and (??), we then have
√
n(θ̆ − θ)→ N(0,Σ) and

√
nR (γ̆ − γ)→ N(0,Γ) ,

where

Σ = I−1
11 (ψ)B11(ψ)

(
I−1

11 (ψ)
)′
,

Γ = I−1
22 (ψ)

{
αI21(ψ)I−1

11 (ψ)B11(ψ)
(
I−1

11 (ψ)
)′ I ′21(ψ) + π−1B22(ψ)

− αB21(ψ)
(
I−1

11 (ψ)
)′ I ′21(ψ)− αI21(ψ)I−1

11 (ψ)B12(ψ)
}(
I−1

22 (ψ)
)′
.
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The asymptotic variance of the two-stage estimator can be consistently estimated by Σ̂ and Γ̂,
where

Σ̂ = Î −1
11 (ψ̆)B̂11(ψ̆)

(
Î −1

11 (ψ̆)
)′

,

Γ̂ = Î−1
22 (ψ̆)

{
αÎ21(ψ̆)Î −1

11 (ψ̆)B̂11(ψ̆)
(
Î −1

11 (ψ̆)
)′
Î ′21(ψ̆) + π−1B̂22(ψ̆)

− αB̂21(ψ̆)
(
Î −1

11 (ψ̆)
)′
Î ′21(ψ̆)− αÎ21(ψ̆)Î −1

11 (ψ̆)B̂12(ψ̆)

}(
Î −1

22 (ψ̆)
)′

.

with these expressions easily calculated based on the sample. For example,

Î11(ψ̆) = − 1

n

n∑
i=1

∂Ui1(θ)

∂θ′
∣∣
θ=θ̆

, Î22(ψ̆) = − 1

nR

nR∑
i=1

∆i

π
· ∂U

∗
i2(ψ)

∂γ′
∣∣
ψ=ψ̆

,

and if π and α are unknown, they can be consistently estimated by π̂ = nF/nR and α̂ = nR/n.

APPENDIX D: DESCRIPTION OF PSA FAMILY DATA

There are 169 two-generation families ranging in size from 2 to 7 individuals in the PsA family study
and a crude summary of the corresponding data are given in Table ??. A total of 538 individuals are
in the family study and only 194 were diagnosed with PsA. Among the 169 families, 54 have only
one non-probands (mi = 1) and 115 have more than one non-probands (mi ≥ 2), which lead to 332
proband-involved triples of individuals. Among all of these triples, 86 include both a father and a
mother, 156 include a father and a child, 274 include a mother and a child, and 246 include two or
more siblings.

There are 369 pairs of family members which can be created including the respective proband and
among these 8 include a father and mother, 107 include a father and child, 113 include a mother and
child and 141 include two siblings.

Table D.1: Summary of PsA family data

Number of non-proband siblings

Mother Father 0 1 2 3 4 5 6 Frequency

Proband NA 10 1 1 12
Proband Non-proband 1 1
NA Proband 6 5 1 12
Non-proband Proband 2 3 2 7
NA NA 27 9 1 1 38
NA Non-proband 3 2 5
Non-proband NA 8 7 6 3 1 25
Non-proband Non-proband 38 17 9 4 1 69

Total 169
NA means information is not available.
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