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ABSTRACT 

 

In transportation safety studies, it is often necessary to account for unobserved 

heterogeneity and multimodality in data. The commonly used standard generalized 

linear models (e.g., Poisson-gamma models) do not fully address unobserved 

heterogeneity, assuming unimodal exponential families of distributions. This thesis 

illustrates how restrictive assumptions (e.g., unimodality) common to most road safety 

studies can be relaxed employing Bayesian nonparametric Dirichlet process mixture 

models. We use a truncated Dirichlet process, so that our models reduce to the form of 

finite mixture (latent class) models, which can be estimated employing standard 

Markov chain Monte Carlo methods, emphasizing computational simplicity. 

Interestingly, our approach estimates the number of latent subpopulations as part of its 

analysis algorithm using an elegant mathematical framework. We use pseudo Bayes 

factors for model selection, showing how the predictive capability of models can be 

affected by different assumptions.  

In univariate settings, we extend standard generalized linear models to a Dirichlet 

process mixture generalized linear model in which the random intercepts density is 

modeled nonparametrically, thereby adding flexibility to the model. We examine the 

performance of the proposed approach using both simulated and real data. We also 

examine the performance of the proposed model in terms of replicating datasets with 

high proportions of zero crashes. In terms of engineering insights, we provide a policy 

example related to the identification of high-crash locations, a critical component of the 

transportation safety management process. 

With respect to multilevel settings, this thesis introduces a flexible latent class multilevel 

model for analyzing crash data that are of hierarchical nature. We extend the standard 

multilevel model by accounting for unobserved cross-group heterogeneity through 

multimodal intercepts (group effects). The proposed method allows identifying latent 

subpopulations (and consequently outliers) at the highest level of the hierarchy (e.g., 

geographic areas). We evaluate our method on two recent railway grade crossing crash 

datasets from Canada. This research confirms the need for a multilevel approach for 

both datasets due to the presence of spatial dependencies among crossings nested 

within the same region. We provide a novel approach to benchmark different regions 
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based on their safety performance measures. To this end, we identify latent clusters 

among different regions that share similar unidentified features, stimulating further 

investigations to explore reasons behind such similarities and dissimilarities. This could 

have important policy implications for various safety management programs. 

This thesis also investigates inference for multivariate crash data by introducing two 

flexible Bayesian multivariate models: a multivariate mixture of points and a mixture of 

multivariate normal densities. We use a Dirichlet process mixture to keep the 

dependence structure unconstrained, relaxing the usual homogeneity assumptions. We 

allow for interdependence between outcomes through a Dirichlet process prior on the 

random intercepts density. The resulting models collapse into a form of latent class 

multivariate model, an appealing way to address unobserved heterogeneity in 

multivariate settings. Therefore, the multivariate models that we derive in this thesis 

account for correlation among crash types through a heterogeneous correlation 

structure, which better captures the complex structure of correlated data. To our 

knowledge, this is the first study to propose and apply such a model in the 

transportation literature.  

Using a highway injury-severity dataset, we illustrate how the robustness to 

homogeneous correlation structures can be examined using a multivariate mixture of 

points model that relaxes the homogeneity assumption with respect to the location of 

the dependence structure. We then use the mixture of multivariate normal densities 

model‒relaxing the homogeneity assumption with respect to both the location and the 

covariance matrix‒to investigate the effects of various factors on pedestrian and cyclist 

safety in an urban setting, modeling both outcomes simultaneously. To our knowledge, 

this is the first study to conduct a joint safety analysis of active modes at an intersection 

level, a micro-level, which is expected to provide more detailed insights. We show how 

spurious assumptions affect predictive performance of the multivariate model and the 

interpretation of the explanatory variables using marginal effects. The results show that 

our flexible model specification better captures the underlying structure of 

pedestrian/cyclist crash data, resulting in a more accurate model that contributes to a 

better understanding of safety correlates of non-motorist road users. This in turn helps 

decision-makers in selecting more appropriate countermeasures targeting vulnerable 

road users, promoting the mobility and safety of active modes of transportation.  
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CHAPTER 1 

 

 

 INTRODUCTION 

1.1 Background and Motivation 

Traffic safety is a major global health issue since very large proportions of unintentional 

injuries are caused by traffic-related crashes. According to the Global Health 

Observatory, 1.25 million fatalities occur on world’s roads each year, and traffic-related 

injuries are major cause of death among people 15 to 29 years old (World Health 

Organization, 2015; Mannering et al., 2016). In this regard, Transport Canada reports 

149,900 injuries, 9,647 serious injuries, and 1,834 fatalities across Canada in 2014 

(Transport Canada, 2014). Table 1-1 shows fatalities and injuries sustained by different 

age groups in Canada, indicating high rate of critical injuries among young people. 

These numbers obviously indicate the need for further improvements. 

Although traffic-related injuries and fatalities have seen a decreasing trend during the 

past two decades, this reduction has not been drastic. As an example, Fig. 1-1 illustrates 

reduction in traffic-related fatalities in Canada from 1995 to 2014 (Transport Canada, 

2014). Such trend is observed in spite of several improvements made in terms of motor 

vehicle safety standards/features, traffic safety policies, and road design. Research is 

thus needed to better understand underlying crash mechanisms. This in turn helps 

guide safety policy, reducing traffic-related injuries and fatalities. To this end, statistical 

models play a noteworthy role by defining a relationship between traffic safety 
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performance measures (crash frequencies or differing injury-severity levels) and a series 

of factors (explanatory variables) that affect these measures. Section 1.2 provides a quick 

introduction to traffic safety studies describing its main components.  

 

Table 1-1 Fatalities and injuries by age group 

Age group (yrs) Fatalities Serious injuries Injuries (Total) 

0–4  17  87 1,984 

5–14  30  293 5,957 

15–19  146  897 14,015 

20–24  194  1,205 17,732 

25–34  301  1,725 27,605 

35–44  210  1,329 23,051 

45–54  265  1,431 23,210 

55–64  250  1,185 17,220  

65 + 400  1,208 15,047 

Unknown 21  287 4,079 

Total 1,834 9,647 149,900 

 

 

Figure 1-1 Fatalities across Canada from 1995 to 2014  

(adopted from https://www.tc.gc.ca/media/documents/roadsafety/cmvtcs2014_eng.pdf) 

 

https://www.tc.gc.ca/media/documents/roadsafety/cmvtcs2014_eng.pdf


3 

In addition to the general consensus that further research is needed to mitigate crash 

risks, one important issue is related to the literature on road safety research. That is 

while most traffic safety studies have been centered on highway and intersection safety 

mainly considering motor vehicle accidents, less attention is given to the safety analysis 

of railway grade crossings, pedestrians, and cyclists. The next two subsections therefore 

provide an introduction to these under-represented studies, highlighting their 

importance. Based on the latter observation, besides focusing on methodological 

aspects, this dissertation also adopts under-represented crash data (railway grade 

crossings and vulnerable road users) among other crash datasets. The aim is to increase 

the empirical impact of the dissertation by employing innovative statistical models and 

providing valuable insights with respect to the under-represented studies as well. 

1.1.1 Railway grade crossings 

The Canadian rail network is the fifth most extensive globally, moving a significant 

number of passengers and more than 70% of surface goods in Canada each year 

(Railway Association of Canada, 2012). Rail transportation therefore plays a significant 

role in maintaining the quality of life of all Canadians and the vitality of Canada’s 

economy. When compared to road transportation (vehicles, trucks, etc.), rail 

transportation also has a carbon footprint that is considerably lower and is thus a 

sustainable alternative with lower greenhouse gas emissions. In fact, rail transportation 

produces only 3.4 percent of the total greenhouse gas emissions produced by the 

transportation sector in Canada (Railway Association of Canada, 2012).  

The presence of a vast railway network in Canada imparts some risk to road/rail users 

and to residents living around railway lines. As reported by the Transportation Safety 

Board of Canada, 11,998 rail accidents of various forms have been observed over a ten-

year period from 2006 to 2015 (Transportation Safety Board of Canada, 2015). According 

to these data, around 17% of all rail accidents have occurred at railway grade crossings. 

Despite improvements in the recent years, the number of grade crossing crashes 

remains high; and therefore, grade crossing safety is still a significant concern for 

transportation authorities and Canadian society as a whole. For example, the 

Transportation Safety Board of Canada reports 1,138 crossing accidents for the years 

2008-2013, causing 155 fatalities, and 166 serious injuries (Transportation Safety Board 
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of Canada, 2014).  The significant concern is also due to the great monetary (property 

damage, derailment, service delay, etc.) and non-monetary (psychological 

consequences, grief, pain, etc.) costs that usually result from grade crossing accidents. 

Fig. 1-2 illustrates the number of crossing accidents for the period 2006 to 2015, 

indicating a non-drastic reduction. Further research is therefore needed to better 

understand the complex crash mechanisms at railway grade crossings. For instance, 

spatial spread of Canadian railway crossings may lead to significant variation in 

unknown spatial attributes (e.g. climate) of crossings. This in turn may have a bearing 

on safety. Consequently, an enhanced understanding of grade crossing safety issues will 

lend itself to safety policy, resulting in more cost-effective safety improvement 

programs.  

 

 
Figure 1-2 Crossing accidents across Canada from 2006 to 2015 (Transport Canada) 

 

1.1.2 Vulnerable road users: pedestrians and cyclists 

Health benefits of cycling and walking, referred to as active modes of transport, have 

been documented in several studies (Khattak and Rodriguez, 2005; Li et al., 2005; Krizek 

and Johnson, 2006; Saelens and Handy, 2008; de Hartog et al., 2010; Forsyth and Oakes, 

2015). Further benefits, from a larger perspective, can be achieved due to a shift from 

motorized modes of transportation to cycling and walking, two environmentally 

friendly modes. This modal shift results in a decrease in greenhouse gas emissions and 

air pollution (de Hartog et al., 2010), benefitting entire communities. For these reasons, 

many municipalities have been aiming at promoting active modes of transport 
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particularly during the last decade. Examples include the installation and development 

of bicycle sharing systems and bicycle paths in cities such as Montreal, Toronto, Boston, 

Seattle, Chicago, New York, etc. 

Walking and cycling in environments shared with motorized traffic, however, impart 

some risk to road users, in particular, pedestrians and cyclists. Fig. 1-2 displays fatalities 

for pedestrians and cyclists across Canada from 1975 to 2011. This figure implies no 

drastic decreasing trend in the last decade. Each year 7,500 cyclists sustain serious 

injuries across Canada, with 64% of deaths among cyclists, due to traffic crashes, on 

urban roads with a speed limit of less than 70 km/h (Canadian Automobile Association, 

2016). To this end, improving safety is a vital factor to promoting active modes of 

transport (Fuzhong et al., 2005; Khattak and Rodriguez, 2005; Moudon et al., 2005; 

McMillan, 2007; Winters et al., 2011; Narayanamoorthy et al., 2013; Chataway et al., 

2014; Braun et al., 2016). It is thus important to examine factors that correlate most 

strongly with pedestrian and cyclist injury frequencies, both vulnerable road users. 

Such studies can help decision-makers to identify high-crash locations and to select 

countermeasures that can mitigate crash and injury risk among pedestrians and cyclists. 

Due to similarities between walking and cycling, both being non-motorized modes of 

transport, similar observed and unobserved or unmeasured factors may affect the safety 

of cyclists and pedestrians simultaneously. For example, drivers and cyclists in 

walk/cycle friendly neighborhoods or municipalities may have less hostile attitudes 

towards sharing the road, in part because these drivers (or their family members) may 

be pedestrians or cyclists themselves on other occasions (Aldred, 2016). Being more 

accepting of vulnerable road users can reduce the likelihood of crash with pedestrians 

and cyclists concurrently. Consequently, when crash data are available for both 

pedestrians and cyclists, a joint analysis is expected to provide richer insights into the 

key influences on safety dynamics of active modes of transport. In turn, the joint 

analysis helps transportation authorities in the implementation of appropriate 

countermeasures that can affect safety of both walking and cycling modes. This can lead 

to a more cost-effective allocation of funds while promoting the safety and mobility of 

all vulnerable road users. 
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Figure 1-3 Fatalities for pedestrians and cyclists across Canada 

(adopted from http://www.vehicularcyclist.com/fatals.html) 

  

1.2 Road Safety Analysis at a Glance 

The safety of a site (e.g., grade crossing, road intersection or highway segment) is 

usually measured by accident (crash) frequency and/or severity (Hauer, 1997). By 

definition, accident frequency is the number of observed accidents in a specific period 

of time (e.g., 5 years) at a site. Accidents can be divided into different types (e.g., head-

on or rear-end accidents) and severity levels (e.g., minor injury, serious injury, and 

fatality). In transportation safety engineering, the primary aim is to improve the safety 

of transportation facilities. Based on the definition of safety, the main goal is thus to 

reduce accident frequencies and severities.  

The process of improving the safety of a site often involves three basic steps.  Firstly, it 

is necessary to quantify the safety condition at that site. Secondly, existing safety 
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problems should be determined. Finally, potential safety improvement treatments 

(countermeasures) should be examined for implementation. To undertake these tasks 

in a scientific way, the concept of transportation safety management arises. This is also 

because budget constraints require a rigorous effort to optimize the allocation of 

available funds to improvement projects. When there are numerous candidate sites (e.g., 

intersections in a city or railway crossings across Canada) to be considered for safety 

improvements with a limited budget, it is necessary to select a subset of sites for 

improvement that would yield maximum benefits. This can usually be done by ranking 

sites according to their safety performances and identifying those that have unusually 

high accident frequencies and/or severities. The identified sites are commonly referred 

to as high-crash locations (hotspots).  

Once hotspots and their safety issues are identified, the next step is to select the best 

possible safety countermeasure(s) with consideration to the expected benefits and costs, 

regulations, logistics, and monetary constraints. At this stage, an accurate estimation of 

the effectiveness of potential countermeasures is required. In fact, countermeasure 

assessment is perhaps a key component of the road safety management process. The 

estimation of countermeasures effectiveness affects both safety outcomes (i.e., accident 

frequencies and severities) and economic appraisal. All the above tasks mainly rely on 

accident models, the accuracy of which has a significant impact on the safety 

management process. 

1.2.1 Accident modeling 

In accident modeling, a mathematical relationship between the number of accidents (of 

any type or severity level) and some contributing factors, mainly, site characteristics, is 

built.  The resulting models are generally referred to as safety performance functions. 

The aim of the modeling process is to explain the occurrence of accidents based on a 

series of known or observed explanatory variables while accounting for the randomness 

associated with this occurrence in a probabilistic framework. Hence, the analysis 

includes a probabilistic component that assumes the occurrence of accidents follows a 

specific probability density function. In this regard, the most commonly used statistical 

models for accident-frequency analysis are presented in Chapter 2.  
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1.3 Limitations of Existing Methods and Practices 

In traffic safety studies, there are almost inevitable concerns about the unobserved 

heterogeneity problem. Crash data are often limited since many unobserved or 

unmeasured factors that affect crash likelihood may not be available, causing the 

unobserved heterogeneity problem. In effect, some factors related to driver behavior, 

vehicle characteristics, site attributes, and environmental conditions may be missing in 

crash databases. In road safety studies, therefore, it is necessary to account for 

unobserved heterogeneity in order to obtain reliable statistical inferences. Another 

important concern relates to restrictive distributional assumptions that are common in 

analyzing crash data. When a model assumption does not hold, the true structure of the 

data is not reflected by the model. Consequently, that model is highly likely to draw 

misleading statistical inferences. In general, more flexible statistical models are thus 

needed to better capture the underlying structure of crash data. Based on the crash 

modeling literature, this dissertation focuses on the following interrelated 

methodological and empirical limitations. 

1.3.1 Methodological limitations 

• Often unobserved heterogeneity manifests itself in the form of multimodality in 

crash data, meaning that data are not generated from a unique density. In fact, 

crash data may be a collection of widely differing subpopulations. The 

commonly used standard or over-dispersed generalized linear models (e.g., 

Poisson-gamma models) do not fully address unobserved heterogeneity, 

assuming that crash frequencies follow unimodal exponential families of 

distributions. 

• Random effects and random parameter models are limited in accounting for 

unobserved heterogeneity as the analyst should usually specify groupings in 

crash databases. However, unknown groupings that might exist due to 

unobserved features of crash data are ignored. In addition, sensitivity to 

parametric distributional assumptions may be a concern. Such restrictive 

assumptions may be in contrast with the structure of crash databases. 

• Finite mixture models overcome the above issues by identifying latent 

subpopulations (components) of data based on data attributes. However, an 
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important limitation to finite mixture models is that the number of latent 

components must be prespecified before analyzing the data, but the analyst often 

does not know the underlying structure of the data a priori. To select the optimal 

number of components, different models with varying numbers of components 

must be fit to the data and the one providing the best fit chosen. In practice, a 

limited number of latent components are usually considered in finite mixture 

modeling, and the exact number of components may remain uncertain, both of 

which can compromise the results.  

• Random effects and random parameter models are often employed to account 

for cross-group unobserved heterogeneity when analyzing data characterized by 

a hierarchical structure (observations nested within multiple groups or levels). 

Finite mixture (latent class) models are known as a viable alternative to account 

for unobserved heterogeneity; however, the application of finite mixture models 

in multilevel road safety studies is rare if non-existent.  

• While providing valuable insights that help our understanding of crash 

mechanisms in the presence of correlated outcomes, most previous multivariate 

traffic safety studies have not considered whether their assumptions relating to 

the dependence structure reflects the true structure of the data. In effect, despite 

the general consensus that restrictive assumptions (e.g., homogeneity) in 

dependence structure may have an adverse effect on the accuracy of estimates, 

studies addressing the sensitivity of the results to these assumptions in 

multivariate settings are surprisingly rare in transportation safety studies. 

1.3.2 Empirical limitations 

• While a number of studies have examined spatial dependencies among 

observations in the crash literature, to our knowledge, no attempt has been made 

so far, especially, in Canada to accommodate spatial dependencies in railway 

grade crossing crash data. Overlooking spatial dependencies may result in 

spurious statistical inferences. 

• Due to similarities between walking and cycling, both being non-motorized 

modes of transport, it is reasonable to hypothesize that both observed and 

unobserved (or unmeasured) site attributes may affect the safety of cyclists and 

pedestrians simultaneously. A few instances of analyzing pedestrian and cyclist 
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safety simultaneously at a macro-level (e.g., neighborhood level) exist; 

nevertheless, studies on the joint analysis of pedestrian and bicyclist injuries at a 

micro-level (e.g., intersections) are rare if non-existent. A macro-level safety 

analysis is valuable in terms of zone level policy decision making (Hadayeghi et 

al., 2010; Lee et al., 2015). Nevertheless, a micro-level modeling approach usually 

provides superior predictive performance, more specific high-crash location 

identification, and more detailed insight on factors that affect traffic safety; 

therefore, allowing decision makers to select safety improvement programs more 

properly (Huang et al., 2016). Furthermore, the quality of statistical inferences in 

macro-level modeling may be compromised due to the aggregation of data 

(Davis, 2004; Osama and Sayed, 2016).  

• In modeling non-motorist safety, many studies lacked detailed motorist and non-

motorist exposure information and used proxy measures instead. Depending on 

how these proxy measures thoroughly reflect traffic exposure, statistical 

inferences may be biased to some extent. 

1.4 Research Objectives 

Based on the above limitations, the principal objective of this thesis is to provide a novel 

methodological framework to overcome the unobserved heterogeneity problem for 

different types of crash data, with a prime focus on the use of Bayesian nonparametric 

Dirichlet process mixture models. Specifically, one general objective of this research is 

to explore the use of Dirichlet process mixture models in univariate, multilevel, and 

multivariate settings, the three most common settings often encountered in traffic safety 

studies. In accordance with the limitations highlighted in Section 1.3, this thesis centers 

on the following specific methodological and empirical objectives. 

1.4.1 Methodological objectives 

• Show how Dirichlet process mixture models can be used to examine and relax 

restrictive distributional assumptions, and eventually capture unobserved 

heterogeneity in univariate settings; and compare the proposed models with 

some of the most commonly used models for count data such as the Poisson-
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gamma (negative binomial) model, the finite-mixture Poisson-gamma model, 

and the random intercepts model.  

• Introduce a latent construct into the multilevel modeling framework to allow the 

identification of latent subpopulations at the highest levels of the hierarchy such 

as regions. The aim is thus to account for cross-group unobserved heterogeneity 

through a flexible latent class multilevel model.  

• Investigate departures from restrictive dependence structures in multivariate 

settings and demonstrate how the robustness to standard assumptions can be 

verified; and propose a flexible multivariate model that allows for heterogeneous 

dependence structures in the joint analysis of correlated outcomes.  

1.4.2 Empirical objectives 

• Investigate the presence of spatial dependencies among railway grade crossings 

nested within the same geographic area using a flexible multilevel model 

developed based on Dirichlet process mixing.  

• Verify the application of the derived flexible generalized linear model for data 

with excess zero counts such as railway grade crossing data. 

• Investigate the joint analysis of pedestrian and cyclist safety at a micro-level 

using detailed motorist and non-motorist exposure measures; and examine the 

form of the dependence structure using a flexible multivariate model developed 

based on Dirichlet process mixing. 

• Provide policy examples to highlight the practical advantages of the proposed 

methods. To this end, adopt the identification of high-crash locations, the 

detection of latent regional subpopulations, and the estimation of marginal 

effects, and provide comparison examples between the flexible and conventional 

models.  
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1.5 Dissertation Outline 

This thesis is organized in five chapters:  

• Chapter 1 introduces a brief background relating to transportation safety studies 

and highlights a number of empirical and methodological limitations in the crash 

literature.  

• Chapter 2 provides a literature review presenting various statistical models and 

approaches used in traffic safety studies.  

• Chapter 3 discusses the proposed methods to overcome the limitations reported 

in previous chapters, extending the conventional statistical models.  

• Chapter 4 focuses on the analysis and the results. This chapter applies the 

proposed models to several datasets characterized by different characteristics in 

univariate, multilevel, and multivariate settings. For each setting, a policy 

exercise is conducted to show the advantages of our models. 

• Chapter 5 concludes the thesis reporting our major contributions and future 

research directions. 
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CHAPTER 2 

 

 

 LITERATURE REVIEW 

This chapter reviews the most important statistical models and approaches used to 

analyze crash frequencies. We also provide a review of previous studies relating to the 

safety analysis of railway grade crossings and vulnerable road users, being under-

represented in the crash literature compared to roadway segment or intersection vehicle 

crash studies. 

2.1 Statistical Analysis of Crash Data 

A brief introduction of the most commonly used statistical models in road safety 

literature is given in the subsequent sections.  

2.1.1 Poisson model 

Poisson regression has traditionally been used in modeling accident data because of the 

nature of accidents being random count events (Hauer, 1997). Some instances of 

accident-frequency analysis using Poisson regression can be found in Gustavsson and 

Svensson (1976), Joshua and Garber (1990), and Miaou (1994). For a group of sites 

(i=1,2,…,n) and for a specific period of time, given the observed and expected number 

of accidents, yi and μi respectively, the occurrence of accidents can be assumed to be 

Poisson distributed independently over all sites: 
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𝑦𝑖|𝜇𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖)      (2-1) 

The Poisson probability density function has the following form: 

𝑝(𝑦𝑖|𝜇𝑖)  =
𝑒−𝜇𝑖

𝑦𝑖!
 𝜇𝑖

𝑦𝑖     
 (2-2) 

where, p(yi|µi) is the probability of having y accidents in a specific time period for site i 

given the expected accident frequency μi. The Poisson parameter μi is the mean or 

average accident frequency, i.e., E[yi], and is assumed to be a function of the vector of 

site characteristics X such as traffic flow. This function usually has an exponential form: 

𝜇𝑖 = 𝑓(𝑿, 𝜷) =  𝑒𝜷𝑿     (2-3) 

where β is the vector of coefficients including a constant to be estimated. An important 

characteristic (assumption) of the Poisson distribution is that the mean and variance are 

equal (Winkelman, 2008).  

𝐸[𝑦𝑖|𝜇𝑖] =  𝑉𝐴𝑅[𝑦𝑖|𝜇𝑖] = 𝜇𝑖  (2-4) 

Clearly, Eq. 2.4 imposes a restriction on the flexibility of the Poisson density function. 

In fact, the Poisson assumption is often violated because the variance is usually larger 

than the mean in many accident data, resulting in over-dispersed data (the variance can 

also be smaller than the mean, i.e., under-dispersion). Therefore, alternative statistical 

models derived mostly from standard Poisson models are often used to relax the 

Poisson assumption. These alternative models are introduced in the following sections. 

2.1.2 Poisson-gamma (negative binomial) model 

As stated above, most of the accident data are over-dispersed, which is mainly caused 

by unobserved heterogeneity in data (Cameron and Trivedi, 1998; Maher and 

Summersgill, 1996; Mitra and Washington, 2007). The Poisson model can be extended 

by assuming its mean to follow a gamma distribution with mean 1 and variance α (Lord 

and Mannering, 2010).  The resulting model is called Poisson-gamma model, which is 

most commonly known as Negative Binomial model. The Poisson-gamma model allows 

the variance to be greater than the mean and has become the most common statistical 
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model used in road safety literature (Persaud, 1994; Milton and Mannering, 1998; 

Karlaftis and Tarko, 1998; Heydeker and Wu, 2001; El-Basyouny and Sayed, 2006; Lord 

and Bonneson, 2007). The mathematical form of this model is defined as follows: 

𝑦𝑖|𝜃𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜃𝑖)    

𝜃𝑖 = 𝜇𝑖𝑒𝜀𝑖 

𝑒𝜀𝑖  ~ 𝑔𝑎𝑚𝑚𝑎 (𝜑, 𝜑);  𝐸[𝑒𝜀𝑖] = 1 

 (2-5) 

Consequently, the mean function can be written as follows: 

𝜃𝑖 = 𝑓(𝑿, 𝜷) =  𝑒(𝜷𝑿+𝜀)     (2-6) 

The variance of the Poisson-gamma model is 

𝑉𝐴𝑅(𝑦𝑖) = 𝐸(𝑦𝑖) +  𝛼[𝐸(𝑦𝑖)]2    (2-7) 

where, α is called the over-dispersion parameter and is also defined as a function of the 

inverse dispersion parameter 𝜑, that is, α=1/𝜑 (the variance of the gamma distributed 

error term). In a hierarchical fashion, it is assumed that 𝜑 ~ gamma(a, b); where a and b 

are hyper-parameters (see Lord and Miranda-Moreno (2008) for a detailed discussion). 

2.1.3 Poisson-lognormal model 

The Poisson-lognormal model is similar to the Poisson-gamma model, except it assumes 

a lognormally distributed error term. This model is more flexible than Poisson-gamma 

in accommodating the multivariate nature of outcomes and spatial correlation (Aguero-

Valverde and Jovanis, 2008; Aguero-Valverde and Jovanis, 2009; Ma et al., 2008). In 

several applications, it has been shown that the Poisson-lognormal model performs 

better than the Poisson-gamma model in terms of model fitting (Winkelman, 2008). The 

Poisson-lognormal model can be easily employed under the Bayesian paradigm; thus, 

the majority of studies employing this model use Bayesian statistics for computational 

convenience (Lord and Miranda-Moreno, 2008; El-Basyouny and Sayed, 2009a). The 

mathematical expression for the Poisson-lognormal model can be defined as 

𝑦𝑖|𝜃𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜃𝑖)     
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𝜃𝑖 = 𝜇𝑖𝑒𝜀𝑖 

𝑒𝜀𝑖  ~ 𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 (0, 𝑣) 𝑜𝑟 𝜀𝑖  ~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝑜, 𝑣);  𝐸[𝑒𝜀𝑖] = 1   

𝑣−1 ~ 𝑔𝑎𝑚𝑚𝑎 (𝑎, 𝑏)   (2-8) 

𝐸(𝑦𝑖) =  𝜇𝑖𝑒
(0.5𝑣)  

𝑉𝐴𝑅(𝑦𝑖) = 𝐸(𝑦𝑖) + [𝐸(𝑦𝑖)]2(𝑒𝑣 − 1)   

where, a and b (in the Bayesian approach) are hyper-parameters to be defined by the 

analyst (Lord and Miranda-Moreno, 2008).  

2.1.4 Crash models in the form of generalized linear models 

Generalized linear models (McCullagh and Nelder, 1989; Zeger and Karim, 1991) have 

been extensively used in analyzing road safety data, conveniently handling crash data 

through a linear relationship between covariates and log-transformed outcomes such as 

crash frequencies. Indeed, over-dispersed generalized linear models such as Poisson 

mixtures (e.g., negative binomial or Poisson-gamma, Poisson-lognormal, etc.) constitute 

the mainstream approach to accounting for heterogeneity in crash data (Persaud, 1994; 

Hauer, 1997; Milton and Mannering, 1998; Karlaftis and Tarko, 1998; Shankar et al., 

2003; Ukkusuri et al., 2012). The over-dispersed generalized linear model assumes that 

crash data follow a unique exponential density. Nevertheless, crash data may arise from 

a collection of widely differing subpopulations, so over-dispersed generalized linear 

models do not fully account for unobserved heterogeneity.  

A generalized linear model in its simplest form for count data can be described as 

follows. Let yi be the observed outcome of interest (e.g., observed crash frequency) for 

site i. Let X and β be the vectors of covariates (i.e., site characteristics) and the respective 

regression coefficients excluding the intercept β0. Then, the model outcome mean λi can 

be related to the covariates using a logarithmic link function g(.),  

𝑦𝑖|𝑿𝑖  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑖)     

𝑙𝑜𝑔(𝜆𝑖) =  𝛽0 +  𝜷𝑿𝑖  
 (2-9) 
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2.1.4.1 Over-dispersed (random effects) generalized linear models  

The above model does not account for over-dispersion and unobserved heterogeneity. 

Therefore, an extension can be applied to handle over-dispersion. The most common 

way to overcome heterogeneity is to include an additive error term εi,  

𝑦𝑖|𝑿𝑖 , 𝜀𝑖  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑖)    

𝑙𝑜𝑔(𝜆𝑖) =  𝛽0 +  𝜷𝑿𝑖 +  𝜀𝑖  
 (2-10) 

The above model is an over-dispersed generalized linear model, which is also referred 

to as the random effects model. Depending on the distributional assumption for the 

error term, the above model results in different Poisson mixture settings. Two common 

Poisson mixtures often used in road safety literature are the Poisson-gamma (negative 

binomial) model and the Poisson-lognormal model that are respectively obtained by 

assuming  

𝑒𝜀𝑖|𝜑 ~ 𝑔𝑎𝑚𝑚𝑎(𝜑, 𝜑);  𝑤ℎ𝑒𝑟𝑒 𝜑 ~𝑔𝑎𝑚𝑚𝑎(. )  

𝜀𝑖|𝑣𝜀 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜈𝜀);  𝑤ℎ𝑒𝑟𝑒 𝑣𝜀
−1~𝑔𝑎𝑚𝑚𝑎(. )      

2.1.5 Random parameter models 

Another approach to overcoming unobserved heterogeneity in crash data is based on 

random parameter models such as a random parameter negative binomial model 

(Anastasopoulos and Mannering, 2009; Venkataraman et al., 2014; Wu et al., 2013; Chen 

and Tarko, 2014; Mannering and Bhat, 2014, Barua et al., 2015, Coruh et al., 2015). In 

random parameter models, different sets of parameters are estimated for different 

observations or groups of observations. Therefore, the effects of covariates (contributing 

factors) are not fixed across all data; instead, they are assumed to have a distribution 

across heterogeneous subsets. While standard random parameter models are limited in 

their restrictive distributional assumptions, further extensions such as the 

heterogeneity-in-means approach (Venkataraman et al., 2014) are possible to better 

address heterogeneity. As discussed in Mannering and Bhat (2014), however, an 

important limitation to random parameter models is that the analyst must prespecify 

groupings of observations across which parameters vary. As a consequence, unknown 
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groupings that might exist due to unobserved features are ignored. Based on the 

previous notation, a generic random parameter model can be specified as 

𝑦𝑖|𝑿𝑖 , 𝜀𝑖  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑖)    

𝑙𝑜𝑔(𝜆𝑖) =  𝛽0𝑖 +  𝜷𝒊𝑿𝑖 +  𝜀𝑖    

𝜷𝑖|𝑣𝜷 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝜷, 𝜈𝜷) 

𝛽0|𝑣𝛽 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝛽0, 𝜈𝛽)    

 (2-11) 

In the above model, besides the error term, regression coefficients vary between 

observations (in univariate settings) or between groups of observations when groupings 

exist in the data. 

2.1.6 Finite mixture (latent class) models 

As discussed in Mukhopadhyay and Gelfand (1997), compared to over-dispersed 

generalized linear models, a more comprehensive approach to addressing 

heterogeneity would be the finite mixture or latent class models. As Park and Lord 

(2009) stated, “the mixture model can help provide the nature of the over-dispersion in 

the data.” Accordingly, a number of road safety studies have recently employed finite 

mixture models to analyze crash frequency data or differing injury-severity levels (Park 

and Lord, 2009; Xiong and Mannering, 2013; Zou et al., 2014, Cerwick et al., 2014; 

Shaheed and Gkritza, 2014). 

One important limitation to finite mixture models is that the number of latent 

components must be prespecified before analyzing the data, but the analyst often does 

not know the underlying structure of the data a priori. To select the optimal number of 

components, different models with varying numbers of components must be fit to the 

data and the one providing the best fit chosen. In practice, a limited number of latent 

components are usually considered in finite mixture modeling, and the exact number of 

components may remain uncertain, both of which can compromise the results. In this 

regard, Behnood at al. (2014) argue that such a limited number of components may 

result in inadequate approximation of the heterogeneity. For further discussion related 

to finite mixture modeling, see Mannering et al. (2016). 
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Studies in fields such as econometrics have employed finite mixture random parameter 

models to overcome some of the above issues. This approach relaxes the homogeneity 

assumption in each latent component of the mixture. In other words, model parameters 

can vary within each latent component. To our knowledge, such an approach has not 

been employed in modeling crash frequency data. In road safety literature, Xiong and 

Mannering (2013) adopted a finite mixture random parameter model to examine the 

effects of guardian supervision on adolescent driver-injury severities. While such an 

approach captures unobserved heterogeneity, similar to finite mixture models, the need 

to prespecifying latent components and the limited number of components are 

shortcomings. For a comprehensive discussion on unobserved heterogeneity in road 

safety data see Mannering et al. (2016). 

Let fY be a density of interest for observations y, β be the vector of model coefficients, wr 

be the weight of component r in the mixture, and C be the total number of components, 

a finite mixture model can be defined as 

𝑓𝑌(𝑦|𝑤𝑟 , 𝜷𝑟) = ∑ 𝑤𝑟𝑓𝑟(𝑦|𝜷𝑟)

𝐶

𝑟=1

 

∑ 𝑤𝑟

𝐶

𝑟=1

= 1; 𝑤𝑟 > 0 

 (2-12) 

For instance, a mixture of negative binomial densities for count data can be defined by 

substituting fr in Eq. 2-12 as follows: 

𝑓𝑟 = 𝑁𝐵(𝜆𝑖𝑟 , 𝜑𝑟) 

where φ is the over-dispersion parameter as described in Section 2.1.2. 

2.1.7 Multilevel (hierarchical) models 

Crash data are often characterized by a multilevel (hierarchical) structure in which 

observations at the lower level(s) of the hierarchy are nested in different groups (e.g., 

vehicles, sites, geographical areas, etc.) at the higher level(s) (Huang and Abdel-Aty, 

2010; Dupont et al., 2013). Due to unobserved group-specific factors, such a hierarchical 

structure challenges the basic assumption of independency between residuals since 

observations nested in the same groups usually share similar unknown and/or 
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unmeasured traits and are thus correlated (Heydari et al., 2014a). In fact, if the 

hierarchical structure of the data is not accounted for through adequate statistical 

techniques, the estimated standard errors could be underestimated, resulting in 

erroneously estimated narrow confidence intervals (Lenguerrand et al., 2006; Dupont et 

al., 2013). Given the importance of the problem, instances of multilevel modeling in road 

safety have been numerous over the last decade; see, for example, Jones and JØrjensen 

(2003), Kim et al. (2007), Yannis et al. (2007), Huang et al. (2008), Helai et al. (2008), 

Cruzado and Donnell (2010); Heydari et al. (2014a), Islam and El-Basyouny (2015). 

Readers are referred to Huang and Abdel-Aty (2010) and Dupont et al. (2013) for a 

comprehensive review of multilevel modeling in road safety literature. 

In road safety, the multilevel structure of the data is often due to the nesting of 

observations in various geographical areas (Yannis et al., 2007; Yannis et al., 2008; 

Huang and Abdel-Aty, 2010; Dupont et al. 2013; Papadimitriou et al., 2014). In such 

circumstances, it is quite plausible to speculate that sites such as railway grade crossings 

situated in the same regions share a number of similar unknown characteristics. For 

instance, these characteristics can be generated as a result of regional traffic regulations, 

driver demography and behavior, climate-related features, etc. Therefore, spatial 

dependencies may exist among sites sampled from similar geographical areas. In this 

regard, for example, Papadimitriou et al. (2014) investigated motorcycle riding under 

the influence of alcohol in 19 European countries and found significant regional 

variations. 

With respect to the spatial concept, it should be noted that the conditional 

autoregressive model incorporating structured spatial random effects is one of the 

major spatial models used in road safety literature (Aguero-Valverde, 2013; Wang and 

Kockelman, 2013; Barua et al., 2014). It is important to highlight that the conditional 

autoregressive model does not differentiate between separate geographical areas, 

whereas it estimates spatial random effects (neighborhood effects) to account for the 

proximity of sites (e.g., intersections) that might share similar unobserved covariates 

(Aguero-Valverde, 2013; Dupont et al., 2013). For that reason, when the interest is in 

explicitly modeling the effect of geographical areas (or separation of geographical 

areas), as in this paper, the multilevel framework is a viable technique to accommodate 

spatial dependencies in the analysis (Huang and Abdel-Aty, 2010; Dupont et al. 2013).  
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In the next section, we present a generic parametric (standard) random intercept 

multilevel model. 

In multilevel data, as discussed earlier, it is essential to account for group-specific 

effects. Three main approaches have been proposed in literature to address this need: 

random effects models, random parameters models, and latent class or finite mixture 

models. Random effects models assume fixed parameters associated with the covariates 

but random intercept or error term (Kim et al., 2007; Heydari et al., 2014a). In contrast 

to random effects models, in multilevel settings, random parameters models allow 

model covariates to vary across groups of observations to account for cross-group 

heterogeneity in data (El-Basyouny and Sayed, 2009b; Chen and Tarko, 2014; Islam and 

El-Basyouny; 2015). In general, random parameters models constitute therefore a more 

comprehensive way of overcoming unobserved heterogeneity in crash data including 

multilevel crash data, in comparison to random effects models. The higher quality and 

performance of random parameters models obviously comes with a higher cost in terms 

of computational complexity compared to random effects models (Chen and Tarko, 

2014; Venkataraman et al., 2014). For a discussion related to random effects models and 

random parameters models, see Anastasopoulos and Mannering (2009), Lord and 

Mannering (2010), and Chen and Tarko (2014). 

The finite mixture modeling approach (Greene and Hensher, 2003; Park and Lord, 2009; 

Zou et al., 2012; Xiong and Mannering, 2013; Zou et al., 2014) is another alternative to 

overcome unobserved heterogeneity in crash data. However, to our knowledge, the 

application of finite mixture models in multilevel traffic safety studies has been limited 

in contrast to single-level safety studies. For a comparison between random parameter 

models and finite mixtures or latent class models, interested readers are referred to 

Behnood et al. (2014) and Mannering and Bhat (2014).  

2.1.7.1 Random intercepts (random effects) multilevel model 

Let r denotes groupings, given the notation presented in Section 2.1.5, a typical 

multilevel model with random intercepts across groupings can be obtained by 

extending the previously discussed simple Poisson-lognormal model as follows: 
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𝑦𝑟𝑖|𝑿𝑟𝑖, 𝜷, 𝜀𝑟𝑖, 𝜂𝑟   ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑟𝑖)        

𝑙𝑜𝑔(𝜆𝑟𝑖) =  𝜂𝑟 + 𝜷𝑿𝑟𝑖 +  𝜀𝑟𝑖                         

𝜂𝑟|𝑚𝜂 , 𝑣𝜂 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝑚𝜂 , 𝜈𝜂)      

𝜀𝑟𝑖|𝑣𝜀 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜈𝜀)    

 (2-13) 

where mη and νη are, respectively, the mean and the variance for the random intercepts 

ηr. The intra-group correlation γ can be obtained from 

𝛾 = 𝑣𝜂 (𝑣𝜂 + 𝑣𝜀)⁄   (2-14) 

It can be seen that the random intercept Poisson-lognormal model assumes a common 

normally distributed random intercept at the grouping level. Considering different 

groupings in data, it is plausible to doubt that all of them are generated from a single 

distribution. In fact, one can question the presence of latent subpopulations among these 

groupings. 

2.1.8 Multivariate models 

A larger body of transportation safety literature stresses the importance of accounting 

for dependence among correlated crash types (Ye et al., 2009; Lord and Mannering, 

2010; Mannering and Bhat, 2014; Lee et al., 2015; Mothafer et al., 2016). For example, Ye 

et al. (2009) analyzed different crash types such as head-on, sideswipe, rear-end, and 

angle crashes simultaneously. The authors state that “there is a need to be able to model 

the expected frequency of crashes by collision type at intersections to enable the 

detection of problems and the implementation of effective design strategies and 

countermeasures. Statistically, it is important to consider modeling collision type 

frequencies simultaneously to account for the possibility of common unobserved factors 

affecting crash frequencies across crash types”. Similarly, Lord and Mannering (2010) 

argue that neglecting the correlation among crash counts (by type or severity level) 

results in losses in estimation efficiency. 

In fact, research on joint or multivariate modeling of correlated outcomes (differing 

injury-severity levels or crash types) has recently proliferated in transportation safety 

studies (Park and Lord, 2007; Ma et al., 2008; Aguero-Valverde and Jovanis, 2009; El-
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Basyouny and Sayed, 2009a; Anastasopoulos et al., 2012; Dong et al., 2014; Zhan et al., 

2015; Anastasopoulos, 2016; Barua et al., 2016; Serhiyenko et al., 2016). These studies 

have focused on different empirical and theoretical aspects of multivariate modeling 

employing both Bayesian and frequentist estimation techniques. In road safety research, 

when modeling crash frequencies of different types, most studies have employed 

multivariate Poisson-lognormal models that can account for both negative and positive 

correlation, whereas multivariate negative-binomial models only accommodate 

positive correlation (Winkelmann, 2008; Zhan et al., 2015). For example, Aguero-

Valverde and Jovanis (2009) employed multivariate Poisson-lognormal models to 

analyze differing crash severities and to identify high-crash locations. Zhan et al. (2015), 

using multivariate Poisson log-normal models, provided a parallel sampling scheme 

that improves the customary Markov chain Monte Carlo approach, reducing run times. 

Similarly, Serhiyenko et al. (2016) introduced integrated nested Laplace approximations 

for Bayesian estimation of multivariate crash counts. Under the frequentist framework, 

Narayanamoorthy et al. (2013) adopted a composite marginal likelihood approach to 

make statistical inferences for their multivariate setting. See Narayanamoorthy et al. 

(2013), Mannering and Bhat (2014), and Zhan et al. (2015) for a more elaborate 

discussion on multivariate models and different available formulations.  

Modeling correlated outcomes in transportation safety studies is not limited to 

analyzing different crash types or injury-severity levels. For instance, previous research 

has investigated the simultaneity (correlation among outcomes) in modeling traffic 

safety, health care services, and motorization (Anwaar et al., 2012). Therefore, modeling 

correlated outcomes in the context of transportation safety is often encountered, which 

makes its application of a paramount importance. Consequently, to improve the crash 

safety analysis framework, addressing methodological barriers relating to modeling 

correlated outcomes are warranted. 

To more effectively overcome heterogeneity not accounted for by observed covariates, 

multivariate random parameter models have been recently employed in a few road 

safety studies, generally outperforming classical multivariate models (Russo et al., 2014; 

Anastasopoulos, 2016; Anastasopoulos and Mannering, 2016; Barua et al., 2016). For 

example, Russo et al. (2014) compare factors that affect injury-severity in angle crashes 

using a random parameter bivariate ordered Probit model. The latter study accounts for 

within-crash correlation between pairs of crash-involved drivers by fault status, taking 
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advantage of random parameter models to account for unobserved heterogeneity. 

Nevertheless, instances of multivariate latent class models in the crash literature are rare 

(Buddhavarapu et al., 2016; Heydari et al., 2016a). Buddhavarapu et al. (2016) employed 

a conventional finite mixture model with two components to formulate their 

multivariate latent class model. Instead, Heydari et al. (2016a) employed a form of such 

model to jointly analyze differing injury-severity levels for highway segments in 

Ontario using a flexible Bayesian semiparametric Dirichlet process mixing approach. 

The latter study has the advantage of inferring the number of components as a stochastic 

parameter like other model parameters.  

Given the importance of latent class models in dealing with unobserved heterogeneity, 

it would be interesting to develop and examine multivariate models that not only 

account for dependence across outcomes, but also identify latent subpopulations in 

data. In this regard, Mannering et al. (2016) state that “A particularly appealing way to 

combine unobserved heterogeneity effects with a multivariate outcome context (with 

the outcomes being of different types, including continuous, count, nominal, ordered, 

and grouped outcomes) is based on identifying stochastic latent constructs (for example, 

unobserved driver- specific psychological factors)”. Few examples of integrating latent 

psychological constructs into modeling correlated outcomes exist in the transportation 

literature (Bhat and Dubey, 2014).   

2.1.8.1 Multivariate Poisson-lognormal model 

Let yik and λik denote, respectively, the observed and the expected crash frequencies of 

crash type k (here k = (1, 2)) for site i = (1, 2, …, n); X = (X1, X2, …, Xm) and β = (β1, β2, …, βm) 

denote the vectors of m covariates (here, intersection characteristics) and their respective 

regression coefficients; β0 denotes a fixed intercept across sites for crash type k; Σ denotes 

the covariance matrix; ε denotes correlated error terms varying across sites; R and K 

denote the scale matrix and the degrees of freedom, respectively, in a Wishart density. 

The standard multivariate Poisson-lognormal model can be defined as 

 𝑦𝑖𝑘|𝑿𝑖𝑘, 𝛽0𝑘, 𝜀𝑖𝑘~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑖𝑘)                     

𝑙𝑜𝑔(𝜆𝑖𝑘) =  𝛽0𝑘 + 𝜷𝑘𝑿𝑖𝑘 +  𝜀𝑖𝑘                 

𝜀𝑖𝑘 ~ 𝑀𝑉𝑁(0, 𝛴)   

 (2-15) 
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 𝛴 =  [

𝜎11 ⋯ 𝜎1𝑘

⋮ ⋱ ⋮
𝜎𝑘1 ⋯ 𝜎𝑘𝑘

]    

𝛴−1 ~ 𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝑅, 𝐾)  

The dependency across outcomes is captured through correlated error terms that are 

assumed to follow a multivariate normal density with the mean 0 and covariance matrix 

Σ. Therefore, a unique dependency structure is assumed here for all data points 

resulting in a homogeneous correlation structure. The main idea here is that after 

accounting for the effect of known covariates, some sources of correlation (due to 

omitted covariates) may still exist in the data that can be captured through the correlated 

error terms. The significance of omitted variables in crash modeling is highlighted in 

the safety literature (Mitra and Washington, 2012).  

2.2 Safety Analysis of Railway Grade Crossings 

Studies on grade crossing safety have been relatively limited in the crash literature. 

These studies are mainly concerned with accident modeling in which the aim is to 

identify factors that affect crash frequency or injury-severity at crossings. This includes 

accident-frequency analyses (Saccomanno and Lai, 2005; Oh et al., 2006; Yan et al., 2010) 

and accident-consequence analyses (Saccomanno et al., 2004; Eluru et al., 2012). For a 

summary, see Chadwick et al. (2014). 

Regarding accident-frequency modeling at railway crossings, earlier accident 

prediction models include (i) the Peabody Dimmick Formula developed in 1941, (ii) the 

National Cooperative Highway Research Program Hazard Index developed in 1964, (iii) 

the New Hampshire Index developed in early 1970s (Austin and Carson, 2002), and (iv) 

the US Department of Transportation (USDOT) accident models developed in early 

1980s. However, these models have different limitations. For example, the first three 

models allow for a limited number of independent variables (contributing factors) in 

the accident model. The USDOT model accommodates more contributing factors 

compared to other earlier accident models, but it is not flexible to allow alternative 

covariates in the model and is relatively complex to be employed (Oh et al., 2006). 

Readers are referred to Oh et al., (2006) for a comprehensive summary and discussion 

about earlier efforts of accident modeling for grade crossings. In Canada, Saccomanno 
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et al. (2003, 2004) developed a set of crossing accident models using Canadian grade 

crossing data, which was found to be comparable to the USDOT model (Chaudhary et 

al., 2011).  

An important step in crossing accident modeling was made by employing the Poisson 

and the negative binomial models (Austin and Carson, 2002, Saccomanno et al., 2004; 

Park and Saccomanno, 2005a; Park and Saccomanno, 2005b; Millegan et al., 2009). In 

this regard, significant advances were made by Saccomanno and Lai (2005). The authors 

adopted a factor/cluster analysis approach to divide crossings to homogeneous groups 

and then developed accident models for each group separately. This framework 

allowed considerable improvement in the accuracy of developed accident models. 

Other researchers adopted alternative statistical models such as zero-inflated and 

gamma models to resolve issues such as the excess number of zero accidents in data and 

under-dispersion (Lee et al., 2004; Oh et al., 2006; Hu and Lee, 2008). However, zero-

inflated models have been criticized due to their assumption of safe state, which does 

not seem to be realistic in the context of road safety analysis (Lord et al., 2005; Lord et 

al., 2007). Instead of the above-mentioned parametric approaches, there have also been 

a few studies that employed nonparametric methods such as hierarchical tree-based 

regression model for accident-frequency analyses (Yan et al., 2010; Thakali, 2016).  

2.3 Safety Analysis of Active Modes (Walking and Cycling) 

Many researchers have investigated factors such as built environment, socio-economic 

characteristics, traffic exposure, facility types (e.g., intersection, road segment, etc.) and 

their geometric and operational characteristics that may affect pedestrian and cyclist 

crash frequencies or injury-severity levels (Lyon and Persaud, 2002; Shankar et al., 2003; 

Noland and Quddus, 2004; Lee and Abdel-Aty, 2005; Eluru et al., 2008; Cho et al., 2009; 

Clifton et al., 2009; Pulugurtha and Sambhara, 2011; Tay et al., 2011; Ukkusuri et al., 

2012; Mohamed et al., 2013; Wang and Kockelman, 2013; Strauss et al., 2014; Quistberg 

et al., 2015; Zhang et al., 2015; Aldred, 2016; Amoh-Gyimah et al., 2016; Behnood and 

Mannering, 2016; Jung et al., 2016; Osama and Sayed, 2016; Yasmin and Eluru, 2016).  

Previous research studies have considered various empirical and methodological 

aspects of modeling non-motorist safety and provided valuable insights in this regard. 

For example, Behnood and Mannering (2016) analyzed differing injury-severity levels 
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sustained by pedestrians in Chicago using both latent class and random parameter logit 

models, which better account for unobserved heterogeneity compared to conventional 

models. The authors focused on addressing temporal stability in modeling pedestrian 

injury-severity levels while comparing the above models. Their study showed that the 

effect of explanatory variables on pedestrian injury-severity levels may change over 

time. Another recent study conducted by Yasmin and Eluru (2016) employed latent class 

negative binomial models to analyze pedestrian and bicyclist crashes separately at the 

traffic analysis zone level in the Island of Montreal and the City of Toronto. The latter 

study confirmed the superiority of the latent class formulation compared to the 

standard negative binomial model. 

In the pedestrian and cyclist crash literature, while both aggregate spatial units (macro-

level such as census tract) and disaggregate spatial units (micro-level such as 

intersections) have been considered, most studies have analyzed pedestrian and cyclist 

crash data separately. Only a few research efforts have jointly modeled pedestrian and 

cyclist safety using multivariate settings that allow the analyst to account for correlation 

among these two outcomes (Narayanamoorthy et al., 2013; Lee et al., 2015; Nashad et 

al., 2016). For instance, Narayanamoorthy et al. (2013) recast count models as a special 

case of generalized ordered-response models to jointly analyze pedestrian and cyclist 

injury-severities at the census tract level. Similarly, Nashad et al. (2016) adopted a 

macro-level analysis approach considering crashes at the statewide traffic analysis zone 

level in Florida to simultaneously analyze pedestrian and cyclist crashes. 

Nevertheless, to our knowledge, previous research studies on the joint analysis of 

pedestrian and bicyclist injuries at a micro-level (e.g., intersections) are rare if non-

existent. While a macro-level safety analysis is valuable in terms of zone level policy 

decision making (Hadayeghi et al., 2010; Lee et al., 2015), a micro-level modeling 

approach usually provides superior predictive performance, more specific high-crash 

location identification, and more detailed insight on factors that affect traffic safety, 

allowing decision makers to select safety improvement programs more properly 

(Huang et al., 2016). Furthermore, the quality of statistical inferences in macro-level 

modeling may be compromised due to the aggregation of data (Davis, 2004). For a 

discussion in this regard, see Osama and Sayed (2016).  
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2.4 Bayesian Posterior Inference 

The most commonly used model estimation techniques are maximum likelihood 

estimation (MLE) and Bayesian inference. MLE is largely used in different applications 

(Washington et al., 2011). Here, we briefly discuss Bayesian inference, a viable 

alternative to MLE. 

Bayesian inference is developed based on the Bayes theorem (Gelman et al., 2003), 

which essentially allows prior belief or knowledge to be utilized in analyses. For every 

parameter of interest, in effect, a prior distribution must be specified. The outcome is 

then obtained by mixing the prior and the likelihood, i.e., data. In the Bayesian context, 

analyses outcomes are referred to as posterior densities. That is, all model outcomes are 

in the form of probability density functions, whereas in classical methods (e.g., MLE) 

point estimates are provided (Carlin and Louis, 2009). This property of Bayesian 

statistics allows accounting for uncertainties in its holistic form. Under the Bayesian 

paradigm, the posterior density f(β|y) is defined as 

𝑓(𝜷|𝑦)  ∝   𝑓(𝑦|𝜷)𝑓(𝜷)  

𝑓(𝜷|𝑦) =
𝑓(𝑦|𝜷)𝑓(𝜷)

∫ 𝑓(𝑦|𝜷)𝑓(𝜷)𝑑𝜷
   

 (2-16) 

where β is the vector of unknown parameters; y denotes observed data; f(y|β) is the 

likelihood density; and f(β) is the prior density. 

Since inferring posterior densities involves high dimensional integrals, and thus, is 

highly intensive in terms of computation, the use of Bayesian methods has been limited 

in the past. These integrals cannot be solved analytically; instead, Markov chain Monte 

Carlo (MCMC) simulation techniques are commonly employed. Following advances 

made in computational power in 1990s, Bayesian methods had become the center of 

attention in many areas of research. As a powerful estimation technique, Bayesian 

concepts have been extensively used in the analysis of complex data in different fields 

such as biostatistics, economics, reliability engineering, computer science, and social 

sciences.   

Although a number of studies have recognized the advantages of the Bayesian statistics 

in analyzing transportation data in the past 10 to 15 years (Miaou and Song, 2005; 
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Aguero-Valverde and Jovanis, 2006; Miranda-Moreno et al., 2007; Lord et al., 2008; Ma 

et al., 2008; El-Basyouny and Sayed, 2012; Miranda-Moreno et al., 2013), its practical use 

in transportation engineering has been limited as compared to other fields. Since the 

Bayesian framework will be mainly used in this research, here, we provide a concise 

summary of its four main advantages: (Interested readers are referred to Heydari et al., 

(2014b) for a discussion in this regard.) 

First, information from different sources and in different forms, such as expert opinion 

and previous studies, can be incorporated into the analysis when assigning prior 

distributions to model parameters. This is a vital feature as it has the potential to 

eliminate estimation biases due to limited data (Lord and Miranda-Moreno, 2008; 

Miranda-Moreno et al., 2013; Daziano et al., 2013; Heydari et al., 2013). In fact, using 

proper priors, the sample size required to conduct a reliable road safety analysis can be 

reduced (Heydari et al., 2014b). Second, Bayesian statistics have the advantage of 

accommodating hierarchical models, which are capable of dealing with complex data 

structures (Gelman et al., 2003). Such data structures are often encountered in 

transportation research. 

Third, regardless of the model complexity, an analyst can always apply the Bayes 

theorem to derive the posterior inference and then run MCMC simulations to obtain the 

posteriors without any additional effort to develop a method or algorithm for solving 

the problem. In contrast, in the Frequentist framework, when the standard MLE cannot 

solve a problem, a simulation based solution is still necessary, requiring development 

of problem-specific computational models and algorithms in most cases.  

Lastly, a Bayesian approach allows direct interpretation of credible intervals (the 

Bayesian version of confidence intervals) on the probability that an estimate occurs in 

these intervals for a specific dataset. Such interpretation is not possible in the 

Frequentist paradigm; that is, the Frequentist approach cannot conclude, for an 

observed dataset, the probability for an estimate being in a certain interval. It can only 

state that a confidence interval contains the estimated value given that a substantial 

number of trials are repeated.  
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CHAPTER 3 

 

 

 METHODOLOGY 

This chapter first provides a brief methodological background describing the main 

components of our approach. We then describe the proposed method in univariate, 

multilevel, and multivariate settings, the most common settings in transportation safety 

studies. This section concludes by discussing cluster detection algorithm and model 

selection criteria based on cross-validation predictive densities. The contents of this 

chapter have been published in Analytical Methods in Accident Research (see page iv 

for details). 

3.1 Methodological Background 

This thesis introduces a class of flexible statistical models that are rooted in Bayesian 

nonparametric literature based on Dirichlet process mixtures (Escobar and West, 1998; 

Walker et al., 1999; Neal, 2000; Muller and Quintana, 2004; Jain and Neal, 2004; Ohlssen 

et al., 2007; Hjort et el., 2010). In this regard, Escobar and West (1998) state that “Bayesian 

models involving Dirichlet process mixtures are at the heart of the modern 

nonparametric Bayesian movement”. The Bayesian models used in this thesis are 

however semi-parametric since parametric distributional assumptions are not relaxed 

for all model parameters. This is mainly to retain the usual interpretation of explanatory 

variables. 
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The original ideas of Bayesian nonparametric methods were initially developed and 

discussed by Freedman (1963), Ferguson (1973), and Antoniak (1974); however, their 

applications were very limited due to computational complexities. It was mainly in the 

1990s that Bayesian nonparametric models have attracted the attention of more 

researchers due to improvements in MCMC schemes and also substantial 

computational advances during those years. At that stage, several developments have 

been made in various aspects of Bayesian nonparametric modeling (Escobar, 1994; West 

and Turner, 1994; Bush and MacEachern, 1996; Mukhopadhyay and Gelfand, 1997; Kuo 

and Mallick, 1997; Hjort et al., 2010). Consequently, Bayesian nonparametric concepts 

have been used in different scientific articles mainly in biostatistics and computer 

science research (Ohlssen et al., 2007; Muller et al., 2007; Dhavala et al., 2010, Hannah et 

al., 2011; Gershman and Blei, 2012), whereas their use in transportation research, 

especially, transportation safety has been rare. 

One of the main motivations behind the nonparametric Bayesian inference is to remove 

constrains associated with restrictive parametric assumptions. These constraints may 

affect inferences made by restrictive parametric models. Therefore, employing the 

Bayesian nonparametric approach enables us to circumvent restrictive distributional 

assumptions and make statistical models more reliable in terms of statistical inference. 

It is important to mention that, under the Bayesian paradigm, the term nonparametric 

does not mean that the model is parameter-free. In contrast, it may have an infinite 

number of parameters (Mallick and Walker, 1997; Muller and Quintana, 2004). In 

Bayesian nonparametrics, in effect, the number of parameters increases as the 

complexity of the data escalates. This characteristic leads to an important difference 

with finite mixture modeling in which the number of latent components must be 

decided in advance of the analysis. In Bayesian nonparametric modeling, however, the 

number of latent components is estimated as part of the estimation algorithm, which is 

more realistic, convenient, and flexible. 

3.1.1 Realization of a Dirichlet process & Dirichlet process mixing 

Let G, G0 and α be an unknown density for a parameter of interest, a continuous baseline 

distribution (defining the location of the Dirichlet process) and a positive real precision 

(concentration) parameter, respectively. A Dirichlet process can be notated as 
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𝐺 ~ 𝐷𝑃(𝛼𝐺0)  (3-1) 

A Dirichlet process is a probability measure on the space of all measures 

(Mukhopadhyay and Gelfand, 1997; Escobar and West, 1998), where for any finite 

segment S1,…, Sn of the parameter space, the vector of probabilities (G(S1),…, G(Sn)) 

follows a Dirichlet distribution with a vector of parameters (αG0(S1),…, αG0(Sn)) (Escobar 

and West, 1998; Muller and Quintana, 2004; Ohlssen et al., 2007). This can be denoted 

as 

(𝐺(𝑆1), … , 𝐺(𝑆𝑛)) ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(α𝐺0(𝑆1), … , 𝛼𝐺0(𝑆𝑛)) (3-2) 

The concentration parameter α indicates the variability of a Dirichlet process around its 

baseline distribution. A low value of α indicates that G can be far from G0, and vice 

versa. Therefore, the model with the above structure can be used as a diagnostic tool to 

verify the validity of a parametric assumption (Escobar and West, 1998; Ohlssen et al., 

2007). A stick-breaking procedure (Ishwaran and James, 2002; Ohlssen et al., 2007) can 

be implemented to obtain random density functions drawn from a Dirichlet process. 

The main aim here is to have a set of random probabilities generated sequentially 

having a sum of one. Such restriction can be guaranteed by the stick-breaking algorithm 

(Sethuraman, 1994) that breaks a stick with a unit length into an infinite number of 

partitions. For a detailed discussion see Ishwaran and James (2002) and Muller and 

Quintana (2004). The stick-breaking procedure (ii) and (iii), as discussed in Ohlssen et 

al. (2007), is briefly described as follows:  

(i) draw a set of random variables θ1, θ2,… from G0;  

(ii) draw a set of random variables ξ1, ξ2,… from a Beta(1, α);  

(iii) allocate probabilities p1 = ξ1, p2 = (1 - ξ1)ξ2,  p3 = (1 - ξ1)(1 – ξ2)ξ3, ... to θ1, θ2, 

θ3,…, respectively.  

Note that the probability p and the expectation E for ξ1, ξ2,… (Beta distributed random 

variables) can be obtained from Eq. 3-3 and Eq. 3-4.  

𝑝(𝜉𝑛) =  𝛼𝜉𝑛
𝜅−1 (3-3) 
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𝐸(𝜉𝑛) = (1 + 𝛼)−1 (3-4) 

An infinite mixture of points, which is the density function f(.) corresponding to G, 

represents realizations of the Dirichlet process (Muller and Quintana, 2004).  

𝑓(∙) =  ∑ 𝑝𝑛𝐼𝜃𝑛
∞
𝑛=1 ,   𝜃𝑛~ 𝐺0   (3-5) 

In Eq. 3-5, Iθ is an indicator function (measure) corresponding to θ. Note that f(.), as 

defined in Eq. 3-5, is a discrete random probability model. As discussed in Ohlssen et 

al. (2007), a truncated Dirichlet process (TDP) can be used to approximate a full Dirichlet 

process with less computational effort, employing standard MCMC methods. To do so, 

it is necessary to limit the maximum number of possible clusters to C (i.e., substitute ∞ 

with C). Indeed, the truncation occurs at C; and therefore, G depends also on C, i.e., G ~ 

TDP(α, G0, C). In this truncation, it is necessary to restrict the final probability pc to be a 

very small value that is obtained from Eq. 3-6. The choice of C could in part be based on 

the precision parameter α and is approximately equal to 5α+2 (Ohlssen et al., 2007). 

𝑝𝐶 = 1 − ∑ 𝑝𝑛
𝐶
𝑛=1   (3-6) 

𝐶 ≈ 1 +  𝑙𝑜𝑔(𝜀) 𝑙𝑜𝑔 [
𝛼

1 +  𝛼
]⁄  ≈ 5𝛼 + 2 (3-7) 

The final form of f(.) collapses into a finite mixture model (Eq. 3-8) that estimates the 

posterior density of the number of latent clusters in data.  

𝑓(∙) =   ∑ 𝑝𝑛𝐼𝜃𝑛
∞
𝑛=1  ≈   ∑ 𝑝𝑛𝐼𝜃𝑛

𝐶
𝑛=1   (3-8) 

We discuss the specification of baseline distribution and priors for model parameters 

including the precision parameter in Chapter 4. 



 

35 

3.2 Overview of the Methodology 

This section provides a schematic view (Fig. 3-1) of the methodological framework 

adopted in this thesis. This schematic view summarizes our approach. The method is 

centered on Dirichlet process mixing under the Bayesian nonparametrics paradigm. 

Note that the Dirichlet process mixture of points is applied to all settings while the 

Dirichlet process mixture of multivariate normals is applied to the multivariate setting.  

The structure of the data gives rise to an applied setting for which Dirichlet process 

mixing allows departures from restrictive assumptions, adding flexibility to the model. 

Such flexibility is expected to result in a better model specification, as we show in this 

thesis, that in turn helps capture the underlying structure of the data more accurately. 
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Figure 3-1 Schematic representation of the proposed approach 
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3.3 Univariate Settings 

Univariate settings are the simplest form of crash datasets in which a single outcome 

(e.g., crash frequency) is modeled while there is not any grouping in the data. This 

means that all observations are assumed to be independent. In univariate analysis of 

crash data, generalized linear models are often used.  

Given the modeling limitations discussed in Chapter 2 regarding the unobserved 

heterogeneity problem, this section introduces an alternative, a flexible Bayesian 

semiparametric generalized linear model (Escobar and West, 1998; Walker et al., 1999; 

Neal, 2000; Gelfand and Kottas, 2002; Muller and Quintana, 2004; Hjort et al., 2010). 

While the Bayesian nonparametric approach is used in other fields (Mukhopadhyay and 

Gelfand, 1997; Kleinman and Ibrahim, 1998; Ohlssen et al., 2007; Jara et al., 2007; Muller 

et al., 2007; Dhavala et al., 2010), its applications in transportation research or road safety 

studies are rare (Heydari et al., 2016b; Shirazi et al., 2016; Yu et al., 2016).  

Bayesian nonparametric models are flexible in the sense that the number of parameters 

is not fixed and can vary according to data complexity (Gershman and Blei, 2012), taking 

advantage of Dirichlet process mixtures. These models relax restrictive parametric 

assumptions of conventional statistical models and allow the identification of latent 

components (Escobar and West, 1998). Interestingly, the number of latent components 

can be inferred from the data as part of the analysis, whereas this number must be 

prespecified (depending on how a priori uncertain it is) in finite mixture models. 

Inferring the estimated number of latent subpopulations through a systematic 

mathematical algorithm is more desirable and methodologically sound, assuming the 

data support such inferences. The following two subsections introduce extensions made 

to the models discussed in Section 2.1.5 based on a Dirichlet process mixing approach.

  

3.3.1 Generalized linear Dirichlet process mixture model 

To add further flexibility to the standard random effects generalized linear model and 

as a surrogate to the over-dispersed generalized linear model (discussed in Section 

2.1.7), a Dirichlet process mixture can be adopted to obtain the generalized linear 
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Dirichlet process mixture model. Including the error term in the intercept, we first write 

the standard random effects model presented in Section 2.1.5.1 as  

𝑦𝑖|𝑿𝑖 , 𝜀𝑖  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑖)  

𝑙𝑜𝑔(𝜆𝑖) =  𝛽0𝑖 +  𝜷𝑿𝑖 

𝛽0𝑖|𝑣0 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝑚, 𝑣) 

(3-9) 

where m and v are the mean and the variance for the random intercepts. We then employ 

a Dirichlet process mixture over the intercepts β0i to tackle heterogeneity with respect to 

the location of the mean by allowing multimodality as in finite mixture models 

(Mukhopadhyay and Gelfand, 1997). We retain the linear form for coefficients β, which 

in turn retain their usual interpretations.  

Given the notation in Section 2.1.5, let β0r be the intercept for cluster r (1,2,…, C) and G0 

be a normally distributed baseline distribution for β0r with the mean m0 and the variance 

ν0. A generic form of the generalized linear Dirichlet process mixture model can be 

written as follows: 

𝑦𝑖|𝑿𝑖 , 𝛽0𝑟  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑖)  

𝑙𝑜𝑔(𝜆𝑖) =  𝛽0𝑟 +  𝜷𝑿𝑖   

𝛽0𝑟 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼𝐺0)                                                                        

𝐺0|𝑚0, 𝑣0 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝑚0, 𝜈0)   

(3-10) 

In this model, the precision parameter α follows a prior distribution h(.). Therefore, its 

posterior density is estimated as part of the analysis. Similarly, the posterior density of 

the number of latent components occupied by observations in the data is inferred from 

the data.  

3.3.2 Over-dispersed generalized Dirichlet process mixture model 

After accounting for heterogeneity in the data through the generalized linear Dirichlet 

process mixture model, some extra variability may still exist in some datasets. To 



 

38 

account for extra variability, it is possible to use a Dirichlet process mixture over the 

over-dispersed generalized linear model discussed in Section 2.1.5.1. Doing so, besides 

accounting for over-dispersion by allowing for a flexible model resulting in a mixture 

of points (in contrast to the parametric unimodal distribution), the remaining variability 

is accounted for by the error term. As in the generalized linear Dirichlet process mixture 

model (discussed in previous section), we adopt the method suggested by 

Mukhopadhyay and Gelfand (1997) in which the authors use a Dirichlet process mixture 

over the intercept. As discussed previously, this allows maintaining the convenient 

form of the conventional over-dispersed generalized linear models for the covariates. 

Given the above notation, the over-dispersed generalized linear Dirichlet process 

mixture model can be specified as  

𝑦𝑖|𝑿𝑖 , 𝛽0𝑟 , 𝜀𝑖  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑖)  

                      

𝑙𝑜𝑔(𝜆𝑖) =  𝜂𝑟 + 𝜷𝑿𝑖 +  𝜀𝑖   

𝛽0𝑟 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼𝐺0)   

𝐺0|𝑚0, 𝑣0 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝑚0, 𝜈0)   

(3-11) 

To circumvent identifiability issues, the mean of the error term εi is fixed to be equal to 

zero; i.e., εi ~ normal(0, vε). 

3.4 Multilevel (Hierarchical) Settings 

In this section, we discuss multilevel models that accommodate the hierarchical 

structure of crash data. Such hierarchical structure, which occurs often in transportation 

safety studies (Dupont et al., 2013), requires allowing one or more model parameters to 

vary across groups of observations (e.g., regions). As discussed in Section 2.1.9, random 

effects and/or random parameter models are often employed in analyzing multilevel 

data. Due to the higher computational complexity involved in random parameter 

models, the majority of those studies involving multilevel analyses have used random 

effects models (Vanlaar, 2005, Lenguerrand et al., 2006; Kim et al., 2007; Helai et al., 2008; 

Park et al., 2010; Yannis et al., 2010; Jovanis et al., 2011; Papadimitriou et al., 2014). In 
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this thesis, among other reasons, we therefore focus on the use of random effects models 

(in particular, random intercepts models) in multilevel settings. We first discuss the 

limitations associated with random effects models and provide a flexible latent class 

model to address such limitations.  

To clarify one problem that may arise when adopting standard random effects models, 

suppose a multilevel scenario in which the analyst is only interested in potential 

variations in the intercepts (random intercepts model) among groups (e.g., geographical 

areas). A simplistic approach is to assume that all groups have exactly the same intercept 

and that there is no extra variability due to grouping in data. Obviously, this assumption 

does not take into consideration the fact that there might be some unknown and/or 

unmeasured attributes that vary between groups. Basically, this approach ignores the 

hierarchical structure of the data. 

In the aforementioned scenario, two major approaches have been proposed in literature 

to accounting for group-specific effects, tackling unobserved heterogeneity through the 

random intercepts. The first approach is estimating the intercepts for the individual 

groups separately based on the belief that they differ completely, the assumption of 

complete independence (Ohlssen et al., 2007). This assumption is not realistic since 

groups of observations (e.g., intersections or municipalities) are not totally dissimilar 

and they certainly share some similar features. A more appropriate approach, which is 

also the most commonly applied, is to assume that the intercepts vary between groups 

but are generated from a single population. Thus, the intercepts are assumed to share a 

common distribution being usually a unimodal normal density. Depending on the 

extent to which standard distributional assumptions are capable of capturing 

heterogeneity in a dataset, say, in the form of random intercepts, the results would be 

biased by various degrees. It should be noted that standard parametric assumptions in 

traditional random effects models―such as normally distributed random 

effects―usually do not accommodate skewness, kurtosis, and multimodality (Xiong 

and Mannering, 2013). 

One limitation of the model described above is that different groups in data may be 

generated from widely differing subpopulations instead of a single population. As an 

example of a problem that may arise following standard parametric assumptions in 

random effects models, let’s consider a multilevel dataset in which observations are 
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nested in different groups such as geographical regions. When there are outlier regions 

(extreme cases) in data, large outlier regions affect other regions excessively. 

Consequently, estimates relating to smaller outlier regions erroneously tend to 

approach the overall mean. In these circumstances, a more flexible modeling approach 

is necessary (Ohlssen et al., 2007). The flexible model must satisfy two requirements: (i) 

it should be able to avoid the complete independence assumption of groups described 

above; and (ii) it should be able to relax the distributional assumption while adapting 

itself to the complexity of the observed data. 

Following our discussion above related to the presence of subpopulations, interest may 

lie in clustering groups (e.g., regions), the higher level of the hierarchy. For example, 

such clustering allows identifying regions that perform similarly when analyzing sites 

nested within regions. The model presented in Section 3.4.1 helps achieve this goal.  

3.4.1 Flexible Dirichlet process mixture multilevel model 

Based on the observations above, we extend the random intercepts multilevel model 

presented in Section 2.1.8.1 as follows. The flexible Dirichlet process mixture multilevel 

model relaxes the distributional assumption (normal density on ηr) of the standard 

random intercepts multilevel model by estimating a flexible mixture of points model. 

Doing so, it also provides further insights by identifying latent clusters and outliers. It 

should be underlined that the flexible Dirichlet process mixture multilevel model allows 

accommodating outliers in the analysis using a more flexible distribution. Therefore, 

there is no need to diagnose and remove outliers from a dataset in advance of the 

analysis (Ohlssen e al., 2007). The flexible Dirichlet process mixture multilevel model 

can be defined as  

𝑦𝑟𝑖|𝑿𝑟𝑖, 𝜀𝑟𝑖, 𝜂𝑟  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑟𝑖)            

𝑙𝑜𝑔(𝜆𝑟𝑖) =  𝜂𝑟 + 𝜷𝑿𝑟𝑖 +  𝜀𝑟𝑖                                         

𝜀𝑟𝑖|𝑣𝜀 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜈𝜀)             

𝜂𝑟 =  𝜂𝐷𝑃 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼𝜂0)  &  𝑟 = 1,2, … , 𝐶         

(3-12) 
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𝜂0|𝑚0, 𝑣0  ~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝑚0, 𝜈0)     

where η0 (with unknown parameters, the mean m0 and the variance ν0) is the baseline 

distribution for ηr and α is the precision parameter as explained earlier in Section 3.2. 

Recall that r denotes latent clusters (at grouping or subject level) and C stands for the 

maximum possible (allowed) number of latent clusters or mass points (see Section 3.2.). 

In the previous model presented in Section 2.1.9.1, the random intercepts ηr were 

normally distributed, whereas under the flexible Dirichlet process mixture multilevel 

model the intercepts are modeled non-parametrically using a Dirichlet process mixture. 

Doing so, we remove the restriction of the standard distributional assumption and allow 

the observed dataset to decide its proper form of the random intercepts. One should 

also take into account that the parameters of the baseline distribution, η0, are estimated 

here as part of the modeling process allowing us to account for uncertainties associated 

with the baseline distribution for the random intercepts. 

It can be seen in the flexible Dirichlet process mixture multilevel model that the vector 

of coefficients β associated with the known covariates vector X (site characteristics) does 

not follow a Dirichlet process. Therefore, the convenient linear relationship between 

covariates and the response (crash frequency) is maintained, retaining their usual 

interpretations. Other extensions are obviously possible; for example, one might allow 

the effect of one or more covariates to vary across different regions. Note also that a 

Dirichlet process mixture over the intercepts (as in our suggested extension) allows us 

to deal with heterogeneity in data with respect to the location of the mean 

(Mukhopadhyay and Gelfand, 1997); that is, average crash frequency of each grouping. 

In the study in context, thus, such model enables the identification of latent clusters 

among different regions, after adjusting for the effect of covariates. 

3.4.2 Schematic representation of the model 

To highlight the differences between the standard random intercepts multilevel 

Poisson-lognormal model and the flexible Dirichlet process mixture multilevel model, 

a directed acyclic graph of both models is shown in Fig. 3-2. In Fig. 3-2, solid arrows 

indicate stochastic relationships, dashed arrows indicate deterministic relationships, 

circles stand for model parameters, small rectangles are deterministic data points (X and 
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y), and large rectangles stand for loops. It can be clearly seen in Fig. 3-2 that the flexible 

Dirichlet process mixture multilevel model involves a higher number of parameters that 

allow the data to decide the form of the random intercepts ηr. This in turn adds more 

flexibility to the model. Recall that the flexible Dirichlet process mixture multilevel 

model is developed based on Bayesian nonparametric literature in which the number 

of parameters is not fixed and is inferred from the model based on the data. Obviously, 

this may come with a higher cost: more parameters to deal with, longer time of 

execution, and higher computational complexities.  

 

 
Figure 3-2 Directed acyclic graph of (a) flexible Dirichlet process mixture multilevel 

model and (b) random intercepts multilevel model 

3.5 Multivariate Settings 

In multivariate settings, two or more correlated outcomes (e.g., differing injury-severity 

levels) are modelled simultaneously. As described in Chapter 2, multivariate models 

capture the existing correlation through their dependence structure. Recall that such 
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dependence between outcomes is mainly due to the presence of unobserved or 

unmeasured factors that affect correlated outcomes simultaneously. Obviously, 

neglecting the correlation among correlated outcomes may result in misleading 

statistical inferences.  

While providing valuable insights that help our understanding of crash mechanisms in 

the presence of correlated outcomes, most previous multivariate traffic safety studies 

(discussed in Section 2.1.9) have not considered whether their assumptions relating to 

the dependence structure reflects the true structure of the data. In effect, in terms of the 

methodological framework, despite the general consensus that restrictive assumptions 

(e.g., homogeneity) in dependence structure may have an adverse effect on the accuracy 

of estimates, studies addressing the sensitivity of the results to these assumptions in 

multivariate settings are surprisingly rare, especially, in transportation safety studies. 

Examples of flexible multivariate models can more easily be found in other fields such 

as econometrics and biostatistics (Müller et al., 1996; Cameron et al., 2004; Jara et al., 

2007). Note that the degree of correlation between crash types may vary significantly 

from one site (intersection, neighborhood, etc.) to another, for example, due to variation 

in intersection geometric and operational characteristics or some other unknown 

contributing factors. Therefore, representing correlation through a homogeneous 

density such as the multivariate normal distribution may lead to misleading statistical 

inferences. In the safety literature, Nashad et al. (2016) discussed the above issue and 

suggested a copula based approach to formulate a flexible multivariate model that 

accounts for heterogeneity in the dependence structure. 

Building on previous research, this section introduces two flexible Bayesian latent class 

multivariate models to jointly analyze correlated crash outcomes. Both models are in 

the form of “infinite” mixture multivariate models that can be developed with Dirichlet 

process mixing (Müller et al., 1996; Müller et al., 2007). Here, the term “infinite” is used 

since the number of components can theoretically go to infinity under the Bayesian 

nonparametric approach. In this regard, most studies have used a Dirichlet process 

mixing over the conventional model parameters (random intercepts or covariate 

coefficients) in univariate or multilevel settings (Mukhopadhyay and Gelfand, 1997; 

Kleinman and Ibrahim, 1998; Ohlssen et al., 2007; Dhavala et al., 2010; Heydari et al., 

2016a; Heydari et al., 2016b).  
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In this thesis, we also use a Dirichlet process mixture for building a flexible correlation 

structure in multivariate settings that accommodates multimodality; and consequently, 

allows for heterogeneity in the dependence structure. Our model not only conveniently 

infers the number of latent subpopulations as part of its estimation algorithm, but it also 

allows this number to be large (Ohlssen et al., 2007; Gershman and Blei, 2012). Recall 

that classical latent class models usually employ a limited number of prespecified 

components (Mannering and Bhat, 2014).   

In this section, we discuss our proposed extensions relaxing the homogeneity in the 

dependence structure with respect to the location of the correlation structure, and then 

relaxing the homogeneity with respect to both the location and the covariance matrix. 

The proposed extensions allow for departures from restrictive parametric assumptions 

in multivariate modeling of crash datasets, adding flexibility to the multivariate 

framework.  

3.5.1 Multivariate mixture of points model 

This model relaxes the homogeneity assumption of the dependence structure with 

respect to its location. To extend the standard multivariate model to the Dirichlet 

process mixture multivariate model, the error term, ɛik, can be included in the intercepts 

to allow variation across observations with respect to the intercepts. Given the notation 

presented in Section 2.1.10, let mk denote the mean of the correlated random intercepts. 

We can thus write 

𝑙𝑜𝑔(𝜆𝑖𝑘) =  𝛽0𝑖𝑘 + 𝜷𝑘𝑿𝑖𝑘 

𝛽0𝑖𝑘~ 𝑀𝑉𝑁(𝑚𝑘, 𝛴)   

   (3-13) 

The Bayesian nonparametric allows relaxing of the parametric assumption for the 

jointly distributed error terms (here correlated random intercepts). The multivariate 

mixture of points model uses a parametric density that is usually a multivariate normal 

distribution as its baseline density G0 and then allows departures from this parametric 

assumption. Note that the same analogy can be used in simultaneous equation 

modeling to relax restrictive parametric assumptions. The model can thus be defined as 
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 𝑦𝑖𝑘|𝑿𝑖𝑘, 𝛽0𝐿𝑖𝑘 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑖𝑘)    

𝑙𝑜𝑔(𝜆𝑖𝑘) =  𝛽0𝐿𝑖𝑘 + 𝜷𝑘𝑿𝑖𝑘  

𝛽0𝐿𝑖𝑘 ~ 𝐷𝑃(𝜅𝐺0)            

𝐺0 ~ 𝑀𝑉𝑁(𝑚0𝑘, 𝛴)  

(3-14) 

where m0k is the mean of the outcome k for the multivariate normal baseline G0, and Li 

denotes an allocation variable indicating latent clusters. The correlated parameters 

(random intercepts) are modeled as a mixture of points. While one can allocate a 

Dirichlet prior on the error term without involving the intercept, this results in further 

complexity as the mean of the Dirichlet cannot be equal to 0. 

3.5.2  Mixtures of normal densities and multivariate normal densities 

As discussed in Section 3.2, suppose f(.) is the density relating to G, the unknown 

distribution function of interest; θ are random draws from the baseline G0; and p denotes 

the probability for infinite mixtures of mass points, being a discrete distribution 

function. We can then write 

𝑓(. ) =  ∑ 𝑝𝑗𝐼𝜃𝑗

∞
𝑗=1 ;    𝜃𝑗~ 𝐺0  (3-15) 

To build a mixture of normal (continuous) densities instead of a mixture of points 

represented in Eq. 3-15, we substitute the indicator function Iθ with a continuous density 

h(.|θj) while truncating at C. 

𝑓(. ) =  ∑ 𝑝𝑗ℎ(. |𝜃𝑗)  ≈  

𝐶

𝑗=1

∑ 𝑝𝑗ℎ(. |𝜃𝑗),   𝜃𝑗~𝐺0

∞

𝑗=1

 (3-16) 

In particular, as in Ohlssen et al. (2007), we need to present each component of the 

mixture with a mean and a variance when considering a mixture of normal densities: 
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𝛿𝑖~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜃𝑗 , 𝑣𝑗)   (3-17) 

where θ and ν are, respectively, the mean and the variance of the jth component, and δ 

is a generic model parameter of interest for observation i. An extension to a mixture of 

multivariate normal (MVN) densities for k correlated outcomes can then readily follow 

for a set of dependent parameters δik as 

𝛿𝑖𝑘~ 𝑀𝑉𝑁(𝜃𝑗 , ∑𝑗)  (3-18) 

where θ and Σ are, respectively, the mean and the covariance matrix associated with 

the jth component of the mixture of multivariate normals. In the next section, details on 

the extension to a mixture of multivariate normal densities are provided in the study in 

context.  

3.5.3 Mixture of multivariate normal densities 

To add further flexibility, one can let the association structure vary with respect to both 

the location and the covariance matrix. Similar to the model presented in Section 3.4.1, 

such an approach induces a latent class construct into the model to account for 

unobserved heterogeneity in addition to addressing dependence across correlated 

outcomes. To this end, one can include intercepts in the dependence structure to 

represent its mean hypothesizing that not only error terms but also intercepts can affect 

both outcomes simultaneously. In fact, there may be unknown or unmeasured 

covariates that are common to sites (e.g., intersections) and that can be incorporated into 

the model by pooling their effects into the intercept terms. Then, whatever common 

feature that is left over (i.e., not modeled) can go into the covariance matrix.  

Therefore, we first use a joint distribution p(β0i1, β0i2, …, β0ik), for k possibly correlated 

outcomes for each site i, over the dependent random intercepts β0 = (β0i1, β0i2, …, β0ik) to 

account for correlation among different crash types or injury-severity levels. Note that 

β0 varies across sites for each crash type k under the flexible multivariate model; 

however, it is fixed across sites under the standard multivariate model presented 

previously. Such an approach conveniently allows us to introduce a mixture of 

multivariate normal densities, based on Dirichlet process mixing, into the dependence 
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element of the correlated outcomes. The main idea here is that n data points are 

generated form J latent subpopulations. Thus, instead of a single restrictive multivariate 

normal distribution, the model can accommodate J mixtures of multivariate normal 

densities with non-zero mean values, MVN (β0jk, ∑j). In addition to the above notation, 

suppose µ0k and σ0k are the baseline mean and its respective standard deviation. The 

proposed flexible Dirichlet process mixture of multivariate normals model can then be 

written as follows. For computational convenience, we used an allocation variable Li 

instead of j. 

𝑦𝑖𝑘|𝑿𝑖𝑘, 𝛽0𝑖𝑘 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑖𝑘)   

𝑙𝑜𝑔(𝜆𝑖𝑘) =  𝛽0𝑖𝑘 + 𝜷𝑘𝑋𝑖𝑘  

𝛽0𝑖𝑘 ~ 𝑀𝑉𝑁(𝜇𝐿𝑖𝑘, 𝛴𝐿𝑖
)          

𝜇𝐿𝑖𝑘 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇0𝑘, 𝜎0𝑘)      

Σ𝐿𝑖
=  [

𝜎𝐿𝑖11 ⋯ 𝜎𝐿𝑖1𝑘

⋮ ⋱ ⋮
𝜎𝐿𝑖𝑘1 ⋯ 𝜎𝐿𝑖𝑘𝑘

]      

𝛴𝐿𝑖

−1 ~ 𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝑅𝐿𝑖
, 𝐾)  

(3-19) 

It can be seen in the latter formulation that the correlation structure varies with respect 

to both the location and the covariance matrix. In other words, each identified latent 

subpopulation has its own correlation resulting in a correlation mixture from which a 

correlation summary can be created. This adds considerable flexibility to the model, so 

that it could handle skewness and multimodality in the correlation structure. Note that, 

in our model, the correlation is in the form of a mixture and the location of the 

correlation mixtures (components) is not fixed. Therefore, these mixtures can move 

between the range -1 and +1 accommodating skewed correlation densities to some 

extent. This is shown in Section 4.3.2.2. 



 

48 

3.6 Cluster Detection Algorithm 

In the previous sections of Chapter 3, we explained our method in univariate, 

multilevel, and multivariate settings, and showed how to relax restrictive assumptions. 

Another important advantage of our proposed Dirichlet process models is the 

possibility to identify latent clusters. In fact, it is possible to compute the probability of 

similarities between pairs of observations. This is implemented through indicator 

variables Iab being an NxN matrix, where N indicates the number of data points based 

on which clustering is to be done. Let Li and Lj be the components of interest (allocation 

variables). Then we can write 

𝐼𝑖𝑗 =  {
1     𝑖𝑓     𝐿𝑖 = 𝐿𝑗

0     𝑖𝑓     𝐿𝑖 ≠ 𝐿𝑗
            

(3-20) 

This is obtained at each iteration of the MCMC algorithm. Then, averaging over the total 

number of iterations gives the probability of i and j being in the same cluster. The total 

number of observations sharing the same cluster is ∑ 𝐼𝑖𝑗𝑖≠𝑗 . The latter statistic can be 

used to detect outliers. The above clustering and outlier detection approach are further 

discussed in terms of their applications in Section 4.2.5. 

3.7 Model Selection and Performance Measures 

As discussed in Section 3.2, Dirichlet process mixture models can be used to check how 

closely a parametric assumption might hold. If a parametric assumption (for example, 

a normality assumption for random intercepts) seems far from true, there is justification 

to avoid using that parametric model. At this point, there is no further need for other 

model selection methods for that model, which has been ruled out. Nevertheless, we do 

discuss some model fitting criteria here as an extra piece of information; for example, to 

show that how the predictive capability of a model can be affected by an assumption 

that does not hold. 

The deviance information criterion (DIC) is usually used for model selection in Bayesian 

crash data analysis. However, the DIC is sensitive to different parameterizations 

(Geedipally et al., 2014) and of questionable use in case of multimodal posteriors 
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(Washington et al., 2011). A discussion about some of the limitations associated with the 

DIC can be found in Carlin and Louis (2008). We used cross-validation predictive 

densities (Gelfand, 1996; Mukhopadhyay and Gelfand, 1997; Vehtari and Lampinen, 

2002; Ntzoufras, 2009) to compute conditional predictive ordinates (CPOs) that in turn 

allow estimating the log pseudo marginal likelihood (LPML) and the pseudo Bayes 

factor (PBF). The cross-validation method compares alternative models in terms of their 

predictive abilities. The main idea behind cross-validation methods constitutes the base 

for the estimation of the CPOs. In cross-validation, a given dataset is divided into two 

groups. One is used to make the posterior inference, whereas the second group is used 

to validate the previously estimated model. The problem here is the sensitivity of the 

results to how these groups are selected. The CPO circumvents this problem by leaving 

out only one observation each time. A relatively detailed discussion in this regard is 

provided in Ntzoufras (2009) and Carlin and Louis (2008). Here, we briefly discuss the 

main components of this method. 

Suppose Yi is the ith observation, T stands for the total number of iterations in an MCMC 

simulation, ψ represents the estimated model parameters, and f(.) is the density function 

evaluated at Yi. For each observation, the CPO can be estimated as 

𝐶𝑃𝑂𝑖 =  (
1

𝑇
∑

1

𝑓(𝑌𝑖|𝜓(𝑡))
𝑇
𝑡=1 )

−1

   (3-21) 

The product of CPOs across all observations gives the pseudo marginal likelihood 

(PML), from which the PBF of comparing model 1 against model 2 can be obtained  

𝑃𝐵𝐹 = 𝑃𝑀𝐿𝑚𝑜𝑑𝑒𝑙 1 𝑃𝑀𝐿𝑚𝑜𝑑𝑒𝑙 2⁄   (3-22) 

Alternatively, the LPML (Gelfand et al., 1992), given in Eq. (3-23), is easier to calculate.  

𝐿𝑃𝑀𝐿 = 𝑙𝑜𝑔 {∏ 𝐶𝑃𝑂𝑖
𝑙
𝑖=1 } = ∑ 𝑙𝑜𝑔 (𝐶𝑃𝑂𝑖)

𝑙
𝑖=1   (3-23) 

Finally, log pseudo Bayes factors (LPBF) (Basu and Chib, 2003; Ntzoufras, 2009), 

especially useful in the presence of mixture models, can be obtained as follows: 
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𝐿𝑃𝐵𝐹 = 𝐿𝑃𝑀𝐿𝑀𝑂𝐷𝐸𝐿 1 − 𝐿𝑃𝑀𝐿𝑀𝑂𝐷𝐸𝐿 2  (3-24) 

Table 3-1 reports the interpretation of log Bayes factors according to Kass and Raftery 

(1995) and Ntzoufras (2009). (The interpretation is also valid for log pseudo Bayes 

factors.) 

 

Table 3-1 Bayesian model selection via Bayes factor 

Bayes factor Log Bayes factor 

Degree of support for the 

model of interest 

1-3 0-1 No evidence of support 

3-20 1-3 Support 

20-150 3-5 Strong support 

>150 >5 Very strong support 
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CHAPTER 4 

 

 

 ANALYSIS & RESULTS 

This chapter discusses the applications of our proposed methods in univariate, 

multilevel, and multivariate settings for transportation safety studies. We adopted two 

simulated and six real datasets to demonstrate the performance of the proposed models 

and their merits considering various crash data types, scenarios, and settings. For each 

setting, we describe the adopted datasets, followed by discussing prior specification, 

model computation, and the results. We then provide a policy example that assists to 

draw transportation engineering insights from the proposed methods. Lastly, we 

summarize our findings for each setting separately. Note that the contents of this 

chapter (except Section 4.1.6) have been published in Analytical Methods in Accident 

Research (see page iv for details).  

4.1 Univariate Modeling 

As discussed in Section 3.2, there is only one outcome of interest in univariate modeling 

and no hierarchical structure in data exists or is considered. To clarify our method, we 

first show how it works devising a simulation exercise in Section 4.1.1, then two real 

datasets with distinct characteristics are used to apply the method. The first dataset is 

characterized by relatively high mean values, being highly overdispersed. The second 

dataset is characterized by low mean values and excess zero counts. The basics of the 
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Dirichlet process mixing approach used in the univariate settings are then extended in 

the multilevel and multivariate settings that have more complex data and model 

structures. 

4.1.1 Simulated data 

One important advantage of simulated data is that the true parameters and the 

underlying structure of the data are known, so that one can evaluate the accuracy of 

posterior inferences from any model. In this section, two simulated data are used: (1) a 

dataset with bimodal intercepts concentrated at two distinct values; and (2) a dataset 

with intercepts concentrated at a single value, creating a unimodal density. For the first 

data simulation scenario, we generated two crash datasets, both with 100 observations, 

and varying only in their intercepts. The total number of generated observations is 200, 

which is sufficient here since the simulated data are only intended as an example to 

illustrate how Dirichlet process mixture models work. If we were instead aiming to 

provide detailed properties of a new model via a simulation study, then a larger sample 

might have been indicated. Data were generated from a Poisson distribution with 

expected crash frequency, a function of a single hypothetical covariate, say, traffic 

exposure. Given the notation in Section 3.3, in particular, we generated the data as 

follows: 

𝑦𝑖|𝑋𝑖 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑖)                                                              

𝑙𝑜𝑔(𝜆𝑖) =  𝛽0 +  𝛽𝑋𝑖   

(4-1) 

To create the above scenario, we randomly selected 100 observations from a railway 

grade crossing dataset, described in Section 4.1.3, where traffic exposure, X, was known. 

Since we assumed that covariates and their effect are identical, we used the same set of 

observations selected above to build the second subset containing 100 observations. We 

set the value of β (in Eq. 4-1) to be 0.492. To generate crashes based on the model 

structure defined above, we set the intercept to be equal to -4 for the first subset and 3 

for the second subset. Both subsets were then combined to create a single dataset with 

200 observations. Doing so, both subsets were identical except in their two distinct 

intercepts. We then analyzed the simulated data using the proposed Dirichlet process 



 

53 

mixture model, the finite-mixture Poisson-gamma model with two and three latent 

components, the standard Poisson-gamma (negative binomial) model, and the random 

intercepts (random effects) Poisson model. Readers are referred to Chapter 2 for details 

relating to the above models. 

The Dirichlet process mixture model correctly identifies the two clusters in the 

simulated data (see Fig. 4-1a). It also accurately estimates other model parameters. The 

results are reported in Table 4-1. The conventional finite mixture model with two 

components also performs well. The intercept and beta coefficient are estimated 

accurately, and over-dispersion parameters for each component are estimated to be very 

large indicating that the distribution of crash frequency in each subset is Poisson. Note 

that a large value of over-dispersion is expected here since we generated each subset 

from a simple Poisson distribution. The finite mixture model with three components 

(wrong number of components) works less well, with biased estimates, and similarly 

biased results are obtained from the Poisson-gamma and the random intercepts models. 

The Poisson-gamma model assumes that the intercept is fixed, while the random 

intercepts model allows the intercept to vary, but following a normal density. With 

neither assumption holding, it is not surprising that these models do not work well. 

Conversely, the Dirichlet process mixture model works well when these assumptions 

do not hold. 

For the second data simulation scenario, we randomly selected 200 observations from a 

grade crossing dataset. Similar to the first scenario, this simulated dataset was generated 

using Eq. 4-1 with only one covariate; i.e., traffic exposure. Model parameters β and β0 

were set to be 0.492 and -4, respectively. The data were generated from a simple Poisson 

distribution with fixed parameters, so that there is no multimodality in any component 

of the data. We first analyzed this simulated dataset using the standard negative 

binomial model. This model estimated β and β0 to be 0.488 and -4.06, respectively. The 

over-dispersion parameter was estimated to be 65.73 indicating that the distribution of 

the data is close to the simple Poisson.  

 



 

54 

 

Figure 4-1 Kernel density plot of the posterior density for intercepts: (a) scenario 1; and (b) 

scenario 2. 

 

We then analyzed the later simulated dataset using the Dirichlet process model; the 

results were found to be very similar to those obtained from the negative binomial 

model. In particular, the Dirichlet process model estimated β and β0 to be 0.486 and -

4.066, respectively. A kernel density plot of the posterior density for the intercept, 

obtained from the Dirichlet process model, is illustrated in Fig. 4-1b showing a 

unimodal density concentrated at -4, as expected. Similar to the first scenario, the 

Dirichlet process model accurately estimated the model parameters and the structure of 

the data (here, the form of the intercepts). In both scenarios, the Dirichlet process model 

performed well. This is a valuable property of the Dirichlet process mixture models that 

can adjust themselves to the complexity of any data (Gershman and Blei, 2012). 
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Table 4-1 Posterior inference for the simulated data 

   Posterior 

Mean 

Std.  

Dev. 

Credible intervals 

    2.50% 97.50% 

Dirichlet process mixture Poisson model 

Intercept mean   -0.601 0.270 -1.143 -0.085 

Intercept variance   13.160 1.630 12.020 16.820 

Covariate coefficient   0.491 0.001 0.489 0.494 

Baseline mean   -1.423 3.930 -9.457 6.559 

Baseline Std. Dev.   5.999 2.107 2.428 9.742 

Precision parameter α   0.706 0.382 0.312 1.698 

   

Finite-mixture Poisson-gamma model with 2 components 

Intercept (component 1)   -4.148 0.452 -5.049 -3.283 

Intercept (component 2)   2.998 0.018 2.963 3.035 

Covariate coefficient (component 1) 0.492 0.045 0.404 0.580 

Covariate coefficient (component 2) 0.492 0.002 0.488 0.496 

Over-dispersion (component 1)   47.330 55.510 4.844 207.900 

Over-dispersion (component 2)   794.600 207.900 460.100 1,269.000 

   

Finite-mixture Poisson-gamma model with 3 components 

Intercept (component 1)   -2.557 0.615 -4.202 -1.868 

Intercept (component 2)   2.998 0.019 2.962 3.035 

Intercept (component 3)   1.953 1.472 -0.850 4.999 

Covariate coefficient (component 1) 0.368 0.063 0.279 0.495 

Covariate coefficient (component 2) 0.492 0.002 0.488 0.497 

Covariate coefficient (component 3)  0.527 0.744 -0.126 2.605 

Over-dispersion (component 1)   18.160 41.040 0.046 134.700 

Over-dispersion (component 2)   798.600 210.000 459.100 1,275.000 

Over-dispersion (component 3)   0.022 0.009 0.012 0.041 

   

Standard Poisson-gamma model 

Intercept    2.758 0.518 1.841 3.842 

Covariate coefficient   0.442 0.057 0.328 0.545 

Over-dispersion   0.119 0.011 0.098 0.142 

   

Random intercepts Poisson model 

Intercept mean   -4.413 0.469 -5.293 -3.442 

Intercept variance   22.030 2.891 17.040 28.340 

Covariate coefficient   1.010 0.043 0.902 1.071 
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4.1.2 Vehicle injury data 

This dataset contains vehicle-injury counts for 647 signalized intersections in Montreal 

from 2003 to 2008. The dataset is highly over-dispersed and characterized by a relatively 

high mean value. The vehicle-injury data were provided by ambulance services. Other 

information such as geometric characteristics (number of lanes, presence of median, 

etc.), built environment characteristics (population, land use, presence of bus and 

subway stations, etc.), and traffic control characteristics (signal type, etc.) were obtained 

from various sources. Summary statistics of this dataset are reported in Table 4-2.  

The vehicle-injury dataset has an average mean value of 4.6 injuries in a six-year period. 

Among 647 signalized intersections, 143 (22.10%) were three-leg intersections, 458 

(70.79%) were in the proximity of bus stops, and 364 (56.26%) were in a distance of less 

than 400 meters from a school. The number of intersections with at least one raised 

median was 290 (44.82%). For further discussion relating to this dataset, see Strauss et 

al. (2014). 

 

Table 4-2 Summary statistics for the vehicle-injury data 

Variable Mean Std. Dev. Min Max 

Through AADT 19,467.96  11,084.39  1,790.00  76,525.00  

Left-turning AADT 2,602.72  2,641.86  0   23,843.00  

Right-turning AADT 2,668.01  2,697.45  0    23,792.00  

Ratio of pedestrians & bikes over total AADT 0.226 0.467 0.003 7.574 

Total number of lanes for all approaches 6.90 2.60 2.00 16.00 

Number of subway stations in 400 m  0.44 0.70 0.00 4.00 

Three-leg (1 if three-leg intersection; 0 otherwise) 0.22 0.42 0.00 1.00 

Bus stop (1 if present in 50 m; 0 otherwise) 0.71 0.46 0.00 1.00 

Raised median (1 if present; 0 otherwise) 0.47 0.50 0 1.00 

School (1 if present in 400 m; 0 otherwise) 0.56 0.50 0.00 1.00 

Vehicle-injury frequency 4.60 6.37 0.00 58.00 
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4.1.3 Railway grade crossing data 

This dataset is characterized by a very low mean value and excess zero counts. The 

dataset records crash frequencies at 6,617 automated railway grade crossings in Canada. 

Automated crossings are equipped with flashing lights, bells and/or gates to inform 

road users about approaching trains. The data were provided by Transportation Safety 

Board of Canada covering a six-year period from 2008 to 2013. A host of independent 

variables (including geometric and operational attributes) were available in the 

database, the most important shown in Table 4-3, where summary statistics of the 

crossing data are reported. 

 

Table 4-3 Summary statistics for the grade crossing data 

Variable Mean Std. Dev. Min Max 

Train flow (number of trains daily) 11.071 12.976 0.100 162.000 

Vehicle flow (AADT) 3,082.396 5,636.744 1.000 71,500.000 

Exposure (product of train flow and vehicle flow) 29,695.710 94,428.280 0.270 3,000,000.000 

Train ratio (ratio of train flow to vehicle flow) 0.170 1.854 0.000 54.000 

Number of rail tracks 1.292 0.612 1.000 7.000 

Number of lanes 2.164 0.671 1.000 7.000 

Road speed (speed limit in km/h)  62.333 17.879 5.000 110.000 

Train speed (maximum train speed in km/h) 63.910 36.446 1.608 160.800 

ln(road speed)*ln(ratio of train flow to vehicle flow) -20.323 9.471 -56.350 17.314 

Track angle (deviation from 90 degrees) 19.496 19.709 0.000 87.000 

Gate (1 if gate is present; 0 otherwise) 0.364 0.481 0.000 1.000 

Whistle prohibition (1 if prohibited; 0 otherwise) 0.130 0.336 0.000 1.000 

Urban (1 if located in urban area; 0 otherwise) 0.354 0.478 0.000 1.000 

Ont./Qc. (1 if located in Ontario or Quebec)  0.578 0.494 0.000 1.000 

Pac./Atl. (1 if located in Pacific or Atlantic region) 0.154 0.361 0.000 1.000 

Crash frequency  0.080 0.317 0.000 4.000 
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We also created three dummy variables to reflect spatial effects to some extent based on 

similarities observed in an exploratory data analysis phase. The prairie region, 

consisting of the provinces of Manitoba, Saskatchewan, and Alberta, was selected as the 

reference group. Ontario and Quebec formed another group. Finally, the Pacific region 

(British Columbia) and the Atlantic region (New Brunswick, Newfoundland and 

Labrador, Nova Scotia, and Prince Edward Island) formed the Pacific/Atlantic region. 

The crossing dataset had a very low mean crash frequency with almost 90% of crossings 

experiencing no crash over the aforementioned period. Interested readers may refer to 

Heydari and Fu (2015) for details relating to the Canadian grade crossing data. 

4.1.4 Prior specification and model computation  

Bayesian analysis requires the elicitation of priors for parameters of interest. Non-

informative priors were set for regression coefficients and the mean of the baseline 

distribution. The model parameters are described in Section 3.3. In particular, we used 

normally distributed priors with mean zero and a large variance. We used 

gamma(0.01,0.01) priors for the inverse variance. For a detailed discussion related to 

prior specification in road safety studies in univariate settings, see Heydari et al. (2014b). 

With respect to the baseline distribution, note that we did not fixed the baseline 

parameters (mean and variance). Instead, we used vague hyper priors on these 

parameters and let the model estimate them. It is important to consider that if a baseline 

does not support the range of a dataset, the model would not be able to make proper 

posterior inference. Using vague hyper priors for the baseline helps prevent such 

condition.  

One also needs to select a prior for the Dirichlet precision parameter α, an important 

choice, since its posterior density is critical in deciding how closely a parametric 

distributional assumption holds. A gamma or uniform prior is usually selected for this 

prior. For example, Ohlssen et el. (2007) chose a uniform prior with lower and upper 

limits of 0.3 and 10, respectively, while Ishwaran and James (2002) suggested a 

gamma(2, 2) prior that supports both small and large values of α. For a detailed 

discussion in this regard, see Ishwaran (2000), Ohlssen et al. (2007), Dorazio (2009), and 

Murugiah and Sweeting (2012). The prior for α can be related to the maximum number 

of possible clusters C, discussed in Section 3.2. For the vehicle injury dataset, we 



 

59 

considered C to be equal to 52 (based on 5α + 2, where the upper limit of α is set to 10), 

a relatively large number, so that we were able to approximate an infinite mixture of 

points.  

For the grade crossing dataset, we first used a uniform prior with lower and upper limits 

of 0.3 and 10, respectively, for the Dirichlet precision parameter. However, the dataset, 

being limited as it contains very large proportion of zero crashes, couldn’t provide much 

information about the Dirichlet precision parameter. The estimated interval around this 

parameter varied from 0.7 to 8.4 that is quite a large interval, which is similar in range 

to the specified prior. We then used a gamma prior with the shape and scale parameters 

set to one, a somewhat more informative prior. While the selected gamma prior is 

inclined to result in small values of the precision parameter, it has a relatively heavy tail 

that also allows larger values although the probability for such values is small.  

In addition, note that almost 90% of the crossings in this dataset did not experience any 

crash over a 6-year period, so lower values of the precision parameter were more 

plausible, justifying that prior choice. In the grade crossings dataset, the density of 

observed crashes bunches up at zero with around 90% of observations concentrated at 

this peak. It is doubtful that the random intercepts follow a normal distribution, but we 

rather expect these to concentrate near zero, and with a limited number of latent 

components. The gamma(1, 1) supported these expectations and resulted in a better and 

quicker mixing of chains in the MCMC algorithm.  

WinBUGS (Lunn et al., 2000) was used to generate MCMC samples for Bayesian 

posterior inference. For the Vehicle-injury dataset, two chains with 80,000 iterations 

were considered among which the first 20,000 were discarded for burn-in and model 

convergence, so 120,000 samples were utilized for inference. This was sufficient for low 

Monte Carlo errors. History plots, trace plots, and the Gelman-Rubin statistic (Gelman 

and Rubin, 1992; Brooks and Gelman, 1998) were used to ensure that convergence was 

reached. See Spiegelhalter et al., (2002) for Bayesian measures of complexity and fit. For 

the crossings dataset, we used two chains with 100,000 iterations each, using WinBUGS. 

The first 20,000 iterations were considered as burn-in and convergence requirements. 

Posterior estimates were thus obtained using 80,000 iterations or 160,000 samples. 
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4.1.5 Results and discussions   

We first analyzed the vehicle-injury data using the standard Poisson-gamma model. We 

then allowed the intercept to vary across observations (random intercepts or random 

effects model) following a normal distribution. We also analyzed the data using a finite-

mixture Poisson-gamma model with two and three components, but since the 3-

component model did not improve the fit, only the results for the 2-component model 

are reported.  

We compared these standard models to the Dirichlet process mixture on intercept. The 

results from the Dirichlet process mixture model showed that the Dirichlet precision 

parameter α is concentrated at some point close to the lower limit of 0 (Fig. 4-2). To 

verify the sensitivity to the initial prior choice for α (a uniform distribution with lower 

and upper bounds of 0.3, 10, respectively), we analyzed the data using a different prior, 

α ~ uniform(0.3, 20), and obtained similar results. Recall that a low value of α indicates 

that G is far from G0, as discussed in Section 3.2. Therefore, the normal assumption for 

intercept is unlikely to hold. That is the 647 random intercepts are not normally 

distributed, with evidence of multimodality that can be captured in the form of latent 

clusters. In fact, the Dirichlet process model estimates the posterior median of the 

number of clusters to be 8 (3, 25). A histogram of the posterior number of clusters is 

shown in Fig. 4-3. It should be noted that the number of clusters is a stochastic parameter 

under the Bayesian nonparametric approach. As discussed in Section 3.1, the number of 

clusters is estimated as part of the analysis algorithm; and therefore, a posterior density 

can be obtained for this parameter.  

We also verified the sensitivity to hyper prior choice for the baseline density although 

this was not a priori of a major concern as the initial hyper priors were selected to be 

vague. For example, when we changed the variance of the specified hyper prior from 

100 to 400, only a minor difference was observed, with the point estimate of α remaining 

stable changing from 1.771 to 1.784, without any particular change in the form of the 

posterior. The log pseudo marginal likelihoods suggest that the random intercept model 

does not provide a better fit compared to the Poisson-gamma model. This is similar to 

the case discussed in Ohlssen et al. (2007).  
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Figure 4-2 Kernel density plots of Dirichlet precision parameter for the vehicle-injury dataset:  

(a) α ~ uniform(0.3, 10); and (b) α ~ uniform(0.3, 20) 

 

 
Figure 4-3 Histogram of the posterior number of latent clusters - vehicle-injury data 
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Table 4-4 Posterior inference for the vehicle-injury dataset 
   Posterior 

Mean 

Std. 

Dev. 

Credible intervals 

    2.50% 97.50% 

Over-dispersed Dirichlet process mixture Poisson model 

Intercept mean   -8.746 1.189 -11.290 -6.743 

Intercept variance   14.370 15.830 2.796 58.410 

ln(through AADT)   0.484 0.099 0.293 0.738 

ln(right-turning AADT)   0.240 0.050 0.149 0.354 

ln(left-turning AADT)   0.177 0.041 0.091 0.252 

ln(ratio of pedestrians & bikes over total AADT)  -0.112 0.040 -0.189 -0.031 

Presence of bus stop    0.298 0.131 0.048 0.561 

Presence of subway station     0.199 0.118 0.001 0.423 

Dirichlet baseline mean   -11.090 3.441 -19.010 -5.224 

Dirichlet Baseline Std. Dev.   4.984 2.268 1.673 9.552 

Dirichlet precision parameter α   1.771 1.372 0.384 5.628 

Variance vɛ (for extra variation)   0.487 0.141 0.125 0.705 

Log pseudo marginal likelihood   -1,462.670 - - - 

   

Finite-mixture Poisson-gamma model with 2 components 

Component 1       

Intercept    -8.205 0.627 -9.593 -7.075 

ln(through AADT)   0.645 0.044 0.556 0.722 

ln(right-turning AADT)   0.433 0.095 0.268 0.626 

ln(left-turning AADT)   -0.129 0.053 -0.248 -0.060 

ln(ratio of pedestrians & bikes over total AADT)  0.338 0.092 0.178 0.529 

Presence of bus stop    1.782 0.356 1.186 2.517 

Presence of subway station    -0.153 0.229 -0.613 0.299 

Over-dispersion   0.583 0.095 0.003 0.415 

Component 2       

Intercept    -0.153 0.229 -0.613 0.299 

ln(through AADT)   0.209 0.149 0.020 0.409 

ln(right-turning AADT)   0.095 0.038 0.033 0.171 

ln(left-turning AADT)   0.401 0.056 0.293 0.515 

ln(ratio of pedestrians & bikes over total AADT)  -0.165 0.045 -0.269 -0.087 

Presence of bus stop    -0.120 0.131 -0.395 0.119 

Presence of subway station     0.124 0.146 -0.166 0.430 

Over-dispersion   4.230 1.277 2.542 7.300 

Log pseudo marginal likelihood   -1,549.690 - - - 

 



 

63 

Table 4-4 (continued) 

   Posterior 

Mean 

Std.  

Dev. 

Credible intervals 

    2.50% 97.50% 

Standard Poisson-gamma model 

Intercept    -6.983 0.921 -8.792 -5.180 

ln(through AADT)   0.486 0.092 0.306 0.668 

ln(right-turning AADT)   0.201 0.035 0.132 0.271 

ln(left-turning AADT)   0.189 0.034 0.121 0.256 

ln(ratio of pedestrians & bikes over total AADT)   -0.092 0.040 -0.172 -0.014 

Presence of bus stop    0.462 0.123 0.218 0.703 

Presence of subway station    0.348 0.126 0.101 0.597 

Over-dispersion   0.763 0.060 0.654 0.886 

Log pseudo marginal likelihood   -1,496.86 - - - 

   

Random intercepts over-dispersed Poisson model 

Intercept mean   -7.649 0.768 -9.066 -6.078 

Intercept variance   0.886 0.489 0.047 1.540 

ln(through AADT)   0.499 0.083 0.331 0.656 

ln(right-turning AADT)   0.214 0.044 0.128 0.302 

ln(left-turning AADT)   0.174 0.044 0.089 0.261 

ln(ratio of pedestrians & bikes over total AADT)   -0.013 0.048 -0.107 0.080 

Presence of bus stop    0.718 0.135 0.455 0.985 

Presence of subway station    0.329 0.137 0.059 0.600 

Variance vɛ (for extra variation)   0.490 0.480 0.010 1.408 

Log pseudo marginal likelihood   -1,512.18 - - - 

 

The vehicle-injury dataset is highly over-dispersed with a relatively high mean value, 

so that it is not surprising to find models accommodating these features supported by 

the criteria reported in Table 4-4. It can be implied from Table 4-4 that log pseudo 

marginal likelihoods significantly differ from one model to another. The over-dispersed 

generalized linear Dirichlet process mixture model provides the highest log pseudo 

marginal likelihood of -1,462.67 followed by the standard Poisson-gamma model, the 

random intercept model, and then the finite mixture Poisson-gamma model. In 

comparison to the Poisson-gamma model, for example, we obtain a log pseudo Bayes 

factor of 34.01 (1,496.86-1,462.67) that provides support for the over-dispersed Dirichlet 

process mixture model. Based on the results, through AADT, left-turning AADT, right-

turning AADT, the presence of bus stop, and the presence of subway station are 
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positively associated with vehicle-injury counts. However, the ratio of the number of 

pedestrians and cyclists to motorized traffic is negatively associated with vehicle-injury 

counts. This indicates that as pedestrians’ and cyclists’ activities increase, vehicle-injury 

frequencies decrease likely due to an increase in drivers’ level of concentration and a 

decrease in operating speed. 

Similar to the vehicle-injury dataset, the Dirichlet precision parameter α is close to 0 in 

the grade crossing dataset, again suggesting that the underlying random intercept 

distribution is not normal. The posterior density of α based on both gamma and uniform 

priors is shown in Fig. 4-4. We have support for the specified gamma prior based on 

two model-fitting measures: the cross-validation predictive density and the predictive 

ability of the model in replicating excess zero values. The generalized linear Dirichlet 

process mixture model (the simple Poisson model with a Dirichlet mixture over the 

intercepts) identifies around 8 (3, 18) latent components for the crossing dataset. Note 

that, since the grade crossing dataset is not highly over-dispersed, this is not an over-

dispersed model in contrast to that used for the vehicle-injury dataset. The variance of 

the error term vε was estimated to be very close to 0 when we analyzed the crossing 

dataset using the over-dispersed Dirichlet process mixture model, and so was dropped 

from further consideration. 

It can be implied from Table 4-5 that the regression coefficients estimates obtained from 

different models are similar. Traffic exposure (the product of train flow and vehicle 

flow), train speed, interaction between the logarithm of road speed and the logarithm 

of the train flow to vehicle flow ratio were found to be positively associated with crash 

frequencies. In contrast, the presence of a gate in addition to the flashing lights and bells 

was found to reduce crash frequency. Finally, grade crossings located in Ontario, 

Quebec, Pacific region, and Atlantic region was found to have a lower chance of crash 

frequency compared to those located in the Prairie region. In terms of goodness-of-fit, 

the generalized linear Dirichlet process mixture model provides the highest log pseudo 

marginal likelihood; that is, -1687.65. This results in a log pseudo Bayes factor of 43.6 

when comparing this model with the commonly used Poisson-gamma model (negative 

binomial), the conventional over-dispersed generalized linear model. When comparing 

the random intercept model with the Poisson-gamma model, a log pseudo Bayes factor 

of 20.96 provides support for the random intercept model in the grade crossing dataset.  
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Figure 4-4 Kernel density plots of Dirichlet precision parameter for the grade crossing dataset:  

(a) α ~ uniform(0.3, 10); and (b) α ~ gamma(1, 1) 

 

We also examined the performance of the proposed model in terms of its ability to 

replicate a high proportion of zero crashes as in the grade crossing dataset. This 

posterior predictive check is based on a selected statistic of interest as discussed in Rubin 

(1984). To implement, we first replicated crash observations based on estimated 

expected crash frequencies inside the MCMC algorithm. A Bayesian p-value (Gelman 

et al., 1996) then compares the proportions of zeros in replicated and observed data. A 

p-value of 0.5 indicates a perfect similarity between the observed and replicated data 

with respect to the proportion of zero crashes. To obtain the above p-value, at each 

iteration of the MCMC simulations, we examined whether replicated observations 

based on the developed model are equal to zero. We then obtained the proportion of 

zero crashes in the replicated data at each iteration and compared this proportion to that 

of the observed data. Summarizing the results of this comparison over all iterations, we 

calculated the p-value of interest. The results of the posterior predictive check in terms 

of the proportion of zero counts estimated a Bayesian p-value of 0.529, which is very 

close to the value 0.5 indicating a very good match between observed and replicated 

zero counts. Therefore, the Dirichlet process mixture model is excellent in this regard as 

well.  
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Table 4-5 Posterior inference for the grade crossing crash dataset 

   Posterior 

Mean 

Std.  

Dev. 

Credible intervals 

    2.50% 97.50% 

Dirichlet process mixture Poisson model 

Intercept mean   -7.693 1.248 -11.250 -6.223 

Intercept variance   5.383 14.200 0.139 41.440 

ln(traffic exposure) 0.488 0.035 0.420 0.557 

ln(train speed)   0.226 0.098 0.036 0.423 

ln(road speed)*ln(train ratio) 0.014 0.008 0.001 0.029 

Presence of gate  -0.686 0.126 -0.934 -0.437 

Ontario/Quebec1    -0.913 0.105 -1.120 -0.705 

Pacific/Atlantic region1    -0.575 0.145 -0.860 -0.292 

Dirichlet baseline mean   -8.045 2.785 -15.600 -4.393 

Dirichlet Baseline Std. Dev.   3.374 2.286 0.847 9.168 

Dirichlet precision parameter α   0.922 0.509 0.323 2.232 

Log pseudo marginal likelihood   -1,687.65 - - - 

   

Standard Poisson-gamma model 

Intercept    -6.631 0.523 -7.651 -5.525 

ln(traffic exposure)   0.490 0.037 0.420 0.566 

ln(train speed)   0.181 0.101 0.012 0.386 

ln(road speed)*ln(train ratio) 0.016 0.008 0.001 0.032 

Presence of gate  -0.676 0.126 -0.925 -0.434  

Ontario/Quebec    -0.911 0.105 -1.117 -0.711 

Pacific/Atlantic region    -0.584 0.147 -0.867 -0.289 

Over-dispersion   0.912 0.225 0.599 1.467 

Log pseudo marginal likelihood   -1,731.720 - - - 

       

Random intercepts over-dispersed Poisson model 

Intercept mean   -7.364 0.545 -8.595 -6.577 

Intercept variance 0.871 0.161 0.586 1.218 

ln(traffic exposure) 0.491 0.036 0.422 0.562 

ln(train speed)   0.237 0.128 -0.940 -0.439 

ln(road speed)*ln(train ratio)   0.013 0.102 0.062 0.456 

Presence of gate    -0.688 0.008 0.001 0.029 

Ontario/Quebec    -0.914 0.105 -1.121 -0.707 

Pacific/Atlantic region    -0.572 0.147 -0.866 -0.290 

Variance vɛ (for extra variation)   0.871 0.161 0.586 1.218 

Log pseudo marginal likelihood   -1,710.760 - - - 

1 The Prairie region is the reference region. 
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4.1.6 An example of policy implications 

In terms of engineering insights, this section provides a policy example to show how 

the proposed model specification affects high-crash location identification procedures, 

a critical component of the transportation safety management process. For this purpose, 

we use the railway grade crossing data described above. Crossing data are usually 

analyzed employing a Poisson-gamma (negative binomial) model. In the previous 

section, however, we showed that the Poisson-gamma model is not an appropriate 

choice for this dataset. Consequently, we showed that the Dirichlet process mixture 

Poisson model performs better because of an enhanced model specification.   

Suppose the aim is to prioritize the funding of grade separation projects. Specifically, 

we are interested in selecting the top 20 (most hazardous) sites for grade separation, 

which is a costly countermeasure, eliminating the risk of vehicle-train collision. 

Different ranking criteria and strategies exist in road safety literature to conduct a 

prioritization process (Washington and Oh, 2006). We used the posterior expected crash 

frequency‒which is among the most valid high-crash location identification methods‒

to rank grade crossings, using the aforementioned models. A list of high-crash locations 

reporting the top 20 hazardous sites is reported in Table 4-6.   

As it can be seen in Table 4-6, sites 1404, 4721, 3925, and 715 are selected by the Dirichlet 

process mixture model in the list of the most 20 hazardous crossings, whereas these sites 

are not among high-crash locations according to the Poisson-gamma model, the model 

with a spurious statistical assumption. Therefore, using a simplistic statistical model 

that cannot capture the underlying structure of the data may cause the false negative 

problem: a site is not selected as hazardous while it belongs to the list of high-crash 

locations based on a specified criterion. The presence of such problem will obviously 

lead to an ineffective allocation of funds, reducing the effectiveness of an implemented 

countermeasure and jeopardizing people’s safety.  

To illustrate the sensitivity to the size of the hazardous site’s list, Fig. 4-5 displays how 

the number of false negative cases varies as the number of sites in the list increases. For 

the dataset adopted here with 6,617 observations, the number of false negatives 

increases for lists including up to 500 sites, then it gradually decreases as expected 

intuitively. Note that this pattern is observed in this dataset and may not be generalized 
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to other data. Nevertheless, this example clearly highlights that such cases can exist. The 

use of our proposed model is therefore justified since it provides more reliable 

engineering insights due to its superior model specification that better captures the 

hidden structure of the data.  

 

Table 4-6 Comparison of high-crash location lists 

Dirichlet process mixture Poisson model  Poisson-gamma model 

Crossing ID Posterior mean Rank  Crossing ID Posterior mean Rank 

5826 2.144 1  5826 1.71 1 

4673 1.653 2  2701 1.516 2 

5048 1.575 3  5705 1.331 3 

2701 1.412 4  2030 1.33 4 

3914 1.364 5  3914 1.321 5 

5577 1.349 6  3793 1.188 6 

3793 1.299 7  4673 1.076 7 

4988 1.11 8  5048 1.041 8 

5705 1.092 9  725 1.021 9 

2030 1.076 10  3326 0.9906 10 

1404 1.055 11  2699 0.9901 11 

725 0.8448 12  3507 0.9807 12 

3324 0.8399 13  3324 0.8762 13 

3507 0.8264 14  4988 0.845 14 

2699 0.8214 15  5577 0.8396 15 

3326 0.8177 16  4418 0.8123 16 

4721 0.7501 17  3481 0.7677 17 

3925 0.7327 18  3436 0.7334 18 

715 0.7146 19  3784 0.7249 19 

4418 0.7134 20  2284 0.7242 20 

Note: italic underlined crossings are not in the list selected by the Poisson-gamma model 
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Figure 4-5 Variation in the number of false negatives as a function of list's size 

 

4.1.7 Summary of univariate modeling 

Section 4.1 introduced Dirichlet process mixture models to analyze crash data in 

univariate settings. The proposed technique derives from the Bayesian nonparametric 

literature, and presents a semiparametric model based on Dirichlet process priors. We 

followed Mukhopadhyay and Gelfand (1997) and Ohlssen et al. (2007) to refine the 

model to one which is not computationally cumbersome. The nonparametric part of the 

model manifests in the intercepts in the univariate settings. Modeling intercepts 

nonparametrically allows us to conveniently retain the linear form of the vector of 

coefficients in relation to log-transformed responses (e.g., crash frequencies or differing 

injury-severity levels). This in turn retains usual interpretations made by conventional 

generalized linear models.  

Using two simulated data, we first highlighted how the proposed model works and 

compares to conventional models used in road safety literature. We then adopted two 

real datasets for our univariate setting: (1) a vehicle-injury count dataset from signalized 

intersections that is somewhat highly over-dispersed and is characterized by a relatively 

large mean value; and (2) a railway grade crossing crash dataset that is characterized by 

the low mean value problem and excess zero counts. The proposed model allowed us 

to examine the sensitivity to parametric assumptions, providing a better fit to both 

R² = 0.8406

0

5

10

15

20

25

30

35

0 200 400 600 800 1000

F
a

ls
e

 n
e

g
a

ti
v

e
 c

a
s
e

s

Number of sites in the list



 

70 

datasets compared to other conventional models commonly used in road safety studies. 

The results showed that the proposed model performs well on different data with 

dissimilar different characteristics. We also provided a policy exercise to show the effect 

of model specification on the identification of high-crash locations for engineering safety 

improvements. The results indicated that model misspecification may result in 

erroneously selected sites for safety improvement programs, reducing the effectiveness 

of implemented countermeasures. 

4.2 Multilevel Modeling 

In this section, we account for the hierarchical structure of data. Specifically, we used 

two grade crossing datasets in which crossings are nested within different geographical 

areas. Doing so, we account for spatial dependency among crossings located in the same 

regions. Firstly, we analyze both datasets using the simple Poisson-lognormal model 

(Section 2.1.3). Recall that this model neglects the multilevel structure of the data. 

Secondly, we use the standard random intercepts multilevel model described in Section 

2.1.7.1, Eq. 2-13, assuming that all random intercepts are generated from a unique 

normal density. Thirdly, we employ our flexible model proposed for the multilevel 

settings as discussed in Section 3.4, Eq. 3-12, without imposing restrictions on the form 

of the random intercepts. Different model comparisons and a policy example then 

follow. 

4.2.1 Province level grade crossing data 

Across Canada, 4,213 crossings (with flashing lights and bells) were selected for the 

province-level data. A total of 303 crashes were observed at these crossings during a six-

year period, 2008-2013. The grade crossings are located in eight different Canadian 

provinces: British Columbia, Alberta, Saskatchewan, Manitoba, Ontario, Quebec, New 

Brunswick, and Nova Scotia. Note that Canada has a total of ten provinces and three 

territories; the two provinces (Prince Edward Island and Newfoundland and Labrador) 

and the tree territories were not included because there are a few crossings with flashing 

lights and bells available in the data in these regions. The number of crossings in each 
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province is reported in Table 4-7. In the data preparation process, an id was assigned to 

each province and observations nested within each province.  

 

Table 4-7 Spatial distribution of crossings in various provinces 

Province Frequency Percent 

Alberta 461 10.94 

British Columbia 373 8.85 

Manitoba 305 7.24 

New Brunswick 187 4.44 

Nova Scotia 177 4.20 

Ontario 1,242 29.48 

Quebec 1,070 25.40 

Saskatchewan 398 9.45 

 

Table 4-8 Summary statistics of the province-level data 

Variable Mean Std. Dev. Min Max 

Train flow (average annual daily) 5.83 6.61 0.01 46.00 

Vehicle flow (average annual daily) 2,567.95 5,085.48 1.00 71,500.00 

Log of exposure (product of train and vehicle flows) 7.86 1.80 -1.39 12.98 

Number of tracks 1.13 0.42 1.00 6.00 

Number of lanes 2.14 0.62 1.00 6.00 

Track angle (deviation from 90°) 20.94 20.41 0.00 87.00 

Road speed (km/h) 63.19 18.41 5.00 110.00 

Train speed (km/h) 48.94 24.09 1.61 110.86 

Whistle prohibition (1 if present, 0 otherwise) 0.07 0.25 0.00 1.00 

Urban area (1 if urban area, 0 otherwise) 0.33 0.47 0.00 1.00 

Urban/Whistle prohibition interaction  0.04 0.20 0.00 1.00 

Crash frequency (6-year period) 0.07 0.31 0.00 4.00 

 

A large number of explanatory variables were considered; however, most of them were 

not found to have an important effect. Summary statistics of the province-level dataset 

are provided in Table 4-8. The interaction between the dummy variables urban (1 if 

crossing is in an urban area) and whistle prohibition (1 if whistle prohibition applies) 

was considered in the analysis as it was found to provide a better fit to the data. Among 
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4,213 crossings in the province-level dataset, 185 (4.39%) were those crossings for which 

whistle prohibition was in effect and were situated in urban areas. Whistle prohibition 

were applied to 6.74% of the crossings and 32.68% of the crossings were located in urban 

areas. 

4.2.2 Municipality-level grade crossing data 

To prepare this dataset, municipalities with at least 10 crossings in their boundary were 

considered. The final municipality-level data included 1,513 crossings located in 81 

municipalities, which come from 8 major Canadian provinces: British Columbia, 

Alberta, Saskatchewan, Manitoba, Ontario, Quebec, New Brunswick, and Nova Scotia. 

A total of 135 crashes were observed in the municipality-level data. This dataset 

includes all major Canadian cities such as Toronto, Montreal, Winnipeg, Edmonton, 

Vancouver, etc. It should be underscored that a number of factors (e.g., driver behavior, 

climate, regulations, etc.) might differ between different municipalities, so that one 

scope of this research was to verify the existence of dependencies (similarities) among 

grade crossings situated within the same municipality. More importantly, we aimed at 

examining the standard parametric assumption for the data while accounting for its 

multilevel form. Table 4-9 provides descriptive statistics of the data for the most 

important variables. 

 

Table 4-9 Summary statistics of the municipality-level data 

Variable Mean Std. Dev. Min Max 

Train flow (average annual daily) 5.54 6.07 0.01 28.86 

Vehicle flow (average annual daily) 4,034.12 7,206.42 1.00 71,500.00 

Log of exposure (product of train and vehicle flows) 8.15 1.97 -1.31 12.98 

Number of tracks 1.12 0.45 1.00 6.00 

Number of lanes 2.26 0.79 1.00 6.00 

Track angle (deviation from 90°) 21.34 20.55 0.00 80.00 

Road speed (km/h) 61.44 16.17 5.00 100.00 

Train speed (km/h) 41.10 24.51 1.61 100.58 

Whistle prohibition (1 if present, 0 otherwise) 0.14 0.35 0.00 1.00 

Urban area (1 if urban area, 0 otherwise) 0.37 0.48 0.00 1.00 

Crash frequency (6-year period) 0.09 0.36 0.00 4.00 
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We were also interested in identifying outlier municipalities (those that perform 

differently from the rest of the data), and municipalities that manifest similar patterns 

(latent subpopulations) in terms of crash frequency at crossings equipped with flashing 

lights and bells. Among 1,513 grade crossings in this dataset, 36.55% were in urban 

areas, and whistle prohibition were applied to 14.28% of them. A host of explanatory 

variables were available, but many of them did not have any important effect on crash 

frequencies or were removed from the model due to collinearity.  

4.2.3 Prior specification and model computation   

Given the parameters presented in Section 3.4.1, we used non-informative normal priors 

with mean zero for β and m0. For the inverse of variances νε, νη, and ν0, we used a gamma 

prior with shape and rate (inverse-scale) parameters being equal to 0.01. It is also 

necessary to define a prior distribution for the precision parameter α for which different 

priors are possible such as gamma, exponential, and uniform. This prior could agree 

with the maximum number of allowed clusters C (see Section 3.2).  

For the province-level data, since observations were nested in 8 provinces and we were 

interested to cluster over provinces (random intercepts at province-level), we used a C 

value of 8. A uniform prior with an upper bound of 1 was selected. This results in a 

maximum of 8 clusters. Therefore, we assume α ~ uniform(0.2, 1) for the latter dataset. 

A lower bound of 0.2 was selected here to allow smaller values of α and also to 

circumvent problems associated with the estimation of pn (see Section 3.2). Since the 

above prior is informative, we also used a uniform(0.2, 10), which allows larger values 

of α. We discuss this further in the next section. 

For the municipality-level dataset, we mainly used similar priors as for the province-

level data. We set the maximum number of cluster C to be 50 given the number of 

municipalities being 81. We chose a uniform prior with an upper bound of 10 that 

corresponds to approximately 50 clusters based on Eq. 3-7. Therefore, we assume a 

uniform(0.2, 10) for α.  

A total of 20,000 MCMC iterations, in addition to 5,000 burn-in iterations, with 2 chains 

were utilized to obtain posterior inferences. All three models ran smoothly and 

converged relatively quickly. For example, the flexible Dirichlet process mixture 
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multilevel model converged at around 4,000 iterations. This is an indication of well-

defined models and priors. The MCMC convergence was verified through history plots, 

trace plots, and Gelman-Rubin diagram, being available in WinBUGS. Note that the 

Gelman-Rubin diagram is a visual demonstration of the Gelman-Rubin statistic, which 

is a quantitative measure of convergence (Gelman and Rubin, 1992; Brooks and Gelman, 

1998). The readers are referred to the WinBUGS manual (Spiegelhalter et al., 2003) for a 

detailed treatment of convergence verification techniques in WinBUGS.  

In addition to checking convergence, other methods are available to examine the 

accuracy of the posteriors. For every parameter of interest in WinBUGS, for instance, a 

Markov chain error estimate is provided among other statistics. For every stochastic 

parameter of interest, as a rule of thumb, the value of the Markov chain error should be 

smaller than 5% of the estimated standard deviations. 

4.2.4 Results and discussions   

Regarding the province level data, estimation results for the simple Poisson-lognormal 

model, the random intercepts multilevel Poisson-lognormal model, and the flexible 

Dirichlet process mixture multilevel model are presented in Table 4-10. The number of 

lanes was found to have an important effect on crash frequencies among railway 

crossings under the simple Poisson-lognormal model, the single-level model. 

Interestingly, in the multilevel models, however, this variable did not have an important 

effect. This is in accordance with previous research (Kim et al., 2007; Jovanis et al., 2011; 

Dupont et al., 2013). As discussed by Dupont et al. (2013), single-level models―such as 

the simple Poisson-lognormal model employed here―assume that all observations are 

generated from a unique homogeneous population. This, in turn, implies that the 

residuals are independent resulting in underestimated standard errors; and 

consequently, erroneous confidence intervals.  

With respect to the random intercepts multilevel Poisson-lognormal model, the 

estimated variance of the random intercepts clearly confirms the need for the multilevel 

approach. The estimated intra-province correlations (Eq. 2-14) are 0.54 and 0.64 

according to the standard and the flexible multilevel models, respectively. Therefore, 

the simple Poisson-lognormal model is not an appropriate choice. Recall that the latter 
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does not account for the hierarchical structure of the data; thus, neglecting similarities 

between crossings located within the same region. One can also notice a considerable 

improvement in the model fitting (comparing log pseudo marginal likelihoods in Table 

4-10) when using the random intercepts multilevel Poisson-lognormal model instead of 

the simple Poisson-lognormal model. Based on this multilevel model, exposure, train 

speed, and urban/whistle prohibition interaction were found to be associated with crash 

frequencies considering a 5% level of confidence.  

One key scope of this research was to examine the adequacy of the standard parametric 

assumption for the intercepts in the random intercepts multilevel Poisson-lognormal 

model, using the flexible Dirichlet process mixture multilevel model. The results for the 

latter model are also represented in Table 4-10. In terms of covariates, similar site 

characteristics, as in the random intercepts multilevel Poisson-lognormal model, are 

found to be important in the model. With respect to model-fitting measures, a log 

pseudo Bayes factor of 2.7 provides support (according to Kass and Raftery (1995), Table 

3-1) for the conventional random intercepts multilevel model. Therefore, our flexible 

model does not provide a superior fit to the province-level data. Also, the posterior 

distribution of the Dirichlet precision parameter is similar to its prior when using 

uniform(0.2, 1) or uniform(0.2, 10), indicating that the data do not provide enough 

information about this parameter. Based on the above observations, one can postulate 

that the flexible model may not be needed for the province-level data.  

Table 4-11 presents the analyses results related to the municipality-level data. Similar to 

the province-level data, the simple Poisson-lognormal model provided a poor fit 

compared to other two models that account for the hierarchical structure of the data, 

crossings nested within municipalities. The estimated intra-municipality correlations 

are 0.57 and 0.84 according to the standard and the flexible multilevel models, 

respectively. The results highlighted that traffic exposure, urban area, whistle 

prohibition, and train speed increase crash frequencies at crossings. The variance of the 

intercepts in the multilevel framework indicates that crossings nested in the same 

municipalities are somehow dependent. Therefore, the simple Poisson-lognormal 

model is not a proper choice.  
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Table 4-10 Posterior inference for province-level data 

Variable 

Posterior 

mean 

Std.  

dev. 

Bayesian intervals 

2.50% 97.50% 

Simple Poisson-lognormal model 

Log of exposure 0.485 0.046 0.395 0.574 

Train speed 0.010 0.003 0.005 0.015 

Number of lanes 0.206 0.081 0.043 0.362 

Urban/Whistle prohibition interaction 0.738 0.210 0.322 1.151 

Intercept -8.245 0.455 -9.115 -7.332 

Variance νε 0.795 0.255 0.367 1.326 

Log pseudo marginal likelihood   -1,001.31 - - - 

 

Random intercepts multilevel Poisson-lognormal model 

Log of exposure 0.505 0.042 0.423 0.586 

Train speed 0.008 0.002 0.004 0.013 

Urban/Whistle prohibition interaction 0.696 0.208 0.282 1.103 

Intercept mean -7.852 0.504 -8.852 -6.866 

Intercept variance 0.660 0.817 0.113 2.465 

Variance νε 0.560 0.249 0.106 1.036 

Log pseudo marginal likelihood -979.928 - - - 

 

Flexible Dirichlet process mixture multilevel model 

Log of exposure 0.510 0.041 0.430 0.590 

Train speed 0.009 0.003 0.004 0.014 

Urban/Whistle prohibition interaction 0.721 0.212 0.299 1.131 

Intercept mean -8.001 0.577 -9.154 -7.026 

Intercept variance 1.162 7.826 0.083 5.076 

Intercept’s baseline mean m0 -8.051 1.485 -10.610 -5.353 

Intercept’s baseline variance ν0 8.482 96.200 0.103 43.880 

Variance νε 0.662 0.210 0.328 1.139 

Dirichlet precision parameter α 0.752 0.202 0.275 0.990 

Log pseudo marginal likelihood  -982.634 - - - 

 

 

Whistle prohibition is significant at a level of confidence of 0.05 in the simple Poisson-

lognormal model, but this variable is only significant at a 10% level of confidence in 

other two models. Similar to the province-level data, this again confirms the fact that 

standard errors and intervals around the mean may be estimated erroneously in the 

single-level model. In contrast to the province-level data, this time our flexible model 

provided the best fit to the municipality-level data. The log marginal likelihood of the 

flexible Dirichlet process mixture multilevel model is the highest (see Table 4-11). 
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Table 4-11 Posterior inference for municipality-level data 

Variable 

Posterior 

mean 

Std.  

dev. 

Bayesian intervals 

2.5% 97.5% 

Simple Poisson-lognormal model 

Log of exposure 0.488 0.067 0.358 0.618 

Urban area 0.605 0.219 0.181 1.036 

Whistle prohibition 0.522 0.246 0.039 1.010 

Train speed 0.012 0.004 0.003 0.020 

Intercept -8.204 0.673 -9.553 -6.946 

Variance νε 0.963 0.393 0.177 1.817 

Log pseudo marginal likelihood -414.610 - - - 

 

Random intercepts multilevel Poisson-lognormal model 

Log of exposure 0.504 0.063 0.379 0.628 

Urban area 0.498 0.245 0.021 0.977 

Whistle prohibition 0.452 0.253 0.044 0.873 

Train speed 0.016 0.005 0.006 0.026 

Intercept mean -8.558 0.666 -9.934 -7.282 

Intercept variance 0.714 0.379 0.162 1.612 

Variance νε 0.534 0.321 0.047 1.259 

Log pseudo marginal likelihood   -404.837 - - - 

 

Flexible Dirichlet process mixture multilevel model 

Log of exposure 0.496 0.065 0.370 0.626 

Urban area 0.541 0.230 0.084 0.986 

Whistle prohibition 0.443 0.240 0.051 0.838 

Train speed 0.017 0.005 0.007 0.027 

Intercept mean -8.768 0.798 -10.360 -7.361 

Intercept variance 2.356 8.844 0.340 9.670 

Intercept’s baseline mean m0 -9.078 1.495 -12.230 -6.793 

Intercept’s baseline variance ν0 7.854 48.560 0.314 42.250 

Variance νε 0.463 0.344 0.032 1.256 

Dirichlet precision parameter α 3.700 2.610 0.415 9.546 

Log pseudo marginal likelihood  -401.347 - - - 

Note: Whistle prohibition is significant at a 10% level of significance in multilevel models. 

 

When comparing the flexible Dirichlet process mixture multilevel model with the 

random intercepts multilevel Poisson-lognormal model, a log pseudo Bayes factor of 3.5 

indicates support for the flexible model. Also, the posterior density of the precision 

parameter supports smaller values of α. Therefore, the adequacy of the standard 
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parametric assumption on the random intercepts can be questioned. In other words, 

assuming a single distribution for all 81 municipalities does not seem to be appropriate. 

4.2.5 An example of policy implications 

Employing Dirichlet process mixture models to analyze multilevel crash data in which 

observations are nested within different geographical areas appears to be immensely 

useful in terms of regional or national safety policy and benchmarking. Specifically, our 

method allows the estimation of pairwise probabilities of similarities between regions; 

and consequently, helps identify (i) clusters of regions that perform similarly, and (ii) 

outliers, those performing very different from other regions. Such analyses stimulate 

further investigations to find reasons for inter-regional variations in safety 

performances, a task that can be achieved by an in-depth research. Here, we 

demonstrate how the above analysis can provide practical engineering insights using 

both datasets analyzed in Section 4.2. It should be mentioned that the Dirichlet process 

mixing is in general more useful for a larger number of groupings (here, provinces); for 

instance, the municipality-level data.  

In this study, although we did not find a strong evidence to rule out the parametric 

assumption for the province level data (as discussed earlier), for the sake of 

demonstration, we identify latent clusters and outliers among various Canadian 

provinces using the flexible Dirichlet process mixture multilevel model. To this end, we 

employed the cluster detection algorithm described in Section 3.6. The results are shown 

in Fig. 4-6 in which provinces in the same cluster are filled by identical colors. Table 4-

12 reports estimation results using the cluster detection algorithm, allowing for the 

detection of the most similar and dissimilar provinces.  

For example, the most similar provinces in terms of total crash frequencies were Ontario 

and Quebec with an expected probability of 0.82, followed by Alberta and 

Saskatchewan with an expected probability of 0.71. It can be inferred from Table 4-12 

that Nova Scotia is an outlier province since it has only one province (i.e., itself) in its 

cluster. Nova Scotia’s size of cluster has an expected value of one. It is important to 

mention that Table 4-12 uses a threshold probability of 60% to define clusters (and 

outliers) among different provinces. Obviously, alternative threshold values result in 
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different clusters. Larger probabilities will result in higher number of clusters. In other 

words, the number of remaining provinces that share the same cluster with province i 

approaches 0 as the threshold probability approaches 1.  

 

 
Figure 4-6 Latent clusters among the 8 Canadian provinces. 

 

For the municipality level data, it can be seen in Table 4-11 that the expected number of 

non-empty clusters (mass points) is 11.66. The list of municipalities and their 

corresponding ID are provided in Appendix I. Fig. 4-7 provides a grey-scale plot of 

probabilities of similarities or clustering between pairs of municipalities, as in Ghosh et 

al. (2010). In this plot, darker squares indicate larger pairwise probabilities of 

similarities. As an example, we found that the following municipalities share the same 

cluster with a probability greater than 0.60: Calgary, Edmonton, Regina, Saskatoon, 
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Winnipeg, Grand Prairie, and Nanaimo. We monitored the total number of 

municipalities that share the same clusters as described in Section 3.6; however, the 

results indicate that there is no outlier municipality in the data. Note that the above 

clustering is obtained after adjusting for the effect of covariates. 

 

Table 4-12 Cluster and outlier identification results - province-level data 

Province 

Size of cluster 

(95% interval) 

Similar provinces with  

probability > 0.60 

Alberta 2 (1, 5) Saskatchewan 

British Columbia 4 (1, 5) Manitoba 

Manitoba 3 (1, 5) British Columbia 

New Brunswick 3 (1, 5) Ontario & Quebec 

Nova Scotia 1 (1, 5) None 

Ontario 3 (1, 5) New Brunswick & Quebec 

Quebec 3 (1, 5) New Brunswick & Ontario 

Saskatchewan 3 (1, 5) Alberta 

Note: size of cluster is the median of the number of provinces in the same cluster 

 

4.2.6 Summary of multilevel modeling 

To overcome unobserved cross-group heterogeneity in multilevel crash data, random 

effects (including random intercepts) models are often used in transportation safety 

studies. Standard distributional assumptions are an intrinsic part of random effects 

models. Since sensitivity to such assumptions might be of a major concern in some 

datasets or applications, Section 4.2 proposes a class of flexible statistical models that 

allows us to investigate the adequacy of parametric assumptions. Our approach has 

some other advantages such as the ability to identify outliers and latent subpopulations 

in data at the higher level of the hierarchy. Our model collapses into a form of finite 

mixture models. In classical finite mixture models, the number of latent components 

should be prespecified while in most applications there is not any sound justification 

for selecting the number of components prior to the analysis. By contrast, our model 

treats the number of latent components as an unknown stochastic parameter and 

estimates the expected number of clusters among groupings (here, regions) as part of 

its mathematical algorithm. Note that studies using finite mixture models to identify 
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clusters among the higher level of hierarchies or groupings of data are rare, if non-

existent, in the crash literature. 
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Figure 4-7 Grey-scale plot of pairwise probabilities of similarities of the 81 municipalities.  

Note: Darker squares indicate larger probabilities of similarities (clustering). 

 

In this dissertation, we present the flexible Dirichlet process mixture multilevel model 

as an alternative to the random effects and random parameter models to accounting for 

unobserved heterogeneity in multilevel settings. Recall that random parameter models 

allow some or all model covariates to vary across observations as way of overcoming 

unobserved heterogeneity in data; however, due to computational complexities, 

especially in large datasets, only a limited number of parameters can often be allowed 

as random parameters. 
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We adopted two multilevel datasets―containing crash frequencies for grade crossings 

equipped with flashing lights and bells in Canada―to show the feasibility of our flexible 

model. Log pseudo marginal likelihood and log pseudo Bayes factors (computed from 

conditional predictive ordinates) were utilized for model comparison. The results 

confirmed the need for a multilevel modeling approach. We found that non-multilevel 

models (simple Poisson-lognormal models) underestimated standard errors of the 

coefficients associated with the number of lanes and whistle prohibition in province-

level and municipality-level data, respectively. Traffic exposure, the location of crossing 

(urban vs. non-urban), train speed, whistle prohibition, and the interaction between 

whistle prohibition and urban area were positively associated with crash frequencies. 

Based on the evidence provided by the two datasets, the results illustrated that the 

standard distributional assumption for the random intercepts could not be ruled out for 

the province-level data, whereas this assumption was found to be under question for 

the municipality-level data.  

In our policy example, we identified latent subpopulations among Canadian provinces 

and municipalities. In terms of outlier regions, the results indicated that the province of 

Nova Scotia is an outlier province in the study in context and that there is not any outlier 

municipality among those analyzed in this research. It should be noted that identifying 

latent clusters among various regions has a significant interpretative value. This is an 

indicator of common unmeasured/unknown factors among those regions that are in the 

same clusters. Based on the identified clusters, further investigations can be conducted 

to detect or hypothesize the presence (or extent) of such unidentified attributes. Note 

that latent similarities and dissimilarities are expected among different regions due to 

variations in different regional policies, population demography, driver behavior, 

climate, traffic regulations, etc. 

4.3 Multivariate Modeling 

This section presents the data and analyses results relating to multivariate models 

discussed previously in Section 2.1.8.1 and Section 3.5. The first dataset is used to 

demonstrate the application of the multivariate mixture of points model discussed in 

Section 3.5.1. The second dataset is used to demonstrate the application of the mixture 
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of multivariate normal density model explained in Section 3.5.3. The first dataset 

contains correlated injury-severity levels. The second dataset contains correlated non-

motorist crash types: pedestrian and cyclist injury counts. For both dataset, we compare 

the proposed models with the standard multilevel Poisson lognormal model presented 

in Eq. 2-15. We investigate departures from restrictive assumptions and provide a policy 

example to show how restrictive dependence structures in multivariate settings can 

affect the interpretation of the explanatory variables. 

4.3.1 Highway segment injury-severity data 

This dataset was provided by the Ontario Ministry of Transportation. We employed the 

multivariate mixture of points model (See Section 3.5.1) to analyze this dataset, which 

consists of crash data from 418 highway segments in Ontario (highway 401) collected 

over a 3-year period (2006 to 2008). Descriptive statistics of the highway 401 dataset are 

provided in Table 4-13.  

Highway 401 connects eastern Ontario (the Quebec boarder) to south west Ontario (the 

Michigan boarder). This highway is a major roadway in Ontario with a very large 

number of vehicles passing through it on a daily basis. The crash data are divided into 

three categories of severities: fatal, injury, and property damage only crashes. Due to 

limited number of fatal crashes, we divided the crash data into two categories of injury-

fatal and property damage only crashes, which are modeled here simultaneously. The 

dataset does not distinguish between various levels of injury such as incapacitating 

injury. In addition to the crash history, major roadway-segment attributes were 

available.  

We noticed a higher rate of crashes among segments with a median shoulder width of 

smaller than 1.80 meters during an exploratory data analysis phase. Based on the 

median (inside) shoulder width, we created a dummy independent variable, here 

named narrow median shoulder. No information relating to the vertical alignment of 

segments was available, but we were able to obtain the average horizontal curve degree 

per kilometer of highway segment. 
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Table 4-13 Summary statistics for the highway 401 data 

Variable Mean Std. Dev. Min Max 

AADT all vehicles 80,369.420 95,760.440 14,499.940 44,2900.300 

AADT commercial vehicles 14,383.640 6,890.880 4,864.000 42,075.500 

Percentage of commercial vehicles 29.027 12.300 3.100 49.100 

Segment length (km) 1.952 2.061 0.206 12.703 

Number of lanes 5.445 2.428 4.000 12.000 

Median (inside) shoulder width (m) 1.598 1.194 0.000 5.190 

Median width (m) 11.106 6.147 0.600 30.500 

Outside shoulder width (m) 3.135 0.285 2.600 4.000 

Lane width (m) 3.707 0.301 1.830 5.625 

Average horizontal curve degree curvature per km 0.945 1.864 0 16.592 

Paved outside shoulder (1 if paved; 0 otherwise) 0.586 0.493 0.000 1.000 

Surface type (1 if HCB1; 0 otherwise) 0.526 0.500 0.000 1.000 

Narrow median shoulder (1 if < 1.8 m; 0 otherwise) 0.629 0.493 0.000 1.000 

Property-damage-only crash frequency 18.715 38.257 0.000 336.000 

Injury-fatal crash frequency 4.530 9.334 0.000 96.000 

1 HCB stands for high class bituminous pavement. 

 

4.3.2 Pedestrian/Cyclist data 

The data used in this section are derived from a 6-year period (2003-2008) of pedestrian 

and cyclist injury counts for 647 signalized intersections in Montreal. The spatial 

location of the intersections is shown in Fig. 4-8. One limitation of the data is that 

differing injury-severity levels (e.g., minor, major, fatal) are not reported. Had such 

information been available, we would have been able to conduct a more comprehensive 

study providing detailed insights on factors that affect each injury severity level. In this 

dataset, the sustained injuries were mostly the consequence of crash with motorized 

vehicles, but very limited injuries resulted from cyclist with cyclist or pedestrian with 



 

85 

cyclist crashes. The availability of both crash types provides a valuable opportunity to 

simultaneously study crash correlates of walking and cycling in an urban area, while 

implementing a flexible modeling approach. In modeling pedestrian and cyclist injury 

counts, for instance, intersections’ proximity to alcohol dispensing locations (e.g., bars) 

or nightlife activities may influence drivers, pedestrians, and cyclist’s behavior affecting 

both pedestrian and bicyclist injuries in a similar way. However, such potentially 

important variables are often omitted from crash models due to data limitations. In 

these circumstances, a joint analysis helps improve the quality of estimates. 

 

 
Figure 4-8 Spatial distribution of intersections (from Strauss et al. (2014)).  

See the electronic version for a color view. 

 

Several data sources (the City of Montreal, police records, ambulance services, Statistics 

Canada, etc.) were used to obtain motorized and non-motorized traffic flow, built 

environment characteristics, intersection geometric/operational characteristics, and 
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pedestrian/cyclist crash history. Here we explain main variables used in this research. 

Interested readers are referred to Strauss et al. (2014) for further details on the data. A 

disaggregate vehicle volume information, on the basis of turning directions, was 

available at each intersection. This information is useful to examine how right-turning, 

left-turning, and non-turning traffic differentiate in their association with different crash 

types. In addition, pedestrian and cyclist counts were also available, but not at a 

disaggregate level. Intersection geometric attributes such as the form (e.g., three-leg), 

crosswalk length, number of lanes, presence of median (raised or not) were available in 

the data. Intersection operational characteristics such as dedicated pedestrian crossing 

light, which were found to be important in our exploratory data analysis, were also 

considered. Note that the dedicated pedestrian light gives an exclusive right of way to 

pedestrians to cross. This was operated at some intersections by dedicating a full phase 

or part of a phase to pedestrian crossing while keeping all other traffic lights red. 

Dedicated pedestrian lights aim at providing a safer crossing experience for pedestrians. 

Built environment variables such as the length of cycling facilities, the presence of bus 

stops, subway stations, and schools in the proximity (all within a range of 50 m, 400 m, 

and 800 m) of intersections, employment, land use mix, and area of commercial land 

use were also available in the data. Although these variables may not seem to be directly 

related to pedestrian/cyclist safety, they can be used as a proxy to other intersection 

features, for example, indicating the level of motorized and non-motorized activity 

around intersections. A summary of the dataset is given in Table 4-14. Fig. 4-9 provides 

a histogram of injury counts by crash type. Fig. 4-10 summarizes the distribution of the 

motorized and non-motorized (active mode) traffic. 

We estimated the effects of total non-motorized volume and the ratio of non-motorized 

volume, based on the hypothesis that these variables may have a bearing on injury 

counts among vulnerable road users. In this regard, some earlier studies suggest that 

higher pedestrian and cyclist activity may help enhance safety of active modes of 

transport (Leden, 2002; Pucher and Buehler, 2008; Jacobsen, 2015; Stoker et al., 2015). 

However, the non-motorized intensity was not found to be useful in our models. 

Among other variables, land use mix that may influence the type of vehicles circulating 

at an intersection (and consequently, driver behavior) was examined too. Moreover, 

high co-linearity among some covariates meant that we could not include some subsets 
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of covariates in the models at the same time. Lastly, we verified co-linearity between 

disaggregate motorized traffic volumes to avoid including highly correlated volumes in 

the models. 

 

Table 4-14 Summary statistics of the pedestrian/cyclist data 

Variable types Variables Mean Std. Dev. Min Max 

Crash type Cyclist injury counts 0.628 1.324 0.000 20.000 
 Pedestrian injury counts 1.151 1.880 0.000 16.000 

      

Exposure measure Cyclist counts 444.915 717.616 1.662 6,433.217 
 Pedestrian counts 1,578.071 3,531.822 1.000 40,958.300 
 Total non-motorized volume  2,022.985 3,792.451 2.963 41,541.050 
 Left-turning motorized volume 2,602.724 2,641.855 0.000 23,843.000 
 Right-turning motorized volume 2,668.011 2,697.447 0.000 23,792.000 
 Non-turning motorized volume 19,467.960 11,084.390 1,790.000 76,525.000 

 Total motorized volume (AADT) 24,738.650 12,526.060 3,751.271 84,389.650 

 Ratio of non-motorized to motorized 0.129 0.304 0.000 4.006 

      

Built environment Employment (800 m) (in 10000) 0.580 0.304 0.026 1.492 
 Commercial area (800 m) (in 10000 m2) 1.212 1.343 0.000 8.695 
 Land use mix (400 m) 0.514 0.199 0.000 0.920 
 Land use mix (800 m) 0.666 0.149 0.000 0.920 
 Length of cycling facilities (400 m) (km) 0.536 0.606 0.000 2.959 
 Number of schools (400 m) 1.045 1.238 0.000 6.000 
 Number of subway stations (400 m) 0.439 0.701 0.000 4.000 

 Presence of bus stop (50 m) 0.708 0.455 0.000 1.000 
 Presence of School (400 m) 0.563 0.496 0.000 1.000 

 Presence of subway stations (400 m) 0.342 0.475 0.000 1.000 

      

Geometric & operational Maximum speed (km/h) 61.824 9.879 50.000 100.000 
 Dedicated traffic light for pedestrians 0.247 0.432 0.000 1.000 
 Three-leg intersection 0.221 0.415 0.000 1.000 
 Presence of raised median 0.478 0.500 0.000 1.000 
 Total number of lanes 6.870 2.631 3.000 16.000 
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Figure 4-9 Histogram of injury counts for pedestrians and cyclists 

 

 

 

 
Figure 4-10 Distribution of motorized and non-motorized traffic by type. 
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4.3.3 Prior specification and model computation – multivariate settings 

For the covariates coefficients β and the mean of the baseline distribution µ0, we 

specified normally distributed vague priors, normal(0, 100). For σ0, the standard 

deviation of the baseline density, uniform(0, 10) priors were specified, a relatively vague 

specification. As it is common in multivariate settings, we set a Wishart distribution for 

the inverse of covariance matrix Σ-1 (Tunaru, 2002) with K=2 (for two correlated 

outcomes) and a 2x2 scale matrix R with R[1,1]=R[2,2]=0.01 and R[1,2]=R[2,1]=0, 

resulting in a non-informative specification.  

Based on the maximum number of components (i.e., 50) and discussion provided in 

Section 3.2, we initially used a uniform prior for α with a lower limit of 0.3 and an upper 

limit of 10 for the highway 401 dataset. Such values allow small and large values of α 

while avoiding problems relating to the calculation of pn as discussed previously. We 

also verified the sensitivity to the prior choice for the Dirichlet precision parameter by 

choosing an upper limit of 100 for the highway 401 dataset. The results in this regard 

are reported in Section 4.3.3. 

We used a gamma(0.05, 0.05) prior with a truncation at 0.3 for α, the precision parameter 

of the Dirichlet process. The truncation is applied to prevent potential difficulties in the 

computation due to small probability values in the stick-breaking algorithm (Ohlssen et 

al., 2007). As indicated in Section 3.2, the Dirichlet precision parameter controls the level 

of similarity between the mixing density G and its prior G0, referred to as the baseline 

density. Note that a sensitivity analysis was carried out to verify the robustness of the 

results with respect to the assumed priors for the precision parameter and the baseline 

distribution. Since the selected priors have relatively large variances, we did not observe 

any reportable variation in the results. In fact, the ratio of posterior estimates to prior 

variances were smaller than 0.05.  

WinBUGS was used to generate MCMC samples for the Bayesian posterior inference. 

For the highway segment data, two chains with 80,000 iterations were considered 

among which the first 20,000 were discarded for burn-in and model convergence, so 

120,000 samples were utilized for inference. This was sufficient for low Monte Carlo 

errors. History plots, trace plots, and the Gelman-Rubin statistic were used to ensure 

that convergence was reached. 



 

90 

One key advantage of the proposed flexible multivariate model is its computational 

simplicity in WinBUGS. While Bayesian nonparametric models having an infinite 

number of parameters are often intractable computationally, our model is formulated 

in a way that can be estimated employing standard MCMC algorithms. We simplify the 

Bayesian nonparametric model to a regular finite mixture model. For the 

pedestrian/cyclist dataset, two chains were used in our MCMC simulations each 

containing 100,000 iterations. We discarded the first 40,000 iterations to meet 

convergence requirements, so that posterior inferences were drawn from 120,000 

samples. This was sufficient for low Monte Carlo errors and for verifying the Gelman-

Rubin convergence statistic.  

4.3.4 Results and discussions – multivariate settings 

For the highway injury-severity dataset, the results indicate that the Dirichlet precision 

parameter has a posterior mean that is away from the lower limit of 0 (Fig. 4-11a). 

Therefore, the Dirichlet process mixture model does not appear to provide strong 

evidence for an underlying non-normal multivariate density for this dataset. To 

examine the sensitivity to the prior choice of a uniform(0.3, 10) distribution for the 

precision parameter, we also analyzed the data using a uniform(0.3, 100) distribution. 

A kernel density plot of the precision parameter with different priors is shown in Fig. 4-

11. Although the value of α varies, it remains bounded away from zero.  

The log pseudo marginal likelihoods and coefficient estimates obtained from the 

Dirichlet process mixture multivariate model are similar to those from the standard 

multivariate Poisson-lognormal model (Table 4-15). This indicates that employing the 

flexible model, although it is not needed, does not penalize the model in terms of 

predictive performance. In other words, the flexible model approximates the standard 

model. The results show that as traffic flow and segment length increase, crash 

frequencies of both type of severity increase. In contrast, an increase in median shoulder 

width or median width results in decreased injury-fatal crashes. The chance of property-

damage-only crashes is higher among segments with a narrow median shoulder while 

the chance of injury-fatal crashes is lower among segments with paved outside 

shoulders. We also found that the degree of horizontal curve per km is negatively 
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associated with both injury-fatal and property damage only crashes, and that two crash 

outcomes are highly correlated with a correlation of 0.876.  

 

 
Figure 4-11 Kernel density plot of the precision parameter, highway 401 dataset: 

(a) α ~ uniform(0.3, 10); and (b) α ~ uniform(0.3, 100). 

 

For the pedestrian/cyclist data, with respect to the dependence structure, Fig. 4-12 

shows a kernel density plot of the correlation obtained from both the standard and the 

flexible model. Recall that the flexible model is obtained by allowing the correlation 

structure to vary across latent subpopulations in data. This can be seen in the form of 

the correlation density that is the distribution of the correlation amongst intersections 

while accounting for probabilities (weights) of different latent components. It can be 

implied from Fig. 4-12b that the density of correlation is quite spread in the range -1 to 

+1 while being mainly concentrated on the positive side of the graph. Note that a similar 

pattern in the correlation structure was observed by Jara et al. (2007) in modeling 

correlated binary outcomes.  
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Table 4-15 Posterior inference for the highway 401 dataset 

   Posterior 

Mean 

Std.  

Dev. 

Credible intervals 

    2.50% 97.50% 

Multivariate mixture of points Poisson-lognormal model 

Property damage only crashes       

Intercept mean   -10.950 0.291 -11.500 -10.460 

Intercept variance   0.703 0.127 0.513 1.006 

ln(AADT) 1.267 0.026 1.223 1.316 

ln(length)   0.754 0.028 0.701 0.810 

Average horizontal curve degree curvature per km -0.146 0.016 -0.176 -0.113 

Narrow median (inside) shoulder  0.160 0.042 0.080 0.249 

Baseline mean   -10.980 0.390 -11.760 -10.270 

Injury-fatal crashes 

Intercept mean   -12.050 0.415 -12.800 -11.21 

Intercept variance   0.322 0.057 0.235 0.457 

ln(AADT)   1.291 0.034 1.220 1.354 

ln(length)   0.803 0.033 0.739 0.869 

Average horizontal curve degree curvature per km -0.072 0.019 -0.108 -0.034 

Median (inside) shoulder width -0.079 0.019 -0.116 -0.042 

ln(median width)   -0.077 0.034 -0.145 -0.011 

Paved outside shoulder   -0.245 0.068 -0.377 -0.113 

Baseline mean   -12.090 0.448 -12.910 -11.200 

Dirichlet precision parameter α   8.752 1.035 6.184 9.961 

Correlation between outcomes   0.943 0.030 0.866 0.983 

Log pseudo marginal likelihood   -2,022.710 - - - 

 

Standard multivariate Poisson-lognormal model 

Property damage only crashes       

Intercept mean   -10.720 0.403 -11.290 -9.870 

ln(AADT)   1.247 0.036 1.172 1.298 

ln(length)   0.748 0.049 0.650 0.842 

Average horizontal curve degree curvature per km -0.146 0.024 -0.193 -0.100 

Narrow median shoulder    0.157 0.073 0.014 0.298 

Injury-fatal crashes       

Intercept mean   -11.280 0.506 -12.420 -10.400 

ln(AADT)   1.232 0.043 1.158 1.327 

ln(length)   0.793 0.045 0.706 0.881 

Average horizontal curve degree curvature per km -0.073 0.023 -0.117 -0.028 

Median (inside) shoulder width   -0.084 0.024 -0.131 -0.037 

ln(median width)   -0.132 0.039 -0.209 -0.054 

Paved outside shoulder   -0.238 0.072 -0.380 -0.097 

Correlation between outcomes   0.876 0.022 0.829 0.914 

Log pseudo marginal likelihood   -2,021.390 - - - 
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Figure 4-12 Histogram and kernel density plot for the estimated correlation between 

pedestrian and cyclist injury counts: (a) standard multivariate model and (b) flexible 

multivariate model. 

 

The posterior estimate of the mean of the correlation for the entire dataset is 0.57 (0.09, 

0.94) based on the flexible multivariate model. The posterior estimate of the correlation 

under the standard multivariate model with a unimodal density is 0.61 (0.38, 0.81). 

Based on the standard multivariate model, Fig. 4-12a implies an erroneously narrower 

interval (compared to the flexible model) around the correlation mean estimate, which 

does not reflect the reality of the data. It can also be inferred from Fig. 4-12 that the 

correlation is slightly overestimated under the standard multivariate model. As 

discussed in Jara et al. (2007), this could be associated with the fact that, although the 

standard model adjusts for the effect of observed factors, it does not accommodate 

unobserved confounders that lead to the formation of latent subpopulations in the data. 

In addition, the flexible mixture of multivariate normals yields a right skewed posterior 

distribution for the Dirichlet precision parameter with a peak at 0.936 (0.314, 2.53), being 

away from zero (Fig. 4-13). The above findings relating to both the estimated precision 

parameter and the shape of the correlation density suggest that the true underlying 

dependence structure is away from the homogeneous multivariate normal density. In 

fact, the flexible model finds 5 clusters in the data resulting in a superior model-fitting 

compared to the standard multivariate model, a log pseudo marginal likelihood of -

1,437 versus -1,457. This results in a log pseudo Bayes factor of 20, which provides strong 

support for the flexible multivariate model.  
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Figure 4-13 Kernel posterior density plot of the Dirichlet precision parameter, 

pedestrian/cyclist data 

 

The lack of homogeneity in our dataset is intuitively plausible. This is because safety 

mechanisms that influence the magnitude of correlation between pedestrian and cyclist 

injury frequencies may vary from one intersection to another. Such variation may, for 

example, be caused by differences in geometric and operational attributes of 

intersections and variations in urban patterns relating to motorist and non-motorist 

activity and behavior amongst intersections. This study therefore points out the 

importance of considering the presence of subpopulations in data and heterogeneity in 

correlation structure when modeling correlated crash types or injury severities.    

One aspect of this research was to identify contributing factors that affect injury 

frequencies of pedestrians and cyclists simultaneously at signalized intersections in 

urban settings. Tables 4-16 and 4-17 provide a summary of the results. While significant 

differences were observed in the correlation structure including the intercept structure, 

covariate estimates including their Bayesian intervals were found to be similar. 

However, marginal effects displayed real differences in covariate estimates. 

Based on the covariate estimates, we found that as the numbers of pedestrians and 

cyclists increase, their injury counts increase. Both left-turning and right-turning 

motorized flow were positively associated with cyclists’ injury counts, whereas only 

left-turning flow was found to have a positive effect on pedestrians’ injury counts. 

Therefore, if the major scope is to improve pedestrian safety, for example, particular 
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attention should be given to intersections with left-turning flow, implementing 

countermeasures that could help protect pedestrians against left-turning motorized 

traffic. Non-turning flow was not found to have an important effect on neither 

pedestrian safety nor cyclist safety. The effect of right-turning flow was greater than 

that of the left-turning flow for cyclists.  

We also found that the presence of bus stop within a range of 50 m is highly correlated 

with pedestrian and cyclist injury counts at signalized intersections, again suggesting 

attention to improving safety at these intersections. The area of commercial land use 

and employment are also positively associated with pedestrian injury counts, whereas 

having a dedicated pedestrian crossing light is negatively correlated with pedestrian 

safety. Employment and the length of cycling facilities within a range of 400 m around 

intersections were positively correlated with cyclist injury counts. The data used in this 

study do not distinguish between separated and non-separated cycling facilities 

precluding a more detailed and informative examination of their possibly distinct 

effects.  

 

Table 4-16 Posterior inference for active modes, standard multivariate model 
Crash type Variables  Mean Std. Dev. 2.50% 97.50% 

Pedestrian  ln(pedestrian counts) 0.299 0.034 0.232 0.366 
 ln(left-turning motorized volume) 0.271 0.056 0.166 0.385 
 Presence of bus stop 0.771 0.149 0.481 1.065 
 Employment  0.710 0.219 0.281 1.138 
 Commercial area  0.013 0.004 0.005 0.022 
 Dedicated traffic light for pedestrians -0.343 0.143 -0.626 -0.063 

 Intercept -5.377 0.523 -6.461 -4.407 
      

Cyclist ln(cyclist counts) 0.383 0.063 0.261 0.511 

 ln(left-turning motorized volume) 0.174 0.063 0.055 0.304 
 ln(right-turning motorized volume) 0.247 0.074 0.110 0.398 
 Presence of bus stop 0.694 0.169 0.367 1.032 

 Employment 0.671 0.239 0.200 1.143 
 Length of cycling facilities (km) 0.365 0.112 0.145 0.586 

 Intercept -7.343 0.732 -8.833 -5.950 
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Table 4-17 Posterior inference for active modes, mixture of multivariate normals 

Crash type Variables  Mean Std. Dev. 2.50% 97.50% 

Pedestrian  ln(pedestrian counts) 0.295 0.036 0.230 0.370 
 ln(left-turning motorized volume) 0.301 0.046 0.211 0.390 
 Presence of bus stop 0.760 0.149 0.477 1.059 
 Employment  0.755 0.212 0.332 1.161 
 Commercial area 0.014 0.004 0.005 0.022 
 Dedicated traffic light for pedestrians -0.326 0.150 -0.617 -0.030 
 Intercept mean -5.674 0.421 -6.444 -4.746 
 Baseline mean -6.178 1.756 -9.657 -2.225 
 Baseline standard deviation 2.522 1.905 0.564 8.138 
      

Cyclist  ln(cyclist counts) 0.408 0.065 0.276 0.530 

 ln(left-turning motorized volume) 0.192 0.065 0.073 0.324 
 ln(right-turning motorized volume) 0.305 0.077 0.160 0.459 
 Presence of bus stop 0.661 0.170 0.330 0.999 
 Employment 0.721 0.228 0.285 1.177 

 Length of cycling facilities (km) 0.412 0.109 0.198 0.628 
 Intercept mean -8.731 0.809 -9.794 -6.954 
 Baseline mean -10.410 2.918 -15.940 -4.169 
 Baseline standard deviation 4.935 2.061 1.740 9.404 

 

4.3.5 An example of policy implications 

We used marginal effects to highlight an important advantage of our model from a 

practical engineering perspective. Specifically, to interpret the impact of variables on 

non-motorist injury counts, we computed marginal effects that allow estimating the 

effect of one unit change in lth independent variable on the outcome of interest 

(Washington et al., 2011). Given the notation in previous sections, marginal effects can 

be obtained as in Eq. 4-2 (in its simplest form for the Poisson regression). 

𝜕𝐸[𝑌𝑖|𝑥𝑖]

𝑥𝑖𝑙
=  𝛽𝑙𝐸𝑋𝑃(𝛽𝑥𝑖)    (4-2) 

The average marginal effects of the covariates over all observations are reported in Table 

4-18 for both models. These are computed in WinBUGS given the structure of the 

models. As described in Section 4.2.1, the standard multivariate model is not an 
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appropriate model to analyze the dataset used in this study. Nevertheless, we report its 

marginal effects for comparison purposes. From the estimated marginal effects, we infer 

that the influence of exploratory variables (built environment, etc.), particularly, 

motorized and non-motorized traffic is significantly larger on pedestrian safety 

compared to cyclist safety. For example, based on the flexible mixture of multivariate 

normals, we infer from Table 4-18 that intersections that are equipped with dedicated 

traffic lights for pedestrian crossing have an average expected pedestrian injury 

frequency that is 0.154 lower than other intersections. Intersections that are in proximity 

to bus stops have an average expected pedestrian and cyclist injury counts that are, 

respectively, 0.358 and 0.101 higher. Marginal effects also indicate that an increase in 

the length of cycling facilities, on average, leads to 0.063 increase per kilometer in the 

expected bicyclist injury counts. The marginal effect of the log of cyclist counts is 0.063 

that translates to a 0.142 increase in cyclist injury counts for every thousand increase in 

cyclist counts.   

 

Table 4-18 Average marginal effects for pedestrian/cyclist data 

Crash type Variables 
Flexible multivariate 

model 

Standard 

multivariate model 

Pedestrian  ln(pedestrian counts) 0.139 0.149 
 ln(left-turning motorized volume) 0.142 0.152 
 Presence of bus stop 0.358 0.384 
 Employment  0.356 0.381 
 Commercial area 0.007 0.007 

 Dedicated traffic light for 

pedestrians 
-0.154 -0.165 

    

Cyclist ln(cyclist counts) 0.063 0.123 
 ln(left-turning motorized volume) 0.029 0.058 
 ln(right-turning motorized volume) 0.047 0.092 
 Presence of bus stop 0.101 0.199 
 Employment 0.111 0.217 
 Length of cycling facilities (km) 0.063 0.124 

 

While the differences in coefficient estimates between the two models seem to be small 

(see Table 4-16 and Table 4-17), after computing their marginal effects, differences 
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become more apparent. And, we see that the marginal effects obtained from the 

standard model are almost twice those obtained from the proposed flexible model for 

cyclists. Therefore, when modeling correlated outcomes, at least, the marginal effects of 

some outcomes (here, bicyclists injuries) may be poorly estimated under the standard 

multivariate model that erroneously assumes homogeneity in the correlation structure. 

This may affect the accuracy of information provided to decision makers, and 

consequently, the countermeasure selection process. A biased interpretation of the 

impact of covariates on safety may result in an ineffective allocation of funds since an 

expected improvement in safety conditions may not be achieved. 

4.3.6 Summary of multivariate modeling 

Section 4.3 contributes to the crash literature in presenting two flexible Bayesian 

multivariate mixture models based on a Dirichlet process. The models allow for a 

heterogeneous correlation structure with respect to the location (mean) and/or the 

covariance matrix of the dependence component. The proposed models are in the form 

of multivariate latent class models that account for unobserved heterogeneity while 

accommodating correlation among outcomes. As indicated in Mannering et al. (2016), 

this is an appealing way to account for unobserved heterogeneity in multivariate 

settings.  

In our models, the number of latent subpopulations is itself a stochastic parameter to be 

inferred from the data using a rigorous mathematical algorithm, whereas this number 

must be prespecified ‒ usually without any sound justification ‒ in conventional latent 

class models. The models allow the number of parameters, in terms of the hidden or 

latent structure of the data, to grow according to data complexity. In addition, while a 

few sup-populations are often assumed in traditional latent class models, our models 

can accommodate a large number of clusters.  

The models’ high flexibility better captures complex data structures when modeling 

correlated outcomes such as crash types or injury-severity levels. Thus, it helps avoid 

inconsistencies with real crash data generation mechanisms. In this study, we applied 

the proposed models to correlated counts, but it can be also employed to model 

correlated outcomes of different types such as binary, continuous, etc. Another 
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advantage of the proposed model is its ability to accommodate outliers without 

compromising the results (Jara et al., 2007). 

We first used a highway segment data from Ontario to jointly model different crash 

types by severity. We showed how to extend the standard multivariate Poisson-

lognormal model to a more flexible multivariate mixture of points model, thereby 

accounting for dependence nonparametrically. This model relaxes the homogeneity 

assumption of the correlation structure with respect to the mean. We investigated the 

multivariate normal distribution assumption, and found it is reasonable, at least for the 

highway 401 data. To add further flexibility to the model, we relaxed the homogeneity 

assumption in both the mean and the covariance structure of the dependence structure. 

We applied the latter model to a pedestrian/cyclist crash dataset including 647 

signalized intersections in Montreal. We modeled pedestrian and cyclist injury counts 

simultaneously using a multivariate modeling framework that captures the effects of 

unobserved factors in addition to the effects of the exogenous variables. A non-

restrictive joint modeling of pedestrian and bicyclist injuries, thus, improves our 

collective understanding of vulnerable road users’ safety. This understanding is further 

improved by using a micro-level (intersection) analysis that takes advantage of direct 

exposure measures. In modeling non-motorist safety, many studies lacked detailed 

motorist and non-motorist exposure information and used proxy measures instead. In 

contrast, the current study takes advantage of detailed exposure measures: the 

pedestrian and cyclist counts together with vehicle flow at a disaggregate level.  

We show how a limiting multivariate model structure, the standard model with 

multivariate normal density for modeling correlation, compromises goodness-of-fit and 

leads to spurious interpretation of variables in the model. Indeed, we found that the 

proposed flexible mixture of multivariate normals substantially improves the predictive 

performance of the model. It also prevented overestimating the impact of variables 

influencing non-motorist injury frequencies, especially for bicyclists. Providing more 

accurate estimates, the empirical findings of this study can be useful for policy decisions 

such as planning safety improvement programs for pedestrians and cyclists at 

signalized intersections, particularly, in urban areas. An enhanced safety condition 

would then help foster active modes of transport. 
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CHAPTER 5 

 

 

 CONCLUSIONS 

Crash data are often heterogeneous due to various unobserved factors that have a 

bearing on crash frequencies and injury-severities. Therefore, many road safety studies 

have focused on addressing the unobserved heterogeneity problem. Based on the major 

limitations to the conventional models (random effects, random parameter, and latent 

class models) commonly used in addressing unobserved heterogeneity in the crash 

literature, this thesis introduces a class of flexible latent class models that are rooted in 

the Bayesian nonparametric literature.  As we use a truncated Dirichlet process, our 

models reduce to the form of finite mixture models that can be estimated using standard 

MCMC algorithms. The proposed models infer the number of latent clusters from crash 

data as part of their estimation procedures. Our approach is extremely rich, offering a 

number of advantages that we have clearly shown in this dissertation using different 

univariate, multilevel, and multivariate crash datasets and policy examples. A summary 

of our main contributions is provided as follows.   

5.1 Major Contributions 

This thesis contributes to the road safety literature methodologically and empirically: 
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• To add flexibility to the standard generalized linear models, this thesis 

employed a Dirichlet process mixture over the vector of intercepts to tackle 

heterogeneity with respect to the location of the mean by allowing 

multimodality as in finite mixture models. We retain the linear form for 

model coefficients, which in turn retain their usual interpretations. 

▪ The resulting model (Dirichlet process mixture of generalized linear 

models) offers considerable promise in addressing unobserved 

heterogeneity and over-dispersion in analyzing crash datasets, 

including those characterized by the low mean value problem and 

excess zero counts such as railway grade crossing data. We also 

showed that our model is more reliable in identifying high-crash 

locations. 

• To better circumvent the cross-group unobserved heterogeneity in multilevel 

settings, this thesis incorporated a latent structure into multilevel models 

allowing the analyst to detect latent subpopulations among groups of 

observations. This approach is mainly appealing when apparent clustering 

exists among groups, and separation between groups matters (e.g., sites 

nested within different geographic areas). The method also appears to be 

particularly useful in the presence of outlier groupings.  

▪ This study indicates that outliers and latent clusters could exist among 

different Canadian regions in terms of railway grade crossing safety 

measures. This indicates that Canadian regions may widely differ 

according to their safety performances. The method therefore allows 

for monitoring the performance of different regions in terms of specific 

safety measures, assisting to draw Canada-wide safety policy insights.  

▪ This research confirms the presence of spatial dependencies among 

railway grade crossings nested within the same province or 

municipality using a latent class multilevel model. Such dependencies 

are expected due to unmeasured or unknown regional similarities, for 

example, in climate and traffic regulations.  
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▪ In analyzing the railway grade crossing crash data, this thesis 

addressed the omitted variables problem, a major concern in road 

safety studies, especially grade crossings (Jovanis et al., 2011; 

Mannering and Bhat, 2014; Wu et al., 2015). We have dealt with this 

problem as follows. First, we have attempted to include all known 

important variables that may significantly affect crash frequencies at 

grade crossings based on literature. Second, it is presumed that, since 

there could be other unknown or unmeasured spatial factors that may 

have a bearing on crash frequencies, our multilevel approach at the 

regional level is expected to capture some of these 

unknown/unmeasured variables. Note that spatially related attributes 

are recognized as an important source of omission as discussed in 

Mitra and Washington (2012). Lastly, we have employed a Dirichlet 

process mixture of generalized linear model that includes multiple 

latent components to handle unobserved heterogeneity. This is 

expected to help minimize undesirable consequences of the omitted 

variables problem. Note that, as discussed in road safety literature, 

some statistical models such as random parameter models can 

minimize the bias caused by the omission of variables as they account 

for unobserved heterogeneity (Anastasopoulos and Mannering, 2009; 

Mitra and Washington, 2012; Chen and Tarko, 2014). 

• In the joint analysis of correlated outcomes, this research allowed departures 

from restrictive homogeneous dependency structures such as that of the 

multivariate normal density. We added flexibility to the standard 

multivariate model by allowing the location or both the location and the 

covariance matrix to vary across observations. Doing so, we derived two 

flexible multivariate models: the multivariate mixture of points model and 

the multivariate mixture of normal densities model. Both models are in the 

form of multivariate latent class models that, according to the crash literature, 

appear to be immensely appealing in overcoming unobserved heterogeneity 

in modeling correlated outcomes.  
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▪ We analyzed pedestrian and cyclist injuries simultaneously based on 

the hypothesis that crash mechanisms of pedestrians and cyclists have 

some similarities, being non-motorized modes of transport. We 

showed that correlation exists between the two outcomes. This 

correlation is better captured when employing the flexible multivariate 

mixture of multivariate normal densities due to a better model 

specification. Therefore, a more accurate estimation of safety was 

obtained for vulnerable road users at intersections in an urban setting. 

5.2 Future Research 

We identified the following future research directions considering both methodological 

and empirical aspects: 

• To retain the interpretability of the Dirichlet process mixture of generalized 

linear model, this study selects a Dirichlet process prior for the random 

intercepts. The method could be applied to extend the flexibility to other 

model coefficients associated with explanatory variables. Obviously, a 

number of challenges may emerge; for instance, such extension could be 

computationally intensive.  

• In this research, we used a mixture of points approach to add flexibility in 

modeling univariate and multilevel settings. It would be interesting to 

investigate the use of mixture of normal densities as well. 

• The proposed flexible multilevel model, while flexible in accounting for 

spatial dependencies for sites located in similar regions, does not account for 

the neighborhood effects among sites, for example, as in conditional 

autoregressive models. Similarly, the conditional autoregressive model 

cannot discover latent clusters in data as our model does. Therefore, it would 

be interesting to explore the feasibility of incorporating spatial 

autocorrelation into our flexible multilevel model, thus addressing this 

limitation of conditional autoregressive models.  
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• In terms of empirical aspects, it would be an interesting line of future research 

to employ the proposed models for estimating the effectiveness of safety 

improvement programs. As discussed previously, we expect more reliable 

estimates when applying our approach due to its enhanced model 

specification that better captures the underlying structure of crash data.
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APPENDIX I  

List of Municipalities Analyzed in Section 4.2 

 

Municipality ID Municipality ID Municipality ID 

ALGOMA 1 KITCHENER  28 SALABERRY-DE-VALLEYFIELD 55 

ANTIGONISH COUNTY 2 LACOMBE COUNTY 29 SARNIA  56 

BECANCOUR 3 LAKESHORE  30 SASKATOON  57 

BRAMPTON 4 LEVIS 31 SAULT STE. MARIE  58 

BRANDON 5 LONDON  32 SEGUIN 59 

CALEDON 6 MIRABEL 33 SHERBROOKE 60 

CALGARY 7 MIRAMICHI  34 SHERWOOD  61 

CAMBRIDGE  8 MONTREAL 35 ST. CLAIRE 62 

CAPE BRETON  9 NANAIMO (City) 36 ST. THOMAS  63 

CHATHAM-KENT  10 NANAIMO (Reg Dist) 37 STRATFORD  64 

CLARINGTON  11 NORFOLK COUNTY 38 STRATHCONA COUNTY  65 

COLCHESTER COUNTY 12 NORTH COWICHAN DM 39 STURGEON COUNTY 66 

COOKSHIRE  13 ORO - MEDONTE   40 SUDBURY 67 

CORMAN PARK  14 OTTAWA   41 THAMES CENTRE  68 

CUMBERLAND COUNTY 15 PETERBOROUGH 42 THOROLD  69 

EDMONTON 16 PICKERING  43 THUNDER BAY  70 

FRASER-FORT GEORGE 17 PICTOU COUNTY 44 THUNDER BAY 71 

GRANDE PRAIRIE 18 PORT COLBORNE  45 TILLSONBURG  72 

GRAVENHURST 19 PRINCE ALBERT  46 TORONTO  73 

GREATER SUDBURY 20 RED DEER COUNTY 47 VANCOUVER 74 

GUELPH  21 REGINA  48 WEST HANTS MD 75 

HALDIMAND COUNTY 22 RICHMOND DM 49 WEST LINCOLN TWP 76 

HALIFAX 23 ROCKY VIEW MD  50 WEST NIPISSING  77 

HAMILTON 24 ROUYN-NORANDA 51 WEST VANCOUVER 78 

HUNTSVILLE 25 SAINT JOHN  52 WINDSOR  79 

INGERSOLL 26 SAINT-HYACINTHE 53 WINNIPEG  80 

INVERNESS COUNTY 27 SAINT-JEAN-SUR-RICHELIEU 54 YELLOWHEAD COUNTY 81 
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APPENDIX II  

WinBUGS Code (Vehicle-Injury Data), Poisson-gamma model 

 

Model {   for( i in 1 : 647) {   

y[i] ~ dpois(mu[i]) 

log(mu[i]) <- b[1] + b[2]*throughaadt[i] + b[3]*rightaadt[i] + b[4]*leftaadt[i] + 

b[5]*lnratiovul[i] + b[6]*bus50[i] + b[7]*metro[i] + log(r[i]) 

r[i] ~ dgamma(phi,phi) 

} 

for (k in 1:7) { b[k] ~ dnorm(0,0.01) } 

phi ~ dgamma(0.001,0.001) 

} 
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APPENDIX III 

WinBUGS Code (Vehicle-Injury Data), an example of a Dirichlet process model 

 

Model { for( i in 1: M ) {  

log(mu[i]) <- theta[Z[i]] +  b[1]*throughaadt[i] + b[2]*rightaadt[i] + b[3]*leftaadt[i] + 

b[4]*lnratiovul[i] + b[5]*bus50[i] + b[6]*metro[i] + e[i] 

e[i] ~ dnorm(0,tau.e) 

y[i] ~ dpois(mu[i]) 

Z[i] ~ dcat(p[])  

} 

p[1] <- r[1] 

for (j in 2:N-1) {p[j] <- r[j]*(1-r[j-1])*p[j-1]/r[j-1]} 

for (k in 1:N-1){ r[k] ~ dbeta(1,alpha)} 

ps <- sum(p[1:N-1]) 

for(k in N:N){p[k]<-1-ps} 

for(k in 1:N){theta[k] ~ dnorm(basemu,basetau) } 

basemu~dnorm(0,0.01) 

basetau <- pow(sigmaF0,-2) 

sigmaF0 ~ dunif(0,10) 

tau.e ~ dgamma(0.01,0.01); var.e <- 1/tau.e 

alpha ~ dunif(0.3,10) 

for (k in 1:6){ b[k] ~ dnorm(0,0.01) } 

} 
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APPENDIX IV 

An Example of History Plots (Mixing of Chains in MCMC) 
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APPENDIX V 

An Example of BGR Diagrams (Convergence Check) 

 

 

 

 

 


