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Abstract

In this paper, a new full-field numerical framewaskproposed to model large strain phenomena in
polycrystals. The proposed framework is based erethsto-viscoplastic (EVP) fast Fourier transform
(FFT) formulation presented by Lebensohn et al.10and the rate dependent crystal plasticity
framework developed by Asaro and Needleman (198%his implementation, the full-field solutions
of micromechanical fields are computed on a regwaxelized representative volume element (RVE)
in which either a single or multiple grid pointgpresent a single grain. The Asaro and Needleman
(1985) formulation coupled with a semi-explicitnii@rd gradient time-integration scheme (Peirce et
al., 1983) is used to compute local stresses aadFHI-based method is used to find local strain
fluctuations at each grid point. The proposed maslelalibrated using experimental uniaxial tensile
test results of aluminum alloy (AA) 5754 sheet dimein used to predict texture evolution and stress-
strain response for balanced biaxial tension aadegsbktrain tension along rolling (RD) and transeers
(TD) directions. The predicted stress-strain angture results show a good agreement with
experimental measurements. The CPU time requirethéyproposed model is compared with the
original EVP-FFT model for two separate cases ane proposed model showed significant

improvement in computation time (approximately 1id@es faster).

1. Introduction

The response of an aggregate of crystallites ofingrsize and orientation subjected to plastic
deformation is governed by the spatial distributiand dynamics of crystalline defects. The
development of advanced characterization tools @aabled very detailed characterization of
polycrystalline materials. For example, ScanningcEbn Microscopy (SEM) and Transmission
Electron Microscopy (TEM) (Lee and Lam, 1996; Nedhal., 1998; Salem et al., 2003; Armstrong and
Walley, 2008; Karel et al., 2016; Wickramarachchiak, 2016) are used for surface analysis of the

material’s microstructure. Synchrotron-based X-Raffraction (XRD) and Focus-lon-Beam (FIB)



combined with Electron Back-Scattering Diffracti¢ggBSD) are used to measure the chemical
composition and crystal structure (Ohashi et 102 Gardner et al., 2010; Abdolvand et al., 2015;
Jeong et al., 2015; Erinosho et al., 2016). Thebaraced experimental techniques bestow highly
sophisticated microstructure information and geteclage amounts of data creating a difficult tesk
computational techniques to interpret and harne$svant information. In order to establish the
relationship between microstructure and propertégolycrystalline materials undergoing plastic
deformation, an accurate prediction of the micramaeical behavior based on directional material
properties and gradual development of substruatfirihne constituent grains is required. Therefore,
efficient computational schemes are needed to figate the microstructure-property relations. Iis th

section, we review crystal plasticity formulatiahat are extensively used to deal with this chgken

Among the several crystal plasticity formulationsiable, the Sachs model (Sachs, 1928) and the
Taylor model Taylor (1938) are the earliest epiteroé the so-called mean-field polycrystal models.
According to the Taylor model, every crystal isumed to have the same strain throughout the
material, thus the macro strain of the materiainsply equal to the local crystal strain. Howewelnjle

this approach retains the inter-granular compatidily definition, it leads to violation of interrgnular
stress equilibrium. On the contrary, the Sachs masgumes that every crystal experiences the same
stress throughout and the local stress is equtlletanacro stress. This preserves inter-granulasstr
equilibrium but it violates inter-granular compadlitly. A more realistic approach known as the self-
consistent (SC) model, originally proposed by Maiinet al. (1987) for modeling viscoplastic (VP)
behavior in polycrystals, accounts for the averatgractions of the constituent grains of a polgtay
and has been extensively used to predict textuotigon of polycrystals. This approach was further
developed by Lebensohn and Tomé (1993) and Lebansbhal. (2007). The Viscoplastic Self
Consistent (VPSC) model consists in treating eachstituent crystal is treated as an Eshelby
heterogeneity embedded in a Homogeneous Equiviledium (HEM) and has been extensively used

for polycrystal modeling accounting for texture-ure@d plastic anisotropy.

Beyond the formulations discussed above, which oalymean-field approximations to obtain the
plastic response of polycrystalline materials ugderg plastic deformation, full-field approachesg ar
also available, which can predict the actual miczohanical stress and strain fields as well as the
effective response of polycrystals with a speatficrostructure. Full-field approaches, namely alst
plasticity Finite element method (CP-FEM) and aaysilasticity fast Fourier transform (CP-FFT)-
based method, provide richer micromechanical infgrom with direct input from an image of
microstructure obtained by EBSD (e.g., Kalidindiakt 1992, Spowart et al., 2003; Brahme et al.,



2006). Although CP-FEM is a very powerful tool, #ize and resolution of the polycrystal that can be
treated with this approach are limited, mainly due large number of degrees of freedom required by
CP-FEM computations. An efficient alternative to-EBM is given by the CP-FFT. The FFT-based
formulation was originally developed by MoulineadaBuquet (1994, 1998) to compute the macro and
micro response of composites, that consists ofirsplthe Lippmann-Schwinger equation (Lippmann
and Schwinger, 1950) by an iterative method thatlires the use of the Green’s operator associated t
a linear reference medium. The CP-FFT-based schdraes been developed for polycrystalline
materials deforming in elastic regime (Brenner let 2009), rigid-viscoplastic regime (Lebensohn,
2001; Lebensohn et al., 2008), and elasto-visctpleesgime (Lebensohn et al., 2012, Grennerat.et al
2012) for infinitesimal strains. Furthermore, thB-EFT-based methods have been recently extended
to finite strains (Eisenlohr et al., 2013; Geusalet2016; Kabel et al., 2016).

An explicit or an implicit time-integration scherman be used to update the rate-dependent conadituti
behavior simulated in CP-FEM and FFT-based modielthe various FFT-based techniques available,
e.g. Lebensohn et al. (2011), Lebensohn et al. 2204 modified Newton-Raphson method and
augmented Lagrangians procedure based on an imipliegration procedure to iteratively adjust a
compatible strain-rate field (or strain field) neld to an equilibrated stress has been used. Bethe
FFT-based techniques, the value of temporal stegken very small. This approach requires relagivel

longer computational times to reach large deforom&ti On the other hand, the crystal plasticity
models that use semi-explicit time integration scée are generally more efficient, since larger time

steps can be employed in the analysis (e.g. RastidNemat, 1992; Rossiter et al., 2010).

Various researches have shown that CP-FFT methredsiare efficient than CP-FEM (e.g. Liu et al.,
2010; Prakash and Lebensohn, 2009) in obtainingesgonse of a polycrystalline material. However,
the computationally expensive iterative characteMNewton-Raphson type solver and augmented
Lagrangians procedure used in most of these FF&dbaethods renders them unsuitable for their use
in applications that involve larger computationalnthins deforming under complex strain paths in
which large strains are reached (i.e. predictiohfooming limit strains). These simulations require
highly efficient models to obtain material resporesgeditiously in order to achieve reasonable
computing times. In this paper, a new numericahfwork that incorporates the rate-dependent crystal
plasticity theory (Asaro and Needleman, 1985) weiteemi-explicit forward gradient time-integration
scheme (Peirce et al., 1983) into the FFT-basedutation (Lebensohn et al., 2012) is presented. The
new model achieves significant gains in terms ahpotational efficiency over the existing EVP-FFT

method (at least 100 times faster).



The plan of this paper is as follows: In sectiorth® details of the proposed model are presented. |
section 3, the proposed model is benchmarked fer dhise of an Face Centered Cubic (FCC)
polycrystal. Finally, the predictive capability a®ll as the computational efficiency of the prombse

model is demonstrated, where predictions obtainsehiguthe proposed model are compared to

experiments for the aluminum alloy (AA) 5754.

2. Model formulation

The proposed model obtains the solutions for arbgémeous volume element chosen to be
statistically representative of the whole microstowe. Periodic boundary conditions are enforced
across the RVE. For every discrete material pod,numerical analysis employs the tangent method
with a semi-explicit integration scheme to find #quilibrated stress and compatible strains through
the constitutive relations in a single equilibriut@ration. For completeness, first the rate depentde

polycrystal formulation (Asaro and Needleman, 1985gviewed, followed by the rate tangent method

and the new numerical framework.

2.1 Crystal plasticity mode

According to rate dependent polycrystal formulatpresented by Asaro and Needleman (1985), for
single-phase FCC polycrystals, two distinct physidgformation mechanisms result in total
deformation of single crystal. Primarily, the disddion slip on active slip systems is considerefigo
the only mechanism responsible for plastic defoimnain a single crystal, the elastic distortion and
rigid body rotations of crystal lattice with embedd material construct the secondary mode of
deformation. Hence, the total deformation gradieah be decomposed into product of plastic
deformation gradient embodying dislocation slip afabktic deformation containing lattice distortes
proposed by Lee (1969).

Accordingly, the total deformation gradiehts written as following

F=FFP (1)
Where,F is the deformation gradient that satisfies contpilaif within each grain and between grains
and FP consists of dislocation slip that occurs as ptastiear on twelve slip systems havifigy 1 1}
slip planes with normal vectan,, and (1 1 0) slip directions with slip vectors,, with 1 < a < 12

in a FCC crystal. Note that, the brackets for thiessriptsa indicate that the quantity is computed over
the total number of slip systemB: embodies elastic deformation and rigid body rotaiof crystal

lattice.



In the un-deformed state, the lattice vectarg,, s 4, are orthonormal and in the deformed state they
rotate and stretch as
My =Mm@F ™, St = Fs@ (2)
The velocity gradient is written as sum of its &taand plastic parts as
L=L"+L° =FF! (3)
where
L"=FF", LP=F(FF)F" (4)
Taking the symmetric and antisymmetric parts ofdbeve relations lead to; (i) the elastic straie ra
D* (ii) the plastic strain ratB?, (iii) the so-called plastic spiw?”, and (iv) the spilW* associated with
the rigid lattice rotation. Accordingly, the totttain rate and spin tensors can be written as,
D=D"+D" (5)
Q=0"+0° (6)
By introducing the following symmetriP ., and skew symmetri ,, second order tensors for each

slip systenm,

1
Py = 5 [5(w) ® Mie) + Mig) @ 5] (7)

1
Wa) = 5[5ty ® mig) — M) ® 5(a)] (8)
the plastic strain ratB” and plastic spi®2” for the crystal can be written as

D* = Z PoyVwy Q= Z W Y@ 9)
a a

wherey 4, is the shear rate on each slip systerithe constitutive equation for a crystal is sgedifby

the Jaumann rate of the Kirchoff stressas
V .
T=L:D - Z R V@ (10)
a

where, L is the fourth order tensor of elastic moduli basedhe anisotropic elastic constants of the
FCC crystals which exhibits the appropriate cugimsetry andR ,, is the second-order tensor given
as

R(a) =L P((Z) + W(a)'l' - TW(a) (11)



In order to complete the constitutive descriptitwe, shear rate on each slip system needs to beedefi
The shear ratg ., on each slip systewn is governed by a power-law expression, so that

1/
T a) mn

Y@ = Yo SgN T(q) (12)

(@)

wherez,, is the resolved shear stregsg,, is the hardness, of slip systemy, is the reference shear
rate (same for each slip system) amds the index of strain rate sensitivity. The haweld state of each
slip systema is characterized by,,. The hardening rateg,, for multiple slip is defined by

hardening law as following
Y = Z hag] ] (13)
B

where,h .z, is the hardening moduli andg, is the single slip shear stress rate on slip sygeirhe

hardening moduli used here is the one that has b&eth previously by Peirce et al. (1983) and Asaro
and Needleman (1984),

h(apy = Q(apyh(py (NO SUM orp) (14)

whereq,; matrix describes the latent hardening of the atlist andh; is the single slip hardening.
Following (Asaro and Needleman, 1985), it is coased thayg, depends on the accumulated sy,

of the slips, where
t
Y@ = f Z|T’(a)|dt (15)
0 a

The model presented by Chang and Asaro (1981) EHoyed to calculate the single slip hardening.
Accordingly,

2 ho - h
h’(ﬁ) = hs + (hO - hS)SQCh {(T )]/(a)} (16)

S
s — To
where 7, is the critical resolved shear stress,is the value of saturated shear strdgs,s the

asymptotic hardening rate of slip systems hnd the hardening constant.

2.2 Rate tangent modulus method
The new numerical framework developed in this redeamploys the semi-explicit rate tangent
modulus method developed by Peirce et al. (19880&ling to this method, the increment in slip on

each slip system at timet is given by

AY () = V(tJ)M - V(ta) (17)



Within the time incremenit, a linear interpolation of slip increment is emy&d to give
MYy = [(1 = 0) yip + 0 V(] At (18)
where 8 is an interpolation parameter ranging between @ hnd = 0 corresponds to Euler time

stepping schem& (= 0.5 is used in the current formulation). The last temmabove equation can be

approximated by using Taylor series expansion as

vy ¥
AL .t (@) (a)
y = Yy + ——| Aty + Ag 19
(@) @F 510" @ age), 0@ (19)
Equation 19 can be further simplified as (Peircal et1983);
Z Napyv(p) = (¥l + Quey: D) At (20)
B
where )‘/(ta) can be calculated by equation (12) #hdis given as
OAL Yy
= R 21
Qu ( —— (@) (21)
and
0t Vi _ [Rw): Pesy hg)
N(aﬁ) = 6(‘15) + < m a X a‘[ + Sgn(r(ﬁ)) z (22)
(@) Y(a)

Denoting the inverse d¥ ;) by M4, and then inverting equation (22) leads to a simiplen

Ao = | f) + X(a): D]AL (23)

where
fay = Z Map) V() @nd X(a) = Z M) Qe (24)
B B
The equation (23) allows equation (10) to be wmiths
v .
T=C:D_ZR(a)f(a) (25)
a
whereC is the elasto-viscoplastic moduli given as

C=L-) RayXw (26)

Note that, fo® = 0 the equation (25) reduces to equation (10). Nogressing constitutive equation

(25) in form of Jaumann ratveof Cauchy stress



\
c=C:D—6¢°—otrD (27)

Since,o = det F~! 7, the viscoplastic stress-rate is given by

60 = z R V(@) (28)
a
Now, updating the Cauchy stress tensor for nex step as following
ottt = gt + 6% At (29)

The sections above describe the general Asaro aedlbiman (1985) framework that has been used in
various homogenization as well as in full-field sofes (Inal, 2002; Inal et al., 2010; Brahme et al.,
2011; 1zadbakhsh et al., 2011; Inal and Mishra,2@lyr et al., 2015; Muhammad et al., 2015; Pinna
et al., 2015). This formulation, coupled with aeratingent semi-explicit integration scheme is

implemented into a FFT-based model as described nex

2.3 FFT modd and implementation of the new crystal plasticity framework

To predict the evolution of micromechanical fielasd intragranular texture during deformation, the
space resolved configuration of the regular Fougred points and the grain interactions must bemak
into account in the whole RVE. In proposed numéraggproach, each Fourier grid point represents a

voxel inside a grain. The Fourier gfigl;} is defined as
£ £ ?
{xa} = {((11 -~ 1)F11, I, — 1)N—22, I;— 1) N—Z) Ii=1,..,Ny k=13 (30)

where?y is the length of the grid ardl, is the number of Fourier points in each direckoNote that,
from this point onward, index notation will be emmpéd in the formulations. In order to account foz t
interaction of each grid point with all the otheoimts in the RVE, the following problem for

heterogeneous RVE needs to be solved at eachartwritten as following:

01 (%) = Liji (x) g (x), Vx € {x4}
O-ij,j(x) =0 (31)
Periodic boundary conditions across RVE

where g, (x) ando;;(x) are the local strain and local stress fields dpgl,(x) is the local elastic
stiffness. The total local strain is given by

&ij(x) = &;(x) + Ej; (32)
whereé;;(x) is the strain fluctuation in the crystal due teelnegeneity and;; is the strain imposed on

the RVE. The local strain fluctuation can be foumsing Green function method if local stress



fluctuation field is known. Finding local stressidtuation involvesC?, an average elastic moduli of a
linear reference medium. Here, linear medium refersiedium that is not yet loaded or is in the un-
deformed state.

Accordingly, the stress tensor can be written as;
0;; (%) = 03 (X) + L1810 (X) — L 810 (x) (33)
or,

o3 (x) = L?jklskl(x) + 635 (x) (34)

where,6;;(x) is the stress fluctuation and is given by:
6-ij(x) = Gij (x) - L?jklskl (.X,') (35)

The strain tensae,; is related to displacement gradient, (x) as

€1 = (uk,l (x) + uk,l(x)) /2 (36)
Thus, the local problem for heterogeneous RVE besom

0;;(x) = L?jklskl(x) + 6,5 (%), Vx € {Xa}
Gij,j(x) =0 (37)
Periodic boundary conditions across RVE

To satisfy equilibrium locally, the divergence otal Cauchy stress tensor must be equal to zerp, |.
L€ j () + 635(x) = 0 (38)
The Green’s function method is used to solve theilibgum equation (38) for an applied strain
E;; that requires the solution of following problem femsohn et al., 2012):
‘[:ijlekm,lj(x —x")+6m6(x —x") =0 (39)
whereGy,,,;;(x — x') is the Green’s function associated with the disgiaent field. Accordingly, the

local strain fluctuations can be expressed as datigos in the real space so that
£ () = j G 1 (x — x")G; (x)dx (40)
R3

Since a convolution integral in real space can X@essed as a product in the Fourier space for a
regular Fourier grid, equation (40) is solved ire tRourier space that renders the FFT-based
implementations computationally efficient for conipg the local response. Using the convolution

theorem, the local strain fluctuations in Fourigase are given by



gkl ) = fi?kz (f))gkz ) (41)

indicates Fourier transform, argdis the frequency point in the Fourier space. Furtioee,

W

where
the Green operator in Fourier spdjg, which is a function of the stiffness tensor oé tieference

medium and the frequency, is given by

~ ~ ~ -1
Fi?kl(f) = _s;js;zGik(f)» Gy (§) = [ﬁlpjkz'flfj] (42)
Accordingly, the local strain fluctuations in resgace can be obtained by taking the inverse Fourier

transform of equation (41) such as

Ea(X) = T (sym([3,(6) 6 (6))
As a part of augmented Lagrangians iterative procedMichel et al. (2001) proposed an alternative
method in which the Fourier transform of local stréensor is computed instead of local perturbation

field. This approach is employed in the singleat®n procedure presented in this paper. Accorging|

the total local strain is given by
g;(x) = fft7 (sym([34(8)) 61a(€)) + Ey; (43)
In the new numerical framework, to calculate thealostress at each material point, the rate tangent

method is used to update the rate form of the @tatise equation in a single iteration for equilim,

(i.e., equation (25)). At first time step, with amposed macro straik;;, the algorithm can be

ijs
initialized with zero strain fluctuationg;;(x) = 0 and o/;(x) = Cf;,(x)Dy,; (x). For next temporal
increment, the algorithm computes the:

1. Current guess of local Cauchy streé,-é“(x) using rate tangent scheme,
2. Fourier transform of current guess of Cauchy st@$s* (¢) = fft( ”At(x))

3. Green operatorf[j?kl(f)) as a function of reference medium stiffneS%k() for each frequencyl]
as given by equation (42),
4. Local strain fluctuationgs* 2 (x) = fft™(sym([;%,(&)) 611 (£)),
5. Total local strain as, given by equation (38),
6. Updates of the current local strain rate tem*{p“r“(x) and the current Cauchy stress tensor
o4 (x) using rate tangent scheme,

The algorithm then repeats steps 1-6 for the rawpbral increments.



3. Model calibration and validation

In this section, the proposed numerical model iglated by comparing the predictions from the new
model with the predictions obtained from the welladlished elasto-viscoplastic fast Fourier tramsfo
(EVP-FFT) model (Lebensohn et al.,, 2012) . The micak analyses are carried out for a copper
polycrystal and an artificial random FCC polycrystath anisotropic constants, A=2.2 and A=0.5
respectively (A = (2 x &) / (C11-Cy»)). The corresponding elastic constants employdbese analyses
are presented in Table 1. For both cases, the sgnesentative volume element (RVE) is used where
100 grains with randomly assigned copper orienatiare employed in a regular grid of 16 x 16 x 16

Fourier points (to discretize the RVE, Fig. 1).

Table 1. Adopted elastic constants for copper pgital (Simmons and Wang, 1971) and for an
artificial polycrystal (Lebensohn et al., 2012).

Elastic constants Ci1 Cig Cia
Copper polycrystal 170.2 GPa 114.9 GPa 61.0 GPa
Artificial polycrystal 233.6 GPa 88.2 GPa 33.8 GPa

It should be mentioned that the same material petens and boundary conditions are used for both
models during each set of simulations. The polyatgsdeform plastically by slip on twelve slip
systems for a critical resolved shear stress (CRGSof 10 MPa (no strain-hardening is assumed) and
the strain rate sensitivity inder), is set to 0.1. The simulations are carried outaup strain of 0.2%
with an applied strain rate of 1G&" along the rolling direction (RD). Note that, framow on, the new
model will be referred to as RTCP-FFT model.

Fig. 1. The synthesized microstructure of coppdyqrgstal and for an artificial FCC polycrystal wit
16 x 16 x 16 Fourier points in 100 grains showimtjal texture distribution.



Fig. 2 shows the equivalent stress—strain curvedigted by the EVP-FFT model, while Figs. 3 (a-b)
present comparisons between the predictions olotdioen the EVP-FFT and the RTCP-FFT models.
Note that, for these simulations, the main inteiethie elasto-viscoplastic transition zone, whiahes
with anisotropic constants. For both the analydes & copper polycrystal and the artificial FCC
polycrystal) the simulations with the RTCP-FFT micale in excellent agreement with the predictions
obtained from the EVP-FFT.

25

20
=)
=
z
215
£
=
210
«
Z
=
g

5 —o— EVP-FFT, A=2.2 (copper)

~o— EVP-FFT, A=0.5
0 ¢
0.0000 0.0005 0.0010 0.0015 0.0020

equivalent strain

Fig. 2. Predicted von Mises equivalent stress—+strarves during uniaxial tension along RD using the
EVP-FFT model for cases of the copper polycrystal an artificial FCC polycrystal.
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Fig. 3. Comparisons of the predicted von Mises\ejant stress—strain curves during uniaxial tension
along RD between the RTCP-FFT and EVP-FFT mode|q&) copper polycrystal, and (b) an
artificial polycrystal.



Next, for the case of the copper polycrystal, thedjted local micromechanical fields obtained with
both models obtained at an equivalent strain ofé«compared (Figs. 4a-d). A qualitative comparison
of the results shows that the proposed model repexisimilar micromechanical fields as compared to
the original EVP-FFT model (Fig. 4); the locatiasfsdeviations from uniform stress and strain fields
predicted by the RTCP-FFT model, in general, ase &l reasonable agreement with those predicted
by the original EVP-FFT model. However, significardriations are observed between the computed
local strains at some locations. These variatiogrsnaainly due to the different numerical integratio
schemes employed in the models. Furthermore, totydahe variations, the mismatch in terms of
both the local equivalent strains and the localivadent stresses, normalized by the sum of local
equivalent fields i.e. strains or stresses ontadl\toxels, are presented in the Fig. 5. The nommdli

difference is calculated per voxel as

2 x |FieldlEVP—FFT _ Fieldl{i’TCP—FFT |

N [ip]dEVP-FFT N o] JRTCP—FFT
L, Field; + Yo, Field;

Mismatch in local fields at voxel i =

where N is the total number of voxels. It should raentioned that even though the local fields
calculated by the RTCP-FFT model can be differeainfthose computed by the EVP-FFT model,

these differences have a very little impact, if amythe macroscopic behavior (Fig. 3a).
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RD: (a) mismatch in the local equivalent strair),rfiismatch in the local equivalent stress.



4. Application to Aluminum Alloy (AA) 5754

In this section, the predictive capability of thewnmodel is demonstrated by comparing predictions
from the new model with experiments for the comna@uminum alloy (AA) 5754. It is important to
mention that the proposed model is only calibradt@duniaxial tension along RD, then the same
parameters are employed for the predicting the osaopic stress-strain responses and the texture
evolution for various other strain paths. For eaabe, the predictions obtained with RTCP-FFT model

are compared with the measured data presented et &lu(2012).

4.1 Modd setup

In this analysis, a representative volume elemBME) with 128 x 128 x 128 points that represent
8837 equiaxed grains is used to model AA5754 (6€). The pole figures and orientation distribution
functions (ODF) of the initial texture of as reasmivO-temper AA5754 are presented in Figs. 6 (a-d).
The synthetic microstructure in the RVE with eqeid>grains is built using a microstructure building

software as proposed by Brahme et al. (2006). i;vapproach, an optimization technique is used to
minimize the error, in both orientation distributidunction (ODF) and misorientation distribution

function (MDF), between measured and assigned tatiens.

4.2 Boundary conditions

Simulations of uniaxial tension, balanced biax@élgion and plane strain tension are performedisn th
section. Uniaxial tension is simulated by applymgelocity gradient in RD (X) and TD (YY) directions
respectively while the remaining components of thedocity gradient are kept unconstrained.
Equibiaxial tension is simulated by applying a walpgradient in both RD-TD (X-Y) directions while
keeping ND (Z) direction unconstrained. Similarptane strain tension is simulated by applying a
velocity gradient in the RD (X) and TD (Y) direati® respectively while constraining the ND (2)
direction.
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4.3 Modd calibration

An initial curve fitting of the macroscopic strestsain response of the polycrystalline is perforrfad
uniaxial tensile test to calibrate the RTCP-FFT mid#ig. 6a), and the material parameters employed
in the model are presented in Table 2. Note that,same set of material parameters (as presented in

Table 2) are employed in all of the simulationsspreed in section 4.

Table 2. Constitutive parameters used to calidRItEEP-FFT model for uniaxial tension along RD.

ho /70 75/ 7o To hs/to m q

10.0 2.24 25.5 1.9 0.02 1.0
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sections of measured and simulated texture for RiBxial tension at 5%, 10 % and 15% true strain.

The predicted texture evolution for 15 % straininigiruniaxial tension along RD is presented in Fig.

7b, while Figs. 7 (c-d), present a comparison ofFOf&ctions of measured and predicted evolved

texture at different levels of true strain. Resshli®w that the RTCP-FFT model can accurately captur

the major trends of texture evolution. Both the eskpentally measured and the predicted texture



(evolved) show an increase in the intensity of Goppnd S (typical rolling textures) as the

deformation proceeds from 5% to 15% uniaxial temsio

4.4 Simulations of balanced biaxial tension and plane strain tension

In this section, the RTCP-FFT model is employeditaulate the stress-strain response of AA5754
during; balanced biaxial tension, plane strain itfmsalong RD, uniaxial tension and plane strain
tension along TD. The predictions are compared thitise determined experimentally. The numerical
analyses show that the RTCP-FFT model can accynatetlict the macroscopic stress-strain response
of AA5754 for the above mentioned strain paths §FBp-d). Recently, Hu et al. (2012), presented a
similar study for AA5754 where they used a Taylas&d model, VPSC model and VP-FFT model.
While their predictions were also in good agreemttii experiments, it should be mentioned that they
employed a single set of hardening parameterswhatobtained by simultaneously curve fitting the
simulations to all the different experimental strgiaths (uniaxial tension, balanced biaxial tension
plane strain tension). Contrary to their approadithe predictions presented in this section emphe
same set of parameters (Table 2) obtained fromgesturve fit for uniaxial tension. Thus, the RFCP
FFT model can accurately predict the macroscopéssistrain response for various strain paths avith

single set of parameters that are directly obtafr@a an experimental uniaxial stress-strain curve.
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4.5 Predictions of texture evolution
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Fig. 9. Comparison of predicted texture in fornpofe figures for four different strain paths; (a)
equibiaxial tension, (b) plane strain tension al&iy (c) uniaxial tension along TD and (d) plane
strain tension along TD.



The RTCP-FFT model is also employed to predictuexevolution (Fig. 9). The initial texture (Fig.
6b) contains higher amounts of Brass, Cube andn$ared to Copper and Goss texture components.
In the predicted texture after 15% true strain,irmrease in Brass is observed in balanced biaxial
tension and uniaxial tension along TD with a deseei the intensities of cube and S. On the other
hand, Copper component is strengthened after 168 $h cases of plane strain tension along RD and
TD. Overall, a smaller change is observed in interssof texture components from their initial vedu

in uniaxial tension and plane strain tension cases.

Next, an analysis of texture evolution is presentsihg ODF sections. The predicted texture
evolutions are compared with experimental measunégsr@iu et al., 2011) at 5%, 10% and 15% true
strain. Figs. 10-13 show the progress of ODF withiis during balanced biaxial tension, plane strain
tension along RD and TD respectively as well asnraxial tension along TD. Simulations show that,
as the deformation progresses, the grains favofdimeation of Brass and Cube orientations during
uniaxial tension along TD, the grains tend to fdh®a Brass in case of plane strain tension along TD
and theg-fiber rolling texture is further strengthened ifame strain tensions along RD. In case of
balanced biaxial tension, a stronger growth of Biasd Copper components are observed. Overall, the
RTCP-FFT model successfully predicts the geneealds observed in the measured ODF sections for

the different strain paths considered in this study

It should be mentioned that, Hu et al. (2012) pnes# results where the well-known crystal plasticit
models such as VPSC and Taylor-type approximatiend to over predict the texture evolution for
AA5754 due lack of proper treatment of grain toiigiateraction and strain partitioning. On the athe
hand, the results in this research indicate tr@RRCP-FFT model can accurately capture the trehds
texture evolution due to consideration of the dcdmniaraction of grains and allowing voxels in aigr
to deform independently. This leads to an increashkstribution of orientations inside a grain, shihe

substantial changes in texture are hindered, wikithto a more realistic texture evolution.
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4.6 Computational efficiency

Previous researches have demonstrated that theeatgpnLagrangians scheme based FFT models are
several orders more efficient than FEM based madetomputing polycrystalline response under
similar loading conditions (Liu et al., 2010; Prakaand Lebensohn, 2009). In present work, the EVP-
FFT model is significantly modified to exploit itsse in potential applications based on single-phase
polycrystal modeling by further accelerating theTFBcheme using a semi-explicit rate tangent
modulus method. In this section, a comparison oshmatational efficiency, in terms of CPU time,
between the proposed RTCP-FFT model and the EVP4RBdel is presented using two different
cases up to 20% true strain with a strain rate®@fd’. The simulations were performed on a single
processor of Intel(R) Xeon(R) CPU E5-2680 @ 2.70GHiz the University of Waterloo

supercomputing centre without using any parallébraschemes.

In first case, for AA5754, the effect of differesttain paths on CPU time is studied using a 16 x 16
16 regular grid of Fourier points in an RVE with980Cube grains (Fig. 14a) corresponding to a single
Fourier point per grain to minimize the number alcalations required for single temporal increment.
Both RTCP-FFT and EVP-FFT models were first caliédawith uniaxial tension stress-strain curve
along RD and then simulations were performed fanelstrain tension along RD and balanced biaxial

tension.

M RTCP-FFT M EVP-FFT

1151 1191 1149

Cpu time (seconds)

9.58

9.3
o - 948

Equibiaxial
tension

Uniaxial
tension

Plane strain
tension

(a) Synthetic microstructure (b) CPU time comparison

Fig. 14. (a) The synthesized microstructure of AB&tonsisting of one Fourier point per grain with
16 Fourier points in each of x, y and z-axis repnéing 4096 Cube grains, the colors represent
different grains. (b) Computational cost comparisbproposed model (RTCP-FFT) and EVP-FFT

model for three different strain paths up to 20@e tstrain

The computation times for the RTCP-FFT and the BV-simulations for three different strain paths

up to 20% true strain are summarized in Fig.14ke ENP-FFT model required an average CPU time



of 19.39 minutes to simulate the material respdosehe three strain paths, while the RTCP-FFT
model required an average CPU time of only 9.48&md€. Thus, for the average CPU times, the
RTCP-FFT model is 122.7 times faster than the EWMP-Fmodel. To further investigate the
computational costs of the RTCP-FFT and the EVP-Rt6lels, the simulations of uniaxial tension
with no strain hardening are also performed. Tradyais shows that the RTCP-FFT model is 83 times
faster than the EVP-FFT model when no strain handeis considered.

In the second case, the effect of increasing thebew of Fourier points per grain on the total CPU
time is analyzed. For this case, six different R\AEs used; each consisting of 64 grains with 4ngrai
in X, Y and Z directions. The orientations of thegains are sampled from the AA5754 texture. Each
RVE is then discretized using a regular Fouried gifi; a) 4 x 4 x 4 = 64 points, b) 8 x 8 x 8 = 512
points, ¢) 16 x 16 x 16 = 4096 points, d) 32 x 322x= 32768 points, e) 64 x 64 x 64 = 262144, and f
128 x 128 x 128 = 2097152 points, respectively.eNbiat, the above mentioned discretization results
in an increase in the number of Fourier pointsaohegrain, with 1 x 1 x1=1,2x2x2=8,4x4
=64,8x8x8=512, 16 x 16 x 16 = 4096, 32 xx322 = 32768 Fourier points per grain in RVESs
described in a-e respectively. The RVEs are thdjested to uniaxial tension along RD (up to 20%
true strain) with both models.
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Fig. 15. A comparison of CPU time required by pregub model (RTCP-FFT) and EVP-FFT model
respectively to complete RD uniaxial tension sirtialaup to 20% true strain versus total number of
Fourier points in each of six different RVEs us@]);Bar chart representation (b) log plot showing

proportional limit

A comparison between the CPU times required bytthee models to compute the response of six
different RVEs with an applied strain rate of 19" is presented in Fig.15a. For each case, the RTCP-

FFT model is, at an average, 110 times faster BMdA-FFT. Note that the computation times of the



simulations performed by both RTCP-FFT and EVP-Rkddels scale proportionally with the number
of Fourier points (Fig. 15b). This is a direct icakion of the efficiency of both the models as bofth
the models employ an optimum matrix-inversion alpon in the solver. The CPU times of the RTCP-
FFT simulations are much quicker and fall about tammlers of magnitude below that of the
corresponding CPU times of the EVP-FFT simulations.

5. Summary and conclusions

A new, computationally efficient full-field numeat framework (RTCP-FFT) for single-phase
polycrystalline solids is developed by couplingamgent modulus method based crystal plasticity
formulation with the fast Fourier transform (FFTetmod to simulate large strain phenomena. The
RTCP-FFT model is able to compute 3-D space-reddiveal and overall micromechanical fields with
high intragranular resolution using the direct infram images of microstructures of a polycrystedli

material with extremely small computational cost.

The proposed numerical framework is verified byngsisimulations of the elastic-viscoplastic
transitions of two polycrystals with the EVP-FFT debas a reference. As the first application whih t

RTCP-FFT model, for AA5754, the simulated stresaistcurves and texture evolution during five
different strain paths are compared to experiméontsnodel validation. Predictions with the RTCP-

FFT model showed excellent agreement with experisnen

Simulations showed that the RTCP-FFT model is §icamtly faster than the EVP-FFT model in terms
of CPU time; an acceleration of about two ordersnm@gnitude is achieved over the augmented
Lagrangians procedure based FFT methods. The @adupiroduced by the RTCP-FFT model can be
slightly different locally (per material point) fno those produced by the EVP-FFT model, however,
these local variations (due to the difference mitiiegration algorithms) have with very little/atfiect

0ONn macroscopic response.

Finally, the computational efficiency of the propdshumerical model makes it an excellent candidate
to study the formability of polycrystalline metatsnce it can account for the richness of three-
dimensional microstructures. Research with the @sed model to study the effect of various

microstructural features (i.e., grain morphologi@s)the forming limit strains is in progress and e

reported somewhere else.
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Highlights:

» Efficient full field elasto-viscoplastic framework that gives a speedup of ~100
* Framework combines rate tangent method and Fast Fourier Transform

* Extending the EVP-FFT model to simulate large strain behavior

* Accurate predictions of different strain paths using calibrated uniaxial tension



