
0018-9286 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2017.2714643, IEEE
Transactions on Automatic Control

1

Sensor Choice for
Minimum Error Variance Estimation

Minxin Zhang and Kirsten Morris
Dept. of Applied Mathematics

Univ. of Waterloo
Waterloo, Canada

kmorris@uwaterloo.ca

Abstract—A Kalman filter is optimal in that the variance of
the error is minimized by the estimator. It is shown here, in
an infinite-dimensional context, that the solution to an operator
Riccati equation minimizes the steady-state error variance. This
extends a result previously known for lumped parameter systems
to distributed parameter systems. It is shown then that minimiz-
ing the trace of the Riccati operator is a reasonable criterion
for choosing sensor locations. It is then shown that multiple
inaccurate sensors, that is, those with large noise variance, can
provide as good an estimate as a single highly accurate (but
probably more expensive) sensor. Optimal sensor location is then
combined with estimator design. A framework for calculation
of the best sensor locations using approximations is established
and sensor location as well as choice is investigated with three
examples. Simulations indicate that the sensor locations do affect
the quality of the estimation and that multiple low quality sensors
can lead to better estimation than a single high quality sensor.

I. INTRODUCTION

In most systems the full state is not measured, but must be
estimated based on the available measurements. The accuracy
of an estimate depends not only on the type of estimator, but
also on the type of sensor. For distributed parameter systems,
the location of the sensors is also a variable in estimator
design. For a given expenditure, what is the best choice of
sensors? What are the best locations?

The sensor selection and location problem has been con-
sidered by many researchers in various contexts. Observabil-
ity is a common criterion for sensor placement. In [25], a
method for optimal sensor placement based on observability
on a thin double-curved shell structures was presented. The
concept of partial observability was introduced in [18] to
determine the optimal sensor locations in numerical weather
predictions. Optimal actuator/sensor placement problem for
transport-reaction processes, with respect to controllability and
observability defined using spatial H2 norm, was considered
in [1]. Optimizing the shape and the location of sensors with
respect to observability was investigated in [22, 23, 24].

However, a common criterion for estimator design is to
minimize the variance of the error. It makes sense to use
the same criterion for sensor placement. This is reinforced
by the results in [28] where it was shown that locations that
maximize controllability do not generally minimize the linear
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quadratic cost for structural vibrations. Since minimum vari-
ance estimation is dual to optimal linear quadratic control and
observability is dual to controllability, this suggests that points
of maximum observability are not the best locations from the
viewpoint of estimation error. Furthermore, there are numerical
issues with maximizing controllability and observability for
distributed parameter systems [28]. In [6], a procedure for
sequential optimal sensor location for systems on a finite time
interval was formulated, with the error variance at the final
time as the optimality criterion. The procedure was applied
to an example of a tubular-flow reactor system with multiple
sensors placed both simultaneously and sequentially.

A Kalman filter is an optimal state estimator that mini-
mizes the estimation error variance. The well-posedness of
minimizing the error variance at a finite-time for distributed
parameter systems was established in [3, 7]; see also the
review [8] and the book [10]. Well-posedness of the time-
varying case and conditions for using approximations in opti-
mization of the sensor locations were established in [27] and
applied to a problem of advection-diffusion. Conditions that
ensure the existence of Bochner integrable solutions to infinite-
dimensional Riccati integral equations were established in
[5], with an application to optimal sensor placement in a
convection-diffusion example. In [4], the optimal filtering
problem for mobile sensor networks was investigated, with
the cost functional defined as the time integral of the trace of
the weighted error covariance.

In many applications an infinite-time Kalman filter is used,
partly because it leads to a constant operator that is simple
to implement. In [17] the sensors were placed to minimize
the trace of the Riccati matrix in a problem of channel flow
estimation. In this paper, it is shown that the infinite-time
Kalman filter minimizes the steady-state error variance for
distributed parameter systems. This extends a result known
for lumped parameter systems. More precisely, the steady-state
error variance is shown to be the nuclear norm of the operator
that solves an algebraic Riccati equation (ARE). This is used
as the criterion for sensor placement. It is then proven that
this cost decreases with the number of sensors and increases
with sensor noise. Thus, if enough inaccurate sensors are
used, the estimator error can be smaller than that obtained
with a small number of accurate sensors. Sensor location
that minimizes the error variance is the dual problem to the
linear quadratic optimal actuator location. The results on well-
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posedness and also the use of approximations in calculating
the optimal locations in [21] are used to obtain results on the
computation of optimal sensor locations. In [13] an algorithm
for computation of linear quadratic optimal actuator locations
was presented and this is modified to use in computation of the
optimal sensor locations here. The effect of the sensor noise
and the number of sensors on the accuracy of an estimator is
examined on a number of examples. A preliminary version of
some of the results in this paper (without proofs) and the first
example, were presented in [29].

II. INFINITE-DIMENSIONAL KALMAN FILTER

Consider an infinite-dimensional integral process

z(t) = T (t)z0 +
∫ t

0
T (t− s)Gdw(s), (1)

with measurement

y(t) =
∫ t

0
Cz(s)ds+ v(t), t ≥ 0, (2)

where T (t) is a C0-semigroup with infinitesimal generator A
on a separable Hilbert space Z , w(t) is a Wiener process of
incremental covariance Q on a separable Hilbert space W .
and v(t) is a Wiener process of incremental covariance R on a
separable Hilbert space Y . The operators G and C are bounded
linear operators: G ∈L (W ,Z ), and C ∈L (Z ,Y ).

Definition 2.1: [10, Definition 5.2] For ζ1,ζ2 ∈ Z , define
ζ1 ◦ζ2 ∈L (Z ) by

(ζ1 ◦ζ2)h = ζ1〈ζ2,h〉, for all h ∈Z .

The covariance operator of a Z -valued random variable ζ

with E{‖ζ‖2}< ∞ is defined by

Cov(ζ ) = E{(ζ −Eζ )◦ (ζ −Eζ )}.

Assume that the initial state z0 is a Z -valued Gaussian
random variable, with zero mean value and covariance P0. This
implies that the nuclear norm

||P0||1 = E{||z0||2}< ∞

([10, Page 118]). Also, assume the output space Y is finite-
dimensional, the operator R ∈ L (Y ) is positive, and w(t),
v(t), z0 are mutually uncorrelated. The inner product on Z
will be indicated by 〈·, ·〉 while the inner product on other
Hilbert spaces will be specified by inclusion of a subscript,
for instance 〈·, ·〉Y .

Define

B2([0, t];L (Y ,Z )) =


Φ : Φ(s) ∈L (Y ,Z ), s ∈ [0, t],

〈Φ(·)z1,z2〉 is measurable on
[0, t] for any z1 ∈ Y ,z2 ∈Z ,
and

∫ t
0 ‖Φ(s)‖2dt < ∞

.

The objective is to find an estimate z̃(t) of the state z(t) for
each t ≥ 0, based on the measured output {y(s) : 0 ≤ s ≤ t}.
More precisely, an estimate of the form

z̃(t) =
∫ t

0
Ψ(t,s)dy(s), (3)

where Ψ(t, ·) ∈B2([0, t];L (Y ,Z )) is sought.

Definition 2.2 (Mild evolution operator): [12, Def. 3.2.4,
Def. 3.2.6] Let [0, t1] be a finite time interval, 4([0, t1]) =
{(t,s) : t1 ≥ t ≥ s≥ 0} ⊂ R2, and

B∞([0, t1];L (Z )) =


D(t) : D(t) ∈L (Z ), t ∈ [0, t1],

〈D(t)z1,z2〉 is measurable on
[0, t1] for any z1,z2 ∈Z ,
and esssup‖D(t)‖< ∞

.

(a) An operator S(t,s) :4([0, t1])→L (Z ) is called a mild
evolution operator if it has the following properties: (i)
S(s,s) = I, for s ∈ [0, t1]; (ii) S(t,r)S(r,s) = S(t,s), 0 ≤ s ≤
t ≤ t1; (iii) For each s ∈ [0, t1], S(·,s) is strongly continuous
on [s,τ]; (iv) For each t ∈ [0, t1], S(t, ·) is strongly continuous
on [0, t].
(b) Suppose A, with domain D(A), is the infinitesimal gener-
ator of the C0-semigroup T (t). For D(t) ∈B∞([0, t1];L (Z ))
and arbitrary z ∈D(A),

S(t,s)z = T (t− s)z+
∫ t

s
T (t− τ)D(τ)S(τ,s)zdτ, (s, t) ∈ [0, t1]

(4)
has a unique solution in the class of mild evolution operators
on Z . The solution is called the mild evolution operator
generated by A+D(t).

Theorem 2.3 (Infinite-dimensional finite-time Kalman filter):
[10, Theorem 6.9, Lemma 6.12] Let [0, t1] be a finite time
interval, and P(t) ∈ L (Z ) the unique self-adjoint, strongly
continuous solution to the differential Riccati equation (DRE):
for all h1,h2 ∈D(A∗),

〈Ṗ(t)h1,h2〉 = 〈[AP(t)+P(t)A∗−P(t)C∗R−1CP(t)

+GQG∗]h1,h2〉, t ∈ [0, t1], (5)
P(0) = P0.

Suppose Sp(t, ·) is the mild evolution operator generated by
A−P(·)C∗R−1C.

The estimate

z̃opt(t) =
∫ t

0
Sp(t,s)P(s)C∗R−1dy(s) (6)

is the unique optimal estimate for z(t) in that for each h ∈Z ,

E{〈(z(t)− z̃opt(t),h〉2}= min
z̃

E{〈(z(t)− z̃(t),h〉2},

where the minimum is taken over all estimates z̃(t) of the form
(3). The error covariance satisfies

P(t) = E{(z(t)− z̃opt(t))◦ (z(t)− z̃opt(t))}. (7)

Moreover, letting ‖ · ‖1 indicate the nuclear norm,

‖P(t)‖1 = E{‖z(t)− z̃opt(t)‖2}
= min

z̃
E{‖z(t)− z̃(t)‖2}. (8)

Definition 2.4: (a) A C0-semigroup T (t) on a Hilbert space
Z is exponentially stable if there exist positive constants M
and α such that for t ≥ 0

‖ T (t) ‖≤Me−αt .

(b) The pair (A,B) is exponentially stabilizable if there exists
K ∈L (Z ,X ) such that A−BK generates an exponentially
stable C0-semigroup.



0018-9286 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2017.2714643, IEEE
Transactions on Automatic Control

3

(c) The pair (A,C) is exponentially detectable if there exists
F ∈L (Y ,Z ) such that A−FC generates an exponentially
stable C0-semigroup.

As time approaches infinity the Kalman filter converges
to a time-invariant filter. The theorem below is presented in
[10] and can be proven using [12, Theorems 6.2.4, 6.2.7] by
duality.

Theorem 2.5: [10] If (A,G
√

Q) is exponentially stabilizable
and (A,C) is exponentially detectable, then the algebraic
Riccati equation (ARE)

〈[AX +XA∗−XC∗R−1CX +GQG∗]h1,h2〉= 0, (9)

for all h1,h2 ∈D(A∗), has a unique nonnegative solution, Pss ∈
L (Z ), such that A−PssC∗R−1C generates an exponentially
stable C0-semigroup.

Furthermore, letting P(t) indicate the solution to the differ-
ential Riccati equation (5), P(t) converges strongly to Pss, i.e.
for all h ∈Z ,

lim
t→∞

P(t)h = Pssh. (10)

Let Tp(t) be the exponentially stable C0-semigroup gener-
ated by A−PssC∗R−1C on Z . The steady-state Kalman filter
is characterized by

z̃(t) =
∫ t

0
Tp(t− s)PssC∗R−1dy(s). (11)

It is now proven that P(t) converges in nuclear norm to Pss.
The lemma below, needed in the proof of Theorem 2.7, is a
special case of [15, Theorem 2].

Lemma 2.6: If a sequence of self-adjoint nuclear operators
Xn ∈ L (Z ) converges strongly to a nuclear operator X ∈
L (Z ), and ‖Xn‖1 converges to ‖X‖1, then

lim
n→∞
‖Xn−X‖1 = 0.

Theorem 2.7: Assume (A,G
√

Q) is exponentially stabiliz-
able and (A,C) is exponentially detectable. If both the spaces
W and Y are finite-dimensional, then Pss is nuclear and

lim
t→∞
‖P(t)−Pss‖1 = 0. (12)

Furthermore,

‖Pss‖1 = lim
t→∞

E{‖z(t)− z̃opt(t)‖2}

= min
z̃

lim
t→∞

E{‖z(t)− z̃(t)‖2},

where the minimum is taken over all estimates z̃(t) of the form
(3) such that the limit limt→∞ E{‖z(t)− z̃(t)‖2} exists.

Proof: The fact that Pss is nuclear is a straightforward
consequence of [9, Theorem 3.3] by duality and the assump-
tion that both the input space for the process noise and
measurement space Y are finite-dimensional.

Results on linear quadratic control [12, Chapter 6] will be
used . Let D(A∗) ⊂ Z be the domain of A∗. For arbitrary
h0 ∈D(A∗), consider the linear quadratic control problem for
the dynamic system

ż(t) = A∗z(t)+C∗u(t), z(0) = h0, t ≥ 0, (13)

where u ∈ L2([0,+∞);Y ) represents the control. By [12,
Theorem 2.2.6], A∗ is the infinitesimal generator of the C0-
semigroup T ∗(t). Define the quadratic cost functionals

J̃(h0;0, t,u) := 〈z(t),P0z(t)〉+
∫ t

0
(〈z(s),GQG∗z(s)〉

+ 〈u(s),Ru(s)〉)ds

and

J̃(h0;u) :=
∫

∞

0
〈z(s),GQG∗z(s)〉+ 〈u(s),Ru(s)〉ds.

Applying [12, Theorem 6.1.13] to system (13), since P(·) is
the unique solution of Riccati equation (5), for each t ≥ 0,

〈P(t)h0,h0〉= min
u∈L2([0,t];Y )

J̃(h0;0, t,u).

Also, by the dual of [12, Theorem 6.2.4]

〈Pssh0,h0〉= min
u∈L2([0,+∞);Y )

J̃(h0;u). (14)

The minimum in (14) is achieved by using the state feedback
control

uss(t) :=−R−1CPssz(t),

with the optimal state trajectory z(t) = T ∗p (t)h0, in which T ∗p (·)
is the exponentially stable C0-semigroup on Z generated by
A∗−C∗R−1CPss. There exists positive constants α and β such
that

‖T ∗p (t)‖= ‖Tp(t)‖ ≤ βe−αt , t ≥ 0. (15)

Thus

〈P(t)h0,h0〉 ≤ J̃(h0;0, t,uss)

= 〈T ∗p (t)h0,P0T ∗p (t)h0〉+
∫ t

0
(〈uss(s),Russ(s)〉

+ 〈T ∗p (s)h0,GQG∗T ∗p (s)h0〉)ds

≤ 〈T ∗p (t)h0,P0T ∗p (t)h0〉+ J̃(h0;uss)

= 〈h0,Tp(t)P0T ∗p (t)h0〉+ 〈Pssh0,h0〉

for any h0 ∈D(A∗). Since A∗ is the infinitesimal generator of
the C0-semigroup T ∗(·), by [12, theorem 2.1.10.e],D(A∗) is
dense in Z . Hence for any h ∈Z ,

〈P(t)h,h〉 ≤ 〈h,Tp(t)P0T ∗p (t)h〉+ 〈Pssh,h〉. (16)

By [26, Theorem 7.8],

‖Tp(t)P0T ∗p (t)‖1 ≤ ‖Tp(t)‖2‖P0‖1,

and since Tp(t) is exponentially stable, there is α > 0, β > 0
so that for all t ≥ 0,

‖Tp(t)P0T ∗p (t)‖1 ≤ β
2e−2αt‖P0‖1. (17)

Let {ψ j}∞
j=1 be an orthonormal basis of Z . Combining (16)

with (17),
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||P(t)||1−||Pss||1 =
∞

∑
j=1
〈(P(t)−Pss)ψ j,ψ j〉

≤
∞

∑
j=1
〈ψ j,Tp(t)P0T ∗p (t)ψ j〉

= ‖Tp(t)P0T ∗p (t)‖1

≤ ||Tp(t)||2||P0||1
≤ β

2e−2αt ||P0||1.

Thus, for any ε > 0, there exists tε > 0 such that for all t > tε ,

||P(t)||1−||Pss||1 < ε. (18)

On the other hand, since Pss is nuclear, there exists a positive
integer Nε such that for any N > Nε ,

∞

∑
j=N
〈Pssψ j,ψ j〉<

ε

2
.

Also, by Theorem 2.5, P(t) converges strongly to Pss. There
exists t̃ε > 0 such that for any t > t̃ε ,

Nε

∑
j=1
|〈(Pss−P(t))ψ j,ψ j〉|<

ε

2
.

It follows that for t > t̃ε ,

‖Pss‖1 =
Nε

∑
j=1
〈(Pss−P(t))ψ j,ψ j〉+

Nε

∑
j=1
〈P(t)ψ j,ψ j〉

+
∞

∑
j=Nε+1

〈Pssψ j,ψ j〉

<
ε

2
+‖P(t)‖1 +

ε

2
= ‖P(t)‖1 + ε.

(19)

Combining (18) and (19), for any t > max{tε , t̃ε},

‖Pss‖1− ε < ‖P(t)‖1 < ‖Pss‖1 + ε.

Since ε > 0 is arbitrary,

lim
t→∞
‖P(t)‖1 = ‖Pss‖1. (20)

Moreover, since P(t) converges strongly to Pss, and the oper-
ators are self-adjoint, Lemma 2.6 then implies that

lim
t→∞
‖P(t)−Pss‖1 = 0.

Hence P(t) converges to Pss in nuclear norm.
Letting t→ ∞ in (8), by (20), there exists the limit

||Pss||1 = lim
t→∞

E{||z(t)− z̃opt(t)||2}. (21)

Taking the minimum over all estimates z̃(t) of the form (3)
such that the limit limt→∞ E{‖z(t)− z̃(t)‖2} exists,

‖Pss‖1 = lim
t→∞

E{‖z(t)− z̃opt(t)‖2}

≥min
z̃

lim
t→∞

E{‖z(t)− z̃(t)‖2}. (22)

On the other hand, assume z̃(t) is an arbitrary estimate of the
form (3) such that the limit limt→∞ E{‖z(t)− z̃(t)‖2} exists.
Since for any t ≥ 0,

E{‖z(t)− z̃opt(t)‖2} ≤ E{‖z(t)− z̃(t)‖2},

letting t→ ∞ in the above inequality,

lim
t→∞

E{‖z(t)− z̃opt(t)‖2} ≤ lim
t→∞

E{‖z(t)− z̃(t)‖2}.

Then by (21),

||Pss||1 ≤ lim
t→∞

E{‖z(t)− z̃(t)‖2}. (23)

Since z̃(t) is arbitrary, combining (22) with (23), it follows
that

||Pss||1 = min
z̃

lim
t→∞

E{‖z(t)− z̃(t)‖2},

where the minimum is taken over all estimates z̃(t) of the form
(3) such that the limit limt→∞ E{‖z(t)− z̃(t)‖2} exists.

III. SENSOR CHOICE

Theorem 2.7 shows that ||Pss||1 is the minimum steady-
state estimate error variance. The value of ||Pss||1 is dependent
on the measurement operator C, and thus the number of
sensors, as well as on the sensor noise covariance R. Selection
and location of sensors that minimize ||Pss||1 is therefore
a reasonable design goal. In this section it is proven that
sensors with smaller variance lead to a better estimate; that
is the variance of the error estimate is reduced, and also that
increasing the number of sensors reduces the error variance.

Consider sensing with observation operator C̃ ∈L (Z ,Y )
such that the pair (A,C̃) is exponentially detectable, with noise
covariance R̃ ∈L (Y ) where R̃ is positive definite. Let P̃ss be
the unique nonnegative solution to the ARE

〈[AX +XA∗−XC̃∗R̃−1C̃X +GQG∗]h1,h2〉= 0, (24)

for all h1,h2 ∈D(A∗). The objective is to compare P̃ss to Pss,
the solution to (9) for estimation with the observation operator
C and noise covariance R. Define

D =C∗R−1C, D̃ = C̃∗R̃−1C̃.

In [11, Theorem 1.2] it was shown that if

D≥ D̃,

then
Pss ≤ P̃ss,

which implies that

||Pss||1 ≤ ||P̃ss||1. (25)

In the next theorem, it is shown that a similar inequality
holds for the finite-time Kalman filter, and this is extended to
the infinite-time Kalman filter using Theorem 2.7. A similar
approach was used in [3]. Here the proof is different, filling
in some steps omitted in [3] and extending the result to the
steady-state infinite-time situation.

Theorem 3.1: Assume the spaces W and Y are finite-
dimensional, C̃ ∈L (Z ,Y ), R̃ ∈L (Y ) is positive, the pair
(A,G

√
Q) is exponentially stabilizable, (A,C) and (A,C̃) are

exponentially detectable. Let P(t) be the unique solution to
the DRE (5) and P̃(t) is the unique solution to the DRE with
C replaced by C̃ and R replaced by R̃. Defining D =C∗R−1C,
and D̃ = C̃∗R̃−1C̃, if

D≥ D̃,
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then for any t1 > 0,

‖P(t1)‖1 ≤ ‖P̃(t1)‖1.

Furthermore, letting Pss be the unique nonnegative solution
to the ARE (9) and P̃ss the non-negative solution to the
corresponding ARE (24),

||Pss||1 ≤ ||P̃ss||1.

Proof: First, consider an arbitrary finite time interval
[0, t1]. By Theorem 2.3, for all h1,h2 ∈D(A∗),

〈 ˙̃P(t)h1,h2〉 = 〈[AP̃(t)+ P̃(t)A∗− P̃(t)D̃P̃(t)

+GQG∗]h1,h2〉, (26)
P̃(0) = P0.

For an arbitrary h ∈Z , let φ(t) and φ̃(t) solve the equations

φ̇(t) = (−A∗+DP(t))φ(t), φ(t1) = h, 0≤ t ≤ t1,

and

˙̃
φ(t) = (−A∗+ D̃P̃(t))φ̃(t), φ̃(t1) = h, 0≤ t ≤ t1

respectively. Define

ϕ(t) := P(t)φ(t), ϕ̃(t) := P̃(t)φ̃(t).

For 0≤ t ≤ t1, there exists the weak derivative

ϕ̇(t) = Ṗ(t)φ(t)+P(t)φ̇(t)

= [AP(t)+P(t)A∗−P(t)DP(t)+GQG∗]φ(t)

+P(t)(−A∗+DP(t))φ(t)

= Aϕ(t)+GQG∗φ(t).

Similarly,

˙̃ϕ(t) = Aϕ̃(t)+GQG∗φ̃(t), 0≤ t ≤ t1,

in the weak sense. Define

θ(t) := φ(t)− φ̃(t), γ(t) := ϕ(t)− ϕ̃(t).

It follows that

γ̇(t) = Aγ(t)+GQG∗θ(t), γ(0) = P0θ(0), 0≤ t ≤ t1, (27)

and

θ̇(t) =−A∗θ(t)+Dγ(t)+(D− D̃)ϕ̃(t), θ(t1) = 0,
0≤ t ≤ t1

(28)

in the weak sense. Thus,∫ t1

0
〈(D− D̃)ϕ̃(t), ϕ̃(t)〉dt

=
∫ t1

0
〈θ̇(t)+A∗θ(t), ϕ̃(t)〉dt−

∫ t1

0
〈Dγ(t), ϕ̃(t)〉dt.

(29)

Note that∫ t1

0
〈θ̇(t), ϕ̃(t)〉dt =

∫ t1

0

d
dt

[〈θ(t), ϕ̃(t)〉]dt−
∫ t1

0
〈θ(t), ˙̃ϕ(t)〉dt

=−〈θ(0), ϕ̃(0)〉−
∫ t1

0
〈θ(t), ˙̃ϕ(t)〉dt.

Substituting into (29),∫ t1

0
〈(D− D̃)ϕ̃(t), ϕ̃(t)〉dt

=−〈θ(0), ϕ̃(0)〉−
∫ t1

0
〈θ(t), ˙̃ϕ(t)〉dt +

∫ t1

0
〈θ(t),Aϕ̃(t)〉dt

−
∫ t1

0
〈Dγ(t), ϕ̃(t)〉dt

=−〈θ(0), ϕ̃(0)〉−
∫ t1

0
(〈θ(t),GQG∗φ̃(t)〉+ 〈Dγ(t), ϕ̃(t)〉)dt

=−〈θ(0), ϕ̃(0)〉−
∫ t1

0
(〈γ̇(t)−Aγ(t), φ̃(t)〉+ 〈Dγ(t), ϕ̃(t)〉)dt.

Also, ∫ t1

0
〈γ̇(t), φ̃(t)〉dt

=
∫ t1

0

d
dt

[
(〈γ(t), φ̃(t)〉)

]
dt−

∫ t1

0
〈γ(t), ˙̃

φ(t)〉dt

=〈γ(t1),h〉−〈γ(0), φ̃(0)〉−
∫ t1

0
〈γ(t), ˙̃

φ(t)〉dt.

Since

〈θ(0), ϕ̃(0)〉= 〈θ(0),P0φ̃(0)〉= 〈γ(0), φ̃(0)〉,

it follows that∫ t1

0
〈(D− D̃)ϕ̃(t), ϕ̃(t)〉dt

=−〈γ(t1),h〉+
∫ t1

0
〈γ(t), ˙̃

φ(t)〉dt +
∫ t1

0
〈Aγ(t), φ̃(t)〉dt

−
∫ t1

0
〈Dγ(t), ϕ̃(t)〉dt

=−〈γ(t1),h〉+
∫ t1

0
〈γ(t), ˙̃

φ(t)+A∗φ̃(t)−Dϕ̃(t)〉dt

=−〈γ(t1),h〉+
∫ t1

0
〈γ(t),(D̃−D)ϕ̃(t)〉dt.

Also, by (27) and (28),∫ t1

0
〈γ(t),(D̃−D)ϕ̃(t)〉dt

=
∫ t1

0
〈γ(t), θ̇(t)+A∗θ(t)−Dγ(t)〉dt

=−〈γ(0),θ(0)〉−
∫ t1

0
〈γ̇(t),θ(t)〉dt +

∫ t1

0
〈Aγ(t),θ(t)〉dt

−
∫ t1

0
〈γ(t),Dγ(t)〉dt

=−〈P0θ(0),θ(0)〉−
∫ t1

0
〈GQ∗Gθ(t),θ(t)〉dt−

∫ t1

0
〈γ(t),Dγ(t)〉dt.

Hence,∫ t1

0
〈(D− D̃)ϕ̃(t), ϕ̃(t)〉dt

=−〈γ(t1),h〉−〈P0θ(0),θ(0)〉−
∫ t1

0
〈GQ∗Gθ(t),θ(t)〉dt

−
∫ t1

0
〈γ(t),Dγ(t)〉dt.

Notice that

γ(t1)=ϕ(t1)−ϕ̃(t1)=P(t1)φ(t1)−P̃(t1)φ̃(t1)= (P(t1)−P̃(t1))h.
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Therefore,

〈(P̃(t1)−P(t1))h,h〉
=〈−γ(t1),h〉

=
∫ t1

0
〈(D− D̃)ϕ̃(t), ϕ̃(t)〉dt + 〈P0θ(0),θ(0)〉

+
∫ t1

0
(〈GQG∗θ(t),θ(t)〉+ 〈γ(t),Dγ(t)〉)dt.

If
D≥ D̃,

then, since P0, GQG∗, D are nonnegative operators,

〈(P̃(t1)−P(t1))h,h〉 ≥ 0.

Since h is arbitrary, for any orthonormal basis of Z , {ψ j}∞
j=1,

‖P̃(t1)‖1−‖P(t1)‖1 =
∞

∑
j=1
〈(P̃(t1)−P(t1))ψ j,ψ j〉 ≥ 0.

Hence, for any t1 ≥ 0,

‖P(t1)‖1 ≤ ‖P̃(t1)‖1.

It then follows from Theorem 2.7 that

‖Pss‖1 ≤ ‖P̃ss‖1.

Now suppose that m sensors are used. The measurement
operator C ∈L (Z ,Rm) can be written as

C = (C(1),C(2), . . . ,C(m))T ,

where C( j) ∈L (Z ,R), j = 1,2, . . . ,m, represents the mea-
surement operator of the j-th sensor. Let v j(t) ( j = 1,2, . . . ,m)
represent the noise in the j-th sensor. Assume the noises
v1(t),v2(t), . . . ,vm(t) are mutually independent real-valued
Wiener processes, with

E{(v j(t)− v j(s))2}= (t− s)r j, j = 1,2, . . . ,m

for t ≥ s≥ 0 , where r j ∈R+. If the sensor is of high quality,
then r j ∈ R+ is small, while r j is larger for a low-quality
sensor. If the m sensors each have identical variance r0 then
the covariance of the measurement noise v(t) is

R = diag(r0,r0 . . .r0) = r0Im,

where Im represents the m-dimensional identity matrix.
The following result is now a straightforward consequence

of Theorem 3.1.
Theorem 3.2: Let Pss be the Riccati operator that solves (9)

for m identical sensors with variance r0, and similarly let P̃ss
be the operator obtained for m sensors with variance r̃0. If
r̃0 ≤ r0 then

‖P̃ss‖1 ≤ ‖Pss‖1.

Also, comparing the performance of identical sensors, if
m1 >m sensors are used then the estimate is improved. Letting
P̃ss be the Riccati operator with m1 sensors, and Pss the Riccati
operator with m sensors, then

‖P̃ss‖1 ≤ ‖Pss‖1.

Proof: If r̃0 ≤ r0, then

C∗R̃−1C = r̃−1
0 C∗C ≥ r−1

0 C∗C =C∗R−1C.

By Theorem 3.1,
‖P̃ss‖1 ≤ ‖Pss‖1.

Now suppose that the observation is obtained by m identical
sensors each with variance r0

C =
[
C(1),C(2), . . . ,C(m)

]
,

or m1 > m of the same sensors:

C̃ =
[
C(1),C(2), . . . ,C(m), . . . ,C(m1)

]
.

Then,

〈C̃∗C̃h,h〉=
m1

∑
j=1
‖C( j)h‖2 ≥

m

∑
j=1
‖C( j)h‖2 = 〈C∗Ch,h〉.

Thus,
C̃∗C̃ ≥C∗C

and
C̃∗R̃−1C̃ = r−1

0 C̃∗C̃ ≥ r−1
0 C∗C =C∗R−1C.

Again using Theorem 3.1,

‖P̃ss‖1 ≤ ‖Pss‖1.

IV. OPTIMAL SENSOR LOCATION

Suppose m sensors with corresponding measurements

y(t) = (y1(t),y2(t), ...,ym(t))T ∈ Rm, t ≥ 0

are available. The sensors lie within some compact set Ω⊂Rq.
Generally in applications Ω is a region in space so q ≤ 3.
Denoting the location of the m sensors by

l := (l1, l2, ..., lm) ∈Ω
m ⊂ Rq×m;

the output operator C is parameterized by the sensor location:

C =C(l).

The location of the sensors should be chosen to minimize the
error variance.

Continuity of ‖Pss‖1 with respect to the sensor location l
follows from [21, Theorem 2.10] by duality.

Theorem 4.1: Assume W and Y are finite-dimensional. Let
C(l)∈L (Z ,Y ), l∈Ωm, be a family of output operators such
that for any l0 ∈Ωm,

lim
l→l0
||C(l)−C(l0))||= 0.

If (A,G
√

Q) is exponentially stabilizable and (A,C(l)) is expo-
nentially detectable, then the corresponding Riccati operators
Pss = Pss(l) are continuous with respect to l in the nuclear
norm:

lim
l→l0
||Pss(l)−Pss(l0)||1 = 0,

and there exists an optimal sensor location l̂ such that

||Pss(l̂ )||1 = min
l∈Ωm
||Pss(l)||1.
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For an infinite-dimensional system, the solution Pss to the
ARE (9) cannot be computed exactly. Commonly, the sys-
tem is approximated by a finite-dimensional system and the
corresponding finite-dimensional ARE is solved. For n ≥ 1,
let Zn be an n-dimensional subspace of Z with inner prod-
uct inherited from Z and Πn ∈ L (Z ,Zn) the orthogonal
projection of Z onto Zn. Denote the original system (1) by
(A,C,G). Let zn = Πn(z) ∈ Zn and approximate the system
(A,C,G) by a sequence of (An,Cn,Gn), with An ∈L (Zn,Zn),
Cn = C |Zn∈ L (Zn,Y ) (the restriction of C to Zn), and
Gn = ΠnG ∈L (W ,Zn). Since Zn is also a Hilbert space,
the previous theorems in this paper apply to the approximate
system. If (An,Cn) is exponentially detectable and (An,Gn

√
Q)

is exponentially stabilizable, then by Theorem 2.5, the finite-
dimensional ARE

AnX +XA∗n−XC∗nR−1CnX +GnQG∗n = 0, (30)

has a unique nonnegative solution P(n)
ss ∈ L (Zn). The exis-

tence of an optimal sensor location vector l̂n that minimizes
the value of ||P(n)

ss ||1 is guaranteed by Theorem 4.1.
Conditions that ensure that the calculated optimal filter and

sensor locations converge to the exact optimal filter and sensor
locations as the approximation order is increased are needed.
Let Tn(t) indicate the semigroup of operators generated by
An. The standard assumptions for using approximations in
controller (and filter) design are as follows:
(H1) For each z ∈Z ,

(i) ||Tn(t)Πnz−T (t)z|| → 0,
(ii) ||T ∗n (t)Πnz−T ∗(t)z|| → 0

uniformly in t on bounded intervals.
(H2) For each z ∈Z , w ∈W , y ∈ Y ,

(i) ||Gnw−Gw|| → 0 and ||CnΠnz−Cz|| → 0,
(ii) ||G∗nΠnz−G∗z|| → 0 and ||C∗ny−C∗y|| → 0.

(H3) (i) The family of pairs (An,Gn
√

Q) is uniformly
exponentially stabilizable, that is, there exists a
uniformly bounded sequence of operators Kn ∈
L (Zn,W ) such that the semigroups TKn(t) gen-
erated by An−Gn

√
QKn satisfy

||TKn(t)|| ≤ β1e−α1t

for positive constants α1 and β1 ≥ 1.
(ii) The family of pairs (An,Cn) is uniformly exponen-

tially detectable, that is, there exists a uniformly
bounded sequence of operators Fn ∈ L (Y ,Zn)
such that the semigroups TFn(t) generated by An−
FnCn satisfy

||TFn(t)|| ≤ β2e−α2t

for positive constants α2 and β2 ≥ 1.

These assumptions guarantee the convergence of P(n)
ss to the

infinite-dimensional Riccati operator Pss in nuclear norm. The
following result follows from [21, Theorem 3.8] by duality.

Theorem 4.2: Assume that (A,G
√

Q) is exponentially sta-
bilizable, (A,C) is exponentially detectable, and the spaces W
and Y are finite-dimensional. Let (An,Gn,Cn) be a sequence

of approximations to (A,G,C) that satisfies assumptions (H1)-
(H3) . Then

lim
n→∞
||P(n)

ss Πn−Pss||1 = 0, (31)

where Πn is the orthogonal projection of Z onto Zn.
With the convergence (31), optimal sensor locations for

approximate systems also converge to the optimal sensor
location for the infinite-dimensional system. The following
result is a dual version of [21, Theorem 3.9], and the proof
follows that of [21, Theorem 3.5].

Theorem 4.3: Let C(l)∈L (Z ,Y ), l ∈Ωm, be a family of
output operators such that for any l0 ∈Ωm,

lim
l→l0
||C(l)−C(l0)||= 0.

Assume that (A,G
√

Q) is exponentially stabilizable, (A,C(l)),
l ∈ Ωm, are all exponentially detectable, and for each l ∈
Ωm, {(An,Cn(l),Gn)}∞

n=1 is a sequence of approximations
for (A,C(l)),G) that satisfies assumptions (H1)-(H3), with
Cn(l) =C(l) |Zn . Letting l̂ be an optimal sensor location with

||Pss(l̂ )||1 = min
l∈Ωm
||Pss(l)||1.

and defining similarly l̂n,

||Pss(l̂ )||1 = lim
n→∞
||P(n)

ss (l̂n)||1, (32)

and there exists a subsequence {l̂nk}∞
k=1 of {l̂n}∞

n=1 such that
limk→∞ l̂nk = l̂. Moreover, any convergent subsequence of
{l̂n}∞

n=1 converges to an optimal sensor location.
Proof: Write

µ̂n = ‖P(n)
ss (l̂n)‖1,

and
µ̂ = ‖Pss(l̂)‖1.

Then

µ̂n ≤‖P(n)
ss (l̂)‖1

≤‖P(n)
ss (l̂)Πn−Pss(l̂)‖1 +‖Pss(l̂)‖1.

Therefore, by Theorem 4.2,

limsup
n→∞

µ̂n ≤ µ̂.

It will now be shown that

liminf
n→∞

µ̂n ≥ µ̂.

Let {µ̂nk}∞
k=1 be a subsequence of {µ̂n}∞

n=1 such that

lim
k→∞

µ̂nk = liminf
n→∞

µ̂n.

Since Ωm is compact, there exists a convergent subsequence
of {l̂nk}∞

k=1 ⊂ Ωm, also denoted by {l̂nk}∞
k=1 for simplicity,

with limit l. By assumption (H3)(ii), there exists a sequence
of operators Fn(l) ∈L (Y ,Zn) such that for any n≥ 1,

‖Fn(l)‖ ≤ β0

for some positive constant β0, and the semigroups TFn(l)(t)
generated by An−Fn(l)Cn(l) satisfy

||TFn(l)(t)|| ≤ β2e−α2t
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for some positive constants α2 and β2 ≥ 1. Also,

lim
k→∞
‖Cnk(l̂nk)−Cnk(l)‖ ≤ lim

k→∞
‖C(l̂nk)−C(l)‖= 0.

For any positive constant ε < α2
β0β2

, there exists Nε such that
for k ≥ Nε ,

‖Cnk(l̂nk)−Cnk(l)‖ ≤ ε.

Then by [12, Theorem 3.2.1], Ank−Fnk(l)Cnk(l̂nk) generates a
semigroup TFn(l̂nk )

(t) such that

‖TFn(l̂nk )
(t)‖ ≤ β2e(−α2+β0β2ε)t

for k ≥ N. Moreover,

‖Cnk(l̂nk)Πnk −C(l)‖= ‖C(l̂nk)Πnk −C(l)‖
≤‖C(l̂nk)Πnk −C(l)Πnk‖+‖C(l)Πnk −C(l)‖
≤‖C(l̂nk)−C(l)‖+‖C(l)Πnk −C(l)‖.

It follows that

lim
k→∞
‖Cnk(l̂nk)Πnk −C(l)‖= 0.

Therefore, (Ank ,Cnk(l̂nk),Gnk), k = 1,2, ..., is a sequence of ap-
proximations for (A,C(l),G) that satisfies assumptions (H1)-
(H3). Theorem 4.2 then implies that

lim
k→∞
‖P(nk)

ss (l̂nk)Πnk −Pss(l)‖1 = 0,

which further implies that

lim
k→∞

µ̂nk = ‖Pss(l)‖1 ≥ µ̂. (33)

Thus, liminfn→∞ µ̂n ≥ µ̂ and

lim
n→∞

µ̂n = µ̂,

which is (32).
This and (33) also imply that

µ̂ = ‖Pss(l)‖1,

that is, l is an optimal sensor location. Since the sequence
{l̂nk}∞

k=1 was an arbitrary convergent subsequence of {l̂n}∞
n=1

it follows that any convergent subsequence converges to an
optimal sensor location.
Thus, approximations can be used to obtain filters and deter-
mine optimal sensor locations to arbitrary accuracy. The theory
developed in this and the previous section is applied to several
examples in the next section.

V. EXAMPLES

A. One-dimensional diffusion

A one-dimensional diffusion equation with white Gaussian
noise disturbance is considered:

∂ z
∂ t

= σ
∂ 2z
∂x2 +g(x)η(t), 0≤ x≤ 1, t ≥ 0,

∂ z
∂x

(0, t) = 0,
∂ z
∂x

(1, t) = 0,

z(x,0) = z0(x),

(34)

where σ is the constant diffusivity, g(x) models the shape of
the spatially distributed disturbance, and η(t) is assumed to
be a real-valued white Gaussian noise, such that

w(t) =
∫ t

0
η(s)ds

is a Wiener process of incremental covariance Q. The physical
interpretation of z depends on the application and its value is
with respect to a reference state. For example, in the case of
thermal diffusion, z is temperature, and temperature in Celsius
is with reference to the freezing point of water.

Let the state space Z = L2(0,1), and A=σ
∂ 2

∂x2 with domain

D(A) = {h ∈H 2(0,1) : h′(0) = h′(1) = 0} ⊂Z .

The state-space representation for the equation (34) is

dz(t) = Az(t)dt +Gdw(t), z(0) = z0, t ≥ 0, (35)

where G ∈L (R,Z ) is defined by, for some g ∈Z ,

Gα = αg(x), for α ∈ R.

The operator A generates an analytic C0-semigroup T (t), so
that the solution to (35) can be expressed as (see [10, Theorem
5.35])

z(t) = T (t)z0 +
∫ t

0
T (t− s)Gdw(s), t ≥ 0.

Assume that there are m identical sensors. Each sensor
measures the average state over an interval of length 4 > 0.
Write

l= (l1, l2, . . . , lm),

and define

cl j(x) :=
{

1/4, |x− l j| ≤ 42
0, otherwise

,

for j = 1,2, . . . ,m. With m sensors centred at x = l1, l2, ..., lm,

C(l)z = (〈cl1 ,z〉,〈cl2 ,z〉, . . . ,〈clm ,z〉)
T .

Let v j(t) ( j = 1,2, . . . ,m) represent the noise in j-th sensor.
The noises v1(t),v2(t), . . . ,vm(t) are mutually independent
real-valued Wiener processes, with

E{(v j(t)− v j(s))2}= (t− s)r0, j = 1,2, . . . ,m

for t ≥ s ≥ 0 , where r0 ∈ R+. If the sensors are of high
quality, then r0 ∈R+ is small, while r0 is larger for low-quality
sensors. The covariance of the measurement noise v(t) is

R = diag(r0,r0 . . .r0) ∈ Rm×m.

The operator A = σ
∂ 2

∂x2 has eigenfunctions φ0(x) = 1,
φ j(x)=

√
2cos( jπx) for j≥ 1, with corresponding eigenvalues

λ j :=−σ j2π2, j≥ 0. The eigenfunctions form an orthonormal
basis for the state space Z = L2(0,1). A Galerkin approxi-
mation obtained with first n eigenfunctions of A will be used
in the calculations.

When using approximations of order n ≥ 4, simulation
results show that the optimal observability of the approximate
systems over the set of posible sensor locations is 0, reflecting
the fact that the original model is at best only approximately
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observability. For more detail on this point in the context
of controllability, see [28]. Observability is not a useful cost
function.

The subsequent approximating systems satisfy the assump-
tions of Theorem 4.2 (see for example [20]) and so

lim
n→∞
‖P(n)

ss Πn−Pss‖1 = 0.

For the simulations, the diffusivity σ = 0.1 , the approxi-
mation order N = 20 and the coefficient of process noise co-
variance was Q= 10. The sensors each had width of 4= 0.04
and the sensors had 25 possible locations evenly distributed in
[0,1]. The ARE’s were solved using Matlab function ‘care’.
All the sensors were optimally placed using a dual version
of the algorithm in [13] to calculate the sensor locations that
minimized the steady-state estimation error covariance ‖Pss‖1.
The initial condition was

z0 = a(2x+ x2) (36)

where a has normal distribution N(0,10) and was chosen
using the Matlab function ‘randn’. The stochastic differential
equations were solved using the explicit Euler method [19].
time step size 4t = 0.001, and the noise term w4t(k), that has
normal distribution N(0,Q4t), was generated by the Matlab
function ‘randn’ at each time step.

Three different disturbances were considered: spatially uni-
form, localized and a mixture of the two types.

Consider first the case where the noise on the state is evenly
distributed in space:

g(x) = 1.

The initial condition (36) was scaled by a = 8.5886. When
using a single sensor, the value of ||Pss||1 was computed for
r0 ranging from 0.1 to 2. As shown in Figure 1(a), ||Pss||1 is
an increasing function of r0 and it coincides well with

f1(r0) := C̃
√

r0,

in which the constant C̃≈ 1.00. Figure 1(b) shows that ||Pss||1
decreases as the sensor number m increases. Calculations of
‖Pss‖1 were done with m optimally placed sensors, each which
variance r0 = 2, for various values of m. Let

g1(m) :=C2/
√

m (C2 ≈ 1.41)

be the function defined continuously on the interval [0,20]. As
shown in Figure 1(b), the curve of function g1 fits with the
value of ||Pss||1 for m = 1,2, ...,20. For this example ||Pss||1 is
approximately proportional to the value of

√
r0/m:

||Pss||1 ≈C
√

r0/m (37)

with C = C̃≈C2/
√

2. Figure 1(b) indicates that increasing the
number of sensors can compensate for the inaccuracy of a
sensor with a large noise variance. The estimates obtained by
using a single sensor with noise variance r0 = 0.2, and by using
15 sensors each with noise variance r0 = 2, are compared in
Figure 2 with the actual system state z(t) at the middle point
x = 0.5 for t ∈ [0,20]. For a single sensor, the value of ||Pss||1
was computed for different sensor locations, which is constant
with respect to sensor location. Hence, there does not exist a

unique optimal sensor location in this case. For 15 sensors,
searching by the optimization algorithm from [13], the optimal
sensor locations were found to be centered at

l̂=(0.02,0.10,0.14,0.22,0.30,0.38,0.42,0.50,0.58,0.62,0.70,
0.78,0.86,0.90,0.98).

Using multiple sensors each with larger noise variance led to
a better estimate than a single accurate sensor.

Now consider a localized disturbance illustrated in Figure
3:

g(x) = sech(100(x−0.2)).

The initial condition (36) was scaled by a = 3.3261. By
computing the value of ||Pss||1 for the case that using a single
sensor (m = 1) with variance r0 ∈ [0.1,2], an ascending curve
is derived, as shown in Figure 4(a). It again coincides well
with a square root function:

f2(r0) :=C3
√

r0 (C3 ≈ 0.09).

The value of ||Pss||1 as a function of the number of sensors
fits well with the curve of a decreasing function

g2(m) :=C4/
√

m (C4 ≈ 0.14),

as shown in Figure 4(b). Hence the same proportional relation
(37) but with constant C = C3 ≈ C4/

√
2 appears to hold.

Comparisons of the actual system state with estimates made
by a single sensor with variance r0 = 0.2 and by 15 sensors
with variance r0 = 2 are displayed in Figure 5. For a single
sensor, the value of ||Pss||1 was computed for different sensor
locations; the optimal sensor location is centered at l̂ = 0.18,
around where the localized disturbance is. For 15 sensors,
searching by the optimization algorithm from [13], the optimal
sensor locations were found to be centered at

l̂=(0.02,0.06,0.10,0.14,0.18,0.22,0.26,0.30,0.34,0.38,0.42,
0.46,0.50,0.54,0.58).

The errors for the two estimates are similar.
A third disturbance that includes both the evenly distributed

disturbance and the spatially localized disturbance:

g(x) = 0.5sech(100(x−0.2))+0.5,

(Figure 6) was also considered. The initial condition (36)
was scaled by a = 6.8543. The same computations as for the
previous two disturbances were done. The value of ||Pss||1 as
the sensor noise covariance is changed are shown in Figure 7.
Two curves

f3(r0) :=C5
√

r0 (C5 ≈ 1.57),

g3(m) :=C6/
√

m (C6 ≈ 2.25).

were fit to the plots in Figure 7(a) and 7(b) respectively. The
same square root relation as for other disturbances seems to
hold with constant C = C5 ≈ C6/

√
2. Estimation using one

sensor with noise variance r0 = 0.2 is compared with that
obtained using 15 sensors each with noise variance r0 = 2 in
Figure 8. For a single sensor, the value of ||Pss||1 was computed
for different sensor locations; the optimal sensor location is
centered at l̂ = 0.18, around where the disturbance peaks. For
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15 sensors, searching by the optimization algorithm from [13],
the optimal sensor locations were found to be centered at

l̂=(0.02,0.06,0.10,0.14,0.18,0.22,0.26,0.30,0.34,0.38,0.42,
0.46,0.50,0.54,0.58).

The accuracy of the estimate obtained with multiple poor
sensors is better than that obtained with one accurate sensor.

B. Simply supported Euler-Bernoulli beam

Consider an Euler-Bernoulli beam of length 1, with Kelvin-
Voigt damping. Let f (t,x) denote the deflection of the beam
at time t and position x. The beam deflection is described by
the partial differential equation

∂ 2 f
∂ t2 +

∂ 4 f
∂x4 + cd

∂ 5 f
∂x4∂ t

= g(x)η(t), t ≥ 0, 0 < x < 1, (38)

where cd is the damping parameter, g(x) models the shape of
the spatially distributed disturbance, and η(t) is a real-valued
white Gaussian noise, such that

w(t) =
∫ t

0
η(s)ds

is a Wiener process of incremental covariance Q. Assume the
initial condition

f (0,x) = f0(x),
∂

∂ t
f (0,x) = f1(x),

and simply supported boundary conditions

f (t,0) = 0,
∂ 2 f (t,0)

∂x2 + cd
∂ 3 f (t,0)

∂x2∂ t
= 0,

f (t,1) = 0,
∂ 2 f (t,1)

∂x2 + cd
∂ 3 f (t,1)

∂x2∂ t
= 0.

Let

Hs(0,1) = { f ∈H 2(0,1) : f (0) = f (1) = 0}

and the state space Z = Hs(0,1)×L2(0,1), with state z :=
( f , ft)T ∈Z . Equation (38) can be written in the state-space
form

dz(t) = Az(t)dt +Gdw(t), z(0) = z0, t ≥ 0, (39)

where

A =

(
0 1
− ∂ 4

∂x4 −cd
∂ 4

∂x4

)
, G =

(
0

g(x)

)
, z0 =

(
f0(x)
f1(x)

)
,

with domain

D(A) = {z = (z1,z2) ∈Z : z′′1 ∈ Hs(0,1),z′′2 ∈ Hs(0,1)}.

Each sensor measures average deflection over a small inter-
val of length 4> 0. Write

l= (l1, l2, . . . , lm)

and define

cl j(x) :=
{

1/4, |x− l j| ≤ 42
0, otherwise

,

for j = 1,2, . . . ,m. With m sensors centred at x = l1, l2, ..., lm,

C(l)z(t) =(
∫ 1

0
cl1(x) f (t,x)dx,

∫ 1

0
cl2(x) f (t,x)dx, . . . ,∫ 1

0
cln(x) f (t,x)dx)T ,

and the output is

y(t) =
∫ t

0
C(l)z(s)ds+ v(t),

where v(t) is an Rm-valued Wiener process of incremental
covariance

R = diag(r0,r0 . . .r0) ∈ Rm×m.

The eigenfunctions of A are used as the basis for a Galerkin
approximation. This approximation satisfies the assumptions
of Theorem 4.2; see for example [20] for details. As for
the diffusion problem, if more than 8 modes are used in the
approxmation (n ≥ 16), optimal observability of the approxi-
mations over the set of posible sensor locations is 0, reflecting
the fact that the original model is at best only approximately
observability. See [28] for details.

For simulations, the parameter values are cd = 0.0001, 4=
0.02, 30 modes were used, and the initial condition

f0(x) = 0.25− (x−0.5)2, f1(x) = 0, 0 < x < 1.

The stochastic differential equations were solved using the
implicit Euler method:

zn(tk+1) = zn(tk)+Anzn(tk+1)4t +Gnw4t(k), (40)

where the time step size 4t = 0.001, and the noise term
w4t(k), that has normal distribution N(0,Q4t), was gen-
erated by the Matlab function ‘randn’ at each time step. It
follows from (40) that

(In−An4t)zn(tk+1) = zn(tk)+Gnw4t(k).

The equation was then solved using Matlab function ‘linsolve’.
Again, three different spatial distributions of the noise were
considered. For all cases, the process noise Q̃ = 1.

Consider first
g(x) = 1.

Estimates obtained using a single high-quality sensor are
compared with estimates obtained using multiple relatively
low-quality sensors. The estimates obtained by using a single
sensor with r0 = 0.002 and by using 15 sensors each with
r0 = 0.02 are compared in Figure 10 with the actual system
state z(t) at the middle point x= 0.5 for t ∈ [0,15]. The optimal
location for the single sensor is l̂ = 0.51; the optimal locations
for 15 sensors are

l̂=(0.35,0.37,0.39,0.41,0.43,0.45,0.47,0.49,0.51,0.53,0.55,
0.57,0.59,0.61,0.63).

For a localized disturbance

g(x) = sech(100(x−0.2)),

comparisons of the actual system state with estimates made
by a single sensor with r0 = 0.002 and by 15 sensors with
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r0 = 0.02 are displayed in Figure 11. The estimation errors are
similar. The optimal location for the single sensor is centred
at l̂ = 0.49; the optimal locations for 15 sensors are

l̂=(0.41,0.43,0.45,0.47,0.49,0.51,0.53,0.55,0.57,0.59,0.61,
0.63,0.65,0.67,0.69).

Then, consider a mixed disturbance that includes both
the evenly distributed disturbance and the spatially localized
disturbance:

g(x) = 0.5sech(100(x−0.2))+0.5,

The estimate obtained using one sensor with r0 = 0.002 is
compared with that obtained using 15 sensors each with r0 =
0.02 in Figure 12. The optimal location for the single sensor
is centred at l̂ = 0.49; the optimal locations for the 15 sensor
are

l̂=(0.37,0.39,0.41,0.43,0.45,0.47,0.49,0.51,0.53,0.55,0.57,
0.59,0.61,0.63,0.65).

All simulation results illustrated in Figure 10-12 indicate
that increasing the number of sensors can compensate for
higher sensor noise.

C. Two-dimensional diffusion

Let Ω be the L-shaped region in R2 shown in Figure 13.
Consider two-dimensional diffusion on Ω with white Gaussian
noise disturbance:

zt = σ

(
∂ 2z
∂x2

1
+

∂ 2z
∂x2

2

)
+g(x1,x2)η(t), (x1,x2) ∈Ω,

z(t,x1,x2) |∂Ω= 0,
z(0,x1,x2) = z0(x1,x2),

(41)

where σ is the constant diffusivity, g(x1,x2) models the shape
of the spatially distributed disturbance, and η(t) is assumed
to be a real-valued white Gaussian noise, such that

w(t) =
∫ t

0
η(s)ds

is a Wiener process of incremental covariance Q. The state
space is Z = L2(Ω), and the sensor noise operator G ∈
L (R,Z ) is of the form that for k ∈ R,

Gk = kg(x1,x2).

The infinitesimal generator A = σ∇2 is defined in the weak
form (see [14, §1.5.3])

Az = σφz,

where φz ∈H −1(Ω) satisfies∫
Ω

φzϕ dx1dx2 =−
∫

Ω

∇z ·∇ϕ dx1dx2

for all ϕ ∈H 1
0 (Ω), with the domain

D(A) = {z ∈H 1
0 (Ω) : ∇

2z ∈ L2(Ω)} ⊂Z .

Each sensor measures the average of z(t) over a small square
of side length 4> 0. Write

l= (l1, l2, . . . , lm) ∈ R2×m,

and define

cl j(x1,x2) :=
{

1/42, if |x1− l j(1)| ≤ 42 , |x2− l j(2)| ≤ 42
0, otherwise,

for j = 1,2, . . . ,m. With m sensors centred at x = l1, l2, ..., lm,

C(l)z = (〈cl1 ,z〉,〈cl2 ,z〉, . . . ,〈clm ,z〉)
T ,

the measurement is

y(t) =
∫ t

0
C(l)z(s)ds+ v(t),

where v(t) is an Rm-valued Wiener process of incremental
covariance

R = diag(r0,r0 . . .r0) ∈ Rm×m.

A standard finite element method with linear basis functions
[2] was used to approximate the two-dimensional diffusion
equation. A triangular mesh of the L-shaped region Ω was
created and refined using Matlab functions ‘initmesh’ and
‘refinemesh’. The mesh is shown in Figure 13. Suppose there
are n interior nodes {ν j : j = 1,2, . . . ,n} in the mesh. Basis
functions {φ j : j = 1,2, . . . ,n} ⊂ V are chosen to be linear
spline functions such that

φ j(νk) = δ jk, j,k = 1,2, . . . ,n,

where δ jk is the Kronecker delta.
All the assumptions of Theorem 4.2 are again satisfied; see

[16] for a similar example.
For simulations, the triangular mesh shown in Figure 13 was

used, which contains N = 526 nodes. The mesh size is 0.1, that
is, the maximal length of any triangle side. The parameters are
σ = 0.1, Q = 0.01, 4= 0.1, and the initial condition

z0(x1,x2) = sech((10(x1−1.5)2 +50(x2−0.3)2)).

The implicit Euler method was used to solve the resulting
stochastic differential equation, with time step size 4t =
0.001, and the noise term w4t(k), that has normal distribution
N(0,Q4t), was generated by the Matlab function ‘randn’ at
each time step.

Consider a spatially localized disturbance centered at x =
(1.5,1.5) (see Figure 14):

g(x) = sech(100((x1−1.5)2 +(x2−1.5)2)).

Using a single sensor, the optimal sensor location is centered at
x = (1.55,1.55), near the maximum of the disturbance. When
using 25 sensors, the optimal sensor locations are still gathered
at around the location of the disturbance (see Figure 15). The
estimates obtained by using a single sensor with r0 = 0.0002,
and by using 25 sensors each with r0 = 0.002, are compared
in Figure 16. Again, the two estimates are similar, which
indicates that using more sensors can compensate for large
noise in sensors.
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VI. CONCLUSIONS

It was shown that the nuclear norm of the solution to the
operator Riccati equation is the steady-state minimum error
variance of an estimate. Earlier results and an algorithm on
linear-quadratic optimal actuator location extend in a straight-
forward way to locate sensors that minimize the error variance.

Using the value of ||Pss||1 as the optimality criterion, the
effects of sensor noise on state estimation were investigated.
It was proven formally that reducing the sensor noise improves
the estimate, and so does increasing the number of sensors.
Thus, a larger number of sensors can compensate for poor
sensor quality.

Three examples were examined: one-dimensional diffu-
sion, simply supported Euler-Bernoulli beam with Kelvin-
Voigt damping, and two-dimensional diffusion. For the one-
dimensional diffusion equation, three different disturbances
were considered: spatially evenly-distributed disturbance, spa-
tially localized disturbance and mixed disturbance that com-
bines the evenly distributed disturbance with a spatially local-
ized disturbance. Assuming that all the selected sensors are
optimally placed, accuracy of the estimation does depends
on sensor quality, as expected. Furthermore, using a larger
number of poor quality sensors, that is those with large noise
variance, leads to an estimator with accuracy comparable to
that with a single good quality sensor. Similar results are
also observed for the simply supported Euler-Bernoulli beam
and the two-dimensional diffusion equation. Also, for the
one-dimensional diffusion equation, there is an approximately
square root relation between ‖Pss‖1 and the noise variance, as
well as between ‖Pss‖1 and the number of sensors. A theoret-
ical justification for this observation has not been established.

Current research effort is concentrating on extending this
work on sensor choice and location to nonlinear systems.
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[15] H. R. Grümm. Two theorems about Cp. Reports on
Mathematical Physics, 4(3), 1973.

[16] D. Kasinathan and K. A. Morris. H∞-optimal actuator



0018-9286 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2017.2714643, IEEE
Transactions on Automatic Control

16

0 2 4 6 8 10
−0.02

−0.01

0

0.01

0.02

0.03

0.04

t

st
a

te
 a

t 
x=

(1
.5

1
,1

.0
2

)

(a)

 

 

0 2 4 6 8 10
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

t

st
a

te
 a

t 
x=

(1
.7

4
,1

.3
6

)

(b)

 

 
actual state

R
0
=0.0002; m=1

R
0
=0.002; m=25

actual state
R

0
=0.0002; m=1

R
0
=0.002; m=25

Fig. 16. Comparison of two estimates: one obtained when using a single
optimally placed sensor with r0 = 0.0002 (red dashed line) and the other
obtained when using 25 optimally placed sensors with r0 = 0.002 (black dotted
line), with the actual state (blue solid line) at points (a) x = (1.51,1.02), (b)
x = (1.74,1.36).

location. IEEE Tran. on Automatic Control, 58(10):2522
– 2535, 2013.

[17] T. Khan, K. A. Morris, and M. Stastna. Computation
of the optimal sensor location for the estimation of a
linear dispersive wave equation. In American Control
Conference, 2015.

[18] Sarah King, Wei Kang, and Liang Xu. Observability for
optimal sensor locations in data assimilation. Int. J. Dyn.
Control, 3(4):416–424, 2015.

[19] G. N. Milstein. Numerical integration of stochastic
differential equations, volume 313 of Mathematics and
its Applications. Kluwer Academic Publishers Group,
Dordrecht, 1995. Translated and revised from the 1988
Russian original.

[20] K. A. Morris. Design of finite-dimensional controllers for
infinite-dimensional systems by approximation. Jour. of
Mathematical Systems, Estimation and Control, 4(2):1–
30, 1994.

[21] K. A. Morris. Linear-quadratic optimal actuator location.
IEEE Trans. Automat. Control, 56(1):113–124, 2011.

[22] Yannick Privat, Emmanuel Trélat, and Enrique Zuazua.
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