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Abstract

In this thesis we bring together several techniques in the theory of non-self-adjoint
operator algebras and operator systems. We begin with classification of non-self-adjoint
and self-adjoint operator algebras constructed from C*-correspondence and more specifi-
cally, from certain generalized Markov chains. We then transitions to the study of non-
commutative boundaries in the sense of Arveson, and their use in the construction of
dilations for families of operators arising from directed graphs. Finally, we discuss connec-
tions between operator systems and matrix convex sets and use dilation theory to obtain
scaled inclusion results for matrix convex sets.

We begin with classification of non-self-adjoint operator algebras. In Chapter 3 we
solve isomorphism problems for tensor algebras arising from weighted partial dynamical
systems. We show that the isometric isomorphism and algebraic / bounded isomorphism
problems are two distinct problems, that require separate criteria to be solved. Our meth-
ods yield an alternative solution to Arveson’s conjugacy problem, first solved by Davidson
and Katsoulis.

A natural bridge between operator algebras / systems and C*-algebras is the C*-
envelope, which is a non-commutative generalization of the notion of Shilov boundary
from the theory of function algebras. In Chapter 4 we investigate C*-envelopes arising
from the operator algebras of stochastic matrices via subproduct systems. We identify
and classify these non-commutative boundaries in terms of the matrices, and exhibit new
examples of C*-envelopes of non-self-adjoint operator algebras arising from a subproduct
system construction.

In Chapter 5 we apply Arveson’s non-commutative boundary theory to dilate every
Toeplitz-Cuntz-Krieger family of a directed graph G to a full Cuntz-Krieger family for G.
We also obtain a generalization of our dilation result to the context of colored directed
graphs, which relies on the complete injectivity of amalgamated free products of operator
algebras.

The last part of this thesis is devoted to the interplay between matrix convex sets and
operator systems, inspired by the work of Helton, Klep and McCullough. In Chapter 6
we establish a functorial duality between finite dimensional operator systems and matrix
convex sets that recovers many interpolation results of completely positive maps in the
literature. We proceed to investigate dual, minimal and maximal matrix convex sets,
and relate them to dilation theory, scaled inclusion results and operator systems. By
using dilation theory, we provide rank-independent optimal scaled inclusion results for
matrix convex sets satisfying a certain symmetry condition, and prove the existence of an
essentially unique self-dual matrix convex set.
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Chapter 1

Introduction

The study of operator algebras, and particularly C∗-algebras, has been a very active area
of research in recent years, spearheaded by Elliott’s classification program for large classes
of simple C∗-algebras. Structural results for operator algebras often establish connections
to classical dynamical theories. One very good example for this phenomenon is the work of
Elliott in [51] and [52], on classification of approximately finite dimensional and real-rank
zero circle C∗-algebras in terms of K-theory. Using this work, Giordano, Putnam and Skau
[56] were able to classify Cantor minimal Z-systems in terms of orbit equivalence. However,
operator algebras need not be simple nor self-adjoint in general, yet they still yield many
interesting invariants for the underlying dynamics. The first part of this thesis is comprised
of Chapters 3, 4 and 5, and deals with non-commutative boundaries for different classes of
non-self-adjoint operator algebras along with the classification of these operator algebras
and their associated boundaries.

In the realm of real algebraic geometry and convex optimization, many applications
were found for matricial domains defined by a linear matrix inequality, especially in the
work of Helton, Klep and McCullough. A good instance of this is the solution of Helton,
Klep, McCullough and Schweighofer [64] to the matrix cube problem in optimization,
which was considered by Ben-Tal and Nemirovski [16]. More precisely, using dilation,
they find optimal scales θ(m) such that for any LMI domain DB, with B comprised of
matrices whose ranks are at most m, and [−1, 1]d ⊆ DB(1), we have that every contractive
d-tuple X = (X1, ..., Xd) belongs to θ(m)DB. On the other hand, in operator algebras,
CP maps are the fabric for exactness, amenability and nuclearity-type properties. In
[80, 81], Kavruk, Paulsen, Todorov and Tomforde systematically study nuclearity related
properties of operator systems, and relate them to many important problems from quantum
information theory and operator algebras. One such problem is the well-known Connes’
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embedding conjecture (See [96]), for which they obtain many new and interesting equivalent
formulations and simplify the proofs for existing ones. The second part of this thesis is
comprised of Chapter 6, dealing with the connections between matrix convex sets, dilation
theory and operator systems.

We next give an introduction for this thesis, starting with the first part. Aside from
this introduction, more specific details can be found in the introductions to any of the
non-preliminary chapters.

The origin of the classification of non-self-adjoint operator algebras is in the work of
Arveson [4] and Arveson and Josephson [13]. Peters [102] continued this investigation where
he introduced his semi-crossed product algebra, and generalized the Arveson–Josephson
classification. Hadwin and Hoover [60] improved Peters’ classification by removing some
of the restrictions on fixed points, and for decades it was unknown if a restrictions on fixed
points was necessary. This problem came to be known as Arveson’s conjugacy problem.

Tensor algebras of C∗-correspondences have been the subject of a deep study by Muhly
and Solel [90, 91, 92] which has led to a far-reaching non-commutative generalization of
function theory. Some of the first successful attempts to classify subclasses of tensor alge-
bras outside the scope of [92] came from tensor algebras associated to countable directed
graphs. At around the same time, Solel [116] and Katsoulis and Kribs [73] independently
introduced methods of representations into upper triangular 2 × 2 matrices to solve iso-
morphism problems for graph tensor algebras. We will provide an alternative proof of their
results when the graphs G and G′ are finite and multiplicity-free (See Corollary 3.6.4).

Arveson’s conjugacy problem was finally resolved by Davidson and Katsoulis [34], by
adapting the methods of Hadwin and Hoover in [60], and the methods of representations
into upper triangular 2× 2 matrices in [73, 116]. They prove that for two continuous maps
σ : X → X and τ : Y → Y on locally compact spaces X and Y respectively, Peter’s
semi-crossed product algebras C0(X)×σ Z+ and C0(Y )×τ Z+ are algebraically / bounded
/ isometrically isomorphic if and only if σ and τ are conjugate. We will give an alternative
proof of this result in the case when X and Y are compact (See Corollary 3.6.5).

In Chapter 3, which is based on [41], we provide classification results for tensor algebras
T+(σ,w) arising from weighted partial systems (σ,w) (See Section 3.2) up to isometric /
bounded isomorphism and in some cases up to algebraic isomorphism, in terms of branch-
transition and weighted-orbit conjugacy. Our objective is to show that weighted partial
systems (WPS for short) yield tensor algebras which are still completely classifiable up
to bounded / isometric isomorphisms, while covering many examples of such classification
results. The following is a shorthand version of Theorems 3.5.6 and 3.5.7. Suppose (σ,w)
and (τ, u) are WPS over compact X and Y respectively.
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1. T+(σ,w) and T+(τ, u) are isometrically isomorphic if and only if if (σ,w) and (τ, u)
are branch-transition conjugate.

2. T+(σ,w) and T+(τ, u) are bounded isomorphic if and only if (σ,w) and (τ, u) are
weighted-path conjugate.

Using this theorem, we show that the isometric isomorphism and algebraic / bounded
isomorphism problems for tensor algebras are two distinct problems, that require separate
criteria to be solved.

By an operator algebra in this thesis we mean a (not necessarily self-adjoint) closed
subalgebra A of a C∗-algebra B. Recall that given an operator algebra A, a C∗-cover is a
pair (B, ι) where B is a C∗-algebra and ι : A → B is a completely isometric homomorphism,
such that C∗(ι(A)) = B. A C∗-cover is called the C*-envelope for A if for any other C∗-
cover (B′, ι′), the map ι′(a) 7→ ι(a) extends uniquely to a surjective ∗-homomorphism
B′ → B. In this precise sense, the C∗-envelope is the smallest C∗-algebra which contains
a completely isometric copy of A, and usually the algebra B is denoted C∗e (A) and the
map ι is suppressed. The theory of C∗-envelopes and non-commutative boundaries was
introduced and applied by Arveson in his seminal “Subalgebras of C∗-algebras” papers
[5, 6] and [9].

The existence of the C∗-envelope of a unital operator algebra was first proven by
Hamana [61], by way of proving the existence of an injective envelope for operator systems.
An alternative proof via dilation theory was found by Dritschel and McCullough in [45].
The new dilation idea in this alternative proof allowed Arveson [11] to follow the original
strategy he envisioned in [5, 6] to prove the existence of the C∗-envelope via boundary
representations in the separable case. Davidson and Kennedy finally realized Arveson’s
vision in full in [36] by providing a simpler proof without the assumption of separability.

Given a C∗-correspondence E, the operator algebras associated to shift operators (also
called creation operators) over the Fock correspondence F(E) have been the subject of con-
siderable attention by many researchers. The non-self-adjoint operator algebra generated
by these shifts is the aforementioned tensor algebra, denoted by T+(E), and it provides a
very successful prototype for the study of operator algebras. It is closely related to the
Toeplitz algebra T (E), which is the C∗-algebra generated by the shifts, and its celebrated
universal quotient, the Cuntz-Pimsner-Katsura algebra O(E) (See [78] and [104]). In fact,
by a theorem of Katsoulis and Kribs [76] we know that C∗e (T+(E)) ∼= O(E).

Analogously, given a a subproduct system X in the sense of Shalit and Solel [113] of
C∗-correspondences over a C∗-algebra A (See Subsection 2.2.2), one obtains the operator
algebras associated to shifts on F(X): the tensor algebra T+(X), the Toeplitz algebra
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T (X) and the Cuntz-Pimsner algebra O(X), where the latter was defined in [119]. This
new framework generalizes the previous one, in the sense that a C∗-correspondence E
gives rise to a product system X of tensor iterates of E, whose Fock correspondence and
associated operator algebras are precisely the ones discussed in the previous paragraph.
However, when X is not a product system, as opposed to O(E) mentioned in the previous
paragraph, it is no longer clear if O(X) has a universal property or a co-universal property
in the form of a gauge-invariant uniqueness theorem.

There has been important work on the operator algebras arising from subproduct sys-
tems over C, or equivalently, the special case of subproduct systems whose C∗-corres-
pondence fibers are actually Hilbert spaces, see for example [113, 37, 72]. In [42], we turned
to the simplest case for which the fibers of the subproduct system are not Hilbert spaces.
Namely, we considered the case of subproduct systems of C∗-correspondences over `∞(Ω)
when Ω is countable with more than one point. Such a subproduct system and its asso-
ciated operator algebras are conveniently parametrized by a stochastic matrix P over the
state space Ω, and in [42] we resolve isomorphism problems of the tensor algebras T+(P )
associated to stochastic matrices P , via these subproduct systems. We denote by T (P )
and O(P ) the Toeplitz and Cuntz algebras associated to P via these subproduct systems.

In Chapter 4, which is based on joint work with Daniel Markiewicz [43], we show that
for an irreducible stochastic matrix P , the C∗-envelope C∗e (T+(P )) fits in the following
sequence of quotient maps

T (P ) −→ C∗e (T+(P ))
πP−→ O(P )

where for appropriate choices for P all three algebras T (P ), C∗e (T+(P )) and O(P ) are
pairwise non stably isomorphic. It is known that for general subproduct systems X, we
may have that the algebras T (X), C∗e (T+(X)) and O(X) are all distinct. However, the
subproduct system arising from an irreducible stochastic matrix P is minimal. Further-
more, if one is to have a co-universal property as one has for the C∗-envelope, this perhaps
suggest that a different definition for O(X) is needed when X is not a product system.

Our concrete description of the C∗-envelope leads to an unexpected richness of possi-
bilities. We classify C∗e (T+(P )) up to ∗-isomorphism and stable isomorphism and obtain
the following results. For an irreducible stochastic matrix P , denote by nP the number of
columns of P whose entries are only in {0, 1}. For a large class of irreducible stochastic
matrices P and Q over state sets ΩP and ΩQ we obtain that

1. C∗e (T+(P )) and C∗e (T+(Q)) are stably isomorphic if and only if nP = nQ (See Theorem
4.4.10).
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2. C∗e (T+(P )) and C∗e (T+(Q)) are ∗-isomorphic if and only if |ΩP | = |ΩQ|, nP = nQ and
up to a reordering of ΩQ, the matrices P and Q have the same column nullity in
every column (See Definition 4.4.8 and Theorem 4.4.11).

These results are proven by determining the K-theory of these C∗-algebras and by com-
bining this information with results due to Paschke and Salinas [97] in extension theory.

In [28], Cuntz and Krieger introduce C∗-algebras associated to finite, sourceless, sinkless
and multiplicity free graphs, and use them to study and produce invariants of subshifts of
finite type. They show that the stabilized Cuntz-Krieger algebra is an invariant of flow
equivalence of subshifts of finite type, and that the classical Bowen-Franks groups arise as
the extension groups of the Cuntz-Krieger algebras.

It is natural to ask about the relationship between C∗e (T+(P )) and the Cuntz-Krieger
graph algebra OGr(P ), where Gr(P ) is the unweighted directed graph obtained from a finite
irreducible stochastic matrix P . We compare these two algebras arising from an irre-
ducible stochastic matrix P , and show that OGr(P ) and C∗e (T+(P )) generally yield distinct
invariants for Gr(P ).

A directed graph G is a quadruple (V,E, s, r) consisting of a set V of vertices, a set E
of edges and two maps s, r : E → V , called the source map and range map, respectively.
If v = s(e) and w = r(e) we say that v emits e and w receives it.

For a directed graph G = (V,E, s, r) a Toeplitz-Cuntz-Krieger G-family (P, S) is a set
of mutually orthogonal projections P := {Pv : v ∈ V } and a set of partial isometries
S := {Se : e ∈ E} which satisfy the Toeplitz-Cuntz-Krieger relations:

(I) S∗eSe = Ps(e) for every e ∈ E, and

(TCK)
∑

e∈F SeS
∗
e ≤ Pv for every finite subset F ⊆ r−1(v).

We say that (P, S) is a Cuntz-Krieger G-family if, in addition, we have

(CK)
∑

r(e)=v SeS
∗
e = Pv for every v ∈ V with 0 < |r−1(v)| <∞.

The universal C∗-algebra T (G) generated by Toeplitz-Cuntz-KriegerG-families is called
the Toeplitz-Cuntz-Krieger algebra of the graph G, and the universal C∗-algebra O(G)
generated by Cuntz-Krieger families is called the Cuntz-Krieger algebra of the graphG. The
tensor algebra T+(G) is then just the norm-closed operator algebra generated by a universal
Toeplitz-Cuntz-Krieger family, and is a subalgebra of T (G). These algebras provide a rich
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supply of examples of operator algebras. By results of Enomoto and Watatani [53] we have
that O(G) coincides with the classical Cuntz-Krieger algebras OG defined in [28] when G
is finite, sourceless, sinkless and multiplicity free. We recommend [106] for an excellent
account of the theory of graph C∗-algebras. In fact, in [106, Chapter 8] it is explained how
T+(G), T (G) and O(G) arise as the Tensor, Toeplitz and Cuntz-Pimsner-Katsura algebras
of a canonical C∗-correspondence associated with G.

Chapter 5 is based on joint work with Guy Salomon [44], where we apply Arveson’s
non-commutative boundary theory to show that every TCK family dilates to a full CK
family. More precisely, given a TCK G-family (P, S) on a Hilbert space H, we show there
exists a CK G-family (Q, T ) on a Hilbert space K containing H such that

(CKF) sot-
∑

r(e)=v TeT
∗
e = Qv, for every v ∈ V with r−1(v) 6= ∅.

and for any polynomial f ∈ C〈V,E〉 in non-commuting variables, we have that f(P, S) =
PHf(Q, T )|H where PH is the projection from K to H. This yields an alternative proof to
a classical result of Katsoulis and Kribs [75] that C∗e (T+(G)) is ∗-isomorphic to O(G).

We push our dilation results further, and leverage them to the free setting. We prove
a complete injectivity result for operator algebras amalgamated over any common C∗-
algebra, generalizing a result of Armstrong, Dykema, Exel and Li in [3]. We then use
complete injectivity together with a special joint completely positive extension result in [21]
to obtain similar dilation results for TCK families associated to colored directed graphs.
Universal non-self-adjoint operator algebras associated to colored directed graphs were
investigated by [47] where their C∗-envelopes were said to coincide with free products of
associated Cuntz-Krieger algebras. However, in [32] a gap in [46] (on which [47] relied)
was found and corrected. Our complete injectivity result provides another way to fix this
gap, and we recover these results for colored directed graphs as well.

We next discuss the second part of this thesis, on matrix convex sets and finite di-
mensional operator systems. In linear programming we are given n linear inequalities∑d

i=1 a
(j)
i xi ≤ bj and an linear objective function f(x) =

∑d
i=1 cixi. The goal is then to

find a global maximum / minimum for the function f inside the convex polyhedral domain

D := { x = (x1, ..., xd) ∈ Rd |
d∑
i=1

a
(j)
i xi ≤ bj, ∀1 ≤ j ≤ d }.

Another, equivalent way to express the above domain D is as follows: we define Ai =
diag(a

(1)
i , ..., a

(n)
i ) and B = diag(b1, ..., bn) and we have x = (x1, ..., xd) ∈ D if and only if

d∑
i=1

xiAi ≤ B. (1.1)
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Now, if we wanted to arrive at the notion of a semidefinite program, we enlarge the type
of convex domains that we may optimize a linear objective function on. We do this by
allowing for not-necessarily diagonal matrices Ai in equation (1.1), to obtain what is known
as a linear matrix inequality domain or spectrahedron. A main emerging branch of convex
optimization in the last 20 years is that of semidefinite programming [94], and is based
on linear matrix inequalities and spectrahedra, as opposed to just a convex polyhedral
domains.

In order to simplify optimization problems related to spectrahedra, it is often useful
to check if a complicated spectrahedron is included in a simpler spectrahedron (such as
a polyhedral domain). However, Ben-Tal and Nemirovski [16] show that even for the
cube [−1, 1]d, there are spectrahedra D such that determining whether or not containment
[−1, 1]d ⊆ D holds is an NP-hard problem. Instead of this, Helton, Klep and McCullough
[63] introduce a relaxation of the problem by considering free spectrahedra. Indeed, for a
d-tuple of self-adjoint matrices A = (A1, ..., Ad) we define

DsaA (n) = { X = (X1, ..., Xd) ∈Mn(C)dsa |
d∑
i=1

Ai ⊗Xi ≤ I}

where ⊗ is the usual Kronecker tensor. It is then shown, for another self-adjoint d-tuple of
matrices B that the simultaneous containment DsaA ⊆ DsaB (meaning that DsaA (n) ⊆ DsaB (n)
for all n ∈ N) can be verified in “approximately polynomial time” (using a feasibility
semidefinite program). Clearly DsaA ⊆ DsaB implies DsaA (1) ⊆ DsaB (1), so this is a relaxation
of the containment problem of spectrahedra. Helton, Klep and McCullough also provide
examples where DsaA (1) ⊆ DsaB (1) while DsaA 6⊆ DsaB .

One highly important feature of free spectrahedral containment is that it encodes the
interpolation of unital completely positive maps between finite dimensional operator sys-
tems. More precisely, in [63, Theorem 3.5] it is shown, assuming boundedness of the
spectrahedron DA, that we have containment DA ⊆ DB if and only if there is a unital com-
pletely positive map φ : VA → VB mapping Ai to Bi, where VA and VB are the operator
system generated by the Ai’s and Bi’s respectively.

In [49], Effros and Winkler provide a Hahn–Banach separation type theorem for matrix
convex sets introduced by Wittstock [121]. These quantize the respective notions and
results from convex theory in Banach spaces. A prominent example of a matrix convex set
is none other than the free spectrahedra DA. Hence, it comes as no surprise that the Effros–
Winkler Hahn–Banach separation theorem has been useful for studying spectrahedra.

In Chapter 6, which is based on joint work with Kenneth Davidson, Orr Shalit and
Baruch Solel [31], we unify, expand and simplify the theory for (finite dimensional) ma-
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trix convex sets, by establishing a categorical duality functor between them and finite
dimensional operator systems. Our categorical duality is then used to relate maximal and
minimal operator systems structures on Archimedean order unit spaces in the sense of [100]
with maximal and minimal matrix convex sets with a given first level convex set, together
with dual operator system structures in the sense of [25] with dual matrix convex sets.

We accomplish our results by replacing free spectrahedra DA with their matrix dual
matrix ranges W(A) of A, and appealing to the techniques of Arveson [6] and those of
Effros and Winkler [49]. For a d-tuple of operators A = (A1, ..., Ad) on a Hilbert space H
we define W(A) = (Wn(A)) via

Wn(A) = { X = (φ(A1), ..., φ(Ad)) | φ ∈ UCP (VA, B(H)) }.

We show that under certain minimality assumptions on A, the matrix convex set W(A) is
a complete unitary / approximate unitary invariant for A. Using duality one can recover
a generalization of a result of [63] in terms of DA, for when A is a matrix d-tuple.

In [64], Helton, Klep, McCullough and Schweighofer tried to turn LMI relaxation of
the matrix cube inclusion around. They found numerical estimates on the optimal scale
θ(m) ≥ 1, such that

[−1, 1]d ⊆ DsaB (1) =⇒ C ⊆ θ(m)DsaB
for all d-tuples B of matrices of ranks at most m, and C the matrix convex set of d-
tuples of contractions. They accomplish this feat by simultaneously dilating, up to some
scaling, all contractive m×m matrices to a subset of commuting contractions on an infinite
dimensional Hilbert space.

We were inspired by their results, and decided to try and obtain an inclusion scale
that depends on the dimension d as opposed to the ranks of B. In the abstract setting,
we relate minimal and maximal matrix convex sets and operator systems with the general
scaled inclusion problem. We use dilation techniques to provide a rich class of “symmetric”
convex sets such that for any two d-tuple of operators A = (A1, ..., Ad) and B = (B1, ..., Bd)
on Hilbert space, with DA(1) in the class, we have

DsaA (1) ⊆ DsaB (1) =⇒ DsaA ⊆ d · DsaB .

As mentioned earlier, the matrix convex set inclusion DA ⊆ DB is helpful for verifying the
spectrahedra inclusion DsaA (1) ⊆ DsaB (1). As opposed to that, the inclusion DsaA ⊆ d · DsaB
is then helpful to rule out the spectrahedra inclusion DsaA (1) ⊆ DsaB (1). For spectrahedra
DsaA with DA(1) the ball, we show that the above scaling is in fact optimal.

After figuring out duality of matrix convex sets and its relation to that of finite di-
mensional operator systems, it is natural to ask for a self-dual matrix convex set. In the
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operator systems category, this was accomplished in [95], where a self-dual operator system
structure SOH was put on Pisier’s self-dual operator space OH. From the viewpoint of
matrix convex sets, we show the existence of an essentially unique self-dual matrix con-
vex set. As a final application, we use this uniqueness in the matrix convex set category
to show, for any fixed dimension, that the operator system of matrix-affine maps on this
self-dual matrix convex set is unitally completely order isomorphic to SOH.

The following is an overview of the chapters of this thesis. This thesis has six chapters,
including this introduction.

In Chapter 2 we give the necessary preliminaries on Arveson’s non-commutative bound-
ary theory, subproduct systems and their operator algebras, topological and dynamical
constructs to be used in this thesis and on matrix convex sets and operator systems ax-
iomatics.

In Chapter 3 we introduce weighted partial systems, their C∗-correspondences and
their associated tensor algebras. We characterize different isomorphism between the C∗-
correspondences, and then use character space techniques to get our classification results
for the tensor algebras. We finish this chapter with alternative proofs to two previously-
obtained results in classification of operator algebras.

In Chapter 4 we compute the Cuntz-Pimsner algebra of an irreducible stochastic matrix
via a subproduct systems along with its extension theory. We use this to compute the C∗-
envelope of the non-self-adjoint tensor algebra of this subproduct system, and classify them
up to stable and ∗-isomorphism. We conclude this chapter with examples and a comparison
with the classical Cuntz-Krieger algebra associated to the graph of the stochastic matrix.

In Chapter 5 we apply Arveson’s non-commutative boundary theory to obtain optimal
dilations of Toeplitz-Cuntz-Krieger families to full Cuntz-Krieger families. This gives us an
alternative proof to a C∗-envelope result of Katsoulis and Kribs for graph tensor algebras.
We prove a complete injectivity result for amalgamated free products of operator algebras
which allows us to generalize our results to the free setting, in the context of families of
operator associated to colored directed graphs.

Finally, in Chapter 6 we establish a categorical duality between (finite dimensional)
matrix convex sets and finite dimensional operator systems. We use this to describe and
relate minimal, maximal and dual structures in these categories. This then comes into
play for obtaining scaled inclusion results, especially for matrix convex sets with ground
floor satisfying a certain symmetry condition. Finally, we get optimal inclusion results for
matrix balls, along with a description of a self-dual matrix convex set that coincides with
the self-dual operator system SOH up to categorical duality.
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Chapter 2

Preliminaries

2.1 Non-commutative boundaries

2.1.1 C*-envelope, unique extension property and maximality

Operator algebras and operator systems can be given an axiomatic definition, as was shown
in [20] and [25] respectively. This means that there is an intrinsic operator structure to these
objects that is preserved by any completely isometric homomorphism / unital complete
order embedding. We will survey the theory of non-commutative boundaries for unital
operator algebras and operator systems, and we refer the reader to [5, 6, 10, 18] for a more
in-depth treatment of the theory. We will denote operator algebras and C*-algebras by A
and B, operator systems by V and W .

LetM be an operator algebra or an operator system. We say that the pair (ι,B) is a C*-
cover for the operator algebra / operator systemM, if ι :M→ B is a completely isometric
homomorphism / unital complete order embedding respectively, and C∗(ι(M)) = B.

There is always a unique, smallest C*-cover for an operator algebra / operator system
M. This C*-cover (C∗e (M), κ) is called the C*-envelope ofM and it satisfies the following
universal property: given any other C*-cover (B, ι) forM, there exists a (necessarily unique
and surjective) ∗-homomorphism π : B → C∗e (M), such that π ◦ ι = κ. We will sometimes
identify M with its image ι(M) under a given C*-cover (ι,B) for M.

For an operator algebra / operator system M generating a C*-algebra B, an ideal J
of B is called a boundary ideal for M if the quotient map B → B/J is a unital complete
isometry onM. The largest boundary ideal JM ofM in B is called the Shilov ideal ofM
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in B, and its importance in our context is that it gives a way of computing the C*-envelope.
Namely, the C*-envelope of M is always isomorphic to B/JM.

Suppose M is a unital operator algebra / operator system generating a C*-algebra
B. We say that a unital complete contraction ρ : M → B(H) has the unique extension
property if the only unital completely positive extension to B is a ∗-representation.

When V is an operator system, by [99, Proposition 3.5] any unital complete contraction
must be completely positive, and when A is an operator algebra, any unital completely
contractive map ρ can be extended to a unital completely positive map on the operator
system A∗ + A. Hence, when M is a unital operator algebra / operator system, by
Arveson’s extension theorem any unital complete contraction ρ : M → B(H) has some
unital completely positive extension φ : B → B(H). WhenM is a unital operator algebra
and ρ has the unique extension property, it is automatically multiplicative.

We will mostly be interested in unital complete contractions that arise from restrictions
of ∗-homomorphisms on the C*-cover. When π : B → B(H) is a ∗-representation such that
π|M has the unique extension property, then any boundary ideal ofM in B is annihilated
by π. We will call such π a boundary representation if it is also irreducible. The boundary
theorem of Davidson and Kennedy [36] then describes the Shilov ideal as the intersection
of all kernels of boundary representations, providing another way of computing the C*-
envelope.

For a unital operator algebra / operator system M and a unital complete contraction
ϕ :M→ B(H), a unital complete contraction ψ :M→ B(K) is said to dilate ϕ if there
is an isometry V : H → K such that for all a ∈ M we have ϕ(a) = V ∗ψ(a)V . Since V
is an isometry, we can identify H ∼= V (H) as a subspace of K, so that ψ dilates ϕ if and
only if there is a larger Hilbert space K containing H such that for all m ∈ M we have
that ϕ(m) = PHψ(m)|H where PH is the projection onto H. We say that a unital complete
contraction ρ : M → B(K) is maximal if whenever π is a unital complete contraction
dilating ρ, then in fact π = ρ⊕ ψ for some unital complete contraction ψ.

Based on ideas of Muhly and Solel from [89], Dritschel and McCullough [45, Theorem
1.1] (See also [10]) showed that a unital complete contraction ρ :M→ B(K) is maximal if
and only if it has the unique extension property. Dritschel and McCullough [45, Theorem
1.2] then used this to show that every unital complete contraction ρ onM can be dilated to
a maximal unital complete contraction π on M. This provided the first dilation-theoretic
proof for the existence of the C*-envelope for unital operator algebras, operator systems,
and for unital operator spaces (See [71]).

In [12] Arveson investigated a closely related notion for C*-covers called hyperrigidity.
One of the equivalent formulations for hyperrigidity of a unital operator algebra / operator

11



system M in a C*-cover (ι,B) is that for every ∗-representation π : B → B(H), the
restriction π|M has the unique extension property. In particular, since the Shilov ideal JM
is contained in the intersection of kernels of all ∗-representations, it must be trivial, so that
the C*-envelope must be B = C∗e (M).

2.1.2 Boundary theory for non-unital algebras

We explain how to define the notions of maximality and the unique extension property
for representations of non-unital operator algebras, in a way that yields essentially the
same theory as in the unital case. For an operator algebra A, we will say that a map
ϕ : A → B(H) is a representation of A if it is a completely contractive homomorphism.

If A ⊆ B(H) is a non-unital operator algebra generating a C*-algebra B = C∗(A), a
theorem of Meyer [88, Section 3] (see also [18, Corollary 2.1.15]) states that every represen-
tation ϕ : A → B(K) extends to a unital representation ϕ1 on the unitization A1 = A⊕CIH
of A by specifying ϕ1(a+ λIH) = ϕ(a) + λIK. This theorem allows one to show that every
representation φ has a completely contractive and completely positive extension to B via
Arveson’s extension theorem. In fact, this is a version of Arveson’s extension theorem
for non-unital operator algebras. Meyer’s theorem also shows that A has a unique (one-
point) unitization, in the sense that if (ι,B) is a C*-cover for the operator algebra A, and
B ⊆ B(H) is some faithful representation of B, then the operator-algebraic structure on
A1 ∼= ι(A) + C1H is independent of the C*-cover and the faithful representation of B.

Next, we discuss how to extend the notions of maximality and the unique extension
property to non-unital operator algebras.

Definition 2.1.1. Let A ⊆ B(H) be an operator algebra generating a C*-algebra B.

1. We say that a representation ρ : A → B(K) has the unique extension property (UEP
for short) if every completely contractive and completely positive map π : B → B(K)
extending ρ is a ∗-representation.

2. We say that a representation ρ : A → B(K) is maximal if whenever π is a represen-
tation dilating ρ, then π = ρ⊕ ψ for some representation ψ.

Remark 2.1.2. When the maps in the definitions above are not assumed multiplicative,
there are instances where the UEP is satisfied vacuously. We thank Raphaël Clouâtre for
bringing these issues to our attention.

Indeed, Suppose A is a non-unital operator algebra containing a self-adjoint positive
element P and let ρ : A → B be a completely contractive homomorphism. The map −ρ
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is completely contractive, but cannot be extended to a completely contractive completely
positive map on B = C∗(A), as ρ must send P to −P . Hence, −ρ vacuously has the UEP.
Furthermore, when ρ is not maximal, the map −ρ is a completely contractive map that
admits a non-trivial completely contractive dilation, coming from the one for ρ. Hence,
−ρ is also not maximal. Thus, we see that if we drop the multiplicativity assumptions on
our definitions above, the UEP and maximality would not be equivalent.

By a similar proof to [10, Proposition 2.2], and by the Arveson extension theorem for
non-unital operator algebras via Meyer’s theorem, we get that maximality is equivalent to
the UEP.

Consequentially, since maximality does not depend on the choice of C*-cover, the unique
extension property for representations does not depend on the choice of C*-cover, even for
non-unital operator algebras. We will often refer to this fact as the ”invariance of the
UEP”.

For a representation ρ it is easy to see that ρ is maximal if and only if ρ1 is maximal.
Hence, as maximality is equivalent to the UEP, we see that a representation ρ on A has
the UEP if and only if its unitization ρ1 has the UEP.

Suppose A is an operator subalgebra of B(H), and ρ : A → B(K) is a representation.
We can write ρ := ρnd ⊕ 0(α), where 0 : A → C is the zero map and α is some multiplicity,
such that ρnd is the non-degenerate part in the sense that ρnd(a) = ρ(a)|L with L :=
C∗(ρ(A))K.

When A is unital, we get that any completely contractive completely positive extension
of 0 : A → C to B = C∗(A) must be 0. As the direct sum of representations with the UEP
still has the UEP, we see that ρ has the UEP if and only if the unital representation ρnd
has the UEP.

In the case where A is separable, non-unital and contains a positive approximate iden-
tity, we let 01 : A1 → C be the unitization of the zero map, which is a unital representation.
Since this map extends uniquely to a map on the operator system S = A1 + (A1)∗, which
we still denote by 01, and as A ∩ A∗ contains a positive approximate identity, by [12,
Theorem 6.1] we see that 01 has the UEP when restricted to A1. Hence, the restriction
0 = 01|A has the UEP.

Hence, if we assume that A is separable and has a positive approximate identity, we
still have that ρ has UEP if and only if ρnd has UEP. These assumptions will be satisfied
by all non-unital operator algebras discussed in this thesis.

The C*-envelope of a non-unital operator algebra can also be computed from the C*-
envelope of its unitization. More precisely, as the pair (C∗e (A), ι) where C∗e (A) is the C*-
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subalgebra generated by ι(A) inside the C*-envelope (C∗e (A1), ι) of the (unique) unitization
A1 of A. By the proof of [18, Proposition 4.3.5] this C*-envelope of an operator algebra
A has the desired universal property, that for any C*-cover (ι′,B′) of A, there exists a
(necessarily unique and surjective) ∗-homomorphism π : B′ → C∗e (A), such that π ◦ ι′ = ι.

As to representations with the UEP, when A is an operator algebra generating a C*-
algebra B, using these unitization tricks, the theorem of Dritschel and McCullough in the
unital case shows that C∗e (A) is again the image of a ∗-representation ρ : B → B(K) such
that ρ|A is completely isometric and has the unique extension property.

Let A be an operator algebra generating a C*-algebra B. We say that A has the
unique extension property in B if for any faithful ∗-representation π : B → B(H) we have
that π|A has the unique extension property. By taking a direct sum of π with a given
∗-representation of B, it is easy to show that the faithfulness assumption can be dropped,
and in particular, we must have that B ∼= C∗e (A).

We will need the following result on the existence of a largest sub-representation with
the UEP. Let φ : B → B(H) be a completely contractive completely positive map on a
C*-algebra B, and let K ⊆ H be a reducing subspace for φ(A). Let φK : B → B(K) denote
the restriction φK(b) = φ(b)|K.

Proposition 2.1.3. Let A be an operator algebra generating a C*-algebra B and let π :
B → B(H) be a ∗-representation. Then there is a unique largest reducing subspace K for
π such that πK|A has the unique extension property.

Proof. If there is no such non-trivial reducing subspace, we take K = {0}. Otherwise,
let C be the (non-empty) collection of non-trivial reducing subspaces L for π such that
πL : B → B(L) has the UEP when restricted to A. Set K :=

∨
L∈C L. Since every L ∈ C

is reducing for π, we must have that K is reducing for π as well. It remains to show that
πK|A has the UEP. To this end, let φ : B → B(K) be a completely contractive completely
positive extension of πK|A. Then for every L ∈ C the map PLφ(·)|L is a completely
contractive completely positive map from B to B(L) and PLφ(a)|L = PLπK(a)|L = πL(a)
for every a ∈ A. As πL has the UEP we have that PLφ(b)|L = πL(b) for every b ∈ B. In
addition, by Schwarz inequality, for every L ∈ C and b ∈ B,

0 ≤ PLφ(b)∗(IK − PL)φ(b)PL

= PLφ(b)∗φ(b)PL − PLφ(b)∗PLφ(b)PL

≤ PLφ(b∗b)PL − PLφ(b)∗PLφ(b)PL

= πL(b∗b)− πL(b)∗πL(b) = 0

14



so that PLφ(b)PL = φ(b)PL for every b ∈ B. Thus, for every n ∈ N, L1, . . . ,Ln ∈ C, and
ξ1 ∈ L1, . . . , ξn ∈ Ln we have

πK(b)

(
n∑
i=1

ξi

)
=

n∑
i=1

πK(b)ξi =
n∑
i=1

πLi(b)ξi

=
n∑
i=1

PLiφ(b)ξi =
n∑
i=1

φ(b)ξi = φ(b)

(
n∑
i=1

ξi

)
.

As sums
∑n

i=1 ξi are dense in K, we have that πK(b) = φ(b) for every b ∈ B. Hence, πK|A
has the unique extension property, and K is the unique largest subspace with this property.

2.2 Subproduct systems and their operator algebras

2.2.1 C*-correspondences

We assume that the reader is familiar with the basic theory of Hilbert C*-modules, which
can be found in [84, 85, 97]. We only give a quick summary of basic notions and terminology
as we proceed, so as to clarify our conventions.

Definition 2.2.1. Let A be a C*-algebra, E is called an inner product module over A if it
is a right A-module, with an A-valued inner product 〈·, ·〉 on E×E, such that the following
conditions are satisfied for all x, y, z ∈ E, λ ∈ C and a ∈ A.

1. A-linearity in the second variable:

〈x, y + λz〉 = 〈x, y〉+ λ〈x, z〉,

〈x, ya〉 = 〈x, y〉a;

2. Hermitian symmetry : 〈x, y〉 = 〈y, x〉∗;

3. Positivity: 〈x, x〉 ≥ 0;

4. Definiteness: 〈x, x〉 = 0 implies x = 0.
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If E is an inner product module over A, then a norm on E is given by ||x|| = ||〈x, x〉||1/2,
and if E is complete with respect to this norm, then E is called a Hilbert C*-module over
A.

Let E and F be Hilbert C*-modules over A, and let T : E → F be a map. Then T
is called adjointable if there is a map T ∗ : F → E such that for all x ∈ E and y ∈ F ,
〈y, Tx〉 = 〈T ∗y, x〉. Unlike in the Hilbert space case, not all bounded linear maps on
a Hilbert C*-module are adjointable. The set of all adjointable maps from E to F is
denoted by L(E,F ), and we denote L(E) := L(E,E) the adjointable operators on E. An
adjointable map is automatically a bounded A-module map by the Uniform Boundedness
Principle.

Definition 2.2.2. Let A be a C*-algebra and E a Hilbert C*-module over A. If in addition,
E has a left A-module structure given by a ∗-homomorphism φ : A → L(E), we call E a
C*-correspondence over A. We will say that E is faithful if φ is faithful, and that E is
essential if φ(A)E = E.

Let E be a C*-correspondence over A with left action ϕ : A → L(E), and let J be
an ideal of A. We may define a quotient C*-correspondence EJ over A/J as follows. Let
qJ : A → A/J be the quotient map. We define

〈ξ, η〉J = qJ (〈ξ, η〉)

and define the C*-module E(J ) to be the quotient of E by the closed right A submodule
EJ := φ(J )E + EJ . We define the left action φJ : A/J → L(E(J )) given by φJ (a +
J )(ξ + EJ ) = φ(a)(ξ) + EJ for ξ ∈ E and a ∈ A, which is a well-defined left action
of A on E(J ). Together with this left action, E(J ) becomes a C*-correspondence over
A/J . We then have a natural quotient A - A/J bimodule map qJ : E → E(J ) given by
ψJ (ξ) = ξ + EJ .

A key notion of C*-correspondences is the internal tensor product. If E is a C*-
correspondence over A with left action φ, and F is a C*-correspondence over A with left
action ψ, then on the algebraic tensor product E ⊗alg F one defines an A-valued pre-inner
product satisfying 〈x1 ⊗ y1, x2 ⊗ y2〉 = 〈y1, ψ(〈x1, x2〉)y2〉 on simple tensors. The usual
completion process with respect to the norm induced by this inner product, yields the
internal Hilbert C*-module tensor product of E and F , denoted by E ⊗ F , E ⊗ψ F or
E ⊗A F , which is a C*-correspondence over A with left action φ⊗ IdF .

If E and F are C*-correspondences over A and J is a closed ideal of A, it is easy to
show that the map ι : E(J )⊗A/J F (J )→ (E⊗AF )(J ) given by ι((ξ+EJ )⊗ (η+FJ )) =
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ξ ⊗ η + (E ⊗ F )J is an isometric A/J -bimodule map. Hence, we may always think of
E(J ) ⊗A/J F (J ) as a closed sub-C*-correspondence of (E ⊗A F )(J ) via ι. Henceforth,
unless otherwise specified we will suppress notation and write a · ξ := φ(a)ξ for the left
action of a given C*-correspondence over A.

We now discuss certain types of morphisms between C*-correspondences that arise
naturally in the context of tensor algebras.

Definition 2.2.3. Let E and F be C*-correspondences over the C*-algebras A and B
respectively, let ρ : A → B be a ∗-isomorphism. Then we define the following:

1. A ρ-bimodule map V : E → F is a map satisfying V (aξb) = ρ(a)V (ξ)ρ(b).

2. A ρ-bimodule map V : E → F is called ρ-adjointable if there exists ρ−1-bimodule
adjoint V ∗ : F → E. That is, for ξ ∈ F and η ∈ E,

〈V ∗(ξ), η〉 = ρ−1(〈ξ, V (η)〉).

We note that a ρ-adjointable map V : E → F is again automatically bounded by
the Uniform Boundedness Principle, where the ρ-adjoint V ∗ : F → E is a bounded ρ−1-
bimodule map.

Given a ∗-isomorphism ρ : A → B and a C*-correspondence F over B, we may define
a C*-correspondence structure Fρ over A on the set F . For a ∈ A and ξ ∈ F , we define
left and right actions given by

a · ξ := ρ(a)ξ and ξ · a := ξρ(a)

and A-valued inner product, given for ξ, η ∈ F by

〈ξ, η〉ρ = ρ−1(〈ξ, η〉).

This construction turns F into a C*-correspondence over A, satisfies (Fρ)ρ−1 = F as C*-
correspondences over B, and behaves well with respect to internal tensor products. That is,
if F, F ′ are C*-correspondences over B and ρ : A → B is a ∗-isomorphism, then (F ⊗B F ′)ρ
is unitarily isomorphic to Fρ ⊗A F ′ρ.

Next we show that tensor products of bounded ρ-bimodule maps exist even when the
maps are not necessarily adjointable.
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Proposition 2.2.4. Let E,E ′ be C*-correspondences over A and F, F ′ be C*-correspon-
dences over B. Suppose V : E → F , W : E ′ → F ′ are bounded ρ-bimodule maps for
some ∗-isomorphism ρ : A → B. Then there exists a unique bounded ρ-bimodule map
V ⊗W : E ⊗E ′ → F ⊗ F ′ defined on simple tensors by (V ⊗W )(ξ ⊗ η) = V ξ ⊗Wη, and
moreover ‖V ⊗W‖ ≤ ‖V ‖ · ‖W‖.

Proof. By the preceding discussion, looking at Fρ, F
′
ρ and (F ⊗B F ′)ρ ∼= Fρ ⊗A F ′ρ instead,

we may assume without loss of generality that A = B and that ρ = IdA. Then, by item
(1) of [18, Subsection 8.2.12] the desired result follows.

Hence, if V : E → F is a bounded ρ-bimodule map, the maps V ⊗n : E⊗n → F⊗n are
bounded ρ-bimodule maps, with ‖V ⊗n‖ ≤ ‖V ‖n. If in addition to that there exists C > 0
such that for all n ∈ N we have ‖V ⊗n‖ ≤ C, we say that V is tensor-power bounded.

Definition 2.2.5. Let E and F be C*-correspondences over the C*-algebras A and B
respectively, and let ρ : A → B be a *-isomorphism.

1. A bounded ρ-bimodule map V : E → F is called a ρ-isomorphism if V is bijective.

2. A ρ-bimodule map V : E → F is called a ρ-similarity if V is bijective and V and
V −1 are tensor-power bounded.

3. A map U : E → F is called a ρ-unitary if U is a surjective isometric ρ-bimodule
map.

We will say that E and F are isomorphic / similar / unitarily isomorphic if there exist
a *-isomorphism ρ : A → B and a ρ - isomorphism / similarity / unitary V : E → F
respectively.

Remark 2.2.6. It turns out that U : E → F is ρ-unitary if and only if U is ρ-adjointable
and U∗U = IdE and UU∗ = IdF . In this case, we also see that U is a ρ-similarity.

If V is a ρ-adjointable ρ-isomorphism, then V ∗V ∈ L(E) is an Id-isomorphism and
V |V |−1 defines a ρ-unitary between E and F . Hence, we note that in general, we do not
assume that bounded ρ-bimodule maps are ρ-adjointable. In fact, in Example 3.2.28 we
will see a ρ-similarity which is not ρ-adjointable.
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2.2.2 Subproduct systems

The following is a C*-algebraic version of [113, Definition 1.1] for the semigroup N. It was
also given in [118, Definition 1.4] for essential C*-correspondences.

Definition 2.2.7. Let A be a C*-algebra, let X = {Xn}n∈N be a family of C*-corres-
pondences over A and let U = {Un,m : Xn⊗Xm → Xn+m} be a family of bounded bimodule
maps. We will say that (X,U) is a subproduct system over A if the following conditions
are met:

1. X0 = A.

2. The maps U0,n and Un,0 are given by the left and right actions of A on Xn respectively.

3. Un,m is an adjointable coisometric map for every non-zero n,m ∈ N.

4. For every n,m ∈ N we have the associativity identity

Un+m,p(Un,m ⊗ IdXp) = Un,m+p(IdXn ⊗ Um,p).

In case the maps Un,m are unitaries for non-zero n,m ∈ N, we say that X is a product
system.

Example 2.2.8. If E is a C*-correspondence over A, define Prod(E) = {Prod(E)n} by
Prod(E)n = E⊗n and UE = {UE

n,m} the natural associativity unitaries UE
n,m : E⊗n⊗E⊗m →

E⊗(n+m) when n,m are non-zero. Then (Prod(E), UE) is a product system.

Example 2.2.9. Let H be a Hilbert space as a C*-correspondence over C. Let pn be the
projection of H⊗n onto the symmetric subspace of H⊗n given by

pn(ξ1 ⊗ ...⊗ ξn) =
1

n!

∑
σ∈Sn

ξσ−1(1) ⊗ ...⊗ ξσ−1(n).

We define SSP (H) = {SSP (H)n} by SSP (H)n = pn(H⊗n), with subproduct maps Un,m :
SSP (H)n ⊗ SSP (H)m → SSP (H)n+m are given by

Un,m(x⊗ y) = pn+m(x⊗ y).

Then (SSP (H), U) is a subproduct system which is not a product system.
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Definition 2.2.10. Let (X,UX) and (Y, UY ) be two subproduct systems over A and B
respectively. A family V = {Vn}n∈N of maps Vn : Xn → Yn is called a morphism of
subproduct systems from (X,UX) to (Y, UY ) if

1. The map ρ := V0 : A → B is a *-isomorphism,

2. For all n 6= 0 the map Vn are uniformly bounded ρ-bimodule morphisms in the sense
that supn∈N ‖Vn‖ <∞,

3. For all n,m ∈ N the following identity hold:

Vn+m ◦ UX
n,m = UY

n,m ◦ (Vn ⊗ Vm).

When the family V is a family of

1. ρ-isomorphisms, such that V −1 := {V −1
n } is a morphism from (Y, UY ) to (X,UX),

we say that X and Y are isomorphic via V and write X ∼ Y .

2. ρ-unitaries, we say that X and Y are unitarily isomorphic via V and write X ∼= Y .

We next show that that whenever (X,U) is a product system, it is in fact unitarily
isomorphic to a product system of the form (Prod(E), UE) as in Example 2.2.8, for the
C*-correspondence E = X1, and that any isomorphism V = {Vn} between product systems
is determined by V1.

Proposition 2.2.11. Let (X,U) be a product system over a C*-algebra A. Then (X,U) is
unitarily isomorphic to (Prod(X1), UX1). Furthermore, if (Prod(E), UE) and (Prod(F ), UF )
are product systems, and V = {Vn} an isomorphism / unitary isomorphism between them.
Then Vn = W⊗n for a ρ-similarity / ρ-unitary W respectively, where W = V1 and ρ = V0.

Proof. We construct a morphism of subproduct systems W : (Prod(X1), UX1) → (X,U)
comprised of Id-unitaries {Wn : X⊗n1 → Xn} which, by associativity of U = {Un,m},
are uniquely determined inductively by the equations W1 = IdX1 and Wn+m = Un,m ◦
(Wn ⊗Wm). Each Wn is an Id-unitary, and by their inductive definition they intertwine
the associativity unitary UX1 and U . Hence, (Prod(X1), UX1) and (X,U) are unitarily
isomorphic.

Next, when V = {Vn} is an isomorphism / unitary isomorphism between (Prod(E), UE)
and (Prod(F ), UF ), then V1 : E → F is a ρ-isomorphism / unitary respectively, and by the
intertwining property of morphisms between subproduct systems, we see that Vn+mU

E
n,m =

20



UF
n,m ◦ (Vn ⊗ Vm). However, since UE

n,m and UF
n,m are associativity unitaries, this simply

means that Vn+m = Vn ⊗ Vm for all m,n ∈ N. Hence we get that Vn = V ⊗n1 by induction,
and in the case where V is an isomorphism of subproduct systems, as supn∈N ‖Vn‖ < ∞
and supn∈N ‖V −1

n ‖ <∞ we get that V1 and V −1
1 are tensor-power bounded.

Suppose (X,U) is a subproduct system over a C*-algebraA, and that J is a closed ideal
of A. Then for each Xn we have a quotient map qJ : Xn → Xn(J ), and we may induce an
adjointable coisometric A/J -bimodule map UJn+m : (Xn⊗Xm)(J )→ Xn+m(J ) by setting
UJn+m(ξ ⊗ η + (Xn ⊗ Xm)J ) = Un+m(ξ ⊗ η) + (Xn+m)J . When the adjointable isometric
map (UJn+m)∗ has range in Xn(J )⊗Xm(J ) considered as a subspace of (Xn ⊗Xm)J , the
pair (XJ , UJ ) given by XJ = {XJn } with UJ = {UJn,m} becomes a subproduct system in
its own right. Hence, we make the following definition, which is the C*-analogue of [42,
Definition 6.19].

Definition 2.2.12. Let (X,U) be a subproduct system over a C*-algebra A. We say that
an ideal J of A is X-invariant if (UJn+m)∗ has range in Xn(J ) ⊗ Xm(J ). We say that
(X,U) is minimal if A has no non-trivial X-invariant ideals.

2.2.3 Operator algebras arising from subproduct systems

We next describe the construction of the tensor, Toeplitz and Cuntz-Pimsner algebras
arising from subproduct systems (see [118, 119]).

Let (X,U) be a subproduct system over a C*-algebra A. There is a canonical product
system containing (X,U) as a subproduct subsystem as follows.

We define E := X1, so that (Prod(E), UE) constitutes a product systems as in Ex-
ample 2.2.8 where UE

n,m are the usual associativity unitaries. One can then construct a
morphism of subproduct systems V : (Prod(E), UE) → (X,U) comprised of adjointable
coisometries {Vn : En → Xn} which, by associativity of U = {Un,m}, are uniquely deter-
mined inductively by the equations V1 = IdX1 and Vn+m = Un,m ◦ (Vn ⊗ Vm). The X-Fock
correspondence is the C*-correspondence direct sum of the fibers of the subproduct system

FX :=
⊕
n∈N

Xn (2.1)

Denote by Qn ∈ L(FX) the projection of FX onto the n-th fiber Xn, and define Q[0,n] =
Q0 + ... + Qn, and Q[n,∞) := IdFX − Q[0,n−1]. We then obtain an adjointable coisometric
map V : FProd(E) → FX given by V = ⊕∞n=0Vn.
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The X-shifts are the operators S
(n)
ξ ∈ L(FX) uniquely determined between fibers by

S
(n)
ξ (η) := Un,m(ξ ⊗ η) where n,m ∈ N and ξ ∈ Xn, η ∈ Xm.

We note that S
(n)
ξ = V S

(n)
V ∗n (ξ)V

∗, so that S
(n)
ξ is adjointable with adjoint given by

S
(n)∗
ξ = V S

(n)∗
V ∗n (ξ)V

∗, where S
(n)
V ∗n (ξ) is a product system shift and is hence an adjointable

operator in L(FProd(X)).

Definition 2.2.13. The tensor and Toeplitz algebras are the norm-closed non-self-adjoint
and self-adjoint subalgebras of L(FX) generated by a copy of A and all X-shifts respectively,

T+(X) := Alg(A ∪ {S(n)
ξ |ξ ∈ Xn, n ∈ N})

T (X) := C∗(A ∪ {S(n)
ξ |ξ ∈ Xn, n ∈ N}).

The algebra L(FX) admits a group homomorphism α of the unit circle T called the
gauge action, defined by αλ(T ) = WλTW

∗
λ for all λ ∈ T where Wλ : FX → FX is the

unitary defined by
Wλ(⊕∞n=0ξn) = ⊕∞n=0λ

nξn.

Since αλ(S
(n)
ξ ) = S

(n)
λnξ = λnS

(n)
ξ and αλ(a) = a for a ∈ A and ξ ∈ E, it follows that

both the Toeplitz algebra and tensor algebra are α-invariant closed subalgebras, so that α
restricts to a completely isometric circle action on each of them, which we still denote by α.
One then shows that for every S ∈ T (X), the function f(λ) = αλ(S) is norm continuous,
and this enables the definition of a conditional expectation Φ given by

Φ(S) =

∫
T
αλ(S)dλ,

where dλ is the normalized Haar measure on T.

Let {kn}∞n=1 denote Fejer’s kernel function defined for λ ∈ T by

kn(λ) =
n∑

j=−n

(
1− |j|

n+ 1

)
λj.

Note that for S ∈ T (X), the existence of the canonical conditional expectation Φ permits
the definition of Fourier coefficients for an element S ∈ T (X) by

Φn(S) =

∫
T
αλ(S)λ−ndλ.
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Then define the Cesaro sums,

σn(S) :=
n∑

j=−n

(
1− |j|

n+ 1

)
Φj(S) =

∫
T

n∑
j=−n

(
1− |j|

n+ 1

)
αλ(S)λ−jdλ =

∫
T
αλ(S)kn(λ)dλ.

Every tensor algebra is then graded by the spaces

T+(X)n = Φn(T+(X)) = Sp{ S(n)
ξ | ξ ∈ Xn }.

We will denote T+(E) := T+(Prod(E)) for the tensor algebra defined by a single corre-
spondence, and note that whenever X is a product system, the isomorphism X ∼= Prod(X1)
given in 2.2.11 promotes to an isomorphism T+(X) ∼= T+(X1).

The following is a folklore result for tensor algebras that relates the above notions. We
refer the reader to [42, Proposition 6.2] for a proof of this result in the case of subproduct
systems over W*-algebras, which is easily adapted to our context.

Proposition 2.2.14. Let (X,U) be a subproduct system over A. For every n ∈ N we
have that Xn is isometrically isomorphic as a Banach A-bimodule to T+(X)n via the map

determined uniquely by ξ 7→ S
(n)
ξ .

Therefore, every element T ∈ T+(X) has a unique representation as an infinite se-

ries T =
∑∞

n=0 S
(n)
ξn

where ξn ∈ Xn satisfies Φn(T ) = S
(n)
ξn

(called its Fourier series
representation for short), and the series converges Cesaro to T in norm: if σN(T ) =∑N

n=0

(
1 − n

N+1

)
S

(n)
ξn

, then we have that limN→∞ ‖σN(T ) − T‖ = 0. Furthermore, if

T, T ′ ∈ T+(X) have Fourier series representations T =
∑∞

i=0 S
(i)
ξi

and T ′ =
∑∞

i=0 S
(i)
ηi ,

then

TT ′ =
∞∑
n=0

S
(n)
ζ , where ζ =

n∑
k=0

Uk,n−k(ξk ⊗ ηn−k).

Another algebra associated to the subproduct system, introduced by Viselter in [118],
arises as a special quotient of T (X), and was defined for subproduct systems (X,U) such
that each Xn is a faithful and essential C*-correspondence. Let C ⊆ L(FX) be given by

C = { T ∈ L(FX) | lim
n→∞

‖TQn‖ = 0 }.

Viselter showed in [119, Theorem 2.5] that J (X) := C ∩ T (X) is a closed two-sided ideal
inside T (X).
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Definition 2.2.15. Let (X,U) be a subproduct system. The Cuntz-Pimsner ideal of T (X)
is J (X) := C ∩T (X), and the Cuntz-Pimsner algebra of X is then O(X) := T (X)/J (X).

When X = Prod(E) for a faithful and essential C*-correspondence E, By [119, Propo-
sition 2.8] we have that O(X) ∼= OE, where OE is the well known Cuntz-Pimsner algebra
[104].

We note that the circle action on T (X) passes naturally to O(X) since J (X) is gauge
invariant. We shall later need the following formula for the norm of an element in the
quotient Ms(O(X)), in terms of representatives in Ms(T (X)). Denote by q : T (X) →
O(X) the canonical quotient map. When Qn ∈ T (X), it follows from item (1) of [119,
Theorem 3.1] that {Is ·Q[0,m]} is an approximate identity for Ms(J (X)), and one may then
invoke [7, Exercise 1.8.C] to obtain the following.

Corollary 2.2.16. Let (X,U) be a subproduct system, and suppose that Qn ∈ T (X) for
all n ∈ N. Then for any T = [Tij] ∈Ms(T (X)) we have

‖q(s)(T )‖ = lim
m→∞

‖[TijQ[m,∞)]‖.

2.3 Topological and Dynamical constructs

2.3.1 Topological graphs and quivers

Another type of object that turns up in our analysis is the topological quiver in the sense
of [93]. See [93, Subsection 3.3] for some classes of examples generalized by topological
quivers.

We slightly modify and generalize the definitions of topological quiver as in [93, Defi-
nition 3.1] and topological graph in the sense of Katsura [77] to fit our setting. Our choice
of range and source maps is reversed to the one in [93] but is consistent with the work of
Kwasniewski [83] on Exel crossed products, with the work of Kumjian and Pask in [82] on
higher-rank graphs and with topological graphs in the sense of Katsura [77, 79].

Definition 2.3.1. A directed graph G is a quadruple (E0, E1, s, r) consisting of a set V
of vertices, a set E of edges and two maps s, r : E1 → E0, called the source map and range
map, respectively. If v = s(e) and w = r(e) we say that v emits e and w receives it. A
directed graph is said to be row-finite if every vertex receives at most finitely many edges,
and is sourceless if every vertex receives at least one edge.
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A topological graph is a quadruple Q = (E0, E1, r, s) such that E0 and E1 are compact
Hausdorff spaces of vertices and edges respectively, such that the source and range maps
r, s : E1 → E0 are continuous.

We will call a collection of measures λ = {λv}v∈E0 an s-system if they are Radon
measures on E1 such that supp(λv) ⊆ s−1(v) and for every ξ ∈ C(E1) the map v 7→∫
E1 ξ(e)dλv(e) is in C(E0). Together with an s-system, we call the quintuple Q =

(E0, E1, r, s, λ) a topological quiver.

Note that we do not assume that E0 and E1 are second countable as in [93, Definition
3.1], or that s is an open map as in [83, Definition 3.29], but we do assume that E0 and E1

are compact. An s-system is used to form a C*-correspondence from a topological graph.
Note also that the only asymmetry in Definition 2.3.1 is in the definition of a topological
quiver. In [93, Definition 3.1], second countability along with the assumption that s is open
were used to ensure the existence of an s-system λ = {λv}v∈E0 such that supp(λv) = s−1(v).
In the definition of an s-system, both in [93, Definition 3.1] and [83, Definition 3.29] it is
required that supp(λv) = s−1(v). However, in order to create a C*-correspondence from
a topological quiver, s need not be open, and the weaker condition supp(λv) ⊆ s−1(v) is
enough.

If we require that s is a local homeomorphism in Definition 2.3.1, by [93, Example 3.20]
we get the notion of a topological graph in the sense of Katsura [77], and there is a natural
s-system λv given by counting measure on s−1(v) for each v ∈ E0. Note again that in our
definition of a topological graph, we do not even assume that s is open.

Next we describe how to construct a C*-correspondence from a topological quiver Q =
(E0, E1, r, s, λ). We define a C(E0)-valued semi-inner product and bimodule actions on
C(E1) for v ∈ E0, ξ, η ∈ C(E1) and f, g ∈ C(E0) by setting

〈ξ, η〉(v) :=

∫
s−1(v)

ξ(e)η(e)dλv(e) and (f · ξ · g)(e) := f(r(e))ξ(e)g(s(e)).

Taking the Hausdorff completion of C(E1) yields a C*-correspondence over C(E0), de-
noted by XQ, and we call it the quiver C*-correspondence associated to Q. When s is a
local homeomorphism and {λv} are counting measures on s−1(v), this C*-correspondence
coincides with the standard one that is associated to a topological graph as defined and
associated in [77]. When supp(λv) = s−1(v) and s is open, we get the C*-correspondence
associated to a topological quiver as in [93] with range and source reversed.

Definition 2.3.2. Let Q = (E0, E1, r, s) be a topological graph. A path in Q is a finite
sequence of edges µ = µn...µ1 with r(µi) = s(µi+1) for 1 ≤ i ≤ n − 1. We say that such
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a path has length |µ| := n. Let En denote the collection of paths of length n. We extend
the maps r and s to En by setting r(µ) = r(µn) and s(µ) = s(µ1). We endow En with the
topology inherited from E1× ...×E1. Since s and r are continuous on E1, we see that this
persists when s and r are considered as maps on En.

We will often deal with multiplicity free topological graphs, so we make a definition.

Definition 2.3.3. Let Q = (E0, E1, r, s) be a topological graph. We say that Q is multi-
plicity free if for any edges e, e′ ∈ E1, if r(e) = r(e′) and s(e) = s(e′) then e = e′.

The advantage of multiplicity free topological graphs is that they can be identified as
closed subsets of E0 × E0 in a canonical way. If Q = (E0, E1, r, s) is multiplicity free,
we define a map r × s : E1 → E0 × E0 given by (r × s)(e) = (r(e), s(e)). As r × s is an
injective continuous map on a compact space, we see that E1 is homeomorphic to its image
under r× s, which is compact inside E0×E0, and is hence closed. Hence, Q is isomorphic
to the topological graph Q′ := (E0, (r × s)(E1), πr, πs) where πr, πs : E0 × E0 → E0 are
given by πr(y, x) = y and πs(y, x) = x. Additionally, if λ = {λv} is an s-system for Q, we
denote λ′ = {λ′v} the s-system on Q′ given by λ′v(E) = λv((r × s)−1(E)), so that Q and
Q′ are isomorphic as topological quivers with λ and λ′ respectively. We will often identify
multiplicity free topological quivers Q = (E0, E1, r, s, λ) with E1 = (r × s)(E1) as closed
subspace of E0 × E0, where r = πr, s = πs and λ = λ′.

2.3.2 Markov-Feller operators

Let X be a compact space. We denote by M+(X) the collection of all finite positive
Radon measures on X, identified with positive bounded linear functionals on C(X) via the
Riesz-Markov theorem. We also denote by Pr(X) the w*-compact convex subset of Radon
probability measures on X.

Definition 2.3.4. Let X and Y be compact spaces. A positive measure valued map (p.m.v.
map for short) is a continuous map P : X → M+(Y ), where M+(Y ) is imbued with the
weak* topology. We set Px := P (x) for the finite measure P associates to x ∈ X. If
in addition for all x ∈ X we have Px ∈ Pr(Y ) is a probability measure, then we call
P : X → Pr(Y ) a Markov-Feller map.

We note that since a p.m.v. map P : X → M+(Y ) is always assumed continuous,
Px(Y ) is continuous in x ∈ X. Since X is compact, there is always an M > 0 such that
Px(Y ) ≤M , and the measures {Px}x∈X are uniformly finite measures.
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Example 2.3.5 (Continuous map). Let h : X → Y be a continuous map, then h naturally
induces a Feller map P : X → Pr(Y ) given by Px = δh(x). So we see that Feller maps are
a generalization of continuous functions from X to Y , where we switch Y with Pr(Y ) in
the range of h, and we think of Y up to homeomorphism as the closed subspace {δy|y ∈ Y }
inside Pr(Y ) with the w*-topology.

Example 2.3.6 (Stochastic matrix). Let X be a finite set. Then every Markov-Feller map
P : X → M+(X) is a stochastic matrix. Indeed, if i ∈ X, then Pi(j) ≥ 0 and defining
Pij = Pi(j) gives rise to an |X| × |X| non-negative matrix such that

∑
j∈X Pij = 1.

Example 2.3.7 (Continuously weighted systems). Let X be a compact space. For σ1, ..., σn :
X → X continuous maps and f1, ..., fn : X → R+ continuous functions, the map P (σ, f) :
X →M+(X) given by

P (σ, f)x =
n∑
i=1

fi(x) · δσi(x)

is a p.m.v. map on X. When
∑n

i=1 fi(x) = 1 for all x ∈ X, we see that P (σ, f) is a Feller
map. We think of each point x ∈ X as possessing a probability vector (f1(x), ..., fn(x)) that
determines the probability of applying σi in the next iteration of the process.

Remark 2.3.8. The notion of Feller transition probability function on a compact metric
space X, as defined in [122, Chapter 1], turns out to coincide with the notion of a Feller
map P : X → Pr(X).

P.m.v. maps can be composed. More precisely, if X, Y and Z are compact spaces and
P : X →M+(Y ) and Q : Y →M+(Z) are p.m.v. maps, composition is defined as

(QP )x(A) =

∫
Y

Qy(A)dPx(y),

for all x ∈ X and A ∈ BZ .

The following is a more general reformulation of [122, Theorem 1.1.5] and its preceding
discussion (for compact X), given for Feller maps, that yields a generalization of the
commutative Gelfand-Naimark duality. For a positive map S : C(Y ) → C(X), denote by
S∗ : M+(X) → M+(Y ) the dual map induced between the sets of positive finite Radon
measures, when we identify linear functionals on C(X) and C(Y ) with finite complex
Radon measures on X and Y resp. via the Riesz-Markov representation theorem.

Theorem 2.3.9 (Commutative Gelfand-Naimark duality for positive maps). There is a
contravariant equivalence between the category of compact spaces with p.m.v. maps and the
category of commutative unital C*-algebras with positive linear maps. More specifically,
for compact spaces X and Y ,
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1. if P : X →M+(Y ) is a p.m.v. map then SP : C(Y )→ C(X) defined by

SP (f)(x) =

∫
Y

f(y)dPx(y)

is a positive map, and;

2. if S : C(Y )→ C(X) is a positive map, we define PS : X →M+(Y ) by setting

(PS)x = S∗(δx)

which yields a p.m.v. map.

Operations (1) and (2) are inverses of each other where unital maps are identified with
Feller maps and unital ∗-endomorphisms are associated with p.m.v. maps arising from
composition by continuous functions as in Example 2.3.5.

Due to the above theorem, we sometimes abuse notation and write P : C(Y )→ C(X)
to mean both the original Feller map P and the positive map P (f)(x) := SP (f)(x) =∫
Y
f(y)dPx(y) for all x ∈ X.

We next describe how to construct C*-correspondences from (completely) positive
maps. One way is via the GNS (or KSGNS) construction associated to a completely
positive map on a unital C*-algebra. This construction is done in detail in [84, Chapter
5]. We apply this construction only when the underlying C*-algebra is commutative.

Let X be a compact space, and let P be a (completely) positive map on C(X). The
GNS representation of P is a pair (FP , ξP ) consisting of a C*-correspondence FP and a
vector ξP ∈ FP such that P (a) = 〈ξP , aξP 〉.

FP is defined as the C*-correspondence C(X)⊗P C(X) which is the Hausdorff comple-
tion of the algebraic tensor product C(X)⊗ C(X) with respect to the inner product and
bimodule actions given respectively for a, b, c, d ∈ C(X) by

〈a⊗ b, c⊗ d〉 = b∗P (a∗c)d and a · (b⊗ c) · d = ab⊗ cd.

The reconstructing vector of this correspondence is then given by ξP = 1⊗ 1, and clearly
satisfies P (a) = 〈ξP , aξP 〉.

For an up-to-date account on the GNS construction and its associated Toeplitz, Cuntz-
Pimsner and other algebras, see [83, Section 3].
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An alternative way to get a C*-correspondence from a p.m.v. map is as follows. We
may define a topological quiver, as in Definition 2.3.1, associated to a p.m.v. map P :
X →M+(X). We define a quintuple QP = (X,Gr(P ), r, s, λx) where Gr(P ) is the closure
of { (y, x) | y ∈ suppPx } inside X ×X, the maps r, s : Gr(P )→ X are the restriction of
the left and right coordinate maps on X ×X to Gr(P ) and λ = {λx}, such that suppλx ⊆
s−1(x), is given by λx({x} × U) = Px(U). That this is a topological quiver according to
Definition 2.3.1 is a consequence of [83, Lemma 3.30], and it is clearly multiplicity free.
It turns out that the C*-correspondence associated to the topological quiver QP coincides
with FP as is shown in [83, Proposition 3.32].

Proposition 2.3.10. Let P : C(X)→ C(X) be a positive map, and P : X → M+(X) its
associated p.m.v. map. The map a⊗ b 7→ W (a⊗ b) given by W (a⊗ b)(y, x) = a(y)b(x) is
an isometric Id-bimodule map on the linear span of simple tensors inside FP and extends
to an Id-unitary from FP to XQP .

It is important to mention at this point that by [83, Example 3.35], the topological
quiver QP associated to a p.m.v. map P may fail to have either an open source map s or
suppλx = s−1(x). This prompted us to give Definition 2.3.1 without assuming that s is
open and that suppλx = s−1(x) as in [83, Definition 3.29].

2.3.3 Stochastic matrices

We next discuss some of the preliminaries on stochastic matrices, and the results in [42] for
subproduct systems associated to stochastic matrices. For the basic theory of stochastic
matrices and Markov chains on discrete spaces, we recommend [48, Chapter 6] and [112].

Definition 2.3.11. Let Ω be a countable set. A stochastic matrix is a function P : Ω×Ω→
R+ such that for all i ∈ Ω we have

∑
j∈Ω Pij = 1. Elements of Ω are called states of P .

To every stochastic matrix, one can associate a set of edges Gr(P ) := { (i, j) | Pij > 0 }
and a {0, 1} - adjacency matrix Adj(P ) representing the directed graph of P as an incidence
matrix by way of

Adj(P )ij =

{
1 : Pij > 0
0 : Pij = 0

Many dynamical properties of P can be put in terms of the directed graph QP :=
(Ω, Gr(P ), r, s) of P , where s(i, j) = i and r(i, j) = j. We note immediately that in the
context of stochastic matrices in this subsection, and in Chapter 4, we take reversed range
and source convention to the one taken in Subsection 2.3.1 and the definition of the graph
of a Markov-Feller operator as in Subsection 2.3.2.
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Definition 2.3.12. Let P be a stochastic matrix over Ω. We will say that a state i leads
to a state j if there is a path γ in QP such that s(γ) = i and r(γ) = j.

Definition 2.3.13. Let P be a stochastic matrix over Ω, and let i ∈ Ω.

1. The period of i is t(i) = gcd{ n | P (n)
ii > 0 }. If no finite such t(i) exists, or if

t(i) = 1 we say that i is aperiodic.

2. P is said to be irreducible if for any pair i, j ∈ Ω, we have that i leads to j (and so
j also leads to i).

If P is an irreducible stochastic matrix over Ω, it turns out that every state i ∈ Ω is of
the same periodicity t, so we define the periodicity of P to be t.

Let us recall the statement of the cyclic decomposition of irreducible stochastic matrices
[112, Theorem 1.3] which justifies the notion of periodicity of an irreducible stochastic
matrix P .

Theorem 2.3.14. (Cyclic decomposition for periodic irreducible matrices)
Let P be an irreducible stochastic matrix over a state set Ω with period t, and let ω ∈ Ω.
For each ` = 0, . . . t− 1, let Ω` = {j ∈ Ω | P (n)

ωj > 0 =⇒ n ≡ ` mod t}. Then,

1. The family (Ω`)
t−1
`=0 is a partition of Ω.

2. If j ∈ Ω` then there exists N(j) such that for all n ≥ N(j) we have P
(nt+`)
ωj > 0.

3. Up to re-enumeration of Ω, there exist rectangular stochastic matrices P0, ...Pt−1 such
that P has the following cyclic block decomposition: 0 P0 ··· 0

...
... ...

...
0 ··· 0 Pt−2

Pt−1 ··· 0 0


where the rows (columns) of P` in this matrix decomposition are indexed by Ω` (Ω`+1

respectively) for all ` ∈ Zt, where Zt is the cyclic group of order t.

In this subsection and in Chapter 4 we shall restrict our attention to finite irreducible
stochastic matrices, or equivalently, those matrices whose associated graph is transitive
and finite. For this class of stochastic matrices, we have that the more generally stated
[42, Theorem 2.10], combined with[112, Theorem 4.1] and [48, Theorem 6.7.2], yields the
following clean formulation.
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Theorem 2.3.15. (Convergence theorem for finite irreducible matrices)
Let P be a finite irreducible stochastic matrix over Ω with period t ≥ 1, and Ω0, ...,Ωt−1 a
cyclic decomposition for it as in item (3) of Theorem 2.3.14. Then there exists a unique
probability vector ν = (νi)i∈Ω so that when we are given i ∈ Ωl1 and j ∈ Ωl2, for 0 ≤ ` < t
such that ` ≡ (l2 − l1) mod t, we have that

lim
m→∞

P
(mt+`)
ij = νjt.

Let Ω be a finite set and `∞(Ω) = C(Ω) = CΩ the C*-algebra of finite sequences indexed
by Ω. We denote by {pj}j∈Ω the collection of pairwise perpendicular projections on C(Ω)
given by pj(i) = δij.

Notation 2.3.16. We denote by ∗ the Schur (entrywise) multiplication of matrices A =
[aij] and B = [bkl] given by A ∗B = [aijbij], and let Diag be the map on matrices given by
Diag([aij]) = (aii)i∈Ω ∈ C(Ω).

Next, for a non-negative matrix P = [Pij] indexed by Ω, we denote by
√
P and P [ the

matrices with (i, j)-th entry given by

(
√
P )ij :=

√
Pij, and (P [)ij :=

{
(Pij)

−1, if Pij > 0

0, else

In [42, Theorem 3.4] the Arveson-Stinespring subproduct system associated to a stochas-
tic matrix P on countable Ω was computed. When Ω is finite, we arrive at the following
simpler version of the theorem.

Theorem 2.3.17. Let P be a stochastic matrix over finite Ω. The following is a subproduct
system Arv(P ) over C(Ω) = `∞(Ω) = C|Ω| and is the one given in [42, Theorem 3.4].

1. The n-th fiber is a C*-correspondence over C(Ω) given by

Arv(P )n := { [aij] | aij = 0 if (i, j) /∈ Gr(P n) }

with left and right actions of C(Ω) on Arv(P )n as a bimodule are given by diagonal
left and right matrix multiplication and the C(Ω)-valued inner product is given by

〈A,B〉 = Diag
[
A∗B

]
for A,B ∈ Arv(P )n.
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2. The subproduct maps are given by

Un,m(A⊗B) = (
√
P n+m)[ ∗

[
(
√
P n ∗ A) · (

√
Pm ∗B)

]
for n,m 6= 0 and A ∈ Arv(P )n and B ∈ Arv(P )m.

Remark 2.3.18. Since the subproduct systems we shall consider in this work will be with
finite dimensional fibers and over finite dimensional C*-algebras, they will automatically
be W ∗-correspondences. Hence, the theories of subproduct systems over C*-algebras and
their operator algebras discussed here and of subproduct systems over W ∗-algebras and
their operator algebras discussed in [42] will coincide.

Remark 2.3.19. Let P be a stochastic matrix over finite Ω. We next characterize the
Arv(P )-invariant ideals in C(Ω). In this case, the Arv(P )-invariant ideals of C(Ω) corre-
spond to Arv(P )-reducing projections p ∈ C(Ω), according to [42, Definition 6.19]. By [42,
Proposition 7.4], there is a 1-1 bijection between reducing projections p and subsets Cp ⊆ Ω
such that whenever γ = e0...e` is a path in QP with ek ∈ Gr(P ) such that s(γ), r(γ) ∈ Cp,
then for every 1 ≤ k ≤ ` we have s(ek) ∈ Cp.

Using this, it is easy to show that a finite stochastic matrix P over Ω is irreducible if
and only if (Arv(P ), U) is minimal according to Definition 2.2.12.

2.3.4 Extension theory

We recall some facts from the theory of primitive ideal spectra and extension theory for
C*-algebras. More details on primitive ideal spectra of C*-algebras can be found in [40,
Chapter 3] and [7, Section 1.5]. For an account on the Busby invariant and extension
theory for C*-algebras see [8], [17, Section 15], [23, Section 1], [50, Section 2] and [98].
Finally, for K-theory of C*-algebras, we recommend [111].

Let A be a C*-algebra. We denote by Â the collection of unitary equivalence classes
of irreducible representations of A. On the other hand, we define Prim(A) to be the set of
primitive ideals of A, where a primitive ideal is the kernel of an irreducible representation
of A.

The set Prim(A) comes equipped with a lattice structure determined by set inclusion.
Next, since any two unitarily equivalent *-representations have the same kernel, the map
π 7→ Ker π factors through to yield a surjective map κ : Â → Prim(A).

It turns out that a C*-algebra is type I if and only if the above map κ is a injective [57].
This means that up to unitary equivalence, an irreducible representation π is completely
determined by its kernel Kerπ.
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When we have a *-isomorphism ϕ : A → B between two C*-algebras, we denote by
ϕ∗ : Prim(B)→ Prim(A) the induced lattice isomorphism between the spectra.

Suppose we have the following exact sequence of C*-algebras

0→ K ι→ A π→ B → 0. (2.2)

Then there is a ∗-homomorphism θ : A →M(K) into the multiplier algebra of K, uniquely
determined by θ(a)c = ι−1(aι(c)) for c ∈ K and a ∈ A. Denote by q : M(K)→M(K)/K =:
Q(K) the Calkin map. Hence, a ∗-homomorphism η : B → Q(K) will be induced from θ,
and we call η the Busby invariant of the exact sequence in (2.2). We say that the exact
sequence (2.2) is essential if K is an essential ideal in A, that is, if the intersection of K
with any non-trivial ideal in A is non-trivial.

The above association turns out to be a bijection between exact sequences of C*-
algebras given as in equation (2.2) and ∗-homomorphisms η : B → Q(K). Indeed, the
inverse map sends a ∗-homomorphism η : B → Q(K) to the exact sequence where the pre-
image A := q−1(η(B)) under the Calkin quotient q yield an exact sequence as in (2.2), and
π replaced by the restriction of q to A. Under this bijection, an exact sequence as in (2.2)
is essential if and only if its associated Busby invariant is an injective ∗-homomorphism.

Definition 2.3.20. Suppose Ki,Ai,Bi are C*-algebras for i = 1, 2, and that

0→ K1
ι1→ A1

π1→ B1 → 0 and 0→ K2
ι2→ A2

π2→ B2 → 0 (2.3)

are two short exact sequences. We say that these two short exact sequences are isomorphic
if there exists a ∗-isomorphism α : A1 → A2 such that α(ι1(K1)) = ι2(K2).

Suppose η1 and η2 are Busby maps for exact sequences as in equation (2.3). [50,
Theorem 2.2] then yields that these two short exact sequences are isomorphic if and only
if there exist *-isomorphisms κ : K1 → K2 and β : B1 → B2 such that

κ̃η1 = η2β

where κ̃ : Q(K1)→ Q(K2) is the induced ∗-isomorphism between the Calkin algebras.

In the context of extensions by a single copy of compact operators on separable in-
finite dimensional Hilbert space, that is when K = K(H), the Calkin quotient map
q : M(K(H))→ Q(K(H)) discussed above is just the regular quotient map into the Calkin
algebra, since M(K(H)) = B(H), so that M(K(H))/K(H) = Q(H).
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Let B be a C*-algebra. We write E(B) for the collection of all injective ∗-homomorp-
hisms of B into Q(H). We call elements in E(B) extensions, as they are in bijection, under
(the inverse of) the Busby map, with essential exact sequences of C*-algebras of the form

0→ K(H)→ A→ B → 0.

We then say that two extensions η1, η2 ∈ E(B) are

1. Strongly (unitarily) equivalent if there is a unitary U ∈ B(H) such that η1(b) =
q(U)η2(b)q(U∗) for all b ∈ B.

2. Weakly (unitarily) equivalent if there is a unitary element u ∈ Q(H) such that
η1(b) = uη2(b)u∗ for all b ∈ B.

When B is unital we write Exts(B) and Extw(B) for the strong and weak equivalence
classes of unital extensions in E(B), respectively. When B is non-unital, we write Exts(B)
and Extw(B) for the strong and weak equivalence classes of all extensions in E(B) respec-
tively. In the latter case however, Exts(B) = Extw(B) by [17, Proposition 15.6.4]. We
denote by [η]s and [η]w the equivalence classes of an extension η in Exts(B) and Extw(B),
respectively.

Given η1, η2 ∈ E(B), we may define η1⊕η2 ∈ E(B) (via some fixed identificationQ(H)⊕
Q(H) ⊆ Q(H ⊗ C2) ∼= Q(H)) by specifying (η1 ⊕ η2)(b) = η1(b) ⊕ η2(b). This operation
induces a well-defined addition + on Exts(B) and Extw(B) given for two extensions η1 and
η2 by [η1]s + [η2]s := [η1⊕ η2]s and [η1]w + [η2]w := [η1⊕ η2]w, and makes them into abelian
semigroups.

An extension τ is called trivial if it lifts to a *-homomorphism τ̂ : B → B(H). That is,
if q ◦ τ̂ = τ . Such a trivial extension τ is called strongly unital if the map τ̂ can be chosen
to be unital (in particular this is relevant only when B itself is unital and τ is unital).
Trivial extensions correspond to split essential exact sequences via (the inverse of) the
Busby map. It is straightforward to construct injective *-homomorphisms of a C*-algebra
B into B(H) which do not intersect K(H), hence trivial extensions always exist. Moreover,
the same argument yields strongly unital trivial extensions.

Voiculescu [120] showed that when B is separable, the semigroup Exts(B) has a zero
element. When B is non-unital, the zero element consists precisely of the trivial extensions.
When B is unital, it consists of the strongly unital trivial extensions. For more details, see
[17, Section 15.12], and especially [17, Theorem 15.12.3].
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Although Exts(B) and Extw(B) are not always groups, it follows from a theorem of Choi
and Effros that when B is separable and nuclear, both semigroups are actually groups (see
[17, Corollary 15.8.4]).

Suppose now that B is unital. There is an action ε of Z on Exts(B) given by ε(m)[η]s =
[Adu ◦η]s where u ∈ Q(H) is a unitary of Fredholm index −m, and Adu(a) = u∗au for
a ∈ Q(H). By definition of addition, we have that ε(n+m)([η1]s+[η2]s) = [Adu⊕v(η1⊕η2)] =
ε(n)[η1]s+ε(m)[η2]s where u and v are unitaries inQ(H) of indices −n and −m respectively.
In particular, if τ is a strongly unital trivial extension then ε(m)[η]s = ε(0+m)([η]s+[τ ]s) =
[η]s + ε(m)[τ ]s. Hence, when we denote by λB : Exts(B)→ Extw(B) the canonical quotient
map, we have that KerλB = {ε(m)[τ ]s |m ∈ Z}.

Let γB : Extw(B) → Hom(K1(B),Z) denote the so-called index invariant of B, given
by γB([η]w) = ind ◦η∗, where η∗ : K1(B)→ K1(Q(H)) is the map induced between the K1

groups and ind : K1(Q(H)) → Z is the Fredholm index. Hence, for a unital C*- algebra
B, we always have the following sequence of maps

Exts(B)
λB−→ Extw(B)

γB−→ Hom(K1(B),Z). (2.4)

We next give the details of two particular examples, which will turn out to be useful
to us in Chapter 4.

Example 2.3.21. Take B = C(T). In this case B is nuclear and separable, so both the
weak and strong extension semigroups are groups. We note that Hom(K1(B),Z) ∼= Z as
K1(B) ∼= Z, and every homomorphism is determined on the generator 1. We next show
that in this case, the map γB ◦ λB is surjective. Indeed, for every m ∈ Z there is a unitary
u ∈ Q(H) with σ(u) = T, and Fredholm index m, so we may define a *-homomorphism
ηm : C(T) → Q(H) given by ηm(z 7→ z) = u which implements a *-isomorphism C(T) ∼=
C∗(u). Thus we obtain an extension with index invariant k 7→ k ·m ∈ Hom(K1(B),Z).

Next, we show that γB◦λB is injective. Indeed, if γB◦λB[η]s = 0, then ind(η(z 7→ z)) = 0
and hence there is a unitary U ∈ B(H) with σ(U) = T s.t q(U) = η(z 7→ z). Thus, η
lifts to a unital ∗-homomorphism η̂ : C(T) → B(H), so that η is a strongly unital trivial
extension, and the map γB ◦ λB is injective.

We conclude that Exts(C(T)) ∼= Extw(C(T)) ∼= Z, and that ε(n) acts trivially on
Exts(C(T)) for each n.

Example 2.3.22. Take B = Md(C). Again in this case B is nuclear and separable so that
both weak and strong extension semigroups are groups. We already know that K1(Md(C)) ∼=
{0}, so that the right most group in equation (2.4) vanishes. Let η : Md(C) → Q(H)
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be a unital extension. We reiterate the construction in [17, Example 15.4.1 (b)] lifting
η : Md(C) → Q(H) to a *-homomorphism η̂ : Md(C) → B(H), and measuring how far η̂
is from being unital. That is, how far is η from being a strongly unital trivial extension.

Let {eij} be a system of matrix units for η(Md(C)). By standard essential spectrum
arguments, one can find projections pii ∈ B(H) that lift each eii. Next, by appealing to
[98, Lemma 1.1], for all 2 ≤ i ≤ d we may find partial isometries e1i lifting e1i such that
e∗1ie1i ≤ pii and e1ie

∗
1i ≤ p11. We set eij = e∗1ie1j so that {eij} is a lifted set of matrix units

in pB(H)p, where p =
∑
eii. We note that p is a projection of finite dimensional cokernel,

say of dimension `, so that by adding a homomorphism from Md(C) to (1− p)B(H)(1− p)
if necessary, we may arrange for 0 ≤ ` < d.

The defect of η is then defined to be ` ∈ Zd, and up to strong equivalence it is indepen-
dent of the choice made in the process above. It is then easy to show that two unital exten-
sions η1, η2 ∈ E(Md(C)) are strongly equivalent if and only if they have the same defect,
and that they are always weakly equivalent. Hence, we conclude that Exts(Md(C)) ∼= Zd
and Extw(Md(C)) ∼= {0}.

2.4 Matrix positivity and convexity

2.4.1 Matrix convex sets

We will often denote n× n matrix algebras over complex numbers by Mn, and by B(H) /
K(H) all bounded / compact operators on Hilbert space. For a C*-algebra A we denote
by Ad the d-tuples of operators from A and Adsa the d-tuples of self-adjoint operators from
A. Whenever X = (X1, ..., Xd) ∈ B(H)d and V ∈ B(H) is some operator, we denote
V XV ∗ := (V X1V

∗, ..., V XdV
∗), and for another d-tuple Y = (Y1, ..., Yd) ∈ B(K)d we will

denote X ⊕ Y = (X1 ⊕ Y1, ..., Xd ⊕ Yd) ∈ (B(H)⊕B(K))d ⊆ B(H⊕K)d

Definition 2.4.1. For d ∈ N, a collection of subsets S = (Sn) where Sn ⊆ Md
n is called

a free set in d dimensions. When each Sn ⊆ (Mn)dsa, we will say that S is self-adjoint.
We will say that a free set S = (Sn) is an nc set if when A ∈ Sn and B ∈ Sm then
A⊕B ∈ Sn+m. We will say that a free nc set in d dimensions S = (Sn) is matrix convex
in d dimensions if for any isometry V : Cn → Ck and X ∈ Sk we have that V XV ∗ ∈ Sn.

We note that a matrix convex set S = (Sn) is always unitarily invariant in the sense
that for any X ∈ Sn and unitary matrix U ∈ Mn(C) we have UXU∗ ∈ Sn. Furthermore,
from the Choi-Krauss theorem [99, Proposition 4.7] a free nc set S = (Sn) is matrix convex
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set if and only if for any UCP map ϕ ∈ UPC(Mn,Mk) and a d-tuple X ∈ Sk we have
ϕ(X) ∈ Sn. The above definition of matrix convex set coincides with the one given by
Effros and Winkler in [49, Section 3], for a matrix convex set in Cd (or a matrix convex
set in Rd when S is self adjoint). We will say that a free set S = (Sn) is open / closed /
bounded if Sn is open / closed / bounded respectively for each n ∈ N.

Proposition 2.4.2. Let S be a matrix convex set. The following are equivalent:

1. S is uniformly bounded.

2. S is bounded.

3. S1 is bounded.

Proof. If S is uniformly bounded, there exists r > 0 such that for every n ∈ N and X ∈ Sn
we have ‖Xi‖ ≤ r, it is clear that each Sn is bounded, and in particular S1 is bounded.
Conversely, suppose towards contradiction that S is unbounded while S1 is. Then there is
X(m) ∈ Snm such that ‖X(m)

i ‖ is arbitrarily large for some 1 ≤ i ≤ d. Since the numerical
radius is an equivalent norm to the operator norm, we see that there are norm-one column
vectors vm such that |v∗mX

(m)
i vm| is also arbitrarily large. Since v∗X(m)v ∈ S1, we see that

S1 is also unbounded.

Given a d-tuple of operators A = (A1, ..., Ad) ∈ B(H)d we may define a free set DA =
(DA(n)) by specifying

DA(n) = { X = (X1, ..., Xd) ∈Md
n | Re

( d∑
i=1

Aj ⊗Xj

)
≤ I }

or alternatively, when A ∈ B(H)dsa, we define the self-adjoint free set

DsaA (n) = { X = (X1, ..., Xd) ∈ (Mn)dsa |
d∑
i=1

Aj ⊗Xj ≤ I }

where ⊗ is the usual Kronecker tensor product, which coincides with the standard tensor
product inside the C*-algebra B(H)⊗Mn.

The free sets DA and DsaA are called free operator spectrahedra. When the d-tuple
A is of matrices from Mn, we will call DA and DsaA free matrix spectrahedron. In the
literature, the notion of free spectrahedron, or free LMI domain is reserved for free matrix
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spectrahedra, where A is comprised of matrices. We will allow for operator coefficients for
our free spectrahedra.

In the literature, free spectrahedra are often given as the positivity domains of a non-
commutative linear matrix / operator inequality. A (monic) linear pencil defined by A =
(A1, ..., Ad) ∈ B(H)d is a function on Cd of the form

LA(x) = I −
d∑
i=1

Aj · xj

which allows for evaluation on non-commuting d-tuples X = (X1, ..., Xd) ∈Md
n by way of

LA(X) = I ⊗ In −
d∑
i=1

Aj ⊗Xj

so we see that DA and DsaA are also given alternatively by

DA(n) = { X = (X1, ..., Xd) ∈Md
n | ReLA(X) ≥ 0 }.

and
DsaA (n) = { X = (X1, ..., Xd) ∈ (Mn)dsa | LA(X) ≥ 0 }.

Clearly DA and DsaA are closed free nc sets, but they are also matrix convex. For
instance if X ∈ DA(n) and ϕ ∈ UCP (Mn,Mk) we have that I ⊗ ϕ is UCP. So we get that

ReLA(ϕ(X)) = Re(I ⊗ ϕ)(LA(X)) = (I ⊗ ϕ) ReL(X) ≥ 0

since UCP maps respect real and imaginary parts. One then similarly shows that DsaA is
matrix convex.

Example 2.4.3 (Matrix cube and polydisc). The matrix cube C(d) is the self-adjoint

spectrahedron DsaC determined by the 2d × 2d matrices Cj =
(
Ejj 0
0 −Ejj

)
, where Ejj is the

diagonal d × d matrix with 1 on the j-th diagonal entry, and 0 everywhere else. Then
X ∈ DsaC if and only if

0 ≤ I −
d∑
j=1

Cj ⊗Xj =
d∑
j=1

(
Ejj⊗I 0

0 Ejj⊗I

)
−
(
Ejj⊗Xj 0

0 −Ejj⊗Xj

)
=
(
Ejj⊗(I−Xj) 0

0 Ejj⊗(I+Xj)

)
,
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which is equivalent to ‖Xj‖ ≤ 1 for 1 ≤ j ≤ d.

The matrix polydisc D(d) is the the spectrahedron DD determined by 2d× 2d matrices
Dj = Ejj ⊗ ( 0 2

0 0 ) for 1 ≤ j ≤ d. So that X ∈ DD if and only if

0 ≤ Re
(
I −

d∑
j=1

Ejj ⊗ ( 0 2
0 0 )⊗Xj

)
=

d∑
j=1

Ejj ⊗
(

I −Xj
−X∗j I

)
.

Which is again equivalent to ‖Xj‖ ≤ 1 by [99, Lemma 3.1].

Example 2.4.4 (Real and complex matrix balls). The real matrix ball and the complex
matrix ball are the free sets defined by

B
(d)
R = {X ∈ ∪n(Mn)dsa :

∑
j

X2
j ≤ I},

and
B

(d)
C = {X ∈ ∪nMd

n :
∑
j

XjX
∗
j ≤ I}.

These sets are the free spectrahedra DsaRe(B) and DB respectively, determined by the matrices

Bj = E1(j+1) for 1 ≤ j ≤ d, where Eik are canonical (d + 1) × (d + 1) matrix units for
1 ≤ i, k ≤ d+1. The details are similarly verified using [99, Lemma 3.1], as in the previous
example.

The matrix range of a single operator, which was introduced by Arveson in [6, Section
2.4] easily generalizes to several variables. Let A = (A1, ..., Ad) ∈ B(H)d be a d-tuple of
operators. We denote by VA := Sp{I, A1, A

∗
1, ..., Ad, A

∗
d} the finite dimensional operator

system spanned by A. We define the matrix range of A as the free set W(A) = (Wn(A))
given by

Wn(A) = { (ϕ(A1), ..., ϕ(Ad)) | ϕ ∈ UCP (VA,Mn) }.

SinceWn(A) ⊆ (Mn)dsa if and only if A ∈ B(H)dsa, we will not require separate notation for
matrix ranges in the self-adjoint setting. We will also denote C∗(I, A) := C∗(I, A1, ..., Ad)
the unital C*-algebra generated by A.

ClearlyW(A) is a free nc set that is closed under the application of UCP maps from Mn

to Mk and is hence a matrix convex set. Furthermore, by [99, Theorem 7.4] we know that
UCP (VA,Mn) is compact in the BW topology. Hence, we see that eachWn(A) is compact
in the weak* topology on each coordinate, which coincides with the norm topology on each
coordinate as Mn is finite dimensional. Hence, we obtain that,
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Proposition 2.4.5. For any A ∈ B(H)d, the free setW(A) is a closed and bounded matrix
convex set.

When N = (N1, ..., Nd) is a d-tuple of normal commuting operators, we will simply call
it a normal d-tuple. In this case C∗(I,N) is a unital commutative C*-algebra which by
the Gelfand-Naimark theorem is *-isomorphic, via the Gelfand transform τ to C(X) for
some compact Hausdorff space X. If we denote fi := τ(Ni) ∈ C(X), these functions define
a homeomorphism x 7→ (f1(x), ..., fd(x)) that identifies X homeomorphically as a subset
σ(N) of Cd. This compact space σ(N) is called the joint spectrum of the normal d-tuple
N . It is readily seen by the above definitions that σ(N) ⊆ W1(N). We will say that a
representation ρ : C(X) → B(H) is diagonal if there is an orthonormal basis {ξi} for H
such that for each function f ∈ C(X), each ξi is an eigenvector for ρ(f).

Theorem 2.4.6. Let N = (N1, ..., Nd) be a normal d-tuple. Then for every n ∈ N we have

Wn(N) =
{ m∑

i=1

λ(i)Ki | m ∈ N, Ki ∈ (Mn)+,
∑

Ki = In

}
(2.5)

where m in the above equality can be taken to be at most 2n4d+n2. In particular, W1(N) =
conv(σ(N)), and W(N) is the smallest matrix convex set containing σ(N).

Proof. For λ(i) = (λ
(i)
1 , ..., λ

(i)
d ) ∈ σ(N) and Ki ∈ (Mn)+ that satisfy

∑m
i=1(K

1
2
i )∗K

1
2
i =∑m

i=1 Ki = In, we have that

m∑
i=1

λ(i)Ki =
m∑
i=1

(K
1
2
i )∗λ(i)K

1
2
i ∈ Wn(N).

So certainly the right-hand side is a subset of the left-hand side in equation (2.5).

We now show the reverse inclusion. Let ϕ ∈ UCP (VN ,Mn). By Arveson’s extension
theorem followed by Stinespring’s theorem, we know that ϕ extends to a UCP map on
C∗(I,N) ∼= C(σ(N)) that is the compression of a ∗-representation π : C(σ(N)) → B(H)
via an isometry V : Cn → H. Up to taking the direct sum of π with itself, we may assume
that H is separable and infinite dimensional. By the Weyl-von Neumann-Berg Theorem
(see [30, Corollary II.4.5]), we know that π can be approximated in the point-norm topology
by a diagonal representation ρ : C(σ(N)) → B(K), with diagonalizing orthonormal basis
{ξi}. Hence, ρ has the form ρ(f) =

∑∞
i=1 f(λ(i))Pi where Pi is the projection onto Sp{ξi}

and {λ(i)} is dense in σ(N). A second approximation allows us to pick m such points
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{λ(i)}mi=1 such that f 7→
∑m

i=1 f(λ(i))Pi approximates ρ in the point-norm topology. Thus,
ϕ can be arbitrarily approximated by a map of the form τ : f 7→

∑m
i=1 f(λ(i))Ki where Ki

is an n× n positive matrix compression of Pi such that
∑m

i=1Ki = In.

Hence, for a general d-tuple ϕ(N) := (ϕ(N1), ..., ϕ(Nd)) ∈ Wn(N), as each Ni is iden-
tified with the coordinate function (z1, ..., zd) 7→ zi, we see that the d-tuple ϕ(N) is arbi-
trarily close to (τ(z1), ..., τ(zd)) =

∑m
i=1 λ

(i)Ki. Hence, the closure of the right-hand side
of equation (2.5) is Wn(N).

Eliminating the closure is obtained by a more refined analysis as in [5, Theorem 1.4.10].
It is shown there that the extreme points of UCP (C(σ(N)),Mn) are exactly maps of the
form τ : f 7→

∑m
i=1 f(λ(i))Ki where λ(i) ∈ σ(N) are m distinct points and K1, ..., Km

are positive operators such that
∑m

i=1Ki = In where the subspaces KiMnKi are linearly
independent. In particular, we must have m ≤ n2, and that Wn(N) has at most n2

extreme points. Since Wn(N) ⊆Md
n and Md

n is a 2n2d-dimensional as a real vector space,
Caratheodory’s Theorem assures us that every point inWn(N) is a convex combination of
at most 2n2d + 1 extreme points. Putting these estimates together, we see that at most
2n4d + n2 terms are required in the right hand side of equation (2.5) for each element in
Wn(N).

Finally, if S is a matrix convex set such that σ(N) ⊆ S1, as
∑m

i=1(K
1
2
i )∗λ(i)K

1
2
i ∈ Sn

for m points λ(i) ∈ σ(N) and positive matrices Ki ∈ (Mn)+ with
∑m

i=1Ki = In, it is clear
that Wn(N) ⊆ Sn, so W(N) ⊆ S.

2.4.2 Operator system axiomatics

We recall some definitions and results about operator system structures on Archimedean
ordered unit spaces, as discussed in the work of Paulsen, Todorov and Tomforde [100].

A ∗-vector space is a complex vector space V together with a map ∗ : V → V such
that (v∗)∗ = v and (λv + w)∗ = λv∗ + w∗ for all v, w ∈ V and λ ∈ C. We will denote by
Vsa := {x ∈ V |x∗ = x} the Hermitian / self-adjoint elements in the ∗-vector space V .

An ordered ∗-vector space is a pair (V ,V+) such that V is a ∗-vector space and V+ is
a cone in Vsa such that V+ ∩ −V+ = {0}. This induces a partial order on V by specifying
a ≤ b if and only if b−a ∈ V+. Such a cone V+ is called the cone of positive elements in V .

For an ordered ∗-vector space (V ,V+), we call an element e ∈ V an order unit if for all
v ∈ Vsa there is r > 0 such that re ≥ v. If additionally we have that re + v ≥ 0 for all
r > 0 implies v ≥ 0 we say that e is Archimedean.
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When e ∈ V is an Archimedean order unit for an ordered ∗-vector space (V ,V+), we will
call the triple (V ,V+, e) an Archimedean ordered *-vector space or AOU space for short.

When (V ,V+, e) is an AOU space, we may define the order norm on Vsa via

‖v‖ = inf{ t ∈ R+ | − te ≤ v ≤ te }.

It was shown in [101] that ‖ · ‖ can be extended to a norm on V , but even though this
extension is not unique, all such extensions yield equivalent norms. We call the topology
induced by any extension of ‖ · ‖ to a norm the order topology induced from V+ on V .

Let (V ,V+, e) be an AOU space. We denote by V ′ the collection of continuous linear
functionals f : V → C with the order topology on V induced by V+. We may then define a
∗-operation f 7→ f ∗ ∈ V ′ given by f ∗(v) = f(v∗). This turns V ′ into a ∗-vector space. The
set V ′+ ⊆ V ′ of all positive linear functionals contains the set S(V) of states on Vcomprised
of those positive linear functionals f such that f(e) = 1.

When V is a ∗-vector space, the set of all n×n matrices Mn(V) also becomes a ∗-vectors
space with the ∗ operation [vij]

∗ = [v∗ji] for vij ∈ V . We say that P := {Pn} is a matrix
ordering for V if (Mn(V ),Pn) is an ordered ∗-vector space, and for every n,m ∈ N and
X ∈ Mn,m we have X∗PnX ⊆ Pm, and we call (V ,P) a matrix ordered space. Given a
matrix ordering {Pn} on a ∗-vector space we will say that e ∈ V is a matrix ordered unit
if en = diag(e, e, ...e) is an order unit for (Mn(V),Pn) for all n ∈ N and that it is matrix
Archimedean order unit if each en is an Archimedean order unit for (Mn(V),Pn) for all
n ∈ N.

When (V , {Pn}) and (W , {Rn}) are matrix ordered spaces, we say that a linear map
φ : V → W is completely positive if for each [vij] ∈ Pn we have that [φ(vij)] ∈ Rn. We say
that φ is a complete order isomorphism if φ is bijective with a completely positive inverse.

Definition 2.4.7. A triple (V , {Pn}, e) is called an (abstract) operator system if (V , {Pn})
is a matrix ordered space, and e is a matrix Archimedean order unit for it.

The definition justifies itself by a theorem of Choi and Effros [25, Theorem 4.4]. It shows
that if (V , {Pn}, e) is an abstract operator system, then there exists a Hilbert space H, a
norm-closed unital ∗-subspace W ⊆ B(H) and a complete order isomorphism φ : V → W
such that ϕ(e) = IH. We will often refer to V as an operator system where the Archimedean
matrix order unit and matrix order cones are understood and denoted by I and Mn(V)+

respectively.

The concrete representation φ of an operator system V in B(H) imbues V with a
complete norm structure. This structure is then independent of the representation, and is
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given intrinsically by defining for V ∈Mn(V) the norm,

‖V ‖n = inf
{
r > 0 |

[
ren V
V ∗ ren

]
∈M2n(V)+

}
.

This complete norm structure on V is called the canonical operator space structure on
V , and will be understood as the complete norm structure of an operator system if not
otherwise specified through a concrete representation.

We wish to investigate different operator system structures on an AOU space (V ,V+, e).
We say that a matrix ordering P = {Pn} on V is an operator system structure on (V ,V+, e)
if (V , {Pn}, e) is an operator system with P1 = V+. In [100], Paulsen, Todorov and Tom-
forde show that there are two extremal operator system structures on any AOU space, in
the sense that every operator system structure on (V ,V+, e) must land between them.

Definition 2.4.8. Let (V, V+, e) be an AOU space.

1. For each n ∈ N we set

Pminn (V) = {[vij] ∈Mn(V) |
n∑

i,j=1

λivijλj ∈ V+ for λi ∈ C }

or alternatively, [vij] ∈ Pminn (V) if and only if (s(vij)) ∈ Mn(C)+ for any state
s ∈ S(V), and set Pmin(V) = {Pminn }.

2. For each n ∈ N we set

Dn(V) = { X diag(v1, ..., vn)X∗ | X ∈Mn,m(C), vi ∈ V+ }

and let Pmaxn (V) be the closure of Dn(V) in the weak topology induced from states in
Mn(S(V)). Or alternatively,

Pmaxn (V) = { V ∈Mn(V) | ren + V ∈ Dn(V) for all r > 0 }

and set Pmax(V) = {Pmaxn }.

Paulsen, Todorov and Tomforde [100] show that the above induce an operator sys-
tem structure on (V, V+, e) denoted by OMIN(V) = (V ,Pmin(V), e) and OMAX(V) =
(V ,Pmax(V), e) with the following universal properties:

1. for any operator system (W , {Rn}, f), any positive map φ : W → OMIN(V) such
that φ(f) = e is automatically completely positive.
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2. for any operator system (W , {Rn}, f), any positive map φ : OMAX(V) → W such
that φ(e) = f is automatically completely positive.

3. In particular, if {Pn} is some operator system structure on the Archimedean ordered
unit space (V, V+, e), then Pmaxn (V) ⊆ Pn ⊆ Pminn (V) for all n ∈ N.

Finally, we describe how to induce an operator system structure on V ′, when V is finite
dimensional. For every f ∈ Mn(V)′ we let fij : V → C be given by fij(v) = f(v ⊗ Eij)
where {Eij} are canonical matrix units for Mn. Then each fij ∈ V ′, so we may identify
f ∈ Mn(V)′ with [fij] ∈ Mn(V ′), where the inverse operation is given for [fij] ∈ Mn(V ′)
by f([vij]) =

∑
ij fij(vij), for [vij] ∈Mn(V). Hence, to specify a matrix ordering on V ′, we

define cones in each Mn(V)′. Following [100], given an operator system (V , {Pn}, e), we set

P ′n = { f : Mn(V)→ C | f(Pn) ⊆ R+ }.

Then (V ′, {P ′n}) becomes a matrix ordered space on the ∗-vector space V ′ with P ′1 =
V ′+. The following proposition shows that unital complete order isomorphism of operator
systems promotes to a complete order isomorphism between their dual matrix ordered
spaces.

Proposition 2.4.9. Let V and W be operator systems and φ : V → W a linear map. If φ
is completely positive then φ′ :W ′ → V ′ given by φ′(f) = f ◦ φ is completely positive.

Proof. Suppose φ is completely positive. Let [fij] ∈ Mn(W ′)+. We need to show that
[φ′(fij)] = [fij ◦ φ], as a map sending v ∈ V to [fijφ(v)], is completely positive. Let [vkl] ∈
Mm(V)+. Since φ is completely positive, we have that [φ(vkl)] is positive inMm(W). As [fij]
is positive, we have that [fij(φ(vkl))] is positive in Mn(Mm(C)). Hence, [φ′(fij)] = [fij ◦ φ]
is completely positive, and we are done.

In general, it is not clear what functional f ∈ V ′ plays the role of an ordered Archimedean
matrix order unit for (V ′, {P ′n}). However, when V is finite dimensional, a theorem of Choi
and Effros [25, Corollary 4.5] gives us a candidate. Recall that a linear functional τ : V → C
is said to be strictly positive if for any s ∈ V+ with s 6= 0 we have τ(s) > 0.

Theorem 2.4.10. Let (V , {Pn}, e) be a finite dimensional operator system. Then, there ex-
ists a strictly positive functional τ which is an Archimedean matrix order unit for (V ′, {P ′n}).
Hence, (V ′, {P ′n}, τ) is an abstract operator system.
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Proof. We note that any f ∈ V ′sa may be written as f = p − q for positive functionals
p, q ∈ V ′. To see this, embed V ⊆ B(H) as an operator system, and extend f to a self-
adjoint weak*-continuous linear functional on B(H). Considered as a trace class operator,
f can then be decomposed as a difference of two positive trace class operators. Restrict
back to V to obtain the desired positive functionals p and q such that f = p− q.

We saw that V ′ is spanned by positive elements. Let p1, ..., pd be a basis of positive
functionals in V ′. It is now clear that τ =

∑
i pi is strictly positive on V . Indeed, it is clearly

positive, and if it isn’t strictly positive, then there is v ∈ V+ \ {0} such that pi(v) = 0, so
that f(v) = 0 for all f ∈ V ′. As V ′ separates points, this is impossible.

Now, suppose τ =
∑

i pi for some basis p1, ..., pd of positive functions in V ′. Let [fij] ∈
Mn(V ′)sa, and write

[fij] = A1 ⊗ p1 + ...+ Ad ⊗ pd
where each Ai is self-adjoint. Let r = max{ρ(Ai)} where ρ(Ai) denotes the spectral radius
of Ai. It is then clear that

[fij] ≤ r
[
I ⊗ p1 + ...I ⊗ pd

]
= r · τ (n)

so that τ (n) is an order unit for Mn(V ′). Finally, since pi is a basis, we may form its dual
basis {vi} for V . Hence, the positivity of r · τ (n) + [fij] for all r ≥ 0 would imply the
positivity of each Ai by evaluating on vi. Hence, we see that [fij] is positive, and τ (n) is
Archimedean. Hence, we see that τ is an Archimedean matrix order unit for V ′.

Example 2.4.11. Let V ⊆Mn(C) be a concrete finite dimensional operator system realized
in finite dimensions. By the above theorem we know there is a strictly positive linear
functional τ ∈ V ′ that makes (V ′, {Mn(V)′}, τ) into an abstract operator system. We will
see in Corollary 6.3.13 that a positive functional τ is strictly positive if and only if it is
an Archimedean matrix order unit for V ′. Since the normalized trace tr : Mn(C) → C
restricted to V is easily seen to be a strictly positive, we get that (V ′, {Mn(V)′+}, tr |V) is an
abstract operator system.
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Chapter 3

Isomorphisms of tensor algebras
arising from weighted partial systems

3.1 Introduction

Non-self-adjoint operator algebras associated to dynamical / topological / analytic objects,
and their classification via these objects, have been the subject of study by many authors
for almost 50 years, beginning with the work of Arveson [4] and Arveson and Josephson
[13].

The main theme of this line of research, as is the main theme of this chapter, is to iden-
tify the extent to which the dynamical objects classify their associated non-self-adjoint op-
erator algebras. We shall mainly focus on classification of non-self-adjoint tensor operator
algebras arising from a single C*-correspondence over a commutative C*-algebra, although
a profusion of results have been obtained in other contexts [33, 37, 38, 42, 58, 72, 73, 109]
to mention only some.

In this chapter, which is based on [41], we provide classification results for tensor
algebras arising from weighted partial systems (WPS for short). Our objective is to show
that WPS yield tensor algebras that are still completely classifiable up to bounded /
isometric isomorphisms, while covering many examples of such classification results. For
instance, those for multiplicity free finite directed graphs [73, 116] and for Peters’ semi-
crossed product [34].

A weighted partial system on a compact space X is a pair (σ,w) of d-tuples (σ1, ..., σd)
and (w1, ..., wd) of partially defined continuous functions σi : Xi → X and wi : Xi → (0,∞)
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for Xi clopen. WPS generalize many classical constructions such as non-negative matri-
ces, continuous function on a compact space, multivariable systems, distributed function
systems, graph directed systems and more.

To each WPS (σ,w) we associate a multiplicity free topological quiver (in the sense
of [93]) that encodes some information on it. This topological quiver gives rise to a C*-
correspondence C(σ,w), as constructed in [93]. We completely characterize these C*-
correspondences up to unitary isomorphism and similarity, in terms of conjugacy relations
between the WPS that we call branch-transition conjugacy and weighted-orbit conjugacy
respectively.

We then associate a tensor algebra T+(σ,w) to C(σ,w) as one usually does for general
C*-correspondences [90, 91, 92], which coincides with T+(Prod(C(σ,w))) as in subsection
2.2.3. Characterization of the C*-correspondences allows for classification of these ten-
sor algebras up to isometric / bounded isomorphism and in some cases up to algebraic
isomorphism, in terms of the WPS (σ,w).

The following are our main results (See Theorems 3.5.6 and 3.5.7). Suppose (σ,w) and
(τ, u) are WPS over compact spaces X and Y respectively.

1. T+(σ,w) and T+(τ, u) are isometrically isomorphic if and only if C(σ,w) and C(τ, u)
are unitarily isomorphic if and only if (σ,w) and (τ, u) are branch-transition conju-
gate.

2. T+(σ,w) and T+(τ, u) are boundedly isomorphic if and only if C(σ,w) and C(τ, u) are
similar if and only if (σ,w) and (τ, u) are weighted-path conjugate. If in addition the
clopen sets Xi (which are the domains of each σi) cover X, the above is equivalent
to having an algebraic isomorphism between T+(σ,w) and T+(τ, u).

The solution to these isomorphism problems requires an adaptation of a new method
in the analysis of character spaces due to Davidson, Ramsey and Shalit in [37], used in
the solution of isomorphism problems of universal operator algebras associated to tuples
of operators subject to homogeneous polynomial constraints.

One of the main thrusts of the work in this chapter is the use of these classification
results to show that, in general, the (completely) isometric isomorphism and algebraic /
(completely) bounded isomorphism problems are distinct in the sense that they require
separate criteria to be solved (See Example 3.5.8).

This chapter contains six sections, including this introductory section. In Section 3.2
we introduce the notion of a weighted partial system, and define three different notions of
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conjugacy between WPS called branch-transition conjugacy, weighted-orbit conjugacy and
graph conjugacy. We then associate a C*-correspondence to every WPS in such a way that
the three conjugacy relations above correspond to unitary isomorphism, similarity and
isomorphism between the C*-correspondences. We give examples that show that these
three conjugacy relations are distinct. In Section 3.3 we discuss the general theory of
tensor algebras arising from C* correspondences, and develop the theory of semi-graded
isomorphisms by building on ideas from [42, Section 6] and [92, Section 5]. In Section
3.4 we compute the character space of a tensor algebra associated to a WPS by adapting
the methods of [60], and providing a useful characterization of semi-gradedness in terms
of the character space. In Section 3.5 we reduce the general isomorphism problem to the
problem on semi-graded isomorphisms, and using Sections 3.4, 3.3 and 3.2 in tandem with
a new character space technique due to [37], we conclude our main classification results.
Finally, in Section 3.6 we compare and apply our our theorems to other tensor algebra
constructions arising from non-negative matrices, single variable dynamics and partial
systems with disjoint graphs. We show how in some cases we can apply our results to
recover some previously obtained results in the literature.

3.2 Weighted partial systems

We define the notion of weighted partial system, and examine it associate a completely
positive map and a topological quiver.

Definition 3.2.1. Let X be a compact space. A d-variable weighted partial system (WPS
for short) is a pair (σ,w) where σ = (σ1, ..., σd) is comprised of continuous maps σi :
Xi → X where each Xi is clopen in X, and w = (w1, ..., wd) is comprised of continuous
non-vanishing weights wi : Xi → (0,∞).

When wi = 1 for all 1 ≤ i ≤ d, then the information on the weights is redundant, and
in this case we replace (σ, 1) by σ and call it a d-variable (clopen) partial system. Partial
systems were used under the name of ”quantised dynamical systems” by Kakariadis and
Shalit to classify tensor algebras associated to monomial ideals in the ring of polynomials
in non-commuting variables (See [72, Corollary 8.12]).

Weighted partial systems provide us with concrete examples of Markov-Feller maps and
topological quivers.

Definition 3.2.2. Let (σ,w) be a d-variable WPS over a compact X.
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1. The operator associated to (σ,w) is a positive linear map P (σ,w) : C(X) → C(X)
given by

P (σ,w)(f)(x) =
∑
i:x∈Xi

wi(x)f(σi(x)).

2. The quiver associated to (σ,w) is the quintuple Q(σ,w) = (X,Gr(σ), r, s, P (σ,w))
where Gr(σ) is the (union) cograph of σ, i.e. the union of the cographs of σi given by

Gr(σ) = ∪di=1{ (σi(x), x) | x ∈ Xi }.

The range and source maps are given by r(σi(x), x) = σi(x), s(σi(x), x) = x and
Radon measures

P (σ,w)x =
∑
i:x∈Xi

wi(x)δ(σi(x),x).

Note first that the source map s : Gr(σ)→ X is an open map, and that the graph we
have constructed is multiplicity-free, even though the original system (σ,w) need not be
multiplicity-free. More specifically, if for some x ∈ X we have an index 1 ≤ i ≤ d such that
σi(x) = σj(x) for some other index j 6= i, then σ is not multiplicity free, yet in Gr(σ) we
have (σi(x), x) = (σj(x), x). Instead, part of the information on the multiplicity of σi(x) is
encoded in the measure P (σ,w)x, depending on the weights wj(x) for these j that satisfy
σj(x) = σi(x). In fact, Q(σ,w) is just the topological quiver associated to P (σ,w) as in
Subsection 2.3.2.

We also abused notation above and decided to denote both the positive map and the
collection of Radon measures of the topological quiver of (σ,w) in the same way, the reason
being the 1-1 correspondence between positive maps P : C(X)→ C(X) and p.m.v. maps
P as in Theorem 2.3.9.

Remark 3.2.3. Since each wi never vanishes, we see that for every x ∈ X we have

supp(P (σ,w)x) = { (σi(x), x) | x ∈ Xi } = s−1(x) (3.1)

and so by [83, Lemma 3.30] we have that Q(σ,w) is a topological quiver with s−1(x) =
supp(P (σ,w)x). If we were to alter Definition 3.2.1 to allow some wi to vanishes on Xi,
as σi is defined on Xi, we would arrive at a situation where the equation (3.1) fails. This
is because it is then possible for supp(P (σ,w)x) not to contain an edge (σi(x), x) while
s−1(x) always does. See [83, Example 3.35] for this phenomenon and [83, Section 3] for
other complications that arise in for general p.m.v. maps and their topological quivers
when s is not open, and when supp(P (σ,w)x) is a proper subset of s−1(x).
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Weighted partial systems encompass many different classical dynamical objects. When
they have simpler forms, we describe their associated topological quiver and positive map.

Example 3.2.4 (Non-negative matrices). If A = [Aij] is a non-negative matrix indexed
by a finite set Ω, we associate a |Ω|-variable WPS (σA, wA) to it by specifying ΩA

i := { j ∈
Ω | Aij > 0 } and define σAi : ΩA

i → Ω by setting σAi (j) = i, and wAi (j) = Aij. Note
that some σAi may be the empty set function. This way the graph of the WPS is given by
Gr(σ) = Gr(A) := { (i, j) | Aij > 0 }, the Radon measures by P (σA, wA)j =

∑
i∈Ω Aijδ(i,j)

and the positive map P (σA, wA) by P (σA, wA)(f)(j) =
∑

i∈ΩAijf(i).

Example 3.2.5 (Finite directed graphs). Let G = (V,E, r, s) be a directed graph with
finitely many edges and vertices. We can regard every v ∈ V as comprising a clopen subset
{v} of V , and each edge e ∈ E as (the unique) map from {s(e)} to {r(e)}. With we = 1,
the collection σE = {e}e∈E becomes a (weighted) partial system. We then see that Gr(σE),
being the regular union in V × V , yields the multiplicity free directed graph associated to
(V,E, r, s), That is, Gr(σE) := {(r(e), s(e))|e ∈ E}. Denote by mw,v = |s−1(v) ∩ r−1(w)|
the multiplicity of edges starting at v and ending at w. Then the Radon measures are given
by P (σE)v =

∑
w:(w,v)∈Gr(σE) mw,vδ(w,v), and the positive map is given by

P (σE)(f)(v) =
∑

w:(w,v)∈Gr(σE)

mw,vf(w)

We note that when G has finitely many edges and vertices, it can be encoded as a non-
negative matrix AG = [mw,v] indexed by V , and then the topological quiver, positive maps
for G and for AG as in Example 3.2.4 coincide.

Example 3.2.6 (Partially defined continuous maps). For a compact space X, a clopen
subset X ′ ⊆ X and a continuous map σ : X ′ → X, we have that (X, σ) is a partial system.
The positive map P (σ)(f) = f ◦ σ is a *-homomorphism on C(X), and in fact, all *-
homomorphisms on C(X) arise in this way via the commutative Gelfand-Naimark duality.
The graph of the partial system σ is then just Gr(σ) = { (σ(x), x) | x ∈ X ′ }, and the
Radon measures are just Dirac measures P (σ)x = δ(σ(x),x).

Example 3.2.7 (Multivariable systems). When σ = (σ1, ..., σd) is a d-tuple of continuous
maps defined on all of X, the graph of σ is just the union of the graphs of σi as in Definition
3.2.2, but the Radon measures yield the simpler form P (σ)x =

∑d
i=1 δ(σi(x),x) for all x ∈ X.

The positive operator associated to σ is then given by P (σ)(f)(x) =
∑d

i=1 f(σi(x)).

Example 3.2.8 (Distributed function systems). If σ = (σ1, ..., σd) is a multivariable sys-
tem on a compact metric space X, and p = (p1, ..., pd) are continuous non-vanishing prob-
abilities in the sense that for each x ∈ X we have that

∑d
i=1 pi(x) = 1 and pi(x) > 0 for
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all x ∈ Xi, we call (σ, p) a distributed function system. The positive operator associated
to (σ, p) given by P (σ)(f)(x) =

∑d
i=1 pi(x)f(σi(x)) yields a unital positive map on C(X),

and this yields a Markov-Feller map via Theorem 2.3.9.

When the pi are constant and each σi is a 1-1 strict contraction, we call (σ, p) a dis-
tributed iterated function system. These systems were used by Hutchinson in [67] and by
Barnsley in [14, 15] to construct certain invariant measures on self-similar sets coming
from σ.

Example 3.2.9 (Graph directed systems). Let G = (V,E, r, s) be a directed graph with
finitely many vertices and edges, {Xv}v∈V a (finite) set of compact metric spaces and
{σe}e∈E a (finite) set of 1-1 strict contractions σe : Xs(e) → Xr(e). Then we call the
data (G, {Xv}v∈V , {σe}e∈E) a graph directed system or Mauldin-Williams graph. If we set
X = tv∈VXv, then (σe)e∈E becomes a partial system over X.

See [86], where Mauldin-Williams graphs are used to construct self-similar sets and
iterated limit sets. Also see [87] where the Hausdorff dimension of such iterated limit sets
is computed in some cases.

Our next goal is to define the main conjugacy relations between WPS in this chapter.
One particular conjugacy relation that we call branch-transition conjugacy, will turn out
to arise from isometric isomorphism of the associated operator algebra.

We say that (σ,w) and (τ, u) d-variable and d′-variable WPS over compact spaces X
and Y respectively are conjugate if one is a homeomorphic image of the other up to some
permutation. That is, d = d′ and there is a homeomorphism γ : X → Y and a permutation
α ∈ Sd such that γ−1τα(i)γ = σi and uα(i) ◦ γ = wi for all 1 ≤ i ≤ d.

Conjugation of WPS is the most rigid equivalence relation between WPS. We define a
weaker equivalence relation, that loses some information about multiplicities and weights
of the WPS.

For an s-variable WPS (τ, u) on a compact space Y and a homeomorphism γ : X → Y
denote τ γ = γ−1τγ := (γ−1τ1γ, ..., γ

−1τsγ) and uγ = uγ = (u1γ, ..., usγ).

Definition 3.2.10. Let σ and τ be partial systems on compact spaces X and Y respectively.
We say that σ and τ are graph conjugate if there exists a homeomorphism γ : X → Y
such that Gr(σ) = Gr(τ γ). Equivalently, there exists a homeomorphism γ : X → Y such
that the map γ × γ : Gr(σ)→ Gr(τ) is a homeomorphism.

Some natural sets that arise while considering graphs of partial systems are the sets of
points for which some of the maps in the system coincide and / or sets of points for which
they ”branch out”.
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Definition 3.2.11. Let σ be a d-variable partial system.

1. A point x ∈ X is a branching point for σ if there is some net xλ →λ x and two
distinct indices i, j ∈ {1, ..., d} such that xλ ∈ Xi ∩Xj and σi(xλ) 6= σj(xλ) for all λ
while σi(x) = σj(x).

2. An edge e ∈ Gr(σ) is a branching edge for Gr(σ) if there are two nets {eλ} and {fλ}
converging to e such that s(eλ) = s(fλ) while r(eλ) 6= r(fλ) for all λ.

Remark 3.2.12. If e is a branching edge, then by taking subnets if necessary, we see that
s(e) is a branching point. However, if s(e) is a branching point, e may not be a branching
edge. Still, every branching point is the source of some branching edge. Moreover, we see
that if two partial systems σ and τ are graph conjugate via γ, then σ and τ γ have the same
sets of branching points and branching edges.

Definition 3.2.13. Let σ be a d-variable partial system and I ⊆ {1, ..., d} a non-empty
subset of indices.

1. The coinciding set of I is the set

C(I) = { x ∈ ∩i∈IXi | σi(x) = σj(x) ∀i, j ∈ I }.

2. x ∈ X is a coinciding point for Gr(σ) if there is some I ⊆ {1, ..., d} with |I| ≥ 2
such that x ∈ C(I).

We also denote B(I) := ∂C(I) the topological boundary of C(I) inside X.

For I ⊆ {1, ..., d}, since the maps σi of a partial system are defined on clopen sets Xi,
we see that ∩i∈IXi is clopen, so that both C(I) and B(I) are in fact closed subsets of
∩i∈IXi.

We next characterize branching points and branching edges in terms of boundaries of
coinciding sets.

Proposition 3.2.14. Let σ be a d-variable (clopen) partial system.

1. x ∈ X is a branching point if and only if for some I ⊆ {1, ..., d} we have x ∈ B(I).

2. e ∈ Gr(σ) is a branching edge for Gr(σ) if and only if s(e) ∈ B(I) for some I ⊆
{1, ..., d} so that r(e) = σi(s(e)) for some (and hence all) i ∈ I.
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Proof. We first prove (1). If x ∈ B(I) for some I ⊆ {1, ..., d}, there exists a net {xλ}
in ∩i∈IXi converging to x such that for every λ ∈ Λ there exist iλ 6= jλ in I such that
σiλ(xλ) 6= σjλ(x). By passing to a subnet, we may arrange that iλ1 = iλ2 and jλ1 = jλ2 for
all λ1, λ2 ∈ Λ and so x is a branching point.

For the converse, if x ∈ X is a branching point, let i, j ∈ {1, ..., d} be two distinct indices
and {xλ} a net in Xi ∩Xj converging to x such that σi(xλ) 6= σj(xλ), while σi(x) = σj(x).
Then by taking I = {i, j} we have that x ∈ C(I), and the existence of the above net shows
that x ∈ B(I).

Next, we prove (2). Suppose s(e) ∈ B(I) for some I ⊆ {1, ..., d} so that r(e) = σi(s(e))
for some (and hence all) i ∈ I. Then by the above we have a net {xλ} in ∩i∈IXi converging
to s(e), and two distinct indices i, j in I such that σi(xλ) 6= σj(xλ) for all λ, while σi(s(e)) =
σj(s(e)) = r(e). Then the nets of edges eλ = (σi(xλ), xλ) and fλ = (σj(xλ), xλ) converge
to e, and have the same sources, and different ranges for every λ.

Conversely, if we have two nets {eλ} and {fλ} converging to e such that s(eλ) = s(fλ)
while r(eλ) 6= r(fλ) for all λ, by taking subnets as necessary, we may assume that r(eλ) =
σi(s(eλ)), and r(fλ) = σj(s(fλ)) while r(e) = σi(s(e)) = σj(s(e)) for i, j distinct. By taking
I = {i, j} we see that s(e) ∈ B(I), while r(e) = σi(s(e)), and we are done.

For an edge e ∈ Gr(σ), we denote I(e, σ) = { i | σi(s(e)) = r(e), s(e) ∈ Xi }, which is
the set of all indices of maps that send s(e) to r(e).

Definition 3.2.15. Let (σ,w) be a WPS over X. The weight induced on the graph of σ is
a function w : Gr(σ)→ (0,∞) given for any edge e = (y, x) ∈ Gr(σ) by

w(e) =
∑

i∈I(e,σ)

wi(s(e)) =
∑

i:σi(x)=y, x∈Xi

wi(x).

Proposition 3.2.16. Let (σ,w) be a WPS over X. Then w : Gr(σ) → (0,∞) is dis-
continuous at e ∈ Gr(σ) if and only if e is a branching edge for Gr(σ). Moreover,
w : Gr(σ)→ (0,∞) is bounded from above and from below.

Proof. ⇒: If e is not a branching edge for σ, there exist a neighborhood U of e inside
Gr(σ) such that for any f ∈ U we have I(f, σ) = I(e, σ). Hence, for f ∈ U we have

w(f) =
∑

i∈I(f,σ)

wj(s(f)) =
∑

i∈I(e,σ)

wj(s(f))

so we see that w is continuous at e by continuity of wj.
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⇐: If e ∈ Gr(σ) is a branching edge, without loss of generality, and perhaps by taking
a subnet, there is a net eλ →λ e indexed by Λ with I := I(eλ1 , σ) = I(eλ2 , σ) ( I(e, σ) for
all λ1, λ2 ∈ Λ. Hence we obtain that

w(eλ) =
∑
i∈I

wi(s(eλ))→
∑
i∈I

wi(s(e))

by continuity of wi for all 1 ≤ i ≤ d. Yet on the other hand,

w(e) =
∑

i∈I(e,σ)

wi(s(e)) >
∑
i∈I

wi(s(e)) = lim
λ
w(eλ)

since I is a proper subset of I(e, σ), and wi are bounded from below on the clopen sets Xi.

Finally, since for every 1 ≤ i ≤ d we have that wi, being continuous on Xi, is bounded
above by Mi and below by Ci. Let M = max{M1, ...,Md} and C = min{C1, ..., Cd}. Thus,
if e ∈ Gr(σ), there is some i ∈ {1, ..., d} with σ(s(e)) = r(e) so that w(e) ≥ wi(s(e)) ≥
C > 0, and of course w(e) ≤ |I(e, σ)| ·M ≤ d ·M , and we see that w : Gr(σ)→ (0,∞) is
bounded below by C and above by d ·M .

Definition 3.2.17. Let (σ,w) and (τ, u) be WPS on compact spaces X and Y respectively.
We say that (σ,w) and (τ, u) are branch-transition conjugate if σ and τ are graph conjugate
via some homeomorphism γ : X → Y and we have that the weighted transition function
uγ

w
: Gr(σ)→ (0,∞) from w to uγ given by

uγ

w
(e) :=

uγ(e)

w(e)

is continuous at e for any branching edge e ∈ Gr(σ) = Gr(τ γ).

We interpret the above to mean that the discontinuities for w and uγ, which can only be
at branching edges, are of the same proportions, so that the weighted transition function
becomes continuous at every branched edge, and hence everywhere on Gr(σ).

Example 3.2.18. Graph conjugacy does not imply branch-transition conjugacy, not even
when the weights w and u are constant. If we take X = [0, 1] and σ1(x) = x, σ2(x) = 0,
and pick two pairs of constant weights u = (1

2
, 1

2
) and w = (1

3
, 2

3
), then (σ,w) and (σ, u)

are not branch-transition conjugate. Indeed, if σ is graph conjugate to itself via γ, as γ
sends branching points to themselves, and 0 is the only branching point, we then must have
γ(0) = 0 which means that γ must be non-decreasing. This means that

uγ

w
(y, x) =


3
2

if x > 0 & y = x
3
4

if x > 0 & y = 0

1 if x = 0
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so that uγ

w
is not continuous at the branching edge e = (0, 0), and so (σ,w) and (σ, u) are

not branch-transition conjugate.

Corollary 3.2.19. Let (σ,w) and (τ, u) be d-variable and s-variable WPS on X and Y
respectively. If σ and τ are graph conjugate, then there exists some K ≥ 1 such that

1

K
≤ uγ

w
≤ K.

If in addition, (σ,w) and (τ, u) are branch-transition conjugate, then uγ

w
is continuous on

Gr(σ) = Gr(τ γ).

Proof. Without loss of generality we assume that γ = IdX . Assuming Gr(σ) = Gr(τ),
since both w and u are bounded from above and below by the last part of Proposition
3.2.16, we see that there is a K ≥ 1 such that 1

K
≤ u

w
≤ K.

Lastly, by Proposition 3.2.16 again, both w and u are continuous at edges which are
not branching points for Gr(σ) = Gr(τ), and by branch-transition conjugacy we see that
u
w

is continuous on all of Gr(σ).

We now focus on the second conjugacy relation arising from our operator algebras,
which we call weighted-orbit conjugacy. We give an example of two WPS which are not
weighted-orbit conjugate, and an example of weight-orbit conjugate WPS which are not
branch-transition conjugate. We also provide a simple criterion for when graph, weighted-
orbit and branch-transition conjugacy coincide. It will turn out that weighted-orbit con-
jugacy arises from bounded isomorphism of the associated operator algebra.

Definition 3.2.20. Let (σ,w) and (τ, u) be WPS on compact spaces X and Y respectively.
We say that (σ,w) and (τ, u) are weighted-orbit conjugate with constant C ≥ 1 if σ and τ
are graph conjugate via some homeomorphism γ : X → Y and there exists H ∈ C(Gr(σ))
such that for any n ∈ N and any path µ = µn...µ1 ∈ Gr(σn) we have

1

C
≤ Πn

k=1

[uγ
w

(µk)H(µk)
]
≤ C.

Intuitively, this means that multiplying by some continuous function H on Gr(σ) makes
the gaps introduced by uγ

w
uniformly bounded on paths of any length. Note that when

C = 1, the above implies the continuity of uγ

w
so that in this case (σ,w) and (τ, u) are

branch-transition conjugate.
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Example 3.2.21. It turns out that the weighted multivariable systems of Example 3.2.18
are not even weighted-orbit conjugate, despite being graph conjugate. Indeed, for every
x ∈ [0, 1] one can construct a path of length n comprised of the same edge e = (x, x) ∈
Gr(σ) at every step. In this case, if H ∈ C(Gr(σ)) and a (necessarily non-decreasing)
homeomorphism γ realize weighted-orbit conjugacy with constant C, we have that for e =
(x, x) such that x > 0 and n ∈ N,

1

C
≤ Πn

k=1

[3

2
·H(e)

]
≤ C

so this forces H(e) = 2
3
. On the other hand, if x = 0 we have

1

C
≤ Πn

k=1H(e) ≤ C

which forces H(e) = 1, and H cannot be continuous since H(x, x) does not converge to
H(0, 0) as (x, x)→ (0, 0) in Gr(σ).

Example 3.2.22. Weighted-orbit conjugacy does not imply branch-transition conjugacy,
not even when the weights w and u are the constant 1. If we take X = [0, 1] and σ1(x) =
χ[0, 1

2
](x) + 2(1 − x)χ( 1

2
,1], σ2(x) = 0, then the multivariable systems σ = (σ1, σ2, σ2) and

τ = (σ1, σ1, σ2), considered as WPS (σ,w) and (τ, u) with constant weights w = u = 1, are
not branch conjugate. Indeed, suppose σ is graph conjugate to τ via γ. Then γ(1) = 1 as
1 is the only branching point for both σ and σ′, and so γ must be non-decreasing. Hence,
we have that

uγ

w
(y, x) =


2 if x < 1 & y = σ1(x)
1
2

if x < 1 & y = σ2(x) = 0

1 if x = 1.

So we see that uγ

w
is not continuous at the branching edge e = (0, 1), so that (σ,w) and

(σ, u) are not branch transition conjugate.

However, we show that (σ,w) and (τ, u) are weighted-orbit conjugate via γ = Id[0,1].
Note first that Gr(σ) = Gr(τ) so that σ and τ are graph conjugate via IdX . Next, we define
the following continuous H ∈ C(Gr(σ)) by setting

H(y, x) =



1
2

if x < 1
2

& y = σ1(x)

x if 1
2
≤ x ≤ 1 & y = σ1(x)

2 if x < 1
2

& y = σ2(x) = 0

−2x+ 3 if 1
2
≤ x ≤ 1 & y = σ2(x) = 0

1 if x = 1
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and by our definition of H for e ∈ Gr(σ) with s(e) ≤ 1
2

we have H(e) u
w

(e) = 1. The impor-
tant thing to note here is that every path beginning at some x ∈ [0, 1] must be comprised,
from the third edge on, by edges e with r(e), s(e) ∈ {0, 1

2
}. Indeed, if µ = µn...µ1 is a path

of length |µ| ≥ 3, suppose that s(µ1) = x, then r(µ1) ∈ [0, 1
2
], and this forces r(µ2) ∈ {0, 1

2
}.

Hence, we see that for any n ∈ N and any path µ = µn...µ1 we have

Πn
k=1

u(µk)H(µk)

w(µk)
= Π2

k=1

u(µk)H(µk)

w(µk)

Since both H and w
u

have values only in the interval [1
2
, 2], we see that(1

2

)4

≤ Πn
k=1

u(µk)H(µk)

w(µk)
≤ 24

and so (σ,w) and (σ, u) are weighted-orbit conjugate via Id[0,1].

It is easy to see that the conjugacy relations we have defined between two WPS have a
natural hierarchy. By definition, if (σ,w) and (τ, u) are two WPS overX and Y respectively,
then each condition below implies the one after it:

1. (σ,w) and (τ, u) are conjugate.

2. (σ,w) and (τ, u) are branch-transition conjugate.

3. (σ,w) and (τ, u) are weighted-orbit conjugate.

4. (σ,w) and (τ, u) are graph conjugate.

As we have seen, the different conjugacy relations are distinct, but in some subclasses, it
is possible to identify some of them.

1. For partially defined continuous functions as in Example 3.2.6, graph conjugacy im-
plies conjugacy.

2. For non-negative matrices as in Example 3.2.4, graph conjugacy implies branch-
transition conjugacy.

In general we have the following in the case when there are no branching points, which
tells us that information on the weights can only be detected if the WPS have branching
points.
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Corollary 3.2.23. Let (σ,w) and (τ, u) be WPS over compact X and Y respectively.
Suppose either σ or τ have no branching points. Then σ and τ are graph conjugate if and
only if (σ,w) and (τ, u) are branch-transition conjugate.

Proof. If σ and τ are graph conjugate and either σ or τ have no branching points, then
both have no branching points by Remark 3.2.12. Hence by Proposition 3.2.16 we see
that both w and u are continuous, and so for a homeomorphism γ : X → Y such that
Gr(σ) = Gr(τ γ) we have that uγ

w
is continuous, and (σ,w) is branch-transition conjugate

to (τ, u).

Our final goal for this section is to identify isomorphism classes of the C*-correspondence
associated to a WPS (σ,w).

For the GNS correspondence Fσ,w := FP (σ,w), for any f, g, h, k ∈ C(X) the inner product
formula and bimodule actions for simple tensors are given respectively by

〈f ⊗ g, h⊗ k〉(x) =
∑
i:x∈Xi

g(x)f(σi(x))wi(x)h(σi(x))k(x) and f · (g ⊗ h) · k = fg ⊗ hk.

Next, we denote by C(σ,w) := XQ(σ,w) the quiver correspondence of Q(σ,w). The
notation for weights of edges gives a nice formula for the Radon measures P (σ,w) by
P (σ,w)x =

∑
s(e)=xw(e)δe, so that for any ξ, η ∈ C(Gr(σ)) and f, g ∈ C(X) we have left

and right C(X) actions given by

(f · ξ · g)(e) = f(r(e))ξ(e)g(s(e))

and inner product

〈ξ, η〉w(x) =
∑
s(e)=x

ξ(e)w(e)η(e) =
∑
i:x∈Xi

ξ(σi(x), x)wi(x)η(σi(x), x).

We denote f � g ∈ C(Gr(σ)) the function given by (f � g)(e) = f(r(e))g(s(e)), which
“behaves like” the element f ⊗ g in Fσ,w, as the following proposition demonstrates.

Proposition 3.2.24. Let (σ,w) be a d-variable WPS on a compact space X. Then the
map f ⊗ g 7→ f � g uniquely extends to a unitary isomorphism between Fσ,w and C(σ,w).
Moreover, the supremum norm on C(Gr(σ)) and the norm induced by the inner product
on C(σ,w) are equivalent, so that C(Gr(σ)) is complete with respect to the norm induced
by the inner product.
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Proof. The first assertion of the proposition follows easily from Proposition 2.3.10. For the

second part, we show that the norm ‖ · ‖w := ‖〈·, ·〉
1
2
w‖ defined on C(Gr(σ)) is equivalent

to the supremum norm on it. Indeed, for ξ ∈ C(Gr(σ)) we have

sup
i, x∈Xi

wi(x)|ξ(σi(x), x)|2 ≤ sup
x

∑
i:x∈Xi

wi(x)|ξ(σi(x), x)|2 ≤ d · sup
i, x∈Xi

wi(x)|ξ(σi(x), x)|2.

Since for each 1 ≤ i ≤ d we have that wi is positive and continuous on Xi, and Xi is
compact, there exists C > 0 such that for all 1 ≤ i ≤ d and x ∈ Xi we have 1

C
≤ wi(x) ≤ C,

so that
1

C
· ‖ξ‖2

Gr(σ) ≤ ‖ξ‖2
w ≤ dC · ‖ξ‖2

Gr(σ).

As it turns out, the notation for paths in topological graphs is a good fit for computing
the internal tensor iterates of C(σ,w).

Recall that the collection of paths in Q(σ,w) of length n is given by

Gr(σn) := { µ = µn...µ1 | r(µk) = s(µk+1) ∀1 ≤ k < n }.

These can alternatively be identified with the closed set of orbits of length n+ 1 given by
n+ 1-tuples (xn+1, xn, ..., x1) in Xn+1 such that for all 1 ≤ m < n there is some 1 ≤ i ≤ d
such that σi(xm) = xm+1 and xm ∈ Xi.

Next, for functions ξ, η ∈ C(Gr(σn)) and f, g ∈ C(X), left and right actions of C(X)
on C(Gr(σn)) are given by

(f · ξ · g)(µ) = f(r(µ))ξ(µ)g(s(µ))

and the inner product by

〈ξ, η〉(x) =
∑
s(µ)=x

ξ(µ)w(µ)η(µ)

where w(µ) := w(µn) · ... · w(µ1) is the extended definition of the weights of edges to
weights of paths. Since Q(σ,w) has open source map and supp(P (σ,w)x) = s−1(x) for
every x ∈ X, by the discussion at the beginning of Section 6 of [93], the above yields the
C*-correspondence XQ(σ,w)n associated to the topological quiver Q(σ,w)n on the space
of n-paths. By the discussion preceding [93, Remark 6.3] we then get that the C*-
correspondences X⊗nQ(σ,w) and XQ(σ,w)n are Id-unitarily isomorphic via a map sending simple

tensors ξn ⊗ ...⊗ ξ1 to the function µn...µ1 7→ ξn(µn) · ...ξ1(µ1).
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Proposition 3.2.25. Let (σ,w) be a d-variable WPS. The map sending simple tensors
ξn ⊗ ... ⊗ ξ1 ∈ C(σ,w)⊗n to the function ξn � ... � ξ1 : µn...µ1 7→ ξn(µn) · ... · ξ1(µ1)
in C(Gr(σn)) extends uniquely to an (Id-)unitary isomorphism between C(σ,w)⊗n and
XQ(σ,w)n. Moreover, the supremum norm on C(Gr(σn)) and the norm induced by the inner
product on X⊗nQ(σ,w) are equivalent. So in particular, C(Gr(σn)) is complete with respect to
the norm induced by the inner product.

Proof. The first part follows from the preceding discussion. For the second part of the
proposition, we note that for x ∈ X, the number of paths of length n emanating from x is
at most dn, and so, for every element ξ ∈ C(Gr(σn)), and an arbitrary path µ = µn...µ1 of
length n emanating from s(µ) we have

ξ(µ)w(µ) ≤
∑

s(ν)=s(µ)

|ξ(ν)|2w(ν) ≤ dn sup
ν∈Gr(σn)

ξ(ν)w(ν).

By Proposition 3.2.16 there is some K > 0 such that 1
Kn ≤ w(ν) = w(νn)...w(ν1) ≤ Kn for

any ν = νn...ν1 ∈ Gr(σn) so that

1

Kn
ξ(µ) ≤ sup

x∈X

∑
s(ν)=x

|ξ(ν)|2w(ν) ≤ dnKn · sup
ν∈Gr(σn)

ξ(ν).

Since µ was an arbitrary path, we see that

1

Kn
sup

µ∈Gr(σn)

ξ(µ) ≤ sup
x∈X

∑
s(ν)=x

|ξ(ν)|2w(ν) ≤ dnKn · sup
ν∈Gr(σn)

ξ(ν)

and so the norm induced by the inner product and the supremum norm on X⊗nQ(σ,w) =

C(Gr(σn)) are equivalent.

We now characterize branch-transition / weighted-orbit conjugacy in terms of unitary
isomorphism / similarity of associated C*-correspondences respectively.

For γ implementing branch-transition / weighted-orbit conjugacy and ρ implementing
unitary isomorphism / similarity, we may often assume without loss of generality that
γ = IdX and / or that ρ = IdC(X).

Indeed, if V : C(σ,w)→ C(τ, u) is a ρ-bimodule map, with γ : Y → X the homeomor-
phism such that ρ(f) = f ◦ γ−1, we may define a ρ-unitary ρ̃ : C(τ γ, uγ) → C(τ, u) given

by ρ̃(ξ)(y, v) = ξ(γ−1(y), γ−1(v)). ρ̃ then satisfies ρ̃−1 = ρ̃−1 where ρ̃−1 is a ρ−1-unitary.
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Hence, by composing we get an Id-bimodule map ρ̃−1 ◦ V : C(σ,w)→ C(τ γ, uγ), and V is
a ρ-similarity / ρ-unitary if and only if ρ̃−1 ◦V is an Id-similarity / Id-unitary respectively.

Further, on the conjugacy side, note that (σ,w) and (τ, u) are graph / weighted-orbit
/ branch-transition conjugate via γ if and only if (σ,w) and (τ γ, uγ) are graph / weighted-
orbit / branch transition conjugate via IdX respectively.

Proposition 3.2.26. Let (σ,w) and (τ, u) be WPS on compact spaces X and Y respec-
tively. Suppose that γ : X → Y is a homeomorphism and ρ : C(X) → C(Y ) is the
*-isomorphism given by ρ(f) = f ◦ γ−1.

1. If (σ,w) and (τ, u) are weighted-orbit conjugate with C ≥ 1 via γ, then there exists a
ρ-similarity V : C(σ,w)→ C(τ, u) with

sup
n

max{‖V ⊗n‖2, ‖(V −1)⊗n‖2} ≤ C.

2. If V : C(σ,w) → C(τ, u) is a ρ-similarity, then (σ,w) and (τ, u) are weighted-orbit
conjugate via γ and constant

C = sup
n

max{‖V ⊗n‖2, ‖(V −1)⊗n‖2}.

Proof. We first show (1). Assume without loss of generality that γ = IdX , so that Gr(σ) =
Gr(τ). Let H ∈ C(Gr(σ)) be such that for any path µ = µn...µ1 we have

1

C
≤ Πn

k=1

u

w
(µk)H(µk) ≤ C.

We define V : C(σ,w) → C(τ, u) by setting V (ξ)(e) = ξ(e)
√
H(e). It is easily seen

that V is a C(X)-bimodule map, and we show that V is an Id-isomorphism. Indeed, for
ξ ∈ C(Gr(σ)) we have

‖V (ξ)‖2 = sup
x∈X

∑
s(e)=x

|ξ(e)|2u(e)H(e) ≤ C · sup
x∈X

∑
s(e)=x

|ξ(e)|2w(e) = C‖ξ‖2

and the symmetric argument shows that ‖ξ‖ ≤ C‖V (ξ)‖. Hence V : C(σ,w)→ C(τ, u) is
an Id-isomorphism. To show that it is an Id-similarity, we repeat the above for the tensor
iterates which are identified with C(Gr(σn)) = XQ(σ,w) for n ∈ N by Proposition 3.2.25.
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Indeed, fix n ∈ N, and ξ ∈ C(Gr(σn)). By Proposition 3.2.25 and the definition of V , we
must have that V ⊗n(ξ)(µn...µ1) = ξ(µn...µ1)Πn

k=1

√
H(µk). Thus, we compute,

‖V ⊗n(ξ)‖2 = sup
x∈X

∑
s(µn...µ1)=x

|ξ(µn...µ1)|2Πn
k=1H(µk)u(µk) ≤

C · sup
x∈X

∑
s(µn...µ1)=x

|ξ(µn...µ1)|2Πn
k=1w(µk) = C‖ξ‖2.

So that V is tensor-power bounded by
√
C and the symmetric argument shows that V −1

is also tensor power bounded by
√
C.

We now show (2). Without loss of generality we assume that ρ = IdC(X) (so that
we need γ = IdX). Denote by ζ = V (1 � 1) ∈ C(τ, u). For any f, g ∈ C(X) we have
f · ζ · g = V (f � g) and then

sup
x∈X

∑
s(e)=x

|f(r(e))|2|ζ(e)|2|g(s(e))|2u(e) = ‖V (f � g)‖ ≤

‖V ‖‖f � g‖ = ‖V ‖ sup
x∈X

∑
s(e)=x

|f(r(e))|2|g(s(e))|2w(e)

so we see that for (y, x) ∈ Gr(σ), by taking infimum over f, g : X → [0, 1] with f(y) = 1
and g(x) = 1 which vanish outside arbitrarily small neighborhoods of y and x respectively,
we have that (y, x) ∈ Gr(τ), for otherwise the right hand side would vanish while the left
hand side would not. The symmetric argument then shows that Gr(σ) = Gr(τ), and σ and
τ are graph conjugate via IdX .

By Proposition 3.2.24, convergence in C(σ,w) is equivalent to uniform convergence on
C(Gr(σ)), and since ζ(e) · (f � g)(e) = (f · ζ · g)(e) = V (f � g)(e) for every e ∈ Gr(σ), we
then must have that V (ξ)(e) = ζ(e) · ξ(e) for every ξ ∈ C(Gr(σ)) and e ∈ Gr(σ).

Next, since for every ξk ∈ C(Gr(σ)) = C(Gr(τ)) for 1 ≤ k ≤ n we have that

‖ξn ⊗ ...⊗ ξ1‖2 ≤ ‖(V −1)⊗n‖2‖V ⊗n(ξn ⊗ ...⊗ ξ1)‖2

and
‖V ⊗n(ξn ⊗ ...⊗ ξ1)‖2 ≤ ‖V ⊗n‖2‖ξn ⊗ ...⊗ ξ1‖2.

We obtain that
sup
x∈X

∑
s(µn...µ1)=x

Πn
k=1|ξk(µk)|2w(µk) ≤
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‖(V −1)⊗n‖2 sup
x∈X

∑
s(µn...µ1)=x

Πn
k=1|ξk(µk)|2|ζ(µk)|2u(µk)

and
sup
x∈X

∑
s(µn...µ1)=x

Πn
k=1|ξk(µk)|2|ζ(µk)|2u(µk) ≤

‖V ⊗n‖2 sup
x∈X

∑
s(µn...µ1)=x

Πn
k=1|ξk(µk)|2w(µk).

If we fix a path ν = νn...ν1, we can take infimum over functions ξk that vanish outside
arbitrarily small neighborhoods of νk for each k and are equal to 1 at νk, to get

Πn
k=1w(νk) ≤ ‖(V −1)⊗n‖2Πn

k=1|ζ(νk)|2u(νk)

and
Πn
k=1|ζ(νk)|2u(νk) ≤ ‖V ⊗n‖2Πn

k=1w(νk)

so that with
C = max{sup

n
‖V ⊗n‖2, sup

n
‖(V −1)⊗n‖2}

which by our assumptions is finite, we get

1

C
≤ Πn

k=1H(νk)u(νk)

Πn
k=1w(νk)

= Πn
k=1

u

w
(νk)H(νk) ≤ C

where H = |ζ|2 ∈ C(Gr(σ)), as required.

As a corollary to Proposition 3.2.26, we obtain a characterization for branch-transition
conjugacy.

Corollary 3.2.27. Let (σ,w) and (τ, u) be WPS on compact spaces X and Y respectively.
Suppose that γ : X → Y is a homeomorphism and ρ : C(X)→ C(Y ) is the *-isomorphism
given by ρ(f) = f ◦ γ−1.

1. If (σ,w) and (τ, u) are branch-transition conjugate via γ, then there exists a ρ-unitary
U : C(σ,w)→ C(τ, u).

2. If U : C(σ,w) → C(τ, u) is a ρ-unitary, then (σ,w) and (τ, u) are branch-transition
conjugate via γ.
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Proof. To show (1), we use Corollary 3.2.19 to see that H = w
uγ

is continuous, and realizes
weighted-orbit conjugacy with C = 1, so that the ρ-similarity U arising from Proposition
3.2.26 satisfies ‖U‖, ‖U−1‖ ≤ 1 and is hence a ρ-unitary.

To show (2), without loss of generality we assume that ρ = IdC(X) (So that we need
γ = IdX). Denote by ζ = V (1�1) ∈ C(τ, u). For any f, g ∈ C(X) we have f ·ζ ·g = U(f�g)
and then

sup
x∈X

∑
s(e)=x

|f(r(e))|2|ζ(e)|2|g(s(e))|2u(e) = ‖U(f � g)‖ =

‖f � g‖ = sup
x∈X

∑
s(e)=x

|f(r(e))|2|g(s(e))|2w(e)

so we see that for e = (y, x) ∈ Gr(σ), by taking infimum over f, g : X → [0, 1] with
f(y) = 1 and g(x) = 1 which vanish outside arbitrarily small neighborhoods of y and x
respectively, we obtain |ζ(e)|2u(e) = w(e) so that e ∈ Gr(σ) if and only if e ∈ Gr(τ) and
σ and τ are graph conjugate via Id. Moreover, since u

w
= 1
|ζ|2 is a continuous function on

C(Gr(σ)), it must be continuous on each branching edge in particular, and hence (σ,w)
and (τ, u) are branch-transition conjugate.

Example 3.2.28. As a consequence of Proposition 3.2.26 and Corollary 3.2.27 we see
from Example 3.2.22 that there are WPS which have similar C*-correspondences that can
not be unitarily isomorphic. In particular, by Remark 2.2.6 we see that between the two
correspondences arising from the weighted multivariable systems of Example 3.2.22, no
ρ-isomorphism can be ρ-adjointable.

Remark 3.2.29. Using the theory we have developed so far, and the first part of Corollary
3.2.19, one can show that for two WPS (σ,w) and (τ, u) over compact spaces X and Y
respectively, we have that σ and τ are graph conjugate via γ if and only if C(σ,w) and
C(τ, u) are ρ-isomorphic. Hence, ρ-isomorphism does not detect any information regarding
the weights of the WPS, and only detects the graphs of the systems.

3.3 Tensor algebras

In this section we relate isomorphisms of product systems to graded isomorphisms, and to
semigraded isomorphism of associated tensor algebras.

Definition 3.3.1. Let E and F be C*-correspondences over A and B respectively. An
isomorphisms ϕ : T+(E) → T+(F ) that satisfies ϕ(T+(E)n) = T+(F )n for all n ∈ N is
called graded.
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For a C*-correspondence E, let ΨE : E → T+(E)1 be the isometric Banach bimodule

isomorphism given by ΨE(ξ) = S
(1)
ξ . In the following theorem it is important that we do

not require ρ-similarities to be adjointable in item (2) of Definition 2.2.5.

Theorem 3.3.2. Let E and F be be C*-correspondences over commutative C*-algebras A
and B respectively. Then,

1. If V : E → F is a ρ-similarity for some ∗-isomorphism ρ between A and B, then
there exists a graded completely bounded isomorphism AdV : T+(E) → T+(F ) such
that AdV |A = ρ with

max{‖AdV ‖cb, ‖Ad−1
V ‖cb} ≤ sup

n∈N
‖V ⊗n‖ · sup

n∈N
‖(V −1)⊗n‖.

2. If ϕ : T+(E)→ T+(F ) is a bounded graded isomorphism, then ρϕ := ϕ|A : A → B is
a *-isomorphism and Vϕ : E → F uniquely determined by SVϕ(ξ) = ϕ(Sξ) for ξ ∈ E
yields a ρϕ-similarity satisfying

sup
n∈N
‖(Vϕ)⊗n‖ ≤ ‖ϕ‖ and sup

n∈N
‖(V −1

ϕ )⊗n‖ ≤ ‖ϕ−1‖.

Moreover, the operations (1) and (2) are inverses of each other in the sense that ϕ =
AdVϕ and V = VAdV , and in particular every bounded graded isomorphism ϕ is completely
bounded with ‖ϕ‖cb ≤ ‖ϕ‖ · ‖ϕ−1‖.

Proof. (1) Suppose V : E → F is a ρ-similarity. Define a bounded ρ-bimodule map
WV from FE to FF by WV = ⊕∞n=0V

⊗n which is well defined since supn∈N ‖V ⊗n‖ < ∞.
Furthermore, we have that WV is invertible with W−1

V = WV −1 (which is also a well-defined
bounded ρ−1-bimodule map since supn∈N ‖(V −1)⊗n‖ <∞) and

‖WV ‖ · ‖W−1
V ‖ ≤ sup

n∈N
‖V ⊗n‖ · sup

n∈N
‖(V −1)⊗n‖

We define AdV : T+(E)→ T+(F ) by setting AdV (T ) = WV TW
−1
V which then satisfies

max{‖AdV ‖cb, ‖Ad−1
V ‖cb} ≤ sup

n∈N
‖V ⊗n‖ · sup

n∈N
‖(V −1)⊗n‖

(2) Now suppose that ϕ : T+(E) → T+(F ) is a bounded graded isomorphism. Note that
ρϕ is a *-isomorphism since A and B are assumed commutative. We define the map
Vϕ : E → F by Vϕ = Ψ−1

F ϕΨE which is a ρ-correspondence map by virtue of gradedness

65



of ϕ and the fact that ρϕ is a *-isomorphism. Then it is easily verified that for all n ∈ N
we have (Vϕ)⊗n = (Ψ−1

F )⊗n ◦ ϕ ◦ (ΨE)⊗n so that ‖(Vϕ)⊗n‖ ≤ ‖ϕ‖ and Vϕ is tensor-power
bounded with supn ‖(Vϕ)⊗n‖ ≤ ‖ϕ‖. One then shows that V −1

ϕ = Vϕ−1 = Ψ−1
E ϕ−1ΨF is also

a ρ−1-correspondence map which is similarly tensor power-bounded with supn ‖(V −1
ϕ )⊗n‖ ≤

‖ϕ−1‖, as required.

We then get as an easy corollary, the corresponding theorem for the isometric case.

Theorem 3.3.3. Let E and F be C*-correspondences over commutative C*-algebras A
and B respectively.

1. If U : E → F is a ρ-unitary for some ∗-isomorphism ρ between A and B, then
there exists a graded completely isometric isomorphism AdU : T+(E) → T+(F ) with
AdU |A = ρ.

2. If ϕ : T+(E)→ T+(F ) is a graded isometric isomorphism, then ρϕ is a ∗-isomorphism
and there exists a ρϕ-unitary Uϕ : E → F with ϕ|A = ρϕ.

Moreover, the operations (1) and (2) are inverses of each other in the sense that ϕ = AdVϕ
and V = VAdV , and in particular every isometric graded isomorphism ϕ must be completely
isometric.

We consider two special classes of isomorphisms which will provide a convenient frame-
work for addressing isomorphism problems. When our isomorphisms fit into these classes,
we can often use this to extract information more readily from the isomorphism.

Notation 3.3.4. If E and F are C*-correspondences over C*-algebra A and B respectively
and ϕ : T+(E) → T+(F ) is an algebraic isomorphism, we denote by ρϕ := Φ0 ◦ ϕ|A the
homomorphism from A to B.

Definition 3.3.5. Let E and F be C*-correspondences over C*-algebras A and B respec-
tively. We say that an algebraic isomorphism ϕ : T+(E) → T+(F ) is base-detecting if
ρϕ : A → B is a *-isomorphism and ρ−1

ϕ = ρϕ−1.

Base detection is usually the first thing we check for, since it usually implies that the
base algebras can be detected from the isomorphism.

We note that for a graded isomorphism ϕ as considered in Theorem 3.3.2, ρϕ is auto-
matically an isomorphism, and since it is between commutative C*-algebras, ρϕ has to be
a ∗-isomorphisms. This means that graded isomorphisms are always base-detecting.
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Isometric isomorphisms are also automatically base detecting. Indeed, let E and F be
C*-correspondences over C*-algebras A and B and let ϕ : T+(E)→ T+(F ) be an isometric
isomorphism. Since T+(F ) ⊆ T (F ), we can regard ϕ as a map into the Toeplitz C*-algebra.
Thus, ϕ|A : A → T (F ) is an isometric homomorphism, and is hence necessarily positive
and preserves the involution from A to T (F ). Thus, ϕ(A) = ϕ(A)∗ ⊆ T+(F )∗ ⊆ T (F ),
and we must have that ϕ(A) ⊆ T+(F )∩T+(F )∗ = B. Thus we have in fact that ϕ(A) ⊆ B,
and the symmetric argument shows that ϕ−1(B) ⊆ A, and so ρϕ−1 is the inverse of ρϕ, and
ϕ is base-detecting.

In the forthcoming definition, we relax the assumption of gradedness of an isomorphism
while maintaining base-detection. The following concept of semi-gradedness appeared in
the work of Muhly and Solel in section 5 of [92, Section 5] where they resolve the isometric
isomorphism problem for tensor algebras arising from aperiodic C*-correspondences, and
was also used in [42] to provide classification for tensor algebras arising from stochastic
matrices, in terms of the matrices.

Definition 3.3.6. Let E and F be C*-correspondences over C*-algebras A and B respec-
tively, and suppose ϕ : T+(E) → T+(F ) is an algebraic isomorphism. We say that ϕ is
semi-graded if ϕ(Ker Φ0) = Ker Φ0.

The following has similar proof to the one in [42, Proposition 6.15], but we provide it
for posterity.

Proposition 3.3.7. Let E and F be C*-correspondences over commutative C*-algebras A
and B respectively, and ϕ : T+(E)→ T+(F ) is a semi-graded bounded isomorphism. Then
ϕ is automatically base-detecting.

Proof. Let ΦE
0 and ΦF

0 denote the conditional expectations on T+(E) and T+(F ) respec-
tively. As ϕ is semi-graded, for any T ∈ T+(E) we have,

ΦF
0 ϕ(T ) = ΦF

0 ϕΦE
0 (T )

Hence, we must have that ρφ = ΦF
0 ϕ|A is surjective. The same argument then works for

ϕ−1, and we have for every a ∈ A that

ρϕ−1 ◦ ρ(a) = ΦE
0 ϕ
−1ΦF

0 ϕ(a) = ΦE
0 ϕ
−1ϕ(a) = a

Thus, we see that ρϕ−1 = (ρϕ)−1. As A and B are commutative, ρϕ and ρϕ−1 must both be
contractive, and hence *-preserving, so that ϕ is base-detecting.
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Definition 3.3.8. Let E be a C*-correspondence over A. The minimal degree of an ele-
ment 0 6= T ∈ T+(E), denoted md(T ), is the smallest n ∈ N with Φn(T ) 6= 0.

We will need the following criterion for semi-gradedness of bounded isomorphisms.

Proposition 3.3.9 (Criterion for semi-gradedness). Let E and F be C*-correspondences
over A and B respectively, and let ϕ : T+(E) → T+(F ) be a bounded base-detecting
isomorphism. The following are equivalent:

1. md(ϕ(T )) = md(T ) for all T ∈ T+(E).

2. ϕ is semi-graded.

3. md(ϕ(S
(1)
ξ )) ≥ 1 for every ξ ∈ E.

Proof. It is clear that (1) implies (2) which implies (3).

We show that (3) implies (1). We first note that for η ∈ E⊗n we have that md(ϕ(S
(n)
η )) ≥

n. Indeed, if we take η = ξ1 ⊗ ... ⊗ ξn with ξi ∈ E, since S
(n)
η = S

(1)
ξ1
· ... · S(1)

ξn
we

get md(S
(n)
η ) ≥ md(S

(1)
ξ1

) + ... + md(S
(1)
ξn

) ≥ n. Next, since the collection of elements

η′ :=
∑`

i=1 ξ
(i)
1 ⊗ ... ⊗ ξ

(i)
n is dense in E⊗n, and as we saw, Φm(ϕ(S

(n)
η′ )) = 0 for all

m < n, by continuity of ϕ and Φm we get that Φm(ϕ(S
(n)
η )) = 0 for any η ∈ E⊗n, so

that md(ϕ(S
(n)
η )) ≥ n for any η ∈ E⊗n.

We now show that md(ϕ(T )) ≥ md(T ) for any T ∈ T+(E). Indeed, let T ∈ T+(E)
be an operator with md(T ) = n ≥ 0. Then we can write T =

∑∞
k=n Φk(T ) as a norm

converging Cesaro sum, and by boundedness of ϕ, we obtain that ϕ(T ) =
∑∞

k=n ϕ(Φk(T ))

converging Cesaro. Since Φk(T ) = S
(k)
ξk

is of minimal degree at least k ≥ n, so would be
ϕ(Φk(T )). Then, by continuity of Φk and ϕ, we have that ϕ(T ) is of minimal degree at
least n, and we see that md(ϕ(T )) ≥ md(T ).

To show that md(ϕ(T )) = md(T ), we will show that md(ϕ−1(S
(1)
ξ )) ≥ 1 for ξ ∈ F and

repeat the above argument to get that md(ϕ−1(T )) ≥ md(T ). Together with the above we
obtain md(ϕ(T )) = md(T ).

We show md(ϕ−1(S
(1)
ξ )) ≥ 1 for ξ ∈ F . Indeed, let ξ ∈ F and write ϕ−1(S

(1)
ξ ) = a+ T

with a ∈ A and md(T ) ≥ 1. We have already shown that md(ϕ(T )) ≥ 1, so that

ρϕ(a) = Φ0(ϕ(a)) = Φ0(ϕ(a) + ϕ(T )) = Φ0(S
(1)
ξ ) = 0

Since ϕ is base-detecting, ρϕ is a *-isomorphism, and we have that a = 0. This means that

md(ϕ−1(S
(1)
ξ )) ≥ 1, and we are done.
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We next prove an analogue of [42, Proposition 6.17] in the discussion on semi-graded
isomorphisms, that yields a reduction of our isomorphism problems.

Proposition 3.3.10. Let E and F be C*-correspondences over commutative C*-algebras
A and B respectively, and let ϕ : T+(E)→ T+(F ) be a semi-graded bounded isomorphism.
There is a unique bounded homomorphism ϕ̃ : T+(E)→ T+(F ) satisfying

ϕ̃(S
(1)
ξ ) = Φ1(ϕ(S

(1)
ξ )), ξ ∈ E

and ϕ̃ is a graded completely bounded isomorphism such that ϕ̃−1 = ϕ̃−1, and ‖ϕ̃‖cb ≤
‖ϕ‖ · ‖ϕ−1‖.

Proof. First note that since ϕ is semi-graded, by Proposition 3.3.7 it must be base-
detecting. Hence, by Proposition 3.3.9, for any T ∈ T+(E) with md(T ) = n we must
have ΦF

nϕ(T ) = ΦF
nϕΦE

n (T ). It follows that for all n ∈ N and any S ∈ T+(E)n we must
have

S = ΦE
n (S) = ΦE

nϕ
−1ϕ(S) = ΦE

nϕ
−1ΦF

nϕ(S) (3.2)

Set ρ = ρϕ = ΦF
0 ϕ|A : A → B, which is a ∗-isomorphism, and define a ρ-bimodule map

Vn : E⊗n → F⊗ by setting Vn(ξ) = (ΨF
n )−1ΦF

nϕΨE
n (ξ), where Ψn(ξ) = S

(n)
ξ . Note that Vn

is clearly well-defined with ‖Vn‖ ≤ ‖ϕ‖ so that Vn is a bounded ρ-bimodule map. One
similarly defines a bounded ρ−1-bimodule map V ′n : F⊗ → E⊗n satisfying ‖V ′n‖ ≤ ‖ϕ−1‖
that satisfies V −1

n = V ′n by equation (3.2). We now wish to show that V = V1 is a ρ-
similarity, so we show that V is tensor power bounded by showing that Vn = V ⊗n, and a
similar argument would then work for V −1. We show by induction that Vn = V ⊗n. Indeed,
suppose Vk = V ⊗k for all k < n + m with n,m ≥ 1. Let ξ ∈ E⊗n and η ∈ E⊗m, then
by semi-gradedness and the definition of Vn, Vm and Vn+m, we have the following chain of
equalities

S
(n+m)
Vn+m(ξ⊗η) = ΦF

n+mϕ(S
(n+m)
ξ⊗η ) = (ΦF

n (ϕ(S
(n)
ξ ))ΦF

m(ϕ(S(m)
η ))) =

S
(n)
Vn(ξ)S

(m)
Vm(η) = S

(n)

V ⊗n(ξ)S
(m)

V ⊗m(η) = S
(n+m)

V ⊗(n+m)(ξ⊗η)

so that by applying (ΨF
n+m)−1 to both sides of this equation we obtain that Vn+m(ξ⊗ η) =

V ⊗(n+m)(ξ ⊗ η), so that Vn+m = V ⊗(n+m).

Thus, we have constructed a ρ-similarity V : E → F satisfying S
(1)
V (ξ) = ΦF

1 ϕ(S
(1)
ξ )

for all ξ ∈ E with the tensor iterates of V and V −1 bounded in norm by the norms of
ϕ and ϕ−1 respectively. By item (1) of Theorem 3.3.2 the ρ-similarity V promotes to a
graded completely bounded isomorphism ϕ̃ = AdV : T+(E)→ T+(F ) uniquely determined

by satisfying S
(1)
V (ξ) = ϕ̃(S

(1)
ξ ) for all ξ ∈ E, with ‖ϕ̃‖ ≤ ‖ϕ‖‖ϕ−1‖. So we see that
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ϕ̃(S
(1)
ξ ) = ΦF

1 ϕ(S
(1)
ξ ) for all ξ ∈ E and that ϕ̃ is uniquely determined by this property as

required.

Corollary 3.3.11. Let E and F be C*-correspondences over commutative C*-algebras A
and B respectively, and let ϕ : T+(E) → T+(F ) be a semi-graded isometric isomorphism.
There is a unique bounded homomorphism ϕ̃ : T+(E)→ T+(F ) satisfying

ϕ̃(S
(1)
ξ ) = Φ1(ϕ(S

(1)
ξ )), ξ ∈ E

and ϕ̃ is a graded completely isometric isomorphism such that ϕ̃−1 = ϕ̃−1.

Remark 3.3.12. We developed the theory in this section for tensor algebras arising from a
single C*-correspondence. We note, however, that everything proven in this section can be
readily adapted to general subproduct systems where ρ-unitary / ρ-similarity of a single
C*-correspondence is replaced with unitary isomorphism / isomorphism of subproduct
systems respectively.

3.4 Character space

In this subsection, we adapt methods of Hadwin and Hoover [60], which were used in
the solution of Arveson’s conjugacy problem [34]. We compute the character space of
T+(σ,w) := T+(C(σ,w)) for any WPS (σ,w), and then use this to show that every algebraic
isomorphism ϕ : T+(σ,w) → T+(τ, u) is automatically base-detecting, so that the base
spaces X and Y can be identified. Finally, we provide a criterion to detect semi-gradedness
from the induced homeomorphism on the character spaces.

Let (σ,w) be a WPS on compact X. Denote by M(σ,w) the space of multiplicative
linear functionals on T+(σ,w) with its weak* topology. M(σ,w) is partitioned by X since
for every θ ∈ M(σ,w) there is a unique x ∈ X such that θ|C(X) = δx. We denote
by M(σ,w)x the weak* closed subset of θ ∈ M(σ,w) satisfying θ|C(X) = δx, and we
let θx,0 be the unique element in M(σ,w)x such that θx,0(Ker ΦP

0 ) = {0}. Denote by

W(σ,w) := S
(1)
1 = S

(1)
1�1, the shift operator by the constant function 1 = 1 � 1 ∈ C(σ,w).

Note that since Ker ΦP
0 is the closed two sided ideal generated by W(σ,w), we have that θx,0

is the unique element in M(σ,w)x such that θx,0(W(σ,w)) = 0.

Definition 3.4.1. Let σ be a d-variable partial system on compact X. We say that x ∈ X
is a fixed point for σ if σi(x) = x ∈ Xi for some 1 ≤ i ≤ d. We denote by Fix(σ) the
closed set of fixed points of σ.
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Lemma 3.4.2. Let (σ,w) be a WPS on compact X, x ∈ X, θ ∈M(σ,w)x and ξ ∈ C(σ,w).
Then we have

1. If x ∈ Fix(σ) then θ(S
(1)
ξ ) = ξ(x, x)θ(W(σ,w)).

2. If x /∈ Fix(σ) then θ(S
(1)
ξ ) = 0.

In particular, when x /∈ Fix(σ), we have M(σ,w)x = {θx,0}.

Proof. First we show (1). Let x ∈ X be a fixed point for σ. For every open neighborhood
U of x, by Urysohn’s Lemma, there is a continuous function fU : X → [0, 1] with fU(x) = 1
and fU(y) = 0 for y /∈ U . Thus, for θ ∈ M(σ,w)x and U, V open neighborhoods of x we
have,

|θ(S(1)
ξ − ξ(x, x)W(σ,w))|2 = |θ(fU · (S(1)

ξ − ξ(x, x)W(σ,w))) · fV )|2 = |θ(SfU ·(ξ−ξ(x,x)1)·fV )|2 ≤

‖fU · (ξ − ξ(x, x)1) · fV ‖2 = sup
y∈X

∑
i:y∈Xi

|fU(σi(y))|2|ξ(σi(y), y)− ξ(x, x)|2|fV (y)|2wi(y) ≤

sup
y∈V

∑
i:y∈Xi

|fU(σi(y))|2|ξ(σi(y), y)− ξ(x, x)|2wi(y)

Taking infimum over all open neighborhoods V of x we get

|θ(S(1)
ξ − ξ(x, x)W(σ,w))|2 ≤

∑
i:x∈Xi

|fU(σi(x))|2|ξ(σi(x), x)− ξ(x, x)|2wi(x) ≤

∑
i: x∈Xi, σi(x)∈U

|ξ(σi(x), x)− ξ(x, x)|2wi(x)

Taking infimum over all U open neighborhoods of x, we obtain

|θ(S(1)
ξ − ξ(x, x)W(σ,w))|2 ≤

∑
i:σi(x)=x∈Xi

|ξ(σi(x), x)− ξ(x, x)|2wi(x) = 0

and we must have that θ(S
(1)
ξ ) = ξ(x, x)W(σ,w).

In order to show (2), note that if x /∈ Fix(σ), a similar chain of inequalities, replacing

ξ(x, x)W(σ,w) by 0 above, would yield that for all θ ∈M(σ,w)x we have θ(S
(1)
ξ ) = 0.

Finally, if x /∈ Fix(σ), we have that θ(W(σ,w)) = 0 for all θ ∈ M(σ,w)x so that
θ(Ker Φ0) = 0 for all θ ∈ M(σ,w)x. Now since θx,0 is the only element in M(σ,w)x with
θx,0(Ker Φ0) = 0, we must then have that θ = θx,0 and M(σ,w)x = {θx,0}.
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Now, in the case where x ∈ X is a fixed point for σ, we are interested to know how
θ ∈ M(σ,w)x acts on iterates S

(n)
ξ for ξ ∈ C(σ,w)⊗n ∼= C(Gr(σn)). Recall the discussion

preceding Proposition 3.2.25 where we identified Gr(σn) with the collection of orbits of
length n + 1 inside Xn+1, that is the collection of sequences (xn+1, ..., x1) such that for
every 1 ≤ m ≤ n there is some 1 ≤ i ≤ d with σi(xm) = xm+1 ∈ Xi.

Thus, take ξ(1), ..., ξ(n) ∈ C(σ,w) and note that by Lemma 3.4.2,

θ(S
(n)

ξ(1)⊗...⊗ξ(n)) = θ(S
(1)

ξ(1)
) · ... · θ(S(1)

ξ(n)
) = ξ(n)(x, x) · ... · ξ(1)(x, x) · θ(W(σ,w))

n.

By supremum norm approximation we obtain for every ξ ∈ C(Gr(σn)) that

θ(S
(n)
ξ ) = ξ(x, ..., x) · θ(W(σ,w))

n

due to density of the linear span of elements of the form ξ(1) ⊗ ... ⊗ ξ(n) in C(σ,w)⊗n ∼=
C(Gr(σn)), with the supremum norm, established by Proposition 3.2.25.

The next proposition is an adaptation of the methods of [34, Section 3], originally used
by Hadwin and Hoover in [60]. For a WPS (σ,w), recall that we defined the weight of an
edge (y, x) ∈ Gr(σ) to be w(y, x) =

∑
i:σi(x)=y, x∈Xi wi(x).

Proposition 3.4.3. Let X be a compact space, (σ,w) a WPS on X and x ∈ Fix(σ).
Then M(σ,w)x ∼= Drwx via the map θ 7→ θ(W(σ,w)), where Drwx is the closed disc of radius

rwx = supθ∈M(σ,w)x |θ(W(σ,w))| =
√
w(x, x).

Moreover if Θx : Drwx → M(σ,w)x is the homeomorphism above, then it is in fact
pointwise analytic on Drwx , in the sense that for every T ∈ T+(σ,w), the function Θx(·)(T ) :
Drwx → C is analytic.

Proof. We first define a character θx,z for every z ∈ C with |z| <
√
w(x, x). Let T ∈

T+(σ,w). By Proposition 2.2.14 we get that T has a Fourier series representation as

T =
∑∞

n=0 S
(n)
ξn

converging Cesaro. We then define

θx,z(T ) =
∞∑
n=0

ξn(x, ..., x)zn.

Since |z| <
√
w(x, x) and |ξn(x, ..., x)| ≤ ‖ξn‖√

w(x,x)n
= ‖Φn(T )‖√

w(x,x)n
we get

|θx,z(T )| ≤
∞∑
n=0

|ξn(x, ..., x)||z|n ≤
∞∑
n=0

‖Φn(T )‖
( |z|√

w(x, x)

)n
≤ ‖T‖

∞∑
n=0

( |z|√
w(x, x)

)n
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so that the above is a well-defined multiplicative linear functional on T+(σ,w). Indeed,
θx,z is linear and multiplicative due to multiplication of Fourier series given in Proposition
2.2.14 and due to the identification of Proposition 3.2.25.

We show that for every θ ∈ M(σ,w)x, one must have |θ(W(σ,w))| ≤
√
w(x, x). Indeed,

for every open neighborhood of x, by Urysohn’s Lemma, there is a continuous function
fU : X → [0, 1] with fU(x) = 1 and f(y) = 0 for y /∈ U . Thus, for U, V open neighborhoods
of x we have,

|θ(W(σ,w))|2 = |θ(fU ·W(σ,w) · fV )|2 = |θ(SfU�fV )|2 ≤ ‖SfU�fV ‖2 =

sup
x∈X

∑
i:x∈Xi

|fU(σi(x))|2|fV (x)|2wi(x) ≤ sup
x∈V

∑
i:x∈Xi

|fU(σi(x))|2wi(x).

Taking infimum over all open neighborhoods V of x we get that

|θ(W(σ,w))|2 ≤
∑
i:x∈Xi

|fU(σi(x))|2wi(x) ≤
∑

i:x∈Xi, σi(x)∈U

wi(x).

Taking infimum over all U open neighborhoods of x, we obtain

|θ(W(σ,w))|2 ≤
∑

i:σi(x)=x∈Xi

wi(x) = w(x, x).

Thus, we see that |θ(W(σ,w))| ≤
√
w(x, x) and so the range of the map θ 7→ θ(W(σ,w))

contains the open disc Drwx which is dense in Drwx .

Hence, the function from M(σ,w)x to Dr given by θ 7→ θ(W(σ,w)) is a continuous
injective map between compact spaces that has dense range, and thus must be a homeo-
morphism.

For the last part, we see that the inverse of the above homeomorphism restricted to the
open disc Θx : Drwx →M(σ,w)x is given by

Θx(z)(T ) = θx,z(T ) =
∞∑
n=0

ξn(x, ..., x)zn

for T ∈ T+(σ,w) with Fourier series T =
∑∞

n=0 S
(n)
ξn

. So that Θx(·)(T ) is analytic on Drwx
for every fixed T ∈ T+(σ,w).
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Let us call a subset ofM(σ,w) an analytic disc if it is the range of a pointwise analytic
injective map Θ : Ds →M(σ,w), for s > 0. For f ∈ C(X) we must have that Θ(z)(f) =
Θ(z)(f), since for every z ∈ Ds there is some x ∈ X such that Θ(z)|C(X) = δx. Thus,
due to analyticity, Θ(·)(f) : Ds → C must be constant f(x), and so Θ(Ds) is contained in
M(σ,w)x for some x ∈ X. Proposition 3.4.3 tells us that for every fixed point x ∈ X of
σ, the interior of M(σ,w)x is an analytic disc, and is hence maximal in the collection of
analytic discs, due to the above observation and the fact that every analytic disc contained
in M(σ,w)x must be open due to the Open Mapping Theorem, and is hence contained in
Θx(Drwx ).

One can use maximal analytic discs together with the computation of the character
space to obtain automatic base-detection for isomorphisms between tensor algebras asso-
ciated to WPS. For any linear homomorphism θ between operator algebras A and B, we
denote by θ∗ :MB →MA the map induced between their character spaces.

Proposition 3.4.4. Let (σ,w) and (τ, u) be WPS on compact X and Y respectively and
let ϕ : T+(σ,w) → T+(τ, u) be an algebraic isomorphism. Then ϕ is base-detecting and in
fact, ρ∗ϕ is a bijection that sends fixed points of τ to those of σ.

Proof. Let ϕ be as in the statement of the proposition, so that ϕ induces a homeomorphism
ϕ∗ : M(τ, u) → M(σ,w). It is easily verified that ϕ∗ sends maximal analytic discs to
maximal analytic discs, since it preserves the lattice of inclusion of analytic discs. Hence
we obtain a bijection between the maximal analytic discs of M(τ, u) and M(σ,w) which
extends to a bijection between closures of such analytic discs. That is, to every y ∈ Y
there is a unique γϕ(y) ∈ X such that ϕ∗ restricted toM(τ, u)y is a homeomorphism onto
M(σ,w)γϕ(y), and furthermore, we must have that γϕ−1 = γ−1

ϕ and that γϕ is a bijection
between fixed points of τ and fixed points of σ.

To show that ϕ is base detecting, let ιX : C(X)→ T+(σ,w) be the canonical inclusion.
By noting that ι∗ : M(σ,w) → X is the canonical quotient map sending every element
in M(σ,w)x to θx,0 (which is identified with x ∈ X), that Φ∗0 : Y → M(τ, u) is the map
Φ∗0(y) = θy,0 and that

γϕ = ι∗ ◦ ϕ∗ ◦ Φ∗0 = (Φ0 ◦ ϕ ◦ ι)∗ = ρ∗ϕ

we see that ρϕ is a *-isomorphism satisfying ρ−1
ϕ = ρϕ−1 by using the commutative Gelfand-

Naimark functorial duality, with ρ∗ϕ = γϕ inducing a bijection between the fixed points of
τ and those of σ.

Proposition 3.4.4 enables an important reduction of our isomorphisms problems. In-
deed, if (σ,w) and (τ, u) are WPS on X and Y respectively and ϕ : T+(σ,w)→ T+(τ, u) is
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a bounded / isometric isomorphism. Let γ = (ρ−1
ϕ )∗ : X → Y be the induced map on the

base spaces. Then obviously the WPS (τ γ, uγ) is conjugate to (τ, u) via γ−1, and so one can
see that (σ,w) is weighted-orbit / branch-transition conjugate to (τ, u) via γ if and only
if (σ,w) is weighted-orbit / branch-transition conjugate to (τ γ, uγ) via idX respectively.
Moreover, the conjugation between (τ γ, uγ) and (τ, u) promotes to a completely isometric
graded isomorphism γ̃ : T+(τ γ, uγ)→ T+(τ, u) and so ψ = γ̃−1 ◦ ϕ : T+(σ,w)→ T+(τ γ, uγ)
is a bounded / isometric isomorphism (resp. to what ϕ is) where the WPS (σ,w) and
(τ γ, uγ) are on the same space X with ρ∗ψ = IdX . Our goal is then reduced to establish-
ing weighted-orbit / branch-transition conjugation of (σ,w) and (τ γ, uγ) via IdX from a
bounded / isometric isomorphism ψ : T+(σ,w) → T+(τ γ, uγ) respectively, with ρ∗ψ = IdX .
This motivates the following definition

Definition 3.4.5. Let (σ,w) and (τ, u) be partial systems on X. We say that an iso-
morphism ϕ : T+(σ,w) → T+(τ, u) covers X if ρ∗ϕ = IdX which is equivalent to having
ρϕ = Φ0 ◦ ϕ|C(X) = IdC(X).

Next, we characterize semi-graded isomorphisms between tensor algebras arising from
WPS, in terms of the induced homeomorphism on the character spaces. We show how
this can be used to get automatic semi-gradedness of a general isomorphism between WPS
comprised of strict contractions on compact perfect metric spaces.

If (σ,w) and (τ, u) are WPS on X, and ϕ : T+(σ,w) → T+(τ, u) is an algebraic iso-
morphism covering X, by Proposition 3.4.4 we must have that fϕx (·) := ϕ∗(θx,·)(W(σ,w)) :
M(τ, u)x → M(σ,w)x. If x /∈ Fix(τ) = Fix(σ) we must have that fϕx (θx,0) = θx,0 since
M(σ,w)x = {θx,0}.

Next, we note that if x ∈ Fix(τ) is not an interior point of Fix(τ) in X then fϕx (0) = 0
due to continuity of ϕ∗(θx,0)(W(σ,w)) in x ∈ X, and the fact that for points x′ /∈ Fix(τ)
we have ϕ∗(θx′,0) = θx′,0. Hence, the only “problematic” points are those in the interior of
Fix(τ). Thus we obtain the following characterization of semi-gradedness.

Proposition 3.4.6. Let (σ,w) and (τ, u) be WPS on compact X. A bounded isomorphism
ϕ : T+(σ,w) → T+(τ, u) covering X is semi-graded if and only if fϕx (0) = 0 for all x in
the interior of Fix(τ). In particular, if either Fix(σ) or Fix(τ) have empty interior, then
every bounded isomorphism ϕ is semi-graded.

Proof. If ϕ is semi-graded, then ϕ(W(σ,w)) ∈ Ker Φ0 and so

fϕx (0) = ϕ∗(θx,0)(W(σ,w)) = θx,0(ϕ(W(σ,w))) = θx,0(Φ0(ϕ(W(σ,w)))) = 0

and so fϕx (0) = 0.
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Conversely, if fϕx (0) = 0 for all x ∈ X and ϕ covers X, we have that ϕ∗(θx,0) = θx,0 for
all x ∈ X, and by Proposition 3.3.9 it suffices to show that for any ξ ∈ C(σ,w) we have

md(ϕ(S
(1)
ξ )) ≥ 1. Indeed, write ϕ(S

(1)
ξ ) = h+ T with md(T ) ≥ 1 and h ∈ C(X). Since for

x ∈ X we have that h(x) = θx,0(ϕ(S
(1)
ξ )) = θx,0(S

(1)
ξ ) = 0, we are done.

As a corollary to the above, we show that every isomorphism is automatically semi-
graded between tensor algebras arising from distributed iterated function systems and
graph-directed systems as in Examples 3.2.8 and 3.2.9 respectively, when the spaces are
with no isolated points.

Corollary 3.4.7. Let (σ,w) and (τ, u) be d-variable and d′-variable WPS on a metric
compact perfect spaces X and Y respectively, such that either σ or τ is comprised of strict
contractions. If ϕ : T+(σ,w) → T+(τ, u) is a bounded / isometric isomorphism, then it is
automatically semi-graded.

Proof. Let r be the metric on X. Without loss of generality, σ is comprised of contractions.
Since for any two points x, y ∈ X we must have r(σi(x), σi(y)) < r(x, y) for all i ∈ {1, ..., d},
we see that σi can have at most one fixed point, and so Fix(σ) has at most d points. Since
X is perfect, Fix(σ) must have empty interior, and so by Proposition 3.4.6 ϕ must be
semi-graded.

Remark 3.4.8. We record here that all methods used in this section work equally well
when the WPS (σ,w) is replaced with any p.m.v. map P as in subsection 2.3.2.

3.5 Isomorphisms

In this section we adapt a new method in the analysis of character spaces due to Davidson,
Ramsey and Shalit in [37], and use this to construct a bounded / isometric semi-graded
isomorphism from any bounded / isometric isomorphism of our tensor algebras respectively.
We then use this to provide two theorems that separately deal with classification up to
bounded isomorphism and classification up to isometric isomorphism, which turn out to
yield two distinct equivalences.

We first provide a criterion for automatic continuity, that will help answer the algebraic
isomorphism problem for our tensor algebras, under the assumption that the union of Xi

covers X, where Xi are the clopen domains of definition for σi’s. We will follow the ideas
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of Davidson, Katsoulis and Kribs used in [34, 73]. For operator algebras A and B suppose
we have a surjective homomorphism ϕ : A → B. Let

S(ϕ) = { b ∈ B | there is a sequence (an) in A with an → 0 and ϕ(an)→ b }

It is readily verified that the graph of ϕ is closed if and only if S(ϕ) = {0}, hence, by
the closed graph theorem ϕ is continuous if and only if S(ϕ) = {0}. The following is an
adaptation of a lemma by Sinclair, the origins of which can be traced back to [114].

Lemma 3.5.1 (Sinclair). Let A and B be Banach algebras and ϕ : A → B be a surjective
algebraic homomorphism. Let (bn)n∈N be any sequence in B. Then there exists N ∈ N such
that for all n ≥ N ,

b1b2...bnS(ϕ) = b1b2...bNS(ϕ) and S(ϕ)bn...b2b1 = S(ϕ)bN ...b2b1.

For every WPS (σ,w) we can define the weight function of the system to be wσ(x) =
P (σ,w)(1)(x) =

∑
i:x∈Xi wi(x) which is positive continuous function that vanishes only on

X − ∪di=1Xi.

Definition 3.5.2. Let σ be a partial system on X. We say σ is well-supported if {Xi}
covers X, where Xi are the clopen domain of definition for σi.

When we have a well-supported (σ,w), we define the normalized WPS (σ, w̃) by setting
w̃ = (w1

wσ
, ..., wn

wσ
), and we say that (σ,w) is normalized if wσ = 1. Note that when (σ,w)

is a well-supported normalized system, we must have that P (σ,w) is a unital map, or in
other words a Markov-Feller map.

Theorem 3.5.3. Let (σ,w) and (τ, u) be WPS operating on X and Y respectively such that
either σ or τ are well-supported. Then every algebraic isomorphism ϕ : T+(σ,w)→ T+(τ, u)
is automatically a bounded isomorphism.

Proof. Suppose without loss of generality that τ is well-supported. Since for every edge
e ∈ Gr(τ) we have that ũ

u
(e) = uτ (s(e))

−1, we see that ũ
u

is continuous on Gr(τ) so that
(τ, u) and (τ, ũ) are branch-transition conjugate. By Corollary 3.2.27 and Theorem 3.3.3
used in tandem, T+(τ, u) is graded completely isometrically isomorphic to T+(τ, ũ). So
we assume without loss of generality that (τ, u) is normalized. In this case, the constant

function 1 = 1� 1 ∈ C(Gr(τ)) gives rise to an isometry W(τ,u) := S
(1)
1 = S

(1)
1�1 ∈ Ker Φ0 ⊆

T+(τ, u), since (τ, u) is well-supported and normalized.
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Now suppose towards contradiction that there is 0 6= T ∈ S(ϕ). Since W(τ,u) is an
isometry, we have that W n

(τ,u)T 6= 0 for all n ∈ N. By Sinclair’s lemma there is some N ∈ N
such that for all n ≥ N we have

WN
(τ,u)S(ϕ) = W n

(τ,u)S(ϕ) ⊆
⋂
k<n

Ker Φk.

So in fact we must have that WN
(τ,u)S(ϕ) = ∩k∈N Ker Φk = {0}, in contradiction to having

WN
(τ,u)T 6= 0 as shown above.

Our next goal is to reduce the existence of a bounded / isometric isomorphism between
WPS to the existence of a graded such isomorphism. Let (σ,w) be a WPS on X. Recall
the gauge group action α : T → Aut(T+(σ,w)) uniquely determined on generators by

αλ(S
(1)
ξ ) = λS

(1)
ξ and αλ(f) = f for ξ ∈ C(σ,w) and f ∈ C(X). Now, if (σ,w) and (τ, u)

are WPS on X, and ϕ : T+(σ,w) → T+(τ, u) is an algebraic isomorphism covering X, by
Proposition 3.4.4 we have that ϕ∗|M(τ,u)x :M(τ, u)x →M(σ,w)x.

Next, if x ∈ Fix(τ), by Proposition 3.4.3 we can identify ϕ∗|M(τ,u)x with a bijective
biholomorphism fϕx := Θ−1

x ◦ ϕ∗ ◦ Θx : Drux → Drwx which then must be of the form given

by fϕx (z) = rwx f̂
ϕ
x ((rux)−1z) where f̂ϕx is a biholomorphism of the unit disc D given by

f̂ϕx (z) = eiθx
wx − z
1− wxz

for some θx ∈ [0, 2π] and wx ∈ D. Note also that since fϕx (0) = ϕ∗(θx,0)(W(σ,w)) = rwx e
iθxwx,

and since ϕ∗(θx,0)(W(σ,w)) depends continuously on x ∈ X, we can extend fϕx continuously
to be 0 for x /∈ Fix(τ). Further, if ψ : T+(τ, u)→ T+(π, v) is another algebraic isomorphism
covering X we have that f̂ψ◦ϕx = f̂ϕx ◦ f̂ψx .

We now wish to examine an isomorphism ϕ : T+(σ,w)→ T+(τ, u) covering X for which
there exists x ∈ X an interior point of Fix(σ) = Fix(τ), with fϕx (0) 6= 0.

Fix an element x ∈ Fix(τ) with fϕx (0) 6= 0. One can then find λx, γx ∈ T such that
the isomorphism ψ = ϕ ◦ αλx ◦ ϕ−1 ◦ αγx ◦ ϕ satisfies fψx (0) = 0. Indeed, for λ ∈ T, since

f̂ϕ◦αλx (0) = λ · f̂ϕx (0), we get that C = {f̂ϕ◦αλx (0)|λ ∈ T} is a circle centered around 0. Since
f̂ϕ
−1

x is a Möbius map of the form described above, it must send C to a circle through the
origin. That is, C ′ = f̂ϕ

−1

x (C) = {f̂ϕ◦αλ◦ϕ−1

x (0)|λ ∈ T} is a circle through the origin, since
for λ = 0 we get 0 = f̂ Idx (0) = f̂ϕ◦αλ◦ϕ

−1

x (0) ∈ C ′. If we again take an arbitrary γ ∈ T and

do this, we can ”fill the circle”. That is, since f̂
ϕ−1◦αγ
x (C) = γ ·fϕ−1

x (C) = γ ·C ′, the region

bounded by C ′, which we denote by ins(C ′), is a subset of { f̂ϕ◦αλ◦ϕ
−1◦αγ

x (0) | λ, γ ∈ T }.

78



Once more, since f̂ϕx is the inverse of f̂ϕ
−1

x , being a Möbius map, it must send C ′ back to
C, and so it must send ins(C ′) to ins(C). Thus we obtain that the set

{ f̂ϕ◦αλ◦ϕ−1◦αγ◦ϕ
x (0) | λ, γ ∈ T }

contains the origin, and hence there is some choice of λx and γx with which

f̂ϕ◦αλx◦ϕ
−1◦αγx◦ϕ

x (0) = 0.

We now wish to show that a choice of continuous functions x 7→ λx and x 7→ γx from X

to T can be found such that f
ϕ◦αλx◦ϕ−1◦αγx◦ϕ
x (0) = 0 for all x ∈ D ⊆ Fix(τ) where D is a

closed set for which x 7→ |wx|2 is continuous on D.

Proposition 3.5.4. Let (σ,w) and (τ, u) be WPS on compact X, and let ϕ : T+(σ,w)→
T+(τ, u) be an algebraic isomorphism covering X. If D ⊆ Fix(τ) is a closed set on which
x 7→ |wx|2 is continuous and non-zero, there exist continuous functions λ, γ : X → T such
that for all x ∈ D we have

(f̂ϕx ◦ f̂αγxx ◦ f̂ϕ−1

x ◦ f̂αλxx ◦ f̂ϕx )(0) = 0. (3.3)

Proof. First note that since the map x 7→ |wx|2 is continuous on D, and since |wx|2 < 1
for all x ∈ D, we may extend it to a continuous function h : X → [0, 1] so that ‖h‖∞ < 1
still. Next, we simplify equation (3.3) to the following equivalent form:

(f̂αλxx ◦ f̂ϕx )(0) = (f̂ϕx ◦ f̂αγxx ◦ f̂ϕ−1

x )(0)

which is equivalent to having for all x ∈ D that

λxe
iθxwx = f̂ϕx (γxwx) = eiθx

wx − γxwx
1− γx|wx|2

. (3.4)

It then suffices to find continuous functions γ, λ : X → T such that for any x ∈ D,

λx =
1− γx

1− γxh(x)
=

γx − 1

γx − h(x)
(3.5)

as multiplying both sides by eiθxwx yields equation (3.4) for all x ∈ D.

Since h(x) < 1 for all x ∈ X, we see that γx−h(x) 6= 0 for all x ∈ X, so we may define

γx =
(1 + h(x)

2
,

√
1−

(1 + h(x)

2

)2
)

and λx =
γx − 1

γx − h(x)
.

As |γx − 1| = |γx − h(x)| for all x ∈ X, we see that γ and λ are well-defined continuous
functions from X into T satisfying equation (3.5), and we are done.
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Finally, we are at the point where we can reduce general isomorphism problems to
corresponding semi-graded isomorphism problems. Recall that for a d′-variable WPS (τ, u)
on X and an index set I ⊆ {1, ..., d′} we defined the coinciding set of I to be

C(I) = { x ∈ ∩i∈IXi | τi(x) = τj(x) }

where for each 1 ≤ i ≤ d′ we have τi : Xi → X, with Xi clopen.

Theorem 3.5.5. Let (σ,w) and (τ, u) be d-variable and d′-variable WPS respectively,
on the same compact space X, and let ϕ : T+(σ,w) → T+(τ, u) be a bounded / isometric
isomorphism covering X. Then there exists a semi-graded bounded / isometric isomorphism
ψ : T+(σ,w)→ T+(τ, u) covering X respectively.

Proof. Suppose k ≥ 0 for which there exists ψ such that fψx (0) = 0 for all x ∈ Fix(τ) ∩⋃
|I|≥k+1C(I) where we range over all subsets I ⊆ {1, ..., d′} of size at least k + 1. Our

assumptions guarantee that such a k exists and that k ≤ d′, since ϕ certainly satisfies
fϕx (0) = 0 for all x ∈ Fix(τ) ∩

⋃
|I|≥d′+1 C(I) = ∅.

If there exists ψ for which we can take k = 0, then fψx (0) = 0 for all x ∈ Fix(τ) ∩⋃
I⊆{1,...,d′}C(I) = Fix(τ), we will be done by Proposition 3.4.6.

Thus, suppose ϕ is a bounded / isometric isomorphism and k > 0 such that fϕx (0) = 0
for all x ∈ Fix(τ) ∩

⋃
|I|≥k+1C(I) but fϕx (0) 6= 0 for some x ∈ Fix(τ) ∩

⋃
|I|≥k C(I). We

will construct ψk for which fψkx (0) = 0 for all x ∈ Fix(τ)∩
⋃
|I|≥k C(I), so that for ψk there

is a smaller k′ < k for which fψkx (0) = 0 for all x ∈ Fix(τ) ∩
⋃
|I|≥k′ C(I). By successive

iterations of this procedure we keep decreasing k, so that we would eventually get ψ for
which we can take k = 0, and be done by the previous paragraph.

We claim that under our current assumptions on ϕ, on the closed set Dk = Fix(τ) ∩⋃
|I|=k C(I) we have that x 7→ |wx|2 is continuous. We know that ϕ∗(θx,0)(W(σ,w)) =

fϕx (0) = rwx e
iθxwx depends on x ∈ X continuously, so we restrict it to Dk. By Proposition

3.4.3 we have that rwx =
√
w(x, x) =

√∑
i:σi(x)=x∈Xi wi(x) and as a function of x is

bounded below on Fix(τ) = Fix(σ) ⊃ Dk, and is hence non-zero on Dk. Moreover, the only
discontinuities x 7→ rwx can have onDk are those arising from branching pointsB(J)∩Fix(τ)

in Dk for subsets J ) I and |I| ≥ k, and so x 7→ |wx|2 = fϕx (0)2

(rwx )2
is continuous at every

x ∈ Dk which is not a point in B(J) ∩ Fix(τ) for some J ) I and |I| ≥ k.

Next, for a point y ∈ B(J) ∩ Fix(τ) inside Dk for some J ) I and |I| ≥ k, our
assumptions guarantee that 0 = fϕx (0) = rwx e

iθxwx for all x ∈ C(J) since |J | > |I| ≥ k, so
that |wy|2 = 0, since x 7→ rwx is non-zero for all x ∈ Dk.
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Now, since x 7→ rwx is bounded below on Dk, say by ε, we have that |fϕx (0)|2 ≥ ε2|wx|2,
and by continuity of x 7→ fϕx (0) at y, we see that |wx|2 → 0 as x → y. This means that
x 7→ |wx|2 is continuous at y inside Dk, so that x 7→ |wx|2 is continuous on all of Dk.

Using Proposition 3.5.4 we have two continuous maps L : x 7→ λx and G : x 7→ γx from
X to T that satisfy equation (3.3) for any x ∈ Dk. Define two unitaries UL on C(σ,w) and
UG on C(τ, u) given by UL(ξ) = L · ξ and UG(η) = G · η for ξ ∈ C(σ,w) and η ∈ C(τ, u)
using the left action by continuous functions. Next, use Theorem 3.3.3 to promote UL
and UG to (completely) isometric graded automorphisms AdUL : T+(σ,w)→ T+(σ,w) and
AdUG : T+(τ, u)→ T+(τ, u) such that for any point x ∈ Dk we have

f̂
AdUL
x (z) = λxz and f̂

AdUG
x (z) = γxz.

Thus, we get for all x ∈ Dk that f̂
AdUL
x (z) = f̂

αλx
x (z) and f̂

AdUG
x (z) = f̂

αγx
x (z). Next, we

define ψk = ϕ ◦ AdUL ◦ϕ−1 ◦ AdUG ◦ϕ : T+(σ,w)→ T+(τ, u), and since for every x ∈ Dk,

f̂ψkx (0) = f̂
ϕ◦AdUL ◦ϕ

−1◦AdUG ◦ϕ
x (0) = (f̂ϕx ◦ f̂

AdUG
x ◦ f̂ϕ−1

x ◦ f̂AdUG
x ◦ f̂ϕx )(0) =

(f̂ϕx ◦ f̂αγxx ◦ f̂ϕ−1

x ◦ f̂αλxx ◦ f̂ϕx )(0) = 0

we obtain that ψk is a bounded / isometric isomorphism (respectively to what ϕ is) such
that fψkx (0) = 0 for all x ∈ Dk = Fix(τ)∩

⋃
|I|≥k C(I), and we have managed to find ψk for

which we can take k′ < k such that fψkx (0) = 0 for all x ∈ Fix(τ) ∩
⋃
|I|≥k′ C(I).

The following two theorems resolve algebraic / bounded / isometric isomorphism prob-
lems for tensor algebras arising from WPS, and classify them up to bounded / isometric
isomorphisms.

Theorem 3.5.6 (Algebraic / Bounded isomorphisms). Let (σ,w) and (τ, u) be WPS over
X and Y respectively. The following are equivalent

1. (σ,w) and (τ, u) are weighted-orbit conjugate.

2. C(σ,w) and C(τ, u) are similar C*-correspondences.

3. There exists a graded completely bounded isomorphism ϕ : T+(σ,w)→ T+(τ, u).

4. There exists a bounded isomorphism ϕ : T+(σ,w)→ T+(τ, u).

Moreover, if either σ or τ are well-supported, any of the above conditions are equivalent to
the existence of an algebraic isomorphism ϕ : T+(σ,w)→ T+(τ, u).
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Proof. The equivalence between (1) and (2) and (3) ran on Proposition 3.2.26 and Theorem
3.3.2. (3) implies (4) trivially. To show that (4) implies (3), let ϕ : T+(σ,w)→ T+(τ, u) be
a bounded isomorphism. By Theorem 3.5.5, there is a semi-graded bounded isomorphism
ψ : T+(σ,w) → T+(τ, u). Then by Proposition 3.3.10 we obtain a completely bounded

graded isomorphism ψ̃ : T+(σ,w)→ T+(τ, u).

For the last part, if either σ or τ are well-supported, and ϕ : T+(σ,w)→ T+(τ, u) is an
algebraic isomorphism, then by Theorem 3.5.3, either ϕ or ϕ−1 is bounded, but then by
the Open Mapping Theorem in Banach spaces, both are bounded.

Theorem 3.5.7 (Isometric isomorphisms). Let (σ,w) and (τ, u) be WPS over X and Y
respectively. The following are equivalent

1. (σ,w) and (τ, u) are branch-transition conjugate.

2. C(σ,w) and C(τ, u) are unitarily isomorphic C*-correspondences.

3. There exists a graded completely isometric isomorphism ϕ : T+(σ,w)→ T+(τ, u).

4. There exists an isometric isomorphism ϕ : T+(σ,w)→ T+(τ, u).

Proof. The equivalence between (1) and (2) and (3) ran on Corollary 3.2.27 and Theorem
3.3.3. (3) implies (4) trivially. To show that (4) implies (3), let ϕ : T+(σ,w)→ T+(τ, u) be
an isometric isomorphism. By Theorem 3.5.5, there is a semi-graded isometric isomorphism
ψ : T+(σ,w)→ T+(τ, u). Then by Corollary 3.3.11 we obtain a completely isometric graded

isomorphism ψ̃ : T+(σ,w)→ T+(τ, u).

Example 3.5.8. By the above two theorems and Example 3.2.22 we see that there are two
WPS for which there exists an algebraic / bounded isomorphism of their tensor algebras
but there is no isometric isomorphism between their tensor algebras.

This shows that the isometric isomorphism problem for general tensor algebras cannot
be solved just by extracting information from algebraic / bounded isomorphism invariants
of the tensor algebras, such as representations into upper triangular 2× 2 matrices, which
were used in [34, 35, 39, 73, 116].

3.6 Applications and comparisons

We start this section by proving a universal property for the Toeplitz algebra T (σ,w) :=
T (C(σ,w)) arising from a WPS (σ,w), as a C*-algebra generated by certain set elements
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satisfying certain relations. This enables us to think of the non-self-adjoint tensor algebra
T+(σ,w) := T+(C(σ,w)) as a the norm closed operator subalgebra of the universal C*-
algebra T (σ,w) generated by the same set of elements.

Recall that for a partial system (σ,w), the positive operator P (σ,w) : C(X) → C(X)
used to construct the GNS C*-correspondence of (σ,w) was given by

P (σ,w)(f)(x) =
∑
i:x∈Xi

wi(x)f(σi(x)).

Definition 3.6.1. Let (σ,w) be a WPS on compact X. A representation of (σ,w) is a
pair (π, T ) with π : C(X) → B(H) a unital ∗-representation and an operator T ∈ B(H)
such that

T ∗π(f)T = π
(
P (σ,w)(f)

)
for all f ∈ C(X).

Denote by C∗(π, T ) the C*-algebra and Alg(π, T ) the norm-closed algebra generated by
the image of π and T inside B(H).

The following universal description shows that we can think of T+(σ,w) as a certain
”semi-crossed product” by the positive map P (σ,w).

Theorem 3.6.2 (Universal description). Let (σ,w) be a WPS on compact X. Then the
Toeplitz algebra T (σ,w) and the tensor algebra T+(σ,w) are the universal C*-algebra and
operator algebra (respectively) generated by a universal representation (πu, Tu) of (σ,w).

Proof. Since representations of (σ,w) are exactly representations of (C(X), P (σ,w)) in
the sense of [83, Definition 3.1], by [83, Proposition 3.10], these are in bijection with
isometric (in the sense of [90, Definition 2.11]) representations (π, πP (σ,w)) of the GNS
C*-correspondence Fσ,w, that satisfy πP (σ,w)(f ⊗ g) = π(f)Tπ(g). By [90, Theorem 2.12],
these are in bijection with the representations τ(π,πP (σ,w)) of T (σ,w) that send T+(σ,w) to

Alg(π(C(X)) ∪ πP (σ,w)(Fσ,w)). Hence, if (π, T ) is a representation of (σ,w), it promotes

to a representation τ(π,T ) of T (σ,w) that sends T+(σ,w) to Alg(π, T ), and every such

representations π of T (σ,w) arises in this way, and must send T+(σ,w) to Alg(π, T ).

We next apply our results to certain subclasses of WPS, by computing what the con-
jugation relations yield for these classes. For some classes of WPS, our tensor algebras
coincide with previously-investigated operator algebras, and we recover some classification
results on non-self-adjoint operator algebras.
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When we have a non-negative matrix A = [Aij] indexed by a finite set Ω, we associated
a d-variable WPS (σA, wA) to it as in Example 3.2.4, to which we associate a topological
quiverQ(A) := Q(σA, wA) = (Gr(A), P (A)) given by Gr(A) = Gr(σA) = { (i, j) | Aij > 0 }
with Radon measures P (A)j := P (σA, wA)j =

∑
i∈Ω Aijδ(i,j). This topological quiver

encodes the information of the entries of A into the Radon measures, since the entries
Aij =

∫
Gr(A)

χ{(i,j)}dP (A)j can be detected by integration against a characteristic function

of a singleton. We note that Gr(A) has no sinks if and only if (σA, wA) is well-supported.

Since the tensor algebra associated to the C*-correspondence arising from the topolog-
ical quiver Q(A) is T+(σA, wA), we just write T+(A) := T+(σA, wA).

Thus, for two non-negative matrices A = [Aij] and B = [Bij] indexed by ΩA and ΩB

respectively, we see that the graphs Gr(A) and Gr(B) are isomorphic directed graphs if and
only if (σA, wA) and (σB, wB) are graph conjugate, if and only if they are branch-transition
conjugate, since the topology on Gr(σA) = Gr(A) = { (i, j) | Aij > 0 } is discrete, and so
the weight-transition functions will always be continuous. Hence, we obtain the following:

Corollary 3.6.3. Let A and B be non-negative matrices indexed by a finite set Ω. Then
Gr(A) and Gr(B) are isomorphic directed graphs if and only if T+(A) and T+(B) are
(completely) bounded / (completely) isometrically isomorphic. Moreover, if either Gr(A)
or Gr(B) have no sinks, the above is equivalent to T+(A) and T+(B) being algebraically
isomorphic.

When the non-negative matrix is given as the incidence matrix AG = [mw,v] of some
finite directed graph G = (V,E, r, s) as in Example 3.2.5, such that mw,v is either 0 or 1,
then G is multiplicity free. The topological quiver Q(AG) associated to AG is then just
the topological quiver structure we associate to the original graph G, that is with edges
Gr(AE) := { (r(e), s(e)) = e | e ∈ E } and with Radon measures given by counting measure
P (G)v = P (AE)v =

∑
w:(w,v)∈Gr(AG) δ(w,v) on s−1(v) (See [93, Example 3.19], with reversed

source and range maps). This means that the tensor algebra T+(G) associated to G as in
[73], coincides with T+(C(Q(AG))), and we recover results of Katsoulis and Kribs in [73]
and Solel in [116], for the case of finite multiplicity-free graphs.

Corollary 3.6.4. Let G and G′ be finite multiplicity free graphs. Then G and G′ are
isomorphic as directed graphs if and only if T+(G) and T+(G′) are (completely) bounded
/ (completely) isometrically isomorphic. Moreover, if either G or G′ have no sinks, the
above is equivalent to T+(G) and T+(G′) being algebraically isomorphic.

For a continuous map σ on a compact space X, we can associate an operator algebra
C(X)×σ Z+ called Peters’ semi-crossed product to it as done originally by Peters in [102].
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We do this here by giving a universal definition. We call a pair (ρ, T ) a representation of
(X, σ) if ρ : C(X) → B(H) is a *-representation and S ∈ B(H) a contraction such that
ρ(f)S = Sρ(f ◦ σ). We say that a (ρ, S) is isometric if in addition S is an isometry.

Peters’ semi-crossed product C(X)×σZ+ of the system (X, σ) is the norm closed algebra
generated by the image of a universal isometric representation (ρu, Su) for (X, σ). Note
that for any isometric representation (ρ, S) we have that S∗ρ(f)S = ρ(f ◦σ) and we obtain
a representation of the WPS (σ, 1) as in Definition 3.6.1.

Muhly and Solel show in [90] that every representation (ρ, S) of (X, σ) dilates to an iso-
metric representation, so that Peters’ semi-crossed product is also the norm closed algebra
generated by the image of a (contractive) universal representation.

When we look at σ = (σ, 1) as a WPS, by [83, Proposition 3.21] any representation
(π, T ) of the WPS (σ, 1) satisfies π(f)T = Tπ(f ◦ σ), so in fact we have obtained a
representation of the system (X, σ) as above. We conclude that T+(σ, 1) ∼= C(X)×σ Z+.

On the other hand, for two continuous maps σ and τ on compact spaces X and Y
respectively, we have that (σ, 1) and (τ, 1) are graph-conjugate if and only if σ and τ are
conjugate, and we obtain the following alternative proof, assuming our spaces are compact,
of a theorem first proven by Davidson and Katsoulis (See [34, Corollary 4.7]).

Corollary 3.6.5. Let σ and τ be continuous maps on compact spaces X and Y respectively.
Then C(X)×σZ+ and C(X)×σZ+ are algebraically / (completely) bounded / (completely)
isometrically isomorphic if and only there is some homeomorphism γ : X → Y such that
γ−1τγ = σ.

When σ = (σ1, ..., σd) is a partially defined system so that σi : Xi → X, we think
of it as a WPS by specifying w = (1, ..., 1). The weight induced on Gr(σ) then becomes
mσ(e) := w(e) =

∑
i∈I(e,σ) 1 = |I(e, σ)| is just the multiplicity of e ∈ Gr(σ). Denote by

T+(σ) := T+(σ, 1) the tensor algebra of a partially defined system σ. In this case, we have
the following characterization of isometric isomorphism between tensor algebras.

Theorem 3.6.6. Let σ and τ be partially defined systems on compact X and Y respectively.
Then T+(σ) and T+(τ) are isometrically isomorphic if and only if there is a homeomorphism
γ : X → Y such that Gr(σ) = Gr(τ γ) and the function mτγ

mσ
: Gr(σ) → (0,∞) is locally

constant.

Proof. By Theorem 3.5.7 we have that T+(σ) and T+(τ) are isometrically isomorphic if and
only if there is a homeomorphism γ : X → Y such that Gr(σ) = Gr(τ γ) and the function
mτγ
mσ

: Gr(σ) → (0,∞) is continuous. Since mτγ
mσ

can only attain finitely many values, it is
continuous if and only if it is locally constant.
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Chapter 4

C*-envelopes of tensor algebras
arising from stochastic matrices

4.1 Introduction

In this chapter, which is based on joint work with Daniel Markiewicz [43], we focus on the
C*-envelope of the tensor algebra associated to finite irreducible stochastic matrices. We
remind the reader that in this Chapter we take a reversed range and source convention to
the one taken in Subsection 2.3.1 and the definition of the graph of a Markov-Feller operator
as in Subsection 2.3.2. We were motivated by the known results in the determination of
the C*-envelope of the tensor algebra of a subproduct system:

1. Given a C*-correspondence E, we have that C∗e (T+(E)) = O(E). This was first
proven by Muhly and Solel [90, Corollary 6.6] when the left action on E is faithful,
essential and acts by compacts, and in the general case (without extra assumptions)
by Katsoulis and Kribs [76].

2. Let I be a homogeneous ideal in the ring of polynomials in finitely many commuting
variables. The universal commuting row contraction subject to the polynomial rela-
tions in I gives rise to a subproduct system of Hilbert spaces XI , and it was shown
by Davidson, Ramsey and Shalit [37] that C∗e (T+(XI)) = T (XI).

3. Let I be a monomial ideal in the ring of polynomials in non-commuting variables.
Similarly to the commutative case, a subproduct system XI can be defined. Kakari-
adis and Shalit [72] have shown that for many cases (depending on the monomial
ideal) either C∗e (T+(XI)) = T (XI) or C∗e (T+(XI)) = O(XI).
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In summary, for all these cases, when the subproduct system X is irreducible in the
appropriate sense (i.e. no nontrivial X-invariant ideals, see Definition 2.2.12) , C∗e (T+(X))
has been found to be isomorphic either to T (X) or O(X). In [119, Section 6], this phe-
nomenon was observed, and it was asked if one can find a general description for the
behavior of C*-envelopes of tensor algebras associated with subproduct systems. In this
chapter we shed some light on this question: we show that the evidence for the dichotomy
witnessed above is misleading, and that the situation is more mysterious than previously
thought. We do this by providing an example of stochastic matrix P with an associated
subproduct system X := Arv(P ) such that the C∗e (T+(X)) is not ∗-isomorphic to either
T (X) or O(X) (See Example 4.3.18).

Our first main result in this chapter is as follows. Let P be a finite irreducible stochastic
matrix. In this case we show that the C*-envelope lands between the Toeplitz and Cuntz-
Pimsner algebras in the sense that it fits in the following sequence of quotient maps:

T (P ) −→ C∗e (T+(P ))
πP−→ O(P ). (∗)

Moreover, in the case when P has the multiple arrival property (see Definition 4.3.13),
we identify the boundary representations of T+(P ) inside T (P ), also known as the non-
commutative Choquet boundary in the sense of Arveson [5]. This enables us to describe
the C*-envelope C∗e (T+(P )) in terms of boundary representations. For details see Corol-
lary 4.3.14 and Theorem 4.3.15.

The fact that the Cuntz-Pimsner algebra O(X) as defined by Viselter [119] is not always
isomorphic to the C*-envelope of the tensor algebra T+(X) in the subproduct system case,
and even a dichotomy as above fails to hold, suggests that perhaps an alternative definition
of Cuntz-Pimsner algebra for subproduct systems is desirable.

The concrete description of the C*-envelope and lack of dichotomy lead to an unex-
pected richness of possibilities. Our second main result in this chapter concerns with the
classification of C*-envelopes up to ∗-isomorphism and stable isomorphism, so as to clarify
the situation. For a finite irreducible stochastic matrix P over ΩP , the ideal Ker(πP ) in the
sequence of equation (∗) is ∗-isomorphic to a direct sum of nP ≤ |ΩP | copies of the algebra
of compact operators. Given two irreducible stochastic matrices P and Q over finite state
sets ΩP and ΩQ we have that

1. T+(P ) and T+(Q) have stably isomorphic C*-envelopes if and only if nP = nQ. For
more details see Theorem 4.4.10.

2. T+(P ) and T+(Q) have ∗-isomorphic C*-envelopes if and only if |ΩP | = |ΩQ|, nP = nQ
and up to a reordering of ΩQ, the matrices P and Q have the same column nullity
in every column. For more details, see Definition 4.4.8 and Theorem 4.4.11.
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Therefore, we see that instead of a dichotomy, we actually have a profusion of possibilities.

These results are obtained by leveraging the surprisingly simple form of the Cuntz-
Pimsner algebra as obtained in [42, Corollary 5.16] to compute the K-theory of C∗e (T+(P )).
We compute the K-theory of C∗e (T+(P )) and use extension theory (especially work by
Paschke and Salinas [98]) to obtain our classification results. We should note that Dilian
Yang pointed out to us that there was a gap in the proof of [42, Corollary 5.16], which we
resolve in Section 4.2 of this chapter.

Finally, it is natural to ask about the relationship between C∗e (T+(P )) and the Cuntz-
Krieger algebra OAdj(P ) associated to the {0, 1}-adjacency matrix obtained from a finite
irreducible stochastic matrix P . We apply our classification results for the C*-envelope
and K-theory for Cuntz-Krieger algebras to show that these two objects are generally
incomparable in the sense that we exhibit 3 × 3 irreducible stochastic matrices P , Q and
R such that

C∗e (T+(P )) 6∼ C∗e (T+(Q)) ∼= C∗e (T+(R))

and OAdj(P )
∼= OAdj(Q) 6∼ OAdj(R)

where ∼= stands for ∗-isomorphism and ∼ stands for stable isomorphism.

Hence, the significance of this chapter is that it provides a new class of C*-algebras,
via the C*-envelope, that are amenable to classification machinery.

This chapter has five sections including this introduction. In Section 4.2 we fill the
gap pointed out to us by Dilian Yang in the proof of [42, Corollary 5.16] and compute the
extension groups for the Cuntz-Pimsner algebra of a finite irreducible stochastic matrix. In
Section 4.3 we determine the non-commutative Choquet boundary of T+(P ) inside T (P ),
which then allows us to compute C*-envelopes C∗e (T+(P )) associated to finite irreducible
stochastic matrices. In Section 4.4 we compute the K-theory of C∗e (T+(P )) in terms of
boundary representations and use extension theory to prove our main classification results
mentioned above. Finally, we compare C∗e (T+(P )) and OAdj(P ) as invariants for the graph
of P .

4.2 Cuntz-Pimsner algebra of a stochastic matrix

In this section, we close a gap in [42], that was kindly pointed out to us by Dilian Yang,
in the proof of the characterization of the Cuntz-Pimsner algebra of a finite stochastic
matrix. Recall Theorem 2.3.17 that characterizes the subproduct system associated to a
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finite stochastic matrix P over Ω. We denote by O(P ) := O(Arv(P )) the Cuntz-Pimsner
algebra of the subproduct system Arv(P ). The result at stake, which corresponds to [42,
Corollary 5.16], is as follows

Theorem 4.2.1. Let P be an irreducible stochastic matrix of size d. Then O(P ) ∼=
Md(C)⊗ C(T).

The main issue is that the cyclic decomposition of periodic irreducible stochastic ma-
trices need not be realized in square blocks as claimed in [42, Remark 2.9]. Consider the
following example kindly brought to our attention by Dilian Yang: let Ω = {1, 2, 3} and
set

P =

0 0 1
0 0 1
1
2

1
2

0

 =

[
0 P0

P1 0

]
, where P0 =

[
1
1

]
, P1 =

[
1
2

1
2

]
The matrix P has period 2, Ω0 = {1, 2} and Ω1 = {3}, and both P0 and P1 are not square.

Therefore, the results in [42, Section 5] after [42, Proposition 5.7], and in particular
[42, Proposition 5.15], only apply in the case of square blocks. Therefore a gap remains in
the proof of Theorem 4.2.1 in its stated form, and we now provide a different proof for it,
which works in all cases, and resolves any remaining gaps with the rest of [42, Section 5].
The issue above does not affect the remainder of that paper, namely [42, Sections 6 and
7].

We recall the different algebras T (P ) and T ∞(P ) that were involved in the computation

of O(P ). For A ∈ Arv(P )n in [42] we defined the shift operator S
(n)
A uniquely determined

on fibers by S
(n)
A (B) = Un,m(A ⊗ B) for B ∈ Arv(P )m. The tensor and Toeplitz algebras

of Arv(P ) are given respectively by

T+(P ) = Alg
(
C(Ω) ∪ { S(n)

A | n ∈ N, A ∈ Arv(P )n }
)

and
T (P ) = C∗

(
C(Ω) ∪ { S(n)

A | n ∈ N, A ∈ Arv(P )n }
)
.

We note that T+(P ) and T (P ) are generated (as a norm-closed algebra and as a C*-algebra
respectively) by {pi}i∈Ω and {SEij}(i,j)∈Gr(P ), where Eij = [δij(k, l)] is the zero matrix,

except for the (i, j) entry at which it is 1. Indeed, since P is a finite matrix, each S
(n)
A can

be written as a finite linear combination of S
(n)
Eij

with (i, j) ∈ Gr(P n). Then choose a path

of length n, say i = j0 → j1 → ...→ jn = j, and we have that S
(n)
Eij

= c ·S(1)
Ej0j1
· ... ·S(1)

Ejn−1jn

for some c > 0.
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Next, for a finite stochastic matrix P over Ω, and for every n ∈ N and A ∈ Arv(P )n
we defined operators in L(FArv(P )) mapping each Arv(P )m to Arv(P )n+m, one denoted

by T
(n)
A and given by T

(n)
A = S

(n)

(
√
Pn)[∗A, and the other denoted by W

(n)
A which is uniquely

determined on fibers Arv(P )m by W
(n)
A (B) = A · B. For the purposes of computing the

Cuntz-Pimsner algebra, we defined in [42, Section 5] the auxiliary C*-algebra

T ∞(P ) := C∗
(
C(Ω) ∪

{
W

(n)
A | n ∈ N, A ∈ Arv(P )n

})
and we noted that due to finiteness of P we have that

T (P ) = C∗
(
C(Ω) ∪

{
T

(n)
A | n ∈ N, A ∈ Arv(P )n

})
.

We also defined the two-sided ideal

J (T ∞(P )) := { T ∈ T ∞(P ) | lim
n→∞

‖TQn‖ = 0 }

in T ∞(P ), and by [42, Proposition 5.6] we get that O(P ) is ∗-isomorphic to the quotient
T ∞(P )/J (T ∞(P )). This reduced the computation of the Cuntz-Pimsner algebra to com-

puting a quotient of an algebra generated by operators W
(n)
A which depend only on the

non-zero entries of P .

Recall that the adjoint W
(n)∗
A of W

(n)
A , which maps Arv(P )n+m to Arv(P )m, is uniquely

determined on fibers by

W
(n)∗
A (B) = Adj(Pm) ∗ (A∗B), B ∈ Arv(P )m+n

where the reason for Schur-multiplying A∗ · B with Adj(Pm) is to make sure that the
product lands in Arv(P )m with its given entry constraints (See the discussion preceding
[42, Proposition 5.7]).

We note that C(Ω) acts on Arv(P )m as left multiplication by diagonal matrices. There-

fore, W
(0)
Ekk

= pk as the adjointable operator on FArv(P ).

The following proposition, which works in all cases, replaces [42, Remark 5.10] and the
discussion preceding it.

Proposition 4.2.2. Let P be an t-periodic irreducible stochastic matrix over Ω. Let q ∈ N
and suppose that A ∈ Arv(P )q. Then there exists m0 ∈ N such that for all m ≥ m0 we
have that

W
(q)∗
A (B) = A∗B, ∀B ∈ Arv(P )q+m.

That is, if m ≥ m0 and B ∈ Arv(P )q+m, then the matrix A∗B has support contained in
the support of Pm.
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Proof. Suppose this fails. Then there exists a sequence of matrices B(n) ∈ Arv(P )q+mn ,
with n 7→ mn increasing, such that the support of A∗B(n) is not contained in the support of
Pmn . By finiteness of P , perhaps by replacing B(n) by a subsequence, we may assume that
there exist i, j, k ∈ Ω independent of n such that B(n) ∈ Arv(P )q+mn and both piA

∗pk 6= 0

and pkB(n)pj 6= 0 while P
(mn)
ij = 0. Again by moving to a subsequence, we may assume

that there exists 0 ≤ ` < t independent of n such that mn ≡ ` mod t.

Let Ω0, . . . ,Ωt−1 be the cyclic decomposition of P with respect to k. Note that by item

(2) of Theorem 2.3.14, we must have that P
(m)
ij = 0 for all m such that m ≡ ` mod t.

Therefore there are no paths from i to j whose length is of residue ` mod t.

Let σ(i), σ(j) be such that i ∈ Ωσ(i) and j ∈ Ωσ(j). Since piA
∗pk 6= 0, we have that

pkApi 6= 0 and hence P
(q)
ki > 0. It follows from the cyclic decomposition theorem that paths

from k to i have length with residue σ(i) (mod t, which we will suppress). Since paths
from k to k must have lengths with zero residue by periodicity, we must have that paths
from i to k will have length with residue t−σ(i). Therefore paths from i to j have lengths
with residue t− σ(i) + σ(j) ≡ σ(j)− σ(i) mod t.

Next, since A ∈ Arv(P )q, and pkApi 6= 0, we have by the definition of the cyclic
decomposition that σ(i) ≡ q mod t. Similarly, since B(n) ∈ Arv(P )q+mn , and pkB(n)pj 6=
0, we have that σ(j) ≡ q + mn ≡ q + ` mod t. Therefore, σ(j) − σ(i) ≡ q + ` − q ≡ `
mod t and we conclude that all paths from i to j must have residue ` mod t. But this is
impossible since we have noted before that there are no paths from i to j whose length is
of residue ` mod t.

Definition 4.2.3. Let P be a finite irreducible t-periodic stochastic matrix over Ω of size
d. We will say that a cyclic decomposition Ω0, ...,Ωt−1 for P is properly enumerated if Ω
is enumerated in such a way that for every 0 ≤ m < k < t, i ∈ Ωm and j ∈ Ωk we have
that i < j. For i ∈ Ω, denote by σ(i) the unique index 0 ≤ σ(i) < t such that i ∈ Ωσ(i).

Given a properly enumerated cyclic decomposition Ω0, ...,Ωt−1 for P , we define operators
U and (Sij)i,j∈Ω in L(FArv(P )) as follows. The operator U has degree t with respect to the
grading, i.e. for every m ∈ N, U(Arv(P )m) ⊆ Arv(P )m+t, and it is uniquely determined
by

U(B) = Adj(Pm+t) ∗B, m ∈ N, B ∈ Arv(P )m.

If i ≤ j, then σ(i) ≤ σ(j), and denote by ` = σ(j)−σ(i). Then Sij is an operator of degree
`, i.e. for all m ≥ 0, Sij(Arv(P )m) ⊆ Arv(P )m+` and it is given by

Sij(B) = Adj(Pm+`) ∗ (Eij ·B), m ∈ N, B ∈ Arv(P )m.

If i > j we define Sij = S∗ji. The family (U, (Sij)i,j∈Ω) is called the standard family
associated to the properly enumerated cyclic decomposition Ω0, ...,Ωt−1.
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We denote by T ∈ O(P ) the image of T ∈ T ∞(P ) under the associated canonical
quotient map q : T ∞(P )→ O(P ) ∼= T ∞(P )/J (T ∞(P )).

Lemma 4.2.4. Let P be an irreducible t-periodic stochastic matrix over Ω of size d with
properly enumerated cyclic decomposition Ω0, ...,Ωt−1, and let (U, (Sij)i,j∈Ω) be its associated
standard family.

1. Let i, j ∈ Ω be such that i ≤ j in the properly enumerated decomposition of Ω, so that
` := σ(j)− σ(i) ≥ 0. Then there exists n0 ∈ N such that for all n ≥ n0 we have

Sij = W
(nt)∗
Id

W
(nt+`)
Eij

and U = W
(nt)∗
Id

W
(nt+t)
Id

.

Hence, U ∈ T ∞(P ) and Sij ∈ T ∞(P ) for all i, j ∈ Ω.

2. Let i, j ∈ Ω. There exists m0 ∈ N such that for all m ≥ m0, and B ∈ Arv(P )m we
have that

Sij(B) = EijB, U(B) = B and U∗(B) = B.

3. For all i, j, s, k ∈ Ω we have SijSsk − δjsSik ∈ J (T ∞(P )).

4. U∗U − I, UU∗ − I ∈ J (T ∞(P )).

5. For all i, j ∈ Ω we have SijU − USij ∈ J (T ∞(P )).

6. The family (U, {Sij}i,j∈Ω) generates O(P ).

Therefore, {Sij}i,j∈Ω is a system of d×d matrix units in O(P ) and U is a unitary in O(P )
that commutes with them and together they generate O(P ).

Proof.

1. Let i, j ∈ Ω be such that i ≤ j in the properly enumerated decomposition of Ω, so
that ` := σ(j) − σ(i) ≥ 0. By item (2) of the cyclic decomposition Theorem 2.3.14,
there exists n0 ∈ N such that Eij ∈ Arv(P )nt+` and Id ∈ Arv(P )nt for all n ≥ n0.
Then for all n ≥ n0, m ∈ N and B ∈ Arv(P )m we have

W
(nt)∗
Id

W
(nt+`)
Eij

(B) = Adj(Pm+`) ∗ (EijB) = Sij(B)

W
(nt)∗
Id

W
(nt+t)
Id

(B) = Adj(Pm+t) ∗B = U(B)

so that
Sij = W

(nt)∗
Id

W
(nt+`)
Eij

and U = W
(nt)∗
Id

W
(nt+t)
Id

.
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2. Let i ≤ j ∈ Ω be given. By the previous item and by Proposition 4.2.2 there exists
m0 ∈ N such that for all m ≥ m0 and B ∈ Arv(P )m we have

Sij(B) = W
(nt)∗
Id

W
(nt+`)
Eij

(B) = EijB

U(B) = W
(nt)∗
Id

W
(nt+t)
Id

(B) = B

Similarly, by taking adjoints, we have that

Sji(B) = W
(nt+`)∗
Eji

W
(nt)
Id

(B) = EjiB

U∗(B) = W
(nt+t)∗
Id

W
(nt)
Id

(B) = B

proving the statement in all cases.

3. Let i, j, s, k ∈ Ω be given. By item (2), there exists m0 ∈ N such that for all m ≥ m0

and B ∈ Arv(P )m we have that

SijSsk(B) = EijEskB = δjsEikB = δjsSik(B).

Thus we have that SijSsk − δjsSik ∈ J (T ∞(P )).

4. By item (2), there exists m0 ∈ N such that for all m ≥ m0 and B ∈ Arv(P )m we
have that

U∗U(B) = U∗(B) = B ∈ Arv(P )m and UU∗(B) = U∗(B) = B ∈ Arv(P )m.

Thus we have that U∗U − I, UU∗ − I ∈ J (T ∞(P )).

5. Let i, j ∈ Ω be given. By item (2), there exists m0 ∈ N such that for all m ≥ m0 and
B ∈ Arv(P )m we have the following element in Arv(P )m+t+` where ` = σ(j)− σ(i).

SijU(B) = Sij(B) = EijB = U(EijB) = USij(B).

Thus we have that SijU − USij ∈ J (T ∞(P )).

6. We first observe that since we are dealing with stochastic matrices over a finite state
space Ω, it is in fact the case that T ∞(P ) is generated by C(Ω) and {W (1)

Eij
}(i,j)∈Gr(P ).

Indeed, since every Arv(P )n is finite dimensional, every W
(n)
A can be written as a

linear combination of elements of the form W
(n)
Eik

. Now, if W
(n)
Eik

is non-zero, this

means that P
(n)
ik > 0 and so there is a path of length n from i to k given by i = j0 →
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j1 → ...→ jn = k and we would have that W
(n)
Eik

= W
(1)
Ej0j1
· ... ·W (1)

Ejn−1jn
so that every

element W
(n)
Eik

is in the algebra generated by C(Ω) and {W (1)
Eij
}(i,j)∈Gr(P ), and so

T ∞(P ) = C∗
(
C(Ω) ∪ {W (1)

Eij
}(i,j)∈Gr(P )

)
.

ThereforeO(P ) is generated as a C*-algebra by the images of C(Ω) and {W (1)
Eij
}(i,j)∈Gr(P )

under q : T ∞(P )→ O(P ).

Let us denote by A the C*-subalgebra of O(P ) ∼= T ∞(P )/J (T ∞(P )) generated by
U and Sij for i, j ∈ Ω. It follows from item (2) that Sii − pi ∈ J (T ∞(P )), therefore,
we have that q(C(Ω)) ⊆ A. In order to complete the proof that A = O(P ), it suffices

to show that W
(1)
Eij
∈ A for all (i, j) ∈ Gr(P ).

Let (i, j) ∈ Gr(P ), and suppose that t > 1. If i ≤ j, then we must have by the cyclic
decomposition theorem that σ(j)−σ(i) = 1 and Sij is an operator of degree one and

by item (2) we have that Sij −W (1)
Eij
∈ J (T ∞(P )). On the other hand, if i > j, then

also by the cyclic decomposition theorem we must have σ(i) − σ(j) = t − 1 and in
that case Sij is an operator of degree −(t− 1). Therefore USij has degree 1, and by

item (2) we have that USij −W (1)
Eij
∈ J (T ∞(P )). Therefore, in both cases we obtain

that W
(1)
Eij
∈ A.

Finally, if (i, j) ∈ Gr(P ), and t = 1, we have that Sij is an operator of degree zero

and by item (2) we have that USij −W (1)
Eij
∈ J (T ∞(P )). Therefore, we also obtain

that W
(1)
Eij
∈ A.

Recall from the discussion preceding [42, Proposition 5.5] that there is a natural gauge

group action α on T ∞(P ) uniquely determined by αλ(W
(n)
A ) = λnW

(n)
A . Since J (T ∞(P ))

is gauge invariant by [42, Theorem 5.6], this gauge action passes to the quotient O(P ),
and we denote by O(P )0 the fixed point algebra of this action.

Proof of Theorem 4.2.1. First note that Md(C) ⊗ C(T) is the universal C*-algebra
generated by a system of d× d matrix units eij and a unitary u that commutes with them.
Hence, by Lemma 4.2.4 we obtain a surjective *-homomorphism ψ : Md(C)⊗C(T)→ O(P )
that sends eij to Sij and u to U . It remains to show that ψ is injective.

Let A =
⊕t−1

`=0 M|Ω`|(C) ⊗ 1 ⊆ Md(C) ⊗ C(T). First we note that ψ restricted to A
is injective, since ψ is already injective when restricted to the larger simple subalgebra
Md(C)⊗ 1.
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We now show that ψ(A) = O(P )0. First note that O(P )0 is generated by monomials
of degree zero (according to the gauge action) in the matrix units (Sij) and the unitary U ,
which commutes with the latter. Let X ∈ O(P )0 be such a monomial. Products of matrix
units are also matrix units, therefore there exists i, j ∈ Ω, n ∈ Z such that X = Sij U

n
.

Hence, the only way that X has degree zero is if n = 0 and σ(i) = σ(j). Moreover, A is
precisely generated by all eij, with i, j ∈ Ω such that σ(i) = σ(j). Hence ψ(A) = O(P )0.

Next, we show ψ is injective on the entire algebra Md(C)⊗C(T). Given the identifica-
tions Md(C)⊗ C(T) ∼= C(T;Md(C)) and Md(C)⊗ 1 ∼= Md(C), let us consider the faithful
conditional expectation Γ0 : Md(C)⊗ C(T)→Md(C)⊗ 1 given by

Γ0(T ) =

∫
T
T (z) dz

where dz represents normalized Haar measure on the circle. Note in particular that, for
all i, j ∈ Ω and n ∈ Z, we have Γ0(eiju

n) = δ0,n eij.

We now take E0 to be the faithful conditional expectation fromMd(C)⊗1 to
⊕t−1

`=0M|Ω`|(C)⊗
1, and let Φ0 : O(P )→ O(P )0 denote the canonical conditional expectation into the fixed
point algebra associated with the gauge action. We then have that Φ0ψ = ψE0Γ0. Indeed,
since for all i, j ∈ Ω, n ∈ N,

Φ0ψ(eiju
n) = Φ0(Sij U

n
) = δ0,nδσ(i),σ(j) Sij = δ0,nδσ(i),σ(j) ψ(eij) = δ0,nψ(E0(eij))

= ψ(E0(Γ0(eiju
n))),

and since the linear span of monomials is dense, we have Φ0 ◦ ψ = ψE0Γ0.

Finally, suppose towards contradiction that ψ is not injective. Then there exists a
positive non-zero T ∈ Md(C) ⊗ C(T) such that ψ(T ) = 0. In that case Φ0(ψ(T )) = 0.
Hence ψ(E0(Γ0(T ))) = Φ0(ψ(T )) = 0. By injectivity of ψ on the image of E0, which is the
algebra A, we obtain E0(Γ0(T )) = 0. We reach a contradiction since E0 and Γ0 are faithful
conditional expectations.

Now that we have filled the gap in the computation of the Cuntz-Pimsner algebra of a
finite irreducible stochastic matrix, we compute the extension groups for it, which will be
useful to us later in Section 4.4.

Based on the work of [98], one has a description of Exts(B ⊗Md) for any unital C*-
algebra B, for which Exts(B) contains no elements of order d, as follows. For any unital
extension η ∈ E(B ⊗Md), we define a map [η]s 7→ ([ι∗η]s, [j∗η]s) into Exts(B) ⊗ Zd by
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setting ι∗η = η|B⊗I and j∗η = η|I⊗Md
. Then [98, Proposition 2.2] shows that this map

induces an isomorphism of semigroups

Exts(B ⊗Md) ∼= { (d[η] + ε(`)[τ ], `) ∈ Exts(B)⊗ Zd | η ∈ E(B), ` ∈ Z }

where τ is a trivial strongly unital extension. By Example 2.3.21 we have that ε(`)[η]s = [η]s
for all η ∈ Exts(C(T)), so that

Exts(C(T)⊗Md) ∼= {(ds, `) ∈ Z× Zd | s ∈ Z, ` ∈ Z }

so that Exts(C(T) ⊗Md) ∼= dZ × Zd and Extw(C(T) ⊗Md) ∼= Z as the projection (and
division by d) onto the first coordinate of Exts(C(T)⊗Md). Since Extw(C(T)⊗Md) ∼= Z
is the quotient of Exts(C(T)⊗Md) ∼= dZ× Zd by the subgroup { ε(n)[τ ]s | n ∈ Z } ∼= Zd,
we can identify the subgroup { ε(n)[τ ]s | n ∈ Z } of Exts(C(T) ⊗ Md) with the image
{ [j∗η]s | [η]s ∈ Exts(C(T)⊗Md) } ∼= Zd.

Note that any automorphism β of C(T)⊗Md induces an automorphism βs of Exts(C(T)⊗
Md) by composition [η]s 7→ [η◦β]s. Furthermore, every unitary element u ∈ U(C(T)⊗Md)
defines an automorphism Adu of C(T) ⊗ Md by way of Adu(f)(z) = u∗(z)f(z)u(z) for
f ∈ C(T;Md) and z ∈ T. Denote by AutC(T)(C(T)⊗Md) the collection of C(T)-bimodule
*-automorphisms of C(T)⊗Md.

Proposition 4.2.5. Let η be a unital extension and let β ∈ Aut(C(T)⊗Md) be an auto-
morphism. Up to the identification Exts(C(T)⊗Md) ∼= dZ⊗Zd given above, we have that
either βs[η] = [η] = ([ι∗η], [j∗η]) or βs[η] = (−[ι∗η], [j∗η]).

Proof. Let β ∈ Aut(C(T) ⊗ Md) be some *-automorphism. Then β induces an auto-
morphism β∗ on the primitive ideal spectrum T, which then induces an automorphism
(β∗)

∗ back on C(T) ⊗ Md given by (β∗)
∗(f)(z) = f(β−1

∗ (z)). It is easy to see that
[j∗η] = [j∗η ◦ (β∗)

∗] since (β∗)
∗(I ⊗Md) = I ⊗Md. Since the induced map ((β∗)

∗)s on
Exts(C(T) ⊗Md) ∼= dZ × Zd is the identity on the second coordinate Zd, we must have
that [ι∗(η ◦ (β∗)

∗)] is either [ι∗η] or −[ι∗η]. Hence, by composing with the inverse of (β∗)
∗

if necessary, we may assume that β∗ = IdT.

By [108, Corollary 5.46] we have that β ∈ AutC(T)(C(T)⊗Md), so that by [108, Lemma
4.28], there is a point-norm continuous map σ : T → Aut(Md) such that β(f)(z) =
σz(f(z)). Since the second cohomology group of the torus H2(T;Z) vanishes, by [108,
Theorem 5.42], there is a unitary element u ∈ U(C(T) ⊗Md) such that β = Adu. Then
Adu induces a map on Exts(C(T) ⊗Md), so that by the homomorphism property of the
Fredholm index, we get that,

[ι∗η ◦ Adu] = ind(η(Adu(z ⊗ I))) = ind(η(z ⊗ I)) = [ι∗η].
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Next, since the image { [j∗η]s | [η]s ∈ Exts(C(T) ⊗Md) } ∼= Zd can be identified with
the subgroup { ε(n)[τ ]s | n ∈ Z }, in order to show that [j∗η ◦ β] = [j∗η], it will suffice to
show that βs(ε(n)[τ ]s) = ε(n)[τ ]s. However, since βs commutes with ε(n), it will suffice to
show that βs([τ ]s) = [τ ]s. But βs is a group homomorphism, so it must send [τ ]s to itself.
Hence, we obtain that [j∗η ◦ β] = [j∗η].

4.3 C*-envelope and boundary for T+(P )

In this section we determine the irreducible representations of T (P ) for a finite irreducible
stochastic matrix P , and find which of those are boundary representations with respect to
T (P ). We show that any representation annihilating J (P ) := J (Arv(P )) has the unique
extension property when restricted to T (P ), and find conditions that guarantee when an
irreducible representation supported on J (P ) is boundary, or not. A good reference for
the theory used in this section is [7].

As given in [42, Theorem 5.6], the C*-algebra T c(P ) is the one generated by both
T ∞(P ) and T (P ), and it too has a gauge action which is the restriction of the gauge

action of L(FArv(P )), which satisfies αλ(S
(n)
A ) = λnS

(n)
A and αλ(W

(n)
A ) = λnW

(n)
A , so that

T c(P ) is gauge invariant, and J (T c(P )) is a closed gauge invariant two-sided ideal by [42,
Theorem 5.6].

As discussed in [42, Section 4] for general subproduct systems, Fourier coefficients Φk on
T c(P ) may be defined in such a way that every T ∈ T c(P ) can be written as

∑∞
k=−∞Φk(T ),

where this sum converges Cesaro. That is, where
∑n

k=−n
(
1− |k|

n+1

)
Φk(T ) converges in norm

to T .

Proposition 4.3.1. Let P be an irreducible stochastic matrix on Ω of size d. Then
J (T c(P )) is the two sided ideal generated by {Qn}n∈N inside T c(P ).

Proof. By [42, Proposition 5.2] we see that Qn ∈ T (P ) ⊆ T c(P ), and since ‖QnQm‖ → 0
as m goes to infinity, we see that Qn ∈ J (T c(P )).

For the reverse inclusion, let T ∈ J (T c(P )), and write T =
∑∞

k=−∞Φk(T ) as a Cesaro
convergent sum where Φk(T ) maps Arv(P )n to Arv(P )n+k if n+ k ≥ 0 and {0} otherwise.
Further notice that Φk(T ) ∈ J (T c(P )) for all k ∈ Z, since by [42, Theorem 5.6] we
have that J (T c(P )) is gauge invariant. In this case, we have that ‖Φk(T )Q[n+1,∞)‖ =
supm≥n+1 ‖Φk(T )Qm‖ → 0. Hence, since Φk(T )Q[0,n] is in the ideal generated by {Qn}n∈N,
we see that Φk(T ) is in the closed ideal generated by {Qn}n∈N and so must be T by Cesaro
approximation.
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For a finite irreducible stochastic matrix P with state set Ω of size d, we have that
C(Ω) is faithfully represented in B(`2(Ω)) by diagonal matrix multiplication on columns.
Hence by [108, Corollary 2.74], this faithful *-representation promotes to a faithful *-
representation π : L(FArv(P ))→ B(FArv(P )⊗id `2(Ω)) given by π(T )(ξ⊗h) = Tξ⊗h. Note
that FArv(P ) ⊗id Cek is a reducing subspace for π(T c(P )) for each k ∈ Ω.

Notation 4.3.2. For a state k ∈ Ω we will find it useful to denote Arv(P )n,k := Arv(P )n⊗
Cek, and FP,k := ⊕∞n=0 Arv(P )n,k = FArv(P )⊗idCek, the reducing Hilbert space for π(T c(P ))
mentioned above, so that FArv(P ) ⊗ `2(Ω) = ⊕k∈ΩFP,k. For fixed n we also denote for

i ∈ Ω with (i, k) ∈ Gr(P n) the elements e
(n)
ik := Eik ⊗ ek ∈ Arv(P )n,k which comprise a

finite orthonormal basis for each Arv(P )n,k, so that for varying n ∈ N and i ∈ Ω with

(i, k) ∈ Gr(P n) the collection {e(n)
ik } is an orthonormal basis for FP,k.

Proposition 4.3.3. Let P be an irreducible stochastic matrix over Ω of size d. Then for
each πk : T c(P ) → B(FP,k) given by πk(T ) = π(T )|FP,k we have that πk(T (P )) is an
irreducible subalgebra of B(FP,k).

Proof. By [42, Proposition 5.2] we see that Qn ∈ T (P ) for every n ∈ N. Let 0 6= H′ ⊆ FP,k
be some non-zero invariant subspace. Since {πk(Q[0,n])} converges SOT to the identity on
FP,k, there is some minimal n0 ∈ N such that πk(Qn0)ξ 6= 0 for some ξ ∈ H′. In this
case, 0 6= πk(Qn0)ξ = A ⊗ ek ∈ H′ ∩ Arv(P )n0,k for some A ∈ Arv(P )n0 , so that there

exists j ∈ Ω and some non-zero scalar c ∈ C with 0 6= e
(n0)
jk = c · πk(pjQn0)ξ ∈ H′ where

(j, k) ∈ Gr(P n0). This means that e
(0)
kk = c1πk(S

(n0)∗
Ejk

)(e
(n0)
jk ) ∈ H′, where c1 > 0 is some

scalar.

Thus, form ≥ 0 if e
(m)
ik is some vector in Arv(P )m,k, we see that e

(m)
ik = c2πk(S

(m)
Eik

)(e
(0)
kk ) ∈

H′ where c2 > 0 is some scalar. This shows that the set of elements e
(m)
ik for all m ≥ 0 and

(i, k) ∈ Gr(Pm) is in H′, and this set of elements is an orthonormal basis for FP,k, and so
H′ = FP,k.

Hence, we see that π decomposes into d = |Ω| irreducible representations πk as above,
so that π = ⊕k∈Ωπk : T c(P ) → ⊕k∈ΩB(FP,k). We next show that each πk|T (P ) is in a
distinct unitary equivalence class of irreducible representations for T (P ).

Proposition 4.3.4. Let P be a finite irreducible stochastic matrix on Ω and k, k′ ∈ Ω be
distinct indices. Then πk|T (P ) and πk′|T (P ) are not unitarily equivalent.

Proof. Suppose that k, k′ ∈ Ω are such that πk|T (P ) and πk′ |T (P ) are unitarily equivalent.
Then there is a unitary U : FP,k → FP,k′ such that Uπk(T ) = πk′(T )U for all T ∈ T (P ).
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For j ∈ Ω, we have that pjQ0 ∈ T (P ), so that Uπk(pjQ0) = πk′(pjQ0)U . Apply this

operator to e
(0)
kk ∈ Arv(P )0,k ⊆ FP,k and get

πk′(pjQ0)U(e
(0)
kk ) = Uπk(pjQ0)(e

(0)
kk ) = U(δjke

(0)
kk ).

On the other hand πk′(Q0)U(e
(0)
kk ) must have image in Arv(P )0,k′ so that πk′(Q0)U(e

(0)
kk ) =

c · e(0)
k′k′ for some non-zero c ∈ C. But after applying πk′(pj) we would obtain that

πk′(pjQ0)U(e
(0)
kk ) = c · πk′(pj)(e(0)

k′k′) = c · δjk′e(0)
k′k′ .

Thus, we see that if k 6= k′ then by taking j = k we would obtain that 0 = c · δjk′e(0)
k′k′ =

U(δjke
(0)
kk ) 6= 0 in contradiction. Hence, πk|T (P ) and πk′|T (P ) are not unitarily equivalent.

Proposition 4.3.5. Let P be a finite irreducible stochastic matrix on Ω. Then J (T (P )) =
J (T c(P )) and is *-isomorphic to ⊕k∈ΩK(FP,k). Thus, we have that T ∞(P ) ⊆ T c(P ) =
T (P ).

Proof. By Proposition 4.3.1, we have that J (T c(P )) is the ideal generated by {Qn}n∈N
inside T c(P ), and since π(Qn) is a finite rank operator, we see by Proposition 4.3.3 that
πk(J (T c(P ))) and πk(J (T (P ))) are irreducible compact operator subalgebras of B(FP,k)
and hence by [7, Theorem 1.3.4] they must both be equal to K(FP,k). Write the identity
representation Id : π(J (T c(P )))→ ⊕k∈ΩB(FP,k) as a direct sum of irreducible representa-
tions with multiplicity Id =

⊕
n(ζ) · ζ, where each ζ is a representative in the equivalence

class of irreducible representation given by restriction to some FP,k for some k. Then by
Proposition 4.3.4 we have that n(ζ) = 1 for all ζ and that Id|π(J (T (P ))) has the same de-
composition into irreducible representations as the one above. Since π =

⊕
πk is injective

on J (T c(P )), we have that π(J (T c(P ))) = ⊕k∈ΩK(FP,k) = π(J (T (P ))), and by taking
the inverse of the faithful *-representation π, we obtain J (T (P )) = J (T c(P )).

Finally, by [42, Proposition 5.5] we have that T (P ) = T (P ) + J (T (P )) = T (P ) +
J (T c(P )) = T c(P ) so that T ∞(P ) ⊆ T c(P ) = T (P ).

We next wish to parametrize all irreducible representations of T (P ). Under the iden-
tification O(P ) ∼= C(T,Md) and J (T (P )) ∼= ⊕k∈ΩK(FP,k) we have the following exact
sequence

0→ ⊕k∈ΩK(FP,k)→ T (P )→ C(T,Md)→ 0.

If ρ : T (P ) → B(H) is a unital representation, by the discussion preceding [7, Theorem
1.3.4] it decomposes uniquely into a central direct sum of representations ρ = ρJ (P )⊕ρO(P ),
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where ρJ (P ) is the unique extension to T (P ) of the restriction of ρ to J (T (P )), and ρO(P )

annihilates J (T (P )). Hence, the spectrum of T (P ) decomposes into a disjoint union of
the spectrum of J (T (P )) ∼= ⊕k∈ΩK(FP,k) and the spectrum of O(P ) ∼= C(T,Md).

For λ ∈ T, we define evλ : C(T,Md)→Md given by evλ([fij]) = [fij(λ)]. Since evλ has
range Md, we obtain that evλ ◦q is an irreducible representation of T (P ) where q : T (P )→
O(P ) is the quotient map. Note that every evλ ◦q is a d dimensional representation.

Corollary 4.3.6. Let P be an irreducible stochastic matrix over Ω of size d. Then the spec-
trum of T (P ) is parametrized by d irreducible representations of infinite dimension, each
unitarily equivalent to some πk, and a torus T of irreducible representations of dimension
d that annihilate J (T (P )), each unitarily equivalent to evλ ◦q for some λ ∈ T.

Proof. If ρ is an irreducible representation of T (P ) that does not annihilate J (T (P )),
we have by [7, Theorem 1.3.4] that ρ|J (T (P )) is also irreducible. We use π−1 to obtain an
irreducible representation ρ ◦ π−1 of π(J (T (P ))). Since π(J (T (P ))) is a C*-algebra of
compact operators, by [7, Theorem 1.4.4] every irreducible representation of it is unitarily
equivalent to some restriction to some FP,k. Pushing this back via π we obtain that ρ is
unitarily equivalent to some πk.

For the other part, if ρ does annihilate J (T (P )), it induces an irreducible representation
of O(P ) ∼= C(T,Md) by taking the quotient by J (T (P )). Since the irreducible represen-
tations of C(T) are just point evaluations, and since C(T) is strongly Morita equivalent
to C(T,Md), we see that ρ must be unitarily equivalent to the composition evλ ◦q of an
evaluation evλ : C(T,Md) → Md given by evλ([fij]) = [fij(λ)] and the natural quotient
map q : T (P )→ O(P ).

Thus, the spectrum of T (P ) is parametrized by d irreducible representations of infinite
dimension, and a torus T of irreducible representations of dimension d.

Lemma 4.3.7. Let P be an irreducible stochastic matrix over a finite set Ω, and let ε > 0.
There exists m ≥ 1 and M > 0 such that for every (i, j) ∈ Gr(P ) we have

(1 + ε)pj ≥ T
(1)∗
Eij

T
(1)
Eij
−M ·Q[0,m].

Proof. For Ek` ∈ Arv(P )m and m ≥ 1, by definition of T
(1)
Eij

, we see that

T
(1)
Eij

(Ek`) = δj,k

√√√√ P
(m)
k`

P
(m+1)
i`

Ei` and T
(1)∗
Eij

(Ek`) = δi,k

√√√√ P
(m)
j`

P
(m+1)
k`

Ej`.
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So that

T
(1)∗
Eij

T
(1)
Eij

(Ek`) = δj,k

√√√√ P
(m)
k`

P
(m+1)
i`

T
(1)∗
Eij

(Ei`) =
P

(m)
j`

P
(m+1)
i`

pj(Ek`).

By Theorem 2.3.15, there exists m such that
P

(m)
j`

P
(m+1)
i`

≤ 1 + ε for all (i, j) ∈ Gr(P ) and

` ∈ Ω such that (j, `) ∈ Gr(Pm). Hence, if we take M = ‖Q[0,m]T
(1)∗
Eij

T
(1)
Eij
‖ it follows that

(1 + ε)pj ≥ T
(1)∗
Eij

T
(1)
Eij
−M ·Q[0,m] as required.

We next show that representations annihilating J (P ) have unique extension property
when restricted to T+(P ).

Proposition 4.3.8. Let P be a finite irreducible stochastic matrix over Ω, and let ρ :
T (P )→ B(H) be a *-representation such that ρ(J (P )) = {0}. Then ρ|T+(P ) has UEP.

Proof. Let ρ̃ : T+(P ) → B(K) be a maximal dilation of ρ|T+(P ) such that H is a subspace
of K, and let ψ : T (P )→ B(K) be its (unique) extension to a *-representation. Denote

ψ(pi) =

[
ρ(pi) Xi

Yi Zi

]
and ψ(T

(1)
Eij

) =

[
ρ(T

(1)
Eij

) Xij

Yij Zij

]
.

First note that since pi is a self-adjoint projection, we get that[
ρ(pi) Xi

Yi Zi

]
= ψ(pi) = ψ(pi)ψ(pi)

∗ =

[
ρ(pi)ρ(pi)

∗ +XiX
∗
i ∗

∗ ∗

]
.

So that by taking the (1, 1) compression, we obtain that XiX
∗
i = 0, so that Xi = 0. Now,

since ψ(pi) is self-adjoint, we see that we must also have that Yi = 0.

Next, for (i, j) ∈ Gr(Pm), Suppose

ψ(S
(m)
Eij

) =

[
ρ(S

(m)
Eij

) X(m)ij
Y (m)ij Z(m)ij

]
.

Observe that for all m ≥ 1, by the proof of [42, Proposition 5.5] we have that

0 ≤ Q[0,m−1] = Id−
∑

(i,j)∈Gr(Pm)

S
(m)
Eij

S
(m)∗
Eij

.
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Hence, by applying ψ to this equation, we obtain that

0 ≤ ψ(Q[0,m−1]) = Id−
∑

(i,j)∈Gr(Pm)

ψ(S
(m)
Eij

)ψ(S
(m)
Eij

)∗.

Then by compressing to the (1, 1) corner we get

0 ≤ Id−
∑

(i,j)∈Gr(Pm)

[
ρ(S

(m)
Eij

)ρ(S
(m)
Eij

)∗ +X(m)ijX(m)∗ij
]

= −
∑

(i,j)∈Gr(Pm)

X(m)ijX(m)∗ij,

where the last equality follows due to the fact that ρ annihilates J (P ). Hence we must
have that X(m)ij = 0 for all (i, j) ∈ Gr(Pm), so that the (1, 1) compression of ψ(Q[0,m])

is 0, and if we specify m = 1, and note that S
(1)
Eij

=
√
Pij · T (1)

Eij
, then the above also yields

that Xij = 0 for all (i, j) ∈ Gr(P ).

Next, let ε > 0. By Lemma 4.3.7 there exists m ≥ 1 and M > 0 such that for all
(i, j) ∈ Gr(P ) we have that

(1 + ε)pj ≥ T
(1)∗
Eij

T
(1)
Eij
−M ·Q[0,m]

Hence,
(1 + ε)ψ(pj) ≥ ψ(T

(1)
Eij

)∗ψ(T
(1)
Eij

)−M · ψ(Q[0,m])

By compressing to the (1, 1) corner, we obtain that

(1 + ε)ρ(pj) ≥ ρ(T
(1)
Eij

)∗ρ(T
(1)
Eij

) + Y ∗ijYij

but ρ(T
(1)
Eij

)∗ρ(T
(1)
Eij

) = ρ(W
(1)∗
Eij

W
(1)
Eij

) = ρ(pj), so for every ε > 0 we have that ε · ρ(pj) ≥
Y ∗ijYij. Hence we have that Yij = 0 for all (i, j) ∈ Gr(P ).

Since T (P ) is generated by {pi}i∈Ω and {T (1)
Eij
}(i,j)∈Gr(P ), we must have that ψ has ρ as

a direct summand, so that ρ̃ is a trivial dilation of ρ|T (P ). Hence, ρ|T (P ) is maximal, and
must then have the unique extension property.

We next define a notion that will help us detect when an irreducible πk is not a boundary
representation for T (P ).

Definition 4.3.9. Let P be a finite irreducible stochastic matrix over Ω. A state k ∈ Ω is
called exclusive if whenever for i ∈ Ω and n ∈ N we have P

(n)
ik > 0, then P

(n)
ik = 1. We

denote by Ωe the set of all exclusive states in Ω.
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One should think of exclusive states as those states k such that for any n for which i
leads to k in n steps, it cannot lead anywhere else in n steps.

Lemma 4.3.10. Let P be a finite irreducible t-periodic stochastic matrix over Ω, and
Ω0, ...,Ωt−1 be a cyclic decomposition for P . Suppose that k ∈ Ω0 is a state.

1. |Ω0| > 1 if and only if k /∈ Ωe. In this case, any state in Ω0 is non-exclusive and

there is an n0 such that for any n ≥ n0 and i, j ∈ Ω0 we have 0 < P
(tn)
ij < 1.

2. Assume k /∈ Ωe and k 6= s ∈ Ω is some different state. If there is k 6= k′ ∈ Ω0 such
that P

(m)
k′s > 0 whenever P

(m)
ks > 0 for all m ∈ N, then there exists n ∈ N such that

0 < P
(tn)
kk < 1 and for all m ∈ N with (k, s) ∈ Gr(Pm) we have P

(tn)
kk P

(m)
ks < P

(tn+m)
ks .

Proof. We first prove (1). Suppose |Ω0| > 1 and let k ∈ Ω0. By item (2) of Theorem 2.3.14

there is n0 such that for all n ≥ n0 we would have that P
(tn)
ij > 0 for all i, j ∈ Ω0 and

n ≥ n0. In particular, the second part of item (1) holds.

Thus, for some j ∈ Ω0 we have that P
(tn)
jj , P

(tn)
jk > 0, and since the j-th row sums up to

1 we get that 0 < P
(tn)
jk < 1, and we conclude that k /∈ Ωe.

For the converse, suppose k /∈ Ωe. We show that |Ω0| > 1. Let k′ ∈ Ω and n0 be so

that 0 < P
(n0)
k′k < 1, and let m0 be large enough so that P

(m0)
kk′ > 0. Then

P
(m0+n0)
kk =

∑
j∈Ω

P
(m0)
kj P

(n0)
jk <

∑
j∈Ω

P
(m0)
kj = 1.

On the other hand,

P
(m0+n0)
kk =

∑
j∈Ω

P
(m0)
kj P

(n0)
jk ≥ P

(m0)
kk′ P

(n0)
k′k > 0.

So we see that 0 < P
(m0+n0)
kk < 1. Since the k-th row sums up to 1, there must be an i ∈ Ω

different from k such that P
(m0+n0)
ki > 0 and by definition of the cyclic decomposition we

have that i ∈ Ω0. This shows that |Ω0| > 1.

We now prove (2). By item (1) we can find n0 so that 0 < P
(tn)
ij < 1 for all i, j ∈ Ω0

and n ≥ n0. Now fix m ∈ N with P
(m)
ks > 0, so that by assumption P

(m)
k′s > 0. Then

P
(tn+m)
ks =

∑
i∈Ω

P
(tn)
ki P

(m)
is ≥ P

(tn)
kk′ P

(m)
k′s + P

(tn)
kk P

(m)
ks > P

(tn)
kk P

(m)
ks .
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Proposition 4.3.11. Let P be a finite t-periodic irreducible matrix over Ω and Ω0, ...,Ωt−1

a cyclic decomposition for P . Let k ∈ Ω.

1. If k ∈ Ω0 is non-exclusive and for any other non-exclusive s 6= k there is some k 6=
k′ ∈ Ω0 such that P

(m)
k′s > 0 whenever P

(m)
ks > 0, then πk is a boundary representation.

2. If k is exclusive then πk is not a boundary representation.

Proof. (1): Assume k is non-exclusive. We use [12, Theorem 7.2] to show that πk is a
strongly peaking representation according to [12, Definition 7.1]. Since the irreducible
representations of T (P ) are given by Corollary 4.3.6, it suffices to find an element T ∈
T+(P ) such that ‖πk(T )‖ > ‖(evλ ◦q)(T )‖ for any λ ∈ T and such that ‖πk(T )‖ > ‖πs(T )‖
for any k 6= s.

Choose T = T
(n)
Ekk

, and wait until prescribing n is necessary. Recall Notation 4.3.2, so
that

‖πk(T )‖ ≥ ‖π(T
(n)
Ekk

)(e
(0)
kk )‖ = ‖ 1

P
(n)
kk

e
(n)
kk ‖ =

1

P
(n)
kk

.

On the other hand, q(T
(n)
Ekk

) = (z 7→ zmEkk) for m ∈ N satisfying n = tm, so that

‖(evλ ◦q)(T )‖ = ‖ evλ(z 7→ zmEkk)‖ = |λm| = 1.

So we see that ‖πk(T )‖ > supλ∈T ‖(evλ ◦q)(T )‖.
Next, fix s ∈ Ω with k 6= s. Since T ∗T ∈ L(FArv(P )) sends Arv(P )m to Arv(P )m, it is

a finite-block diagonal operator, so we must have that T ∗T |FP,s = (T
(n)
Ekk

)∗(T
(n)
Ekk

)|FP,s is also
finite-block diagonal. Denote I(k, s) = { m ∈ N | (k, s) ∈ Gr(Pm), m ≥ 1 }, and note
that since T |FP,s(Arv(P )0,s) = 0, we have that

‖πs(T )‖2 = ‖πs(T ∗T )‖ = ‖T ∗T |FP,s‖ = sup
m∈N
‖T ∗T |Arv(P )m,s‖ =

sup
m∈I(k,s)

‖(T (n)
Ekk

)∗(T
(n)
Ekk

)(e
(m)
ks )‖ = sup

m∈I(k,s)

P
(m)
ks

P
(n+m)
ks

‖e(m)
ks ‖ = sup

m∈I(k,s)

P
(m)
ks

P
(n+m)
ks

.

By Theorem 2.3.15 we see that as m ∈ I(k, s) goes to infinity, the fraction
P

(m)
ks

P
(n+m)
ks

converges

to the constant νst
νst

= 1.

Hence, if supm∈I(k,s)
P

(m)
ks

P
(n+m)
ks

≤ 1, as k is non-exclusive, we have that P
(n)
kk < 1 for large

enough n, and so that ‖πk(T )‖ > ‖πs(T )‖.
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On the other hand, if supm∈I(k,s)
P

(m)
ks

P
(n+m)
ks

> 1, then the supremum above is in fact a

maximum, and s must be non-exclusive. By item (2) of Lemma 4.3.10 there is n large

enough (which we now prescribe) so that 0 < P
(n)
kk < 1 and P

(n)
kk P

(m)
ks < P

(n+m)
ks for all

m ∈ I(k, s). Hence, we see that 1

P
(n)
kk

>
P

(m)
ks

P
(n+m)
ks

for all m ∈ I(k, s) so that still we obtain

‖πk(T )‖ > ‖πs(T )‖.

To conclude, we have shown that

‖πk(T )‖ > max{sup
s 6=k
{‖πs(T )‖}, sup

λ∈T
‖(evλ ◦q)(T )‖},

so that by [12, Theorem 7.2] we have that πk is a boundary representation.

(2): Suppose that k is exclusive. By the formula for T
(n)
A , we see that πk(T

(n)
A ) =

πk(W
(n)
A ). Indeed, this follows since any weights appearing in an application of T

(n)
A to a

k-th column of a matrix B ∈ Arv(P )m arise only from entries of the k-th columns of P n,
which are either 0 or 1 by exclusivity assumption on k.

We will use the above to show that πk is not strongly peaking anywhere by showing
that it is not strongly peaking at any

∑N
n=−N [T

(n)
ij ] ∈ Ms(T+(P )∗ + T+(P )) where each

T
(n)
ij ∈ T+(P )∗ + T+(P ) is of degree n ∈ [−N,N ] (which must then be either of the form

T
(n)
A or T

(n)∗
A ). We also denote by Wij the element (which is either of the form W

(n)
A or

W
(n)∗
A respectively) satisfying πk(T

(n)
ij ) = πk(W

(n)
ij ) above.

We note that there exists m0 such that for all m ≥ m0 we have that (Um)∗W
(n)
ij Um =

W
(n)
ij for all i, j and n ∈ [−N,N ]. We then have that

‖π(s)
k (

N∑
n=−N

[T
(n)
ij ])‖ = ‖

N∑
n=−N

[πk(T
(n)
ij )]‖ = ‖

N∑
n=−N

[πk(W
(n)
ij )]‖ =

‖
N∑

n=−N

[πk(U
m∗W

(n)
ij Um)]‖ ≤ ‖[Um∗(

N∑
n=−N

W
(n)
ij )Um]‖ ≤ ‖[Q[m,∞)(

N∑
n=−N

W
(n)
ij )Q[m,∞)]‖.

So we see that by Proposition 2.2.16

‖π(s)
k (

N∑
n=−N

[T
(n)
ij ])‖ ≤ lim

m→∞
‖[(

N∑
n=−N

W
(n)
ij )Q[m,∞)]‖ = ‖[q(

N∑
n=−N

W
(n)
ij )]‖ = ‖q(s)(

N∑
n=−N

[T
(n)
ij ])‖.
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Since q(s)(
∑N

n=−N [T
(n)
ij ]) ∈ C(T,Md)⊗Ms, there exists λ ∈ T such that

‖π(s)
k (

N∑
n=−N

[T
(n)
ij ])‖ ≤ ‖q(s)(

N∑
n=−N

[T
(n)
ij ])‖ = ‖(evλ ◦q)(s)(

N∑
n=−N

[T
(n)
ij ])‖.

Since elements of the form
∑N

n=−N [T
(n)
ij ] with T

(n)
ij of degree n are dense inside Ms(T+(P )∗+

T+(P )), we see that for any [Vij] ∈Ms(T+(P )∗ + T+(P )) we have

‖[πk(Vij)]‖ ≤ sup
λ∈T
‖[(evλ ◦q)(Vij)‖

so that πk cannot be strongly peaking. By [12, Theorem 7.2] we see that πk is not a
boundary representation.

Remark 4.3.12. It is clear that for exclusive k ∈ Ω the representation πk is not boundary
by item (2) of Proposition 4.3.11. Item (1) in Proposition 4.3.11 above provides a sufficient
condition for πk to be boundary when k is non-exclusive. We believe that this condition is
not necessary, however we do not have examples to that effect.

We next introduce a class of stochastic matrices for which we can completely identify
the non-commutative Choquet boundary of T+(P ) inside T (P ) in terms of the matrix P .

Definition 4.3.13. Let P be a finite t-periodic irreducible stochastic matrix over Ω. We
say that P has the multiple-arrival property if whenever k, s ∈ Ω − Ωe are distinct such
that whenever k leads to s in n steps, then there exists k 6= k′ ∈ Ω such that k′ leads to s
in n steps.

Corollary 4.3.14. Let P be a finite irreducible stochastic matrix over Ω, and k ∈ Ω. If
P has the multiple-arrival property, then πk is a boundary representation if and only if
k ∈ Ω − Ωe. Hence, the non-commutative Choquet boundary of T+(P ) is parametrized by
a circle T of irreducible representations of dimension d, each unitarily equivalent to one
of evλ ◦q for λ ∈ T, and |Ω − Ωe| irreducible representations of infinite dimension, each
unitarily equivalent to one of πk for k ∈ Ω− Ωe.

Proof. This follows directly since if P has multiple-arrival, then the conditions of Proposi-
tion 4.3.11 item (1) are automatically satisfied for any non-exclusive k ∈ Ω, and item (2)
of Proposition 4.3.11 then gives the reverse implication.
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There is an easy class of examples which automatically has the multiple arrival property.
Suppose that P is an irreducible t-periodic stochastic matrix with cyclic decomposition
Ω0, ...,Ωt−1. Then we may write  0 P0 ··· 0

...
... ...

...
0 ··· 0 Pt−2

Pt−1 ··· 0 0


for rectangle stochastic matrices P0, ..., Pt−1. If all entries of the matrices P0, ..., Pt−1 are
non-zero, then P is called fully-supported, and has the multiple-arrival property.

Suppose P is a finite irreducible stochastic matrix P over Ω of size d. We next discuss
C∗e (T+(P )) and its spectrum. Denote by Ωb the set of states k for which πk is a boundary
representation, which is a subset of Ω − Ωe. Since for all k ∈ Ω and λ ∈ T we have
that Kerπk ⊆ J (P ) ⊆ Ker(evλ ◦q), and since the intersection of kernels of all boundary
representations is the Shilov ideal JT+(P ) of T+(P ) inside T (P ), we must have that JT+(P ) =
π−1(⊕k∈Ω−ΩbK(FP,k)) is the Shilov ideal, thought of as a subalgebra of π−1(⊕k∈ΩK(FP,k)) =
J (P ).

We hence get the following short exact sequence

0 −→ ⊕k∈ΩbK(FP,k) −→ C∗e (T+(P )) −→ C(T,Md) −→ 0 (4.1)

while we identify qe(J (P )) ⊆ C∗e (T+(P )) with⊕k∈ΩbK(FP,k), where qe : T (P )→ C∗e (T+(P ))
is the quotient map by the Shilov ideal, which is completely isometric on T+(P ).

If ρ : C∗e (T+(P )) → B(H) is a unital *-representation, it decomposes uniquely into a
central direct sum of representations ρ = ρqe(J (P )) ⊕ ρO(P ), where ρqe(J (P )) is the unique
extension to C∗e (T+(P )) of the restriction of ρ to qe(J (P )), and ρO(P ) annihilates qe(J (P )).
Hence, the spectrum of C∗e (T+(P )) decomposes into a disjoint union of the spectrum of
⊕k∈ΩbK(FP,k) and the spectrum of C(T,Md). That is, the spectrum of C∗e (T+(P )) is com-
prised of |Ωb| irreducible representations of infinite dimension, and a torus T of irreducible
representations of dimension d that annihilate qe(J (P )).

Theorem 4.3.15. Suppose that P is a finite irreducible matrix over Ω. Then T+(P ) has
the unique extension property in C∗e (T+(P )) via qe. Moreover, if P has multiple-arrival,
the Shilov ideal for T+(P ) inside T (P ) is given by

JT+(P ) =
⋂

k∈Ω−Ωe

{ T ∈ J (P ) | πk(T ) = 0 }

and is *-isomorphic via π to ⊕k∈ΩeK(FP,k)
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Proof. Let ρ : C∗e (T+(P )) → B(H) be a *-representation. By the above discussion, we
may decompose it into a central direct sum of representations ρ = ρqe(J (P ))⊕ ρO(P ), where
ρqe(J (P )) is the unique extension to C∗e (T+(P )) of the restriction of ρ to qe(J (P )), and ρO(P )

annihilates qe(J (P )).

By Proposition 4.3.8 we have that ρO(P )◦qe has the unique extension property when re-
stricted to T+(P ), so that ρO(P ) has unique extension property when restricted to qe(T+(P ))
by invariance of UEP. Next, since ρqe(J (P )) ◦ qe = ⊕k∈Ωbnk · πk is a direct sum of *-
representations, with certain multiplicities nk, that have the UEP when restricted to T+(P ),
by [12, Theorem 4.4] we have that ρqe(J (P )) ◦ qe has UEP when restricted to T+(P ). Hence,
again by invariance of UEP, ρqe(J (P )) has UEP when restricted to qe(T+(P )). By another
application of [12, Theorem 4.4] we obtain that ρ = ρqe(J (P )) ⊕ ρO(P ) also has UEP when
restricted to qe(T+(P )), so that T+(P ), which is completely isometric to qe(T+(P )) via qe,
has the unique extension property within C∗e (T+(P )).

For the second part, by Corollary 4.3.14 we know that Ωe = Ω − Ωb. Furthermore,
by Proposition 4.3.8, we have that evλ ◦q is a boundary representation for T+(P ) for any
λ ∈ T, and that J (P ) =

⋂
λ∈T Ker(evλ ◦q). By the discussion preceding the theorem, we

get that

JT+(P ) = J (P ) ∩
⋂
k∈Ωb

Ker(πk) =
⋂

k∈Ω−Ωe

{ T ∈ J (P ) | πk(T ) = 0 }.

We now give equivalent conditions that guarantee that the C*-envelope of T+(P ) is
either the Toeplitz algebra, or the Cuntz-Pimsner algebra.

Corollary 4.3.16. Let P be a finite irreducible stochastic matrix of size d with multiple-
arrival. Then we have that C∗e (T+(P )) ∼= T (P ) if and only if Ωe = ∅.

In particular, if P is aperiodic and of size d ≥ 2 with multiple-arrival, we have that
C∗e (T+(P )) ∼= T (P ).

Proof. By Theorem 4.3.15 we see that if Ωe = ∅, then JT+(P ) = {0} and so T (P ) is the
C*-envelope of T+(P ).

Conversely, if T (P ) ∼= C∗e (T+(P )), then C∗e (T+(P )) has d irreducible representations of
infinite dimension, which can only occur if |Ωb| = d. Since P has multiple-arrival, we see
by Corollary 4.3.14 that Ωb = Ω− Ωe, and so that Ωe = ∅.
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For the second part, aperiodicity guarantees that Ω = Ω0 is the cyclic decomposition
for P , and as d ≥ 2 we have that |Ω| > 1. Hence, by Lemma 4.3.10 we get that Ωe = ∅, so
by the first part T (P ) ∼= C∗e (T+(P )).

Corollary 4.3.17. Let P be a finite t-periodic irreducible stochastic matrix of size d, and
let Ω0, ...,Ωt−1 be a cyclic decomposition for P . The following are equivalent:

1. Ω = Ωe.

2. |Ω`| = 1 for all ` ∈ Zt, or equivalently t = d.

3. P : C(Ω)→ C(Ω) is a *-homomorphism.

4. C∗e (T+(P )) ∼= O(P ).

Proof. (1)⇒ (2): By item (1) of Lemma 4.3.10 we see that |Ω`| = 1 for all ` ∈ Zt.

(2) ⇒ (3): If all Ω` are of size 1, we see that the cyclic decomposition for P yields
that P is in fact a permutation matrix of a single-cycle permutation, and is hence a
homomorphism.

(3) ⇒ (4): The Arveson-Stinespring construction of a subproduct system generally
yields a product system when applied to a *-homomorphism (See [113, Theorem 2.2]).
Hence, Arv(P ) is a product system, and its tensor algebra is the tensor algebra of a single
correspondence, so by [119, Proposition 2.8] this is also true for the Cuntz-Pimsner algebra
in our case. By [76, Theorem 3.7] we have C∗e (T+(P )) ∼= O(P ).

(4) ⇒ (1): Assume towards contradiction that there is k ∈ Ω − Ωe. In this case,

let n be so that 0 < P
(n)
kk < 1, and observe that ‖q(T (n)

Ekk
)‖ = ‖q(W (n)

Ekk
)‖ = 1, while for

Ekk ∈ Arv(P )0 we have

‖T (n)
Ekk
‖ ≥ ‖T (n)

Ekk
(E

(0)
kk )‖ =

1

P
(n)
kk

‖E(n)
kk ‖ =

1

P
(n)
kk

.

This means that q : T (P )→ O(P ) is not isometric on T+(P )∗ + T+(P ), and in particular,
not completely isometric on T+(P )∗ + T+(P ). By [12, Theorem 7.2], there is a boundary
representation for T+(P ) coming from an extension to T (P ), of an element in the spectrum
of J (P ), which then must be equivalent to one of the πk. This means that C∗e (T+(P )) has
an irreducible representation of infinite dimension, which is impossible since C∗e (T+(P )) ∼=
C(T,Md) only has irreducible representations of dimension d.
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Example 4.3.18. We next give an example of 3×3 stochastic matrix for which C∗e (T+(P )),
T (P ) and O(P ) are pairwise non *-isomorphic. Let

P =

0 0 1
0 0 1
1
2

1
2

0


be over Ω = {1, 2, 3}. The matrix P is fully-supported and we see that states 1 and 2 are
non-exclusive, while 3 is exclusive. Hence, Ωb = Ω − Ωe ( Ω. Therefore, the Shilov ideal
JT+(P )

∼= K(FP,3) 6∼= ⊕j∈ΩK(FP,j) ∼= J (P ). This yields a quotient C∗e (T+(P )) for which
C∗e (T+(P )), T (P ) and O(P ) are pairwise non *-isomorphic.

Without the irreducibility assumption on P , it is easy to construct intermediary C*-
envelopes from ”extremal” C*-envelopes. Indeed, if for finite stochastic matrices P andQ of
sizes at least 2 we have that C∗e (T+(P )) = T (P ), and C∗e (T+(Q)) = O(Q), thenR = P⊕Q is
a finite stochastic matrix such that C∗e (T+(R)) = C∗e (T+(P ))⊕C∗e (T+(Q)) = T (P )⊕O(Q),
and one can similarly use representation theory to show that C∗e (T+(R)) is non *-isomorphic
to T (R) nor to O(R).

However, by Remark 2.3.19 we know that P is irreducible if and only if the subproduct
system Arv(P ) is minimal according to Definition 2.2.12. The above example then shows
that even under the assumption of irreducibility of the matrix, which is equivalent to
minimality of the associated subproduct system, up to *-isomorphism the C*-envelope
may be distinct from both the Cuntz-Pimsner algebra, and the Toeplitz algebra.

4.4 Classification of C*-envelopes

In this section we compute the K-theory of, and classify up to *-isomorphism and stable iso-
morphisms, the C*-envelopes C∗e (T+(P )) for a finite irreducible stochastic matrix P . Recall
Notation 4.3.2. Let Ωb be the collection of k ∈ Ω for which πk is a boundary representa-
tion. We will henceforth identify T (P ) with its image under π : T (P ) → B(⊕k∈ΩFP,k),
where FP,k are the invariant subspaces of π and πk : T (P ) → B(FP,k) the irreducible,
pairwise non-unitarily equivalent representations given by restriction πk(T ) = T |FP,k , for
each k ∈ Ω. Recall the short exact sequence from equation (4.1). We refer to [111] for the
K–theory results used in this section.

We know from [111] that K0 and K1 are additive functors, and that for any k ∈ Ω we
have K1(K(FP,k)) = {0}, and K0(C(T,Md)) ∼= K0(K(FP,k)) ∼= K1(C(T,Md)) ∼= Z. Hence,
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the six-term exact sequence of K-theory induced from the exact sequence of equation (4.1)
yields

0 −→ K1(C∗e (T+(P ))) −→ Z
↑ ↓ δ1

Z ←− K0(C∗e (T+(P ))) ←− Z|Ωb|
(4.2)

Our first goal is to compute the index map δ1 : K1(C(T,Md))→ K0(⊕k∈ΩbK(FP,k)), which
will then enable the computation of the K0 and K1 groups for C∗e (T+(P )). It will suffice
to compute the value of δ1 on a generator of K1(C(T,Md)) ∼= Z, and in our computations
we will work with the unitary element w := z 7→ diag(z, 1, ..., 1) ∈ C(T,Md), as [w]1 is a
generator for K1(C(T,Md)) ∼= T.

Lemma 4.4.1. Let P be a t-periodic irreducible stochastic matrix over Ω = {1, ..., d}, with
properly enumerated cyclic decomposition Ω0, ...,Ωt−1 such that 1 ∈ Ω0 is the first element,
and let (U, (Sij)i,j∈Ω) be its associated standard family.

1. For all i ∈ Ω we have that (Sii = pi)i∈Ω is a family of pairwise orthogonal projections
that commute with U .

2. The element w := z 7→ diag(z, 1, ..., 1) ∈ C(T,Md) lifts to a partial isometry V :=
US11 + S22 + ...Sdd inside T (P ).

Proof. (1): By definition, for any m ∈ N and Ejk ∈ Arv(P )m we have that Sii(Ejk) =
Adj(Pm) ∗ (Eii · Ejk) = δi,jEjk = pi(Ejk) so that Sii = pi. Next, note that

USii(Ejk) = Adj(Pm+r) ∗ (δijEjk) = δijU(Ejk) = SiiU(Ejk),

so that U and Sii commute on the dense subset of FArv(P ), and hence commute.

(2): It is clear that w lifts to V inside T (P ) since under the identification C(T)⊗Md
∼=

C(T;Md), the element V in the quotient is identified with w. Hence, we need only verify
that V is a partial isometry. Indeed, since by item (1), U commutes with S11, and since U
is a partial isometry, we have that

V V ∗V = S11UU
∗US11 + S22 + ...Sdd = V

so that V is also a partial isometry.

Let v be the image of V under the C*-envelope quotient map qe : T (P )→ C∗e (T+(P )).
By Lemma 4.4.1 we know that V is a partial isometry that lifts w, and hence v is a partial

111



isometry that lifts w. By item (ii) of [111, Proposition 9.2.5] we have that 1 − v∗v and
1− vv∗ are projections in ⊕k∈ΩbK(FP,k) ∼= qe(J (P )) with

δ1([w]1) = [1− v∗v]0 − [1− vv∗]0.

But due to the identification K0(⊕k∈ΩbK(FP,k)) ∼= ⊕k∈ΩbK0(K(FP,k)), we obtain that

δ1([w]1) = [1− v∗v]0 − [1− vv∗]0 =
(

[(1− V ∗V )|FP,k ]− [(1− V V ∗)|FP,k ]
)
k∈Ωb

=

(
dim Ker(V |FP,k)− dim Ker(V ∗|FP,k)

)
k∈Ωb

=
(

ind(V |FP,k)
)
k∈Ωb

,

where we are then left with computing the Fredholm indices of V |FP,k for k ∈ Ωb.

Proposition 4.4.2. Let P be a t-periodic irreducible stochastic matrix over Ω = {1, ..., d}.
Suppose that Ω0, ...,Ωt−1 is a properly enumerated cyclic decomposition such that s ∈ Ω
is its first element, and let (U, (Sij)i,j∈Ω) be its associated standard family. Let Vs :=
S11 + ... + Ss−1,s−1 + USss + Ss+1,s+1 + ... + Sdd. Then for every k ∈ Ω we have that
ind(Vs|FP,k) = −1.

Proof. Up to conjugating P with a permutation matrix, we may assume that s = 1 is the
first element. For each state k ∈ Ω, let ` = σ(k) = σ(k)− σ(1), and denote by

bn =

{
1 : P

(nt+`)
1k > 0

0 : P
(nt+`)
1k = 0

where P
(0)
1k = 1 if k = 1, and is 0 otherwise. Recall Notation 4.3.2. Since FP,k =

⊕∞n=0 Arv(P )n,k, and since V shifts only the first rows of the matrix A in an element
A⊗ ek ∈ Arv(P )n,k, we have for all n ∈ N that

dim KerV |Arv(P )n,k = bn − bn+1bn

and for all n ≥ 1 that
dim KerV ∗|Arv(P )n,k = bn+1 − bn+1bn

due to the support of elements in Arv(P )n,k. Note also that for n = 0, and we get

dim KerV ∗|Arv(P )0,k =

{
0 : k 6= 1

1 : k = 1.
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Hence, if we sum up dimensions, we obtain that

dim KerV |FP,k =
∞∑
n=0

bn − bn+1bn

and

dim KerV ∗|FP,k =

{∑∞
n=0 bn+1 − bn+1bn : k 6= 1

1 +
∑∞

n=0 bn+1 − bn+1bn : k = 1.

Thus,
ind(V |FP,k) = dim KerV |FP,k − dim KerV ∗|FP,k

=

{∑∞
n=0 bn − bn+1 if k 6= 1

−1 +
∑∞

n=0 bn − bn+1 if k = 1
=

{
0− 1 if k 6= 1

−1 + 1− 1 if k = 1.

Hence, we see that in any case, ind(V |FP,k) = −1, as required.

Corollary 4.4.3. Let P be an irreducible stochastic matrix over finite Ω. Then the index
map δ1 : Z→ Z|Ωb| is given by δ1(n) = −(n, ..., n)

We then obtain the K-theory of C∗e (T+(P )) in terms of |Ωb|.
Theorem 4.4.4. Let P be a finite irreducible stochastic matrix over Ω. Then

1. If P has a non-exclusive state then

K0(C∗e (T+(P ))) ∼= Z|Ωb| and K1(C∗e (T+(P ))) ∼= {0}.

2. If all states of P are exclusive then

K0(C∗e (T+(P ))) ∼= Z and K1(C∗e (T+(P ))) ∼= Z.

Proof. If all states of P are exclusive, then by Corollary 4.3.17 we have that C∗e (T+(P )) ∼=
C(T,Md) so that the K0 and K1 groups of C∗e (T+(P )) must both be Z.

Next, if P has a non-exclusive state, since δ1 is injective, by exactness at K1(C(T,Md))
in the six-term exact sequence of equation (4.2), we see that K1(C∗e (T+(P ))) = {0}.

Since δ1(1) = (−1, ...,−1), we see that the six-term exact sequence in equation (4.2)
can be reduced to the single exact sequence

0← Z← K0(C∗e (T+(P )))← Z|Ωb|/SpZ
(
(−1, ...,−1)

)
← 0.

Since Z|Ωb|/SpZ
(
(−1, ...,−1)

) ∼= Z|Ωb|−1, we see that K0(C∗e (T+(P ))) ∼= Z|Ωb|, and the proof
is complete.
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Corollary 4.4.5. Let P be a finite irreducible stochastic matrix over Ω. Then conditions
(1) through (4) of Corollary 4.3.17 are all equivalent to K1(C∗e (T+(P ))) ∼= Z.

We next turn to extension theory to extract the more refined structure of our C*-
envelope up to ∗-isomorphism and stable isomorphism. For every finite irreducible stochas-
tic matrix P over ΩP , which has at least one non-exclusive state, let ΩP

b be the (non-empty)
set of indices k ∈ ΩP such that πk : T (P ) → B(FP,k) is a boundary representation for
T+(P ). We note that C∗e (T+(P )) is Type I (equivalently GCR), being an extension of a
CCR algebra by a CCR algebra. Thus, we may identify an irreducible representation with
its kernel when discussing elements of the primitive ideal spectrum of C∗e (T+(P )).

The analysis done around the exact sequence of equation (4.1) shows that the spectrum
of C∗e (T+(P )) as a set is comprised of |ΩP

b | irreducible representations of infinite dimensions
induced from πk, which we still denote by πk : C∗e (T+(P )) → B(FP,k) for k ∈ ΩP

b , and a
torus T of irreducible representations of dimension |ΩP | given by evλ ◦q for every λ ∈ T,
where q : C∗e (T+(P )) → C(T,M|ΩP |) is the quotient map. Moreover, we have the exact
sequence

0 −→ ⊕k∈ΩPb
K(FP,k)

ι−→ C∗e (T+(P ))
q−→ C(T,M|ΩP |) −→ 0.

Since Kerπk ⊆ Ker(evλ ◦q) for every k ∈ ΩP
b and every λ ∈ T, and Ker(evλ ◦ q) is not

a subset of any Ker(evλ′ ◦q) for λ′ 6= λ ∈ T, we see that for every λ ∈ T, each Ker(evλ ◦q)
is a maximal element in the lattice Prim(C∗e (T+(P ))).

Notation 4.4.6. For a finite irreducible stochastic matrix P , we denote from now on
KP := ⊕k∈ΩPb

K(FP,k), BP := C(T,M|ΩP |) and AP := C∗e (T+(P )). We will also denote K
the compact operators on separable infinite dimensional Hilbert space.

Let P and Q be irreducible stochastic matrices over finite sets ΩP and ΩQ respectively.
Then we have the following exact sequences

0→ KP → AP → BP → 0 and 0→ KQ → AQ → BQ → 0 (4.3)

with Busby invariants ηP and ηQ, and the stabilized exact sequences

0→ KP⊗K → AP⊗K → BP⊗K → 0 and 0→ KQ⊗K → AQ⊗K → BQ⊗K → 0 (4.4)

with Busby invariants η
(∞)
P and η

(∞)
Q given by η

(∞)
P ([Tij]) = [ηP (Tij)] for [Tij] ∈ BP ⊗K.

For k ∈ Ωb denote by ρk : ⊕`∈ΩPb
B(FP,`) → B(FP,k) the restriction map, which then

promotes to a restriction ρ̃k : ⊕`∈ΩPb
Q(FP,`)→ Q(FP,k).
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Proposition 4.4.7. Let P and Q be finite irreducible stochastic matrices over ΩP and ΩQ

respectively.

1. C∗e (T+(P )) and C∗e (T+(Q)) are *-isomorphic if and only if there exists a *-isomorphism
β : C(T,M|ΩP |)→ C(T,M|ΩQ|) and a bijection τ : ΩP

b → ΩQ
b such that for all k ∈ ΩP

b

the extensions ρ̃kηP and ρ̃τ(k)ηQβ are strongly equivalent.

2. C∗e (T+(P )) and C∗e (T+(Q)) are stably isomorphic if and only if there exists a *-
isomorphism β : C(T,M|ΩP |) ⊗ K → C(T,M|ΩQ|) ⊗ K and a bijection τ : ΩP

b → ΩQ
b

such that for all k ∈ ΩP
b the extensions ρ̃

(∞)
k η

(∞)
P and ρ̃

(∞)
τ(k)η

(∞)
Q β are weakly equivalent.

Proof. We first show (1). Suppose that α : AP → AQ is a *-isomorphism. Let α∗ :
Prim(AP ) → Prim(AQ) be the induced lattice isomorphisms between the spectra. Since
α∗ must send maximal elements to maximal elements, we see that for λ ∈ T we have that
α∗ sends Ker(evPλ ◦q) to Ker(evQλ′ ◦q) for some λ′ ∈ T in bijection. In particular, since

KP = ∩λ∈T Ker(evPλ ◦q) and KQ = ∩λ∈T Ker(evQλ ◦q), we see that α(KP ) = KQ. Hence
C∗e (T+(P )) and C∗e (T+(Q)) are *-isomorphic if and only if the exact sequences of equation
(4.3) are isomorphic, which happens if and only if the restriction κ := α|KP : KP → KQ and
the induced map β satisfy κ̃ηP = ηQβ, where β : BP → BQ is the induced *-isomorphism
from α between the quotients by KP and by KQ.

So suppose κ̃ηP = ηQβ for κ and β as above. Since κ : ⊕k∈ΩPb
K(FP,k)→ ⊕k∈ΩQb

K(FQ,k),
there is a bijection τ : ΩP

b → ΩQ
b and a unitaries Uk : FP,k → FQ,τ(k) such that κ|K(FP,k) =

AdUk : K(FP,k)→ K(FQ,τ(k)), so that

ρ̃τ(k)ηQβ = ρ̃τ(k)κ̃ηP = ÃdUk ρ̃kηP .

For the converse, if Uk are unitaries implementing strong equivalence between ρ̃τ(k)ηQβ and

ÃdUk ρ̃kηP , by setting κ = ⊕k∈ΩbP
AdUk : ⊕k∈ΩPb

K(FP,k)→ ⊕k∈ΩQb
K(FQ,k), we have that

κ̃ηP = ⊕k∈ΩPb
AdUk ρ̃kηP = ⊕k∈ΩQb

ρ̃τ(k)ηQβ = ηQβ.

Next, we show (2). Since stabilizing an algebra does not change its primitive ideal
spectrum, the same argument as used in (1) shows that C∗e (T+(P )) and C∗e (T+(Q)) are
stably isomorphic if and only if the exact sequences in equation (4.4) are isomorphic,
which happens if and only if there are *-isomorphisms κ : KP ⊗ K → KQ ⊗ K and β :

BP ⊗K → BQ ⊗K such that κ̃η
(∞)
P = η

(∞)
Q β. Then a similar argument to the one used for

115



item (1) shows that this happens if and only if there is a bijection τ : ΩP
b → ΩQ

b such that

for all k ∈ ΩP
b the extensions ρ̃

(∞)
k η

(∞)
P and ρ̃

(∞)
τ(k)η

(∞)
Q β are strongly equivalent. Since these

are non-unital extensions, this happens if and only if they are weakly equivalent.

For an irreducible finite stochastic matrix P over ΩP with period tP , and k ∈ ΩP .
Let Ω0, ...,ΩtP−1 be a cyclic decomposition for P . Then there exists m0, such that for all
m ≥ m0 we have

|Ωσ(k)−m| = |{ i ∈ Ωσ(k)−m | P (m)
ik > 0 }|.

Indeed, fix 0 ≤ ` ≤ tP − 1. By item (2) of Theorem 2.3.14 there is n
(`)
0 such that for all

n ≥ n
(`)
0 we have that P

(ntP+`)
ij > 0 for i, j ∈ ΩP with σ(i) − σ(j) = `. Hence, if we fix

j = k, we see that

|Ωσ(k)−(ntP+`)| = |{ i ∈ Ωσ(k)−(ntP+`) | P (ntP+`)
ik > 0 }|.

Then simply take m0 = max`{n(`)
0 tP + `} to obtain the desired claim above.

Definition 4.4.8. Let P be a t-periodic finite irreducible stochastic matrix over Ω of size
d, and k ∈ Ω. Let Ω0, ...,Ωt−1 be a cyclic decomposition for P , so that σ(k) is the unique
index such that k ∈ Ωσ(k). We define the k-th column nullity of P to be

NP (k) =
∞∑
m=1

|{ i ∈ Ωσ(k)−m | P (m)
ik = 0 }|

where σ(k)−m is taken as an element in the cyclic group Zt of order t.

Put in other words, the column nullity of a state k ∈ Ω is the number of zeros in all
k-th columns of iterations of P , that lie in the support of a cyclic decomposition for P .
The above infinite sum is in fact always finite by the discussion preceding Definition 4.4.8
and is hence convergent. We note also that P is fully supported if and only if for all k ∈ Ω
is we have NP (k) = 0.

For a finite irreducible stochastic matrix P , we find the element in Exts(C(T) ⊗Md)
representing each extension ηP,k := ρ̃kηP , for each k ∈ ΩP

b , appearing in Proposition 4.4.7.
Note that the exact sequence corresponding to the extension ηP,k is

0→ K(FP,k)→ πk(T (P ))→ C(T,M|ΩP |)→ 0.

Recall the computation of Exts(C(T)⊗Md) and Extw(C(T)⊗Md) preceding Proposition
4.2.5.
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Proposition 4.4.9. Let P be a finite irreducible stochastic matrix over ΩP with period
tP , and let Ω0, ...,ΩtP−1 be a properly enumerated cyclic decomposition for P . Then for
each k ∈ ΩP

b , there exists n0 large enough so that for all n ≥ n0 we have that [j∗ηP,k]s is
identified with 0 ≤ s < |ΩP | given by

s ≡
ntP−1∑
m=0

|{ i ∈ Ωσ(k)−m | P (m)
ik > 0}| mod |ΩP |

and [ι∗ηP,k]s is identified with −|ΩP |. In particular, [ηP,k]w = −1.

Proof. To compute the class of [j∗ηP,k], we apply the algorithm in Example 2.3.22 to j∗ηP,k.
Let {Sij} be the system of matrix units for C(T,M|ΩP |) associated to a properly enumerated
cyclic decomposition Ω0, ...,ΩtP−1, and let 1 ∈ Ω be the first element in this enumeration.

There then exists m0 such that for all m ≥ m0 we have |Ωσ(k)−m| = |{ i ∈ Ωσ(k)−m | P (m)
ik >

0 }|. We abuse notation for sake of brevity and write T instead of πk(T ) = T |FP,k for
T ∈ T (P ).

Following Example 2.3.22, lift each Sii to pi · Q[ntP ,∞) ∈ πk(T (P )). Then for j 6= 1
we may lift each S1j to S1jQ[ntP ,∞) ∈ πk(T (P )) so that eij := Q[ntP ,∞)S

∗
1jS1iQ[ntP ,∞) with

i, j ∈ ΩP is a system of matrix units for pB(FP,k)p, and for all n ∈ N with ntP ≥ m0 the
projection

p =

|ΩP |∑
i=1

Q[ntP ,∞)S
∗
1iS1iQ[ntP ,∞)

has finite dimensional cokernel equal to the defect of j∗ηP,k modulo |ΩP |.

Denote by b
(m)
ik the indicator, which is 1 if and only if P

(m)
ik > 0 and 0 otherwise. Then,

the dimension of the cokernel of p is congruent mod |ΩP | to

|ΩP |∑
i=1

ntP−1∑
m=0

b
(m)
ik =

ntP−1∑
m=0

|{ i ∈ Ωσ(k)−m | P (m)
ik > 0 }|

so we may take n0 = dm0

tP
e.

As for ι∗ηP,k, a lift for z⊗ I ∈ C(T)⊗ I can be taken to be UP , where UP is the unitary
associated to the properly enumerated cyclic decomposition Ω0, ...,ΩtP−1 (restricted to
FP,k). Then by Proposition 4.4.2 and the notation there, ind(UP ) = ind(Πi∈ΩVi) = −|ΩP |.
Finally, recall that the image [ι∗ηP,k]s ∈ |ΩP | ·Z is identified with [ηP,k]w ∈ Z up to dividing
by |ΩP |, so that [ηP,k]w = −1.
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We now reach the two main results of this chapter, which classify stable isomorphism
and *-isomorphism of C*-envelopes in terms of the underlying stochastic matrices and
boundary representations supported on different copies of compact operator subalgebras.

Theorem 4.4.10. Let P and Q be finite irreducible stochastic matrices over ΩP and ΩQ

respectively. Then |ΩP
b | = |Ω

Q
b | if and only if C∗e (T+(P )) and C∗e (T+(Q)) are stably isomor-

phic.

Proof. If C∗e (T+(P )) and C∗e (T+(Q)) are stably isomorphic, since K0 and K1 are stable
functors, we must have that |ΩP

b | = |Ω
Q
b | by Theorem 4.4.4.

For the converse, suppose Ωb := ΩP
b = ΩQ

b . For k ∈ Ωb, denote by η
(|ΩQ|)
P,k and η

(|ΩP |)
Q,k the

amplifications of these extensions to C(T)⊗M|ΩP | ⊗M|ΩQ|. By Proposition 4.4.9 we then

have that η
(|ΩQ|)
P,k and η

(|ΩP |)
Q,k are weakly unitarily equivalent. Hence, η

(∞)
P,k and η

(∞)
Q,k are also

weakly equivalent, so that by item (2) of Proposition 4.4.7 (with β = Id) we have that
C∗e (T+(P )) and C∗e (T+(Q)) are stably isomorphic.

Theorem 4.4.11. Let P and Q be finite irreducible stochastic matrices over ΩP and ΩQ

respectively. Then C∗e (T+(P )) and C∗e (T+(Q)) are ∗-isomorphic if and only if d := |ΩP | =
|ΩQ| and there is a bijection τ : ΩP

b → ΩQ
b such that for all k ∈ ΩP

b we have NP (k) ≡
NQ(τ(k)) mod d.

Proof. Suppose C∗e (T+(P )) and C∗e (T+(Q)) are ∗-isomorphic. By item (1) of Proposition
4.4.7 there is a ∗-isomorphism β ∈ C(T,M|ΩP |)→ C(T,M|ΩQ|) (so that d := |ΩP | = |ΩQ|)
and a bijection τ : ΩP

b → ΩQ
b such that ηP,k and ηQ,τ(k)β are strongly equivalent. By

Proposition 4.2.5 βs is the identity on the second coordinate of Exts(C(T)⊗Md) ∼= dZ×Zd.
Hence, we see that [j∗ηP,k] = [j∗ηQ,τ(k)], so that k ∈ ΩP

b and NP (k) ≡ NQ(τ(k)) mod d by
Proposition 4.4.9.

For the converse, suppose NP (k) ≡ NQ(τ(k)) mod d for all k ∈ ΩP
b via some bijection

τ : ΩP
b → ΩQ

b , and that |ΩP | = |ΩQ|. We see by Proposition 4.4.9 that j∗ηP,k and j∗ηQ,τ(k)

are strongly equivalent. Again by Proposition 4.4.9 we have that [ι∗ηP,k] and [ι∗ηQ,τ(k)] are
represented by the numbers −|ΩP | and −|ΩQ| which are equal by assumption. Hence, we
have that ηP,k and ηQ,τ(k) are strongly equivalent. Thus, by item (1) of Proposition 4.4.7
(with β = Id) we have that C∗e (T+(P )) and C∗e (T+(Q)) are *-isomorphic.
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4.5 Comparison with Cuntz-Krieger algebras

It is interesting to try and compare these invariants with the one obtained from the Cuntz-
Krieger C*-algebra of the graph of the stochastic matrix P . Given an irreducible graph
matrix A = (aij) over Ω, where aij ∈ {0, 1}, in their first paper [28], Cuntz and Krieger
defined a C*-algebra OA generated by partial isometries {Si}i∈Ω with pairwise orthogonal
ranges, satisfying the relations

S∗i Si =
∑
j∈Ω

aij · SjS∗j .

For a stochastic matrix P , one has the {0, 1}-matrix Adj(P ) representing the directed
graph of P . Since the C*-correspondence Arv(P )1 is the graph C*-correspondence of the
graph QP , we get that the Cuntz-Pimsner algebra O(Arv(P )1) is ∗-isomorphic to the
Cuntz-Krieger algebra OAdj(P ). In particular, by [107, Remark 4.3] we see that OAdj(P ) is
nuclear.

In [27], Cuntz computed the K-theory of these C*-algebras. He showed that for finite
{0, 1} matrix A over Ω where every column and row is non-zero, the K0 and K1 groups of
OA are given as the cokernel and kernel of the map I − At : ZΩ → ZΩ.

In the case where A is an irreducible finite matrix which is not a permutation matrix,
Cuntz and Krieger establish in [28] that OA is simple and purely infinite. Hence, for
a finite irreducible stochastic matrix P which is not a permutation matrix, the Cuntz-
Krieger algebra OAdj(P ) is separable, unital, nuclear, simple and purely infinite, or in other
words a Kirchberg algebra.

A famous classification theorem of Kirchberg and Phillips [103] then comes into play to
show that for two finite irreducible stochastic matrices P and Q which are not permutation
matrices, the Cuntz-Krieger algebras OAdj(P ) and OAdj(Q) are ∗-isomorphic ( or stably
isomorphic) if and only if (K0(OAdj(P )), [1P ]0) ∼= (K0(OAdj(Q)), [1Q]0) and K1(OAdj(P )) ∼=
K1(OAdj(Q)) ( or K0(OAdj(P )) ∼= K0(OAdj(Q)) and K1(OAdj(P )) ∼= K1(OAdj(Q)) respectively).
That is, the *-isomorphism and stable isomorphism class are completely determined by
K-theory.

Example 4.5.1. In this example, we will use the above to show that for a finite irreducible
stochastic matrix P , the Cuntz-Krieger algebra OAdj(P ) and the C*-envelope C∗e (T+(P ))
generally yield incomparable invariants for P . If we restrict to matrices P with multiple-
arrival, we have that Ωe = Ω − Ωb and the invariant C∗e (T+(P )) will only depend on the
adjacency matrix Adj(P ). Hence, we will only specify the {0, 1} graph incidence matrices
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of three stochastic matrices P,Q,R with multiple arrival. Suppose the graph matrices for
P,Q,R are given respectively by

Adj(P ) =

0 0 1
0 0 1
1 1 0

 , Adj(Q) =

1 1 0
1 1 1
1 1 1

 , Adj(R) =

1 1 1
1 1 1
1 1 0


then P,Q and R have multiple-arrival, and it is clear that NP (j) = NQ(j) = NR(j) = 0 for
j = 1, 2, and that NP (3) = 0. We also see that NQ(3) = NR(3) = 1, so that C∗e (T+(Q)) ∼=
C∗e (T+(R)). However, ΩP

e = {3} whereas ΩQ
e = ΩR

e = ∅, and hence C∗e (T+(Q)) is not stably
isomorphic to C∗e (T+(P )).

For the Cuntz-Krieger C*-algebras the situation is reversed. The maps I − Adj(P )t,
I−Adj(Q)t and I−Adj(R)t on Z3 determining K0 and K1 for the Cuntz-Krieger algebras
are given respectively by the matrices 1 0 −1

0 1 −1
−1 −1 1

 ,

 0 −1 −1
−1 0 −1
0 −1 0

 and

 0 −1 −1
−1 0 −1
−1 −1 1

 .
Hence, we see that the K1 groups for OAdj(P ), OAdj(Q) and OAdj(R) are trivial, and that
Ran(I − Adj(P )t) = Ran(I − Adj(Q)t) = Z3, so that K0(OAdj(P )) = K0(OAdj(Q)) are
trivial. Hence, by the above mentioned result of Kirchberg and Phillips, we have that
OAdj(P ) is *-isomorphic to OAdj(Q). However, since Ran(I−Adj(R)t) ( Z3, we see that the
cokernel K0(OAdj(R)) is non-trivial, and hence OAdj(R) is not stably isomorphic to OAdj(P ).
Altogether, we obtain that

C∗e (T+(P )) 6∼ C∗e (T+(Q)) ∼= C∗e (T+(R)) and OAdj(P )
∼= OAdj(Q) 6∼ OAdj(R)

where ∼= stands for ∗-isomorphism and ∼ stands for stable isomorphism. Note that just like
the Cuntz-Krieger algebras, the C*-envelope still loses considerable information about the
tensor algebra, for instance, the graphs of P and Q are not isomorphic so by [42, Theorem
7.29] T+(Q) and T+(R) are not even algebraically isomorphic.
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Chapter 5

Full Cuntz-Krieger dilations via
non-commutative boundaries

5.1 Introduction

Perhaps the simplest dilation result in operator theory is the dilation of an isometry to a
unitary. If V ∈ B(H) is an isometry and ∆ := IH − V V ∗, we may define a unitary U on
K := H⊕H via

U :=

[
V ∆
0 V ∗

]
such that for any polynomial in a single variable p ∈ C[x] we have p(V ) = PHp(U)|H where
PH is the orthogonal projection onto the first summand of K = H ⊕H. It is easy to see
that Toeplitz-Cuntz-Krieger families and Cuntz-Krieger families generalize the notions of
an isometry and unitary respectively, by taking the graph with a single loop and a single
vertex. In fact, one of our goals in this chapter is to generalize this dilation result to
the free multivariable setting in the context of families of operators arising from directed
graphs.

We will assume in this chapter that directed graphs G = (V,E, s, r) are countable,
meaning that both the sets V and E are countable. A directed graph is said to be row-finite
if every vertex receives at most finitely many edges, and is sourceless if every vertex receives
at least one edge. We refer to [106] for an excellent exposition on graph C*-algebras. Due
to the universal properties of T (G) and O(G), we know that ∗-representations of T (G) are
in bijection with TCK G-families, and ∗-representations of O(G) are in bijection with CK
G-families. Hence, we will often pass freely between these two points of view.
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In our context of dilation of an isometry to a unitary, in [105, Proposition 2.6] Popescu
proves that for a countable set F and a row-isometry V = (Vi)i∈F on a space H there is
a dilation to a row-unitary. In other words, this means that for any family of isometries
Vi : H → H such that sot-

∑
i∈F ViV

∗
i ≤ IH there is a Hilbert space K containing H,

and isometries U = (Ui)i∈F on K such that sot-
∑

i∈F UiU
∗
i = IK, and for any polynomial

p ∈ C〈xi〉i∈F in non-commuting variables, we have p(V ) = PHp(U)|H where PH is the
projection from K to H. In terms of graphs, this means that for a graph with a single
vertex and |F | loops, dilation of a TCK family to a CK family is possible, with the extra
sot-convergence sot-

∑
i∈F UiU

∗
i = IK when F is infinite.

On the other hand, from [115, Theorem 5.4] we see that if G is row-finite and sourceless,
then any TCK family has a CK dilation. More precisely for a row-finite sourceless graph
G = (V,E, s, r), if (P, S) is a TCK family on H, then there exists a CK family (Q, T ) on
a larger space K such that for any polynomial p ∈ C〈V,E〉 in non-commuting variables we
have p(P, S) = PHp(Q, T )|H.

In order to put both of these results in the same context, we make the following defi-
nition.

Definition 5.1.1. Let (P, S) be a Cuntz-Krieger family for a countable directed graph G.
We say that (P, S) is a full Cuntz-Krieger family if

(CKF) sot-
∑

r(e)=v SeS
∗
e = Pv, for every v ∈ V with r−1(v) 6= ∅.

In this chapter, which is based on joint work with Guy Salomon [44], we will show that,
in dilation theoretic terms, full CK families are the proper generalization of the notion
of a unitary operator. More precisely, we will show that every TCK family has a full
CK dilation, and that no non-trivial TCK dilations for full CK families are possible (See
Corollary 5.2.7).

In [76], Katsoulis and Kribs improve on the work in [90] and [54, Theorem 5.3] and
by using a tail-adding technique they show that the C*-envelope of a tensor algebra as-
sociated to a general C*-correspondence, is the Cuntz-Pimsner-Katsura algebra of the
C*-correspondence. In particular, the C*-envelope of the tensor algebra T+(G) is the
Cuntz-Krieger algebra O(G) (this was also shown directly in [75]). We will provide an
alternative proof for this fact on graph algebras in Theorem 5.2.9, avoiding any tail-adding
techniques.

One of our main results is the classification of ∗-representation of T (G) that have the
unique extension property when restricted to T+(G). They turn out to coincide with those
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∗-representations that are associated with full Cuntz-Krieger families (see Theorem 5.2.5).
This allows us to improve upon several known results and show that any TCK family
dilates to a full CK family in the sense described above. Further applications of this result
allows us to give a bijective correspondence between irreducible ∗-representations of T (G)
that are not boundary, and “gap” TCK families of the graph G (see Corollary 5.2.6), and
a characterization of the unique extension property of T+(G) inside O(G) in terms of the
graph G (see Theorem 5.2.9).

Trying to leverage our results to free products, we discuss some of the general theory of
free products of operator algebras, and prove a joint unital completely positive extension
theorem for free products of operator algebras amalgamated over any common unital C*-
algebra (see Theorem 5.3.1). Complete injectivity of amalgamated free products of C*-
algebras was shown by Armstrong, Dykema, Exel and Li [3], and we are able to use
our joint extension result to generalize their result to free products of operator algebras
amalgamated over any common C*-subalgebra (see Proposition 5.3.3). In [32, Theorem
5.3.21] a gap in the proof of [46, Theorem 3.1] was corrected, and it was shown that the
amalgamated free product of C*-envelopes is a C*-cover for the amalgamated free product
of operator algebras {Ai}i∈I . By [32, Theorem 5.3.21], this C*-cover turns out to be the
C*-envelope when each Ai has the unique extension property inside its C*-envelope. Using
Proposition 5.3.3, we are able to obtain these results as well.

Using complete injectivity and the results on free products, along with a stronger joint
extension result [21, Theorem 3.1], we characterize representations with the unique exten-
sion property on amalgamated free products (see Proposition 5.3.4), and apply our results
to free products of graph operator algebras. Free products of graph operator algebras
have been investigated by Ara and Goodearl in [2] as C*-algebras associated to separated
graphs, and by Duncan [47] as operator algebras associated to edge-colored directed graphs.
We combine our results to prove that a full-CK dilation exists for any TCK family of a
colored directed graph (See Corollary 5.4.2), and to show that the free product of Cuntz-
Krieger algebras is a C*-cover for the free product of tensor graph algebras, which is the
C*-envelope when all graphs involved are row-finite (see Theorem 5.4.4).

5.2 Full Cuntz-Krieger dilations

Let G = (V,E, s, r) be a countable directed graph. We will abuse terminology and call asso-
ciated ∗-representations of either T (G) or O(G) “Cuntz-Krieger” or “full Cuntz-Krieger”
if their associated TCK families are such. A (universal) TCK or CK family generating
T (G) or O(G) (respectively) will usually be denoted by lowercase letters (p, s).
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There is a canonical ∗-representation of the Toeplitz-Cuntz-Krieger graph C*-algebra
which we now describe. First, recall that a path in G is a sequence of edges λ = µn · · ·µ1

such that r(µi) = s(µi+1), where we extend the range and source maps to apply for paths
by specifying r(λ) := r(µn) and s(λ) := s(µ1), and set |λ| := n for the length of the path;
vertices are considered as paths of length 0. We use E• to denote the collection of all paths
in G of finite length.

Let HG := `2(E•) be the Hilbert space with canonical standard orthonormal basis
{ξλ}λ∈E• , we define a Toeplitz-Cuntz-Krieger family (P, S) on HG by specifying each op-
erator on an orthonormal basis, that is, for each v ∈ V , µ ∈ E and λ ∈ E• we define

Pv(ξλ) =

{
ξλ if r(λ) = v

0 if r(λ) 6= v
and Se(ξλ) =

{
ξeλ if r(λ) = s(e)

0 if r(λ) 6= s(e)
.

For every v ∈ V , consider the subspace HG,v := `2(s−1(v)) with its orthonormal basis
{ξλ}s(λ)=v. Clearly, HG,v is reducing for (P, S), so by the universal property of T (G) there
exists a ∗-representation πv : T (G)→ B(HG,v) satisfying πv(pw) = Pw|HG,v for every w ∈ V
and πv(se) = Se|HG,v for every e ∈ E. The next proposition is easily verified, and we omit
its proof.

Proposition 5.2.1. Let πv : T (G) → B(HG,v) be the ∗-representation described above.
Then the following hold:

(a) πv is irreducible,

(b) for every w 6= v we have sot-
∑

r(e)=w πv(ses
∗
e) = πv(pw), and

(c) πv(pv)− sot-
∑

r(e)=v πv(ses
∗
e) is a rank 1 projection.

Toeplitz-Cuntz-Krieger families have the following useful version of the Wold decom-
position. A slightly different Wold decomposition was given in [69, Section 2] by Jury and
Kribs under the assumption that the graphs have no sinks. Here we give a self-contained,
and slightly more general version that is tailored to our context. Let Vr the set of vertices
v ∈ V such that r−1(v) 6= ∅. For a TCK family (Q, T ) and a reducing subspace K for it,
we denote (Q, T )|K := ({Qv|K}, {Te|K}).

Theorem 5.2.2 (Wold decomposition). Let (Q, T ) be a Toeplitz-Cuntz-Krieger family on
a Hilbert space H. For every v ∈ Vr, denote by αv the dimension of the space Wv :=
(Qv −

∑
r(e)=v TeT

∗
e )H. Then (Q, T ) is unitarily equivalent to

⊕v∈Vr((P, S)|HG,v)(αv) ⊕ (R,L)
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where (R,L) is a full CK G-family. In addition, this representation is unique in the sense
that if (Q, T ) is unitarily equivalent to

⊕v∈Vr((P, S)|HG,v)(α′v) ⊕ (R′, L′)

where (R′, L′) is a full CK G-family, then α′v = αv for every v ∈ Vr, and (R,L) is unitarily
equivalent to (R′, L′).

Proof. Uniqueness follows by Proposition 5.2.1. Indeed, as (P, S)|HG,v cannot be unitarily
equivalent to (P, S)|HG,w for w 6= v nor to restrictions to reducing subspaces for either

full CK families (R′, L′) or (R,L). Thus, we must have that ((P, S)|HG,v)(αv) is unitarily

equivalent to ((P, S)|HG,v)(α′v) so that αv = α′v. Once this is established, restricting to the

orthocomplement of the (reducing) subspaces associated with ⊕v∈Vr((P, S)|HG,v)(αv) and

⊕v∈Vr((P, S)|HG,v)(α′v), we obtain a unitary equivalence between (R,L) and (R′, L′).

As for existence, fix v ∈ Vr, and denote Wv = (Qv −
∑

r(e)=v TeT
∗
e )H. Choose an

orthonormal basis {ζ(i)
v } for Wv, of cardinality αv, and for every i set

Hv,i := span{Tλζ(i)
v : λ ∈ s−1(v)}.

We will show these subspace are reducing. Indeed, Hv,i is clearly invariant for the family

(Q, T ). As for co-invariance, note that T ∗µ(Tλζ
(i)
v ) is either 0, a vector of the form Tλ′ζ

(i)
v

for some path λ′, or a vector of the form T ∗µ′ζ
(i)
v for some path µ′ with |µ′| ≥ 1. As

the two first cases immediately imply that T ∗µ(Tλζ
(i)
v ) ∈ Hv,i, we need to deal only with

the third case. To this end, write µ′ = e0µ
′′ for some edge e0 ∈ E and a path µ′′ with

s(µ′′) = r(e0). Note that if e0 ∈ s−1(v), then T ∗e0(Qv −
∑

r(e)=v TeT
∗
e ) = T ∗e0 − T

∗
e0

= 0, and

if not, T ∗e0(Qv −
∑

r(e)=v TeT
∗
e ) = 0− 0 = 0. Thus, in any case,

T ∗µ′ζ
(i)
v = T ∗µ′(Qv −

∑
r(e)=v

TeT
∗
e )ζ(i)

v = T ∗µ′′T
∗
e0

(Qv −
∑
r(e)=v

TeT
∗
e )ζ(i)

v = 0.

We next show simultaneously that for fixed v ∈ Vr and 1 ≤ i ≤ αv, the set {Tλζ(i)
v }λ∈s−1(v)

is an orthonormal family, and that the spaces Hv,i are pairwise orthogonal for all v ∈ Vr
and 1 ≤ i ≤ αv. Our first step is to show that for two vertices v, w ∈ Vr, two indices
1 ≤ i ≤ αv and 1 ≤ j ≤ αw, and two paths λ, µ in G, if 〈Tλζ(i)

v , Tµζ
(j)
w 〉 6= 0 then we must

have λ = µ. Indeed,

〈Tλζ(i)
v , Tµζ

(j)
w 〉 =

〈(
(Qw −

∑
r(e)=w

TeT
∗
e )T ∗µTλ(Qv −

∑
r(e)=v

TeT
∗
e )
)
ζ(i)
v , ζ

(j)
w

〉
.
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For T ∗µTλ to be non-zero, it must be either of the form Tλ′ where λ = µλ′, or T ∗µ′ where
µ = λµ′. We deal with the first case, and the second is proven similarly. So assume
λ = µλ′. If |λ′| = 0, then λ = µ. If |λ′| ≥ 1, write λ′ = e0λ

′′. Then we have(
Qw −

∑
e∈r−1(w)

TeT
∗
e

)
T ∗µTλ = Tλ′ − Te0T ∗e0Tλ′ = 0

which yields a contradiction. Thus, λ = µ.

As a consequence of this, we see that v = s(λ) = s(µ) = w. As Tλ is an isometry on

PvH, the assumption 〈Tλζ(i)
v , Tλζ

(j)
v 〉 6= 0 yields i = j as well. We therefore must have that

the sets {Tλζ(i)
v : λ ∈ s−1(v)} are orthonormal bases for the pairwise orthogonal reducing

subspaces Hv,i.

We next define unitaries Uv,i : Hv,i → HG,v by mapping an orthonormal basis to an

orthonormal basis Uv,i : Tλζ
(i)
v 7→ ξλ. Clearly Uv,i intertwines (Q, T )|Hv,i and (P, S)|HG,v .

Denote by K = (⊕v∈VrHv,i)
⊥, we then have that (Q, T ) is unitarily equivalent to

⊕v∈Vr((P, S)|HG,v)(αv) ⊕ (Q, T )|K.

As a result (R,L) := (Q, T )|K is a Toeplitz-Cuntz-Krieger family such that for any v ∈ Vr
we have Rv = sot−

∑
r(e)=v LeL

∗
e. Hence, it is a full CK family.

By rephrasing the previous proposition in terms of ∗-representations, we obtain the
following corollary.

Corollary 5.2.3. Let G be a directed graph, and let π : T (G)→ B(H) be a ∗-representation.
Then there are multiplicities {αv}v∈Vr such that π is unitarily equivalent to the ∗-rep-

resentation πs⊕πb, where πs = ⊕v∈Vrπ
(αv)
v and πb is a full CK representation. In addition,

this representation is unique in the sense that if π is also unitarily equivalent to the ∗-
representation π′s ⊕ π′b, where π′s = ⊕v∈Vrπ

(α′v)
v and π′b is a full CK representation, then

α′v = αv for every v ∈ Vr, and π′b is unitarily equivalent to πb.

We next characterize those ∗-representations which have the unique extension property
with respect to T+(G).

Definition 5.2.4. Let G = (V,E, s, r) be a directed graph, and let π : T (G) → B(H) be
a ∗-representation. We say that v ∈ Vr is singular with respect to π (or simply that v is
π-singular) if

sot-
∑
r(e)=v

π(SeS
∗
e ) � π(Pv).
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Note that π is a full CK representation of T (G), if and only if π has no singular vertices.

Theorem 5.2.5. Suppose that π : T (G) → B(H) is a ∗-representation. The restriction
π|T+(G) has the unique extension property if and only if π is a full CK representation.

Proof. Let (p, s) be a generating TCK family for T (G). Suppose G has a π-singular vertex
v. If we assume towards contradiction that π|T+(G) has the unique extension property, then
by [12, Proposition 4.4], so does the restriction of the infinite inflation π(∞) : T (G) →
B(H(∞)) to T+(G). We therefore may assume without loss of generality that π has infinite
multiplicity. We will arrive at a contradiction by showing that π|T+(G) is not maximal.

As v is π-singular, and π has infinite multiplicity, the projection Qv := π(pv) −
sot-

∑
r(e)=v π(ses

∗
e) is infinite dimensional. Thus, we may decompose QvH = ⊕r(e)=vHe

into infinite dimensional spaces He for each e ∈ r−1(v). We can then define for ev-
ery e ∈ r−1(v) some isometry We : Ps(e)HG → He where HG is the Hilbert space
`2(E•) and (P, S) is the associated TCK G-family. We moreover define a ∗-representation
ρ : T (G)→ B(H⊕HG) by specifying a Toeplitz-Cuntz-Krieger G-family

ρ(pv) =

[
π(pv) 0

0 Pv

]
for all v ∈ V

and

ρ(se) =



[
π(se) We

0 0

]
if r(e) = v, and

[
π(se) 0

0 Se

]
otherwise.

We show this defines a Toeplitz-Cuntz-Krieger family. Clearly, we need to verify only those
relations which involve edges in r−1(v). For every e ∈ r−1(v)

ρ(se)
∗ρ(se) =

[
π(se)

∗ 0
W ∗
e 0

]
·
[
π(se) We

0 0

]
=

[
π(ps(e)) π(se)

∗We

W ∗
e π(se) Ps(e)

]
.

As the range of We is orthogonal to that of π(se), we see that π(se)
∗We = W ∗

e π(se) = 0, so

ρ(se)
∗ρ(se) = ρ(ps(e)),

127



and condition (I) is verified. Next, for every finite subset F ⊆ r−1(v)∑
e∈F

ρ(se)ρ(se)
∗ =

∑
e∈F

[
π(se) We

0 0

]
·
[
π(se)

∗ 0
W ∗
e 0

]
=
∑
e∈F

[
π(ses

∗
e) +WeW

∗
e 0

0 0

]
≤
[
π(pv) 0

0 Pv

]
= ρ(pv),

where the inequality is true since {π(ses
∗
e)} ∪ {WeW

∗
e } is a collection of pairwise orthog-

onal projections dominated by π(pv). We therefore have shown condition (TCK), and we
conclude that ρ|T+(G) is a well-defined representation which dilates π|T+(G) non-trivially.
Hence π|T+(G) is not maximal.

For the converse, suppose that G has no π-singular vertices. Let ρ̃ : T+(G)→ B(K) be a
maximal dilation of π|T+(G), and let ρ : T (G)→ B(K) be its extension to a ∗-representation.
Denote

ρ(pv) =

[
π(pv) Xv

Yv Zv

]
and ρ(se) =

[
π(se) Xe

Ye Ze

]
for all v ∈ V and e ∈ E. We have that Xv = 0 and Yv = 0 for all v ∈ V . Indeed, let v ∈ V ,
and P : K → H the orthogonal projection onto H, then

Pρ(pv)
∗(1− P )ρ(pv)P = Pρ(pv)P − Pρ(pv)Pρ(pv)P

= π(pv)− π(pv)π(pv) = 0.

and the C*-identity implies Yv = (1 − P )ρ(pv)P = 0. As ρ(pv) is self-adjoint, we have
Xv = 0 as well.

Next, for all e ∈ E we have ps(e) = s∗ese, so[
π(ps(e)) 0

0 ∗

]
= ρ(s∗ese) = ρ(se)

∗ρ(se) =

[
π(se)

∗π(se) + Y ∗e Ye ∗
∗ ∗

]
which implies Ye = 0 for all e ∈ E.

Finally, let e ∈ E and let v = r(e). For every finite subset F of r−1(v), we have
pv ≥

∑
f∈F sfs

∗
f , so [

π(pv) 0
0 ∗

]
= ρ(pv) ≥

∑
f∈F

ρ(sf )ρ(sf )
∗

=
∑
f∈F

[
π(sf )π(sf )

∗ +XfX
∗
f ∗

∗ ∗

]
.
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In particular, by compressing this inequality to H we obtain∑
f∈F

π(sf )π(sf )
∗ +XfX

∗
f ≤ π(pv)

for every finite subset F of r−1(v). Since v is not π-singular, we must have that

sup
F

∑
f∈F

π(sf )π(sf )
∗ = sot-

∑
r(f)=v

π(sf )π(sf )
∗ = π(pv).

We therefore obtain that Xf = 0 for all f ∈ r−1(v), and in particular Xe = 0. Since T (G)
is generated as a C*-algebra by T+(G), we must have that ρ has π as a direct summand,
and hence ρ|T+(G) is a trivial dilation of π|T+(G).

The previous theorem gives rise to two interesting corollaries. The first is a parametriza-
tion of those irreducible ∗-representations of T (G) which are not boundary representations
with respect to T+(G), and the second is the dilation of TCK families to full CK families.

Corollary 5.2.6. For every vertex v ∈ Vr, the ∗-representation πv : T (G) → B(HG,v)
is the unique irreducible ∗-representation (up to unitary equivalence) for which v is π-
singular, so that the irreducible ∗-representations of T (G) which are not boundary for
T+(G) are parametrized by Vr.

Proof. If π is an irreducible ∗-representation that lacks the unique extension property on
T+(G), then by Theorem 5.2.5 there exists v ∈ Vr which is π-singular. By the Wold
decomposition (Corollary 5.2.3), up to a unitary equivalence, π must have πv as a subrep-
resentation, and by irreducibility, π is unitarily equivalent to πv.

Corollary 5.2.7. Let G = (V,E, s, r) be a countable directed graph, and (P, S) a TCK
family on H. Then there exists a full CK family (Q, T ) on a Hilbert space K containing
H, such that f(P, S) = PHf(Q, T )|H for any polynomial f ∈ C〈V,E〉 in non-commuting
variables.

Proof. Let πP,S : T (G)→ B(H) be the ∗-representation of T (G) associated to (P, S). By
[45, Theorem 1.2] we can dilate πP,S|T+(G) to a maximal representation τ : T+(G)→ B(K),
and without loss of generality, H is a subspace of K. Hence, τ is the restriction to T+(G) of
a ∗-representation ρ : T (G)→ B(K) such that ρ|T+(G) has the unique extension property.
Let (Q, T ) be the TCK family associated to τ . By Theorem 5.2.5 (Q, T ) is a full CK
family, and it dilates (P, S) in the sense that for every polynomial f ∈ C〈V,E〉 we have
that f(P, S) = PHf(Q, T )|H.

129



Our next goal is to construct, for every directed graph G, faithful full CK represen-
tations of O(G). We do this by constructing certain universal CK families arising from
backward-infinite paths.

Let E∞ = { λ | λ = e1e2e3 · · · , s(ei) = r(ei+1), ei ∈ E } be the collection of all
backward infinite paths in G, and extend the range map to E∞ by setting r(λ) = r(e1)
for λ = e1e2e3 · · · ∈ E∞. Let E<∞ be the collection of all finite paths, including paths of
length 0, emanating from sources, and set E≤∞ = E∞ ∪ E<∞ as a disjoint union.

For each vertex v ∈ V fix an element µv ∈ E≤∞ with r(µv) = v. For i ∈ N define
µv,i = ev,1...ev,i as the i-th truncation of µv, where if |µv| ≤ i, µv,i = µv. Denote Hv,i

the Hilbert space with the orthonormal basis { ξλµ−1
v,i
| λ ∈ E•, s(λ) = v } where λµ−1

v,i

corresponds to the equivalence class of reduced products determined by λ and µv,i. We
set Γ := { λµ−1

v,i | λ ∈ E•, s(λ) = v, i ∈ N, v ∈ V }, and let Hb := `2(Γ) denote
the Hilbert space with orthonormal basis {ξλµ−1}λµ−1∈Γ, which is unitarily equivalent to
⊕v∈V

[∨
i∈NHv,i

]
, where Hv,i is identified as a subspace of Hv,i+1 since λµ−1

v,i is identified

with λev,i+1µ
−1
v,i+1 whenever |µv| > i and with λµ−1

v,i when |µv| ≤ i. We define a TCK family
(Q, T ) on Hb by specifying it on the orthonormal basis {ξλµ−1}λµ−1∈Γ by

Qv(ξλµ−1) =

{
ξλµ−1 if r(λ) = v

0 if r(λ) 6= v
, Te(ξλµ−1) =

{
ξeλµ−1 if r(λ) = s(e)

0 if r(λ) 6= s(e)
.

It is easy to verify that (Q, T ) is a full CK family. Indeed, ξλµ−1
v,i

, with with |λ| ≥ 1 is in

the range of Te for e ∈ E such that λ = eλ′, and each ξµ−1
v,i

where s(µ) = s(µv,i) is not a

source is in the range of Tev,i+1
as µ−1

v,i is identified with ev,i+1µ
−1
v,i+1.

By construction, each Qv is non-zero for all v ∈ V , and we let ρ∞ be the ∗-representation
of T (G) associated to (Q, T ) above. Moreover, by construction of ρ∞, for each z ∈ T we
get a well-defined unitary Uz : Hb → Hb by specifying Uz(ξλµ−1) = z|µ|−|λ|ξλµ−1 . So we
get a gauge action α : T→ Aut(C∗(Q, T )) via αz(A) = UzAU

∗
z , so that αz(Qv) = Qv and

αz(Te) = zTe. Hence, by the gauge invariant uniqueness theorem ρ∞ is injective.

Remark 5.2.8. The advantage of the above construction is that it produces a space which
has a natural action of T on it. One may form a full CK family on `2(E≤∞) in a similar
way, but this representation will fail to be injective when the graph has a vertex-simple
cycle with no entry.

Let J (G) denote the kernel of the quotient q : T (G) → O(G). Evidently, J (G) is
the ideal of T (G) generated by terms of the form pv −

∑
r(e)=v ses

∗
e for vertices v with
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0 < |r−1(v)| < ∞. In [70, Theorem 3.3], Kakariadis showed that T+(G) has the unique
extension property in O(G) when G is row-finite. We provide the proof for this statement
along with its converse, and the computation of the C*-envelope in the general case.

Theorem 5.2.9. Let G = (V,E, s, r) be a directed graph, and let q : T (G)→ O(G) be the
natural quotient map. Then q is completely isometric on T+(G), and C∗e (T+(G)) ∼= O(G).

Moreover, T+(G) has the unique extension property in O(G) if and only if G is row-
finite.

Proof. Let (p, s) be a TCK family such that its associated ∗-representation πp,s is faithful.
By [45, Theorem 1.1] we know that πp,s|T+(G) has a maximal dilation, so let τ : T (G) →
B(K) be a ∗-representation such that τ |T+(G) is the dilation of πp,s|T+(G), so that it is
completely isometric and with the unique extension property. By Theorem 5.2.5, τ is a
full CK representation, and hence annihilates the Cuntz-Krieger ideal J (G). Hence, τ
must factor through the quotient map q : T (G) → O(G) by J (G), and we have that q is
completely isometric on T+(G).

Next, we show that if G is row-finite then T+(G) has the unique extension property in
O(G) via q. By Theorem 5.2.5, we see that every ∗-representation of T (G) that annihilates
J (G) has the unique extension property when restricted to T+(G) inside T (G). Since q is
completely isometric on T+(G), by invariance of the unique extension property, we see that
every ∗-representation of O(G) has unique extension property when restricted to T+(G)
inside O(G). By [45, Theorem 1.1] we know that the C*-envelope of T+(G) is the image
under the direct sum of all ∗-representations of O(G) with the unique extension property,
so that C∗e (T+(G)) ∼= O(G) when G is row-finite, as all ∗-representations of O(G) have the
unique extension property when restricted to T+(G) inside O(G).

Otherwise, if G is not row-finite, we have that ρ∞ ◦ q is a full CK representation with
kernel J (G), and hence again by invariance of the unique extension property and Theorem
5.2.5 we have that ρ∞ has the unique extension property on T+(G). Hence, since ρ∞ is
faithful, we still have that C∗e (T+(G)) ∼= O(G).

For the converse of the second part of the statement, suppose that G is not row-finite,
and let v ∈ V be an infinite receiver. Then πv annihilates J (G), so we may consider the
induced ∗-representation π̇v : O(G) → B(HG,v). By Corollary 5.2.6 πv does not have the
unique extension property when restricted to T+(G), so that by invariance of the unique
extension property, π̇v does not have the unique extension property when restricted to
T+(G). Thus, T+(G) does not have the unique extension property in O(G).

Remark 5.2.10. In Theorem 5.2.5, and Corollaries 5.2.6 and 5.2.7 we avoided the use of a
uniqueness theorem. This is also true for the computation of the C*-envelope in Theorem
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5.2.9 when G is row-finite. A uniqueness theorem was needed only for the computation of
the C*-envelope when the graph is not row-finite.

5.3 Free products and unique extension

Consider the category of unital C-algebras (with unital homomorphisms as morphisms).
Let {Ai}i∈I be a family of unital C-algebras and let D be a common unital subalgebra
with 1Ai = 1D, let ιi : D → Ai denote the natural embeddings. Pushouts in this category
are known to exist, and are called free product of {Ai}i∈I amalgamated over the common
subalgebra D, denoted by ∗

D
Ai. We recall the details briefly.

We let ∗Ai (with noD) denote the vector space spanned by formal expressions a1∗· · ·∗an
where a1 ∈ Ai1 , . . . , an ∈ Ain such that i1 6= i2 6= · · · 6= in and n ≥ 1, where this
expression behaves multilinearly, and we define multiplication of two such expressions,
where b1 ∈ Aj1 , . . . , bm ∈ Ajm with j1 6= · · · 6= jm via

(a1 ∗ · · · ∗ an) · (b1 ∗ · · · ∗ bm) =

{
a1 ∗ · · · ∗ an ∗ b1 ∗ · · · ∗ bm, if in 6= j1,

a1 ∗ · · · ∗ (an · b1) ∗ · · · ∗ bm, if in = j1.

With this multiplication, ∗Ai becomes a C-algebra generated by {Ai}i∈I . Next, we identify
the different copies of D by taking a quotient by the ideal 〈ιi(d) − ιj(d)〉i,j∈I,d∈D. This
quotient, which is denoted by ∗

D
Ai, has the following universal property. If B is another

unital C-algebras with unital C-homomorphisms ψi : Ai → B which agree on D, then there
is a unital C-homomorphism ∗

D
ψi : ∗

D
Ai → B extending each ψi on Ai.

Next, we construct free products in the category of unital operator algebras with unital
completely contractive homomorphisms. Let {Ai}i∈I be a family of unital operator algebras
with D a common unital operator subalgebra with 1Ai = 1D for all i ∈ I, and let ∗

D
Ai denote

the free product of {Ai}i∈I amalgamated over D in the larger category of C-algebras. We
define matrix semi-norms

‖a‖n := sup
∥∥∥∗
D
ψ

(n)
i (a)

∥∥∥
B(H)

, ∀n ∈ N, a ∈Mn

(
∗
D
Ai
)

where the supremum is taken over all families {ψi : Ai → B(H)}i∈I of unital completely
contractive homomorphisms that agree on D and over a Hilbert space H of large enough
cardinality. It follows that J = {a ∈ ∗

D
Ai : ‖a‖ = 0} is a two-sided ideal, and we denote
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the norms on the quotient by ‖ · ‖n as well. The norms ‖ · ‖n then define an operator-
algebraic structure on the completion ∗̂

D
Ai of ∗

D
Ai/J , by the Blecher-Ruan-Sinclair theorem

[20]. Furthermore, by construction there are unital completely contractive homomorphisms
ιj : Aj → ∗̂

D
Ai. We will show in Corollary 5.3.2 that each ιj is in fact completely isometric,

so that each Aj can be thought of as an operator subalgebra of ∗̂
D
Ai via ιj.

The operator algebra ∗̂
D
Ai is called the free product of {Ai}i∈I amalgamated over the

common operator subalgebra D, and has the following universal property by construction:
for any unital operator algebra B and ψi : Ai → B unital completely contractive homomor-
phisms which agree on D, there exists a completely contractive homomorphism ψ := ∗

D
ψi

from ∗̂
D
Ai into B such that ψi = ψ ◦ ι.

We now provide a joint completely contractive extension result for free products of
operator algebras amalgamated over a common C*-subalgebra. Our proof is an adaptation
of a proof given by Ozawa in [96, Theorem 15] in the case of amalgamation over the
complex numbers. Recall that whenever D is a subalgebra of an operator algebra A, a
completely contractive map φ : A → B(H) is said to be a D-bimodule map if φ(a1da2) =
φ(a1)φ(d)φ(a2) for every a1, a2 ∈ A and d ∈ D . By [24, Proposition 1.5.7] the restriction
of a completely contractive map φ to a C*-subalgebra D is multiplicative if and only if φ
is a D-bimodule map.

Theorem 5.3.1. Let {Ai}i∈I be a family of unital operator algebras containing a common
unital C*-algebra D with 1Ai = 1D, and let φi : Ai → B(H) be unital completely contractive
D-bimodule maps that agree on D. Then there exists a unital completely contractive map
φ : ∗̂
D
Ai → B(H) such that φ ◦ ιi = φi for all i ∈ I.

Proof. We construct multiplicative dilations of φi which agree on D, so that the compres-
sion of their free product to H yields a unital completely contractive joint extension φ as
in the statement of the theorem.

First, we set H1 := H and φ
(1)
i := φi. By the Arveson-Stinespring dilation theorem we

may dilate each of these to a completely contractive homomorphism from Ai to B(H1 ⊕
K(i)

1 ). Denote by ρ
(1)
i this dilation of φi, so that φi(a) = PH1ρ

(1)
i (a)|H1 . We note that since

D is a C*-algebra, and each φ
(1)
i is multiplicative on D, the space K(i)

1 is reducing for ρ
(1)
i |D,

so that for all d ∈ D we have

ρ
(1)
i (d) = φ

(1)
i (d)⊕ PK(i)

1
ρ

(1)
i (d)|K(i)

1
.
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Now suppose we have a sequence of subspaces

H1 ⊆ H2 ⊆ · · · ⊆ Hn

such that for all 1 ≤ m ≤ n we have unital completely contractive D-bimodule maps φ
(m)
i :

Ai → B(Hm) that agree on D, along with multiplicative unital completely contractive

maps ρ
(m)
i : Ai → B(Hm ⊕K(i)

m ) that dilate each φ
(m)
i , so that for all d ∈ D we have

ρ
(m)
i (d) = φ

(m)
i (d)⊕ PK(i)

m
ρ

(m)
i (d)|K(i)

m

and for every j ∈ I the sequence of subspaces

H1 ⊕K(j)
1 ⊆ H2 ⊕K(j)

2 ⊆ · · · ⊆ Hm ⊕K(j)
m

is a sequence of reducing subspaces for ρ
(m)
j .

Denote by Hn+1 = Hn ⊕
⊕

i∈I K
(i)
n . Fix i ∈ I, and consider the map τi : D → B(K(i)

n )

given by τi(d) = PK(i)
n
ρ

(n)
i (d)|K(i)

n
. By applying Arveson’s extension theorem, followed by

a restriction, for any j ∈ I distinct from i, we may extend τi to a unital completely
contractive map σji : Aj → B(K(i)

n ). We define for all j ∈ I,

φ
(n+1)
j := ρ

(n)
j ⊕

⊕
j 6=i∈I

σji : Aj → B(Hn+1), (5.1)

so that Hn ⊕K(j)
n is a reducing subspace for φ

(n+1)
j . We then have for every d ∈ D that

φ
(n+1)
j (d) = φ

(n)
j (d)⊕

⊕
i∈I

PK(i)
n
ρ

(n)
i (d)|K(i)

n
.

Hence, since the maps {φ(n)
i }i∈I all agree on D, we have that the maps {φ(n+1)

i }i∈I all agree
on D.

We use Arveson’s extension, Stinespring’s theorem and the special form of φ
(n+1)
j in

equation (5.1) to obtain a multiplicative unital completely contractive map ρ
(n+1)
j : Aj →

B(Hn+1⊕K(j)
n+1) dilating φ

(n+1)
j such that each Hn⊕K(j)

n is a reducing subspace for ρ
(n+1)
j .

Hence, we then get that ρ
(n+1)
j (a)|Hm⊕K(j)

m
= ρ

(m)
j (a) for all 1 ≤ m ≤ n, and that for all

d ∈ D,
ρ

(n+1)
i (d) = φ

(n+1)
i (d)⊕ PK(j)

n+1
ρ

(n+1)
i (d)|K(j)

n+1
.
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Since for each j ∈ I and n ∈ N we have Hn ⊆ Hn ⊕ K(j)
n ⊆ Hn+1, we may define a

multiplicative unital completely contractive map ρj : Aj → B(K) on the inductive limit

of Hilbert spaces K =
∨
n∈NHn by specifying ρj(a)h = ρ

(n)
j (a)h for h ∈ Hn ⊕ K(j)

n . These
maps then agree on D, since for h ∈ Hn we have that

ρi(d)h = ρ(n+1)(d)h

=
(
φ

(n+1)
i (d)⊕ PK(i)

n+1
ρ

(n+1)
i (d)|K(i)

n+1

)
h

= φ
(n+1)
i (d)h

and as the maps {φ(n+1)
i }i∈I all agree on D and the union of Hn is dense in K, we have

that ρj(d) = ρi(d) for all i 6= j in I.

Hence, we may form the free product ρ := ∗̂
D
ρi : ∗̂

D
Ai → B(K) which satisfies ρ ◦ ιi = ρi,

and the compression of ρ to H would yield a joint unital completely contractive extension
φ as in the statement of the theorem.

The following allows us to identify Ai as a unital operator subalgebra of ∗̂
D
Ai via ιi.

Corollary 5.3.2. Let {Ai}i∈I be a family of unital operator algebras containing a common
unital C*-algebra D with 1Ai = 1D. Then for each i ∈ I the map ιi : Ai → ∗̂

D
Ai is

completely isometric. Hence, ∗̂
D
Ai is the pushout of {Ai}i∈I by D in the category of unital

operator algebras with unital completely contractive homomorphisms.

Proof. Fix j ∈ I and let φj : Aj → B(H) be a unital completely isometric homomorphism.
We may then restrict it to D and use Arveson’s extension theorem to extend to unital
completely contractive maps φi : Ai → B(H) for i ∈ I such that i 6= j. By Theorem 5.3.1
there is a joint unital completely contractive map φ : ∗̂

D
Ai → B(H) which we may then

dilate to a multiplicative map ρ : ∗̂
D
Ai → B(K). However, the compression of φ ◦ ιj to

H coincides with φj, which is a unital completely isometric map. Hence, ιj is completely
isometric.

In [19, Section 4], Blecher and Paulsen prove the complete injectivity of the free product
of operator algebras amalgamated over the complex numbers. We next prove this where
the amalgamation is over any common C*-algebra. This generalizes [3, Proposition 2.2]
due to Armstrong, Dykema, Exel and Li for free products of finitely many C*-algebras
amalgamated over a common C*-algebra.
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Proposition 5.3.3. The free product of unital operator algebras amalgamated over a com-
mon C*-subalgebra is completely injective. That is, if {Ai}i∈I and {Bi}i∈I are two families
of unital operator algebras containing a common C*-subalgebra D such that Ai is an oper-
ator subalgebra of Bi for every i ∈ I and 1Ai = 1Bi = 1D, then the inclusion ∗̂

D
Ai ⊆ ∗̂

D
Bi is

completely isometric.

Proof. Denote Â := ∗̂
D
Ai and B̂ := ∗̂

D
Bi. Let ιi : Bi → B̂ and κi : Ai → Â denote the natu-

ral completely isometric inclusions. Then the unital completely isometric homomorphisms
ιi|Ai : Ai → B̂ agree on D, so φ := ∗̂

D
(ιi|Ai) : Â → B̂ is a unital completely contrac-

tive homomorphism. Denote by ‖ · ‖B̂,n and ‖ · ‖Â,n the n norms on Mn(Â) and Mn(B̂)
respectively.

Evidently, it would suffice to show that ‖A‖Â,n ≤ ‖A‖B̂,n for every A ∈Mn(Â). To this

end, represent Â completely isometrically as a unital subalgebra of B(H) for some Hilbert
space H. By Arveson’s extension theorem the maps κi : Ai → Â ⊆ B(H) extend to unital
completely contractive maps κ̃i : Bi → B(H) which agree on D. By Theorem 5.3.1, there
exists a unital completely contractive map ψ : B̂ → B(H) such that ψ(ιi(bi)) = κ̃i(bi) for
all bi ∈ Bi which is completely isometric on Â. Hence, by Stinespring’s dilation theorem,
we may dilate it to a unital completely contractive homomorphism ψ̂ : B̂ → B(K). So for
A ∈Mn(Â), we have

‖A‖Â,n = ‖ψ(n)(A)‖ ≤ ‖ψ̂(n)(A)‖ ≤ ‖A‖B̂,n.

When {Ai}i∈I are all non-unital with a common non-unital C*-algebra D, we define
their free product ∗̂

D
Ai to be the operator algebra generated by the images of Ai inside the

free product of their unitization ∗̂
D1
A1
i amalgamated over the unitization D1. By Meyer’s

theorem and the proof of [3, Lemma 2.3], we similarly get that ∗̂
D1
A1
i coincides with the

unitization (∗̂
D
Ai)1. Using this, it follows that the non-unital free product shares the anal-

ogous pushout universal property and complete injectivity described above, just as in the
unital case.

Using complete injectivity, for operator algebra {Ai}i∈I with a common C*-subalgebra
D we can freely identify ∗̂

D
Ai as a subalgebra of ∗̂

D
Bi, where Bi is any C*-cover for Ai. We

henceforth abuse notations and denote ∗
D
Ai instead of ∗̂

D
Ai.
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Complete injectivity for free products of not-necessarily unital operator algebras was
used implicitly in [47] by Duncan to show that the free product of graph tensor algebras
embeds inside the free product of associated Toeplitz and Cuntz-Krieger algebras. In [32,
Theorem 5.3.20] Davidson, Kakariadis and Fuller filled a gap introduced by Duncan in [46,
Section 3, Theorem 1], and proved his claim [32, Theorem 5.3.21]. Our complete injectivity
result provides another way of addressing issues of this sort.

Next, we describe a joint unital completely positive extension in the context of free
products of C*-algebras, with a special multiplicative property due to Boca.

Suppose {Bi}i∈I is a family of unital C*-algebras containing a common C*-subalgebra
D with 1Bi ∈ D, and let Ei : Bi → D be conditional expectations. Then Bi = D ⊕ KerEi
where the sum is in the D-bimodule sense. Denote B0

i := KerEi. Then as D-bimodules
we have that

∗
D
Bi = D ⊕

⊕
n≥1

⊕
i1 6=···6=in

B0
i1
⊗D · · · ⊗D B0

in .

In [21, Theorem 3.1] Boca shows that if φi : Bi → B(H) are D-bimodule unital completely
positive maps that agree on D, then there is a D-bimodule unital completely positive map
φ : ∗
D
Bi → B(H) with the additional multiplicative property that for b1 ∈ B0

i1
, . . . , bn ∈ B0

in

with i1 6= i2 6= · · · 6= in we have

φ(b1 ∗ · · · ∗ bn) = φi1(b1) · · ·φin(bn).

Proposition 5.3.4. Let {Ai}i∈I be a family of either all unital, or all non-unital operator-
algebras, each generating a C*-algebra Bi and containing a common C*-algebra D (which
has a common unit to Ai in the unital case).

1. If πi : Bi → B(H) are ∗-representations that agree on D such that πi|Ai has the unique
extension property when restricted to Ai, then the restriction of their free product ∗

D
πi

to ∗
D
Ai has the unique extension property.

2. If additionally we have conditional expectations Ei : Bi → D, such that Ai = D ⊕
(Ai ∩KerEi) as a D-bimodule, then we have the converse. That is, if the restriction
of a ∗-representation π : ∗

D
Bi → B(H) to ∗

D
Ai has the unique extension property, then

for every i ∈ I the restrictions of the ∗-representations πi := π ◦ ιi : Bi → B(H) to
Ai has the unique extension property.

Proof. We prove the non-unital case, where the unital case is similarly established.
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To show (1), suppose that for every i the map πi|Ai has the unique extension property.
Denote A = ∗

D
Ai and π := ∗

D
πi. Suppose τ is a completely contractive completely positive

extension of π|A. Then each τi := τ ◦ ιi is a completely contractive completely positive
extension of πi|Ai , hence τi = πi. Since each Bi belongs to the multiplicative domain of τ ,
by [24, Proposition 1.5.7], the multiplicative domain of τ is a ∗-subalgebra of ∗

D
Bi generated

by {Bi}i∈I and hence must be equal to ∗
D
Bi, so that τ = π.

Next, to show (2), let τi : Bi → B(H) be a completely contractive completely positive
extension of πi|Ai . By [24, Proposition 1.5.7] we have that D is in the multiplicative domain
of τi, and so τi must be a D-bimodule map. By Meyer’s theorem we may extend each τi
to a unital completely positive map τ 1

i on B1
i . By Boca’s theorem there exists a unital

D-bimodule completely positive map τ 1 := ∗
D1
τ 1
i : ∗
D1
B1
i → B(H) such that τ 1 ◦ ιi = τ 1

i and

such that for b1 ∈ KerE1
i1

= KerEi1 , . . . , bn ∈ KerE1
in = KerEin with i1 6= i2 6= · · · 6= in

one has
τ(b1 ∗ · · · ∗ bn) = τi1(b1) · · · τin(bn).

Hence, τ = τ 1|∗
D
Bi is a joint completely contractive completely positive extension of τi

with the same multiplicative property as above. Now, since each Ai is generated as a D-
bimodule byA0

i := Ai∩KerEi andD, every monomial in {Ai}i∈I can always be written as a
polynomial in {A0

i }i∈I with coefficients in D, so that τ and π must coincide on polynomials
in {Ai}i∈I . Hence, we see that τ |A = π|A. Since π|A has the unique extension property we
have that τ = π, so that τi = τ ◦ ιi = π ◦ ιi = πi.

5.4 Full Cuntz-Krieger dilation for free families

In this section we will write G = (V,E) for a directed graph, where the source and range
maps are understood implicitly. Let G = (V,E) be a directed graph. A function c : E → I
is an I-coloring of edges of G, and we define an I-colored graph to be the triple (V,E, c).
Given such a colored directed graph (V,E, c), we denote Ei = c−1(i).

Let G = (V,E, c) be an I-colored directed graph and H a Hilbert space. A Toeplitz-
Cuntz-Krieger I-colored family on H is a pair (P, S) comprised of a operators P := {Pv :

v ∈ V } on H and an I-tuple of sets of operators S := {S(i)}i∈I on H with S(i) := {S(i)
e :

e ∈ c−1(i)} such that each (P, S(i)) is a TCK family for (V,Ei) for each i ∈ I.

We say that (P, S) is a Cuntz-Krieger I-colored family / full Cuntz-Krieger I-colored
family if, in addition, each (P, S(i)) is a a CK / full CK family for (V,Ei) for each i ∈ I
respectively.
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From here on out, for a given set of vertices V , we set V := C0(V ). We will identify
V with C∗({Pv}) for some (all) TCK or CK I-colored families (P, S) where Pv 6= 0 for all
v ∈ V and any colored graph G with V as its set of vertices.

Given a colored directed graph G = (V,E, c), let Gi = (V, c−1(i)) be the graph of color
i ∈ I. By compounding universal properties, it is easy to see that TCK I-colored families
are in bijection with ∗-representations of the free product ∗

V
T (Gi) over i ∈ I and that CK

I-colored families are in bijection with ∗-representations of the free product ∗
V
O(Gi) over

i ∈ I. We will call a ∗-representation of either ∗
V
T (Gi) or ∗

V
O(Gi) full Cuntz-Krieger if its

associated TCK I-colored family is is a full CK I-colored family.

As we saw in item (2) of Proposition 5.3.4, the existence of conditional expectations to
the common subalgebra is desirable, so as to apply results that require the use of Boca’s
Theorem. In [2], for the purpose of defining certain reduced free products of graph C*-
algebras, it was shown that faithful conditional expectations exist from O(G)→ V when G
is row-finite. When G is not necessarily row-finite, we can build conditional expectations
on the level of the Toeplitz algebras T (G) instead.

Using the left regular representation π` : T (G) → B(HG) given via the TCK family
(P, S) as in the beginning of Section 5.2, we may define for each vertex v ∈ V a norm
one positive functional ϕv on T (G) by ϕv(a) = 〈π`(a)ξv, ξv〉. Hence, we may define a
contractive map ΨV : T (G)→ B(HG) by way of

ΨV (a) = sot-
∑
v∈V

ϕv(a) · Pv.

Next, since each a ∈ T (G) is a norm limit of polynomials in {pv}v∈V and {se}e∈E, where
(p, s) is a TCK family generating T (G), and since for each monomial m ∈ T (G) we have
ϕv(m) is non-zero for at most one vertex, we see the sot-sum above is in fact a norm-
convergent-sum for every a ∈ T (G). Hence, since the restriction of Ψv to C∗({pv}) is a
∗-homomorphism, the range of ΨV is the C*-algebra C∗(P ) generated by {Pv}v∈V , which
is isomorphic to C∗({pv}) ⊆ T (G) via the isomorphism θ mapping Pv to pv. Hence, the
composition ΦV = θ ◦ ΨV is a contractive idempotent. By a theorem of Tomiyama [24,
Theorem 1.5.10], we have that ΦV : T (G) → T (G) is a conditional expectation onto
C∗({pv}) ∼= V .

We next characterize those representations of the free product of Toeplitz graph algebras
with the unique extension property when restricted to the free product of graph tensor
algebras. Recall that for countable directed graphs {Gi}i∈I on the same vertex set V ,
by Proposition 5.3.3, we have that the embedding of ∗

V
T+(Gi) in ∗

V
T (Gi) is completely

isometric, so we may identify the former as a subalgebra of the latter.
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Proposition 5.4.1. Let {Gi}i∈I be a collection of countable directed graphs on the same
vertex set V , and let π : ∗

V
T (Gi) → B(H) be a ∗-representation. Then π|∗

V
T+(Gi) has the

unique extension property if and only if for each i ∈ I the ∗-representation πi := π|T (Gi) is
full CK with respect to Gi.

Proof. The above constructed conditional expectation satisfies the conditions of item (2)
in Proposition 5.3.4. Hence, π : ∗

V
T (Gi)→ B(H) has the unique extension property if and

only if each πi has the unique extension property. Thus, by Theorem 5.2.5, this occurs if
and only if each πi is a full CK with respect to Gi.

We apply Proposition 5.4.1 to draw a dilation result that generalizes Corollary 5.2.7.

Corollary 5.4.2. Let G = (V,E, c) be an I-colored directed graph, and let (P, S) be a TCK
I-colored family on H. Then there exists a full CK I-colored family (Q, T ) on a Hilbert
space K containing H, such that f(P, S) = PHf(Q, T )|H for any polynomial f ∈ C〈V,E〉
in non-commuting variables.

Proof. Let πP,S : ∗
V
T (Gi) → B(H) be the ∗-representation associated to (P, S). By [45,

Theorem 1.2] we can dilate πP,S|∗
V
T+(Gi) to a maximal completely contractive homomorphism

τ : ∗
V
T+(Gi)→ B(K). Without loss of generality, H is a subspace of K. Let ρ : ∗

V
T (Gi)→

B(K) be its unique extension to a ∗-representation, and (Q, T ) the associated TCK I-
colored family of ρ. As τ has the unique extension property, by Proposition 5.4.1 we
must have that (Q, T ) is full CK I-colored family, and as τ dilates πP,S|∗

V
T+(Gi), we have

that every polynomial f ∈ C〈V,E〉 in non-commuting variables must satisfy f(P, S) =
PHf(Q, T )|H.

The following result mirrors [115, Proposition 1.6] on the existence of maximal fully
co-isometric summands, but when restricting to the context of directed graphs our result
is more general as it requires no relations between families of different color.

Corollary 5.4.3. Let G = (V,E, c) be an I-colored directed graph, and let (P, S) be a TCK
I-colored family on H. Then there is a unique maximal common reducing subspace K for
operators in (P, S) such that (P, S)|K is a full CK I-colored family.

Proof. Let πP,S be the ∗-representation associated to (P, S). By Proposition 2.1.3 there
is a unique largest reducing subspace K for πP,S such that ρ : ∗

V
T (Gi) → B(K) given
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by ρ(b) = πP,S(b)|K has the unique extension property when restricted to ∗
V
T+(Gi). By

Proposition 5.4.1, we see that the associated TCK I-colored family (P, S)|K is in fact a
full CK I-colored family, and K is a unique maximal common reducing subspace with this
property.

Denote by HV =
⊕

v∈V Hv a Hilbert space direct sum of separable infinite dimensional
Hilbert spaces Hv. Then V ∼= C∗({pv}) can be represented on HV by mapping pv to the
projection Pv onto Hv, and if ρ : T (Gi) → B(H) is a non-degenerate representation such
that ρ|C∗({pv}) : V ∼= C∗({pv}) → B(H) where ρ(pv)H is infinite dimensional for each
v ∈ V , then ρ is unitarily equivalent to a representation on HV where ρ(pv) = Pv is the
projection onto Hv.

As mentioned earlier, assuming complete injectivity and when all Gi are row-finite,
Duncan [47, Proposition 4.4] explained how ∗

V
T+(Gi) has the unique extension property in

∗
V
O(Gi). We next prove this while providing the converse.

Theorem 5.4.4. Let {Gi}i∈I be a collection of countable directed graphs over the same
vertex set V . Then the quotient map q : ∗

V
T (Gi) → ∗

V
O(Gi) is completely isometric on

∗
V
T+(Gi). Hence C∗e (∗

V
T+(Gi)) is a quotient of ∗

V
O(Gi).

Moreover, we have that each Gi is row-finite if and only if ∗
V
T+(Gi) has the unique

extension property in ∗
V
O(Gi). In particular, in this case we have C∗e (∗

V
T+(Gi)) ∼= ∗

V
O(Gi).

Proof. As T+(Gi) can be identified as a subalgebra of O(Gi) via the image of the quotient
map qi : T (Gi)→ O(Gi), by Proposition 5.3.3, we see that ∗

V
T+(Gi) can be identified as a

subalgebra of ∗
V
O(Gi) via the image of q = ∗

V
qi.

For the second part, suppose each Gi is row-finite. Let π : ∗
V
O(Gi) → B(H) be a

∗-representation. Then π ◦ q is a ∗-representation of ∗
V
T (Gi), and by invariance of the UEP

it will suffice to show that (π ◦ q)|∗
V
T+(Gi) has the UEP. By Proposition 5.4.1, this happens

if and only if πi ◦ qi is full CK. However, as each Gi is row-finite, Theorem 5.2.5 implies
that each πi ◦ qi : T (Gi) → B(H) is full CK. Hence, ∗

V
T+(Gi) has the unique extension

property in ∗
V
O(Gi).

For the converse, assume one of {Gi}i∈I is not row-finite. We will construct a ∗-
representation of ∗

V
O(Gi) that lacks the unique extension property when restricted to
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∗
V
T+(Gi). Indeed, by Theorem 5.2.9 there is some j ∈ I for which there is a CK rep-

resentation ρj : T (Gj) → B(H) that is not a full CK representation, and up to inflating

H we may assume ρj = ρ
(∞)
j . For i ∈ I different from j, let ρi : T (Gi) → B(H) be

any representation annihilating the Cuntz-Krieger ideal J (Gi) for which ρi(pv) 6= 0 for all

v ∈ V . Again up to inflating H we may assume ρi = ρ
(∞)
i . In this case for all i ∈ I the

representation ρi is unitarily equivalent to a representation on HV where ρi(pv) is mapped
to the projection Pv. In this case the free product ∗

V
ρi is well-defined, and by Proposition

5.4.1 ∗
V
ρi does not have the unique extension property when restricted to ∗

V
T+(Gi) while

still annihilating J = 〈J (Gi)〉i∈I , so that it induces a representation ∗
V
ρ̇i on ∗

V
O(Gi) that

does not have the unique extension property.
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Chapter 6

Dilations, inclusions of MCS, and
completely positive maps

6.1 Introduction

This chapter is based on joint work with Davidson, Shalit and Solel in [31], and was inspired
by a series of papers by Helton, Klep, McCullough and others on the advantages of using
matrix convex sets when studying linear matrix inequalities (LMI). In particular, Helton,
Klep and McCullough [63] showed that the matricial positivity domain of an LMI contains
the information needed to determine minimal LMI up to unitary equivalence. We were
particularly interested in a recent paper by these authors and Schweighofer [64] who dilate
d-tuples of Hermitian matrices to commuting Hermitian matrices in order to obtain bounds
on inclusions of the matrix cube inside other spectrahedra up to a scaling. The two central
problems that attracted our attention are the following.

Problem 6.1.1. Given two d-tuples of operators A = (A1, . . . , Ad) ∈ B(H)d and B =
(B1, . . . , Bd) ∈ B(K)d, determine whether there exists a unital completely positive (UCP)
map φ : B(H)→ B(K) such that φ(Ai) = Bi for all i = 1, . . . , d.

Problem 6.1.2. Given two matrix convex sets S and T , and given that S1 ⊆ T1, determine
whether S ⊆ rT for some constant r.

These problems were treated by Helton, Klep, McCullough, Schweighofer, and by oth-
ers. Our goal is to approach these problems from a categorical perspective, and to sharpen,
generalize and unify existing results. While Helton et. al. tend to deal with d-tuples of
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real Hermitian matrices, we have chosen to work in the context of d-tuples of matrices or
operators on complex Hilbert spaces (it seems that with a little care our methods are ap-
plicable to the setting of symmetric matrices over the reals). Moreover we simultaneously
consider self-adjoint and non-self-adjoint matrix convex sets.

Duality plays a central role in our work, but takes a somewhat different character. We
find that a more natural object to associate to a d-tuple of matrices of bounded operators is
the matrix range introduced by Arveson [6] in the early days of non-commutative dilation
theory (see Subsection 2.4.1).

Matrix ranges are ideally suited to describe the possible images of a d-tuple under UCP
maps. This was established by Arveson in the single-variable case, and easily extends
to the multivariable situation. We use this to obtain, in Section 6.2, a functorial duality
between the category of finite dimensional operator systems with UCP maps and closed and
bounded matrix convex sets with matrix-affine maps. In particular, we obtain a complete
description of when a d-tuple of operators can be mapped onto another by a UCP map,
treating Problem 6.1.1.

The basic result is that there is a UCP map as in Problem 6.1.1 if and only if W(B) ⊆
W(A), where W(A) and W(B) denote the matrix ranges of A and B, respectively (see
Corollary 6.2.7). This turns out to be a very specific case of this much wider duality of
categories (See Propositions 6.2.4 and 6.2.5, and Theorem 6.2.6).

In Section 6.3 we discuss minimal and maximal matrix convex sets determined by
a convex set at the first level (in Cd), along with polar duality in the sense of Effros
and Winkler [49]. Minimal and maximal matrix convex sets correspond to minimal and
maximal operator system structures on Archimedean order unit spaces as studied by [100],
and we give a description for them in Theorem 6.3.1. We relate minimal and maximal
matrix convex sets with duality, and show that duality of matrix convex sets essentially
corresponds to duality of operator systems (See Theorem 6.3.11 and Corollary 6.3.12).
Using duality, in Theorem 6.3.15 we relate Problem 6.1.1 back to free spectrahedra, and
generalize results of many authors (See for instance [1, 62, 63, 66, 68]).

In Section 6.4 we figure out the extent to which a d-tuple of operators is determined by
its matrix range. We show that a d-tuple A of compact operators can always be compressed
to a minimal tuple that has the same matrix range. We characterize minimal tuples of
compact operators in terms of their multiplicity and C*-envelope, and show that a minimal
tuple of compact operators is determined by its matrix range up to unitary equivalence. We
also treat the opposite case of a d-tuple of operators that generates a C*-algebra with no
compact operators. When combining our approach with Voiculescu’s Weyl-von Neumann
Theorem, we show that under suitable conditions on the C*-envelope, the matrix range
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determines a d-tuple up to approximate unitary equivalence.

The remainder of the paper deals with Problem 6.1.2. A key ingredient is the construc-
tion of commuting normal dilations, following [64]. In [64, Theorem 1.1] it was established
that all symmetric m×m matrices can be simultaneously dilateed up to a scale factor to
a family F of commuting Hermitian contractions on a Hilbert space H, in the sense that
there is a constant r and an isometry V : Rm → H so that for every symmetric contraction
S ∈ Mm(R), there is some T ∈ F such that rS = V ∗TV . In this result, it is crucial that
m is fixed. We provide counterparts of this result that are independent of the ranks of the
dilated operators.

In Section 6.5 we discuss the general problem of scaled inclusion as in Problem 6.1.2.
We provide several useful equivalent conditions for solving this Problem with a scaling
constant r in terms of minimal and maximal matrix convex sets and commuting dilations
(See Theorems 6.5.3 and 6.5.4). As an application, we show that solving Problem 6.1.2
with constant r yields a uniform upper-bound of 2r − 1 on the completely bounded norm
of unital (not-necessarily completely) positive maps between associated operator systems
(See Corollary 6.5.5).

Section 6.6 is devoted to finding concrete scales r for Problem 6.1.2. We show that for
every d-tuple of contractive operators X = (X1, . . . , Xd) on a Hilbert space H, there is a
normal commuting family of contractive operators T = (T1, . . . , Td) on a Hilbert space K
and an isometry V : H → K such that 1

2d
Xi = V ∗TiV (or 1

d
Xi = V ∗TiV for self-adjoints)

for all i (See Corollary 6.6.5).

In the self-adjoint context we are able to provide variants of this dilation result under
different symmetry conditions. In particular, if X lies in some matrix convex set S, then
under some symmetry conditions we can construct a commuting normal dilation T such
that the spectrum σ(T ) of T is contained in d · S1. This is used to obtain scaled inclusion
results for new matrix convex sets.

For example, in Theorem 6.6.3 we show that if A and B are two d-tuples of self-adjoint
operators, and if DsaA and DsaB denote the free self-adjoint spectrahedra determined by A
and B, then under some symmetry assumptions on the set DsaA (1) ⊆ Rd, we have

DsaA (1) ⊆ DsaB (1) =⇒ DsaA ⊆ dDsaB . (6.1)

We provide a rich class of convex sets to which our dilation and inclusion results can
be applied. We show that if K is a convex set in Rd that is invariant under the projection
onto an isometric tight frame, then for self-adjoint matrix convex sets S and T such that
S1 = K, we have the implication

K ⊆ T1 =⇒ S ⊆ dT . (6.2)
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We then use this result to show that when K is the convex hull of a vertex-reflexive
isometric tight frame (See Definition 6.6.13), invariance of K under projections onto the
isometric tight frame defining K is automatic, so that the implication in equation (6.2)
holds. Hence, not only can we obtain inclusion results as in equation (6.2) when the ground
level K is the (hyper)-cube [−1, 1]d, we can in fact obtain inclusion results as in equation
(6.2) when K is any real regular polytope (See Theorem 6.6.16).

In Section 6.7 we study inclusion problems where the ground floor K is the real unit
ball Bd. We show there is a self-dual matrix convex set S = (Sn) defined by

Sn =
{
X ∈ (Mn)dsa :

∥∥∑
i

Xi ⊗X i

∥∥ ≤ 1
}
.

We find that for all self-adjoint matrix convex sets S of d-dimensions,

S1 ⊆ Bd =⇒ S ⊆
√
dS

and
Bd ⊆ S1 =⇒ S ⊆

√
dS.

Moreover, the constant
√
d is the optimal constant in both implications (see Theorem

6.7.7). In fact, in both implications one may replace S with the matrix ball B = {X ∈
∪(Mn)dsa :

∑
iX

2
i ≤ I}.

In [95] an operator system structure SOH(d) was constructed from Pisier’s self-dual
operator space by adding a unit. It was shown that the completely bounded norm of a
complete order isomorphism between it and its dual, with the dual operator space structure,
must be at least 2, and that 2 is realized by a complete order isomorphism that maps a
certain canonical self-adjoint basis {I,H1, ..., Hd} to its dual basis. As a final application,
in Section 6.7 we show that for H = (H1, ..., Hd), the matrix range W(H) is equal to S,
and that SOH(d) is the unique operator system of dimension d + 1 that has such a basis
{I, T1, ..., Td} for which W(T ) is self-dual and closed under entry-wise conjugation (See
Theorem 6.7.9).

Here is a brief overview of the organization of this chapter. This Chapter contains
seven sections, including this introductory section. Section 6.2 provides the categorical
duality between matrix convex sets and finite dimensional operator systems, and contains
results on completely positive interpolation, connecting it to inclusion of matrix ranges.
Polar duality together with minimal and maximal matrix convex sets determined by the
first level are treated in Section 6.3, and the extent to which a d-tuple is determined by
its matrix range is discussed in Section 6.4. Equivalent conditions for having a scaled
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inclusion result are obtained in Section 6.5, along with an application to operator systems.
In Section 6.6, we establish our version of the dilation to commuting normal operators, and
provide a rich class of examples for which our results can be applied. Finally, in Section
6.7 we deal with the construction of a self-dual matrix ball based on an inequality due to
Haagerup, and obtain optimality for various matrix ball inclusions.

6.2 Operator systems and matrix convex sets

In this section we give a rendition of a functorial duality between finite dimensional operator
systems and matrix convex sets as defined in subsection 2.4.1. In its most general form,
this duality is attributed to Effros and Winkler [49]. However, it can be made simpler for
finite dimensional operator systems, and has been used implicitly for them in the literature
under various guises (See for instance [1, 55, 62, 63]). We were mainly inspired by the work
of Arveson on matrix ranges in [6] and the work of Helton, Klep and McCullough on linear
matrix inequalities in [63].

When C = [cij] ∈ Md′,d(C), and X = (X1, ..., Xd) ∈ B(H)d, we will denote by C(X) ∈
B(H)d

′
the d′-tuple of operators given by C(X) = (

∑
j cijXj). This is the same as applying

the matrix C to X thought of as a column vector.

When we have two matrix convex sets S in d-dimensions, and T in d′ dimensions, an
n-matrix-affine map φ : S → T is a sequence of maps φ = { φ(m) : Sm → Tm } such that

1. For A ∈ Sm1 and B ∈ Sm2 we have φ(m1+m2)(A⊕B) = φ(m1)(A)⊕φ(m2)(B) whenever
m1 +m2 ≤ n.

2. For any isometry V ∈Mm1,m2(C) andX ∈ Sm1 we have φ(m1)(V ∗XV ) = V ∗φ(m2)(X)V
for m1,m2 ≤ n.

We will say that a sequence φ := { φ(m) : Sm → Tm }∞m=1 is a matrix-affine map if φ is
n-matrix-affine for all n ∈ N.

Proposition 6.2.1. Let S and T be matrix convex sets in d and d′ dimensions respectively,
and let φ : S → T be an n-matrix-affine map. Then there exists C ∈ Md′,d(C) and a
vector c := (c1, ..., cd′) ∈ Cd

′
such that φ(m)(X) = C(X) + c · Id′ for any X ∈ Sm and

m ≤ n. In particular, if φ is matrix affine, then C ∈Md′,d(C) and c ∈ Cd′ above33 satisfy
φ(m)(X) = C(X) + c · Id′ for any X ∈ Sm and m ∈ N.
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Proof. When φ = {φ(m)} is n-matrix-affine, we see that φ1 is an affine map, so there exists
C ∈ Md′,d(C) and c ∈ Cd′ such that φ(1)(x) = C(x) + c. Hence, for any X ∈ Sm with
m ≤ n and norm-one column vector v ∈ Cm we have that v∗φ(m)(X)v = φ(1)(v∗Xv) =
C(v∗Xv) + c = v∗(C(X) + c · In)v. Since this identity will also hold for the coordinate-
wise adjoint, we see that the real and imaginary parts of each coordinate coincide, so that
φ(m)(X) = C(X) + c · Im.

We denote φC,c = {φ(m)
C,c } the matrix-affine map given by φ

(m)
C,c (X) = C(X) + cIm for

each X ∈ Sm. Depending on S, different C ∈ Md,d′(C) and c ∈ Cd′ may yield the same
matrix-affine map φC,c.

Definition 6.2.2. Let V be a finite dimensional operator system. A choice of coordinates
for V is a d-tuple of operators T = (T1, ..., Td) in V such that I, T1, ..., Td is a ∗-spanning
set for V. We say that this choice is self-adjoint if each Ti is self-adjoint.

When we have a choice of coordinates for an operator system V , we may form the
matrix range W(T ). The following proposition shows that the choice of coordinates is
irrelevant up to a matrix-affine bijection. We will say that two matrix convex sets S and
T are matrix-affine isomorphic if there exists a matrix affine map φ : S → T such that φn
is bijective. It follows from this that φ−1 = {φ−1

n } is also a matrix affine map.

Proposition 6.2.3. Let V be a finite dimensional operator system, and T = (T1, ..., Td)
and T ′ = (T1, ..., Td′) be two choices of coordinates for V. Then W(T ) and W(T ′) are
matrix-affine isomorphic.

Proof. We denote by I the matrix Archimedean order unit of V . First we show thatW(T )
is always matrix-affine isomorphic to the self-adjoint matrix rangeW(Re(T ), Im(T )) where

(Re(T ), Im(T )) = (Re(T1), ...,Re(Td), Im(T1), ..., Im(Td)).

Indeed, since Ti = Re(Ti) + i Im(Ti), by specifying the d× 2d matrix C = [cij] where

cij =


1 if j = i

i if j = i+ d

0 if j 6= i, i+ d.

We get that φC,0 :W(Re(T ), Im(T ))→W(T ) is a bijective matrix-affine map. Indeed, as
every UCP map preserves adjoints, if X = (X1, ..., Xd) ∈ W(T ), then (Re(X), Im(X)) ∈
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W(Re(T ), Im(T )) is the unique 2d-tuple in W(Re(T ), Im(T )) that gets mapped to X via
φC,0.

Thus, we may assume henceforth that both T and T ′ are self-adjoint. In particular, not
only are {I, T1, ..., Td} and {I, T ′1, ..., T ′d} ∗-spanning sets for V , they are in fact spanning
for V .

In this case we may write Ti = ai · I +
∑d′

j=1 aijT
′
j for each 1 ≤ i ≤ d. Hence, the

matrix A = [aij] and a = (a1, ...ad) makes φA,a into a matrix-affine map, where a matrix-
affine inverse for it is given by φB,b where B = [bji] and b = (b1, ..., bd′) are given from the

coefficients of some linear combinations T ′j = bj · I +
∑d

i=1 bjiTi.

From this proof we see that some choices of coordinates are better than others, for
instance, when T = (T1, ..., Td) is a self-adjoint choice of coordinates, we get that W(T ) is
a self-adjoint matrix convex set.

Denote by M = {Mn(C)}. Whenever we have a closed and bounded matrix convex set
S in d-dimensions, we define a finite dimensional operator system associated to it. The
∗-vector space is given by

A(S) = { f : S →M | f is matrix affine }.

It is then clear by Proposition 6.2.1 that the constant function 1 and the coordinate
functions zi : S → M given by zi(X1, ..., Xd) = Xi are matrix-affine functions that are
∗-spanning for the ∗-vector space A(S). Denote by M ⊗Mk = {Mn(C) ⊗Mk(C)}. Then
each element in Mk(A(S)) is identified with a function F : S →M⊗Mk given by

F (z) = A0 ⊗ Ik +
d∑
i=1

Ai ⊗ zi +
d∑
i=1

Bi ⊗ zi.

We define the cones

Mk(A(S))+ = { F ∈Mk(A(S))sa | F (X) ≥ 0 for X ∈ Sn }.

It is easy to verify that {Mk(A(S))+} is a matrix ordering on A(S) and since S is bounded,
we get that the constant function 1 is an Archimedean matrix order unit for this matrix
ordering. Hence, (A(S), {Mk(A(S))+},1) becomes a finite dimensional operator system.

Our next goal is to show that UCP maps of operator systems correspond to matrix
affine maps between matrix ranges.
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Proposition 6.2.4. Suppose V and W are finite dimensional operator systems, and V =
(V1, ..., Vd), W = (W1, ...,Wd′) are choices of coordinates for them.

1. If φ : V → W is a unital n-positive map, then the map φ∗ : W(W ) → W(V )
given for any UCP map ψ : W → Mm with m ≤ n by φ∗(ψ(W1), ..., ψ(Wd′)) =
(ψ ◦ φ(V1), ..., ψ ◦ φ(Vd)) is an n-matrix-affine map. In particular, if φ is a unital
completely positive map, then φ∗ is a matrix-affine map.

2. If φ is a complete order isomorphism, then φ∗ is a matrix-affine isomorphism.

3. If d = d′ and φ is a unital n-positive map such that φ(Vi) = Wi, then φ∗ = IdWn(W )

so that Wn(W ) ⊆ Wn(V ). In particular, when φ is also a unital completely positive
map, then W(W ) ⊆ W(V ). If additionally φ is a complete order isomorphism, then
W(W ) =W(V ).

Proof. It is easy to verify by definition that φ∗ is n-matrix-affine, so that item (1) follows.
Items (2) and (3) then also follow easily from item (1).

To reverse the picture, we start with given matrix convex sets and ask for induced
morphisms between their associated operator systems.

Proposition 6.2.5. Let S and T be bounded and closed matrix convex sets in d and d′

dimensions.

1. If φ : S → T is an n-matrix-affine map, then the map φ∗ : A(T ) → A(S) given by
φ∗(f) = f ◦ φ is a unital n-positive map. In particular, if φ is matrix-affine, then φ∗
is unital completely positive.

2. If φ is a matrix-affine isomorphism, then φ∗ is a complete order isomorphism.

3. Suppose d = d′ and that z = (z1, ..., zd) and w = (w1, ..., wd) are coordinate functions
for A(S) and A(T ) respectively. If φ = φI,0 is a matrix-affine map, then φ∗(zi) = wi.
If additionally φ is a matrix-affine isomorphism, then φ∗ is a unital complete order
isomorphism.

Proof. We show (1), where items (2) and (3) follow easily from (1). It is clear that φ∗ is
unital, so let F ∈ Mn(A(T ))+. For X ∈ Tm and m ≤ n, as F is self-adjoint, we have
F (X) = A0 ⊗ Im + Re(

∑d
i=1Ai ⊗Xi). Let Y ∈ Sm. Applying φ∗ we obtain

φ∗(F )(Y ) = F (φ(m)(Y )) = A0 ⊗ Im + Re(
d∑
i=1

Ai ⊗ φ(m)(Y )i)
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so as φ(m)(Y ) ∈ Tm we get that φ∗(F )(Y ) ≥ 0. Hence φ∗ is n-positive.

Theorem 6.2.6. Let (V , {Mn(V)+}, e) be a finite dimensional operator system, and S a
d-dimensional bounded and closed matrix convex set.

1. Suppose T = (T1, .., Td) is some choice of coordinates for V. Then the unital map
ϕ : V → A(W(T )) given by

ϕ(a0e+
d∑
i=1

aiTi + biT
∗
i ) = a01 +

d∑
i=1

aizi + bizi

is a complete order isomorphism.

2. There exists T ∈ B(H)d such that S =W(T ) and if z = (z1, .., zd) are the coordinate
functions for A(S), then we have S =W(z).

Proof. We start with item (1). Clearly ϕ is unital, so we need only show it is a complete
order isomorphism, and the rest will follow. Suppose A0, ..., Ad ∈ Mn(C) are given, such
that A0 ⊗ e+ Re(

∑d
i=1 Ai ⊗ Ti) is positive. Let X ∈ W(T ). Then there is a UCP map ψ :

V →Mn such that X = (ψ(T1), ..., ψ(Td)) so we see that F (z) = A0⊗In+Re(
∑d

i=1Ai⊗zi)
satisfies F (X) = (I ⊗ ψ)(A0 ⊗ e+

∑d
i=1Ai ⊗ Ti) ≥ 0 for any X ∈ W(T ).

Conversely, let F ∈Mn(A(W(T ))) be given by

F (z) = A0 ⊗ Ik +
d∑
i=1

Ai ⊗ zi +
d∑
i=1

Bi ⊗ zi

and suppose it satisfies F (X) ≥ 0 for all X ∈ W(T ). Embed V ⊆ B(H) unitally for some
Hilbert space H and take {Pα} to be an increasing net of projections onto finite dimensions
converging SOT to IH. Then clearly PαTPα = (PαT1Pα, ..., PαTdPα) ∈ W(T ) so that for
any α we have

A0 ⊗ Ik +
d∑
i=1

Ai ⊗ PαTiPα +
d∑
i=1

Bi ⊗ PαT ∗i Pα = F (PαTPα) ≥ 0.

By taking a limit through α we get that A0⊗ Ik +
∑d

i=1 Ai⊗Ti +
∑d

i=1Bi⊗T ∗i is positive.

Next we show item (2). For the first part, let {T (k)}∞k=1 be a dense sequence of points
in S, where each point appears infinitely many times, and consider T = ⊕kT (k) acting
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on H = ⊕kCnk , where T (k) ∈ Snk . As S is bounded, we have that T is a bounded
operator. Clearly S ⊆ W(T ) since W(T ) contains each T (k) and is closed. Denote by VT
the operator system generated by T . For the reverse inclusion, note that by our choice of
T , the intersection of C∗(VT ) with the compacts K(H) is trivial. Hence, by Voiculescu’s
theorem (e.g., [30, Lemma II.5.2]), we have that if ϕ ∈ UCP (VT ,Mn), there is a sequence
of isometries Vm : Cn → H such that

‖φ(Tj)− V ∗mTjVm‖
m→∞−−−→ 0 , j = 1, . . . , d.

But every Vm has the form Vm = (V
(k)
m )∞k=1 such that V

(k)
m : Cn → Cnk and

∑
k V

(nk)∗
m V

(nk)
m =

In, so limk→∞ ‖V (k)
m ‖ = 0. Therefore

V ∗mTjVm =
∑
k

V (k)∗
m T

(k)
j V (k)

m ,

where the sequence converges in norm. For a large enough finite set F ⊆ N, we have
‖
∑

k∈F V
(k)∗
m V

(k)
m − I‖ < 1, and hence KF :=

∑
k∈F V

(k)∗
m V

(k)
m must be invertible. Then,∑

k∈F

K
− 1

2
∗

F V (k)∗
m V (k)

m K
− 1

2
F = I,

so that
∑

k∈F K
− 1

2
∗

F V
(k)∗
m T

(k)
j V

(k)
m K

− 1
2

F is a genuine matrix convex combination of points in
S, converging (as F grows) to V ∗mTjVm. It then follows that V ∗mTVm ∈ S and so φ(T ) ∈ S.

For the last assertion of item (2), we know by item (1) that the UCP map sending Ti
to zi from VT to A(W(T )) = A(S) is a complete order isomorphism. Then by item (3) of
Proposition 6.2.4, we see that S =W(T ) =W(z) where z = (z1, ..., zd) are the coordinates
for A(S).

Combining Theorem 6.2.6 and Propositions 6.2.4 and 6.2.6, we see that there is a
contravariant duality between the category of finite dimensional operator systems with
unital completely positive maps, and the category of closed and bounded matrix convex
sets with matrix-affine maps.

We will denote by VA the operator system generated by a d-tuple of operators A =
(A1, ..., Ad) in B(H). We next sketch some equivalent formulations for the inclusion
W(B) ⊆ W(A) for d-tuples A ∈ B(H)d and B ∈ B(K)d. We denote by H(∞) = H⊕H⊕ ...
and for A ∈ B(H) we denote A(∞) = A⊕ A⊕ ... ∈ B(H(∞)).

Corollary 6.2.7. Let A = (A1, ..., Ad) ∈ B(H) and B = (B1, ..., Bd) ∈ B(K) be d-tuples
of operators. Then W(B) ⊆ W(A) if and only if there is a UCP map φ : VA → VB such
that φ(Ai) = Bi for all i = 1, ..., d.
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Theorem 6.2.8. Let A ∈ B(H)d and B ∈ B(K)d be d-tuples of operators on separable
Hilbert spaces. Then W(B) ⊆ W(A) if and only if there are isometries Vn : K → H(∞)

such that
lim
n→∞

‖Bi − V ∗nA
(∞)
i Vn‖ = 0, for 1 ≤ i ≤ d.

Moreover the isometries may be chosen so that B − V ∗nA(∞)Vn are in K(H)d. Moreover, if
C∗(VA) ∩ K(H) = {0} we can replace A(∞) with A in the above statement.

Proof. Suppose that W(B) ⊆ W(A). Then by Corollary 6.2.7 we have a UCP map φ :
VA → VB sending Ai to Bi. By Arveson’s extension theorem, there is a UCP extension
φ̃ : C∗(VA) → B(K). By Stinespring’s dilation theorem, there is a separable Hilbert
space L, an isometry V : K → L and a *-representation π : C∗(VA) → B(L) such

that φ̃(T ) = V ∗π(T )V . By Voiculescu’s Weyl-von Neumann theorem (e.g., [30, Theorem
II.5.3]), id(∞) ∼K(H) id(∞)⊕π, and if C∗(VA) ∩ K(H) = {0}, we can instead say that
id ∼K(H) id⊕π see [30, Lemma II.5.2], where id is the identity representation of C∗(VA).
This means that there is a sequence of unitaries Un : H(∞) → H(∞) ⊕ L so that

lim
n→∞

‖(T (∞) ⊕ π(T ))− UnT (∞)U∗n‖ = 0 for T ∈ C∗(VA),

and moreover the differences in the limit expression are all compact operators. Let J be
the natural injection of L into H(∞) ⊕ L. Then Vn = U∗nJV is a sequence of isometries of
K into H(∞) such that

lim
n→∞

Bi − V ∗nA
(∞)
i Vn

= lim
n→∞

V ∗J∗
(
A

(∞)
i ⊕ π(Ai)

)
JV − V ∗J∗UnA(∞)

i U∗nJV

= lim
n→∞

V ∗J∗
(
A

(∞)
i ⊕ π(Ai)− UnA(∞)

i U∗n
)
JV = 0;

and the differences are all compact. The converse is straightforward.

Motivated by a similar analysis of single operators in [29], we make the following defi-
nitions.

Definition 6.2.9. Define the distance of a d-tuple X = (X1, . . . , Xd) in Md
n (or B(H)d)

from a subset Wn ⊆Md
n by

dn(X,Wn) = inf
W∈Wn

max
1≤i≤d

‖Xi −Wi‖.
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Then define the measure of containment of a matrix convex set S in another matrix convex
set T by

δT (S) = sup{dn(S, Tn) : S ∈ Sn, n ≥ 1}.

Also define the distance between two bounded matrix convex sets by

δ(S, T ) = max{δS(T ), δT (S)}.

We may define the semi-metric on B(H)d by

ρ(S, T ) = δ(W(S),W(T )), for S, T ∈ B(H)d.

It is easy to see that ρ is symmetric and satisfies the triangle inequality. However
distinct tuples can be at distance 0. This semi-metric is blind to multiplicity; that is,
ρ(T, T (∞)) = 0. The following proposition which describes when this occurs is immediate
from the definition and Corollary 6.2.7.

Proposition 6.2.10. For A,B ∈ B(H)d, the following are equivalent:

1. ρ(A,B) = 0.

2. W(A) =W(B).

3. There is a completely isometric UCP map of VA onto VB sending A to B.

We next proceed to prove an approximate version of Proposition 6.2.10.

Lemma 6.2.11. Let A ∈ B(H)d. Select a countable dense subset

{A(k) = (A
(k)
1 , . . . , A

(k)
d ) : k ≥ 1} of W(A)

and define Ã =
⊕

k≥1A
(k). Then ρ(A, Ã) = 0. Moreover if Ã′ is defined by another dense

subset {A′(k) : k ≥ 1}, then Ã′ ∼K(H) Ã.

Proof. That W(Ã) = W(A) was established in the proof of item (2) of Theorem 6.2.6,
so ρ(A, Ã) = 0 (actually, in the proof of item (2) of Theorem 6.2.6 we had an infinite
multiplicity version of Ã, but ρ is blind to multiplicity). For the second statement, we may
assume that A is not a d-tuple of scalars, as that case is trivial. Thus Wn(A) is a convex
set containing more than one point, and hence there are countably many of the A(k)s and
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A′(k)s in eachWn(A). As both are dense, given ε > 0, it is a routine combinatorial exercise
to find a permutation π of N such that

‖A(k) − A′(π(k))‖ < ε ∀k ≥ 1, and lim
k→∞
‖A(k) − A′(π(k))‖ = 0.

It follows that there is a unitary operator Uπ implementing this permutation so that

‖Ã− UπÃ′U∗π‖ < ε and Ã− UπÃ′U∗π ∈ K(H).

Thus Ã′ ∼K(H) Ã.

Theorem 6.2.12. Let A ∈ B(H)d and B ∈ B(K)d such that

δW(A)(W(B)) = r.

Then there is a UCP map ψ of VA into B(K) such that

‖ψ(Ai)−Bi‖ ≤ r for 1 ≤ i ≤ d.

Proof. Following Lemma 6.2.11, let B̃ =
⊕

k≥1B
(k) be a block diagonal operator in B(K̃)

with n×n summands dense inWn(B) for each n ≥ 1. For each k, select A(k) ∈ Wnk(A) so

that ‖B(k)
i −A

(k)
i ‖ ≤ r for all i. Let Ã =

⊕
k≥1A

(k) in B(K̃). Then by Proposition 6.2.10,

ρ(A⊕Ã, A) = 0. The map φ : B(H⊕K̃)→ B(K̃) given by compression to K̃ is a UCP map
that takes A⊕ Ã to Ã. Let ψ1 be the completely isometric map of VA onto VA⊕Ã and let ψ2

be the completely isometric map of VB̃ onto VB that take generators to generators. Then
letting ψ̃2 be the extension of ψ2 to B(K̃), ψ = ψ̃2φψ1 is the desired UCP map satisfying

‖ψ(Ai)−Bi‖ ≤ r for 1 ≤ i ≤ d.

6.3 Maximal, minimal and dual structures

In this section we will describe the smallest and largest matrix convex sets with a given
ground floor. A d-tuple X ∈ Md

n is a compression of A ∈ B(H)d if there is an isometry
V : Cn → H such that Xi = V ∗AiV for 1 ≤ i ≤ d. On the flip side, we will say that A
dilates X when X is a compression of A. Recall that a d-tuple N = (N1, ..., Nd) will be
called normal if it is comprised of normal commuting operators, and that σ(N) denotes
the joint spectrum of N .
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Suppose S is a d-dimensional closed and bounded matrix convex set. We saw that
A(S) is an operator system, but we may “forget” about the matrix ordering on V := A(S)
and see (A(S),A(S)+,1) only as an Archimedean order unit space. Hence, there are
minimal and maximal operator structures OMIN(V) and OMAX(V) on it as described in
Subsection 2.4.2, such that the identity on V is a unital completely positive map from
OMAX(V) into V , and from V into OMIN(V). Using Proposition 6.2.4 we get two matrix
convex sets Wmin(S1), and Wmax(S1) with ground level S1 such that Wmin(S1) ⊆ S and
S ⊆ Wmax(S1). Hence, to any given ground level compact convex set K ⊆ Cd and a closed
matrix convex set S (which is automatically bounded) with S1 = K, there are Wmin(K),
and Wmax(K) such that

Wmin(K) ⊆ S ⊆ Wmax(K).

We give useful descriptions of Wmin(K) and Wmax(K) in terms of K. When K is a
compact subset of Cd, it is the intersection of all half spaces containing K of the form

H(α, a) = { x ∈ Cd | Re(
d∑
i=1

αixi) ≤ a }

with αi ∈ C and a ∈ R. Moreover, when A ∈ B(H)d, then W1(A) ⊆ H(α, a) if and only if
Re(
∑d

i=1 αiAi) ≤ aI.

Theorem 6.3.1. Let K be a compact convex subset of Cd. Then

Wmin
n (K) = { X ∈Md

n | X dilates to N normal and σ(N) ⊆ K }

and

Wmax
n (K) = { X ∈Md

n | Re(
d∑
i=1

αiXi) ≤ aIn, when K ⊆ H(α, a) }.

Proof. Clearly the right hand sides in both characterizations are matrix convex with ground
level K, so that one inclusion in each characterization is always immediate.

For the other inclusion in the minimal characterization, let X ∈ Md
n be with normal

dilation N such that σ(N) ⊆ K. By Theorem 2.4.6, W(N) is the smallest matrix convex
set containing σ(N), so that W(N) ⊆ Wmin(K), and we get X ∈ W(N) ⊆ Wmin(K).

For the other inclusion in the maximal characterization, if X ∈ Wmax(K), and H(α, a)
is a half-space containing K, since W(X) ⊆ Wmax(K) we have that W1(X) ⊆ K so that
Re(
∑d

i=1 αiXi) ≤ aIn for any half space H(α, a) that contains K. Hence, we obtain the
other inclusion for the maximal characterization.
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Corollary 6.3.2. Let N be a normal d-tuple, and denote K = W1(N). Then W(N) =
Wmin(K).

Proof. Clearly Wmin(K) ⊆ W(N). However, by Arveson’s extension theorem we may
extend any UCP map φ : VN →Mn to a UCP map on C∗(I,N), and then by Stinespring’s
dilation theorem it has the form φ(T ) = V ∗π(T )V for an isometry V : Cn → H, and
some unital ∗-representation π : C∗(I,N) → B(H). Hence, π(N) = (π(N1), ..., π(Nd))
is a normal commuting tuple that dilates φ(N) = (φ(N1), ..., φ(Nd)) for any UCP map
φ : VN →Mn, and we obtain the reverse inclusion.

Corollary 6.3.3. Suppose S is a matrix convex set such that S1 ⊆ rDd where Dd is the
closed polydisc. Then S is bounded by 2r in the sense that ‖Xi‖ ≤ 2r for all X ∈ S and
1 ≤ i ≤ d.

Proof. By Proposition 2.4.2 we know that S is bounded. Since S ⊆ rDd and

rDd = { z = (z1, ..., zd) ∈ Cd | Re(λzi) ≤ r, ∀λ ∈ T },

for every X ∈ Wmax(rBd) we have that ‖Xi‖ ≤ ‖ReXi‖ + ‖ ImXi‖ = ‖ReXi‖ +

‖Re(iXi)‖ ≤ 2r, and we get that S ⊆ Wmax(rDd) ⊆ 2rD(d) where D(d) is the matrix
polydisc. Hence ‖Xi‖ ≤ 2r for every X ∈ S and 1 ≤ i ≤ d.

Next, we will discuss dual matrix convex sets in the sense of Effros and Winkler [49].
Suppose S is a matrix convex set in d-dimensions. Then we define S◦ by

S◦n = { X ∈Md
n | Re(

d∑
i=1

Ai ⊗Xi) ≤ I ∀A ∈ S }

and in case S is self-adjoint we define S• by

S•n = { X ∈ (Mn)dsa |
d∑
i=1

Ai ⊗Xi ≤ I ∀A ∈ S }.

Then S◦ and S• are closed matrix convex sets containing 0, and by [49, Lemma 5.1]
S◦n and S•n are determined by all A ∈ Sn in level n. Moreover, by the Effros–Winkler
bipolar theorem, we know that if 0 ∈ S, then S◦◦ = S. We also have this for self-adjoint
matrix convex sets and self-adjoint polar duals. For a d-tuple X = (X1, ..., Xd) we denote
Re(X) = (Re(X1), ...,Re(Xd)).
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Proposition 6.3.4. Let S be a closed self-adjoint matrix convex set. Then

S•n = { Re(X) | X ∈ S◦n }.

Furthermore, if 0 ∈ S, we get that S•• = S.

Proof. If X ∈ S• then X = Re(X) so that for any A ∈ S we have

Re(
d∑
i=1

Ai ⊗Xi) =
d∑
i=1

Re(Xi)⊗ Ai ≤ I

and X ∈ S◦. Conversely, as each A ∈ S is self-adjoint, the same equality above shows that
Re(X) ∈ S•.

Next, assume that 0 ∈ S. Then clearly S ⊆ S••. Since we know that S = S◦◦, it will
suffice to show that S•• ⊆ S◦◦. So let X ∈ S••n . Then X ∈ (S•)◦ ∩ (Mn)dsa so that

Re(
d∑
i=1

Ai ⊗Xi) =
d∑
i=1

Ai ⊗Xi ≤ I

for all A ∈ S•n. So if B ∈ S◦n, we have Re(B) ∈ S•n. Hence, as X is self-adjoint,

Re(
d∑
i=1

Bi ⊗Xi) =
d∑
i=1

Re(Bi)⊗Xi ≤ I

and we get that X ∈ S◦◦.

We next show that matrix ranges and free operator spectrahedra are essentially duals
of each other.

Proposition 6.3.5. Let A ∈ B(H)d and B ∈ B(H)dsa. Then

(W(A) ∪ {0})◦ =W(A)◦ = DA and (W(B) ∪ {0})• =W(B)• = DsaB .

If furthermore we have 0 ∈ W(A) and 0 ∈ W(B) then

D◦A =W(A) and (DsaB )• =W(B).
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Proof. We prove the self-adjoint claims, where the non-self-adjoint claims follow similarly
by taking real parts in the appropriate places.

First note that by definition of the dual, we have that (W(B) ∪ {0})• = W(B)•.
Next, if X ∈ DsaB (n) and φ ∈ UCP (VB,Mn), then by applying φ ⊗ id to the inequality∑d

i=1 Bi ⊗ Xi ≤ I we get that
∑d

i=1 φ(Bi) ⊗ Xi ≤ I so that X ∈ W(B)•n. Conversely,

if
∑d

i=1 φ(Bi) ⊗ Xi ≤ I for all φ ∈ UCP (VB,Mn), by [49, Lemma 5.1] we know this
occurs for all φ ∈ UCP (VB,Mk) and any k ∈ N. By letting φ range over all finite
dimensional compressions of B(H), we get that X ∈ DsaB . Finally, in case 0 ∈ W(B), by
using Proposition 6.3.4 we get that (DsaB )• =W(B).

We will say that 0 is an interior point for a matrix convex set S, and write 0 ∈ int(S),
if there exists δ > 0 such that if X = (X1, ..., Xd) ∈ Md

n with ‖Xi‖ < δ, then X ∈ Sn.
When S is self-adjoint, we will require that X ∈ Sn only for X ∈ (Mn)dsa with ‖Xi‖ < δ.

We then obtain the following relation between boundedness and 0 being interior for the
dual.

Proposition 6.3.6. Let S be a self-adjoint closed and bounded matrix convex set. Then
the following are equivalent:

1. 0 ∈ int(S).

2. 0 ∈ int(S1).

3. S• is bounded.

4. S•1 is bounded.

A similar statement holds without the assumption of self-adjointness, where the self-adjoint
dual is replaced by the regular dual.

Proof. We provide the proof in the self-adjoint case where the proof for the non-self-adjoint
case is done similarly. In this case, it is clear by Proposition 2.4.2 that (3) and (4) are
equivalent, and that (1) implies (2).

We will show that (3) implies (2) and that (1) implies (4) to finish the proof. First note
that by Theorem 6.2.6, as S is self-adjoint, we know that S =W(A) for some A ∈ B(H)dsa.

Hence, assuming towards contradiction that 0 /∈ int(W1(A)), by Hahn-Banach theorem
there are real numbers a1, ..., ad not all zero, such that for every x = (x1, ..., xd) ∈ W1(A)
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we have
∑d

i=1 aixi ≥ 0. Hence, for every t < 0 we would get that
∑d

i=1 taixi ≤ 0 < 1 so
that for every t < 0 we get that (ta1, ..., tad) ∈ DsaA (1) = S•1 which contradicts (3). This
shows that (3) implies (2).

Finally, suppose there is δ > 0 is such that whenever ‖Xi‖ < δ we have X ∈ W(A)

for 1 ≤ i ≤ d. Fix 1 ≤ i ≤ d and take X(i) = (X1, ..., Xd) such that X
(i)
j = 0 if i 6= j

and X
(i)
i = 1

2
δ. This way we have that ±X(i) ∈ W(A) for each 1 ≤ i ≤ d. Now, for every

Y ∈ S• =W(A)• = DsaA we have that

1

2
δ ⊗ Yi =

d∑
j=1

X
(i)
j ⊗ Yj ≤ I.

However, ‖1
2
δ⊗Yi‖ = 1

2
δ‖Yi‖, so that ‖Yi‖ ≤ 2

δ
, and therefore S• = DsaA is bounded. Hence,

we see that (1) implies (4).

Using duality, we can now obtain a characterization of those matrix convex sets that
are free operator spectrahedra, akin to item (2) of Theorem 6.2.6.

Corollary 6.3.7. Let S be a closed self-adjoint matrix convex set. Then S = DsaB for some
B ∈ B(H)dsa if and only if 0 ∈ int(S). A similar result holds for non-self-adjoint matrix
convex sets.

Proof. As a self-adjoint matrix convex set, it is clear that 0 ∈ int(DsaB ). Conversely,
by Proposition 6.3.6 we know that S• is a closed self-adjoint bounded set, and hence
by Theorem 6.2.6 there exists B ∈ B(H)dsa such that S• = W(B). This way, we get
that S = S•• = W(A)• = DsaB by the self-adjoint Effros-Winkler bipolar theorem and
Proposition 6.3.5.

If K ⊆ Rd, we denote by K ′ the usual polar dual in the sense that

K ′ = {x ∈ Rd|
d∑
i=1

xiyi ≤ 1 for y ∈ K}.

By [49, Lemma 5.1] we know that when S is a matrix convex set, then S•1 = S ′1. The
following theorem is the matrix convex set version of [100, Theorem 4.8] in the operator
systems world.
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Theorem 6.3.8. Let K be a compact convex set in Rd. Then

Wmin(K)• =Wmax(K ′).

If 0 ∈ K, then also
Wmax(K)• =Wmin(K ′).

Proof. If X is a compression of a normal tuple N , then
∑d

i=1Ni ⊗ Yi ≤ I implies that∑d
i=1 Xi ⊗ Yi ≤ I. By the spectral theorem,

∑d
i=1 Ni ⊗ Yi ≤ I is equivalent to the

inequalities
∑d

i=1 αiYi ≤ I for α = (α1, ..., αd) ∈ σ(N). Therefore,

Wmin(K)• = { Y ∈ (Mn)dsa |
d∑
i=1

αiYi ≤ I for α ∈ K } =Wmax(K ′).

If 0 ∈ K, by taking polar duals, we get that

Wmin(K) =Wmax(K ′)•.

Hence, by replacing K with K ′ we obtain the second equality.

Next we wish to understand how polar duality behaves with respect to duality of
operator systems. When (V , {Pn}, e) is an operator system, we may define an operator
system on the bidual matrix ordered space (V ′′, {P ′′n}). Indeed, the functional ê : V ′ → C
given by ê(f) = f(e) for every f ∈ V ′ is an Archimedean matrix order unit, so we have
that (V ′′, {P ′′n}, ê) is an operator system in its own right. The canonical embedding of V
inside V ′′ is then a unital complete order embedding. Hence, when V is finite dimensional,
we obtain a bidual theorem in the sense that V ′′ is canonically unital completely order
isomorphic to V .

When V is finite dimensional, we also know by Theorem 2.4.10 that there is a strictly
positive functional τ : V → C that plays the role of an Archimedean matrix order unit for
(V ′, {P ′n}).

Proposition 6.3.9. Let V be a finite dimensional operator system. Let τ : V → C be a
unital positive functional, and suppose T = (T1, ..., Td) is a self-adjoint choice of coordinates
such that Ti ∈ Ker τ and {T1, ..., Td} is independent. Then τ is strictly positive if and only
if 0 ∈ int(W(T )).
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Proof. If we take T = (T1, ..., Td) as above, τ is an indicator for the fact that 0 ∈ W(T ).
Suppose that τ is strictly positive. As {T1, .., Td} is independent, we see that no non-trivial
linear combination of T1, ..., Td can be positive nor can it be negative.

To show that 0 ∈ int(W(T )), by Proposition 6.3.6 it will suffice to show that DsaT (1) is
bounded. Assume towards contradiction that DsaT (1) is unbounded. As this set is convex,
there is some non-zero vector x = (x1, ..., xd) ∈ DsaT (1) ⊆ Rd such that tx ∈ DsaT (1) for all
t > 0. This means that t

∑d
i=1 xiTi ≤ I for all t > 0. However, as no non-trivial linear

combination of T1, ..., Td can be positive, nor can it be negative, there always is a positive
and negative element in σ(

∑d
i=1 xiTi). Hence, for t large enough, the set tσ(

∑d
i=1 xiTi)

would contain an element greater than 1, contradicting the fact that t
∑d

i=1 xiTi ≤ I for
all t > 0.

Conversely, if 0 ∈ int(W(T )), suppose P := a0I +
∑d

i=1 aiTi is positive in V . If a0 =

τ(P ) = 0 then
∑d

i=1 aiTi ≥ 0 would imply that
∑d

i=1 aixi ≥ 0 for arbitrarily small x =

(x1, ..., xd) ∈ Rd. As
∑d

i=1 aixi is linear in x, this is impossible unless ai = 0 for all
1 ≤ i ≤ d. Hence, τ is strictly positive.

Corollary 6.3.10. Let V be a finite dimensional operator system. Then there is always a
self-adjoint choice of coordinates T = (T1, ..., Td) such that 0 ∈ int(W(T )).

Proof. By the Choi-Effros Theorem 2.4.10 there is a strictly positive linear functional
τ : V → C. So choose a self-adjoint basis T = (T1, ..., Td) for Ker τ and apply Proposition
6.3.9.

For a closed and bounded matrix convex set S, we know that 0 ∈ int(S) if and only if
S• is closed and bounded. Hence, when 0 ∈ int(S), the matrix ordered space A(S•) has 1
as an Archimedean matrix order unit, and becomes an operator system as in Section 6.2.
Again because 0 ∈ int(S), the choice of coordinates z = (z1, ..., zd) of coordinate functions
on S is independent, so {1, z1, ..., zd} is a basis for A(S). We will denote by 1

′ the unital
positive map on A(S) given by 1

′(1) = 1 and 1
′(zi) = 0 for each 1 ≤ i ≤ d. We will also

denote by w = (w1, ..., wd) the (independent) coordinate functions on S•.

In linear algebra, it is usually a standard operation to take the dual basis of a given
finite basis. In trying to relate finite dimensional operator systems to their duals via matrix
convex set duality, it is perhaps a bit surprising that the more natural thing to do is to
map a choice of coordinates for affine functions on the dual to the minus of its dual choice
of coordinates. This is made precise in the following theorem.
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Theorem 6.3.11. Let S be a self-adjoint closed and bounded matrix convex set of d-
dimensions with 0 ∈ int(S). Then the map Ψ : A(S•) → A(S)′, given by Ψ(1) = 1

′

and Ψ(wi) given by Ψ(wi)(1) = 0 and Ψ(wi)(zj) = −δij, extends to a complete order
isomorphism.

In particular, we see that 1′ is an Archimedean matrix order unit for A(S)′, so that
(A(S)′, {(Mn(A(S))+)′},1′) is an operator system, and Ψ is a unital complete order iso-
morphism.

Proof. Since 0 ∈ int(S), we have that {1,−z1, ...,−zd} is a basis for A(S). We denote its
dual basis by {1′,Ψ(w1), ...,Ψ(wd)}, which is a basis for V ′, so that Ψ is a well-defined
linear map. Now suppose F ∈Mn(A(S•))+ is given by

F (w) = A0 ⊗ 1−
d∑
i=1

Ai ⊗ wi.

We wish to show that Ψ(n)(F ) satisfies Ψ(n)(F )(G) ≥ 0 for any G ∈Mn(A(S))+. So write

G(z) = C0 ⊗ 1−
d∑
i=1

Ci ⊗ zi.

We know that G(X) ≥ 0 for any X ∈ S, and as 0 ∈ S we get that C0 ≥ 0. Suppose first

that C0 is invertible. In this case, the function G′(z) = In ⊗ 1 −
∑d

i=1C
−1/2
0 CiC

−1/2
0 ⊗ zi

satisfies G′(X) ≥ 0 for any X ∈ S. Hence, C ′ = (C
−1/2
0 C1C

−1/2
0 , ..., C

−1/2
0 CdC

−1/2
0 ) is in S•.

Now since F is positive, we know that F (C ′) ≥ 0, which means that A0 ⊗ In −
∑d

i=1Ai ⊗
C
−1/2
0 CiC

−1/2
0 ≥ 0. By multiplying with C

1/2
0 on both sides we obtain that

Ψ(n)(F )(G) = A0 ⊗ C0 −
d∑
i=1

Ai ⊗ Ci ≥ 0.

If C0 is not invertible, we may define Gε(z) = (C0 + εIn)⊗ 1−
∑d

i=1Ci ⊗ zi which would
satisfy ψ(n)(F )(Gε) ≥ 0 as C0 + εIn is invertible. By taking ε to 0, we would obtain that
Ψ(n)(F )(G) ≥ 0 still.

Conversely, if ψ(n)(F )(G) ≥ 0 for all G ∈Mn(A(S))+, for any element C ∈ S• we may
define GC(z) = In⊗1−

∑d
i=1 Ci⊗ zi which is in Mn(A(S))+ by our choice of C ∈ S•. But

then for any C ∈ S•

F (C) = A0 ⊗ 1−
d∑
i=1

Ai ⊗ Ci = Ψ(n)(F )(GC) ≥ 0
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so that F is in Mn(A(S•))+. Hence Ψ is a complete order embedding. In particular, Ψ is
injective.

To show that Ψ is surjective, let g ∈ A(S)′. Then g is completely determined by its
values on zi and 1. Hence, if we denote a0 = f(1) and ai = −g(zi) we may form the matrix
affine map f(w) = a0 · 1−

∑d
i=1 ai ·wi to get that Ψ(f) = g. Hence, Ψ is a complete order

isomorphism.

As a corollary to Theorem 6.3.11, we obtain the a description of dual matrix convex sets
in terms of matrix ranges. When T = (T1, ..., Td) is a self-adjoint choice of coordinates for
a d+ 1 dimensional operator system V with 0 ∈ int(W(T )), the positive unital functional
τ ∈ V ′ indicating that 0 ∈ W(T ) is strictly positive and satisfies τ(Ti) = 0 for all 1 ≤ i ≤ d.
Since {I,−T1, ...,−Td} is a basis for V , we may form its dual basis {τ, f1, ..., fd} for V ′, and
we call f = (f1, ..., fd) the dual choice of coordinates to T , which is also self-adjoint and
satisfies 0 ∈ int(W(f)).

Corollary 6.3.12. Let V be a (d + 1)-dimensional operator system, and T = (T1, ..., Td)
some self-adjoint choice of coordinates for V with 0 ∈ int(W(T )). Let f = (f1, ..., fd) be
the dual choice of coordinates in V ′ for T . Then W(T )• =W(f).

Proof. By Theorem 6.2.6 we see that V is completely order isomorphic to A(W(T )), so that
by Theorem 6.3.11 we have a complete order isomorphism between A(W(T )•) and V ′ that
maps the coordinates w = (w1, ..., wd) to the dual choice of coordinates f = (f1, ..., fd). By
using Proposition 6.2.4 we obtain that W(T )• =W(f).

In the literature, the following corollary is cited as part of the Choi-Effros theorem on
the existence of Archimedean matrix order units on the dual matrix ordered space.

Corollary 6.3.13. Let V be an operator system of dimension d + 1 with matrix cones
{Pn}, and τ : V → C a positive functional. Then τ is a strictly positive functional if and
only if τ is an Archimedean matrix order unit for (V ′, {P ′n}).

Proof. Without loss of generality, we may normalize τ to be unital. Let T = (T1, ..., Td)
be a self-adjoint choice of coordinates from Ker τ such that {T1, ..., Td} are independent.
For the forward implication, by Theorem 6.2.6 we may identify V with A(W(T )) where τ
is identified with 1

′. By Proposition 6.3.9 we have that 0 ∈ int(W(T )) so that Theorem
6.3.11 we get that 1′ is an Archimedean matrix order unit. As τ is identified with 1

′, we
are done.
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Conversely, since {I, T1, ..., Td} is a self-adjoint basis for V , we may form its dual self-
adjoint basis {τ, f1, ..., fd}. Since τ is an order unit, there exists ri > 0 such that ±fi ≤ r ·τ .
We show that τ is strictly positive. Let V ∈ V+ be some non-zero positive, and write it
as V = a0I +

∑d
i=1 aiTi for ai ∈ R. In particular τ(V ) = a0 ≥ 0. If we assume towards

contradiction that a0 = τ(V ) = 0, since ±fi ≤ r · τ we also get

0 ≤ (r · τ ± fi)(V ) = ±ai.

Hence, ai = 0 for all 0 ≤ i ≤ d, so that V = 0 in contradiction. This means that
τ(V ) = a0 > 0, so that τ is strictly positive.

We next obtain uniqueness of the dual operator system structure up to unital complete
order isomorphism. Alternatively, when two matrix convex sets contain 0 in their inte-
rior and are matrix-affine isomorphic, we get that their polar duals are also matrix-affine
isomorphic.

Corollary 6.3.14. Let S and T be two closed and bounded matrix convex sets in d-
dimensions, containing 0 in their interiors. If S and T are matrix-affine isomorphic,
then S• and T • are matrix-affine isomorphic.

Hence, for an operator system V of dimension d + 1 with order cones {Pn} and two
Archimedean matrix order units τ and κ for (V ′, {P ′n}), we have that (V ′, {P ′n}, τ) and
(V ′, {P ′n}, κ) are unital completely order isomorphic.

Proof. Let S and T be matrix-affine isomorphic matrix convex sets as in the statement. By
categorical duality, this isomorphism promotes to a unital complete order isomorphisms φ
between A(S) and A(T ). The induced dual map φ′ : A(T )′ → A(S)′ given by φ′(f) = f ◦φ
maps 1′T to 1

′
S , and is also a complete order isomorphism by Proposition 2.4.9. Hence,

φ′ is a unital complete order isomorphism. By Theorem 6.3.11 we have unital complete
order isomorphisms A(S•) ∼= A(S)′ and A(T •) ∼= A(T )′. Since A(T )′ and A(S)′ are unital
completely order isomorphic, by categorical duality again, we get that S• and T • are
matrix-affine isomorphic.

For the second part, we may assume, perhaps after applying normalization maps on V
and W , that τ and κ are unital. Let T = (T1, ..., Td) be a self-adjoint choice of coordinates
in Ker τ , and T ′ = (T ′1, ..., T

′
d) a self-adjoint choice of coordinates in Kerκ. By Theorem

6.2.6 we have that A(W(T )) and A(W(T ′)) are identified with V where τ is identified with
1
′
W(T ) and κ with 1

′
W(T ′), so by Proposition 6.2.3 we have a matrix-affine isomorphism

between W(T ) and W(T ′). By Corollary 6.3.13 both κ and τ are strictly positive, so by
Proposition 6.3.9 we see that 0 is in the interior of bothW(T ) andW(T ′). Hence, by what
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we have already shown, we have a unital complete order isomorphism between A(W(T ′))′

and A(W(T ))′, which, by our identifications, yields a unital complete order isomorphism
between (V ′, {P ′n}, τ) and (V ′, {P ′n}, κ).

We next sketch a generalization of [63, Theorem 3.5] that yields interpolation of UCP
maps in terms of free operator spectrahedra.

Theorem 6.3.15. Let A = (A1, ..., Ad) and B = (B1, ..., Bd) be two d-tuples of operators.
Suppose there is a positive unital map τ : VA → C such that Ai ∈ Ker τ . Then

1. For a given n ∈ N, there is a unital n-positive map φ : VA → VB mapping Ai to Bi

if and only if DA(n) ⊆ DB(n).

2. There is a UCP φ : VA → VB mapping Ai to Bi if and only if DA ⊆ DB.

3. There is a unital complete order isomorphism φ : VA → VB mapping Ai to Bi if and
only if DA = DB.

A similar result holds in the self-adjoint context.

Proof. The existence of τ : VA → C for which τ(Ai) = 0 is equivalent to 0 ∈ W(A). Hence,
from (the proof of) Proposition 6.3.5 we know that DA(n)◦n =Wn(A) andWn(A)◦ = DA(n)
for each n ∈ N, and similarly for B. Hence, DA(n) ⊆ DB(n) if and only ifWn(B) ⊆ Wn(A)
for each n, and the theorem follows from Corollary 6.2.7.

Example 6.3.16 (0 ∈ W(A) is a necessary condition). Suppose that A = (I, I, . . . , I).
Then W(A) contains only tuples of identity matrices, and not 0. Now DsaA = {X ∈
(Mn)dsa :

∑
Xi ≤ I}. If we define B to be the d-tuple ⊕∞n=d((1− 1/n), . . . , (1− d/n)), then

DsaB = DsaA , but there is no UCP map (actually, no linear map) sending A to B. The same
example shows that also in the non-self-adjoint case the condition 0 ∈ W(A) is necessary
for the inclusion DA ⊆ DB to imply the existence of a UCP map sending A to B.

6.4 Minimal defining d-tuple

In this section, we wish to understand W(T ) as an invariant for T ∈ B(H)d. We will
see that in many cases, up to minimality assumptions regarding W(T ), the matrix ranges
determines the d-tuple T up to unitary / approximate unitary equivalence. Up to using
polar duality, this yields improved results to those that appeared for LMI domains in [63,
Theorem 3.12] (See also [123, Theorem 1.2]).
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Definition 6.4.1. A tuple A = (A1, ..., Ad) ∈ B(H)d is said to be minimal defining if

there is no nontrivial reducing subspace H0 ⊆ H such that Ã = (A1|H0 , ..., Ad|H0) satisfies

W(A) =W(Ã).

In other words, A is minimal if VA is not unitally completely isometrically isomorphic
to VÃ for any direct summand Ã of A.

Proposition 6.4.2. If A = (A1, ..., Ad) ∈ B(H)d, then A is minimal if and only if there
are no two nontrivial orthogonal reducing subspaces K1,K2 ⊆ H such that W(A

∣∣
K1

) ⊆
W(A

∣∣
K2

).

Proof. Suppose that there are two nontrivial orthogonal reducing subspaces K1,K2 in H.
Let A(i) = (A1|Ki , ..., Ad|Ki) (i = 1, 2) and suppose thatW(A(1)) ⊆ W(A(2)). Set H0 = K⊥1 ,

and denote Ã = (A1|H0 , ..., Ad|H0). It always holds that W(Ã) ⊆ W(A), we show the
converse. The assumption W(A(1)) ⊆ W(A(2)) is equivalent to the existence of a UCP

map ψ mapping A(2) to A(1). Define a map φ : SÃ → SA, by setting φ(Ãj) = Aj. Since

A = A(1) ⊕ Ã = ψ(PK2ÃPK2) ⊕ Ã, φ is a UCP map. Thus W(A) ⊆ W(Ã). Hence

W(A) =W(Ã), so A is not minimal.

For the converse, suppose that A is not minimal. Then there exists a nontrivial reducing
subspace H0 ⊆ H such that Ã = (A1|H0 , ..., Ad|H0) satisfiesW(A) =W(Ã), therefore there

is a unital completely isometric map φ mapping Ã to A. By compressing to the subspace
H⊥0 , we get that P⊥H0

AP⊥H0
is orthogonal to Ã and is also the image of Ã under a UCP

map.

In the case A is a d-tuple of compact operators, C∗(A) is a C*-subalgebra of compact
operators, and every minimal reducing subspace Hλ of H gives rise to an irreducible repre-
sentation πλ : C∗(A)→ B(H) by restriction πλ(T ) = T |Hλ . So for each unitary equivalence
class of irreducible representations ζ, we can pick πζ : C∗(A)→ B(Hζ), an irreducible sub-
representation of the identity representation, which must be among {πλ}, as C∗(A) is a
subalgebra of compact operators. Hence, the direct sum ⊕πζ : C∗(A) → B(⊕Hζ) is a

faithful representation of C∗(A), and if we denote H0 := ⊕Hζ ⊆ H, then Ã := A|H0

certainly satisfies W(A) =W(Ã).

Proposition 6.4.3. Let A = (A1, ..., Ad) ∈ K(H)d be a d-tuple of compact operators. Then
A is minimal defining if and only if

1. The identity representation of C∗(A) is multiplicity free, and;
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2. The Shilov ideal of VA inside C∗(I, A) is trivial.

Proof. Suppose that A is minimal. We first show that the identity representation of C∗(A)
is multiplicity free. For otherwise H⊥0 6= {0}, where we use the notation set before the
proposition. This means that we can find two orthogonal subspaces Hλ1 ⊆ H0 and Hλ2 ⊆
H⊥0 such that the restrictions πλ1 and πλ2 are unitarily equivalent. However, as A is
minimal, by Proposition 6.4.2, we see that this is impossible. Hence, we must have that
H = ⊕Hζ where {πζ} = {πλ} are mutually inequivalent irreducible *-representations, and
in fact C∗(A) = ⊕ζK(Hζ) inside B(H).

Next, we show that C∗(I, A) is the C*-envelope of VA. If not, then there is some ζ

for which K(Hζ) is a subset of the Shilov ideal of VA inside C∗(I, A). Denote by Ã =
(A1|H⊥ζ , ..., Ad|H⊥ζ ).

By the universal property of the C*-envelope, there is a *-surjection

ρ : C∗(I, A)→ C∗(I, A)/K(Hζ) ∼= C∗(VÃ)

which is completely isometric on VA. Thus, by restricting ρ to VA, we obtain a unital
complete isometry ρ|VA : VA → VÃ, so that W(A) =W(Ã) in contradiction to minimality.

Now suppose that A is not minimal, so there is a nontrivial reducing subspace H1 such
that W(A) = W(Ã), where Ã = A|H1 . We will show that if the identity representation
of C∗(A) is multiplicity free, then the Shilov ideal of VA in C∗(I, A) is not trivial. The
multiplicity free assumption means that H1 = ⊕ζ∈ΛHζ must be a direct sum of Hζ for
some subset Λ of equivalence classes of irreducible representations of C∗(A). This means
that P⊥H1

C∗(A) = C∗(A)P⊥H1
is a two sided ideal inside C∗(A). Denote P := PH1 . Then for

S = (Sij) ∈Mn(VA), and T = (Tij)(In ⊗ P⊥) ∈Mn(C∗(I, A)P⊥), we have that

‖S + T‖ = ‖S(In ⊗ P )⊕ (S + T )(In ⊗ P⊥)‖ ≥ ‖S(In ⊗ P )‖ = ‖S‖,

where the last equality holds as the map sending Ai to Ai|H1 , which we identify with AiP ,
is completely isometric. Hence, the map induced VA → C∗(I, A)/C∗(I, A)P⊥ is completely
isometric, so that C∗(I, A)P⊥ is contained in the Shilov ideal of VA. Therefore the Shilov
ideal of VA in C∗(I, A) is not trivial.

Corollary 6.4.4. Let A = (A1, ..., Ad) ∈ K(H)d be a d-tuple of compact operators. Then

there is a reducing subspace H0 such that Ã = (A1|H0 , ..., Ad|H0) is minimal, and W(A) =

W(Ã).
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Proof. Let H0 := ⊕Hζ∈Λ ⊆ H be a direct sum of a maximal set of inequivalent nondegen-
erate subrepresentations of the identity representation of C∗(A), as in the discussion pre-

ceding Proposition 6.4.3. Write Ã = A|H0 . By construction we know that W(A) =W(Ã),

and C∗(Ã) as well as every compression of C∗(Ã) to an invariant subspace is multiplicity

free. If the Shilov ideal of VÃ in C∗(I, Ã) is trivial then we are done.

For any ideal J in C∗(I, Ã), J is the direct sum ⊕ζ∈Λ1K(Hζ) for a subset Λ1 ⊆ Λ. Let

H1 = ⊕ζ∈Λ\Λ1Hζ . The quotient map C∗(I, Ã)→ C∗(I, Ã)/J is completely isometric on VÃ
if and only ifW(Ã) =W(Ã

∣∣
H1

). Therefore if we let J be the Shilov ideal of VÃ in C∗(I, Ã),

then A
∣∣
H1

(in place of A
∣∣
H0

) is the required matrix minimal compression of A.

The following should be compared with [6, Theorem 2.4.3].

Theorem 6.4.5. Let A and B be two minimal d-tuples of operators in K(H). Then
W(A) =W(B) if and only if A and B are unitarily equivalent.

Proof. There is only one direction to prove, so assume that W(A) = W(B). Then there
is a unital completely isometric isomorphism φ from VA to VB. This map extends to a
∗-isomorphism π between the respective C*-envelopes, which by minimality are C∗(I, A)
and C∗(I, B). We therefore have a ∗-isomorphism π : C∗(A) → C∗(B). We show that
this ∗-isomorphism must be unitarily implemented. Indeed, by the representation theory
of C*-algebras of compact operators, π = ⊕iπi is (up to unitary equivalence) the direct
sum of irreducible subrepresentations of the identity representation of C∗(A). Every sub-
representation of idC∗(A) appears at most once, since π is multiplicity free. Moreover,
every subrepresentation of idC∗(A) appears at least once, because the Shilov boundary is
trivial.

Example 6.4.6. In general, a non-compact d-tuple of operators does not always have a
minimal subspace as in Corollary 6.4.4. Let (λi)i∈N be a dense subset of distinct numbers
on the circle T. Define the diagonal unitary operator T on `2(N) by T (ei) = λiei. Then T
is certainly normal, but has no minimal reducing subspace L ⊆ `2(N) for which W(T ) =
W(T |L).

Indeed, if L is a reducing subspace for T , then the projection PL onto it belongs to the
von-Neumann algebra W ∗(T ) generated by T , since W ∗(T ) = `∞(N) is maximal abelian,
and is hence equal to its own commutant inside B(`2(N)). Thus, PL commutes with Pi,
where Pi is the projection onto Sp{ei} for each i ∈ N. Hence, for a fixed i ∈ N, we either
have PL(ei) = ei or PL(ei) = 0. Hence, we establish that L = Sp{ei|i ∈ Λ} for some subset
Λ ⊆ N.
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Since W(T ) =W(T |L), we must have that σ(T ) = σ(T |L), so that (λi)i∈Λ must still be
dense in T. But this is impossible because then we have that T |L has a reducing subspace
L′ ⊆ L such that W(T |L) =W(T |L′). So T |L cannot be minimal.

This example also has the property that there are representations of C∗(T ) which are not
unitarily equivalent, but are approximately unitarily equivalent, such as Mz in B(L2(T)).
As Mz ∼K(H) T , we have W(Mz) =W(T ). It also does not have a minimal subspace. Nor
is any restriction of T to a reducing subspace unitarily equivalent to any restriction of Mz

to any reducing subspace.

This example shows the limits of possibility, but also shines a light on a reasonable
resolution.

Theorem 6.4.7. Let A and B be d-tuples of operators on a separable Hilbert space H such
that

1. C∗(I, A) = C∗e (VA) and C∗(I, B) = C∗e (VB), and

2. C∗(A) ∩ K(H) = {0} = C∗(B) ∩ K(H).

Then A ∼K(H) B if and only if W(A) =W(B).

Proof. One direction is trivial, so assume thatW(A) =W(B). Then there is a completely
isometric map φ of VA onto VB such that φ(A) = B. Hence by the universal property of
the C*-envelope, perhaps after restriction, there is a ∗-isomorphism φ̃ of C∗e (A) onto C∗e (B)
extending φ. By (1), this yields a ∗-isomorphism φ̂ of C∗(A) onto C∗(B). Finally by (2)
and Voiculescu’s Theorem (see [30, Theorem II.5.8]), φ̂ is implemented by an approximate
unitary equivalence. Thus A ∼K(H) B.

6.5 Dilation and scaled inclusion

We show that once we have a dilation of a d-tuple of matrices to a commuting normal
d-tuple, then we can choose our dilation to be on a finite dimensional space.

Theorem 6.5.1. Let X = (X1, . . . , Xd) ∈ Md
n for which there exists a commuting d-

tuple T = (T1, . . . , Td) of normal operators on a Hilbert space H and an isometry V :
Cn → H such that Xi = V ∗TiV . Then there is an integer m ≤ 2n3(d + 1) + 1, a d-tuple
Y = (Y1, . . . , Yd) of commuting normal operators on Cm satisfying σ(Y ) ⊆ σ(T ), and an
isometry W : Cn → Cm such that Xi = W ∗YiW for all i = 1, . . . , d.
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Proof. The proof is based on some ideas from [26]. Suppose that T = (T1, ..., Td) and
V : Cn → H are as in the statement of the theorem. Let ET be the joint spectral measure
for T . We may then write Ti =

∫
σ(T )

zidET (z), where σ(T ) is the joint spectrum of T ,

identified as a subset of Cd. For all i = 1, . . . , d,

Xi = V ∗
(∫

σ(T )

zidET (z)

)
V =

∫
σ(T )

zid(V ∗ETV )(z)

and V ∗ETV is a positive operator valued measure on σ(T ) ⊆ Cd with values in Mn(C).
Now, the space Sp{z1, . . . , zd} of linear functions on σ(T ) is finite dimensional, and one
therefore expects to have a finite sequence of points w(1), . . . , w(M) ∈ σ(T ) and positive-
definite matrices A1, . . . , AM in Mn(C) such that

∑M
j=1Aj = In and∫

σ(T )

f(z)d(V ∗ETV )(z) =
M∑
j=1

f(w(j))Aj, (6.3)

for every f ∈ Sp{z1, . . . , zd}. Indeed, by [26, Theorem 4.7] and the dimension estimates
in the proof for it, when applied to the collection of functions {z 7→ zi}di=1, we have
M = 2n2(d+1)+1 points w(1), . . . , w(M) ∈ σ(T ) and positive-definite matrices A1, . . . , AM
in Mn(C) such that

∑M
j=1Aj = In so that (6.3) holds. In particular,∫

σ(T )

zid(V ∗ETV )(z) =
M∑
j=1

w
(j)
i Aj

for i = 1, . . . , d.

The sequence A1, . . . , AM can be considered as a positive operator valued measure
on the set {w(1), . . . , w(M)}. By Naimark’s dilation theorem, this measure dilates to a
spectral measure E on the set {w(1), . . . , w(M)} with values in Mm(C) where m ≤ nM (the
bound on the dimension m on which the spectral measure E acts follows from the proof
of Naimark’s theorem via Stinespring’s theorem — see Chapter 4 of [99]). That is, there
exist M pairwise orthogonal projections E1, ..., EM on Cm such that

∑
Ej = Im, and an

isometry W : Cn → Cm such that Aj = W ∗EjW for j = 1, . . . , d.

We now construct the dilation Y by defining Yi =
∑M

j=1w
(j)
i Ej. Thus, Y = (Y1, ..., Yd)

is a commuting normal d-tuple and by construction σ(Y ) = {w(1), . . . , w(M)} ⊆ σ(T ).
Moreover,

W ∗YiW =
M∑
j=1

w
(j)
i Aj =

∫
σ(T )

zid(V ∗ETV )(z) = Xi,
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for i = 1, . . . , d. Thus, Y is a commuting normal dilation for X on a space of dimension
at most nM = 2n3(d+ 1) + 1 with σ(Y ) ⊆ σ(T ).

Remark 6.5.2. One of the main results, [64, Theorem 1.1] of Helton, Klep McCullough
and Schweighofer, is that there is a constant ϑ(n) such that every d-tuple of symmetric n×n
contractive matrices (X1, . . . , Xd), there is a d-tuple (T1, . . . , Td) of commuting self-adjoint
contractions on a Hilbert space H and an isometry V : Rd → H such that

ϑ(n)Xi = V ∗TiV , i = 1, . . . , d. (6.4)

A significant amount of effort in [64] was dedicated to the determination of the optimal
value of ϑ(n). In fact [64, Theorem 1.1] is stronger, in that the dilation actually works for
all n×n symmetric matrices simultaneously. It is therefore not surprising that the dilation
Hilbert space H in that theorem must be infinite dimensional. It is natural to ask whether
if one begins with a fixed d-tuple of real symmetric matrices, can one obtain equation (6.4)
with the commuting tuple of contractions T acting on a finite dimensional space H. The
method of Theorem 6.5.1 shows that this can be done, with the constant unchanged, and
with control on the dimension of H.

We obtain two characterizations of scaled dilation in terms of minimal and maximal ma-
trix convex set inclusion and in terms of minimal and maximal operator system structures
(cf. [64, Proposition 2.1 & Theorem 8.4]).

Theorem 6.5.3. Let V be a finite dimensional operator system, A = (A1, ..., Ad) a choice
of coordinates for V and r ≥ 1. Denote K =W1(A). The following are equivalent

1. For all X ∈ W(A) there exists N = (N1, ..., Nd) ∈ W(A) commuting normal d-tuple
such that rN dilates X,

2. W(A) ⊆ rWmin(K),

3. For any closed and bounded matrix convex set T in d-dimensions we have

W1(A) ⊆ T1 =⇒ W(A) ⊆ rT .

4. The unital bijection idr : OMIN(V) → V given by idr(Ai) = 1
r
Ai is a well-defined

completely positive map.
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Proof. (2) implies (3) since whenever K = S1 ⊆ T1, we have thatWmin(K) ⊆ Wmin(T1) ⊆
T , so that W(A) ⊆ rWmin(K) ⊆ rT . Conversely, (3) implies (2) since we can take
T =Wmin(K) to obtain that W(A) ⊆ rWmin(K).

(1) implies (2) because whenever X ∈ W(A) is such that rN dilates X for N ∈ W(A)
a normal d-tuple, by Corollary 6.3.2 we have that σ(N) ⊆ W1(N) ⊆ W1(A); so N ∈
Wmin(K) and thus X ∈ rWmin(K) by matrix convexity.

We next show that (2) implies (1). Indeed, suppose that X ∈ W(A), so that by
the inclusion (2) there is a normal commuting d-tuple N on some Hilbert space H with
σ(N) ⊆ K so that rN dilates X. By Theorem 6.5.1, we can choose H ∼= Cm to be
finite dimensional. By Theorem 2.4.6 and Corollary 6.3.2 we know that N ∈ W(N) =
Wmin(conv(σ(N))) ⊆ Wmin(K) ⊆ W(A), so that N ∈ W(A) shows that (1) holds.

Finally, by Corollary 6.2.7 it is clear that (2) and (4) are equivalent.

By similar arguments, and by using Corollary 6.2.7, we also obtain a version of the
above theorem for maximal structures.

Theorem 6.5.4. Let V be a finite dimensional operator system, A = (A1, ..., Ad) a choice
of coordinates for V and r ≥ 1. Denote K =W1(A). The following are equivalent

1. Wmax(K) ⊆ rW(A),

2. For any closed and bounded matrix convex set T in d-dimensions we have

T1 ⊆ W1(A) =⇒ T ⊆ rW(A).

3. The unital bijection idr : V → OMAX(V) given by idr(Ai) = 1
r
Ai is a well-defined

completely positive map.

4. For any finite dimensional operator system W and any unital positive map ψ : V →
W, the unital map ψr : V → W given by ψr(Ai) = 1

r
ψ(Ai) is completely positive.

As an application of the above, when a constant r works in one of the above two
theorems, we obtain an upper bounds of 2r − 1 for the completely bounded norms of any
unital positive map from some finite dimensional operator system into V , or from V to
some finite dimensional operator system (See [100, Section 5]).

Corollary 6.5.5. Let V be a finite dimensional operator system, let A = (A1, ..., Ad) be a
choice of coordinates for V such that 0 ∈ W(A). Denote K =W1(A) and let r ≥ 1.
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1. Suppose that W(A) ⊆ rWmin(K). Then for any finite dimensional operator system
W and any unital positive map ψ :W → V we have ‖ψ‖cb ≤ 2r − 1.

2. Suppose that Wmax(K) ⊆ rW(A). Then for any finite dimensional operator system
W and any unital positive map ψ : V → W we have ‖ψ‖cb ≤ 2r − 1.

Proof. We do the proof for (1), where the proof for (2) is done similarly. By Theorem 6.5.3
(or Theorem 6.5.4 for maximal structures) we have that the unital map idr : OMIN(V)→ V
given by idr(Ai) = 1

r
Ai is a well-defined completely positive map. Since 0 ∈ W(A), there

is a UCP map τ : OMIN(V)→ C such that τ(Ai) = 0 for each 1 ≤ i ≤ d. It is then clear
that for X ∈ OMIN(V) we have

X = r · idr(X)− (r − 1)τ(X)⊗ I

Hence, the identity map id : V → OMIN(V) decomposes into a difference of two completely
positive maps so that ‖ id ‖cb ≤ ‖r·idr +(r−1)I‖ = 2r−1. By appealing to [100, Proposition
5.4] (or to [100, Proposition 5.5] for maximal structures) the proof is now complete.

6.6 Scaled inclusion results given symmetry

The main point of this section is to obtain the inclusion Wmax(K) in dWmin(K) for as
many compact convex sets K in Rd as we can, while providing concrete corresponding
dilation theorems.

Our dilation methods include the dilation constructed in [64, Proposition 14.1] and
provide new examples for which such dilation results can be obtained.

Let S be a self-adjoint matrix convex set. Recall that for a d× d matrix C = [cij], we
define the set (CS)n = {C(X) : X ∈ Sn} where C(X) = (

∑
j cijXj).

Definition 6.6.1. Let r ≥ 1. We say that a convex set K ⊆ Cd is r-symmetric if there
are rank one real d× d matrices C := {C(m)}km=1 such that Id ∈ conv C and C(m)K ⊆ rK
for all 1 ≤ m ≤ k. Analogously, we will say that a matrix convex set S of d dimensions is
r-symmetric if Id ∈ conv C and C(m)Sn ⊆ rSn for all n ∈ N.

We will need the following dilation result to establish our main scaled inclusion results.

Theorem 6.6.2. Let S and T be self-adjoint matrix convex sets. Assume that there is a
k-tuple of rank-one real d× d matrices C = {C(m)}km=1 such that Id ∈ conv C and such that
C(m)S ⊆ T for all 1 ≤ m ≤ k. Then for every X ∈ S there is a d-tuple T = (T1, . . . , Td)
of self-adjoint matrices such that
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(1) {T1, . . . , Td} is a commuting family of operators,

(2) T ∈ T ,

(3) T is a dilation for X.

Proof. Consider X as a tuple of operators on a Hilbert space H, and suppose C(m) = [c
(m)
ij ].

Write K = H ⊗ Ck and define d2 diagonal, self-adjoint matrices Si,j, 1 ≤ i, j ≤ d, by

Si,j = diag(c
(1)
i,j , . . . , c

(k)
i,j ). (6.5)

For every 1 ≤ i ≤ d, let

Ti =
d∑
j=1

Xj ⊗ Si,j ∈ B(K). (6.6)

We shall now verify (1)-(3). For (1), we fix i, n and compute

TiTs − TsTi =
∑
j,t

XjXt ⊗ (Si,jSs,t − Ss,jSi,t).

But the (p, p) coordinate of the (diagonal) matrix Si,jSs,t−Ss,jSi,t is c
(p)
i,j c

(p)
s,t −c

(p)
s,j c

(p)
i,t . Since

C(p) has rank one, the last expression is 0 and, thus, TiTs = TsTi, proving (1).

To prove (3), recall that Id ∈ conv{C(1), . . . , C(k)}. Thus there are nonnegative real
numbers β1, . . . , βk whose sum is 1 and Id =

∑k
m=1 βmC

(m). Set v =
∑k

m=1

√
βmem where

{em} is the standard basis of Ck. Then, ||v|| = 1 and for 1 ≤ i, j ≤ d, 〈Si,jv, v〉 =∑k
m=1 βmc

(m)
i,j = δi,j. Define an isometry V : H → K = H⊗Ck by V h = h⊗ v. Then since

V ∗(X ⊗ Sij)V = δijX, we obtain

V ∗TiV =
∑
j

V ∗(Xj ⊗ Sij)V = Xi.

To prove (2), rewrite Ti =
∑d

j=1 Xj ⊗ Si,j as a direct sum (over m) of operators of

the form Y
(m)
i =

∑d
j=1 c

(m)
i,j Xj. By matrix convexity, it suffices to show that Y (m) :=

(Y
(m)

1 , . . . , Y
(m)
d ) ∈ T . But Y (m) is obtained from X by left multiplication by C(m). The

assumption C(m)S ⊆ T (and the fact that X ∈ S), implies that T ∈ T and (2) follows.

We then get the following main theorem that is the main machine that we apply to get
scaled inclusion results.
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Theorem 6.6.3. Let S be a self-adjoint matrix convex set. Assume that S1 is r-symmetric
for r ≥ 1. Then for every other self-adjoint matrix convex set T , we have

S1 ⊆ T1 =⇒ S ⊆ rT .

Proof. If S1 is r-symmetric, thenWmax(S1) is r-symmetric as a matrix convex set, since it
is defined by the same linear inequalities. If we take in Theorem 6.6.2 the matrix convex
set r · Wmin(S1), then r-symmetry of Wmax(S1) yields that Wmax(S1) ⊆ r · Wmin(S1).
Hence, by maximality, S ⊆ Wmax(S1) ⊆ r · Wmin(S1) ⊆ rT .

As a corollary to the proof of Theorem 6.6.2 we get the following, which will allow us
to get scaled inclusion results for matrix convex sets with ground floor the polyball.

Corollary 6.6.4. Let X ∈ B(H)dsa, and let C(1), . . . , C(k) be a k-tuple of real d × d rank
one matrices such that Id ∈ conv{C(1), . . . , C(k)}. Then X can be dilated to a commuting
tuple of self-adjoint operators T = (T1, . . . , Td) such that

σ(T ) ⊆
k⋃
p=1

C(p)W1(X).

Proof. Given X ∈ B(H)dsa, construct the dilation T = (T1, . . . , Td) as in the proof of

Theorem 6.6.2. Then Ti is the direct sum of operators Y
(m)
i ∈ B(H)sa of the form Y

(m)
i =∑d

j=1 c
(m)
i,j Xj. We will show that σ(Y (m)) ⊆ C(m)W1(X) for all m. Since σ(N) ⊆ W1(N)

for every normal tuple N , it suffices to show that W1(Y (m)) ⊆ C(m)W1(X).

If φ is a state on B(H), then φ(Y
(m)
i ) =

∑d
j=1 c

(m)
i,j φ(Xj), so that

(φ(Y
(m)

1 ), . . . , φ(Y
(m)
d )) = C(m) (φ(X1), . . . , φ(Xd)) .

Therefore W1(Y (m)) ⊆ C(m)W1(X), as required.

Corollary 6.6.5. For all d we have that,

Wmax(Dd) ⊆ 2dWmin(Dd).

Consequently, for every d-tuple of contractions A1, . . . , Ad on a Hilbert space H there exists
a Hilbert space K, an isometry V : H → K, and d commuting normal operators T1, . . . , Td
satisfying ‖Ti‖ ≤ 2d for i = 1, . . . , d such that

Ai = V ∗TiV , i = 1, . . . , d.

A similar result holds in the self-adjoint context, where 2d is replaced by d and Dd is replaced
by [−1, 1]d.
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Proof. Let A = (A1, ..., Ad) ∈ Wmax(Dd), and denote

X = (Re(A1), Im(A1), . . . ,Re(Ad), Im(Ad)).

Then

W1(X) ⊆ {(α1, α2, . . . , α2d) : |α2j−1 + iα2j| ≤ 1, 1 ≤ j ≤ d} = Dd ⊆ R2d

where D is the unit disc in R2.

For every 1 ≤ m ≤ 2d, write em for the m-th element of the standard basis of R2d.
Then eme

∗
m is the projection onto Rem. For every such m write C(m) = 2deme

∗
m. Then C

is a 2d-tuple of real 2d× 2d rank one matrices such that I2d ∈ conv{C(1), . . . , C(2d)}. It is

easy to check that C(m)W1(X) ⊆ 2dDd for every 1 ≤ m ≤ 2d. By Corollary 6.6.4 we get
that X can be dilated to a 2d-tuple of commuting self-adjoint operators Y = (Y1, . . . , Y2d)

with σ(Y ) ⊆ 2dDd.

We now define Tj := Y2j−1 + iY2j for all 1 ≤ j ≤ d, and it remains to show that σ(T ) ⊆
2dDd where now D is the unit disc in C. For this, note that since σ(Y ) ⊆ 2dDd, we can

write Ym as a diagonal matrices diag(α
(m)
k ) such that, for every k we have (α

(1)
k , . . . , α

(2d)
k ) ∈

2dDd ⊆ R2d. But, then, for every 1 ≤ j ≤ d we get that (α
(2j−1)
k , α

(2j)
k ) ∈ 2dD. Since

Tj = diag(α
(2j−2)
k + iα

(2j)
k ), we have σ(T ) ⊆ 2dDd and ||Tj|| ≤ 2d as required.

Example 6.6.6 (A non-scalable example). In this example we show that the conclusion
of Theorem 6.6.3 can sometimes fail. Let T = ( 1 2

0 1 ). Then

W1(T ) = D1(1) = { z ∈ C | |z − 1| ≤ 1 },

is a closed disc with center 1 containing 0 on the boundary. Let N = M1+z be the mul-
tiplication operator on L2(T), so that σ(N) = 1 + T. We see that W1(T ) = W1(N). By
Corollary 6.3.2 we have W(N) = Wmin(D1(1)). Thus W(T ) ⊇ W(N). However, there
is no r > 0 such that W(T ) ⊆ rW(N). To see this, we show that there is no UCP map
φ : VN → VT sending N to rT for any r > 0, and invoke the duality between closed and
bounded matrix convex sets and finite dimensional operator systems.

If there was such a UCP map, let U = Mz = N − 1, then φ(U) = rT − I. But
||rT − I|| > 1 so this is impossible. Indeed, observe that

‖rT − I‖ =

∥∥∥∥(r − 1 2r
0 r − 1

)∥∥∥∥ =

∥∥∥∥( 2r 1− r
1− r 0

)∥∥∥∥ .
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But this is equal to the largest root of t2 − 2rt− (1− r)2 = 0. Substituting u = t− 1 to get
u2 + 2(1− r)u− r2 = 0, this equation must now have a positive root, so that ‖rT − I‖ > 1.

To get an example involving self-adjoint matrix convex set, simply take matrix ranges
of (the same) self-adjoint choice of coordinates for VN and VT . In particular, by Theorem
6.6.3 we see that D1(1) is not r-symmetric for any r > 0.

We next apply Theorem 6.6.3 to as many examples as possible, so as to cover [64,
Proposition 14.1] and provide many new scaled inclusion results. We begin with some
illuminating examples.

Example 6.6.7. Fix d = 2. In R2 draw two straight lines that pass through the origin
and are not parallel. Call them L1, L2. On each line draw two points (different from the
origin), say T1, T3 on L1 and T2, T4 on L2 such that the origin lies in the intervals [T1, T3]
and [T2, T4]. Write

Pm = conv{Ti : 1 ≤ i ≤ 4}.

Now, through T1 and T3 (on L1) draw straight lines parallel to L2. Similarly, through T2

and T4 draw lines parallel to L1. These 4 lines form a parallelogram, call it PM . Clearly,
Pm ⊆ PM . Both Pm and PM are given by four linear inequalities and hence define matrix
convex sets Wmax(Pm) and Wmax(PM) that are in fact free matrix spectrahedra.

Write qi for the projection of R2 onto Li (parallel to the other line) and set C(i) = 2qi,
i = 1, 2. Note that both are real rank one matrices and q1 + q2 = I2. If E is any convex set
between PM and Pm, then E is 2-symmetric, because each qi maps PM into Pm.

Example 6.6.8 (The regular simplex). Here is an example of a convex set in R3 for which
is not invariant under projecting onto an orthonormal basis, but to which we may still
apply Theorem 6.6.3. The regular 3-simplex ∆3 in R3 is the convex hull of v1 = (1, 1, 1),
v2 = (1,−1,−1), v3 = (−1, 1,−1) and v4 = (−1,−1, 1), and is not invariant under
projecting onto any orthonormal basis.

Take C(m) = vmv
∗
m for m = 1, . . . , 4. Then ∆3 is 3-symmetric, since 1

3
C(m) is the

orthogonal projection onto vm, and one sees that ∆3 is invariant under that. One computes
directly that

∑4
m=1C

(m) = 4I, thus I ∈ conv{C(m) : 1 ≤ m ≤ 4} so Theorem 6.6.3 is
applicable with r = 3 = d.

Remark 6.6.9. In [55, Theorem 4.7], Thom, Netzer and Fritz show that the simplex
satisfies the conclusion of Theorem 6.6.3 with constant r = 1, and that the simplex in each
dimension is the essentially the unique convex set K such that Wmin(K) =Wmax(K).
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In general, given a convex set K ⊆ Rd, and an orthonormal basis B = {e1, ..., ed}, it is
easy to verify whether or not K is invariant under the projections eie

∗
i for 1 ≤ i ≤ d. If it is

invariant, by either applying Theorem 6.6.3 or [64, Proposition 14.1], one obtains a scaled
dilation result with r = d. In general however, it is much harder to actually find or disprove
the existence of an orthonormal basis that leaves K invariant. Instead of this, we turn to
tight frames, which are often used to define many convex polytopes K ⊆ Rd. We will show
that for matrix convex sets with ground level invariant under a uniform tight frame, or a
convex polytope generated by a uniform tight frame, Theorem 6.6.3 is applicable to obtain
a scaled inclusion result.

A set of vectors Φ := {v1, ..., vN} ⊆ Rd (without repetition) is called a tight frame if
there is a constant σ > 0 such that for all x ∈ Rd we have∑

i

|〈x, vi〉|2 = σ‖x‖2;

this condition is equivalent to
∑

i viv
∗
i = σI.

When all the vectors vi are of the same length `, we call Φ a uniform tight frame, and
it turns out that in this case we have σ = `2 · N

d
(See [110, Lemma 2.1]).

Every tight frame Φ gives rise to a finite subgroup of isometric symmetries given by

Sym(Φ) := {U ∈ U(Rd)|UΦ = Φ},

where U(Rd) denotes the unitary group on Rd. We can then turn this construction around,
and define uniform tight frames from finite subgroups of U(Rd). This will provide us with
an abundance of examples. By [117, Theorem 6.3], for a finite irreducible subgroup G and
a non-zero vector v ∈ Rd, the set Φ = {gv}g∈G is a uniform tight frame, and K = conv Φ
is invariant under G.

Proposition 6.6.10. Let K ⊆ Rd be a closed convex set, and {v1, ..., vN} be a uniform tight
frame in Rd with vectors of length 1 such that viv

∗
i (K) ⊆ K. ThenWmax(K) ⊆ dWmin(K).

Proof. By prescribing C(i) = d · viv∗i and using σ = N
d

, we have that∑
i

C(i) =
∑
i

dviv
∗
i = dσ · I = N · I

so that

I =
1

N

N∑
i=1

C(i) ∈ conv{C(i)} and
1

d
C(i)(K) = viv

∗
i (K) ⊆ K.

179



Therefore K is d-symmetric. By Theorem 6.6.3, and Theorem 6.5.3 we see that

Wmax(K) ⊆ dWmin(K).

We obtain the following consequence of Corollary 6.5.5 (See also [100, Proposition 5.5]).

Corollary 6.6.11. Let V be a finite dimensional operator system, and suppose that T =
(T1, ..., Td) is a self-adjoint choice of coordinates such that 0 ∈ W(T ). Suppose {v1, ..., vN}
is a uniform tight frame in Rd with vectors of length 1 such that viv

∗
i (W1(T )) ⊆ W1(T ).

Then for any finite dimensional operator system W and any unital positive map ψ, either
from W to V or from V to W, is completely bounded with ‖ψ‖cb ≤ 2d− 1.

Our goal in the remainder of this section is to find classes of uniform tight frames for
which the conditions of Proposition 6.6.10 hold with K = conv Φ. We begin with the
following simple condition.

Corollary 6.6.12. Let Φ = {v1, ..., vN} ⊆ Rd be a uniform tight frame with vectors of
length 1 and K = conv Φ. If −Φ = Φ, then

Wmax(K) ⊆ dWmin(K).

Proof. We need only verify that viv
∗
i (vj) ∈ K for every 1 ≤ i, j ≤ N . Note that

viv
∗
i (vj) = 〈vj, vi〉vi.

Hence, if
〈
vj, vi

〉
≥ 0 then viv

∗
i (vj) is simply a rescaling of vi by a non-negative constant,

and is hence in conv Φ, and if 〈vj, vi〉 ≤ 0, then viv
∗
i (vj) is a rescaling of −vi by a non-

negative constant and is hence in conv Φ. In either case we have that viv
∗
i (vj) ∈ K so that

by Proposition 6.6.10 we have

Wmax(K) ⊆ dWmin(K).

The assumption Φ = −Φ is rather restrictive (consider Example 6.6.8). For the purpose
of exhibiting a class of uniform tight frames for which the invariance condition viv

∗
i (K) ⊆ K

in Proposition 6.6.10 is automatic, we bring forth the following definition. For a tight frame
Φ, denote by

Stab(v) = {U ∈ Sym(Φ) : Uv = v},

the stabilizer subgroup of Sym(Φ) of symmetries that fix the vector v ∈ Rd.
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Definition 6.6.13. Let Φ = {v1, ..., vN} be a tight frame. We say that Φ is vertex reflexive
if Stab(vi) fixes a subspace of dimension exactly one, namely Sp{vi}, for every 1 ≤ i ≤ N .

If Φ = {v1, ..., vN} is a uniform tight frame, then no vi can be a convex combination
of Φ \ {vi}. Every element of Sym(Φ) must leave the barycenter 1

N

∑N
i=1 vi invariant, and

thus, when Φ is a vertex reflexive uniform tight frame we must have that 1
N

∑N
i=1 vi = 0.

Since the barycenter is relatively interior to conv Φ inside the linear subspace spanned by
Φ, from the fact that that Φ is a tight frame, this subspace must be all of Rd, and hence 0
is interior to conv(Φ). We obtain that the vectors {v1, ..., vN} must comprise the vertices
of a d-dimensional polytope.

We say that a face F of a polytope K is m-dimensional, if m is the minimal dimension
of an affine subspace containing F . For a uniform tight frame Φ, we must have that every
element of Sym(Φ) maps m-dimensional faces to m-dimensional faces.

For a computational method for constructing many examples of vertex reflexive uni-
form tight frames (satisfying the additional requirement that Sym(Φ) is irreducible and
transitive), see [22].

Proposition 6.6.14. Let Φ = {v1, ..., vN} be a vertex reflexive uniform tight frame of
vectors of length 1, and let K := conv(Φ) be the d-dimensional convex polytope generated
by Φ. Then viv

∗
i (K) ⊆ K for all 1 ≤ i ≤ N .

Proof. Fix 1 ≤ i ≤ N . Let α be maximal such that −αvi ∈ K, and let F be a face of K
of minimal dimension m such that −αvi ∈ F . Since 0 ∈ int(K) we see that α > 0.

We first claim that every element g ∈ Stab(vi) must leave F invariant. Indeed, if not,
g(F ) must be an m-dimensional face with −αvi ∈ g(F ) which is different from F . Since
g(F ) ∩ F must be a face of dimension strictly less than m, we arrive at a contradiction to
the definition of F .

Since F = conv{vi1 , ..., vip} is left invariant under Stab(vi), we may restrict each element
g ∈ Stab(vi) to the subspace W = Sp({vi}∪F ). Within W , since every g ∈ Stab(vi) maps
F to itself, it must then map the affine subspace A generated by F inside W , to itself, and
hence must map the normal of A (again inside W ) to itself. But even within the subspace
W , we still have that Stab(vi) fixes a subspace of dimension exactly one, and hence the
normal of A in W can be chosen to be vi. In other words, vi is perpendicular to −αvi− vij
for any 1 ≤ j ≤ p. This means that

viv
∗
i (vij) = 〈vi, vij〉vi = 〈vi,−αvi〉vi = −αvi ∈ K
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and −α = 〈vi, vij〉 is the cosine of the angle between vi and vij for all 1 ≤ j ≤ p. We note
that by maximality of α, we have for each 1 ≤ k ≤ N that the angle between vi and vk is
at most arccos(−α).

Hence, for all 1 ≤ k ≤ N we have that viv
∗
i (vk) = 〈vi, vk〉vi is a convex combination of

−αvi and vi and is hence in K. As viv
∗
i is linear, we see that viv

∗
i (K) ⊆ K as required.

Combining Propositions 6.6.10 and 6.6.14, we obtain the following.

Theorem 6.6.15. Let Φ ⊆ Rd be a vertex reflexive uniform tight frame, and let K =
conv(Φ) be the convex polytope it generates. Then

Wmax(K) ⊆ dWmax(K).

As a consequence of Theorem 6.6.15 and [22, Theorem 5.4], we obtain our results for
any convex regular polytope (See [22, Definition 5.1]).

Corollary 6.6.16. Let K = conv{v1, ..., vN} be a convex regular real polytope according
to [22, Definition 5.3]. Then Wmax(K) ⊆ dWmin(K).

Example 6.6.17. In [22], a class of frames called highly symmetric frames was studied.
A highly symmetric tight frame is a vertex reflexive tight frame for which Sym(Φ) is
also transitive and irreducible (and is then automatically uniform). The class of highly
symmetric frames was shown to be rich, yet tractable.

We will now construct an example of a vertex reflexive uniform tight frame Θ for which
Sym(Θ) is not irreducible, not transitive, and for which no vector u ∈ Θ satisfies −u ∈ Θ.
Thus Theorem 6.6.15 applies, while Corollaries 6.6.12 and 6.6.16 do not.

Let G = S5 act on (e1+...+e5)⊥ inside R5, where {e1, ..., e5} is the standard orthonormal
basis, and S5 acts by permutation matrices. Take the vector φ := 3w2 = (3, 3,−2,−2,−2).
Then by [22, Example 4] the frame Φ2 := gφg∈S5

is a vertex-reflexive uniform tight frame
comprised of 10 distinct vectors, and by construction we see that for all v ∈ Φ2, we have
−v /∈ Φ2.

Hence, let Φ = {v1, ..., v10} be the unit-norm vertex-reflexive tight frame in R4 that is
identified with the normalization of Φ2 inside (e1 + ...+e5)⊥ ⊆ R5. So we still have −v /∈ Φ
for all v ∈ Φ.

We then take the vertex-reflexive unit-norm tight frame of the pentagon inside R2,

Ψ := {(cos(2πk/5), sin(2πk/5))}5
k=1
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Which has 5 distinct elements, and satisfies −w /∈ Ψ for all w ∈ Ψ. Then define

Θ = (Φ⊕ 02) ∪ (04 ⊕Ψ)

where Φ ⊕ 02 is adding two zeroes on the right to each vector in Φ and 04 ⊕ Ψ is adding
four zeroes on the left to each vector in Ψ. Each u ∈ Θ then satisfies −u /∈ Θ. We know
by [110, Lemma 2.1] that∑

v∈Φ⊕02

vv∗ =
10

4
P and

∑
w∈04⊕Ψ

ww∗ =
5

2
Q

Where P and Q are the orthogonal projections onto R4 and R2 respectively, that sum to
the identity I on R6 = R4 ⊕ R2. Therefore,∑

u∈Θ

uu∗ =
5

2
(P +Q) =

5

2
I.

Thus Θ is a unit-norm tight frame in R6. Since Sym(Φ) and Sym(Ψ) fix R4 and R2 in the
decomposition of R6 above, and Φ and Ψ are vertex-reflexive, in their respective spaces, we
have that their union Θ is also a vertex-reflexive unit-norm tight frame.

Since elements of Φ and Ψ are always perpendicular when identified as elements of
R6, no symmetry of Θ can map an element of Φ to an element of Ψ. Indeed, from the
construction of Φ2, an element vi from Φ has no element perpendicular to it from Φ, so
that in Θ, there are only 5 elements perpendicular to vi: those of Ψ. On the other hand,
an element wj of Ψ has exactly 10 elements of Θ perpendicular to it: those of Φ. Thus,
no vi ∈ Φ can be mapped to any wj ∈ Ψ via by a symmetry of Θ, and Sym(Θ) is not
transitive. Hence, elements of Sym(Θ) can only permute elements of Φ among themselves,
and elements of Ψ among themselves. Thus

Sym(Θ) = Sym(Φ)⊕ Sym(Ψ),

so that Sym(Θ) is reducible.

6.7 Matrix balls and optimality

Our goal in this section is two-fold. We show that the constant r = d is optimal for scaled
inclusion of matrix convex sets of dimension d as in the conclusion of Theorem 6.6.3. We
then obtain an array of different matrix convex sets with ground floor the closed unit ball
B = Bd inside Rd, including a self-dual such matrix ball S, which we show is essentially
the unique self-dual self-adjoint matrix convex set of dimension d.
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Lemma 6.7.1. For every d, there exist d self-adjoint 2d−1×2d−1 matrices B1, . . . , Bd such
that for all v ∈ Rd, ‖v‖ = 1, ∑

viBi ≤ I,

and such that d is an eigenvalue of
∑d

i=1Bi⊗Bi. Hence if
∑d

i=1Bi⊗Bi ≤ ρI, then ρ ≥ d.

Proof. The proof is by induction. For d = 1 we take B1 = [1]. Suppose that d ≥ 1, and
let B1, . . . , Bd be self-adjoint 2d−1 × 2d−1 matrices as in the statement of the lemma. We
will construct self-adjoint 2d × 2d matrices B′1, . . . , B

′
d+1 as required.

Let

E1 =

(
0 1
1 0

)
, E2 =

(
1 0
0 −1

)
.

Define
B′i = E1 ⊗Bi , for i = 1, . . . , d,

and
B′d+1 = E2 ⊗ I2d−1 .

The matrices B′1, . . . , B
′
d+1 are self-adjoint. For a unit vector (v1, . . . , vd+1), we compute

I −
d+1∑
i=1

viB
′
i =

(
(1− vd+1)I −

∑d
i=1 viBi

−
∑d

i=1 viBi (1 + vd+1)I

)
By [99, Lemma 3.1], this matrix is positive semidefinite if and only if

( d∑
i=1

viBi

)2 ≤ (1− v2
d+1)I.

By the inductive hypothesis,

( d∑
i=1

viBi

)2 ≤
( d∑
i=1

v2
i

)
I ≤ (1− v2

d+1)I.

Therefore
∑d+1

i=1 viB
′
i ≤ I.

It remains to show that d+1 is an eigenvalue of
∑d+1

i=1 B
′
i⊗B′i. We write T =

∑d
i=1Bi⊗Bi

and examine the operator

d+1∑
i=1

B′i ⊗B′i '


I 0 0 T
0 −I T 0
0 T −I 0
T 0 0 I

 .
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Now, if x is an eigenvector of T corresponding to d, then (x, 0, 0, x)t is an eigenvector of∑d+1
i=1 B

′
i ⊗B′i corresponding to the eigenvalue d+ 1.

The next example shows that r = d is sharp in the conclusion of Theorem 6.6.3.

Example 6.7.2. We construct tuples of operators A and B of self-adjoint matrices, such
that the implication in Theorem 6.6.3 holds with a constant d but with no smaller constant.
In this example the tuple A consists of operators on an infinite dimensional space, but by
taking a sufficiently large finite dimensional corner of A, we get sharpness in the finite
dimensional case as well.

Let {v(n)} be a dense sequence of points on the unit sphere of Rd. Let A be the d-tuple

of diagonal operators such that nth element on the diagonal of Aj is the jth coordinate v
(n)
j

of v(n). Then

DsaA = {X ∈Mn(C)dsa :
∑

Xjvj ≤ I for all v ∈ Rd, ‖v‖ = 1}.

Observe that DsaA =Wmax(Bd), and in particular DsaA (1) = Bd is the unit ball of Rd, which
is invariant under projections onto any uniform tight frame. Hence, we get from Theorem
6.6.10 that for any matrix convex set T we have that

DsaA (1) ⊆ T1 =⇒ DsaA ⊆ dT .

Let B be as in Lemma 6.7.1. For every unit vector v ∈ Rd,
∑
viBi ≤ I. Thus

DsaA (1) ⊆ DsaB (1) and B ∈ DsaA ⊆ dDsaB . On the other hand, B /∈ ρDsaB for any ρ < d, since∑
iBi ⊗Bi has an eigenvalue equal to d. Thus DsaA * ρDsaB for any ρ < d.

Recall that the (d-dimensional self-adjoint) matrix ball is defined to be

B = B(d) = {X ∈Mn(C)dsa :
d∑
j=1

X2
j ≤ I}.

We also introduce another “matrix ball” which will turn out to conform more naturally to
duality of matrix convex sets. Recall that the transpose is a linear map from A ∈ B(H)
to B(H∗) is given by Atf = f ◦ A. Define the conjugate of A ∈ B(H) to be A := (A∗)t. It
is called the conjugate because if A = [aij] belongs to Mn, then Ā = [aij]. Haagerup [59,
Lemma 2.4] established an important identity for the spatial tensor product by observing
that if H and K are Hilbert spaces, then a spatial tensor product A⊗B on H ⊗K of two
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operators A ∈ B(H) and B ∈ B(K) can be represented as an operator on the Hilbert-
Schmidt operators S2(K,H) from K into H, which is canonically isomorphic to the Hilbert
space H⊗K∗. Indeed, the operator A⊗B is unitarily equivalent to the operator u→ AuB∗

in B(S2(K,H)). Haagerup shows that (in the spatial tensor norm)∥∥∑Ai ⊗Bi

∥∥ ≤ ∥∥∑Ai ⊗ Ai
∥∥1/2∥∥∑Bi ⊗Bi

∥∥1/2
.

Proposition 6.7.3. For each d ∈ N denote S = {Sn}

Sn = S(d)
n = {X ∈Mn(C)dsa :

∥∥ d∑
j=1

Xj ⊗Xj

∥∥ ≤ 1}.

Then, S is a closed matrix convex set.

Proof. Clearly S is closed. Observe that S = −S and is invariant under the entrywise
conjugation map sending A to A. In particular, the norm condition is equivalent to the
two inequalities

±
d∑
j=1

Xj ⊗Xj ≤ I.

Haagerup’s inequality shows that if X ∈ Sn and Y ∈ Sm, then X ⊕ Y ∈ Sn+m. It is also
routine to show that if A ∈Mm,n is an isometry, and X ∈ Sn, then AXA∗ ∈ Sm. So S is
matrix convex.

Observe that B = −B and is also closed under entrywise conjugation, and that entry-
wise conjugation is isometric. A self-adjoint d-tuple X belongs to B exactly when

‖X‖ = ‖[X1 X2 . . . Xd]‖ =
∥∥ d∑
j=1

X2
j

∥∥1/2 ≤ 1.

Therefore ∥∥∑d
j=1 Xj ⊗Xj

∥∥ ≤ ‖X ⊗ I‖ ‖I ⊗X‖
=
∥∥∑d

j=1X
2
j ⊗ I

∥∥1/2 ∥∥∑d
j=1 I ⊗Xj

2∥∥1/2

= ‖X‖ ‖X‖ ≤ 1.

It follows that B ⊆ S.
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Clearly B(1) = S(1) = B. Thus we have

Wmin(B) ⊆ B ⊆ S ⊆ Wmax(B).

It is natural to ask about the precise place these matrix balls take in this inequality.

Proposition 6.7.4. S(d) is the unique self-dual self-adjoint matrix convex set S of dimen-
sion d that is invariant under entrywise conjugation.

Proof. Note that S is closed under entrywise conjugation and S = −S. Haagerup’s
inequality shows that for X and Y in S we have that∥∥∑Xi ⊗ Yi

∥∥ ≤ 1.

Since Y also belongs to S, we deduce that I ≥
∑d

i=1 Xi ⊗ Yi, so that S• ⊇ S.

Conversely, take Y ∈ S•. As S1 = Bd, it is clear that 0 ∈ int(S) so that

r0 = sup{r : rY ∈ S}

is positive. If r0 ≥ 1, then Y ∈ S and we are done. If however r0 < 1, as S = −S, we
have ±Y ∈ S•, so that I ±

∑d
i=1 Yi ⊗ Y i ≥ 0. This implies that∥∥∑ r0Yi ⊗ Yi

∥∥ ≤ 1.

However, this shows that
√
r0Y belongs to S. This is impossible since, as

√
r0 > r0, we

get a contradiction to the definition of r0.

For uniqueness, if S is a self-dual self-adjoint matrix convex set of dimension d, then
S1 = Bd. Indeed, for every x ∈ S1, we have that 〈x, x〉 ≤ 1, thus S1 ⊆ Bd. It follows from
self-duality of S that S1 = S•1 = S ′1 ⊇ Bd so that S1 = Bd. In particular 0 ∈ int(S).

We now show that self-dual matrix convex sets S are closed under taking minuses. By
categorical duality, it will suffice to show that the unital map id− that sends zi to −zi is a
complete order automorphism of A(S), where z = (z1, ..., zd) are the d-tuple of self-adjoint
coordinate functions on S. Since S = W(z), we have that A(W(z)) = A(W(z)•) is an
operator system. Since S is d-dimensional and 0 ∈ int(S), we see that {1,−z1, ...,−zd}
is a basis for A(S). Hence, we may take its dual basis {1′, f1, ..., fd} for A(S)′ so that
f = (f1, ..., fd) is the dual choice of coordinates to z = (z1, ..., zd). By Theorem 6.3.11,
item (1) of Theorem 6.2.6 and Corollary 6.3.12 we see that id− is the composition of unital
complete order isomorphisms

A(S) = A(S•) ∼= A(S)′ ∼= A(W(f)) = A(W(z)•) = A(W(z)) = A(S)
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and is hence a unital complete order isomorphism. Hence, we have that S = −S.

Next, if we assume S is also closed under entrywise conjugation, for X ∈ S we have
that ±X ∈ S. Hence, by self-duality we have

±
d∑
i=1

X ⊗X ≤ I,

which is equivalent to ‖
∑d

i=1Xi ⊗ X i‖ ≤ 1. Thus, we see that S ⊆ S. Applying polar
duality and self-duality, we find that S ⊆ S, so that S = S.

Justified by the above proposition, we will call S the self-dual matrix ball. We then
obtain the following immediate consequence.

Corollary 6.7.5.
Wmin(B) ( B ( S = S• ( B• (Wmax(B)

for d > 1.

Proof. For the first proper containment, let

X1 =

(
1
2

0
0 0

)
, X2 =

(
0 3

4
3
4

0

)
.

One verifies X ∈ B, but by [63, Example 3.1], X is not contained in some other spectra-
hedron DsaB with DsaB (1) = B where B = (B1, B2) = (E1, E2) are as in Lemma 6.7.1. In
particular, X is not in Wmin(B). By adding zeroes if necessary, we obtain this for any
dimension d ≥ 3.

Next, we show that B 6= B• foor d > 1. Indeed, for i = 1, . . . , d, let Bi be the matrix
on Cd+1 that switches between e1 and ei+1 and sends all other basis vectors to 0. Then
B = DsaB (recall Example 2.4.4), thus B ∈ B•. On the other hand,∑

j

B2
j = I + (d− 1)e1e

∗
1,

where e1e
∗
1 denotes the orthogonal projection onto the first basis vector. Therefore, B is

not in B so that B• 6= B. Thus, the two middle proper containments hold.

For the last proper containment, as B ⊆ S, and as S is self-dual, we have B ( S. By
duality and Theorem 6.3.8, we obtain S ( B• (Wmin(B)• =Wmax(B).
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By analogy to the matrix cube / polyball problem, we ask for which constant r does
the following implication hold:

B ⊆ DA(1) =⇒ S ⊆ rDA. (6.7)

Note that this is not in perfect analogy with the matrix cube problem, because C =
Wmax([−1, 1]d), whereas S is somewhere near the ‘center’ of the range of matrix convex
sets with first level equal to B. We already completely solved the problem for Wmax(B)
above in Proposition 6.6.10 and Example 6.7.2. We know by Proposition 6.6.10 that r = d
works in equation (6.7), but we will do better in this case. Since S 6= Wmax(B), we also
ask for a constant r such that

DA(1) ⊆ B =⇒ DA ⊆ rS. (6.8)

Remark 6.7.6. In a recent revision of the paper [64] (that appeared after we obtained the
results of this section), results similar to those in this section were obtained using different
methods. It is worth noting that [64] treats four sets which they call matrix balls: Bmax,
which is what we denote by Wmin(B); Bmin, which is what we denote by Wmax(B); Boh,
which is what we denote by B; and finally, Bspin, which is a certain free spectrahedra with
Bspin(1) = B which we do not discuss. (However, the spin matrices have arisen in Example
6.7.2.)

Theorem 6.7.7. Let S be a self-adjoint matrix convex set. Then

S1 ⊆ B =⇒ S ⊆
√
dB ⊆

√
dS

and
B ⊆ S1 =⇒ S ⊆ B• ⊆

√
dS.

Moreover, the constant
√
d is the optimal constant in both implications regarding S.

Proof. Suppose that S1 ⊆ B and that X ∈ S. Then X ∈ Wmax(B), so
∑

j ajXj ≤ I for

all a ∈ B. In particular ±Xj ≤ I, so equivalently X2
j ≤ I for all j. Thus

∑
j X

2
j ≤ dI,

meaning that 1√
d
X ∈ B ⊆ S, as required.

To obtain the second implication we use polar duality. If B ⊆ S1, then S•1 ⊆ B, so by
the first implication

S• ⊆
√
dB.

Applying the polar dual again, we obtain

1√
d
S ⊆ 1√

d
B• = (

√
dB)• ⊆ S•• = S.
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So we get that
S ⊆ B• ⊆

√
dS.

We next verify that the first inclusion implication is sharp with S. Indeed, by Lemma
6.7.1, there is a d-tuple of real Hermitian matrices B inWmax(B) such that ‖

∑
Bi⊗Bi‖ =

d. Since B is real, we have B = B. Therefore it is clear that r = 1/
√
d is the largest

constant so that rB ∈ S. The second inclusion implication is also sharp with S by
duality.

By Theorem 6.7.7 B ⊆ S ⊆
√
dWmin(B), so we obtain the following corresponding

dilation result.

Corollary 6.7.8. For X = (X1, ..., Xd) ∈ (Mn)dsa, if ‖
∑d

j=1Xj ⊗Xj‖ ≤ 1 (in particular,

if
∑d

j=1X
2
j ≤ I), then there exists T = (T1, ..., Td) commuting self-adjoint matrices such

that σ(T ) ⊆ B and
√
dT dilates X.

In [95], an operator system structure on Pisier’s self-dual operator space was obtained
by adding a unit I. For each natural number d ∈ N an operator system SOH(d) of
dimension d+ 1 was introduced. This operator system has a natural self-adjoint choice of
coordinates H = (H1, ..., Hd), so that an element A0 ⊗ I +

∑d
i=1 Ai ⊗Hi is positive if and

only if −A0 ⊗ A0 ≤
∑d

i=1Ai ⊗ Ai ≤ A0 ⊗ A0 and if and only if A0 ⊗ I −
∑d

i=1Ai ⊗Hi is
positive.

It was shown in [95] that an identification between a self-adjoint basis of SOH(d) and
its dual basis for SOH(d)′ yields a complete order isomorphism of matrix ordered spaces.
However, in [95] the dual operator space complete norm structure was put on SOH(d)′, as
opposed to a complete norm induced from an operator system structure on SOH(d)′. With
the dual operator space complete norm structure on SOH(d)′, it was shown in [95] that
the smallest completely bounded norm of a complete order isomorphism between SOH(d)
and SOH(d)′ is 2.

Our approach here is to put a complete norm structure on the dual that is induced
from an operator system structure on the dual, through the existence of an Archimedean
matrix order unit for the dual matrix ordered space given to us by the theorem of Choi and
Effros. As a final application, we show that A(S(d)) is unitally complete order isomorphic to
SOH(d) and that it is the unique operator system with a self-adjoint choice of coordinates
T such that W(T ) is self-dual and closed under entrywise conjugation.

Theorem 6.7.9. Let V be a (d + 1)-dimensional operator system. Suppose V has a self-
adjoint choice of coordinates T = (T1, ..., Td) such that W(T ) is self-dual and closed under
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entrywise conjugation. Then V is unitally completely order isomorphic to A(S(d)). In
particular SOH(d) and A(S(d)) are unitally completely order isomorphic.

Proof. Since W(T ) is self-dual and closed under entrywise conjugation, by Proposition
6.7.4 we have that W(T ) = S(d). By Theorem 6.2.6 we know that V is unital complete
order isomorphic to A(W(T )) = A(S(d)).

For the remaining part of the theorem, we need only show that the basis {I,H1, ..., Hd}
of SOH(d) given in [95], the matrix range W(H) is self-dual and closed under entrywise
conjugation.

We first show that W(H) is self-dual. By [95, Theorem 3.4] the map sending the basis
{I,H1, ..., Hd} to the dual basis {δ0, δ1, ..., δd} is a complete order isomorphism, so our
strategy is to apply Corollary 6.3.12 to conclude thatW(H) =W(δ) =W(H)•. Hence, we
need only make sure that 0 ∈ int(W(H)). However, by Proposition 6.3.9 this is equivalent
to showing that δ0 is strictly positive, so we show this. Indeed, by [95, Proposition 3.3], if
P := A0 ⊗H0 +

∑d
i=1 Ai ⊗Hi is positive in Mn(SOH(d)), then A0 is positive, Ai are self-

adjoint, and we have that −A0⊗A0 ≤
∑d

i=1Ai⊗Ai ≤ A0⊗A0. Hence, if A0 = δ0(P ) = 0,

we must have that
∑d

i=1Ai⊗Ai = 0. By the discussion preceding [95, Proposition 3.3], we

see that ‖
∑d

i=0 Ai⊗Hi‖ = ‖
∑d

i=0Ai⊗Ai‖. Hence, if A0 = 0 then
∑d

i=0Ai⊗Hi = 0. This
means that δ0 is strictly positive, so that by Corollary 6.3.12 together with Proposition
6.3.9 we see that W(H) is self-dual.

Next, since W(H) is self-dual, we see that W(H) = W(H)• = DsaH . Hence, A ∈
W(H) = DsaH if and only if I ⊗ I ≥

∑d
i=1Ai ⊗Hi. By [95, Proposition 3.3] this occurs if

and only if I⊗ I ≥
∑d

i=1 Ai⊗Hi, so thatW(H) is closed under entrywise conjugation. By
Proposition 6.7.4 we see thatW(H) = S, and by categorical duality we have that SOH(d)
and A(W(H)) = A(S) are unitally completely order isomorphic.
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[107] Iain Raeburn and Wojciech Szymański. Cuntz-Krieger algebras of infinite graphs
and matrices. Trans. Amer. Math. Soc., 356(1):39–59, 2004. 119

[108] Iain Raeburn and Dana P. Williams. Morita equivalence and continuous-trace C∗-
algebras, volume 60 of Mathematical Surveys and Monographs. American Mathemat-
ical Society, Providence, RI, 1998. 96, 98

200



[109] Christopher Ramsey. Automorphisms of free products and their application to mul-
tivariable. Arxiv preprint, arXiv:1409.5109v2 [math.OA], 2014. 46

[110] Robert Reams and Shayne Waldron. Isometric tight frames. Electron. J. Linear
Algebra, 9:122–128, 2002. 179, 183

[111] M. Rørdam, F. Larsen, and N. Laustsen. An introduction to K-theory for C∗-algebras,
volume 49 of London Mathematical Society Student Texts. Cambridge University
Press, Cambridge, 2000. 32, 110, 112

[112] Eugene Seneta. Non-negative matrices and Markov chains. Springer Series in Statis-
tics. Springer, New York, 2006. Revised reprint of the second (1981) edition [Springer-
Verlag, New York; MR0719544]. 29, 30

[113] Orr M. Shalit and Baruch Solel. Subproduct systems. Doc. Math., 14:801–868, 2009.
3, 4, 19, 109

[114] Allan M. Sinclair. Automatic continuity of linear operators. Cambridge University
Press, Cambridge-New York-Melbourne, 1976. London Mathematical Society Lecture
Note Series, No. 21. 77

[115] Adam Skalski and Joachim Zacharias. Wold decomposition for representations of
product systems of C∗-correspondences. Internat. J. Math., 19(4):455–479, 2008.
122, 140

[116] Baruch Solel. You can see the arrows in a quiver operator algebra. J. Aust. Math.
Soc., 77(1):111–122, 2004. 2, 46, 82, 84

[117] Richard Vale and Shayne Waldron. Tight frames and their symmetries. Constr.
Approx., 21(1):83–112, 2005. 179

[118] Ami Viselter. Covariant representations of subproduct systems. Proc. Lond. Math.
Soc. (3), 102(4):767–800, 2011. 19, 21, 23

[119] Ami Viselter. Cuntz-Pimsner algebras for subproduct systems. Internat. J. Math.,
23(8):1250081 (32 pp.), 2012. 4, 21, 23, 24, 87, 109

[120] Dan Voiculescu. A non-commutative Weyl-von Neumann theorem. Rev. Roumaine
Math. Pures Appl., 21(1):97–113, 1976. 34

201



[121] Gerd Wittstock. On matrix order and convexity. In Functional analysis: surveys
and recent results, III (Paderborn, 1983), volume 90 of North-Holland Math. Stud.,
pages 175–188. North-Holland, Amsterdam, 1984. 7

[122] Radu Zaharopol. Invariant probabilities of Markov-Feller operators and their sup-
ports. Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2005. 27
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