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Abstract

In today’s world, E-commerce is a fast growing industry and e-retailers are looking

for innovative ways to deliver customer orders within short delivery times at a low cost.

Currently, the use of drone technology for last-mile delivery is being developed by such

companies as Amazon, FedEx, and UPS. Drones are relatively cheaper and faster than

trucks but are limited in range and may be restricted in landing and takeoff. Most of

the work in the Operations Research literature focusses on the operational challenges of

integrating drones with truck delivery. The more strategic questions of whether it is eco-

nomically feasible to use drones and the effects on distribution network design are rarely

addressed. These questions are the focus of this work. We consider an e-retailer offering

multiple same day services using both existing vehicles and drones, and develop a facility lo-

cation problem under service-based competition where the services offered by the e-retailer

not only compete with the stores (convenience, grocery, etc.), but also with each other.

The competition in the market is incorporated using the Multinomial Logit (MNL) mar-

ket share model. To solve the resulting nonlinear mathematical formulation we develop a

novel logic-based Benders decomposition approach. We also show that the nonlinear model

can be transformed into a linear mixed integer formulation. Computational experiments

show that our algorithm outperforms direct solution of the linear formulation. We carry

out extensive numerical testing of the model and perform sensitivity analyses over pricing,

delivery time, government regulations, technological limitations, customer behavior, and

market size. The results show that government regulations play a vital role in determining

the future of drone delivery.
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Chapter 1

Introduction

Use of unmanned aerial vehicles (UAVs) or drones for medical purposes in remote areas of

South Africa and Germany, and the recent announcement of Amazon’s Prime Air service

to deliver packages within 30 minutes, have put drones in the spotlight. Companies like

Google, Walmart, DHL, and Zookal have also joined the race of drone delivery [37, 42].

A drone would take a parcel from the warehouse, vertically take-off from its base station,

and fly to customer’s footstep. At arrival, the parcel is dropped and the drone returns to

the warehouse to begin next delivery. Since drones can fly over congested road networks,

drone delivery greatly reduces delivery time. In today’s world, online ordering is increasing

rapidly. Companies are looking for new technologies to delivery goods to customers within

short time windows to maximize market share. Several companies including FedEx, UPS,

and Amazon are offering same-day delivery services[41]. Unlike traditional truck delivery,

drones fly without a human pilot and are battery operated. Some studies suggest delivery

using drone reduce overall cost[11, 53]. This makes drones more attractive for last mile

delivery, in which customers want their orders to be delivered quickly with low delivery
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(a) Amazon Prime Air (b) DHL Parcelcopter

Figure 1.1: Parcel delivery using Drones

charges.

Challenges

There are some limitations that need to be addressed to make delivery by drone possi-

ble. Figure 1.1(a) shows the drone prototype presented by Amazon to make 30-minute

deliveries. The drone has a range of only 20 km which means that it can only deliver

a parcel within 10 km of the warehouse. The drone can carry a parcel weighing up to

2.5 kg. Fortunately, 70% of Americans live within 8 km of a Walmart store and 86%

of the parcels delivered by Amazon weigh less than 2.5 kg [11]. Another drawback for

package delivery using drones is congested airspace. Currently, drones operate outside the

restrictive airspace but a drone logistics network would surely cause congestion of airspace

and hence would require their integration in the air traffic system. Although the aviation

authorities do believe that drones can be operated safely in airspace, it is going to be a

challenging task. The future of drones critically depends on government regulations which

are currently quite restrictive in the United States. Experts believe that once regulatory

issues are addressed, technological limitations will not hinder the use of drones for last-mile

delivery.

2



Truck-drone delivery to address limited range

Due to range limitations, a drone network would require many facilities to open in close

proximity to the customer locations. Opening additional facilities would increase the in-

ventory holding and facility costs, however this may be compensated for the reduced out-

bound transportation costs and increased demand due to reduced delivery times. There

have been few studies to address operational challenges with drone delivery. To address

limited range of drones, one possible solution proposed by Agatz et al. [16] is shown in

Figure 1.2(a), in which a drone collaborates with a delivery truck. The truck would take a

main route avoiding the congested areas while the drone flies to congested areas, reducing

the transportation time and distance. In this way, the truck would cover several customer

locations, and the drones would simultaneously cover other customer locations, one by one,

returning to the truck after each delivery. The following transportation problem consists

of both assignment and routing problems where the assignment decision determines which

vehicle to use, drone or truck, and the routing decision determines the sequence in which

customers would be served by each vehicle type. However, the model proposed by Agatz

et al. [16] tries to minimize delivery time without considering costs associated with vehicle

type. Murray and Chu [55] propose two mathematical programming models where trucks

deliver parcels in collaboration with drones, as shown in Figure 1.2(b). The paper focuses

on a new variant of the traditional Traveling Salesman Problem (TSP) to determine the

optimal assignment of the customers to drones flying along with trucks to make deliveries.

They call the problem the Flying Sidekick Traveling Salesman Problem (FSTSP). The

paper also presents a mathematical model for the case where customers are located in

close proximity to the distribution center (DC). This problem is called the Parallel Drone

Scheduling TSP (PDSTSP), finding optimal truck and drone usage to make all deliveries.
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(a) Agatz et al. [16] (b) Murray and Chu [55]

Figure 1.2: Truck-drone delivery

These studies mainly focus on the operational challenges posed by delivery drone with-

out taking into account strategic issues related to the impact on the distribution network

and overall profits.

Cost analysis

There have been some studies to estimate the costs associated with drone delivery. Hickey

[42], for instance, presents a report on the successful delivery of crucial medical products in

the landlocked area of South Africa, Lesotho, by a start-up company, Matternet. Matternet

delivered medical products and collected blood samples to be brought back to the hospital

for tests. In this particular case, drones are a perfect solution as blood samples are time-

sensitive, small, and light-weight. Similarly, the area did not have air traffic and hence

4



the whole process was automated with specified landing areas where drones are recharged

automatically. Drones in this case would take 15 minutes to take a 2 kg of cargo to locations

as far as 11 km. Surprisingly, it costed only $0.24 per delivery [42]. This practical example

shows that drones are cost effective. Similarly, a guest editorial published in IEEE by

D’Andrea [25] suggested that fuel cost directly associated with drone delivery is $0.10 for

a parcel of 2 kg within a 10 km range. However, these figures do not incorporate other

costs such as operator salary, facility costs, amortization of the drone, and maintenance.

Assuming a vehicle costs $1000, adding 20% for yearly maintenance yields an annual cost

of $400 which equals $1/day. If a drone makes 10 runs per day, each parcel delivery would

cost approximately an additional $0.10 [11]. The total cost per delivery would equal $0.20,

excluding other operational costs. The above calculations assume that the drone network

would be automated, however government regulations may require operators to monitor

drones. In the traditional truck delivery, driver salary is one of the main components of

delivery costs. For a driver-less truck, delivery costs may be significantly lower. Drone

technology available for the last-mile delivery part of the supply chain can only take a

single parcel to a single destination. A traditional truck, on the other hand, can make

multiple deliveries per route. Hence, it is important to consider all costs associated with

drone delivery including facility and operator’s costs to study the impact of the drone

network on the last mile delivery. In a report by ARK Invest, Keeney [52] takes into

account these factors to estimate unit delivery cost using drones for Amazon. In the study,

facility up-gradation costs, operators salary, fuel cost, and internet Bandwidth costs are

considered to estimate total unit delivery cost. Keeney [52] estimates unit cost to be close

to $1. In the analysis, it is assumed that government regulations would allow an operator

to monitor 5-10 drones simultaneously. However, other industry reports suggest 1-2 drones

would be allowed per operator [9, 11]. Assuming this case, it could cost Amazon between
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$15 to $20 per package .

Our contribution

The drone technology could bring about a revolution in logistics due to decreased delivery

costs, which is usually one of the main factors that parcels are delivered in days rather

than in hours. From an Operations Research perspective, there have been some studies

addressing operational challenges associated with drone technology, we are not aware of a

study addressing the effect of delivery by drone on the distribution network. This paper

studies the effect of drones on distribution network design while taking into account three

important measures of a network design: (1) facility location, (2) services offered, and (3)

response time. These measures not only affect customer demand, but also affect network

costs. Consider Amazons Prime Air service, where delivery would be made to the cus-

tomer location from a warehouse using drones within 30 minutes. Since the current drone

technology limits drone range to 10 km, it would require more technologically advanced

facilities to be built in close proximity to customer locations resulting in increased facility

costs. Increasing the number of facilities also increases the holding costs due to the disag-

gregation of demand. On the other hand, outbound transportation costs are significantly

reduced due to the close proximity to the customer locations. Similarly, with 30-minute

delivery time, Amazon would be able to capture a higher market share, leading to higher

revenues, compensating for the increased inventory and facility costs.

Since drone delivery is currently in the testing phase, it is hard to predict its effect

on customer demand. To capture customer behavior, we adopt the multinomial market

share model, also referred to as the brand choice, and the attraction model. In such models,

the customer demand captured by a service is probabilistic and depends on the utility

6



Figure 1.3: Top selling Prime Now products in each city in 2015 [22]

(or attraction) derived from that service relative to the utility derived from other services

available in the market. Currently, Amazon offers Prime Now service to its prime members

in which delivery is made within 1-2 hours. Figure 5.1 summarizes the top selling products

in cities where Prime Now service is available. Studying the products being ordered for

1 to 2-hour delivery, it is observed that customers usually order products that are readily

available at departmental and convenience stores, and are bought when required, such as

bottled water, towels, diapers, etc. As such, drone delivery will not only compete with

services already offered by the e-retailer itself but also with stores nearby.

Figure 1.4 illustrates a two customer zone network, each with similar demand charac-

teristics. In Figure 1.4(a), the e-retailer offers only one service using existing vehicles. The

demand captured by the e-retailer from customer zone 2 is higher than 1 due to competition
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with stores. Since zone 2 is farther away from store 4, the demand captured by the store

is lower due to high travel time and costs. In this scenario, the optimal facility location

to minimize total delivery costs is at node 2. In Figure 1.4(b), the e-retailer introduces

drone delivery along with existing service. Note that node 2 is not the optimal facility

location when drone service is available. Since the drones have a limited range of 10 km,

the optimal facility location is node 0, in order to offer both existing and drone service

in all customer zones. This illustrates the impact of drone delivery on network design.

We therefore develop a facility location problem with multiple services where the last-mile

delivery is being carried out using both traditional vehicles and drones in a competitive

market.

The outline for thesis is as follows. Chapter 2 presents a detailed literature review on

drone delivery, competitive network design, market share models, and logic-based Benders

decomposition. In Chapter 3, we formally define the problem. A mixed integer non-linear

program is presented to model a facility location problem under service-based competition.

Since nonlinear formulations are very hard to solve using commercial optimization software,

Chapter 4 presents a novel logic-based Benders decomposition approach to solve the model

to optimality within reasonable time. In Chapter 5, the numerical testing results of an

actual network over New York City are analyzed. In Chapter 6, we present computational

results of the solution methodology used. Finally, in Chapter 7, concluding remarks are

presented.
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(a) Without drones

(b) With drones

Figure 1.4: Optimal network configuration
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Chapter 2

Literature review

Our work relates to three bodies of literature including delivery by drones, competitive

facility location problem, and logic-based Benders decomposition. In this section, we review

the literature in these areas and position our work accordingly.

Delivery by drones

The amount of literature for drone delivery has significantly increased in the last few years.

Murray and Chu [55] are the first to the address operational challenges associated with

drone delivery. The authors suggest a new variant of the Traveling Salesman Problem

(TSP), in which a drone is operated from a vehicle to make deliveries. They assume that

drones can only depart and land at a customer location. Ha et al. [39], Agatz et al. [16], Ha

et al. [40], and Ponza [58] consider a very similar problem of truck-drone delivery. Ferrandez

et al. [35] use k-means clustering to find the optimal location of drone launch sites from

the truck and present a genetic algorithm to solve the TSP. Dorling et al. [27] develop two
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multi-vehicle routing problems (mVRPs) based on the drone energy consumption model.

In the model, multiple drones are used to make deliveries from a depot. An extension

of the TSP with drones is presented by Wang et al. [67] where a vehicle routing problem

with a fleet of trucks and drones is considered. Tavana et al. [63] propose a cross-docking

truck-scheduling problem where only direct shipments are allowed using drones while other

deliveries are made using a fleet of trucks. In contrast, Ulmer and Thomas [66] consider a

dynamic vehicle routing problem using a fleet of trucks and drones for same day delivery,

where customer orders need to be fulfilled in a given time interval. Finally, Campbell et al.

[21] use continuous approximation modeling technique to model a hybrid system where

drones make simultaneous deliveries along with trucks. They present strategic analysis of

the truck-drone delivery and their findings suggest substantial cost savings in suburban

areas.

Other than Hong et al. [44], researchers are more focused on the operational challenges

associated with drones without addressing key network design questions. Hong et al. [44]

develop a maximal coverage location model with a given number of warehouses and charg-

ing stations. The objective is to maximize drone coverage while minimizing the average

network distance between the warehouse and charging stations. However, the location of

the warehouses is fixed and the model decides on locating charging stations.Drone delivery

would require reconfiguration of the distribution network which would effect networks costs

and demand.

Strategic network design questions must be addressed before dealing with operational

challenges. There are many factors that must be taken into account while designing a

distribution network. One of the most important factors is the presence of competitors

offering the same product or service. In a network with drones, to fulfill an order within

30 minutes, an e-retailer would enjoy having a monopoly for providing a unique service.
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However, as discussed earlier, the e-retailer competes with existing stores and should also

consider the competition between its own services. Stores that are located in close proxim-

ity to customer locations have zero waiting time to buy a products, there customers may

prefer to do shopping at a store to avoid waiting for the product to arrive by shopping

online. Nevertheless, a customer incurs travel cost and travel time to buy a product from

a store. For this reason, it is important to examine customer behavior when they have an

alternative choice to an online purchase that will be delivered to their doorstep in just 30

minutes.

Since our work relates to facility location problem in a competitive setting, we now

present different market share models and review the literature for competitive facility

location problems.

Market share or demand models

A variety of different market share models are used in the literature. In this chapter, we

discuss five commonly used models as presented by Cooper et al. [24]. Linear, multiplicative

and exponential models are the basic market share models used. In the linear model, the

market share captured by a player (e.g. facility, firm, or service) is a linear function of the

attributes of all competing players. Attributes are the factors against which the players

are competing in the market, e.g. price, delivery time, distance from the facility, etc. In

the multiplicative model, market share is given by the product of the attributes (raised to

a power depending on the relative importance of the attribute) of all competing players.

Similarly, exponential models estimate market share as the exponential of the attributes

of all competing players. Note that these models are closely related to one another. Both

multiplicative and exponential models can be transformed into log-linear models.
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To meet logical-consistency requirements, market share captured by a player must be

nonnegative and the sum of the market share of all players must be less than or equal to

1. Surely, none of the above mentioned models meet these requirements. There are two

commonly used models that meet the logical-consistency requirements : the Multiplicative

Competitive Interaction (MCI) model, and the Multinomial logit (MNL) model. In this

chapter, we follow the notations used by Cooper et al. [24]. Consider a set of players M

in a market competing against K attributes or factors. In these models, market share

captured by each player m ∈M is defined as Am∑
m∈M

Am
where Am is attractiveness or utility

of the player m based on its attributes. In MCI model, Am = exp(αm)
k=K∏
k=1

Xβk
km, and in

MNL model, Am = exp(αm +
k=K∑
k=1

βkXkm), where αm is the constant attraction factor or

inherent attractiveness of player m, Xkm is the value of kth attribute for player m, and

βk denotes the sensitivity of the market to the kth attribute. To ensure logical-consistency

requirements are met, we use the MNL model to predict market shares of the services in

the market. The model formulation and methodology in this thesis is also applicable to

the MCI model as well.

In facility location literature, gravity models, also referred to as spatial interaction

models, are widely used. Gravity models are a special case of MNL and MCI market share

models originating from the work of Huff [48]. In these models, facilities compete against

each other based on the distance from customer location and other attraction factors. In

next section, we review the literature for competitive facility location problems in which

such models are used.
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Competitive facility location problem

There are three main types of competition addressed in the literature. Static competition

is when the new entrant assumes that the attributes of the existing competitors do not

change following its entrance into the market. [57]. Dynamic competition is when the new

entrant makes decisions assuming that competitive characteristics of the existing rivals

may change, following its entrance into the market (see [38, 20, 73, 54]). Competition with

foresight is when the rivals (follower) soon join the market once the new entrant (leader)

enters the market [31].

There is a great deal of literature addressing competitive facility location problems.

Meng et al. [54] study a dynamic competitive facility location problem where a manu-

facturer intends to enter the existing decentralized supply chain with three tiers: man-

ufacturer, retailer, and customers. The study focuses on both operational (pricing) and

strategic decisions (facility location) in which the market share or demand is a linear func-

tion of the price charged to customers by the two competing supply chains. Drezner and

Drezner [28] consider a facility location problem with foresight, in which a future competi-

tor would enter the market and locate its facility at the best site given the location of the

existing firm. In such situation, the facility location decision should be made taking future

competition into account. The paper formulates a stackelberg equilibrium problem using

the gravity model where the objective is to maximize one’s market share. The gravity

model used in the problem only considers the distance from the customer as competing

factor while assuming all other attractiveness factors are constant. Rezapour and Farahani

[60] develop a bi-level model for a new SC in a competitive network structure. In their

problem, strategic decisions are made once for all, with the exception to operational de-

cisions; price and service level are adjustable in the future. The objective is to maximize
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future profits of the SC where the demand is a linear function of all prices and service

levels in the market. Berman and Krass [18] develop a nonlinear static competitive facility

location problem by incorporating both saptial and flow interaction market share models,

in which facilities derive their demand from both dedicated-trip customers and intercept-

ing customers passing by a facility. Wu and Lin [71] solve a similar problem to Berman

and Krass [18] called the flow-capturing location allocation problem. Aboolian et al. [15]

presents a location-allocation problem for a web services provider in a duopolistic competi-

tion. The paper investigates the optimal facility location, customer allocation, and number

of servers at each facility to maximize the provider’s profit, while taking into account the

facility location of the existing rival providing the same service. In this study, a customer

patronizes the provider offering, minimum expected waiting time with the demand follows

a Poisson distribution. Fernández et al. [34] consider a facility location problem along

with competitive pricing, with the assumption that a customer buys the product from the

facility offering the lowest price. They then provide three different choice models to break

ties in the case each facility offers same price. Aboolian et al. [13] develop a competitive

facility location problem using the spatial interaction model to optimize both location and

design decisions. In the study, demand is elastic, i.e. as the total utility of the service

increases, the market expands.

In our problem, we assume static competition where the characteristics of stores and

services already being offered by the e-retailer would not change following the entrance

of the unique service with drones. Our work consider a unique competition in which

e-retailer’s own facilities do not compete against each other but rather the services are

competing against each other. These services also compete with the existing stores that are

in close proximity to the customer location. Hence, we consider strategic factors along with

time-based and price-based competition to make optimal location and service decision. We
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use a multinominal logit model (MNL) to estimate market share captured by each service

in a competitive environment (refer to [24] for additional market share models).

Logic-based Benders decomposition

The resulting formulation is a mixed integer non-linear program. We therefore develop a

logic-based Benders decomposition approach to solve the facility location problem under

competing services. Logic-based Benders decomposition generalizes the classical Benders

decomposition approach by relaxing the linear subproblem requirement [45, 46]. In this

approach, the original problem is divided into a master problem and subproblem(s). In the

master problem, some decision variables and constraints are fixed/removed. The optimal

solution of the master problem is directed to the subproblem(s) to find Benders cuts that

are the n added back to the master problem. This iterative process continues until the

optimal solution is found. Logic-based Benders decomposition approach has been used in

a variety of optimization problems including scheduling problems [49], network design [36],

and location problems [32, 69].
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Chapter 3

Problem Definition

In this work, we address the problem of simultaneous optimization of strategic and op-

erational decisions for an e-retailer that is opening new facilities to offer a set of services

S. The services are 30-minute delivery using drones (s = 0), 2-hour delivery (s = 1), and

12 hour delivery (s = 2). In the market, it competes with existing independent stores

(retail, convenience, and department). The existing stores offer a single service (3), which

is in-store shopping. The e-retailer wants to decide on the optimal network configura-

tion by opening facilities from a set of discrete candidate locations J offering services in

S = {0, 1, 2}. Each facility j ∈ J has unlimited capacity and incurs a fixed opening cost

Lj and a fixed cost Fs of offering a service s ∈ S.

The customer demand originates from a set of finite customer zones I with two types

of packages P = {0, 1} where p = 0 denotes packages that are not deliverable by drone and

p = 1 refers to packages that may be delivered by drones. A package is defined as a bundle

of products a customer buys in one order. A package cannot be delivered by a drone due

to two reasons: (1) it weighs more than 5 lbs, or (2) landing at the customer location is
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not possible. A binary parameter asp is calculated apriori which indicates whether service

s ∈ S can deliver package p ∈ P . Another binary parameter, rijs, indicates whether

customer zone i ∈ I can be served by facility j ∈ J using service s ∈ S. rijs = 1 if the

distance between i and j is less than the maximum range of the service. The e-retailer

earns a fixed profit απp per package p ∈ P where α is the percentage margin and πp is

the package value. To deliver a package to customer zone i ∈ I from facility j ∈ J using

service s ∈ S, the e-retailer incurs a delivery cost cijs and earns a service charge qs. The

maximum demand at customer zone i ∈ I for package type p ∈ P is Nip. Proportion of the

maximum demand captured by service s ∈ S Disp, is a function of the utility of customer

zone i ∈ I for package p ∈ P derived from all services So = S ∪ {3}.We propose detailed

discussion of the market model and the utility and demand expressions in Section 3.2, and

focus on deriving the mathematical model first in Section 3.1.

Our primary goal is to develop a model that addresses strategic issues for an e-retailer

offering multiple services using both trucks and drones. We focus on studying the economic

feasibility of drones and its effect on network design taking into account service pricing,

technological limitations, government regulations, customer behavior, and competition.

Our model addresses the following key questions: (1) the location of the facilities and the

services offered at open facilities, and (2) the services be made available to each customer

zone i ∈ I. These questions are interrelated. For example, the number of facilities to

be located is dependent on the type of services being offered. market size, and customer

utility for each service. For 30-minute delivery using drones, more facilities are expected

to open compared to same-day delivery with the hope of capturing higher market share.

The goal is to make these decisions optimally such that the overall profits of the e-retailer

are maximized.
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3.1. Drone network design under competition (DNDC)

Three sets of binary decision variables and two sets of continuous nonnegative decision

variables are defined as:
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wj =

1, if candidate facility j ∈ J is opened,

0, otherwise.

xjs =

1, if service s ∈ S is offered at facility, j ∈ J

0, otherwise.

yijs =

1, if facility j ∈ J serves customer zone i ∈ I using service s ∈ S,

0, otherwise.

Disp = demand derived by service s ∈ S for package p ∈ P in customer zone i ∈ I.

dijsp = demand captured by facility j ∈ J using service s ∈ S for package p ∈ P in

customer zone i ∈ I.

DNDC formulation is then developed as the nonlinear mixed integer program [NP].

[NP]: max
∑
i∈I

∑
j∈J

∑
s∈S

∑
p∈P

(απp + qs − cijs)dijsp −
∑
j∈J

∑
s∈S

Fsxjs −
∑
j∈J

Ljwj (3.1)

s.t
∑
j∈J

yijs ≤ 1 ∀i ∈ I, s ∈ S, (3.2)

yijs ≤ rijsxjs ∀i ∈ I, j ∈ J, s ∈ S, (3.3)

xjs ≤ wj ∀j ∈ J, s ∈ S, (3.4)

dijsp ≤Myijs ∀i ∈ I, j ∈ J, s ∈ S, p ∈ P, (3.5)∑
j∈J

dijsp ≤ Disp ∀i ∈ I, s ∈ S, p ∈ P, (3.6)

(3.12), (3.13), (3.14), (3.17),

yijs ∈ {0, 1} ∀i ∈ I, j ∈ J, s ∈ S, (3.7)

xjs ∈ {0, 1} ∀j ∈ J, s ∈ S, (3.8)

wj ∈ {0, 1} ∀j ∈ J, (3.9)

dijsp ≥ 0 ∀i ∈ I, j ∈ J, s ∈ S, p ∈ P (3.10)
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The objective function (3.1) maximizes the overall profitability of the e-retailer expressed

as the difference between revenues and delivery costs and fixed facility and service costs.

and fixed costs. Constraint (3.2) ensures that customer zone i ∈ I is served using service

s ∈ S by only one facility. For customer zone i ∈ I, service s ∈ S may be offered by

facility j ∈ J if it is available and the distance between zone i and facility j is less than

the maximum range of service s as indicated by constraint (3.3). Additionally, constraint

(3.4) ensures that a facility j ∈ J can offer services only if it is open. Constraint (3.5)

ensures that demand dijsp for package p ∈ P using service s ∈ S can only be satisfied by

facility j ∈ J if the customer zone i ∈ I is assigned to it. Constraint (3.6) restricts the

total demand
∑

j∈J dijsp of customer zone i ∈ I for package p ∈ P using service s ∈ S

to the demand captured by that service Disp. The latter depends on the utility that the

customer zone i ∈ I derives from that service relative to the utility derived from other

services. Note that constraints (3.2), (3.5), and (3.6) limit the demand satisfied (dijsp) to

either 0 or Disp. Constraints (3.7), (3.9), and (3.8) are binary requirements for variables

wj, xjs, and yijs respectively. Constraint (3.10) is the nonnegative requirement for variable

dijsp. Model [NP] is only completely defined when variable Disp is well defined. Constraints

(3.12), (3.13), (3.14), and (3.17) refer to the demand model equations detailed next.

3.2. Demand model

As discussed earlier in Section 2, five main market share models are used in the literature.

Linear, exponential, and multiplicative models do not meet logical consistency requirements

and standard MCI models are unrealistic when any negative attribute of the demand model

takes a value close to zero. For instance, consider delivery price. If MCI model is used,

utility → ∞ as service charges → 0. We therefore use a multinomial logit model (MNL)
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to predict the demand captured by each service in a competitive environment. The overall

profitability of the e-retailer depends not only on competition with other stores, but also

on competition between its own services. A customer zone i ∈ I has a maximum demand

Nip for package p ∈ P which is distributed between the services in So that are offered to

the market. The proportion of the maximum demand captured by the market is a function

of the total utility of customer zone i ∈ I for package p ∈ P , denoted by g(Uip). Note

that g(Uip) allows for the consideration of elastic demand with respect to total utility. The

demand of customer zone i ∈ I for package p ∈ P captured by service s ∈ S is Disp and is

dependent on the utility the customer derives from that service, denoted by uisp. The total

utility of customer zone i ∈ I for package p ∈ P is Uip =
∑
s∈So

uisp. Services in So compete

on five distinct factors: (1) inherent attractiveness, β0s (2) travel time, TTis, (3) travel

cost, TCis, (4) additional service charges, qs, and (5) delivery/waiting time, WTs. We

assume that there is no competition between the stores and customers visit their nearest

store. It is further assumed that there is a static competition between services offered by

the e-retailer and stores, i.e., the characteristics of the services offered by the stores will

not change once delivery by drone service is made available.

The utility derived by customer zone i ∈ I for package p ∈ P using service s ∈ So as:

uisp = exp(β0s − βttTTis − βtcTCis − βwtWTs − βdpqs) (3.11)

where β0s is a parameter capturing the inherent attractiveness of service s ∈ So, and βtt,

βtc , βwt, and βdp are sensitivity parameters. Parameters βtt ≥ 0 and βtc ≥ 0 relate to

the sensitivity of the customer to travel time TTis and travel cost TCis to a store, i.e.

s = 3. Parameters βwt ≥ 0 and βdp ≥ 0 indicate the sensitivity of the customer to the

service charge qs and service time WTs when making online purchases using services s ∈ S.
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The utility derived by the customers is inversely proportional to travel time, travel cost,

waiting time, and service charge as given by equation (3.2). When a customer orders online,

TTis = 0 and TCis = 0 since the package is delivered to his/her footstep. Moreover, online

orders from customer zone i for a particular package p may be fulfilled from an open facility

j that is able to provide service s to the customer, i.e. aspYijs = 1. Note that for packages

that are not deliverable by drone service asp = 0, which ensures that the utility derived by

customer zone i ∈ I using drone service is zero for package type p = 0. Consequently, the

utility derived by customer zone i ∈ I when package p ∈ P is ordered online using service

s ∈ S, URisp, is a function of the e-retailer’s decision for which facilities to open and what

services to offer:

URisp =

(∑
j∈J

aspyijs

)
exp(β0s − βwtWTs − βdpqs) (3.12)

On the other hand, when buying from a store, the customer does not incur additional

service charge over the retail price, and does not wait for the purchase to be delivered.

Since customer utility is inversely proportional to the travel time to the store, a customer

is expected to use the nearest store. Hence the utility derived from other stores is equal

to zero, and USip, the utility derived by customer i ∈ I to buy package p ∈ P from the

nearest store is

USip = exp(β03 − βttTTip − βtcTCip). (3.13)

The index s is dropped from the expression of the utility derived from store since stores

offer only one type of service. The total utility function of customer zone i ∈ I for package
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p ∈ P is

Uip =
∑
s∈S

URisp + USip (3.14)

and the proportion of the maximum demand of customer i ∈ I for package p ∈ P captured

by service s ∈ S is:

MSisp =
URisp

Uip
. (3.15)

The standard market share model assumes that demand is perfectly inelastic which

limits the applicability of the model to capture market expansion or shrinkage. When

more services are available to the customers the probability of lost sales decreases. As a

result, the overall demand increases. Similarly, it is nearly impossible to incorporate all

competing firms and services in a mathematical model. As a result, the maximum demand

can never be captured by the services included in the model. In reality, a proportion of

demand is always lost. Consider the assumption that a customer will always prefer nearest

store, though it is possible that some customers may not prefer the nearest store. Similarly,

a part of the demand may also be lost to other e-retailers. Hence, we use the exponential

expenditure function also (Berman and Krass [19]) to determine the proportion of the

maximum demand Nip that is captured by all services offered by the e-retailer and the

store. The expenditure function is

g(Uip) = 1− exp(−λUip) (3.16)

and the total demand captured is Nip × g(Uip).

Parameter λ represents the elasticity of demand with respect to total utility Uip. When
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the demand is perfectly inelastic, λ→∞, g(Uip)→ 1, and the maximum demand is fully

captured. Parameter λ can also be used as a measure of the market size. When market

size is small, λ is low. The demand of customer i for package p captured by service s ∈ S

is Disp = Nip × g(Uip)×MSisp, or

Disp =

Nip (1− exp(1− λUip))

∑
j∈J

aspyijs

 exp(β0s − βwtWTs − βdpqs)∑
s∈S

∑
j∈J

aspyijs

 exp(β0s − βwtWTs − βdpqs)

+ exp(β03 − βttTTip − βtcTCip)

(3.17)

The expression of the demand Disp is nonlinear and is function of the decision variable Yijs.

In fact, Disp is a decision variable, and Constraints (3.12), (3.13), (3.14), and (3.17) must

be included as constraints in model [NP] to obtain a complete formulation of the problem.

[NP] is highly nonlinear due to the demand constraints. Although model NP can be

lineaized (see Appendix A for the linear formulation), it is computationally expensive. We

therefore develop a novel logic-based Benders decomposition approach to solve the problem

to optimality. This is detailed in next section.
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Chapter 4

A Logic-Based Benders

Decomposition Approach

Since model [NP] is nonlinear, we develop a logic-based Benders decomposition approach

to solve the problem. When the location decisions are fixed, the only remaining decisions

are assignment variables that maximize profit. Once the opened facilities and the services

they provide are known, the assignment decisions reduce to allocating each customer zone

to the nearest open facility offering the service. We exploit this feature to decompose [NP]

into a location-service master problem (LSMP) that makes locational decisions, and a

set of customer service-assignment subproblems (CSASPs) where the assignment decisions

choose which services will be provided to each customer zone i ∈ I. LSMP determines

the facilities to be opened and the services made available at each opened facility. Given

that the locational decisions are known, [NP] is divided into |I| subproblems. To offer

service s ∈ S to a customer zone, it is assigned to the nearest opened facility offering that

service. Since in practice the set of services offered by an e-retailer are limited, and possible
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combinations of services offered to a customer equals 2|S|, it is computationally possible to

use enumeration to find the optimal combination of the services offered.

In Sections 4.1 and 4.2, models LSMP and CSASP are developed respectively. Section

4.3 details Benders optimality cuts and in Section 4.5 cut coefficients are calculated.

4.1. Location-Service Master Problem

The LSMP is given by:

[LSMP]: max
∑
i∈I

Zi −
∑
j∈J

∑
s∈S

Fsxjs −
∑
j∈J

Ljwj (4.1)

s.t.
∑
j∈J

∑
s∈S

∑
p∈P

(απp + qs − cijs)dijsp − Zi = 0 ∀i ∈ I, (4.2)

∑
j∈J

dijsp ≤ Dmax
isp ∀i ∈ I, s ∈ S, p ∈ P, (4.3)

dijsp ≤ rijsD
max
isp xjs ∀i ∈ I, j ∈ J, s ∈ S, p ∈ P, (4.4)∑

j∈J

∑
s∈S

dijsp ≤ TDmax
ip ∀i ∈ I, p ∈ P, (4.5)

cuts, (4.6)

(3.4), (3.8), (3.9), (3.10)

Zi ≥ 0 ∀i ∈ I, (4.7)

where decision variable Zi captures the total revenue minus the delivery cost associated

with serving customer zone i ∈ I, as defined by constraint (4.2). The objective function

maximizes the total profit, which is the same as (3.1). Constraints (4.3), (4.4) and (4.5)

are valid constraints, and are added to tighten the relaxation. Constraint (4.3) ensures
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that the total demand satisfied,
∑
j∈J

dijsp, does not exceeds the maximum possible demand

of the customer zone i ∈ I for package p ∈ P using service s ∈ S, Dmax
isp . Dmax

isp is only

achieved that service is made available to the customer zone i ∈ I for package p ∈ P . This

result is proven in Theorem 1.

Theorem 1 The maximum demand Dmax
isp , captured by service s ∈ S for the package p ∈ P

from customer zone i ∈ I is achieved when no other service is made available.

Proof of Theorem 1. Recall equation (3.14) and (3.17). Equation (3.15) says that the

total utility Uip increases as the number of services offered increases. Taking the derivative

of Disp with respect to Uip:

∂Disp

∂Uip
= −NipURisp(1− (exp(−λUip)× (λUip + 1)))

U2
ip

< 0 (4.8)

as λ > 0, Uip > 0, and exp(−λUip)× (λUip + 1) > 1. Hence, as total utility Uip increases,

Disp decreases. Therefore, the maximum demand that may be captured by service s ∈ S,

Disp is achieved when only service s ∈ S is available i.e., yijs = 1 and yijs′ = 0 ∀ s′ 6= s.

On the other hand, the e-retailer captures maximum demand, TDmax
ip relative to com-

petition, when it provides all services to the customer i ∈ I for package p ∈ P as proven in

Theorem 2 . Constraint (4.5) limits the total demand captured from customer zone i ∈ I

for package p ∈ P to TDmax
ip .

Theorem 2 The maximum total demand TDmax
ip for package p ∈ P from customer zone

i ∈ I is captured by an e-retailer when all services in S are made available.

Proof of Theorem 2.
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Using equations (3.12) - (3.17), total demand captured TDip, by the e-retailer is ex-

pressed as:

TDip =
Nip(1− exp(−λUip))(Uip − USip)

Uip
, (4.9)

where (Uip−USip) ≥ 0 is the total utility derived by customer zone i ∈ I for package p ∈ P

given the services offered by the e-retailer. Taking the derivative of TDip with respect to

total utility Uip:

∂TDip

∂Uip
=
Nipe

−λUip(USip(e
λUip − 1) + λUip(Uip − USip))

U2
ip

> 0 (4.10)

as λ > 0, Uip > 0 , (eλUip − 1) > 0, and λUip(Uip−USip) ≥ 0. Hence, as Uip increases, TDip

increases. Therefore, maximum demand TDmax
ip , is achieved when the e-retailer offers all

services in S to the customer i ∈ I for package p ∈ P .

Finally, constraint (4.6) are Benders optimality cuts that are added to the [LSMP] each

time the subproblem is solved until an optimal solution is found. Deriving optimality cuts

from the subproblem solution is explained in detail in Section 4.3.

4.2. Customer Service-Assignment Subproblems

When location and service decisions (w, x) are known, [NP] reduces to |I| customer-service

assignment subproblems [SPi]. We denote known location and service decisions as w and
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x respectively. [SPi] is modeled as:

[SPi] : max
∑
j∈J

∑
s∈S

(απp + qs − cijs)dijsp (4.11)

yijs ≤ rijsxjs j ∈ J s ∈ S, (4.12)

(3.3)− (3.5), (3.7), (3.10), (3.12)− (3.14),&(3.17).

Subproblem [SPi] finds an optimal assignment of customer zone i ∈ I to offered ser-

vices at open facilities. Such an assignment depends on the demand values determined

by constraints (3.12) - (3.14), and (3.17). Since the latter are highly nonlinear, [SPi] re-

mains challenging to solve. We explain two main characteristics of [SPi] and develop an

enumeration-based algorithm to solve it. When x and w decisions are known, to offer ser-

vice s ∈ S, the customer zone i ∈ I is assigned to the nearest facility offering that service

to minimize delivery costs cijs. The customer zone i ∈ I can only be served using service

s ∈ S from facility j ∈ J if rijsxjs = 1 This not only ensures that the facility offers the

service but is also within its maximum range to offer that service. To serve the customer

zone i ∈ I from facility j ∈ J using service s ∈ S, the delivery cost CMijs is

CMijs =

cijs, if rijsxjs = 1,

M, otherwise.

(4.13)

To offer service s ∈ S to customer zone i ∈ I, minimum delivery cost MCis = min
j∈J

(CMijs).

This reduces the decision to whether service s ∈ S is offered to customer zone i ∈ I. Note

that when no facility can offer service s ∈ S to customer zone i ∈ I, the minimum delivery

cost MCis = M , i.e., there is a large penalty which ensures that service s will not be

assigned to customer zone i. The utility derived URisp by customer zone i ∈ I for package
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p ∈ P using service s ∈ S is then a constant and is denoted by:

URisp = aspexp(β0s − βwtWTs − βdpqs) i ∈ I, s ∈ S, p ∈ P. (4.14)

Consider a set E containing all possible subsets of the services in S. Let Ase = 1, if service

s ∈ S is in set e ∈ E. As such, the demand of customer zone i ∈ I for package p ∈ P using

service s ∈ S when the set e ∈ E is selected can be precalculated as:

U ipe =
∑
s∈S

URispAse + USip i ∈ I, p ∈ P, e ∈ E, (4.15)

MSispe =
URispAse

U ipe

i ∈ I, s ∈ S, p ∈ P e ∈ E, (4.16)

Dispe = Nip(1− exp(−λpU ipe)MSispe i ∈ I, s ∈ S p ∈ P e ∈ E, (4.17)

where U ipe is the total utility derived by customer zone i ∈ I for package p ∈ P when the

set of services e ∈ E is selected. MSispe calculates the market share of package p ∈ P

from customer i ∈ I captured by service s ∈ S when the set of services available is e ∈ E

as computed in Equation (4.16). Finally, Equation (4.17) computes the total demand

captured by the service s ∈ S when set e ∈ E of the services is offered to customer zone

i ∈ I for product p ∈ P . The subproblem [SPi] can now be:

SP i = max
e∈E
{
∑
s∈S

∑
p∈P

(απp + qs −MCis)Dispe} ∀ i ∈ I. (4.18)
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Algorithm 1: Customer-service assignment subproblem Algorithm (CSASPA)

Data: obtain solution x from [LSMP ]

1 for customer zone i ∈ I do

2 for service s ∈ S do

3 for facility j ∈ J do

4 compute delivery cost:

5 CMijs =

cijs, if rijsxjs = 1

M otherwise

6 end

7 compute minimum delivery cost:

8 MCis = min
j∈J

(CMijs)

9 end

10 obtain optimal solution:

11 SP i = max
e∈E
{
∑
s∈S

∑
p∈P

(απp + qs −MCis)Dispe}

12 end

4.3. Logic-based Benders cuts

Consider a solution (x,w, x) obtained from [LSMP] at iteration k. The master problem

[LSMP] provides an upper bound to the original problem, and a lower bound is calculated

using master problem and subproblems as
∑
i∈I

SP i −
∑
j∈J

∑
s∈S

Fsxjs −
∑
j∈J

Ljwj. Since the

demand model is not included in the master problem [LSMP] and an upper bound is used

for the demand captured Disp, at any given iteration, Zi ≥ SP i. When the operating

profits Zi, in [LSMP] equals the operating profits calculated in subproblem SP i ∀ i ∈ I,
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the [LSMP] solution is optimal. At a given iteration k, let Ok = {j ∈ J, s ∈ S : xjs = 1}.

If Zi > SP i for i ∈ I, we add following Benders optimality cuts to the master problem

[LSMP]:

Zi ≤ SP i +M
∑
j∈Ok

∑
s∈Ok

(1− xjs) +M
∑
j /∈Ok

∑
s/∈Ok

xjs i ∈ I (4.19)

A valid Benders cut is defined by Chu and Xia [23] as any logical expression that eliminates

the current master solution(X,w,Z) if its not feasible to the original problem [NP], and

it must not eliminate any solution that is feasible to the original problem [NP]. For the

current solution x at iteration k, Ok = {j ∈ J, s ∈ S : xjs = 1}. If the same set of the

services are offered in subsequent iterations,
∑
j∈Ok

∑
s∈Ok

(1− xjs) and
∑
j /∈Ok

∑
s/∈Ok

xjs equal 0,

reducing the cut to

Zi ≤ SP i (4.20)

which is violated if Zi takes a value greater than SP i. As such, the cut (4.19) ensures that

either the solution x is changed or the operating profit is reduced to SP i for all customers

and products i.e. it eliminates the current solution (x,w, Z) if it is infeasible. This proves

that the cut satisfies the first condition. If the set of services offered changes, the right-

hand-side of (4.19) increases by at least M which is a significantly large number and thus

the equation holds trivially. Now Z can take any value as the cut (4.19) is non-binding

for this new set of x. This proves that cut only removes a solution that is infeasible to the

original problem NP.

The effectiveness of cut (4.19) depends on the value M . A large M is likely to result

in total enumeration. Therefore, it is important to calculate smaller coefficients in (4.19)
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without eliminating any solution that is feasible to the original problem. For customer

zone i ∈ I, let γijs be the maximum change in operating profit Zi when service s ∈ S

offered at facility j ∈ J (i.e.,xjs = 1) is closed. Also, let δijs be the maximum change in

operating profit Zi when the service s ∈ S that is not offered at facility j ∈ J (i.e.,xjs = 0)

is opened. Note that γijs ≤ 0 since closing an opened service s ∈ S at a facility j ∈ J can

never improve the operating profits. Similarly, δijs ≥ 0 because offering a new service at a

facility can never reduce the operating profits. A tighter valid optimality cut is as follows:

Zi ≤ SP i +
∑
j∈Ok

∑
s∈Ok

γijs(1− xjs) +
∑
j /∈Ok

∑
s/∈Ok

δijsxjs i ∈ I (4.21)

Since the maximum change is considered in computing γijs and δijs, cut (4.21) is still a

valid Benders cut. At iteration k, consider service s ∈ S that is available at the facility

j ∈ J (i.e., xjs = 1). The minimum possible decrease in SP i equals γijs if that service s at

facility j is closed. Similarly, at kth iteration, consider a service s ∈ S that is not available

at facility j ∈ J (i.e., xjs = 0). The maximum possible increase in SPi then equals δijsp if

that service s is made available at facility j.

4.4. Calculating cut coefficients

The cut coefficients are designed to capture the change in operating profits where γijs

captures the minimum possible decrease in SP i when an available service s ∈ S at facility

j ∈ J is closed and δijs captures the maximum possible increase in SP i when a service

s ∈ S at facility j ∈ J is made available. To calculate γijs, note that we want to compute

minimum decrease (maximum change) in Zi value when service s at facility j is closed.

Note further that operating profits are maximized when all services are made available at
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all facilities because the delivery costs are minimized by serving a customer zone i ∈ I

from the nearest facility. For a given service s ∈ S at facility j ∈ J , γijs can be computed

as:

γijs = Mmax
ijs −Mmax

i (4.22)

where Mmax
ijs denotes operating profits earned from customer zone i ∈ I when only service

s at facility j is not available and Mmax
i denotes optimal operating profits earned when

all services are made available at all facilities. Mmax
ijs = SP i when xjs = 0 and xj′s′ = 1 ∀

{j ′ ∈ J, s′ ∈ S} − {j ′ = j, s
′

= s}. Similarly, Mmax
i = SP i when xjs = 1 ∀ j ∈ J, s ∈ S.

Similarly, to calculate δijs, we need to calculate the maximum possible contribution by

service s ∈ S at facility j ∈ J to operating profit earned from customer zone i ∈ I. As

proved by Theorem 1, total demand captured by a service s from customer zone i ∈ I for

package p ∈ P is maximized when only that service is made available. Hence, maximum

profit contribution by service s ∈ S at facility j ∈ J is achieved when it is the only available

service to customer zone i ∈ I. For each customer zone i ∈ I, maximum increase δijs is

then computed as:

δijs = Mijs −Mmin
i (4.23)

where Mijs = SP i when xjs = 1 and xj′s′ = 0 ∀ {j ′ ∈ J, s′ ∈ S} − {j ′ = j, s
′

= s}, and

Mmin
i equals zero when all facilities are closed i.e., xjs = 0 ∀ j ∈ J, s ∈ S.
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4.5. Location - Assignment Benders Algorithm (LAB)

Logic-based location-assignment Benders algorithm (referred to as LAB) is an iterative

process that alternates between [LSMP] and [SP]. At a given iteration k, an optimal so-

lution (x) to [LSMP] is used to solve subproblems [SP]. If Zi = SP i ∀ i ∈ I, the solution

(w, x, Z) is optimal. This rarely happens in early iterations since the demand Disp in

[LSMP] is overestimated. If Zi 6= SP i, optimality cuts (4.21) are calculated and added to

[LSMP]. The algorithm stops when for each customer zone i ∈ I, Zi = SP i. The overall

iterative algorithm (LAB) is given in Algorithm 2.
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Algorithm 2: Location-Assignment Benders Algorithm(LAB)

Data: Compute benders cut coefficients γijs , δijs and demand values Dispe

1 k=1;

2 for customer zone i ∈ I do

3 Zi =∞;

4 SP i = 0;

5 end

6 //Main loop

7 while
∑
i∈I

Zi 6=
∑
i∈I

SP i do

8 Solve [LSMP], obtain solution (x, Z) and update Zi ;

9 Solve [SP] using CSASPA algorithm, and update SP i ;

10 if
∑
i∈I

Zi =
∑
i∈I

SP i then

11 stop, optimal solution for [NP] is found;

12 else

13 for customer zone i ∈ I do

14 Derive the optimality cut and add to [LSMP];

15 k=k+1;

16 end

17 end

18 end

19 //Optimal solution

20 Location decisions (x,w) are calculated using latest [LSMP] solution ;

21 Assignment decisions, y are calculated from latest [SP] solution;
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Chapter 5

The case of NYC

In this chapter we study a facility location problem for an e-retailer offering drone service

along with other same day delivery services. The model is solved over an actual network in

New York City (NYC). Given that Amazon.com is the leading e-retailing company in the

US and has announced its plan to deliver packages using drones within 30 minutes, we gen-

erate data based on the online information available regarding its demand characteristics

and services offered for same day delivery.

The data used for the numerical testing is presented Section 5.1. In Section 5.2, com-

parative analysis of the network with and without drones is presented. We also carry out

detailed sensitivity analysis to study the effect of customer behavior, government regu-

lations, technological limitations, and the attributes of drone service on optimal network

configuration.
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5.1. Data used

In this section, we present the data used in the computational experiments. An actual

network is constructed for NYC which is the most populated city in the US with a popu-

lation of around 8.5 million, over an area of 789 km2. NYC is divided into five boroughs

with Manhattan being the most densely populated area. Each borough consists of commu-

nity districts (CDs) that are further divided into Neighborhood Tabulation Areas (NTAs)

based on the population density. Figure 5.1 illustrates NTAs based division of NYC. Each

NTA is considered as a customer zone where the centroid of each zone is used as demand

point. Areas with zero population (shaded in grey), like Airport, parks, and cemeteries

are excluded. The location of stores in NYC are determined using Google Earth and each

store is considered as a competitor. To determine candidate facility locations, 20 out of 67

stores are assumed to be candidate facility locations. The competitive stores and candi-

date facility locations are illustrated in Figure 5.1. For the base case scenario, we consider

three potential delivery services to be offered by the e-retailer: (1) 30-minute delivery using

drones, (2) 2-hour, and (3) same-day (12-hour). Note that same-day and 2-hour delivery

are currently offered by Amazon in NYC.

As discussed earlier, for the same day delivery, customers usually order products that

are readily available at convenience and retail stores. We therefore use grocery market

data to estimate demand values. In 2015, US grocery store sales amounted to $606 billion

and online grocery shopping captures $7 billion [17]. The grocery market in each customer

zone is calculated using population [2]. We assume that each package p ∈ P has an average

value of $20. The American Community Survey data [6] presents housing characteristics

in different community districts. For the base case, we assume that drones can only deliver

packages to buildings where the number of housing units is less than or equal to 9, i.e.
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Figure 5.1: New York City Network

delivery is not possible to customers living in apartment buildings. We also assume that

86% of the packages weigh less than 2.5 kg. The demand Nip for each package p ∈ {0, 1}

in customer zone i ∈ I is then calculated by distribution demand based on the percentage

of packages that are deliverable by drones

Ni1 =
606× 108

π1
× Populationi

US population
× pr(weight≤ 5)× pri(Building size≤ n)

Ni0 =
606× 108

π0
× Populationi

US population
× (1− pr(weight ≤ 5))× (1− pri(Building size ≤ n))
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where pr(weight (lbs) ≤ 5) denotes the percentage of the packages that weigh less than 2.5

kg while pri(Building size ≤ n) denotes the percentage of buildings in customer zone i ∈ I

having less than or equal to n units. As such, Ni1 equates to the demand in customer zone

i ∈ I that is deliverable by drones and Ni0 is the demand that is not deliverable by drones.

To estimate the facility location costs, we use leasing rates in NYC presented by Jll [50]

in a monthly report for 2015 and the online leasing website LoopNet [7]. The minimum

(minb), and maximum (maxb), lease rates per sq.ft in different boroughs (B) is estimated.

The results are summarized in Table B.1. We further assume that each candidate facility

covers an area of 50,000 sq.ft. The intuition behind our assumption is the fact that Ama-

zon’s Distribution Center in Manhattan is 50,000 sq.ft. Labor and miscellaneous costs are

estimated based on the study conducted by Boyd Company [8]. Since in [8], the analysis

is based on 500,000 sq.ft distribution center, therefore we scaled labor and other costs to

a 50,000 sq.ft distribution center. On average, 50,000 sq.ft facility will incur other costs of

$1.5 million. As such, facility costs at j ∈ J is Lj = 50, 000 ∗ U(minb,maxb) + 1, 500, 000.

Yearly facility costs at each candidate location are presented in Table B.2. To offer same-

day or 2-hour delivery service at a facility, an additional cost Fs = $250, 000 will be

incurred. To compute yearly costs of offering 30-minute delivery using drones, we use the

analysis provided by Keeney [52]. Since the analysis presented in [52] assumes up-gradation

of all Amazon’s distribution centers, we scaled down the costs based on the proportion of

NYC’ population to the entire population of the US. We estimate an additional yearly cost

of $1,000,000 is incurred to offer drone service at a facility.

To estimate the delivery costs cijs, we assume that transportation costs are fixed per

unit and independent of distance. As shown in Table 5.1, same-day delivery costs $6,

2-hour delivery costs $10, and drone delivery costs $2.5 per unit. For same-day delivery,

the unit cost of $6 is used based on the analysis presented by Wohlsen [70]. For 2-hour
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delivery, Amazon launched its Flex Program where independent drivers are paid $18-$25

per hour to use their own cars to deliver Amazon Prime Now packages [64]. Assuming that

a driver is paid $20 per hour and makes 4 deliveries in two hour time window, unit delivery

cost = 20×2
4

=$10. These values are well aligned with Amazon’s delivery charges for each

type of service. We further assume that the delivery charges (qs) for each service equals

the delivery cost. The assumption can be justified by the fact that e-retailers do not earn

profits from delivery charges. Amazon, for instance, reports revenue earned from delivery

to be even less than delivery costs incurred. We also assume that a facility can serve all

customers within 40 km radius for same-day delivery. Similarly, for 2-hour delivery, the

radius is assumed to be 20 km and for drones, we consider its range to be restricted to

10 km. We use the geosphere package in R to compute distances between nodes[43]. The

package calculates shortest distance between two points on surface of the sphere using

Haversine formula as shown in Table 5.1.

For drone delivery, there have been few studies to estimate unit delivery costs [25,

52]. The values used in this paper are based on a study conducted by Keeney [52]. We

made some changes to the assumption in [52]. Table B.3 illustrates detailed calculations

to estimate delivery cost per unit for drones. Let DD be the yearly demand for drone

service. Assuming that the demand is uniformly distributed, we calculate the average

hourly demand by dividing the yearly demand over 365× 24. However, in real life demand

may fluctuate significantly due to seasonality factors. To make sure we carry enough drones

to meet peak time demand as well, the average hourly demand is multiplied by a safety

factor of 2. Since a drone can fly at a speed of up to 40 km/h, it will take at most 30

minutes for a drone to fly from the distribution center to a customer location and back

to the distribution center. As such, a single drone can make up to two deliveries in one

hour. Hence, the number of drones required equals half of the maximum hourly demand.
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Lj : 50000× U(minb,maxb) + 1, 500, 000 yearly facility costs

π0 = π1 = 20, α = 0.30 package price and profit margin

F0 = $1, 000, 000 30-minute delivery-by-drone - yearly facility costs

F1 = $250, 000 2-hour delivery - yearly facility costs

F2 = $250, 000 same-day delivery - yearly facility costs

cij0 = q0 = $2.6 delivery cost and charges per package using drone service

cij1 = q1 = $10 delivery cost and charges per package using 2-hour service

cij2 = q2 = $6 delivery cost and charges per package using same-day service

r0 : 10 km Range of delivery-by-drone

r1 : 20 km Range of two-hour delivery at a facility

r2 : 40 km Range of same day delivery at a facility

d : 2r × arcsin
(√

sin2(ϕ1−ϕ2

2
) + cos(ϕ1)cos(ϕ2)sin2(λ1−λ2

2
)
) distance between two points with coordinates(λ1, ϕ1) & (λ2, ϕ2)

where λ is the longitude and ϕ is the latitude, in radians. [44]

β03 = 0.00 ,β00 = −2.22 β01 = −2.00, β02 = −2.00, Inherent attractiveness of the services available.

βtt = 1.4 Travel time (in hours) sensitivity parameter.

βtc = 0.035 Travel cost sensitivity parameter.

βwt = 0.092 Delivery time (in hours) sensitivity parameter.

βdp = 0.34 Delivery charges (in dollars) sensitivity parameter.

λ = 0.5 Demand elasticity parameter, elastic.

Table 5.1: NYC example input parameters

The e-retailer would be required to buy extra batteries so that there is no waiting time to

recharge drones. Many reports suggest that the FAA new regulations for drone delivery

would require certified operators to monitor the drone activity [11, 52]. However, the

number of drones an operator can manage simultaneously are highly speculated. Keeney

[52] assumes that an operator would be permitted to manage 5-10 drones simultaneously.

Other studies, on the other hand, suggest that an individual operator will be required for

each drone flight [9]. For the base case scenario, we assume that an operator will be allowed

to monitor 10 drones at the same time. In the subsequent section, we present sensitivity

analysis to study the affect of the number of drones per operator. To estimate the number

of operators required, we use the peak demand. However, it should be noted that in our

calculations, we assume a linear relationship between the number of operators required

and hourly demand. Given that hourly demand in a metropolitan city like NYC is high,

and assuming a linear relationship between operators required and hourly demand does
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not impact the delivery charges significantly. Note further that the number of operators

required has the largest impact on unit delivery cost as it constitutes 92% ($2.397/$2.61)

of the total unit cost. Once the number of drones, batteries, and operators required are

calculated, cost figures are estimated as shown in Table B.3.

To estimate the sensitivity parameters for the demand model, we use the results pre-

sented by Schmid et al. [62] who study the consumer choice behavior for online and in-store

shopping. The analysis is presented for groceries which is well aligned with the scope of

this work. The inherent attractiveness for online shopping is estimated relative to that of

in-store shopping. As such, β03 = 0.0 and β0s = −2.00. A negative inherent attractiveness

implies that customers have negative attraction towards online shopping relative to in-store

shopping. For the 2-hour delivery and same-day, β01 = −2.00 and β02 = −2.00 respec-

tively. For the drone service s = 1, we assume that its inherent attractiveness β00 = −2.2.

Inherent attractiveness for the drones is selected be more negative than other online ser-

vices due to other reasons such as ease of use etc. Schmid et al. [62] estimate the average

value of travel time V OTT = βtt
βtc

=$40.0/hr and travel cost sensitivity βtc = 0.035. As

such, we estimate travel time sensitivity βtt = V OTT ×βtc = 40.0×0.035 = 1.4. Similarly,

the study estimates the value of delivery time V ODT = βwt

βdp
=$6.5/day=$0.27/hr. We

therefore estimate delivery time (in hours) sensitivity βwt = 0.27× βdp. Note that in [62]

different delivery times are used, the sensitivity to delivery price and delivery time cannot

be used as reported in the study. To calculate these parameters, note that in the utility

function (3.11), the only unknown parameter is sensitivity with respect to service charge

βdp. Based on the grocery market, and assuming that currently only 2-hour and same-day

service are available to the customers, we select βdp such that the market share captured

by the e-retailer is equal to online grocery market in the US. Based on our calculations,

βdp = 0.34 and βwt = 0.092. We assume demand elasticity λ = 0.5.
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We believe a survey or e-retailer’s transaction data is required to reduce errors in esti-

mating demand model parameters. We refer the readers to [24] for other survey-based and

POS data-based approaches to estimate parameters in the market share models. Nonethe-

less, our work is mainly focused on studying the effect of drones under different settings,

the calculated parameters provide a reasonable benchmark for sensitivity analyses.

5.2. Analysis of the results

For the base case scenario, we analyze the optimal network configuration with and without

drones. The optimal solution is illustrated in Figure 5.2. In the absence of drone service,

only one facility is opened offering 2-hour (denoted by 1) and same-day (denoted by 2)

delivery service. The same-day service is available in all customer zones while the shaded

region in Figure 5.2(a) shows the region where 2-hour service is available. Figure 5.2(b)

illustrates the optimal network configuration when the drone service is made available.

Three facilities are opened each offering drone service where the blue shaded region depicts

coverage of the drones. The optimal facility location without drones is no more optimal

when drones are included. This shows that offering drone service not only requires e-

retailers to open more facilities but it would also require the relocation of existing facilities.

The 2-hour service is now available at two facilities and even though some customers are

not being served using drones but now 2-hour service is available to them. This is depicted

by red circles in Figure 5.2(b). Without drones, 2-hour service is available to 95% of the

customer zones . However when the drone service is included, 2-hour service covers 98%

of the customer zones.

In the presence of drones, more facilities need to be opened resulting in higher facility

costs. However, the drones are able to cover their high facility costs through increased
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(a) Without drones (b) With drones

Figure 5.2: NYC optimal network configuration

demand as shown in Figure 5.3(a). Similarly, Figure 5.3(b) shows that as the number

of facilities increases, drone coverage increases but at a decreasing rate. Opening more

facilities may increase drone coverage in terms of land area, but population coverage can

not exceed 41% due to technological limitations like building size and package weight.

Figure 5.3(b) shows that in terms of area coverage, five facilities are enough to cover 99%

of NYC. In the next section, we present detailed sensitivity analysis to study the effect of

different parameters on facility locations.

5.2.1 Effects of competition

In this section, we analyze the effect of drones under different demand characteristics. We

study the effect of customer sensitivity travel time and travel cost on the added value by
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(a) Operating Profits vs facility costs (b) Drone coverage

Figure 5.3: Trade-offs between net revenue, costs and coverage

the drones as shown in Figure 5.4. We calculate the percentage value-added by drones

(PVAD) as the percentage increase in e-retailer’s profits when drone service is offered.

When customers are more sensitive to travel time and travel cost, the PVAD increases.

This is shown in Figure 5.4(a) and 5.4(c). When customer sensitivity to travel time and

travel cost increases, the utility derived by in-store shopping decreases. As such, customers

are more willing to shop online. In the presence of the drone delivery, the total utility

derived by customers increases and e-retailer is able to capture higher demand. This leads

to capturing demand which could have been lost if the drone service is not available.

This implies that the drone service is more favorable when the stores are farther away

from customer locations. Figures 5.4(b) and 5.4(d) show the effect of demand elasticity on

PVAD. When the demand is inelastic, the market is able to capture a greater proportion of

the maximum demand which leads to increased PVAD. We also observe that PVAD is more
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(a) Travel time sensitivity βtt at λ = 0.5 (b) Effect of βtt under inelastic demand

(c) Travel time cost βtc at λ = 0.5 (d) Effect of βtc under inelastic demand

Figure 5.4: Effect of the competition on percentage value-added by drones

48



sensitive to store competition for inelastic demand For instance, when βtt changes from 0.0

to 3.8, the change in PVAD ∆PV AD = 3% at λ = 0.5. For λ = 3.5, ∆PV AD = 7%. This

is because when the demand is inelastic and the customer sensitivity to in-store shopping

increases, the demand is not lost but is rather captured by the e-retailer.

5.2.2 Effect of government regulations

Government regulations are expected to play a vital role in determining the future of drones

in last-mile delivery. To determine the effect of the regulations on drones, we present

sensitivity analysis over different scenarios. As discussed earlier, government regulations

may require firms to hire certified operators to monitor drone activity during its flight.

However, the number of drones an operator will be allowed to monitor simultaneously

is not yet clear. Some reports suggest only 1 to 2 drones per operator will be allowed

while others believe this value may be as high as 30. In this section, we study the effect

of the number of drones per operator Nbd on e-retailer’s optimal network. Based on the

calculations in Table B.3, we estimate drone delivery costs using the number of drones per

operator. The effect of Nbd on drone delivery cost is illustrated in Figure 5.5(a). Note that

the regulations can significantly impact the drone delivery costs varying from $24 to only

$1.
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(a) drone delivery cost as a function of Nb. of
drones per operator

(b) Drones per operator effect under different
market sizes

Figure 5.5: Effect of regulations for drones on same day delivery market

We study the effect of government regulations on an e-retailer’s profits and percentage

value-added by drones(PVAD) under different market sizes as shown in Figures 5.5(b)

and 5.6. When Nbd = 1, drone delivery costs around $24, and the drone service is not

offered even when λ is significantly high. For Nbd = 2, drone service is only offered when

the market size is very large. Such a large value of λ is only possible when the e-retailer

has monopoly and the market size is also large. However, the value-added by the drones

is still quite low as shown in Figure 5.6(a) where the maximum PV AD = 0.08%. For

Nbd = 5, drone service is feasible in all markets where the same-day delivery is already

available as shown in 5.7(b). When the government regulations are more restrictive, the

drones are feasible for the big e-retailers in urban areas. When the government regulations

are less restrictive, the value-added by the drones is significant and the e-retailer opens
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more facilities as shown in Figure 5.7(c) and 5.7(d). If the government regulations are less

restrictive, drones will allow e-retailers to enter the new small markets as shown in Figures

5.7(c) and 5.7(d). This allows big e-retailers to enter new markets where same day service

is not yet available and small e-retailers may start offering same day service in urban areas.

It is interesting to note that PVAD is maximum in lower markets when the regulations are

less restrictive as shown in Figures 5.6(b), 5.6(c) and 5.6(d). This is due to the fact that

the drones allow e-retailer to capture higher demand which enables it to cover their facility

costs. As such, drone service allows e-retailer to enter the markets where previously, same

day delivery is not feasible due to low demand.

Based on the above analysis, it is observed that government regulations will play a

vital role in determining the future of drones. The same day service may extend to the

regions with low demand given that the regulations are less restrictive. However, if these

regulations are more restrictive, drone service would be restrictive to densely populated

areas where the technological limitations would further hinder the value-added by the

drones.
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(a) Nb. of drones per operator = 2 (b) Nb. of drones per operator = 5

(c) Nb. of drones per operator = 10 (d) Nb. of drones per operator = 30

Figure 5.6: Effect of government regulations on PVAD
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(a) Nb. of drones per operator = 2 (b) Nb. of drones per operator = 5

(c) Nb. of drones per operator = 10 (d) Nb. of drones per operator = 30

Figure 5.7: Effect of government regulations on the number of drones facilities
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5.2.3 Effects of drone delivery service charge

Government regulations on the number of drones per operator, Nbd has a significant impact

on the drone delivery costs. As such, these regulations play a key role in the pricing

decisions of drone service. In this section, we study the effect of pricing or service charge

under different values of Nbd and customer price sensitivity βp. The service charge of

drone service is varied from −$5 to $18 and for the price sensitivity parameter βdp, we

use values ranging from 0.05 to 1.00. The negative service charge can be interpreted as

discounts offered to customers for using drone service. When Nbd is high, delivery costs

are low which allows the e-retailer to charge lower prices to maximize its demand which in

turns leads to higher profits. This is illustrated in Figure 5.8. The optimal pricing decision

greatly depends on price sensitivity βdp. When customers are less sensitive to price, the

optimal delivery price is high as the customers are more willing to pay. The effect of the

pricing decision on e-retailer’s profits reduces when the delivery costs are high and price

sensitivity is low as shown in Figure 5.8. This is because at higher delivery costs, the

e-retailer does not have much margin to vary the price and the customer will have to pay

higher service charges. As a result, the demand captured is not significantly improved.

In such a scenario, drones will be used to offer a premium service to the customers who

are willing to pay high service charge. When the delivery costs are low enough that the

e-retailer can offer discounts, added value by drones is maximized. When Nbd = 30, the

delivery cost equals $1. The profit margin per delivery in our example equals $6. This

allows the e-retailer to offer discounts to capture higher demand leading to higher profits

as shown in 5.8(c) and 5.8(d).

It is interesting to note that value-added by drones is maximized when the customers

are very sensitive to price and the government regulations allow 30 drones per operator as
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(a) Nbd = 2 (b) Nbd = 5

(c) Nbd = 10 (d) Nbd = 30

Figure 5.8: Pricing analysis under government regulations and customer price sensitivity
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(a) Effect of customer price sensitivity

(b) PVAD for Nbd = 2 (c) PVAD for Nbd = 2, 5, 10, 30

Figure 5.9: Profits under optimal pricing
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shown in 5.9(a). When customers are more sensitive to price, offering discounts over the

retail price significantly increase the demand captured by the e-retailer as the customers

now prefer online shopping over in-store shopping. When Nbd = 2, the percentage value-

added(PVAD) is maximized if the customers are less sensitive to the price as shown in

Figure 5.9(b). However, when the delivery costs for the drones are lower than other services

offered by e-retailer, PVAD is maximized when customers are very sensitive to price as

shown in Figure 5.9(c).

When government regulations are less restrictive, the e-retailer enjoys low delivery

costs which enables it charge lower price to maximize its profits. Increased demand due

to low delivery charges would allow the e-retailer to enter new markets with low demand.

However, if these regulations result in high delivery costs, drones are used for a premium

service available to the customers who are willing to pay higher service charges for a 30-

minute delivery.

5.2.4 Effect of customer’s delivery time sensitivity

Since drones can fly over congested road networks and only one delivery is made per trip,

reduced delivery time is one of the most attractive features of drones. We study customer

sensitivity to delivery time on the value-added by the drones. As delivery time sensitivity

βwt increases, the demand captured by e-retailer decreases leading to reduced profits as

shown in Figure 5.10(c). In the absence of drones, when βwt > 0.4, the e-retailer does not

offer same day service due to low demand. However, when drone service is available, even

when βwt = 1.8, the e-retailer still offers same day service. Due to very low delivery time

using drones, the e-retailer is able to capture demand from the time sensitive customers.

As shown in Figure 5.10(b), PVAD is maximized when the customers are more sensitive
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to delivery time. When drones are available, not only is the e-retailer able to capture high

demand in the regions where same day service is already available but it would also allow

the e-retailer to start offering same day in new markets where the customers are more

sensitive to delivery time. Note also that e-retailer’s optimal network configuration is more

sensitive to customer behavior in the presence of drones as illustrated in 5.10(c). Without

drones, e-retailer’s decision is restricted to either offer the same day service in a given city

or not. However, when the drones are introduced, the number of facilities opened is more

sensitive to customer behavior. When customers are less sensitive to delivery time, more

drone facilities are opened. Fewer facilities are opened when the customer sensitivity is

high.
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(a) E-retailer’s Profits (b) PVAD

(c) Facilities opened

Figure 5.10: Effect of delivery time sensitivity on drone network
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5.2.5 Effect of technological limitations

Currently, drone technology is in the development phase and it can have a significant

impact on the distribution network of an e-retailer. In this section, we study the effect of

the drone technology on optimal network design. As discussed earlier, we use American

community survey data to estimate the percentage of the population living in different

types of buildings. Figure 5.11 shows the percentage of the population that has access to

drone delivery based on building size and weight of the package being ordered.

Figure 5.11: Population deliverable by drones vs building size where drone is deliverable

Figure 5.12 shows how the drone technology can effect the optimal network configura-

tion. If the drone technology restricts delivery to only homes (building size ≤4), only two

facilities are opened. Although, Manahattan region has the highest population density,

the drone service is not available when the technology restricts delivery to only homes

(size≤4). This is due to the fact that only 5% of the population in Manhattan region
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lives in buildings with 4 units or less. This is shown by the light shaded region depicting

lower drone coverage 5.12(b). In Staten Island, 100% of the population lives in buildings

with size 4 units or less. The population density in this region, however, is significantly

low and hence it is not served. This shows that under technological limitations, drones

are more favorable in sub-urban areas. Urban areas usually have tall buildings limiting

drone coverage while rural areas do not have enough demand to cover facility costs as-

sociated with drone delivery. If the drone can serve to buildings with higher number of

units, Manhattan region becomes favorable for the drones. When drones can deliver to all

types of buildings, 86% of the population can receive drone delivery. As such, the effect of

drones is significant as it can capture high demand due to greater coverage. As shown in

Figure 5.12(f), four facilities are opened to serve the customers using drones. This shows

as advance technology is available, urban areas are more profitable. Rural areas, on the

other hand, are not profitable due to low demand which may not cover the facility costs.

Our analysis also shows that Brooklyn and Queens are the most favorable boroughs for

the drones due to high population and small building sizes. Technologically advance drone

system would not only increase the drone’s population coverage but it also impact the

location and coverage of other services offered by the e-retailer. This analysis shows that

the technology has a significant effect on the added value by drones and optimal network

configuration with drones.
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(a) Without drones (b) building size≤2

(c) building size≤4 (d) building size≤9

(e) building size≤20 (f) All type buildings

Figure 5.12: Effect of the type of buildings where drone can deliver

62



Chapter 6

Computational results

We conducted several experiments to study the efficiency of the LAB algorithm by ran-

domly generating nodes over a 1600 km2 square region. The number of customer nodes

or demand points |I| are varied between 50 and 150 (in steps of 50). For the candi-

date facility locations, we varied it between 10 and 40 (in steps of 10). To compute

the maximum demand (Nip), each customer zone i ∈ I and the package p ∈ P is as-

signed a weight ωip from a uniform distribution [0,1]. The demand is then calculated

as: Nip =
ωip∑

i∈I

∑
p∈P

ωip
× 16 million. The 16 million is the total maximum demand for all

customers as calculated in Section 5.1. We assume λ = 10.0, which is high enough to chal-

lenge the algorithm at higher demand values. The facility costs are randomly generated

at three levels: low ([1M,2M]), medium ([2M,3M]), high ([3M,4M]). To study the effect of

demand, each instance is solved for two different values for the total stores: (10, 100). All

other parameters are the same as used for the base case in Section 5.1, if not explicitly

stated otherwise. For a given |I|, |J |, facility costs level, and number of stores, 10 random

instances are generated resulting in a total of 720 instances.
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To validate the effectiveness of the LAB algorithm, we compare its CPU time with the

mixed integer linear formulation of the model NP. The IP formulation is given in Appendix

A. The LAB algorithm and IP model are coded in C++ Visual Studio 2013 and solved

using CPLEX version 12.6.1 on a 64-bit Windows 10 with Intel(R) core i7-4790 3.60GHz

processors and 8.00 GB RAM. Each instance is executed to an optimality gap of 1e-09 or

up to 3600 seconds in CPU time.

The results are summarized in Tables 6.1 and 6.2, for which the values are reported as

the average of the random instances for each combination of |I| and |J |. The number of

facilities opened is denoted by
∑
j∈J

Wj. Iter denotes the number of iterations carried out

by the LAB algorithm. Gap refers to the optimality gap: (UB−LB)/LB. CPU times are

reported in seconds and the ratio of CPU time of IP model and LAB algorithm is denoted

by Time ratio.

Our algorithm performs exceptionally well compare to the IP formulation. On average,

the LAB algorithm is 300 times faster than solving the IP model using B&C. The IP

model fails to converge in 25% of the instances while the LAB algorithm is able solve all

instances to optimality where maximum CPU time reported is 26 seconds. “n/a” denotes

the instance where CPLEX fails to find a feasible solution in 3600s. The IP model fails at

three instances to find a feasible solution. This further supports the need for an efficient

algorithm to solve large scale problems to optimality. As expected, increasing the number

of stores reduces the computational difficulty of the problem due to lower demand captured

by e-retailer. As seen in the tables, the problem gets harder when the number of facilities

opened increases. This happens when either facility costs are low or the demand captured

is higher. The LAB algorithm, however, performs very well under such scenarios. When

facility costs are low or demand is high, the number of iterations of the algorithm increases.

This is because in such instances, the master problem [LSMP] has incentive to switch to
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other solutions. The LAB algorithm may iterates multiple times between master problem

and subproblems, but it is still able to out perform the IP model in which all decisions are

made simultaneously.
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|J | |I|
∑
j∈J

Wj
LAB algorithm IP

Time ratio
Iter Gap CPU time Gap CPU time

10 50 2 3 0.00 0.31 0.00 40.61 130
10 100 3 2 0.00 1.16 0.00 322.31 279
10 150 3 11 0.00 3.47 0.00 552.02 159
20 50 4 3 0.00 0.97 0.00 218.23 225
20 100 5 6 0.00 6.95 0.00 2256.13 324
20 150 4 3 0.00 8.47 0.00 2836.53 335
30 50 3 3 0.00 1.78 0.00 486.63 273
30 100 5 14 0.00 11.39 0.25 3601.20 316
30 150 6 5 0.00 12.91 0.30 3601.23 279
40 50 6 11 0.00 7.56 0.00 2676.30 354
40 100 4 3 0.00 14.23 0.16 3601.31 253
40 150 6 7 0.00 22.43 n/a 3600.11 161

Average Fj : low 4.3 5.9 0.00 7.64 n/a 1982.72 257

10 50 3 3 0.00 0.28 0.00 54.17 193
10 100 2 4 0.00 1.03 0.00 161.78 157
10 150 2 2 0.00 2.06 0.00 517.80 251
20 50 2 3 0.00 1.19 0.00 344.16 290
20 100 2 3 0.00 2.39 0.00 539.69 226
20 150 2 5 0.00 5.95 0.00 2097.67 352
30 50 2 3 0.00 1.47 0.00 829.84 565
30 100 1 2 0.00 9.70 0.00 2819.36 291
30 150 1 2 0.00 10.98 0.89 3600.92 328
40 50 2 5 0.00 4.58 0.00 1666.11 364
40 100 2 3 0.00 8.95 0.56 3600.86 402
40 150 2 2 0.00 23.92 0.9 3601.89 151

Average Fj : Medium 1.9 3.1 0.00 6.04 0.20 1652.85 274

10 50 1 2 0.00 0.19 0.00 68.97 368
10 100 1 2 0.00 0.63 0.00 280.08 448
10 150 1 2 0.00 1.84 0.00 695.19 377
20 50 1 2 0.00 0.69 0.00 225.30 328
20 100 1 2 0.00 1.00 0.00 413.16 413
20 150 1 2 0.00 7.20 0.00 945.52 131
30 50 2 2 0.00 2.44 0.00 696.38 286
30 100 2 2 0.00 9.13 0.51 3601.08 395
30 150 1 4 0.00 9.95 0.90 3602.30 362
40 50 2 3 0.00 1.80 0.00 1014.14 564
40 100 1 2 0.00 12.34 0.86 3600.66 292
40 150 1 2 0.00 14.16 n/a 3601.36 254

Average Fj : High 1.3 2.3 0.00 5.1 n/a 1562.0 351

Table 6.1: Results for Number of stores = 10
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|J | |I|
∑
j∈J

Wj
LAB algorithm IP

Time ratio
Iter Gap CPU time Gap CPU time

10 50 3 3 0.00 0.36 0.00 57.73 161
10 100 2 3 0.00 1.16 0.00 361.39 313
10 150 3 4 0.00 2.83 0.00 685.00 242
20 50 3 3 0.00 1.02 0.00 229.11 226
20 100 4 2 0.00 2.70 0.00 647.44 240
20 150 3 3 0.00 7.22 0.00 1560.64 216
30 50 4 5 0.00 3.50 0.00 1098.03 314
30 100 3 4 0.00 7.33 0.50 3600.59 491
30 150 2 2 0.00 15.28 0.50 3600.91 236
40 50 2 3 0.00 3.13 0.00 794.44 254
40 100 3 2 0.00 9.69 0.36 3606.33 372
40 150 3 6 0.00 26.41 n/a 3600.48 136

Average Fj : low 2.9 3.3 0.00 6.72 n/a 1653.51 267

10 50 1 2 0.00 0.20 0.00 54.31 267
10 100 1 2 0.00 0.72 0.00 112.31 156
10 150 1 2 0.00 1.28 0.00 494.52 386
20 50 1 2 0.00 1.23 0.00 226.00 183
20 100 1 2 0.00 1.89 0.00 312.03 165
20 150 2 6 0.00 9.38 0.00 1750.52 187
30 50 1 2 0.00 3.81 0.00 790.50 207
30 100 2 3 0.00 5.22 0.00 2017.86 387
30 150 1 2 0.00 7.73 1.03 3600.59 466
40 50 2 3 0.00 3.33 0.00 1044.17 314
40 100 1 2 0.00 4.91 0.86 3601.22 734
40 150 2 2 0.00 15.88 0.80 3600.27 227

Average Fj : Medium 1.3 2.5 0.00 4.63 0.22 1467.03 307

10 50 1 2 0.00 0.20 0.00 47.69 235
10 100 1 2 0.00 0.52 0.00 130.39 253
10 150 1 2 0.00 0.67 0.00 615.58 916
20 50 1 2 0.00 1.03 0.00 170.33 165
20 100 1 2 0.00 2.75 0.00 353.31 128
20 150 1 2 0.00 2.66 0.00 585.50 220
30 50 1 2 0.00 1.44 0.00 476.66 332
30 100 1 2 0.00 5.31 0.00 1043.66 196
30 150 1 2 0.00 8.36 0.00 3392.33 406
40 50 1 2 0.00 1.95 0.00 695.81 356
40 100 1 2 0.00 7.13 0.00 2671.27 375
40 150 1 2 0.00 14.89 1.09 3600.25 242

Average Fj : High 1.0 2.0 0.00 3.91 0.09 1148.56 319

Table 6.2: Results for Number of stores = 100
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Chapter 7

Conclusion & Future Research

In this thesis, we have studied the effect of drones on optimal network configuration. We

considered competition between services offered by an e-retailer and stores. We present

a nonlinear formulation that incorporates consumer behavior to predict demand for all

services offered using the Multinomial logit (MNL) market share model. We also presented

a novel logic-based Benders decomposition approach to solve the problem to optimality

within seconds. The proposed LAB algorithm performs very well over the linear formula-

tion of the original model NP. The efficient LAB algorithm allows us to carry out detailed

sensitivity analysis over operational decisions.

The analysis showed that facility location decisions are more sensitive to customer

behavior in the presence of drones. In the absence of drones, the e-retailers can either

open a single facility or not offer same day delivery service at all. However, in the presence

of drones, the overall network’s profits greatly depend on the number and location of

facilities opened. This is due to the limited range of drones and hence each facility should

be opened only if the demand captured covers facility costs. Our analysis also shows
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that government regulations play a vital role in determining the target market for drone

delivery. When government regulations are highly restrictive, drone delivery costs are high

and in such scenario, drone service is only available to the customers who are willing to

pay a premium price for 30-minute delivery. However, if government relaxes the number of

drones per operator criteria, drones are very cost effective. In such scenario, the e-retailer

can maximize its profits by offering discounts over the retail price to capture higher demand

and drone service can be used by a greater proportion of the population. It would also

allow e-retailers to enter new small markets where same day delivery services are not yet

available due to lower demand. Technological limitations also impact the drone network.

In densely populated areas such as Manhattan, added value by drones is not significant due

to lower population coverage as majority of the population lives in apartments. Areas with

low population density (e.g., Staten Island) have housing units that are more favorable

for drone service. However, such areas do not have enough demand to cover fixed costs

associated with drones.

The work presented in this thesis has some limitations that need to be addressed in

future. We believe that a good market survey is required to estimate sensitivity parameters

used in demand model. In the future, we plan to develop a solution methodology where

pricing and delivery times are considered as decision variables for all types of services. A

possible extension of our work might be to incorporate charging stations to extend the

range of drones at the expense of higher delivery times. Another possible extension of the

model could be to consider capacitated facility location problem and incorporate inventory

holding costs. Nevertheless, the study presents managerial insights for optimal network

design in the presence of delivery-by-drones. This study also provides insights for an e-

retailer making strategic decisions such as facility location and service selection, along with

operational decisions such as pricing and delivery time.
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competitive location and design model for profit maximization in the plane. European

Journal of Operational Research, 179(3):1274–1287, 2007.
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Appendix A

Linear formulation of model NP

Three sets of binary decision variables and one set of continuous nonnegative decision

variables are defined as:

tie =

1, if customer zone i ∈ I is offered set of services e ∈ E

0, otherwise

wj =

1, if candidate facility j ∈ J is opened

0, otherwise

xjs =

1, if service s ∈ S is offered at facility j ∈ J

0, otherwise

dijspe =
demand captured by facility j ∈ J using service s ∈ S for package p ∈ P in

customer zone i ∈ I when set of services offered is e ∈ E
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The model NP is transformed into mixed integer program [IP] as:

[IP]: max
∑
i∈I

∑
j∈J

∑
s∈S

∑
p∈P

∑
e∈E

(απp + qs − cijs)dijspe −
∑
j∈J

∑
s∈S

Fsxjs −
∑
j∈J

Ljwj (A.1)

s.t.
∑
e∈E

tie = 1 ∀i ∈ I, (A.2)

xjs ≤ wj ∀j ∈ J, s ∈ S, (A.3)

dijspe ≤Mtie ∀i ∈ I, j ∈ J, s ∈ S, p ∈ P, e ∈ E, (A.4)

dijspe ≤Mrijsxijs ∀i ∈ I, j ∈ J, s ∈ S, p ∈ P, e ∈ E, (A.5)∑
j∈J

dijspe ≤ Dispe ∀i ∈ I, s ∈ S, p ∈ P, e ∈ E, (A.6)

tie ∈ {0, 1} ∀i ∈ I, e ∈ E, (A.7)

xjs ∈ {0, 1} ∀j ∈ J, s ∈ S, (A.8)

wj ∈ {0, 1} ∀j ∈ J, (A.9)

dijspe ≥ 0 ∀i ∈ I, j ∈ J, s ∈ S, p ∈ P, e ∈ E. (A.10)
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Appendix B

Data used

Borough Minimum Maximum

Manhattan 70 100

Staten Island 14 21

Brooklyn 65 75

Queens 14 25

Bronx 30 40

Table B.1: Yearly Lease Rate ($) per sq. ft in Boroughs
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ID Borough Name NTA code Yearly Cost ($)

1 Brooklyn BK82 5,000,000

2 Queens QN49 2,450,000

3 Queens QN01 3,000,000

4 Queens QN18 2,700,000

5 Staten Island SI11 2,750,000

6 Staten Island SI24 2,600,000

7 Brooklyn BK28 5,300,000

8 Bronx BX13 3,600,000

9 Staten Island SI45 2,650,000

10 Bronx BX06 3,550,000

11 Staten Island SI37 2,450,000

12 Manhattan MN24 5,550,000

13 Queens QN41 2,700,000

14 Brooklyn BK31 5,000,000

15 Queens QN53 3,000,000

16 Manhattan MN11 6,100,000

17 Brooklyn BK81 5,300,000

18 Brooklyn BK42 5,250,000

19 Brooklyn BK72 5,150,000

20 Queens QN70 2,650,000

Average 3,837,500

Table B.2: Yearly facility Costs
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