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ABSTRACT 

 

  A rainbow trout intestinal epithelial cell line, RTgutGC, has been used in this thesis to 

investigate the effects of various stresses in aquaculture on the gastrointestinal (GI) tract and 

for identifying possible beneficial actions to take to protect gut health.  RTgutGC cells were 

studied in four kinds of media.  L15 with a supplement of fetal bovine serum (FBS) was the 

normal growth medium (L15/FBS).  Serum starvation was done in the basal medium alone, 

L15.  Deprivation of serum, amino acids, and vitamins was accomplished in L15/ex, which 

had only L-15 salts with galactose and pyruvate.  Complete starvation of all nutrients was 

achieved in L15/salts.  In these studies, cell viability was assessed with alamar Blue (AB) for 

metabolic activity and with carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM) for 

plasma membrane integrity.  Confocal microscopy together with immunocytochemical (ICC) 

staining was used to evaluate microtubule organization and tight junctions and with fluorescent 

phalloidin staining to detect F-actin.  Western blotting was used to measure specific protein 

levels, such heat shock protein 70 (HSP70).  Intestinal epithelial barrier function was evaluated 

in a culture system in which RTgutGC monolayers divided a culture chamber into top and 

bottom wells and trans epithelial electrical resistance (TEER) and Lucifer Yellow (LY) 

permeability across the cell monolayers were measured.  Intestinal epithelial wound healing 

and/or restitution was examined in a plastic fence assay in which cells formed monolayers on 

both sides of culture inserts that were then removed to form a gap or wound.  Five general lines 

of investigation were explored on the topics of starvation, phytochemicals, antinutrionals, 

temperature, and phytochemical/temperature interactions.  The results for each are summarized 

in the following five paragraphs.  

 Rainbow trout intestinal epithelial cell monolayers survived serum starvation (L15), 

the deprivation of serum, amino acids, and vitamins (L15/ex), and the complete absence of 

nutrients (L15/salts) but some cellular activities and structures were altered, depending on the 

severity of the deprivation.  During these three kinds of nutritional deprivation, most cells 

survived at least seven days as judged by their continued adherence to the plastic growth 

surface as observed by phase contrast microscopy and by cell viability measurements with AB 

and CFDA-AM.  However, energy metabolism as measured with AB was diminished, 

especially in L15/salts with approximately an 85% decline. Under all types of nutrient 
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deprivation, the cytoskeleton of cells remained intact.  However, during nutritional deprivation, 

the actin stress fibers became thicker and many cells acquired circumferential fibers, especially 

in L15/salts.  In L15/ex and L15/salts, the fibers of the -tubulin network appeared thicker and 

longer and as well the microtubular organizing centres were larger and more intensely stained.  

ZO-1 (tight junction protein-1) was detected at the periphery of cells in monolayers, with 

nutritional deprivation causing only a slight change.  However, in L15/salts epithelial barrier 

functions were impaired.  In L15/FBS the TEER was around 30-40 Ω cm2 and approximately 

75 % of the LY was retained in the top chamber.   In L15/salts the TEER was approximately 

15-20 Ω cm2 and only about 30 % of the LY was retained in the top chamber.  Seven days after 

the creation of gaps in monolayers, the gaps were filled by RTgutGC cells in L15/FBS.  As 

cells proliferate in L15/FBS as well as migrate, this is considered wound healing.  By contrast, 

RTgutCG in L15 filled the gap much more slowly, and as most fish cells do not proliferate in 

L15 alone, the gap closing is considered to be due to cell migration alone or restitution.  

RTgutGC in L15/salts failed to migrate into gaps, but if after seven days L15/FBS was added, 

the cells did, emphasizing that they were still alive. When after seven days in either L15/FBS 

or L15/salts monolayers were trypsinized, the diameter and volumes of cells were respectively 

17.9 ± 1.6 μm and 3.1 ± 0.8 pL for L15/FBS and 15.0 ± 0.3 μm and 1.8 ± 0.1 pL for L15/salts.  

Despite this reduction in size, when placed in L15/FBS, these cells could reattach to plastic 

and grow to form monolayers, emphasizing again that they were viable after seven days in 

L15/salts. Thus rainbow intestinal epithelial cells survived for at least seven days in the 

complete absence of nutrients but starvation impaired their barrier functions and ability to 

repair wounds. 

 RTgutGC, a rainbow trout intestinal epithelial cell line, was used as an intestinal model 

to study the effects of naringenin (N), a plant secondary metabolite found in grapefruits with 

antioxidant, anti-inflammatory, and anti-carcinogenic properties.  30 and 100 μM  N generated 

a flattened cell morphology with more defined cell borders.  Most significant reductions in 

cellular viability were seen when incubated with 100 μM N, where in L15 medium, metabolic 

activity decreased by 59% and plasma membrane integrity decreased by 31%.  However, lower 

concentrations of N had no effect on cellular viability.  With the cytoskeleton still intact, N 

increased circumferential actin while decreasing the amount of stress fibers in the cells.  

Increasing concentrations of N caused a dose response increase in TEER.  A significant 
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reduction (39%) in monolayer permeability as measured by LY rejection assay was observed 

with 100 μM N.  No changes in ZO-1 or claudin 3 staining was observed.  Significant 

reductions in migration and restitution were observed with 50 and 75 μM N, but not lower 

concentrations.  N did not cause any changes in HSP70 protein expression.  The work, though 

in vitro, demonstrates the potential beneficial effects of N (concentration of 30 μM) as a 

possible feed additive. 

RTgutGC was used to study the effects of antinutritional factors (ANFs) on intestinal 

epithelial cell restitution.  100 μg/mL of Bowman-Birk inhibitor significantly (p < 0.05) 

reduced restitution where cells reached a total percent migration of 13 ± 3% (control = 23 ± 

7%.).  0.75 and 2.25 μg/mL of wheat germ agglutinin (WGA) significantly (p < 0.01) reduced 

restitution at a total percent migration of 13% ± 3% and -11 ± 3% respectively (control = 49 ± 

16%).  Additionally, WGA caused the loss of actin stress fibers with actin being more 

peripherally located.  8 mM of butyrate significantly (p < 0.05) reduced restitution with cells 

reaching a total percent migration of 18 ± 6% (control = 39 ± 11%).  Increasing vacuole 

formation was also observed with increasing concentrations of butyrate.  Kunitz inhibitor and 

soybean agglutinin had little to no effect on RTgutGC restitution.  For the first time, we have 

shown negative effects of ANFs on fish intestinal cell restitution and demonstrated preliminary 

uses of RTgutGC as an in vitro method to screen ANFs. 

The capacity of rainbow trout epithelial cells in L15/FBS to heal a wound whether 

through a combination of cell migration and proliferation or just cell migration (restitution) 

was profoundly influenced by temperature. Relative to the normothermic temperature of 18 °C 

for RTgutGC, a decrease in temperature to 4 oC caused a significant reduction in wound 

healing.  Increasing the temperature to 26 oC slightly but not significantly increased wound 

healing.  However, an increase to 32 oC (heat stress) during the wound healing assay caused 

the cell monolayer to shrivel up and die.  Additionally, if cells were exposed to a heat stress 

temperature (32 oC) for 3 h before the start of wound healing, small numbers of individual 

migrating cells could be observed, not reaching full gap closure.  The induction of a 

thermotolerant state by heat pre-conditioning (26 oC for 24 h) before heat stress (32 oC for          

3 h) restored wound healing to a capacity similar to the non-heat stress control, with full gap 

closure seen within 3 days.  The study suggests that cellular wound healing can be highly 
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dependent on temperature and that preventative measures, such as heat pre-conditioning, can 

help mitigate the negative effects of heat stress on wound healing. 

Possible protective actions of N on the recovery of rainbow trout intestinal epithelial 

cells from heat stress were investigated but N only modestly improved recovery of cellular 

morphology.  RTgutGC monolayers in either L15/FBS, L15 or L15/salts with or without N 

were subjected to heat stress of 32 °C for 1.5 or 3 h and returned to 18 °C to recover for 24 h.  

At one hour after the end of the heat treatments the monolayers were no longer confluent but 

had holes as a result of cells shrivelling and rounding.  When the heat stress had been 1.5 h, 

the cellular morphology was largely restored 24 h later whether N was present or not.  When 

the heat stress had been 3 h, N improved the adherence and shape of cells 24 h later, especially 

for recovery in L15/salts.  However, with increasing N concentrations of up to 100 M, no 

trend of improvement was observed in cell viability as measured with AB or CFDA-AM and 

100 M N did not alter the heat activation of caspase-3.  Yet increasing N did alter the 

organization of F-actin during recovery.  Stress fibers were diminished but circumferential 

actin became more pronounced with increasing N.  This was true whether the cells were in 

L15/FBS or L15/salts but more evident in L15/salts.  Thus the reorganization F-actin to the 

cell periphery might have improved the recovery of cell shape after a heat stress.  Naringenin 

failed to modulate HSP70 levels in cultures at 18 °C whether the cultures were recovering from 

a heat stress or not.   Therefore, HSP70 was unlikely to be mediating the improvement by N in 

the recovery of cell shape from heat stress.   
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1.1. FISH AQUACULTURE 

  The aquaculture industry is one of the largest food production sectors showing 

impressive growth, near doubling since 1993 (FAO, 2016).  As a result of population growth, 

fish consumption also increased in the last couple decades, where the average world per capita 

apparent fish consumption in 2013 was 19.7 kg compared to 9.9 kg during the 1960s (FAO, 

2016).  It is predicted that this average worldwide consumption will continue to rise.  Popular 

fresh water fish in the Canadian aquaculture industry are salmonids, such as rainbow trout.  

Salmonids account for 73% of the total aquaculture production in Canada (FOC, 2012).  

  Sustaining the success of salmonid aquaculture requires further knowledge on many 

anatomical and physiological systems and how their functions can be impaired, improved, or 

protected.  An example of such a system is the intestinal mucosa.  Potentially the intestinal 

mucosa can be impaired by some aquaculture practices, such as new feeds, and by heat stress, 

arising from climate change.  On the other hand, the health of the intestinal mucosa can 

potentially be protected or improved by feed additives.  

  The intestinal mucosa is the innermost structure of the gastrointestinal (GI) tract, 

surrounding the lumen of the gut.  Intestinal mucosa consists of three histological layers.  

Intestinal epithelium cells (IEC) form a monolayer of cells that directly face the lumen. On the 

body side of the intestinal mucosa, the intestinal epithelium sits on the lamina propria.  The 

third and outermost layer of the intestinal mucosa is the lamina muscularis that gently agitates 

the mucosa to aid interaction between luminal contents and intestinal epithelium.   

Functionally, the key cells of the intestinal mucosa are the IECs.  The IECs have two broad 

functions. One is to absorb nutrients and water.  The second and equally important function is 

to act as a selective barrier to protect the animal.  The epithelial barrier is also essential for the 

proper absorption of nutrients and water.  Thus understanding the fish intestinal epithelial 

barrier and being able to identifying potential damaging and healing treatments should improve 

aquaculture.  
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1.2. THE INTESTINAL EPITHELIAL BARRIER 

  IECs form the largest barrier between the external and internal environment. This 

simple columnar epithelium allows for protection and separation of the internal environment 

from the external by forming a physical and biochemical barrier (Peterson & Artis, 2014). This 

protection is important because the gut lumen may contain many commensal bacteria but also 

some pathogenic microorganisms (Peterson & Artis, 2014). Interestingly, IECs are known to 

increase their barrier function in response to microbial stimuli while also helping coordinate 

an immune response (Peterson & Artis, 2014). The mammalian intestinal epithelium has a 

crypt-villus structure forming a larger surface area for greater nutrient absorption (Umar, 

2010). However, there is a lack of villi and crypts in teleosts (Wallace et al., 2005). Instead, 

wide irregular intestinal folds are seen (Fig 1.1).  Some teleosts appear to lack a muscularis 

mucosa and a submucosa (Wallace et al., 2005), although whether this is true for all fish is 

unclear.  

  Enterocytes, enteroendocrine cells, goblet cells, transit amplifying cells, and Paneth 

cells are all considered IECs and arise from intestinal epithelial stem cells located within the 

intestinal crypt base (Umar, 2010). Other than zebrafish, which appear to lack Paneth cells, the 

teleost intestinal epithelium contains the same IEC types that all originate from intestinal 

epithelial stem cells at the base of the folds (Wallace et al., 2005). Enterocytes are the most 

common IECs and mainly contribute to barrier functions and nutrient absorption, 

enteroendocrine cells are hormone secreting cells important for nutrient metabolism, goblet 

cells secret mucus which protects the intestinal epithelium, Paneth cells secret anti-microbial 

compounds and are also important in maintaining stem cell population in crypts, and transit 

amplifying cells are partially differentiated cells that will eventually form differentiated IECs 

(Umar, 2010). These cells contribute to the dynamic properties of the intestinal epithelium 

(Peterson & Artis, 2014).   

  Directly below the epithelium is the lamina propria housing intestinal subepithelial 

myofibroblasts (ISEMF). ISEMFs have paracrine functions, making them extremely important 

supportive cells in intestinal epithelial homeostasis (Powell et al., 1999). They secrete growth 

factors that support intestinal epithelial growth and restitution (Powell et al., 1999). ISEMFs 

also have important roles in the growth and differentiation of intestinal epithelial stem cells. 

Lei et al. (2014) demonstrated that ISEMFs support the growth and differentiation of intestinal 
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epithelial stem cells by supplying them with R-spondin1 and R-spondin2. These two growth 

factors are involved in the Wnt pathway, which is widely recognized for its essential function 

in stem cell growth and differentiation programs (Lei et al., 2014). Other beneficial roles of 

ISEMFs include water and electrolyte transport and immune related functions (Powell et al., 

1999). 

 

 
 

Figure 1.1.  Structural differences between mammalian (A) and teleost (B) intestinal 

mucosa. Teleost lack crypt-villi structure and have these wide intestinal folds. This figure was 

reprinted from “Intestinal growth and differentiation in zebrafish” by Wallace, K.N., Akhter, 

S., Smith, E.M., Lorent, K. & Pack, M. (2005). Mechanisms of Development, 122, 157-173. 

Reprinted with permission.  
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  To form an intestinal epithelial barrier, IECs are required to form specialized cell-to-

cell connections. These connections are tripartite and seen in a juxtaluminal position with the 

most apical component being tight junctions (TJ) followed below by adherens junctions (AJ) 

(Kolosov et al., 2013).  The next section focuses on describing the composition and role of 

these apical junctional complexes in forming a functioning intestinal barrier.  

 

1.2.1. Tight junctions 

  TJs have two main functions: the “fence” and “gate” functions (Rajasekaran et al., 

2008). The “fence” function refers to the ability of TJs to block intramembrane diffusion of 

macromolecules between the apical and basolateral sides, whereas the “gate” function 

describes their ability to control the paracellular pathway between cells (Rajasekaran et al., 

2008). As seen in Fig 1.2, TJs structurally appear as “a belt-like reticular network of 

anastomosing strands” (Chasiotis et al., 2012). The proteins forming the TJ complex can be 

classified as either transmembrane or cytosolic TJ proteins. The transmembrane TJ proteins 

are important in forming the connections between cells in the intercellular space influencing 

paracellular permeability, while cytosolic TJ proteins generally provide structural support to 

TJs but can also have signaling functions (Chasiotis et al., 2012).  

  The three most well-known classes of TJ proteins in epithelial cells (seen in Fig 1.3) 

are occludin, the claudin family, and zonula occludens (ZO) family (González-Mariscal et al., 

2003). Occludin was the first TJ protein to be identified and is named after the latin word 

“occludere” meaning to occlude (González-Mariscal et al., 2003). As its name suggests, 

occludin’s primary function is in the formation and maintenance of the TJ barrier, hence 

“tightening” the epithelium (Chasiotis et al., 2012). Claudins are a superfamily of proteins that 

make up most of the TJ complex and participate in regulating paracellular permeability 

(Kolosov et al., 2013). Some claudins can decrease paracellular permeability while others can 

increase it; hence, despite a large variety of claudin proteins, the specific combination of 

claudins in the TJ complex will predict its permeability and can vary between different types 

of tissues (Kolosov et al., 2013). Also, claudins can vary spatially in the GI tract; for example, 

Clelland et al. (2010) showed that the transcript level of cldn-3d (barrier forming) increased 

from anterior to posterior regions of the gut in the pufferfish. Whereas both occludin and 

claudins are transmembrane TJ proteins, ZOs are cytosolic TJ proteins providing scaffolding 
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and structural support to the TJ by linking claudins and occludin to the microfilamentous 

cytoskeleton of the cell (Chasiotis et al., 2012). Among members of the ZO family, ZO-1 is 

perhaps the most widely studied. ZO-1 has another role involved in intracellular signaling 

pathways that lead to cell proliferation, differentiation, and gene expression (Chasiotis et al., 

2012). 

Figure 1.2.  TJ have a “gate and “fence” function.  TJ are seen in purple. The “Gate” 

function can be seen as TJ will control the paracellular pathway. The “Fence” function is also 

seen as TJ will block diffusion of molecules between the apical (red) and basolateral (green) 

side. This figure was reprinted from “Tight junctions, tight junction proteins and paracellular 

permeability across the gill epithelium of fishes: A review” by Chasiotis, H., Kolosov, D., Bui, 

P. & Kelly, S.P. (2012). Respiratory Physiology & Neurobiology, 184, 269-281. Reprinted 

with permission.  
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Figure 1.3. Structural composition of a TJ complex.  The TJ complex with claudin (red) 

and occludin (purple) being important transmembrane proteins forming bridging connections 

within the intracellular space controlling paracellular permeability. ZO-1 (blue) binds to actin 

structurally supporting the TJ complex. ZO-1 can also act in a signaling pathway leading to 

cell proliferation, differentiation, and gene expression. This figure was reprinted from “Tight 

junctions, tight junction proteins and paracellular permeability across the gill epithelium of 

fishes: A review” by Chasiotis, H., Kolosov, D., Bui, P. & Kelly, S.P. (2012). Respiratory 

Physiology & Neurobiology, 184, 269-281. Reprinted with permission.  

 

 

1.2.2. Adherens Junctions 

  Below the TJs are the adherens junctions (AJs), also playing a crucial role in the 

formation of the intestinal barrier (Iizuka & Konno, 2011).  They have roles in cell-to-cell 

stabilization, regulating the actin cytoskeleton, intracellular signalling, and transcriptional 

regulation (Hartsock & Nelson, 2008). The major transmembrane proteins of the AJs are the 

the Ca2+ dependent cadherin superfamily (Hartsock & Nelson, 2008).  The most well studied 

cadherin is E-cadherin.  E-cadherin is integral to the formation of AJs where it is required for 

the localization and binding of catenins such as p120-, α-, and β-catenin (Hartsock & Nelson, 

2008).  Catenins are intracellular proteins and stabilize the E-cadherin complex by linking to 

the actin cytoskeleton (Hartsock & Nelson, 2008).       
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1.2.3. Cytoskeleton 

  The cytoskeleton is essential for maintaining cell interactions in the intestinal 

epithelium and is suggested to be a major target of intestinal injury (Coss & Linnermans, 1996; 

Miller et al., 2000). Thus, the cytoskeleton is extremely important to a properly functioning 

biological organism and its disruption can cause severe adverse effects.  The cytoskeleton is 

composed of actin filaments or microfilaments, microtubules, and intermediate filaments. 

1.2.3.1. Actin filaments  

  Actin filaments are key cytoskeletal elements involved in stabilizing cell-to-cell 

connections, cellular shape changes, and cellular migration.  Actin in cells is present as either 

single monomers called globular actin (G-actin) or in a polymerized form called filamentous 

actin (F-actin).  These actin filaments themselves are the building blocks of complex actin 

networks (Blanchoin et al., 2014).  Such networks include branched actin networks, 

crosslinked actin networks, parallel actin bundles and anti-parallel actin bundles. Branched 

actin networks have roles in force generation during cellular movement and shape changes, 

constantly assembling itself and polymerizing due to the presence of the Arp2/3 complex 

(Blanchoin et al., 2014).  On the other hand, crosslinked actin networks, lacking Arp2/3 

complexes, have roles in controlling and maintaining cell shape and mechanical integrity, 

increasing the elasticity and decreasing the viscosity of cells (Blanchoin et al., 2014).  The final 

two actin networks are parallel actin bundles and anti-parallel actin bundles.  Parallel actin 

bundles are found in many types of cellular protrusions such as filopodia and microvilli having 

roles in force generation (Blanchoin et al., 2014).  Parallel actin bundles are made of filaments 

with barbed ends oriented in the same direction, generally facing the cell membrane (Blanchoin 

et al., 2014).  Anti-parallel actin bundles have roles in cytokinesis and stress fiber formation 

important in cell-to-cell and cell-matrix adhesion (Blanchoin et al., 2014). Additionally, they 

form a contractile network with myosin (Blanchoin et al., 2014).  The rest of this section below 

will focus on the various stress fiber categories. 

  Stress fibers are bundles of actin filaments in non-muscle cells (Tojkander et al., 2012).  

Typically, the filaments are crosslinked by -actinin.  Approximately 10-30 actin filaments are 

bundled to form a stress fiber (Pelligrin & Mellor, 2007).  Stress fibers also contain non-muscle 

types of myosin, usually allowing the fibers to generate contractile forces.  The stress fibers 
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are often anchored to focal adhesions.  Focal adhesions are distinct sites at which cells become 

mechanically attached to the extracellular matrix (ECM).  The ECM is synthesized by the cells 

and/or derived from serum proteins, such as vitronectin and fibronectin adsorbing to plastic 

culture surfaces (Arima & Iwata, 2015; Chen et al., 2015; Heath & Dunn, 1978; Schneider & 

Burridge, 1994).  Stress fibers can differ in their morphology and association with focal 

adhesions and have been categorized into at least four types: ventral stress fibers, dorsal stress 

fibers, transverse actin arcs, and perinuclear actin cap fibers (Fig 1.4) (Maninova et al., 2017).  

Ventral stress fibers are on the basal side of the cell body and are anchored at both ends to 

focal adhesions.  In contrast to ventral stress fibers, dorsal stress fibers or radial fibers are 

associated with focal adhesions at only one end.   Transverse actin arcs are curved and lie 

parallel to the leading edge of a migrating cell.  They assemble in the lamellipodium and move 

from the leading edge to the cell center, where they gradually disappear in front of the nucleus.  

The perinuclear actin cap consists of stress fibers positioned above the nucleus.    

  

 
 

Figure 1.4.  Actin stress fiber arrangements. Cell diagram demonstrating four categories of 

stress fibers: dorsal stress fibers in green, transverse actin arcs in yellow, ventral stress fibers 

in blue, and perinuclear actin cap fibers in red.  The figure was adapted from Maninova et al. 

(2017). 
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1.2.3.2. Microtubules 

  Microtubule functions involve being the “rails” for cellular transport, drivers of 

chromosome separation during cellular division, flagella and cilia organization, and regulators 

of cell morphogenesis and polarity (Akhmanova & Steinmetz, 2015).  Formation of 

microtubules requires the polymerization of αβ-tubulin heterodimers, comprised of α- and β-

tubulin monomers on either the plus or minus end of the growing microtubule (Akhmanova & 

Steinmetz, 2015).  It is recognized that both microtubule ends can undergo polymerization, 

however, the dynamic properties of the ends differ.  The plus end generally polymerizes faster 

but is less stable and undergoes catastrophe more often than the minus end (Akhmanova & 

Steinmetz, 2015). New microtubule tips contain a GTP-tubulin cap, stabilizing the newly 

formed microtubular ends (Akhmanova & Steinmetz, 2015).  In the event of the loss of a GTP-

tubulin cap, microtubule shrinkage occurs (Akhmanova & Steinmetz, 2015).  Additionally, 

microtubule end dynamics alter with the loss of a cap. The plus end depolymerizes while the 

minus end remains stable and continues to slowly grow (Akhmanova & Steinmetz, 2015).   

  In general, microtubules can be seen radiating from specific points in a cell, called 

microtubule-organizing centers (MTOC), localized to the minus end of microtubules.  MTOCs 

have functions in microtubule nucleation, stabilization, and/or anchoring (Sanchez & Feldman, 

2010).  An example of a well-known MTOC is the centrosome, considered “the major 

microtubule-organizing center in the cell” (Sanchez & Feldman, 2010).  However, non-

chromosomal (nc) MTOCs have been discovered in differentiated cells.  The complete function 

of nc-MTOCs remains a mystery but researchers have shown that these types of MTOCs are 

critical to cell function (Sanchez & Feldman, 2010). 

 

1.2.3.3. Intermediate Filaments 

  Intermediate filaments are comprised of a large group of proteins with roles in 

maintaining cellular structural integrity.  Some can be termed as “mechanical stress absorbers” 

(Sokolova et al., 2006).  Cell types can vary in their intermediate filament composition.  For 

example, muscle cells synthesize desmin, epithelial cells synthesize keratins, whereas 

mesenchymal cell types synthesize vimentin (Sokolova et al., 2006).  However, all cells 

contain nuclear lamins (Sokolova et al., 2006).    
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1.2.4. Intestinal wound healing 

  When the intestinal epithelium is damaged, a quick and efficient recovery must occur 

to regain proper intestinal function and homeostasis.  If not properly healed, loss of function 

and loss of defence to intraluminal toxins, immunogenic compounds, and bacteria can occur, 

all leaking through the epithelium.  One form of recovery is called wound healing.  The process 

of wound healing occurs in three steps: 1) Cells migrate quickly to close the wound.  This step 

can be termed restitution where cell proliferation is limited (Sturm & Dignass, 2008).  2) Cells 

undergo proliferation to replenish the depleted cell pool (Sturm & Dignass, 2008).  Finally, 3) 

Cells mature and differentiate to regain proper intestinal function (Sturm & Dignass, 2008).  

This is a simplified model of wound healing.  In reality, the three steps do not happen directly 

in series where overlap will occur.  However, this is a useful model to study the physiology of 

wound healing.  It is known that regulatory peptides, such as growth factors and cytokines, are 

important mediators of wound healing acting through a TGF-β-dependent pathway.  These 

peptides act on the basolateral side of the epithelial surface (Sturm & Dignass, 2008).  

Interestingly, TGF-β3 has been shown to block proliferation of various human cells by 

inhibiting other human growth factors such as TGFα, PDGF-BB, and VEGF, suggesting that 

growth factors are likely not the main drivers of early phase wound healing, being the 

restitution or migration step (Bhatia et al., 2016).  It was found that secreted HSP90α is the 

likely promotility factor initiating cellular restitution or migration to close the wound (Bhatia 

et al., 2016).  It is important to note that these wound healing studies, finding HSP90α as an 

important factor, were done on skin and not the intestinal epithelium.  Additionally, fish 

intestinal wound healing and factors involved in the process are poorly understood.      

 
1.3. POTENTIALLY HARMFUL CONDITIONS AND COMPOUNDS TO THE 

INTESTINAL EPITHELIUM 

  Several practices in aquaculture have the potential to be detrimental to fish intestinal 

mucosa health.  Three examples are food deprivation, temperature stress, and antinutritional 

components in fish feed.  Knowledge of how these impair cellular functions in the fish 

intestinal epithelium is limited but needed to improve aquaculture. 
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1.3.1. Food deprivation 

  All animals appear to have the ability to survive periods of food deprivation, but fish 

seem to have an exceptional ability to do this and this ability is used in some aquaculture 

procedures.  Food deprivation arises in different ways and several terms are used to describe 

the cause of food deprivation, including starvation, fasting and anorexia.  These definitions 

refer to a postabsorptive animal.  A postabsorptive animal has an empty gastrointestinal tract 

and derives energy from the breakdown of the body’s reserves.  Starvation is a biological 

condition in which a postabsorptive animal is willing or able to eat but does not do so because 

food is extrinsically limited in some manner (McCue, 2010).  Fasting is biological condition 

in which a postabsorptive animal has food available to eat but does not do so.  Anorexia is a 

loss of appetite and can be a mechanism behind fasting.  The terms starvation and fasting have 

been derived largely from research on mammals and birds (Wang et al., 2006) and have not 

always been used uniformly (Lignto & LeMaho, 2012) as under some circumstances the 

distinction between the two is difficult to draw (McCue, 2010).  How well the terms apply to 

other vertebrates, such as fish, is unclear (Wang et al., 2006), and so the terms that will be used 

in the following brief literature review on salmon and food deprivation will be as used by the 

authors in the original publications. 

  Starvation, fasting or anorexia can arise at a number of points in the salmon life cycle.  

Most famously, during spawning migrations salmon fast for many months (Wang et al., 2006).  

As well, salmonids in northern latitudes often fast over the winter months (Pottinger et al., 

2003).  Young salmon metamorphose from freshwater parr to marine smolt and fasting can be 

part of smoltification.  Some Atlantic salmon parr do not migrate to the sea during their first 

year but instead spend the winter under stones in streambeds and do not eat (Metcalfe & 

Thorpe, 1992).  Finally, infection by bacteria can induce anorexia as a possible host defense 

mechanism (Exton, 1997; Pirhonen et al., 2003).   

  For several procedures in aquaculture, fish are deprived of food.  In these circumstances 

the convention appears to be to describe food deprivation for less than 2 weeks as fasting and 

for longer as starvation.  In general terms, starvation or fasting empties the gut and reduces 

oxygen consumption and production of waste (Ashley, 2007; Lines & Spence, 2012).  The 

procedures that utilize food deprivation include transport, treatment of diseases, transfer of 

smolts from freshwater to seawater, and slaughter.  The food deprivation appears to help fish 



13 
 

tolerate the stress of handling and transportation (Davis & Gaylord, 2011; Lopez-Luna et al., 

2013).  Additionally, emptying the gut before slaughter reduces spoilage (Lopez-Luna et al., 

2014).  As well, fasting is thought to improve flesh quality by enhancing flesh color (Regost 

et al., 2001), muscle firmness (Alvarez et al., 2008), and taste (Palmeri et al., 2009), although 

fasting too long can impair quality (Bermejo-Poza et al., 2017).  

  The first physiological system in animals to be directly affected by starvation or fasting 

is the GI tract (Ferraris & Carey, 2000).  A common observation for fish is that intestinal tissue 

mass and activities of digestive enzymes decline during food deprivation (Krogdahl et al., 

2005).  A number of anatomical and histological changes have also been noted. The mucosal 

fold number and height were reduced in starved rainbow trout (MacLeod, 1978).  Enterocytes 

declined in size and lost lipid droplets during the fasting of Atlantic salmon but the number of 

goblet cells increased (Baeverfjord & Krogdahl, 1996).  Animal intestinal cell lines have rarely 

been studied, if ever, as tools to study the responses of the GI tract to starvation but could be 

useful.   

1.3.2. Temperature stress  

  How the intestinal epithelium of fish responds to temperatures extremes has rarely been 

studied but heat stress has been found to be detrimental to the intestinal epithelial barrier in 

humans (Dokladny et al., 2016) and farm animals (Pearce et al., 2013).  Global warming is 

anticipated to modulate the physiology of fish (Mazumder et al., 2015) and is a concern for 

aquaculture because in net pens fish cannot behaviorally thermoregulate (Hermansen & Heen, 

2012).  Besides responses to elevated temperatures, the effects on fish at lower temperatures 

are also of interest because climate change is expected to increase temperature variability, and 

as a result, fish will experience cold shock more frequently (Szerkeres et al., 2016).   

  Cells respond to temperature changes with the heat shock response (HSR), helping 

them protect and survive abnormal and abrupt temperature increases. A HSR is inducible not 

only by temperature but also by a variety of other stressors (Jolly & Morimoto, 2000). The 

HSR response is seen ubiquitously in nature and functions through a highly conserved set of 

proteins called heat shock proteins (HSPs) or chaperones. HSPs are divided into families 

according to their molecular size. These include small HSPs, HSP40, HSP60, HSP70, HSP90, 

and HSP100 (Lindquist & Craig, 1988; Jolly & Morimoto, 2000).  HSP expression can be 

constitutive or induced by stress. HSPs vary in function by generally being molecular 
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chaperones and/or proteases (Mayer & Bukau, 2005).  Chaperones are involved in maintaining 

native protein conformations while the proteases will act by degrading damaged proteins; 

hence, both types can help the cell survive under stressed conditions (Mayer & Bukau, 2005). 

The HSR is considered a genome-wide event and recent studies have shown other, less 

prominent but still necessary, potential functional classes of heat shock related proteins 

(Richter et al., 2010). They include DNA and RNA repair proteins, metabolic enzymes, 

regulatory proteins such as transcription factors, proteins helping with cytoskeletal stability, 

and proteins involved in transport and detoxification (Richter et al., 2010).   

 

1.3.3. Antinutrionals 

  Plant meals and oils are being used or considered as replacements for fishmeal and fish 

oils because this is environmentally sustainable (Jobling, 2015). One major concern with the 

use of plants in feeds is that plants can contain antinutritional factors (ANF) (Jobling, 2015). 

As the name suggests, ANFs diminish nutritional uptake by altering the palatability of the feed, 

altering the digestion and absorption of the nutrients, decreasing feed utilization, and/or 

affecting metabolic capabilities (Jobling, 2015). One popular plant-based feed containing some 

ANFs is soybean meal. Such ANFs include lectins, protease inhibitors, phytic acid, saponins, 

phytoestrogens, antivitamins, and allergens (Francis et al., 2001).  Many studies have reported 

that soybean meal induces enteritis in salmonids (Burrells et al., 1999; Buttle et al., 2001; 

Nordrum et al., 2000; van den Ingh et al., 1991). Furthermore, elevated water temperatures 

increase the severity of soybean-induced enteritis (Uran et al., 2008).  

 

1.4. POTENTIALLY BENEFICIAL COMPOUNDS TO THE INTESTINAL 

EPITHELIUM 

  Searching for and identifying a compound or a group of compounds that can 

individually or synergistically improve gut health can promote better overall health and animal 

welfare. With the immense importance of animal agriculture in today’s society, the threat of 

heat stress due to global warming is problematic on such agricultural systems by potentially 

decreasing animal performance productivity (e.g. milk and egg production), reducing animal 

reproduction, and increasing animal death events, all leading to substantial economic toll (St-

Pierre et al., 2003). Hence, this section will focus on nutritional components that have been 
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shown to improve gut health, on a cellular and/or organismal level, under normal conditions 

and heat stress.  

1.4.1. Nucleotides 

  Fundamentally, nucleotides are essential to biological life. They are the constituents of 

nucleic acids and are also key molecules as intermediates, mediators, allosteric regulators, 

coenzyme components, and agonists driving energy production and cellular metabolism (Hess 

& Greenberg, 2012). Under stress, nucleotide pools can become depleted; hence, exogenous 

supplementation of selective nucleotides can be indispensable to post heat stress recovery 

(Hess & Greenberg, 2012). Exogenous supplies of nucleotides, for the most part, enhance 

cellular proliferation (Hess & Greenberg, 2012; Rathbone et al., 1992; Rodriguez-Serrano et 

al., 2007; Sato et al., 1999). Additionally, nucleotide supplementation has been shown to 

improve cellular cytoskeleton protective mechanisms and enhance resistance against different 

stresses. In a study conducted with rainbow trout fingerlings, dietary nucleotides increased 

growth and resistance to acute stress from excessive handling and crowding (Tahmasebi-

Kohyani et al., 2012). Similar results were also seen in channel catfish and sole (Palermo et 

al., 2013; Welker et al., 2011). In mammals, dietary nucleotides enhance cytoprotection to 

thioacetamide induced liver damage in rats (Torres et al., 1997). Additionally, cytoprotection 

was seen with adenosine and inosine in a model of tubular necrosis using rat kidney tubular 

cells (Modis et al., 2009). Interestingly, in a study by Glencross & Rutherford (2009) it was 

shown that the most effective diet strategy in reducing the effects of growth retardation of 

barramundi due to high water temperatures was a higher protein diet with no nucleotides and 

not a normal protein + nucleotide diet. On the other hand, the effects of nucleotides on the HSR 

have not been extensively researched and is a promising path for future studies.   

1.4.2. Amino Acids 

  In contrast to nucleotides, many studies have focused on the protective effects of amino 

acids (AA) and their relations with the HSR. The most famous AA in nutritional studies is 

glutamine. Being extensively studied, glutamine is known to have many nutritional values 

fitted to improve gut health and overall health. Beneficial effects include increased cellular 

proliferation, decreased cellular apoptosis, enhancements in TJ protein expression and 

localization, all leading to significantly enhanced intestinal microstructure and increased 
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enterocyte migration rates (Evans et al., 2005; Larson et al., 2007; Li et al., 2004; Pohlenz et 

al., 2012). Furthermore, multiple studies have demonstrated that glutamine can act as an 

enhancer of the HSR (Chow & Zhang, 1998; Liu et al., 2015; Wischmeyer et al., 2001). 

Glutamine’s HSR enhancing effects are mediated through the hexosamine biosynthetic 

pathway (HBP) (Hamiel et al., 2009). Being a key substrate of the HBP, glutamine increases 

HSP70 expression via augmented HBP activity generating increased O-glycosylation, nuclear 

translocation, and transcriptional activation of heat shock factor-1 (HSF-1) and Sp1 (Hamiel 

et al., 2009). Both HSF-1 and Sp1 are key transcription factors of HSPs (Hamiel et al., 2009). 

However, glutamine also can protect cells by other pathways such as being the precursor of 

protective antioxidant, glutathione or through its functions as an osmotically acting AA (Baird 

et al., 2013). Another important AA that elicits thermoprotective effects and is useful in 

improving gut barrier functions is threonine. Threonine appears to protect cells from heat stress 

by increasing HSP70 and HSP25 expression generating enhanced cytoprotection and 

decreased apoptosis (Baird et al., 2013). Similarly to glutamine, threonine’s protective 

pathways are multifaceted (Baird et al., 2013).   

  

1.4.3. Fatty Acids 

  Polyunsaturated fatty acids (PUFA) are important components influencing membrane 

fluidity, immune responses, and epithelial barrier function (Amasheh et al., 2009).  PUFAs 

such as eicosapentaenoic acid (EPA), γ-linolenic acid (GLA), and docosahexaenoic acid 

(DHA) have been shown to generally increase fluorescein sulfonic acid permeability and 

decrease transepithelial electrical resistance (TEER) on a Caco-2 cell monolayer; however, in 

another study, EPA and linolenic acid (LA) had no effect on TEER in Caco-2 (Rosella et al., 

2000), while longer incubations with LA caused an increase in TEER (Roche et al., 2001). 

Interestingly, EPA and DHA caused an improvement in resistance and decreased IL-4 

mediated permeability in T84 (human colon carcinoma) cell monolayer (Willemsen et al., 

2008).  

  The short chain fatty acid butyrate, produced by the intestinal microflora, also appears 

to have significant positive effects on the GI tract, such as being anti-inflammatory, reinforcing 

the intestinal barrier, and improving the oxidative status of the intestine (Canani et al., 2011). 
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Also, butyrate has been shown to induce HSP25 in rat IEC-18 (intestinal epithelial) cells and 

protected the cells against oxidative stress (Ren et al., 2001).  

 

1.4.4. Flavonoids 

  Phytochemicals have generated considerable interest as compounds that can promote 

the intestinal mucosa health (Amashen et al., 2009).  Phytochemicals constitute thousands of 

chemicals that are divided into multiple classes. One important class is the flavonoids.   

  Flavonoids consist of two aromatic rings (A and B) linked through 3 carbons.  The A 

ring is synthesized in the acetate pathway; the B ring, the shikimate pathway.  The heterocyclic 

C ring links the A and B rings and variations in the C ring lead to the designation of six 

flavonoid subclasses: flavonols, flavones, isoflavones, flavanols, anthocyanidins, and 

flavanones.  Over 5,000 different flavonoids have been identified. Quercetin and kaempferol 

are two commonly studied flavonols.  Apigenin is an example of a flavone. Genistein is a 

frequently investigated isoflavone.  Flavanols or catechins include epicatechin.  Examples of 

anthocyanidins are malvidin and cyanidin.  Naringenin is a flavanone.  Many flavonoids are 

attached to sugars to become glycosides.  For example, rutin is the glycoside combining 

quercetin with the disaccharide rutinose, and naringin is a flavanone-7-O-glycoside between 

naringenin and the disaccharide neohesperidose.  

  Flavonoids are a broad group of secondary plant metabolites (Ross & Kasum, 2002) 

that are found in all foods of plant origin for humans and other animals.  In plants flavonoids 

have different functions.  Many provide protection against pathogens.  Others aid pollination 

by attracting insects.  For humans and animals, flavonoids appear to benefit health. The specific 

health benefits are still being debated and possible mechanisms of action are still being 

explored.  A common action likely contributing to health benefits are the antioxidant and free-

radical scavenging abilities of flavonoids.  

  In mammals, intestinal mucosa health appears to be improved by at least three 

flavonoids: epicatechin, quercetin, and naringenin. Epicatechin appears to be a gastroprotective 

agent against induced ulceration in rats through strengthening the mucus barrier, neutralizing 

gastric juices, while also increasing nitric oxide NO and HSP70 (Rozza et al., 2012). In this 

case it appears that NO is acting as a protective agent in the gut by increasing gastric mucosal 

blood flow, controlling the secretion of mucus and bicarbonate, and inhibiting the secretion of 

https://en.wikipedia.org/wiki/Glycoside
https://en.wikipedia.org/wiki/Quercetin
https://en.wikipedia.org/wiki/Disaccharide
https://en.wikipedia.org/wiki/Rutinose
https://en.wikipedia.org/wiki/Flavanone
https://en.wikipedia.org/wiki/Glycoside
https://en.wikipedia.org/wiki/Naringenin
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gastric juices (Rozza et al., 2012).  In some studies, quercetin appears to be a heat-sensitizing 

agent, inhibiting HSFs in a cell specific way (Hansen et al., 1997). On the other hand, quercetin 

appears to be a quite beneficial diet component under normal conditions considering its 

antioxidant capabilities while also enhancing intestinal barrier functions (Amasheh et al., 

2008). Lastly, naringenin in addition to its antioxidant capabilities, possesses anti-

inflammatory, anticarcinogenic, antidiabetic, and anti-lipidemic properties, and more recently 

it has been shown to have TJ modulating effects (Noda et al., 2013).  

 

1.5.  IN VITRO MODELS OF INTESTINAL EPITHELIAL CELLS 

1.5.1. Mammalian intestinal epithelial cell lines 

  A large number of intestinal cell lines have been developed from mammals, allowing 

researchers and healthcare professionals to further study and advance intestinal epithelial 

barrier biology and GI tract knowledge in a cheaper, quicker, and more efficient manner.  One 

of the most popular intestinal cell models is Caco-2, a human colon adenocarcinoma cell line 

(Liu et al., 2014).  The in vitro use of intestinal cell lines can be very beneficial in studying 

cellular gut responses to stress while also allowing researchers to accumulate information that 

could be valuable to in vivo studies.   

  Caco-2 has been cultured in different ways to develop the most representative model 

of the intestinal epithelium.  Most commonly Caco-2 has been grown as adherent cells on 

plastic surfaces treated in proprietary ways for tissue culture and configured into flasks, petri 

dishes, and multiwell plates.  A most successful advancement has been to culture the cells on 

flat, porous supports.  These have been used as transwell inserts in multiwell plates to divide a 

well into a lower basal compartment and upper apical compartment.  On these porous inserts, 

Caco-2 cells differentiated spontaneously to form confluent monolayers that had the structural 

and functional characteristics of the human small intestinal epithelium (Hilgers et al., 1990).  

This had become a widely used in vitro system for studying intestinal epithelial transport.    

  A concern with some of the Caco-2 culture systems is the absence of a basement 

membrane (BM) (Vllasaliu et al., 2014).  A BM, which is a specialized extracellular matrix 

(ECM), supports the intestinal epithelial cells in vivo.  The intestinal BM is thin and composed 

of several proteins, including laminins, type IV collagen and fibronectin. These proteins are 

thought to play roles in intestinal cell proliferation, differentiation, and migration (Bason et al., 
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1996).  Thus ECM proteins have been added to some Caco-2 culture systems and found to 

stimulate proliferation and isomaltase activity (Bason et al., 1996).  Caco-2 cells on laminin 

showed enhanced cell migration (Agle et al., 2010).  However as cultures are maintained, 

endogenously synthesized and organized ECM proteins likely contribute to the differentiation 

and maintenance of intestinal epithelial functions.  

  Mammalian intestinal epithelial cell lines vary in what structures and function they 

express. This is illustrated with microvilli, which are specialized actin structures.  Microvilli 

are membrane protrusions with a core of bundled actin filaments tethered laterally to the 

plasma membrane by proteins of the ezrin/radixin/moesin (ERM) family (Lange, 2010).    

Microvilli can be found in many cell types and increase cell surface area and are essential for 

Ca2+ signaling.  In the intestine, enzymes involved in digestion and absorption are concentrated 

on the microvillar membrane. For a porcine intestinal epithelial cell line, microvilli are usually 

only acquired in significant number under special differentiation culture conditions, such as 

maintenance at confluency for several weeks on collagen coated inserts (Green & Niewold, 

2011), although some intestinal epithelial cell lines, like LS174T and HT-29, have few 

microvilli (Bu et al., 2011; Mitchell & Ball, 2004).  

  Mammalian intestinal epithelial cell lines have been used to study wound healing, 

including identifying the roles of cellular protrusions with actin frameworks in the migration 

of intestinal epithelial cells in wound healing (Khurana et al., 2008).  These are filopodia and 

lamellipodia. Filopodia are found at the leading edge of many migrating cells and are filled 

with tight parallel bundles of F-actin (Mattila & Lappalainen, 2008).  They often protrude from 

the lamellipodial actin network.  Very short filopodia are term microspikes.  Filopodia are 

thought to act like antennae, allowing cells to probe their environment.  Lamellipodia are cell 

protrusions with a branched network of F-actin and are an essential part of the machinery for 

cells to crawl (Krause & Gautreau, 2014).  Lamellipodial protrusion is powered by actin 

polymerization and lamellipodia have highly dynamic, short-lived actin filaments.  Behind the 

lamellipoda is the bulk of the protrusive region, termed the lamellum.  The lamellum contains 

less dynamic, longer-lived actin filaments. 

 

 

 



20 
 

1.5.2. Piscine intestinal epithelial cell lines 

  Only one fish intestinal epithelial cell line is available for research.  This is RTgutGC 

from the distal portion of the intestine of a female rainbow trout (Kawano et al., 2011) and its 

utility in research is just starting to emerge.  The cell line possesses an epithelial like 

morphology and exhibits alkaline phosphatase activity, an indication of enterocyte 

differentiation (Kawano et al., 2011).  Geppert et al. (2016) and Minghetti et al. (2017) 

explored whether RTgutGC can form a functional epithelium on permeable supports.  

Culturing on the permeable supports was successful and allowed Geppert et al. (2016) to study 

the transport of nanoparticles across the cell layer.  RTgutGC in culture forms tight junctions 

and desmosomes (Minghetti et al., 2017).  Cells become polarized in culture, evident by 

basolateral localization of Na+/K+ -ATPase and apical localization of ZO-1 (Minghetti et al., 

2017).  Monolayers of RTgutGC exhibit a measurable transepithelial electrical resistance 

(TEER) up to 50 Ω cm2 (Geppert et al., 2016; Minghetti et al., 2017).  When referencing Claude 

and Goodenough (1973), RTgutGC’s TEER values are considered “leaky”.  Similar TEER 

values are seen in vivo with Atlantic salmon intestines generating values between 30 – 150 Ω 

cm2 (Sundell et al., 2003).   The initial characterization done by Geppert et al. (2016) and 

Minghetti et al. (2017) shows lots of promise for the cell line and supports the use of RTgutGC 

as an intestinal barrier model for fish.   
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1.6. HYPOTHESIS 

  The hypothesis underlying this thesis is that bioassays can be developed with the 

rainbow trout intestinal epithelial cell line, RTgutGC, for identifying potential beneficial 

additives and detrimental antinutritionals. The overarching goal is that such bioassays can be 

used in the future to screen large numbers of compounds and extracts in order to develop 

improved fish feeds, especially feeds that will promote gut health during periods of 

temperature stress.  

 

1.7. SPECIFIC RESEARCH AIMS 

  Background work has been done on the responses of RTgutGC to different culture 

conditions as well as illustrative work with specific potential feed additives and 

antinutritionals. The results are organized into five chapters (Chapters 2 to 6) that address the 

following specific aims: 

 

1. (Chapter 2). Are RTgutGC able to survive and maintain their cytoskeletal organization in 

different kinds of starvation?  

 

2. (Chapter 3). Will RTgutGC respond to a potential phytochemical feed additive, 

naringenin?  

 

3. (Chapter 4). Will the migration of RTgutGC in a wound-healing assay be influenced by 

antinutrionals in soybean and wheat germ meal?  

 

4. (Chapter 5). How is the migration of RTgutGC influenced by different temperatures?  

 

5. (Chapter 6). Will naringenin modulate the ability of RTgutGC cells to maintain their actin 

cytoskeleton and substrate adherence during recovery from heat stress?  
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CHAPTER 2 

Effect of different kinds of starvation on the survival, HSP70 levels, 

cytoskeleton, tight junctions, and barrier functions of rainbow 

trout intestinal epithelial cells in vitro 
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2.1. INTRODUCTION 

 In the salmonid aquaculture industry, fish are exposed to many stressors, including 

handling of fish during transport, sorting, and stocking (Ramsay et al., 2009) and starvation 

(Ashley, 2007; Lines & Spence, 2012). A common practice is to deprive the fish of food for 

several days before any intense handling to decrease amounts of fecal materials and waste in 

the tanks (Ramsay et al., 2009). Also, this practice of food deprivation provides a shift in 

metabolic energy to more effectively respond to the stressor as less energy is needed for 

digestion and nutrient uptake (Beamish, 1978; Jobling, 1983).  Long term food deprivation can 

lead to negative effects such as reduced reproductive abilities, reduced growth, reduced 

immunity, and lower tolerance to disease, as energy reserves are allocated to maintain vital 

processes (Eslamloo et al., 2017; Martin et al., 2010; Niehoff, 2000; Weber & Bosworth, 

2005). Fat, protein, and carbohydrate reserves during starvation become depleted, and if not 

replenished, mortality is inevitable. On the other hand, short term starvation of around 4 days 

has been shown to be tolerable in certain fish species including rainbow trout if re-feeding 

occurred after the starvation period (Azodi et al., 2015). One response of interest is the 

expression of certain heat shock proteins (HSP) to stressors. In certain cases, it has been shown 

that starvation can cause the induction of HSP70 and HSP90 in larval rainbow trout undergoing 

starvation leading to the possibility of HSPs being a starvation bio-indicator (Cara et al., 2005). 

However, this response appears to be tissue specific and does not occur in all tissue types that 

would be directly influenced by starvation such as the intestine (Antonopoulou et al., 2013).  

Starvation might be conveniently studied in vitro: the in vitro advantages include being able to 

study a specific cell type and to do studies at less cost and with less ethical concerns compared 

to in vivo.  

  Most research on starvation with mammalian cell lines has focused on cancer biology, 

with intestinal cell lines used only occasionally.  How tumor and normal cells respond to 

nutrient deprivation has been studied, with the aim to exploit differences for cancer therapy.  

Survival of human cells in subconfluent cultures was studied in a medium with vitamins and 

salts but lacking serum, glucose and amino acids (Izuishi et al., 2000).  In this medium, normal 

human fibroblasts died within 24 h whereas cancer cell lines survived much longer, often up 

to 3 days.  Follow up studies have supported the generalization that cancer cells survive nutrient 

deprivation much better than their normal counterparts (Kim et al., 2015; Raffaghello et al., 
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2008; Song et al., 2011).   This includes colorectal cancer derived cell lines (Sato et al., 2007).  

The starvation-resistant phenotype has been dubbed “austerity” (Izushi et al., 2000; Esumi et 

al., 2002).   

  Only one published report has appeared on the effects of starvation on fish cell lines, 

and again this did not include an intestinal cell line.  As a minor part in the characterization of 

the cell line, HEW, from Haddock larvae, the ability of HEW cells to remain viable in 

monolayers was evaluated in media that provided different levels of nutrient deprivation 

(Bryson et al., 2006).   The complete or normal growth medium (L15/FBS) was Leibovitz’s 

basal medium L15 (Leibovitz, 1963), with a supplement of fetal bovine serum (FBS), which 

is the most commonly used undefined supplement for fish cell cultures (Bols et al., 2005).  The 

basal medium, L15, contains amino acids, vitamins, galactose, pyruvate and salts and was used 

to study serum deprivation.  Amino acid and vitamin deprivation was done in L15/ex, which 

has only the galactose, pyruvate, and the salts of L15 (Schirmer et al., 1997).  L15/salts, which 

was referred to as simple salt solution (SSS), has no nutrients and provided complete nutrient 

deprivation.  As judged with the indicator dyes alamar Blue, CFDA-AM, and neutral red, HEW 

and three other fish cell lines (CHSE-214 from Chinook salmon embryo, PHL from Pacific 

herring larvae, and RTG-2 from rainbow trout gonads) remained viable for at least a week in 

L15/salts (Bryson et al., 2006).   The results imply that fish cells withstand starvation better 

than mammalian cells but only a limited number of cellular parameters were examined and 

intestinal cells were not studied. 

 In this study, RTgutGC, a rainbow trout intestinal cell line was used to study the effects 

of various kinds of starvation ranging from the lack of serum to complete starvation in a SSS 

over 6-7 days. The results demonstrate that cells were able to survive a 7 day starvation period 

but with reductions in barrier functions, wound repair, and changes in cytoskeletal structure.  

Additionally, increasing degrees of starvation in RTgutGC cells up regulates HSP70 protein 

levels. 
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2.2. MATERIALS AND METHODS 

2.2.1. Cell cultures and culture conditions  

 RTgutGC, a rainbow trout epithelial cell line was used throughout the experiment.  This 

cell line was developed in Niels C. Bols’ laboratory at the University of Waterloo (Kawano et 

al., 2011).  Medium used to culture the cells was Leibovitz’s L15 with 2.05 mM L-Glutamine 

(Thermo Fisher Scientific) additionally supplemented with 10% fetal bovine serum (FBS, 

Sigma-Aldrich) and antibiotics (10,000 U/mL penicillin and 10,000 ug/mL streptomycin, P/S, 

Thermo Fisher Scientific) (L15/FBS).  Cells were subcultured or passaged using trypsin 

(Thermo Fisher Scientific) every week at a 1 to 2 split and maintained at 18 oC.  The cell culture 

vessels used were BioLite 75 cm2 cell culture treated flasks (Thermo Fisher Scientific).  

2.2.2. Starvation timeline 

 Once cells were seeded into culture vessel of choice, depending on the assay, cells were 

allowed to establish a monolayer in L15/10% FBS at 18 oC for 3-4 days.  Once a confluent 

monolayer was established, the medium was removed, the cells were washed with Dulbecco’s 

phosphate-buffered saline solution (DPBS, Thermo Fisher Scientific), and medium was 

changed to either L15/FBS (complete medium), L15 media without FBS (L15: medium 

containing amino acids, vitamins, inorganic salts, sodium pyruvate, and galactose), L15 media 

lacking amino acids and vitamins (L15/ex: medium containing only sodium pyruvate and 

galactose), or an inorganic salt solution (L15/salts).  The range of nutritional starvation ranged 

from no starvation with L15/FBS, serum starvation with L15, serum, amino acid, and vitamin 

(SAV) starvation with L15/ex, and complete starvation with L15/salts.  After the medium 

change, cells were left to incubate for 7 days at 18 oC in respective media conditions with one 

exception of the Lucifer yellow assay being performed on day 5 of starvation.  All other assay 

end points are on day 7.   

2.2.3. Cellular viability 

 Cellular viability was monitored by changes in cell morphology through phase contrast 

microscopy and with the indicator dyes, alamar Blue® (AB, Thermo Fisher Scientific) and 5' 

-carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM, Sigma-Aldrich).  The AB 

assay provides a measure of metabolic activity, whereas the CFDA-AM assay provides a 

measure of plasma membrane integrity (Dayeh et al., 2013).  The protocol used for the AB and 
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CFDA dyes follows closely Dayeh et al. (2013) methods.  RTgutGC cells in L15/FBS were 

plated in 24-well plates at a density of 125,000 cells per well in replicates of 4.  Plates followed 

an incubation timeline as described in section 2.2.2 with the four various nutritional conditions.  

On day 7 the media were then removed, the cells were washed with DPBS, and a solution 

containing 5% (v/v) AB and 4 M CFDA-AM in DPBS was added to the cells.  Plates were 

then incubated at room temperature for 1 hour in the dark.  Using a series 4000 CytoFluor 

fluorescent plate reader (PerSeptive Biosystems – Thermo Fisher Scientific), results were 

recorded as relative fluorescent units (RFUs).  The mean RFUs for the experimental wells were 

expressed as a percentage of the mean RFUs for control wells. 

2.2.4. Cell diameter and volume 

 Cell size in suspension was determined by using a Scepter handheld cell counter 

(Millipore).  RTgutGC cells in L15/FBS were plated in 12-well plates at a density of 325,000 

cells per well.  Plates followed an incubation timeline as described in section 2.2.2 with the 

four various nutritional conditions.  On day 7 the media were then removed, the cells were 

washed with DPBS, collected into a cell suspension using trypsin, centrifuged, and 

resuspended in DPBS.  Finally, cell size was determined with the Scepter cell counter.    

2.2.5. Fluorescence microscopy of RTgutGC cytoskeleton 

F-Actin 

 F-actin was visualized using fluorescein isothiocyanate labeled phalloidin (FITC-

phalloidin, Sigma-Aldrich) and confocal microscopy.  Phalloidin is a fungal toxin having an 

ability of binding to F-actin only in polymeric and oligomeric forms but not monomeric forms.  

The fluorescent conjugate of phalloidin, FITC, is used to label F-actin and can be visualized 

by fluorescence or laser microscopy.  A 5 mg/mL stock solution of FITC-phalloidin was 

prepared in DMSO.  RTgutGC cells in L15/FBS were plated in a 4 chamber tissue culture 

treated glass Falcon CultureSlide® (Corning) at a density of 150,000 cells per chamber.  Slides 

followed an incubation timeline as described in section 2.2.2 with the four various nutritional 

conditions.  At day 7, cells were washed with DPBS and fixed with 3% paraformaldehyde 

(Sigma-Aldrich) for 20 minutes at 4 oC.  Following fixation, the cells were then permeabilized 

with 0.1% Triton X-100 (Sigma-Aldrich) for 10 minutes at room temperature.  Afterwards, 5 

μg/mL of FITC-phalloidin was added to the cells and allowed to incubate for 45 min at room 
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temperature in the dark.  Cells were then washed three times with DPBS.  Once dry, plastic 

chambers were removed from the slides and three drops of a mounting medium, Fluoroshield 

(Sigma-Aldrich), containing DAPI was added to the slides with a coverslip to help preserve 

the slide and counter stain for DNA.  Confocal images were obtained with the Zeiss LSM 510 

laser scanning microscope and were acquired and analyzed using a ZEN lite 2011 software. 

α-tubulin  

 α-tubulin was visualized by indirect immunocytochemistry and confocal microscopy.  

RTgutGC cells in L15/FBS were plated in a 4 chamber tissue cultured treated glass Falcon 

CultureSlide® (Corning) at a density of 150,000 cells per chamber.  Slides followed an 

incubation timeline as described in section 2.2.2 with the four various nutritional conditions.  

At day 7 cells were washed with DPBS and fixed with 3% paraformaldehyde (Sigma-Aldrich) 

for 20 minutes at 4 oC.  Following fixation, the cells were then permeabilized with 0.1% Triton 

X-100 (Sigma-Aldrich) for 10 minutes at room temperature.  Cells were then incubated in 

blocking buffer (BB) (10% goat serum, 3% bovine serum albumin, and 0.1% Triton X-100 in 

DPBS) for 1 hour at room temperature.  At this point some chambers were incubated with 

primary antibodies while others were incubated with only secondary antibodies to control for 

nonspecific staining.  The primary antibodies used were monoclonal anti-α-tubulin produced 

in mouse (Sigma-Aldrich) and were diluted 1:1000 in BB.  Primary antibodies were incubated 

with the cells for 1 hour at room temperature on a rocker.  Antibodies were then removed and 

the cells were washed three times for 3 minutes with DBPS before the addition of secondary 

antibodies.  The secondary antibodies used were anti-mouse AlexaFluor® 488 produced in 

goat (Sigma-Aldrich) diluted 1:1000 in DPBS and allowed to incubate on the cells for 1 hour 

in the dark at room temperature on a rocker.  After incubating, the antibodies were removed 

and cells were once again washed three times with DPBS.  Once dry, plastic chambers were 

removed from the slides and three drops of a mounting medium, Fluoroshield (Sigma-Aldrich), 

containing DAPI were added with a coverslip to help preserve the slide and counter stain for 

DNA.  Confocal images were obtained with the Zeiss LSM 510 laser scanning microscope and 

were acquired and analyzed using a ZEN lite 2011 software.      
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2.2.5. Fluorescence microscopy of RTgutGC tight junction associated protein, ZO-1  

 ZO-1 was visualized by indirect immunocytochemistry (ICC) and confocal 

microscopy.  The staining protocol was the same as used for α-tubulin but differed in primary 

and secondary antibodies.  The primary and secondary antibodies used were polyclonal anti-

ZO-1 produced in rabbit (Thermo Fisher Scientific) diluted 1:100 in BB and anti-rabbit 

AlexaFluor® 488 produced in goat (Sigma-Aldrich) diluted 1:1000 in DPBS.  

2.2.6. Measurement of epithelial barrier function 

 To evaluate tight junction integrity of the RTgutGC barrier, transepithelial electrical 

resistance (TEER) and Lucifer Yellow CH dilithium salt (LY) permeability were measured 

with the use of Transwell® permeable supports with 1 μm pore sizes (Corning).  Cells were 

plated in a 24-well Transwell® supports system at a density of 120,000 per Transwell® with 

L15/FBS medium. The plates were then incubated for 7 days at 18 oC allowing the cells to 

form a barrier.  Cells were washed with DPBS and medium was changed in both apical and 

basolateral wells to one of the four nutritional conditions described in section 2.2.2.  TEER 

was measured over time using an EVOM with the STX2 chopstick electrode (World Precision 

Instruments).  The unit area resistance (Ω cm2) was then calculated.  To measure barrier 

permeability by LY, 24-well plates with Transwell® permeable supports were also used.  Cells 

were plated at the same density as above and allowed to incubate for 7 days at 18 oC in 

L15/FBS.  As with the TEER set up, cells were then washed and the various four nutritional 

conditions were administered.  After 5 days, the medium was removed and the cells were 

washed with DPBS.  Then 0.1 mg/mL of LY in DPBS was added to the apical wells and 

allowed to incubate for 60 min in the dark.  The Transwell® supports were then removed and 

the amount of LY in the basal compartment was quantified using a fluorescent plate reader 

with results recorded as RFUs.  The data were then expressed as percent permeability being 

the percent difference of the blank with no cells on the Transwell® supports. 

2.2.8. HSP70 detection 

 HSP70 was visualized by Western blotting.  RTgutGC cells were plated in 6-well plates 

with L15/FBS at a density of 1,000,000 cells per well.  Cells then followed an incubation 

timeline as described in section 2.2.2 with the four various nutritional conditions. After day 7, 

the cells were lysed by adding 200 μL RIPA lysis buffer containing a protease inhibitor cocktail 
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(Qiagen) directly to the plates. The cells were scraped off, transferred to microcentrifuge tubes, 

and allowed to sit on ice for 30 minutes.  Tubes were then centrifuged at 10,000 x g for 1 

minute and protein in supernatant was collected.  Protein concentrations were determined using 

a Pierce BCA protein assay kit (Thermo Fisher Scientific).  SDS-PAGE was performed using 

a Mini-PROTEAN tetra system (Bio-Rad) with premade 1 mm thick handcast gels.  Loaded 

gels were run at 120 volts for 1 ½ hours.  The transfer step onto a nitrocellulose membrane was 

performed in a Mini-Trans Blot Cell system (Bio-Rad) running at 150 milliamps for 1 hour.  

Equal protein loading was visualized by a 0.1 % Ponceau S stain in 5% (w/v) acetic acid.  

Before probing the membrane with rabbit anti-salmon HSP70 (Fish) polyclonal antibodies, 

binding only to the inducible form of HSP70 (SPC-314B, StressMarq), a 1 hour blocking step 

using 5% skim milk (w/v) in 1x TBS-T was performed.  All antibodies were diluted in 5% 

skim milk (w/v) in 1x TBS-T.  Rabbit anti-Salmon HSP70 (Fish) polyclonal antibodies were 

diluted 1:1000.  To detect actin as a reference protein, rabbit anti-actin antibodies (Sigma 

Aldrich) were used and diluted 1:600.  The secondary antibody used was goat anti-rabbit IgG 

conjugated to alkaline phosphatase (Sigma Aldrich) diluted 1:5000.  Protein bands were 

detected by NBT/BCIP and membranes were scanned with a printer scanner.   

2.2.9. Evaluating the effect of nutritional deprivation on wound healing and restitution 

  The ability of RTgutGC cells to heal a wound under different kinds of nutritional 

deprivation was investigated in a fence assay that utilized 2-well culture inserts from Ibidi 

GmbH, Planegg / Martinsried, Germany.  The inserts were placed inside the wells of a 24 well 

plate to create two smaller wells.  Approximately 50,000 cells in L15/FBS were seeded into 

each of the two insert wells, which were separated from each other by a rubber divider.  The 

cultures were incubated at 18 °C and after 3 days monolayers had formed.  At this time, the 

cultures were rinsed with DPBS, and the rubber divider removed to create a 500 m gap 

between the monolayers.  Immediately, L15/FBS, L15, L15/ex or L15/salts was added to the 

cultures and phase contrast microscopy pictures taken to document the size of gap or wound 

at time zero. The cultures were incubated at 18 °C for up to 7 days and the gap photographed 

every day to document the movement of cells into the wound.  Two cellular processes 

contribute to wound healing, proliferation and migration (Iizuka & Konno, 2011).  As L15/FBS 

is the routine growth medium for RTgutGC, the removal of the barrier or fence between the 
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wells and the addition of L15/FBS began a wound-healing assay.  As RTgutGC do not 

proliferate in L15 (Kawano et al., 2011) and showed no signs of proliferation (mitotic figures) 

in the more nutritionally depleted L15/ex and L15/salts, the addition of these media after 

removal of the barriers assayed cell migration or restitution.  

2.2.10. Statistical Analyses 

   Variables were expressed as the mean ± standard deviation.  Statistical analysis was 

done by a one-way ANOVA and Tukey post hoc test or a two-tail unpaired student’s T-test.  

Statistical significance was defined as p < 0.05.  
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2.3. RESULTS 

2.3.1. Effect of nutritional deprivation on cell adherence, morphology and plasma 

membrane integrity 

  As viewed under the phase contrast microscope, confluent monolayers of RTgutGC 

cells remained adherent to the plastic surfaces of culture plates for at least 7 days despite 

nutrient deprivation of serum (L15), serum, amino acids and vitamins (L15/ex), and all 

nutrients (L15/salts).  The monolayers were established in L15/FBS, and as monolayers 

became confluent, cells began to acquire a cobblestone shape (day 0) (A, Fig. 2.2).  When the 

monolayers were maintained for a further 7 days in L15/FBS, L15, L15/ex and L15/salts, most 

cells became polygonal (B-E, Fig. 2.2).  In L15/ex and L15/salts, the cells were larger and 

flatter. The polygonal shape was most prominent in L15/salts as phase dark lines often 

demarcated the periphery of cells (B-E, Fig. 2.2).  As a measure of the integrity of the plasma 

membrane, the ability of the monolayers to retain esterase activity was measured with CFDA-

AM and found to drop approximately 25 % in nutritionally deprived cultures (A, Fig. 2.1).   

However, little difference was found between cultures in L15, L15/ex and L15/salts.  Overall 

the results suggest that most cells in RTgutGC monolayers at the start of the starvation remain 

viable after 7 days in nutritionally deprived media.   

2.3.2. Effect of nutritional deprivation on energy metabolism 

  Energy metabolism was impaired after 7 days of nutritional deprivation, with the 

magnitude of the impairment increasing with the severity of the nutritional deprivation (B, Fig. 

2.1).  Energy metabolism was evaluated by the ability of cells to reduce alamar Blue (resazurin) 

to resorufin and was recorded as RFUs.  Compared to the metabolism by cultures in the normal 

growth medium (L15/FBS), the metabolism by cells starved of serum (L15), of serum, amino 

acids, and vitamins (L15/ex), and of all nutrients (L15/salts) showed decreases of 

approximately 35%, 45%, and 87 % respectively. 

2.3.3. Effect of nutritional deprivation on F-actin organization 

  Staining for F-actin with fluorescently labelled phalloidin showed stress fibers in 

RTgutGC but the staining intensity and distribution of stress fibers changed with nutrient 

deprivation (A, Fig 2.3).  Shortly after RTgutGC monolayers developed in cultures (day 0), 

the cells had many short stress fibers running parallel to one another but with continued 
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maintenance in L15/FBS for 7 days the stress fibers became fewer and less intensely stained 

(A & B, Fig. 2.3).  By contrast if L15/FBS was removed and the cells maintained a further 7 

days in L-15 without serum, the stress fibers appeared longer and more numerous than at day 

0 (C, Fig. 2.3). Furthermore, when monolayers were maintained for 7 days in either L15/ex or 

L15/salts, the stress fibers became much more intensely stained (D & E, Fig. 2.3).  The stress 

fibers appeared thicker and many cells now had circumferential actin fibers, especially in 

L15/salts (E, Fig. 2.3). Therefore, depriving intestinal epithelial cells for 7 days of serum (L15), 

serum, amino acids and vitamins (L15/ex) or of all nutrients (L15/salts) elicited the 

development of prominent stress fibers.   

2.3.4. Effect of nutritional deprivation on microtubule organization 

  Immunocytochemical staining for  tubulin revealed in each cell a network of 

cytoplasmic fibers that radiated out from a single, intensely stained region, which was next to 

the nucleus and is interpreted to be a microtubule organizing centre (MTOC), but  tubulin 

staining was changed by nutritional deprivation (Fig 2.4).  For cells in L15 either with or 

without FBS,  tubulin organization was similar, although MTOCs appeared to become a little 

smaller after 7 days of culturing the cells in monolayers (B-D, Fig 2.4).  By contrast, for cells 

in L15/ex and L15/salts for 7 days, the  tubulin network appeared to have fewer fibers but the 

fibers were thicker and longer.  As well, the MTOCs were larger and more intensely stained 

(E & F, Fig 2.4).  These changes were most pronounced for cells in no nutrients (F, Fig 2.4).  

Therefore intestinal epithelial cells deprived of serum, amino acids and vitamins (L15/ex) or 

of all nutrients (L15/salts) were able to maintain microtubule networks for at least 7 days but 

the nutrient deprivation altered the organization of  tubulin in microtubule fibers and in 

MTOCs.   

2.3.5 Effect of nutritional deprivation on zonula occludens-1 (ZO-1) organization 

  ZO-1 (tight junction protein-1) was detected in RTgutGC by immunocytochemical 

staining, with nutritional deprivation causing a slight change in the staining pattern (Fig 2.5).  

Shortly after RTgutGC monolayers developed in cultures (day 0), cells showed diffuse 

cytoplasmic staining for ZO-1 (B, Fig. 2.5), but with continued maintenance in either L15/FBS, 

L15, L15/ex or L15 salts for 7 days ZO-1 now appeared at the cell periphery (C-F, Fig. 2.5).  
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However, in L15, L15/ex and L15 salts, the cytoplasmic staining was less and the staining at 

the periphery was thinner and more irregular (D-F, Fig. 2.5).  

2.3.6. Starvation increases HSP70 levels in RTgutGC   

 HSP70 protein levels were measured by Western immunoblotting.  After 7 days, 

increases in nutritional starvation (L15/FBS  L15  L15/ex  L15/salts) caused a 

respective increase in HSP70 protein levels (Fig 2.6).  No changes in the actin control bands 

were observed with increasing starvation.     

2.3.7. Effect of nutritional deprivation on epithelial barrier functions 

 The ability of an RTgutGC monolayer to maintain a functioning barrier under different 

kinds of nutritional deprivation over time was evaluated by TEER (A, Fig 2.7).  Initial day 0 

readings of cells in the 4 different media ranged between 23.7 - 28.0 Ω cm2.  On day 1, 

differences in TEER were seen in L15/FBS and L15/salts (data not shown).  L15/FBS cells’ 

resistance increased to 38.0 ± 1.1 Ω cm2 (compared to initial 27.3 ± 1.5 Ω cm2 day 0 reading), 

whereas the resistance of cells in L15/salts decreased to 17.5 ± 1.1 Ω cm2 (compared to initial 

26.4 ± 2.4 Ω cm2 day 0 reading).  No day 1 differences in TEER were seen with cells in L15 

or L15/ex.  Over time, slight variations in TEER were observed with cells in L15/FBS.  On 

day 7, the cells reached a TEER value of 41.2 ± 0.5 Ω cm2.  Cells in L15/salts reached a final 

TEER value of 17.5 ± 2.2 Ω cm2 on day 7.  Cells in L15 or L15/ex had a slower decrease in 

TEER over time compared to cells in L15/salts before eventually catching up to L15/salts 

values on day 5 (data not shown).  Final TEER values for cells in L15 or L15/ex on day 7 were 

15.3 ± 1.8 Ω cm2 and 16.2 ± 2.5 Ω cm2 respectively.  

  RTgutGC monolayers under different degrees of nutritional deprivation for 5 days had 

varying capacities to act as a barrier to the penetration of Lucifer yellow (LY) from the top 

chamber to the bottom chamber of two chamber culture systems (B, Fig 2.7).  Consistently, 

the monolayers were most permeable in L15/salts, with only about 30 % of the LY remaining 

in the top chamber after 1 h, and least permeable in L15/FBS, with approximately 75 % of the 

dye remaining in the top chamber.  The permeabilities of monolayers in L15 and L15/ex fell 

between these two extremes and were not consistently different from each other or from the 

extremes.  
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2.3.8.  Effect of nutritional deprivation on wound healing and restitution  

  Nutritional deprivation profoundly influenced the healing of a 500 m gap or wound 

in RTgutGC monolayers (Fig 2.8).  In L15/FBS, cells filled the gap within 5 days (data not 

shown).  Thus L15/FBS supported wound healing.  In L15 and L15/ex, cells entered the gap 

but the wound was still incompletely healed after 7 days (B & C, Fig 2.8). Thus these media 

supported partial restitution.  By contrast, in L15/salts, cells failed to enter the gap, and even 

after 7 days, the wound remained completely open (E, Fig. 2.8).  Thus L15/salts failed to 

support restitution.  

2.3.9. Effect of nutritional deprivation on trypsinization and replating of cells 

  The responses to trypsin by cell monolayers that had been nutritionally deprived for 7 

days either in L15, L15/ex, or L15/salts were compared to the responses of cell monolayers in 

L15/FBS for 7 days (control).  Within minutes of the trypsin addition, cells began to round up 

and draw away from their neighbors, but cells that had been in L15/ex and L15/salt appeared 

to round up more slowly and to be less round (data not shown).  Repeatedly pipetting L15/FBS 

into these cultures dislodged the cells to create a cell suspension.  Greater than 90 % of these 

cells excluded Trypan blue, with no obvious relationship between nutrient deprivation and 

Trypan blue staining (data not shown).  The mean volume for cells that had been in L15/salts 

(3.1 ± pL, n=3) was approximately 40% of the volume for cells that had been in L15/FBS (1.8 

± 0.1 pL, n=3) but cell diameter in L15/salts (15.0 ± 0.3 μm, n=3) was only about 15% less 

than the cell diameter in L15/FBS (17.9 ± 1.6 μm, n=3) (Fig 2.9).  When resuspended in 

L15/FBS and added to new culture vessels, the cells attached within minutes. Lamellopodia 

began to extend out from the cells and within a few hours the cells became completely spread 

onto the plastic culture surface.  Spreading was a little slower for the cells that had been 

nutritionally deprived in L15/ex and L15/salts (data not shown).  Overall, cells nutritionally 

deprived for 7 days were still able to disassemble their cytoskeleton as illustrated by their 

rounding during trypsinization and reassemble their cytoskeleton as illustrated by their 

attachment and spreading onto the plastic surface of culture vessels. 
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2.3.10.  Recovery from complete nutrient deprivation of cell culture propagation and 

wound healing 

 When cultures in L15/salts for 7 days were passaged with trypsin to new vessels (1 to 

2 split) with new medium (L15/FBS), the cells proliferated to eventually form monolayers.  

These monolayers also could be subsequently split 1 to 2 and again be grown to confluency in 

L15/FBS.  As noted in section 2.3.8, a gap in a monolayer in L15/salts remained undiminished 

for at least 7 days.  Yet when L15/FBS was added at this point, cells began migrating into the 

gap and the wound healed within the next 7 days (data not shown).  Therefore, adding L15/FBS 

to cell cultures that had been deprived of all nutrients (L15/salts) for 7 days restored their 

capacity to be continuously propagated and to heal wounds. 

 

      

 

 

Figure 2.1.  Effect of nutritional deprivation on the ability of RTgutGC monolayer 

cultures to retain plasma membrane integrity and energy metabolism.  RTgutGC 

monolayer cultures were established in L15/FBS and then switched either to L15, L15/ex or 

L15/salts.  After 7 days, esterase activity was measured with CFDA-AM as an indication of 

plasma membrane integrity (A) and the reduction of alamar Blue (AB), as an indication of 

energy metabolism (B).  In both cases the results were recorded as relative fluorescent units 

(RFUs).  For graphic presentation, RFUs were expressed as a percentage of the RFUs for 

control cultures (7 days in L15/FBS), and the means with standard deviations (n=3) are 

presented.   For statistical analysis, RFUs were subjected to a one-way ANOVA and Tukey 

post hoc test (*p < 0.05, **p < 0.01, ***p < 0.001).  For CFDA-AM, all nutritionally deprived 

cultures are different from the control but not different from each other (A); for AB, all pair 

wise combinations were significantly different from each other. 
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Figure 2.2. Phase-contrast microscopic observation of RTgutGC under various degrees 

of starvation.  Starvation end point was 7 days in respective conditions.  (A) Day 0 control 

after establiment.  (B) Cells in L15/FBS after 7 days at 18 oC.  (C) Cells in L15 after 7 days at 

18 oC.  (D) Cells in L15/ex after 7 days at 18 oC.  (E) Cells in L15/salts after 7 days at 18 oC.  

Pictures were taken under 400x.  Scale bar = 100 μm. 
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Figure 2.3.  F-actin arrangement after 7 days under various nutritional conditions.  (A) 

Day 0 control.  (B) F-actin arrangement after 7 days in L15/FBS.  (C) F-actin arrangement 

after 7 days in L15.  (D) F-actin arrangement after 7 days in L15/ex.  (E) F-actin arrangement 

after 7 days in L15/salts.  F-actin was visualized by FITC-phalloidin, staining green.  The cells’ 

nuclei were visualized by DAPI, staining blue.  Scale bar = 50 μm 



38 
 

 
Figure 2.4. α-tubulin arrangement after 7 days under various nutritional conditions.  (A) 

Secondary antibody control to ensure that no nonspecific binding of the secondary antibody 

occurred.  (B) Day 0 control.  (C) α-tubulin arrangement after 7 days in L15/FBS.  (D) α-

tubulin arrangement after 7 days in L15.  (E) α-tubulin arrangement after 7 days in L15/ex.  (F) 

α-tubulin arrangement after 7 days in L15/salts.  α-tubulin is visualized in green by the 

incubation of a primary monoclonal anti- α-tubulin antibody produced in mouse and a 

secondary anti-mouse AlexaFluor® 488 antibody produced in goat.  The cells’ nuclei, stained 

blue, were visualized by DAPI.  Scale bar = 50 μm. 
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Figure 2.5. ZO-1 localization after 7 days under various nutritional conditions.  (A) 

Secondary antibody control to ensure that no nonspecific binding of the antibody occurred.  

(B) Day 0 control.  (C) ZO-1 localization after 7 days in L15/FBS.  (D) ZO-1 localization after 

7 days in L15.  (E) ZO-1 localization after 7 days in L15/ex.  (F) ZO-1 localization after 7 days 

in L15/salts.  ZO-1 is visualized in green by the incubation of a primary polyclonal anti- ZO-

1 antibody produced in rabbit and secondary anti-rabbit AlexaFluor® 488 antibody produced 

in goat.  The cells’ nuclei, stained blue, were visualized by DAPI.  Scale bar = 50 μm 
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Figure 2.6.  HSP70 protein levels after 7 days under four different nutritional conditions. 

RTgutGC cells were incubated in either L15/FBS, L15, L15/ex, or L15/salts for 7 days at          

18 oC.  HSP70 levels were visualized by Western blotting.  Actin was used as a control to 

HSP70.      
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Figure 2.7.  Effects of different degrees of nutritional starvation on the barrier function 

of RTgutGC.  (A) Transepithelial electrical resistance (TEER) in either L15/FBS, L15, 

L15/ex, or L15/salts after 7 days at 18 oC.  Initial TEER readings on day 0 were approximately 

24-28 Ω cm2.  Statistical significance (**p < 0.01) was reached when compared to L15/FBS.   

(B) Day 5 measurements of Lucifer yellow (LY) permeability in either L15/FBS, L15, L15/ex, 

or L15/salts.  Values are means ± standard deviation.  Asterisks indicate significant differences: 

*p < 0.05, **p < 0.01.  
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Figure 2.8.  RTgutGC cells’ ability to migrate into a cell free gap under different degrees 

of starvation.  (A) Day 0 of migration after 3 day establishment period.  (B) Day 7 migration 

time point of cells in L15/FBS medium (complete media).  (C) Day 7 migration time point of 

cells in L15 medium (serum starvation).  (D) Day 7 migration time point of cells in L15/ex 

(serum, amino acid, and vitamin starvation).  (E) Day 7 migration time point of cells in 

L15/salts (complete starvation).  Cell monolayer borders are traced in black to better visualize 

restitution.  Phase contrast pictures were taken at a 100x magnification.  Scale bar = 100 μm. 

 



43 
 

 
Figure 2.9.  Effects of starvation on the cell volume and diameter of RTgutGC cells 

after 7 days.  (A) Volume (pL) of cells either in a full nutritional condition (L15/FBS) or 

deprived of any nutrients (L15/salts) after 7 days.  (B) Diameter (μm) of cells either in a full 

nutritional condition (L15/FBS) or deprived of any nutrients (L15/salts) after 7 days.  For 

both (A) and (B), values are means ± standard deviation.  **p < 0.01 by a two-tail unpaired 

student’s T-test. 
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2.4. DISCUSSION 

Rainbow trout intestinal epithelial cells, RTgutGC, were able to survive for at least 7 

days under three kinds of nutrient deprivation or starvation: serum starvation(L15), serum, 

amino acid and vitamin starvation (L15/ex), and complete starvation (L15/salts).  Nutrient 

deprivation caused changes in cellular functions and organizations, with the most pronounced 

changes arising from complete starvation.  In L15/salts for 7 days, the cells underwent a 

diminishment in metabolism, a reorganization of the cytoskeleton and ZO-1, and a loss of 

barrier functions and of restitution (cell migration). The addition of growth medium (L15/FBS) 

supported the restoration in starved intestinal epithelial cells of energy metabolism, 

cytoskeletal organization, and cell migration. 

2.4.1. Effect of nutritional deprivation on cell adherence, morphology and plasma 

membrane integrity 

  Despite nutrient deprivation for 7 days, rainbow trout intestinal epithelial cells were 

able to remain adherent in monolayers but within the monolayers the cellular morphology 

became larger, flatter, and more polygonal with a decline in esterase activity.  Esterase activity 

was measured by the conversion of CFDA-AM to carboxyfluorescein (CF) and recorded as 

relative fluorescent units (RFUs).  The fewer RFUs suggests that some cells in the monolayer 

had lost their plasma membrane integrity, causing esterase activity and CF to be removed from 

the monolayer during rinsing.  The magnitude of the RFU diminishment might represent 

approximately how many cells were lost from the monolayer.  However, visually the 

monolayer seemed intact so any space left by dying cells likely was covered over by the 

enlargement of the remaining adherent cells.   These cells were viable as judged by their 

continued adherence, esterase activity, and recovery upon refeeding, as will be discussed later.   

  Only a few other studies have examined the ability of cell lines to persist as monolayers 

during nutrient deprivation, so whether the ability of RTgutGC to survive starvation is a 

property generally found with fish cells or unique to the intestine needs to be explored further.  

In L15/ex, rainbow trout gill epithelial cells, RTgill-W1, and American eel brain endothelial 

cells, eelB, survived for at least 4 and 7 days respectively with no decline in CF RFUs or 

obvious change in morphology (Schirmer et al., 1997; Bloch et al., 2017).  In L15/salts, the 

Chinook salmon embryo cells, CHSE-214 remained adherent for more than a week, whereas 

the human choriocarcinoma cells, JEG-3, did not (Bryson et al., 2006).  Shortly after being 
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placed in L15/salts, the haddock embryo cells, HEW, developed long cytoplasmic extensions 

but over time in L15/salts the cells flattened out again into a monolayer, although CF readings 

declined by approximately 25 % (Bryson et al., 2006).  The retention of all esterase activity by 

some cell lines (eelB) and loss of some activity by others (RTgutGC) could reflect differences 

in their physiology but could be due to methodological differences.   The RFUs for cultures 

after 7 days in L15/ex was expressed relative to the RFUs at the start of starvation for eelB 

(Bloch et al., 2017) but relative to control cultures after 7 days in L15/FBS for RTgutGC.  For 

the latter method, a % drop in RFU could be due to the growth of cells in L15/FBS rather than 

just the loss of esterase activity from the monolayer.   This might explain why the decline was 

similar in all three types of nutrient deprivation (L15, L15/ex and L15/salts) with RTgutGC.   

 2.4.2. Effect of nutritional deprivation on energy metabolism 

  Relative to cultures in the normal growth medium (L15/FBS), RTgutGC in L15, L15/ex 

or L15/salts for 7 days reduced less AB, which was recorded as fewer RFUs and interpreted as 

diminished energy metabolism.  The decline of 45 % for RTgutGC in L15/ex contrasts with 

previous studies on RTgill-W1 and eelB in L15/ex for 4 to 7 days.  With these cell lines little 

or no diminishment in energy metabolism was observed (Schirmer et al., 1997; Bloch et al., 

2017).  Likewise, no diminishment in AB reduction was observed in HEW cells after 7 days 

in L15/salts (Bryson et al., 2006), whereas the diminishment was approximately 85 % for 

RTgutGC.  The differences could arise from methodology dissimilarities.  Firstly, the rinsing 

of the cultures to initiate nutrient deprivation might have been more thorough with RTgutGC 

cultures. Secondly the RFUs for cultures after a period in L15/ex or L15/salts was expressed 

relative to the RFUs at the start of starvation for RTgill-W1, eelB and HEW (Bloch et al., 2017; 

Schirmer et al., 1997) but relative to control cultures after 7 days in L15/FBS for RTgutGC.  

A % decline in AB reduction by RTgutGC during nutritional deprivation could be due to the 

increase in cell number in L15/FBS and a proportional increase in energy metabolism rather 

than diminished energy metabolism in L15 or L15/ex.  Alternatively, energy metabolism in 

RTgutGC might be more sensitive to down regulation or disruption by starvation than in the 

other cell lines.   

  Three different mechanisms, working separately or in some combination, can be 

advanced to explain why RTgutGC undergoing nutritional deprivation showed a decline in 

energy metabolism.  Firstly, RTgutGC more so than other cell lines might sense and respond 
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to nutritional deprivation by shutting down energy metabolism, even before the internal energy 

substrates or energy machinery have been diminished significantly.  The cells might 

downregulate their cellular metabolic rate to a new hypometabolic steady state as has been 

proposed as a mechanism for cells surviving hypoxia and hypothermia (Boutilier, 2001).  

Secondly, during starvation the intracellular pool of substrates and co-factors necessary for 

energy metabolism might decline more rapidly with RTgutGC and become limiting earlier.  A 

third possibility is that the machinery for energy metabolism degenerates during starvation 

through the inability of cells to repair or replenish organelles, such as mitochondria, and this 

degeneration is more rapid in RTgutGC.  

2.4.3. Effects of nutritional deprivation on F-actin 

 Considerable changes in F-actin arrangement were observed under various degrees of 

nutritional starvation.  Additionally, a lack of nutritional starvation (L15/FBS) promoted the 

loss of stress fibers after 7 days, whereas serum starvation in L15 retained stress fibers in the 

cells, where they appeared more organized.  Past studies have shown that cells under serum 

starvation retain stress fibers with observable increases in F-actin and stress fiber thickness 

(Boraldi et al., 2008; Paddenberg et al., 2001; Schmitz & Bereiter-Hahn, 2002).  Stress fiber 

thickening was also seen in the presence of SAV and complete starvation (L15/ex and L15/salts 

respectively).  Conversely, the presence of certain growth factors, such as LPA, bombesin, 

PDGF, and EGF, in serum is thought to coordinate the assembly of focal adhesions and stress 

fibers by interactions with the small GTP-binding protein rho and that the removal of serum 

results in the loss of stress fibers (Ridley & Hall, 1992).  Since serum promotes cellular growth 

and proliferation, actin will be in a state of change, constantly being disassembled and 

reassembled, hence leading to the possibility of fixing the cells at a state of actin 

reorganization.  Moreover, it has been recently suggested that highly proliferative and motile 

cells can lack stress fibers, where the onset of cell softening due to a decrease in stress fibers, 

preceded by a stiffening state, is a characteristic of cancer cell invasion (Tavares et al., 2017).  

This study’s data suggest that cells undergoing serum starvation and further complete 

starvation retain stress fibers in a more organized manner.  Stress fibers are generally anchored 

to focal adhesions, and can be categorized by morphology and association to focal adhesions 

as four different types: ventral stress fibers, dorsal stress fibers, transverse actin arcs, and 
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perinuclear actin cap fibers (Maninova et al., 2017).  It is possible that the various regimens of 

starvation in the current study caused a shift in the type of stress fibers observed. 

2.4.4. Effects of nutritional deprivation on microtubules 

 In addition to F-actin, cytoskeletal microtubular changes were observed after the 

various starvation regimens.  Increasing degrees of nutritional starvation in RTgutGC generate 

less dense but thicker arrays of α-tubulin with larger MTOCs.  Reductions in microtubular 

densities have been linked to tubulin folding cofactors B expression in murine microglial cells 

(Fanarraga et al., 2009).  Microtubules, being dynamic structures constantly polymerizing and 

depolymerizing, show fast growth at their “plus” ends and slower dimer addition at their 

“negative” ends.  These highly dynamic properties are controlled by microtubule binding 

proteins called tubulin folding cofactors (Szymanski, 2002).  Hence, alterations in expression 

or function of these proteins, possibly in the case of starvation, would impart changes to 

microtubular networks.  Larger MTOCs in starvation conditions could be due to the appearance 

of non-chromosomal (nc) MTOCs. These nc-MTCOs have a lesser role in cellular division but 

impart important functions in differentiated cells (Sanchez & Feldman, 2010).  To confirm the 

appearance of nc-MTOCs, future studies will have to be done.  

2.4.5. Effects of nutritional deprivation on barrier functions 

 To measure the integrity of an RTgutGC monolayer and tight junctions under different 

kinds of starvation, TEER and LY assays were used in conjunction with immunofluorescence 

of an important tight junctional scaffolding protein, ZO-1.  TEER is an indicator of the ionic 

conductance of the paracellular pathway in the epithelial monolayer, whereas LY is an 

indicator of paracellular water flow and pore size as it has low permeability and can only pass 

through monolayers by paracellular diffusion (Rastogi et al., 2013; Srinivasan et al., 2015).  

Both assays indicated that RTgutGC cells were unable to maintain an effective barrier in the 

absence of serum.  This was particulary evident in complete starvation conditions (L15/salts).  

Interestingly, LY permeability did not increase after SAV starvation (L15/ex). Nonetheless, a 

reduction in monolayer resistance measured by TEER was observed.  FBS has many 

constituents, including low-molecular-weight nutrients, hormones and polypeptide growth 

factors (Ham, 1981), and might be contributing to the maintenance of a functional epithelial 

barrier in two fundamentally different ways.  The FBS components might be acting generally 
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on the cells to keep a contiguous layer of viable epithelial cells so that the paracellular space 

between cells can be sealed.  In the absence of FBS, RTgutGC monolayers remained viable 

for at least seven days in L15, L15/ex or L15/salts when measured by the viability indicator 

CFDA-AM.  Yet the decline in TEER values for monolayers in L15, L15/ex and L15/salts 

might be due to the death of only a few cells, which are sufficient in number to break up the 

contiguous cell layer and the functional barrier.  Nutrients and polypeptide growth factors in 

FBS might be preventing this small amount of cell death.  Alternatively or additionally, the 

components of FBS might be regulating specifically the synthesis, assembly and turnover of 

tight junction components so that epithelial cells remain sealed.  For example, bovine serum 

albumin (BSA) has been reported to stabilize tight junctions in Caco-2 (Hashimoto et al., 

1995).  

2.4.6. Effects of nutritional deprivation on ZO-1 

In the presence of serum, ZO-1 was strongly localized at the cells’ periphery indicating 

strong interactions with junctional complexes.  In the absence of serum, ZO-1 appeared to have 

a weaker localization at cells’ periphery and was disorganized in L15 and L15/salts.  In the day 

0 control, ZO-1 was completely localized in the cytoplasm and not at the periphery, an 

indication that tight junction complexes have yet to form.  Balda and Matter (2000) 

demonstrated that ZO-1 expression increases upon serum stimulation in MDCK cells and that 

overexpressing ZO-1 resulted in a significantly higher TEER value for the cell line.  

Conversely, multiple studies suggest that serum can increase permeability (decreasing TEER) 

of multiple different cell lines by the reduction in ZO-1 expression and/or reduction in the 

distribution of ZO-1 to the cells’ periphery with decreases in co-localization and association to 

occludin (Bian et al., 2009; Chang et al., 1997; Colgan, 2008). Nonetheless, the results suggest 

that the proper maintenance of an RTgutGC barrier requires serum, whereas the removal of 

serum disrupts this barrier by ZO-1 disorganization.  ZO-1 is an important scaffolding protein 

that structurally supports tight junction proteins, such as occludin, to the actin cytoskeleton.  

As ZO-1 directly binds and supports occludin, a critical transmembrane protein in controlling 

the paracellular pathway, it is possible for ZO-1 to control the paracellular pathway through 

occludin interactions (Balda and Matter, 2000; Chasiotis et al., 2012).  ZO-1 also has additional 

roles in some signalling pathways involved in cell proliferation (Chasiotis et al., 2012).   
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2.4.7. Effects of nutritional deprivation on HSP70 levels 

HSPs are multifaceted with diverse roles and highly conserved proteins that see 

increases in expression under stress, such as hyperthermia, UV radiation, oxidative stress, and 

nutritional deprivation (Jolly & Morimoto, 2000).  Increased levels of HSP70 were observed 

with increases in nutritional starvation over 7 days by Western blotting.  This observation with 

RTgutGC provides in vitro evidence that nutritional starvation is a stressor that fish intestinal 

epithelium cells respond to by increasing the expression of HSP70.  Observations of HSP, 

including HSP70, expression increasing during food deprivation have also been made in vivo 

with fish (Antonopoulou et al., 2013; Cara et al., 2005; Gronquist & Berges, 2013).  However, 

this response is variable in vivo with fish and not always indicative of stress from starvation 

(Gronquist & Berges, 2013).  Whether the increase in HSP70 protein expression play specific 

roles or influences to the starvation responses seen in RTgutGC is unknown and is a potential 

path for future studies.     

2.4.8.  Effect of nutritional deprivation on wound healing and restitution 

 Wound healing by RTgutGC was slower without serum (L15 and L15/ex) than in 

L15/FBS and stopped completely in the absence of any nutrients (L15/salts).  Previously 

RTgutGC cells were found not to grow without serum (Kawano et al., 2010), so in L15 and 

L15/ex, healing was likely slower because filling in the gap would have been only due to cell 

migration or restitution.  By contrast in L15/FBS, both proliferation and migration would occur 

and account for the faster healing. Surprisingly, in L15/ex RTgutGC cells were able to migrate 

into a gap but not to completely close it.  Thus RTgutGC can at least start restitution without 

serum, amino acids, and vitamins and only an energy source (L15/ex).  The lack of any cell 

migration in L15/salts might be a way for the cells to reduce ATP demand to match reduced 

ATP production. 

2.4.9. Summary 

Overall, RTgutGC cells were able to survive starvation over 7 days but with the 

impairment of barrier function and wound repair.  Due to the complexity and variability of a 

starvation response in vivo and the necessity of good aquaculture practice to ensure healthy 

fish, the RTgutGC cell line is a useful tool to study the cellular responses involved in nutritional 

starvation.  Future studies should focus on molecular aspects of this stress response, whether 
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HSPs play a role in mitigating this nutritional stress, cell cycle progression and/or arrest, and 

the underlying cellular metabolic response to starvation.   
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CHAPTER 3 

Effect of naringenin on rainbow trout intestinal epithelial cells  
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3.1. INTRODUCTION 

  Understanding the interaction between the rainbow trout intestinal epithelium and feed 

additives, especially phytochemicals, will aid the development of feeds that better promote 

intestinal fish health.  The use of intestinal cell cultures is one approach for identifying 

interactions.  For example, the human Caco-2 cell line has been used to study the impact of 

flavonoids on tight junctions (TJ) and epithelium barrier functions.  Quercetin increased the 

expression of Claudin-4 in Caco2 while also increasing Claudin-4 localization within the tight 

junction and in subjunctional regions (Amasheh et al., 2008). 

  One phytochemical of interest is the flavanone naringenin, mainly found in citrus fruits 

such as grapefruit. In addition to its antioxidant capabilities, naringenin possesses anti-

inflammatory, anticarcinogenic, antidiabetic, and anti-lipidemic properties, and has been 

shown to have TJ modulating effects (Leonardi et al., 2010; Mulvihill et al., 2009; Noda et al., 

2013; Park et al., 2012; Wang et al., 2012). In a monolayer of Caco-2 cells, naringenin was 

seen to increase TJ function through cytoskeletal association, localization, and expression of 

ZO-1, occludin, claudin-1, and claudin-4 (Noda et al., 2013).  Naringenin was also seen to 

increase HSP70 expression in Caco-2 cells (Noda et al., 2013).  In teleost systems, in vitro 

naringenin administration in goldfish scale fibroblast GAKS cells suppressed Edwardsiella 

tarda infection by inhibiting NanA sialidase, an important enzyme for the initial adhering 

process in E. tarda infection (Shinyoshi et al., 2016).  Additionally, feed additives containing 

citrus oils reduced Aeromonas salmonicida infection in rainbow trout (Menanteau-Ledouble 

et al., 2015).  Fish feeds containing citrus extracts are starting to emerge in popularity with the 

aquaculture industry in Japan (Fukada et al., 2014).   

  Very little is known of the interaction of naringenin and the intestinal epithelium in 

teleost systems either in vivo or in vitro.  Hence, this chapter focuses on such interaction at a 

cellular level with the use of a rainbow trout intestinal epithelial cell line, RTgutGC. 
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3.2. MATERIALS AND METHODS 

3.2.1. Cell cultures and culture conditions  

 RTgutGC, a rainbow trout epithelial cell line was used throughout the experiment.  This 

cell line was developed in Niels C. Bols’ laboratory at the University of Waterloo, Canada 

(Kawano et al., 2011).  Medium used to culture the cells was Leibovitz’s L15 with 2.05 mM 

L-Glutamine (Thermo Fisher Scientific) additionally supplemented with 10% fetal bovine 

serum (FBS, Sigma-Aldrich) and antibiotics (10,000 U/mL penicillin and 10,000 μg/mL 

streptomycin, P/S, Thermo Fisher Scientific) (L15/FBS).  Cells were subcultured or passaged 

using trypsin (Thermo Fisher Scientific) every week at a 1 to 2 split and maintained at 18 oC. 

The cell culture vessels used were BioLite 75 cm2 cell culture treated flasks (Thermo Fisher 

Scientific).     

 

3.2.2. Naringenin dosing timeline 

 Cells were first allowed to establish a confluent monolayer in L15/FBS at 18 oC for 3-

4 days.  Afterwards, the medium was removed, the cells were washed with Dulbecco’s 

phosphate-buffered saline solution (DPBS, Thermo Fisher Scientific), and exposed to varying 

concentrations of naringenin (Sigma-Aldrich) either in L15/FBS, in L15 lacking serum (L15), 

or in a simple salt solution of L15 (L15/salts).  The naringenin concentrations used were 10, 

30, 50, 75, and 100 μM diluted from a 200x stock solution of the reagent dissolved in DMSO.  

Final DMSO concentration in control and media-naringenin solutions was always 0.5% (v/v).  

The selected naringenin concentration range is based on concentrations used on fish and 

mammalian cells found in the literature (Menanteau-Ledouble et al., 2015; Noda et al., 2013).  

The cells were left to incubate in a naringenin containing solution for 24 h to 96 h at 18 oC 

depending on the assay. 

 

3.2.3. Cellular viability 

 Cellular viability was monitored by changes in cell morphology through phase contrast 

microscopy and with the indicator dyes, Alamar Blue® (AB, Thermo Fisher Scientific) and 5'-

carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM, Sigma-Aldrich).  AB provides 

a measure of metabolic activity while CFDA-AM provides a measure of plasma membrane 

integrity (Dayeh et al., 2013).  The protocol used for the AB and CFDA-AM dye assays follows 
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closely Dayeh et al. (2013) methods.  RTgutGC cells in L15/FBS were added to a 24-well plate 

at a plating density of 125,000 cells per well in replicates of 4.  Plates were dosed with 10, 30, 

and 100 μM of naringenin as in section 3.2.2 for 24 h.  After the incubation, the medium was 

then removed, the cells were washed with DPBS, and a solution containing 5% (v/v) AB and 

4 M CFDA-AM in DPBS was added to the cells.  Plates were then incubated at room 

temperature for 1 hour in the dark.  Using a series 4000 CytoFluor fluorescent plate reader 

(PerSeptive Biosystems - ThermoFisher Scientific), results were recorded as relative 

fluorescent units (RFUs).  The mean RFUs for the experimental wells were expressed as a 

percentage of the mean RFUs for control wells. 

 

3.2.4. Fluorescence microscopy of RTgutGC F-actin  

 F-actin was visualized using fluorescein isothiocyanate labeled phalloidin (FITC-

phalloidin, Sigma-Aldrich) and confocal microscopy.  Phalloidin is a fungal toxin having an 

ability of binding to F-actin only in polymeric and oligomeric forms but not monomeric forms. 

The fluorescent conjugate of phalloidin, FITC, is used to label F-actin and can be visualized 

by fluorescence or laser microscopy.  A 5 mg/mL stock solution of FITC-phalloidin was 

prepared in DMSO.  RTgutGC cells in L15/FBS were plated in a 4 chamber tissue culture 

treated glass Falcon CultureSlide® (Corning) at a density of 150,000 cells per chamber.  Slides 

were dosed with 10, 30, and 100 μM of naringenin as seen in section 3.2.2 for 24 h.  After the 

incubation, cells were washed with DPBS and fixed with 3% paraformaldehyde (Sigma-

Aldrich) for 20 minutes at 4 oC.  Following fixation, the cells were then permeabilized with 

0.1% Triton X-100 (Sigma-Aldrich) for 10 minutes at room temperature.  Afterwards, 5 μg/mL 

of FITC-phalloidin was added to the cells and allowed to incubate for 45 min at room 

temperature in the dark.  Cells were then washed three times with DPBS and the slides were 

allowed to dry.  Once dry, plastic chambers were removed from the slides and three drops of a 

mounting medium, Fluoroshield (Sigma-Aldrich), containing DAPI was added to the slides 

with a coverslip to help preserve the slide and counter stain for DNA.  Confocal images were 

obtained with the Zeiss LSM 510 laser scanning microscope and were acquired and analyzed 

using a ZEN lite 2011 software. 
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3.2.5. Fluorescence microscopy of RTgutGC tight junction 

RTgutGC cells in L15/FBS were plated in a 4 chamber tissue culture treated glass 

Falcon CultureSlide® (Corning) at a density of 150,000 cells per chamber.  Slides were dosed 

24 h with 10, 30, and 100 μM of naringenin as in section 3.2.2.  After the incubation, cells 

were washed with DPBS and fixed with 3% paraformaldehyde (Sigma-Aldrich) for 20 minutes 

at 4 oC.  Following fixation, the cells were then permeabilized with 0.1% Triton X-100 (Sigma-

Aldrich) for 10 minutes at room temperature.  Cells were then incubated in blocking buffer 

(BB) (10% goat serum, 3% bovine serum albumin, and 0.1% Triton X-100 in DPBS) for 1 

hour at room temperature.  At this point some chambers were incubated with primary 

antibodies while others were incubated with only secondary antibodies to control for 

nonspecific staining.  The primary antibodies used were polyclonal anti-ZO-1 and anti-

Claudin-3 both produced in rabbit (ThermoFisher Scientific) and were diluted 1:100 and 1:50 

respectively in BB.  Primary antibodies were incubated on cells for 1 hour at room temperature 

on a rocker.  Antibodies were then removed and cells were washed three times for 3 minutes 

with DBPS before the addition of secondary antibodies.  The secondary antibodies were anti-

rabbit AlexaFluor® 488 produced in goat (Sigma-Aldrich) diluted 1:1000 in DPBS and 

allowed to incubate on the cells for 1 hour in the dark at room temperature on a rocker.  After 

incubating, the antibodies were removed and cells were once again washed three times with 

DPBS and allowed to dry.  Once dry, plastic chambers were removed from the slides and three 

drops of a mounting medium, Fluoroshield (Sigma-Aldrich), containing DAPI was added to 

the slides with a coverslip to help preserve the slide and counter stain for DNA.  Confocal 

images were obtained with the Zeiss LSM 510 laser scanning microscope and were acquired 

and analyzed using a ZEN lite 2011 software. 

 

3.2.6. Measurement of epithelial barrier function 

 To evaluate TJ integrity of the RTgutGC barrier, transepithelial electrical resistance 

(TEER) and Lucifer Yellow CH dilithium salt (LY) permeability were measured with the use 

of Transwell® permeable supports with 1 μm pore sizes (Corning).  Cells were plated in a 24-

well Transwell® supports system at a density of 120,000 cells per Transwell® with L15/FBS 

medium. The plates were then incubated for 7 days at 18 oC allowing the cells to form a barrier.  

Cells were washed with DPBS and varying concentrations (10, 30, and 100 μM) of naringenin 
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in L15 medium were administered to the apical wells.  Basolateral wells only contained L15 

medium.  TEER was measured overtime using an EVOM with the STX2 chopstick electrode 

(World Precision Instruments).  The unit area resistance (Ωcm2) was then calculated.  To 

measure barrier permeability by LY, 24-well plates with Transwell® permeable supports were 

also used.  Cells were plated at the same density as above and allowed to incubate for 7 days 

at 18 oC in L15/FBS.  As with the TEER set up, cells were then washed and naringenin (10, 

30, and 100 μM) was administered. After 4 days, naringenin was removed and the cells were 

washed with DPBS. Then 0.1 mg/mL of LY in DPBS was added to the apical wells and allowed 

to incubate for 60 min in the dark.  The Transwell® supports were then removed and the 

amount of LY in the basal compartment was quantified using a fluorescence plate reader with 

results recorded as RFUs.  The data were then expressed as percent permeability being the 

percent difference compared to blank Transwell® supports containing no cells.   

  

3.2.7. HSP70 detection 

 HSP70 was visualized by Western blotting.  RTgutGC cells were plated in 6-well plates 

with L15/FBS at a density of 1,000,000 cells per well.  Plates were dosed for 96 h with 10, 30, 

and 100 μM of naringenin as in section 3.2.2.  After the incubation, the cells were lysed by 

adding 200 μL of RIPA lysis buffer containing a protease inhibitor cocktail (Qiagen) directly 

to the plates. The cells were scraped off, transferred to microcentrifuge tubes, and allowed to 

sit on ice for 30 minutes.  Tubes were then centrifuged at 10,000 x g for 1 minute and protein 

in the supernatant was collected.  Protein concentrations were determined using a Pierce BCA 

protein assay kit (ThermoFisher Scientific).  SDS-PAGE was performed using a Mini-

PROTEAN tetra system (Bio-Rad) with premade 1 mm thick handcast gels.  Loaded gels were 

run at 120 volts for 1½ hours.  The transfer step onto a nitrocellulose membrane was performed 

in a Mini-Trans Blot Cell system (Bio-Rad) running at 150 milliamps for 1 hour.  Equal protein 

loading was visualized by a 0.1 % Ponceau S stain in 5% (w/v) acetic acid.  Before probing 

the membrane with rabbit anti-salmon HSP70 (Fish) polyclonal antibodies (SPC-314B, 

StressMarq), a 1 hour blocking step using 5% skim milk (w/v) in 1x TBS-T was performed.  

All antibodies were diluted in 5% skim milk (w/v) in 1x TBS-T.  Rabbit anti-Salmon HSP70 

(Fish) polyclonal antibodies were diluted 1:1000.  To detect a reference protein, rabbit anti-β-

actin antibodies (Sigma Aldrich) were used and diluted 1:600.  The secondary antibody used 
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was goat anti-rabbit IgG conjugated to alkaline phosphatase (Sigma Aldrich) diluted 1:5000.  

Protein bands were detected by NBT/BCIP.  Membranes were scanned and bands quantified 

by densitometry using a Bio-Rad ChemiDoc MP imaging system without chemiluminescense 

option.  The data were then normalized to the actin bands and expressed relatively to the 

control.     

 

3.2.8. Evaluating the effect of naringenin on restitution 

  The influence of naringenin on the migration of RTgutGC into a wound or gap was 

investigated in L15, and because L15 does not support RTgutGC proliferation (Kawano et al., 

2011), this constituted a restitution assay. The assay was set up in 12-well culture inserts from 

Ibidi GmbH, Planegg / Martinsried, Germany as described in Chapter 2.  After monolayers had 

been established in L15/FBS, medium was changed to just L15.  Twenty-four hours later the 

inserts were removed to create the gap and concentrations of 30, 50, and 75 μM of naringenin 

were added.  Phase contrast microscopy pictures were immediately taken to establish a day 0 

time point.  Cultures were incubated at 18 oC over the course of 6-7 days and monitored daily 

and with some exceptions photographed daily.  Photographs of the gaps were analyzed with 

the ImageJ software.  At four sites on a gap, the area without cells was calculated at day zero 

(Aday 0) and at some later period (Aday x), usually 6-7 days.  Subtracting Aday x from Aday 0 gave 

the gap area that had become covered with cells.  The area of the gap that had become covered 

by cells was expressed as a percentage of the initial gap area (see formula below).   

 

% migration = (Aday 0 – Aday x)/Aday 0 x 100% 

 

  For graphical presentation, the % cell migration was plotted on the Y axis.  For 

statistical analysis, the areas without cells were used as described in section 3.2.10.  Three 

independent experiments were done.  

 

3.2.9. Forskolin and H89  

 Forskolin (Sigma-Aldrich) is an adenylyl cyclase activator while H89 (Sigma-Aldrich) 

is a potent protein kinase A inhibitor.  Experiments that use these compounds include phase-

contrast microscopy, F-actin visualization by FITC-phalloidin, and cell restitution assays.  
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Protocols for phase-contrast microscopy and F-actin visualization were similar to described 

above (section 3.2.3 & 3.2.4).  As the case for cellular restitution, specialized 2-well culture 

inserts were used and followed a similar protocol as above (section 3.2.8).   

 

3.2.10. Statistical analyses 

   Variables were expressed as the mean ± standard deviation or standard error of the 

mean (western blot densitometric analysis).  Statistical analysis was done by a one-way 

ANOVA and Dunnet post hoc test.  Statistical significance was defined as p < 0.05.  
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3.3. RESULTS 

3.3.1. Effects of naringenin on cell morphology by phase-contrast microscopy 

 Visible morphological changes of RTgutGC cells were observed after a 24h incubation 

with naringenin in L15/salts (Fig 3.1).  After 24 h, the control cell population had an epithelial 

like shape in a tightly packed monolayer (A, Fig 3.1).  10 μM naringenin did not significantly 

change cell morphology (B, Fig 3.1).  Cells incubated with 30 and 100 μM naringenin had a 

more flattened morphology and appeared more ruffled with a distinct darker cell border (C and 

D, Fig 3.1).  These effects were more pronounced with 100 μM naringenin.  When incubated 

in L15 with naringenin for 24 h, visible morphological changes only occurred with 100 μM 

naringenin and not 10 or 30 μM naringenin (Fig 3.2).  RTgutGC cells obtained a more wrinkled 

and wavy appearance in 100 μM naringenin with L15.   A 24 h incubation of naringenin with 

L15/FBS medium did not generate significant or observable differences (Fig. 3.3).  

    

3.3.2. Effects of naringenin cellular viability  

10 and 30 μM naringenin appeared to have no effect on the metabolic activity of cells 

in L15/FBS (A, Fig 3.4).  However, 100 μM naringenin caused a slight 6% but statistically 

significant decrease (p < 0.01) in cells’ metabolic activity (A, Fig 3.4).  Increasing 

concentrations of naringenin slightly decreased plasma membrane integrity in a dose 

dependent manner (B, Fig 3.4).  10 μM naringenin caused a 9% decrease, 30 μM naringenin 

caused an 11% decrease, and 100 μM naringenin caused a 16% decrease in plasma membrane 

integrity compared to the control (B, Fig 3.4).  All values obtained were statistically significant 

compared to the control (p < 0.01).  

Similar to when using L15/FBS as the medium, a significant drop of 59% in cellular 

metabolic activity was only observed with 100 μM naringenin in L15 medium (A, Fig 3.5).  10 

and 30 μM naringenin in L15 did not significantly decrease the cells’ metabolic activity.  On 

the other hand, all three concentrations of naringenin caused a significant decrease (p < 0.01) 

in the cells’ plasma membrane integrity, however, this decrease was more pronounced with 

100 μM naringenin (B, Fig 3.5).  10 μM naringenin caused an 11% reduction, 30 μM 

naringenin caused a 12% reduction, and 100 μM naringenin a 31% reduction in plasma 

membrane integrity compared to the control.       
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In L15/salts medium, increasing concentrations of naringenin caused a dose dependent 

decrease in metabolic activity, where 10 μM naringenin caused a 12% reduction, 30 μM 

naringenin caused a 19% reduction, while a 50% reduction in metabolic activity with 100 μM 

naringenin was observed compared to the control (A, Fig 3.6).  Increasing concentrations of 

naringenin had no negative effects on the plasma membrane integrity of cells in L15/salts 

where even slight but statistical significant increases of 15%, 9%, and 6% were observed with 

10, 30, and 100 μM naringenin respectively (B, Fig 3.6).  

 

3.3.3. Naringenin increases circumferential actin bundle formation with decreases in 

stress fibers   

 Naringenin prescence caused visible effects on F-actin arrangement in RTgutGC cells.  

Control populations of RTgutGC in both L15/FBS and L15/salts medium had numerous arrays 

of linear stress fibers oriented parallel and perpendicular to the cells’ long axis (A, Fig 3.7 and 

3.8).  The addition of 10, 30, and 100 μM naringenin for 24 h in L15/FBS did not generate a 

large difference in F-actin arrangement and structure.  The cell population incubated with 10, 

30, and 100 μM naringenin in L15/FBS retained a similar stress fiber arrangement as seen in 

the control (Fig 3.7).  On the other hand, the incubation of RTgutGC cells with naringenin in 

L15/salts caused a dose-response disorganization of F-actin, mainly noted by a diffuse staining 

pattern with short actin fibers and small punctations accumulating in the cytoplasm with the 

loss of stress fibers (Fig 3.8).  Additionally, accumulation in circumferential actin bundles is 

seen with increasing concentrations of naringenin in L15/salts (Fig 3.8).  The intensity of the 

staining of these bundles increased in the cell population incubated with 100 μM naringenin 

(D, Fig 3.8).     
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Figure 3.1.  Phase-contrast observations of RTgutGC with naringenin in L15/salts.  Cells 

were incubated for 24 h with different concentrations of naringenin (10, 30, and 100 μM) in 

L15/salts medium.  Pictures represent magnification at 400x field with a scale bar of 100 μm.          
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Figure 3.2.  Phase-contrast observations of RTgutGC with naringenin in L15.  Cells were 

incubated with different concentrations of naringenin (10, 30, and 100 μM) for 24 h in L15.  

Pictures represent magnification at 400x field with a scale bar of 100 μm. 
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Figure 3.3.  Phase-contrast observations of RTgutGC with naringenin in L15/FBS.  Cells 

were incubated with different concentrations of naringenin (10, 30, and 100 μM) for 24 h in 

L15/FBS.  Pictures represent magnification at 400x field with a scale bar of 100 μm.  

 

 

 

 

 



64 
 

 

Figure 3.4.  Cellular viability of RTgutGC with naringenin in L15/FBS.  (A) Cells’ 

metabolic activity measured by alamarBlue reduction.  (B) Cells’ plasma membrane integrity 

measured by CFDA-AM conversion to CF and its retainement in the cells.  Both indicators of 

cellular viability were measured after a 24 h 18 oC incubation period with naringenin.  Values 

are means ± standard deviation.  Asterisk indicates significant difference when compared to 

the control: **p < 0.01.  
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Figure 3.5.  Cellular viability of RTgutGC with naringenin in L15.  (A) Cells’ metabolic 

activity measured by alamarBlue reduction.  (B) Cells’ plasma membrane integrity measured 

by CFDA-AM conversion to CF and its retainement in the cells.  Both indicators of cellular 

viability were measured after a 24 h 18 oC incubation period with naringenin.  Values are 

means ± standard deviation.  Asterisk indicates significant difference when compared to the 

control: **p < 0.01.  
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Figure 3.6.  Cellular viability of RTgutGC with naringenin in L15/salts.  (A) Cells’ 

metabolic activity measured by alamarBlue reduction.  (B) Cells’ plasma membrane integrity 

measured by CFDA-AM conversion to CF and its retainement in the cells.  Both indicators of 

cellular viability were measured after a 24 h 18 oC incubation period with naringenin.  Values 

are means ± standard deviation.  Asterisks indicate significant differences when compared to 

the control: *p < 0.05, **p < 0.01.    
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3.3.4. Naringenin increases barrier function without altering claudin 3 and ZO-1 

 TEER measurements on day 3 post naringenin administration showed that increasing 

concentrations of naringenin significantly increased resistance readings compared to the 

control (Fig 3.9).  10, 30, and 100 μM naringenin increased TEER 1.3, 1.75, and 1.9-fold 

respectively when compared to the control.  Using LY as a measurement of epithelial barrier 

permeability, cells incubated with 100 μM naringenin showed a significant decrease of 39% in 

permeability (Fig 3.10). 

 Claudin 3 and ZO-1 visualization by ICC staining were both positive in RTgutGC cells 

(B and D, Fig 3.11).  A secondary antibody control (cells are only stained with secondary 

antibodies and lack primary antibodies) showed no nonspecific antibody binding (A, Fig 3.11).  

100 μM naringenin had no effect on claudin 3 (B-C, Fig 3.11) or ZO-1 (D-E, Fig 3.11) 

formation and localization.  

 

3.3.5. Effect of naringenin on HSP70 levels   

  Exposure of RTgutGC cells to naringenin for 24 h had no effect on HSP70 levels as 

judged by western blotting (Fig 3.12).  In cell extracts from all cultures, the antibody to the 

salmonid HSP70 stained a band at approximately 70 kDa.  Relative to control cultures, the 

band staining was similar for cultures that had been exposed to concentrations of up to 100 μM 

naringenin in either L15/FBS (A, Fig 3.12) or L15/salts (B, Fig 3.12).  The actin reference 

band was also unchanged.  Densitometry of the HSP70 band confirmed that naringenin had no 

effect on HSP70 levels (C, Fig 3.12).  
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No heat stress 

 
Figure 3.7.  F-actin arrangement under the influence of naringenin in L15/FBS medium.  

F-actin is visualized in green by FITC-phalloidin, while the nuclei are visualized in blue by 

DAPI.  Staining occurred after a 24 h incubation period at 18 oC with naringenin.  Scale bar = 

50 μm.    
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Figure 3.8.  F-actin arrangement under the influence of naringenin in L15/salts medium.  

F-actin is visualized in green by FITC-phalloidin, while the nuclei are visualized in blue by 

DAPI.  Staining occurred after a 24 h incubation period at 18 oC with naringenin.  Scale bar = 

50 μm.    
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Figure 3.9.  Measured TEER under various concentrations of naringenin.  Cells were 

grown on Transwell® supports for 7 days.  Once a barrier was formed, naringenin (10, 30, and 

100 μM) was added apically to the cells in L15 medium.  This figure represents TEER 

measurements on day 3 post naringenin administration.  Values are means ± standard 

deviation.  Asterisks indicate significant differences when compared to the control: *p < 0.05, 

**p < 0.01.    
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Figure 3.10.  Measured LY as an indicator of barrier permeability under various 

concentrations of naringenin.  Cells were grown on Transwell® supports for 7 days.  Once 

a barrier was formed, naringenin (10, 30, and 100 μM) was added apically to the cells in L15 

medium.  LY was added to the apical side of the supports on day 4 post naringenin 

administration.  % permeability was calculated as the % difference from a no cell (blank) 

support.  Values are means ± standard deviation.  Asterisk indicates significant difference when 

compared to the control: **p < 0.01. 
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Figure 3.11.  Claudin 3 and ZO-1 visualization in the presence of naringenin.  (A) 

Secondary antibody control for nonspecific binding.  (B) Claudin 3 (green) of cells incubated 

in L15 medium without naringenin.  (C) Claudin 3 (green) of cells incubated in L15 medium 

with 100 μM naringenin.  (D) ZO-1 (green) of cells incubated in L15 medium without 

naringenin.  (E) ZO-1 (green) of cells incubated in L15 medium with 100 μM naringenin.  

Nuclei are stained blue by DAPI.  Scale bar = 50 μm. 
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Figure 3.12. Effect of naringenin on HSP70 levels in cells.  RTgutGC cultures in either 

L15/FBS (A) or L15/salts (B) were exposed to increasing concentrations of naringenin.  After 

24 h, cell extracts were prepared and subjected to SDS PAGE and western blotting with a 

polyclonal antibody to salmonid HSP70 and polyclonal antibody to β-actin.  Densitometry of 

the HSP70 bands normalized to the actin bands (C) was done and values are expressed relative 

to the control.  Values are means ± standard error of the mean.  

 

 

3.3.6. Naringenin decreases restitution or migratory abilities of RTgutGC cells 

 Phase-contrast microscopy on day 7 post naringenin administration showed decreased 

restitution abilities for cells to close the cell free gap with increasing concentrations of 

naringenin (Fig 3.13).  Restitution was almost completely halted with 75 μM naringenin (E, 

Fig 3.13).  Using imageJ to quantify the amount of migration over time, migration is seen to 

slow down with increasing concentrations of naringenin (A, Fig 3.14).  At day 7, 50 and 75 

μM naringenin significantly halted migration by 43% and 93% respectively (B, Fig 3.14).  
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Concentrations of 30 and 50 μM naringenin changed f-actin organization in the migrating cells 

(C and D, Fig 3.15).  Less f-actin was organized in the direction of migration by an increase in 

circumferential actin bundles.  Also, a decrease in actin stress fibers was observed.  

 

3.3.7. Naringenin and forskolin induce similar morphological and F-actin arrangements  

 It was hypothesized that naringenin might be conferring changes to the cells through 

the cAMP-PKA pathway; hence, an adenynyl cyclase activator called forskolin was used to 

compare F-actin arrangement changes seen with naringenin.  Phase-contrast microscopy of 

RTgutGC cells incubated with 100 μM naringenin show a more flattened morphology with 

distinct cell borders (B, Fig 3.16).  Cells in 10 and 30 μM forskolin retain a flattened 

characteristic but with less defined cell borders (C and D, Fig 3.16).  Also, cells incubated with 

forskolin appear to display cell extensions or protrusions. 

 As seen in section 3.3.3, F-actin arrangement drastically changes when cells are 

incubated with 100 μM naringenin where more actin bundles are seen at the cells’ periphery 

with decreases in stress fibers (B, Fig 3.17).  A very similar f-actin arrangement was seen in 

cells incubated with 10 and 30 μM forskolin (C and D, Fig 3.17).   

     

3.3.8. Effects of naringenin with forskolin and H89 on the restitution abilities of 

RTgutGC 

 To further test the hypothesis that naringenin might be exerting F-actin changes through 

the cAMP-PKA pathway, a restitution study was done with two cAMP-PKA modulators, 

forskolin and H89.  On day 4 of restitution, 75 μM naringenin halted migration as demonstrated 

before (C, Fig 3.18).  The addition of 5 μM H89, a potent protein kinase A inhibitor, appeared 

to have no effect in diminishing the halt in migration due to naringenin (E, Fig 3.18).  

Forskolin, an adenylyl cyclase activator, and H89, either alone or in combination, had no effect 

on cell migration (D, E, and G, Fig 3.18). Interestingly, cells migrating with forskolin addition 

obtained prominent cell protrusion in the direction of cell migration (Fig 3.19).   When 

quantification was performed on the pictures, naringenin significantly halted migration by 63% 

(Fig 3.20).  As seen with phase-contrast microscopy, H89 did not diminish the inhibitory 

effects of naringenin on cell migration as a significant 76% drop in migration occurred.  Again, 
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forskolin and H89 (either on their own or in combination) had no effect on cell migration (Fig 

3.20).     

 

 

 
Figure 3.13.  Phase-contrast microscopy of RTgutGC restitution under the influence of 

naringenin.  (A) Day 0 of restitution.  (B-E) Day 7 of restitution under the influence of 30, 50, 

and 75 μM naringenin in L15.  Cell monolayer borders are traced in black to better visualize 

restitution.  Pictures represent magnification at 100x field with a scale bar of 100 μm. 
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Figure 3.14.  Graphical demonstration of the influence of naringenin on cell restitution.  

(A) Restitution capacity of RTgutGC when incubated with 30, 50, and 75 μM of naringenin in 

L15 medium measured as % migration over days.  (B) Day 7 restitution capacity of RTgutGC 

incubated with naringenin.  Values are means ± standard deviation.  Asterisks indicate 

significant differences when compared to the control: *p < 0.05, **p < 0.01. 
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Figure 3.15.  F-actin arrangement during migration under the influence of naringenin.   

F-actin is stained as green by FITC-phallodin, while the nuclei are stained as blue by DAPI.    

(A) F-actin of migrating control cells in L15 medium.  (B) F-actin of migrating cells incubated 

with 10 μM naringenin.  (C) F-actin of migrating cells incubated with 30 μM naringenin.  (D) 

F-actin of migrating cells incubated with 50 μM naringenin.  Scale bar = 50 μm.   
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Figure 3.16.  Phase-contrast microscopy of RTgutGC cells incubated in either naringenin 

or forskolin.  (A) Cells incubated in L15/salts without naringenin or forskolin for 24 h.  (B) 

Cells incubated in L15/salts with 100 μM naringenin for 24 h.  (C)  Cells incubated in L15/salts 

with 10 μM forskolin for 24h.  (D) Cells incubated in L15/salts with 30 μM forskolin for 24 h.  

Pictures represent magnification at 400x field with a scale bar of 100 μm.  
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Figure 3.17.  F-actin arrangement of RTgutGC cells incubated with naringenin or 

forskolin.  FITC-phalloidin was used to stain F-actin as green.  (A) Cells incubated in L15/salts 

without naringenin or forskolin for 24 h.  (B) Cells incubated in L15/salts with 100 μM 

naringenin for 24 h.  (C)  Cells incubated in L15/salts with 10 μM forskolin for 24h.  (D) Cells 

incubated in L15/salts with 30 μM forskolin for 24 h.  Nuclei are stained blue by DAPI.  Scale 

bar = 50 μm.  
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Figure 3.18.  Phase-contrast microscopy of RTgutGC restitution under the influence of 

naringenin, forskolin, H89, and their combinatorial uses.  (A) Day 0 of restitution.  (B-G) 

Day 4 of restitution in various components.  N + H89 is 75 μM naringenin with 5 μM H89 

while F + H89 represents 5 μM forskolin with 5 μM H89.  All compounds were incubated with 

the cells in L15 medium.  Cell monolayer borders are traced in black to better visualize 

restitution.  Pictures represent magnification at 100x field with a scale bar of 100 μm. 
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Figure 3.19.  Cell protrusions induced by 5 μM forskolin.  Arrows indicate cell protrusions 

that were only seen during migration in the presence of forskolin.  Scale bar = 100 μm 

 

 

Figure 3.20.  Day 4 RTgutGC restitution capacity under the influence of naringenin, 

forskolin, H89, and their combinatorial use.  Cells were incubated with 75 μM naringenin, 

5 μM forskolin, 5 μM H89, 75 μM naringenin with 5 μM H89, or 5 μM forskolin with 5 μM 

H89 all in L15 medium.  Cell restitution was monitored over 7 days.  This figure represents 

the percent migration on day 4 calculated from the phase-contrast microscopic pictures.  

Values are means ± standard deviation. Asterisk indicates significant difference when 

compared to the control: **p < 0.01.  
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3.4. DISCUSSION 

 Flavonoids such as naringenin are known to exert potential health promoting effects by 

interactions with cellular and molecular events.  Some examples include suppressed protein 

aggregation and apoptosis from the induction of the endoplasmic reticulum chaperone GRP78, 

increased intestinal barrier function through the increased expression of the TJ protein ZO-2, 

occludin, claudin 1, and claudin 4, increases in HSP70 protein expression, and overall, 

naringenin possesses anti-inflammatory, anticarcinogenic, antidiabetic, anti-lipidemic, and 

antioxidant properties (Leonardi et al., 2010; Mulvihill et al., 2009; Noda et al., 2013; Park et 

al., 2012; Wang et al., 2012; Yamagishi et al., 2012).  More recently naringenin was shown to 

be cardioprotective by activating mitoBK channels and had antiviral properties against the 

dengue virus (Frabasile et al., 2017; Testai et al., 2017).  Studies on naringenin are 

predominantly in mammalian systems with very few elucidating the interactions of this 

flavanone in teleost.  In the present study, a rainbow trout intestinal epithelial cell line, 

RTgutGC, was used as an in vitro model to investigate the influence of naringenin on various 

cellular functions.  

 Higher concentrations (30 and 100 μM) of naringenin in L15/salts slightly changed the 

morphology of RTgutGC with more cells acquiring a flattened morphology with some 

membrane ruffling and more distinct cell borders.  This was matched with a decrease in 

metabolic activity but not plasma membrane integrity of cells exposed to 100 μM of naringenin 

in L15/salts. A significant reduction in metabolic activity and plasma membrane integrity was 

additionally observed at 100 μM of naringenin in L15 media. However, when cells were 

incubated in L15/FBS this effect was less prominent.  Plasma membrane integrity was less 

compromised by naringenin presence compared to the cells’ metabolic activity.  In fact, plasma 

membrane integrity slightly increased when narningenin was incubated with cells in L15/salts, 

a condition completely deprived of nutrients, whereas a small but significant decrease was 

observed in L15 and L15/FBS, two nutritionally rich conditions.  It appears that under 

suboptimal conditions, in this case the cells being starved of essential nutrients in L15/salts, 

naringenin exerts cytotoxic effects towards the cells’ metabolic activity.  Under starvation, 

cells divert certain cellular pathways to ensure cell survival by degradation systems recycling 

cytosolic proteins and RNA through a process called autophagy (Kuma & Mizushima, 2010).  

Under such state, it is possible that cells are unable to properly metabolise naringenin and retain 
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toxic metabolites (Khan et al., 2014).  The presence of glutamine in L15/FBS might also exert 

protective effects on cells through induced HSP expression and the synthesis of glutathione, 

while also suppressing apoptosis and cytokine pathways (Evans et al., 2005; Kawano et al., 

2011; Roth, 2008).  Additionally, albumins in serum are known to bind polyphenols such as 

naringenin possibly making it less available to the cells (Khan et al., 2014).   

  Noda et al., 2013 demonstrated that naringenin increased Caco-2’s barrier by the 

increased expression of the TJ protein ZO-2, occludin, claudin 1, and claudin 4.  Additionally, 

naringenin mediated increases of claudin 4 in Caco-2 involved interactions with the 

transcription factor Sp1, known to bind to the human HSP70 promoter site, possibly explaining 

increased HSP70 protein expression with naringenin in Caco-2 (Morgan, 1989; Noda et al., 

2013).  In contrast to what was discovered in Caco-2 cells (Noda et al., 2013), naringenin did 

not increase HSP70 protein expression in RTgutGC cells.  As seen with Caco-2 cells, 

naringenin increased the RTgutGC barrier by TEER and LY measurements.  However, in this 

current study, no visible differences in claudin 3 and ZO-1 were observed in RTgutGC cells 

incubated with naringenin    This indicates a possible alternate mechanistic action of naringenin 

enhancing barrier functions in RTgutGC cells.  Also, TJs comprise of a large variety of 

dynamic proteins upon which naringenin might act, other than claudin 3 and ZO-1.  Claudins 

can vary in roles with protein combinations in TJ resulting in a more “leaky” or “tighter” barrier 

(Kolosov et al., 2013).  In fish, claudin 3 is considered one of the main barrier forming TJ 

proteins (Clelland et al., 2010).  ZO-1 is a cytosolic TJ protein providing scaffolding and 

structural support to the TJ by linking claudins and occludin to the actin cytoskeleton of the 

cell (Chasiotis et al., 2012).  In RTgutGC cells, naringenin promoted a circumferential actin 

arrangement with a decrease in stress fibers.  The appearance of circumferential actin bundles 

usually indicates stronger interactions with TJ and cell adhesion proteins, generating stronger 

cell-to-cell contacts by actin stabilizing those structures (Noda et al., 2010), possibly 

explaining the barrier increase observations with naringenin.  Moreover, Yukiura et al. (2015) 

demonstrated that the loss of circumferential actin bundles followed by an increase of stress 

fibers lead to an increase in cell permeability.  

RTgutGC cells’ ability to migrate into a cell free space diminished with the addition of 

naringenin.  This took place with the loss of actin fibers oriented in the direction of migration 

suggesting loss of lamellipodia and filopodia structure.  Naringenin promoted the loss of stress 
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fibers that occurred concomitantly with the formation of circumferential actin bundles.  Stress 

fibers connected to focal adhesion points play an important role in cellular migration of certain 

cell types and their loss can lead to decreases in migratory capacity (Dourdin et al., 2001; 

Vallenius, 2013).   

Modulation of F-actin rearrangement and proper cytoskeletal organization is regulated 

by the cAMP-dependent protein kinase (PKA) pathway (Howe, 2004; Gerits et al., 2007).  The 

complete function and role of the cAMP-PKA pathway on actin organization and its influences 

on migratory and barrier integrity are far from understood.  It is reported that PKA activation 

causes loss of stress fibers and decreases in migratory capabilities, while downregulation of 

PKA is required for stress fiber formation (Kim et al., 2000; Whelan & Senger, 2003; 

Zimmerman et al., 2012).  However, in other cases, activation of PKA is considered important 

for proper cell migration (Glenn & Jacobson, 2003; Nadella et al., 2009; Plopper et al., 2000; 

Spurzem et al., 2002).  Additionally, there is evidence that high levels of cAMP and activation 

of the PKA pathway can lead to enhanced barrier functions (Fukuhara et al., 2005; Li et al., 

2015; Stelzner et al., 1989). It would appear that there is no simple positive/negative effect of 

cAMP-PKA activation or inhibition to actin organization promoting proper cell migration or 

barrier functions; rather it being an intricate balance of molecular functions (Howe, 2004).  

In this current study similarities in F-actin arrangement were observed with naringenin 

and with forskolin, an adenylyl cyclase activator. In mammalian cells, forskolin has been 

shown to increase cell-to-cell contacts with increased circumferential actin bundles, increased 

barrier functions, and decreased migration, all traits that were similarly seen in RTgutGC cells 

incubated with naringenin (Fukuhara et al., 2005; Stelzner et al., 1989; Yukiura et al., 2015; 

Zimmerman et al., 2012).  Additionally, there is evidence supporting the idea that naringenin 

increases intracellular cAMP levels and activates PKA (Yang et al., 2008). This lead us to 

believe that naringenin might be generating changes in RTgutGC F-actin by the cAMP-PKA 

pathway.  Hence, a cell migration experiment was conducted to observe and compare the 

effects of naringenin, forskolin, and with the addition of H89, a PKA inhibitor, on RTgutGC 

cells.  As expected naringenin significantly halted migration; however, the addition of H89 

with naringenin did not recover migration indicating that naringenin might not involve PKA 

activation in RTgutGC cells. An interesting result was that forskolin treated cells, and also 

with the addition of H89, did not exhibit any changes in migration.  Despite the high level of 
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conservation in the PKA family, there exist some residues where no overlap is seen when 

comparing human residues to bony fish (Søberg et al., 2013).  It is possible that there exist 

some functional differences in cAMP-PKA in fish compared to mammals.  Additionally, 

studies suggest there may be a dual role of cAMP, where high nonphysiological concentrations 

can inhibit migration, whereas low concentrations may stimulate migration (Spurzem et al., 

2001). However, since intracellular cAMP levels were not measured in this study, it cannot be 

confirmed that forskolin acted in the intended way.  Experiments focusing on the role of cAMP 

and PKA in RTgutGC with naringenin are a promising path for future work.   

In summary, low concentrations of naringenin could be a beneficial feed additive to 

promote barrier integrity without affecting cellular migration and metabolism.  In this study, a 

concentration of 30 μM was shown to be most beneficial to RTgutGC cells where it increased 

barrier integrity, did not halt migratory abilities of the cells, and did not significantly decrease 

the cells’ metabolic activity or plasma membrane integrity in full nutritional conditions.  

However, more studies will have to be done to explore whether the results correlate to in vivo 

conditions and the underlying mystery to naringenin’s cellular and molecular actions in 

RTgutGC cells whether actin on the cAMP-PKA pathway or not.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



86 
 

CHAPTER 4 

Effect of plant antinutritionals and sodium butyrate on rainbow 

trout epithelial cell restitution    
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4.1. INTRODUCTION 

 Aquaculture is considered one of the fastest growing food production sectors in the 

world (FAO, 1997; FAO, 2016; Francis et al., 2001).  It comes as no surprise that the aqua-

feed industry, sustaining this growth, is also one of the largest and fastest growing agricultural 

industries (FAO, 1997; FAO, 2016; Francis et al., 2001).  Fishmeal was a popular food source 

in aquaculture, especially for salmon and trout; however, the high use and demand of fish feed 

led to it being a potential limited global resource in the future (Sargent & Tacon, 1999; Naylor 

et al., 2000).  Accordingly, the Second International Symposium on Sustainable Aquaculture 

(1998) in Oslo, Norway recommended the use of an alternate protein source to fishmeal 

(Francis et al., 2001).  Plant-derived protein sources showed promise to replace fishmeal and 

are now currently in use in many aquaculture practises (Francis et al., 2001; Teves & Ragaza, 

2016).  However, many plant-protein sources come with a handful of unwanted compounds 

called antinutritionals or antinutritional factors (ANFs) such as protease inhibitors, lectins, 

saponins, and tannins (Francis et al., 2001; Teves & Ragaza, 2016).   

 An important organ system critical to proper fish health is the gastrointestinal (GI) tract.  

To maintain a proper functioning, homeostatic intestinal system, a variety of intestinal cells 

are constantly dividing, growing, and differentiating.  However, intestinal damage can occur 

during fish husbandry (Beck & Peatman, 2015).  To heal from this damage, cells undergo 

intestinal wound healing (Nakamura et al., 2013).  The process can be broken down into three 

main steps: 1) Intestinal epithelial cells migrate into the wound quickly sealing it, a process 

called restitution. Cellular proliferation is very limited during this step (Sturm & Dignass, 

2008).  2) The cells undergo proliferation to restore the decreased cell pool, and 3) growth and 

differentiation occurs to regain proper intestinal function (Sturm & Dignass, 2008).  With the 

GI tract being the first organ system coming in contact with nutrients and absorbing such 

nutrients, it is important to understand the interaction of fish feed components with the 

intestinal system.  However, next to nothing is known about the impacts of ANFs on salmon 

and rainbow trout intestinal health and restitution.   

This study is the first to show negative impacts of a variety of ANFs on rainbow trout 

intestinal epithelial cell (RTgutGC) migration.  The ANFs used in this study include the two 

soybean protease inhibitors: Bowman-Birk inhibitor (BBI) and Kunitz inhibitor (KI), and two 

lectins: soybean agglutinin (SBA) and wheat germ agglutinin (WGA). In vivo studies suggest 
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that rainbow trout are particularly sensitive to the soybean protease inhibitors (Francis et al., 

2001).  An additional component of interest studied was the short chain fatty acid butyrate, not 

considered an ANF, but growing in popularity as a fish feed additive.  The results show that 

BBI, WGA, and butyrate significantly decreased RTgutGC migration, KI only slightly 

decreased migration, and SBA had no effect on migration.     
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4.2. MATERIALS AND METHODS 

4.2.1. Cell culture and culture conditions 

 The cell line used was RTgutGC, a rainbow trout intestinal epithelial cell line (Kawano 

et al., 2011).  To maintain the cells, Leibovitz’s L15 medium with 2.05 mM L-Glutamine 

(Thermo Fisher Scientific) supplemented with 10% fetal bovine serum (FBS, Sigma-Aldrich) 

and antibiotics (10,000 U/mL penicillin and 10,000 μg/mL streptomycin, P/S, Thermo Fisher 

Scientific) (L15/FBS) was used.  Subculturing with the use of trypsin (Thermo Fisher 

Scientific) occurred every week passaging the cells at a ratio of 1 to 2.  Cells were kept at        

18 oC in BioLite 75 cm2 cell culture treated flasks (Thermo Fisher Scientific). 

 

4.2.2. Feed additives and antinutritional factors  

 Components used were 2, 5, and 8 mM sodium butyrate (Sigma-Aldrich), 25, 50, and 

100 μg/mL trypsin-chymotrypsin inhibitor from Glycine max (Bowman-Birk inhibitor, BBI, 

Sigma-Aldrich), 25, 50, and 100 μg/mL trypsin inhibitor from Glycine max (Kunitz inhibitor, 

KI, Sigma-Aldrich), 50, 100, and 200 μg/mL lectin from Glycine max (soybean agglutinin, 

SBA, Sigma-Aldrich), and 0.25, 0.75, 1.5, 2.25, and 2.5 μg/mL lectin from Triticum vulgaris 

(wheat germ agglutinin, WGA, Sigma-Aldrich).  Concentrations were determined by 

preliminary experiments and past cytotoxicity data not shown in this section.  All components 

were diluted in L15 media when added to the cells.   

 

4.2.3. Evaluating plant antinutritionals and butyrate for effects on restitution 

  The influence of several plant antinutrionals and sodium butyrate on the migration of 

RTgutGC into a wound or gap was investigated in a restitution assay. The assay was set up in 

2-well culture inserts from Ibidi GmbH, Planegg / Martinsried, Germany as described in 

Chapter 2 (section 2.2.9) and performed at 18 °C.  After monolayers had been established in 

L15/FBS, the medium was changed to just L15, which supports migration but not proliferation 

(Chapter 2).  Twenty-four hours later the inserts were removed to create the gap and the 

components of interest, described in section 4.2.2, were then added. Phase contrast microscopy 

pictures were taken of the gaps immediately and for up to 6-7 days afterwards.  Photographs 

of the gaps were analyzed with ImageJ and the results expressed as % cell migration as 
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described in Chapter 3 (section 3.2.8).  Three independent experiments were done for each test 

agent and statistical analysis was done as described in section 4.2.5.   

 

4.2.4. FITC labelled phalloidin staining for F-actin 

 Similar to 4.2.3 above, specialized 2-well culture inserts were used to create a 500 μm 

gap to monitor cellular migration.  The protocol followed 4.2.3 except inserts were placed in a 

4 chamber tissue culture treated glass Falcon CultureSlide® (Corning) instead of a 24-well 

plate, and day 3 was used as the endpoint.  On day 3 of migration in precense of the component 

of interest, cells were washed with DPBS and fixed with 3% paraformaldehyde (Sigma-

Aldrich) for 20 minutes at 4 oC.  Following fixation, the cells were then permeabilized with 

0.1% Triton X-100 (Sigma-Aldrich) for 10 minutes at room temperature.  Afterwards, 5 μg/mL 

of FITC-phalloidin in DPBS was added to the cells and allowed to incubate for 45 min at room 

temperature in the dark.  Cells were then washed three times with DPBS and the slides were 

allowed to dry.  Once dry, plastic chambers were removed from the slides and three drops of a 

mounting medium, Fluoroshield (Sigma-Aldrich), containing DAPI was added to the slides 

with a coverslip to help preserve the slide and counter stain for DNA.  Confocal images were 

obtained with the Zeiss LSM 510 laser scanning microscope and were acquired and analyzed 

using a ZEN lite 2011 software. 

     

4.2.5. Statistical analyses 

   Variables were expressed as the mean ± standard deviation.  Statistical analysis was 

done by a one-way ANOVA and Dunnet post hoc test.  Statistical significance was defined as 

p < 0.05.  
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4.3. RESULTS 

4.3.1. BBI reduces migration in RTgutGC cells 

   When observing the migratory trend over time, it was seen that increasing 

concentrations of BBI caused migration to plateau on day 2 at lower respective percentages 

(A, Fig 4.1).  When observing the total migration on day 7, 100 μg/mL BBI significantly 

decreased percent migration to 13 ± 3% in RTgutGC cells when compared to the L15 control 

at 23 ± 7% (B, Fig 4.1 and Fig 4.2).  25 and 50 μg/mL BBI plateaued on day 2 (A, Fig 4.1).  

Total percent migration on day 7 for 25 and 50 μg/mL BBI a similar respective value of 19 ± 

2% and 19 ± 6% cell migration (B, Fig 4.1 and Fig 4.2).  

  

4.3.2. SBA has no effect on RTgutGC migration and F-actin arrangement 

 Over 7 days, 50, 100, and 200 μg/mL SBA had no observable or influence on migration 

of RTgutGC cells (Fig 4.3 and 4.4).  Over time, a similar trend was seen at all concentrations 

relative to the control (A, Fig 4.3) with the total percent migration on day 7 for 50, 100, and 

200 μg/mL SBA at 39 ± 5%, 40 ± 5%, and 38 ± 8%, respectively, compared to 37 ± 8% for 

the L15 only (0 μg/mL SBA) control (B, Fig 4.3). 

 F-actin visualization by FITC-phalloidin and confocal microscopy revealed no 

observable differences in F-actin arrangements (Fig 4.5).  Cells in all conditions had similar 

stress fiber organization with most bundles parallel to the direction of migration. 

 



92 
 

 
Figure 4.1.  RTgutGC migration over time under the influence of Bowman Birk inhibitor 

(BBI).  (A) Migratory capacity of RTgutGC over 7 days when incubated with 0, 25, 50, and 

100 μg/mL of BBI in L15 medium measured as percent migration into a cell free gap.  (B) Bar 

graph of the day 7 migratory capacity of RTgutGC cells incubated with 0, 25, 50, and 100 

μg/mL of BBI in L15 medium.  Values are means ± standard deviation.  Asterisk indicates 

significant difference when compared to the control: *p < 0.05. 
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Figure 4.2.  Phase-contrast microscopy of RTgutGC restitution under the influence of 

Bowman Birk inhibitor (BBI).  (A – D) Day 0 pictures after establishment of control, 25, 50, 

and 100 μg/mL BBI in L15 medium.  (E – H) Day 7 pictures of control, 25, 50, and 100 μg/mL 

BBI in L15 medium.  Cell monolayer borders are traced in black to better visualize restitution.  

Scale bar = 100 μm.  
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Figure 4.3.  RTgutGC migration over time under the influence of soybean agglutinin 

(SBA).  (A) Migratory capacity of RTgutGC over 7 days when incubated with 0, 50, 100, and 

200 μg/mL of SBA in L15 medium measured as percent migration into a cell free gap.  (B) 

Bar graph of the day 7 migratory capacity of RTgutGC cells incubated with 0, 50, 100, and 

200 μg/mL of SBA in L15 medium.  Values are means ± standard deviation.  
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Figure 4.4.  Phase-contrast microscopy of RTgutGC restitution under the influence of 

soybean agglutinin (SBA).  (A – D) Day 0 pictures after establishment of control, 50, 100, 

and 200 μg/mL SBA in L15 medium.  (E – H) Day 7 pictures of control, 50, 100, and 200 

μg/mL SBA in L15 medium.  Cell monolayer borders are traced in black to better visualize 

restitution.  Scale bar = 100 μm.  
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Figure 4.5.  F-actin arrangement in RTgutGC after 3 days of migration under the 

influence of soybean agglutinin (SBA).  F-actin is stained as green by FITC-phalloidin, while 

the nuclei is stained as blue by DAPI.  (A) F-actin of migrating control cells in L15 medium.  

(B) F-actin of migrating cells incubated with 50 μg/mL SBA.  (C) F-actin of migrating cells 

incubated with 100 μg/mL SBA.  (D) F-actin of migrating cells incubated with 200 μg/mL 

SBA.  Scale bar = 50 μm.  
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4.3.3. WGA reduces migration in RTgutGC and promotes stress fiber disorganization 

 Over a period of 6 days, 0.75 and 2.25 μg/mL WGA halted migration in RTgutGC 

cells, whereas 0.25 μg/mL WGA had no effect on migration (Fig 4.6 and 4.7).  An incubation 

of 0.75 μg/mL WGA significantly (p < 0.01) halted the migration of RTgutGC at around 13% 

± 3%, whereas the control and 0.25 μg/mL WGA showed an increasing trend in migration 

where on day 6 they reached a total percent migration of 49 ± 16% and 52 ± 6% respectively 

(Fig 4.6). An incubation of 2.25 μg/mL WGA completely inhibited migration of RTgutGC 

cells (Fig 4.6).  Values remained close to 0% and entered negative values on day 4 as the cell 

free gap enlarged (Fig 4.6 and 4.7).  On day 6, the total percent migration of cells incubated 

with 2.25 μg/mL WGA was -11 ± 4% (Fig 4.6).  

 With increasing concentrations of WGA, cell morphology changed (Fig 4.7 and 4.8).  

The most observable and intense change in cell morphology was seen with 2.25 μg/mL WGA 

(Fig. 4.8).  Cells incubated with 2.25 μg/mL WGA had a somewhat fibroblastic, thinner 

morphology with gaps in the monolayer compared to control cells (Fig 4.8).  Control cells 

demonstrated an epithelial, cobblestone-like morphology without any visible gaps between 

cells (Fig 4.8).  Additionally, cells incubated with 2.25 μg/mL WGA obtained small vacuoles 

near the center of the cell.  

 Actin in the control cell population after 3 days of migration showed stress fibers in the 

cells oriented to the direction of migration in the leading cells (A, Fig 4.9).  When incubated 

with 0.75 μg/mL WGA, the cell population still retained stress fibers but some cells 

demonstrated a loss of stress fibers with some actin bundles being peripherally organized (B, 

Fig 4.9).  Additionally, some cells have finger like actin protrusions appearing similar to 

filipodia (B, Fig 4.9).  In 1.5 μg/mL WGA small stress fibers were still visible but the cell 

population predominantly had actin oriented to the periphery (C, Fig 4.9).  When incubated in 

2.5 μg/mL WGA, cells appeared to have actin orientated to the cells’ periphery and diffused 

in the cytoplasm.  No stress fibers were observed orientated in the direction of migration.  
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Figure 4.6.  RTgutGC migration over time under the influence of wheat germ agglutinin 

(WGA).  (A) Migratory capacity of RTgutGC over 6 days when incubated with 0.25, 0.75, 

and 2.25 μg/mL of WGA in L15 medium measured as percent migration into a cell free gap.  

(B) Bar graph of the day 6 migratory capacity of RTgutGC cells incubated with 0, 0.25, 0.75, 

and 2.25 μg/mL of WGA in L15 medium.  Values are means ± standard deviation.  Asterisks 

indicate significant difference when compared to the control: **p < 0.01. 
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Figure 4.7.  Phase-contrast microscopy of RTgutGC restitution under the influence of 

wheat germ agglutinin (WGA).  (A – D) Day 0 pictures after establishment of control, 0.25, 

0.75, and 2.25 μg/mL of WGA in L15 medium.  (E – H) Day 6 pictures of control, 0.25, 0.75, 

and 2.25 μg/mL of WGA in L15 medium.  Cell monolayer borders are traced in black to better 

visualize restitution.  Scale bar = 100 μm.  

 

 
Figure 4.8.  Phase contrast observations of the effects 2.25 μg/mL wheat germ agglutinin 

(WGA) has on RTgutGC cells after an incubation period of 4 days.  The control represents 

RTgutGC cells incubate in L15 medium for 4 days.  The treated cells were exposed to 2.25 

μg/mL WGA in L15 medium for 4 days.  Scale bar = 100 μm. 

6 
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Figure 4.9.  F-actin arrangement in RTgutGC after 3 days of migration under the 

influence of wheat germ agglutinin (WGA).  F-actin is stained as green by FITC-phalloidin, 

while the nuclei is stained as blue by DAPI.  (A) F-actin of migrating control cells in L15 

medium.  (B) F-actin of migrating cells incubated with 0.75 μg/mL WGA.  (C) F-actin of 

migrating cells incubated with 1.5 μg/mL WGA.  (D) F-actin of migrating cells incubated with 

2.5 μg/mL WGA.  Scale bar = 50 μm.   
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4.3.4. Butyrate reduces migration in RTgutGC cells 

 Overtime, increasing concentrations of butyrate (2, 5, and 8 mM) appeared to decrease 

cellular migration in RTgutGC (A, Fig 4.10 and Fig 4.11).  Cellular migration in 2 and 5 mM 

butyrate plateaued on day 4.  This is similar to the control, as migration also plateaued on day 

4, but the percent migration of 2 and 5 mM butyrate is lower than the control on day 4.  8 mM 

butyrate caused cellular migration to plateau sooner on day 2 or 3 (A, Fig 4.10).  On day 7, the 

total percent migration of cells in 8 mM butyrate was significantly less (18 ± 6%) compared to 

the control (39 ± 11%) (B, Fig 4.10).  No significant difference in migration compared to the 

control was observed on day 7 for cells in 2 or 5 mM butyrate with their total percent migration 

respectively being 32 ± 6% and 29 ± 10% (B, Fig 4.10 and Fig 4.11).  

 In addition to changes in cellular migration, butyrate caused significant changes in 

morphology of RTgutGC cells in a monolayer (Fig 4.12). At 2, 5, and 8 mM butyrate clear 

vesicles can be observed.  Vesicle formation was first seen on day 2 in all concentrations.  

These vesicles increase in numbers with increasing concentration of butyrate.  For the most 

part, the vesicles appear to be located in-between or on the periphery of the cells (Fig 4.12). 
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Figure 4.10.  RTgutGC migration over time under the influence of butyrate.  (A) 

Migratory capacity of RTgutGC over 7 days when incubated with 0, 2, 5, and 8 mM of butyrate 

in L15 medium measured as percent migration into a cell free gap.  (B) Bar graph of the 

migratory capacity of RTgutGC cells over 7 days with 0, 2, 5, and 8 mM of butyrate in L15 

medium.  Values are means ± standard deviation.  Asterisk indicates significant difference 

when compared to the control: *p < 0.05. 
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Figure 4.11.  Phase-contrast microscopy of RTgutGC restitution under the influence of 

butyrate.  (A – D) Day 0 pictures after establishment of the gap in control, 2, 5, and 8 mM 

butyrate exposed monolayers in L15 medium.  (E – H) Day 7 pictures of control, control, 2, 5, 

and 8 mM butyrate in L15 medium.  Cell monolayer borders are traced in black to better 

visualize restitution.  Scale bar = 100 μm.  

 

 
Figure 4.12.  Phase contrast observation of RTgutGC in L15 incubated with 2, 5, and 8 

mM of butyrate causing vesicle formation.  (A) RTgutGC cells in L15 control without any 

butyrate for 6 days.  (B) RTgutGC cells incubated with 2 mM of butyrate in L15 for 6 days.  

(C) RTgutGC cells incubated with 5 mM of butyrate in L15 for 6 days.  (D) RTgutGC cells 

incubated with 8 mM of butyrate in L15 for 6 days.  Scale bar = 100 μm.    
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4.3.5. KI effects on RTgutGC migration 

 Over time, a concentration of 25 μg/mL of KI appeared to slightly enhance migration 

of RTgutGC cells, whereas a concentration of 50 and 100 μg/mL KI slightly inhibited 

migration (Fig 4.13 and Fig 4.14).  At all concentrations, migration was not completely 

inhibited or halted as an increase in percent migration over time can be seen with all 

concentrations.  The final percent migration reached on day 7 for 25, 50, and 100 μg/mL KI 

was 38 ± 6%, 27 ± 4%, and 24 ± 1% respectively (A, Fig 4.13).  However, when compared to 

the percent migration of the control (32 ± 10%) the differences were not statistically 

significant.  However, the percent migration of RTgutGC cells incubated with 100 μg/mL KI 

(19 ± 0.004%) was statistically less than the control (25 ± 4%) on day 3 (A, Fig 3.13).    
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Figure 4.13.  RTgutGC migration over time under the influence of Kunitz inhibitor 

(KI).  (A) Migratory capacity of RTgutGC over 7 days when incubated with 0, 25, 50, and 

100 μg/mL of KI in L15 medium measured as percent migration into a cell free gap.  (B) Bar 

graph of the day 7 migratory capacity of RTgutGC cells incubated with 0, 25, 50, and 100 

μg/mL of KI in L15 medium.  Values are means ± standard deviation.  Asterisks indicate 

significant difference when compared to the control: *p < 0.05. 

   

 

* 
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Figure 4.14.  Phase-contrast microscopy of RTgutGC restitution under the influence of 

Kunitz inhibitor (KI).  (A – D) Day 0 pictures after establishment of control, 25, 50, and 100 

μg/mL of KI in L15 medium.  (E – H) Day 7 pictures of control, control, 25, 50, and 100 μg/mL 

of KI in L15 medium.  Cell monolayer borders are traced in black to better visualize restitution.  

Scale bar = 100 μm.  
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4.4. DISCUSSION 

 Several antinutritionals potentially found in fish feeds were assayed by observing their 

effects on cellular restitution or migration of a rainbow trout intestinal epithelial cell line 

RTgutGC.  The results showed the differential effects of various antinutritionals on restitution 

in vitro and demonstrated the potential use of RTgutGC as a model intestinal cell line to assay 

fish feed components. 

 

4.4.1. BBI reduces migration in RTgutGC cells 

For the first time, BBI was shown to decrease the migratory capacity of intestinal cells.  

Found in the seeds of soybean and many other plants, BBI is a small water-soluble protein with 

proteolytic activities inhibiting a wide array of proteases and protein kinases such as trypsin, 

chymotrypsin, elastase, cathepsin G, chymase, serine-protease-dependent matrix 

metalloproteinases, mitogen activated protein kinase and PI3 kinase (Losso, 2008).  

Cytoskeletal rearrangement occurring during cellular migration likely requires the action of 

these proteolytic enzymes (Lotz et al., 2000).  Hence, the inhibitory abilities of BBI on 

proteolytic enzymes leading to less cytoskeletal rearrangement might be a cause of the 

observed decreases in cellular migration.  However, BBI did not change cellular morphology 

of RTgutGC cells suggesting that any action on the actin cytoskeleton must be rather specific 

for cytoskeletal changes involved in cell migration. 

 

4.4.2. SBA has no effect on RTgutGC migration and F-actin arrangement 

 SBA is a lectin found in soybean.  It is an ANF as it has been shown to bind to the 

brush border of the small intestine of fish, including Atlantic salmon, disrupting small intestine 

metabolism and morphologically damaging the villi (Francis et al., 2001). The results show 

that SBA neither increased or decreased migration of RTgutGC cells.  This is contrary to past 

reports showing inhibitory restitution effects of SBA on mammalian cells (Draaijer et al., 1989; 

Gordon & Wood, 2009) and with the general consensus that SBA is an antinutritional 

component in fish feed (Francis et al., 2001; Hart et al., 2010).  The monolayer and morphology 

of RTgutGC cultures treated with SBA appeared to be same as in control cultures. 

Additionally, SBA had no effect on F-actin arrangement in RTgutGC cells.  Control and treated 

cells all demonstrated similar stress fibers at the leading cell edge oriented in the direction of 
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migration.  The null effects of SBA on F-actin were also observed in human Caco-2, where the 

pattern of F-actin staining remained unchanged (Draaijer et al., 1989).  However, SBA 

increased the amount of G-actin in Caco-2 (Draaijer et al., 1989) and disrupted rat corneal 

endothelial monolayer due to cell-cell alterations (Gordon & Wood, 2009).   

 

4.4.3. WGA reduces migration in RTgutGC and promotes actin stress fiber 

disorganization 

  As with SBA, WGA, found in wheat, can bind to the intestinal surface of the gut 

generating adverse effects (de Punder & Pruimboom, 2013).  The results showed that WGA 

had a profound effect on RTgutGC cells, including impeding cell migration. Cells lost 

connections with each other, appeared more spindle like in shape, and accumulated vesicles.  

WGA also caused a visible major disorganization of F-actin and actin stress fibers.  Stress 

fibers anchored to focal adhesions play a role in migration for certain cell types, where it has 

been shown that decreases in stress fibers can lead to reductions in cellular migration (Dourdin 

et al., 2001; Vallenius, 2013).  It has been reported that the incubation of WGA with a human 

intestinal cell line also caused changes in F-actin organization by a calcium-dependent 

mechanism (Sjölander & Magnusson, 1988).  Whether WGA acts in a similar manner in 

RTgutGC cells is unknown but a potential path for future studies.  Additionally, WGA has 

been reported to act on microtubules in the gill of Tilapia (Tsai & Hwang, 1998); hence, 

microtubule effects also present a potential path of study. 

 

4.4.4. Butyrate reduces migration in RTgutGC cells 

  Not considered an ANF, short chain fatty acids, such as butyrate, produced by intestinal 

microflora are important to normal intestinal biology (Peng et al., 2007).  Butyrate is also 

gaining popularity as fish feed additive.  The highest concentration of butyrate in the current 

study (8 mM) significantly reduced the migration of RTgutGC cells.  Although many effects 

of butyrate on mammalian intestinal epithelial cell lines have been documented, influences on 

cell migration has not been noted.  Incubated with a human intestinal cell line, Caco-2, butyrate 

shows a paradoxical action on intestinal barrier function (Peng et al., 2007).  Low 

concentrations (2 mM) led to improvements in barrier function from increased TEER and 

decreased monolayer permeability, whereas a higher concentration (8 mM) impaired barrier 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Sj%C3%B6lander%20A%5BAuthor%5D&cauthor=true&cauthor_uid=3229418
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functions as seen by reductions in TEER and increases in permeability (Peng et al., 2007).  

This disruption in barrier function at a higher concentration of butyrate was due the loss of 

monolayer integrity from cells undergoing apoptosis (Peng et al., 2007).  Similar cases of 

apoptosis induction by butyrate in mammalian cell lines were seen by other groups (Daehn et 

al., 2006; Fung et al., 2011; Ruemmele et al., 2003).  Whether apoptosis is induced in RTgutGC 

remains to be investigated.  However, butyrate did cause the cell morphology to change (large 

vesicle formation), with the change being more pronounced as the concentrations of sodium 

butyrate increased.  Future studies could assess the apoptosis pathway, RTgutGG barrier 

functions under the influence of butyrate, and whether butyrate could induce change in 

RTgutGC’s cytoskeleton.    

       

4.4.5. KI effects on RTgutGC migration 

  As with BBI, KI is a protease inhibitor.  However, it is considered less stable due to it 

being more heat and acid sensitive than BBI (Francis et al., 2001).  The results show that KI 

had a slight stimulatory effect on RTgutGC migration at the lowest concentration (25 μg/mL), 

whereas slight inhibition was observed at higher concentrations (50 and 100 μg/mL).  

However, none of the effects were statistically significant.  The effects of KI on intestinal 

restitution or in vitro migration is poorly understood and lacks documentation.  One can 

hypothesize that BBI and KI should affect RTgutGC migration in the same manner.  Both 

inhibit proteases that might be important in cytoskeletal rearrangement during cellular 

migration.  However, the data suggest that KI exerts weaker effects on cellular migration than 

to the other soybean protease inhibitor BBI.  In contrast, with the use of HRA human ovarian 

cancer cells, Kobayashi et al. (2004) demonstrated that a concentration near the IC50 of KI 

was sufficient to supress HRA cell invasion, whereas BBI did not suppress invasion.  Yet 

cancer cell invasion can differ from intestinal restitution.  In more relatable study, though no 

concerning restitution, an ex vivo methodology was used to study the effects of different ANFs 

on glucose uptake and permeability of mid and distal Atlantic salmon intestinal tissue.  KI in 

the presence of bile resulted in increased glucose uptake suggesting the possibility of KI 

altering intestinal permeability and function (Bakke et al., 2014).  The effects of KI on 

RTgutGC barrier function are unknown.  
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4.4.6. Summary and concluding thoughts 

  Overall, RTgutGC proved to be a useful rainbow trout intestinal model to study the 

effects of various ANFs on intestinal restitution. With the lack of in vivo and in vitro restitution 

studies involving ANFs, this study provided evidence for the first time that BBI, WGA, and 

butyrate can reduce in vitro intestinal restitution.  The findings could shed light on the effects 

of ANFs on the intestine and their impacts on aquaculture.  Complementary in vivo studies of 

the effects of ANFs on barrier functions would also prove useful to understand the impact of 

these compounds.   
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CHAPTER 5 

Rainbow trout intestinal epithelial cell migration into a wound at 

hypo-, normo-, and hyper-thermic temperatures and the 

development of thermotolerance 
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5.1. INTRODUCTION 

  Intestinal wound healing is essential for the maintenance of gut homeostasis (Iizuka & 

Konno, 2011) but little is known about wound healing in the fish intestine or how intestinal 

wound healing of animals in general is influenced by temperature.  For mammals, several 

intestinal cell lines have been used to study the mechanism and regulation of wound healing 

(Meir et al., 2016) but not how heat might modulate the process.  However, an elevated 

temperature exposure inhibited the migration of a human T lymphocyte cell line and heat shock 

protein 70 (HSP70) had a role in the recovery of cell movement (Simard et al., 2011).  

Additionally, HSP70 and HSP90 have been implicated in the migration of human 

keratinocytes and breast cancer cells (Bhatia et al., 2016; Sims et al., 2011).  For fish, 

temperature is a critical factor, regulating all aspects of cellular physiology, and both low and 

high temperatures are of interest.   

  A strength of fish cell lines is that they can be more conveniently used than fish to study 

the responses of cells over a wide temperature range (Bols et al., 1992).  Fish cell cultures can 

be studied at normothermic, hyperthermic, and hypothermic temperatures, but these 

temperatures vary with the species.   Temperatures that support the proliferation of cells from 

a species constitute the normothermic range.  For rainbow trout, normothermic is between 5 

and 25 °C and is also referred to as the proliferation zone (Bols et al., 1992).  However, the 

boundaries are difficult to demonstrate precisely.   

  Any temperature below 5 °C can be considered as hypothermic for rainbow trout cell 

cultures.  The temperature at which proliferation stops in cultures at the low end of the 

tolerance zone is difficult to define with certainty because this will be influenced by how long 

cultures are monitored and how well the incubator holds precisely to one temperature over a 

long incubation period plus culture factors, such as the initial plating density and serum 

concentration. For rainbow trout cells at 5 °C, cultures persist for months, mitotic figures are 

occasionally seen, and cell number can increase slightly (Bols et al., 1992; Plumb & Wolf, 

1971).  However, cell cultures at 0 to 4 °C survive for at least a week without any mitotic 

figures being apparent (Mosser et al., 1986) and so are considered to be in the endurance zone 

(Bols et al., 1992).  To date, a lower lethal zone is yet to be defined because low temperature 

incubation periods that reproducibly lead to rainbow trout cell death have yet to be described.   
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  Any temperature above 25 °C can be considered as hyperthermic for rainbow trout cell 

cultures.  Proliferation has been observed to slow at 25 °C (Plumb & Wolf, 1971).  In cultures 

at 26 °C, cell number remains largely unchanged over 6 days (Mosser et al., 1986).  These 

cultures also consistently synthesise HSPs and so rainbow trout cell cultures at 26 °C and above 

are undergoing heat stress.  At 28 °C, cultures do not accumulate cells over 6 days and begin 

to deteriorate with longer incubations (Mosser et al., 1986).  Therefore 28 °C has been used to 

mark the upper limit of the endurance zone for rainbow trout cell cultures (Bols et al., 1992).  

Temperatures above 28 °C are in the upper lethal zone (Bols et al., 1992) because rainbow 

trout cells die within a few hours at 30 to 32 °C and in less than 1 h at 36 °C (Mosser et al., 

1987).  

  Cellular thermotolerance is the acquisition, by cells through a prior heat exposure, of 

an enhanced capacity to recover functions after a potentially lethal heat stress.  In mammalian 

cancer biology, the function often monitored is the continued ability of cells to reproduce or 

form colonies and HSPs have been implicated in the development of this thermotolerance 

(Landry et al., 1982).  With the rainbow trout gonadal fibroblast cell line, RTG-2, which forms 

poor colonies (Bols et al., 1985), survival was measured as the capacity to remain adherent to 

the plastic culture surface.  A 24 h exposure to 26 or 28 °C allowed RTG-2 to better survive 

subsequent exposures at 30 to 36 °C and HSPs appeared necessary for the development of this 

thermotolerance (Bols et al., 1992; Mosser et al., 1986, 1987; Mosser & Bols, 1988).  Whether 

cell migration and wound healing can be become thermotolerant appears not to have been 

investigated in either mammals or fish.   

  Therefore, in this chapter the ability of rainbow trout epithelial cells, RTgutGC, to heal 

a wound was investigated at a hypo- (4 °C), normo- (18 °C) and hyperthermic (26 °C) 

temperature.  Healing occurred over a similar time frame at 18 and 26 °C, but was slowed at 

4 °C.   When RTgutGC monolayers were incubated for 3 h in the upper lethal zone (32 °C) 

and then concurrently wounded and returned to 18 °C, the wound failed to be healed.  However, 

the wound did heal when RTgutGC monolayers were first incubated for 24 h at 26 °C before 

being shifted to 32 °C, wounded after 3 h, and returned to 18 °C. Therefore, incubation at 26 °C 

induced thermotolerance in RTgutGC for cell migration.  
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5.2. MATERIALS AND METHODS 

5.2.1. Cell culture and culture conditions 

 The cell line used was RTgutGC, a rainbow trout intestinal epithelial cell line (Kawano 

et al., 2011).  Culturing media used was Leibovitz’s L15 with 2.05 mM L-Glutamine (Thermo 

Fisher Scientific) supplemented with 10% fetal bovine serum (FBS, Sigma-Aldrich) and 

antibiotics (10,000 U/mL penicillin and 10,000 ug/mL streptomycin, P/S, Thermo Fisher 

Scientific) (L15/FBS).  Subculturing with the use of trypsin (Thermo Fisher Scientific) 

occurred every week passaging the cells at a ratio of 1 to 2.  Cells were maintained at 18 oC in 

BioLite 75 cm2 cell culture treated flasks (Thermo Fisher Scientific). 

 

5.2.2. Evaluating wound healing and restitution at 4, 18 and 26 °C    

  The ability of RTgutGC cells to migrate into a wound or gap was investigated at 

hypothermic (4 °C), normothermic (18 °C) and hyperthermic (26 °C) temperatures.  The assay 

was done in 2-well culture inserts from Ibidi ect (as in previous chapters).  These cultures were 

initiated in L15/FBS as described in Section 2.2.9.   After 3 days at 18 °C, monolayers had 

developed and the inserts were removed to create the gaps, which were immediately 

photographed.  Some cultures continued to be incubated at 18 °C whereas others were moved 

to either 4 °C or 26 °C.   Photographs of the gaps were taken daily for up to 6 days afterwards.   

Photographs of the gaps were analyzed with ImageJ and the results expressed as % cell 

migration as described in Chapter 3 (section 3.2.8).   

 

5.2.3. Evaluating wound healing and restitution after 3 h at 32 °C 

  The ability of RTgutGC cells to migrate into a wound or gap after experiencing a heat 

stress was investigated, using 2-well culture inserts from Ibidi. These insert cultures were set 

up at 18 °C and allowed to develop into monolayers as described in the previous section.  Once 

monolayers had formed, some cultures were kept at 18 °C (controls), whereas others were 

shifted to 32 °C (Fig 5.1).  After 3 h, the inserts were removed from both sets of cultures to 

create the gaps and the cultures that had been at 32 °C were returned to 18 °C.  The gaps were 

immediately photographed and photographs were taken daily for up to 6 days afterwards.  The 

photographs were analyzed as described above.  
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5.2.4. Evaluating thermotolerance for wound healing and restitution 

  The ability of RTgutGC cells at 18 °C to migrate into a wound or gap after recovering 

from a stress of 3 h at 32 °C was compared for cultures that first had 24 h at 26 °C before being 

shifted to 32 °C with cultures that were shifted directly from 18 °C to 32 °C (Fig 5.1).   This 

was again done using 2-well culture inserts from Ibidi.  Insert removal and gap creation 

occurred concurrently with the return of cultures from 32 °C to 18 °C.   Photographs of the 

gaps were taken immediately and for up to 6 days afterwards and evaluated as described above.  

   

 

 

Figure 5.1.  Step up heating protocol used to investigate thermotolerance for cell 

migration.  Cell migration was monitored in a fence assay that utilized 2-well culture inserts.  

The 2-well cultures were set up within three separate plates at 18 °C.  One plate with its 2-well 

cultures was placed continuously at 18 ° C (top, no heat stress).  A second plate was incubated 

for 72 h at 18 ° C before being shifted to 32 ° C for 3 h before being returned to 18 °C  (middle, 

heat stress).  The third plate was incubated for 72 h at 18 °C before being shifted to 26 °C for 

24 h and then to 32 °C for 3 h before being returned to 18 °C (bottom, step up and heat stress).  

The time line is summarized in the bottom arrows. A) 72 h establishment period at 18 oC.  (B) 

24 hour step up heating at 26 oC.  (C) 3 hour heat stress period at 32 oC.  (D) 6 day wound 

healing period at 18 oC.  At 99 h (end of point C), the insert fence was lifted to create the gap 

and to allow cell migration to begin.   
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5.3. RESULTS 

5.3.1. Wound healing and restitution at 4 °C, 18 °C and 26 °C    

  Wound healing by RTgutGC occurred at all temperatures but was slower at the 

hypothermic temperature of 4 °C than at the normothermic, 18 °C and the hyperthermic, 26 °C.  

Over 6 days, the filling in of a gap or wound with RTgutGC cells was very similar at 18 oC 

and 26 oC, albeit slightly faster at 26 oC (Fig 5.1 and 5.2).  Near full closure of the gap was 

reached on day 3 for cells at 18 oC and 26 oC, where the percent migration was 98 ± 2% and 

99 ± 1% respectively.  Wound healing was observed to be slower but not inhibited for cells 

incubated at 4 oC.  On day 6, cells at 18 oC and 26 oC reached 100% migration (completely 

closed the gap), whereas cell at 4 oC closed 77 ± 9% of the gap.  

 

5.3.2. Wound healing and restitution after 3 h at 32 °C 

  A hyperthermic heat stress of 3 h at 32 °C profoundly influenced wound healing. 

RTgutGC cells maintained at 18 oC without being exposed to thermotolerant or heat shock 

conditions closed the cell free gap within 4 days (Fig 5.3 and 5.5).  Cells exposed to a 3h           

32 oC heat stress condition almost completely lost their wound healing abilities, where the 

percent migration remained below 10% eventually dropping negatively on day 6 as the cells 

began to die and peel off from a loss of adherence.  An observation to note is that non-heat 

stressed cells migrated together into the gap as a sheet, eventually closing the gap, whereas the 

heat stress cells, for the most part, would individually migrate into the gap (Fig 5.4).   

 

5.3.3. Demonstrating thermotolerance for wound healing and restitution 

 A prior heat treatment of 24 h at 26 °C allowed RTgutGC cells to recovery their 

ability to heal a wound after a heat stress of 3 h at 32 °C. After this thermal regimen, the cells 

at 18 °C eventually filled in the gap on day 6, a slower pace than seen with the non-heat 

stressed cells (Fig 5.3 and 5.5).   However, without the prior exposure to 26 °C, the gap was 

open after 6 days.  Therefore, the cells had acquired at 26 °C a thermotolerant capacity for 

wound healing and/or restitution. 
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Figure 5.2.  RTgutGC cells’ ability to migrate into a cell free gap at either 4 oC, 18 oC, or 

26 oC.  (A) Day 0 migration after a 3 day monolayer and gap establishment period.  (B, C, D) 

Day 2 of wound healing at either 4 oC, 18 oC, or 26 oC respectively.  (E, F, G) Day 6 of wound 

healing at either 4 oC, 18 oC, or 26 oC respectively.  In each temperature condition, cells were 

in L15/FBS medium over the course of the experiment.  Pictures were taken at a 40x 

magnification.   Cell monolayer borders are traced in black to better visualize wound healing.  

Scale bar = 200 μm.  
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Figure 5.3.  Percent migration of RTgutGC cells over time at either 4 oC, 18 oC, or 26 oC.  

Three different temperatures (4 oC, 18 oC, or 26 oC) were used to incubate the plates up to 6 

days, periodically monitoring cellular migration into a cell free gap.  18 oC is the common 

temperate to culture RTgutGC.  In each temperature cells were in L15/FBS medium.  Pictures 

were taken every day till day 6 with data expressed as percent migration from day 0.  Data are 

expressed as the mean ± standard deviation. 
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Figure 5.4.  RTgutGC cells’ ability to migrate into a cell free gap after being exposed to 

heat stress (3 h 32 oC) or a step up protocol (24 h 26 oC) before heat stress.  After a 3 day 

establishment period, cells were either left at 18 oC for the course of the experiment (No HS), 

exposed to 32 oC heat stress for 3 h then returned to 18 oC for six days (HS), or exposed to     

26 oC step up protocol for 24 h before a 3 h 32 oC heat stress period (Step up).  In each 

temperature condition, cells were in L15/FBS medium over the course of the experiment.  See 

Fig. 5.1 for more detail.  (A) Day 0 wound healing of cells not exposed to any HS or the step 

up protocol, (B) day 0 of cells exposed to HS, or (C) day 0 of cells exposed to step up.  (D) 

Day 3 wound healing of cells not exposed to HS or step up, (E) day 3 of cells exposed to HS, 

or (F) day 3 of cells exposed to step up.  (G) Day 6 wound healing of cells not exposed to HS 

or step up, (H) day 6 of cells exposed to HS, or (I) day 6 of cells exposed to step up.  Pictures 

were taken at a 100x magnification.  Cell monolayer borders are traced in black to better 

visualize wound healing.   Scale bar = 100 μm. 
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Figure 5.5.  Differences in cellular migration of cells exposed to a 3h 32 oC heat stress 

period compared to control cells.  (A) Day 3 wound healing of cells exposed to a 3h 32 oC 

heat stress.  Arrows indicate individual cells migrating into the gap.  (B) Day 3 wound healing 

of cells that were not exposed to any heat stress.  Dashed oval demonstrates the cells migrating 

together into the gap as a sheet.  Pictures were taken at a 100x magnification, however, these 

pictures were further enlarged.  Scale bar = 100 μm. 

 

 
Figure 5.6.  Percent migration of RTgutGC cells over time after being exposed to a heat 

stress period (3h 32 oC) with or without a prior step up period (24h 26 oC).  Once a 

monolayer was established after 3 days, cells were either left at 18 oC for the course of the 

experiment (No HS), exposed to 32 oC heat stress for 3h then returned to 18 oC for six days 

(HS), or exposed to 26 oC for 24h before a 3h 32 oC heat stress period (Step up  HS). After 

temperature treatment, the wound healing abilities of the cells were assessed.  See Fig. 5.1.  

Cells were in L15/FBS medium over the course of the experiment.  Pictures were taken every 

day until day 6 with data expressed as percent migration from day 0.  Data are expressed as 

the mean ± standard deviation. 
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5.4. DISCUSSION 

5.4.1. Wound healing and restitution at 4 °C, 18 °C and 26 °C    

  Wound healing by rainbow trout intestinal epithelial cells occurred at all temperatures 

but was slowest at the hypothermic temperature of 4 °C, and relative to the normothermic 

18 °C, slightly faster at the hyperthermic temperature of 26 °C. The main cellular processes 

that contribute to wound healing in vivo are migration, proliferation, and differentiation (Iizuka 

& Kono, 2011), whereas for many in vitro assays, such as the one used in this study in which 

a gap becomes filled with cells, cellular migration (restitution) and proliferation are the main 

contributors.  However, in the assay with RTgutGC at 4 and 26 °C, the wound was likely 

healed predominantly by cell migration because little or no proliferation occurs in rainbow 

trout cell cultures at these temperatures (Plumb & Wolf, 1971; Mosser et al., 1986; Bols et al., 

1992).   The slow migration at 4 °C and slightly faster migration at 26 °C might be due to the 

general phenomenon for ectothermic organisms of cellular metabolism and activities 

increasing as the temperature increases (Clarke & Johnston, 1999).   However, some specific 

adaptations at 26 °C might be participating to the enhancement of wound healing.  Putting 

rainbow trout cells at 26 °C induces HSPs synthesis (Mosser et al., 1986) and these HSPs might 

be aiding restitution as HSP70 and HSP90 have been implicated in human cell migration 

(Bhatia et al., 2016; Sims et al., 2011) 

 

5.4.2. Wound healing and restitution after 3 h at 32 °C 

  During recovery at 18 °C from a 3 h heat stress (32 °C), RTgutGC cells were able to 

start healing a wound but could not continue the process.  These results can be indicative of 

proper restitution being dependent of cells forming cell-to-cell contacts and migrating 

collectively.   An interesting term recently “coined” and related to cellular sheet migration is 

plithotaxis, defined as the collective movement of cells in a monolayer towards the direction 

of maximal local stress (Gov, 2011).  Under normal (non-wounded) conditions, cell 

monolayers are theoretically in balance as the forces the cells generate on each other are 

cancelled out on average.  If a monolayer is broken and migration is initiated, the local stress 

field becomes polarized as the forces are no longer in balance (Gov, 2011).  The leading 

migrating cells are the point of maximal stress pulling on neighbouring cells.  This mechanical 

force on the neighbouring cells is hypothesized to polarize and guide their internal skeletal 
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motors to the direction of migration of the leading cells (Gov, 2011).  Hence, all cells move in 

unison in a similar direction to close the wound.  Heat stress has been shown to disorganize 

and/or disrupt cell-to-cell junctions in multiple cell lines, including the human intestinal 

epithelial cell line Caco-2 (Dokladny et al., 2006; Cai et al, 2011; Chen et al., 2008).  

Additionally, heat stress has been shown to cause the disassembly and collapse of cytoskeletal 

elements such as actin, tubulin, and intermediate filaments important in cellular migration 

(Richter et al., 2010; Toivola et al., 2010; Welch and Suhan, 1985; Welch and Suhan, 1986).  

Thus it is possible that heat stress condition is causing changes in cell-to-cell junctional 

complexes and to the cytoskeleton, compromising the cell monolayer and the function of 

plithotaxis leading to a severe reduction in cellular migration.  

 

5.4.3. Thermotolerance for wound healing and restitution 

  Cells that had been subjected to a heating regimen of 26 °C for 24 h before being shifted 

up to 32 °C for 3 h and then returned to the normothermic 18 °C were able to recover enough 

functions to heal a wound but cells that did not have the 24 h at 26 °C prior to the heat stress 

could not heal a wound.  Therefore, RTgutGC monolayers appeared to have become 

thermotolerant for wound healing.  Wound healing involves both proliferation and cell 

migration (Iizuka & Kono, 2011), but other studies suggest that, in the current experiments, 

mainly cell migration contributed to the healing.  For example, the rainbow trout fibroblast cell 

line, RTG-2, was found not to proliferate for at least 6 days after being returned to 22 °C from 

incubations at 32 °C (Mosser et al., 1986). Therefore, a more restrictive conclusion might be 

that RTgutGC monolayers had become thermotolerant for the coordinated cellular movement 

necessary for restitution.  

  The acquisition at 26 °C of thermotolerance for cell migration likely involved HSPs.  

Shifting RTG-2 cultures from room temperature to 26 -28 °C induced the rapid synthesis of 

the major HSPs, HSP70 and HSP90 (87 kDa) (Mosser et al., 1986).  Concurrent with the HSP 

synthesis, RTG-2 acquired at 28 °C the ability to survive a heat stress (3 h at 32 °C) (Mosser 

et al., 1987), and blocking the HSP synthesis blocked the development of thermotolerance 

(Mosser & Bols, 1988).  Survival was defined as the ability of cells to retain their shape and 

attachment to the plastic culture surface.  Thus the cytoskeleton had become thermotolerant 

and likely contributed to cell migration becoming thermotolerant in the current experiments.  
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However, cell migration in restitution would require additional cellular structures and 

processes to become thermotolerant.  These would include cell-to-cell contacts and the 

coordinated movement of cell sheets.  Interestingly in other cell systems, HSPs have been 

shown to stabilize cytoskeletal elements (Mounier & Arrigo, 2002) and regulate tight junction 

protein expression (Dokladny et al., 2008).  Thus the contribution of HSPs in the development 

of cell migration thermotolerance will be interesting to explore further in the future.  

 

5.4.4. Summary and concluding thoughts 

For the first time in any system, cells have been shown to acquire thermotolerance for 

cell migration into a wound.  Future work should involve the possible role of HSPs in 

regulating cell-to-cell junctions and cytoskeletal elements in RTgutGC during heat stress.  

Furthermore, the role of HSP70 and HSP90α in RTgutGC or rainbow trout intestinal restitution 

is unknown and warrants future research. 
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CHAPTER 6 

Effect of naringenin on the ability of rainbow trout intestinal 

epithelial cells to maintain their actin cytoskeleton and substrate 

adherence during recovery from heat stress 
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6.1. INTRODUCTION 

  Global warming is posing serious threats to the future of aquaculture (Brander, 2007), 

which is a farming practice that contributes to a large amount of worldwide animal protein 

consumption (Anyanwu et al., 2014).  Rising temperatures could potentially impact 

aquaculture in numerous ways and one is through the impairment of fish gastrointestinal (GI) 

health. In humans and farm animals, heat stress has been found to target the intestinal 

epithelium (Dokladny et al., 2016; Pearce et al., 2013).  An intact intestinal epithelium is 

essential for the GI tract to perform food digestion and nutrient absorption, ion secretion, 

barrier functions, and immunological protection.  Any impairment in GI tract homeostasis 

could lead to decreased growth and increased infections.  

  A critical component of an animal GI tract is the layer of intestinal epithelial cells that 

forms a barrier between the internal milieu and the GI tract lumen, which is external.  These 

cells sit on a thin basement membrane (BM) in close contact with one another, forming a 

continuous sheet.  Yet intestinal epithelial cells can retract from their neighbours, lift off from 

the BM, and enter the GI tract lumen.  One process by which this occurs is termed epithelial 

cellular extrusion (Andrade & Rosenblatt, 2011).  The extruded cells usually die by apoptosis 

mediated by activation of caspase-3 or by a cell death mechanism mediated through caspase-

1 (Liu et al., 2013).  This process turns over the intestinal epithelium while maintaining the 

continuity of the epithelial sheet and gut health (Miguel et al., 2017).  However, in a process 

termed pathological intestinal epithelial cell shedding (Miguel et al., 2017), breaks or gaps in 

the epithelial continuity occur, with detrimental health outcomes (Mayhew et al., 1999; Liu et 

al., 2011; 2013).  The gaps have been seen in response to inflammation (Liu et al., 2011) and 

heat stress (Yu et al., 2010).   

  Several cellular structures and processes likely contribute to the epithelial cells 

adhering to each other and to the BM, allowing intact cellular sheet to persist in face of 

pathological insults, like heat stress.   One of these is the actin cytoskeleton.   Yet the actin 

cytoskeleton is vulnerable to disruption by heat (Dalle-Donne et al. 2001). When the heat stress 

is not too severe, the cytoskeleton and cells can recover.  Presumably if intestinal epithelial 

cells recover from heat stress, the GI tract would recover as well.  For mammals, dietary 

additions have been explored to aid the recovery of cells from heat stress (Varasteh et al., 

2015).  These include nutrients such as glutamine and threonine, increasing heat shock protein 
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levels (Baird et al., 2013), but phytochemicals such as naringenin are also worthy of 

investigation.  

  Therefore, in this chapter, attempts have been made to establish protocols with 

RTgutGC for evaluating how rainbow trout intestinal epithelial cells recover from a heat stress 

to keep monolayers adherent to a substrate and how naringenin might aid recovery.   
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6.2. MATERIALS AND METHODS 

6.2.1. Cell cultures and culture conditions  

 RTgutGC, a rainbow trout epithelial cell line was used throughout the experiment.  This 

cell line was developed in Niels C. Bols’ laboratory at the University of Waterloo (Kawano et 

al., 2011).  Medium used to culture the cells was Leibovitz’s L15 with 2.05 mM L-Glutamine 

(Thermo Fisher Scientific) supplemented with 10% fetal bovine serum (FBS, Sigma-Aldrich) 

and antibiotics (10,000 U/mL penicillin and 10,000 μg/mL streptomycin, P/S, Thermo Fisher 

Scientific) (L15/FBS).  Cells were subcultured or passaged using trypsin (Thermo Fisher 

Scientific) every week at a ratio of 1 to 2 and maintained at 18 oC. The cell culture vessels used 

were BioLite 75 cm2 cell culture treated flasks (Thermo Fisher Scientific).     

 

6.2.2. Heat stress timeline 

 All experiments involved with heat stressing the cells followed the timeline depicted 

below (Fig 6.1).  Cells were first allowed to establish a monolayer in L15/FBS at 18 oC for 3-

4 days.  Afterwards, the medium was removed, the cells were washed with Dulbecco’s 

phosphate-buffered saline solution (DPBS, Thermo Fisher Scientific) and varying 

concentrations of naringenin (Sigma-Aldrich) either in L15/FBS, L15, or in a salt solution of 

L15 (L15/salts) were added.  The naringenin concentration used were 10, 30, 50, 75, and 100 

μM from 200x stock solutions of the reagent dissolved in DMSO.  Final DMSO concentration 

in control and media/naringenin solutions was 0.5% (v/v).  The related naringenin 

concentration range is based on concentrations used on fish and mammalian cells in the 

literature (Menanteau-Ledouble et al., 2015; Noda et al., 2013).  The cells were left to incubate 

in a naringenin containing solution for 30 minutes at 18 oC.  Heat stress conditions then 

followed by exposing the cells to a temperature of 32 oC in an incubator for 1 ½ or 3 h 

depending on the assay. Cells were then left to recover back at 18 oC for 24 h to 96 h depending 

on the assay. 
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Figure 6.1.  Experimental timeline with heat stress incubation.  A: Establishment period of 

3-4 days.  B: Addition of naringenin and 30 minute incubation before heat stress.  C: 1 ½ or 3 

hour heat stress period.  D: 24-96 hour recovery period.  This is a visual representation of 

incubation temperatures and lengths; this is not an accurate representation of media 

temperatures changes during the timeline.  

 

6.2.3. Cellular viability 

 Cellular viability was monitored by changes in cell morphology through phase contrast 

microscopy and with viability indicator dyes, Alamar Blue® (AB, ThermoFisher Scientific) 

and 5'-carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM, Sigma-Aldrich).  AB 

provides a measure of metabolic activity while CFDA-AM provides a measure of plasma 

membrane integrity (Dayeh et al., 2013).  The protocol used for the AB and CFDA-AM dyes 

follows closely Dayeh et al. (2013) methods.  RTgutGC cells in L15/FBS were added to a 24-

well plate at a plating density of 125,000 cells per well in replicates of 4.  Plates followed an 

incubation timeline as seen in Fig 6.1 where the heat stress length was either 1 ½ or 3 hours 

followed by a recovery period of 24 hours.  Temperature control plates remained at 18 oC 

throughout the timeline.  The medium was then removed, the cells were washed with DPBS, 

and a solution containing 5% (v/v) AB and 4 M CFDA-AM in DPBS was added to the cells.  

Plates were then incubated at room temperature for 1 hour in the dark.  Using a series 4000 

CytoFluor fluorescent plate reader (PerSeptive Biosystems - ThermoFisher Scientific), results 

were recorded as relative fluorescent units (RFUs).  The mean RFUs for the experimental wells 

were expressed as a percentage of the mean RFUs for control wells. 

 

6.2.4. Fluorescence microscopy of RTgutGC F-actin 

 F-actin was visualized using fluorescein isothiocyanate labeled phalloidin (FITC-

phalloidin, Sigma-Aldrich) and confocal microscopy.  The fluorescent conjugate of phalloidin, 
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FITC, is used to label F-actin and can be visualized by fluorescence or laser microscopy.  A 5 

mg/mL stock solution of FITC-phalloidin was prepared in DMSO.  RTgutGC cells in L15/FBS 

were plated in a 4 chamber tissue culture treated glass Falcon CultureSlide® (Corning) at a 

density of 150,000 cells per chamber.  Slides followed an incubation timeline as seen in Fig 

6.1 where the heat stress length was 1 ½ hours followed by a recovery period of 24 hours.  

Temperature control slides remained at 18 oC throughout the timeline.  Cells were washed with 

DPBS and fixed with 3% paraformaldehyde (Sigma-Aldrich) for 20 minutes at 4 oC.  

Following fixation, the cells were then permeabilized with 0.1% Triton X-100 (Sigma-Aldrich) 

for 10 minutes at room temperature.  Afterwards, 5 μg/mL of FITC-phalloidin was added to 

the cells and allowed to incubate for 45 min at room temperature in the dark.  Cells were then 

washed three times with DPBS and the slides were allowed to dry.  Once dry, plastic chambers 

were removed from the slides and three drops of a mounting medium, Fluoroshield (Sigma-

Aldrich), containing DAPI was added to the slides with a coverslip to help preserve the slide 

and counter stain for DNA.  Confocal images were obtained with the Zeiss LSM 510 laser 

scanning microscope and were acquired and analyzed using a ZEN lite 2011 software. 

  

6.2.5. Caspase-3 induction 

 Caspase-3 induction was detected using a Caspase-3/CPP32 colorimetric assay kit 

(BioVision).  The assay detects caspase-3 activity by cleavage of the chromophore p-

nitroaniline (pNA) from DEVD-pNA labelled substrate that the caspase recognizes.  pNA can 

then be measured by spectrophotometric detection with a plater reader set to 400-405 nm.  Cells 

were plated in 6-well plates with L15/FBS at a density of 1,500,000 cells per well.  Cells then 

followed a timeline similar to Fig 6.1.  100 μM naringenin in L15 medium was administered 

30 min before the heat stress period.  The heat stress period was 3 hours.  Immediately after 

heat stress, cells were washed with DPBS and removed from the wells with trypsin for cell 

counting.  After pelleting by centrifugation, 50 μL of provided lysis buffer was used to 

resuspend the cells and the cell suspension was incubated on ice for 10 minutes followed by 

centrifuging for 1 minute at 10,000 x g.  The protein concentration in the supernatant was then 

assayed using a Pierce BCA protein assay kit (ThermoFisher Scientific).  Following the 

protocol for the Caspase-3/CPP32 colorimetric assay kit, proteins were diluted to 100 μg in 50 

μL of the kit’s lysis buffer into a 96-well plate.  A reaction buffer containing 10 mM DTT was 
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then added followed by an addition of 4 mM DEVD-pNA substrate.  The samples were then 

left to incubate at 37 oC for 2 hours.  Using a VICTOR3V colorimetric plate reader (Perkin 

Elmer), sample absorbance was read at 400-405 nm.  The data were then expressed as fold 

induction compared to the non-heat stressed control.   

 

6.2.6. HSP70 detection 

 HSP70 was visualized by Western blotting.  RTgutGC cells were plated in 6-well plates 

with L15/FBS at a density of 1,000,000 cells per well.  Cells then followed a timeline similar 

to Fig 6.1.  The heat stress period was 1 ½ hours with a recovery period of 3 days. After 

recovery, the cells were lysed by adding 200 μL of RIPA lysis buffer containing a protease 

inhibitor cocktail (Qiagen) directly to the plates. The cells were scraped off, transferred to 

microcentrifuge tubes, and allowed to sit on ice for 30 minutes.  Tubes were then centrifuged 

at 10,000 x g for 1 minute and proteins in the supernatant were collected.  Protein 

concentrations were determined using a Pierce BCA protein assay kit (ThermoFisher 

Scientific).  SDS-PAGE was performed using a Mini-PROTEAN tetra system (Bio-Rad) with 

premade 1 mm thick handcast gels.  Loaded gels were run at 120 volts for 1 ½ hours.  The 

transfer step onto a nitrocellulose membrane was done in a Mini-Trans Blot Cell system (Bio-

Rad) running at 150 milliamps for 1 hour.  Equal protein loading was visualized by a 0.1 % 

Ponceau S stain in 5% (w/v) acetic acid.  Before probing the membrane with rabbit anti-salmon 

HSP70 (Fish) polyclonal antibodies (SPC-314B, StressMarq), a 1 hour blocking step using 5% 

skim milk (w/v) in 1x TBS-T was performed.  All antibodies were diluted in 5% skim milk 

(w/v) in 1x TBS-T.  Rabbit anti-Salmon HSP70 (Fish) polyclonal antibodies were diluted 

1:1000.  To detect a reference protein, rabbit anti-actin antibodies (Sigma Aldrich) were used 

and diluted 1:600.  The secondary antibody used was goat anti-rabbit IgG conjugated to 

alkaline phosphatase (Sigma Aldrich) diluted 1:5000.  Protein bands were detected by 

NBT/BCIP.  Membranes were scanned and bands quantified by densitometry using a Bio-Rad 

ChemiDoc MP imaging system without chemiluminescense option.  The data were then 

normalized to the actin bands and expressed as a percentage of the control.     
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6.2.7. Statistical analyses 

Variables were expressed as the mean ± standard deviation or standard error of the 

mean.  Statistical analysis was done by a one-way ANOVA and Dunnet post hoc test.  

Statistical significance was defined as p < 0.05.  
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6.3. RESULTS 

6.3.1. Recovery of RTgutGC monolayers from heat stress as judged by phase contrast 

microscopy 

  RTgutGC monolayers either in L15/FBS, L15 or L15/salts were subjected to different 

heat treatments and monitored afterwards by phase contrast microscopy during their 24 h of 

recovery at 18 °C either in L15/FBS (Fig 6.2 and 6.3), L15/salts (Fig 6.2 and 6.3) or L15 (Fig 

6.4).  The heat stress was 32 °C for 1.5 h (Fig 6.2) or 3 h (Fig 6.3 and 6.4).  The appearance of 

stressed cultures was compared to cultures kept continuously at 18 °C.  When cells in L15/FBS 

or L15/salts were stressed at 32 °C for 1.5 h, very few morphological differences were observed 

after 24 h of recovery (Fig 6.2).  However, when cultures were stressed for 3 h, round floating 

cells were seen along with attached and spread cells that often had irregular phase dense 

outlines, giving a shrivelled appearance (Fig 6.3 and 6.4).  

 

6.3.2. Effect of naringenin on the recovery of RTgutGC monolayers from heat stress as 

judged by phase contrast microscopy 

  Naringenin appeared to have slight or no effect on RTgutGC monolayers maintained 

18 °C but did influence the morphology of cells recovering from heat stress.  For cultures 

recovering from 1.5 h at 32 °C, 100 M naringenin appeared to cause the periphery of cells in 

L15/salts to be more phase dark (Fig 6.2).  Increasing concentrations of naringenin in cultures 

during the heat stress at 32 °C for 3 h and upon their return to 18 °C allowed cultures to recover 

better in L15/FBS, L15 or L15/salts (Fig 6.3 and 6.4).  Fewer floating cells were seen and the 

attached cells appeared less shrivelled (Fig 6.4).   

 

6.3.3. Metabolic activity and plasma membrane integrity 

 A 3 h heat stress period caused a decrease in both metabolic activity and plasma 

membrane integrity of cells in L15/FBS (Fig 6.5).  The metabolic activity of cells in L15/FBS 

was more affected by a 3 h heat stress than the plasma membrane dropping relatively by 54%.  

Naringenin appeared to have little effect on the metabolic activity of non-heat stressed and heat 

stressed cells in L15/FBS (A, Fig 6.5).  However, increasing concentrations of naringenin 

slightly decreased plasma membrane integrity in both non-heat stressed and heat stressed cells 

(B, Fig 6.5).  Similar to the cells in L15/FBS, a 3 h heat stress of cells in L15/salts caused a 
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more significant drop (59%) in metabolic activity compared to plasma membrane integrity (Fig 

6.6). However, the effects of naringenin on metabolic activity and plasma membrane integrity 

were more intensely seen when the cell were in L15/salts medium.  In the non-heat stressed 

cells, increasing concentrations of naringenin caused a dose response drop in metabolic activity 

(A, Fig 6.6).  In the heat-stressed cells, a drop in metabolic activity was seen only with 100 

μM naringenin (A, Fig 6.6).  Increasing concentrations of naringenin had no negative effects 

on the plasma membrane integrity of non-heat stressed cells in L15/salts where even a slight 

increase (15%) was observed with 10 μM naringenin (B, Fig 6.6).  However, with the heat 

stressed cells, a dose response drop in plasma membrane activity was observed with increasing 

concentrations of naringenin, where at 100 μM naringenin it dropped by 58%.    

 

6.3.4. Effect of naringenin and heat stress on F-actin staining 

  In response to naringenin and heat, RTgutGC cells in L15/salts showed considerable 

changes in staining for F-actin with fluorescently labelled phalloidin, but cells in L15/FBS 

showed fewer changes.  For cultures at 18 °C in either L15/FBS or L15/salts, naringenin caused 

changes in the staining pattern for F-actin.  As naringenin increased up to 100 M, fewer stress 

fibers were seen and more circumferential actin was detected, especially for cells in L15/salts 

(A-D, Fig 6.7 and 6.8).  Cultures in either L15/FBS or L15/salts were subjected to a heat stress 

of 32 °C for 1.5 h and allowed to recover for 24 h at 18 °C and compared for F-actin staining 

with cultures (controls) continuously incubated at 18 °C in either L15/FBS or L15/salts.  For 

cells in L15/FBS, little difference was seen in actin staining between heat stressed and control 

cultures (Fig 6.7).  However, cells recovering from heat stress in L15/salts had longer stress 

fibers and blebs of intense actin staining (Fig 6.8). 

  In cells recovering from heat stress either in L15/FBS or L15/salts, naringenin caused 

changes in F-actin staining in a dose-dependent manner (E-H, Fig 6.7 and 6.8).  The staining 

of cytoplasmic stress fibers was diminished and circumferential actin was enhanced as 

naringenin concentration increased.  These changes were most pronounced for cells in 

L15/salts (Fig 6.8).  
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Figure 6.2.  Phase-contrast observations of RTgutGC with 1 h 30 min heat stress and 

naringenin.  Cells were incubated with different concentrations of naringenin (10, 30, and 100 

μM) in either L15/FBS or L15/salts medium and subjected to a 1 h 30 min heat stress (32 oC) 

period.  Cells subjected to heat stress were allowed to recover at 18 oC for 24 h before pictures 

were taken.  Pictures represent magnification of 400x with a scale bar of 100 μm.     
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Figure 6.3.  Phase-contrast observations of RTgutGC with 3 h heat stress and naringenin.  
Cells were incubated with different concentrations of naringenin (10, 30, and 100 μM) in either 

L15/FBS or L15/salts medium and subjected to a 3 h heat stress (32 oC) period.  Cells subjected 

to heat stress were allowed to recover at 18 oC for 24 h before pictures were taken.  Pictures 

represent a magnification of 100x with a scale bar of 100 μm.          
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Figure 6.4.  Phase-contrast observations of RTgutGC under heat stress with naringenin 

in L15 medium.  (A) Cells in L15 medium without heat stress.  (B) Cells incubated in L15 

medium containing 100 μM naringenin without heat stress.  (C) Cells in L15 medium with 3 h 

32 oC heat stress.  (D) Cells incubated in L15 medium containing 100 μM naringenin with 3 h 

32 oC heat stress.  Cells subjected to heat stress were allowed to recover at 18 oC for 24 h before 

pictures were taken.  Pictures represent 400x field with a scale bar of 100 μm. 
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Figure 6.5.  Cellular viability of RTgutGC with naringenin in L15/FBS.  (A) Relative 

metabolic activity measured by alamarBlue reduction by non heat stressed and heat stressed 

(3h 32 oC) cells.  (B) Relative plasma membrane integrity measured CFDA-AM conversion to 

CF and its retainement in non heat stressed and heat stressed (3h 32 oC) cells.  Both indicators 

of cellular viability were measured after a 24h 18 oC recovery period.  Values are means ± 

standard deviation.  All data in (A) and (B) are significant (p < 0.01) compared to the 18oC 

control.  The no heat stress data was previously shown in Fig 3.4. 
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Figure 6.6.  Cellular viability of RTgutGC with naringenin in L15/salts.  (A) Relative 

metabolic activity measured by alamarBlue reduction by non heat stressed and heat stressed 

(3h 32 oC) cells.  (B) Relative plasma membrane integrity measured by CFDA-AM conversion 

to CF and its retainement in non heat stressed and heat stressed (3h 32 oC) cells.  Both 

indicators of cellular viability were measured after a 24h 18 oC recovery period.  Values are 

means ± standard deviation. All data in (A) are significant (p < 0.01) compared to the 18oC 

control.  In (B), asterisks indicate significant differences when compared to the control: ** p 

< 0.01.  The no heat stress data was previously shown in Fig 3.6.  



139 
 

No heat stress 

Heat stress 

No heat stress 
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Figure 6.7.  F-actin arrangement under the influence of naringenin and heat stress in 

L15/FBS medium.  F-actin was visualized by FITC-phalloidin.  Cells were exposed to a heat 

stress period of 1 h 30 min at 32 oC.  Staining occurred immediately after a 24 h 18 oC recovery 

period.  Scale bar = 50 μm.    

 

 

 

 
Figure 6.8.  F-actin arrangement under the influence of naringenin and heat stress in 

L15/salts medium.  F-actin was visualized by FITC-phalloidin.  Cells were exposed to a heat 

stress period of 1 h 30 min at 32 oC.  Staining occurred immediately after 24 h 18 oC recovery 

period.  Scale bar = 50 μm.    
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6.3.5. Caspase-3 activation in RTgutGC by heat stress 

Heat stress activated caspase-3 activity in RTgutGC cells that were stressed as 

monolayers in L15 (Fig 6.9).  Immediately after RTgutGC monolayers had been held for 3 h 

at 32 °C, Caspase-3 activity was approximately 2.3-fold higher than before the heat stress.  

This stimulation of activity occurred even when 100 μM naringenin was present during the 

heat stress.  Exposure of RTgutGC monolayers to naringenin for 3 h at 18 °C also activated 

caspase-3 but this neither enhanced nor impaired the activation by heat stress. 

 

6.3.6. Effect of naringenin on HSP70 accumulation during recovery from heat stress in 

either L15/FBS or L15/salts 

  Naringenin appeared to have little effect on HSP70 accumulation in RTgutGC cells 

during their recovery at 18 °C from a heat stress of 1.5 h at 32 °C, although recovery in 

L15/salts might have been slightly impaired by naringenin (B, Figure 6.10 and 6.11).  Western 

blotting revealed that cells either in L15/FBS (B, Fig 6.10, lane 1 top panel) or L15/salts (B, 

Fig 6.10, lane 1 top panel) had constitutive HSP70 levels.  These HSP70 levels were unchanged 

by naringenin at up to 100 μM in either L15/FBS or L15/salts (Fig 6.10 and 6.11).  After 3 

days of recovering from the heat stress in L15/FBS, cells had accumulated noticeably higher 

HSP70 levels relative to unstressed cultures in L15/FBS (A, Fig 6.10 and 6.11). This was 

unchanged by the presence of naringenin at up to 100 μM during recovery (A, Fig 6.10 and 

6.11).   For cells heat stressed and allowed to recover in L15/salts, there were hints of at least 

two possible differences.  Firstly, less HSP70 had accumulated after 3 days of recovery in 

L15/salts (B, Figure 6.10 and 6.11).  Secondly when the flavanone was present during 

recovery, HSP levels appeared slightly lower at 100 μM naringenin (B, Figure 6.10 and 6.11).  

 

 

 

 



141 
 

 
 

Figure 6.9.  Caspase-3 activity under the presence of heat stress and naringenin.  100 μM 

naringenin in L15 medium was administered to the cells 30 min before heat stress.  Heat stress 

period was 3 h at 32 oC.  Cells were processed immediately post-heat stress for caspase-3 

activity.  Values are means ± standard deviation.  Asterisks indicate significant differences 

when compared to the control: * p < 0.05 

 

 

 

 

Figure 6.10.  HSP70 protein levels visualized by Western blotting.  Visualization of HSP70 

expression and actin control in either (A) L15/FBS medium or (B) L15/salts medium with and 

without heat stress (1 h 30 min at 32 oC) under 10, 30, and 100 μM of naringenin.  Post-heat 

stress, cells were allowed to recover at 18 oC for 3 days before being processed.  (A) and (B) 

respectively represent separate Western blots.  The no heat stress data was previously shown 

in Fig 3.12.  
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Figure 6.11.  Relative HSP70 protein levels by densitometric analysis of Western blots.  

HSP70 protein expression in either (A) L15/FBS medium or (B) L15/salts medium under 10, 

30, and 100 μM of naringenin with or without a 1 h 30 min 32 oC heat stress period.  Values 

are means ± standard error of the mean.  Asterisks indicate significant differences when 

compared to the 18 oC control: * p < 0.05.  The no heat stress data was previously shown in 

Fig 3.12. 
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6.4. DISCUSSION 

6.4.1. Naringenin prevented heat stress induced cell detachment but did not improve 

viability after heat stress  

 100 μM of naringenin helped retain adherence and morphology of RTgutGC cells 

exposed to a 3h heat stress period in L15/FBS, L15, and L15/salts.  However, this was matched 

with a decrease in metabolic activity and plasma membrane activity of heat stressed cells in 

L15/salts with 100 μM of naringenin.  This decrease was less prominent in L15/FBS.  

Nonetheless, naringenin showed no trend in the improvement of cellular viability with or 

without heat stress.  Interestingly, L15/FBS diminished the effects of heat stress on plasma 

membrane integrity compared to L15/salts.  L15/FBS contains lipids and many nutritional 

compounds helping synthesis and maintenance of the plasma membrane (Gimenez et al., 

2011).  Additionally, fatty acid composition of membrane phospholipids can be highly 

influenced by exogenous factors (Gimenez et al., 2011). 

 

6.4.2. Naringenin increased caspase-3 activity but did not alter the heat activation of 

caspase-3 

 Naringenin is a compound of interest in cancer research due to its abilitiy to induce 

apoptosis in human cancer cells (Ahamad et al., 2014; Arul & Subramanian, 2013).  Effective 

concentrations of naringenin in apoptosis activation are seen above 100 μM in human cancer 

cells (Ahamad et al., 2014; Arul & Subramanian, 2013).  Naringenin can activate the 

mitochondrial-mediated apoptosis pathway, with increases in Bax/Bcl-2 ratio, release of 

cytochrome C, and sequential activation of caspase-3 (Arul & Subramanian, 2013). In this 

study we observed increased caspase-3 activity with 100 μM naringenin.  Additionally, 

naringenin has been observed to induce apoptosis via reactive oxygen species generation 

(Ahamad et al., 2011).  This study additionally demonstrated that naringenin had no positive 

or negative effect on the heat activation of caspase-3.  

 

6.4.3. Naringenin failed to modulate HSP70 levels in HS or non-HS conditions  

 Studies of naringenin on a human intestinal cell line, Caco-2, revealed HSP70 

modulating abilities of naringenin.  Naringenin was able to increase HSP70 levels (Noda et al., 

2013).  Additionally, increases in claudin 4 proteins levels were associated with the activation 
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of the transcription factor Sp1, known to bind to the human HSP70 promoter site, by naringenin 

(Morgan, 1989; Noda et al., 2013). Hence, HSP70 might play a role in the maintance during 

heat stress of cell-to-cell contacts such as tight junctions.  However, the current study revealed 

that naringenin has no effect on HSP70 levels in RTgutGC either recovering from heat stress 

or not.  Hence, naringenin’s protective effects to adherence and cell shape was most likely not 

due to increased levels of HSP70.   

 

6.4.4. Naringenin induces changes in the actin cytoskeleton under heat stress 

 Improved recovery and adherence of RTgutGC cells after heat stress by naringenin 

might be from re-organizations in F-actin.  Naringenin promoted circumferential actin bundles 

while decreasing stress fibers under heat stress.  This reorganization in actin has been observed 

in the literature and is a sign of actin strongly associating cell adhesion proteins and ZO-1 tight 

junction proteins, generating stronger cell-to-cell contacts, whereas the loss of circumferential 

actin is sometimes indicative of a more permeable monolayer with weaker cell-to-cell contacts 

(Noda et al., 2010; Yukiura et al., 2015).  Cells undergoing heat stress with naringenin were 

able to maintain stronger cell contacts and thus remain adhered to the culture vessel surface.   

 

6.4.5. Summary and concluding thoughts 

 Increases in naringenin exerted protective effects from heat stress on cell adherence, 

shape, and monolayer integrity possibly due to changes in F-actin organization from fewer 

stress fibers to more circumferentially located bundles.  Circumferential actin bundles are 

highly associated with stronger cell-to-cell contacts.  However, naringenin did not improve 

cell viability after heat stress.  Additionally, naringenin did not alter heat induced caspase-3 

activation and on its own, caused an increase in caspase-3 activity.  It was concluded that 

HSP70 plays no role in mediating the improvement by naringenin in the recovery of cell shape 

from heat stress.  Future studies could look into other HSPs, effects of naringenin on barrier 

functions under heat stress, and understanding the mechanism of naringenin’s caspase-3 

activation. 
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CHAPTER 7 

General summary and future directions 
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7.1. GENERAL SUMMARY AND FUTURE DIRECTIONS 

  A rainbow trout intestinal epithelial cell line, RTgutGC, has been investigated in this 

thesis as a possible tool for studying the effects of various types of stresses relevant to 

aquaculture and to screen for feed additives.  This in vitro approach has been guided by the 

example of the successes in human health research with human intestinal cell lines, such as 

Caco-2.  The guidance has included culture systems, such as permeable supports dividing two 

culture chambers, and experimental endpoints.  Among the endpoints were cell viability, 

cytoskeletal organization, and epithelial barrier function.  Cell viability was monitored with 

the indicator dyes alamar Blue (AB) and 5'-carboxyfluoresscein diacetate acetoxymethyl ester 

(CFDA-AM). Cytoskeletal organization was visualized by immunocytochemical (ICC) 

staining and confocal microscopy.   Epithelial barrier function was evaluated with trans 

epithelial electrical resistance (TEER) and Lucifer Yellow (LY) permeability measurments. 

These and other assays were used in four lines of investigation with RTgutGC.  A general 

discovery from each line of research is highlighted below along with suggestions on how the 

discovery might be expanded further in the future.  

 

1. RTgutGC cells can survive a 7 day nutritional deprivation but this generated major cellular 

changes that impacted restitution and barrier functions  

  The effects of nutritional deprivation at the cellular level generating functional changes 

to intestinal systems are not well known.  The use of RTgutGC as a fish intestinal model in 

response to nutritional deprivation uncovered various negative effects.  The cell line’s barrier 

functions and restitution capabilities were almost completely lost under serum deprivation and 

further amino acid, vitamin, and sugar deprivation for 7 days.  Cellular health was also severely 

impacted from nutritional deprivation conditions.  Changes in cytoskeletal arrangement were 

also observed with increasing intensities of nutritional deprivations.  Additionally, reductions 

in migratory abilities of the cells were observed.  Nothethless, in the end most cells were able 

to survive a 7 day nutritional deprivation period.  

  Future studies can involve the role of energy metabolism during nutritional deprivation 

and cytoskeletal arrangement as an anaerobic metabolic state may favour the reduced 

expression cytoskeleton-related proteins (Modrego et al., 2012).  Additionally, the cell cycle 

progression during nutritional deprivation is a favourable path of study.  It is likely that 
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RTgutGC undergoes cell cycle arrest during starvation; however, the appearance of a large 

microtubule organizing centres (MTOCs) under starvation raises questions.  Studies have 

shown that differentiated cells contain nc-MTOCs (Sanchez & Feldman, 2010).  If cell cycle 

arrest occurs, it is possible that RTgutGC produces nc-MTOCs.  Currently speculations, future 

studies focusing on cell cycle arrest and MTOCs could help understand the function of 

microtubules under nutritional deprivation.     

 

2. Assays with RTgutGC showed that the phytochemical, naringenin, could be potentially be 

beneficial to fish intestinal health 

  The search for beneficial feed additives is a focus for many in the feed industry. 

Intestinal health is extremely important to consider when choosing new additives as the 

intestine is the first organ systems to come in contact with ingested food and has major roles 

in nutrient absorption.  The use of RTgutGC monolayers as an in vitro intestinal model 

provided useful information on the flavanone naringenin, its effects on fish intestinal cell 

health in vitro, and its use as a potential feed additive.  Naringenin was found to enhance barrier 

integrity of RTgutGC without any compromise in cellular health and migration rate at a 

concentration of 30 μM.  Naringenin also caused changes in cytoskeletal arrangement.  

Ultimately naringenin could be introduced into feed and tested in fish to see if it is indeed 

beneficial.  

  How naringenin is exerting its effects on RTgutGC monolayers is poorly understood.  

Thus, future molecular studies on the cAMP and PKA pathway could be useful as studies 

suggest that naringenin exerts some effects on those pathways (Yang et al., 2008). 

Additionally, studying naringenin’s antioxidant capabilities would further help promote 

naringenin as a beneficial fish feed additive.  

 

3. RTgutGC restitution assays revealed how anti-nutritional factors (ANFs) could act to impair 

the intestine at the cellular level 

  The effects of ANFs on rainbow trout intestinal function are poorly understood but are 

important to know because of the shift to plant meals in fish feed.  Wheat germ agglutinin 

(WGA) from wheat germ meal and the Bowman Birk inhibitor (BBI) from soybean meal were 

found for the first time to impede restitution.  RTgutGC could serve as a preliminary screen of 
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plant meals and feed additives to eliminate some before in vivo testing, saving money, time, 

and fish.  

  

4. Changes in nutrition and temperature impacted the cytoskeletal arrangement and migration 

of RTgutGC but inducing a thermotolerant state helped the cells recover from heat stress  

  The capacity of RTgutGC cells in L15/FBS to heal a wound whether through a 

combination of cell migration and proliferation or just cell migration (restitution) was heavily 

influenced by temperature. For the first time in any system, cells have been shown to acquire 

thermolerance for cell migration into a wound.  Heat conditioning RTgutGC to a 

thermotolerant state prevented the inhibition of restitution by heat stress, whereas, a heat stress 

of 32 oC for 3 hours without any heat conditioning completely inhibited migration, and 

increased cell death.   

  Further work on the role of heat shock protein (HSPs) and thermotolerance in RTgutGC 

is needed.  An interesting path for future studies would be to see if HSP90α plays any role in 

RTgutGC restitution.  HSP90α is a key player in mammalian restitution, initiating cell sheet 

migration (Bhatia et al., 2016).  Also, as restitution was a focus of this study, the effects of heat 

stress and thermotolerance on RTgutGC barrier functions, measured by TEER, LY 

permeability, and tight junction protein levels, are interesting future paths of study.    

 

5. Naringenin exerts protective effects from heat stress on cell adherence, shape, and 

monolayer integrity but not cell viability or regulation of HSP70 

  Whether naringegin could exert any protective actions on the recovery of RTgutGC 

cells from a heat stress was investigated.  Naringenin helped cells morphologically withstand 

from heat stress. Cells retained adherence and shape after a 1 ½ to 3 h heat stress period.   

However, no trend of improvement was observed in cell viability as measured with AB 

or CFDA-AM.  Additionally, naringenin did not alter the heat activation of caspase-3.  Yet 

increasing naringenin did alter the organization of F-actin in during recovery.  Fewer stress 

fibers were observed, whereas circumferential actin became more pronounced with increasing 

naringenin.  Thus the reorganization F-actin to the cell periphery might have helped improved 

the recovery of cell shape after a heat stress.  Naringenin failed to modulate HSP70 levels 

whether cells were recovering from a heat stress or not.   Therefore, HSP70 was unlikely to be 
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mediating the improvement by naringenin in the recovery of cell shape from heat stress.  An 

interesting path of study would be to look into the role of HSPs, other than HSP70, in 

naringenin’s protective morphological actions.  Cell-to-cell and cell-to-substrate connections 

play an important role in maintaining proper cell morphology and adherence; thus, studying 

TJ proteins such as claudins, occludin, and ZOs, AJ proteins such as cadherins, and cell 

adhesion proteins such as integrin under naringenin and heat stress might be an interesting 

future path.  Additionally, studying barrier functions through TEER and LY assay could 

completment those studies.  Lastly, understanding the role of circumferential actin and possible 

involvements in aiding recovery from heat stress is another promising research path.     

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



150 
 

LETTER OF COPYRIGHT PERMISSION 

 

 



151 
 

 

 

 



152 
 

 



153 
 



154 
 



155 
 

 



156 
 

 

 
 
 
 



157 
 

REFERENCES 

Chapter 1 References 

Agle, K.A., Vongsa, R.A. & Dwinell, M.B. (2010) Calcium mobilization triggered by the  

chemokine CXCl12 regulates migration in wounded intestinal monolayers.  Journal 

of Biological Chemistry, 285, 16066-16075. 

Akhmanova, A. & Steinmetz, M.O. (2015) Control of microtubule organization and dynamics:  

two ends in the limelight. Nature Reviews, 16, 711-726. 

Albrecht-Buehler, G. (1976) Filopodia of spreading 3T3 cells: Do they have a substrate  

exploring function?  Journal of Cell Biology, 69, 275-286. 

Albrecht-Buehler, G., Lancaster, R.M. (1976) A quantitative description of the extension and  

retraction of surface protrusions in spreading 3T3 mouse fibroblasts.  Journal of Cell 

Biology, 711, 370-382.  

Alvarez, A., Garcia Garcia, B., Garrido, M.D. & Hernandez, M.D. (2008) The influence of  

starvation time prior to slaughter on the quality of commercial-sized gilthead seabream 

(Sparaus aurata) during ice storage. Aquaculture, 284, 106-114.  

Amasheh, M., Andres, S., Amasheh, S., Fromm, M. & Schulzke, J.D. (2009) Barrier  

effects of nutritional factors. Annals of the New York Academy of Science, 1165, 267-

273. 

Amasheh, M., Schlichter, S., Amasheh, S., Mankertz, J., Zeitz, M., Fromm, M. &  

Schulzke, J.D. (2008) Quercetin enhances epithelial barrier function and increases 

claudin-4 expression in Caco-2 cells. Journal of Nutrition, 138, 1067-1073. 

Arima, Y. & Iwata, H. (2015) Preferential adsorption of cell adhesive proteins from complex  

media on self-assembled monolayers and its effect on subsequent cell adhesion. Acta 

Biomaterialia, 26, 72-81.  

Arnal, M.E. & Lalles, J.P. (2016) Gut epithelial heat-shock proteins and their modulation by  

diet and the microbiota. Nutrition Reviews, 74, 181-197. 

Ashley, P.J. (2007) Fish welfare: current issues in aquaculture. Applied Animal Behaviour  

Science, 104, 195-235. 

Baird, C.H., Niederlechner, S., Beck, R., Kallweit, A.R. & Wischmeyer, P.E. (2013) L- 

Threonine induces heat shock protein expression and decreases apoptosis in heat-

stressed intestinal epithelial cells. Nutrition, 29, 1404-1411. 



158 
 

Basson, M.D., Turowski, G. & Emenaker, N.J. (1996) Regulation of human (Caco-2)  

intestinal epithelial cell differentiation by extracellular matrix proteins.  Experimental 

Cell Research, 225, 301-315.  

Beaverfjord, G. & Krogdahl, A. (1996) Development and regression of soybean meal induced  

 enteritis in Atlantic salmon, Salmo salar L, distal intestine: a comparison with the 

intestines of fasted fish. Journal of Fish Diseases, 19, 375-387.  

Bermejo-Poza, R., De La Fuente, J., Perez, C., de Chavarri, E.G., Diaz, M.T., Torrent, F. &  

Villarroel, M. (2017) Determination of optimal degree days of fasting before slaughter 

in rainbow trout (Oncorhynchus mykiss). Aquaculture, 473, 272-277. 

Bhatia, A., O’Brien, K., Chan, M., Woodley, D.T. & Li, W. (2016) Keratinocyte-secreted heat  

shock protein-90alpha: Leading wound reepithelialisation and closure. Advances in 

Wound Care, 5, 176-184.  

Blanchoin, L., Boujemaa-Paterski, R., Sykes, C. & Plastino, J. (2014) Actin dynamics,  

architecture, and mechanics in cell motility. Physiological Reviews, 94, 235-263. 

Bols, N.C., Dayeh, V.R., Lee, L.E.J. & Schirmer, K. (2005) Use of fish cell lines in toxicology  

of fish.  In: Biochemistry and Molecular Biology of Fishes-Environmental Toxicology.   

Vol.  6.  Edited by T.W. Moon and T. P. Mommsen.  Amsterdam: Elsevier Science. pp. 

43-84.  

Brander, K.M. (2007) Global fish production and climate change. Proceedings of the National  

Academy of Science U.S.A., 104, 19709-19714.   

Bryson, S.P., Joyce, E.M., Martell, D.J., Lee, L.E.J., Holt, S.E., Kales, S.C., Fujiki, K., Dixon  

B. & Bols, N.C. (2006) Development of a cell line, HEW, from embryos of haddock 

(Melanogrammus aeglefinius) and defining its capacity to tolerate environmental 

extremes. Marine Biotechnology, 8, 641-653.  

Bu, X.D., Li, N., Tian, X.Q., & Huang, P.L. (2011) Caco-2 and LS174T cell lines provide  

different models for studying mucin expression in colon cancer. Tissue Cell, 43, 201-

206.  

Burrells, C., Williams, P.D., Southgate, P.J. & Crampton, V.O. (1999) Immunological,  

physiological and pathological responses of rainbow trout (Oncorhynchus mykiss) to 

increasing dietary concentrations of soybean proteins. Veterinary Immunology and 

Immunopathology, 72, 277-288. 



159 
 

Buttle, L.G., Burrells, A.C., Good, J.E., Williams, P.D., Southgate, P.J. & Burrells, C. (2001)  

The binding of soybean agglutinin (SBA) to the intestinal epithelium of Atlantic 

salmon Salmo salar and Rainbow trout, Oncorhynchus mykiss, fed high levels of 

soybean meal. Veterinary Immunology and Immunopathology, 80, 237-244.  

Canani, R.B., Costanzo, M.D., Leone, L., Pedata, M., Meli, R. & Calignano, A. (2011)  

Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World 

Journal of Gastroenterology, 17, 1519-1528. 

Chasiotis, H., Kolosov, D., Bui, P. & Kelly, S.P. (2012) Tight junctions, tight junction proteins  

and paracellular permeability across the gill epithelium of fishes: A review. Respiratory 

Physiology & Neurobiology, 184, 269-281. 

Chen, B., Ji, B. & Gao, H. (2015) Modeling active mechanosensing in cell-matrix interactions.   

Annual Review of Biophysics, 44, 1-32.  

Chow, A. & Zhang, R. (1998) Glutamine reduces heat shock-induced cell death in rat  

intestinal epithelial cells. Journal of Nutrition, 128, 1296-1301. 

Clelland, E.S., Bui, P., Bagherie-Lachidan, M. & Kelly, S.P. (2010) Spatial and salinity- 

induced alterations in claudin-3 isoform mRNA along the gastrointestinal tract of the 

pufferfish Tetraodon nigroviridis. Comparative Biochemistry and Physiology Part A: 

Molecular & Integrative Physiology, 155, 154-163. 

Coss, R.A. & Linnemans, W.A.M. (1996) The effects of hyperthermia on the  

cytoskeleton: a review. International Journal of Hyperthermia, 12, 173-196. 

Dokladny, K., Zuhl, M.N. & Moseley, P.L. (2016) Intestinal epithelial barrier function and  

tight junction proteins with heat and exercise. Journal of Applied Physiology, 120, 

692-701.  

Eelen, G., Cruys, B., Welti, J., De Bock, K. & Carmeliet, P. (2013) Control of vessel sprouting    

 by genetic and metabolic determinants. Trends in Endocrinology Metabolism, 24, 589-

596. 

Esumi, H., Izuishi, K., Kato, K., Hashimoto, K., Kurashima, Y., Kishimoto, A., Ogura, T. &   

Ozawa, T. (2002) Hypoxia and nitric oxide treatment confer tolerance to glucose 

starvation in a 5’-AMP-activated protein kinase-dependent manner. Journal of 

Biological Chemistry, 277, 32791-32798.  

 



160 
 

Evans, M.E., Jones, D.P. & Ziegler, T.R. (2005) Glutamine inhibits cytokine-induced  

apoptosis in human colonic epithelial cells via the pyrimidine pathway. American 

Journal of Physiology – Gastrointestinal and Liver Physiology, 289, G388-G396. 

Exton, M.S. (1997) Infection-induced anorexia: active host defence strategy. Appetite, 29, 369- 

   383. 

FAO, 2016. The state of world fisheries and aquaculture 2016. Contributing to food security  

and nutrition for all. Rome, 200 pp. 

Ferraris, R.P. & Carey, H.V. (2000) Intestinal transport during fasting and malnutrition. Annual  

   Reviews of Nutrition, 20, 195-219.  

FOC, 2012. Aquaculture in Canada 2012. A report on aquaculture sustainability. 34 pp.  

Francis, G., Makkar, H.P.S. & Becker, K. (2001) Antinutritional factors present in plant- 

derived alternate fish feed ingredients and their effects in fish. Aquaculture, 199, 197-

227. 

Geppert, M., Sigg, L. & Schirmer, K. (2016) A novel two-compartment barrier model for  

investigating nanoparticle transport in fish intestinal epithelial cells. Environmental 

Science: Nano, 3, 388-395. 

Glencross, B. & Rutherford, N. (2010) Dietary strategies to improve the growth and feed  

utilization of barramundi, Lates calcarifer under high water temperature conditions. 

Aquaculture Nutrition, 16, 343-350. 

González-Mariscal, L., Betanzos, A., Nava, P. & Jaramillo, B.E. (2003) Tight junction  

proteins. Progress in Biophysics & Molecular Biology, 81, 1-44. 

Green, M., Niewold, T.A. (2011) Optimizing culture conditions of a porcine epithelial cell line   

 IPEC-J2 through a histological and physiological characterization. Cytotech, 63, 415-

423.  

Hamiel, C.R., Pinto, S., Hau, H. & Wischmeyer, P.E. (2009) Glutamine enhances heat shock  

protein 70 expression via increased hexosamine biosynthetic pathway activity. 

American Journal of Physiology - Cell Physiology, 297, C1509-C1519.  

Hansen, R.K., Oesterreich, S., Lemieux, P., Sarge, K.D. & Fuqua, S.A. (1997) Quercetin  

inhibits heat shock protein induction but not heat shock factor DNA-binding in 

human breast carcinoma cells. Biochemical and Biophysical Research 

Communications, 239, 851-856. 



161 
 

Hartsock, A. & Nelson, W.J. (2008) Adherens and tight junctions: Structure, function and  

connections to the actin cytoskeleton. Biochimica et Biophysica Acta, 1778, 660-669. 

Heath, J.P. & Dunn, G.A. (1978) Cell to substratum contacts of chick fibroblasts and their  

 relation to the microfilament system. A correlated interference-reflexion and high-

voltage electron-microscope study.  Journal of Cell Science, 29, 197-212. 

Hermansen, O. & Heen, K. (2012) Norwegian salmonid farming and global warming:  

socioeconomic impacts. Aquaculture Economics & Management, 16, 202-221.  

Hess, J.R. & Greenberg, N.A. (2012) The role of nucleotides in the immune and  

gastrointestinal systems: Potential clinical applications. Nutrition in Clinical Practice, 

27, 281-294. 

Hilgers, A.R., Conradi, R.A. & Burton, P.S. (1990) Caco-2 cell monolayers as a model for  

drug transport across the intestinal mucosa.  Pharmaceutical Research, 7, 902-910. 

Hotulainen, P. & Lappalainen, P. (2006) Stress fibers are generated by two distinct actin  

assembly mechanisms in motile cells. Journal of Cell Biology, 173, 383-394.  

Iizuka, M. & Konno, S. (2011) Wound healing of the intestinal epithelial cells. World  

Journal of Gastroenterology, 17, 2161-2171. 

Izuishi, K., Kato, K., Ogura, T., Kinoshita, T. & Esumi, H. (2000) Remarkable tolerance of  

tumor cells to nutrient deprivation: possible new biochemical target for cancer therapy.  

Cancer Research, 60, 6201-6207.  

Jobling, M. (2015) Fish nutrition research: past, present and future. Aquaculture  

International, 24, 767-786. 

Jolly, C. & Morimoto, R.I. (2000) Role of the heat shock response and molecular  

chaperones in oncogenesis and cell death. Journal of the National Cancer Institute, 92, 

1564-1572. 

Kawano, A., Haiduk, C., Schirmer, K., Hanner, R., Lee, L.E.J, Dixon, B. & Bols, N.C.  

(2011) Development of a rainbow trout intestinal epithelial cell line and its response 

to lipopolysaccharide. Aquaculture Nutrition, 17, e241-e252. 

Khurana, S., Tomar, A., George, S.P., Wang, Y., Siddiqui, M.R., Guo, H., Tiyi, G. &  

Mathew, S. (2008) Autoaxin and lysophosphatidic acid stimulate intestinal epithelial 

cell motility by redistribution of the actin modifying protein villin to the developing 

lamellipodia. Experimental Cell Research, 314, 530-542. 



162 
 

Kim, S.E., Park, H.J., Jeong, H.K., Kim, M.J., Kim, M., Bae, O.N. & Baek, S.H. (2015)  

Autophagy sustains the survival of human pancreatic cancer PANC-1 cells under 

extreme nutrient deprivation conditions. Biochemical and Biophysical Research 

Communication, 463, 205-210.  

Kolosov, D., Bui, P., Chasiotis, H. & Kelly, S.P. (2013) Claudins in teleost fishes. Tissue  

Barriers, 1, e25391. 

Krause, M. & Gautreau, A. (2014) Steering cell migration: lamellipodium dynamics and the  

 regulation of directional persistence.  Nature Reviews: Molecular Cell Biology, 15,  

577-590.  

Krogdahl, A. & Blake-McKellep, A.M. (2005) Fasting and refeeding cause rapid changes in  

 intestinal tissue mass and digestive enzyme capacities of Atlantic salmon (Salmo salar 

L.). Comparative Biochemistry and Physiology - Part A: Molecular & Integrative 

Physiology, 141, 450-460. 

Lange, K. (2010) Fundamental role of microvilli in the main functions of differentiated cells:  

 outline of an universal regulating and signaling system at the cell periphery. Journal of 

Cellular Physiology, 226, 896-927. 

Larson, S.D., Li, J., Chung, D.H. & Evers, B.M. (2007) Molecular mechanisms  

contributing to glutamine-mediated intestinal cell survival. American Journal of 

Physiology – Gastrointestinal and Liver Physiology, 293, G1262-G1271. 

Lei, N.Y., Jabaji, Z., Wang, J., Joshi, V.S., Brinkley, G.J., Khalil, H., Wang, F., Jaroszewicz,  

A., Pellegrini, M., Li, L., Lewis, M., Stelzner, M., Dunn, J.C.Y. & Martín, M.G.  

(2014). Intestinal subepithelial myofibroblasts support the growth of intestinal 

epithelial stem cells. PLoS ONE, 9, e84651.  

Leibovitz, A. (1963) The growth and maintenance of tissue-cell cultures in free gas exchange  

with the atmosphere. American Journal of Hygiene, 78, 173–180. 

Li, N., Lewis, P., Samuelson, D., Liboni, K. & Neu, J. (2004) Glutamine regulates Caco- 

2 cell tight junction proteins. American Journal of Physiology – Gastrointestinal and 

Liver Physiology, 287, G726-G733. 

Lignot, J.H. & LeMaho, Y. (2012) A history of modern research into fasting, starvation, and  

inanition. Chapter 2. Comparative Physiology of Fasting, Starvation, and Food 

Limitation (ed MD McCue). 



163 
 

Lindquist, S. & Craig, E.A. (1988) The heat shock proteins. Annual Review of Genetics, 22,  

631-677. 

Lines, J.A. & Spence, J. (2012) Safeguarding the welfare of fish at harvest. Fish Physiology  

and Biochemistry, 38, 153-162.  

Liu, H., Dicksved, J., Lundh, T. & Lindberg, E. (2014) Heat shock proteins: Intestinal  

gatekeepers that are influenced by dietary components and the gut microbiota. 

Pathogens, 3, 187-210. 

Liu, J., Mai, K., Xu, W., Zhang, Y., Zhou, H. & Ai, Q. (2015) Effects of dietary  

glutamine on survival, growth performance, activities of digestive enzyme, antioxidant 

status and hypoxia stress resistance of half-smooth tongue sole (Cynoglossus 

semilaevis Gunther) post larvae. Aquaculture, 446, 48-56. 

Lopez-Luna, J., Torrent, F. & Villarroel, M. (2014) Fasting up to 34 °C days in rainbow trout,  

Oncorhynchus mykiss, has little effect on flesh quality. Aquaculture, 420-421, 63-70. 

Lopez-Luna, J., Vasquez, L., Torrent, F. & Villarroel, M. (2013) Short-term fasting and  

welfare prior to slaughter in rainbow trout, Oncorhynchus mykiss. Aquaculture, 400-

401, 142-147. 

Mattila, P.K. & Lappalainen, P. (2008) Filopodia: molecular architecture and cellular  

  functions. Nature, 9, 446-454. 

Maninova, M., Caslasvsky, J. & Vomastek, T. (2017) The assembly and function of  

perinuclear actin cap in migrating cells. Protoplasma, 254, 1207-1218. 

Mayer, M.P. & Bukau, B. (2005) Hsp70 chaperones: cellular functions and molecular  

mechanism. Cell and Molecular Life Sciences, 62, 670-684. 

Mazumder, S.K., De, M., Mazlan, A.G., Zaidi, C., Rahim, S.M. & Simon, K.D. (2015) Impact  

of global climate change on fish growth, digestion and physiological status: developing 

a hypothesis for cause and effect relationships. Journal of Water and Climate Change, 

doi: 10.2166/wcc.2014.146.  

McCue, M.D. (2010) Starvation physiology: reviewing the different strategies animals use to  

survive a common challenge. Comparative Biochemistry and Physiology - Part A: 

Molecular and Integrative Physiology, 156, 1-18. 

Metcalfe, N.B. & Thorpe, J.E. (1992) Anorexia and defended energy levels in over-wintering  

   juvenile salmon. Journal of Animal Ecology, 61, 175-181. 



164 
 

Miller, T.A., Smith, G.S., Banan, A. & Kokoska, E.R. (2000) Cytoskeleton as a target  

for injury in damaged intestinal epithelium. Microscopy Research and Technique, 51, 

149-155. 

Minghetti, M., Drieschner, C., Bramaz, N., Schug, H. & Schirmer, K. (2017) A fish intestinal  

epithelial barrier model established from the rainbow trout (Oncorhynchus mykiss) 

cell line, RTgutGC. Cell Biology and Toxicology, doi: 10.1007/s10565-017-9385-x. 

Mitchell, D.M. & Ball, J.M. (2004) Characterization of a spontaneously polarizing HT-29 cell  

  line, HT-29/el.f8.  In Vitro Cellular & Developmental Biology, 40, 297-302.  

Modis, K., Gero, D., Nagy, N., Szoleczky, P., Toth, Z.D. & Szabo, C. (2009)  

Cytoprotective effects of adenosine and inosine in an in vitro model of acute tubular 

necrosis. British Journal of Pharmacology, 158, 1565-1578. 

Noda, S., Tanabe, S. & Suzuki, T. (2013) Naringenin enhances intestinal barrier function  

through the expression and cytoskeletal association of tight junction proteins in Caco-

2 cells. Molecular Nutrition & Food Research, 57, 2019-2028. 

Nordrum, S., Bakke-Mckellep, A.M., Krogdahl, A. & Buddington, R.K. (2000) Effects of  

soybean meal and salinity on the intestinal transport of nutrients in Atlantic salmon 

(Salmo salar L.) and rainbow trout (Oncorhynchus mykiss). Comparative 

Biochemistry and Physiology - Part B: Biochemistry and Molecular Biology, 125, 

317-335. 

Palermo, F.A., Cardinaletti, G., Cocci, P., Tibaldi, E., Polzonetti-Magni, A. & Mosconi,  

G. (2013) Effects of dietary nucleotides on acute stress response and cannabinoid 

receptor 1 mRNAs in sole, Solea solea. Comparative Biochemistry and Physiology, 

164, 477-482. 

Palmeri, G., Turchini, G.M., Marriott, P.J., Morrison, P. & De Silva, S.S. (2009) Biometric,  

nutritional and sensory characteristic modifications in farmed Murray cod 

(Maccullochella peelii peelii) during the purging process. Aquaculture, 287, 354-360. 

Pearce, S.C., Mani, V., Boddicker, R.L., Johnson, J.S., Weber, T.E., Ross, J.W., Rhoads, R.P.,  

Baumarg, L.H. & Gabler, N.K. (2013) Heat stress reduces intestinal epithelial barrier 

integrity and favors intestinal glucose transport in growing pigs.  PLOS ONE, 8, 

e70215.  

 



165 
 

Pellegrin, S. & Mellor, H. (2007) Actin stress fibres. Journal of Cell Science, 120, 3491-3499. 

Peterson, L.W. & Artis, D. (2014) Intestinal epithelial cells: regulators of barrier function  

and immune homeostasis. Nature Reviews Immunology, 14, 141-153. 

Pirhonen, J., Schreck, C.B., Reno, P.W. & Ogut, H. (2003) Effect of fasting on feed intake,  

 growth and mortality Chinook salmon, Onchorhynchus tshawytscha, during an induced 

Aeromonas salmonicida epizootic. Aquaculture, 216, 31-38. 

Pohlenz, C., Buentello, A., Bakke, A.M. & Gatlin III, D.M. (2012) Free dietary  

glutamine improves intestinal morphology and increases enterocyte migration rates, 

but has limited effects on plasma amino acid profile and growth performance of channel 

catfish Ictalurus punctatus. Aquaculture, 370-371, 32-39. 

Pottinger, T.G., Rand-Weaver, M. & Sumpter, J.P. (2003) Overwinter fasting and re-feeding  

 in rainbow trout: plasma growth hormone and cortisol levels in relation to energy 

mobilization. Comparative Biochemistry and Physiology - Part B: Biochemistry and 

Molecular Biology, 136, 403-417. 

Powell, D.W., Mifflin, R.C., Valentich, J.D., Crowe, S.E., Saada, J.I. & West, A.B.  

(1999) Myofibroblast. II. Intestinal subepithelial myofibroblasts. American Journal of 

Physiology, 277, C183-C201. 

Raffaghello, L., Lee, C., Safdie, F.M., Wei, M., Madia, F., Bianchi, G. & Longo, V.D. (2008)  

 Starvation-dependent differential stress resistance protects normal but not cancer cells 

against high-dose chemotherapy.  Proceedings of the National Academy of Sciences of 

the United States of America, 105, 8215-8220. 

Rajasekaran, S.A., Beyenbach, K.W & Rajasekaran, A.K. (2008) Interactions of tight  

junctions with membrane channels and transporters. Biochimica et Biophysica Acta, 

1778, 757-769. 

Ramsay, J.M., Feist, G.W., Schreck, C.B., Couture, R., O’Neil, J. & Noakes, D.L.G. (2009)  

The effect of food deprivation on the cortisol response to crowding in juvenile 

steelhead. North American Journal of Aquaculture, 71, 130-133. 

Rathbone, M.P., Christjanson, L., Deforge, S., Beluca, B., Gysbers, J.W., Hindley, S., Jovetich,  

M., Middlemiss, P. & Takhal, S. (1992) Extracellular purine nucleosides stimulate cell 

division and morphogenesis: pathological and physiological implications. Medical 

Hypotheses, 37, 232-240. 



166 
 

Regost, C., Arzel, J., Cardinal, M., Laroche, M. & Kaushik, S.J. (2001) Fat deposition and  

flesh quality in seawater reared, triploid brown trout (Salmo trutta) as affected by 

dietary fat levels and starvation. Aquaculture, 193, 325-345. 

Ren, H., Musch, M.W., Kojima, K., Boone, D., Ma, A. & Chang, E.B. (2001) Short-chain  

fatty acids induce intestinal epithelial heat shock protein 25 expression in rats and in 

IEC 18 cells. Gastroenterology, 121, 631-639. 

Richter, K., Haslbeck, M. & Buchner, J. (2010) The heat shock response: Life on the  

verge of death. Molecular Cell, 40, 253-266. 

Roche, H.M., Terres, A.M., Black, I.B., Gibney, M.J. & Kelleher, D. (2001) Fatty acids  

and epithelial permeability: effect of conjugated linoleic acid in Caco-2 cells. Gut, 48, 

797-802. 

Rodriguez-Serrano, F., Marchal, J.A., Rios, A., Martinez-Amat, A., Boulaiz, H., Prados,  

J., Peran, M., Caba, O., Carrillo, E., Hita, F. & Aranega, A. (2007) Exogenous 

nucleosides modulate proliferation of rat intestine epithelial IEC-6 cells. Journal of 

Nutrition, 137, 879-884. 

Rosella, O., Sinclair, A. & Gibson, P.R. (2000) Polyunsaturated fatty acids reduce non- 

receptor-mediated transcellular permeation of protein across a model of intestinal 

epithelium in vitro. Journal of Gastroenterology and Hepatology, 15, 626-631. 

Ross, J.A. & Kasum, C.M. (2002) Dietary flavonoids: bioavailability, metabolic effects, and  

safety. Annual Review of Nutrition, 22, 19-34.  

Rozza, A.L., Hiruma-Lima, C.A., Tanimoto, A. & Pellizon, C.H. (2012) Morphological  

and pharmacological investigations in the epicatechin gastroprotective effect. 

Evidence-Based Complementary and Alternative Medicine, 2012, 708156. 

Sanchez, A.D. & Feldman, J.L. (2016) Microtubule-organizing centers: from the centrosome  

to non-centrosomal sites. Current Opinion in Cell Biology, 44, 93-101. 

Sato, K., Tsuchichara, K., Fuji, S., Sugiyama, M., Goya, T., Atomi, Y., Ueno, T., Ochiai, A.  

 & Esumi, H. (2007) Autophagy is activated in colorectal cancer cells and contributes 

to the tolerance to nutrient deprivation. Cancer Research, 67, 9677-9684.  

Sato, N., Nakano, T., Kawakami, H. & Idota, T. (1999) In vitro and in vivo effects of  

exogenous nucleotides on the proliferation and maturation of intestinal epithelial 

cells. Journal of Nutritional Science and Vitaminology, 45, 107-118. 



167 
 

Schirmer, K., Chan, A.G.J., Greenberg, B.M., Dixon, D.G. & Bols, N.C. (1997) Methodology  

for demonstrating  and measuring the photocytotoxicity of fluoranthene to fish cells in 

culture. Toxicology In Vitro, 11, 107-119. 

Schneider, G. & Burridge, K. (1994) Formation of focal adhesions by osteoblasts adhering to  

  different substrata.  Experimental Cell Research, 214, 264-269.  

Shimohara, S., Murakami, T., Morikawa, M., Matsuo, J., Nagayama, S., Shuto, T., Suico,  

M.A., Okiyoneda, T., Yamatsu, I., Mizushima, T., Shimasaki, T. & Kai, H. (2005) 

Vitamins K1 and K2 potentiate hyperthermia by down-regulating Hsp72 expression 

in vitro and in vivo. International Journal of Oncology, 27, 1527-1533. 

Small, J.V. & Rottner, K. (2010) Elementary cellular processes driven by actin assembly:  

 lamellipodia and filopodia. In Actin-based motility (ed MF Carlier) Chapter 1 pp 3-33. 

Sokolova, A.V., Kreplak, L., Wedig, T., Mucke, N., Svergun, D.I., Herrmann, H., Aebi, U. &  

Strelkov, S.V. (2006) Monitoring intermediate filament assembly by small-angle x-ray 

scattering reveals the molecular architecture of assembly intermediates. Proceedings 

of the National Academy of Sciences of the United States of America, 31, 16206-16211. 

St-Pierre, N.R., Cobanov, B. & Schnitkey, G. (2003) Economic losses from heat stress  

by US livestock industries. Journal of Dairy Science, 86, E52-E77. 

        Sturm, A., & Dignass, A.U. (2008) Epithelial restitution and wound healing in inflammatory  

bowel disease. World Journal of Gastroenterology, 14, 348–353. 

Surco-Laos, F., Duenas, M., Gonzalez-Manzano, S., Cabello, J., Santos-Buelga, C. &  

Gonzalez-Paramas, A.M. (2012) Influence of catechins and their methylated 

metabolites on lifespan and resistance to oxidative and thermal stress of 

Caenorhabditis elegans and epicatechin uptake. Food Research International, 46, 

514-521.   

Szekeres, P., Eliason, E.J., Lapointe, D., Donaldson, M.R., Brownscombe, J.W. & Cooke, S.J.   

(2016) On the neglected cold side of climate change and what it means to fish. Climate 

Research, 69, 239-245.  

Tahmasebi-Kohyani, A., Keyvanshokooh, S., Nematollahi, A., Mahmoudi, N. & Pasha- 

Zanoosi, H. (2012) Effects of dietary nucleotides supplementation on rainbow trout 

(Oncorhynchus mykiss) performance and acute stress response. Fish  

Physiology and Biochemistry, 38, 431-440. 



168 
 

Tojander, S., Gateva, G. & Lappalainen, P. (2012) Actin stress fibers-assembly, dynamics and  

  biological roles.  Journal of Cell Science, 125, 1855-1864.   

Torres, M.I., Fernandez, M.I., Gil, A., Rios, A. (1997) Dietary nucleotides have  

cytoprotective properties in rat liver damaged by thioacetamide. Life Sciences, 62, 13-

22. 

Umar, S. (2010) Intestinal stem cells. Current Gastroenterology Reports, 12, 340-348. 

Uran, P.A., Schrama, J.W., Rombout, J.H.W.M., Obach, A., Jensen, L., Koppe, W. & Verreth,  

J.A.J. (2008) Soybean meal-induced enteritis in Atlantic salmon (Salmo salar L.) at 

 different temperatures. Aquaculture Nutrition, 14, 324-330. 

Van den Ingh, T.S.G.A.M., Krogdahl, A., Olli, J.J., Hendriks, H.G.C.J.M. & Koninks,  

J.G.J.F. (1991) Effect of soybean-containing diets on the proximal and distal intestine 

in Atlantic salmon (Salmo salar): a morphological study. Aquaculture, 94, 297-305. 

Vllasaliu, D., Falcone, F.H., Stolnik, S. & Garnett, M. (2014) Basement membrane  

influences intestinal epithelial cell growth and presents a barrier to the movement of 

macromolecules.  Experiment Cell Research, 323, 218-231.    

Wallace, K.N., Akhter, S., Smith, E.M., Lorent, K. & Pack, M. (2005) Intestinal growth and  

differentiation in zebrafish. Mechanisms of Development, 122, 157-173. 

Wang, T., Hung, C.C.Y. & Randall, D.J. (2006) The comparative physiology of food  

deprivation: from feast to famine. Annual Review of Physiology, 68, 223-251. 

Welker, T.L., Lim, C., Yildirim-Aksoy, M. & Klesius, P.H. (2011) Effects of dietary  

supplementation of a purified nucleotide mixture on immune function and disease and 

stress resistance in channel catfish, Ictalurus punctatus. Aquaculture Research, 42, 

1878-1889. 

Willemsen, L.E., Koetsier, M.A., Balvers, M., Beermann, C., Stahl, B. & van Tol, E.A.  

(2008) Polyunsaturated fatty acids support epithelial barrier integrity and reduces IL-

4 mediated permeability in vitro. European Journal of Nutrition, 47, 183-191. 

Wischmeyer, P.E., Mush, M.W., Madonna, M. B., Thisted, R. & Chang, E.B. (1997)  

Glutamine protects intestinal epithelial cells: role of inducible HSP70. American 

Journal of Physiology, 272, G879-G884. 

 

 



169 
 

Zhang, L., Jie, G., Zhang, J. & Zhao, B. (2009) Significant longevity-extending effects of  

EGCG on Caenorhabditis elegans under stress. Free Radical Biology and Medicine, 

46, 414-421. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



170 
 

Chapter 2 References 

Antonopoulou E., Kentepozidou E., Feidantsis K., Roufidou C., Despoti S., & Chatzifotis S.  

(2013) Starvation and re-feeding affect Hsp expression, MAPK activation and 

antioxidant enzymes activity of European Sea Bass (Dicentrarchus labrax). 

Comparative Biochemistry & Physiology – Part A: Molecular & Integrative 

Physiology, 165, 79–88.  

Ashley, P.J. (2007) Fish welfare: current issues in aquaculture. Applied Animal Behaviour  

Science, 104, 195-235. 

Azodi, M., Ebrahimi, E., Farhadian, O., Mahboobi-Soofiani, N. & Morshedi, V. (2015)  

Compensary growth response of rainbow trout Oncorhynchus mykiss Walbaum 

following short starvation periods. Chinese Journal of Oceanology and Limnology, 33, 

928-933. 

Balda, M.S. & Matter, K. (2000) The tight junction protein ZO-1 and an interacting  

transcription factor regulate ErbB-2 expression. The EMBO Journal, 19, 2024-2033. 

Beamish, F.W.A. (1978) Swimming capacity of fish. Fish Physiology, 7, 101-187. 

Bian, C., Xu, G., Wang, J., Ma, J., Xiang, M. & Chen, P. (2009) Hypercholesterolaemic serum  

increases the permeability of endothelial cells through zonula occludens-1 with 

phosphatidylinositol 3-kinase signaling pathway. Journal of Biomedicine and 

Biotechnology, 2009, 814979. 

Bloch, S.R., Kim, J.J., Pham, P.H., Hodson, P.V., Lee, L.E.J. & Bols, N.C. (2017) Responses  

of an American eel brain endothelial-like cell line to selenium deprivation and to 

selenite, selenate and selenomethionine additions in different exposure media. In Vitro 

Cellular & Developmental Biology – Animal (in press).  

Boraldi, F., Annovi, G., Paolinelli-Devincenzi, C., Tiozzo, R. & Quaglino, D. (2008) The  

effect of serum withdrawal on the protein profile of quiescent human dermal fibroblasts 

in primary cell culture. Proteomics, 8, 66-82. 

Boutilier, R.G. (2001) Mechanisms of cell survival in hypoxia and hypothermia. Journal of  

Experimental Biology, 204, 3171-3181. 

 

 

 



171 
 

Bryson, S.P., Joyce, E.M., Martell, D. J., Lee, L.E.J., Holt, S.E., Kales, S.C., Fujiki, K., Dixon,  

B. & Bols, N.C. (2006) A cell line (HEW) from embryos of haddock (Melanogrammus 

aeglefinius) and its capacity to tolerate environmental extremes. Marine 

Biotechnology, 8, 641-653.  

Cara, J.B., Aluru, N., Moyano, F.J. & Vijayan, M.M. (2005) Food deprivation induces HSP 70  

and HSP 90 protein expression in larval and gilthead sea bream and rainbow trout. 

Comparative Biochemistry & Physiology - Part B: Biochemistry & Molecular Biology, 

142, 426-431. 

Chang, C., Wang, X. & Caldwell, R.B. (1997) Serum opens up tight junctions and reduces ZO- 

1 protein in retinal epithelial cells. Journal of Neurochemistry, 69, 859-867. 

Chasiotis, H., Kolosov, D., Bui, P. & Kelly, S.P. (2012) Tight junctions, tight junction  

proteins and paracellular permeability across the gill epithelium of fishes: A review. 

Respiratory Physiology & Neurobiology, 184, 269-281.  

Colgan, O.C., Collins, N.T., Ferguson, G., Murphy, R.P., Birney, Y.A., Cahill, P.A. &  

Cummins, P.M. (2008) Influence of basolateral condition on the regulation of brain 

microvascular endothelial tight junction properties and barrier function. Brain 

Research, 1193, 84-92. 

Dayeh, V.R., Bols, N.C., Tanneberger, K., Schirmer, K., Lee, L.E.J. (2013) The use of fish  

derived cell lines for investigation of environmental contaminants: an update following 

OECD’s fish toxicity testing Framework No. 171. Current Protocols in Toxicology, 

1.5.1-1.5.20. 

Eslamloo, K., Morshedi, V., Azodi, M., & Akhavan, S.R. (2017) Effect of starvation on some  

immunological and biochemical parameters in tinfoil barb (Barbonymus 

schwanenfeldii). Journal of Applied Animal Research, 45, 173-178. 

Fanarraga, M.L., Villegas, J.C., Carranza, G., Castano, R. & Zabala, J.C. (2009) Tubulin  

cofactor B regulates microtubule densities during microglia transition to the reactive 

states. Experimental Cell Research, 315, 535–541. 

Gronquist, D. & Berges, J.A. (2013) Effects of aquarium-related stressors on the zebrafish: a  

comparison of behavioral, physiological, and biochemical indicators. Journal of 

Aquatic Animal Health, 25, 53-65. 

 



172 
 

Jobling, M. (1983) Towards an explanation of specific dynamic action (SDA). Journal of Fish  

Biology, 23, 549-555. 

Jolly, C. & Morimoto, R.I. (2000) Role of the heat shock response and molecular chaperones  

in oncogenesis and cell death. Journal of the National Cancer Institute, 92, 1564-

1572. 

Ham, R.G. (1981) Cell growth requirements –the challenge we face. In: Waymouth C.., Ham  

R.G. and Chapple P.J. (eds.) The growth requirements of vertebrate cells in vitro.  

Cambridge University Press, Cambridge. pp 1-15 

Hashimoto, K., Takeda, K., Nakayama, T. & Shimizu, M. (1995) Stabilization of the tight  

junction of the intestinal Caco-2 cell monolayer by milk whey proteins. Bioscience, 

Biotechnology, and Biochemistry, 59, 1951-1952. 

Iizuka, M. & Konno, S. (2011) Wound healing of intestinal epithelial cells.  World Journal of  

Gastroenterology, 17, 2161-2171. 

Kawano, A., Haiduk, C., Schirmer, K., Hanner, R., Lee, L.E.J, Dixon, B. & Bols, N.C.  

(2011) Development of a rainbow trout intestinal epithelial cell line and its response to 

lipopolysaccharide. Aquaculture Nutrition, 17, e241-e252. 

Lines, J.A. & Spence, J. (2012) Safeguarding the welfare of fish at harvest. Fish Physiology  

and Biochemistry, 38, 153-162.  

Martin, S.A., Douglas, A., Houlihan, D.F. & Secombes, C.J. (2010) Starvation alters the liver  

transcriptome of the innate immune response in atlantic salmon (Salmo salar). BMC 

Genomics, 11, 418. 

Maninova, M., Caslasvsky, J. & Vomastek T. (2017) The assembly and function of perinuclear  

  actin cap in migrating cells. Protoplasma, 254, 1207-1218. 

Nakamura, T., Murata, T., Hori, M. & Ozaki, H. (2013) UDP induces intestinal epithelial  

migration via the P2Y (6) receptor. British Journal of Pharmacology, 170, 883-892.  

Niehoff, B. (2000) Effect of starvation on the reproductive potential of Calanus finmarchicus.  

  Journal of Marine Science, 57, 1764-1772. 

Paddenberg, R., Loos, S., Schöneberger, H‐J., Wulf, S., Müller, A., Iwig, M. & Mannherz,  

H.G. (2001) Serum withdrawal induces a redistribution of intracellular gelsolin 

towards F‐actin in NIH 3T3 fibroblasts preceding apoptotic cell death.  European 

Journal of Cell Biology, 80, 366–378. 



173 
 

Ramsay, J.M., Feist, G.W., Schreck, C.B., Couture, R., O’Neil, J. & Noakes, D.L.G. (2009)  

The effect of food deprivation on the cortisol response to crowding in juvenile 

steelhead. North American Journal of Aquaculture, 71, 130-133. 

Rastogi, H., Pinjari, J., Honrao, P., Praband, S. & Somani, R. (2013) The impact of  

permeability enhancers on assessment for monolayer of colon adenocarcinoma cell line 

(CACO-2) used in in vitro permeability assay. Journal of Drug Delivery and 

Therapeutics, 3, 20-29. 

Ridley, A.J. & Hall, A. (1992) The small GTP-binding protein rho regulates the assembly of  

focal adhesions and actin stress fibers in response to growth factors. Cell, 70, 389-399. 

Sanchez, A.D. & Feldman, J.L. (2016) Microtubule-organizing centers: from the centrosome  

to non-centrosomal sites. Current Opinion in Cell Biology, 44, 93-101. 

Schirmer, K., Chan, A.G.J., Greenberg, B.M., Dixon, D.G. & Bols, N.C. (1997) Methodology  

for demonstrating and measuring the photocytoxicity of fluoranthene to fish cells in 

culture. Toxicology in Vitro, 11, 107-113.  

Schmitz, H-D. & Bereiter-Hahn, J. (2002) Glyceraldehyde-3-phosphate dehydrogenase  

associates with actin filaments in serum deprived 3T3 cells only. Cell Biology 

International, 26, 155-164. 

Srinivasan, B., Kolli, A. R., Esch, M. B., Abaci, H. E., Shuler, M. L. & Hickman, J. J. (2015)  

TEER measurement techniques for in vitro barrier model systems. Journal of 

Laboratory Automation, 20, 107-126. 

Szymanski, D. (2002) Tubulin folding cofactors: half a dozen for a dimer. Current Biology,  

12, R767–R769. 

Tavares, S., Vieira, A.F., Taubenberger, A.V., Araújo, M., Martins, N.P., Brás-Pereira, C.,  

Polónia, A., Herbig, M., Barreto, C., Otto, O., Cardoso, J., Pereira-Leal, J.B., Guck, 

J., Paredes, J. & Janody, F. (2017) Actin stress fiber organization promotes cell 

stiffening and proliferation of pre-invasive breast cancer cells. Nature 

Communications, 8, 15237.  

Weber, T.E. & Bosworth, B.G. (2005) Effect of 28 day exposure to cold temperature or feed  

restriction on growth, body composition, and expression of genes related to muscle 

growth and metabolism in channel catfish. Aquaculture, 246, 483-492. 

 

https://www.nature.com/articles/ncomms15237#auth-4
https://www.nature.com/articles/ncomms15237#auth-6
https://www.nature.com/articles/ncomms15237#auth-7


174 
 

Chapter 3 References 

Chasiotis, H., Kolosov, D., Bui, P. & Kelly, S.P. (2012) Tight junctions, tight junction  

proteins and paracellular permeability across the gill epithelium of fishes: A review. 

Respiratory Physiology & Neurobiology, 184, 269-281. 

Clelland, E.S., Bui, P., Bagherie-Lachidan, M. & Kelly, S.P. (2010) Spatial and salinity- 

induced alterations in claudin-3 isoform mRNA along the gastrointestinal tract of the 

pufferfish Tetraodon nigroviridis. Comparative Biochemistry and Physiology Part A: 

Molecular & Integrative Physiology, 155, 154-163. 

Dayeh, V.R., Bols, N.C., Tanneberger, K., Schirmer, K., Lee, L.E.J. (2013) The use of fish  

derived cell lines for investigation of environmental contaminants: an update following 

OECD’s fish toxicity testing Framework No. 171. Current Protocols in Toxicology, 

1.5.1-1.5.20. 

Dourdin, N., Bhatt, A.K., Dutt, P., Greer, P.A., Arthur, J.S.C., Elce, J.S. & Huttenlocher, A.  

(2001) Reduced cell migration and disruption of the actin cytoskeleton in calpain-

deficient embryonic fibroblasts. The Journal of Biological Chemistry, 276, 48382-

48388. 

Evans, M.E., Jones, D.P. & Ziegler, T.R. (2005) Glutamine inhibits cytokine-induced  

apoptosis in human colonic epithelial cells via the pyrimidine pathway. American 

Journal of Physiology - Gastrointesinal and Liver Physiology, 289, G388–G396. 

Frabasile, S., Koishi, A.C., Kuczera, D., Silveira, G.F., Verri, W.A., dos Santos, C.N.D. &  

Bordignon, J. (2017) The citrus flavanone naringenin impairs dengue virus replication 

in human cells. Nature Scientific Reports, 7, 41864. 

Fukada, H., Furutani, T., Shimizu, R. & Masumoto, T. (2014) Effects of yuzu (Citrus junos)  

peel from waste as an aquaculture feed supplement on growth, environmental load, and 

dark muscle discoloration in yellowtail Seriola quinqueradiata. Journal of Aquatic 

Food Product Technology, 23, 511-521. 

Fukuhara, S., Sakurai, A., Sano, H., Yamagishi, A., Somekawa, S., Takahura, N., Saito, Y.,  

Kangawa, K. & Mochizuki, N. (2005) Cyclic AMP potentiates vascular endothelial 

cadherin-mediated cell-cell contact to enhance endothelial barrier function through an 

Epac-Rap1 signaling pathway. Molecular and Cell Biology, 25, 136-146. 

 



175 
 

Gerits, N., Mikalsen, T., Kostenko, S., Shiryaev, A., Johannessen, M. & Moens, U. (2007)  

Modulation of f-actin rearrangement by the cyclic AMP/cAMP-dependent protein 

kinase (PKA) pathway is mediated by MAPK-activated protein kinase 5 and requires 

PKA-induced nuclear export of MK5. The Journal of Biological Chemistry, 282, 

37232-37243. 

Glen, H.L. & Jacobson, B.S. (2003) Cyclooxygenase and cAMP-dependent protein kinase  

reorganize the actin cytoskeleton for motility in HeLa cells. Cell Motility and the 

Cytoskeleton, 55, 265-277. 

Howe, A.K. (2004) Regulation of actin-based migration by cAMP/PKA. Biochimica et  

Biophysica Acta, 1692, 159-174. 

Kawano, A., Haiduk, C., Schirmer, K., Hanner, R., Lee, L.E.J, Dixon, B. & Bols, N.C.  

(2011) Development of a rainbow trout intestinal epithelial cell line and its response to 

lipopolysaccharide. Aquaculture Nutrition, 17, e241-e252. 

Khan, M.K., Zill-E-Huma & Dangles, O. (2014) A comprehensive review on flavanones,  

the major citrus polyphenols. Journal of Food Composition and Analysis, 33, 85-104. 

Kim, S., Harris, M. & Varner, J.A. (2000) Regulation of integrin alpha vbeta 3-mediated  

endothelial cell migration and angiogenesis by integrin alpha5beta1 and protein kinase 

A. Journal of Biological Chemistry, 275, 33920-33928. 

Kolosov, D., Bui, P., Chasiotis, H. & Kelly, S.P. (2013) Claudins in teleost fishes. Tissue  

Barriers, 1, e25391. 

Kuma, A. & Mizushima, N. (2010) Physiological role of autophagy as an intracellular  

recycling system: With and emphasis on nutrient metabolism. Seminars in Cell & 

Developmental Biology, 21, 683-690.  

Leonardi, T., Vanamala, J., Taddeo, S.S., Davidson, L.A., Murphy, M.E., Patil, B.S., Wang,  

N., Carroll, R.J., Lupton, J.R. & Turner, N.D. (2010) Apigenin and naringenin suppress 

colon carcinogenesis through the aberrant crypt stage in azoxymethane-treated rats. 

Experimental Biology and Medicine (Maywood), 235, 710-717. 

Li, A.Q., Zhao, L., Zho, T.F., Zhang, M.Q. & Qin, X.M. (2015) Exendin-4 promotes  

endothelial barrier enhancement via PKA- and Epac1-dependent Rac1 activation. The 

American Journal of Physiology – Cell Physiology, 15, C164-C175. 

 



176 
 

Li, N., Lewis, P., Samuelson, D., Liboni, K. & Neu, J. (2004) Glutamine regulates Caco-2  

cell tight junction proteins. The American Journal of Physiology – Gastrointestinal and 

Liver Physiology, 287, G726-G733. 

Menanteau-Ledouble, S., Krauss, I., Santos, G., Fibi, S., Weber, B. & El-Matbouli, M.  

(2015) Effect of a phytogenic feed additive on the susceptibility of Onchorhynchus 

mykiss to Aeromonas salmonicida. Diseases of Aquatic Organisms, 115, 57-66. 

Morgan, W.D. (1989) Transcription factor Sp1 binds to and activates a human hsp70 gene  

promoter. Molecular and Cell Biology, 9, 4099-4104. 

Mulvihill, E.E., Allister, E.M., Sutherland, B.G., Telford, D.E., Sawyez, C.G., Edwards, J.Y.,  

Markle, J.M., Hegele, R.A. & Huff, M.W. (2009) Naringenin prevents dyslipidemia, 

apolipoprotein B overproduction, and hyperinsulinemia in LDL receptor-null mice 

with diet-induced insulin resistance. Diabetes, 58, 2198-2210. 

Nadella, K.S., Saji, M., Jacob, N.K., Pavel, E., Ringel, M.D. & Kirschner, L.S. (2009)  

Regulation of actin function by protein kinase A-mediated phosphorylation of Limk1. 

EMBO Reports, 10, 599-605.  

Noda, K., Zhang, J., Fukuhara, S., Kunimoto, S., Yoshimura, M. & Mochizuki, N. (2010)  

Vascular endothelial-cadherin stabilizes at cell-cell junctions by anchoring to 

circumferential actin bundles through α- and β-catenins in cyclic AMP-Epac-Rap1 

signal-activated endothelial cells. Molecular Biology of the Cell, 21, 584-596. 

Noda, S., Tanabe, S. & Suzuki, T. (2013) Naringenin enhances intestinal barrier function  

through the expression and cytoskeletal association of tight junction proteins in Caco-

2 cells. Molecular Nutrition & Food Research, 57, 2019-2028. 

Park, H.Y., Kim, G.Y. & Choi, Y.H. (2012) Naringenin attenuates the release of pro- 

inflammatory mediators from lipopolysaccharide-stimulated BV2 microglia by 

inactivating nuclear factor-kB and inhibiting mitogen-activated protein kinases. 

International Journal of Molecular Medicine, 30, 204-210. 

Plopper, G.E., Huff, J.L., Rust, W.L., Schwartz, M.A. & Quaranta, V. (2000) Antibody- 

induced activation of beta1 integrin receptors stimulates cAMP-dependent migration 

of breast cells on laminin-5. Molecular Cell Biology Research Communications, 4, 

129-135. 

 



177 
 

Roth, E. (2008) Nutritive effects of glutamine. Journal of Nutrition, 138, 2025S– 2031S. 

Shinyoshi, S., Kamada, Y., Matsusaki, K., Chigwechokha P.K., Tepparin, S., Araki, K.,  

Komatsu, M. & Shiozaki, K. Naringenin suppresses Edwardsiella tarda infection in 

GAKS cells by NanA sialidase inhibition. Fish & Shellfish Immunology, 61, 86-92.  

Søberg, K., Jahnsen, T., Rognes, T., Skålhegg, B.S. & Laerdahl, J.K. (2013) Evolutionary  

paths of the cAMP-dependant protein kinase (PKA) catalytic subunits. PLoS ONE, 8, 

e60935. 

Spurzem, J.R., Gupta, J., Veys, T., Kneifl, K.R., Rennard, S.I. & Wyatt, T.A. (2002) Activation  

of protein kinase A accelerates bovine bronchial epithelial cell migration. American 

Journal of Physiology – Lung Cellular and Molecular Physiology, 282, L1108-L1116. 

Stelzner, T.J., Weil, J.V. & O’Brien, R.F. (1989) Role of cyclic adenosine monophosphate in  

the induction of endothelial barrier properties. Journal of Cellular Physiology, 139, 

157-166. 

Testai, L., Da Pozzo, E., Piano, I., Pistelli, L., Gargini, C., Breschi, M.C., Braca, A., Martini,  

C., Martelli, A. & Calderone, V. (2017) The citrus flavanone naringenin produces 

cardioprotective effects in hearts from 1 year old rats, through activation of mitoBK 

channels. Frontiers in Pharmacology, 8, 10.3389/fphar.2017.00071, 

Vallenius, T. (2013) Actin stress fiber subtypes in mesenchymal-migrating cells. Open  

Biology, 3, 130001. 

Varasteh, S., Braber, S., Akbari, P., Garssen, J. & Fink-Gremmels, J. (2015) Differences in  

susceptibility to heat stress along the chicken intestine and the protective effects of 

galacto-oligosaccharides. PLoS ONE, 10, e0138975.  

Wang, J., Yang, Z., Zhao, Z., Lui, Z. & Lui, X. (2012) Protective effects of naringenin against  

lead-induced oxidative stress in rats. Biological Trace Element Research, 146, 354-

359. 

Whelan, M.C. & Senger, D.R. (2003) Collagen I initiates endothelial cell morphogenesis by  

inducing actin polymerization through suppression of cyclic AMP and protein kinase 

A. Journal of Biological Chemistry, 278, 327-334. 

Willemsen, L.E., Koetsier, M.A., Balvers, M., Beermann, C., Stahl, B. & van Tol, E.A. (2008)  

Polyunsaturated fatty acids support epithelial barrier integrity and reduces IL-4 

mediated permeability in vitro. European Journal of Nutrition, 47, 183-191. 



178 
 

Yamagishi, N., Yamamoto, Y., Noda, C. & Hatayama, T. (2012) Naringenin inhibits the  

aggregation of expanded polyglutamine tract-containing protein through the induction 

of endoplasmic reticulum chaperone GRP78. Biological and Pharmaceutical Bulletin, 

35, 1836-1840.  

Yang, Z.H., Yu, H.J., Pan, A., Du, J.Y., Ruan, Y.C., Ko, W.H., Chan, H.C. & Zhou, W.L.  

(2008) Cellular mechanisms underlying the laxative effect of flavonol naringenin on 

rat constipation model. PLoS ONE, 3, e3348. 

Yukiura, H., Kano, K., Kise, R., Inoue, A. & Aoki, J. (2015) LPP3 localizes LPA6 signalling  

to non-contact sites in endothelial cells. Journal of Cell Science, 128, 3871-3877. 

Zimmerman, N.P., Kumar, S.N., Turner, J.R. & Dwinell, M.B. (2012) Cyclic AMP  

dysregulates intestinal epithelial cell restitution through PKA and RhoA. Inflammatory 

Bowel Diseases, 18, 1081-1091. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



179 
 

Chapter 4 References 

Bakker, A.M., Chiktwati, E.M., Venold, F.F., Sahlmann, C., Holm, H., Penn, M.H., Oropeza- 

Moe, M. & Krogdahl, Å. (2014) Bile enhances glucose uptake, reduces permeability, 

and modulates effects of lectins, trypsin inhibitors and saponins on intestinal tissue. 

Comparative Biochemistry and Physiology, Part A, 168, 96-109. 

        Beck, B. H., & Peatman, E. (2015). Mucosal Health in Aquaculture. Academic Press. 

Daehn, I.S., Varelias, A. & Rayner, T.E. (2006). Sodium butyrate induced keratinocyte  

  apoptosis. Apoptosis: An International Journal on Programmed Cell Death, 11, 1379– 

  1390. 

de Punder, K., & Pruimboom, L. (2013). The dietary intake of wheat and other cereal grains  

  and their role in inflammation. Nutrients, 5, (3), 771–787. 

Dourdin, N., Bhatt, A.K., Dutt, P., Greer, P.A., Arthur, J.S.C., Elce, J.S. & Huttenlocher, A.  

(2001) Reduced cell migration and disruption of the actin cytoskeleton in calpain-

defecient embryonic fibroblasts. The Journal of Biological Chemistry, 276, 48382-

48388. 

Draaijer, M., Koninkx, J., Hendriks, H., Kik, M., van Dijk, J. & Mouwen, J. (1989) Actin  

cytoskeletal lesions in differentiated human colon carcinoma Caco-2 cells after 

exposure to soybean agglutinin.  Biology of the Cell, 65, 29-35.  

FAO, 1997. Review of the state of world aquaculture, 1997. FAO Fisheries Circular. No.  

886, Rev. 1. FAO, Rome, 163 pp. 

FAO, 2016. The state of world fisheries and aquaculture 2016. Contributing to food security  

and nutrition for all. Rome, 200 pp. 

Francis, G., Makkar, H.P.S. & Becker, K. (2001) Antinutritional factors present in plant- 

derived alternate fish feed ingredients and their effects on fish. Aquaculture, 199, 

197-227. 

Fung, K. Y. C., Brierley, G. V., Henderson, S., Hoffmann, P., McColl, S. R., Lockett, T.,  

Head, R. & Cosgrove, L. (2011). Butyrate-induced apoptosis in HCT116 colorectal 

cancer cells includes induction of a cell stress response. Journal of Proteome 

Research, 10, 1860–1869. 

 

 



180 
 

Gordon, S. R., & Wood, M. (2009). Soybean agglutinin binding to corneal endothelial cell  

surfaces disrupts in situ monolayer integrity and actin organization and interferes with 

wound repair. Cell and Tissue Research, 335, 551–563. 

Hart, S.D., Bharadwa, A.S. & Brown, P.B. (2010) Soybean lectins and trypsin inhibitors, but  

not oligosaccharides or the interactions of factors, impact weight gain of rainbow trout 

(Oncorhynchus mykiss). Aquaculture, 306, 310–314. 

Kawano, A., Haiduk, C., Schirmer, K., Hanner, R., Lee, L.E.J, Dixon, B. & Bols, N.C.  

(2011) Development of a rainbow trout intestinal epithelial cell line and its response to 

lipopolysaccharide. Aquaculture Nutrition, 17, e241-e252. 

Kobayashi, H., Suzuki, M., Kanayama, N. & Terao, T. (2004) A soybean kunitz trypsin  

inhibitor suppresses ovarian cancer cell invasion by blocking urokinase upregulation. 

Clinical & Experimental Metastasis, 21, 159-166. 

Losso, J.N. (2008) The biochemical and functional food properties of the Bowman-Birk  

 inhibitor. Critical Reviews in Food Science and Nutrition, 48, 94-118.  

Lotz, M.M., Rabinovitz, I. & Mercurio, A.M. (2000) Intestinal restitution: progression of  

actin cytoskeleton rearrangements and integrin function in a model of epithelial wound 

healing. The American Journal of Pathology, 156, 985–996.  

Naylor, R.L., Goldburg, R.J., Primavera, J.H., Kautsky, N., Beveridge, M.C.M., Clay, J.,  

Folke, C., Lubchenco, J., Mooney, H., Troell, M., 2000. Effect of aquaculture on world 

fish supplies. Nature, 405, 1017–1024. 

Peng, L., He, Z., Chen, W., Holzman, I.R. & Lin, J. (2007) Effects of butyrate on intestinal  

barrier function in a Caco-2 cell monolayer model of intestinal barrier. Pediatric 

Research, 61, 37-41.  

        Ruemmele, F. M., Schwartz, S., Seidman, E. G., Dionne, S., Levy, E. & Lentze, M. J. (2003)  

Butyrate induced Caco-2 cell apoptosis is mediated via the mitochondrial pathway. 

Gut, 52, 94–100. 

Sargent, J.R. & Tacon, A.G.J. (1999) Development of farmed fish: a nutritionally necessary  

alternative to meat. Proceedings of the Nutrition Society, 58, 377–383. 

Sjolander, A. & Magnusson, K.E. (1988) Effects of wheat germ agglutinin on the cellular  

 content of filamentous actin in intestine 407 cells.  European Journal of Cell Biology,  

 47, 32-35. 



181 
 

        Sturm, A., & Dignass, A.U. (2008) Epithelial restitution and wound healing in inflammatory  

bowel disease. World Journal of Gastroenterology, 14, 348–353.   

Teves, J.F.C. & Ragaza, J.A. (2016) The quest for indigenous aquafeed ingredients: a review.  

  Reviews in Aquaculture, 8, 154-171. 

Tsai, J.C. & Hwang P.P. (1998) Effects of wheat germ agglutinin and cochicine on  

  microtubules of the mitochondria-rich cells and Ca2+ uptake in Tilapia (Oreochromis  

  mossambicus) larvae.  Journal of Experimental Biology, 210, 2263-2271.  

Vallenius, T. (2013) Actin stress fiber subtypes in mesenchymal-migrating cells. Open  

  Biology, 3, 130001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



182 
 

Chapter 5 References 

Bols, N.C., Mosser, D.D. & Steels, G.B. (1992) Temperature studies and recent advances with 

fish cells in vitro.  Comparative Biochemistry Physiology, 103A, 1-14. 

Bols, N.C., Boliska, S.A., Dixon, D.G., Hodson, P.V. & Kaiser, K.L.E. (1985) The use of fish  

cell cultures as an indication of contaminant toxicity to fish. Aquatic Toxicology, 6, 

147-155. 

Bhatia, A., O’Brien, K., Chan, M., Woodley, D.T. & Li, W. (2016) Keratinocyte-secreted heat  

shock protein-90alpha: Leading wound reepithelialisation and closure. Advances in 

Wound Care, 5, 176-184.  

Cai, H., Ren, Y., Li, X.X., Yang, J.L., Zhang, C.P., Chen, M., Fan, C.H., Hu, X.Q., Hu, Z.Y.,  

Gao, F. & Liu, Y.X. (2011) Scrotal heat stress causes a transient alteration in tight 

junctions and induction of TGF-β expression. International Journal of Andrology, 34, 

352-362. 

Chen, M., Cai, H., Yang, J.Q., Lu, C.L., Liu, T., Yang, W., Guo, J., Hu, X.Q., Fan, C.H., Hu,  

Z.Y., Gao, F. & Liu, Y.X. (2008) Effect of heat stress on expression of junction-

associated molecules and upstream factors androgen receptor and Wilms’ tumor 1 in 

monkey sertoli cells. Endocrinology, 149, 4871-4882.  

Cheng, C-.F., Fan, J., Fedesco, M., Guan, S., Li, Y., Bandyopadhyay, B., Bright, A.M.,  

Yerushalmi, D., Liang, M., Chen, M., Han, Y-.P., Woodley, D.T. & Li, W. (2008) 

Transforming growth factor α (TGFα)-stimulated secretion of HSP90α: Using the 

receptor LRP-1/CD91 to promote human skin cell migration against a TGFβ-rich 

environment during wound healing. Molecular and Cellular Biology, 28, 3344-3358. 

Chow, A. & Zhang, R. (1998) Glutamine reduces heat shock-induced cell death in rat intestinal  

epithelial cells. Journal of Nutrition, 128, 1296-1301. 

Clarke, A. & Johnston, N.M. (1999) Scaling of metabolic rate with body mass and  

temperature in teleost fish. Journal of Animal Ecology, 68, 893-905. 

Dokladny, K., Ye, D., Kennedy, J.C., Moseley, P.L. & Ma, T.Y. (2008) Cellular and molecular  

mechanism of heat stress-induced up-regulation of occluding protein expression. The 

American Journal of Pathology, 172, 659-670. 

 

 



183 
 

Dokladny, K., Moseley, P.L. & Ma, T.Y. (2006) Physiological relevant increase in  

temperature causes an increase in intestinal epithelial tight junction permeability. 

American Journal of Physiology – Gastrointestinal and Liver Physiology, 290, G204-

G212. 

Gov, N. (2011) Cell mechanics: Moving under peer pressure. Nature Materials, 10, 412-414. 

Ham, R.G. (1981) Cell growth requirements-the challenge we face. In: Waymouth, C., Ham,  

R.G. & Chapple, P.J. (eds) The growth requirements of vertebrate cells in vitro. 

Cambridge University Press, Cambridge. pp 1-15. 

Iizuka, M. & Konno, S. (2011) Wound healing of the intestinal epithelial cells. World  

Journal of Gastroenterology, 17, 2161-2171. 

Kawano, A., Haiduk, C., Schirmer, K., Hanner, R., Lee, L.E.J, Dixon, B. & Bols, N.C.  

(2011) Development of a rainbow trout intestinal epithelial cell line and its response 

to lipopolysaccharide. Aquaculture Nutrition, 17, e241-e252. 

Landry, J., Bernier, D., Chretien, P., Nicole, L.M., Tanguay, R.M. & Marceau, N. (1982)   

Synthesis and degradation of heat shock proteins during development and decay of 

thermotolerance.  Cancer Research, 42, 2457-2461.  

Meir, M., Flemming, S., Burkard, N., Wagner, J., Germer, C.T., Schlegel, N. (2016) The glial  

cell-line derived neutrophic factor: a novel regulator of intestinal barrier function in 

health and disease.  American Journal of Physiology - Gastrointestinal and Liver 

Physiology, 310, G1118-G1123.  

Mosser, D. & Bols, N.C. (1988) Relationship between heat-shock protein synthesis and  

thermotolerance in rainbow trout fibroblasts. Journal of Comparative Physiology B: 

Biochemical, Systems, and Environmental Physiology, 158, 457-467. 

Mosser, D.D., Heikkila, J.J. & Bols, N.C. (1986) Temperature ranges over which rainbow  

trout fibroblasts survive and synthesize heat-shock proteins. Journal of Cell 

Physiology, 128, 432-440. 

Mosser, D.D., van Oostrom, J. & Bols, N.C. (1987). Induction and decay of thermotolerance 

in rainbow trout fibroblasts.  Journal of Cellular Physiology, 132, 155-160. 

Mounier, N. & Arrigo, A.P. (2002) Actin cytoskeleton and small heat shock proteins: how do  

they interact? Cell Stress Chaperones, 7, 167-176. 

 



184 
 

Osada, T., Iijima, K., Tanaka, H., Hirose, M., Yamamoto, J. & Watanabe, S. (1999) Effect of  

temperature and mechanical strain on gastric epithelial cell line GSM06 wound 

restoration in vitro. Journal of Gastroenterology and Hepatology, 14, 489-494. 

Plumb, J.A. & Wolf, K. (1971) Fish cell growth rates. In Vitro, 7, 42-25. 

Richter, K., Haslbeck, M. & Buchner, J. (2010) The heat shock response: Life on the verge  

of death. Molecular Cell, 40, 253-266. 

Simard, J.P., Reynolds, D.N., Kraguljac, A.P., Smith, G.S.T. & Mosser, D.D. (2011)   

Overexpression of HSP70 inhibits cofilin phosphorylation and promotes lymphocyte 

migration in heat-stressed cells.  Journal of Cell Science, 124, 2367-2374.   

Sims, J.D., McCready, J. & Jay, D.G. (2011) Extracellular heat shock protein (Hsp)70 and  

Hsp90 assist in matrix metalloproteinase-2 activation and breast cancer cell 

migration and invasion.  PLoS ONE, 6, e18848.   

Subjeck, J.R. & Shyy, T-T. (1986) Stress protein systems of mammalian cells. American  

Journal of Physiology, 250, C1-C17. 

Toivola, D.M., Strnad, P., Habtezion, A., & Omary, M.B. (2010) Intermediate filaments take  

the heat as stress proteins. Trends in Cell Biology, 20, 79–91. 

Uran, P.A., Schrama, J.W., Rombout, J.H.W.M., Obach, A., Jensen, L., Koppe, W. & Verreth,  

J.A.J. (2008) Soybean meal-induced enteritis in Atlantic salmon (Salmo salar L.) at 

 different temperatures. Aquaculture Nutrition, 14, 324-330. 

Welch, W.J., & Suhan, J.P. (1985) Morphological study of the mammalian stress response:  

characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and 

appearance of intranuclear actin filaments in rat fibroblasts after heat-shock treatment. 

Journal of Cell Biology, 101, 1198–1211.  

Welch, W.J., & Suhan, J.P. (1986) Cellular and biochemical events in mammalian cells during  

and after recovery from physiological stress. Journal of Cell Biology, 103, 2035–2052. 

 

 

 

 

 

 



185 
 

Chapter 6 References 

Ahamad, S., Siddiqui, S., Jafri, A., Ahmad, S., Afzal, M. & Arshad. (2014) Inductions of  

apoptosis and antiproliferative activity of naringenin in human epidermoid carcinoma 

cell through ROS generation and cell cycle arrest. PLOS ONE, 9, e110003.  

Andrade, D. & Rosenblatt, J. (2011) Apoptotic regulation of epithelial cellular extrusion.   

Apoptosis, 16, 491-501. 

Anyanwu, C.N., Osuigwe, D.I. & Adaka, G.S. (2014) Climate change: Impacts and threats  

on freshwater aquaculture. Journal of Fisheries and Aquatic Science, 9, 419-424.  

Arul, D. & Subramanian, P. (2013) Naringenin (citrus flavonone) induces growth  

inhibition, cell cycle arrest and apoptosis in human hepatocellular carcinoma cells. 

Pathology & Oncology Research, 19, 763-770. 

Brander, K.M. (2007) Global fish production and climate change. Proceedings of the National  

Academy of Science U.S.A., 104, 19709-19714.   

Dalle-Donne, I., Rossi, R., Milzani, A., Simplicio, P.D. & Colombo, R. (2001) The actin  

cytoskeleton response to oxidants: from small heat shock protein phosphorylation to 

changes in the redox of state of actin itself.  Free Radical Biology & Medicine, 31, 

1624-1632.  

Dayeh, V.R., Bols, N.C., Tanneberger, K., Schirmer, K. & Lee, L.E.J. (2013) The use of fish  

derived cell lines for investigation of environmental contaminants: an update following 

OECD’s fish toxicity testing Framework No. 171. Current Protocols in Toxicology, 

1.5.1-1.5.20. 

Dokladny, K., Zuhl, M.N. & Moseley, P.L. (2016) Intestinal epithelial barrier function and  

tight junction proteins with heat and exercise. Journal of Applied Physiology, 120, 

692-701.  

Gimenez, M.S., Oliveros, L.B. & Gomez, N.N. (2011) Nutritional deficiencies and  

phospholipid metabolism. International Journal of Molecular Sciences, 12, 2408-2433. 

Kawano, A., Haiduk, C., Schirmer, K., Hanner, R., Lee, L.E.J, Dixon, B. & Bols, N.C.  

(2011) Development of a rainbow trout intestinal epithelial cell line and its response to 

lipopolysaccharide. Aquaculture Nutrition, 17, e241-e252. 

 

 



186 
 

Liu, J.J., Davis, E.M., Wine, E., Lou, Y.F., Rudzinski, J.K., Alipour, M., Boulanger, P.,  

Thiesen, A.L., Sergi, C., Fedorak, R.N., Muruve, D., Madsen, K.L. & Irvin, R.T. 

(2013) Epithelial cell extrusion leads to breaches in the intestinal 

epithelium. Gastrointestinal Endoscopy, 77, 624-630. 

Liu, J.J., Wong, K., Thiesen, A.L., Mah, S.J., Dieleman, L.A., Clagget, B., Saltzman, J.R. &  

Fedorak, R.N. (2011) Increased epithelial gaps in the small intestines of patients with 

inflammatory bowel disease: density matters.  Gastrointestinal Endoscopy, 73, 1174-

1180. 

Mayhew, T.M., Myklebust, R., Whybrow, A. & Jenkins, R. (1999)  Epithelial integrity, cell  

death and cell loss in mammalian small intestine.  Histology and Histopathology, 14, 

257-267. 

Miguel, J.C., Maxwell, A.A., Hsieh, J.J., Harnisch, L.C., Al Alam, D., Polk, D.B., Lien, C.L.,  

Watson, A.J.M. & Frey, M.R. (2017)  Epidermal growth factor suppresses intestinal 

epithelial cell shedding through a MAPK-dependent pathway.  Journal of Cell 

Science, 130, 90-96. 

Morgan, W.D. (1989) Transcription factor Sp1 binds to and activates a human hsp70 gene  

promoter. Molecular and Cell Biology, 9, 4099-4104. 

Noda, K., Zhang, J., Fukuhara, S., Kunimoto, S., Yoshimura, M. & Mochizuki, N. (2010)  

Vascular endothelial-cadherin stabilizes at cell-cell junctions by anchoring to 

circumferential actin bundles through α- and β-catenins in cyclic AMP-Epac-Rap1 

signal-activated endothelial cells. Molecular Biology of the Cell, 21, 584-596. 

Noda, S., Tanabe, S. & Suzuki, T. (2013) Naringenin enhances intestinal barrier function  

through the expression and cytoskeletal association of tight junction proteins in Caco-

2 cells. Molecular Nutrition & Food Research, 57, 2019-2028. 

Pearce, S.C., Mani, V., Boddicker, R.L., Johnson, J.S., Weber, T.E., Ross, J.W., Rhoads, R.P.,  

Baumarg, L.H. & Gabler, N.K. (2013) Heat stress reduces intestinal epithelial barrier 

integrity and favors intestinal glucose transport in growing pigs.  PLOS ONE, 8, 

e70215.  

 

 

 



187 
 

Yu, J., Yin, P., Liu, F., Cheng, G., Guo, K., Lu, A., Zhu, X., Luan, W. & Xu, J. (2010)  Effect  

 of heat stress on the porcine small intestine: a morphological and gene expression 

study.  Comparative Biochemistry and Physiology - Part A: Molecular & Integrative 

Physiology, 156, 119-128.   

Yukiura, H., Kano, K., Kise, R., Inoue, A. & Aoki, J. (2015) LPP3 localizes LPA6 signalling 

to non-contact sites in endothelial cells. Journal of Cell Science, 128, 3871-3877. 

Varasteh, S., Braber, S., Garssen, J. & Fink-Gremmels, J. (2015) Galacto-oligosaccharides  

exert a protective effect against heat stress in a Caco-2 cell model. Journal of 

Functional Foods, 16, 265-277. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



188 
 

Chapter 7 References 

Bhatia, A., O’Brien, K., Chan, M., Woodley, D.T. & Li, W. (2016) Keratinocyte-secreted heat   

shock protein-90alpha: Leading wound reepithelialisation and closure. Advances in 

Wound Care, 5, 176-184.  

Modrego, J., Lopez-Farré, A.J., Martinez-Lopez, I., Muela, M., Macaya, C., Serrano, J. &  

Monux, G. (2012) Expression of cytoskeleton and energetic metabolism-related 

proteins at human abdominal aortic aneurysm sites.  Journal of Vascular Surgery, 55, 

1124-1133. 

Sanchez, A.D. & Feldman, J.L. (2016) Microtubule-organizing centers: from the centrosome  

to non-centrosomal sites. Current Opinion in Cell Biology, 44, 93-101. 

Yang, Z.H., Yu, H.J., Pan, A., Du, J.Y., Ruan, Y.C., Ko, W.H., Chan, H.C. & Zhou, W.L.  

(2008) Cellular mechanisms underlying the laxative effect of flavonol naringenin on 

rat constipation model. PLoS ONE, 3, e3348. 

 

 

 

 

 


