
Using a hierarchy of climate models to 

investigate snow processes influencing 

surface albedo 

 

 

by 

 

 

Chad William Thackeray 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Doctor of Philosophy 

in 

Geography 

 

 

 

Waterloo, Ontario, Canada, 2017 

 

 

©Chad William Thackeray 2017 

 



 

 ii 

Examining Committee Membership 

The following served on the Examining Committee for this thesis. The decision of the 

Examining Committee is by majority vote. 

 

External Examiner  Dr. Aaron Berg 

    Professor  

    University of Guelph 

Department of Geography 

 

Supervisor(s)   Dr. Christopher Fletcher 

    Associate Professor 

    Department of Geography and Environmental Management 

    University of Waterloo 

 

Internal Member  Dr. Richard Kelly 

    Professor and Chair 

    Department of Geography and Environmental Management 

    University of Waterloo 

 

Internal-external Member Dr. Andrea Scott 

    Assistant Professor 

    Department of Systems Design Engineering 

    University of Waterloo 

 

Other Member(s)  Dr. Chris Derksen 

    Research Scientist, Environment and Climate Change Canada 

    Adjunct Faculty, University of Waterloo 

 



 

 iii 

Author's Declaration 

This thesis consists of material all of which I authored or co-authored: see Statement of 

Contributions included in the thesis. This is a true copy of the thesis, including any required 

final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 

 



 

 iv 

Statement of Contributions 

This thesis contains a collection of journal articles that investigate climate interactions with 

terrestrial snow through changes to surface albedo. All of the manuscripts were a result of 

collaboration with colleagues, as credited below. For each article, my contribution was to 

carry out all analysis and write the first edition of the manuscript, along with editing 

subsequent drafts from the comments and writing of my coauthors (Christopher G. Fletcher; 

Chris Derksen, and Lawrence R. Mudryk). 

 The first paper (Chapter 2), published in Progress in Physical Geography, provides a 

detailed review of snow albedo feedback (SAF), while framing the current knowledge, global 

importance, and outstanding issues related to our understanding. A copyright waiver was not 

required from the publisher. 

Thackeray, C. W., & Fletcher, C. G. (2016). Snow albedo feedback: Current knowledge, 

importance, outstanding issues and future directions. Progress in Physical Geography, 

40(3), 392–408. http://doi.org/10.1177/0309133315620999 

The second paper (Chapter 3), published in the Journal of Geophysical Research: 

Atmospheres, uses a number of satellite-derived datasets to evaluate how well the current 

generation of global climate models simulate the seasonal cycle of climatological snow cover 

fraction (SCF) and surface albedo. A copyright waiver can be found in the backmatter of this 

document. 

Thackeray, C. W., Fletcher, C. G., & Derksen, C. (2015). Quantifying the skill of CMIP5 

models in simulating seasonal albedo and snow cover evolution. Journal of Geophysical 

Research: Atmospheres, 120(12), 5831–5849. http://doi.org/10.1002/2015JD023325 

The third paper (Chapter 4), in preparation for Journal of Climate, examines the impact of 

previously diagnosed model biases on simulated climate (i.e., temperature, snow cover, and 

atmospheric circulation). 

Thackeray, C. W., Fletcher, C. G., & Derksen, C. The impact of simulated surface albedo 

biases on climate. In preparation for Journal of Climate. 



 

 v 

 

The fourth paper (Chapter 5), published in Journal of Climate, utilizes a collection of 

observation-based snow and temperature products to evaluate model simulations of historical 

and future spring snow cover. A copyright waiver can be found in the backmatter. 

Thackeray, C. W., Fletcher, C. G., Mudryk, L. R., & Derksen, C. (2016). Quantifying the 

Uncertainty in Historical and Future Simulations of Northern Hemisphere Spring Snow 

Cover. Journal of Climate, 29(23), 8647–8663. http://doi.org/10.1175/JCLI-D-16-

0341.1 



 

 vi 

Abstract 

Northern Hemisphere (NH) extratropical land has experienced dramatic warming over the 

past century, a trend that is expected to continue in the coming decades. There is however, 

significant uncertainty surrounding projections of climate change. Warming has major 

impacts on the terrestrial cryosphere, particularly its largest component, snow cover. Snow is 

a significant climatological variable because of its role in the surface radiative and water 

balances. The combination of extensive snow cover and relatively high incoming radiation 

during spring make the NH climate system highly sensitive to concurrent changes in surface 

albedo, largely tied to snow albedo feedback (SAF). SAF is a positive feedback climate 

mechanism, whereby an initial warming is enhanced through a reduction in surface albedo 

resulting from melting snow (revealing a darker, less reflective surface). The current 

generation of global climate models (GCMs) accurately capture this process on average, but 

there is a large intermodel spread that arises because of differences in model design. 

Variability in SAF has been shown to account for 40-50% of the spread in projected NH land 

warming. To better synthesize the current state of knowledge regarding snow albedo 

feedback, a review article on the topic was published (Chapter 2). In this chapter, we 

summarize the importance of SAF, estimates from both models and observations, factors 

influencing the spread in SAF, and outstanding issues related to our understanding of the 

physical processes that control SAF.  

The remainder of this thesis focuses on the critical evaluation of processes 

influencing simulated SAF (snow cover and surface albedo). Prior research has shown that a 

commonly used GCM (Community Climate System Model; CCSM) suffers from a weak bias 

in SAF over the boreal forest and links this to deficiencies in how it represents snow 

processes. This model bias is traced to the way snow interacts with the forest canopy layer 

causing snow-covered surface albedo to decrease prematurely. Following on from this work, 

we expand our analysis to evaluate all current GCMs to see if this issue is prevalent 

elsewhere. Using a variety of metrics, the models are shown to have substantial biases in 

simulated surface albedo over snow-covered land (especially boreal forest and non-boreal 
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tundra). Model biases are principally tied to either the timing (i.e., CCSM) or magnitude of 

seasonal changes in surface albedo. 

Having demonstrated deficiencies in the simulation of surface albedo, we next 

determine the impact that these model biases have on climate (Chapter 4). The experimental 

design overrides the model’s (biased) internal calculation of albedo and replaces it with 

prescribed albedo data, derived from satellite observations, or from another model. Results 

show that correcting the albedo in CESM (successor of CCSM) pushes the model further 

away from observed temperature (implying the presence of other biases), with robust cooling 

during winter and spring. It also induces a pattern reversal of climatological biases in winter 

sea level pressure, partially correcting the model’s tendency towards a positive Arctic 

Oscillation. Furthermore, biases across the boreal forest region are found to be influential for 

both local and remote climate features. Models with large albedo magnitude biases are 

vulnerable to even greater climate impacts than CESM. 

Lastly, in Chapter 5, we investigate the uncertainty in historical and future 

simulations of Northern Hemisphere spring snow cover using data from two climate model 

ensembles, seven observational snow products, and five temperature datasets. We find that 

the models underestimate the observed trend in historical snow cover, however, biases are 

much smaller than identified by previous studies that relied on a single observational dataset. 

The underestimation can be partially explained by biases in the climatological snow amount 

(i.e., starting the melt period with not enough snow cover) and a lack of sensitivity to 

warming in many models. The intermodel spread in future projections of snow cover can be 

largely explained by differences in simulated warming, and the amount of snow cover 

available for melt. The strong coupling between these features implies that by reducing the 

spread in projected NH land warming, uncertainty in snow cover would follow suit. 

The overall aim of this research is to improve knowledge of terrestrial snow processes 

influencing climate through changes in albedo. This thesis encompasses the identification of 

issues related to the simulation of snow processes in GCMs, and the determination of their 

importance to climate with the long term aim of helping to reduce uncertainty in projections 

of climate change. 
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the CMIP5 models. Letters correspond to the model list in Table 5-1. The NH 

mean SCE trend is shown in the top right of each panel (units:  million km2 

decade-1). 
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Chapter 1 

Introduction 

1.1 Background 

Global mean surface temperature has increased drastically since the start of the industrial 

revolution, with a much more rapid rate of change over the last half century. The global 

warming trend is closely tied to a steep rise in greenhouse gas concentrations (Trenberth and 

Fasullo, 2013). According to a collection of independent observationally-based datasets 

(CRUTEM, GHCN, GISS and Berkeley), warming over recent decades (1979-2012) exceeds 

0.25°C decade-1 (Hartmann et al., 2013). Moreover, this does not account for the three 

warmest years on record, which have all occurred since 2014 (GISTEMP Team, 2017; 

Hansen et al., 2010). Large regional variability exists within the temperature record, with 

enhanced warming over the Northern Hemisphere (NH) mid-high latitudes (Hartmann et al., 

2013). Furthermore, the Arctic is experiencing the greatest rise in temperature, warming at 

double the rate of the global average (Figure 1-1; referred to as Arctic amplification). 

Heightened Arctic warming has major implications for several aspects of the climate system, 

particularly the cryosphere. One of the primary mechanisms driving Arctic amplification is 

the reduction of surface albedo (reflectivity) due to shrinking snow cover and sea ice (Serreze 

and Barry, 2011; Pithan and Mauritsen, 2014). 
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Figure 1-1: Change in annual global mean surface temperatures (°C) since 1880 (bars), and 5-year running 

mean regional temperature anomalies for the Northern mid-latitudes (blue line), and Arctic (red line). The 

changes are shown as differences from the 1951-1980 average values (data from GISTEMP Team, 2017; 

Hansen et al., 2010). 

 

Snow cover plays an important role in the climate system, reducing incoming 

radiation absorbed at the surface through its extremely reflective nature. Fresh snow has an 

albedo of 0.8-0.9, and gradually becomes more absorbent as it ages (albedo of 0.4-0.5) 

(Wiscombe and Warren, 1980). This reduction in albedo can be attributed to several factors, 

including but not limited to grain size and shape, snow depth, and impurities such as aerosols 

or dust (Warren, 1984; Doherty et al., 2010). Snow metamorphism (change to grain size and 

shape) occurs because snow grains are highly sensitive to variations in temperature and 

liquid water content (Colbeck, 1982). Larger grain size makes it more likely that incoming 

radiation is absorbed by snow particles because a greater distance must be covered by 

incident energy (Warren et al., 1998).  
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Figure 1-2: Relationship between NH April SCE and corresponding land air temperature anomalies over 40 to 

60 from CRUTEM4. Red circles indicate 2000-2012. Updated from Brown and Robinson (2011), (Vaughan et 

al., 2013). 

Snow cover extent (SCE) naturally varies from year-to-year depending on climatic 

conditions, but on average approximately 48 million km2 of NH land is covered during late 

winter (Hall, 1988; Robinson and Frei, 2000). However, with recent warming, a sharp 

decline has been shown in SCE during spring (Brown et al., 2010; Brown and Robinson, 

2011; Derksen and Brown, 2012; Figure 1-2). The greatest snow cover losses have occurred 

at higher latitudes because of stronger albedo feedbacks (Dery and Brown, 2007; Vaughan et 

al., 2013). It should be noted that prior estimates may have been slightly exaggerated because 

of the use of a single observational dataset (further discussed in Chapter 5 and Mudryk et al., 

2017).  



 

 4 

The impact of snow on surface fluxes can be strongly affected by vegetation. A 

significant piece of NH snow-covered area is heavily vegetated, creating an environment 

where complex interactions between snow and vegetation take place. The boreal forest 

occupies nearly 25% of this region (Bonan et al., 1992), and for much of it, snow is present 

for more than half of the year. It consists of three principal forest types; needleleaf evergreen, 

needleleaf deciduous, and broadleaf deciduous. The most expansive of these is the needleleaf 

evergreen boreal forest, which is somewhat unique in that it retains its canopy throughout the 

winter. This is climatologically important because snowfall over forests either reaches the 

surface or is intercepted by the canopy layer, canopy snow resides for some variable time 

before either being sublimated or dripping/falling to the surface (Hedstrom and Pomeroy, 

1998; Storck et al., 2002; Rutter et al., 2009). Prior research has shown that half of 

cumulative snowfall is intercepted by the canopy layer during mid-winter (Pomeroy and 

Schmidt, 1993; Storck et al., 2002). However, the canopy (even when it holds intercepted 

snow) also acts to mask the underlying snow on the ground, reducing surface albedo, and 

warming the surface. The masking of underlying snow makes the circumpolar boreal forest 

stand out during the snow season due to its low albedo (~0.3) (Thomas and Rowntree, 1992; 

Barlage et al., 2005; Essery, 2013; Figure 1-3). This is also why the boreal region has a 

greater biogeophysical impact on temperatures than any other landcover type (Snyder et al., 

2004; Bonan, 2008). 

Seasonal snow cover also plays a key role in hydrological and land surface processes. 

Its low thermal conductivity also makes snow an effective insulator, which moderates soil 



 

 5 

 

Figure 1-3: Average albedo for land with snow cover from MODIS. Black pixels have missing data or no 

observed snow cover for 2006-2010 (Essery, 2013).  

temperatures and influences permafrost extent (Lawrence and Slater, 2010; Vaughan et al., 

2013). The buildup of snow during winter is also a vital process in the terrestrial water 

balance. Snow acts as a natural reservoir, storing massive amounts of water that can be 

released during warmer months when demand is greatest (Gunther et al., 2007; Barnett et al., 

2008). In fact, snowmelt generates a portion of the water supply for approximately one-sixth 

of Earth’s population (Barnett et al. 2005; Mankin et al. 2015). Therefore, it is important that 

we fully understand the potential impacts of future climate warming on snow. 

1.1.1 Global Climate Models 

Rising greenhouse gas concentrations are expected to drive considerable changes to climate 

over the next century. It is anticipated that these alterations will vary dramatically by region, 

with diverse patterns of temperature and precipitation change around the world. Global 

Climate Models (GCMs) serve as the best tools for understanding the potential effects of 

climate change. GCMs are three-dimensional numerical depictions of the climate system 

used to examine the climate’s response to past, present, and future external forcing (i.e., 

greenhouse gases). They represent the transfer of energy, mass, and momentum across the 

globe as well as interactions between the atmosphere, ocean, cryosphere, and land surface. 
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More recently, the incorporation of the biogeochemical processes (i.e. carbon, nitrogen 

cycling) has seen the transition to Earth System Models (ESMs; Flato, 2011). There is a 

hierarchy of models with varying degrees of complexity, which have different ways of 

simulating these natural processes. Climate models typically have a horizontal resolution of 

between 1-3 degrees, and a vertical structure made up of between 10 to 30 layers. The state 

of each layer and grid cell is calculated at every time-step (ranging from 15 minutes to a 

couple hours). Models are deemed as more reliable when providing projections of future 

climate if they can first demonstrate success at reproducing the past. Thus, it is important to 

examine whether models can accurately simulate observed climate features. This typically 

involves comparing model output to some observed quantity. In this thesis, we explore the 

use of numerous observation-based datasets to evaluate model performance.  

There are however limitations to using climate models, many of which stem from 

issues with resolution or a lack of knowledge about certain processes. Uncertainty in climate 

model output comes from a variety of sources. First, there are many physical processes that 

must be parameterized because they occur at too fine of a spatial scale to be calculated by the 

models (i.e., snow metamorphism). This type of approximation is a key source of error. 

Uncertainty is also derived from the representation of complex climate feedback mechanisms 

related to warming, water vapor, oceans, clouds, and surface albedo. Differences in how each 

model represents certain phenomena and climate feedbacks can cause a wide range of 

responses to identical forcing. Projections of climate change are inherently more complicated 

because of the added influence of internal climate variability (climate noise) and the many 

unknowns regarding our future trajectory (i.e., population, policy). Climate projections are 
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generated for several greenhouse gas emissions scenarios (called Representative 

Concentration Pathways; RCPs), which produce various levels of radiative forcing by the end 

of the century (Moss et al., 2010; Collins et al., 2013). Using the output from many models in 

a multi-model ensemble framework allows for more reliable projections than using a single 

climate model (Bohn et al., 2010). Therefore, model output can be highly variable depending 

on the quantity of interest and the forcing pathway.  

Much of the research contained within this thesis is designed to identify model biases 

that may contribute to uncertainty in future projections. The primary focus is on better 

understanding the model uncertainty stemming from surface albedo feedback as it relates to 

shrinking terrestrial snow cover, defined as the snow albedo feedback (SAF). SAF is a 

positive feedback mechanism, whereby rising air temperatures cause snow to recede and 

reveal a much less reflective land surface. The added absorption of incident radiation results 

in enhanced warming (Holland and Bitz, 2003; Hall, 2004). There is a considerable 

intermodel spread within the current generation of climate models regarding the strength of 

SAF (Qu and Hall, 2014; Fletcher et al., 2015), which can explain a large amount of 

variability in projected NH land temperatures (Qu and Hall, 2014). A more complete 

synthesis of this topic is provided in Chapter 2. Furthermore, to better understand simulated 

SAF, it is important to discuss how snow is represented in climate models. 

1.1.2 Modeling of Snow 

The land component of a GCM represents a wide array of biogeophysical processes 

characterizing the movement of energy, heat and moisture between vegetation, soil and snow 
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surfaces, and the atmosphere (i.e., Lawrence et al., 2011; Prentice et al., 2015). There has 

been extensive model development related to these processes in recent decades as knowledge 

of their importance to climate change (through feedbacks) grew stronger (Pitman, 2003; 

Flato et al., 2013; Clark et al., 2015). The snow surface can vary greatly by model (Slater et 

al., 2001; Boone et al., 2004), with different parameterizations for snow albedo, snow cover 

fraction, snow density, thermal conductivity, and evaporation, just to name a few. Some 

models represent the snow surface as one (Bartlett et al., 2006; Voldoire et al., 2013) or more 

(Schmidt et al., 2006; Oleson et al., 2010; Kowalczyk et al., 2013) distinct levels above the 

soil system, whereas less-sophisticated, so called zero-layer schemes adapt the characteristics 

of soil to match the properties of snow cover (de Rosnay and Polcher, 1998; Best et al., 

2011). Moreover, there are differences in how models calculate snow albedo and its 

evolution with time. Some schemes allow snow albedo to change with temperature or snow 

age, whereas others elect to keep it constant (Slater et al., 2001; Bartlett et al., 2006; Qu and 

Hall, 2007; Essery et al., 2009; Kowalczyk et al., 2013). Simulated surface albedo also 

depends on the way in which fractional snow cover is parameterized. A common approach is 

to relate a given snow depth to snow cover fraction (in an empirical or conceptual way) 

through snow depletion curves (Essery et al., 2013).  

Snowpack dynamics are extremely complicated and difficult to simulate, because 

what begins as a single snow layer with constant grain size and density, becomes a multi-

layered object featuring ice lenses, wind crusts, and large variability in grain size (MacKay et 

al., 2006). Vegetation adds another dimension to the difficulty involved with simulating 

snow processes. The sizeable overlap between snow covered areas and forested landscapes 
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creates a variety of climatologically-important forest-snow interactions (i.e., interception, 

throughfall, drip, masking). Parameterizations of these processes are fairly rudimentary in 

many cases because of a lack of knowledge about the physical exchanges that take place 

within the canopy and between levels. Simulations of snow throughout the winter can 

diverge between models depending on how each model deals with forest-snow processes 

(Rutter et al., 2009). Despite intercepting nearly half of annual snowfall (Storck et al., 2002), 

the canopy layer masks the more reflective underlying snow surface. There are several ways 

in which this process can be illustrated, with differences linked to a large intermodel spread 

in SAF (Qu and Hall, 2007). Models with a simple forest representation (minimal canopy 

structure) tend to produce albedo values that are biased high and thus, a stronger SAF. On the 

other hand, models with a specific parameterization for individual canopy types tend to have 

albedo values that are biased low (Qu and Hall, 2007; Kuusinen et al., 2012). Further 

discussion of this topic can be found in Section 2.5.2. 

Model intercomparison studies show that simulations of snow variables differ greatly 

in their accuracy. Despite differing levels of sophistication, there is a general consensus that 

no snow model consistently outperforms the rest, especially when considering several sites 

(Etchevers et al., 2004; Rutter et al., 2009; Essery et al., 2013). These studies also find that 

intermodel variance is greatest during the melt period. Following warming events 

(temperatures above freezing for more than two days), model divergence in simulated snow 

water equivalent (SWE) and albedo is greatest (Rutter et al., 2009). Some of this discrepancy 

is linked with mixed precipitation events and how rain/snow is partitioned (Rutter et al., 

2009; Essery et al., 2013). This implies that models are most sensitive to differences in their 
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parameterizations during spring. Because of this fact and the greater importance of snow to 

climate in spring (Qu and Hall, 2007), much of the following research focuses on this time 

frame. Some of these topics are covered in greater detail by Thackeray (2014). 

1.2 Motivation for Research 

It is imperative to examine climate models in order to better understand aspects of the Earth 

system and direct future model improvements. In particular, snow processes must be 

evaluated because of their influence on regional climate through SAF. Evaluating simulated 

snow can be challenging because of sparse surface monitoring across the high latitudes 

(Brown, 2000; Slater et al., 2017) and a lack of confidence in satellite retrievals over snow-

covered regions because of extensive winter cloud cover (Hall and Riggs, 2007). To combat 

these issues, a multi-observational approach is taken throughout this thesis. This prevents 

reliance on a single (possibly flawed) dataset.  

The high-latitude and mountainous regions where snow resides are projected to 

experience some of the greatest changes due to global warming. We can gather some idea of 

how future changes to snow cover will occur by extrapolating the current seasonal evolution. 

This is because snow albedo feedback occurs similarly in the melt period and under future 

warming (Qu and Hall, 2007; Qu and Hall, 2014). However, there is a large intermodel 

spread in SAF strength under both contexts. This is important because variability in SAF 

explains 40-50% of the spread in projected NH land warming (Qu and Hall, 2014). 

Therefore, extensive evaluation of processes influencing SAF is needed. Chapter 2 serves to 
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synthesize recent progress regarding knowledge of SAF over recent decades, whereas the rest 

of this thesis looks at specific process-based analysis of models.  

 Much of the motivation for Chapter 3 comes from the findings of Thackeray et al., 

(2014). They show that a commonly used climate model (Community Climate System 

Model, version 4; CCSM4) suffers from a weak bias in SAF over the boreal forest because of 

deficiencies in how it represents snow processes. In particular, the model bias is traced to the 

way snow interacted with the forest canopy layer in the land model. A temperature switch 

within the parameterization for intercepted snow means that when temperatures rise above 

freezing, even for a single time step, all snow on the canopy is instantaneously melted. This 

results in an unrealistically early transition from a snow-covered to a snow-free canopy, and 

produces large differences between simulated and observed monthly albedo (Figure 1-4). 

This chapter (Thackeray et al., 2015) seeks to determine the prevalence of such issues within 

the current generation of global climate models. It is plausible that the same issues could 

exist elsewhere because many GCMs are related (Knutti, 2010), meaning that they share 

some parameterizations.  

After biases in snow-covered surface albedo have been assessed within the CMIP5 

ensemble, the importance of these biases is examined in Chapter 4. Biases of a certain 

magnitude likely have some impact on climate simulations as the albedo directly corresponds 

to the radiation absorbed at the surface. However, because of the coupled nature of climate 

simulations, the signal coming from albedo biases is impossible to isolate. Therefore, several 

model sensitivity experiments are needed to better understand the potential impacts that 

biases in snow-covered surface albedo can have on climate. 
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Figure 1-4: Monthly change in (a) albedo and (b) snow cover fraction (SCF) for boreal forest (>75%). Monthly 

changes are climatologies over the 2000-2004 period for CLM4, MODIS, and APP-x. Snow products used 

include CLM4, CCSM4, MODIS, and GlobSnow. The grey shaded region indicates months of the year when 

observational uncertainty is high due to large solar zenith angles (>75 degrees). 
 

Chapter 5 looks at evaluating a different aspect of simulated snow in the Coupled 

Model Intercomparison Project Phase 5 (CMIP5) ensemble, spring trends in SCE. The 

motivation for this work stems from prior studies that have shown climate models to 

underestimate the rapidly declining Northern Hemisphere spring SCE over recent decades 

(Derksen and Brown, 2012; Brutel-Vuilmet et al., 2013). These studies used the National 

Oceanic and Atmospheric Administration climate data record (NOAA CDR) because of its 

length, but issues have since arisen regarding its inconsistent nature when compared to other 

datasets (Brown and Derksen, 2013; Mudryk et al., 2017). Therefore, a collection of seven 

observation-based estimates is used here to better understand the ability of climate models to 
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simulate spring snow cover trends. Moreover, there is a large intermodel spread in future 

projections of spring snow cover (Collins et al., 2013). Here, we investigate this spread to 

better understand the causes of uncertainty so that it can be reduced in future modeling 

efforts.  

1.3 Research Objectives 

The primary goal of this research is to improve our understanding of climate interactions 

with terrestrial snow through changes to surface albedo. The research strives to help with the 

long-term goal of reducing uncertainty in climate projections by highlighting deficiencies in 

the simulation of snow-covered surface albedo and snow cover (seasonality and trends). 

Model evaluation is a crucial step to understanding output and guiding future development. 

In this thesis, we aim to answer the following questions: 

• What is the current state of knowledge with regards to interactions between 

snow cover and climate? 

• Are previously identified model biases related to snow-covered surface albedo 

(as shown by Thackeray et al., 2014) prevalent in the current generation of 

global climate models? 

• What is the ability of the CMIP5 models to accurately simulate the annual 

cycle of snow cover fraction (SCF) and snow-covered surface albedo over 

Northern Hemisphere extratropical land areas? 
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• What impact do model biases in snow-covered surface albedo have on 

simulated climate? Is this impact sensitive to the location, timing and/or 

magnitude of albedo biases? 

• How well are trends in spring snow cover simulated when compared against 

an observational ensemble? What are the primary mechanisms driving the 

large intermodel spread in 21st century changes as projected by the CMIP5 

suite of climate models? 

1.4 Structure of Thesis 

The structure of this manuscript-based thesis is broken into six chapters, the first of which 

describes necessary background information and provides motivation for this research. 

Background content includes discussion of the respective roles of snow and vegetation in 

controlling surface albedo, while also stating how modeling serves to improve our 

understanding of key climate processes. Chapters 2-5 encompass the body of this thesis, in 

the form of individual manuscripts. In Chapter 2 (Thackeray and Fletcher, 2016), a synthesis 

of research on snow albedo feedback is presented. This covers the importance of SAF to 

regional and global climate, estimates of its strength from both models and observations, and 

potential ways forward. Chapter 3 (Thackeray et al., 2015) provides a thorough evaluation of 

the seasonality of snow cover and albedo changes in current climate models. A skill metric is 

also utilized here as a method to track current and future model development. Chapter 4 

(Thackeray et al., in prep) examines the impact of previously diagnosed model biases on 

climate through a series of novel model simulations. Chapter 5 (Thackeray et al., 2016) 
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explores the uncertainty in historical and future simulations of Northern Hemisphere spring 

snow cover. Lastly, the key findings of this research are summarized in Chapter 6, alongside 

some limitations to our approach and a number of recommendations for future work. 

 

  



 

 16 

Chapter 2 

Snow albedo feedback: current knowledge, importance, outstanding issues 

and future directions 

2.1 Overview 

Over the past decade, substantial progress has been made in improving our understanding of 

surface albedo feedbacks, where changes in surface albedo from warming (cooling) can 

cause increases (decreases) in absorbed solar radiation, amplifying the initial warming 

(cooling). The goal of this review is to synthesize and assess recent research into the 

feedback caused by changing continental snow cover, or snow albedo feedback (SAF). Four 

main topics are evaluated: (i) the importance of SAF to the global energy budget, (ii) 

estimates of SAF from various data sources, (iii) factors influencing the spread in SAF, and 

(iv) outstanding issues related to our understanding of the physical processes that control 

SAF (and their uncertainties). SAF is found to exert a small influence on a global scale, with 

an amplitude of ~ 0.1 Wm-2 K-1, roughly 7% of the strength of water vapor feedback. 

However, SAF is an important driver of regional climate change over Northern Hemisphere 

(NH) extratropical land, where observation-based estimates show a peak feedback of around 

1 % decrease in surface albedo per degree of warming during spring. Viewed collectively, 

the current generation of climate models represent this process accurately, but several models 

still use outdated parameterizations of snow and surface albedo that contribute to biases that 

impact the simulation of SAF. This discussion serves to synthesize and evaluate previously 
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published literature, while highlighting promising directions being taken at the forefront of 

research such as high-resolution modeling and the use of large ensembles. 

2.2 Introduction 

Changes in surface albedo that occur as a result of fluctuations in temperature through snow 

and ice cover gain/loss have long been known to have a strong influence on climate (Wexler, 

1953). As the climate warms a subsequent reduction in snow and ice cover reveals a less 

reflective surface that absorbs more solar radiation, which further enhances the initial 

warming perturbation (Cess et al., 1991; Ingram et al., 1989; Robock, 1983; Schneider and 

Dickinson, 1974). This positive feedback mechanism is known as the surface albedo 

feedback. Surface albedo feedbacks have long been linked to enhanced climate sensitivity 

(the response of the climate system to a given forcing) at high latitudes (Budyko, 1969; 

Sellers, 1969). The early energy balance models of Budyko (1969) and Sellers (1969) 

showed that the coupling of planetary albedo and near-surface air temperature produces a 

strong positive feedback between ice/snow and temperature when an external forcing (i.e., 

increased solar radiation) is applied. These models were overly sensitive (roughly by a factor 

of five when compared with general circulation models) (Lian and Cess, 1977; Wetherald 

and Manabe, 1975), but they laid the groundwork for future progress in our understanding of 

surface albedo feedback.  

The high albedo contrast between snow and ice-covered surfaces and snow and ice-

free surfaces is a controlling factor in surface albedo feedback and polar climate (Robock, 

1983). Early modeling studies found that prolonged temperature fluctuations of a few 

degrees could cause a complete loss of polar ice sheets (Schneider and Dickinson, 1974). 
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They also showed that warming does not occur equally everywhere at all times; instead the 

greatest warming occurs during winter at high latitudes (Manabe and Wetherald, 1975; 

Robock, 1983). At this time there was a general consensus that the surface albedo feedback 

was one of the most important climate feedbacks that could affect climate change (Lian and 

Cess, 1977; Manabe and Stouffer, 1980).  

A second snow/ice feedback initially referred to as the snow/ice-meltwater feedback 

(more commonly known as the snow-metamorphosis component of SAF) was also shown to 

be an important mechanism. This process is characterized by an increase in meltwater and 

snow grain size that occurs when near-surface air temperature rises causing a decrease in 

snow albedo (Robock, 1980, 1983). The very simplified models of Budyko and Sellers did 

not include this or many other processes, such as albedo that varied with land cover type 

(leading to an overestimate of snow-covered surface albedo because this neglects forests, 

which have a much lower winter albedo than other land cover types), which contributed to 

their overly high climate sensitivity (Lian and Cess, 1977; Robock, 1983).  

An early attempt to link observed snow cover evolution with global warming and its 

influence on the Earth’s energy balance was made by Groisman et al. (1994). They showed 

that spring surface warming is enhanced by corresponding snow cover loss (from 1972-1992: 

mean snow cover extent decreased by 10%). Much of this snow loss occurs in so-called 

‘temperature-sensitive regions’, where changes in snow cover are strongly correlated to 

temperature variations (Karl et al., 1993) and changes to snow extent in spring have the 

greatest impact on the radiation budget (Groisman et al., 1994). More recently, Déry and 

Brown (2007) confirmed these findings that the climate system is most sensitive to changes 
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in snow cover during spring. Changes during fall are of less importance because of 

decreasing insolation across the Northern Hemisphere. 

The surface albedo feedback follows the classical framework for climate feedbacks, 

and can be calculated by relating changes in temperature and albedo to changes in 

incoming/outgoing shortwave radiation (Cess and Potter, 1988; Hall, 2004; Qu and Hall, 

2007). There are two primary terms controlling surface albedo feedback strength in the 

models. The first term is the ratio of variations in planetary albedo with surface albedo 

changes (𝜕αp/𝜕αs) (Qu and Hall, 2006, 2014). The second is the relationship between 

changes in surface albedo and near surface air temperature (Δαs/ΔTs) (Equation 2-1) (Qu and 

Hall, 2007). 

∂Q𝑛𝑒𝑡

∂𝑇𝑠
=

∂Q𝑛𝑒𝑡

∂α𝑠

∆α𝑝

∆𝑇𝑠
= −Q

∂α𝑝

∂α𝑠

∆α𝑠

∆𝑇𝑠
   .                     (2-1) 

The equation states that surface albedo feedback represents the additional (reduced) amount 

of net shortwave radiation (Qnet) at the top of the atmosphere (TOA) associated with 

decreases (increases) in surface albedo (αs) caused by changes in surface air temperature (Ts). 

The αp term is the planetary albedo, and Q is the incoming shortwave radiation. Another 

method that is commonly used for calculating climate feedbacks involves the use of radiative 

kernels (see Shell et al., 2008; Soden et al., 2008). This approach is computationally simple 

as the kernels do not differ much between models, meaning that intermodel comparisons can 

be easily performed. However, we will primarily focus on the approach described above. 

 This review will focus on snow albedo feedback (SAF). SAF is at its strongest during 

the Northern Hemisphere (NH) spring, as this is a time when continental snow cover is large, 
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incoming radiation is rather intense, and there is large month-to-month change in albedo 

(Hall, 2004; Ingram et al., 1989; Manabe and Stouffer, 1980). Even though there is more 

snow in January over the Northern Hemisphere, the lack of incident radiation means that 

warming-induced snow loss is limited to southerly latitudes (Cess et al., 1991). Hall (2004) 

showed that about 50% of the total NH SAF caused by global warming occurs during NH 

spring. This is also the time when SAF spread between models is largest (Qu and Hall, 

2014). SAF has also been shown to be capable of driving enhanced warming over areas that 

are sensitive to temperature variability, such as at high elevations (Fyfe and Flato, 1999; 

Hernández-Henríquez et al., 2015). The goal of this review is to synthesize and evaluate 

recent progress in our understanding of snow albedo feedback. In Section 2.3, the importance 

of SAF is put into a broader context with a brief review of how it compares to other climate 

feedbacks. Section 2.4 contains a discussion on estimates of SAF from climate models and 

observations. Factors influencing the variability in simulated SAF are described in Section 

2.5, while Section 2.6 contains a discussion of the outstanding issues in the field and 

potential avenues for future research. 

2.3 Global/Northern Hemisphere importance of SAF 

Climate model projections of global mean warming by the end of the 21st century (2081-

2100) range from 1° to 5°C relative to present under all forcing scenarios combined (Flato et 

al., 2013; Knutti and Sedláček, 2013). The strength of simulated warming is closely linked to 

intermodel variation in the simulation of various climate feedback mechanisms, which are 

complex functions of both time and spatial scales (Bony et al., 2006; Colman, 2003, 2013; 

Randall and Wood, 2007; Shell et al., 2008). Determining the physical processes responsible 
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for the range in climate feedback strength, and improving their simulation on the full range of 

scales, are expected to improve projections of future climate (Bony et al., 2006; Shell et al., 

2008).  

Colman et al. (2013) showed that global surface albedo feedback among models 

varies by nearly an order of magnitude (0.1-0.85 Wm-2K-1). Estimates from various studies 

have shown that the annual global ensemble mean surface albedo feedback strength is 

approximately 0.25-0.4 Wm-2K-1 (Colman, 2003; Dessler, 2013; Hall, 2004; Shell et al., 

2008; Soden and Held, 2006; Soden et al., 2008; Zelinka and Hartmann, 2012) and is made 

up of nearly equal contributions from NH snow, and NH and SH sea ice (Colman, 2013). For 

comparison, the ensemble mean water vapor and cloud feedback strengths have been 

calculated as between 1.2-2.2 Wm-2K-1
 (Dessler, 2013; Soden and Held, 2006; Soden et al., 

2008; Zelinka and Hartmann, 2012) and 0.5-0.7 Wm-2K-1 (ensemble range of -0.1 – 1.35 

Wm-2K-1), respectively (Dessler, 2013; Soden and Held, 2006; Zelinka and Hartmann, 2012). 

Therefore, in terms of global importance, surface albedo feedback is substantially weaker 

than both the water vapor and cloud feedbacks (Bony et al., 2006; Colman, 2003; Zelinka 

and Hartmann, 2012). The contribution from Northern Hemisphere snow is even smaller, as 

shown by a global-mean SAF estimate of approximately 0.08 Wm-2K-1 (ranging from 0.03 to 

0.16 Wm-2K-1) in the current generation of climate models (Qu and Hall, 2014). This 

estimate is much weaker than the dominant climate feedbacks listed above but these global 

measures do not capture the local importance of SAF to climate change over the terrestrial 

NH.  
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Interestingly, surface albedo feedback is known to be very important for regional 

climate change, playing a significant role in Arctic amplification (Bony et al., 2006; Déry 

and Brown, 2007; Hall, 2004; Holland and Bitz, 2003). Pithan and Mauritsen (2014) found 

that the contribution to Arctic warming from surface albedo feedback due to snow and ice 

loss is second largest, only slightly weaker than the lapse rate feedback. However, there is 

some debate on the level of importance of SAF for Arctic amplification (Déry and Brown, 

2007; Graversen and Wang, 2009; Graversen et al., 2014). For example, Graversen et al. 

(2014), using simulations from a single GCM, found that albedo feedback is responsible for 

only ~40% of the Arctic warming amplification, leaving more than half to be explained by 

other processes, such as thermal advection.   

SAF can be defined on a variety of timescales as there is no implicit time information 

contained in the partial derivatives (Eq. 2-1), which can be evaluated over any time period. A 

very useful property of SAF is that it can be evaluated over the seasonal cycle and in the 

context of climate change (Hall and Qu, 2006). However, there are certain physical 

constraints; for example, SAF is commonly calculated as either a seasonal or annual mean. In 

the current seasonal cycle, NH snow cover retreats from its peak in late winter in response to 

greater insolation and warmer temperatures (Robinson et al., 1993), thus decreasing surface 

albedo and amplifying the warming. Similarly, simulations show that climate warming will 

reduce snow cover extent, decreasing surface albedo, and amplifying the warming through 

greater radiation absorbed at the surface (Cess et al., 1991; Hall and Qu, 2006). On seasonal 

timescales, surface albedo feedback is dominated by contributions from NH snow (SAF), 

which physically makes sense because of the large changes in terrestrial snow cover that 
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occur during the snow melt period (Colman, 2013). Studies have shown that SAF is the 

largest positive feedback over NH high-latitudes (Zelinka and Hartmann, 2012), particularly 

during the winter-to-spring transition (Qu and Hall, 2014). The best estimate of SAF based 

on the observed seasonal cycle (Feb to Jun) is 0.87 Wm-2K-1¸ while the fifth Coupled Model 

Intercomparison Project (CMIP5) ensemble has a significant intermodel spread (0.50 – 1.35 

Wm-2K-1) (Qu and Hall, 2014).  

The importance of SAF is perhaps best exemplified by the findings of Qu and Hall 

(2014) that show SAF variability in the CMIP5 models accounts for 40-50% of the spread in 

warming over Northern Hemisphere extratropical land (Figure 2-1). In fact, there was shown 

to be a strong positive correlation between annual-mean SAF strength and projected zonal 

mean temperature change (~0.6-0.7) in springtime, and a slightly weaker correlation 

throughout summer (Qu and Hall, 2014). 

In recent decades, NH melt season snow cover has shown a dramatic negative trend 

(i.e., -21% per decade for June) (Derksen and Brown, 2012), which is larger in magnitude 

than the well-publicised declining trend in Arctic sea ice (-13% per decade for September) 

(Stroeve et al., 2007, 2012). In fact, melt season continental warming in the NH has likely 

been enhanced by SAF (Groisman et al., 1994). Multiple studies have shown that warming 

across much of the terrestrial Arctic is a key driver behind a lengthening of the snow-free 

season because the snow is being melted earlier (i.e., Brown et al., 2010; Chapin et al., 2005). 

Hall et al. (2008) also demonstrated that SAF strength and summertime temperature are 

correlated through changes in water storage as a result of SAF. In summary, it is likely that 

changes to snow extent and snow cover duration have triggered a series of climate feedbacks  
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Figure 2-1: Cross-model correlation between the annual-mean SAF strength and zonal-mean surface warming 

over land areas, for each month. Surface warming is quantified as the difference between the Ts climatologies in 

the periods 1980-1999 and 2080-2099 (from Qu and Hall, 2014). Reprinted with permission from Springer. 

 

that are enhancing, and will continue to enhance, warming of the NH land (Chapin et al., 

2005; Déry and Brown, 2007). 

2.4 Estimates of SAF from various data sources 

2.4.1 Simulated SAF in climate models 

The recent observed changes to the cryosphere are largely underestimated by the CMIP5 

models (Derksen and Brown, 2012; Stroeve et al., 2012). For example, the annual mean NH 

snow and ice albedo feedbacks are much greater (~2.5 times) in observations than models 

(Crook and Forster, 2014; Flanner et al., 2011). The motivation for looking at SAF in models 

extends well beyond this disagreement between models and observations, because we know 
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that both the models and observations are likely deficient. However, the models are a crucial 

tool for understanding the observations as well as for making future projections. Therefore it 

is important to better understand the processes behind this feedback mechanism, and how 

well they are simulated by models.  

Early studies of climate sensitivity involving general circulation models (GCMs) 

demonstrated that with increased CO2 (or incoming radiation) forcing there was greater 

warming at high latitude regions as a result of less snow cover and subsequently a lower 

surface albedo and more absorbed radiation (Manabe and Stouffer, 1980; Manabe and 

Wetherald, 1975; Wetherald and Manabe, 1975). The enhanced polar warming due to SAF 

was approximately two to three times greater than the global average in a CO2 doubling 

experiment by Manabe and Wetherald (1975). The first model intercomparison of SAF using 

multiple GCMs dates back to Cess et al. (1991). They examined simulations with climate 

warming imposed through specified sea surface temperature (SST) perturbations, but which 

were able to generate their own surface feedback response over land. These early results 

demonstrated a large intermodel spread in the global “snow feedback parameter” (0.9-1.9 

Wm-2K-1) (Cess et al., 1991; Randall et al., 1994).  

There are two common ways to quantify SAF, through changes in TOA shortwave 

flux with warming/cooling (Eq. 2-1), and through changes in surface albedo with 

warming/cooling (Δαs/ΔTs). Of the two partial derivatives in the SAF equation (Eq. 2-1), the 

first term (𝜕αp/𝜕αs) was always thought to be about 0.5, but recent research has reduced this 

estimate to ~0.35, meaning that variations in surface albedo have slightly less impact on 

planetary albedo than first estimated (Donohoe and Battisti, 2011; Qu and Hall, 2014). 



 

 26 

However, this parameter has been shown to exhibit very little intermodel variability among 

the Coupled Model Intercomparison Project phase 3 (CMIP3) (Donohoe and Battisti, 2011; 

Qu and Hall, 2006) and CMIP5 models (Qu and Hall, 2014), meaning it is not a factor in 

SAF variability. By contrast, several studies have shown that intermodel variations in SAF 

are highly correlated with the simulated strength of the second term (Δαs/ΔTs), which 

describes the sensitivity of surface albedo to temperature changes (Qu and Hall, 2007). This 

term explains more than 80 % of the multimodel spread in SAF (Qu and Hall, 2007, 2014), 

and so it is commonly used as a proxy for SAF strength (Fernandes et al., 2009; Fletcher et 

al., 2012). 

SAF in the CMIP3 climate models has been investigated in numerous studies (i.e., 

Fletcher et al., 2012; Qu and Hall, 2006, 2007; Winton, 2006). In terms of total feedback 

strength, the CMIP3 ensemble has a multi-model mean SAF of -1.20 % K-1 (percent change 

in albedo per degree Kelvin of warming) in March-April-May-June (MAMJ; calculated for 

1982-1999) and a spread of approximately -0.72 to -1.57 % K-1 (Fletcher et al., 2012). 

Despite a large focus on land model development since CMIP3 (Brovkin et al., 2013; Oleson 

et al., 2010), the current generation of models (CMIP5) have not shown much progress 

related to SAF. Qu and Hall (2014) found that the intermodel variance in the sensitivity of 

surface albedo to changes in temperature (Δαs/ΔTs), and in turn SAF, remains largely 

unchanged from CMIP3 to CMIP5. The median model feedback strength (Interquartile 

range) is approximately -1.20 % K-1 (-0.90 to -1.70 % K-1) in the seasonal cycle over the 

Northern Hemisphere extratropics (Fletcher et al., 2015). Qu and Hall (2014) calculated SAF 

as an annual mean over NH extratropical land and showed that a fourfold spread exists 
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within the CMIP5 ensemble (range: 0.18-0.78 Wm-2K-1). To better understand the similarities 

between these two calculations, we use data from Figure 1(c) of Qu and Hall (2014) to 

isolate for only the winter-to-spring transition (MAMJ), which results in a mean SAF of 

~0.89 Wm-2K-1 (0.81 Wm-2K-1 for FMAMJ). 

The large spread tells us that several models have an unrealistic SAF in the current 

seasonal cycle, but despite these biases (SAF and surface albedo) the model simulated 

temperature is on average consistent with observations over the recent historical period 

(Thackeray et al., 2015). This is important because SAF in the seasonal cycle forms an 

excellent predictor for SAF strength under future climate change (Figure 2-2) (Hall and Qu, 

2006; Qu and Hall, 2014). This property can be exploited by using available observational 

data to constrain future projections of SAF (Qu and Hall, 2014), and thus of surface 

temperature, and possibly of circulation (Fletcher et al., 2009). Although this feedback is 

restricted to high latitudes it may influence the global energy budget through an impact on 

the poleward transport of energy (Zelinka and Hartmann, 2012). Therefore, if a model cannot 

accurately represent seasonal snow cover changes, then it is not likely to capture how snow 

cover will recede in a warmer climate. Levis et al. (2007) showed that the extent of present 

day snow cover is positively correlated with SAF strength, whereby a model with greater 

snow extent has a larger “SAF potential” (the strength of SAF that a model can produce for a 

given warming) because there is more snow-covered area that can be exposed revealing a 

less reflective underlying surface. 
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Figure 2-2: Scatterplot of simulated springtime SAF values in climate change and in the seasonal cycle. Each 

number represents an individual model. A least-squares fit regression line for the simulations is also shown. The 

two parameters are highly correlated (r2 = 0.92). The observed springtime value based on ISCCP and the 

ERA40 reanalysis is plotted as a dashed vertical line (from Hall and Qu, 2006). Reprinted with permission from 

John Wiley and Sons. 

2.4.2 Observation-based SAF 

The satellite data record allows for monitoring of large-scale changes to the cryosphere, and 

these data can be used to derive an observational estimate of SAF due to the seasonal cycle. 

The large intermodel spread in SAF (Section 2.4.1) also helped drive a push to quantify the 

observed SAF strength, with the hope that observational constraints could help to reduce the 

spread in projected warming (Fernandes et al., 2009; Hall et al., 2008). Early attempts to 

calculate SAF using satellite-derived albedo, snow cover, and temperature found a total 

strength that varied slightly depending on the data sources used. Hall et al. (2008) found that 
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spring SAF over the Northern Hemisphere extratropics was larger than the multi-model 

ensemble mean from 18 models. They estimated observational SAF using surface albedo 

from the International Satellite Cloud Climatology Project (ISCCP) to be -1.13 +/- 0.13 %K-1 

(Table 2-1). This is approximately 20% stronger than an estimate of -0.93 +/- 0.06 % K-1 that 

used surface albedo from the Advanced Very High Resolution Radiometer (AVHRR) Polar 

Pathfinder extended (APP-x) project (Fernandes et al., 2009). This ~1% reduction in albedo 

per degree Kelvin of warming equates to a global mean strength of approximately 0.1  

Wm-2K-1 (Qu and Hall, 2014). A similar approach was used by Fletcher et al., (2012) in an 

attempt to update the observational estimate of SAF in the seasonal cycle (MAMJ). The 

authors showed a total feedback strength of -1.11 % K-1, an increase from Fernandes et al. 

(2009), where a different methodology but same study area (AVHRR subset of EASE grid) 

was utilized. These observational differences are primarily linked to the various albedo and 

temperature datasets used, and their methodological differences (retrieval algorithms, spatial 

domain, temporal domain, etc.).  

More recently, Qu and Hall (2014) used surface albedo data from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) to estimate an observed SAF strength of 

0.87 +/- 0.09 % K-1 in a shortened seasonal cycle (Apr-May). Fletcher et al. (2015) chose to 

employ a multiple observation approach using all available data to produce a best estimate of 

SAF strength. The calculation of NET SAF using a variety of observational products was 

consistently around -1.22 % K-1 over NH land polewards of 45°N. The weaker SAF strength 

calculated by Qu and Hall (2014) may stem from differences in methodology, study area, and 

observational data used. It has been suggested that observed SAF in the seasonal cycle could  
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Table 2-1: Strength of observational estimates of snow albedo feedback as reported by various studies. Studies 

using the APP-x albedo dataset are limited to a smaller spatial domain (NH45; polewards of 45°N) than those 

using other products that cover the entire Northern Hemisphere extratropics (NH30). The time frame is 

represented by the first letter of each month (i.e., MAM = March-April-May). 

 

SAF Strength Spatial/Temporal Domain Albedo Dataset Reference 

-1.13 % K-1 NH30/MAM ISCCP Hall et al., 2008 

-0.93 % K-1 NH45/MAM APP-x Fernandes et al., 2009 

-1.11 % K-1 NH45/MAMJ APP-x Fletcher et al., 2012 

-0.87 % K-1 NH30/AM MODIS Qu and Hall, 2014 

-1.22 % K-1 NH45/MAMJ MODIS & APP-x Fletcher et al., 2015 
 

be used to constrain SAF in climate change in order to narrow the spread in projections of 

warming (Qu and Hall, 2014). Qu and Hall (2014) showed that this would eliminate 

approximately half of the intermodel range in SAF strength during climate change, from 0.3-

1.4 Wm-2K-1 to 0.5-1.0 Wm-2K-1. 

With regards to its spatial distribution, seasonal SAF strength typically falls between 

0 and -1 % K-1 over the Northern Hemisphere, except for a region just north of the boreal 

forest where SAF locally reaches between -1 to -5 % K-1 (Fernandes et al., 2009). The 

stronger SAF seen here is largely due to a greater surface albedo contrast (αsfc_snow - αland) 

because vegetation is either sparse or easily masked by snow (i.e. grass, shrub). A subsequent 

analysis of the regional variations in observed SAF found local maxima across northern 

Canada, northern Siberia, and southwest Eurasia (Fletcher et al., 2012). The CMIP5 

ensemble is biased high over the boreal forest, and biased low over the Arctic (Fletcher et al., 

2015). Model biases in SAF over these land cover types have been shown to be strongly 

linked to biases in climatological snow-covered surface albedo (Thackeray et al., 2015). 

Therefore the current generation of climate models has some success replicating the spatial 

distribution of SAF, but shows local biases over the boreal forest and Arctic tundra. 
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2.5 Factors influencing the spread in simulated SAF 

2.5.1 SAF components 

The sensitivity of surface albedo to temperature changes (Δαs/ΔTs; henceforth NET, 

corresponding to its role in describing the total SAF) is controlled by two mechanisms: (i) 

reduction of snow cover (S) revealing a darker surface, decreasing surface albedo (SNC; 

Eq. 2-2), (ii) physical changes to the snowpack with warmer temperatures (Ts) occurring with 

constant S (TEM; Eq. 2-3) (Fletcher et al., 2012; Qu and Hall, 2007).  

        SNC = (αsfc_snow – αland)ΔS/〈ΔTs〉                (2-2) 

             TEM = S. Δαsfc_snow/〈ΔTs〉 ,             (2-3) 

where αsfc_snow is the snow-covered surface albedo, αland is the snow-free land albedo, deltas 

represent the change in a quantity (either month-to-month in the seasonal cycle context, or 

future minus past in the climate change context), overbars represent the seasonal mean, and 

the angle brackets around temperature indicate the use of a NH extratropical mean. 

The SNC component dominates SAF (>50% of NET) in 14/17 CMIP3 models (Qu 

and Hall, 2007; Fletcher et al., 2012). However, there has been some disagreement about the 

contributions from the SNC and TEM terms to total (NET) SAF (Fletcher et al., 2015). 

Fletcher et al. (2012) used this methodology (Eq. 2-2, 2-3) to determine that SAF in the 

seasonal cycle context had a 60/40 (SNC/TEM) breakdown in CMIP3 models (for reference, 

observations showed a 70/30 split; but this split is highly sensitive to the choice of SCF 

dataset (Fletcher et al., 2015)). On the other hand, Qu and Hall (2007) showed that the 

difference in albedo between a snow-covered and snow-free surface accounts for ~80% of 

the intermodel variance in the snow cover component of SAF. Subsequently, more than 80%  
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Figure 2-3: Scatterplot of Δαs/ΔTs (units % K-1) vs mean albedo of fully snow-covered regions (dimensionless) 

for the current climate in 17 CMIP3 simulations. The numbers of the 17 simulations are from Table 1 of Qu and 

Hall (2007). The numbers are color coded by the way vegetation/albedo is parameterized in that model: blue = 

Type 1, green = Type 2, orange = Type 3, and red = Type 4 (from Qu and Hall, 2007). See Section 2.5.2 for 

definition of the four types listed here. Reprinted with permission from the American Meteorological Society. 

of the spread in albedo contrast can be accounted for by variability in αsfc_snow (Figure 2-3). 

Simulated snow albedo is therefore found to be highly correlated (r>0.8) with SAF strength 

(Qu and Hall, 2007), implying that correcting biases in simulated αsfc_snow could provide 

strong constraints on SAF, and therefore future surface albedo and temperature changes, over 

NH land. SAF in the CMIP5 models continues to be dominated by the snow cover 

component (SNC; -0.75% K-1), while the temperature dependent component (TEM; -0.45% 

K-1) plays a slightly lesser role (Figure 2-4) (Fletcher et al., 2015). In terms of their snow and 

land albedos there are signs of improvement, as the multi-model median has moved closer to 

observations, but as previously noted a large spread still lingers for both of these terms 

(Fletcher et al., 2015). 
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Figure 2-4: Boxplots showing the spread of the MAMJ mean SAF terms in CMIP3 and CMIP5 models (a) 

NET, (b) SNC, (c) TEM. For each box the grey shaded region shows the 25th-75th percentile range, the black 

horizontal line shows the median, and the white diamond shows the multimodel mean. The dashed fences 

indicate 1.5x the interquartile range (IQR), and outlier models are shown by open circles. The longer grey 

horizontal lines behind the boxes denote the observation-based estimates (from Fletcher et al., 2015). Reprinted 

with permission from John Wiley and Sons. 

Additivity of the two terms that comprise SAF (i.e., SNC+TEM = NET) would 

illustrate that the components fully capture the physical processes controlling the total 

feedback. This has been shown to hold up quite well in observations and models, to within a 

few percent for the NH land area as a whole (Fletcher et al., 2012). However, when looking 

at SAF averaged as a function of latitude, additivity is not well satisfied for observationally-

derived estimates (although the relationship is still satisfied in models). This lack of 

additivity implies that the SNC/TEM decomposition is not capturing all SAF processes at a 

sub-hemispheric scale (Fletcher et al., 2015). We speculate that this may be tied to 

inaccuracies with satellite based snow cover estimates (Fernandes et al., 2009), as the 

derivation of these terms, particularly SNC, is sensitive to biases in the snow cover product 

used. Over regions that contain a high fraction of sub-pixel water cover (for example the 

lake-rich regions of Northern Canada and Siberia) there is a tendency for satellite-derived 
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snow melt to be delayed (Frei and Lee, 2010; Zhao and Fernandes, 2009). Therefore our 

understanding continues to be limited by a lack of confidence in our observational products 

that are used to derive estimates of SAF and its components. 

2.5.2 Land cover types and vegetation masking 

A large range in the simulated albedo of fully snow-covered surfaces plays an integral role in 

SAF spread. The snow-covered surface albedo (αsfc_snow) in GCMs is primarily linked to the 

type of surface albedo parameterization and vegetation masking scheme in place. Simulating 

snow and albedo over forested regions is challenging because of the interactions between the 

canopy layer and the ground surface. In dense evergreen forests, the snowpack is often 

largely shaded by the forest canopy at higher solar zenith angles in winter (Wang et al., 

2014), but this process is often poorly represented in GCMs. The type of vegetation/snow 

masking scheme employed by a model plays an important role in albedo evolution (Essery, 

2013; Loranty et al., 2014). Qu and Hall (2007) defined four distinct types of snow albedo 

masking schemes in the CMIP3 ensemble, with varying degrees of complexity. The simplest 

approach (Type 4) uses an albedo that is independent of land cover and is only tied to the 

snow depth. The Type 3 models calculate albedo as a weighted average of snow-free surface 

albedo and snow albedo, dependent on snow cover fraction. Type 2 models, on the other 

hand, calculate albedo as a weighted average of canopy and ground albedo, dependent on 

land cover type. The most complex approach (Type 1) uses a full canopy radiative transfer 

model that uses two-stream approximations (Essery, 2013; Qu and Hall, 2007). The wide 

variety of parameterization types contributes to a large spread in snow-covered surface 

albedo (~0.25-0.60) and SAF over forested regions (Loranty et al., 2014; Thackeray et al., 
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2015). It should be noted that more sophisticated representations are not necessarily the best; 

as the five CMIP3 models with the lowest αsfc_snow over the NH all use either type 1 or 2 

parameterizations (Qu and Hall, 2007). Furthermore, the way in which a model represents 

snow in the canopy layer has also been shown to influence SAF (Thackeray et al., 2014). For 

these reasons it has been suggested that observations should be used to constrain simulated 

wintertime albedo over heavily vegetated landscapes (Qu and Hall, 2014). 

It is well known that snow albedo is sensitive to changes in near-surface air 

temperature and that albedo decreases with snow age through metamorphosis processes 

(Robock, 1983; Wiscombe and Warren, 1980). These snowpack evolution processes tend to 

be parameterized in GCMs with a dependence on either snow age or temperature, and it is 

this dependency that largely controls the seasonal evolution of αsfc_snow (Qu and Hall, 2007). 

Pedersen and Winther (2005) showed that temperature dependent schemes had a tendency to 

decrease in albedo too early in the melt season and this change occurred more rapidly than in 

situ observations at temperate sites (where Ts rises above 0°C several times during winter). 

Therefore the chosen parameterizations relating to snow and vegetation can have a strong 

influence on simulated SAF. 

2.6 Discussion and conclusions 

This review has summarized recent progress in the understanding of snow albedo feedback 

(SAF) and its importance to the climate system. There is a consensus that SAF is a relatively 

weak climate feedback in the global context, but it plays an important role in regional climate 

change over the Northern Hemisphere (NH) extratropics (Déry and Brown, 2007; Hall, 

2004). In these regions SAF is strongest during the winter-to-spring transition months (Feb-
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Jun), when the seasonal mean strength is characterized by approximately a 1 % reduction in 

surface albedo per degree of warming (Fletcher et al., 2012; Hall et al., 2008; Qu and Hall, 

2014). SAF can be decomposed into two components, one related to the presence/absence of 

snow cover (SNC), and the other to temperature-mediated changes in the snowpack 

occurring in the presence of snow cover (TEM). The total SAF strength is controlled 

primarily by SNC, which in models is strongly tied to the simulated albedo of a fully snow-

covered surface (Qu and Hall, 2007). However, there is some discrepancy with regards to 

how strong of an influence these terms have on SAF (Fletcher et al., 2015). In the most 

recent generation of climate models there has been an improvement in simulated surface 

albedo and mean climate (Fletcher et al., 2015).  

2.6.1 Limitations associated with observational data products 

Several pressing issues still limit our understanding of SAF. First, there remains a lack of 

reliable observational data over much of the cryosphere (Liston, 2004; MacKay et al., 2006), 

in particular over northern Canada, Siberia, and Greenland, where there is a low density of 

coastal and interior land weather stations (Rigor et al., 2000). This is particularly important 

when it comes to measurements of surface temperature, which may require spatial 

interpolation to be applied where in situ measurements are sparse (Mortin et al., 2014). 

Satellite-derived products provide much better spatial coverage but still contain uncertainties. 

Satellite retrievals of snow cover and albedo can be particularly difficult to confidently 

acquire at large solar zenith angles (i.e. during winter, at high latitudes) (Schaaf et al., 2002; 

Wang et al., 2014) and over complex terrain (i.e. mountainous regions). Furthermore, many 

global satellite-derived products are not available at spatial and temporal resolutions that are 
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comparable with output from GCMs, which limits our ability to use these data for model 

validation and improvement. Most satellite-derived products are distributed with spatial grid 

resolutions of ~1 km, whereas GCM resolutions are of the order ~100 km, meaning that grid 

interpolation must be applied to ensure sound comparison. These products are also seldom 

available at a daily temporal resolution, causing key processes during the melt season—when 

the snowpack is in a state of rapid change and albedo can decrease dramatically in a matter of 

days—to be undersampled (Loth et al., 1993). For example, the current 16-day mean surface 

albedo product from MODIS has been shown to have decreased accuracy during rapid melt 

events (Wang et al., 2014).   

Increasing availability of observational products at higher temporal resolution should 

allow for the evaluation of SAF, and other cryosphere-relevant processes, at the critical daily 

and weekly timescales. A demonstration of the impact of timescale on SAF is presented in 

Figure 2-5, where SAF computed from an offline simulation of the Community Land Model 

version 4 (CLM4) (Figure 2-5a) is compared with an observationally-derived estimate on a 

weekly (Figure 2-5b) and a monthly timescale (Figure 2-5c). The SAF strength peaks at ~-8 

% K-1 in weeks 12/13 just south of 70°N in the model and observational estimate, and then 

further north during weeks 14-16. The weekly SAF calculation reveals much more detail 

about the seasonal evolution than the current protocol of aggregating the data over a month 

(comparing panels (b) and (c)), and provides a visible signal of the timing of snow cover 

retreat across the Northern Hemisphere (particularly through the boreal forest). A similar 

type of analysis could be performed on the individual SAF components to get a better  
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Figure 2-5: Hovmöller diagrams showing NET SAF (units % K-1) as a function of latitude and time (in weeks) 

over the winter-to-spring transition (March-April-May-June). Week 1 is March 1-7, while week 17 is June 21-

27. In panels (a) and (b) the SAF values are computed using weekly mean surface albedo, snow cover, and 

temperature data extracted from (a) an offline simulation using the land model NCAR-CLM4, (b) satellite 

observations (APP-x albedo, IMS snow cover). In panel c the SAF values are computed as in Fletcher et al. 

(2015), using monthly mean observational data, covering the four months March-June.  

 

understanding of short-timescale processes related to snow cover and albedo change that may 

be undersampled in monthly mean data. 
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The bias and uncertainty in the observed snow cover record can influence the 

breakdown of SAF components (Eq. 2-2, Eq. 2-3). Fletcher et al. (2015) showed a large 

spread in calculations of observed SNC and TEM as a result of dissimilarities in snow cover 

datasets. In particular, it was the discrepancy between MODIS and the IMS/NOAA products, 

whereby SNC is weaker when snow cover persists for longer. The observational uncertainty 

associated with various datasets of the same geophysical variable can limit our confidence in 

its application. To address this issue there has recently been a shift to using multiple 

independent observationally based estimates as a way to demonstrate observational 

uncertainty and for model evaluation over the cryosphere (Brown and Derksen, 2013; 

Fletcher et al., 2015; Mudryk et al., 2015; Thackeray et al., 2015). The thinking behind this 

approach is that each observational estimate has its own inherent uncertainty and this can be 

limited, but not entirely eliminated, by using multiple datasets (Flato et al., 2013). Individual 

sources of snow cover data can be influenced by alterations to mapping methodology over 

time, biases in satellite retrievals, and changes to satellite sensors (Brown et al., 2010). 

Brown and Derksen (2013) showed that one commonly used snow cover dataset, the NOAA 

climate data record, has an increasing trend (over the 1982-2005 period) in Eurasian October 

snow in contrast to a significant negative trend in four other independent datasets. Similarly, 

analysis of several snow water equivalent datasets has revealed large observational spread in 

snow mass and SWE trends over recent decades (Mudryk et al., 2015). A new project called 

the Satellite Snow Products Intercomparison & Evaluation Exercise (SnowPEX) hopes to 

evaluate the various observational snow cover products and derive their relative uncertainties 
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for climate change monitoring. This will provide the community with a much better sense of 

the variability within observationally based estimates of snow. 

2.6.2 Potential to improve model projections 

The persistence of the large intermodel spread in simulated SAF within the current 

generation of climate models remains another important limitation (Qu and Hall, 2014). This 

means that SAF is still a crucial source of uncertainty for projections of climate warming 

over Northern Hemisphere land areas. Qu and Hall (2014) showed that the use of 

observational constraints would eliminate approximately half of the intermodel range in SAF 

strength during climate change, from 0.3-1.4 Wm-2K-1 to 0.5-1.0 Wm-2K-1. Extending their 

approach to the intermodel spread in surface temperature, we can estimate how much 

observational constraints could narrow projections of NH land warming. Under the RCP8.5 

scenario the range in 21st century warming (2080-2099 minus 2006-2025) over the NH 

extratropics is 3.1-7.4°C across 24 CMIP5 models. Taking the mean from only the “best” 

models (defined as those with SAF in the seasonal cycle context that lies within the range of 

observational uncertainty, based on Fig. 4 and Table 1 from Qu and Hall (2014)) we find a 

range of projected warming 4.4-6.9°C, which represents a reduction in intermodel spread of 

~40 %. This type of analysis serves as a demonstration of how a reduction in process-level 

model biases (for example in simulated snow albedo), might help to reduce the uncertainty in 

projections of climate change over large areas. 

There are several streams of emergent research which show promise and are expected 

to lead to substantial changes in our understanding or representation of SAF. A few of them 

are discussed here. Much of this research is tied to model development, but as previously 
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mentioned there is still a large amount of potential for improving observational datasets. One 

area where improvements are ongoing is across the boreal forest, where the models 

overestimate SAF strength on average (Fletcher et al., 2015). The recent evaluation of 

vegetation parameterization and distributions has revealed that many models have an 

unrealistic representation of forested regions (i.e., tree cover fraction distribution) (Essery, 

2013; Loranty et al., 2014). Excluding the models with unrealistic vegetation schemes from 

model intercomparison studies has been shown to dramatically limit the spread in snow-

covered albedo (Essery, 2013). Thackeray et al. (2014) showed that issues with the 

representation of canopy snow in one model (Community Climate System Model version 4; 

CCSM4) had a knock-on effect that caused albedo to decrease too early in the winter, 

producing a 40% weaker than observed SAF. Development to improve the simulation of 

canopy snow interception/offloading and reduce associated albedo biases in the CCSM4 is 

ongoing (J. Perket, personal communication, 2015).  

Also, in the near-future we should expect to see the incorporation of observational 

estimates to improve model simulations; such as using observed SAF to constrain how snow 

cover evolves in a warmer climate (Qu and Hall, 2014), or applying observationally based 

albedo/vegetation relationships (Loranty et al., 2014). Perturbed physics ensembles, where 

key model parameters are varied across their full range of observational/empirical 

uncertainty, provide a pathway toward improvement in overall model quality (Fischer et al., 

2011; Sanderson, 2011). Also, as computational power continues to increase we can expect 

to see higher resolution modeling and larger model ensembles. For CMIP5, most models 

were run at resolutions between 100-300 km, but more recently there has been an increased 
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use of higher resolutions (0.25-0.5°) that allow for better representation of small-scale 

processes (Jia et al., 2015; Roberts et al., 2015). Meanwhile, the number of historical 

simulations for each model ranged from 1-10 for CMIP5, but this is often too low to properly 

separate forced from internal climate variability. In response, a new push in the community is 

the production of large ensembles, which contain upwards of 30 realizations of historical and 

future scenario runs (i.e. Kay et al., 2014). These advancements should reduce our need to 

upscale observational data for model evaluation, and provide a better understanding of the 

role of internal variability in various simulated processes, particularly in the cryosphere (i.e. 

Screen et al., 2014; Wettstein and Deser, 2014). 
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Chapter 3 

Quantifying the skill of CMIP5 models in simulating seasonal albedo and 

snow cover evolution 

3.1 Overview 

Effectively modeling the influence of terrestrial snow on climate in general circulation 

models (GCMs) is limited by imperfect knowledge and parameterization of arctic and sub-

arctic climate processes, and a lack of reliable observations for model evaluation and 

improvement. This study uses a number of satellite-derived datasets to evaluate how well the 

current generation of climate models from the fifth Coupled Model Intercomparison Project 

(CMIP5) simulate the seasonal cycle of climatological snow cover fraction (SCF) and surface 

albedo over the Northern Hemisphere snow season (September – June). Using a variety of 

metrics, the CMIP5 models are found to simulate SCF evolution better than that of albedo. 

The seasonal cycle of SCF is well reproduced despite substantial biases in simulated surface 

albedo of snow-covered land (αsfc_snow), which affect both the magnitude and timing of the 

seasonal peak in αsfc_snow during the fall snow accumulation period, and the springtime snow 

ablation period. Insolation-weighting demonstrates that the biases in αsfc_snow during spring 

are of greater importance for the surface energy budget. Albedo biases are largest across the 

boreal forest, where the simulated seasonal cycle of albedo is biased high in 14/16 CMIP5 

models. This bias is explained primarily by unrealistic treatment of vegetation masking and 

subsequent overestimation (more than 50% in some cases) of peak αsfc_snow, rather than by 

biases in SCF. While seemingly straightforward corrections to peak αsfc_snow could yield 
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significant improvements to simulated snow albedo feedbacks, changes in αsfc_snow could 

potentially introduce biases in other important model variables such as surface temperature. 

3.2 Introduction 

Snow is a crucial component of the climate system, interacting with the energy budget of the 

atmosphere and the land surface. It has a very strong influence on surface albedo (αsfc), 

controlling the timing of peak reflectivity and its evolution through the snow season. The 

observed seasonal evolution of albedo has been shown to increase throughout the winter, 

peaking in March on average in the Northern Hemisphere (NH) (Fang et al., 2007; He et al., 

2014). He et al. (2014) suggested that this late winter maximum albedo is due to weak 

insolation during winter, and the increasing influence of snow and ice-covered surfaces on 

the shortwave radiation budget during the winter-to-spring transition. This peak albedo is 

strongly tied to land cover, with forested regions being the least reflective, even with high 

snow cover, because the forest canopy masks the surface (Jin et al., 2002; Barlage et al., 

2005; Fang et al., 2007). We define the quantity αsfc_snow to represent the albedo of a snow-

covered surface, meaning that αsfc_snow is influenced by a combination of factors including 

snow cover fraction (SCF), the albedo of pure snow, the albedo of the underlying surface 

and/or vegetation, and the confounding effect of snow lying on the vegetation.  

The impact of snow on climate in general circulation models (GCMs) has proven 

difficult to effectively model because of imperfect knowledge and parameterization of arctic 

and sub-arctic climate processes, and a shortage of reliable observations for model 

assessment and development (Liston, 2004; MacKay et al., 2006). Qu and Hall (2007) 

showed that the Coupled Model Intercomparison Project phase 3 (CMIP3) models had a 
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large spread (~0.28 – 0.59) in the mean αsfc_snow, and a spread of this magnitude still exists in 

the more recent generation of models from phase 5 (CMIP5) (Qu and Hall, 2014). Models 

with a high αsfc_snow also tend to have a large surface albedo contrast (snow-covered minus 

snow-free albedo), and in turn a stronger snow albedo feedback (SAF) (Qu and Hall, 2007; 

Fletcher et al., 2012). SAF is an important positive feedback mechanism that enhances 

surface warming through a reduction in surface albedo resulting from receding snow cover 

and snow metamorphism. A fivefold spread in SAF strength among the CMIP5 models 

explains 40-50% of the spread in predicted future warming over NH land (Qu and Hall, 

2014).  

A significant factor in the intermodel spread in SAF is the number of different ways 

in which the models parameterize snow, vegetation masking, the albedo of pure snow, and 

the interactions between these variables. Slater et al. (2001) showed that there are four 

primary model structures for representing snow cover in land models. The least sophisticated 

model structure is an “implicit” scheme, which assumes an equal distribution of snow mass 

across a grid cell. A “composite layer” structure monitors the fraction of a grid cell that is 

covered by snow on the ground (snow cover fraction; SCF), while its snow temperature is the 

same as the uppermost soil layer. The other two structures track SCF, while also simulating 

the snowpack above the soil surface as either a single layer (“bulk layer”) or multiple layers 

(“multi-layer”). The albedo of pure snow is typically parameterized to evolve following 

snowfall through a dependence on either snow age or surface temperature (Qu and Hall, 

2007). There are also differences in how mixed precipitation events are parameterized, with 
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the partitioning between rain and snow critical to snowpack evolution (Rutter et al., 2009; 

Essery et al., 2013).  

An important portion of the NH snow-covered region is forested, so accurate 

simulation of canopy-snow interactions and vegetation masking are critical for the NH 

energy budget and water balance. Qu and Hall (2007) classified the various snow albedo 

masking schemes in the CMIP3 models. They found four distinct groups of models, each 

with increasing complexity, that were also employed in the newer CMIP5 models. The 

simplest and least sophisticated approach (referred to as “type 4” models) employs an albedo 

that is independent of land cover type and is instead related only to snow depth. The “type 3” 

group calculates albedo via the weighted average of snow-free surface albedo and snow 

albedo, as a function of SCF, while “type 2” models include the weighted average of canopy 

albedo and ground albedo, as a function of vegetation cover. The most sophisticated 

approach (“type 1”) uses two-stream approximations for radiative transfer between (a 

potentially snow-filled) canopy and the surface (Qu and Hall, 2007; Essery, 2013). The type 

of snow vegetation masking scheme employed by models and the details of the vegetation 

masking schemes (i.e., simulated tree cover fraction, parameter values related to snow 

interception/unloading, etc.) play an important role in the seasonal evolution of albedo.     

The primary goal of this work is to quantify the ability of CMIP5 models to 

accurately simulate the annual cycle of SCF and αsfc over Northern Hemisphere land areas. 

This will allow different models to be directly compared in a standardized fashion, and 

provides a framework for the assessment of future improvements in simulated albedo and 

other snow processes. The simulation of month-to-month changes in αsfc and SCF are 



 

 47 

compared to satellite derived datasets for the NH as a whole, and over specific biomes 

(boreal forest and Arctic tundra) in order to identify land cover specific uncertainties in the 

simulations. The methodology and data are described in Section 3.3. In Section 3.4, we 

evaluate monthly changes in snow cover and albedo from climate models and satellite 

observations, while we quantify the model performance using a normalized skill score in 

Section 3.5. Section 3.6 contains a discussion of the importance of these findings, and how 

improvements can be made. 

3.3 Data and Methods 

3.3.1 Climate Model Data 

We used monthly mean output for the period 1980-2005 from the suite of historical 

simulations from the CMIP5 archive (Taylor et al., 2012) to evaluate 16 models for albedo 

(Table 3-1), and 14/16 that provided snow data (i.e., archived either of the variables snc 

(SCF) or snw (snow mass)). For models where SCF was not provided, a conversion from 

snow mass (units kg m-2) to SCF (units %) was applied, consistent with Qu and Hall, (2007) 

and Fletcher et al. (2012). This method was also applied to the satellite derived snow water 

equivalent (SWE) data described in Section 3.3.2. This estimate of SCF from snow mass was 

previously shown to agree very well with direct outputs of snow cover (see Appendix of Qu 

and Hall, 2007). All model output was regridded to a common grid using bilinear 

interpolation; for simplicity, we interpolate to the grid from the Community Climate System 

Model, version 4 (CCSM4), with spatial resolution 1.25° longitude x 0.95° latitude.  

For a given model i, and a given variable X, the month-to-month change in 

climatological αsfc and SCF was calculated as ΔXi = Xi,month2 – Xi,month1. To simplify the  
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Table 3-1: List of models analyzed in this study with their institution, number of realizations (n) and Arctic SCF 

melt group. The right-hand column denotes the group that each model belongs to based on the pattern of snow 

melt over the Arctic (see Section 3.4.1). 

Model Institute n Arctic SCF Melt 

ACCESS1-0 CSIRO-BOM 2 N/A 

BCC-CSM1.1 BCC 3 Group 2 

CanESM2 CCCMA 5 Group 1 

CCSM4 NCAR 6 Group 1 

CNRM-CM5 CNRM-CERFACS 10 Group 1 

CSIRO-Mk3-6-0 CSIRO-QCCCE 10 Group 2 

FGOALS-g2 LASG-CESS 5 Group 1 

GFDL-ESM2M NOAA GFDL 1 Group 2 

GISS-E2-R NASA GISS 6 Group 1 

HadGEM2-ES MOHC 5 Group 2 

INM-CM4 INM 1 Group 2 

IPSL-CM5A-MR IPSL 3 N/A 

MIROC5 MIROC 5 Group 1 

MPI-ESM-MR MPI-M 3 Group 2 

MRI-CGCM3 MRI 3 Group 1 

NorESM1-ME NCC 1 Group 1 

CLM4-QIAN NCAR   

CLM4.5-QIAN NCAR   

CLM4.5-CRUNCEP NCAR   

 

interpretation of our results, in cases where institutes provided simulations from multiple 

versions of their models, one model (either the most recent version, or the version that was 

run at the highest horizontal resolution) was selected for the analysis. We have verified (not 

shown) that results from the other model configurations submitted from the same institute do 

not vary significantly from the single model selected. The ensemble mean of all available 

realizations (n=1 to 10; Table 3-1) was calculated for each model prior to beginning the 

analysis, which emphasizes deterministic over natural (internal) variability. 

A series of offline simulations using the land component of CCSM4 (Community 

Land Model version 4.0; henceforth CLM4-OFF) (Oleson et al., 2010) were also utilized to 

help isolate the influence of biases in the simulated mean climate (Table 3-1). The first 
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simulation was forced for the period 1982-2004 by observation-based meteorological fields 

(precipitation, temperature, specific humidity, wind speed, surface pressure, and surface 

downward solar radiation) derived from a reanalysis product (Qian et al. 2006). For 

consistency with the other observational products used in this study (see below), we analyze 

only the period 2000-2004 from CLM4-OFF; we have verified that in this simulation there is 

minimal change in the seasonal cycle between 1982 and 2000 (not shown). A more recent 

version of the Community Land Model, version 4.5 (Oleson et al., 2013) includes 

improvements to the terrestrial snow parameterizations. The time evolution of SCF in 

CLM4.5 is calculated differently for accumulation and melt periods because of the complex 

relationship between snow water equivalent (SWE) and SCF during these times (Swenson 

and Lawrence, 2012). We evaluated two offline simulations using CLM4.5 to determine the 

impact of these model developments on the simulated seasonal evolution of the terrestrial 

cryosphere. The two CLM4.5 simulations were forced by, respectively, the same Qian et al 

(2006) dataset as CLM4-OFF, and an updated forcing dataset called CRUNCEP (Viovy, 

2011). 

3.3.2 Observational Data 

We use satellite retrievals of albedo from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) MCD43C3 product (Schaaf et al., 2002), the extended 

Advanced Very High Resolution Radiometer (AVHRR) Polar Pathfinder (APP-x) project 

(Wang and Key, 2005), and a suite of optical sensors synthesized within the GlobAlbedo 

project (Muller, 2013). Time series of albedo for the periods of 2000-2005 (MODIS, and 

GlobAlbedo) and 1982-2005 (APP-x) over the snow season were taken from these three 
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observational products from which a multi-dataset month-to-month climatological change in 

albedo was calculated.  

 A quality filter was applied to MODIS white-sky shortwave albedo (0.05° resolution; 

upscaled by aggregating the native 500m product) such that only high-quality (grade 2 or 

better) retrievals were included in our analysis. This quality measure is determined by how 

many cloud-free observations were acquired over a 16-day period. When observations are 

limited, a backup model produces albedo estimates using prior knowledge of the surface 

(Strugnell and Lucht, 2001; Jin et al., 2002). In the case of grade 2 data, 25% or less of the 

data is in-filled by this backup model (Schaaf et al., 2002).  

APP-x daily blue-sky albedo (the weighted average of black- and white-sky, as a 

function of cloud cover (Wang and Key, 2005)) data was acquired on an Equal-Area Scalable 

Earth Grid (EASE-Grid) at a spatial resolution of 25 km. This instrument has an orbital 

configuration centered on the North Pole, which limits the spatial domain of the NH to areas 

polewards of ~50° N. This domain still captures a majority of seasonally snow-covered 

regions and significantly lengthens our climatological study period, by using all available 

data from 1982-2005. 

Lastly, we use monthly mean white-sky shortwave albedo from GlobAlbedo (Muller, 

2013) at a 0.05° resolution. GlobAlbedo uses measurements from the Advanced Along Track 

Scanning Radiometer (AATSR), SPOT4-VEGETATION, SPOT5-VEGETATION2, and the 

Medium Resolution Imaging Spectrometer (MERIS) to get an optimal estimation of albedo, 

while surface anisotropy data from MODIS is used to help gap fill (Lewis et al., 2013; 

Muller, 2013). There are, however, documented issues related to snow detection and large 
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solar zenith angles (SZA) at high latitudes (~70°N) which cause some artefacts (Muller, 

2013; He et al., 2014).    

A multiple observational approach was used to mitigate the uncertainty associated 

with each product individually (Brown and Derksen, 2013; Fletcher et al., 2015). For 

example, data gaps exist in the quality filtered MODIS albedo, despite its 16-day retrieval 

window, because of persistent winter cloud coverage (Barlage et al., 2005). This extensive 

winter cloud coverage also means that the diffuse component of albedo (white-sky) 

dominates the direct component (black-sky) for much of our study period and makes the 

greater contribution to the actual albedo for ambient sky conditions (blue-sky). Therefore we 

assume that any differences due to our use of blue-sky (APP-x) and white-sky albedo 

(MODIS, GlobAlbedo) are minor. It should also be noted that Wang et al. (2004) suggested 

white-sky albedo is better suited for model comparison than black-sky because it uses the 

integral of black-sky albedo across all SZAs. Despite the methodological differences and the 

independent sources of satellite measurements (MODIS; AVHRR; AATSR), we find good 

agreement between the observational albedo products, as illustrated by their temporal 

correlations computed using monthly mean climatological albedo (MODIS/APP-x R2 = 0.99 

over the NHsnow region, MODIS/GlobAlbedo R2 = 0.84, APP-x/GlobAlbedo R2 = 0.82; 

possible reasons for why they differ are discussed in He et al. (2014)). Therefore, we evaluate 

the models against a blended observational dataset (henceforth, OBSblend) that is the mean of 

the monthly climatologies from the three albedo products. The observational agreement is 

also demonstrated by a low mean albedo bias (MODIS = -0.002, APP-x = -0.007, 

GlobAlbedo = 0.009) and mean absolute error (MODIS = 0.011, APP-x = 0.017, 
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GlobAlbedo = 0.028) relative to OBSblend over the snow season. The weaker agreement for 

GlobAlbedo is largely due to a tendency to reach its maximum albedo earlier in the winter 

than the other products (see Fig. 2b and Fig. 3a of He et al. (2014)). In terms of location, the 

observational differences are largest at high latitudes (60-75°N), which we speculate is linked 

to retrieval uncertainty as a result of very large SZA during winter. We take the approach that 

including all available products is better than excluding one because of slight differences 

from the average. In any case, removing the least certain product does not affect our 

conclusions. The use of a multi-dataset mean mitigates the impact of individual product 

biases in the absence of an evaluation of the albedo products, and in the future more datasets 

could be added.   

Uncertainties with satellite-derived albedo products can be large at high latitudes 

during winter because of extensive cloud coverage (Fang et al., 2007) and high solar zenith 

angles (Schaaf et al., 2002). However, polar night presents an even bigger challenge, because 

as the area covered by polar darkness expands during early winter—peaking around the 

winter solstice—the NH mean albedo decreases artificially. The reason is that a progressively 

larger swath of snow-covered land over the Arctic (including much of the tundra, which has 

very high mean albedo ~ 0.7) is excluded from the calculation, because all areas under polar 

darkness are set to missing values (by definition, albedo cannot be defined when incoming 

solar radiation is zero).  The problem is most acute in December (hereafter, all months will 

be abbreviated by their first three letters, i.e., Dec), when the area of polar darkness is largest 

and we found a decreasing trend in NH mean albedo at a time when snow extent is still 

expanding. To correct for this artefact, we estimate NH mean albedo (and non-boreal Arctic 
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albedo) in Dec using a linear interpolation between mean values from the two neighboring 

months (Nov and Jan). This method allows us to compare albedo values over the same land 

area in all months, while also retaining the important Arctic tundra region in our analysis 

domain (see Section 3.3.3).  

SCF data are drawn from two satellite-derived products. Monthly SCF from version 5 

(http://dx.doi.org/10.5067/IPPLURB6RPCN) of the MODIS MOD10CM product (2000-

2005) is output on a 0.05° global grid through aggregation of the native 500 m resolution 

(Hall et al., 2002; Hall et al., 2006). Daily SWE taken from the GlobSnow data record 

(Takala et al., 2011) was also converted to SCF (2000-2005). A snow mass threshold of 60 

kg m-2 was used to assign a pixel as fully snow-covered, and a value less than this was 

divided by the threshold to give a fractional value (as described in Thackeray et al., 2014). 

Using a fixed threshold value in this calculation does not account for seasonal changes in 

snow density or snow patchiness (snow cover tends to be patchier during melt). MODIS SCF 

was used to fill in alpine areas where GlobSnow data is not provided; however, the MODIS 

snow product can be susceptible to some of the same issues affecting retrievals of albedo, 

such as extensive cloud cover during the accumulation period (Klein et al., 1998; Hall et al., 

2002). All of the satellite-derived products described here were regridded to the same spatial 

grid as the model output using bilinear interpolation. 

3.3.3 Study Area 

Our analysis was conducted over an area we refer to as the “NH snow covered region” 

(henceforth NHsnow), which is represented by colored shading in Fig. 3-1. The NHsnow region  
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Figure 3-1: Maximum monthly mean surface albedo from the blended observational dataset over the Northern 

Hemisphere snow-covered region. Missing data (gray) either falls outside of the APP-x domain or is not 

classified as being snow covered by MODIS (not enough snow on average or missing in all years).  

includes only grid cells over NH land (excluding Greenland) with at least 25% snow cover in 

their February MODIS climatological SCF (Fig. 3-1). The use of an observed snow mask 

means that we are excluding areas where the models may overpredict snow cover, but this is 

likely to be a small effect that is restricted to low-latitude areas with ephemeral snow cover. 

In addition, NHsnow is further reduced to match the EASE grid projection of the APP-x data 

product (Wang and Key, 2005).  One limitation is that certain grid cells (primarily over 

central Canada and Siberia) are classified as missing in NHsnow because their underlying 

landscape has a high lake fraction, over which MODIS does not retrieve snow cover. The 

extent of the APP-x domain means that areas like the Tibetan Plateau were omitted; however, 

APP-x provided a much longer climatological period to evaluate albedo than is provided by 

MODIS or GlobAlbedo.  

We also identified two specific land cover classes that pose unique challenges for 

model simulations of snow processes: the boreal forest and the non-boreal Arctic. The boreal 

forest is an expansive portion of the terrestrial Northern Hemisphere that has an extensive 

snow cover season and is primarily made up of needleleaf evergreen trees (Bonan et al., 
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2002). In an effort to eliminate biases from other land cover types, we isolated this area by 

defining the boreal forest region as all grid cells where the MODIS plant functional type 

(PFT) (Friedl et al., 2002) boreal needleleaf evergreen exceeds 75 %. This threshold allows 

for a sufficiently large study area [~4.9 x 106 km2], while simultaneously limiting the 

influence from non-boreal PFTs.  

The non-boreal Arctic region was isolated by combining the area covered by at least 

75% of the three MODIS Arctic PFTs (Arctic shrub, Arctic grass, and bare land/tundra) north 

of 60°N. However, it should be noted that observational uncertainty for retrievals of albedo is 

much larger in this region because of higher solar zenith angles (Schaaf et al., 2002). Also, 

the analysis for this more northerly region was conducted over an extended snow season 

(Aug-Jul) to fully capture the evolution of snow onset and ablation. This high latitude region 

is important because it is expected to be a bellwether for cryospheric impacts of climate 

change (Chapin et al., 2005; Vavrus et al., 2012; Cohen et al., 2014). Furthermore, 

fundamental snow processes unique to the Arctic, such as wind-driven snow redistribution 

and sublimation loss, are currently not adequately represented in most models (Essery and 

Pomeroy, 2004; Turner et al., 2006). Lastly, the suite of CMIP5 models use a number of 

different land cover classification systems (many models use MODIS derived land cover, but 

others use Global Land Cover 2000 (GLC2000) data (Bartholome and Belward, 2005)). In 

addition, two models evaluated here (HadGEM2-ES and MPI-ESM-MR; both of which 

underestimate tree cover fraction over the Northern Hemisphere (Loranty et al., 2014)) are 

run with Dynamic Global Vegetation Models (DGVMs), meaning that the simulated 

distribution of vegetation evolves in response to climate changes (Collins et al., 2011; 
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Brovkin et al., 2013). The boreal and non-boreal Arctic regions defined above using the 

MODIS PFT data may not, therefore, correspond precisely to the boundaries of the boreal 

forest, or tundra/grass, in all models. However, visual inspection of GLC2000 data verifies 

that differences between the land cover classification systems is small. This indicates that 

using another product, for example GLC2000, to formulate the analysis regions would not 

significantly alter our conclusions.  

3.4 Results 

3.4.1 Seasonal Biases in Snow Cover Fraction 

We first evaluate the CMIP5 representation of the seasonal cycle of SCF over the Northern 

Hemisphere snow-covered region (NHsnow), during the complete snow season (Sep-Jun). This 

is of interest because the evolution of the snowpack during onset/melt periods is important  

for cryosphere-climate influence and feedbacks which vary with land cover. Figure 3-2 

shows that the observed seasonal evolution is marked by a steady increase in SCF over the 

fall, a stable peak during mid-winter, and a dramatic melt in the spring. Simulated SCF 

agrees closely with observations during the majority of the snow season (Nov-Apr), with 

larger biases and spread at the start and end. The timing of snow advance and retreat are also 

both accurately captured by the models. There is, however, a low bias (Model – OBS) in the 

magnitude of these changes in Sep-Oct and May-Jun, which are underestimated by ~5% SCF 

in the multi-model ensemble median (MMMed) (equal to 17% of the relative change in 

OBSblend).  
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Figure 3-2: Monthly change in snow cover fraction (%) for Northern Hemisphere snow-covered land (excluding 

Greenland). Monthly changes are climatologies over the 1980-2005 period for CMIP5 models. The ensemble 

median (black line) is the median SCF change amongst all CMIP5 models, while the dark-gray region captures 

the interquartile range. The light-gray shaded region indicates months of the year when observational 

uncertainty is high due to large solar zenith angle (>75°). 

In general, the models agree quite well with each other, as demonstrated by the small 

interquartile range (IQR); we define this envelope as the “zone of model consensus” (dark 

gray shading in Fig. 3-2). Intermodel spread (maximum value - minimum value) in the fall is 

likely related to snowfall sensitivity to small temperature biases (which influences the phase 

of precipitation) and the modeled relationship between SWE and SCF (i.e., how much snow 

mass is required to change SCF), whereas in the spring it is likely more related to how snow 

melt is parameterized within the models. Figure 3-2 also indicates that the CMIP5 ensemble 

median better agrees with observations during the snow accumulation period than the snow 

ablation period. On average, the models realistically reproduce the NHsnow region seasonal 
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cycle of SCF. This conclusion agrees well with Brutel-Vuilmet et al. (2013), who examined a 

slightly different subset of CMIP5 models over the entire Northern Hemisphere.  

The month-to-month changes in SCF over the boreal region in all models show larger 

biases than for the entire NHsnow region (Fig. 3-3a). There are seven models that show a 

relatively rapid melt during Mar-Apr, one month before observations. Despite this bias, the 

MMMed accurately captures the timing of snow accumulation and melt on a month-to-month 

basis. However, the amplitude of the simulated changes in SCF is much smaller than in 

observations, which lie outside the zone of model consensus in both Sep-Dec and Apr-May. 

It is important to point out that this Apr-May low bias (~15% ΔSCF) occurs primarily 

because the previously noted group of seven models melt too much snow in the month prior, 

and not because SCF persists for too long. At least two of these models (MPI-ESM-MR and 

HadGEM-ES) underestimate tree cover fraction across the boreal region (Loranty et al., 

2014), which we speculate could be influencing their simulated SCF evolution through a lack 

of snowpack masking.  

Over the non-boreal Arctic region snow cover persists for an additional 1-2 months 

compared to lower latitudes (Fig. 3-3b). Snow onset occurs rapidly at these latitudes and its 

timing is realistically represented by the MMMed, which captures the magnitude of this 

change in Sept-Oct (~6% difference in ΔSCF). The period Dec-Apr, with SCF in a steady 

state, is well simulated by all models. The Arctic land surface remains completely snow 

covered at this time, due to mean ambient temperatures that are typically well below 

freezing. On average, the models capture the loss of snow cover accurately in Apr-May 
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Figure 3-3: (a) Same as Fig. 3-2, but for the Boreal forest region (>75% boreal evergreen needleleaf PFT). (b) 

Same as Fig. 3-2, but for the non-boreal Arctic region (>75%) and showing an extended snow season (Aug-Jul). 

(CMIP5: -12% ΔSCF, OBSblend: -12% ΔSCF), but underestimate the median melt rate in 

May-Jun (CMIP5: -49% ΔSCF, OBSblend: -63% ΔSCF) due to an apparent bimodal 

distribution in melt rates. The CMIP5 models can be divided into two groups, based on their 
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snow cover melt rates over the Arctic. A subset of eight models loses less than 10% SCF in 

Apr-May (Group 1; Table 3-1), whereas the remainder loses between 30-40% SCF during the 

same period (Group 2). Overestimated melt rates in the Group 2 models leave them with 

unrealistically low mean SCF by June (< 5% SCF compared to 19% in the observations; Fig. 

3-3b). We associated the low SCF biases with biases in mean springtime air temperature: the 

six Group 2 models are, on average, 3.4°C warmer over the Arctic sector during May than 

the eight Group 1 models. This temperature bias causes a low bias in the MMMed ΔSCF for 

May-Jun. Again, this is the result of stronger simulated snow melt early in the melt season 

causing significantly reduced mean SCF in Jun, because much of the snow has already 

melted.   

3.4.2 Seasonal Biases in Albedo over the NH 

The observed seasonal cycle of climatological albedo is marked by a steady increase in fall 

that occurs with the expansion of snow cover; αsfc increases gradually throughout winter to a 

peak in Mar, then begins to decline as the snow melts. Over the entire NHsnow region, 

simulated αsfc shows generally larger biases than for SCF (Fig. 3-4a). On average, the models 

tend to overestimate the magnitude of albedo increase during the accumulation period (Sep-

Oct-Nov), which leads to the models having a larger peak albedo than observations (CMIP5: 

0.51, OBSblend: 0.46). The timing of αsfc changes is also somewhat different in the models, 

which reach their maximum albedo earlier with obvious implications on the absorbed 

shortwave radiation at the surface. A fundamental question is whether the αsfc biases are 

related to snowfall biases during these months. To investigate this we calculate the inter-

model correlation between biases in these two variables. We find a very weak positive inter-
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model correlation between mean absolute SCF biases and mean absolute albedo biases 

during the accumulation period (R2 = 0.02). Therefore, we conclude that factors other than 

biases in SCF are responsible for the albedo biases.   

There are also model biases in the timing of the decrease in αsfc coincident with snow 

melt. It should be noted that since we are looking at the NH average, the decrease is when the 

albedo over this snow-covered region begins to decline more than it is increasing as there are 

regional variations in the transition from increasing to decreasing albedo. The peak simulated 

albedo occurs at peak snow cover extent (Fig. 3-4a), whereas in the observations αsfc 

increases throughout the winter, suggesting that SCF is not the only controlling factor. The 

ensemble mean simulated month-to-month changes in albedo and SCF are very strongly 

correlated (R2 = 0.99), while a slightly weaker positive correlation exists for the observations 

(R2 = 0.86). We speculate that the excessive correlation in the models is a result of many 

models having albedo parameterizations that are too dependent on the fraction of ground that 

is snow-covered and not enough dependent on snow aging or snow-vegetation interactions 

(see Qu and Hall, 2007; Essery, 2013). 

We elect to normalize the change in albedo bias across regions because unlike SCF, 

the seasonal maximum albedo varies strongly with land cover type. In Fig. 3-5 we are 

therefore showing the fractional contribution of the bias, relative to the observed peak value 

(αmax) at a location (Eq. 3-1): 

                                              NBias = Bias / αmax  .                                                     (3-1) 
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Figure 3-4: (a) Monthly change in albedo for Northern Hemisphere snow-covered land (excluding Greenland). 

(b) Monthly change in insolation-weighted albedo for NH snow-covered land. Monthly changes are 

climatologies over the 1980–2005 period for CMIP5 models. The ensemble median (black line) is the median 

albedo change amongst all CMIP5 models, while the dark-gray region captures the interquartile range. The 

light-gray shaded region indicates months of the year when observational uncertainty is high due to large solar 

zenith angles (>75°). 

This metric reveals that the overestimation of fall albedo change by the CMIP5 models 

occurs across much of the NH, as indicated by the areas with positive values in Fig. 3-5a. 
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The models show less bias when simulating the mean albedo change during the mid-winter 

(DJF- mean albedo change bias over Nov-Dec, Dec-Jan, and Jan-Feb; Fig. 3-5b), but once 

again show greater bias during the March-April-May-June (MAMJ) melt period, on average 

showing slightly stronger albedo changes than the observations (Fig. 3-5c). Errors during this 

melt period are of particular importance because this is the time when snow albedo feedback 

is at its strongest, due to increasing insolation and extensive snow cover (Hall, 2004; Qu and 

Hall, 2006). In order to determine the climatic importance of these biases, similar to the 

approach of Fletcher et al. (2012) we recalculate the climatological albedo quantities 

weighted by the fractional local contribution (relative to the mean over the NH land) of 

incoming shortwave radiation at the top of the atmosphere. This reduces the influence of 

more uncertain observations from high latitude regions where SZA is large in winter, and 

emphasizes more southerly regions with lower SZA. Insolation-weighting also reduces the 

importance of albedo biases during SON (Fig. 3-4b) as this is a time when incident radiation 

is decreasing over the NHsnow region. The model bias and intermodel spread during the melt 

period remain largely similar after the weighting is applied, further illustrating the 

importance of springtime albedo for the surface energy balance (Qu and Hall, 2007; Fletcher 

et al. 2012). 
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Figure 3-5: Maps of normalized model bias (CMIP5 mean - OBS)/OBS in seasonal mean albedo change for (a) 

SON (b) DJF and (c) MAMJ. Normalized by peak albedo to account for variations in land cover (maximum 

albedo is land cover dependent). The boreal region (>75%) is outlined in black. 
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3.4.3 Regional Albedo Change Biases 

In order to better understand model bias, it is critical to first determine where the model 

uncertainty is largest. First, we focus on the boreal forest, a known problem area for 

simulated albedo (Thackeray et al., 2014) (the boundary of the boreal region is outlined in 

black in Figs. 3-5a-c). Models that fall outside of the zone of model consensus tend to suffer 

from deficiencies in the timing and/or magnitude of boreal albedo changes (Fig. 3-6a). As is 

the case for the NHsnow region as a whole, there is a clear overestimation of albedo change 

among the majority of models in fall, and a similar compensatory overestimation of the 

opposite sign during spring. This indicates that the amplitude of the range of albedo—from 

snow-free to snow-covered—is larger in the models than in observations, despite the 

amplitude of simulated SCF being less than observed (Fig. 3-3). Just as for the NH as a 

whole, month-to-month changes in insolation-weighted albedo over the boreal region show 

that the biases in SON are minimized in terms of importance to the energy budget (Fig. 3-

6b). The MMMed reproduces observations throughout the snow season, but a positively 

skewed model distribution causes the multi-model mean to be biased high (not shown).   

There is also a discrepancy in the timing of the decrease in albedo that occurs during 

the winter-to-spring transition (Fig. 3-6a), which in a majority of CMIP5 models begins one 

month earlier than in observations. This provides evidence, consistent with Thackeray et al. 

(2014), that the treatment of snow on the boreal forest canopy is a likely source of the albedo 

transition bias.  However, we note that the one-month bias for the larger CMIP5 group of 

models represents a less significant bias in timing than the two-month discrepancy that was 

reported by Thackeray et al. (2014) for CCSM4, suggesting that CCSM4 is an outlier. 



 

 66 

 

Figure 3-6: Same as Fig. 3-4, but for the boreal forest region. 

Only the NorESM model shows the same two-month discrepancy that exists in CCSM4, and 

this model uses the same land model (CLM4) as in CCSM4 (Bentsen et al., 2013). Research 
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is ongoing to reduce these model biases in CCSM through the development of a new canopy 

snow offloading scheme (J. Perket, personal communication, 2015). 

In general, over the boreal forest the models show a stronger albedo change than 

observations during the melt period, a result that agrees with Loranty et al. (2014). We find 

that 14/16 models overestimate the amplitude of the seasonal cycle of albedo (Fig. 3-6a). Our 

principle finding is that model biases in the seasonal evolution of albedo are caused by 

deficiencies in the timing and magnitude of peak αsfc_snow. The knock-on effect is that an 

overly strong albedo decrease during spring is necessary to balance the overly large albedo 

increase during fall. It is worthwhile to point out that this overestimate of albedo is not driven 

by the simulation of terrestrial snow cover, which we have shown does not persist in the 

models for significantly longer than in OBSblend (Section 3.4.1). Instead, we find that the bias 

in the timing of the albedo changes is related to errors in the simulated peak αsfc_snow. Models 

that poorly simulate the monthly evolution in albedo over the snow season fail to accurately 

represent the maximum observed monthly mean αsfc_snow over the boreal region and/or the 

timing of its occurrence (Fig. 3-7a). A majority of models (14/16) overestimate peak 

αsfc_snow—by more than 50% in some cases—and the peak αsfc_snow tends to occur in Jan or 

Feb, whereas in observations it occurs in Mar. There is also greater model uncertainty (as 

indicated by a larger IQR) during the melt period (Mar-Apr IQR = 0.062, Oct-Nov IQR = 

0.042), illustrating a general lack of model consensus over the boreal forest during the spring 

melt season (Fig. 3-6a).  
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Figure 3-7: Maximum monthly mean surface albedo of CMIP5 models over (a) the boreal region and (b) the 

non-boreal Arctic region. Color coded to show which month the peak albedo occurs during. The individual 

observational products (not shown) all fall within 0.02 of the OBS Blend mean for both cases. The color of the 

observational line is the month in which the OBS Blend reaches its maximum. 

For the non-boreal Arctic region, comparison of the multi-model ensemble mean and 

observations reveals close agreement in terms of the maximum monthly mean albedo 

(CMIP5: 0.66, OBSblend: 0.67). This is because of an equal spread of models above and 
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below the observed peak αsfc_snow (Fig. 3-7b). However, 75% of models incorrectly simulate 

earlier timing of peak albedo over this Arctic region (9 models identify Feb as the peak and 3 

identify Mar), which observations show to be April. This bias means that, on average, the 

simulated albedo starts to decrease in Mar-Apr (Fig. 3-8a) because of stronger snow melt in 

the models during the early portion of the melt period (Section 3.4.1). This causes a low bias 

in albedo change during the melt phase, contrary to the situation over the boreal region. As 

for the insolation-weighted albedo, the MMMed matches observations very well throughout 

the snow season until May-Jun when a bias exists as the observations show a much stronger 

decrease in insolation-weighted albedo. 

3.5 Bias Quantification 

3.5.1 Skill Metric 

To quantify uncertainty in model performance and track model development, benchmarking 

metrics are needed to assess model bias (Model – OBS) (Hargreaves et al., 2013). The 

representation of the seasonal cycle of SCF and αsfc in the CMIP5 models was evaluated 

using a normalized skill score that, to our knowledge, has not been applied in this context 

before. SCF is an important variable to evaluate because it is directly linked to the calculation 

of surface albedo in many models. We first applied a skill calculation (SS; Eq. 3-2) based on 

Eq. 4 from Taylor (2001), which was adapted for the temporal rather than spatial domain, to 

the monthly mean changes in SCF and albedo area-averaged over our analysis regions  



 

 70 

 

Figure 3-8: Same as Fig. 3-4, but for the non-boreal Arctic region (>75%). The observational period is extended 

to include the whole snow season (August-July). 

(Section 3.3.3). We simplified this calculation by assuming that the maximum correlation 

between two datasets (the Ro term in Eq. 4 of Taylor (2001)) was unity (rather than 0.9976 as 
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calculated for Taylor’s example), thus removing Ro from the equation (this has a negligible 

impact on SS). This method provides a statistical synopsis of how well two datasets agree, 

taking into account their correlation, and the ratio of their variances.  

   SS =  
2(1+R)

(σ̂f+1 σ̂f⁄ )2 
               (3-2) 

where R is the correlation between the model output and observations, and σ̂f is the ratio of 

standard deviations (model / observed). We averaged the skill scores computed separately for 

albedo (SSalb) and for SCF (SSscf) to yield a total skill score (SStot). 

                             SStot = (SSalb + SSscf) / 2 ,            (3-3) 

We calculated SS for each of our analysis regions, and over multiple time periods, to 

highlight areas and times where model biases are strongest and the most model development 

is required. This metric penalizes incorrect simulation of pattern variance (seasonal cycle 

amplitude) and correlation (seasonal cycle timing), but it does not penalize mean bias. 

However, mean biases do not impact SS because it is calculated using the month-to-month 

change in bounded variables (i.e., albedo and SCF both start and end the snow season at 

similar values). Similar to Taylor diagrams (Taylor, 2001), this normalized skill metric could 

be applied to directly compare other bounded variables, unrelated to the cryosphere, to 

quantify the ability of models to simulate their time evolution against observations. 

3.5.2 CMIP5 Skill Score Results 

When SStot is computed for the entire NHsnow region, the models agree well with 

observations. This is best demonstrated by the multi-model mean SStot of 0.86 (Fig. 3-9a), 

and a range of only 0.72-0.92 across models (SStot = 1.00 would represent a perfect score).  
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Figure 3-9: (a) Clustered bar plot showing Northern Hemisphere skill scores (Sep-Jun) in descending order of 

SStot. There are three scores for each model (total, albedo, scf) represented by the different bars. There are 

certain model configurations for which SSscf could not be calculated (SStot = SSalb in these cases). (b) same as a 

for Boreal Region (c) same as b but isolating for the melt period (only Jan-Jun) (d) same as a for non-boreal 

Arctic. 
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This implies that there is a small degree of bias over snow-covered regions in a majority of 

the models. In comparison, over the boreal region there is greater model uncertainty with a 

mean SStot of 0.76 and a range of 0.51-0.86 (Fig. 3-9b). This decrease of 0.10 in the mean 

total score indicates that the boreal forest is a problem area for the models when it comes to 

simulating the seasonal evolution of the cryosphere. During the boreal melt period the scores 

are even lower for SStot (mean SStot = 0.73, range = 0.48–0.85; Fig. 3-9c), which is related to 

weaker performance in a number of models, not only outliers. The non-boreal Arctic region 

is better simulated than the boreal region, with SStot close to the NHsnow average at 0.85, and 

with a similar range (0.71-0.92; Fig. 3-9d).  

To better determine the source of the model biases, we decompose SStot into 

contributions from SCF and albedo. On average the models simulate SCF evolution (Sep-

Jun) very well over the NHsnow region (mean SSscf = 0.91, with a range 0.87-0.93; Fig. 3-9a) 

with lower skill over the boreal forest region (mean SSscf = 0.83; range 0.79-0.88; Fig. 3-9b). 

This appears to be related to canopy snow processes: the mean SSscf computed over the melt 

season alone (Jan-Jun) decreases relative to the Sep-Jun values (0.79, with a range of 0.57–

0.87). There are smaller biases over the non-boreal Arctic region, where snow resides from 

Sep-Jul. For consistency, we also calculated the skill there over the Sep-Jun period, which 

showed that the models agree well with observations with a mean SSscf of 0.89 and a range of 

0.77–0.94 (Fig. 3-9d).  

The results in Section 3.4.2 illustrated larger biases in albedo than SCF over the 

NHsnow region in fall and spring. The skill metric for albedo (SSalb) supports this conclusion, 

with a mean of 0.83 and a large spread (0.64-0.92; Fig. 3-9a). Over the boreal region, the 
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average score declines to 0.73, and with even larger spread (0.36–0.91; Fig. 3-9b). Isolating 

the melt period reveals an even lower mean SSalb (0.69), with a larger spread (0.25–0.86; Fig. 

3-9c), presumably related to the same canopy melt issues that affect SSscf. The non-boreal 

Arctic has some of the largest absolute albedo change biases in the NH (Fig. 3-8), yet its 

fractional contribution to the total albedo is diminished because the αsfc_snow at these latitudes 

is also the largest (~0.70). On average, the models show smaller biases when simulating the 

monthly changes in albedo over this region (mean SSalb = 0.82, range = 0.65–0.91; Fig. 3-

9d). Therefore, for the vast majority of models, and in all regions analyzed, the evolution of 

albedo is more poorly simulated than that of SCF throughout the snow season. This 

conclusion is aligned with how the models traditionally calculate albedo (see Section 3.4.2), 

with a certain amount of dependence on SCF, but with a greater number of degrees of 

freedom (i.e., how to deal with vegetation masking, the time evolution of pure snow albedo, 

snowpack contamination). 

3.5.3 Case Study: The Community Climate System Model 

Prior research has shown that the CCSM4 model underestimates SAF over the boreal forest 

because of issues related to the parameterization of canopy snow in the land model (CLM4) 

(Thackeray et al., 2014). Interestingly, the CCSM4 model is an outlier within the CMIP5 

ensemble for the boreal forest region (Section 3.4.3). To separate climate forcing biases from 

the land model process-level errors we here examine offline simulations of CLM4 (CLM4-

OFF) forced by observed temperature, precipitation, and other atmospheric variables (Section 

3.3.1). Compared to CCSM4, which includes a freely-varying ocean and atmosphere, CLM4-

OFF produces larger positive biases in both SCF and albedo in fall across the NHsnow (Figs.  
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Table 3-2: Skill scores for the Northern Hemisphere snow-covered region from the three CLM offline 

simulations. 

Model (Forcing) SStot SSalb SSscf 

CLM4 (Qian) 0.83 0.74 0.93 

CLM4.5 (Qian) 0.83 0.73 0.93 

CLM4.5 (CRUNCEP) 0.85 0.77 0.94 

 

3-2, 3-4a) and boreal regions (Figs. 3-3a, 3-6a). However, during the melt period SCF is 

better simulated across the NHsnow and boreal regions in CLM4-OFF (Figs. 3-2, 3-3a), but 

despite this, the albedo biases over this time period are larger than in CCSM4 (Figs. 3-4, 3-

6a).  

The latest update of the CLM (version 4.5) includes an improved SCF 

parameterization (Swenson and Lawrence, 2012). To quantify the effect of this change on 

model skill, we compared SStot over the NHsnow region in two simulations using CLM4.5 

with one simulation using the previous version (CLM4; Table 3-1). CLM4.5-CRUNCEP has 

the highest SStot (Table 3-2), largely due to a lower peak snow-covered surface albedo 

(although still 24% higher than observed; OBSblend: 0.46) and a later snow melt (less SCF 

loss in Feb-Apr, more in May-Jun). The CLM4.5-Qian simulation scores slightly lower than 

CLM4 because of a greater overestimate of peak αsfc_snow, while CLM4.5-CRUNCEP has the 

best score (0.85). Therefore, differences in the atmospheric forcing result in scores that are as 

different as those due to parameterization improvements. In both CLM4.5 simulations, the 

SSscf increases relative to CLM4, but continuing albedo transition issues (see Section 3.4.3) 

affect the total score. This further supports our earlier conclusion that factors other than SCF 

are primarily responsible for the albedo biases. Potential future improvements should focus 
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on the seasonal cycle of albedo, as this is where model biases related to the terrestrial 

cryosphere are largest. 

3.6 Discussion and Conclusions 

This study used multiple satellite-derived datasets to quantify the skill of CMIP5 model 

simulations of month-to-month changes to the Northern Hemisphere terrestrial snow cover 

(mean SStot = 0.86). Results show that the models tend to be better at simulating the monthly 

change in SCF (mean SSscf = 0.91) than the change in albedo (mean SSalb = 0.83). The 

MMMed overestimates the seasonal mean albedo change over the NHsnow region in both the 

accumulation and melt periods. However, the biases in fall are of much less importance to 

the surface energy balance because of low solar insolation during that season across the NH. 

On average, the models realistically reproduce SCF over the NH, which points to albedo 

errors being not primarily related to misrepresentation of simulated snow extent. Instead, 

model biases are related to the magnitude and timing of peak αsfc_snow, as demonstrated in 

Fig. 3-7.   

Over the boreal forest the simulated seasonal albedo cycle is biased high in 14/16 of 

models because they overestimate the peak snow-covered albedo of the forest (by more than 

50% in some cases). One of the biggest outlier models in terms of αsfc_snow over the boreal 

region is MIROC5, which has a type 1 albedo scheme (see Section 3.2). Qu and Hall (2007) 

showed that the predecessor to the MIROC5 model had the highest αsfc_snow of its category, 

only exceeded by the type 4 models that calculate αsfc_snow independent of land cover (i.e., 

INMCM4). The αsfc_snow value is also important because a model that is biased high (low) 

will likely have a SAF that is too strong (weak) (Fletcher et al., 2015). As a result, almost all 
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of the models perform more poorly over the boreal region (mean SStot = 0.76) than they do 

over the larger study region, and as expected, isolating for only the melt period lowers these 

scores even further (mean SStot = 0.73). This finding is not that surprising, given that prior 

research has identified serious deficiencies in simulated albedo during the melt period over 

the boreal forest (Thackeray et al., 2014; Loranty et al., 2014). This is largely due to the 

complex processes involving snow interception, residence time of snow on the canopy, and 

snow/vegetation masking (Essery, 2013). The boreal albedo skill score (Jan-Jun; Fig. 3-9c) 

shows that the timing issue with CLM4’s canopy snow parameterization (Thackeray et al., 

2014) does not exist to the same extent in any other CMIP5 land surface models. Despite 

this, a number of models still perform poorly over the melt period because they dramatically 

overestimate (INMCM4, MIROC5) or underestimate (IPSL) the peak αsfc_snow. One 

implication of this result is that canopy snow and vegetation masking parameterizations 

continue to be a source of uncertainty, and fundamentally contribute to biases in the 

simulation of albedo over the boreal forest.  

Over the Arctic, the models score higher (mean SStot = 0.85) and the multi-model 

ensemble mean peak αsfc_snow agrees better with observations. However, the scores are still 

limited by an Arctic warm bias in a subset of models that causes snow melt to occur too early 

in spring, which results in mistiming the seasonal albedo decline. Note that there would be 

lower agreement in spring SCF between models and observations if recent years (2006-2014) 

had been included, as this period includes large model biases with respect to observed snow 

extent (Derksen and Brown, 2012). However, we here restrict our analysis to the time period 

of the CMIP5 historical simulations, which end in 2005. 
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The cumulative change in insolation-weighted albedo (Figs. 3-4b, 3-6b, 3-8b) over 

the melt period can be used as an analog for SAF because SAF strength is strongly correlated 

with the climatological αsfc_snow (Qu and Hall, 2007; Qu and Hall, 2014). Our findings 

support previous research showing that SAF in the CMIP5 models is on average biased high 

over the boreal forest (due to a peak albedo that is too high) and biased low over the Arctic 

(65-75°N) (Fletcher et al., 2015). Unlike the rest of the CMIP5 models, Thackeray et al. 

(2014) showed that SAF in CCSM4 was weaker than observations, not because of an 

underestimated peak albedo, but due to bias in the timing of albedo changes due to the 

parameterization of interactions between snow and the forest canopy.  

 It is clear that the CMIP5 models have a number of different issues related to their 

performance, so it is challenging to make specific recommendations. Some models have a 

small bias in αsfc_snow, but show biases in the timing of its peak; in this case a correction to 

delay the decline in albedo should increase SSalb. The model biases that appear to be the most 

urgent are in peak αsfc_snow, where seemingly straightforward corrections could yield 

significant improvements to simulated snow processes including snow albedo feedbacks. 

Correcting these albedo biases might be expected to reduce biases in NHsnow surface air 

temperature (SStas = 0.92; applying Eq. 3-2 to surface air temperature data from ERA-Interim 

(Dee et al., 2011)). There is also the possibility that the αsfc_snow has been tuned either too 

high, or too low, in order to best simulate large scale climate and compensate for model 

biases elsewhere (Koenigk et al., 2014), in which case changes in αsfc_snow could have the 

reverse effect by inducing further temperature bias. However, if improving the αsfc_snow and 

seasonality results in greater temperature biases, then one should interpret this as revealing 
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some other bias in the model, meaning that the good initial temperature simulation must have 

been due to compensating errors. In an effort to further diagnose and reduce biases within the 

land modules, we believe that offline simulations from a broader set of models would help 

dramatically. We also agree with Essery (2013) and Qu and Hall (2014) in concluding that a 

rather simple correction to constrain simulated albedo based on observations could be applied 

to reduce the spread in snow-covered surface albedo and in turn SAF. Reducing the 

intermodel spread in these two quantities could help narrow the uncertainty in projections of 

warming over Northern Hemisphere land.  
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Chapter 4 

The impact of simulated surface albedo biases on climate 

4.1 Overview 

Several recent studies have noted substantial biases in surface albedo amongst the current 

generation of global climate models (GCMs), primarily across snow-covered areas. Various 

model parameterization issues have been suggested as potentially relevant to this problem 

(i.e., leaf area index, canopy snow, forest type, subgrid-scale lakes). There is however, little 

understanding of how albedo biases are potentially influencing simulated climate because of 

difficulty in isolating them from other complex processes and feedbacks. A number of novel 

simulations are conducted here using the Community Earth System Model (which itself has a 

substantial albedo bias) to improve knowledge related to biases in surface albedo. The 

model’s (biased) internal calculation of albedo is replaced with prescribed albedo data, 

derived from satellite observations, or from another model. Results show that by correcting 

the albedo in CESM, simulated temperature is perturbed further away from observations 

(implying the presence of other biases), with robust cooling during winter and spring. It does 

however, induce a pattern reversal of climatological biases in winter sea level pressure, 

partially correcting the model’s tendency towards a positive Arctic Oscillation. Furthermore, 

biases across the boreal forest region are found to be influential for both local and remote 

climate features, while models with large biases in maximum snow-covered surface albedo 

are vulnerable to even greater climate impacts than CESM.   
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4.2 Introduction 

Surface albedo, a measure of reflectivity, is quantified as the ratio of outgoing to incoming 

shortwave radiation. It is an important characteristic of the Earth’s energy balance and 

therefore a key parameter in global climate models (GCMs). Much of the seasonal variability 

in Northern Hemisphere (NH) land surface albedo is due to changes in the presence of snow 

cover (Roesch, 2006). Its influence is exerted across much of the mid-high latitudes and in 

areas of high elevation, covering approximately 40% of NH land during late winter 

(Robinson and Frei, 2000). The highly reflective nature of snow acts to cool the climate by 

reducing incident radiation absorbed at the surface, enhancing thermal emissivity and latent 

heat fluxes due to melting of snow (Gong et al., 2004; Flanner et al., 2011). Furthermore, 

Dutra et al. (2011) show that interannual variability in snow cover explains much of the 

variability in winter near-surface temperatures across snow-covered regions. Anomalous 

snow cover can also indirectly influence large-scale atmospheric circulation and NH winter 

climate (Gong et al., 2004; Fletcher et al., 2009; Allen and Zender, 2011; Cohen et al., 2012). 

In extratropical land areas, surface albedo increases from its snow-free value (~0.08-0.15) in 

early fall to a maximum value in late winter (~0.3-0.8), followed by a rapid decline during 

spring melt (i.e., He et al., 2014). The peak surface albedo over a region is strongly tied to its 

land cover, with lower values (more energy absorption) across heavily vegetated forests even 

in the presence of snow, and higher values (less energy absorption) in areas of low-lying or 

no vegetation (grasslands, croplands, tundra).  

Capturing the seasonal evolution of land cover specific aspects of snow-covered 

surface albedo has proven challenging for many climate models. The coarse nature of GCMs 
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(~100-200 km horizontal resolution) causes issues with the representation of topography, 

land cover, and snow distribution/properties, all of which are influential in determining 

surface albedo. Prior research has shown that several climate models have trouble with the 

magnitude and/or timing of seasonal changes in land surface albedo over the NH extratropics 

(Thackeray et al., 2014, 2015; Li et al., 2016; Wang et al., 2016). This albedo bias (relative to 

satellite-derived observations) is largely attributed to the over-simplified representation of 

key snow processes, which drive errors in simulated snow cover extent and snow-covered 

surface albedo. One area with particularly large biases is the boreal evergreen forest, where 

nearly all CMIP5 models overestimate peak winter albedo (Loranty et al., 2014; Thackeray et 

al., 2015). Simulating albedo can be difficult in this environment because of complex 

interactions between snow processes and forest cover, including the masking effect that the 

canopy has on underlying snow (Qu and Hall, 2007; Essery, 2013), and its role in 

intercepting snowfall (Thackeray et al., 2014; Bartlett and Verseghy, 2015). Several models 

also exhibit substantial biases in their leaf area index (LAI), which is a key factor in 

determining snow-covered surface albedo over forests (Loranty et al., 2014; Wang et al., 

2016). Models with an LAI that is too low tend to also have a snow-covered surface albedo 

that is biased high (and vice versa) because of a larger canopy gap fraction. Furthermore, 

there is also a large spread in peak albedo over non-forested regions such as grasslands, 

shrublands, and tundra. In these landscapes, snow can completely cover most surface 

vegetation, resulting in a very high peak surface albedo values (~0.6-0.8). Biases in 

maximum albedo create a follow-on effect whereby the simulation of albedo through the 

melt period is negatively impacted, with implications for snow albedo feedback (SAF). This 
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is because SAF strength is largely controlled by the spring surface albedo contrast (snow-

covered surface albedo – snow-free albedo) (Qu and Hall, 2007; Fletcher et al., 2015). It is 

important to better understand model processes related to SAF because it remains a 

significant source of uncertainty (40-50%) in model projections of future warming over NH 

land (Qu and Hall, 2014).  

In this study, we directly perturb simulated albedo using climatological albedo 

derived from satellite observations, to quantify the influence of albedo biases on climate. The 

land model used here (Community Land Model, version 4; Lawrence et al., 2011) has known 

issues related to the seasonality of changes in albedo over the boreal forest (Thackeray et al., 

2014). This problem is largely the result of how forest canopy hydrology is parameterized in 

the model. Notably, the model removes all snow from the canopy when temperatures exceed 

the freezing point, which causes an early transition from a snow-covered to snow-free 

environment. Model development to improve this issue in the latest version (CLM5) has 

resulted in an improved seasonal cycle of albedo (not shown). However, several other models 

exhibit similar, but less significant, biases in the timing of albedo changes. On the other 

hand, biases in albedo magnitude could be even more problematic for simulated climate. As a 

means of improving our understanding of these processes, we examine the importance of 

albedo biases through a series of model experiments.  

Similar approaches to the one used here (Section 4.3.3) are well documented as a 

suitable method for decoupling the land surface from the atmosphere to investigate land-

atmosphere interactions. These studies predominantly prescribe soil moisture (e.g., Koster et 

al., 2000; Seneviratne et al., 2006) or snow cover (Gong et al., 2002, 2004; Fletcher et al., 
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2007; Allen and Zender, 2010; Sobolowski et al., 2010; Dutra et al., 2011).  Many of these 

prescribed snow experiments attempt to identify linkages between fall snow cover and broad-

scale atmospheric circulation patterns (such as the Arctic Oscillation) during winter (Gong et 

al., 2002; Fletcher et al., 2007, 2009; Orsolini and Kvamsto, 2009; Allen and Zender 2011). 

In some cases, observational snow cover was used to perturb the model (Orsolini and 

Kvamsto, 2009; Douville, 2010; Allen and Zender, 2011), which one may expect results in 

an improved albedo. A more realistic representation of the seasonal evolution of snow cover 

does not, however, account for differences between simulated and observed snow-covered 

surface albedo. In particular, albedo biases driven by poor vegetation masking or land cover 

data are still present when simulated snow cover is replaced with observations.  

The primary goal of this work is to determine the influence of albedo biases on 

simulated Northern Hemisphere climate. This research addresses the importance of 

previously identified albedo biases, while also answering the question of whether correcting 

these biases will move temperature and snow simulations closer to or further from 

observations. The importance of regional albedo biases are also investigated through a series 

of experiments. We also establish the framework for performing similar simulations that will 

be run as a part of the ESM-SnowMIP project (http://www.climate-

cryosphere.org/activities/targeted/esm-snowmip), which seeks to better understand the 

variability in Earth system model simulations of snow. The data and methods are described 

in Section 4.3. In Section 4.4, we present the results from a series of uncoupled and coupled 

climate experiments. Lastly, Section 4.5 highlights the key findings of this research and 

provides a discussion of how our findings relate to current literature. 



 

 85 

4.3 Data and Methods 

4.3.1 Model Description  

The model used in this study is the Community Earth System Model (CESM; Gent et al., 

2011), version 1.04. CESM is composed of atmosphere (Community Atmosphere Model, 

CAM; Neale et al., 2013), land (CLM; Lawrence et al., 2011), ocean (Parallel Ocean 

Program, POP; Danabasoglu et al., 2012), and sea ice (CICE; Holland et al., 2012) 

components. The horizontal resolution of the model is approximately 1° (0.9° latitude x 1.25° 

longitude), while the vertical structure is made up of 26 levels. The land surface component 

is relatively sophisticated with detailed representations of key biogeophysical processes. 

CLM4 also simulates snow accumulation and melt processes along with compaction, aging, 

and the radiative impact of aerosols on snow. It has a multi-level snow scheme with up to 5 

snowpack layers, depending on snow depth (Oleson et al., 2010). Because of the dominant 

role that snow cover plays in the seasonal cycle of NH surface albedo, it is important that 

snow processes are well represented. 

4.3.2 Observational Data  

A blend of satellite-derived albedo products is used to perturb model simulations. The 

blended product (henceforth, OBSblend) is a linear combination of climatological monthly 

surface albedo from the Moderate Resolution Imaging Spectroradiometer (MODIS; Schaaf et 

al., 2002), the extended advanced very high resolution radiometer (AVHRR) Polar Pathfinder 

(APP-x) project (Wang and Key, 2005) and GlobAlbedo (Muller, 2013) over the APP-x 

domain between approximately 45-50°N and 90°N (as described in Thackeray et al., 2015), 
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and only MODIS elsewhere. Since, we are primarily interested in the Northern Hemisphere 

extratropics, the limited domain for the blended observations is not a concern. We find that in 

daily albedo products there exists a trade-off between higher temporal resolution and the 

number of missing observations (primarily due to cloud cover obscuring the optical sensors), 

so monthly mean observational values are used to limit missing values. The datasets are also 

averaged over different temporal ranges (MODIS/GlobAlbedo: 2000-2005, APP-x: 1982-

2005), but their climatological values are not very sensitive to the time frame selected 

(Thackeray et al., 2015). Several other observation-based estimates are used to evaluate 

CESM’s control climate. This includes surface air temperature and sea level pressure from 

NCEP-II reanalysis (Kanamitsu et al., 2002), and snow water equivalent (SWE) from the 

Blended-5 dataset (Mudryk et al., 2015). 

4.3.3 Experimental Design 

Here, we conduct a novel set of model experiments to determine the impact of simulated 

albedo biases on climate. The experimental design overrides the model’s (biased) internal 

calculation of albedo and replaces it with prescribed albedo data, derived from satellite 

observations, or from another model (see below). By explicitly correcting the model biases 

using prescribed satellite data, we can directly relate the change in a model variable (e.g., 

surface air temperature) relative to the uncorrected model, to the albedo perturbation applied. 

The override procedure is analogous to imposing prescribed sea surface temperatures (SSTs) 

to the atmospheric model, with the prescribed value passed to the radiation code. Changes to 

albedo are implemented before other modules call this variable (i.e., for surface radiation 
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calculations). It should be noted that we only discuss the NH extratropics because albedo 

elsewhere is well simulated by CLM. 

 We perform sensitivity experiments using two configurations of the land surface 

model CLM4: one is driven by prescribed atmospheric forcing derived from reanalysis data 

(hereafter ‘CLM-off’), and one where CLM4 is coupled to the atmospheric model CAM4 

with prescribed sea ice conditions (thickness and area) and ocean surface temperatures 

(hereafter ‘CLM-CAM’). The first set of simulations are run in offline mode (not coupled to 

atmosphere/ocean), meaning that there is an active land component with atmospheric input 

(temperature, precipitation, solar radiation, wind, pressure, and humidity). An ensemble of 

simulations is not required because of the consistent atmospheric state. We initially ran the 

model for 30 years (1982-2012) with the start date coinciding with the availability of 

observational albedo data from APP-x (1982). The first set of offline simulations are forced 

by CRUNCEP (version 7) data (Viovy, 2011), while subsequent shorter simulations (1999-

2004) use the Qian dataset (Qian et al., 2006). This allows the impact of discrepancies in the 

forcing data to be examined, an important measure because the choice of forcing data is 

capable of dominating the response generated by land models (Menard et al., 2015).  

 There are three offline cases, each containing different surface albedo fields. The 

control simulation is unperturbed, meaning that it has the standard albedo from CLM4. Next, 

observationally-derived albedo (OBSblend) is used to determine the effect of correcting for 

model biases in albedo. Lastly, we seek to determine the maximum realistic impact of albedo 

biases on climate. To do so, we perturb CLM4 with climatological monthly mean albedo 

(1980-2005) from the Model for Interdisciplinary Research on Climate, version 5 
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(MIROC5), which is one of the CMIP5 models with the highest Northern Hemisphere 

surface albedo. This tests the importance that a different type of albedo bias (primarily 

related to magnitude rather than timing) can have on model simulations. It should be noted 

that because we are using the albedo from this model, it is likely susceptible to biases in the 

simulated snow cover. In the case of MIROC5, there is a tendency for snow cover to lag 

behind observations (and other models) in the fall due to a slow onset (see Fig. 3-2). Another 

notable difference is the percent of snow cover over portions of the NH when snow is present 

(65-85%), which in this model is considerably lower than CLM (95-100%). This could be 

part of the reason why albedo in MIROC5 is slightly lower than CLM4 over sparsely 

vegetated regions.  

 Several CLM-CAM simulations are also carried out, in which both the land and 

atmosphere are fully interactive (Table 4-1). The ocean and sea ice conditions are prescribed 

in a similar manner to the Atmosphere Model Intercomparison Project (AMIP; Gates et al., 

1999). The ocean state uses climatological (1982-2001) sea surface temperatures (SSTs) 

from the Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST; Rayner et 

al., 2003). Because these runs allow for land-atmosphere interactions, it is suspected that this 

will enhance the response to albedo perturbations. The same three albedo experiments 

described above are run in this CLM-CAM setup. We also produce three simulations with 

regional albedo perturbations in an effort to determine regional influences on the model 

response. Each simulation uses OBSblend albedo over the area of interest: defined as the 

boreal evergreen forest (BOR; >50% plant functional type in CESM), western Eurasian 

boreal (WEU; 5-85°E, 50-70°N), and North American boreal (NA; 50-160°W, 45-65°N). 



 

 89 

Table 4-1: Summary of land-atmosphere coupling experiments. The MAMJ mean albedo over land areas 

polewards of 45N is shown for CTRL, while other experiments are referenced as a percent albedo change in 

relation to this value. Note that the lowering of albedo over grasslands and tundra dominates the increased 

boreal albedo in OBS. 

 

Experiment Albedo SST 
Length 

(years) 

NH45 MAMJ Albedo and 

Percent Change from CTRL 

CTRL CLM4 HADISST 20 0.33 

OBS OBSBlend HADISST 20 -3% 

MIROC MIROC5 HADISST 20 13% 

BOR OBSBlend+CTRL HADISST 20 4% 

WEU OBSBlend+CTRL HADISST 20 1% 

NA OBSBlend+CTRL HADISST 20 2% 

 
 

Albedo outside of these regions is equal to that of the CLM-CAM control case. As a measure 

of the perturbation strength for each case, we evaluate the percent change in albedo relative 

to the MAMJ mean control albedo over land areas polewards of 45°N (NH45). All 

simulations begin on January 1 and run for 20 years and 1 month; the additional month is 

generated because we discard the start of each simulation. It should be noted that there may 

be some issues with energy conservation under this setup. 

4.4 Results 

4.4.1 Offline Model Simulations (CLM-OFF) 

4.4.1.1 Climatological Mean Climate 

First, we briefly describe some aspects of the land model’s climate (and its biases) that will 

be helpful for interpreting the results of later experiments. CLM4 overestimates albedo at 

high latitudes in fall and winter (SON, DJF), and underestimates MAM albedo across the  
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Figure 4-1: Bias in simulated climatological March SWE (units: mm) two simulations of CLM4 with different 

forcing (a) CRUNCEPv7, (b) Qian. Bias is calculated with regards to the Blended-5 dataset (Mudryk et al., 

2015). 

 

boreal forest region (largely due to the timing of canopy snowmelt) (Thackeray et al., 2015). 

Annual mean climatological surface air temperature from CLM4 has a significant cold bias at 

high latitudes (~2-4°C locally), with more pronounced biases in the winter and spring (not 

shown). As shown in Figure 4-1a, there are also large regional biases in climatological spring 

SWE that exceed 100 mm compared to the Blended-5 product of Mudryk et al., (2015). The 

model accumulates too much SWE across midlatitude and northeastern North America and 

western Eurasia, with a low SWE bias across Alaska/Yukon and eastern Siberia. Notably, 

there is so little snow over Alaska/Yukon (due to a lack of cold season precipitation over 

Alaska/Yukon in CRUNCEP) that a gap exists in snow cover extent, which could have 

repercussions on simulated albedo. Uncertainty in Arctic precipitation is a common issue due 

to sparse meteorological stations at high latitudes (Brown, 2000). A second control 

simulation derived from different atmospheric forcing (Qian) shows a reduction in this bias,  
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Figure 4-2: Difference in seasonal mean albedo (top) and surface temperature (bottom) between offline OBS 

and Control cases (using Qian forcing). Seasonal means for the fall (SON), winter (DJF), and spring (MAM) are 

shown. 

 

although the spatial pattern is largely the same (Fig. 4-1b). Further analysis focuses on the 

Qian-driven simulations. Results from this batch of runs showed very strong similarities to 

the prior simulations in areas not affected by the aforementioned precipitation biases (not  

shown). It is of interest to know whether correcting model biases in albedo will move 

temperature and snow simulations closer to or further from observations. 

4.4.1.2 Response to Albedo Perturbations 

First, the simulated albedo from CLM4 is replaced with prescribed observational albedo 

(OBSblend). Following on from the biases described in Section 4.4.1.1, the perturbation 
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corresponds to albedo being reduced in winter (DJF) over much of the extratropics, and 

increased in spring (MAM) across the boreal forest region (Fig. 4-2). Although the changes 

to albedo are largest in DJF, they have little impact on simulated wintertime temperature 

(Fig. 4-2). This is due to very low incoming radiation over much of the Northern Hemisphere 

high-latitudes during winter. On the other hand, the increased albedo in spring leads to a 

surface cooling that locally ranges from -0.1 to -0.5K, and minor increases in late-spring 

snow cover (not shown).  

These results show the impact of small changes to snow-covered surface albedo in 

CLM4 by using satellite albedo products. In fact, the percent change in NH45 MAMJ albedo 

is slightly negative (-3%) because the lowering of albedo over grasslands and tundra 

outweighs the increased boreal albedo here. Next, we apply a stronger perturbation (+13% 

NH45 MAMJ albedo) to further evaluate model sensitivity. The climatological mean albedo 

in the MIROC5 model is unrealistically high across the boreal forest region in DJF, and all 

snow-covered areas in MAM (Fig. 4-3). There is not much to note about the fall results in 

either case (or for subsequent experiments), so mean winter and spring climate are primarily 

discussed going forward. Winter and spring cooling covers a much larger spatial extent in 

this case, and is nearly double the magnitude of what was identified using satellite derived 

albedo. On the other hand, MIROC5 albedo is lower in winter over areas of sparse (or low-

lying) vegetation south of the boreal forest; this produces weak local warming, but the 

dominant response is in the form of a cooling associated with the high bias to the north (Fig. 

4-3). However, the offline experimental configuration in CLM-off prevents land-atmosphere 

processes from affecting the response to albedo perturbations over time, hence, the response 
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Figure 4-3: Difference in seasonal mean albedo (top) and surface temperature (bottom) between offline MIROC 

and Control cases (using Qian forcing). Seasonal means for the fall (SON), winter (DJF), and spring (MAM) are 

shown. 

 

over most extratropical regions remains weak, even in this case with stronger forcing. In the 

following section, we quantify the impact of atmospheric coupling on the response through 

the CLM-CAM simulations.  

4.4.2 Land-Atmosphere Simulations (CLM-CAM) 

4.4.2.1 Climatological Mean Climate 

Here we briefly examine the climate produced by an AMIP-type simulation of CESM1-

CAM4. This model also exhibits biases in near-surface air temperature (relative to NCEP-II  
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Figure 4-4: Difference in climatological mean winter (DJF) 2m air temperature (shading; K) and sea level 

pressure (contours; hPa) between the CESM AMIP control simulation (years 1-20) and NCEP-II reanalysis 

(1982-2001). The contour interval is 2 hPa, with negative contours dashed. 

 

reanalysis; varies slightly with the choice of observational dataset), while DJF cold biases of 

between 2-6°C persist over northern Siberia, Arctic Canada/Alaska, and the central Arctic 

basin (Fig. 4-4). The control simulation also has notable biases in its general circulation 

patterns over high-latitudes in winter, when compared to reanalysis data: there is a 

pronounced negative bias in sea level pressure (SLP) over the polar cap (Fig. 4-4). Three NH 

regions stand out with particularly large biases in winter SLP: the polar cap (-9 hPa), Iceland 

low (-9 hPa), and Aleutian low (+7 hPa). This finding is consistent with other studies using 

the same atmospheric model (CAM4) (Xie et al., 2012; De Boer et al., 2012). Weakened SLP 

over the polar cap is also a feature of all six realizations of the 20-year AMIP experiment 

performed using the CESM-CAM4 model1. This seems to imply that the model favors a 

positive Arctic Oscillation (AO) setup by default. Biases in SWE over land remain large (in 

                                                      
1 Available at http://www.cesm.ucar.edu/experiments/cesm1.0/#amip. 
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both directions) when compared to the Blended-5 dataset (up to 100 mm; not shown), this is 

somewhat expected because precipitation is no longer being prescribed (as in offline cases). 

A more detailed description of the model’s climate is given by Neale et al. (2013). 

4.4.2.2 Climatological Response in the OBS Experiment 

In the OBS case, the albedo perturbation slightly reduces the non-forested albedo value 

(affecting the plains and tundra) and prolongs the peak albedo value over the boreal forest 

region (to prevent its early decline). The albedo perturbations (consistent with the CLM-off 

simulations in Section 4.4.1) drive a strong reduction in net shortwave radiation over the 

boreal forest, and an increase across the plains to the south and tundra to the north. These 

surface radiative changes drive the following climate response in climatological mean 2m air 

temperature, net shortwave radiation (downward minus upward), net longwave radiation 

(upward minus downward), and sensible plus latent heat (positive upward) (Fig. 4-5). 

Cooling of between 1-3 degrees is evident across much of the NH extratropics in both DJF 

and MAM (Fig. 4-5ab). This is somewhat surprising because there is a small increase in net 

shortwave radiation at the surface (averaged across NH45 region) during winter (~2 Wm-2) 

and negligible change in fall and spring (~0.5 Wm-2). The lack of radiative change in fall 

(not shown) is a result of only a slight albedo perturbation, whereas in spring it is a balance 

of contrasting areas with more and less absorbed radiation (Fig. 4-5d). There are also minor 

reductions in the net longwave radiative flux during winter (-1 Wm-2; Fig. 4-5e) and spring (-

2.5 Wm-2; Fig. 4-5f). Turbulent sensible (-5 Wm-2) and latent heat (-3 Wm-2) fluxes away 

from the surface are also decreased during spring (Fig. 4-5h), and near-zero during winter. 
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Figure 4-5: Response to OBS albedo forcing in seasonal mean (a, b) 2m air temperature (K), (c, d) net 

shortwave radiation at the surface (W m-2), (e, f) net longwave radiation at the surface (W m-2), and (g, h) 

sensible plus latent turbulent heat fluxes (W m-2). Seasonal means for the winter, and spring are shown, while 

summer and fall are excluded because of less albedo perturbation. Net shortwave radiation is positive down, 

while other fluxes are the opposite. 
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Because we apply perturbations to the surface albedo, the land surface temperature response 

is generally greater (colder) than atmospheric temperature response, thus causing negative 

turbulent heat fluxes. A decrease in sensible heat flux acts to directly cool the lower 

atmosphere. Spring cooling corresponds to concurrent reductions in the surface energy 

budget (described above), but in winter there is very little change in the energy balance.  

The lack of a surface shortwave signal in winter means that other processes are likely 

driving the cooling of the continent, and changes to large-scale atmospheric circulation 

appear to play a key role. The albedo perturbation is associated with a strengthening low 

pressure system over the polar cap during winter (Fig. 4-6a), weaker zonal mean zonal winds 

around 60°N, and an equatorward shift of North Atlantic jet and storm track (Fig. 4-6c). 

These changes, coupled with reductions in meridional heat transport (not shown), result in 

greater movement of cold air to the mid-latitudes. This pattern is similar to the typical 

general circulation associated with a negative AO (Thompson and Wallace, 1998). It should 

be noted that this setup resembles a reversal of the SLP biases in the control climate (Fig. 4-

4), but weaker in magnitude. Therefore, correcting albedo in CLM-CAM pushes the 

simulated winter temperatures further away from observations (implying the presence of 

other biases), but partially corrects the model’s tendency towards a positive AO. 

Increasing the spring albedo in CLM over the boreal forest region naturally reduces 

snow melt by limiting shortwave radiation absorbed by the snowpack. This change coupled 

with cooler near-surface air temperature (Fig. 4-5) leads to spring snow cover fraction (SCF) 

anomalies that exceed +25% for a given month (Fig. 4-7a-c). Prolonged snow cover duration 

influences the model’s upper-layer soil moisture during summer months (Fig. 4-7d-f). Soil 
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Figure 4-6: Climatological seasonal mean difference in sea level pressure (a, b) and zonal mean zonal wind (c, 

d) between the OBS and control cases.  

 

moisture anomalies can affect moisture and heat exchange, and contribute to long-term 

atmospheric variability because of their slowly developing nature (Eltahir, 1998; Liu, 2003). 

Prior studies have shown that anomalously wet soils can cause decreased 500 hPa 

geopotential heights (GPH) (Ju et al., 2005), while dry soils can invoke the opposite response 

(Fischer et al., 2007; Pal and Eltahir, 2003). Therefore, it is possible that the anomalously wet 

soils across the NH extratropics are playing a role in the persistent cooling that occurs 

throughout summer (not shown). It should be noted that correcting the albedo biases of CLM  
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Figure 4-7: Climatological seasonal mean difference in spring snow cover fraction (a, b, c) and May-Jun-Jul soil 

moisture (d, e, f) between OBS and Control. 

 

involves slightly increasing the extratropical snow-free albedo, because the model’s default 

vegetation albedo is lower than observed. 

The continental cooling response in spring also has knock-on implications for the 

Arctic summer/fall. Although sea-ice properties (area and thickness) are fixed, the 

atmosphere over the ice, and in turn, snow on sea-ice are free to evolve and potentially 

impact radiative and turbulent heat fluxes. We find that cooling in the Arctic basin, due to 

reduced meridional heat transport and advection of cold air, limits the melting of snow on 

sea-ice in May-Jun (Fig. 4-8a). This leads to a thicker (10-20 cm; Fig. 4-8b) and more 

reflective (~10-30%; increase in albedo by 0.05-0.20; Fig. 4-8c) Jul-Aug snowpack on the ice 

(versus control). Enhanced snow on sea-ice drives a concurrent reduction in the net surface 
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Figure 4-8: Response to OBS albedo forcing in climatological sea ice variables (a) June snowmelt (cm/day), (b) 

July snow depth (m), (c) August surface albedo (no units), and (d) fall surface temperature (K). 

 

heat flux, and increased sensible and latent heat fluxes over the ice in Aug-Sep. The resulting 

~-2 K temperature anomaly is apparent in the mean fall temperature response (Fig. 4-8d). 

Consistent with this cold polar cap there is a lowered 500 hPa GPH and stronger 60°N winds 

in fall. Therefore, anomalous snow on sea-ice acts as a bridge linking the changes applied to 

spring albedo with the atmospheric response generated in fall/winter.   

4.4.2.3 Climatological Response in the MIROC Experiment 

Here we substantially increase snow-covered surface albedo over much of the mid-high 

latitudes, and decrease it in areas just south of the boreal forest region during winter (Fig. 4-

3). The albedo-induced radiative perturbation is largest across the boreal forest region, 
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approximately double that of the OBS experiment during spring, and more than four times 

stronger during winter. By spring, the albedo is largely only increased over the NH 

extratropics and it is this period when the radiative response is most dominant. Anomalous 

cooling of 2-5 K is produced across the NH extratropics in winter (NH45 land: -1.3 K) and 

spring (NH45 land: -2.6 K) (Fig. 4-9ab). In this case, winter cooling isn’t limited to the 

Eurasian continent as before. This is likely associated with decreased net shortwave across 

much of southern Canada (Fig. 4-9c), which is far enough south that albedo perturbations 

have a radiative impact. The spring temperature response is also largely driven by decreased 

shortwave radiation (-9.5 W m-2). In response to shortwave forcing, net longwave is also 

reduced (-4 W m-2 in spring), with the largest changes across the boreal latitudes (Fig. 4-9f). 

This is coupled with much weaker sensible (-7.5 W m-2) and latent heat (-4 W m-2) fluxes 

over land (Fig. 4-9h). Differences in radiative fluxes in fall are relatively weak over much of 

the NH extratropics once again because albedo perturbations during this period are small 

(due to slow snow onset in MIROC5). The largest radiative differences during fall stem from 

changes to cloud cover (not shown). 

 The enhanced NH cooling generated in the MIROC case is also linked to changes in 

large-scale atmospheric circulation. During winter, we see the development of an annular 

SLP pattern that largely resembles Fig. 4-6a, with a positive anomaly over the polar cap and 

negative anomalies over the Aleutian Islands and western Europe (Fig. 4-10a). This pattern 

persists through spring (Fig. 4-10b), noticeably with a greater magnitude than generated by 

OBS. In both seasons, there is a significant weakening of the polar winds (Fig. 4-10cd). 

These two circulation features enhance the albedo-induced temperature change over Eurasia. 
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Figure 4-9: Response to MIROC albedo forcing in seasonal mean (a, b) 2m air temperature (K), (c, d) net 

shortwave radiation at the surface (W m-2), (e, f) net longwave radiation at the surface (W m-2), and (g, h) 

sensible plus latent turbulent heat fluxes (W m-2). Seasonal means for the winter, and spring are shown, while 

summer and fall are excluded because of less albedo perturbation. Net shortwave radiation is positive down, 

while other fluxes are the opposite. 

 



 

 103 

 

Figure 4-10: Climatological seasonal mean difference in sea level pressure (a, b) and zonal mean zonal wind (c, 

d) between the MIROC and control cases. 

 

The knock-on effects of continental cold anomalies once again include extended spring snow 

cover duration, anomalous summer soil moisture, and thicker snow on sea-ice. The spatial 

pattern of SCF anomalies largely resemble the prior results, but are intensified (up to 50% 

larger than control across melt zone; not shown). Therefore, in both albedo perturbations 

cases (OBS and MIROC), we see robust climate impacts.  

The hemispheric response discussed in the prior subsections is broken down here to 

better understand regional dynamics. For consistency with motivating studies, we look at the 

mean response averaged over two main physiographic regions: the NH boreal forest and the  
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Figure 4-11: Relationship between monthly albedo changes and the corresponding temperature response across 

the boreal forest region (top) and the non-boreal tundra (bottom) in OBS (left) and MIROC (right). The size of 

each point is related to the amount of incoming solar radiation during that month. 

 

non-boreal tundra. Across the boreal forest region, spring albedo was increased by 0.09 in 

OBS, and 0.19 in MIROC. These perturbations result in 1.8 K and 3.4 K of cooling over this 

region, respectively. Albedo changes across the region are generally weaker in magnitude 

during the rest of the year, apart from winter when a lack of incident radiation limits 

temperature impacts (Fig. 4-11ab). Across the non-boreal tundra, albedo changes are largest 

in the OBS case, during winter. However, the more northern location of this region restricts 

albedo biases from having much of a climate impact until March. This explains why 

decreasing the DJF albedo in both cases (OBS: -0.23, MIROC: -0.11) does not result in 

regional warming (OBS: -0.7 K, MIROC: -1 K). The albedo changes across this region seem 
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to be largely dominated by remote effects (i.e., Eurasian cooling due to SLP pattern). During 

the rest of the year, there is much better agreement between the models and observations so 

albedo changes are smaller. Decomposing the regional structure of these simulations 

highlights previously illustrated albedo biases over the boreal (spring albedo is too low in 

CESM) (Thackeray et al., 2014) and tundra regions (winter albedo is higher than 

observations) (Thackeray et al., 2015) in CLM4. From this we can conclude that albedo 

biases in the snow-covered surface albedo over the boreal forest region are more important 

for the models evaluated here. 

4.4.3 Isolating Regional Drivers 

Because of the nature of our prior experiments (changing albedo over much of the NH 

extratropics), it is difficult to pinpoint what may be important in driving the responses that 

were generated. Here, we attempt to isolate the role that different regions may play in 

influencing our prior results. Our initial focus is on the boreal evergreen forest (>50% plant 

functional type in CESM). In this case (BOR), we only perturb albedo over this region (to 

observed), while albedo elsewhere is equal to that of the CLM-CAM control case (+4% 

NH45 MAMJ albedo). Results from BOR are compared with control and OBS. The 

temperature response in BOR is highlighted by 1-3 degree cold anomalies (compared to 

control; Fig 4-12bc) over Eurasia (in winter and spring) and North America (in spring). This 

is largely consistent with the cooling pattern from our OBS case (Fig. 4-5a). Furthermore, we 

once again see the development of a strengthening winter polar cap (Fig. 4-12e) and 

associated weakening of the 60°N zonal mean zonal winds (Fig. 4-12h). Therefore, by only 
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Figure 4-12: Climatological seasonal mean difference in 2m air temperature (a, b), sea level pressure (c, d), and 

zonal mean zonal wind (e, f) between the boreal and control cases. 

 

correcting the spring albedo over the boreal forest we generate substantial climate impacts 

many months later.  
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To further understand the development of consistent large scale atmospheric 

circulation patterns in winter we run two additional cases. This final test examines the role of 

albedo anomalies over the boreal forests of North America and Eurasia separately. Several 

recent studies have suggested that changes in northwestern Eurasian climate can impact the 

AO, particularly through the loss of sea ice in the Barents and Kara Seas (i.e., Inoue et al., 

2012; Mori et al., 2014) and the expansion of October snow cover (i.e., Cohen et al., 2012; 

Furtado et al., 2015; Yeo et al., 2017). Surface temperature and circulation anomalies in this 

region may stimulate the propagation of significant wave activity out of the lower 

troposphere (Saito et al., 2001; Kolstad and Charlton-Perez, 2011) and the development of 

atmospheric blocking events over the Urals, driving persistent cold anomalies over Eurasia 

(Luo et al., 2016; Yao et al., 2017; Luo et al., 2017). To investigate this, we perturb albedo 

over the western Eurasia boreal forest in one case (WEU), and over the North American 

boreal forest in another simulation (NA). An important distinction is that the boreal forest 

tends to be located at lower latitudes in NA. Therefore, the impact on the surface energy 

budget from albedo perturbations applied in NA begins roughly one month earlier than for 

WEU.  

We find that the WEU case produces a similar, but weaker seasonal temperature 

response to that of the full NH extratropical boreal albedo perturbation in the BOR 

experiment (Fig. 4-12ab), mostly limited in extent to eastern Eurasia (not shown). This 

appears to be largely associated with a weaker positive SLP anomaly over the polar cap, 

which also has its center shifted closer to Siberia. In contrast, the NA case generates Eurasian 

cooling that spans from Scandinavia to eastern Siberia, which is very similar to the BOR 
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Figure 4-13: Seasonal evolution of climatological anomalies (referenced to control) in Eurasian (5-160E, 50-

70N) temperature and polar cap (65-90N) sea level pressure throughout winter. Values for December (squares), 

January (triangles), and February (circles) are shown. A general strengthening of the polar cap occurs 

throughout the winter (left to right). 

 

experiment. This is accompanied by a circulation response reminiscent of a negative AO 

(stronger polar cap and weaker zonal mean zonal winds). Prior studies have shown that snow 

cover anomalies over North America can produce remote responses in temperature and sea 

level pressure (Gong et al., 2003; Sobolowski et al., 2010). Breaking down the seasonal 

evolution of this relationship between Eurasian temperatures and polar cap SLP shows us 

that the WEU case has a different winter trajectory than the other experiments (Fig. 4-13). 

Notably, all cases except WEU exhibit a strengthening polar cap from Dec to Jan, which may 

be tied to a lack of stratospheric warming in this case (not shown). Also, the weaker forcing 

in WEU (smaller boreal area than NA) does not generate a very strong snow on sea-ice 

response in summer/fall (not shown), perhaps limiting the ability for spring perturbations to 

impact NH fall/winter climate. Therefore, we find that applying observational albedo forcing 
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over North America’s boreal forest is sufficient to generate a very similar winter climate 

response to cases where albedo was perturbed everywhere. It should be noted that the spring 

cooling in these continental cases is weaker because they do not have the same radiative 

potential.  

4.5 Discussion and Conclusions 

This study examines several novel simulations, which prescribe surface albedo in an effort to 

better understand the potential impacts that albedo biases can have on simulated climate. We 

find that although winter albedo biases can be large, they have very little direct influence on 

simulations of climate because of low incoming radiation. Instead it is spring albedo bias that 

can generate significant local and remote NH climate responses in the form of temperature, 

snow cover, and large-scale atmospheric circulation. Changes to temperature and snow are 

greatly enhanced when land-atmosphere coupling is enabled. Correcting the albedo in CESM 

towards satellite derived values pushes the model further away from observed temperature 

(implying the presence of other biases), with robust cooling during winter and spring (1-3 K) 

and induces a pattern reversal of the climatological biases in winter sea level pressure, 

partially correcting the model tendency towards a positive AO. CMIP5 models with large 

albedo magnitude biases (i.e. MIROC5) are susceptible to even greater impacts on simulated 

climate. We find an approximately 4-5 K swing in seasonal mean air surface temperature 

over the mid-high latitudes from the low albedo of CESM to the high albedo of MIROC5. 

We find that albedo-induced cold anomalies prolong spring snow cover duration, 

which has knock-on effects on summer soil moisture and summer/fall snow on sea-ice. This 

series of mechanisms bridges the changes we apply in spring to the formation of robust 



 

 110 

atmospheric features in the following winter (as our simulations start in January). Anomalous 

snow cover has previously been tied to seasonally lagged climate features, but these studies 

all focused on October snow (i.e., Gong et al., 2004; Fletcher et al., 2007, 2009). Both 

anomalous snow cover and snow albedo (Allen and Zender, 2010) across the NH during the 

fall can encourage the development of a negative AO pattern in winter through enhanced 

propagation of wave activity to the stratosphere. Here we show that changes in spring albedo 

and its associated cooling can generate a similar response in the NH climate many months 

later.  

The AO is naturally strongest during winter when it can extend out of the troposphere 

and is linked to changes in the polar jet (Thompson and Wallace, 2000; Cohen et al., 2014). 

Studies have shown that winter cold surges across Eurasia are greatly enhanced when the AO 

is in its negative phase (Jeong and Ho, 2005; He et al., 2017). In observations, recent 

Eurasian cooling during winter is characterized by a Warm Arctic-Cold Eurasia (WACE) 

pattern (Overland et al., 2011; Inoue et al., 2012; Cohen et al., 2014). This reduces the 

temperature gradient between the high and mid-latitudes, which can lead to more frequent 

atmospheric blocking events (and more persistent weather), particularly in the Ural mountain 

region (Luo et al., 2016; Yao et al., 2017). WACE has been tied to the loss of sea ice over the 

Barents and Kara Seas in fall-winter (Honda et al., 2009; Petoukhov and Semenov, 2010; 

Inoue et al., 2012; Mori et al., 2014; Sato et al., 2014). There is some question as to whether 

this warming is primarily due to anomalous turbulent fluxes (Honda et al., 2009) or changes 

in temperature advection (Mori et al., 2014). The nature of our simulations limits the 

potential for Arctic warming because sea-ice area and thickness are held fixed in both cases. 
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Also, because SSTs are prescribed, atmospheric fluxes can only influence temperature over 

land or sea-ice. Despite this, results show near-surface warming of 1-2 K from east of 

Greenland to the north Barents Sea in Jan-Feb (when Eurasian cooling is strongest).  

There are still questions as to what prompts the transition from a cold Arctic in fall to a cold 

Eurasia in winter. One potential trigger is a stratospheric warming that develops in 

November-December and largely persists within the atmosphere throughout the winter in all 

of our simulations except WEU (Fig. 4-14). It is accompanied by a stratospheric reduction in 

60°N zonal wind (polar night jet) that doesn’t affect the lower atmosphere until Jan-Feb (not 

shown; consistent with what Cohen et al., 2014 proposes). The detection of winter 

stratospheric warming as a precursor for a negative AO has been noted by prior studies 

(Kolstad and Charlton-Perez, 2011; Cohen et al., 2011; Cohen et al., 2014). This mechanism 

could possibly connect the cooling applied in spring to the formation of strong winter 

atmospheric responses. It is generally thought that stratospheric warming events are caused 

by greater vertical propagation of Rossby waves (possibly linked to sea-ice loss and Eurasian 

snow) that act to weaken the polar vortex (Cohen et al., 2014). Further investigation into the 

tropospheric precursors to stratospheric warming is outside the scope of this study, as several 

others have extensively covered this (Garfinkel et al., 2010; Kolstad and Charlton-Perez, 

2011; Cohen et al., 2011).  

Since we are interested in the sensitivity of the model to albedo biases, the brute force 

nature of our approach is effective. More elegant methodologies for incorporating 

observational constraints in models for example, could involve data assimilation, but that 

more complex approach would not directly address the goals of this study. It should also be 
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Figure 4-14: Difference in climatological zonal mean air temperature (K) throughout the atmosphere between 

each experiment (OBS, MIROC, BOR, NA, WEU) and the control case for November through February. The 

contour interval is 0.2. 
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noted that the relationship between albedo and climate-relevant variables is likely different in 

every GCM, but we are limited to community models such as CESM. Lastly, although the 

prescribed albedo evolves in a smoother nature (linearly from one monthly value to the next) 

than what would naturally occur, we do not believe this influences the long-term climate 

because the monthly mean radiation balance at the surface remains the same. 

The results shown here attempt to improve our understanding of simulated snow-

covered surface albedo biases, which several recent studies have pointed out in the current 

generation of GCMs (Loranty et al., 2014; Thackeray et al., 2014, 2015; Li et al., 2016; 

Wang et al., 2016). We find that spring albedo biases across the boreal forest from the 

CMIP5 ensemble can be influential for both local and remote climate features. Moving 

forward it is important for model development to reduce biases in spring albedo, for both its 

role in snow albedo feedback (Qu and Hall, 2014; Fletcher et al., 2015) and the direct climate 

impacts discussed here. For some models this means improving parameterizations of snow to 

reduce bias in snow cover (or canopy hydrology), while others may require reworking of 

how subgrid-scale lakes are treated (Verseghy et al., 2017) or changes to regional vegetation 

characteristics such as LAI or tree cover fraction. Interestingly, the results shown here 

suggest that correcting the albedo biases in CESM would actually reinforce simulated cold 

biases. Therefore, making albedo more realistic may not have the desired effect of correcting 

temperature, but in this event, one should interpret this as uncovering some other bias in the 

model.  
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Chapter 5 

Quantifying the uncertainty in historical and future simulations of 

Northern Hemisphere spring snow cover 

5.1 Overview 

Projections of 21st century Northern Hemisphere (NH) spring snow cover extent (SCE) from 

two climate model ensembles are analyzed to characterize their uncertainty. The Fifth 

Coupled Model Intercomparison Project (CMIP5) multi-model ensemble exhibits variability 

due to both model differences and internal climate variability, whereas spread generated from 

a Canadian Earth System Model large ensemble (CanESM-LE) experiment is solely due to 

internal variability. The analysis shows that simulated 1981-2010 spring SCE trends are 

slightly weaker than observed (using an ensemble of snow products). Spring SCE is 

projected to decrease by -3.7 ± 1.1% decade-1 within the CMIP5 ensemble over the 21st 

century. SCE loss is projected to accelerate for all spring months over the 21st century, with 

the exception of June (because most snow in this month has melted by the latter half of the 

21st century). For 30-year spring SCE trends over the 21st century, internal variability 

estimated from CanESM-LE is substantial, but smaller than inter-model spread from CMIP5. 

Additionally, internal variability in NH extratropical land warming trends can affect SCE 

trends in the near-future (R2 = 0.45), while variability in winter precipitation can also have a 

significant (but lesser) impact on SCE trends. On the other hand, a majority of the inter-

model spread is driven by differences in simulated warming (dominant in March, April, 

May), and snow cover available for melt (dominant in June). The strong temperature/SCE 



 

 116 

linkage suggests that model uncertainty in projections of SCE could be potentially reduced 

through improved simulation of spring season warming over land. 

5.2 Introduction 

Seasonal snow cover is a crucial component of the climate system, with major impacts on the 

surface energy budget and water balance. At its peak, snow covers approximately 47 million 

km2 of Northern Hemisphere (NH) land (about 40% of the land area) each year (Hall 1988; 

Robinson and Frei 2000). The reflective properties of snow mean that it has a very strong 

influence on land surface albedo, controlling its seasonal evolution. This high albedo has a 

cooling influence on climate, with the contribution from terrestrial snow to cryospheric 

cooling being roughly equal to that of sea ice (Flanner et al. 2011). Furthermore, snow cover 

can indirectly impact atmospheric circulation (Fletcher et al. 2009; Cohen et al. 2012). Water 

resources across most NH extratropical (polewards of 30°N) land areas rely on natural water 

storage provided by snowpack (Diffenbaugh et al. 2013), with approximately one-sixth of 

Earth’s population dependent on snowmelt for a portion of their water supply (Barnett et al. 

2005; Mankin et al. 2015). Earlier spring snowmelt across the western United States has been 

linked to increased summer heat extremes (Diffenbaugh et al. 2005; Hall et al. 2008) and 

wildfires (Westerling et al. 2006). Snow cover also has a low thermal conductivity, meaning 

that it can have an insulating effect on soil temperatures, with important impacts on 

permafrost extent (Zhang 2005; Zhang et al. 2008; Lawrence and Slater 2010). Variability in 

snow conditions also has implications for travel and tourism (e.g., Scott et al. 2008). It is 

crucial, therefore, that we understand how projected warming will affect snow cover. 



 

 117 

Extensive climatological snow cover, and relatively high insolation, make the climate 

system most sensitive to snow and albedo changes during spring (changes during fall and 

winter are less important because of decreasing insolation across the NH) (Ingram et al. 

1989; Hall 2004). Snow albedo feedback (SAF) peaks during March-April-May (Qu and Hall 

2014). Numerous observational studies have shown that Northern Hemisphere spring snow 

cover extent (henceforth, SCE) has been decreasing rapidly over recent decades (Groisman et 

al. 1994; Déry and Brown 2007; Flanner et al. 2009; Brown et al. 2010; Brown and Robinson 

2011; Hernández-Henríquez et al. 2015). Most of the loss in snow occurs over ‘temperature-

sensitive regions’, where changes in SCE are closely linked to temperature variability (Karl 

et al. 1993; Déry and Brown 2007). March-April SCE is decreasing at a rate of -3.4 ± 1.1 % 

decade-1 (1979-2005) (Brown and Robinson 2011), and June SCE has decreased by ~-18% 

decade-1 from 1979-2014 (Derksen et al. 2015). This rate of decline in SCE exceeds the well-

publicised declining trend in September Arctic sea ice (-13% decade-1). It should be noted 

that the absolute areal SCE loss in Mar-Apr is comparable to that observed during June 

because there is much less snow covered area in June (Section 5.4.1). 

By contrast, the suite of climate models contributing to the Coupled Model 

Intercomparison Project phase 5 (CMIP5) simulate March-April SCE trends roughly one-

third as large as observed for the same time period (-1.0 ± 0.3 % decade-1) (Brutel-Vuilmet et 

al. 2013). This underestimation, also found for the CMIP3 models (Roesch 2006), is 

associated with underestimated extratropical spring warming (Brutel-Vuilmet et al. 2013). 

Derksen and Brown (2012) and Mudryk et al. (2014) illustrate other aspects of the observed 

trends that are not well captured by general circulation models (GCMs).  
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Northern Hemisphere SCE is expected to continue decreasing under future warming. 

Several studies over the past 30 years have utilized GCMs to show that SCE decreases 

substantially in a doubled CO2 climate (Manabe and Wetherald 1987; Boer et al. 1993; 

Essery 1997). More recently, the Intergovernmental Panel on Climate Change’s Fifth 

Assessment Report (IPCC AR5) stated that early spring (March-April) SCE is likely to 

decrease by 7-25% (RCP2.6-RCP8.5) by 2100 (Collins et al. 2013; Brutel-Vuilmet et al. 

2013). However, this projection was only assigned a medium confidence level because of a 

large inter-model spread, and a lack of sophistication in the representation of snow processes 

in many models (e.g., single layer snowpacks, and snow schemes that assume an equal 

distribution of snow mass across a grid cell (Collins et al. 2013; Slater et al. 2001). 

Furthermore, no projections of SCE were provided for late spring (May-June), when snow 

cover is largely restricted to the Arctic, but still represents a significant area (mean 1982-

2002 Arctic SCE for May and June was 11.0 and 3.9 million km2, respectively (Brown et al. 

2010)). The Arctic has experienced the greatest warming in recent decades (Bekryaev et al. 

2010), and that trend is expected to continue due to positive feedback mechanisms such as 

the lapse rate and albedo feedbacks (Pithan and Mauritsen 2014) with implications for spring 

snow cover. 

CMIP (Meehl et al. 2007; Flato et al. 2013) and SnowMIP (Etchevers et al. 2004; 

Rutter et al. 2009) studies have demonstrated that a large inter-model spread exists when 

simulating snow properties (extent and mass). This limits our confidence in future 

projections, and is likely to be caused by a combination of internal climate variability, and 

model uncertainty (inter-model variability among GCMs in response to the same forcing) 
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from physical processes that are either missing, or oversimplified (Hawkins and Sutton 

2011). For example, simulated snow mass (and similarly SCE) is sensitive to different 

parameterizations for snowfall, albedo, snow-vegetation masking, and snow cover fraction 

(see Slater et al. 2001; Bartlett et al. 2006; Dai 2008; Rutter et al. 2009; Essery et al. 2013).   

Internal climate variability arises primarily from naturally-occurring non-linear 

atmospheric and oceanic processes, and their interactions (Deser et al. 2012b; Kay et al. 

2015). The processes can be nearly instantaneous, or take several years (Hegerl et al. 2007). 

Internal variability influences projected regional trends in temperature and precipitation, even 

in the presence of a background trend in CO2 forcing (Hawkins and Sutton 2009, 2011; Deser 

et al. 2012b), both of which are crucial factors for future winter snow accumulation patterns 

(Räisänen 2008; Krasting et al. 2013; Mankin and Diffenbaugh 2015; Shi and Wang 2015). 

Therefore, it is likely that internal climate variability could also influence projected trends for 

spring SCE.  

The primary goal of this work is to investigate the spread in 21st century changes to 

spring snow cover as projected by the CMIP5 suite of climate models. We use the recent past 

to help understand the spread in trend strength between simulations and observations. We 

also seek to determine the influences of both internal variability and model uncertainty in 

these simulations, to answer the following research questions: (i) what impact does the 

representation of snow/climate processes (e.g., the sensitivity of snow cover to warming 

(henceforth, snowmelt sensitivity)) have on simulations of SCE?; and (ii) what are the 

respective roles of temperature and precipitation changes in governing SCE trends? The data 

and methods are described in Section 5.3. In Section 5.4, we present historical and projected 
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SCE trends, and diagnose the respective roles of model uncertainty and internal variability. 

Lastly, Section 5.5 highlights the key findings of this research and provides a discussion of 

how our findings relate to previous research. 

5.3 Data and Methods 

5.3.1 Climate Model Data 

We use monthly mean output from the suite of historical (1850-2005) and future (2006-

2100) simulations from the CMIP5 archive (Taylor et al. 2012; cmip-pcmdi.llnl.gov/cmip5/) 

to evaluate snow cover in 15 models (Table 5-1). Only models that archived the variable snc 

(snow cover fraction; SCF) are included in this analysis so as to avoid introducing 

uncertainty through the estimate of SCE from snow water equivalent (snow mass - snw) as 

done in previous studies (e.g. Roesch 2006). Future snow cover projections are forced using 

the RCP8.5 scenario because it most closely resembles the observed emissions pathway over 

the past decade (Peters et al., 2013). We use all available realizations (n = 1-10) from each of 

the 15 CMIP5 models for a total of 61 historical runs and 41 runs for the RCP8.5 scenario. 

We compute individual trends/averages for each realization, then take the inter-realization 

average across each model to calculate ensemble means. These values are then used to 

determine the CMIP5 multimodel mean values. 

We also use output (variables: snc, snw, tas, psl) from a large (50 realization) 

ensemble of the second generation Canadian Earth System Model, CanESM2 (Arora et al. 

2011). To produce the 50-member large ensemble, (henceforth, CanESM-LE) ten 

realizations are initiated in 1950 from each of the five original realizations of CanESM2  
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Table 5-1: List of CMIP5 models analyzed in this study with reference letters for each model, the native 

resolution, the number of realizations contributed for both the historical and future periods, and spring SCE 

trends (106 km2 decade-1) for the recent past (1981-2010). Trend values that are not significant (according to a 

Mann-Kendall test) are marked with an asterisk. 

 

 Model name Institute 

Resolution 

(°lat x 

°lon) 

Realizations 

(Historical/ 

RCP8.5) 

MAMJ SCE 

Trend 

(1981-2010) 

A Beijing Climate Center-Climate System Model 

version 1.1 (BCC-CSM1.1) 

BCC 2.8 x 2.8 3/1 -0.53 

B Beijing Normal University Earth System Model 

(BNU-ESM) 

BNU 2.8 x 2.8 1/1 -0.47 

C Canadian Earth System Model version 2 

(CanESM2) 

CCCMA 2.8 x 2.8 5/5 

(+50) 

-0.78 

D Community Climate System Model version 4 

(CCSM4) 

NCAR 0.9 x 1.25 6/6 -0.55 

E Centre National de Recherches 

Météorologiques-Climate Model (CNRM-CM5) 

CNRM-

CERFACS 

1.4 x 1.4 10/5 -0.44 

F Commonwealth Scientific and Industrial 

Research Organization Mark 3.6  

(CSIRO-Mk3.6.0) 

CSIRO-

QCCCE 

1.875 x 

1.875 

10/10 -0.27 

G Flexible Global Ocean-Atmosphere-Land 

System model, Grid-point version 2  

(FGOALS-g2) 

LASG-

CESS 

2.8 x 2.8 5/1 -0.50 

H Goddard Institute for Space Studies Model E 

with Russell Ocean Model (GISS-E2-R) 

NASA 

GISS 

2.0 x 2.5 6/1 -0.42 

I Institute for Numerical Mathematics Climate 

Model version 4 (INM-CM4) 

INM 1.5 x 2.0 1/1 -0.07* 

J Model for Interdisciplinary Research on 

Climate version 5 (MIROC5) 

MIROC 1.4 x 1.4 5/3 -0.52 

K MIROC Earth System Model (MIROC-ESM) MIROC 2.8 x 2.8 3/1 -0.56 

L Max Planck Institute Earth System Model low 

resolution (MPI-ESM-LR) 

MPI-M 1.875 x 

1.875 

3/3 -0.27 

M Meteorological Research Institute Coupled 

General Circulation Model version 3  

(MRI-CGCM3) 

MRI 1.121 x 

1.125 

3/1 -0.20* 

N Norwegian Earth System Model intermediate 

resolution + biogeochemical cycling 

(NorESM1-ME) 

NCC 1.89 x 2.5 1/1 -0.49 

O NorESM intermediate resolution  

(NorESM1-M) 

NCC 1.89 x 2.5 3/1 -0.42 
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submitted to CMIP5. Each new ensemble member is perturbed by changing the seed of a 

random number generator used in the parameterization of radiative transfer through clouds. 

Following the CMIP5 design, historical forcing is applied from 1950 to 2005, followed by 

RCP8.5 from 2006 to 2100. This methodology is appropriate for sampling the statistics of 

climate variability within CanESM2, because the initial ocean conditions down to 300m 

depth have very little influence on the simulation after 5-10 years (Branstator and Teng 

2012). This implies that, by the time our analysis period begins in 1981, CanESM-LE 

represents 50 statistically independent climate states.  

As a result, CanESM-LE is used to quantify the component of internal variability 

within future projections from a single GCM, while the CMIP5 ensemble includes a 

combination of model uncertainty and internal variability. Similar large ensembles have 

previously been used to separate the components of future climate patterns related to forced 

and internal variability (Deser et al. 2012a,b; Wettstein and Deser 2014; Swart et al. 2015). 

Consistent with previous research (Deser et al. 2012b; Deser et al. 2014), we estimate the 

forced response to greenhouse gas (GHG) forcing as the ensemble mean response from all 50 

realizations of CanESM-LE. As in Hawkins and Sutton (2011) we estimate the contribution 

of internal variability to each realization by subtracting the ensemble mean of a particular 

quantity from the values in that realization. This approach is effective when there are enough 

simulations so that climate noise can be sufficiently diluted (Deser et al. 2012b; Deser et al. 

2016). 
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5.3.2 Observational Data 

Seven observation-based estimates (Table 5-2) are used to evaluate the CMIP5 models 

during recent decades (1981-2010). The use of an observational ensemble reduces the chance 

of incorrectly identifying a model bias due to errors in a single observational analysis. The 

seven observation-based estimates are derived from reanalyses, satellite data, and in situ 

measurements. Each dataset must have complete Northern Hemisphere coverage, and a data 

record spanning the 1981-2010 period. Those datasets that meet this criteria are: (1) the 

NOAA snow chart climate data record (NOAA CDR) (Brown and Robinson 2011; 

ftp://eclipse.ncdc.noaa.gov/cdr/snowcover/), (2) the Brown snow cover product derived from 

a combination of climate station data and a simple snow model (Brown et al. 2003), (3) the 

combined in situ and satellite passive microwave derived GlobSnow SWE product (Takala et 

al. 2011; www.globsnow.info), (4) SWE from the Modern Era Retrospective Analysis for 

Research and Applications (MERRA) (Rienecker et al. 2011), (5) SWE from the European 

Centre for Medium-Range Forecasts Interim Land Reanalysis (ERA-I-Land) (Balsamo et al. 

2015), (6) SWE from the Global Land Data Assimilation System Version 2 (GLDAS-2) 

product (Rodell et al. 2004), and (7) SWE output from the Crocus snowpack model driven by 

ERA-I meteorology (Brun et al. 2013). Three of the snow products use the same atmospheric 

forcing data from ERA-Interim (Brown, Crocus, and ERA-I-Land). However, despite this 

similarity, they exhibit very different SCE trends due to differences in the snow 

parameterizations between Crocus and HTESSEL (ERA-I-Land), while the Brown dataset 

only uses temperature and precipitation to force a simple snow model (Table 5-2). 
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Table 5-2: List of observational-derived snow data products analyzed in this study, the native resolution, 

respective climatological SCE (106 km2) and spring SCE trends (106 km2 decade-1; % decade-1). Trend values 

that are not significant are marked with an asterisk. 

 Data Product Resolution 

MAMJ SCE 

Trend  

(1981-2010)  

MAMJ Percent 

Loss 

(1981-2010) 

MAMJ Mean 

Snow Extent 

(1981-2010)  

1 Brown (Brown et al. 2003) 
0.75° x 

0.75° 
-0.74 -3.9 19.0 

2 CROCUS (Brun et al. 2013) 1° x 1° -0.63 -3.8 16.6 

3 

European Centre for Medium-Range 

Forecasts Interim Land Reanalysis 

(ERA-I-Land) (Balsamo et al. 2015) 

0.75° x 

0.75° 
-0.38 -2.2 17.9 

4 

Global Land Data Assimilation System 

Version 2 (GLDAS-2) (Rodell et al. 

2004) 

1° x 1° -0.22* -1.6 14.1 

5 GlobSnow (Takala et al. 2011) 25 km -0.55 -3.4 16.2 

6 

Modern Era Retrospective Analysis for 

Research and Applications (MERRA) 

(Rienecker et al. 2011) 

0.5° x 

0.66° 
-0.50 -3.3 15.1 

7 
NOAA Climate Data Record (Brown 

and Robinson 2011) 
190 km -0.82 -4.2 19.3 

 CMIP5 Mean  -0.43 ± 0.17 -2.5 ± 1.0 17.0 ± 3.4 

 CanESM-LE 2.8° x 2.8° -0.62 ± 0.18 -3.0 ± 0.9 20.6 ± 0.2 

 

The NOAA CDR is derived primarily from optical satellite data (Brown and 

Robinson 2011). This dataset provides monthly fractional snow cover, which is calculated as 

the percent of days per month that a grid cell is at least 50% snow covered. The Brown 

dataset (Brown et al. 2003) uses ground-based snow measurements and a simple snowpack 

model to produce SCF from daily SWE thresholds exceeding 4mm. The five remaining 

datasets (MERRA, ERA-I-Land, GLDAS-2, GlobSnow, and CROCUS) were used in the 

SWE product inter-comparison described in Mudryk et al. (2015). For these products, SWE 

is initially interpolated to a 1° by 1° grid and SCF is then derived from daily SWE thresholds 
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exceeding 4 mm. The 1981-2010 time period is a shorter record than available from 

individual datasets (for example the NOAA CDR starts in 1967) but the compromise in time 

series length is mitigated by the advantages of a multi-dataset perspective which has typically 

not been used in previous snow-climate studies.   

An observational ensemble of temperature is used to determine spring snow extent 

sensitivity. We select five datasets for temperature: the Climatic Research Unit land station 

temperature database (CRU) (Jones et al. 1999; 2012), the Goddard Institute for Space 

Studies (GISS) surface temperature analysis (Hansen et al. 2010), the National Climatic Data 

Center (NCDC) temperature product (Smith et al. 2008), and the National Centers for 

Environmental Prediction (NCEP) surface and 2m (NCEP2m) temperature datasets (Kalnay 

et al. 1996).  

5.3.3 Analysis Methods 

The CMIP5 models output data at a variety of resolutions (1-3° grid boxes), and to account 

for this we must create a consistent land/sea mask such that land area biases are reduced 

(particularly in the Canadian Arctic Archipelago (CAA), where many narrow channels may 

not be resolved at coarser resolution (Laliberté et al. 2016)). For each CMIP5 model 

a land/sea mask extracted from the Modern Era Retrospective Analysis for Research and 

Applications (MERRA) product is remapped to the native model resolution to isolate 

simulated NH land-only snow cover and temperature data. This ensures that we reduce 

discrepancies in the amount of land area between models (mainly in the CAA). Using this 

mask along with the model-specific land mask reduces climatological SCE in the models, but 

has minimal impact on their trends (not shown). Furthermore, the study area for this analysis 
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is spatially restricted to the Northern Hemisphere extratropics (>30°N), with Greenland 

excluded, and temporally restricted to March-April-May-June (MAMJ). 

SCE is calculated from model output by multiplying grid cell snow cover fraction (%) 

by the area of each grid cell (m2) then taking the hemispheric sum for each month. Similarly, 

snow water mass (SWM) is computed by multiplying grid cell level snow water equivalent 

(SWE) by the area of each grid cell and summing over the NH. This is applied to SWE data 

from the CanESM-LE to allow for an illustration of the influence that changes in winter 

precipitation have on SCE trends. The pre-melt SWM is a useful measure of snowfall totals 

over the winter months, particularly across the Arctic, because wind-driven snow processes 

are not represented in current models (Turner et al. 2006; Lawrence et al. 2012). We find that 

1981-2010 winter (Oct-Mar) snowfall trends are strongly correlated with March SWM trends 

within CanESM-LE (r=0.92; not shown). Along with measures of correlation, we also use 

the coefficient of determination (R2) to recognize the contribution from precipitation and 

temperature to SCE variability.  

Time series of SCE and SWM data are used to calculate climatologies, and linear 

trends. We calculate these values for each of the four 30-year climatological time frames 

during the study period: historical (1981-2010), near-future (2011-2040), mid-century (2041-

2070), and long-term (2071-2100). In some cases, a 21st century trend (2011-2100) is used to 

simplify the discussion of results. Since the historical CMIP5 data ends in 2005, we use 

RCP8.5 data to complete the 1981-2010 period so that a comparison with recent observations 

can be made (similar to Derksen and Brown, 2012). SCE trends are computed as both 

absolute area (million km2 decade-1) and percent changes (% decade-1). Absolute area 
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calculations are useful in the context of comparing different months, while percent changes 

may be more suitable for inter-ensemble comparisons because they account for potential 

differences in snow cover climatology. Throughout, all trend values reported are 

accompanied by 1 sigma standard deviations to represent uncertainty. Note that trends are 

calculated at each model’s native resolution, and regridding to a 1°x1° grid is only used for 

spatial mapping of the snow cover from the CMIP5 models. Lastly, the term ‘bias’ will be 

used solely for comparing models in relation to observation-based estimates.  

5.4 Results 

5.4.1 Historical Spring SCE Trends 

Considering first the entire spring season for the Northern Hemisphere, SCE has decreased at 

a mean rate of -0.55 ± 0.21 million km2 decade-1 from 1981-2010, according to the seven 

observation-based estimates evaluated here (Table 5-2). Dividing this rate by the 

climatological spring SCE produces a percent change of -3.3% decade-1. The strongest trend 

in terms of absolute area occurs in March (mean: -0.66 ± 0.26 million km2 decade-1), and the 

weakest in June (-0.41 ± 0.30 million km2 decade-1) (Fig. 5-1). However, direct measures of 

trend magnitude do not account for the much greater total snow area in March (32.6 ± 2.5 

million km2) than June (2.6 ± 1.9 million km2; not shown). When viewed as a percent change 

relative to the monthly climatology, March SCE is decreasing at a rate of -2.0 ± 0.8% decade-

1, while the rate of June SCE loss is -16 ± 11% decade-1 (not shown). Both early spring and 

June trends found here are weaker than those previously reported that were based only on the 

NOAA CDR: Brutel-Vuilmet et al. (2013) reported trends of -3.4% decade-1 for March-April  
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Figure 5-1: Historical (1981-2010) Northern Hemisphere extratropical snow cover extent trends among three 

ensembles: CMIP5, CanESM-LE, and observation-based (OBS). For each box the enclosed region shows the 

25th-75th percentile range, the horizontal line shows the median, and the diamond shows the ensemble mean. 

The dashed fences indicate the minimum and maximum. The CMIP5 box uses the mean for each model 

(averaged over all available realizations). 

 

over the 1979-2005 period, while Derksen and Brown (2012) reported trends of -18% 

decade-1 in June over the (1979-2011) period. 

These reported differences result because there is a substantial spread among the 

observation-based estimates of SCE trends, and of the seven products evaluated here the 

NOAA CDR trends are the largest in magnitude (Table 5-2). Mudryk et al. (2015) have 

recently shown an analogously large spread in SWM trends from various snow analysis 
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products. Such spread likely occurs as a result of differences in methodology and the type of 

data used to construct each dataset (e.g., in situ, reanalysis, satellite-derived). Three of the 

four reanalysis products (GLDAS-2, ERA-I-Land and MERRA) exhibit the weakest spring 

SCE trends over recent decades, with GLDAS-2 losing the least SCE in each spring month. 

On the other hand, two of the three products which utilize either satellite-derived or in situ 

information (NOAA CDR and Brown) exhibit the strongest trends in spring SCE over the 

recent past.  

Simulated spring trends from the CMIP5 models are approximately 22% weaker than 

observed on average (multimodel ensemble mean (MM): -0.43 ± 0.17 million km2 decade-1, 

or -2.5 ± 1.0% decade-1). This is also weaker than that of the CanESM-LE (mean = -0.62 ± 

0.18 million km2 decade-1), which demonstrates much greater late-spring snow loss. From a 

monthly perspective, the CMIP5 mean SCE trend is largest during April, and weakest in June 

(Fig. 5-1). The agreement between CMIP5 models and observations is very good during 

April and May, but less so during March and June, when the models have weaker trends 

(MM: -1.4 ± 0.8% decade-1 and -8.4 ± 5.4% decade-1, respectively). However, March is the 

only month with a statistically significant difference between the observed and simulated 

mean trends (p<0.05; using a two-sided Student’s t-test). Furthermore, nearly all models 

exhibit negative SCE trends throughout the spring, except for INMCM4, which has a slight 

increasing trend during March. The CMIP5 models range from losing very little snow in 

MAMJ at 13% of the observed baseline (-0.07 million km2 decade-1), to 142% of observed (-

0.78 million km2 decade-1) (Table 5-1). As a demonstration that single model contributions to 

the CMIP5 archive may underestimate internal variability, CanESM2 is the model with the 
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greatest spring snow loss of any CMIP5 model from 1981-2010, yet we find that CanESM-

LE (the large ensemble produced using the same model) is much closer to the CMIP5 

average (Fig. 5-2).  

The variability in 30-year trends from the CMIP5 ensemble is equally large for 

March, April and May (standard deviation (σ) = 0.24 million km2 decade-1), and slightly 

lower in June (σ = 0.17). However, when we examine 10-year trends the spread widens 

dramatically for all spring months. For example, in May the simulated range (max-min) for 

decadal trends is more than seven times that for 30-year trends (-3.7 to 2.7 million km2 

decade-1; Fig. 5-S1). This highlights the larger contribution to the SCE trends from internal 

variability, compared to the forced response to GHG increases, over shorter time periods. 

This result is consistent with similar findings for temperature and precipitation trends 

(Hawkins and Sutton 2009; 2011). The following section will investigate possible factors 

contributing to the large inter-model spread within historical simulations from the current 

generation of climate models. 

5.4.2 Sources of Model Uncertainty: Historical Trends 

5.4.2.1 Sensitivity of SCE to Warming Trends 

First we evaluate how differences in warming could be affecting the simulated inter-model 

spread in SCE trends. Although a very important contributor (R2 = 0.74), differences in 

simulated warming do not explain all of the inter-model spread in spring SCE trends for the 

1981-2010 period. We use mean extratropical land warming rather than local warming 

because unnaturally high sensitivities can occur for some models in areas where the warming 
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trend is close to zero. The observed spring NH extratropical land warming trend over the 

1981-2010 period is 0.34 ± 0.04 K decade-1. On average, the CMIP5 models accurately 

capture spring warming over recent decades, with an ensemble mean of 0.36 ± 0.11 K 

decade-1 (Fig. 5-2). In contrast, the CanESM-LE has a greater mean warming trend (0.52 ± 

0.08 K decade-1), which overlaps with the CMIP5 warming trend but which falls outside the 

uncertainty range of the observed warming trend. The mean trend seen in the CanESM-LE 

ensemble reflects the majority of CMIP5 models (10/15) which simulate recent (1981-2010) 

spring warming that is greater than or equal to the warming found in observations.  

Despite realistically reproducing observed temperature trends, only two models 

produce more snow loss than the observation-based estimates. This suggests that snow in 

some models tends to be less sensitive to temperature variations than in observations. To 

quantify this property of the models, we compute a snowmelt sensitivity λsmelt = 

〈ΔSCE〉/〈ΔTs〉, which measures how much SCE is reduced per degree of warming, averaged 

over the NH land area (averaging is denoted by the angle brackets). Observed spring λsmelt 

during the spring months (MAMJ mean) is -1.62 ± 0.61 million km2 K-1, with the large 

uncertainty driven mainly by disagreement among the observed SCE trends (illustrated by 

the shaded rectangle in Fig. 5-2), which create a large spread among the 35 possible 

combinations of observed temperature (5 products) and SCE (7 products). This exceeds the 

estimate of λsmelt that is computed for both the CanESM-LE (-1.18 ± 0.15 million km2 K-1), 

and the CMIP5 ensemble (MM = -1.19 ± 0.31 million km2 K-1). The 68% confidence interval 

for the CMIP5 estimate of λsmelt overlaps that from observations, indicating that the two 
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Figure 5-2: Relationship between spring SCE trends and NH extratropical land warming for the CMIP5 models 

during the historical period (1981-2010). Each model is represented by a letter, corresponding to the 

information in Table 5-1. Filled circles represent the CMIP5 mean (blue), CanESM-LE mean (black), and the 

observation-based mean (red). Each member of the CanESM-LE is shown as a small black square. The shaded 

red rectangle illustrates the range of observation-based trends. Models that fall to the bottom left portion of the 

plot are most sensitive to warming. 

 

estimates of mean snowmelt sensitivity are not significantly different. However, similar to 

Brutel-Vuilmet et al. (2013) we find that the weaker-than-observed SCE trends from the 

CMIP5 ensemble are likely due in part to a weaker-than-observed snow response to 

warming.  
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5.4.2.2 Climatological Mean Snow Cover 

A secondary cause of the weaker-than-observed SCE trends in CMIP5 is biases in the 

simulated climatological (1981-2010 mean) snow cover (𝑆𝐶𝐸̅̅ ̅̅ ̅) for a given month. The ability 

to accurately represent present day snow cover is important for simulated SCE trends 

because of a positive correlation between snow extent and SAF strength (Levis et al. 2007). 

This relationship indicates that models with greater SCE produce stronger SAF for a given 

rise in temperature, because larger SCE implies a greater potential area over which albedo 

can be reduced from its snow-covered to its snow-free value. In the CMIP5 multi-model 

mean, nearly all land poleward of 45°N is at least 50% snow covered in March (Fig. 5-3a; 

MM 𝑆𝐶𝐸̅̅ ̅̅ ̅ of ~30.5 ± 3.5 million km2). However, there is a significant spread in March 

𝑆𝐶𝐸̅̅ ̅̅ ̅ within the CMIP5 ensemble: the model with the highest 𝑆𝐶𝐸̅̅ ̅̅ ̅ has 18% more snow-

covered area than the mean (red line Fig. 5-3a), while the model with the lowest 𝑆𝐶𝐸̅̅ ̅̅ ̅ has 

28% less snow cover than the mean (green line Fig. 5-3a). Much of the disparity between 

these models is found across western North America, western Eurasia, and the Tibetan 

Plateau (similarly for April; Fig. 5-3b). Comparatively, the observation-based estimates show 

𝑆𝐶𝐸̅̅ ̅̅ ̅ ranging from 30 to 36 million km2 in March, with a mean of approximately 32 million 

km2. Disparity between the minimum and maximum observation-based snow cover products 

is greatest over eastern Eurasia and western North America (Fig. 5-3a). Of note is the good 

agreement over western Eurasia, where both of the extreme observation-based estimates 

exceed or closely resemble the maximum model extent. This implies that the CMIP5 models 

may be systematically underestimating early spring snow cover in this region. 
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Figure 5-3: Spatial distribution of monthly mean historical (1981-2010) snow cover fraction (%) from the 

CMIP5 ensemble mean for (a) March (b) April (c) May and (d) June. Solid contours show the boundary of the 

region with >50 % SCF for the model with minimum (green line) and maximum (red line) SCE during each 

month. Dotted contours show the minimum (yellow) and maximum (orange) observation-based estimates of the 

region with >50 % SCF. The observational minimum does not appear in June because SCE is below 50 % 

everywhere. 

 

Late spring (May-June) snow cover resides primarily across the Arctic (>60°N), with 

much of the high-latitudes still more than 50% snow-covered during May (Fig. 5-3c). On 

average, the CMIP5 models simulate May 𝑆𝐶𝐸̅̅ ̅̅ ̅ of 11.8 ± 3.9 million km2, while the 

observation-based products range from 6.9 to 14.7 million km2, with a mean of 10.6 ± 2.6 
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million km2. In June any remaining snow cover is restricted to Siberia, Arctic Canada, and 

Alaska and is characterized by local snow cover fractions lower than 50% (CMIP5 mean 

𝑆𝐶𝐸̅̅ ̅̅ ̅ is 3.2 ± 2.0 million km2; Fig. 5-3d). Similar to the models, the observation-based 

estimates have a mean of 2.6 ± 1.9 million km2, and a large spread spanning from 0.5 

(GLDAS-2) to 5.9 million km2 (NOAA CDR). Note that differences between models in their 

𝑆𝐶𝐸̅̅ ̅̅ ̅ is likely the result of model uncertainty, rather than internal variability, as demonstrated 

by a very small range within the CanESM-LE (<1 million km2 for all spring months; not 

shown). 

Biases in June 𝑆𝐶𝐸̅̅ ̅̅ ̅ have the most significant impact on SCE trends of any month: 

those models with minimal SCE in June tend to show very weak SCE trends because in 

future there is so little snow left to melt. The models with low June 𝑆𝐶𝐸̅̅ ̅̅ ̅ (e.g., BCC-CSM1.1, 

CSIRO-Mk3.6, INMCM4, MPI-ESM-LR; Fig. 5-S2) exhibit a mean SCE trend of only -0.06 

million km2/decade (not shown), a factor of six weaker than the other CMIP5 models (-0.35 

million km2 decade-1; not shown). These same models with low June 𝑆𝐶𝐸̅̅ ̅̅ ̅ have previously 

been shown to have mean late spring near-surface air temperatures that are substantially 

warmer than the other CMIP5 models (Thackeray et al. 2015). Therefore, biases in 𝑆𝐶𝐸̅̅ ̅̅ ̅ can 

affect the SCE trend in seasons when SCE becomes limited (e.g., late spring). 

There is a slightly weaker correlation (r=0.43) between trends in 1981-2010 March 

SWM (used as a proxy for variability in winter snowfall) and MAMJ SCE trends within the 

CMIP5 ensemble (not shown). A moderately strong correlation also exists between March 

SWM trends and λsmelt (r=0.70). However, because SWM does not have the same sub-

seasonal importance as 𝑆𝐶𝐸̅̅ ̅̅ ̅ (there is a weak correlation with SCE trends for all months other 
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than March) it is not investigated further. Furthermore, although there are many other 

potential sources of model uncertainty in simulated SCE (e.g. model resolution, land surface 

scheme complexity, climatological temperature biases), we do not find any clear linkages 

between these parameters and spring SCE trends, so they are not discussed further. 

5.4.3 Projected Trends in Spring SCE 

To evaluate projections of future spring SCE, we use two model ensembles: the multi-model 

CMIP5 ensemble, and the CanESM-LE. As previously noted, the latter only contains (land-

atmosphere-ocean induced) spread due to internal variability, so it provides a useful 

benchmark to compare with the estimate of inter-model spread from CMIP5. It should be 

noted that CanESM-LE provides one model’s estimate of internal variability, which could 

vary for other CMIP5 models (e.g. Kay et al. 2015). First, we discuss the median projected 

change for the spring as a whole, followed by early (MA) and late spring (MJ). On average, 

the CMIP5 models project that spring SCE trends will strengthen during the 21st century 

relative to the recent past. The mean rate of spring snow loss over the 21st century (2011-

2100 trend) is approximately -3.7 ± 1.1% decade-1, 33% greater than in the period 1981-2010 

(Fig. 5-S3). Similarly, the CanESM-LE exhibits a strengthening of 41% (more negative) 

compared to its 1981-2010 trend. However, CanESM2 exhibits the strongest 1981-2010 

trend of the CMIP5 models (Table 5-1) so the median rate of 21st century spring snow loss 

from CanESM-LE is also larger (-4.3% decade-1). 

The CMIP5 models project that early spring (Mar-Apr) SCE trends will strengthen in 

the 21st century relative to the recent past (Figs. 5-4a,b). The mean SCE responses over the 

21st century (2011-2100 trend) from CMIP5 (-0.80 ± 0.23 million km2 decade-1) and 



 

 137 

 

Figure 5-4: Northern Hemisphere March (a) April (b) May (c) and June (d) SCE trends over the 21st century 

under the RCP8.5 emissions scenario for the CMIP5, CanESM-LE, and observation-based (OBS) ensembles. 

As for Figure 5-1, each box shows the 25th-75th percentile range, the horizontal line shows the ensemble median, 

and the diamond shows the ensemble mean. The dashed fences indicate the ensemble minimum and maximum. 

Trends are shown in millions of km2 per decade and split into four thirty-year climatological periods (1981-

2010, 2011-2040, 2041-2070, and 2071-2100). 

 

CanESM-LE (-1.02 ± 0.22 million km2 decade-1) are more than 65% stronger than their 

respective simulated rates for the period of 1981-2010. This is consistent with greater 

simulated rates of warming during the 21st century (not shown). Since these two ensembles 

have different mean 𝑆𝐶𝐸̅̅ ̅̅ ̅ (Table 5-3), we also calculate the ensemble mean percentage of  
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Table 5-3: Projected 21st century (2011-2100) mean SCE trends (area and percent) along with 1981-2010 mean 

climatological SCE for each spring month. Percent loss is calculated by dividing the absolute area trend by 

mean SCE. 

 

 

Projected Absolute  

Area Trend  

(106 km2 decade-1) 

Projected Percent 

Loss Trend  

(% decade-1) 

1981-2010 Mean SCE 

(106 km2) 

CMIP5 CanESM-LE CMIP5 
CanESM-

LE 
CMIP5 CanESM-LE 

March -0.80 ± 0.23 -0.96 ± 0.22 -2.6 ± 0.7 -2.8 ± 0.7 30.5 ± 3.6 33.9 ± 0.2 

April -0.80 ± 0.25 -1.08 ± 0.21 -3.6 ± 1.1 -3.9 ± 0.8 22.5 ± 4.0 27.4 ± 0.2 

May -0.64 ± 0.24 -1.10 ± 0.22 -5.5 ± 2.0 -6.5 ± 1.3 11.8 ± 3.9 16.9 ± 0.2 

June -0.26 ± 0.17 -0.35 ± 0.07 -8.1 ± 4.9 -8.7 ± 1.9 3.2 ± 2.0 4.0 ± 0.1 

 

snow loss over the 21st century to account for differences in the amount of snow cover 

available for melt: the CMIP5 models lose -3.0 ± 0.9% decade-1, while CanESM-LE loses 3.3 

± 0.7% decade-1. 

Within the CMIP5 ensemble, mean 21st century May SCE loss (2011-2100 trend) is 

projected to strengthen slightly (by ~25%) compared to the 1981-2010 trend. Trends in May 

also exhibit the greatest discrepancy between CMIP5 (-5.5 ± 2.0% decade-1) and CanESM-

LE (-6.5 ± 1.3% decade-1) (Fig. 5-4c). Unlike the other months, June SCE trends are 

projected to weaken over the course of the 21st century (Fig. 5-4d). A gradual weakening 

within CanESM-LE is tied to a significant reduction in the amount of snow area remaining 

for melt (mean SCE < 0.5 million km2 by 2071-2100). This same reasoning explains why the 

simulated June trends (even under the most aggressive GHG forcing scenario) of -8.1± 4.9% 

decade-1 from CMIP5 and -8.7± 1.9% decade-1 from CanESM-LE are weaker than observed 

in recent decades (-16% decade-1). In summary, rates of projected snow cover loss are 
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expected to increase for all spring months, with the exception of June, where a relatively 

small SCE remains in the latter half of the 21st century. 

Lastly, we consider the inter-model spread of land surface warming trends as a 

possible source of uncertainty for projected spring SCE trends within the CMIP5 ensemble. 

We estimate the uncertainty in the CMIP5 projections using the multi-model standard  

deviation (σ) (Hawkins and Sutton 2011), and we average σ over three different 30-year 

periods (2011-2040, 2041-2070, 2071-2100). This procedure yields uncertainties in SCE 

trends for March (σ = 0.28 million km2 decade-1), April (σ = 0.36 million km2 decade-1), May 

(σ = 0.34 million km2 decade-1) and June (σ = 0.18 million km2 decade-1). Taking the 

example of the relatively large uncertainty in April, we find a wide range of projected SCE 

trends for the 2011-2040 period, from a small gain in one model to a loss of -1.6 million km2 

decade-1 in another model (Fig. 5-S4). In this case, the model with the strongest (weakest) 

SCE loss also warms the most (least) over this period. Warming trends explain much of the 

inter-model spread in early spring SCE trends (R2 = 0.79; Fig. 5-5), whereas June SCE trends 

are heavily influenced by biases in 𝑆𝐶𝐸̅̅ ̅̅ ̅ (R2 = 0.93; Fig. 5-5). For the spring as a whole, 

variability in 21st century NH land warming explains ~80% of the inter-model spread in SCE 

trends. Therefore, reducing variability in simulated future warming should in turn reduce 

uncertainty in SCE trends (further discussed in Section 5.5). 

5.4.4 The Contribution of Internal Variability to Projected Trends in SCE 

Many of the CMIP5 models that project extremely strong or weak spring SCE trends 

contributed only a single realization in the CMIP5 archive, while considerably better 
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Figure 5-5: Bar plot showing the R2 for 21st century SCE trends (2011-2100) from CMIP5 predicted based on 

projected NH extratropical land warming trends (red) and climatological SCE (blue) as predictors for March, 

April, May, and June. MAMJ values are calculated from the average seasonal trends in SCE and temperature 

rather than as an average of R2 values. 

 

agreement in projected SCE trends exists among the set of four models that contributed n≥5 

realizations (particularly in early spring when warming trends dominate, not shown). This 

motivates an important question as to the role of internal variability in SCE trends; however, 

the majority of CMIP5 models completed fewer than five realizations, which is likely 

insufficient for estimating internal variability (Kay et al. 2015).  

The 50-realization CanESM-LE exhibits a smaller spread in MAMJ SCE trends 

throughout the 21st century than the CMIP5 ensemble (σ = 0.18 and 0.29 million km2 decade-

1, respectively, averaged over three epochs 2011-2040, 2041-2070, 2071-2100). Internal 

variability, as indicated by the shading for CanESM-LE in Fig. 5-6, is likely a very important 

contributor to the inter-model spread in the near-term (2011-2040), but the fraction of total  
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Figure 5-6: Percentage of climatological Northern Hemisphere SCE (1981-2010 mean) lost over the 21st century 

in CMIP5 and CanESM-LE for (a) early spring (b) late spring. Ensemble mean shown with ± 1 standard 

deviation shading. Note that the decreasing CanESM-LE variability in Fig. 5-6b is caused by June SCE falling 

closer to zero. 

 

variance within the CMIP5 ensemble attributable to internal variability decreases on longer 

timescales as a relatively larger fraction is explained by model uncertainty (Fig. 5-6). This 

same finding has also been shown for precipitation and temperature trends, where internal  

variability has a greater influence in the near-future than at the end of the century (Hawkins 

and Sutton 2009, 2011). 
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Lastly, to demonstrate the interplay between internal variability and model 

uncertainty, we can compare the results from CanESM-LE with the intra-ensemble spread for 

all CMIP5 models with n≥5 realizations available for the RCP8.5 experiment (CanESM2, 

CCSM4, CNRM-CM5, and CSIRO-Mk3.6.0). This subset of models, which we assume 

provides an improved estimate of model uncertainty isolated from internal variability, 

contains substantial variation, both in the inter-model SCE trends (n=4, σ: 0.22 million km2 

decade-1), and the inter-realization variability (n=26, min/max σ: 0.12/0.23 million km2 

decade-1). The inter-realization spread of trends for each model is thus of similar magnitude 

to the inter-model spread, making it plausible that a significant fraction of the inter-model 

spread is caused by internal variability. We find considerable similarities between this 

analysis and the work on trends in September Arctic sea-ice extent (SIE) by Swart et al. 

(2015). For example, there is a remarkable similarity in the contributions from internal 

variability and model uncertainty to projected trends of SIE and SCE (not shown). The 

conclusion for near-term projections is that the large contribution from internal variability 

presents a challenge to determining the physical cause of 30-year SCE trends.  

5.4.4.1 Case Study: May SCE Trends in CanESM-LE 

In the CanESM-LE, near-future (2011-2040) springtime (MAMJ) SCE trends range from -

0.26 to -1.08 million km2 decade-1, with the largest monthly spread occurring in May (-0.42 

to -1.49 million km2 decade-1). For May, this represents a more than doubling of the range 

exhibited by the five CanESM2 runs contributed to CMIP5 (-0.69 to -1.11 million km2 

decade-1). We will therefore use May as a case study for better understanding the primary 

physical factors contributing to the spread. 
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Figure 5-7: Relationship between May SCE trend anomalies within CanESM-LE and (a) May warming 

anomalies over NH extratropical land, (b) March snow water mass anomalies over NH extratropical land. Each 

realization is represented by four points, one for each of the climatological periods (color coded). Trend 

anomalies are calculated by removing the ensemble mean (forced component). The R2 for each time period is 

shown in the bottom corner (color coded). 

 

First, we examine the contribution from variations in trends of near-surface air 

temperature. Only a relatively small fraction (17%) of the inter-realization variability in 

CanESM-LE projected near-future May SCE trends is explained by annual mean global  
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Table 5-4: Correlation between May SCE trends (2011-2040) and global annual mean temperature, Northern 

Hemisphere extratropical land temperature, Arctic land temperature, and Northern Hemisphere March snow 

water mass within the CanESM large ensemble. 

 
Variable Time Period Correlation R-Squared 

Global annual temperature 2011-2040 -0.41 0.17 

NH May temperature 2011-2040 -0.67 0.45 

Arctic May temperature 2011-2040 -0.69 0.47 

NH March SWM 2011-2040 0.44 0.19 

 

surface warming (land + ocean), with r= -0.41 (Table 5-4) and the negative sign implying 

that enhanced global warming is associated with greater snow loss. However, nearly half of 

the inter-realization variability (45%) is explained when we restrict the analysis to include 

only contemporaneous (e.g., May) and local (e.g., NH extratropical land averaged) 

temperatures (Fig. 5-7a; r= -0.67). The majority of May snow cover resides across the Arctic 

(Fig. 5-3c), so one would expect an even stronger correlation with temperature there if local 

warming was the only contributor to differences in SCE trends. Yet, when we restrict the 

temperatures to the Arctic (>60°N) region, the relationship becomes only slightly stronger (r= 

-0.69). This demonstrates that differences in simulated warming cannot fully account for 

variability within CanESM-LE SCE trends, and so next we examine the roles for changes in 

precipitation and atmospheric circulation. 

Whereas in CMIP5 we find that June SCE trends are highly correlated with the 

intermodel spread in June climatological SCE (Fig. 5-5), the spread in climatological SCE in 

CanESM-LE is minimal (<1 million km2) for all spring months and there is no correlation 

with SCE trends (not shown). However, we do find a relationship in CanESM-LE between 

spring SCE trends and snow accumulation during the previous winter. We use March snow 
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water mass (SWM) as a proxy for simulated snowfall totals over the winter months, and find 

a weak positive correlation (r= 0.44 for 2011-2040; Table 5-4 (The R2 for other 

climatological periods are shown on Fig. 5-7b)) between 21st century trends in SWM and 

May SCE. To illustrate the importance of SWM for inter-realization differences in SCE 

trends, in Fig. 5-7 we compare May land warming, May SCE loss and March SWM loss over 

the NH extratropics for the period 2011-2040. Across the 50 realizations May land warming 

varies from 0.35 to 0.78 K decade-1, and the realization that warms the most (run 40) also 

produces the greatest SCE loss (Fig. 5-7a). However, the realization with the weakest SCE 

loss (run 1) is not the realization with the least warming (run 49). The reason is that a 

weaker-than-average decreasing trend in March SWM in run 1 contributes to a weaker-than-

average SCE trend (Fig. 5-7b). Positive SWM anomalies extend snow cover duration because 

greater melt energy is required to remove deeper snow. 

Lastly, we explore the role of local temperature and atmospheric circulation changes 

in explaining the inter-realization spread in CanESM-LE SCE trends. We compute local 

correlations between near-future May SCF trends and contemporaneous temperature and sea 

level pressure (SLP) changes. Trends in temperature and snow cover have a very strong 

negative association over most NH areas with substantial May snow cover (Fig. 5-8a). For 

SLP, the relationship with snow cover is of hemispheric spatial scale, with moderate 

correlations of either sign that project onto the North Atlantic Oscillation (NAO) pattern 

(Barnston and Livezey 1987) (Fig. 5-8b). Greater Eurasian snow loss is associated with an 

increased meridional pressure gradient across the North Atlantic typical of a positive NAO 

phase, bringing enhanced warm advection into Eurasia. In contrast, contributions to changes  
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Figure 5-8: (a) Local correlation between near-future (2011-2040) May snow cover fraction anomalies and 

near-surface air temperature anomalies from the CanESM-LE, (b) correlation between hemispheric (NH) mean 

May SCF anomalies and local May sea level pressure anomalies. Stippling indicates regions of statistical 

significance (p = 0.05). 

 

in western North American SCE largely stem from North Pacific SLP patterns. Figure 5-8b 

consequently represents a combination of several unique circulation patterns. This 

demonstrates that atmospheric circulation responses associated with internal variability exert 

an influence on near-term SCE trends over much of NH land. 

5.5 Discussion and Conclusions 

This study uses seven observation-based estimates of snow cover, five surface temperature 

datasets, and two climate model ensembles to characterize the uncertainty in simulations of 

NH spring snow cover extent. We find that weaker than observed historical (1981-2010) SCE 

trends from the CMIP5 ensemble can be partially explained by biases in climatological 

spring snow extent within these models. However, biases in simulated SCE trends during 



 

 147 

recent decades are much smaller than previously shown from studies that relied on a single 

observation-based reference dataset (Derksen and Brown 2012; Brutel-Vuilmet et al. 2013). 

These studies used the NOAA CDR because of its long time series (1967-present), which we 

find to have the strongest spring SCE trend of the seven observation-based estimates. SCE in 

some models appears to lack sensitivity to warming, but the ensemble means are not 

significantly different. 

Spring snow cover is projected to decrease by -3.7 ± 1.1% decade-1 within the CMIP5 

ensemble over the 21st century. This represents a strengthening of 33% relative to the rate 

simulated over recent decades (1981-2010). Projected snow cover loss is expected to increase 

for all spring months over the 21st century, with the exception of June (when nearly all 

remaining snow has melted by the latter half of the 21st century). For 30-year spring SCE 

trends over three time periods in the 21st century (2011-2040, 2041-2070, 2071-2100), we 

find that internal variability, as estimated from the CanESM initial condition ensemble 

(CanESM-LE; σ = 0.18 million km2 decade-1), is substantial, but smaller than the inter-model 

spread from CMIP5 (σ = 0.29 million km2 decade-1). In contrast, the spread in SCE trends 

from CanESM-LE and CMIP5 are very similar for the historical period (Fig. 5-1). The main 

physical drivers of inter-model differences in projected spring SCE trends are differences in 

simulated warming trends (R2 = 0.80) and biases in mean SCE, with the latter more 

important in late spring. In theory, a reduction in the variability of projected warming should 

lead to a decrease in the spread of spring SCE trends. Internal variability is a major 

contributor to inter-model spread (total variance) in the near-term, but the fraction of total 

variance attributable to internal variability decreases on longer timescales because of greater 
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model uncertainty. We find large internal variability in near-term (2011-2040) warming 

trends over NH extratropical land, which explains almost 50% of the variability in projected 

SCE trends, even in the presence of a strong forced trend from GHGs. Furthermore, internal  

variability in winter snowfall trends has a significant (but lesser) impact on SCE trends (R2= 

0.20). 

There are a number of ways to potentially reduce the uncertainty in projections of NH 

SCE. The first involves increasing the number of realizations from each model as a part of 

future modeling efforts. Following the approach of Deser et al. (2012b), we calculate the 

minimum number of realizations (Nmin) required to detect the near-future forced May SCF 

trend at the 5% significance level, given by Nmin = 8 / (X/σ)2, where X is the ensemble mean 

trend, and σ is the standard deviation of the 50 trends. Regions with stronger snow responses 

generally need between 3-10 realizations to detect a significant trend, whereas areas with 

weaker responses (eastern Siberia, Arctic Canada; Fig. 5-9a) require upwards of 50 

realizations (Fig. 5-9b). The implication here is not that hundreds of realizations are 

necessary, but that over some regions the near-term forced response is so weak that it cannot 

be captured. However, a majority of the models contributing to CMIP5 provided fewer than 

three realizations for RCP8.5.  

Secondly, there is a very strong relationship between projected spring SCE trends and 

warming trends (R2 = 0.80). However, under RCP8.5 the CMIP5 models exhibit a rather 

large spread in 21st century spring warming (0.39 to 0.95 K decade-1). Therefore, a reduction 

in the uncertainty of the forced component of projected warming could lead to a decrease in 

the spread for spring SCE trends (the component due to internal variability is essentially  
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Figure 5-9: (a) Near-future (2011-2040) CanESM-LE ensemble mean May SCF trend. (b) Minimum number of 

realizations needed to detect a significant trend response in near-future May SCF. 

 

random, and therefore unconstrained). Previous research has shown that 40-50% of the 

spread in CMIP5 21st century spring warming over NH extratropical land can be explained 

by variability in simulated snow albedo feedback (SAF) (Qu and Hall 2014). Furthermore, 

Thackeray and Fletcher (2016) demonstrated that selecting only models with SAF closest to 

observed estimates reduces the spread in CMIP5 21st century NH land warming by ~40%. 

Therefore, model development focused on alleviating process-level biases—particularly 

those related to SAF— could help to reduce model uncertainty in future projections of 

warming and snow cover. 
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Supplementary Figures 

 

Figure 5-S1: Distribution of all 10-year May SCE trends during the historical period (1981-2010) for 

observations, CMIP5, and CanESM-LE. 
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Figure 5-S2: CMIP5 historical (1981-2010) snow cover extent bias relative to the average of seven observation-

based estimates for the Northern Hemisphere extratropics during March, April, May, and June. Letters 

correspond to individual models, as shown by Table 5-1. 
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Figure 5-S3: Northern Hemisphere spring (MAMJ) SCE trends over the 21st century under the RCP8.5 

emissions scenario amongst three ensembles: CMIP5 (blue), CanESM-LE (black), and observation-based (red). 

As for Figure 5-4, the enclosed region shows the 25th-75th percentile range, the horizontal line shows the 

median, and the diamond shows the ensemble mean. The dashed fences indicate the minimum and maximum. 
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Figure 5-S4: Near-term (2011-2040) trends in April snow cover fraction (% decade-1) from the CMIP5 models. 

Letters correspond to the model list in Table 5-1. The NH mean SCE trend is shown in the top right of each 

panel (units: million km2 decade-1). 
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Chapter 6 

       Conclusions 

6.1 Summary 

The overall aim of this research was to improve knowledge of terrestrial snow processes 

influencing climate through changes in albedo. This was primarily achieved through the 

critical evaluation of simulated snow cover (seasonality and trends) and snow-covered 

surface albedo (seasonality) in comparison with a collection of observation-based estimates. 

By highlighting deficiencies in climate model simulations of snow, we are helping to guide 

areas of future model development. As it pertains to snow-covered surface albedo this may 

involve improving parameterizations of canopy snow, vegetation characteristics (tree cover 

fraction, LAI), or subgrid-scale features (i.e., lake fraction). This is an important step towards 

reducing uncertainty in projections of land temperature and snow cover because of the strong 

coupling exhibited between simulated snow albedo and SAF (80%; Qu and Hall, 2007), SAF 

and projected land warming (40-50%; Qu and Hall, 2014), and land warming and spring 

snow cover (~80%; Thackeray et al., 2016). Therefore, future work to correct process-level 

biases related to SAF (i.e., as pointed out in Chapters three and five) should reduce the 

intermodel spread associated with projections of NH land temperature and snow cover. When 

viewed collectively with Thackeray et al. (2014), this research forms a body of literature that 

spans the identification of a source of model bias (canopy snow influencing boreal albedo), 

its discovery in other models (substantial boreal albedo biases in seasonal timing and 

magnitude), and the determination of climate impacts associated with it. 
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In Section 1.3, there were a few research questions that throughout the course of this 

dissertation have been considered. First, we sought to determine the current state of 

knowledge regarding snow albedo feedback. Chapter 2 contains a synthesis that covers four 

main topics: the importance of SAF to regional and global climate, estimates of SAF from 

various observational and model sources, factors contributing to a sizeable spread in SAF, 

and outstanding issues related to our knowledge of SAF. The literature agrees that although 

SAF is relatively weak in the global context, it plays a key role in regional climate across 

much of the Northern Hemisphere extratropics. Observed SAF strength is shown to vary 

slightly depending on a variety of methodological choices (dataset, time frame, location), but 

in general, its strength is characterized by a 1% reduction in albedo per degree of warming 

(Table 2-1). Although the multi-model mean can accurately capture this feature, there is a 

large intermodel spread that arises because of differences in model parameterizations 

(primarily tied to variability in snow albedo; Section 2.5). Several factors still limit our 

understanding of SAF, principally related to the availability of reliable observational 

measurements and the coarse nature of global climate models (Section 6.2). To combat the 

latter, several new studies have used regional climate simulations to better simulate snow 

cover, and in turn, SAF in areas of complex terrain (Minder et al., 2016; Walton et al., 2017). 

Second, we expanded the analysis of Thackeray et al., (2014) to find out if issues with 

canopy snow influencing albedo were prevalent in the current generation of climate models. 

In doing so, we were also interested in quantifying the ability of models to simulate seasonal 

snow cover and surface albedo. Generally speaking, models were found to better simulate the 

seasonal cycle of snow cover than albedo. Biases in albedo were primarily related to the 
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magnitude and timing of peak snow-covered surface albedo rather than the possible 

misrepresentation of snow cover. Figure 3-6a showed that the previously identified albedo 

timing issues did not exist to the same extent as in CCSM4, but many models still precede 

the observed melt timing. The more pressing issue within the CMIP5 ensemble is related to 

the magnitude of peak snow-covered surface albedo over the boreal forest region as this is 

dramatically overestimated by several models. An important contribution from this research 

is a skill metric that detects model performance related to the seasonality of snow and albedo 

changes (important factors in SAF strength). This tool has already been used to track model 

improvements related to the development of a new canopy hydrology scheme in version five 

of the Community Land Model (not shown; J. Perket, personal communication). 

Chapter 4 carried on from the findings presented in Chapter 3 in an effort to quantify 

the impact of simulated snow-covered surface albedo biases on climate. This involved the 

production of a series of novel climate simulations using the Community Earth System 

Model (CESM). We found that correcting the albedo in CESM (removing biases) pushes the 

model further away from observed temperature (implying the presence of other biases), with 

robust cooling during winter and spring. It also induced a pattern reversal of climatological 

biases in winter sea level pressure, partially correcting the model’s tendency towards a 

positive Arctic Oscillation. Furthermore, biases across the boreal region were found to be 

influential for both local and remote climate features. CMIP5 models with large albedo 

magnitude biases (i.e. MIROC5) are vulnerable to even greater climate impacts than CESM. 

We find that using the albedo from models at opposite ends of the CMIP spectrum (low vs. 

high albedo) creates a 4-5 K swing in spring seasonal mean air surface temperature over the 
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NH extratropics. For perspective, that resembles the spread in projected 21st century (2080-

2099 minus 2006-2025) NH extratropical warming from the CMIP5 models (4.3 K) 

discussed in Section 2.6.2. 

Lastly, Chapter 5 sought to evaluate trends in simulated spring snow cover against an 

observation-based ensemble, and determine the factors controlling the large intermodel 

spread. Results showed that the models underestimated the observed historical trend, 

however, biases were much smaller than identified by previous studies (Derksen and Brown, 

2012; Brutel-Vuilmet et al., 2013). In the near-future, internal variability was estimated to be 

substantial, but smaller than the intermodel spread from CMIP5. Internal variability in spring 

land warming and winter precipitation trends were shown to affect SCE trends on shorter 

timescales. Additionally, intermodel spread was largely driven by simulated warming trends, 

and the amount of snow remaining in late-spring.  

Necessary steps for reducing uncertainty in projections of snow cover were also 

proposed here. First, we suggested to increase the number of realizations produced by each 

model in future modeling efforts. Because of internal variability, several simulations are 

needed to generate a confident projection of snow cover. Using the approach of Deser et al., 

(2012b) we found that where snow responses were strong, between 3-10 realizations were 

needed to detect a significant trend. This is noteworthy because most of the models 

contributing to the last CMIP provided less than three realizations for future scenarios. 

Second, it was suggested that the tight relationship between projected spring SCE trends and 

simulated warming (R2 = 0.80) could be exploited, meaning that by reducing the spread in 

projected spring land warming (0.39 to 0.95 K decade-1), reductions in projected SCE 
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uncertainty would follow. As previously mentioned, much of this warming spread can be 

explained by variability in snow albedo feedback (Qu and Hall, 2014). Therefore, correcting 

process-level biases related to SAF could help reduce intermodel spread in projections of 

temperature and snow cover. 

6.2 Limitations 

In the evaluation of climate models, there are many limiting factors at play. Quality long-

term observational datasets are necessary for comparisons with model output, but there can 

be substantial uncertainty associated with them. At the point scale, records of snow for 

instance are sparse over much of the high-latitudes and have consistency issues associated 

with them. Snow monitoring at meteorological stations is susceptible to changes in both 

methodology or location over long time periods (Kunkel et al., 2007). Data quality issues are 

compounded when global coverage is needed, as most observation-based datasets on this 

scale have been shown to contain considerable uncertainty (Anisimov et al., 2007; Decker et 

al., 2012). For example, satellite-derived estimates of SWE have global coverage, but tend to 

be biased low in mountainous and densely vegetated regions (Hall et al., 2001; Takala et al., 

2011). Monitoring of snow cover from satellites is largely done via visible sensors, but their 

effectiveness is often restricted by cloud cover, which can be persistent during boreal winter 

(Foster et al., 2005; Hall et al., 2010). When it comes to albedo, our high-latitude study area 

also introduces uncertainty because of large solar zenith angles during winter (Schaaf et al., 

2002). Furthermore, a lack of observational data for some quantities often prevents a ‘like for 

like’ comparison. For example, in an ideal setting we would examine simulated canopy snow 
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against surface measurements of this property. However, we must adapt and instead use 

observed snow cover and albedo data as proxies for canopy snow presence.   

To comprehensively evaluate the melt period, we would ideally want daily 

observational measurements. However, because of data quality issues that plague daily 

retrievals of albedo (i.e. more missing data), we tend to average the data over longer temporal 

periods. Similarly, our analysis is restricted by the length of records available from 

observation-based products. For example, the evaluation of historical SCE trends from 

models was limited to the 1981-2010 period (Chapter 5). This is because some products 

within the observational ensemble had not been continued or updated to present (Mudryk et 

al., 2017). All of these factors act to limit our confidence in the comparisons that we make 

between observations and models. 

The modeling experiments performed here (Chapter 4) also involve several 

limitations. First, because of the inherent computationally expensive nature of climate 

models, the length and number of simulations that we can generate is somewhat constrained. 

We are also limited to using a single GCM to run all experiments because most models are 

not publicly available. This is an issue because the relationship between albedo and climate 

likely differs in every model. Lastly, the lack of reliable daily surface albedo measurements 

means that we must use monthly data for all experiments needing observed albedo. This 

creates an albedo that evolves in a smoother nature (linear interpolation from one monthly 

value to the next at each grid cell) than what would occur naturally. However, because the 

monthly mean radiation remains the same it shouldn’t have an impact on long-term climate. 
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6.3 Future work 

Several interesting questions have arisen following the findings of this work, providing great 

potential for future research. There are also several ongoing and planned modeling efforts, 

which bring a whole host of new opportunities to examine modeling of the cryosphere. The 

next generation of climate models will take part in phase 6 of the Coupled Model 

Intercomparison Project (CMIP6; Eyring et al., 2016), with early results from these models 

expected in the coming year. Two of the main World Climate Research Programme Grand 

Science Challenges (GCs) that are a focus of CMIP6 pertain to snow, including: evaluating 

the impact of warming on the cryosphere and its global consequences, and improving 

knowledge of factors driving water availability (Eyring et al., 2016). One project that is 

particularly relevant to this thesis is the Earth System Model-Snow Model Intercomparison 

Project (ESM-SnowMIP; http://www.climate-cryosphere.org/activities/targeted/esm-

snowmip). The goal of ESM-SnowMIP is to improve the representation of snow in ESMs, 

conduct systematic model evaluation studies, and advance knowledge regarding the role of 

snow in the global climate system. The modeling framework laid out in Section 4.3.3 allows 

for similar prescribed observation experiments to be run as a part of this initiative. Planned 

experiments include prescribing observational snow cover, and prescribing snow albedo 

(rather than surface albedo), which leaves the models susceptible to simulated snow cover 

and vegetation masking parameterizations. 

 The interactions between snow albedo feedback and vegetation may have added 

complexity in CMIP6, as many models will incorporate dynamic vegetation. It is known that 

the boreal forest region is historically sensitive to climate change (Fischlin et al., 2007; 
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MacDonald et al., 2008). Future warming is projected to bring with it the northward 

expansion of the Arctic treeline (i.e., Chapin et al., 2005), although the relationship between 

global warming and vegetation changes is spatially complex (Bonan, 2008). This is likely to 

result in major intermodel differences in vegetation characteristics by the late 21st century. 

Because of the ability for forests to mask highly reflective snow cover, the expansion of the 

treeline into the tundra is likely to cause local warming through large reductions in surface 

albedo. Therefore, differences in simulated vegetation could have a major impact on 

projections of temperature, snow cover, and the role that SAF plays in future climate.  

 The research conducted in Chapter 4 involved the creation of several novel climate 

simulations, collectively spanning over 100 years. There are aspects of these simulations that 

have not been studied in great detail (i.e. clouds, subtropical regions), which could be of 

interest for future research. Additionally, new sensitivity experiments could be performed in 

a timely manner now that a methodology has been assembled. For example, to determine 

how the cryosphere and hydroclimate will respond to projected radiative forcing we could 

prescribe simulated albedo from the end of the 21st century.  

The creation of model benchmarking metrics is a highly valuable contribution to the 

modeling community. Further work could be put into improving the snow albedo metric 

defined in Chapter 3 as a step towards its possible inclusion in the International Land Model 

Benchmarking Project (ILAMB; https://www.ilamb.org/). This could include incorporating 

other observational datasets (i.e., CERES albedo) or relevant variables (i.e., snow water 

equivalent). The latest version of the multi-sourced albedo dataset developed in this chapter 

(OBSblend) is being used to test development runs from CLM5 (J. Perket, personal 
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communication). Both the extension (longer time series) and expansion (more products) of 

this dataset would be valuable contributions.  

 Lastly, the continued advance of computing capabilities opens many possibilities for 

improved-resolution analysis of snow processes. In the past year, several studies have started 

to examine the representation of snow-climate interactions in high-resolution (or regional) 

climate model simulations (Minder et al., 2016; Walton et al., 2017; Berg and Hall, 2017). 

This is promising because snow in mountainous regions is a key water storage source, but the 

coarse resolution of current global models leads to a poor representation of topography, and 

in turn, snowfall in these areas. There are a couple of new and planned simulations that could 

be investigated for this purpose, including a large ensemble from the Canadian Regional 

Climate Model (Scinocca et al., 2016; Fyfe et al., 2017), and simulations of CESM with a 

nested high-resolution grid (1/8° resolution) over the western United States domain (D. 

Lawrence, personal communication). Therefore, there is great potential for further advancing 

our understanding snow-climate interactions in the coming years.   
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or the Rightsholder in connection therewith. 

4. Indemnity. User hereby indemnifies and agrees to defend the Rightsholder and CCC, and 

their respective employees and directors, against all claims, liability, damages, costs and 

expenses, including legal fees and expenses, arising out of any use of a Work beyond the 

scope of the rights granted herein, or any use of a Work which has been altered in any 

unauthorized way by User, including claims of defamation or infringement of rights of 

copyright, publicity, privacy or other tangible or intangible property. 

5. Limitation of Liability. UNDER NO CIRCUMSTANCES WILL CCC OR THE 

RIGHTSHOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL 

OR INCIDENTAL DAMAGES (INCLUDING WITHOUT LIMITATION DAMAGES 

FOR LOSS OF BUSINESS PROFITS OR INFORMATION, OR FOR BUSINESS 

INTERRUPTION) ARISING OUT OF THE USE OR INABILITY TO USE A WORK, 

EVEN IF ONE OF THEM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH 

DAMAGES. In any event, the total liability of the Rightsholder and CCC (including their 

respective employees and directors) shall not exceed the total amount actually paid by User 

for this license. User assumes full liability for the actions and omissions of its principals, 

employees, agents, affiliates, successors and assigns. 

6. Limited Warranties. THE WORK(S) AND RIGHT(S) ARE PROVIDED “AS IS”. CCC 

HAS THE RIGHT TO GRANT TO USER THE RIGHTS GRANTED IN THE ORDER 

CONFIRMATION DOCUMENT. CCC AND THE RIGHTSHOLDER DISCLAIM ALL 

OTHER WARRANTIES RELATING TO THE WORK(S) AND RIGHT(S), EITHER 

EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED 

WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR 

PURPOSE. ADDITIONAL RIGHTS MAY BE REQUIRED TO USE ILLUSTRATIONS, 

GRAPHS, PHOTOGRAPHS, ABSTRACTS, INSERTS OR OTHER PORTIONS OF THE 

WORK (AS OPPOSED TO THE ENTIRE WORK) IN A MANNER CONTEMPLATED 

BY USER; USER UNDERSTANDS AND AGREES THAT NEITHER CCC NOR THE 

RIGHTSHOLDER MAY HAVE SUCH ADDITIONAL RIGHTS TO GRANT. 
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7. Effect of Breach. Any failure by User to pay any amount when due, or any use by User of 

a Work beyond the scope of the license set forth in the Order Confirmation and/or these 

terms and conditions, shall be a material breach of the license created by the Order 

Confirmation and these terms and conditions. Any breach not cured within 30 days of 

written notice thereof shall result in immediate termination of such license without further 

notice. Any unauthorized (but licensable) use of a Work that is terminated immediately 

upon notice thereof may be liquidated by payment of the Rightsholder's ordinary license 

price therefor; any unauthorized (and unlicensable) use that is not terminated immediately 

for any reason (including, for example, because materials containing the Work cannot 

reasonably be recalled) will be subject to all remedies available at law or in equity, but in no 

event to a payment of less than three times the Rightsholder's ordinary license price for the 

most closely analogous licensable use plus Rightsholder's and/or CCC's costs and expenses 

incurred in collecting such payment. 

8. Miscellaneous. 

8.1 User acknowledges that CCC may, from time to time, make changes or additions to the 

Service or to these terms and conditions, and CCC reserves the right to send notice to the 

User by electronic mail or otherwise for the purposes of notifying User of such changes or 

additions; provided that any such changes or additions shall not apply to permissions 

already secured and paid for. 

8.2 Use of User-related information collected through the Service is governed by CCC’s 

privacy policy, available online 

here:http://www.copyright.com/content/cc3/en/tools/footer/privacypolicy.html. 

8.3 The licensing transaction described in the Order Confirmation is personal to User. 

Therefore, User may not assign or transfer to any other person (whether a natural person or 

an organization of any kind) the license created by the Order Confirmation and these terms 

and conditions or any rights granted hereunder; provided, however, that User may assign 

such license in its entirety on written notice to CCC in the event of a transfer of all or 

substantially all of User’s rights in the new material which includes the Work(s) licensed 

under this Service. 

8.4 No amendment or waiver of any terms is binding unless set forth in writing and signed 

by the parties. The Rightsholder and CCC hereby object to any terms contained in any 

writing prepared by the User or its principals, employees, agents or affiliates and purporting 

to govern or otherwise relate to the licensing transaction described in the Order 

Confirmation, which terms are in any way inconsistent with any terms set forth in the Order 

Confirmation and/or in these terms and conditions or CCC's standard operating procedures, 

whether such writing is prepared prior to, simultaneously with or subsequent to the Order 

Confirmation, and whether such writing appears on a copy of the Order Confirmation or in 

a separate instrument. 

8.5 The licensing transaction described in the Order Confirmation document shall be 

governed by and construed under the law of the State of New York, USA, without regard to 

the principles thereof of conflicts of law. Any case, controversy, suit, action, or proceeding 

arising out of, in connection with, or related to such licensing transaction shall be brought, 

at CCC's sole discretion, in any federal or state court located in the County of New York, 

javascript:void(0)
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State of New York, USA, or in any federal or state court whose geographical jurisdiction 

covers the location of the Rightsholder set forth in the Order Confirmation. The parties 

expressly submit to the personal jurisdiction and venue of each such federal or state court.If 

you have any comments or questions about the Service or Copyright Clearance Center, 

please contact us at 978-750-8400 or send an e-mail to info@copyright.com. 

v 1.1 

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or 
+1-978-646-2777.  
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