
Time-Aware Dynamic Binary
Instrumentation

by

Pansy Arafa

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2017

c© Pansy Arafa 2017

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner Sathish Gopalakrishnan
Associate Professor, University of British Columbia,
Electrical and Computer Engineering Department

Supervisor Sebastian Fischmeister
Associate Professor, University of Waterloo,
Electrical and Computer Engineering Department

Internal Member Hiren Patel
Associate Professor, University of Waterloo,
Electrical and Computer Engineering Department

Internal Member Werner Dietl
Assistant Professor, University of Waterloo,
Electrical and Computer Engineering Department

Internal-external Member William Cowan
Associate Professor, University of Waterloo,
David R. Cheriton School of Computer Science

ii

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contribution

In what follows is a list of publications which I have co-authored and used their content
in this dissertation. For each publication, I present a list of my contributions.

The use of the content, from the listed publications, in this dissertation has been
approved by all co-authors.

Dynamic Instrumentation Work:

1. Pansy Arafa, Hany Kashif, and Sebastian Fischmeister. Dime: Time-aware Dy-
namic Binary Instrumentation Using Rate-based Resource Allocation. In Proceedings
of the 13th International Conference on Embedded Software (EMSOFT), Montreal,
Canada, September 2013 [17].

– Co-designed DIME;

– Developed the three implementations of DIME;

– Analyzed the experimental results;

– Co-conducted the case studies;

– Wrote portions of the paper.

2. Pansy Arafa, Hany Kashif, and Sebastian Fischmeister. Time-aware Dynamic Bi-
nary Instrumentation (Journal Version). Under Submission.

– Co-designed and implemented the redundancy-suppression feature;

– Analyzed the experimental results;

– Conducted the case studies;

– Designed and conducted the parameter tuning experiments;

– Analyzed the parameter tuning results;

– Wrote the majority of the paper.

3. Pansy Arafa, Guy Martin Tchamgoue, Hany Kashif, and Sebastian Fischmeister.
QDIME: QoS-aware Dynamic Binary Instrumentation. In Proceedings of the 25th

International Symposium on the Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS), Banff, Canada, September 2017 [19].

– Co-designed and implemented Qdime;

iv

– Co-designed and conducted the case studies;

– Analyzed the results;

– Wrote portions of the paper.

Preliminary Work:

4. Pansy Arafa, Daniel Solomon, Samaneh Navabpour, Sebastian Fischmeister. De-
bugging Behaviour of Embedded-Software Developers: An Exploratory Study. In Pro-
ceedings of the Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), Raleigh, USA, October 2017 [18].

– Coded the study videos with the co-authors;

– Analyzed the experimental results;

– Wrote the paper.

5. Hany Kashif, Pansy Arafa, and Sebastian Fischmeister. INSTEP: A Static Instru-
mentation Framework for Preserving Extra-functional Properties. In Proceedings of
the 19th International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), Taipei, Taiwan, August 2013 [55].

– Contributed to the design of INSTEP;

– Executed static analysis and WCET analysis of the benchmarks;

– Wrote portions of the paper.

6. Joachim Denil, Hany Kashif, Pansy Arafa, Hans Vangheluwe, and Sebastian Fis-
chmeister. Instrumentation and Preservation of Extra-functional Properties of Simulink
Models. In Proceedings of the Symposium on Theory of Modeling and Simulation -
DEVS Integrative M&S Symposium, Alexandria, USA, April 2015 [32].

– Co-designed the instrumentation framework;

– Wrote a portion of the paper.

v

Abstract

The complexity of modern software systems has been rapidly increasing. Program
debugging and testing are essential to ensure the correctness of such systems. Program
analysis is critical for understanding system’s behavior and analyzing performance. Many
program analysis tools use instrumentation to extract required information at run time.
Instrumentation naturally alters a program’s timing properties and causes perturbation
to the program under analysis. Soft real-time systems must fulfill timing constraints.
Missing deadlines in a soft real-time system causes performance degradation. Thus, time-
sensitive systems require specialized program analysis tools. Time-aware instrumentation
preserves the logical correctness of a program and respects its timing constraints. Current
approaches for time-aware instrumentation rely on static source-code instrumentation tech-
niques. While these approaches are sound and effective, the need for running worst-case
execution time (WCET) analysis pre- and post-instrumentation reduces the applicability
to only hard real-time systems where WCET analysis is common. They become imprac-
tical beyond microcontroller code for instrumenting large programs along with all their
library dependencies.

In this thesis, we introduce theory, method, and tools for time-aware dynamic instru-
mentation realized in DIME tool. DIME is a time-aware dynamic binary instrumentation
framework that adds an adjustable bound on the timing overhead to the program under
analysis. DIME also attempts to increase instrumentation coverage by ignoring redundant
tracing information. We study parameter tuning of DIME to minimize runtime overhead
and maximize instrumentation coverage. Finally, we propose a method and a tool to in-
strument software systems with quality of service (QoS) requirements. In this case, DIME
collects QoS feedback from the system under analysis to respect user-defined performance
constraints. As a tool for instrumenting soft real-time applications, DIME is practical,
scalable, and supports multi-threaded applications. We present several case studies of
DIME instrumenting large and complex applications such as web servers, media players,
control applications, and database management systems. DIME limits the instrumentation
overhead of dynamic instrumentation while achieving a high instrumentation coverage.

vi

Acknowledgements

First and foremost, I am grateful to God for bestowing upon me the strength and the
knowledge to complete the research work for this thesis.

I am deeply thankful to my supervisor Professor Sebastian Fischmeister, for the oppor-
tunities, the guidance, and the continuous support. His advice and consideration assisted
me to acquire invaluable skills and find my passion. I would also like to thank my com-
mittee members: Professor William Cowan, Professor Hiren Patel, Professor Werner Dietl,
and Professor Satish Gopalakrishnan for taking the time and the effort to participate in
my examination committee and provide me with valuable feedback.

No words can describe my gratitude to my parents, Sahar and Mohammad. I would
not have been here without their sacrifices, kindness, and unlimited support. I thank my
mother for always being my closest friend and my role model. Her words and prayers
lighten up my days. Thanks to my father for being my backbone in this life. I would like
to thank my brother Ahmed and his family whom I miss every day. Also, thanks to my
brother Mostafa who always makes me proud. Huge thanks to my lifetime friends for their
words of support and encouragement.

Thanks to my little son, Adham; his innocent smiles cheer up my days, and his hugs
give me all the strength of the world. Last, but not least, I would like to express my endless
gratitude to my husband, Hany. Thanks for pushing me to chase my dreams. Thanks for
being the most loving and understanding husband. Thanks for everything beautiful we
have together.

vii

Dedication

To my beloved husband, Hany.
To my dear son, Adham.

To my parents, Sahar & Mohammad.
To my siblings, Ahmed & Mostafa.

viii

Table of Contents

List of Tables xiii

List of Figures xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Real-time Systems . 3

1.3 Program Analysis . 3

1.4 Time-aware Instrumentation . 5

1.5 Pin Framework . 5

1.6 Rate-based Resource Allocation . 8

1.7 Goals and Contributions . 8

1.8 Organization . 9

2 Related Work 10

2.1 Static Instrumentation Frameworks . 10

2.2 Dynamic Instrumentation Frameworks . 10

2.3 Pin-based DBI Frameworks . 11

2.4 Static Time-aware Instrumentation . 13

2.5 Program Sampling . 14

ix

3 DIME: Time-Aware Dynamic Binary Instrumentation 16

3.1 Overview of DIME . 16

3.2 Implementation Using Pin . 18

3.2.1 Trace Version . 21

3.2.2 Strict Trace Version . 23

3.2.3 Trace Conditional . 25

3.2.4 Qualitative Comparison . 26

3.3 Performance Evaluation . 27

3.3.1 Experimental Setup . 28

3.3.2 Experimental Results . 29

3.4 Case Studies . 32

3.4.1 VLC Media Player . 32

3.4.2 Laser Beam Stabilization . 33

3.5 Summary . 35

4 Redundancy Suppression in DIME 36

4.1 Overview . 36

4.2 Granularity of Logged Code Regions . 38

4.3 Efficient Log Search . 38

4.3.1 Hash-Table Log . 39

4.3.2 BST Log . 39

4.3.3 Merger-BST Log . 40

4.4 Evaluation of the Log Search Approaches 41

4.5 Performance Evaluation . 46

4.5.1 Experimental Setup . 47

4.5.2 Experimental Results . 47

4.6 Case Studies . 49

4.6.1 VLC Media Player . 49

4.6.2 PostgreSQL . 50

4.7 Summary . 51

x

5 Parameter Tuning of DIME 52

5.1 Overview . 52

5.2 Methodology and Experimental Design . 52

5.2.1 Hypotheses . 53

5.2.2 Experimental Factors . 55

5.2.3 Benchmark Sets . 57

5.2.4 Factorial Design . 58

5.3 Experimental Results . 59

5.3.1 ANOVA Test Results . 60

5.3.2 Discussion . 66

5.4 Guidelines and Limitations . 68

5.5 Summary . 71

6 QoS-Aware Dynamic Binary Instrumentation 72

6.1 Motivation . 72

6.2 Overview of Qdime . 73

6.3 Design Architecture . 75

6.4 Budget Function . 75

6.5 Implementation . 77

6.6 Performance Evaluation . 79

6.6.1 Experimental Setup . 79

6.6.2 Benchmark Applications . 80

6.6.3 Experimental Results . 82

6.7 Summary . 89

7 Conclusion and Future Work 90

References 92

xi

APPENDICES 102

A Parameter Tuning Experiments: Detailed Results 103

xii

List of Tables

3.1 Qualitative comparison of the three implementations of DIME. 27

3.2 Results for the VLC case study. 33

3.3 Results for the LBS case study. 34

4.1 Results for the VLC case study (redundancy suppression) 50

4.2 Results for the PostgreSQL case study (redundancy suppression) 51

5.1 CPU intensive: list of SPEC C benchmark programs 58

5.2 I/O intensive: list of IOzone benchmark programs 59

5.3 Memory intensive: list of Stress-ng benchmark programs 59

6.1 Summary of Qdime experimental results 88

6.2 Maximum Qdime threshold values with respective unique coverage 88

A.1 ANOVA table: slow-down factors of SPEC benchmark 104

A.2 ANOVA table: slow-down factors of IOzone benchmark 104

A.3 ANOVA table: slow-down factors of Stress-ng benchmark 105

A.4 ANOVA table: unique coverage of SPEC benchmark 105

A.5 ANOVA table: unique coverage of IOzone benchmark 105

A.6 ANOVA table: unique coverage of Stress-ng benchmark 106

A.7 ANOVA table: raw coverage of SPEC benchmark 106

A.8 ANOVA table: raw coverage of IOzone benchmark 106

A.9 ANOVA table: raw coverage of Stress-ng benchmark 107

xiii

List of Figures

3.1 State-machine for DIME’s operation. 17

3.2 Rate-based DBI. 17

3.3 Slow-down factors of native Pin and the three implementations of DIME. . 30

3.4 Overshoots of the three implementations of DIME with the mcf benchmark
and dcache tool. 31

4.1 Instrumentation coverage of the redundancy suppression approaches 43

4.2 False-positives ratio and false-negatives ratio of the redundancy suppression
approaches . 45

4.3 Slow-down factors of native Pin and the redundancy suppression approaches
of DIME . 46

4.4 Overshoots of the redundancy suppression approaches in the first run with
the mcf benchmark. 47

4.5 Instrumentation coverage of DIME with redundancy suppression 48

4.6 Slow-down factors of native Pin, and DIME with redundancy suppression . 49

5.1 SPEC slow-down factors . 61

5.2 IOzone slow-down factors . 61

5.3 Stress-ng slow-down factors . 62

5.4 SPEC unique instrumentation coverage . 63

5.5 IOzone unique instrumentation coverage 63

5.6 Stress-ng unique instrumentation coverage 64

xiv

5.7 SPEC raw instrumentation coverage . 65

5.8 IOzone raw instrumentation coverage . 65

5.9 Stress-ng raw instrumentation coverage . 66

5.10 Workflow Diagram of DIME . 69

6.1 Architecture of Qdime . 75

6.2 Apache: instrumentation budget vs. QoS metric 77

6.3 Gzip: QoS performance metric over time 82

6.4 MySQL: QoS performance metric over time 82

6.5 Apache: QoS performance metric over time 83

6.6 Redis: QoS performance metric over time 83

6.7 Summary of QoS-metric values . 84

6.8 Slowdown factors of the instrumented applications. 86

6.9 Qdime coverage . 87

xv

Chapter 1

Introduction

In this thesis, we address the problem of dynamic instrumentation of real-time systems.
Program analysis and profiling are essential for understanding program behavior. Pro-
gram profiling tools can use instrumentation to extract required information at runtime.
Instrumentation naturally alter the program behavior especially the timing properties. We
introduce the theory, method, and tools for time-aware dynamic binary instrumentation
which respects the timing constraints of the program under analysis.

1.1 Motivation

Debugging of complex software systems is difficult and expensive. A study of major U.S.
software engineering industries in 2002 revealed that software engineers spend, on average,
70-80% of their time testing and debugging [61, 41]. According to the study’s estimation,
testing and debugging costs the U.S. economy over $50 billion annually. Thus, it is essential
to investigate more efficient and less expensive debugging techniques.

As a preliminary work, we conducted an exploratory study that investigates the de-
velopers’ behavior while debugging a real-time embedded software system [18]. The study
further confirms the complexity and the difficulty of the debugging activity, especially for
real-time systems. The study involves 14 programmers debugging semantic errors of a
familiar real-time embedded software that consists of 3085 lines of code (LOC). Debug-
ging of real-time embedded software is challenging due to (1) hardware interaction, e.g.,
loading code to the target board, (2) use of low-level language semantics, e.g., memory
management in C, and (3) the need to respect the system’s timing requirements. Also,

1

the study includes seven distinct bugs categorized into incorrect-hardware-configuration
bugs and memory leaks. The primary data-collection method is the video-recording of the
computer screens during the study sessions. Afterward, multiple observers code the videos
to extract information revealing the debugging behavior of the participants. Moreover,
when a participant compiles the system, it gets copied to a separate folder that is used
later to view the edits made in-between the compilation tries. Finally, the participants fill
out multiple forms to describe their experience through the debugging sessions.

Although the participants are familiar with the system under investigation, they faced
a noticeable difficulty in locating and fixing the bugs. Only in 64% of the debugging
sessions, the participant was able to find the code location of the bug. They also spent a
long time examining the bugs regardless the bug’s type. The total time spent examining
a bug varies between 9 minutes and 1.9 hours with an average of 33 minutes. Only in 38%
of the debugging sessions, the participant successfully fixed the bug. Moreover, we noticed
two forms of indecisive behavior that can contribute to failing to fix the bugs. According to
the activity visitation pattern [18], many participants show a high frequency of transition
between debugging activities while examining a bug. The debugging activities of interest
are code browsing, code editing, document reading, compiling, and testing. The second
observed indecisive behavior is called the ping-pong behavior. It means, according to the
editing location, moving far from the bug after approaching it at least twice. In many
debugging sessions, the participant adopted this behavior decreasing his chance to fix the
bug.

Program profiling and analysis are useful for debugging and understanding the runtime
behavior of programs. Many analysis frameworks use instrumentation to extract runtime
information during program execution. Instrumentation implies the insertion of extra
instructions that collect the traces into the program. Therefore, instrumentation adds
delay to the program execution. Both, hard and soft, real-time systems must fulfill timing
constraints.

There exists research work on time-aware methods to preserve the timing properties of
real-time systems during the instrumentation process [37, 56, 55, 57]. Current approaches
for time-aware instrumentation solely rely on static and source-code instrumentation tech-
niques. Previous works require WCET analysis of the input program to guide the placement
of instrumentation code. Their instrumentation frameworks modify the source code prior
to execution. They also need WCET analysis after program instrumentation to guarantee
that timing constraints are met. While these approaches are sound and effective, the need
for running WCET analysis pre- and post-instrumentation reduces the applicability to only
hard real-time applications where WCET analysis is common. Furthermore, the previous
frameworks also operate on the source code of input programs. Hence, the developer has to

2

include the source code of all library dependencies of the program that he wants to instru-
ment. Moreover, statically analyzing these library dependencies is impractical. Consider,
for instance, the VLC media player [13] v2.0.5 which has approximately 600 000 lines of
code and uses libraries with more than three million lines of code. Statically analyzing
the source code of a multi-threaded program like VLC along with its library dependencies
becomes simply impractical.

In this thesis, we present a time-aware dynamic binary instrumentation methodol-
ogy [17]. The idea is to enable dynamic instrumentation of program binaries while bound-
ing the overhead of the instrumentation process. The proposed methodology assumes
only the availability of the program executable. It requires no preprocessing or WCET
analysis of the input program. Time-aware dynamic binary instrumentation is practical
and scalable for instrumenting soft real-time applications. It also supports multi-threaded
programs.

1.2 Real-time Systems

Real-time systems are rich in extra-functional (non-functional) properties [67, 90]. Extra-
functional properties include timing, code size, memory consumption, response time, and
communication bandwidth. Various real-time systems have different extra-functional re-
quirements, but they are all time-sensitive. A real-time system must maintain, not only
functional correctness, but also timing constraints [29]. The correctness of such systems
depends on the results they produce in addition to the time at which these results are
produced. In hard real-time systems, missing a deadline can result in system-failure which
can be life-threatening in some cases. On the other hand, it is possible to occasionally
miss deadlines in soft real-time systems. Missing deadlines in soft real-time systems can
lead to performance degradation. Examples of real-time systems are the new generation
of airplanes and spacecraft avionics, the braking controller in automobiles, and the vital-
sign monitor in hospital intensive-care units. More examples include web servers, media
players, high-performance networks, and robotic controllers.

1.3 Program Analysis

Program analysis is an important debugging technique. It is critical for understanding
program behavior and optimizing system performance. Examples of program analysis

3

objectives are function call tracing, time and space profiling, and collecting runtime statis-
tics on instruction and function usage. Many program analysis and profiling tools use
instrumentation to extract the required information at runtime. Instrumentation is the
insertion of analysis code into the program code to trace the program execution. It is
mandatory to maintain the program original behavior after instrumentation so, for ex-
ample, references and pointers to displaced instructions must be updated appropriately.
In general, there exist two instrumentation approaches; hardware based, and software
based. Hardware-based tracing methods [74, 82] are known for causing significant pertur-
bation to the program being traced [77]. Also, hardware-based tracing methods collect
low-level data and, hence, require higher-level support to provide traces at a higher-level
of abstraction [75, 76]. Software-based instrumentation can occur either automatically or
manually. Manual instrumentation requires that the developer specify the instrumentation
locations [89]. The developer, in this case, to find a bug in some program code, inserts
print statements and follows the flow of control or prints the value of variables [89, 59].
This process of adding and removing print statements keeps on going until the developer
locates and eventually fixes the bug. Manual instrumentation is highly flexible, but the
induced effect of instrumentation on the timing behavior is hard to estimate by the de-
veloper. Automatic instrumentation can happen either statically before the program runs
or dynamically during program execution. Static instrumentation tools include EEL [64],
ATOM [92], Etch [84], and Morph [101]. Dynamic instrumentation frameworks insert
analysis code during program execution to extract required information. Examples of such
frameworks are DynamoRIO [22], Pin [69], Valgrind [79], and Dyninst [24].

Static instrumentation methods are based on static analysis and cannot react to changes
in application behavior at run time. Static instrumentation, generally, incur lower runtime
overhead compared to dynamic binary instrumentation (DBI). On the other side, DBI,
as opposed to static instrumentation, does not require any pre-processing of the program
under analysis. This makes DBI more practical and usable by developers for profiling
and tracing purposes. More importantly, DBI can instrument any program while static
methods are limited to the code they can analyze, and, for example, cannot instrument
dynamically generated code and dynamically loaded libraries.

Instrumentation naturally causes perturbation to the program under analysis. Instru-
mentation methods [71, 60] insert code in the original program to enable tracing, which re-
sults in modifying the programs timing behavior. Since real-time software is time-sensitive
and needs to obey timing constraints, real-time systems require specialized program anal-
ysis tools.

4

1.4 Time-aware Instrumentation

Time-aware instrumentation preserves a program logical correctness and respects its timing
constraints. Fischmeister et al. [37] introduced time-aware instrumentation by statically
instrumenting a program’s source code only at code locations that preserve the program’s
worst-case execution time (WCET). Instrumentation of a program using time-aware in-
strumentation techniques shifts the program’s execution time profile towards its deadline.
The authors report in [37] that applying their techniques to a case study resulted in a
low instrumentation coverage. The reason was that large portions of the code were shared
with the worst-case path and, hence, could not be instrumented. Kashif et al. [56] applied
code transformation techniques to the program under analysis to increase instrumenta-
tion coverage. The idea involves creating and duplicating basic blocks in a program to
increase the locations at which instrumentation code can be inserted while preserving tim-
ing constraints. The authors in [55] develop an instrumentation framework, INSTEP, for
preserving multiple competing extra-functional properties. Such properties include tim-
ing, code size and detection latency. INSTEP uses cost models and constraints of the
extra-functional properties together with the user’s instrumentation intent to transform
the input program into an instrumented program that honors the specified constraints.

1.5 Pin Framework

DIME is implemented as an extension to Pin, which is a DBI framework developed by
Intel [69]. Pin provides a cross-platform API for building program-analysis tools. It targets
IA-32 and Intel64 architectures, and supports multiple operating systems such as Windows,
Linux, OSX, and Android. Intel architectures running any of these operations systems
is a common platform for soft real-time applications such as the case studies presented
in Sections 3.4 and 4.6. Moreover, Pin is popular and well-supported with over 300 000
downloads and 700 citations [33]. Multiple Intel commercial development tools are built on
top of Pin [4]. Intel Parallel Inspector is a memory and threading debugger that can identify
memory leaks, allocation errors, data races, and deadlocks. Another commercial tool is
Intel Parallel Amplifier, which aid in performance optimization. Additionally, Intel Parallel
Advisor is a threading prototyping tool used to analyze and tune program’s threading
design before implementation. Pin offers the following features:

• Ease-of-use: Pin’s user model allows inserting calls to instrumentation code at ar-
bitrary locations in the executable using a simple but rich C/C++ API. Pin has

5

more than 450 well-documented, easy to use instrumentation APIs [100]. Using Pin,
a developer can analyze a program at the instruction level with minimal knowledge
about the underlying instruction set.

• Portability: Although Pin allows extraction of architecture-specific information, its
API is architecture-independent.

• Transparency: A program instrumented by Pin maintains the same instruction and
data addresses, and the same register and memory values compared to uninstru-
mented execution. Thus, Pin extracts information that correctly describes the pro-
gram’s original behavior.

• Efficiency: Pin uses a just-in-time (JIT) compiler to insert and optimize instrumenta-
tion code. It utilizes a set of dynamic instrumentation and optimization techniques;
such as code caching, trace linking, register reallocation, inlining, liveness analysis,
and instruction scheduling.

• Robustness: Since Pin discovers the code in runtime, it can handle statically un-
known indirect-jump targets, dynamically generated code, dynamically loaded li-
braries. Also, it can analyze mixed code and data, and variable-length instructions.

To build an analysis tool using Pin, the developer should create a pintool which basically
consists of two types of routines. The analysis routine contains the code to be inserted
in the program during execution, whereas the instrumentation routine decides where to
insert the analysis-routine calls. Pin injects to the program executable and uses a JIT
compiler to translate the executable, instrument it, and retain control of it. The unit of
compilation is the trace: a straight-line code sequence that ends in an unconditional control
transfer, a predefined number of conditional control transfers, or a predefined number of
instructions. When the program starts execution, Pin compiles the first trace and generates
a modified one. The generated trace is almost identical to the original, but it enables Pin
to regain control. Pin transfers control to the generated trace, then Pin regains control
when a branch exits the trace. Afterwards, Pin compiles the new trace and continues
execution. Whenever the JIT compiler fetches some code to compile it, the pintool is
allowed to instrument the code before compilation. Pin saves the compiled code and its
instrumentation in a code cache in case it gets re-executed [95, 86, 69].

Pin supports different granularities for the instrumentation routine; image, trace, rou-
tine, and instruction granularity. The instrumentation-routine granularity defines when
Pin should execute the instrumentation routine. For example, in instruction granular-
ity, Pin instruments the program a single instruction at a time. Similarly, Pin offers

6

multiple analysis-routine granularities i.e., where to insert the analysis-routine call. The
instrumentation-routine and the analysis-routine granularities can be different. For in-
stance, a pintool can support trace granularity for the instrumentation routine using the
TRACE AddInstrumentFunction() API. That means the pintool can access the basic blocks
and the instructions inside the trace using BBL InsertCall() and INS InsertCall(), respectively.
Note that a pintool can have multiple instrumentation and analysis routines.

Most of Pin’s overhead originates from the execution of the instrumentation code (in
the analysis routines). Such overhead varies according to the invocation frequency of
the analysis routines and their complexity. On the other hand, dynamic compilation and
insertion of instrumentation code (by the instrumentation routine) represent a minor source
of the overhead [69].

The following numbers show the slow-down factors of the SPEC2006 benchmark run-
ning on top of Pin on a Windows 32-bit platform as reported by Devor in [33]:

• Instruction-counting tool (inscount): 2.45 and 1.56 for SPECint and SPECfp, respec-
tively.

• Memory-tracing tool (memtrace): 4.74 for SPECint and 3.26 for SPECfp.

• Memory-tracing tool using Pin-buffering API (membuffer): 4.64 and 3.2 for SPECint
and SPECfp, respectively.

The instruction-counting tool counts the executed instructions of every executed basic-
block. The memory-tracing tool collects the address trace of instructions that access
memory. Additionally, Luk et al. report in [69] that the application slow down due to
dynamic instrumentation by Pin [69], DynamoRIO [22], and Valgrind [79] are 2.5, 5.1,
and 8.3 times, respectively. These numbers are reported for a light-weight tool counting
basic-block using an IA32 Linux platform running the SPECint benchmark.

Multiple factors can affect the overhead of DBI frameworks such as the complexity of
the analysis tool, the application’s complexity, and the length of the application’s execution
time. For example, Intel internally uses a heavy-weight Pin analysis tool that performs
sophisticated memory analysis on Intel’s production applications to analyze memory ref-
erence behavior. As stated by the authors in [95], this tool incurs average slow down of 38
and maximum slow down of approximately 110 for SPECint. Also, Valgrind’s memcheck
tool introduces average overhead of 22.2 and maximum overhead of 57.9 for SPEC2000
benchmark [79]. Memcheck is a complicated analysis tool that detects uses of undefined
values.

7

We implement DIME extensions for supporting time-aware instrumentation in Pin.
As mentioned before, Pin is easily extensible for the creation of program analysis tool.
Moreover, Pin has lower overhead compared to other similar tools which is an essential
feature to achieve time-aware instrumentation.

1.6 Rate-based Resource Allocation

DIME employs rate-based resource allocation technique to bound the runtime overhead of
the instrumentation process. Rate-based resource allocation is a widely known method-
ology for priority scheduling of tasks [53, 91, 14]. Different schemes of rate-based re-
source allocation have been proposed for various computer-system domains. Examples of
such domains are operating systems [53], real-time systems [52] including mixed-criticality
ones [15], and multimedia applications [51]. A rate-based system allows a specific task to
run according to a previously defined rate, for example, “x milliseconds per second”. The
system has a capacity (i.e., a budget) for the task to execute in each time period (T). Once
the budget is consumed, the task is suspended until the next time period (T) starts.

Rate-based resource allocation models are flexible in managing tasks that have un-
known or varying execution times. They can also deal with tasks whose execution times or
execution rates can significantly deviate at run-time from the expected behavior. They en-
able direct mapping of timing and importance constraints into priority values. Rate-based
resource allocation models can protect a real-time system from performance degradation.
These models guarantee full resource utilization and overload-avoidance in a resource-
constrained system.

1.7 Goals and Contributions

In this thesis, we investigate the time-aware dynamic binary instrumentation technique
for the analysis of soft real-time systems. We develop the proposed technique into a
fully-implemented analysis tool and study its ability to respect a system’s extra-functional
constraints, especially timing. Additionally, the thesis evaluates the runtime overhead and
the instrumentation coverage of time-aware dynamic instrumentation. The following is a
summary of our contributions:

• Introducing the concept of time-aware dynamic binary instrumentation by employing
rate-based resource allocation method [17]. Dynamic instrumentation relaxes the

8

assumptions of time-aware instrumentation to increase its scalability and applicability
to soft real-time systems.

• Developing DIME: a tool for the proposed instrumentation technique [17]. DIME
is a fully-implemented time-aware dynamic binary instrumentation framework that
limits the instrumentation time to a pre-specified budget. DIME bounds the runtime
overhead of the instrumentation process to respect the timing properties of programs.

• Proposing a redundancy-suppression technique to increase the instrumentation cov-
erage of DIME. To promote the ability of DIME to collect quality information, it
utilizes its budget, when applicable, to only extract non-redundant traces during
instrumentation.

• Studying the optimization possibilities of DIME’s parameters. The operation of
the time-aware dynamic instrumentation is highly dependent on two parameters.
Defining the relation between the performance of DIME and its parameters offers
practical guidance for the parameter tuning of the instrumentation framework.

• Introducing the concept and the tool for quality-of-service-aware dynamic binary
instrumentation (Qdime) [19]. Being a customizable and feedback-based analysis
tool, Qdime respects the user-defined performance thresholds and constraints to
guarantee an acceptable performance during instrumentation.

1.8 Organization

This thesis is organized as follows. Chapter 2 presents an overview of the related work on
program instrumentation and analysis. Chapter 3 proposes DIME: a time-aware dynamic
binary instrumentation framework using rate-based resource allocation. Chapter 4 presents
the redundancy suppression in time-aware dynamic binary instrumentation with the goal
of increasing the instrumentation coverage. Moreover, Chapter 5 discusses the parameter
tuning experiments, along with their implications on DIME. This chapter, also, lists the
limitations, the guidelines, and the work flow of DIME. Chapter 6 presents a QoS-aware
dynamic binary instrumentation technique that respects the performance constraints of
QoS systems. Finally, Chapter 7 concludes the thesis and discusses the potential future
work.

9

Chapter 2

Related Work

In this chapter, we review the related work on different instrumentation methodologies.
The related research topics include both static and dynamic binary instrumentation; DBI
tools utilizing Pin, and time-aware instrumentation techniques.

2.1 Static Instrumentation Frameworks

Static binary instrumentation frameworks provide libraries and APIs to modify program bi-
naries offline before execution. Examples of such frameworks are EEL [64] and ATOM [92].
Another example is Etch [84], a binary rewriting framework for Win32 applications running
on Intel x86 processors. QPT is a program profiler, based on static binary instrumentation,
that measures the execution frequency of basic blocks and control flow [65]. Morph [101]
also is a static binary instrumentation system that optimizes program executable based
on the collected profile information. Static binary instrumentation is unable to handle
dynamic code features such as dynamically generated code, dynamically loaded libraries,
and unrestricted indirect jumps and calls [42].

2.2 Dynamic Instrumentation Frameworks

Dynamic binary instrumentation (DBI) tools use code transformation during program ex-
ecution to extract program profile. Dyninst [24] is an API that provides a library for
dynamic binary instrumentation. Dyner [98], based on Dynisnt, is a platform-independent

10

interactive tool that attaches to a running program, and allows the developer to insert
and remove instrumentation. MDL is a machine-independent language for dynamic binary
instrumentation [48]. It allows specification of the instrumentation and the collected per-
formance information. SystemTAP [50], Kerninst [93] and DTrace [27] provide interfaces
for kernel instrumentation. More examples of DBI systems include GDB, Vulcan [35], and
Detours [49]. Most of these dynamic binary instrumentation systems are probe-based, and
consequently, suffer from transparency issues [23, 69]. In probe-based instrumentation,
original instructions in memory are overwritten by the instrumentation code. This leads
to modifying the native behavior of the program under analysis.

Other DBI tools preserve transparency using software code caches such as Valgrind [79],
DynamoRIO [22], and Pin [69]. DynamoRIO [22] is a powerful runtime code manipula-
tion system that dynamically instruments an executable. An unmodified application can
be monitored and controlled in DynamoRIO’s virtual execution environment. The appli-
cation’s code and the inserted code are interleaved together. DynamoRIO provides an
interface for creating customized analysis tools by abstracting away the details of the un-
derlying system. Valgrind [79] is a DBI framework for building customized heavyweight
analysis tools. It uses just-in-time (JIT) binary re-compilation to instrument code blocks.
Popular Valgrind analysis tools are Memcheck; a memory error detector, callgrind; a call-
graph generator , and CacheGrind; a cache and branch-prediction profiler. Valgrind alters
the execution of multi-threaded applications. It allows only one thread to run at a time, and
consequently, changes the application’s thread scheduling. Pin [69] provides a high-level
API for dynamic binary instrumentation. It uses a JIT compiler to insert and optimize
instrumentation code. Pin automatically embraces register reallocation, inlining, liveness
analysis, and instruction scheduling to optimize jitted code. On the other hand, Valgrind
and DynamoRIO rely on the tool writer to invoke special operations to boost performance
(e.g., inlining). The program instrumented by Pin maintains the same instruction and
data addresses, and the same register and memory values compared to native execution.

2.3 Pin-based DBI Frameworks

Due to Pin’s efficiency and ease-of-use, many research studies have utilized Pin for specific
analysis requirements, or to reduce DBI overhead in general [85, 28, 72, 68]. Wallace and
Hazelwood [97] introduce SuperPin; a parallelized version of Pin to reduce the overhead of
DBI. SuperPin executes an uninstrumented version of the application, and then forks off
multiple instrumented slices of code regions. Each slice runs in parallel to the application
in a separate processor core. The experimentation shows significant performance improve-

11

ment for instrumentation tasks that are amenable to parallelization and merging. The
performance of SuperPin highly depends on the number of processor cores, and available
memory. Moreover, there exists multiple sources of delay, such as fork overhead, pipeline
delay and compilation slowdown. Moseley et al [76] use a probe-based application monitor
to fork a shadow process that is to be instrumented and profiled. The forked process runs in
parallel to the original with certain restrictions to prevent interference with the execution
of the original process. Other works as well parallelize the program profiling and analysis
process by utilizing multicore systems [102, 99]. As will be illustrated in Chapter 3, DIME
is a generic approach to time-aware dynamic binary instrumentation. Hence, DIME can
be extended to utilize these parallelization techniques.

Upton et al. [96] reduce the data-collection overhead of system profiling. They imple-
ment a buffering system for Pin to efficiently collect chunks of data and process the full
chunk at once. The buffering system optimizes the generated code for buffer writing and
reduces the cost of full-buffer detection. Kumar et al. [63] optimize the instrumentation
code to decrease the DBI overhead. They reduce the number of executed instrumentation
points and the cost of each point. These instrumentation approaches, opposed to DIME,
ignore the program’s timing and performance constraints.

Arnold and Ryder [20] introduced a framework for reducing the cost of instrumented
code. They use code-duplications combined with counter-based sampling to switch between
instrumented and non-instrumented code. Checking code is inserted at method entries and
backedges. Thus, their profiling approach is limited to intra-procedural acyclic program
paths. Also, this approach does not take into account the execution time of the instrumen-
tation code. Although event-based sampling is an effective way of instrumenting events
according to their frequency of occurrence, overhead bursts can have a negative effect on
the performance of time-sensitive applications [21]. Other sampling-based techniques have
been proposed for performance optimizations [40]. These techniques either apply opti-
mizations specific to the instrumentation objective or use compiler-specific information to
perform optimizations.

PinOS [25] is a Pin extension for instrumenting not only the user-level code but also the
kernel OS. It is built on top of the Xen virtual machine monitor, and it inherits the powerful
instrumentation Pin API. PinOS fails to provide strong isolation; although it steals the
memory from the guest OS, the instrumented process is still able to access the memory
used by the analysis routines. PEMU [100] is another Pin-compatible kernel and user-space
DBI framework. It supports out-of-VM high-level instrumentation of Kernel operations.
PEMU provides an additional software layer to maintain the isolation requirement. Again,
the techniques mentioned in this section, generally, can be used to complement DIME
approach for time-aware instrumentation.

12

2.4 Static Time-aware Instrumentation

All the previously mentioned instrumentation approaches are poor at maintaining the
extra-functional properties of the program. They affect the program’s behavior especially
the temporal behavior [56]. Partial instrumentation can be used to respect timing con-
straints [88]. Fischmeister et al. [39, 37] present time-aware static source-code instrumen-
tation to honor the program’s timing, especially the worst-case execution time (WCET).
This means adding instrumentation code only to non-worst-case paths of the program.
Time-aware instrumentation shifts these paths to have higher execution times closer to the
program’s deadline. The case studies, investigated in [37], show the promise of the gen-
eral concept of time-aware instrumentation, but also, reveals new challenges. A relatively
high percentage of the program paths shares basic blocks with the worst-case path. This
prevents the instrumentation of large portions of the code to avoid the violation of the
worst-case execution time constraint.

Kashif and Fischmeister [56] apply program transformation techniques to tackle this
challenge and increase the effectiveness of time-aware instrumentation. The first program
transformation technique is branch block creation which creates locations in the program
for instrumentation. This increases the number of instrumentable basic blocks which leads
to a higher instrumentation coverage. The second technique is control-flow-graph (CFG)
Cloning that duplicates CFG sub-graphs to permit instrumenting them. CFG Cloning
adds no overhead to the worst-case path at the expense of code size. In [57], Kashif et
al. introduce a slack-based mechanism which allows conditional instrumentation of the
worst-case path of the program. The timing constraints of hard real-time systems are
usually conservative. Thus, there exists a time slack between the WCET and the actual
execution time of the program [57]. Slack-based conditional instrumentation will execute
the instrumentation code only if the program has sufficient slack at run time.

INSTEP [55] is a fully implemented static instrumentation framework that considers
multiple competing extra-functional properties such as timing and code size. The inputs of
INSTEP are the instrumentation intents, the extra-functional constraints, the cost models,
and the program source code. INSTEP derives instrumentation alternatives and applies
local search to optimize the instrumentation solution. Denil et al. [32] present an in-
strumentation framework for Simulink models that preserves extra-functional properties.
Similar to INSTEP, the proposed framework considers the instrumentation intents and the
cost models to respect the system’s constraints. The authors use rule-based model transfor-
mation techniques to instrument the model and optimize the placement of instrumentation
blocks.

Static time-aware instrumentation methods are sound and effective for hard real-time

13

systems. On the other side, the mentioned methods adopt strict assumptions [94]: source-
code availability, static-analysis preprocessing, WCET analysis, and MISRA-C compliance.
The availability of the source code is needed to conduct static-analysis preprocessing and
WCET analysis. Not only the source code of the program should be available, but also
the source code of all the referenced libraries. Practically, the source code of the libraries
may not be available or accessible. Also, the source code of many libraries are large
in size; statically analyzing them is complex and may be impractical. WCET analysis
is a common, and sometimes a mandatory, practice for the development of hard real-
time systems. However, the requirement of running WCET analysis before and after
the instrumentation reduces the applicability of these methods to only hard real-time
systems. Finally, static time-aware instrumentation assumes the program source code to
be analyzable. For example, the program should be MISRA-C compliant. MISRA-C
provides a standard for the development of safety-critical real-time systems and facilitates
the computation of WCET. MISRA-C limits the use of pointers, recursion and dynamic
memory allocation.

The dynamic technique proposed in this thesis loosens the assumptions of time-aware
instrumentation to increase its applicability and scalability. Dynamic time-aware instru-
mentation only assumes the availability of the executable binary. It requires no prepro-
cessing or WCET analysis before or after instrumentation. Also, the dynamic technique
removes any restrictions on the program structure. However, dynamic instrumentation is
known to incur higher runtime overhead than static instrumentation. Therefore, Dynamic
time-aware instrumentation considers only soft real-time systems which can tolerate a few
deadline misses.

2.5 Program Sampling

Sampling is a widely used approach to reduce the runtime overhead of program tracing
by trading off the amount of extracted information [26, 16, 20, 47, 45, 70, 58, 66, 38].
Sampling extracts runtime information at a predefined rate. Mostly, sampling is triggered
by hardware interrupts, periodic software-event counters, or both.

The authors in [26] employ the timer-based interrupts on Alpha processors to collect
register contents. The performance counters interrupt the processor to record values from
the current context. They use a sampling period of fixed number of instructions in addition
to small randomization factor. Similarly, the Digital Continuous Profiling Infrastructure
(DCPI) [16] is a sampling profiler that utilizes hardware performance counters. The sam-
pling period of DCPI is based on frequent randomized periodic interrupts.

14

As mentioned previously, Arnold and Ryder [20] uses instrumentation along with counter-
based sampling to collect program profile with low overhead. This method only captures
the temporal profile of intra-procedural acyclic program paths. Hirzel and Chilimbi [47] fur-
ther extend Arnold-Ryder work to sample longer program bursts allowing for low-overhead
temporal profiling. Their bursty tracing framework can span procedure boundaries, and
accordingly, can collect inter-procedural profiling information.

Adaptive bursty tracing (ABT) is a statistical profiling mechanism that aims to maxi-
mize the coverage of infrequently executed code, i.e., cold code [45]. This tracing method
samples code segments at a rate inversely proportional to their execution frequency. ABT
reduces the sampling frequency and overhead of hot code and guarantees the tracing of
cold code. Marino et al. [70] present a sampling algorithm, for multi-threaded applications,
which progressively adapts the sampling period at runtime based on the code execution
frequency. Kasikci et al. [58] propose the bias-free sampling (BFS) method which uses
breakpoints to sample instructions independently of their execution rate. BFS is an event-
based sampling approach which samples infrequently executed instructions. The proposed
approach avoids profiling hot instructions and, thus, limits the runtime overhead.

With the objective of bug isolation, Liblit et al. [66] propose a sampling framework to
gather runtime information from remote user-executions of deployed software. The authors
extend Arnold and Ryder’s work mentioned earlier to collect sample data. They randomize
the sampling period, instead of using a fixed rate, based on a geometric distribution to
guarantee a fair random sample. Contrary to Arnold-Ryder approach, this one can col-
lect inter-procedural profiling information. Finally, Fischmeister and Ba [38] introduce a
sampling-based monitoring technique for time-sensitive applications along with techniques
to statically determine sampling periods.

Both DIME and the sampling method trade off the overhead and the coverage of pro-
gram tracing. Similar to sampling, DIME defines a time period to collect runtime infor-
mation. Additionally, DIME specifies an instrumentation budget to respect the program’s
extra-functional constraints (especially timing). The budget determines the time allowed
for program instrumentation. Although the mentioned sampling techniques aim to reduce
the overhead of program profiling, none takes the program constraints into consideration.
Also, the definition of the period in DIME is different from that of the sampling approach.
The sampling period denotes the time between collecting two consecutive samples. On
the other hand, the time period of DIME defines the time between consecutive budget-
replenishment events (will be discussed later in Chapter 3). Finally, DIME is a generic
instrumentation approach that is independent of the analysis objective, e.g., call tracing,
opcode profiling, or branch profiling. In other words, the instrumentation budget of DIME
is defined with respect to the system specifications and regardless of the analysis objective.

15

Chapter 3

DIME: Time-Aware Dynamic Binary
Instrumentation

In this chapter, we illustrate DIME, a time-aware dynamic binary instrumentation (DBI)
framework [17]. DIME is built as an extension to Pin [69]. The idea is to enable dynamic
instrumentation of program binaries while still bounding the overhead of the instrumen-
tation process. DIME supports multi-threading and is a practical and scalable tool for
instrumenting soft real-time applications.

3.1 Overview of DIME

DIME is a dynamic time-aware binary instrumentation tool [17]. It ensures that the in-
strumentation process respects, as much as possible, the timing properties of the program.
DIME achieves this using rate-based resource allocation [53] by limiting the instrumen-
tation time to a predefined budget B per time period T . The instrumentation budget B
is specified during the system design process. Instrumentation code executes for a total
of tins time units in every time period T . Optimally, the total instrumentation time tins
per period T should not exceed the instrumentation budget B. If the instrumentation
consumes the given budget before the end of the time period T , the framework will disable
instrumentation. At the beginning of the next period T , the budget resets to B time units
and the instrumentation is re-enabled. This process repeats until the program terminates.

Figure 3.1 describes the operation of DIME. There are two states of operation: DBI-
enabled and DBI-disabled . In the first state, DIME can insert instrumentation code and

16

Figure 3.1: State-machine for DIME’s operation.

extract information from the program during its execution. Furthermore, DIME has to
measure the time consumed by the executed instrumentation code tins. In the second
state, the framework prohibits code insertion and, thus, program instrumentation. DIME
switches between the two states: DBI-enabled and DBI-disabled according to the consump-
tion of the instrumentation budget. Let tprog be the running time of the program since
the start of execution. DIME will switch from DBI-enabled to DBI-disabled when the
instrumentation consumes all its budget (tins ≥ B) and a new period T has not yet started
(tprog mod T 6= 0). At the beginning of every time period T , i.e., (tprog mod T = 0), DIME
will reset the instrumentation time, tins = 0. It would also switch states from DBI-disabled
to DBI-enabled if the instrumentation was disabled.

0

B

T 2T 3T

−

−

Budget Reset,
DBI Re-enabled

DBI
Enabled

DBI
Disabled

R
e
m

a
in

in
g
 B

u
d
g
e
t

(B
 -

 t
in

s)

Program Execution Time (tprog)

Figure 3.2: Rate-based DBI.

Figure 3.2 further illustrates the rate-based DBI approach. The X-axis represents
the program’s execution time tprog and the Y-axis shows the remaining instrumentation
budget (B − tins). The program launches in the DBI-enabled state where the framework

17

has full instrumentation budget. In the first time period [0, T) of the program’s execution,
instrumentation code executes and reduces the available budget. Once the instrumentation
has fully consumed the budget, the framework will switch to the DBI-disabled state and
will prohibit instrumentation. At time T , the budget is reset and the framework returns
back to the DBI-enabled state. The negative value in the second time period [T, 2T) is an
overshoot. An overshoot will occur, if, for instance, the remaining budget equals two time
units, but the last instrumentation (before switching to DBI-disabled state) takes three
time units. In the third time period [2T, 3T), the total budget consumption is less than
the budget B, so the framework remains in the DBI-enabled state.

3.2 Implementation Using Pin

This section describes the implementation of DIME. We mentioned, in Section 1.5, that
instrumentation routines and dynamic compilation have a small overhead compared to the
execution of the instrumentation code in the analysis routines [69]. This means that the
main source of DBI overhead using Pin is the analysis routines. Hence, our objective is
bounding the overhead of the analysis-routine execution to the pre-specified budget. The
total instrumentation time tins, in this case, is approximately the total execution time
of the instrumentation code inside the analysis routine. The time-aware extensions can
be applied to any pintool, i.e., a pintool created by a developer for any instrumentation
objective can be modified to support time-aware DBI.

18

void analysis(...){

2 time_start = get_time ();

// Execute instrumentation code

4 ...

time_end = get_time ();

6 budget_var -= time_end - time_start;

}

8 ...

void instrumentation(...){

10 //Do budget checking

...

12 // Switch state accordingly

...

14 // Insert analysis calls based on state

...

16 }

...

18 void sig_handler(...){

budget_var = B;

20 }

Listing 3.1: Handling of instrumentation budget in DIME.

Listing 3.1 shows a pseudocode that abstractly describes the handling of the instru-
mentation budget in DIME. A variable budget var initially holds the maximum allowable
instrumentation budget (per period T), B. A signal sig is scheduled to fire every T time
units. In the sig signal-handler routine, the instrumentation budget is reset i.e., budget var

is reset to B. The function get time() is responsible for reading the current timestamp
using precise timers such as the time stamp counter (TSC) or the high precision event
timer (HPET). Section 3.3 discusses the exact implementation of get time(). DIME mea-
sures the instrumentation time by subtracting the timestamps at the beginning and end
of the analysis routine. It then subtracts the instrumentation time from budget var. The
instrumentation routine performs a budget check to determine the state (DBI-enabled or
DBI-disabled). If instrumentation budget is available, then the instrumentation routine
will insert a call to the analysis routine, otherwise it does not. The instrumentation rou-
tine usually inserts calls to the analysis routine(s) based on the instrumentation objective.
Consider, for instance, a pintool that prints memory addresses of program reads or writes.
The instrumentation routine then checks for the type of instructions. If the instruction
reads or writes to memory, then the instrumentation routine will insert a call to the anal-
ysis routine and will instruct Pin to pass the memory reference’s effective address to the

19

analysis-routine call.

The instrumentation routine in DIME performs the following operations:

1. Checking for instrumentation budget

2. Inserting calls to the analysis routine

3. Processing before and/or after inserting analysis routine calls

Note that budget checking is the only difference between the instrumentation routine in
DIME and that in native Pin (unmodified pintools). Optimally, the instrumentation rou-
tine should be able to:

1. Incur minimal overhead in the DBI-disabled state

2. Honor the instrumentation budget, i.e., disable instrumentation once budget var reaches
zero

3. Guarantee full utilization of the budget, i.e., re-enable instrumentation once the signal
fires

Checking for budget at each instrumentation point in the DBI-enabled state enables strictly
honoring the instrumentation budget. Budget checking at each instrumentation point in
the DBI-disabled state allows a quick transition to the DBI-enabled state, i.e., allows
instrumentation to start from the beginning of period T and, hence, full utilization of the
budget. On the other hand, continuous budget checking adds runtime overhead. Reducing
the frequency of budget Checking by performing it at a higher granularity (not at each
instrumentation point) in the DBI-disabled state, will reduce the budget checking overhead
in that state at the expense of budget utilization. Checking for budget at a higher level
in both states, will reduce the overall budget checking overhead, but will cause overshoots
beyond the instrumentation budget to often occur as a result of loosely honoring the
budget. These tradeoffs will be highlighted in the discussion of the different implementation
alternatives in Section 3.2.4.

There are three different implementations for the instrumentation routine in DIME:
Trace Version, Strict Trace Version, and Trace Conditional . From an implementation
point of view, the way DIME performs budget checking is the main difference amongst the
three implementations.

20

3.2.1 Trace Version

Trace Version checks for budget at each instrumentation point and makes use of Pin’s
trace versioning APIs to enable and disable instrumentation. Pin’s trace versioning APIs
allow dynamic switching between multiple types (versions) of instrumentation at runtime.
We mentioned earlier that a trace in Pin is defined as a sequence of program instructions
that has a single entry point and may have multiple exit points. If Pin detects a jump to
an instruction in the middle of a trace, it will create a new trace beginning at the target
instruction. When Pin switches versions, it creates a new trace starting from the current
instruction.

Trace Version inserts analysis calls to check for budget and switch instrumentation
versions (if necessary) at each instrumentation point. In Trace Version, every trace is as-
signed a version ID, either V INSTRUMENT, which represents the DBI-enabled state, or
V BASE for the DBI-disabled state. Listing 3.2 shows a pseudocode outline of the Trace
Version implementation that favors readability over optimality. Pin calls the instrumen-
tation routine at every new trace. First, budget checking is performed by inlining an extra
analysis routine (budget check() routine). The budget check() routine consists of one code
statement: return (budget var > 0). Note that Pin is capable of inlining short routines that
have no control flow. If the current trace version is V BASE, the instrumentation routine
will check if it needs to switch the version to V INSTRUMENT and vice versa. The in-
strumentation routine performs this check by inserting a dynamic check using Pin’s API
InsertVersionCase(). This API will set the trace version to V INSTRUMENT if the inserted
call to budget check() returns true, and will set it to V BASE otherwise. Finally, the switch
case will insert a call to the analysis routine only if the current version is V INSTRUMENT.

21

1 void instrumentation(...){

2 For each instrumentation point{

3 if(version == V_BASE) {

4 InsertCall(budget_check);

5 //check switching to V_INSTRUMENT

6 InsertVersionCase (1, V_INSTRUMENT);

7 }

8 else if(version == V_INSTRUMENT){

9 InsertCall(budget_check);

10 //check switching to V_BASE

11 InsertVersionCase (0,V_BASE);

12 }

13 switch(version) {

14 case V_BASE:

15 break; //Do Nothing

16 case V_INSTRUMENT:

17 ...

18 InsertCall(analysis_routine);

19 ...

20 break;

21 }

22 }

23 }

Listing 3.2: Instrumentation routine of Trace Version.

To clarify, let Trace 1 be the sequence of instructions in Listing 3.3. Assume that Trace 1

has version = V INSTRUMENT, and “For each instrumentation point” means “For each instruction”

in this example. Pin calls the instrumentation routine at every trace. The instrumenta-
tion routine inserts an inlined call to budget check() before every instruction in the trace.
According to the switch case in Listing 3.2, the instrumentation routine inserts a call to
the analysis routine before every instruction in the trace. The API InsertVersionCase() guar-
antees that the execution of the inserted analysis routine will occur, only if the output of
budget check() matches the ID of the current version (which is 1 in this case). Directly after
the execution of the instrumentation routine, budget check(), that is inserted before the first
instruction, is executed. Assume that its output is 1 which means that the budget is cur-
rently larger than zero. In this case, Pin will execute the analysis routine that is inserted
before the first instruction. Afterwards, Pin executes budget check() that is inserted before
the second instruction. Assume that the budget is now fully consumed, so budget check()

returns 0. Since the output mismatches the ID of the current trace, Pin will switch ver-

22

sion to V BASE (i.e. disable instrumentation). Accordingly, Pin will create a new trace
Trace 2, with version = V BASE, starting from the second instruction. Pin will then execute
the instrumentation routine to instrument Trace 2 according to its version. Also, the anal-
ysis routine inserted before the second and the third instruction will be ignored i.e., not
executed.

1 mov eax , dword ptr [rsp+0x30]
2 and eax , 0x10000000
3 mov dword ptr [rsp+0x3c] , eax

Listing 3.3: Example (1) of a trace.

DIME achieves low overhead by using Pin’s InsertVersionCase() API. When the instru-
mentation routine calls the API InsertVersionCase() and switches versions, Pin creates a new
trace starting from the currently-executing instruction. In the Trace Version implemen-
tation, DIME continuously calls InsertVersionCase(), forcing Pin to continuously check for
the trace version. These checks can be inserted at every instruction, at the start of every
basic block, etc. according to the instrumentation objective. Thus, the low overhead trace
version API enables DIME to always check for available budget at each instrumentation
point. This enables immediate transitions to both DBI-enabled and DBI-disabled states.
This way it guarantees full utilization of the budget by switching to V INSTRUMENT
from V BASE once budget is available for instrumentation. This also causes a high budget
checking frequency.

3.2.2 Strict Trace Version

Strict Trace Version has a similar implementation to Trace Version but with a reduced
frequency of budget checking in the DBI-disabled state. This means a lower budget check-
ing overhead and at the same time a delayed transition to the DBI-enabled state. A
delayed transition to the DBI-enabled state means a delay in enabling instrumentation
which reduces the budget utilization. The Strict Trace Version implementation of DIME
also makes use of Pin’s trace versioning APIs.

In the DBI-disabled state, Strict Trace Version checks for a budget reset in the instru-
mentation routine to switch to the DBI-enabled state instead of performing analysis-routine
calls to check for budget at each instrumentation point. Listing 3.4 outlines the implemen-
tation of Strict Trace Version. A boolean variable budget reset is introduced that is initially
set to false. This variable will be set to true when the signal sig fires every period T . The
instrumentation version is initially V INSTRUMENT and will switch to V BASE when

23

the instrumentation budget runs out during the period T . In V INSTRUMENT, budget
checking happens at each instrumentation point as in Trace Version implementation. In
the version V BASE, the instrumentation routine does not insert a check for switching
versions until the budget is reset and variable budget reset is set to true. This modified
condition prevents the instrumentation routine from calling InsertVersionCase() in the DBI-
disabled state. To illustrate, DIME checks the budget in the DBI-enabled state at each
instrumentation point (e.g. at the instruction level). However, when the state changes
to DBI-disabled , the budget checking will only happen when the instrumentation routine
gets called, i.e., at the trace level. This reduces the budget checking overhead compared
to Trace Version which performs budget checks more often.

Strict Trace Version reduces the budget checking overhead at the expense of budget uti-
lization. Remember that inserting calls to InsertVersionCase() makes Pin check for the trace
version and create a new trace. Consider the scenario when one call to InsertVersionCase()

switches the version from V INSTRUMENT to V BASE. This causes the creation of a new
trace. When DIME calls the instrumentation routine for the new trace and budget reset

is false, DIME will not insert version checks or analysis-routine calls. Hence, the trace
will run to completion without any version switches even if the budget gets reset. When
Pin creates a new trace and budget reset is true, the instrumentation routine will insert a
version check that will trigger switching versions to V INSTRUMENT. In other words,
Strict Trace Version has lower budget utilization compared to Trace Version because it
postpones using the instrumentation budget till the start of a new trace.

24

1 void instrumentation(...){

2 For each instrumentation point{

3 if(version == V_BASE && budget_reset == true) {

4 budget_reset = false;

5 InsertCall(budget_check);

6 // check switching to V_INSTRUMENT

7 InsertVersionCase (1, V_INSTRUMENT);

8 }

9 else if(version == V_INSTRUMENT){

10 InsertCall(budget_check);

11 // check switching to V_BASE

12 InsertVersionCase (0,V_BASE);

13 }

14 switch(version) {

15 case V_BASE:

16 break; //Do Nothing

17 case V_INSTRUMENT:

18 ...

19 InsertCall(analysis_routine);

20 ...

21 break;

22 }

23 }

24 }

25

26 void sig_handler(...){

27 budget_var = B;

28 budget_reset = true;

29 }

Listing 3.4: Implementation of Strict Trace Version.

3.2.3 Trace Conditional

The Trace Conditional implementation aims to reduce the budget checking overhead asso-
ciated with trace versioning. It avoids calling analysis routines for either budget checking
or version switching. It, however, suffers from a delayed switching between the DBI-
enabled and DBI-disabled states. This causes DIME to overshoot frequently beyond the
instrumentation budget.

25

void instrumentation(...){

2 if(budget_var > 0){

...

4 InsertCall(analysis);

...

6 }

}

Listing 3.5: Instrumentation routine of Trace Conditional .

Trace Conditional performs all its budget checking in the instrumentation routine with-
out any analysis-routine calls. Listing 3.5 presents the implementation for Trace Condi-
tional . The instrumentation routine checks the available budget using a simple if statement
at the beginning of every trace. So, in both states, DBI-enabled and DBI-disabled , budget
checking occurs at the trace level. This decreases the overhead of the instrumentation rou-
tine of Strict Trace Version. It also reduces the overhead of analysis calls for the purposes
of checking budget and switching instrumentation versions. Trace Conditional achieves
this, however, at the expense of budget utilization because switching to the DBI-enabled
state only occurs at the beginning of a new trace (similar to Strict Trace Version). Trace
Conditional also loosely honors the instrumentation budget compared to Trace Version
and Strict Trace Version. This is because switching to the DBI-disabled state only occurs
at the beginning of a new trace.

3.2.4 Qualitative Comparison

Table 3.1 provides a qualitative comparison of the different implementations of DIME.
The Trace Version and Strict Trace Version implementations are based on Pin’s trace
versioning APIs. This enables them to switch between versions based on analysis-routine
calls for budget checking. Trace Conditional works differently as it performs budget checks
in the instrumentation routine. Trace Version checks for budget before each analysis-
routine call. Hence, it immediately switches to the DBI-disabled state after a budget check
returns false (no budget available) before an instrumentation point. It also immediately
switches to the DBI-enabled state and executes an instrumentation point when a budget
check returns true. This enables Trace Version to fully utilize the budget and strictly honor
the instrumentation budget but with a high budget checking overhead (relative to Strict
Trace Version and Trace Conditional). Strict Trace Version delays the switching to the
DBI-enabled state until the beginning of a new trace. This results in a lower utilization
of the budget, strictly honoring the budget, and less budget checking overhead. Trace

26

Table 3.1: Qualitative comparison of the three implementations of DIME.

Trace Version
Strict Trace
Version

Trace
Conditional

Analysis-routine call

for budget checking

Yes in both
states

Only in
DBI-enabled
state

No

Switch to
DBI-disabled state

Immediate Immediate
Delayed till start
of new trace

Switch to
DBI-enabled state

Immediate
Delayed till start
of new trace

Delayed till start
of new trace

Budget utilization Full
Waits till start of
new trace

Waits till start of
new trace

Honoring the budget Strict Strict Loose

Budget checking

frequency
High Medium Low

Conditional delays switching to both states but does not perform any analysis calls for
budget checking. Hence, it has a low budget utilization, does not strictly respect the
budget, and has the least budget checking overhead.

3.3 Performance Evaluation

The qualitative evaluation of Section 3.2.4 is insufficient to decide when to use each of
the three implementations. For example, a delayed switch to the DBI-disabled state can
cause overshoots beyond the instrumentation budget until a new trace starts. The severity
of the overshoots compared to the budget checking overhead depends on factors like the
complexity of the analysis routine and the program behavior. Therefore, it is important
to consider these factors to be able to decide on a suitable implementation of DIME to
use for a specific instrumentation objective. We now empirically investigate the differ-
ent implementations in terms of execution overhead, and later in Section 3.4 discuss the
instrumentation coverage and applicability domains.

27

3.3.1 Experimental Setup

We experiment with the SPEC2006 C benchmark suite [46] which consists of integer and
floating point benchmarks. SPEC2006 is a common benchmark for evaluating performance
of dynamic instrumentation tools [69, 22, 79]. We run the benchmarks on an Ubuntu 12.04
operating system patched with a real-time kernel v3.2.0-23 which converts Linux into a fully
preemptible kernel. We compile the benchmarks using gcc v4.6.3 (with -O3 optimization
level) and use pintools from the Pin kit v2.12-56759. The experimentation includes four
platforms:

• An embedded target hosting a dual-Core Intel 1.66 GHz processors with 2 MB of
cache, 2 GB of RAM, and digital IOs.

• An embedded target hosting a single-core VIA NAS7040 board with a C7-D 1.8 GHz
processor and 128 KB of cache, 2 GB of RAM, and digital IOs .

• Two standard workstation hosting a quad-core i7-2600 3.4 GHz Intel processors with
8 MB of cache, and 16 GB of RAM.

We implement the function get time() as an inlined assembly instruction that queries the
processor cycles from the Intel processor’s Time Stamp Counter (TSC). We inhibit task
migration between cores and lock core speed’s to operate at their maximum frequency to
obtain accurate results from the TSC. The experiments run with a real-time scheduling
policy and priority. Note that these modifications are for the purpose of obtaining accurate
results for performance evaluation and are not required for the correct operation of DIME
as Section 3.4 demonstrates.

To evaluate the performance of DIME, we use four pintools from the Pin 2.12 kit;
dcache, inscount, regmix, and topopcode. dcache is a data-cache simulator that outputs the
number of data-cache load hits and misses, and store hits and misses. We consider the
instrumentation routine a light-weight one, since it just checks for the instruction type and
accordingly inserts a call to one of the analysis routines. The tool contains seven analysis
routines which are heavy-weight, since the routines contain nested function calls and may
also contain a loop to retrieve data-cache information. At the end of the program execution,
the tool writes the output to a file. inscount is a simple instruction counting tool that has a
light-weight instrumentation routine and a light-weight analysis routine. The instrumen-
tation routine only inserts a call to the analysis routine which increments an instruction
counter. regmix is a register profiler that prints the used registers along with the number
of read-accesses and write-accesses of each. regmix has a light-weight analysis routine that

28

only increments a counter, whereas, its instrumentation routine is heavy weight. The in-
strumentation routine extracts register information, at instrumentation time, through two
calls to a function containing nested loops. The tool writes the output to a file at the end
of the program’s execution. topopcode is a profiler that prints the opcode of the executing
instructions at runtime. The instrumentation routine is a heavy-weight one that calls two
functions before analysis-routine insertion. Also, the analysis routine is heavy-weight since
it is responsible for extracting information and printing the output at runtime. Originally,
the instrumentation-routine granularity of all these tools is at the trace level, except for
dcache which operates at the level of instructions. To implement a DIME version of dcache,
we changed the granularity of dcache to operate on traces by looping over the instructions
of the trace basic blocks. For the four tools, we used a budget B of 0.1 seconds per time
period T of one second.

We empirically evaluate the performance of DIME using the following metrics:

• Slow down factor of the dynamically instrumented program: The slow down
factor is the ratio of the execution time of the instrumented benchmark running on
top of Pin to the execution time of the natively running benchmark. This metric
highlights the overhead reduction of DIME compared to native Pin execution. It
also compares the overhead of the three DIME implementations according to the
nature of the instrumentation objective. Moreover, it guides the choice of which
DIME implementation to use for a specific instrumentation objective.

• Overshoots: Recall that an overshoot will occur when instrumentation time exceeds
the budget; i.e., (B−tins < 0). The frequency of the overshoots as well as their sever-
ity measure how strictly each of the DIME implementations honors the budget. This
metric varies according to the instrumentation objective and affects the overhead. It
again helps in making an informed decision of the DIME implementation to use for
a certain instrumentation objective.

3.3.2 Experimental Results

DIME, on average, outperforms native Pin in terms of overhead in the heavy-weight
analysis-routine tools: dcache and topopcode. Figures 3.3a and 3.3d show the slow-down
factors of Pin and DIME implementations with dcache and topopcode tools, respectively.
The average slow down of native Pin with dcache is 24.3x, and with topopcode is 29.6x.
Trace Version and Strict Trace Version achieve an overage slow down of 2.8x and 1.5x,
respectively, with dcache. They also have an average slow down of 2.3x and 1.3x with

29

0

10x

20x

30x

40x

50x

bz
ip

2

gc
c

m
cf

go
bm

k

hm
m

er

pe
rlb

en

lib
qu

an

h2
64

re
f

lb
m

sp
hi

nx
3

m
ilc

Benchmark

S
lo

w
 D

ow
n

Fa
ct

or Native Pin
TraceVersion
Strict−TraceVer.
Conditional

(a) Dcache

0

3x

6x

9x

12x

15x

18x

bz
ip

2

gc
c

m
cf

go
bm

k

hm
m

er

pe
rlb

en

lib
qu

an

h2
64

re
f

lb
m

sp
hi

nx
3

m
ilc

Benchmark

S
lo

w
 D

ow
n

Fa
ct

or

Native Pin
TraceVersion
Strict−TraceVer.
Conditional

(b) Inscount

0

3x

6x

9x

12x

15x

18x

bz
ip

2

gc
c

m
cf

go
bm

k

hm
m

er

pe
rlb

en

lib
qu

an

h2
64

re
f

lb
m

sp
hi

nx
3

m
ilc

Benchmark

S
lo

w
 D

ow
n

Fa
ct

or

Native Pin
TraceVersion
Strict−TraceVer.
Conditional

(c) Regmix

0
10x
20x
30x
40x
50x
60x
70x
80x
90x

100x
110x

bz
ip

2

gc
c

m
cf

go
bm

k

hm
m

er

pe
rlb

en

lib
qu

an

h2
64

re
f

lb
m

sp
hi

nx
3

m
ilc

Benchmark

S
lo

w
 D

ow
n

Fa
ct

or

Native Pin
TraceVersion
Strict−TraceVer.
Conditional

(d) Topopcode

Figure 3.3: Slow-down factors of native Pin and the three implementations of DIME.

topopcode, respectively. This reflects the higher budget checking overhead of Trace Version
over Strict Trace Version. Trace Conditional has a slow down of 9.2x with dcache and 5x
with topopcode. This is due to the frequent overshoots of Trace Conditional beyond the
instrumentation budget.

Strict Trace Version has a low average slowdown of 1.1x for light-weight analysis-routine
tools, while Trace Conditional is unsuitable for usage with such tools. With inscount, native
Pin incurs a slow down of 2.3x, while Trace Version and Strict Trace Version maintain an
average slow down of 1.9x and 1.1x, respectively, as shown in Figure 3.3b. Figure 3.3c
presents the slow down with regmix, which are 2.2x, 2.2x, and 1.1x for native Pin, Trace
Version, and Strict Trace Version, respectively. A light-weight analysis routine implies
that the tool incurs minimal overhead with native Pin because analysis routines are the
main source of overhead [69]. In such case, the overhead of DIME for checking budget
and switching states is noticeable even if the instrumentation routine is heavy-weight (e.g.
regmix). The reason is that DIME only bounds the execution time of the instrumentation
code in the analysis routines. Also, frequent execution of a light-weight analysis routine,
which might not consume the instrumentation budget, increases the budget checking over-

30

●●●●●
●●●●●●
●●●●●●
●
●
●●●
●
●●●

●
●●
●
●
●●●●●
●●●●●●
●
●●●●
●
●●●
●●
●●
●●●●

●

●●●●
●
●
●
●●
●
●●●

●

●●●●●
●●●●●
●
●●
●
●●●●

●
●●
●●●●●
●
●●●●●●

●

●●●●●
●
●●
●●●●●●●
●●
●
●
●
●●●

●
●
●

●

●●●●

●

●●●●●●
●

●●
●
●●●●●●●
●●●●●
●●

●

●
●●●●
●●●●●●●●●
●
●●
●

●●●
●
●●●●
●●
●●●●●
●
●●●●●●●●●●

●
●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●
●
●

●

●●
●
●
●
●

●

●

●

●●●●●●
●
●●
●

●

●
●
●●●
●●●
●
●●●●●●●●●●●
●
●●●●●●●●●
●●●●●
●●●
●
●●●●
●●●●●●●●●
●●●
●●●●●●●●
●●●●●●●●●●●●

●
●●
●
●●●
●
●●
●●●●
●●●
●

●

●●

●

●●●●●●●
●
●●●●●●●●●●●
●
●●
●●●●●●●●●●
●
●

●

●●●
●●●●
●●●●●●●●
●
●
●
●
●●●●●●●●●●
●●●
●
●●●●●●●
●
●●
●●
●
●
●
●●●

●

●●●
●●●
●
●●●●●
●●●●●
●
●
●●●●
●

●●●●
●
●
●●●●●●
●●●●●
●●●●●
●
●
●
●

●●●
●●●●●●●●●●
●●●
●

●●●●●●●
●●
●●●●●●●●●●●●●

●●
●
●
●●
●
●
●
●●●●●
●●
●●●●●●●●●●●●

●
●

0 150 300 450 600

Execution Time

0

2

4

6

8

10

12

O
ve

rs
ho

ot
 (

us
ec

)

(a) Trace Version

●●●●●●●●●
●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●
●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●

●

●

●●●●●●●
●
●●●●●●●●

●●●●●

●

●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●

●●●●●●

0 150 300 450 600

Execution Time

0

4

8

12

16

20

O
ve

rs
ho

ot
 (

us
ec

)
(b) Strict Trace Version

●
●●

●

●

●

●●●●●●●
●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●●
●
●
●●●●●●
●●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●

●●
●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●
●
●●●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●
●●●●
●●
●
●●●●●●●●●
●
●●●
●
●
●●
●
●
●
●●●●●●●●●●●●
●●●●
●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●

●

●

●●●●

●

●
●

●●●

●

●

●
●●
●●
●●●
●●●●●●●●●
●
●●●●●
●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●
●●
●
●●●●●●●●●●●●●●
●●●

●●
●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●

●

●

●●●●●

●●

●●●
●

●
●●
●
●
●
●●●●●
●●●●●●
●
●●●●
●●
●
●●●●●●
●●●●
●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●

●

●

●●●●

●

●
●

●●●

●

●

●●●●●●
●
●●●●
●●●●●●
●●●●●●●●●●●
●
●●●
●●
●●●
●●●●
●●●
●
●
●●●
●●●●●
●●●●●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●

●

●

●●●●●

●

●

●●●●

●

●

●
●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●

●

●●●●
●
●

●

●

0 275 550 825 1100

Execution Time

0

0.3

0.6

0.9

O
ve

rs
ho

ot
 (

se
c)

(c) Trace Conditional

Figure 3.4: Overshoots of the three implementations of DIME with the mcf benchmark
and dcache tool.

head. The results for Trace Conditional , in Figures 3.3b and 3.3c, reveal the performance
degradation caused by the overhead of the overshoots in the light-weight analysis-routine
tools. Trace Conditional has an average slow down of 4.2x with inscount and 3.8x with
regmix. On average, the slow down of Strict Trace Version is lower than that of Trace
Version, since Strict Trace Version has a lower budget-checking overhead (as discussed in
Section 3.2.4). Additionally, both Trace Version and Strict Trace Version incur lower slow
down in average compared to Trace Conditional .

Trace Version and Strict Trace Version have a very low overshoot value (order of
microseconds) compared to Trace Conditional . Figure 3.4 shows the overshoot magnitude
for the three implementations of DIME over the execution time of the mcf benchmark
while instrumenting it using the DIME version of the dcache pintool. Although Trace
Conditional has the lowest budget-checking overhead, its loose budget-respect results in
high values of overshoots as shown in Figure 3.4c. Occurrence of high-valued overshoots
depends on the structure of the program since Trace Conditional will not switch to DBI-
disabled till the start of the next program trace. Figures 3.4a and 3.4b present the values
of overshoots for Trace Version and Strict Trace Version, respectively. The values for the
most frequent overshoots lie below 2 usec for both Trace Version and Strict Trace Version.
This confirms that the two implementations strictly respect the budget since both switch
to the DBI-disabled state once the budget is fully consumed.

Summary: DIME can achieve an average slow down as low as 1.25x using Strict Trace
Version which always maintains a lower slow down compared to Pin. Both Trace Version
and Strict Trace Version maintain low magnitude overshoots but with a higher budget
checking overhead for Trace Version. Trace Conditional has a high average slow down

31

compared to the other implementations due to high magnitude overshoots. This makes
Trace Conditional suitable for instrumentations with heavy-weight analysis routine that
require achieving a high raw instrumentation coverage. Raw instrumentation coverage is
the amount of information that DIME extracts as a ratio of the coverage of native Pin.
Instrumentation coverage will be discussed in more details in Section 3.4 and Chapter 4.
Both Trace Version and Strict Trace Version strictly respect the instrumentation budget.
Strict Trace Version is well-suited for applications that require very low instrumentation
overhead. Trace Version has a higher raw instrumentation coverage compared to Strict
Trace Version but with a relatively higher overhead.

3.4 Case Studies

This section presents two case studies that demonstrate the applicability and scalability of
DIME. The underlying idea relies on observations made in other work, that partial traces
are useful in many applications as full traces contain many redundancies [78].

3.4.1 VLC Media Player

This case study demonstrates that instrumenting a soft real-time application such as a
media player while playing a video requires a time-aware instrumentation approach. VLC
is a free portable open-source media player developed by the VideoLan organization [13].
As mentioned in Section 1.4, VLC v2.0.5 has approximately 600 000 lines of code and uses
libraries with more than three million lines of code. Our goal is extracting VLC’s call
context tree while VLC plays a high definition, 29.97 fps, 720x480, 1 Mbps bitrate video.
The calling context helps in understanding programs, analyzing performance, and applying
runtime optimizations [88]. We use the DebugTrace pintool, that is available as part of
Pin’s v2.12 kit, to extract VLC’s call trace. We build a tool that extracts the call context
trees from the call trace generated by native Pin and from the partial traces generated by
DIME [88]. The time period T is set to one second throughout this case study. Table 3.2
shows the results of the case study.

Only DIME implementations permit extracting the call context tree while maintaining
a continuous video playback. The video playback while instrumenting VLC using Pin and
DIME were recorded and are available for viewing1. The original video has 599 blocks that

1“https://uwaterloo.ca/embedded-software-group/projects/time-aware-instrumentation”

32

Trace Version Strict Trace Version Trace Conditional
Max budget without pauses 14% 38% 22%
Coverage in one run (nodes) 93.2% 92.8% 83.4%

(edges) 90.2% 90.9% 75.0%
Runs for 98% of CC tree 4 4 5
Runs for 99% of CC tree 5 5 6
Raw coverage at min. budget 23.6% 17.6% 62.8%

Table 3.2: Results for the VLC case study.

VLC decodes for viewing frames. VLC, using native Pin, decodes only 75 blocks which
translates into an unwatchable video and errors messages for dropping frames.

All DIME implementations can recover 99% of the full call context tree with only few
re-runs. Trace Version and Strict Trace Version extract 90% of the call context tree in
one run. The first row in Table 3.2 shows the maximum instrumentation budget for each
implementation that allows a continuous video playback without dropping frames. It also
shows the coverage obtained by each implementation as a percentage of the nodes and
edges of the full call context tree. Although Trace Version runs with the least budget, it
obtains the highest coverage compared to the other implementations. Fully utilizing the
budget, in this case, translates into more coverage of the call context tree. In general,
DIME achieves a very good coverage while maintaining a continuous video playback.

When comparing the DIME implementations against each other with the minimal neces-
sary budget, Trace Conditional extracts the most information. After getting the maximum
instrumentation budget for each implementation that allows continuous video playback.
The minimal necessary budget is the minimum of all these maxima. The last row in
Table 3.2 shows the raw instrumentation coverage of each implementation at the min-
imal budget (14%). At the minimal budget, Trace Conditional extracts the most raw
information, followed by Trace Version, then Strict Trace Version. This is because Trace
Conditional loosely obeys the budget and Strict Trace Version has a delayed switch to the
DBI-enabled state.

3.4.2 Laser Beam Stabilization

DIME is also useful for instrumenting control applications. The second case study is a laser
beam stabilization (LBS) experiment developed by Quanser [10]. Laser beam stabilization
is an important technology currently used in manufacturing equipment, surveillance, air-
craft targeting, etc. The experiment consists of a stationary laser beam source pointing

33

Average
Displacement

(mm)

Displacement
Variance

(mm)

Stability
Budget (%)

Memory
Pattern (%)

Original LBS 0.022 0.0002 N/A N/A
Native Pin 2.988 0.487 N/A 100
Trace Version 0.509 0.881 0.3% <1%
Strict Trace Version 0.588 0.531 0.6% <1%
Trace Conditional 0.129 0.183 9.0% 78.1%

Table 3.3: Results for the LBS case study.

at a moving mirror. The reflected beam is detected by a high-resolution position sensing
detector which measures the relative displacement of the beam from the nominal position.
The mirror is free to oscillate along one axis. These oscillations power a motor driving
an eccentric load. The turning of the motor plus an introduced disturbance voltage in-
duce the undesired vibrations in the laser beam position. A feedback control system with a
1 KHz sampling rate stabilizes the laser beam position. Instrumenting such a time-sensitive
application requires a time-aware instrumentation technique.

In this case study, we attempt to extract a memory access pattern from the LBS exper-
iment. A memory access pattern contains the following for each accessed memory location:
the effective address of the memory location, address of the instruction accessing memory,
whether the memory access is a read or write, the data read/written, and the thread id.
This information is useful in detecting memory-management problems and is used by nu-
merous memory analysis tools such as QNX memory analyzer [9] and Valgrind [79]. We use
the DebugTrace pintool, that is available as part of Pin’s v2.12 kit, to extract the memory
trace.

Only our DIME implementations can stabilize the laser beam while instrumenting. We
repeated the LBS experiment 10 times for each instrumentation type. Each experiment
runs for approximately 10 seconds. We collect the displacement (of the beam from the
nominal position) data as measured by the position sensing detector. Native Pin fails to
stabilize the laser beam which has a jittery response all over the detector. The instability
of the native Pin version of the pintool is visible from the average displacement shown in
Table 3.3 in the first column. The average displacement from the actual target is about
3mm, while the original unmodified software is about 0.02mm.

Trace Conditional is the only implementation of DIME that extracts most of the mem-
ory access pattern while allowing stabilization of the laser beam. Table 3.3 shows the
maximum budget for each implementation of DIME that allowed stabilization of the laser

34

beam. Trace Conditional extracts information with the highest budget compared to the
other implementations while maintaining the lowest displacement. This demonstrates that
for this type of application, the overhead of budget checking causes more performance
degradation compared to the overhead of overshoots. Trace Conditional achieves the best
coverage for the memory access pattern while the other implementations are unsuited for
instrumenting the LBS experiment. We think that the reason is the LBS program structure
which has a very low number of branches and has successive bursts of memory accesses.
This creates long instruction traces in Pin. This allows Trace Conditional to instrument
all memory access instructions in a long trace in one call of the instrumentation routine (if
enough budget is available) without checking for budget between memory accesses. The
analysis routine calls for budget checking and version switching between memory accesses
in Trace Version and Strict Trace Version causes a degradation in the response time of
the controller. This shows that program structure can be a factor in choosing a suitable
implementation of DIME for instrumentation.

3.5 Summary

Most of the existing instrumentation tools do not consider timing properties of applica-
tions. Current time-aware instrumentation tools are both static and source-code tools that
require WCET analysis before and after instrumentation. This makes them impractical
for instrumenting library dependencies and makes them more suited for hard real-time ap-
plications where WCET analysis is commonly employed. We propose DIME; a time-aware
dynamic binary instrumentation tool. DIME has three implementations as extensions to
Pin. These implementations differ in their budget checking overhead, strictness of respect-
ing budget, overshoots beyond the budget, and instrumentation coverage. The performance
evaluation of DIME shows an average reduction in overhead by 12, 7, and 3 folds compared
to native Pin. Two case studies demonstrate the applicability and scalability of DIME to
media-playing software and control applications. They also show that the coverage ob-
tained by the different implementations vary according to the instrumentation objective
and program structure.

35

Chapter 4

Redundancy Suppression in DIME

DIME extracts partial tracing information since DIME disables instrumentation when the
instrumentation budget is consumed. This chapter discusses tracing-redundancy suppres-
sion to increase the instrumentation coverage of DIME through multiple runs.

4.1 Overview

Instrumentation frameworks, including native Pin [69] and DIME [17], may generate an
amount of runtime information that contains many redundant entries. The extracted infor-
mation can form several gigabytes of data. Many researchers have reported the complexity
of understanding software systems using the collected runtime information due to its sheer
size and complexity [43, 44]. One reason is the redundancy of extracted traces which oc-
curs due to, for example, the repetition of sequence of events [30]. The high redundancy
consumes memory and disk space. It also provides a minor contribution to the program
understanding process [30]. In [43], removing contiguous repetitions in call traces dropped
the size of the extracted information to between 5% and 46% of the original size. For
many analysis tools, instrumenting each instruction once is sufficient since the collected
information is the same regardless of the number of times the instruction is executed or
instrumented. Examples of these tools include branch profilers used for extracting code
coverage and memory profiling tools used for building memory access patterns. Cornelissen
and Moonen [31] analyzed the call traces of six different systems. The number of unique
calls reported in this work ranges from 0.01% to 6.1% of the total number of extracted calls
(geometric mean = 0.3%). The authors measured the repetitiveness which corresponds to

36

the degree of information redundancy. The level of repetitiveness ranges from 93.8% to
99.9% of the call traces.

Since DIME extracts partial tracing information, it can obtain higher instrumentation
coverage through the avoidance of collecting redundant information. To respect the timing
properties of a program, DIME disables the instrumentation when the instrumentation
budget is consumed. Accordingly, DIME generates partial tracing information compared
to native Pin. In other words, there exists a trade-off between the instrumentation budget
and the instrumentation coverage. Hence, multiple runs of DIME are required to increase
the instrumentation coverage and optimally achieve full coverage. From a performance
point of view, it is preferable to minimize the number of required runs. For DIME, this
implies obtaining the maximum possible coverage from each single run without violating the
timing constraints. Accordingly, DIME should avoid tracing redundant instrumentation.
We specifically focus on the type of analysis tools that do not require tracing redundant
information. DIME should utilize the available instrumentation budget for extracting
unique (non-redundant) information.

To prohibit redundant instrumentation, DIME should be able to identify the instru-
mented code regions. In general, the minimum piece of information needed to identify a
code region is the starting address. Thus, the basic idea is to enable DIME to save the
starting addresses of instrumented code regions in a log, and DIME should then check the
log before instrumenting a new code region. For the approach to be efficient, DIME should:

• Prevent re-instrumentation of a code region in the current run and all subsequent
runs of the program under analysis.

• Avoid increasing runtime overhead.

• Avoid creating large-sized logs which increase DIME’s memory consumption. Search-
ing a large log may also result in increased runtime overhead.

Both steps, saving to the log and searching it, take place in the instrumentation routine,
so its overhead is expected to be negligible. We avoided adding these steps to the analysis
routine which is the main source of overhead in Pin [69].

In what follows, we discuss our approach for suppressing redundancies in DIME.

37

4.2 Granularity of Logged Code Regions

The first design aspect that we discuss is the granularity of code regions to be recorded
in the log. We can log addresses of code regions either at the instruction or the trace
level. As mentioned in Section 1.5, a trace is a straight-line code sequence that ends in an
unconditional control transfer, a predefined number of conditional control transfers, or a
predefined number of instructions. It is inefficient to log the address of each instrumented
instruction, since

1. This requires frequent access to the log which adds to the runtime overhead.

2. This results in a large log size which consumes memory.

3. This leads to searching a large-sized log which can delay program execution and add
to the runtime overhead.

An alternative to logging instruction address is to log addresses at a coarser granularity, the
trace level. The instrumentation routine analyzes traces to insert analysis-routine calls.
If Pin detects a jump to an instruction in the middle of a trace, Pin will create a new
trace beginning at the target instruction. So, the instructions inside a trace are always
in series i.e., uninterrupted by instructions from another trace. Thus, DIME will save the
trace starting address in addition to the length of the instrumented portion in the trace
(〈Trace Address, Trace Length〉). Specifically, DIME will save the relative starting address
of the trace with respect to the trace’s image. This guarantees that saved addresses are
deterministic between successive runs (especially for the traces of shared libraries). On the
other side, as mentioned earlier in Section 3.2, trace version switching can cause Pin to
create a new trace. Thus, some trace addresses might only exist in a subset of the runs.

4.3 Efficient Log Search

The second design aspect is saving the trace addresses and the trace lengths in a manner
that allows for efficient searching of the log. In this section, we propose three approaches
for saving trace addresses and length. We compare among them qualitatively and quanti-
tatively deriving unexpected results. We choose one of these approaches to provide DIME
with the capability of suppressing redundant instrumentations.

38

4.3.1 Hash-Table Log

The first approach uses a hash-table as the log for saving instrumented traces. In this
approach, DIME saves the trace address to identify instrumented traces. Whenever DIME
instruments a trace, it adds the trace’s address to the hash-table. Also, before instru-
menting any trace, DIME searches for the trace address in the hash-table. Let A be
the current trace and B be a trace in the log L; Then, DIME will only instrument
A, iff (address(A) 6= address(B))∀B ∈ L. The advantages of using a hash-table for
logging traces are:

• Fast logging (average case: constant; worst case: linear in the hash-table size).

• Fast searching (average case: constant; worst case: linear in the hash-table size).

• Low number of false negatives (as will be discussed in Section 4.4). False negatives
will occur if DIME prohibits instrumentation of an uninstrumented trace. For in-
stance, let A be the current trace, where A = 〈100, 80〉 (i.e., address(A) = 100 and
length(A)=80). If the log contains trace B, where B = 〈100, 20〉, DIME will prohibit
the instrumentation of A. Thus, instructions in address range 120 to 180 will not be
instrumented in any run.

The disadvantage of this approach is that:

• Using a hash-table enables DIME to only compare trace addresses while ignoring
the trace length. This results in false positives. A false positive will occur if DIME
allows instrumentation of a previously instrumented trace. For example, let A be the
current trace, where A = 〈150, 20〉. DIME may fail to find A in the log, although the
log contains trace B = 〈100, 80〉. This means that trace A is previously instrumented
as a part of trace B. Note that one trace being part of another happens due to the
creation of new traces through version switching as explained earlier.

Section 4.4 presents experimental results that support the listed advantages and disadvan-
tages for the three approaches.

4.3.2 BST Log

The second approach is using a binary search tree (BST) to log the addresses of the
instrumented traces along with their lengths. Being sorted, the BST facilitates jumping

39

to a specific range of addresses. When DIME instruments a trace, it adds the trace to
the log such that the trace address is the key and the trace length is the value. Before
instrumenting a trace, DIME searches the BST using the trace address. If not found, DIME
will jump to the log-entry that has the first smaller trace address compared to the current
trace address. DIME will then decide if the current address lies within the trace of the
discovered log-entry. Let A be the current trace and B be a trace in the log L. DIME will
not instrument A, if ∃B ∈ L s.t. (address(B) ≤ address(A) < address(B) + length(B)).
The advantage of using a BST for logging traces is:

• Less false positives compared to the hash-table approach due to considering the
lengths of the logged traces.

The disadvantages of this approach, on the other hand, are:

• Slower than the hash-table approach in the average case; the complexity of both
saving and searching is log(N).

• Relatively high false negatives. Consider the following example. Assume the cur-
rent trace is A = 〈100, 200〉, and the log entry B = 〈50, 80〉 in the log L. This
approach will prevent instrumenting trace A since its starting address lies within the
log entry B. This, however, will consequently prevent DIME from instrumenting the
uninstrumented portion of trace A i.e., from address 130 to address 300.

Additionally, after the program execution and before saving the log to a file for use in
subsequent runs, DIME merges directly consecutive traces leading to a smaller log size.
For example, if the log contains two log entries 〈100, 50〉 and 〈150, 50〉, DIME will merge
them into one log entry 〈100, 200〉. Merging log entries decreases the log size and, therefore,
reduces the search time leading to less runtime overhead in subsequent runs of DIME.

4.3.3 Merger-BST Log

The third approach utilizes a BST as well, but it addresses the second disadvantage of
the previous approach. Using this approach, DIME will prohibit instrumentation, only
if the whole current trace is part of a log entry. Otherwise, DIME allows instrumen-
tation and merges the current trace with the log entry if needed. Let A be the cur-
rent trace and B be a trace in the log L. DIME will not instrument A, if ∃B ∈ L
s.t. (address(B) ≤ address(A) < address(B) + length(B) ∧ address(A) + length(A) <

40

address(B) + length(B)). For example, let the current trace be A = 〈100, 200〉, and the
log entry contains B = 〈50, 80〉. In this approach, DIME instruments trace A. Afterwards,
DIME merges trace A and B into one log entry 〈50, 250〉 to avoid redundancies in the log.
The advantages of this approach are:

• Less false negatives, compared to the BST approach.

The disadvantages are:

• Slower than the hash-table approach in the average case; the complexity of both
saving and searching is log(N).

• Higher false positives than the BST approach since it allows re-instrumentation of
some portions of a trace.

Note that a trace address and length will be saved in the log, only if the trace is actually
instrumented i.e., the trace’s version is V INSTRUMENT.

4.4 Evaluation of the Log Search Approaches

In this section, we describe our experiments to evaluate the three log-search approaches.
For brevity and conciseness, we evaluate the approaches using only the Trace Version im-
plementation of DIME (Section 3.2.1). According to the results, we choose which approach
extends DIME with the feature of suppressing redundant instrumentation output.

We experiment with two SPEC2006 C benchmark [46] programs (lbm and mcf) for three
runs. We later, in Section 4.5, use more SPEC benchmarks to evaluate the performance of
DIME over up to eight runs. The experiments run on top of a workstation hosting a quad-
core i7 3.4 GHz Intel processors with 8 MB of cache, and 16 GB of RAM. The operating
system is an Ubuntu 12.04 patched with a real-time kernel v3.2.0-23 to convert Linux into
a fully preemptible kernel. We use the same implementation of the get time() function as in
Section 3.3.1. To obtain accurate results, we inhibit task migration between cores and lock
core speed to the maximum frequency. The experimentation environment also maintains a
real-time scheduling policy and priority. These modifications guarantee accurate results for
performance evaluation and are not mandatory for DIME correctness. The experiment uses
a branch-profiling analysis tool which has a heavy-weight analysis routine. It prints out the
jump, call, and return instructions in addition to the source address and the destination

41

address. The tool is based on the branch target addr pintool that is available as a part
of the Pin’s kit v2.12-56759. The pintool is modified to extract the branch profile of the
whole program instead of only a part of it. A branch profiler is useful for investigating
the code coverage of a program. The time-period parameter in DIME is set to one second
and the instrumentation budget is set to 0.1 seconds. Each experiment, in this section and
Section 4.5, is conducted once due to the very long execution time when instrumenting the
benchmarks on top of native Pin. For example, povray benchmark originally executes in 2.5
minutes, but on top of native Pin, it consumes four days of CPU time. The execution time
of the other benchmark programs, on top of Native Pin and DIME, will be discussed in
Section 4.5. However, the runs of each DIME experiment can be considered as repetitions
since all the runs operate identically. There exists one minor difference between the first
run and the following ones. The first run starts with an empty log while the following runs
read the log from a file before launching and instrumenting the program.

The evaluation of the proposed approaches is based on the following metrics:

1. Instrumentation Coverage: The ratio of the instrumentation output of DIME
to that of native Pin. Note that we consider only unique (non-redundant) traces.
Increasing the instrumentation coverage is the main objective of the proposed ap-
proaches.

2. False positives: A false positive will occur if DIME permits the instrumentation
of a previously instrumented trace or trace-portion. This metric measures the ratio
of false positives to the total number of instrumented traces in the current run.
The ratio of false positives indicates the efficiency of the log searching approach in
identifying previously instrumented traces. As the ratio of false positives decreases,
the budget utilization increases and the number of required runs to maintain high
coverage decreases.

3. False negatives: A false negative will take place when DIME refuses to instrument
a trace which was not instrumented before. The metric measures the ratio of false
negatives to the total number of traces that got rejected by DIME in the current run.
This value includes the trace portions as well i.e., a part of the trace is instrumented
but the other part is not. As the ratio of false negatives increases, the ability of the
approach to maintain high coverage decreases.

4. Slow-down factor of the instrumented program: The ratio of the execution
time of the dynamically instrumented benchmark to the execution time of the na-
tively running benchmark. This metric examines the ability of DIME to reduce

42

runtime overhead, compared to Pin, while saving to and searching the log to sup-
press instrumentation redundancy. It also checks if the three approaches introduce
different runtime overhead. Low runtime overhead is essential for the instrumentation
of time-sensitive systems as discussed before.

5. Overshoots: An overshoot will occur when actual instrumentation time exceeds
the budget. The magnitude of the overshoots shows how strictly DIME respects the
instrumentation budget. This metric also checks the effect of the different approaches
on the magnitude of the overshoots.

Hta
ble

−lb
m

BST−lb
m

M
er

ge
r−

lbm

Hta
ble

−m
cf

BST−m
cf

M
er

ge
r−

m
cf

0

20

40

60

80

100

Approach − Benchmark

C
ov

er
ag

e
P

er
ce

nt
ag

e
(%

)

Run−1
Run−2
Run−3

Figure 4.1: Instrumentation coverage of the redundancy suppression approaches

t e s t r12 , r12
se tnz byte ptr [rsp+0x3b]
jnz 0 x 7 f f f f 7 d e 2 6 a 8
mov eax , dword ptr [rsp+0x30]
and eax , 0x10000000
. . .
c a l l 0 x 7 f f f f 7 d f 2 8 5 0

Listing 4.1: Example (2) of a trace.

Figure 4.1 shows the instrumentation coverage of the three approaches with lbm and
mcf. The hash-table approach guarantees the highest instrumentation coverage. After three
runs, it achieves 97% of the instrumentation coverage of native Pin for lbm benchmark,

43

and 98% for mcf. The coverage of BST is 83% and 80% for lbm and mcf, respectively.
Finally, BST-Merger generates 90% and 88% of the instrumentation output for lbm and mcf,
respectively. The low ratio of false negatives of the hash-table approach is one reason for
achieving the highest coverage. The hash-table approach is a conservative one which favors
re-instrumenting some trace portions over uninstrumenting them. Also, some scenarios lead
to a decreased instrumentation coverage for the BST and Merger BST approaches compared
to the hash-table approach. As mentioned previously, a trace can have multiple exits, e.g.,
can include multiple jump instructions. Listing 4.1 is an example of a trace with multiple
exits (contains jnz and call instructions). Assume the starting address of the trace is 34192
and the trace length is 62. Assume DIME encounters this trace for the first time, and
cannot find the address 34192 in the log as a key or as a part of another log-entry. Hence,
DIME allows instrumentation of this trace. Assume that enough instrumentation budget is
available to instrument all the instructions in the trace. Thus, the trace address along with
its length are saved in the log as 〈34192, 62〉. The instrumentation-routine inserts analysis-
routine calls for all the instructions in the trace. Assume that in the first run of DIME,
the first three instructions only execute and a jump (through jnz) occurs. In the second
run, DIME (BST and BST-Merger) prohibits instrumentation for the trace 34206 (starting
from the mov instruction) since it lies inside the logged trace 〈34192, 62〉. Accordingly, no
information is extracted starting from the address 34206 since these instructions do not
execute in the first run and DIME prevents their instrumentation in the following runs.
Although, the program runs with the same inputs, this can occur due to non-deterministic
execution of some shared libraries such as libc and the Linux loader. For such shared
libraries, execution can slightly change according to the processor state. In such cases, the
BST and the Merger BST approaches fail to extract some information, thus decreasing
their instrumentation coverage.

The ratio of false positives is shown in Figure 4.2a. The hash-table approach has the
highest ratio with both lbm and mcf benchmarks. The BST-Merger approach has moderate
values of false positives, whereas BST has approximately zero false positives. This means
that BST accurately identifies the previously instrumented traces and efficiently utilizes
the budget to instrument other traces. On the other hand, BST has a high ratio of false
negatives, as shown in Figure 4.2b, which is an undesirable feature. BST-Merger sustains
approximately zero false negatives, and hash-table has negligible ratios of false negatives.
The scenarios discussed in Section 4.3 explain the values in Figures 4.2a and 4.2b. Note that
the false-negatives ratio is more critical than false positives. Although false positives cause
instrumentation redundancies, it is safer. False negatives prevent code portions from being
instrumented in any run which can dramatically decrease the instrumentation coverage.
The results show that there is a trade-off between false positives and false negatives. In

44

Htable
lbm

BST
lbm

Merger
lbm

Htable
mcf

BST
mcf

Merger
mcf

0

10

20

30

40

Approach − Benchmark

Fa
ls

e
P

os
iti

ve
s

(%
)

Run−1
Run−2
Run−3

(a) False Positives

Htable
lbm

BST
lbm

Merger
lbm

Htable
mcf

BST
mcf

Merger
mcf

0

10

20

30

40

50

60

Approach − Benchmark

Fa
ls

e
N

eg
iti

ve
s

(%
)

Run−1
Run−2
Run−3

(b) False Negatives

Figure 4.2: False-positives ratio and false-negatives ratio of the redundancy suppression
approaches

such case, we prefer the approach that maintains low ratio of false negatives even if it
has high ratio of false positives. Thus, the hash-table and the BST-Merger approaches
outperform the BST one in this regard.

Figure 4.3a presents the slow-down factors of native Pin and the proposed log-keeping
approaches of DIME with the lbm benchmark. On top of native Pin, lbm runs 68x slower
than the native execution. On the other hand, the hash-table approach of Pin achieves
a slow-down of 1.4x, 1x, and 1x for three consecutive runs. The overhead of the BST
approach is 1.5x, 1x, and 1x, while that of BST-Merger is 1.5x, 1x, 1x for three runs. In
Figure 4.3b, native Pin slows down the execution 251x with the mcf benchmark. Whereas,
the slow-down factors of the hash-table approach for the three runs are 1.7x, 1x, and 1x.
These of BST are 1.6x, 1.7x, and 1x, and BST-Merger shows a slow-down of 1.9x, 1x,
and 1x. To sum up, DIME reduces the runtime overhead by at least 45 folds for lbm

and 132 folds for mcf. These numbers reveal that the three modifications of DIME are
able to dramatically reduce the runtime overhead of native Pin. Thus, all of the three
DIME modifications are suitable for dynamically instrumenting time-sensitive systems.
Comparing the three approaches to each other, none of them shows a significant overhead-
decrease over the others. Consequently, runtime overhead is not a factor that differentiates
among the three approaches.

45

Native Pin Htable BST Merger

0

1x

2x

67x

68x

Approach

S
lo

w
 D

ow
n

Fa
ct

or

Run−1
Run−2
Run−3

(a) lbm benchmark

Native Pin Htable BST Merger

0

1x

2x

250x

251x

Approach

S
lo

w
 D

ow
n

Fa
ct

or

Run−1
Run−2
Run−3

(b) mcf benchmark

Figure 4.3: Slow-down factors of native Pin and the redundancy suppression approaches
of DIME

Figure 4.4 shows the overshoots’ magnitude for the three proposed approaches of DIME
over the execution time of the mcf benchmark while instrumenting it using the DIME ver-
sion of the branch-profiling pintool. The three approaches respect the instrumentation
budget; the values for the most frequent overshoots lie below 4 microseconds. The differ-
ences in the overshoots’ magnitudes among the three approaches of DIME are insignificant.
Thus, this metric is also not a factor to favor one approach over the others.

Non-intuitively, the evaluation metrics reveal that the simplest approach, which is the
hash-table one, results in the best instrumentation coverage results. Moreover, the hash-
table approach provides low values of false negatives, maintains low runtime overhead, and
respects the instrumentation budget. Accordingly, we choose the hash-table approach to
support instrumentation-redundancy suppression in DIME.

4.5 Performance Evaluation

This section presents the experimentation of redundancy suppression in DIME and dis-
cusses its performance. In these experiments, DIME uses the Trace Version implementa-
tion along with the hash-table trace logging.

46

●●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●●
●
●
●

●
●
●

●
●

●

●●●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●
●●

●

●
●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●
●

●

●

●
●●

●
●

●
●
●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●
●
●
●
●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●
●

●
●
●

●●●
●●

●

●●

●

●

●
●

●

●●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●●

●●

●
●

●

●●
●

●

●

●

●
●

●
●

●

●
●

●

●
●●
●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●

●●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

0 100 200 300 400 500 600 700
Execution Time

0

2

4

6

8

O
ve

rs
ho

ot
 (

us
ec

)

(a) Hash-table

●
●

●

●

●

●
●●

●
●

●●

●
●●

●

●

●

●●

●●
●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●●
●
●

●
●

●
●
●

●

●

●

●●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●●
●
●

●

●

●

●

●

●
●

●

●●

●

●●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●●

●
●

●

●

●●

●

●

●

●
●

●

●●
●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●●

●
●●

●
●●

●

●●
●●
●

●

●

●

●

●

●●

●
●

●●

●

●

●
●

●●

●
●●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●●
●

●

●
●
●
●
●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●
●

●
●
●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●●
●
●●●
●

●

●

●

●
●

●

●
●

●●

●●
●

●●

●●

●●
●

●

●

●

●
●

●

●
●
●●

●

●

●
●●●

●

●
●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●
●●●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●
●

●●
●

●
●

●●

●

●

●

●
●
●
●

●●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●●

●

●

●

●

●
●
●

●

●

●

●

●
●
●
●
●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●
●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●
●

●●

●

●

●●
●

●

●

●

●

●
●●
●

●

●●
●●
●

●
●

●

●

●●●
●
●●●

0 100 200 300 400 500 600 700
Execution Time

0

2

4

6

8

10

12

O
ve

rs
ho

ot
 (

us
ec

)
(b) BST

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●●

●

●●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●
●

●

●

●
●

●
●
●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●
●

●●

●

●
●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●●

●●

●
●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●●

●
●●

●
●

●

●●
●
●

●●

●
●

●

●

●

●

●
●

●

●●●

●

●
●

●●●

●

●●
●●

●●

●

●
●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●
●
●●

●

●

●

●

●

●

●

●
●
●●

●

●

●
●
●●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●●●

●●

●

●

●

●

●

●●

●

●

●●
●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●●

●
●

●

●
●

●
●

●

●
●

●

●

●●

●
●

●

●
●

●
●

●

●
●●

●
●
●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●
●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●
●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

●
●

●
●

●

●●

●

●
●
●

●

●
●

●
●
●

●
●

●
●

●●

●●

●

●

●

●
●

●

●●●
●
●

●●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●

●
●

●

●

●
●

●

●

●

●●●

●

●
●

●

●
●

●●

●●

●
●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●●●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●
●

●
●
●

●

0 100 200 300 400 500 600 700
Execution Time

0

2

4

6

8

O
ve

rs
ho

ot
 (

us
ec

)

(c) Merger BST

Figure 4.4: Overshoots of the redundancy suppression approaches in the first run with the
mcf benchmark.

4.5.1 Experimental Setup

The experimental setup is similar to the one described in Section 4.4. We experiment
with the SPEC2006 benchmark suite [46] including C and C++ integer and floating point
programs. The instrumentation objective is extracting the branch-profile of the programs.
We use the Pin kit v2.12-56759 and gcc v4.6.3. The time-period parameter is also set
to one second and the instrumentation budget is set to 0.1 seconds for all the benchmark
programs. Note that the experimentation included more benchmarks, however, these extra
benchmarks are not reported since the execution time on top of native Pin exceeded twenty
days.

We evaluate the performance of DIME using the metrics: (1) instrumentation coverage
and (2) slow-down factor of the instrumented program. These metrics have already been
defined in Section 4.4.

4.5.2 Experimental Results

DIME is capable of maintaining high instrumentation coverage. Figure 4.5 shows the ratio
of the amount of the extracted instrumentation output through multiple runs of DIME
with respect to that extracted by native Pin. DIME is capable of extracting 97% and 99%
of the instrumentation output in four runs for dealII and mcf benchmarks consequently.
In five runs, DIME generates a coverage of 99% for both namd and lbm. It extracts 92%
and 97% in the sixth run for milc and povray consequently. DIME also extracts 98% when
instrumenting xalancbmk for seven runs, and 91% of the instrumentation output of sphinx3

after eight runs.

47

na
m

d

xa
la

nc
bm

k

de
al

II

po
vr

ay

sp
hi

nx
3

lb
m

m
cf

m
ilc

0

10

20

30

40

50

60

70

80

90

100

Benchmark

C
ov

er
ag

e
P

er
ce

nt
ag

e
(%

)

Run−1
Run−2
Run−3
Run−4
Run−5
Run−6
Run−7
Run−8

Figure 4.5: Instrumentation coverage of DIME with redundancy suppression

DIME outperforms native Pin in terms of runtime overhead. It reduces the runtime
overhead of dynamic instrumentation by one to three orders of magnitude compared to
native Pin. Figure 4.6 shows the slow-down factor of native Pin, and the average slow-
down factor of the eight runs of DIME for each benchmark program. Note that the average
slow-down factor is the geometric mean. Native Pin dramatically slows down the program
execution. The average slow down of native Pin is 706x the original benchmark execution,
with maximum value of 2971x and minimum value of 67x. The benchmarks’ continuous
execution time on top of native Pin ranges from four hours to nine days with an average
of four days. On the other hand, the benchmarks on top of DIME take from three to 42
minutes with an average of nine minutes. The average slow-down of DIME is 1.5x, with a
maximum value of 8x and a minimum value of 1x.

Running a program multiple times on top of DIME is less time-consuming than native
Pin. More importantly, DIME allows the program to maintain its timing properties. Re-
specting such properties is essential for time-sensitive systems. Additionally, multiple runs
of DIME provide very high instrumentation coverage compared to native Pin.

48

795x
1733x

2971x 2438x
1738x

67x
251x 208x

0

2

4

6

8

namd xalan deal povray sphinx3 lbm mcf milc
Benchmark

S
lo

w
−

do
w

n
Fa

ct
or

Native Pin DIME*

Figure 4.6: Slow-down factors of native Pin, and DIME with redundancy suppression

4.6 Case Studies

This section demonstrates the scalability and the practicality of DIME through two case
studies.

4.6.1 VLC Media Player

This case study reveals the usability of DIME for instrumenting multi-threaded time-
sensitive software. VLC [13] is a multi-platform media player that consists of approximately
600 000 lines of code and uses dependencies of approximately three million lines of code.
Similar to the case study in 3.4.1, we aim to extract the call context tree of VLC v2.0.8
while playing a high definition, 29.97 fps, 720x480, 1 Mbps bitrate video. The tool, used
in this case study, is based on the DebugTrace pintool which is available in Pin’s v2.12
kit. We use the tool to extract the call traces, then we use the call traces to build a call
context tree. The platform is an Ubuntu 12.04 machine hosting a quad-core i7 2.6 GHz
Intel processors with 8 GB of RAM. For DIME, we set the time period to one second and
the budget to 0.1 second which enables VLC to run the video smoothly.

Table 4.1 shows the number of video blocks that VLC decodes for viewing frames. The
number of decoded blocks are shown for VLC without instrumentation, with native Pin,

49

Decoded Blocks Nodes(%) Edges(%)
Original 594 N/A N/A
Native Pin 37 100% 100%
DIME (run 1) 574 95.7% 93.6%

(run 2) 594 98% 96.2%
(run 3) 594 98.2% 96.5%

Table 4.1: Results for the VLC case study (redundancy suppression)

and with DIME. The table also lists the extracted percentage of the nodes and the edges
of the call-context tree (i.e., the cumulative coverage of DIME compared to Pin).

Our conclusion is that DIME dramatically decreases the run-time overhead of dynamic
instrumentation, respects the timing properties, and maintains almost the same instrumen-
tation coverage. On top of native Pin, VLC fails to maintain a continuous video playback.
The video is unwatchable; only 37 video blocks (out of 594) are decoded. VLC generates
multiple errors of dropping video frames due to very slow processing. On the other hand,
DIME enables VLC to play the video continuously. VLC decodes 574, 594, and 594 video
blocks (out of 594) for the three runs consecutively. DIME extracts 98% of the call context
tree nodes and 96% of the edges.

4.6.2 PostgreSQL

DIME is useful for extracting sufficient analysis information while maintaining high quality
of service (QoS). PostgreSQL [8] is a powerful object-relational database management sys-
tem that supports SQL standards. PostgreSQL 9.1 consists of approximately one million
lines of code. When an application sends a database request to PostgreSQL, a connec-
tion will be established, and a parser will check the query syntax and create a query tree.
Then, an optimizer generates a query plan from the tree and sends the plan to the ex-
ecutor. Finally, the executor steps through the commands in the query plan to retrieve
the required information or to make the required updates to the database. Pgbench [7]
is a benchmarking tool for testing the performance of PostgreSQL. It runs a sequence of
transactions multiple times in multiple database sessions. The objective of this case study
is the extraction of the branch-profile of PostgreSQL while processing a total of 800 000
transactions. PostgreSQL runs 16 database sessions where each session consists of 50 000
transactions. The case study runs on an Ubuntu 12.04 platform hosting a quad-core i7 2.6
GHz Intel processors with 8 GB of RAM. We set the budget of DIME to 7% and the time
period to one second. These values enable DIME to extract sufficient information while
keeping high performance of PostgreSQL.

50

Table 4.2 shows the performance of PostgreSQL while (1) running natively, (2) running
on top of native Pin, and (3) running on top of DIME. The total time consumed to
process the 800 000 transactions is an indication of the performance. As the processing
time increases, the degradation in the quality of service (QoS) increases. The processing
time reported excludes connection-establishing time. The table also shows the coverage of
DIME with respect to that of Pin.

In this case study, DIME extracts 97% of the analysis data while reducing the runtime
overhead by 68 folds compared to native Pin. Originally, PostgreSQL processes all the
transactions in 46 seconds. Native Pin causes a slowdown of 96x; PostgreSQL executes the
same number of transactions in 1.2 hours. On the other hand, DIME maintains slowdown
of only 1.4x, 1.4x, and 1.3x in three runs, consecutively.

Total Time (sec) Coverage(%)
Original 46 N/A
Native Pin 4419 100%
DIME (run 1) 65 42%

(run 2) 65 75%
(run 3) 61 97%

Table 4.2: Results for the PostgreSQL case study (redundancy suppression)

4.7 Summary

DIME provides high instrumentation coverage, respects the timing properties, and dramat-
ically reduces the run-time overhead of dynamic binary instrumentation. DIME suppresses
logging of redundant tracing information to increase instrumentation coverage. The results
show a reduction in the overhead of the instrumentation process by one to three orders
of magnitude compared to native Pin while achieving up to 99% of the instrumentation
coverage. DIME was able to extract 97% of the call context tree of the VLC video player
while playing a high definition video. VLC fails to provide a watchable video while being
instrumented using native Pin. DIME was also used for the branch profiling of the Post-
greSQL database management system and was able to extract 97% of the instrumentation
information in three runs. DIME extracts this information in less than two minutes per run
while native Pin takes 1.2 hours to extract the information. These case studies show the
scalability of DIME and its ability to limit the instrumentation overhead while achieving
a high instrumentation coverage.

51

Chapter 5

Parameter Tuning of DIME

5.1 Overview

This chapter discusses the idea of tuning the parameters of DIME to achieve higher perfor-
mance, i.e., lower runtime overhead and higher instrumentation coverage. The operation of
rate-based dynamic binary instrumentation depends on two main factors: the time period
T and the instrumentation budget B. DIME allows instrumentation to run for a maximum
of B time units in every time period T (as illustrated in Chapter 3). The instrumenta-
tion budget B is specified during the system design phase. The experiments conducted
in Chapters 3 and 4 demonstrate the applicability of DIME for different programs at the
default time period of one second. However, it is unknown how the value of the time period
affects the performance of DIME. For instance, does changing the value of the time period
T increase or decrease the slow-down factor of the instrumented program? Does the value
of the time period T influence the coverage extracted by DIME? Is there an interaction be-
tween the value of the instrumentation budget B and that of the time period T? Defining
the relation between T and DIME’s performance provides a deeper understanding of the
internals of DIME and, accordingly, offers practical guidance for DIME parameter tuning.

5.2 Methodology and Experimental Design

This section describes the setup of the experiments which aim to understand the effect
of DIME’s parameters on the runtime overhead and the coverage of the instrumented
program. The main factors of interest are the time period T and its interaction with

52

the instrumentation budget B. There are other factors that can contribute to DIME’s
performance such as the experimentation platform, the analysis tool, and the program
to be instrumented. We conduct the experiments on three different program categories
and vary the values of the time period T and the budget B. The experiments report the
slow-down factors of the instrumented programs along with the unique coverage and the
raw coverage. Finally, the analysis-of-variance (ANOVA) statistical test is used to judge
the experiment hypotheses.

The budget value B, in this chapter, denotes the percentage of the time period speci-
fied for instrumentation. Assume that the execution time of an instrumented program P
equals to 10 seconds. A budget of B = 10%, for example, means that the maximum total
instrumentation time is one second regardless of the time period T . The time-period value
T determines how the budget usage is distributed over the execution of the instrumented
program. A high time-period value forces the budget to be available in larger chunks but
less frequency than a low time period.

5.2.1 Hypotheses

The following hypotheses formulate the research questions investigated through the exper-
iments.

Hypothesis 1. There exists a negative correlation between the value of the time period T
and the slow-down factor of the instrumented program atop of DIME.
As discussed in Chapter 3, when DIME fully consumes the budget B, it turns off instru-
mentation by switching the trace version from V INSTRUMENT to V BASE. As the
time-period value decreases, the frequency of version switching in DIME increases. For
example, with a time-period value of 1 sec, DIME will switch versions twice per second in
the worst case. The first version switch occurs when the budget is fully consumed, and
the second switch is due to budget replenishment at the end of the period. Whereas, for
a 0.25 second time period, there exist eight version switches per second in the worst case
leading to a higher runtime overhead. This hypothesis evaluates the efficiency of DIME
with respect to runtime overhead.
We define the null hypothesis as Hs

0 : µs
low = µs

high such that µs
low and µs

high are the means of
the slow-down factor at the low level and the high level of T respectively. In other words,
the null hypothesis Hs

0 states that the means of the slow-down factors are equal at the low
and the high levels of T . We conduct an ANOVA test to judge the null hypothesis. A
rejected null hypothesis proves the presence of a correlation between the time period T and

53

the slow-down factor of the instrumented program. On the other hand, if the ANOVA test
failed to reject the null hypothesis, it suggests the absence of the mentioned correlation.
The following sections include more details on the ANOVA tests and results.

Hypothesis 2. There exists a negative correlation between the value of the time period T
and DIME’s unique instrumentation coverage.
The unique instrumentation coverage represents the amount of extracted non-redundant
information. As the time period increases, DIME is expected to collect more redundant
traces according to the instructions’ locality. The principle of temporal locality states
that recently executed instructions are likely to be re-executed in the near future [83].
Also, a program can spend about 90% of its execution time running only 10% of its
instructions [83]. For example, nested loops have a relatively high number of branch
instructions of which many are non-unique. With a high time-period value, DIME may
waste the budget extracting all the branch instructions in the nested loops. This results
in a higher total number of extracted traces but may lead to a lower number of unique
traces. Whereas, a low time-period value forces DIME to split the budget covering more
code regions and increasing the probability of collecting unique traces. This hypothesis
studies the impact of DIME parameters on collecting quality runtime information.
Given that µu

low is the mean unique coverage at the low level of T and µu
high is that at the

high level of T , the null hypothesis is defined as Hu
0 : µu

low = µu
high. Using ANOVA, we

test the null hypothesis Hu
0 . The rejection of the null hypothesis can prove the correlation

between the time period T and the unique instrumentation coverage. Contrarily, failing to
reject the null hypothesis suggests that the means of the unique coverage at the high and
the low levels of T are equal, i.e., no correlation exists.

Hypothesis 3. The value of the time period T is positively correlated with DIME’s raw
instrumentation coverage.
The raw instrumentation coverage indicates the total amount of extracted runtime infor-
mation. As the time period increases, DIME may collect more redundant traces resulting
in a higher number of traces in total (as explained previously). This hypothesis evaluates
the impact of the time-period T on DIME’s ability to extract runtime information. This is
useful when, regardless of the uniqueness, the full output of the analysis tool is of interest.
An example of such an analysis tool is the data-cache simulator which extracts cache hits
and misses during program execution.
The null hypothesis, in this case, is Hr

0 : µr
low = µr

high where µr
low and µr

high denote the mean
raw coverage at the low and the high level of T respectively. We can confirm the existence
of a correlation between the time period T and the raw instrumentation coverage if the

54

ANOVA test rejects the null hypothesis Hr
0 . Otherwise, failing to reject the null hypothesis

implies the absence of the mentioned correlation due to the equality of the means of the
raw-coverage values at the high and the low levels of T .

5.2.2 Experimental Factors

This section describes a number of factors that contribute to the performance of DIME
and explains how the experimental setup handles these factors.

Input Factors and Levels An experiment aims to study the dependency between the
factors (or independent variables) and the response (or dependent) variables. The factors
are the input variables set by the experimenters, whereas the response variables are the
output. There exist two factors to manipulate through the experiments to understand
their effect on the performance of DIME.

• The time period T : It is the rate at which DIME replenishes the instrumentation
budget B. Studying the effect of the time period T on the slow-down factor and the
instrumentation coverage is the primary objective of the experiments.
Levels: In the experiments, the time period T has two levels: (1) low with T = 0.25 sec
and (2) high with T = 4 sec. The relatively high difference between the levels of T
can help to emphasize the impact of T on the response variables (if exists). In other
words, the effect of T will be noticeable visually and statistically.

• The instrumentation budget B: It is the percentage of the time period T in which
DIME allows the execution of the analysis routine. The value of the instrumentation
budget B is specified during the system design process. However, we are interested
in testing if an interaction exists between the instrumentation budget B and the time
period T . An interaction is the case in which one factor a produces a different effect
on the response variable at different levels of another factor b [73]. In other words,
can the budget value B alter the impact of the time period T on the performance of
DIME?
Levels: The experiments operate with two levels of the instrumentation budget B:
(1) low; B = 2% of T and (2) high; B = 25% of T . The low level of B represents a
restrictive instrumentation budget, whereas the high level demonstrates a relatively
relaxed one.

55

Response variables. A response variable is the measured outcome of the experiment.
The response variables of interest in our case are as follows:

• Slow-down factor of the dynamically instrumented program: the ratio of the
execution time of the instrumented program on top of DIME to the execution time
of the natively running program. This measurement reflects the runtime overhead
of dynamic instrumentation using DIME. To get the best performance of DIME,
the experiments aim to find the value of T , with respect to B, that minimizes the
slow-down factor.

• Unique instrumentation coverage: the ratio of the number of unique traces of
DIME to that of native Pin. This value highlights the ability of DIME to provide
quality information. The objective is to define the value of T , with respect to B,
that provides the maximum unique coverage. The user of DIME should focus on this
metric along with T if the analysis tool collects non-interesting redundancies, e.g.,
for code coverage or building call-context tree.

• Raw instrumentation coverage: the ratio of the total number of traces collected
by DIME to that collected by native Pin. This metric, also, highlights DIME’s ability
to gather quality information but only when all the extracted traces are useful, i.e.,
no redundancy. The goal is to find the value of T , given B, that maximizes the raw
coverage.

The ratio of the number of unique traces to that of the total traces highly depends
on the implementation of the analysis tool and the formatting of the output traces. In
this chapter, we are solely interested in the impact of DIME parameters on the number of
unique traces and the total number of traces.

Analysis tool. To block the effect of the analysis-tool factor on the response variables,
the experiment involves only one analysis tool: the branch profiler. As mentioned in
Chapter 4, the branch profiler has a heavy-weight analysis routine. At run time, it extracts
the jump, call, and return instructions out of the whole program (and not only a part of
it). The branch profiler is a modified version of the branch target addr pintool that is
available in Pin kit v2.14-71313.

Platform. The experiments run on three workstations of the same hardware and software
specifications. Each workstation hosts a 64-bit dual 6-core Intel-Xeon CPU (E5-2620V3).

56

Each workstation has 15 MB of processor cache, 256 GB of RAM, and a CPU frequency
of 3.2 GHz. The workstations are running Ubuntu 12.04 patched with the real-time kernel
v3.12.66-rt89 to convert the kernel into a fully preemptive one. To further reduce the
variability in the experimental results, we prohibit core migration such that an experiment
process runs on a single core. We also lock core frequencies to the maximum value and
increase the scheduling priority of the experiment processes. Note that we use a unified
hardware and OS specifications to block the effect of the platform factor on the response
variables [81]. Also, all the implementation aspects of DIME complies with the description
in Chapter 3. Through the experiments, we use the Trace Version implementation of
DIME without the redundancy suppression feature.

5.2.3 Benchmark Sets

To cover a wide range of software programs, the experiments include three program cat-
egories: CPU, IO, and memory intensive. We investigate whether the program category
contribute to the impact of DIME parameters on its performance. The following are the
three benchmark sets included in the experimentation to present the mentioned program
categories:

1. CPU intensive: The SPEC 2006 benchmark suite is widely used in industry and
academia to stress test a system’s processor [46]. Our experiments use the complete
SPEC C benchmarks which consist of twelve integer and floating-point programs.
The SPEC C suite covers various domains as listed in Table 5.1. For some benchmark
programs, the suite includes multiple input sets (see third column in Table 5.1).
In such cases, the experiments execute the benchmark programs with each of the
provided inputs.

2. IO intensive: IOzone is an I/O file-system benchmarking tool [5]. IOzone runs 13
tests as shown in Table 5.2. A single execution of a test runs 70 iterations, by default,
covering a file-size range of 64 KB to 512 MB and a record-size range of 4 KB to 16
MB.

3. Memory intensive: Stress-ng is a testing benchmark tool for various physical sub-
systems such as CPU and cache [12]. The experiments use the virtual-machine (VM)
Stress-ng benchmark set which exercises the system’s memory. Ten of the VM bench-
marks are able to run on our platform. The rest of the VM benchmarks are either not
implemented for the experimental platform or failed to operate with dynamic instru-
mentation (of both native Pin and DIME). Table 5.3 describes Stress-ng benchmark

57

Table 5.1: CPU intensive: list of SPEC C benchmark programs

Benchmark Domain Num. of Inputs
Perlbench Programming Language 3
bzip2 In-memory compression 6
gcc C Language Optimizing Compiler 9
mcf Optimization/Scheduling 1
gobmk Artificial Intelligence/Game playing 5
hmmer Search Gene-Sequence Database 1
sjeng Artificial Intelligence/Game playing 1
libquantum Physics/Quantum Computing 1
h264ref Video Compression 3
milc Physics 1
lbm Fluid Dynamics 1
sphinx3 Speech recognition 1

programs and lists the number of operations per single execution. The numbers of
operations set in the experiments equal to these performed in a two-minute native ex-
ecution. The benchmarks execute sequentially with the option of no random seeding
(–no-rand-seed) to ensure the reproducibility of the tests. Both native Pin and DIME
run with the instrumentation option follow execv to ensure the instrumentation of
the child processes when exist.

5.2.4 Factorial Design

The experiments follow a 22 factorial design with high and low levels of both T and B.
Through the experiments, we measure the values of the response variables (slow-down
factor, unique coverage, and raw coverage). To reduce the experimental error, we run ten
replications for each benchmark set. Each replication involves the four combinations of the
levels of T and B.

An analysis-of-variance (ANOVA) statistical test analyzes the experimental results for
each benchmark set and each response variable. ANOVA is useful for examining the
significance of the input factors by testing whether the means of two or more populations
are equal [73]. For each benchmark set, a factorial ANOVA was conducted to compare (1)
the effect of the time period T , (2) the effect of the instrumentation budget B, (3) the
effect of the benchmark program P , and (4) the interaction effect between T and B on the
response variable.

Note that the benchmark program P is included in the ANOVA test as a blocking factor.

58

Table 5.2: I/O intensive: list of IOzone benchmark programs

Benchmark Description
Write/Re-write writing a newfile then writing to an existing file
Read/Re-read reading an existing file then reading a recently-read file
Random read/write reading and writing to random locations within a file
Random mix Mixed reading and writing to random locations within a file
Read backwards reading an existing file backwards
Re-write record writing and re-writing a particular location in the file
Stride-read reading a file with strided access behavior
fwrite/re-fwrite writing and re-writing a file using fwrite()
fread/re-fread reading an existing file and reading a recently-red file using fread()
pwrite/re-pwrite writing and re-writing a file using pwrite()
pread/re-pread reading an existing file and reading a recently-red file using pread()
pwritev/re-pwritev writing and re-writing a file using pwritev()
preadv/re-preadv reading an existing file and reading a recently-red file using freadv()

Table 5.3: Memory intensive: list of Stress-ng benchmark programs

Benchmark Description Num. of Operations
bigheap Heap re-allocation 3,590,698
mremap calls of mmap(), mremap(), and munmap() 807
brk iterations of expanding the data segment by one page 64,860,767
msync Data synchronization between file and memory 1,241,716
mmapfork Forking 32 child processes, each allocating memory 2
stackmmap flushing dirty pages of a 2MB stack using msync() 3,540
vm mmap()/munmap() calls and writing to the allocated memory 1,592,852
vm-rw Memory transfer between child and parent processes 12,439
vm-splice data transfer from memory to /dev/null through a pipe 44,247,682
malloc repeatedly allocate, reallocate, and free memory 100,000,000

The slow-down factor and the coverage of each program are different. Thus, the program
adds to the variability of the response variables. We must account for this variability when
conducting the ANOVA test although P is not a variable of interest.

5.3 Experimental Results

This section discusses the interpretation of the ANOVA test results and reflects on the
hypotheses mentioned in Section 5.2.1.

59

5.3.1 ANOVA Test Results

Recall that we use ANOVA to test the significance of the main effect of the time period T
and the interaction factor (between T and B) on the response variables. The significance is
decided based on the P-value at the 0.01 significance level. Appendix A lists the detailed
ANOVA result tables of all the conducted tests. First, we list the ANOVA test results
of the three response variables and for all the benchmark sets. Then, we discuss the
interpretation of the results in details.

1. Slow-down Factors

Figures 5.1a, 5.2a, and 5.3a summarize the distributions of the slow-down factors of
SPEC, IOzone, and Stress-ng benchmarks respectively. The x-axis shows the time-period
value T , and the y-axis represents the slow-down factors of the benchmark programs. The
data of the low budget value (2%) is plotted in green while that of the high budget (25%)
is shown in blue. Figures 5.1b, 5.2b, and 5.3b show the interaction effect between T and
B on the slow-down factors of SPEC, IOzone, and Stress-ng benchmarks in order. The
y-axes of the interaction plots show the geometric means of the slow-down factors at the
different levels of T and B. Parallel lines in an interaction plot indicate the insignificance
of interaction between factors.

The main effect of the time period T on the slow-down factor is statistically significant
for the three benchmark sets. Also, the interaction factor is statistically significant for
IOzone and Stress-ng. As the parallel lines in Figure 5.1b indicate, the interaction factor
is insignificant for SPEC benchmarks.

60

B: 2% B: 25%

●●

●
●

●●

●

●

●

●
●

●●

●

●

●●

●

●

●
●

●

●

●

●●

●

●●

●
●

●●

●

●

●

●

●

●

●
●
●

●

●●
●

●

●
●
●

●

●
●

●

●

●
●
●

●

●
●

●

●

●
●
●

●

●●

●

●

●
●
●

●

●
●

●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●

●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●

●

●
●

●

●

●
●
●

●

●
●

●

● ●

0

10

20

30

0.25 4 0.25 4
Time Period (sec)

S
lo

w
−

do
w

n
Fa

ct
or

(a) Box Plot

●
●

0.0

2.5

5.0

7.5

10.0

0.25 4
Time Period (sec)

A
ve

ra
ge

 S
lo

w
−

do
w

n
Fa

ct
or

Budget
● 2

25

(b) Interaction Plot

Figure 5.1: SPEC slow-down factors

B: 2% B: 25%

● ● ● ●

0.0

0.3

0.6

0.9

1.2

0.25 4 0.25 4
Time Period (sec)

S
lo

w
−

do
w

n
Fa

ct
or

(a) Box Plot

● ●

0.0

0.3

0.6

0.9

1.2

0.25 4
Time Period (sec)

A
ve

ra
ge

 S
lo

w
−

do
w

n
Fa

ct
or

Budget
● 2

25

(b) Interaction Plot

Figure 5.2: IOzone slow-down factors

61

B: 2% B: 25%

●●●●●●●●●● ●●●●●●●●●●

● ●

●●●●●●●●●●

●●●●
●●●●●●

● ●

0

2

4

6

0.25 4 0.25 4
Time Period (sec)

S
lo

w
−

do
w

n
Fa

ct
or

(a) Box Plot

● ●

0.0

0.5

1.0

1.5

2.0

0.25 4
Time Period (sec)

A
ve

ra
ge

 S
lo

w
−

do
w

n
Fa

ct
or

Budget
● 2

25

(b) Interaction Plot

Figure 5.3: Stress-ng slow-down factors

2. Unique Instrumentation Coverage

Both effects of the time period T and the interaction factor on DIME unique instrumen-
tation coverage are statistically significant. Figures 5.4, 5.5, and 5.6 show the box plots
and the interaction plots describing the unique coverage of SPEC, IOzone, and Stress-ng
consecutively

62

B: 2% B: 25%

●●●

●

●
●

●

●

●

●

0

25

50

75

100

0.25 4 0.25 4
Time Period (sec)

U
ni

qu
e

C
ov

er
ag

e
(%

)

(a) Box Plot

●
●

0

25

50

75

100

0.25 4
Time Period (sec)

A
ve

ra
ge

 U
ni

qu
e

C
ov

er
ag

e
(%

)

Budget
● 2

25

(b) Interaction Plot

Figure 5.4: SPEC unique instrumentation coverage

B: 2% B: 25%

●

●

●●

●

●●●●

●

●●

●

●

●

●●●●●●●●●●● ●

●

●

0

25

50

75

100

0.25 4 0.25 4
Time Period (sec)

U
ni

qu
e

C
ov

er
ag

e
(%

)

(a) Box Plot

●

●

0

25

50

75

100

0.25 4
Time Period (sec)

A
ve

ra
ge

 U
ni

qu
e

C
ov

er
ag

e
(%

)

Budget
● 2

25

(b) Interaction Plot

Figure 5.5: IOzone unique instrumentation coverage

63

B: 2% B: 25%

●

●

●
●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●●

●

●●

●●

●
●

●

●

●●●●●●●●●●
●

●

0

25

50

75

100

0.25 4 0.25 4
Time Period (sec)

U
ni

qu
e

C
ov

er
ag

e
(%

)

(a) Box Plot

● ●

0

25

50

75

100

0.25 4
Time Period (sec)

A
ve

ra
ge

 U
ni

qu
e

C
ov

er
ag

e
(%

)

Budget
● 2

25

(b) Interaction Plot

Figure 5.6: Stress-ng unique instrumentation coverage

3. Raw Instrumentation Coverage

The ANOVA test proved the statistical significance of the time-period effect and the inter-
action factor on the raw instrumentation coverage of IOzone and Stress-ng. On the other
side, the mentioned effects are insignificant on SPEC’s raw coverage. The summaries of
the raw-coverage results are shown in Figures 5.7a, 5.8a, and 5.9a and the interactions
appear in Figures 5.7b, 5.8b, and 5.9b for SPEC, IOzone, and Stress-ng in order.

64

B: 2% B: 25%

●

●

●●●

●

●●●

●

●●●●

●

●●●●

●

●●●●●

●

●●●●

●

●●●

●

●●●●

●

●●●●

●

●●● ●

●

●●●●●

●

●●●●●

●

●●●●

●

●●●●●●

●

●●●●●

●

●●●●●●

●

●●●●●●

●

●●●●●●

●

●●●●●

●

●●●●●● ●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●●

●

●

●●●

●

●

●
●
●

●

●

●
●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●●●

●

●

●

●

●●●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●●

● ●

0.0

0.5

1.0

1.5

2.0

0.25 4 0.25 4
Time Period (sec)

R
aw

 C
ov

er
ag

e
(%

)

(a) Box Plot

● ●

0.0

0.1

0.2

0.3

0.25 4
Time Period (sec)

A
ve

ra
ge

 R
aw

 C
ov

er
ag

e
(%

)

Budget
● 2

25

(b) Interaction Plot

Figure 5.7: SPEC raw instrumentation coverage

B: 2% B: 25%

●●●●●●●●●●●
●

●

●

0.0

0.5

1.0

1.5

0.25 4 0.25 4
Time Period (sec)

R
aw

 C
ov

er
ag

e
(%

)

(a) Box Plot

●
●

0.00

0.25

0.50

0.75

1.00

1.25

0.25 4
Time Period (sec)

A
ve

ra
ge

 R
aw

 C
ov

er
ag

e
(%

)

Budget
● 2

25

(b) Interaction Plot

Figure 5.8: IOzone raw instrumentation coverage

65

B: 2% B: 25%

●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

● ●0

20

40

60

0.25 4 0.25 4
Time Period (sec)

R
aw

 C
ov

er
ag

e
(%

)

(a) Box Plot

● ●0.00

0.25

0.50

0.75

1.00

0.25 4
Time Period (sec)

A
ve

ra
ge

 R
aw

 C
ov

er
ag

e
(%

)

Budget
● 2

25

(b) Interaction Plot

Figure 5.9: Stress-ng raw instrumentation coverage

5.3.2 Discussion

Hypothesis 1: Fail to reject the null hypothesis.

The runtime overhead of CPU-intensive programs is independent of the time-period value
of DIME. The ANOVA test proved the significance of the time-period effect on SPEC’s
slow-down factor (Figure 5.1). However, a deeper look into SPEC’s results reveals that
the ANOVA test was biased by the slow-down factors of one benchmark program: h264ref.
For all SPEC benchmark programs except h264ref, the time period shows no effect on the
slow down factor. By excluding h264ref and re-conducting the ANOVA test, both the
main effect of the time period and the interaction factor are insignificant.

Although the impact of the time period T on the slow-down factors of IOzone is statis-
tically significant, it is practically negligible. In all cases, the slow-down factors of IOzone
on top of DIME falls below 1.1x with a maximum of 1.07x. This implies that in practice,
the user of DIME can ignore the impact of the time period value and the interaction factor
on the runtime overhead of IO-intensive programs.

Similarly, it is practically possible to ignore the impact of the time period and the
interaction factor on the slow-down factors of memory-intensive programs. As the boxplot
in Figure 5.3a shows, the time period and the interaction factor do not impact the slow-
down factors of Stress-ng except for one benchmark program vm which appears as outliers

66

in the plot. The re-conduction of the ANOVA test without the slow-down values of the vm
program results in the insignificance of the time-period effect and the interaction factor.

According to the previous observations, we fail to reject the null hypothesis Hs
0 . There

exists no correlation between the time period T and the slow-down factor of the instru-
mented program on top of DIME. The low time period of T = 0.25 seconds increases the
worst-case version-switching frequency by 16 times compared to the high time period of T
= 4 seconds. However, the instrumented programs do not suffer from increased runtime
overhead in this case. This may indicate the efficiency of the version switching mechanism
of DIME.

Hypothesis 2: Fail to reject the null hypothesis.

We expect the unique instrumentation coverage to increase as the time period decreases.
A high time period keeps the budget available for longer time but in less frequency. DIME
may consume the budget extracting traces from the same code portion. The principle
of locality states that programs tend to re-execute recently executed instructions [83].
Contrarily, a low time period will force the budget to be distributed over the program
execution. This will increase the probability of DIME extracting unique traces. The
unique coverage results of SPEC complies with this scenario. As Figure 5.4 shows, there
exists a negative correlation between the unique coverage and the time period value.

The instrumentation of the SPEC benchmark results in much higher trace redundancies
than that of IOzone and Stress-ng. This is based on the unique coverage and the raw cov-
erage results of native-Pin instrumentation of the three benchmark sets. This observation
may justify the different correlations seen in Figures 5.5 and 5.6 for IOzone and Stress-ng
respectively. Infrequently executed instructions (or cold code) may benefit from increasing
the time period. An initialization function Init(), for example, may run only once during
the program execution. With a low time-period, the available budget during the execution
of Init() may be insufficient to extract all the instructions of interest,i.e., the branches in
our experiments. Whereas, a high time-period value increases the probability of DIME
extracting all the required instructions due to the availability of the budget for longer.
The unique coverage of Stress-ng, with high B, has a positive correlation with the time
period. Similarly with low B, the unique coverage of IOzone positively correlates with the
time-period value. As a result, we fail to reject the null hypothesis Hu

0 .

The interaction factor is showing a significant effect on the unique coverage of IOzone
(Figure 5.5). The budget B changes the impact of the time period T such that T has
a negative correlation with the unique coverage in the case of high B, but a positive

67

correlation in the case of low B. It is, also, interesting to notice in Figure 5.5b that,
with the same time period, low and high budget values result in equal unique coverage
on average. This is an example of the instrumentation budget that is wasted extracting
redundant traces.

From a different point of view, we can notice the interesting effect of the budget B on
both the runtime overhead and the unique instrumentation coverage. In general, increasing
the budget B results in a substantial increase in the unique coverage with a limited overhead
sacrifice. In the results of Stress-ng benchmark for example, changing the budget from 2%
to 25% causes an average unique-coverage increase of 47.5% with almost no added runtime
overhead.

Hypothesis 3: Reject the null hypothesis.

The raw-coverage results recommend rejecting the null hypothesis Hr
0 for IO and memory

intensive applications. In other words, the time period positively correlates with the raw
coverage of Stress-ng benchmark programs. Similarly, a high value of the time period will
increase the raw instrumentation coverage of IOzone. This is useful if the user of DIME is
interested in the full output of the analysis tool. In the case of a data-cache simulator, for
instance, the user should opt for a high time period. On the other side, we observed no
effect of the time-period value on SPEC’s raw instrumentation coverage.

5.4 Guidelines and Limitations

This chapter along with the previous two introduced the concept and the design aspects of
the time-aware dynamic instrumentation tool DIME. This section discusses the usability,
the work flow, and the limitations of DIME.

DIME is a dynamic instrumentation tool that respects timing constraints. DIME is
useful through multiple stages of the software development process. The developer can use
DIME to debug the software system by collecting runtime information that describes the
program execution. Examples of such information include memory access patterns, variable
traces, and register profiles. Also, DIME is a beneficial performance-engineering tool. In
other words, the developer can collect runtime information to evaluate the performance
of the system and optimize performance bottlenecks. Moreover, DIME can contribute to
runtime monitoring and verification frameworks. The authors in [54] utilized DIME as
the system monitor to verify Linear Temporal Logic (LTL) properties of software systems.

68

Being thread safe, DIME is useful for the debugging and the analysis of multi-threaded
applications. In this case, it is possible to divide the budget among the running threads
based on their priorities for example. Additionally, multiple independent instances of
DIME can run simultaneously on the same platform. Thus, the developer may use DIME
to understand the interaction between multiple applications running on the same platform.

Set
Time Period (T)

Set
Instrumentation

Budget (B)

Enable
Redundancy
Suppression

Run
InstrumentationInsufficient

Coverage?

Collect Unique
Runtime Info.?

Collect All
Runtime Info.?

Insufficient Performance
/Reduce Budget (B)

Finish

Start

Figure 5.10: Workflow Diagram of DIME

DIME is a fully-implemented analysis tool that requires only the availability of the
program’s executable and not the source code1. Similar to Pin, DIME requires the cre-
ation of an analysis tool (pintool) that contains the implementation of the instrumentation
and the analysis routines. Additionally, DIME needs the developer to set the values of
the instrumentation parameters (or keep their default values). Figure 5.10 shows the work

1DIME is available for download at https://github.com/pansy-arafa/DIME

69

https://github.com/pansy-arafa/DIME

flow of using DIME to instrument a program. First, the developer can enable the re-
dundancy suppression feature to force DIME to collect only unique traces. The second
step is setting the value of the time period (T). It is advised to keep the default value of
one second since the experiments in this chapter revealed no effect of the time-period value
on DIME’s runtime overhead. However, the developer may increase the value of T if he is
interested in increasing the raw coverage. Third, the developer should set the value of the
instrumentation budget B, according to the system design documents, or use the default
value of 10% of T . The final step is to execute the instrumentation, i.e., run the program
on top of DIME. If the performance of the program suffers during instrumentation, the
developer should reduce the instrumentation budget and re-execute DIME. Finally, since
DIME collects a partial amount of runtime information, multiple runs of DIME may be
required to collect sufficient instrumentation coverage. Turning on the redundancy sup-
pression feature can highly reduce the number of DIME runs. Note that the actions of
setting the parameters of DIME and turning on/off the redundancy suppression feature
are easily achieved through command-line parameters.

The following is the list of limitations of the time-aware dynamic binary instrumenta-
tion:

• Runtime overhead. Although DIME limits the runtime overhead of dynamic instru-
mentation, it does not guarantee zero overhead. In other words, some applications
can be highly sensitive to dynamic instrumentation. If the program’s performance
suffers on top of Pin without any pintool, then a less intrusive analysis technique can
be more suitable in this case, such as sampling or time-aware static instrumentation.

• Memory footprint. Dynamic instrumentation naturally requires the availability of
sufficient RAM memory to perform dynamic compilation during execution. Also,
there should be enough memory storage space to store the runtime information col-
lected by DIME. The size of such information can reach multiple gigabytes of data.

• Security. DIME can instrument a program only if its security specifications allow the
attachment of DIME to the program’s process. For example, the child processes of
the Google Chrome browser prohibit the attachment to DBI tools since they execute
within a restrictive environment.

• Multiple runs. The redundancy suppression feature may require multiple runs of
DIME. Although the program inputs should be the same in each run, changes in
the processor state may lead to a minor difference in program execution. A different
processor state among runs can, for example, alter the execution of shared libraries.

70

5.5 Summary

This chapter discussed the conducted experiments to evaluate the impact of DIME’s pa-
rameters on its runtime overhead and instrumentation coverage. The experiments involve
three benchmark sets; CPU, IO, and memory intensive applications. ANOVA statistical
tests judges the effects of the time-period and its interaction with the budget value on the
performance of DIME. The value of the time-period has negligible effect on the runtime
overhead suggesting the efficiency of DIME’s implementation. The parameters of DIME
have significant impact on the unique instrumentation coverage. In general, unique instru-
mentation coverage is negatively correlated with the time-period value. However, there
exist exceptions due to the rate of trace redundancies in the instrumented applications.
Finally, the raw instrumentation coverage has a positive correlation with the time-period
value of DIME.

71

Chapter 6

QoS-Aware Dynamic Binary
Instrumentation

In this chapter, we present Qdime: a QoS-aware dynamic binary instrumentation tool [19].
Qdime respects user-defined thresholds and constraints to guarantee an acceptable system
performance during instrumentation. Four case studies of Qdime running Gzip, MySQL,
Apache, and Redis , demonstrate its practicality and scalability.

6.1 Motivation

The number of businesses relying on systems with quality of service (QoS) has been rapidly
increasing. Software systems behind these businesses must meet strict performance require-
ments to satisfy the needs of both the provider and the end-users. These systems include
web servers, database management systems, multimedia applications, web browsers, and
hypervisors. QoS performance requirements refer to the extra-functional (non-functional)
aspects of the system that can affect the user’s experience [34]. These requirements in-
clude the total volume of computation, end-to-end delay, error rate, response time, and
jitter [87]. For example, the production database management system at Facebook should
be able to handle roughly 60 million queries per second [36], and its key-value store, bil-
lions of requests per second [80]. In this chapter, the term QoS denotes all extra-functional
aspects of a system which may be used by end-users to judge the quality of a service.

Instrumentation is useful to profile and debug QoS systems. Many QoS performance
requirements are time-related, for example, response time (task completion time), jitter,

72

and task synchronization [87]. Instrumentation of QoS systems can alter these performance
requirements due to the timing delay introduced by instrumentation. This can result
in undesired degradation in overall system performance. Also, that delay can change
the system behavior; thus the extracted tracing data can be misleading. Consider for
example profiling a media player while playing a video, instrumentation will add delay to
the execution. The media player will fail to decode a number of frames and will drop these
frames resulting in an unwatchable video. Moreover, different code portions are executed
compared to the expected execution, and therefore, extracted traces fail to represent the
expected system behavior. Another example is profiling a web server. Instrumentation can
dramatically increase the response time, i.e., the time between sending a request by the
user and receiving a response by the web server.

A QoS-system developer should be able to profile the expected execution of the system
while maintaining the desired performance guarantees. As discussed in Sections 3.4 and 4.6,
DIME allows instrumentation of QoS systems while keeping acceptable performance level.
However, DIME requires the developer to specify the allowed amount of instrumentation
time per time period. For many QoS systems, it is complicated to map the performance
metric to instrumentation time. In other words, what value for instrumentation time
will result in acceptable performance measures? The answer to this question can vary
based on the QoS system type (e.g., web server, control application, media player) and
the system’s performance metrics. Note that QoS systems, in general, may consist of
millions of lines of code and can have a high number of libraries dependencies. Accordingly,
dynamic instrumentation is more practical and scalable than static instrumentation to
profile and debug these systems. Thus, a flexible, customizable, scalable QoS-aware DBI
tool is required.

6.2 Overview of Qdime

Qdime is a QoS-aware DBI technique that guarantees a certain QoS level to the program
under analysis [19]. As a modified version of DIME, Qdime considers customized QoS
performance constraints instead of timing constraints. Qdime allows the user to define a
QoS related metric with a threshold value. To meet the performance requirements, Qdime
periodically switches instrumentation on and off. Recall that, the instrumentation budget
is the amount of time, per period, during which instrumentation is enabled. Qdime is
responsible to periodically determines the instrumentation budget as a function of the
current QoS-metric value. The function guarantees that the budget varies with the quality
of the application and eventually falls to zero when the QoS constraints are violated. Thus,

73

in every period T , the budget, B, is computed to satisfy 0 ≤B≤T.

Qdime consumes its budget by subtracting from its value the time it takes to execute
the analysis routine. Thus, it instruments as long as B> 0, with a degraded latency as a
result. Once Qdime fully consumed the budget, i.e., B≤ 0, it disables instrumentation,
which produces an increased QoS. To accurately determine the budget, the values of the
QoS metric are periodically extracted from the instrumented program and fed back into
Qdime. Ideally, this metric extraction should be transparent and unintrusive, requiring no
or little modifications to the application. Fortunately, most existing applications already
output different statistics that can directly be used by Qdime. In our experiments, we
show that this is achievable with applications such as MySQL, Gzip, Apache server, and
Redis . Qdime also utilizes the redundancy suppression feature discussed in Chapter 4 to
guarantee the unicity of the extracted information. The following summarizes the features
of Qdime:

• QoS Guarantees: Qdime takes into account the performance requirements to limit
the latency degradation of the program.

• Low Overhead: Qdime guarantees a reduced runtime overhead by switching the
instrumentation on and off.

• High Unique Coverage: The redundancy suppression feature of Qdime allows it to
extract only new information through multiple runs.

• Flexibility: The QoS metric, along with its source, is customizable by the user of
Qdime. Also, the thresholds, the time period, and the constraints are entirely de-
fined by the user. He can then tune the parameters to adjust the trade-off between
information gain, QoS, and overhead.

• Practicality: producing a high unique coverage with a significantly reduced overhead
allows Qdime to enable the instrumentation of QoS-based applications and the design
of QoS-aware analysis tools.

• Portability: Qdime is a generic technique that can be implemented on top of other
instrumentation frameworks than Pin. Further, Qdime is independent of system’s
hardware-level features.

To instrument a program atop of Qdime, the user sets the instrumentation period and
defines the QoS metric of the program. Further, the user is required to set the threshold
and the constraints that are to be satisfied by the metric to guarantee an acceptable QoS.

74

6.3 Design Architecture

Qdime periodically monitors the QoS state to ensure that the quality of the instrumented
program does not degrade to violate the threshold. Thus, Qdime needs to maintain a con-
stant knowledge on the evolution of the QoS metric throughout the entire instrumentation
process. Qdime achieves this by periodically extracting the QoS data from the program
under analysis. To make this extraction process transparent and unintrusive, Qdime relies
on performance data generated by the program itself. This reliance is possible because
most, if not all, programs with QoS requirements already provide a mechanism to expose
internal performance statistics. Qdime parses and consumes this data to make its instru-
mentation decisions. Even for programs that do not propose such a mechanism, in our
experiments, we found it straightforward to add an extension that exposes QoS statistics.

Figure 6.1 shows the architecture of Qdime. The application runs on top of Qdime.
The metric analyzer periodically collects the performance statistics generated by the pro-
gram. It then parses and performs any user-defined computation on the data to generate
QoS metrics in a format accessible by Qdime. Finally, the analyzer writes the QoS data
in a memory area it shares with Qdime. Ideally, the frequency at which the metric ana-
lyzer updates the QoS metric should match the instrumentation period T , although this is
not a requirement. This architecture allows Qdime to handle applications out-of-the-box,
without binary modification.

QDIME

Program's Binary
Metric

Analyzer

Performance Data

QoS Metrics

Figure 6.1: Architecture of Qdime

6.4 Budget Function

Similar to DIME, Qdime replenishes the instrumentation budget at the beginning of each
time period T . Qdime calculates the value of the budget as a function of the QoS-metric

75

value, contrary to DIME which resets the budget to a constant value. Qdime’s budget
function compute Budget() maps R+ into [0,T], where T is the instrumentation period.
In general, the budget function can be built as a decreasing function using the insight that
a program produces high QoS when the budget is set to zero, i.e., when instrumentation
is disabled. Also, the QoS decreases as the budget increases.

Equation 6.1 represents the budget function of Qdime such that (1) q(t) is the QoS-
metric value of the instrumented program at time t, (2)X is the user-defined QoS threshold,
and (3) T is the time-period value. The function calculates the budget based on the QoS
slack with respect to the user-defined threshold. The QoS slack at time t is the difference
between the current QoS level and the threshold; q(t)−X. This value indicates the health
of the instrumented program and can be used to safely determine the budget value at
time t.

The budget at time t is set to zero whenever the QoS constraint is violated, i.e., QoS
below the threshold X in this case. Otherwise, the function always produces a budget
b(t) <T . Instead of zero, the user could also choose a default value to use when Qdime
fails to meet the threshold condition. To get the budget value in seconds, the function
multiplies the QoS slack by the time-period value and by a tuning factor. Since respecting
the QoS threshold is the primary objective, Qdime adopts a conservative budget function
by choosing the tuning factor of 1/(q(t) +X). As later shown in Section 6.6.3, the budget
function of Equation 6.1 enables Qdime to successfully avoid threshold violations while
providing both high unique coverage and reduced overhead.

b(t) =

0 if q(t) <X
q(t)−X
q(t) +X

×T otherwise
(6.1)

The example in Figure 6.2 shows how the periodic replenishment of Qdime budget
during the extraction of system calls from Apache server. The x-axis shows the execution
time of Apache in seconds. The left y-axis represents the budget value in seconds, while
the right y-axis shows the QoS-metric value (number of requests per second). For instance
around t=10 sec, when Apache processes about 4,000 RPS, which is above the threshold
of 2,000 RPS, the budget is set to approximately 35% of the one-second instrumentation
period. Around t=55 sec, the QoS drops to 3,050 RPS forcing Qdime to adjust its budget
to only about 20% to meet the threshold.

76

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10 20 30 40 50 60 70

0.0

0.2

0.4

0.6

0.8

1.0

Time (sec)

B
ud

ge
t (

se
c)

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

2000

4000

6000

8000

10000

R
eq

ue
st

s/
se

c

●

●

Threshold
QoS Metric
Budget

Figure 6.2: Apache: instrumentation budget vs. QoS metric

6.5 Implementation

The implementation of Qdime complies with that of DIME explained in Chapter 3. List-
ing 6.1 shows the core algorithm of Qdime. The mechanism of budget checking and
version switching in the instrumentation routine follows the Trace Version implementation
of DIME (Line 9). At each instrumentation point, Qdime can either allow or prohibit the
insertion of the analysis routine based on the dynamic budget check at Line 13. During in-
strumentation, the time consumed by the analysis routine is subtracted from the available
budget (Line 6). Whenever the budget falls to or below zero, Qdime turns off instrumen-
tation, i.e., prevents insertion and execution of analysis routines, leading to increased QoS
and speedup as a result.

The signal handler of Qdime (Line 36) fires periodically at T to execute the function
compute Budget(). This function reads the QoS-metric value from the shared memory
and replenishes the budget according to the equation listed in Section 6.4. The func-
tion compute budget() generates a new budget with respect to the health status of the
program. Thus, Qdime instruments aggressively when the system is healthy enough by
producing a higher budget, but also limits its intrusion by generating a lower budget as
the QoS degrades. If the user-defined threshold is violated, the budget is set to zero to
prevent further instrumentation.

77

1 void analysis(...){

2 time_start = get_time ();

3 // Execute instrumentation code

4 ...

5 time_end = get_time ();

6 budget -= time_end - time_start;

7 }

8 ...

9 void instrumentation(...){

10 is_new = check_redundancy_log ();

11 if(is_new){

12 For each instrumentation point{

13 InsertCall(budget_check);

14 if(version == V_BASE) {

15 // check switching to V_INSTRUMENT

16 InsertVersionCase (1, V_INSTRUMENT);

17 }

18 else if(version == V_INSTRUMENT){

19 // check switching to V_BASE

20 InsertVersionCase (0,V_BASE);

21 }

22 switch(version) {

23 case V_BASE:

24 break; //Do Nothing

25 case V_INSTRUMENT:

26 ...

27 InsertCall(analysis_routine);

28 ...

29 break;

30 }

31 }

32 update_redundancy_log ();

33 }

34 }

35 ...

36 void sig_handler(...){

37 budget = compute_Budget(qos);

38 }

Listing 6.1: Instrumenting with Qdime

78

Qdime utilizes the redundancy suppression feature described in Chapter 4 to ex-
tract unique, i.e., non-redundant run-time information. As shown in (Line 10), Qdime
searches the hash-table log before the instrumentation of a trace. If τi is the current trace
and τj is the trace already in the log L, Qdime instruments τi only if address(τi) 6=
address(τj),∀τj ∈ L. After instrumenting a trace, Qdime saves the trace relative address
to the log. Multiple runs of Qdime may be required to, optimally, achieve full coverage. In
this case, the log file is passed across runs, allowing Qdime to reveal only new information
during each run. Although useful, the redundancy suppression is an optional, and not a
fundamental, feature of Qdime.

Note that Qdime is a fully-implemented analysis tool1. It shares the same work flow,
use cases, and limitations as those of DIME (listed in Section 5.4).

6.6 Performance Evaluation

This section describes the experimental setup and discusses the results of Qdime instru-
menting four popular real-world applications. Note that all the average values mentioned
in Section 6.6.3 are geometric means.

6.6.1 Experimental Setup

The experimentation environment consists of two workstations each hosting a 64-bit quad-
core i7-2600 processor clocked at 3.4 GHz with 16 GB of RAM and 8 MB of cache. Each
workstation runs Ubuntu 12.04 patched with the real-time kernel v3.2.0-23 that converts
Linux into a fully preemptive kernel. We prevent task migration between cores, lock
each core to its maximum frequency, and run the experiments with increased scheduling
priority. Although these settings are not necessary for Qdime, they lead to less variance
in the results [81]. We used the following analysis tools taken from the Pin toolkit version
2.14-71313 and compiled using gcc 4.6.3 with -O3 optimization level. The tools are ordered
from the less to the most intrusive.

1. Sys-trace: extracts system function calls. The system-call traces are important for
debugging and discovering performance bottlenecks in a program.

1Qdime is available for download at https://github.com/pansy-arafa/qdime

79

https://github.com/pansy-arafa/qdime

2. Call-trace: outputs the list of function calls with corresponding instruction addresses.
Call traces are used to build call-context trees, which are useful in performance
analysis and runtime optimizations [88].

3. Branch-profile: prints out the jump, call, and return instructions in addition to the
source and destination addresses. The output of this tool is useful for exploring code
coverage for example.

To evaluate its applicability and scalability, we run four real-world applications on top
of Qdime. We repeated each experiment ten times (1) natively, (2) with Pin, and (3) with
Qdime. Since Qdime aims to maximize the coverage while respecting the QoS threshold
and minimizing the overhead, our experiments empirically evaluate the following metrics:

• QoS performance metric: the values of the user-defined QoS metric over time. This
metric measures the ability of Qdime to respect the user-defined threshold during
instrumentation.

• Slowdown factor of the instrumented application: the ratio of the execution time of
the instrumented application to its native execution time. This metric evaluates the
runtime overhead of Qdime.

• Unique instrumentation coverage: defined as the ratio of the amount of non-redundant
information extracted by Qdime to that extracted by Pin. To illustrate, a 100% cov-
erage means that Qdime extracts the same number of non-redundant traces as Pin.
This metric highlights the ability of Qdime to extract quality information.

Based on the above, our experiments are to verify that (1) instrumenting with Pin
highly degrades the quality of the application, (2) Qdime always maintains a higher QoS
w.r.t. that of Pin, (3) Qdime is able to meet the defined QoS threshold, (4) Qdime
reduces the application’s slow-down factor introduced by DBI, and (5) Qdime is capable
of extracting sufficient information, i.e., provide high unique coverage.

6.6.2 Benchmark Applications

This subsection describes the benchmarks and the experimentation objectives. In general,
Qdime can instrument QoS applications whose security permits the attachment of a DBI
framework. For example, the child processes of the Google Chrome browser execute within a
restrictive environment and accordingly prohibit the Pin attachment. The instrumentation

80

period in the experiments is set to T = 1sec for all the applications. Different values of
the QoS threshold will be discussed later in Section 6.6.3.

Gzip Compression Utility Gzip is a widely used data-compression application of
about 59,000 lines of code adopted by the GNU project [3]. Our experiments aim to
instrument Gzip v1.4 while maintaining a compression rate threshold of 1 MB/sec. Gzip
compresses the Linux kernel 4.1.1 file whose size on the hard disk is 569 MB and generates
a compressed file of size 121 MB using the default compression flags. Qdime’s metric
analyzer periodically monitors the size of the output file to compute the compression rate.

MySQL Server MySQL is a popular, fast, scalable, and reliable relational database
management system. MySQL is a multi-threaded system of over 1.5 million lines of code [6].
For the experiments, we installed MySQL 5.5.43 and SysBench 0.4.12, a benchmarking tool
for databases [62]. We configured SysBench to run an OLTP test with a MySQL database
of 1 000 000 records. The test simulates 10 users performing a total of 100 000 requests.
This setup results in the execution of a total of 2 100 000 database queries. The goal of
the experiments is to instrument MySQL server, under the above-mentioned workload, and
keep a QoS threshold of 1000 transactions per second (TPS). The metric analyzer utilizes
MySQL APIs to access the server status variables and compute the number of TPS.

Apache HTTP Server Apache [2] is a powerful and popular web server of about
1 700 000 lines of code that implements the latest HTTP protocols. The experiments intend
to instrument an active Apache server, i.e., version 2.4.16 in this case. The workload
consists of 200 000 HTTP requests from 10 concurrent users generated with the Apache
benchmarking tool ab 2.3 [1].

Although Qdime is capable of handling an application’s child processes, the Apache
child processes refused the attachment of both Pin and Qdime. Therefore, the experiments
run Apache in debug mode, which forces the server to run as a single process. To respect a
QoS threshold of 3000 requests per second (RPS), the metric analyzer monitors Apache’s
log files to determine the number of requests executed per second.

Redis Data Structure Server Written in ANSI C, Redis is an in-memory, NoSQL
database management system, with optional persistence capabilities [11]. Redis consists
of roughly 20 000 lines of code. Many well-known projects such as Twitter, GitHub, and
Pinterest, rely on Redis .

We installed Redis server 3.0.3 and used redis-benchmark to generate load on the server.
Redis-benchmark is configured to run a series of 10 tests with 50 parallel connections, each
with a maximum of 200 000 queries. The QoS performance threshold is set to 30 000 queries
per second (QPS). The metric analyzer uses Hiredis, a C client library for Redis , to access
run-time statistics from the server.

81

0 5 10 15

0

2

4

6

8

Time (sec)

C
om

pr
es

si
on

 T
hr

ou
gh

pu
t (

M
B

/s
ec

)

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

● Native
Pin
QDime
Threshold

(a) Sys-trace

0 50 100 150

0

2

4

6

8

Time (sec)
C

om
pr

es
si

on
 T

hr
ou

gh
pu

t (
M

B
/s

ec
)

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

● Native
Pin
QDime
Threshold

(b) Call-trace

0

2

4

6

8

Time (sec)

0 50 1450 1500 1550 1600

C
om

pr
es

si
on

 T
hr

ou
gh

pu
t (

M
B

/s
ec

)

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

● Native
Pin
QDime
Threshold

(c) Branch-profile

Figure 6.3: Gzip: QoS performance metric over time

0 20 40 60 80 100

0

500

1000

1500

2000

2500

3000

Time (sec)

Tr
an

sa
ct

io
ns

/s
ec

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● Native
Pin
QDime
Threshold

(a) Sys-trace

0 100 200 300 400 500

0

500

1000

1500

2000

2500

3000

Time (sec)

Tr
an

sa
ct

io
ns

/s
ec

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● Native
Pin
QDime
Threshold

(b) Call-trace

0 200 400 600 800

0

500

1000

1500

2000

2500

3000

Time (sec)

Tr
an

sa
ct

io
ns

/s
ec

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● Native
Pin
QDime
Threshold

(c) Branch-profile

Figure 6.4: MySQL: QoS performance metric over time

6.6.3 Experimental Results

Qdime respects the QoS performance threshold of the application, while Pin drastically
alters the QoS of the application. Figures 6.3, 6.4, 6.5, and 6.6 show the QoS metrics
over time for Gzip, MySQL, Apache, and Redis , respectively, for each analysis tool. The
execution time in seconds is on the x-axis, while the y-axis represents the QoS metric. The
higher the QoS values, the better it is for the overall performance of the application. We
repeated each experiment ten times natively, with Pin, and with Qdime. For increased
readability, the mentioned figures show only the first experimental repetition for each ap-
plication and tool. Moreover, the box-plots in Figures 6.7a, 6.7b, 6.7c, and 6.7d summarize
the QoS values for the ten repetitions and, if applicable, for all Qdime runs. The y-axis
represents the QoS metric values during native execution, instrumentation on top of Pin,

82

0 20 40 60 80

0

2000

4000

6000

8000

10000

Time (sec)

R
eq

ue
st

s/
se

c

●

●

●

●

●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● Native
Pin
QDime
Threshold

(a) Sys-trace

0 50 100 150 200 250

0

2000

4000

6000

8000

10000

Time (sec)

R
eq

ue
st

s/
se

c

●

●

●

●

●

●●
●●

●●●●●●●●●●●●

●

● Native
Pin
QDime
Threshold

(b) Call-trace

0 100 200 300 400

0

2000

4000

6000

8000

10000

Time (sec)

R
eq

ue
st

s/
se

c

●

●

●

●

●

●●
●●
●●●●●●●●●●●●

●

● Native
Pin
QDime
Threshold

(c) Branch-profile

Figure 6.5: Apache: QoS performance metric over time

0 10 20 30 40 50 60 70

0

50000

100000

150000

Time (sec)

Q
ue

rie
s/

se
c

● ● ●
● ●

● ●

● Native
Pin
QDime
Threshold

(a) Sys-trace

0 50 100 150

0

50000

100000

150000

Time (sec)

Q
ue

rie
s/

se
c

●●●
●●

●●

● Native
Pin
QDime
Threshold

(b) Call-trace

0 50 100 150 200

0

50000

100000

150000

Time (sec)

Q
ue

rie
s/

se
c

●●●
●●

●●

● Native
Pin
QDime
Threshold

(c) Branch-profile

Figure 6.6: Redis: QoS performance metric over time

83

and instrumentation on top of Qdime.

Native Pin QDime

●●
●

●

●

●●●●●
●

●●

●

●

●
●

●●

●

●●●●●●
●●●●●●●

●●

●
●●●●●

●

●●

●●

●●●●

●
●●●●

●●
●

●●●●●●●

●

●●●●

●●●

●
●
●

●●●

●

●

●●

●●●●●●●●●●●
●

●●

●●●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

0.0

2.5

5.0

7.5

No−
to

ol

Sys
−t

ra
ce

Call
−t

ra
ce

Bra
nc

h−
pr

of
ile

Sys
−t

ra
ce

Call
−t

ra
ce

Bra
nc

h−
pr

of
ile

C
om

pr
es

si
on

 T
hr

ou
gh

pu
t (

M
B

/s
ec

)

T
hr

es
ho

ld

(a) Gzip

Native Pin QDime

●
●●

●
●

●

●

●

●●

●

●
●

●

●

●●
●
●

●

●●
●●

●●

●
●

●
●
●●●

●●●●●●●●●●
●
●●●●●
●●●●●●●●●●●●●●●

●
●
●●

●●
●●

●●
●●

●●●●

●

●
●●

●

●

●

●●●●

●

●
●●
●

●
●

●

●●
●●
●●
●
●
●●●●
●
●●
●

●●●●

●

●●●

●
●
●●

●
●
●●●
●●
●●●

●●

●●●

●

●●●●●
●

●●

●

●●
●●
●

●

●●

●

●●●●

●

●
●

●

●●●

●

●●●

●

●●
●●
●●

●
●●●●

●●
●●
●●
●

●●●

●

●●

●

●●●
●●
●
●
●
●●●
●

●●

●●

●

●

●●●

●

●●
●
●

●

●
●
●●

●

●●

●●
●

●

●●●

●

●
●●
●●

●

●

●
●
●
●
●
●

●
●
●

●●
●●

●

●
●
●
●
●

●●
●●
●●●

●

●

●

●●●

●

●●●●

●

●●●●●

●

●
●
●●
●●

●

●●

●

●
●●
●
●
●
●●

●

●●●
●●

●
●●
●
●●
●●
●●
●
●
●●

●
●●

●

●●
●

●

●●●●

●●

●●●●

●

●●●

●

●●●●●

●●
●●
●

●

●●●
●

●

●●●●

●

●●●
●
●
●

●
●
●●
●
●

●●●

●

●●●●

●

●●●●

●
●
●●●
●

●●
●
●

●

●●
●
●

●●●●

●

●●●
●●

●●●

●

●●●
●●
●●●

●

●●
●
●

●●
●

●

●●●●

●

●●
●
●●

●
●●●
●

●●●
●

●

●●

●

●●●
●●●

●

●
●●
●

●

●
●●
●
●
●●●●

●

●
●

●

●
●●

●
●
●●●

●

●●
●
●

●●●●

●

●●●●
●
●

●●●

●

●●
●
●●

●

●●●
●

●
●

●
●
●●

●

●●
●

●

●●●●

●

●
●
●
●
●●
●
●

●●●

●

●●●
●●
●●
●●

●●●
●
●●
●

●

●●
●
●
●●●
●●
●

●

●●
●
●●

●
●●

●

●●●●

●

●●
●
●

●
●
●●●●

●

●

●
●
●●

●

●

●

●●●
●●
●

●

●●●●●

●
●●
●●
●

●
●●●●

●

●
●●●
●

●●●

●

●●●●

●

●
●●
●

●
●●

●
●●

●

●●●

●
●
●
●●

●

●●●

●

●●●

●

●●●●

●
●
●●●

●

●●●●

●

●●●●
●

●●

●

●●
●●
●
●

●●●

●

●●●●

●

●●●●
●
●

●●
●
●

●
●
●●

●●●
●
●

●●●

●

●●●●●

●

●●●

●

●●●●●●●

●

●●●●

●

●●●
●●●

●

●●

●

●●●
●

●●

●

●●●●

●

●●●
●●

●●

●
●
●●

●

●●●●

●

●●●●

●
●
●
●●
●●
●
●●

●●●●

●

●●

●

●●●●

●

●●●
●

●

●
●
●
●●
●●●

●

●
●●

●●

●

●
●
●●

●

●●
●●

●●

●

●
●
●
●●

●
●

●
●
●●

●

●
●
●
●
●
●●

●

●
●
●●

●

●●●●
●
●

●●●

●

●●

●

●●●
●●
●●

●

●
●●

●

●●●

●

●
●
●●

●

●●●●
●

●●

●

●●●
●
●●●

●

●
●
●●
●

●
●

●
●

●

●●
●

●

●●●●

●

●
●

●
●●●

●

●

●

●
●
●

●

●
●●●●

●

●●●●

●

●●●

●

●●●●

●

●●●

●

●●
●

●

●
●
●●●
●●

●●
●●
●●●

●

●●
●

●

●●
●

●

●●●●●●

●

●●●●●●

●

●●●●●

●

●●
●

●

●
●●●

●

●●
●
●●
●
●

●
●

●

●
●
●●

●

●●
●●

●

●●
●

●

●●●

●

●
●●
●

●●
●●

●●●●

●

●●●
●
●

●
●●
●

●●
●●

●●
●
●

●●●

●

●
●
●●

●●●●

●

●
●●

●

●●●
●●
●●

●
●
●●●

●

●●●
●
●
●●

●

●
●●●●

●

●●●●
●

●
●●

●

●●●●
●● ●

●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●
●
●●●●
●
●
●
●●●
●
●●
●
●●●●●●●●●●●●●●●●●●
●
●●●●
●●
●●●●●●●●●●
●●
●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●

●

●
●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

0

1000

2000

3000

No−
to

ol

Sys
−t

ra
ce

Call
−t

ra
ce

Bra
nc

h−
pr

of
ile

Sys
−t

ra
ce

Call
−t

ra
ce

Bra
nc

h−
pr

of
ile

Tr
an

sa
ct

io
ns

/s
ec

T
hr

es
ho

ld

(b) MySQL

Native Pin QDime

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●

●

●●●●●●

●

●●●●●●

●

●●

●●●●●●

●

●●●

●●●●●●

●

●

●●●●●●

●

●●●●●●●●
●
●●●●●●●●

●●●●●●

●

●●●●●●

●

●●

●●●●●●

●

●●●●●●

●

●●

●
●●●●●●●
●●
●●●
●●●
●
●●●
●●
●
●●
●●
●
●
●
●●●

●●●●●
●
●●
●
●●●

●●●●●●

●

●

●●●●●●

●●

●●●●●●

●

●

●●●●●●

●

●●●●●●●

●●

●●●●●●

●●

●●●●●●

●
●

●●●●●●

●●

●●●●●●

●●

●●●●●●

●
●

●

●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●●

●

●

●

●●

●
●

●

●

●●

●●
●

●●

●
●●

●
●

●
●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●●

0

3000

6000

9000

No−
to

ol

Sys
−t

ra
ce

Call
−t

ra
ce

Bra
nc

h−
pr

of
ile

Sys
−t

ra
ce

Call
−t

ra
ce

Bra
nc

h−
pr

of
ile

R
eq

ue
st

s/
se

c

T
hr

es
ho

ld

(c) Apache

Native Pin QDime

●●●●●
●●●
●●●●●●●●●●●●●

●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●
●●●●

●
●

●●

●
●

●●●●●

●

●

●●●●

●

●

●

●●●●

●

●

●

●●●●

●

●

●●●●●

●

●

●

●●●●●

●
●

●●●●●

●

●
●

●

●●● ●

●

●
●

●●●●

●

●

●

●

●

●

●

●
●●●●

●

●
●

●●●●●

●

●●

●●●●●

●

●●

●●●●●

●

●

●

●
●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●
●●● ●

●

●

●

●●●●

●

●

●●●●

●

●

●●●●

●

●
●

●●

●●●●●

●

●

●●●●

●

●

●●●●●

●

●

●●●●

●

●

●●●●●

●

●

●●●●

●

●

●●●●

●

●

●●●●

●

●

●●●●

●

●

●●●●

●

●●●●

●●

●●●●●

●

●

●●●●

●

●

●●●●

●

●

●●●●

●
●

●●●●●

●

●

●●●●

●

●

●●●●●

●
●

●●●●●

●

●

●●●●●

●

●

●●●●●

●

●
●●●●

●

●

●●●●

●
●

●●●●●

●

●

●●●●●

●

●

●●●●0

50000

100000

150000

No−
to

ol

Sys
−t

ra
ce

Call
−t

ra
ce

Bra
nc

h−
pr

of
ile

Sys
−t

ra
ce

Call
−t

ra
ce

Bra
nc

h−
pr

of
ile

Q
ue

rie
s/

se
c

T
hr

es
ho

ld

(d) Redis

Figure 6.7: Summary of QoS-metric values

Gzip: While Pin maintains a high average compression rate of 7 MB/sec with the
lightweight Sys-trace, it degrades the average QoS down to 646.7 KB/sec with Call-trace,
and 73.6 KB/sec with Branch-profile. However, as seen in Figures 6.3 and 6.7a, Qdime
always respects the threshold of 1 MB/sec with an average compression rate of 7.3 MB/sec
with Sys-trace, 5.9 MB/sec with Call-trace, and 2.8 MB/sec with Branch-profile. Natively,
Gzip has an average compression rate of 8.2 MB/sec.

MySQL: The uninstrumented execution of MySQL server maintains an average of
2544 TPS as shown in Figures 6.4 and 6.7b. Pin produces only an average of 868, 161,

84

and 128 TPS for Sys-trace, Call-trace, and Branch-profile, respectively. On the other side,
Qdime respects the threshold of 1000 TPS with an average of 1310, 1165, and 1158 TPS
respectively for the three analysis tools.

Apache: Figures 6.5 and 6.7c show that the native execution of the Apache server
along with its workload has an average of 8302 RPS. Pin cannot respect the server’s
QoS and produces only an average of 2343 RPS with Sys-trace, 689 RPS with Call-trace,
and 452 RPS with Branch-profile. Qdime maintains an average QoS of 3514 RPS with
Sys-trace, 3009 RPS with Call-trace, and 3014 RPS with Branch-profile.

Redis: Natively, Redis maintains a QoS of about 177 667 QPS on average as in
Figures 6.6 and 6.7d. The QoS remains below threshold with Pin and drops from 21 448
QPS on average with Sys-trace to 9859 QPS with Call-trace and 7461 QPS with Branch-
profile. Contrarily to Pin, Qdime meets the defined threshold of 30 000 QPS with all the
analysis tools by maintaining an average QoS of 41 811 QPS with Sys-trace, 34 918 QPS
with Call-trace, and 36 440 QPS with Branch-profile.

As for the slowdown factors of the instrumented applications, Qdime always outper-
forms Pin. On average, Qdime reduces the runtime overhead by 1.41× with Sys-trace,
5.67× with Call-trace, and 10.26× with Branch-profile. Figure 6.8 presents the average
slowdown factors of the instrumented applications on top of Pin and Qdime w.r.t. the
application’s native execution time. The x-axis lists the analysis tools, whereas the y-axis
shows the average slowdown factors. Qdime reduces the slowdown of Pin with Sys-trace
from 2.96×, 4.14×, and 8.47× to 1.96×, 2.81×, and 4.97× for MySQL, Apache, and Re-
dis , respectively. Similarly, Call-trace’s overhead drops from 12.20×, 15.07×, 13.09×, and
18.56× with Pin to 1.19×, 2.20×, 2.87×, and 5.74× with Qdime respectively for Gzip,
MySQL, Apache, and Redis . With Branch-profile, Pin slows down Gzip by a factor of
102.03×. Thanks to the adaptive budget function and redundancy suppression of Qdime,
this slowdown is reduced to 2.56×. Similarly, the slowdown factor of Apache with Branch-
profile on top of Qdime is only 2.84× compared to 19.96× atop of Pin.

Although Qdime with Branch-profile requires multiple runs to achieve high coverage
with MySQL and Redis (Figure 6.9b), the total execution times of Qdime runs remains
lower than that of Pin. Pin introduces slowdown factors of 20.09× and 24.56× for MySQL
and Redis , respectively. Qdime reduces these values to 2.22× and 5.63× for one run. The
instrumentation of MySQL atop of Pin consumes 785 sec on average, whereas the combined
execution times for the two runs with Qdime is 175 sec at most. Similarly, Redis runs
three times on top of Qdime for a total of 147 sec, while Pin takes 209 sec on average.

Qdime, not only, respects the QoS thresholds and reduces the runtime overhead, but
also provides high unique instrumentation coverage in a low number of runs. Qdime, on

85

Gzip MySQL Apache Redis

0

10

20

30

40

50

60

70

80

90

100

Sys
−t

ra
ce

Call
−t

ra
ce

Bra
nc

h−
pr

of
ile

Sys
−t

ra
ce

Call
−t

ra
ce

Bra
nc

h−
pr

of
ile

Sys
−t

ra
ce

Call
−t

ra
ce

Bra
nc

h−
pr

of
ile

Sys
−t

ra
ce

Call
−t

ra
ce

Bra
nc

h−
pr

of
ile

S
lo

w
−

do
w

n
Fa

ct
or

Pin
QDime

Figure 6.8: Slowdown factors of the instrumented applications.

average, conveys 92% of the unique runtime information compared to Pin. Figure 6.9a plots
the average Qdime coverage for each analysis tool. The x-axis lists the applications, while
the y-axis shows the instrumentation coverage of Qdime w.r.t. that of Pin. In general,
Qdime maintains high coverage by being able to extract up to 100% coverage in a single
run with some applications and tools. In our experiments, the lowest coverage of Qdime
is with Redis , as only 78% of the Branch-profile information is extracted. Figure 6.9b
highlights the number of runs required by Qdime to reach the coverage of Figure 6.9a.
Only Branch-profile, the heaviest analysis tool, consumed two runs for MySQL and three
runs for Redis to extract 93% and 78%, respectively.

Table 6.1 summarizes the experimental results. As shown earlier, Qdime always re-
spects the QoS threshold of the instrumented application leading to a higher overall system
performance as compared to Pin. Even with highly intrusive analysis tools like Branch-
profile, Qdime provides the application under instrumentation with a guaranteed QoS.
Also, Qdime reduces the application’s slowdown factors introduced by DBI while extract-
ing high instrumentation coverage. Using Qdime, the slowdown factors of the instru-
mented applications dropped by 1.41× with Sys-trace, 5.67× with Call-trace, and 10.26×
with Branch-profile on average w.r.t. Pin. The unique runtime information collected
by Qdime represents an average of 92% of that of Pin, with a minimum of 78% and a
maximum of 100%.

86

Gzip MySQL Apache Redis

Analysis Tools

Sys−trace
Call−trace
Branch−profile

Applications

C
ov

er
ag

e
(%

)

0

20

40

60

80

100

(a) Unique Instrumentation Coverage

Gzip MySQL Apache Redis

Analysis Tools

Sys−trace
Call−trace
Branch−profile

Applications

0

1

2

3

4

N
um

be
r

of
 Q

D
im

e
R

un
s

(b) Number of Runs

Figure 6.9: Qdime coverage

Threshold Values. Another set of experiments evaluate the performance of Qdime
with various threshold values to identify the highest possible in our settings. Increasing
the threshold value limits the instrumentation budget of Qdime, and accordingly, results in
a lower coverage. Table 6.2 lists the maximum possible thresholds along with the respective
coverage values for the four benchmark applications. Beyond these values, Qdime starts to
violate the thresholds. With higher thresholds, Qdime extracts from 70% to 100% of the
unique coverage for all the applications. The only exception is MySQL with Branch-profile
where the highest threshold of 1200 TPS restricted the coverage to 55.5%. Such a trade-off
between the QoS level and the extracted coverage is expected especially for a heavy-weight
analysis tool.

87

Table 6.1: Summary of Qdime experimental results

Applications Gzip MySQL Apache Redis

Analysis Tools Sys Call Branch Sys Call Branch Sys Call Branch Sys Call Branch

QoS: Qdime > Pin? X X X X X X X X X X X X

Threshold 1 MB/sec 1000 TPS 3000 RPS 30000 QPS

Threshold Qdime X X X X X X X X X X X X

Satisfied? Pin X × × × × × × × × × × ×

Slowdown
Qdime 1.13× 1.19× 2.56× 1.96× 2.20× 2.22× 2.81× 2.87× 2.84× 4.97× 5.74× 5.63×

Pin 1.17× 12.20× 102× 2.96× 15.07× 20.09× 4.13× 13.09× 19.96× 8.47× 18.56× 24.57×

Runs Qdime 1 1 1 1 1 2 1 1 1 1 1 3

Coverage Qdime 100% 99.40% 79.34% 99.23% 90.82% 92.86% 95.26% 96.46% 82.42% 100% 90.34% 77.96%

Table 6.2: Maximum Qdime threshold values with respective unique coverage

Applications Gzip MySQL Apache Redis

Analysis Tools Sys Call Branch Sys Call Branch Sys Call Branch Sys Call Branch

Max. Threshold 7.5 7.5 7 MB/sec 1500 1200 1200 TPS 4000 3400 3400 RPS 48000 44000 44000 QPS

Coverage 78.5% 69.7% 81.1% 94.5% 92.5% 55.5% 93.1% 95.9% 82.3% 100% 89.2% 71.5%

88

6.7 Summary

This chapter discusses the concept of Qdime, a QoS-aware DBI technique that guarantees
a certain QoS to the application under analysis. Qdime accepts a QoS metric with a
designated threshold and constraints to be satisfied for an acceptable overall performance.
Qdime periodically collects performance data from the instrumented program and decides
the instrumentation budget accordingly. The evaluation on four popular real-world appli-
cations shows the practicality, scalability, and effectiveness of Qdime. Qdime respects the
user-defined QoS threshold while maintaining an average unique coverage of 92%. Also,
Qdime reduces the slow-down factors of the instrumented applications. These results make
Qdime a useful tool for instrumenting QoS-based applications and enable the design of
dynamic analysis tools with QoS guarantees. This is the first work that considers QoS
specifications during program instrumentation.

89

Chapter 7

Conclusion and Future Work

Program analysis using instrumentation is widely used for understanding program behavior
and identifying performance bottlenecks. Instrumentation naturally introduces perturba-
tion to the program under analysis. Such perturbation can alter the timing behavior of
the program. Real-time systems must respect extra-functional constraints especially the
timing properties. Thus, real-time systems require specialized program instrumentation
techniques. Time-aware instrumentation preserves a program’s logical correctness and re-
spects its timing constraints. Current approaches for time-aware instrumentation rely on
static and source-code instrumentation techniques. They require the availability of the
source code of the program including all libraries dependencies. Moreover, a WCET anal-
ysis is performed before and after instrumentation. Static time-aware instrumentation is
sound and effective for hard real-time systems, but impractical for soft real-time systems
due to its restrict assumptions.

In this thesis, we introduce the theory, method, and tools for time-aware dynamic
binary instrumentation technique realized in DIME tool. DIME bounds the runtime over-
head of the instrumentation process to respect the program’s timing constraints. Chapter 3
discusses the design of DIME along with its three implementations of DIME. These im-
plementations differ in their budget checking overhead, strictness of respecting budget,
and overshoots beyond the budget. The evaluation of DIME shows an average reduction
in overhead by 12, 7, and 3 folds compared to native Pin. Two cases studies of DIME
instrumenting a media player and a control application demonstrate the scalability and
applicability of DIME.

DIME aims, not only to limit the instrumentation overhead, but also to maximize the
instrumentation coverage. Instrumentation frameworks, in general, may extract an amount

90

of runtime information that contains many redundancies. In Chapter 4, we propose a
redundancy suppression technique to increase the unique instrumentation coverage. DIME
avoids collecting redundant information and prohibits the instrumentation of previously
instrumented code regions. DIME was able to extract 97% of the call context tree of the
VLC video player while playing a high-definition video. DIME was also used for the branch
profiling of the PostgreSQL database management system and was able to extract 97% of
the unique instrumentation information in three runs.

Moreover, Chapter 5 examines the relation between the operation parameters of DIME
and its performance. A set of experiments is conducted to evaluate the impact of the time
period and the instrumentation budget on the runtime overhead and the instrumentation
coverage of DIME.

Chapter 6 presents the method for QoS-aware dynamic instrumentation technique and
its tool. Qdime satisfies user-defined performance thresholds and constraints to maintain
an acceptable QoS level to the program under analysis. The evaluation of Qdime revealed
its practicality and scalability to instrument complex applications.

The proposed tools and approaches, in this thesis, can be further extended to increase
the effectiveness of time-aware dynamic instrumentation. The following is some of the
potential improvements and future work in this area:

1. Further investigation on increasing the unique instrumentation coverage: the test re-
sults of the unique coverage in Chapter 5 are inconclusive. Thus, further experiments
are required to consider additional input factors such as the program structure.

2. Adapting redundancy suppression to different definitions of unique coverage: Using
the redundancy suppression feature, DIME prohibits the extraction of repeated run-
time information. Some program-comprehension techniques may benefit from the
suppression of consecutive repetitions for example.

3. Reconstruction of program execution using the extracted information by DIME: An
interesting research objective is the reconstruction of program execution path using
the partial traces for the goal of program comprehension or bug detection.

4. Combining program sampling algorithms with DIME: It is possible to use the frame-
work of DIME to implement sampling techniques for time-sensitive systems. At a
periodic rate, DIME may allow a sampling algorithm to collect information only if the
budget is not consumed. For example, using adaptive bursty sampling can increase
the ability of DIME to instrument cold code. This research direction can allow the
program-sampling work to be transferred safely to the world of real-time systems.

91

References

[1] ab: Apache HTTP Server Benchmarking Tool.
http://httpd.apache.org/docs/2.2/programs/ab.html.

[2] Apache HTTP Server. http://httpd.apache.org/.

[3] GZIP Compression Utility. http://www.gnu.org/software/gzip/.

[4] Intel Developer Zone. http://software.intel.com/.

[5] Iozone filesystem benchmark. http://www.iozone.org/.

[6] MySQL Database Management System. http://www.mysql.com/.

[7] Pgbench: Benchmarking Tool for PostgreSQL.
http://wiki.postgresql.org/wiki/Pgbench.

[8] PostgreSQL Global Development Group. http://www.postgresql.org/.

[9] QNX. http://www.qnx.com/.

[10] Quanser. http://www.quanser.com/.

[11] Redis Data Structure Server. http://redis.io/.

[12] Stress-ng benchmark. http://kernel.ubuntu.com/ cking/stress-ng/.

[13] VLC Media Player. http://www.videolan.org/vlc/index.html.

[14] Luca Abeni and Giorgio Buttazzo. Integrating Multimedia Applications in Hard
Real-Time Systems. In Real-Time Systems Symposium, 1998. Proceedings., The
19th IEEE, pages 4–13, Dec 1998.

92

[15] Luca Abeni and Giorgio Buttazzo. Resource Reservation in Dynamic Real-Time
Systems. Real-Time Systems, 27(2):123–167, 2004.

[16] Jennifer M Anderson, Lance M Berc, Jeffrey Dean, Sanjay Ghemawat, Monika R
Henzinger, Shun-Tak A Leung, Richard L Sites, Mark T Vandevoorde, Carl A Wald-
spurger, and William E Weihl. Continuous Profiling: Where Have All The Cycles
Gone? ACM Transactions on Computer Systems (TOCS), 15(4):357–390, 1997.

[17] Pansy Arafa, Hany Kashif, and Sebastian Fischmeister. DIME: Time-aware Dy-
namic Binary Instrumentation Using Rate-based Resource Allocation. In Proc. of the
13th International Conference on Embedded Software (EMSOFT), Montreal, Canada,
Sept 2013.

[18] Pansy Arafa, Daniel Solomon, Samaneh Navabpour, and Sebastian Fischmeister.
Debugging Behaviour of Embedded-Software Developers: An Exploratory Study. In
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC),
Raleigh, USA, 2017.

[19] Pansy Arafa, Guy M. Tchamgoue, Hany Kashif, and Sebastian Fischmeister.
QDIME: QoS-aware Dynamic Binary Instrumentation. In IEEE International Sym-
posium on the Modeling, Analysis, and Simulation of Computer and Telecommuni-
cation Systems (MASCOTS), Banff, Canada, 2017.

[20] Matthew Arnold and Barbara G. Ryder. A Framework for Reducing the Cost of
Instrumented Code. In Proc. of the ACM SIGPLAN Conf. on Programming language
design and implementation (PLDI), 2001.

[21] Borzoo Bonakdarpour, Samaneh Navabpour, and Sebastian Fischmeister. Sampling-
based Runtime Verification. In Proc. of the 17th Intl. Conf. on Formal Methods
(FM), Jun. 2011.

[22] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An Infrastructure for
Adaptive Dynamic Optimization. In Proc. of the Intl. Symp. on Code Generation
and Optimization (CGO), 2003.

[23] Derek Bruening, Qin Zhao, and Saman Amarasinghe. Transparent Dynamic Instru-
mentation. SIGPLAN Not., 47(7), Mar. 2012.

[24] Bryan Buck and Jeffrey K. Hollingsworth. An API for Runtime Code Patching. Int.
J. High Perform. Comput. Appl., 14(4), Nov. 2000.

93

[25] Prashanth P. Bungale and Chi-Keung Luk. PinOS: A Programmable Framework
for Whole-system Dynamic Instrumentation. In Proceedings of the 3rd International
Conference on Virtual Execution Environments, VEE ’07, pages 137–147, New York,
NY, USA, 2007. ACM.

[26] M. Burrows, Ú Erlingsson, S.-T. A. Leung, M. T. Vandevoorde, C. A. Waldspurger,
K. Walker, and W. E. Weihl. Efficient and Flexible Value Sampling. SIGPLAN Not.,
35(11):160–167, November 2000.

[27] Bryan M Cantrill, Michael W Shapiro, and Adam H Leventhal. Dynamic Instrumen-
tation of Production Systems. In Proceedings of the annual conference on USENIX
Annual Technical Conference. USENIX Association, 2004.

[28] Chabbi, Milind and Liu, Xu and Mellor-Crummey, John. Call paths for pin tools.
In Proceedings of Annual IEEE/ACM International Symposium on Code Generation
and Optimization, CGO ’14, pages 76:76–76:86, New York, NY, USA, 2014. ACM.

[29] Albert M. K. Cheng. Real-Time Systems: Scheduling, Analysis, and Verification.
Wiley-Interscience, 2002.

[30] Bas Cornelissen and Leon Moonen. Visualizing Similarities in Execution Traces.
In Proceedings of the 3rd Workshop on Program Comprehension through Dynamic
Analysis (PCODA), pages 6–10, 2007.

[31] Bas Cornelissen and Leon Moonen. On Large Execution Traces and Trace Abstraction
Techniques. Delft University of Technology, Software Engineering Research Group,
2012.

[32] Joachim Denil, Hany Kashif, Pansy Arafa, Hans Vangheluwe, and Sebastian Fis-
chmeister. Instrumentation and Preservation of Extra-functional Properties of
Simulink Model. In Proceedings of the Symposium on Theory of Modeling and Sim-
ulation - DEVS Integrative M&S Symposium, Alexandria, USA, 2015.

[33] Tevi Devor. Pin Tutorial. CGO’12, San Jose, California, 2012.

[34] G. Dobson, R. Lock, and I. Sommerville. QoSOnt: a QoS Ontology for Service-
centric Systems. In Software Engineering and Advanced Applications, 2005. 31st
EUROMICRO Conference on, pages 80–87, Aug 2005.

[35] Andrew Edwards, Hoi Vo, and Amitabh Srivastava. Vulcan: Binary Transformation
in a Distributed Environment. Technical report, 2001.

94

[36] Facebook. Mysql tech talk 11.2.10, Feb 2010. http://livestre.am/rIpq.

[37] S. Fischmeister and P. Lam. Time-Aware Instrumentation of Embedded Software.
IEEE Transactions on Industrial Informatics, 2010.

[38] Sebastian Fischmeister and Yanmeng Ba. Sampling-based Program Execution Mon-
itoring. SIGPLAN Not., 45(4), 2010.

[39] Sebastian Fischmeister and Patrick Lam. On Time-Aware Instrumentation of Pro-
grams. In Real-Time and Embedded Technology and Applications Symposium, 2009.
RTAS 2009. 15th IEEE, pages 305–314. IEEE, 2009.

[40] Nathan Froyd, John Mellor-Crummey, and Rob Fowler. Low-overhead Call Path
Profiling of Unmodified, Optimized Code. In Proc. of the 19th Annual Intl. Conf. on
Supercomputing (ICS), 2005.

[41] M.P. Gallaher and B.M. Kropp. The Economic Impacts of Inadequate Infrastructure
for Software Testing. National Institute of Standards & Technologg Planning Report,
2002.

[42] Anjana Gosain and Ganga Sharma. A Survey of Dynamic Program Analysis Tech-
niques and Tools. In Proceedings of the 3rd International Conference on Frontiers
of Intelligent Computing: Theory and Applications (FICTA) 2014, pages 113–122.
Springer, 2015.

[43] Abdelwahab Hamou-Lhadj and Timothy C Lethbridge. Measuring Various Proper-
ties of Execution Traces to Help Build Better Trace Analysis Tools. In Engineering
of Complex Computer Systems, 2005. ICECCS 2005. Proceedings. 10th IEEE Inter-
national Conference on, pages 559–568. IEEE, 2005.

[44] Ahmed Hassan, Daryl Martin, Parminder Flora, Paul Mansfield, and Dave Dietz. An
Industrial Case Study of Customizing Operational Profiles Using Log Compression.
In Software Engineering, 2008. ICSE’08. ACM/IEEE 30th International Conference
on, pages 713–723. IEEE, 2008.

[45] Matthias Hauswirth and Trishul M. Chilimbi. Low-overhead Memory Leak Detection
Using Adaptive Statistical Profiling. SIGOPS Oper. Syst. Rev., 38(5), Oct. 2004.

[46] John L. Henning. SPEC CPU2000: Measuring CPU Performance in the New Mil-
lennium. Computer, 33(7), 2000.

95

[47] Martin Hirzel and Trishul Chilimbi. Bursty Tracing: A Framework for Low-Overhead
Temporal Profiling. In In 4th ACM Workshop on Feedback-Directed and Dynamic
Optimization. ACM, 2001.

[48] J.K. Hollingsworth, O. Niam, B.P. Miller, Zhichen Xu, M.J.R. Goncalves, and Ling
Zheng. Mdl: a language and compiler for dynamic program instrumentation. In
Parallel Architectures and Compilation Techniques., 1997. Proceedings., 1997 Inter-
national Conference on.

[49] Galen Hunt and Doug Brubacher. Detours: Binary Interception of Win32 Functions.
In Proc. of the 3rd Conf. on USENIX Windows NT Symp. (WINSYM), 1999.

[50] Bart Jacob, Paul Larson, B Leitao, and SAMM da Silva. SystemTap: Instrumenting
the Linux Kernel for Analyzing Performance and Functional Problems. IBM Redbook,
2008.

[51] Kevin Jeffay and David Bennett. A Rate-based Execution Abstraction for Multime-
dia Computing. pages 64–75, 1995.

[52] Kevin Jeffay and Steve Goddard. A Theory of Rate-based Execution. In Proceedings
20th IEEE Real-Time Systems Symposium (Cat. No.99CB37054), pages 304–314,
1999.

[53] Kevin Jeffay and Steve Goddard. Rate-based Resource Allocation Models for Em-
bedded Systems. In Proc. of the 1st Intl. Workshop on Embedded Software, 2001.

[54] Yogi Joshi, Guy M. Tchamgoue, and Sebastian Fischmeister. Runtime Verification
of LTL on Lossy Traces. In 32nd ACM Symposium on Applied Computing (SAC),
pages 1379–1386, Marrakech, Morocco, 2017.

[55] Hany Kashif, Pansy Arafa, and Sebastian Fischmeister. INSTEP: A Static Instru-
mentation Framework for Preserving Extra-functional Properties. In Proc. of the 19th
IEEE Intl. Conf. on Embedded and Real-Time Computing Systems and Applications
(RTCSA), Aug. 2013.

[56] Hany Kashif and Sebastian Fischmeister. Program Transformation for Time-aware
Instrumentation. In Proc. of the 17th IEEE Intl. Conf. on Emerging Technologies &
Factory Automation (ETFA), Sep. 2012.

[57] Hany Kashif, Johnson Thomas, Hiren Patel, and Sebastian Fischmeister. Static
Slack-based Instrumentation of Programs. In 2015 IEEE 20th Conference on Emerg-
ing Technologies Factory Automation (ETFA), pages 1–8, Sept 2015.

96

[58] Baris Kasikci, Thomas Ball, George Candea, John Erickson, and Madanlal Musu-
vathi. Efficient Tracing of Cold Code via Bias-Free Sampling. In USENIX Annual
Technical Conference, pages 243–254, 2014.

[59] Irvin R. Katz and John R. Anderson. Debugging: An Analysis of Bug-Location
Strategies. Hum.-Comput. Interact., 3, 1987.

[60] Moonzoo Kim, Mahesh Viswanathan, Sampath Kannan, Insup Lee, and Oleg Sokol-
sky. Java-MaC: A Run-Time Assurance Approach for Java Programs. Form. Methods
Syst. Des., 24(2), 2004.

[61] A Ko and B Myers. A Framework and Methodology for Studying the Causes of Soft-
ware Errors in Programming Systems. Journal of Visual Languages & Computing,
16(1-2), 2005.

[62] Alexey Kopytov. SysBench Manual. http://imysql.com/wp-
content/uploads/2014/10/sysbench-manual.pdf.

[63] Naveen Kumar, Bruce R. Childers, and Mary Lou Soffa. Low Overhead Program
Monitoring and Profiling. In Proc. of the 6th ACM SIGPLAN-SIGSOFT workshop
on Program Analysis for Software Tools and Engineering (PASTE), 2005.

[64] James R. Larus and Eric Schnarr. EEL: Machine-Independent Executable Editing.
SIGPLAN Not., 30, 1995.

[65] J.R. Larus. Efficient Program Tracing. Computer, 26(5), 1993.

[66] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. Bug Isolation via
Remote Program Sampling. In Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implementation, PLDI ’03, pages 141–154,
New York, NY, USA, 2003. ACM.

[67] Daniel Lohmann, Wolfgang Schroder-Preikschat, and Olaf Spinczyk. Functional and
Non-functional Properties in a Family of Embedded Operating Systems. In Pro-
ceedings of the 10th IEEE International Workshop On Object-Oriented Real-Time
Dependable Systems (WORDS). IEEE Computer Society, 2005.

[68] Gregory Lueck, Harish Patil, and Cristiano Pereira. PinADX: An Interface for Cus-
tomizable Debugging with Dynamic Instrumentation. In Proceedings of the Tenth
International Symposium on Code Generation and Optimization, CGO ’12, pages
114–123, New York, NY, USA, 2012. ACM.

97

[69] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building
Customized Program Analysis Tools with Dynamic Instrumentation. In Proc. of
the ACM SIGPLAN Conf. on Programming Language Design and Implementation
(PLDI), 2005.

[70] Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. LiteRace: Effective
Sampling for Lightweight Data-Race Detection. SIGPLAN Not., 44(6), 2009.

[71] J. M. Mellor-Crummey and T. J. LeBlanc. A Software Instruction Counter. In
Proc. of the 3rd Intl. Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 1989.

[72] Ying Meng, Ok-Kyoon Ha, and Yong-Kee Jun. Dynamic Instrumentation for Nested
Fork-join Parallelism in OpenMP Programs. In Future Generation Information Tech-
nology, pages 154–158. Springer, 2012.

[73] Douglas C Montgomery. Design and Analysis of Experiments. John Wiley & Sons,
2008.

[74] Linda J. Moore and Angelica R. Moya. Non-Intrusive Debug Technique for Embedded
Programming. In Proc. of the 14th Intl. Symp. on Software Reliability Engineering
(ISSRE), 2003.

[75] Peter Mork. Techniques for Debugging Parallel Programs. Technical report, Univer-
sity of Miskolc.

[76] T. Moseley, A. Shye, V.J. Reddi, D. Grunwald, and R. Peri. Shadow Profiling:
Hiding Instrumentation Costs with Parallelism. In Intl. Symp. on Code Generation
and Optimization(CGO), Mar. 2007.

[77] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter Sweeney. We Have
It Easy, But Do We Have It Right? IEEE Intl. Symp. on Parallel and Distributed
Processing, 2008.

[78] Mayur Naik, Hongseok Yang, Ghila Castelnuovo, and Mooly Sagiv. Abstractions
from Tests. SIGPLAN Not., 47(1), Jan. 2012.

[79] Nicholas Nethercote and Julian Seward. Valgrind: A Framework for Heavyweight
Dynamic Binary Instrumentation. SIGPLAN Not., 42(6), Jun. 2007.

98

[80] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scaling Memcache at Facebook.
In 10th USENIX Symposium on Networked Systems Design and Implementation.
USENIX Association, April 2013.

[81] Augusto Oliveira, Jean-Christophe Petkovich, Thomas Reidemeister, and Sebastian
Fischmeister. DataMill: Rigorous Performance Evaluation Made Easy. In Proc. of
the 4th ACM/SPEC International Conference on Performance Engineering. ACM,
April 2013.

[82] William Omre. Debug and Trace for Multicore SoCs. Technical report, ARM, 2008.

[83] David A Patterson. Computer Architecture: a Quantitative Approach. Elsevier, 2011.

[84] Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman, Wayne Wong, Hank Levy,
Brian Bershad, and Brad Chen. Instrumentation and Optimization of Win32/Intel
Executables Using Etch. In Proc. of the USENIX Windows NT Workshop, 1997.

[85] Amitabha Roy, Steven Hand, and Tim Harris. Hybrid Binary Rewriting for Memory
Access Instrumentation. In Proc. of the 7th ACM SIGPLAN/SIGOPS Intl. Conf.
on Virtual Execution Environments (VEE), 2011.

[86] Arkaitz Ruiz-Alvarez and Kim Hazelwood. Evaluating the Impact of Dynamic Bi-
nary Translation Systems on Hardware Cache Performance. In IEEE Intl. Symp. on
Workload Characterization (IISWC), 2008.

[87] B. Sabata, S. Chatterjee, M. Davis, J.J. Sydir, and T.F. Lawrence. Taxonomy for
QoS Specifications. In Object-Oriented Real-Time Dependable Systems, 1997. Pro-
ceedings., Third International Workshop on, pages 100–107, Feb 1997.

[88] Mauricio Serrano and Xiaotong Zhuang. Building Approximate Calling Context from
Partial Call Traces. In Proc. of the Intl. Symp. on Code Gen. and Optimization, 2009.

[89] Beth Simon, Dennis Bouvier, Tzu-Yi Chen, Gary Lewandowski, Robert McCartney,
and Kate Sanders. Common Sense Computing (Episode 4): Debugging. Computer
Science Education, 18(2), 2008.

[90] J. Sincero, W. Schroder-Preikschat, and O. Spinczyk. Approaching Non-functional
Properties of Software Product Lines: Learning from Products. In Software Engi-
neering Conference (APSEC), 2010 17th Asia Pacific, 2010.

99

[91] Marco Spuri and Giorgio C. Buttazzo. Efficient Aperiodic Service under Earliest
Deadline Scheduling. In Real-Time Systems Symposium, 1994., Proceedings., pages
2–11, Dec 1994.

[92] Amitabh Srivastava and Alan Eustace. ATOM: A System for Building Customized
Program Analysis Tools. SIGPLAN Not., 39, 1994.

[93] Ariel Tamches and Barton P. Miller. Fine-grained Dynamic Instrumentation of Com-
modity Operating System Kernels. In Proc. of the 3rd Symp. on Operating Systems
Design and Implementation (OSDI), 1999.

[94] G. M. Tchamgoue and S. Fischmeister. Lessons Learned on Assumptions and Scal-
ability with Time-aware Instrumentation. In 2016 International Conference on Em-
bedded Software (EMSOFT), pages 1–7, Oct 2016.

[95] Gang-Ryung Uh, Robert Cohn, Bharadwaj Yadavalli, Ramesh Peri, and Ravi Ayya-
gari. Analyzing Dynamic Binary Instrumentation Overhead. 2007.

[96] Dan Upton, Kim Hazelwood, Robert Cohn, and Greg Lueck. Improving Instrumen-
tation Speed via Buffering. In Proc. of the Workshop on Binary Instrumentation and
Applications (WBIA), 2009.

[97] Steven Wallace and Kim Hazelwood. SuperPin: Parallelizing Dynamic Instrumenta-
tion for Real-Time Performance. In Intl. Symp. on Code Generation and Optimiza-
tion (CGO), Mar. 2007.

[98] Chadd C Williams and Jeffrey K Hollingsworth. Interactive Binary Instrumentation.
In Second International Workshop on Remote Analysis and Measurement of Software
Systems (RAMSS). Citeseer, 2004.

[99] Zhibin Yu, Weifu Zhang, and Xuping Tu. MT-Profiler: A Parallel Dynamic Analysis
Framework Based on Two-stage Sampling. In Proc. of the 9th Intl. Conf. on Advanced
Parallel Processing Technologies (APPT), 2011.

[100] Junyuan Zeng, Yangchun Fu, and Zhiqiang Lin. PEMU: A Pin Highly Compatible
Out-of-VM Dynamic Binary Instrumentation Framework. In Proceedings of the 11th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-
ments, VEE ’15, pages 147–160, New York, NY, USA, 2015. ACM.

[101] Xiaolan Zhang, Zheng Wang, Nicholas Gloy, J. Bradley Chen, and Michael D. Smith.
System Support for Automatic Profiling and Optimization. SIGOPS Oper. Syst.
Rev., 31, 1997.

100

[102] Qin Zhao, Ioana Cutcutache, and Weng-Fai Wong. PiPA: Pipelined Profiling and
Analysis on Multicore Systems. ACM Trans. Archit. Code Optim., 7(3), Dec. 2010.

101

APPENDICES

102

Appendix A

Parameter Tuning Experiments:
Detailed Results

This appendix lists the analysis of variance (ANOVA) tables of the experiments discussed in
Chapter 5. An ANOVA tests the equality of the means of the data populations associated
to different levels of the input factors. The probability of the equality of the means is
called the P-value. The first column of an ANOVA table lists the sources of variation
including the residuals. The residuals denote the variability in the response variable that
is unexplained by the input factors. Column 2 shows the degrees of freedom (DF) of each
factor. Note that the summation of the degrees of freedom of all sources of variation
should equal to the number of input data points minus one [73]. The third and the fourth
columns calculate the sum of squares (SS) and the mean square (MS) respectively. The
sum of squares represents the total variation in the response that can be attributed to the
associated input factor. The mean square (MS) is the division result of the sum of squares
(SS) by the associated degrees of freedom (DF). The F-ratio column, which is the fifth,
shows the ratio of the mean square to the residual mean square. The P-value, in column 6,
is calculated based on the F-ratio and the degrees of freedom (DF). The last column of the
ANOVA table concludes the significance of the the associated input factor by comparing
the P-value to the significance level. A P-value that is lower than the significance level of
0.01 confirms the significance of the effect of the input factor.

The number of input data points to each ANOVA test equals to the product of (1) the
number of benchmark programs/inputs, (1) the number of replications, and (2) the number
of levels’ combinations of T and B. As mentioned before in Section 5.2, the experiments
run ten replications for each benchmark set such that each replication includes the four
combinations of T and B levels. Also, the number of programs and inputs per each

103

benchmark set is mentioned in Section 5.2. To sum up, SPEC’s ANOVA tests have 1320
input data points (recall that some of the 12 SPEC programs have multiple inputs). The
experiments of IOzone and Stress-ng include 13 and 10 benchmark programs respectively.
Thus, the number of the input data points to IOzone’s ANOVA tests is 520, whereas there
are 400 input data points to Stress-ng’s ANOVA tests.

Tables A.1, A.2, and A.3 are dedicated for the slow-down factors of SPEC, IOzone, and
Stress-ng programs in order. The second three tables A.4, A.5, and A.6 show the results
of the unique instrumentation coverage of the three benchmark sets, while the last three
tables A.7, A.8, and A.9 present these of the raw coverage of the same benchmarks.

Slow-down Factors

Table A.1: ANOVA table: slow-down factors of SPEC benchmark

Source of Variation
Degrees of
Freedom

Sum of
Squares

Mean
Square

F Ratio P Value Significant?

Time Period (T) 1 70 70.1 18.782 0.0000158 Yes
Budget (B) 1 2076 2075.7 556.243 < 2× 10−16 Yes
Benchmark Program (P) 11 9796 890.6 238.654 < 2× 10−16 Yes
Interaction Factor (T :B) 1 3 2.8 0.753 0.386 No
Residuals 1305 4870 3.7

Table A.2: ANOVA table: slow-down factors of IOzone benchmark

Source of Variation
Degrees of
Freedom

Sum of
Squares

Mean
Square

F Ratio P Value Significant?

Time Period (T) 1 0.00360 0.003605 36.48 2.99× 10−10 Yes
Budget (B) 1 0.00013 0.000133 1.35 0.24580 No
Benchmark Program (P) 12 0.07682 0.006401 64.79 < 2× 10−16 Yes
Interaction Factor (T :B) 1 0.00132 0.001323 13.39 0.00028 Yes
Residuals 504 0.04979 0.000099

104

Table A.3: ANOVA table: slow-down factors of Stress-ng benchmark

Source of Variation
Degrees of
Freedom

Sum of
Squares

Mean
Square

F Ratio P Value Significant?

Time Period (T) 1 0.0 0.05 13.33 0.000298 Yes
Budget (B) 1 0.1 0.07 19.14 0.0000157 Yes
Benchmark Program (P) 9 769.5 85.50 23051.36 < 2× 10−16 Yes
Interaction Factor (T :B) 1 0.0 0.05 12.52 0.000452 Yes
Residuals 387 1.4 0.00

Unique Instrumentation Coverage

Table A.4: ANOVA table: unique coverage of SPEC benchmark

Source of Variation
Degrees of
Freedom

Sum of
Squares

Mean
Square

F Ratio P Value Significant?

Time Period (T) 1 7897 7897 122.7 < 2× 10−16 Yes
Budget (B) 1 147001 147001 2283.5 < 2× 10−16 Yes
Benchmark Program (P) 11 101159 9196 142.9 < 2× 10−16 Yes
Interaction Factor (T :B) 1 7466 7466 116.0 < 2× 10−16 Yes
Residuals 1305 84010 64

Table A.5: ANOVA table: unique coverage of IOzone benchmark

Source of Variation
Degrees of
Freedom

Sum of
Squares

Mean
Square

F Ratio P Value Significant?

Time Period (T) 1 1247 1247 134.833 < 2× 10−16 Yes
Budget (B) 1 89266 89266 9649.446 < 2× 10−16 Yes
Benchmark Program (P) 12 325 27 2.923 0.000617 Yes
Interaction Factor (T :B) 1 87863 87863 9497.821 < 2× 10−16 Yes
Residuals 504 4662 9

105

Table A.6: ANOVA table: unique coverage of Stress-ng benchmark

Source of Variation
Degrees of
Freedom

Sum of
Squares

Mean
Square

F Ratio P Value Significant?

Time Period (T) 1 2344 2344 313.08 < 2× 10−16 Yes
Budget (B) 1 231142 231142 30871.88 < 2× 10−16 Yes
Benchmark Program (P) 9 3737 415 55.46 < 2× 10−16 Yes
Interaction Factor (T :B) 1 2974 2974 397.25 < 2× 10−16 Yes
Residuals 387 2898 7

Raw Instrumentation Coverage

Table A.7: ANOVA table: raw coverage of SPEC benchmark

Source of Variation
Degrees of
Freedom

Sum of
Squares

Mean
Square

F Ratio P Value Significant?

Time Period (T) 1 0.008 0.008 0.420 0.517 No
Budget (B) 1 21.810 21.810 1107.781 < 2× 10−16 Yes
Benchmark Program (P) 11 31.448 2.859 145.212 < 2× 10−16 Yes
Interaction Factor (T :B) 1 0.004 0.004 0.209 0.647 No
Residuals 1305 25.693 0.020

Table A.8: ANOVA table: raw coverage of IOzone benchmark

Source of Variation
Degrees of
Freedom

Sum of
Squares

Mean
Square

F Ratio P Value Significant?

Time Period (T) 1 15.54 15.54 1052.36 < 2× 10−16 Yes
Budget (B) 1 72.14 72.14 4884.66 < 2× 10−16 Yes
Benchmark Program (P) 12 3.28 0.27 18.53 < 2× 10−16 Yes
Interaction Factor (T :B) 1 11.77 11.77 796.89 < 2× 10−16 Yes
Residuals 504 7.44 0.01

106

Table A.9: ANOVA table: raw coverage of Stress-ng benchmark

Source of Variation
Degrees of
Freedom

Sum of
Squares

Mean
Square

F Ratio P Value Significant?

Time Period (T) 1 2089 2089 22.93 2.4× 10−6 Yes
Budget (B) 1 5559 5559 61.02 5.36× 10−14 Yes
Benchmark Program (P) 9 29638 3293 36.15 < 2× 10−16 Yes
Interaction Factor (T :B) 1 1401 1401 15.38 0.000104 Yes
Residuals 387 35256 91

107

	List of Tables
	List of Figures
	Introduction
	Motivation
	Real-time Systems
	Program Analysis
	Time-aware Instrumentation
	Pin Framework
	Rate-based Resource Allocation
	Goals and Contributions
	Organization

	Related Work
	Static Instrumentation Frameworks
	Dynamic Instrumentation Frameworks
	Pin-based DBI Frameworks
	Static Time-aware Instrumentation
	Program Sampling

	DIME: Time-Aware Dynamic Binary Instrumentation
	Overview of DIME
	Implementation Using Pin
	Trace Version
	Strict Trace Version
	Trace Conditional
	Qualitative Comparison

	Performance Evaluation
	Experimental Setup
	Experimental Results

	Case Studies
	VLC Media Player
	Laser Beam Stabilization

	Summary

	Redundancy Suppression in DIME
	Overview
	Granularity of Logged Code Regions
	Efficient Log Search
	Hash-Table Log
	BST Log
	Merger-BST Log

	Evaluation of the Log Search Approaches
	Performance Evaluation
	Experimental Setup
	Experimental Results

	Case Studies
	VLC Media Player
	PostgreSQL

	Summary

	Parameter Tuning of DIME
	Overview
	Methodology and Experimental Design
	Hypotheses
	Experimental Factors
	Benchmark Sets
	Factorial Design

	Experimental Results
	ANOVA Test Results
	Discussion

	Guidelines and Limitations
	Summary

	QoS-Aware Dynamic Binary Instrumentation
	Motivation
	Overview of Qdime
	Design Architecture
	Budget Function
	Implementation
	Performance Evaluation
	Experimental Setup
	Benchmark Applications
	Experimental Results

	Summary

	Conclusion and Future Work
	References
	APPENDICES
	Parameter Tuning Experiments: Detailed Results

