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Abstract

Over the past decades, the quantum mechanical description of magnetic phenomena has

been well developed. However, the first principle calculations of the physical properties of

magnetic systems is still a challenge. One solution to the problem is to construct model

magnetic Hamiltonians such that these Hamiltonians can well describe accurate energies

of the low-lying magnetic states, starting from an ab initio Hamiltonian in a finite atomic

orbital basis set.

In the first part of this work, the multireference equation of motion coupled cluster (MREOM-

CC) approach including spin-orbit coupling is applied to model magnetic systems FArO,

FArOF and FArFOH. All low-lying magnetic states are obtained subsequently from a

compact diagonalization of the transformed Hamiltonian in the MREOM-CC scheme. The

accuracy of MREOM is shown to be comparable to the well-established multireference

Configuration Interaction with singles and doubles and the Davidson Q correction (MR-

CISD+Q), but the MREOM approach is significantly more efficient for systems with a

large number of electronic states.

In the second part, we discuss the details of the effective Hamiltonian approach, proposed

in this work. The purpose of this approach is to obtain low-lying states for a Hamiltonian

that consists of pairwise interactions between magnetic sites only. The approach includes

two steps: the definition of an effective Hamiltonian that acts in a compact space of low-

lying single-site states obtained from a mean-field calculation, and the diagonalization of

the effective Hamiltonian. The last step still limits the size of systems that can be tackled.

Some variants of the effective Hamiltonian approach are tested in benchmark applications

to model magnetic systems. The results indicate that this approach is promising, and
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finally we briefly discuss how this approach can be improved in the near future.
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Chapter 1

Introduction

Magnetism is a phenomenon that has drawn the attention of humans during the devel-

opment of human civilization. More than 2500 years ago, the first definite description of

magnetism, that magnetite (Fe3O4) attracts iron, was described and has since grown into

a major topic in the context of science [1].

As has been discussed in ref [2], the history of magnetism can be divided into seven ages:

ancient(-1000-1500), early(1500-1820), electromagnetic(1820-1900), understanding(1900-

1935), high frequency(1935-1960), applications(1960-1995) and spin electronics(1995-present).

With the scope of magnetism expanding, applications of magnetism have crossed the ages,

such as compass, horseshoe magnet, motors and magnetic recording devices [3].

In the past couple of decades, the development of molecular magnetism (that is, for

the magnetic properties of materials based on molecules) has become an increasing interest

for scientists [4]. In general, most chemical systems do not exhibit magnetism, because all

electrons are paired in the populated low lying states. However, magnetism still occurs in
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some systems varing from O2 to metallic and ionic lattices [4, 5, 6].

The microscopic origin of magnetism is related to quantum mechanics. In general, one

can explain most of the magnetic properties through the specific treatment of the electron

spin [3]. Magnetic systems are characterized by the appearance of unpaired electrons.

The wave functions of the states resulting from these electrons can be determined through

the use of strongly correlated methods. However, the use of such methods with respect

to an all-electron description cannot treat very large magnetic systems. As a result, a

simplified model Hamiltonian that only considers the magnetic electrons is to be proposed

to theoretically model their macroscopic properties and experimentally characterize them.

To do so, one can employ the use of theoretical chemistry, which concerns the all-electron

exact electronic Hamiltonian.

The use of theoretical chemistry has two main purposes [3]. The first important ap-

plication is that one can deal with fragments of large size magnetic systems, such as large

molecules, clusters or solids. The chemical features that are responsible for the magnetism

can be obtained through the determination of the electronic structure of the low-lying

states and their energies. Moreover, one can extract and derive model Hamiltonians from

the energies and wave functions obtained using the exact electronic Hamiltonian.

A simple model spin Hamiltonian named Heisenberg-Dirac-van Vleck (HDVV) Hamil-

tonian is widely used with respect to the basis of pure spin functions [7, 8, 9]. The Hamil-

tonian expression for a multi-center system can be given by

ĤHDV V = −
∑
i<j

Jij(ŜiŜj −
ninj

4
Î) (1.1)
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where Jij is the magnetic coupling parameter between two local magnetic units i and j,

Ŝi and Ŝj are the spin operators, Î is the identity operator, and ni and nj represent the

number of unpaired electrons on centers i and j, respectively.

However, one may wonder from where the model Hamiltonian arises and how we may

determine the Hamiltonian parameters like Jij. If the model hamiltonian is known, one

can possibly model experimental quantities like magnetic susceptibilities as a function of

temperature. Conversely, experimental results can be used to extract model parameters.

Unfortunately such results are not always unambiguous. In this work we are interested in

calculating model magnetic Hamiltonian parameters from first-principles quantum chem-

istry calculations. This is a challenging task as one needs to calculate a number of electronic

states that are very close in energy, and these systems are considered strongly correlated.

The focus in this thesis is on calculating the low-lying states, and on extracting model

Hamiltonians that upon diagonalization yield the same low-lying energies as the origi-

nal ab initio calculations. However, our results will not be written in the form of a spin

Hamiltonian as shown in Eq. (1.1). Let us now give a brief outline of the structure of the

thesis.

Chapter 2 first provides an overview of some basic concepts in electronic structure

theory and then discusses some single reference methods in quantum chemistry.

Chapter 3 reviews the application of strongly correlated methods on model magnetic

systems. We first describe the underlying details of the newly developed Multireference

Equation of Motion Coupled Cluster (MREOM-CC) approach [10, 11, 12] and the mean-

field treatment of spin-orbit coupling (SOC) [13]. In the next step, two variants of MREOM

methods are performed to benchmark the Multireference Configuration Interaction (MRCI)
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calculation [14, 15] for the simple FArO model system. The results illustrate the robustness

of MREOM. Finally, MREOM method is applied to magnetic systems that have up to four

magnetic sites. The computational cost indicates the limitation of multireference methods

with respect to large magnetic systems.

The last chapter is dedicated to investigating cost-effective approaches to obtain the

low-lying energies for systems potentially consisting of many magnetic sites. The procedure

involves the calculation of an effective Hamiltonian in the space of low-lying states, starting

from a pair based hamiltonian in a much larger space. The effecitve Hamiltonian can

include 3- and 4-body effects. The method is tailored to calculating states for systems

that have a complicated structure. We will use similar magnetic model systems as in

chapter 3, consisting of an Ar atom loosely bound to atoms like H, F, O, which have

complicated multideterminantal ground state configurations. The results in chapter 4 are

not yet complete, and in particular spin-orbit coupling is not yet considered. This chapter

represents initial steps to the problem.
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Chapter 2

Theoretical Background Theories

2.1 Elementary Concepts in Electronic Structure The-

ory

2.1.1 Hamiltonian with clamped nuclei

One of the central problems of ab initio electronic structure theory is to describe the motion

of an electron in the field of certain nuclear point charges [16]. To do so, one main interest

is to determine approximate solutions to the nonrelativistic time-independent Schrödinger

equation

Ĥ|Ψ〉 = E|Ψ〉 (2.1)

where the Hamiltonian operator, wavefunction and energy for a system of electrons and

nuclei are denoted as Ĥ, |Ψ〉 and E, respectively. In general, the Hamiltonian for a system
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of N electrons and M nuclei in atomic units is expressed as [16]

Ĥ = −
N∑
i=1

1

2
52
i −

M∑
A=1

1

2MA

52
A −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
i<j

1

rij
+

M∑
A=1

M∑
A<B

ZAZB
RAB

(2.2)

where indices A,B are labelled as nuclei, indices i, j are denoted as electrons. The first and

second terms in the above equation represent the kinetic energy operator of electrons and

nuclei, separately. The third term is the electron-nuclear coulomb attraction; the fourth

and fifth terms indicate interelectronic repulsion and internuclear repulsion, respectively.

2.1.2 The Born-Oppenheimer Approximation

The Born-Oppenheimer approximation, which assumes that the motion of electrons and

nuclei in a molecule can be separated, has been widely used in quantum chemistry and

molecular physics. The success of this approximation is that the nuclei are much more

massive than electrons; as a result, the electrons are considered to be moving in the field

of fixed nuclei [17]. Within the approximation, one can neglect the kinetic energy of nuclei

and also consider the internuclear repulsion to be a constant. In this case, the second term

and last term of Eq. (2.2) can be neglected and the electronic Hamiltonian is given by

Ĥ = −
N∑
i=1

1

2
52
i −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
i<j

1

rij
(2.3)
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2.1.3 The Antisymmetry Principle

The electronic Hamiltonian in Eq. (2.3) depends on the three spatial coordinates r of each

electron. However, if we want to describe an electron completely, its spin coordinate ω also

need to specified. In this formalism, an electron is described by three spatial coordinates

and one spin coordinate coordinate. We express the collective four coordinates as x,

x = {r, ω} (2.4)

The wave function for an N-electron system can be expressed as Φ(x1,x2, · · · ,xN). Since

electrons are fermions, a many-electron wave function must be antisymmetric in terms of

the interchange of the coordinate x

Φ(x1, · · · ,xi, · · · ,xj, · · · ,xN) = −Φ(x1, · · · ,xj, · · · ,xi, · · · ,xN) (2.5)

2.1.4 Orbitals and Slater Determinants

We define a spin orbital χ(x) as a wave function for an electron that describes both the

spin and spatial distribution

χ(x) =


ψ(r)α(ω)

or

ψ(r)β(ω),

(2.6)

where ψ(r) is spatial orbital, α(ω) and β(ω) are two orthonormal functions that represent

spin up (↑) and spin down(↓), respectively. For each spatial orbital ψ(r), spin up function
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α(ω) and spin down function β(ω) can be formed. As a result, given a set of K spatial

orbitals {ψ1(r), ψ2(r), · · · , ψK(r)}, one can obtain a orthonormal set of 2K spin orbitals

{χ1(x), χ2(x), · · · , χ2K(x)}

χ2i−1(x) = ψi(r)α(ω)

χ2i(x) = ψi(r)β(ω)

 i = 1, 2, · · · , K (2.7)

A Slater determinant that satisfies the antisymmetry principle is used to describe the wave

function of N electrons occupying N spin orbitals (χ1, χ2, · · · , χN)

Ψ(x1,x2, · · · ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) · · · χN(x1)

χ1(x2) χ2(x2) · · · χN(x2)

...
...

. . .
...

χ1(xN) χ2(xN) · · · χN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.8)

If one drops the normalization factor 1√
N !

and only shows the diagonal elements of the

determinant, a short-hand expression can be given by

Ψ(x1,x2, · · · ,xN) = |χ1(x1)χ2(x2) · · ·χN(xN)〉 (2.9)

In a further way, if the electron labels are assigned to be in the order of x1,x2, · · · ,xN ,

the equation can be conveniently shortened to

Ψ(x1,x2, · · · ,xN) = |χ1χ2 · · ·χN〉 (2.10)
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Then, the antisymmetry property of Slater determinant is expressed as

|· · ·χi · · ·χj · · ·〉 = −|· · ·χj · · ·χi · · ·〉 (2.11)

A single Slater determinant is used as an approximation to the electronic wavefunction in

Hartree-Fock theory. In more accurate theories, such as Configuration Interaction, a linear

combination of Slater determinants is needed.

2.1.5 Second Quantization

First, we introduce an elegant way of treating many-electrons systems: second quantization.

Second quantization is a technical tool to use the algebraic properties of certain operators

to deal with the antisymmetry of the wave function.

The action of a creation operator â†i operating on an arbitrary Slater determinant |χj . . . χk〉

can be written as

â†i |χj . . . χk〉 = |χiχj . . . χk〉 (2.12)

Hence an electron is created in spin orbital χi by â†i .

The Slater determinant must follow the property of the antisymmetry principle. Consider

â†i â
†
j|χk . . . χl〉 = â†i |χjχk . . . χl〉 (2.13)

= |χiχjχk . . . χl〉 (2.14)
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On the other hand,

â†j â
†
i |χk . . . χl〉 = â†j|χiχk . . . χl〉 (2.15)

= |χjχiχk . . . χl〉 (2.16)

= −|χiχjχk . . . χl〉 (2.17)

Adding Eq. (2.14) and Eq. (2.17) we obtain

â†i â
†
j|χk . . . χl〉+ â†j â

†
i |χk . . . χl〉 = (â†i â

†
j + â†j â

†
i )|χk . . . χl〉 (2.18)

= 0 (2.19)

Since |χj . . . χk〉 is arbitrary, the anticommutator of two creation operators â†i , â
†
j is given

by {
â†i , â

†
j

}
= â†i â

†
j + â†j â

†
i = 0 (2.20)

Consequently, the antisymmetry property of the Slater determinant is encoded through

the anticommutation relation.

Next, we will introduce the annihilation operator, which is defined as the adjoint of the

creation operator â†i (i.e., ((â†i )
† = âi)). Analogously to Eq. (2.12), âi is defined as removing

the electron from an occupied spin orbital χi,

âi|χiχj . . . χk〉 = |χj . . . χk〉. (2.21)
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If the spin orbital is not immediately to the left, a number of transpositions is required to

interchange the columns of the determinant, e.g.,

âi|χjχi · · ·χk〉 = −âi|χiχj · · ·χk〉 = −|χj · · ·χk〉 (2.22)

There are two more anticommutators reflecting the antisymmetry principle.

{âi, âj} = âiâj + âj âi = 0 (2.23){
â†i , âj

}
= â†i âj + âj â

†
i = δij =

 1, i = j

0, i 6= j
(2.24)

To obtain the second-quantized representation of the Slater determinant, we introduce the

vacuum state denoted by |vac〉. That is, it contains no electron. In general,

â†i â
†
j . . . â

†
k|vac〉 = |χiχj . . . χk〉 (2.25)

〈vac|âk . . . âj âi = 〈χk . . . χjχi| (2.26)

2.1.6 Normal Ordering and Wick’s Theorem

In quantum chemistry, there are a number of approaches in which one wants to evaluate the

matrix element 〈vac|ÂB̂Ĉ · · · |vac〉, where Â, B̂, Ĉ, · · · are expressed using strings of second-

quantized creation and annihilation operators. Then the so-called normal-ordered product

of such operators is defined as the rearranged product of operators such that all creation

operators are to the left of all annihilation operators in the product. Moreover, a minus sign
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arises from each of the permutations of adjacent operators producing the rearrangement

product. For example,
{
a†iaj

}
= a†iaj,

{
aja
†
i

}
= −a†iaj are the rearranged normal-ordered

products, where the braces indicate the normal-ordered action on the vacuum state. The

vacuum expectation value of a normal-ordered product is zero, which can be expressed as

〈vac|
{
ÂB̂Ĉ · · ·

}
|vac〉 = 0 (2.27)

Wick’s theorem is used extensively in the evaluation of the expectation values of operator

strings. In order to formulate this, we define the contraction of a pair of second-quantized

operators Â, B̂ [18] as

ÂB̂ = ÂB̂ − {ÂB̂}, (2.28)

Here, there are four possibilities to be considered:

â†i â
†
j = â†i â

†
j − {â†i â†j} = â†i â

†
j − â†i â†j = 0, (2.29)

â†i âj = â†i âj − {â†i âj} = â†i âj − â†i âj = 0, (2.30)

âiâj = âiâj − {âiâj} = âiâj − âiâj = 0, (2.31)

âj â
†
i = âj â

†
i − {âj â†i} = âj â

†
i −
(
− â†i âj

)
=
{
â†i , âj

}
= δij. (2.32)

Therefore, the contraction of two creation or annihilation operators is equal to zero or one.

A normal-ordered product with contractions can be given by

{ÂB̂Ĉ · · · P̂ · · · Q̂ · · · R̂ · · · Ŝ · · · } = (−1)δP̂ R̂Q̂Ŝ · · · {ÂB̂Ĉ · · · }, (2.33)
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where δ is the number of transpositions to bring contracted operators in adjacent positions.

In addition, the time-independent Wick’s theorem [19] states: a string of creation and

annihilation operators can be rewritten as their normal-ordered product plus the sum of

normal-ordered products with all possible contractions

ÂB̂ĈD̂ · · · = {ÂB̂ĈD̂ · · · }+
[
{ÂB̂ĈD̂ · · · }+ {ÂB̂ĈD̂ · · · }+ {ÂB̂ĈD̂ · · · }+ {ÂB̂ĈD̂ · · · }+ . . .

]
︸ ︷︷ ︸

One pair contractions

+
[
{ÂB̂ĈD̂ · · · }+ {ÂB̂ĈD̂ · · · }+ . . .

]
︸ ︷︷ ︸

Two pairs contractions

+ . . .+
∑
fully

contracted

{ÂB̂ĈD̂ · · · }

= {ÂB̂ĈD̂ · · · }+
∑

all possible
contractions

{ÂB̂ĈD̂ · · · } (2.34)

2.2 Single Reference Approaches

2.2.1 The Hartree-Fock Method

The Hartree-Fock (HF) approximation plays a significant role in approximately solving the

electronic Schrödinger equation, and it assumes that a single Slater determinant can be

used to approximate the ground state of an N -electron system.

|Ψ0〉 = |χ1χ2 · · ·χaχb · · ·χN〉 (2.35)
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The spin orbitals in |Ψ0〉 are optimized such that the energy is minimized

E0 = 〈Ψ0|Ĥ|Ψ0〉 (2.36)

where Ĥ is the electronic Hamiltonian.

Even though the HF wave function is the simplest form of an antisymmetric wave function,

the accuracy of the simplest approximation is surprisingly good. The HF energy can cap-

ture more than 99% of the total energy. Unfortunately, the remaining energy is extremely

important in the context of chemistry. For example, the Hartree-Fock energy of water with

respect to the cc-pV6Z basis set is -76.067401 Hartree [20]. 1% of this is about 0.76 Hartree

or 2000 kJ/mol! In addition, the Hartree-Fock wavefunctions account for around 70% of

the dissociation energy of water, as has been discussed in [21]. As a result, one needs to

solve the Schrödinger equation more accurately.

2.2.2 Excited Determinant and Configuration Interaction

The Hartree-Fock procedure can produce a set of N occupied spin orbitals {χi}. The

number of single determinants formed from an N -electron system and 2K spin orbitals is

(
2K

N

)
=

(2K)!

N !(2K −N)!
(2.37)

One of these single determinants can describe the Hartree-Fock ground state, while other

single determinants are basis functions that can be used to improve accuracy of HF method,

or for the description of singly, doubly, triply, quadruply, ... , N -tuply excited states.
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For example, in a so-called single excited determinant, an electron is excited from an

occupied spin orbital χa in Hartree-Fock ground state, to a virtual spin orbital χr

|Ψr
a〉 = |χ1χ2 · · ·χaχrχb · · ·χN〉 (2.38)

A doubly excited determinant corresponds to a pair of electrons that have been excited

from two occupied spin orbitals χa and χb to two virtual spin orbitals χr and χs

|Ψrs
ab〉 = |χ1χ2 · · ·χaχrχbχs · · ·χN〉 (2.39)

The full Configuration Interaction (CI) wave function can be expressed by a linear combi-

nation of all the possible determinants

|ΦFCI〉 = c0 |Ψ0〉+
N∑
a

2K∑
r

cra |Ψr
a〉+

N∑
a<b

2K∑
r<s

crsab |Ψrs
ab〉+

N∑
a<b<c

2K∑
r<s<t

crstabc
∣∣Ψrst

abc

〉
+ · · ·

=
∑
µ

cµ |Ψµ〉 , (2.40)

and these coefficients are obtained by minimizing the energy

E =
〈ΦFCI|Ĥ|ΦFCI〉
〈ΦFCI|ΦFCI〉

(2.41)

When solving for the energy, the full CI Hamiltonian matrix will lead to the eigenvalue

problem ∑
µ

〈Ψλ|Ĥ|Ψµ〉cµ =
∑
µ

Eδµλcµ = Ecλ (2.42)
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which can be rewritten as

Hc = Ec (2.43)

The full CI problem describes the exact solution of the Schrödinger equation in a given

basis set. Unfortunately, it is very expensive to compute for infinite basis sets. Therefore,

the goal of quantum chemistry is to define suitable approximations.

2.2.3 Single Reference Coupled Cluster Theory

The Single Reference Coupled Cluster (SRCC) treatment is widely used in quantum chem-

istry. It works very well if the HF wave function is a good starting point.

In SRCC theory [22, 23], the ground state wave function is written as an exponential ansatz

|ψ〉 = eT̂ |Ψ0〉 (2.44)

= (1 + T̂ +
T̂ 2

2!
+
T̂ 3

3!
+ · · · )|Ψ0〉 (2.45)

where T̂ is the cluster operator and |Ψ0〉 is the Hartree-Fock ground state. The cluster

operator T̂ in SRCC theory is defined as

T̂ = T̂1 + T̂2 + · · · (2.46)

=
∑
i

∑
a

tai â
†î+

1

4

∑
i,j

∑
a,b

tabij â
†b̂†ĵ î+ · · · (2.47)

In the above formula, the indices i, j refer to occupied spin orbitals in the reference function

|Ψ0〉, while a, b stand for the unoccupied orbitals. â†, b̂† denote the creation operators,
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and î, ĵ indicate the annihilation operators. The coefficients tai , t
ab
ij are called the cluster

amplitudes.

The non-relativistic time-independent Schrödinger equation in SRCC theory can be written

as

ĤeT̂ |Ψ0〉 = EeT̂ |Ψ0〉 (2.48)

e−T̂ ĤeT̂ |Ψ0〉 = Ee−T̂ eT̂ |Ψ0〉 (2.49)

e−T̂ ĤeT̂ |Ψ0〉 = E|Ψ0〉 (2.50)

The SRCC cluster amplitudes and energy can be obtained by projecting against the excited

state determinant (〈Ψ∗|) and the ground state determinant on Eq. (2.50), respectively

〈Ψ∗|e−T̂ ĤeT̂ |Ψ0〉 = 0 (2.51)

〈Ψ0|e−T̂ ĤeT̂ |Ψ0〉 = E (2.52)

The transformed Hamiltonian in SRCC theory can be denoted as ˆ̄H

ˆ̄H = e−T̂ ĤeT̂ (2.53)

= Ĥ + [Ĥ, T̂ ] +
1

2!
[[Ĥ, T̂ ], T̂ ] + · · · (2.54)
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The main advantage of Coupled Cluster theory is that the choice of exponential ansatz

guarantees the size-consistency of the solution.

The original Schrödinger equation is given by

Ĥ|Ψ〉 = E|Ψ〉 (2.55)

We can transform Eq. (2.55) to obtain the general transformed Hamiltonian.

ĤUU−1|Ψ〉 = E|Ψ〉 (2.56)

U−1ĤUU−1|Ψ〉 = EU−1|Ψ〉 (2.57)

ˆ̄HU−1|Ψ〉 = EU−1|Ψ〉 (2.58)

ˆ̄H|φ〉 = E|φ〉 (2.59)

where the transformed Hamiltonian with respect to an arbitrary operator U is written as

ˆ̄H = U−1ĤU (2.60)

It is seen that the original Hamiltonian and transformed Hamiltonian have same eigenval-

ues, but yield different eigenstates |φ〉 = U−1|Ψ〉.

In the remaining chapters, the concept of a similarity transformation will be used re-

peatedly. By choosing the operator U in a suitable fashion, the eigenfunction |φ〉 of the

transformed Hamiltonian can be greatly simplified. CC theory is an example of such a the-

ory, and the ground state of the transformed Hamiltonian is the Hartree-Fock determinant.

All the complexity of the problem is transfered to the operator U.
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Chapter 3

Multireference Equation of Motion

Coupled Cluster Benchmark Study of

Magnetic Model Systems1

3.1 Introduction

Human knowledge of magnetic phenomena has a very long history, going back to ancient

times [2]. Today, the quantum mechanical description of magnetic phenomena is well un-

derstood, but the first principle calculations of magnetic properties is still a challenge [3].

A convenient approach to the problem is the construction of a model magnetic Hamilto-

nian [24, 25], and the extraction of the parameters that enter the Hamiltonian from first

principle quantum chemistry approaches (e.g., see refs. [26, 27]). These approaches are well

1The contents of this chapter have been submitted for publication in J. Chem. Theory Comput.
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established, and have been reviewed, for example, in refs. [3, 28]. The choice of quantum

chemistry approach is delicate. Broken symmetry density functional theory (DFT) [29, 30]

has been used extensively in the past [31, 32, 33, 34, 35], and has the virtue that the

approach is efficient, but it also heavily relies on the assumed validity of the model Hamil-

tonian, and further underlying assumptions. A more satisfactory approach would be based

on accurate wave function techniques that are suitable for strongly correlated systems.

A method that has created significant interest is the difference dedicated Configuration

Interaction (DDCI) approach [36, 37, 38, 39]. However, this method is expensive, using a

large CI expansion, and in particular uses a threshold to screen configurations. Therefore,

the method is somewhat delicate to apply. A clear alternative would be the internally con-

tracted Multireference Configuration Interaction (IC-MRCI) approach [14, 15]. However,

this approach can also be expensive and it requires a balanced treatment of many low-lying

electronic states.

In this work we consider the applicability of the newly developed multireference equation

of motion coupled cluster (MREOM-CC) approach [10, 11, 12]. This methodology has

clear advantages for magnetic systems. In the context of MREOM, one starts with a state-

averaged complete active space self-consistent field (CASSCF) calculation [40] and in the

case of magnetic systems this CASSCF calculation can simply comprise the high-spin states

in the system, which can usually be described using a small number of configurations. In

addition, the choice of active orbitals is elementary for magnetic systems. In subsequent

steps, a number of similarity transformations of the Hamiltonian are obtained, solving for

the amplitudes along the way. To calculate the similarity transforms, one only requires the

one and two-body reduced density matrices corresponding to the state-averaged complete
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active space (CAS). In the final step of MREOM, the transformed Hamiltonian is diag-

onalized over CAS, 1h and 1p configurations. The dimension of the final diagonalization

space is very compact and one can obtain all low-lying magnetic states of interest in this

final diagonalization step, in particular also low-spin states. Because the final diagonaliza-

tion space is small, it is feasible to calculate systems with a sizeable number of magnetic

atoms. Moreover, the MREOM implementation in ORCA [41, 42, 43] provides a treatment

of spin-orbit coupling (SOC) [13].

The purpose of this paper is to determine the accuracy of MREOM including SOC for

magnetic systems. To do this, we design artificial magnetic systems that are fairly easy to

compute, and we can compare MREOM results to benchmark MRCI+Q, both including a

treatment of SOC. The artificial magnetic systems consist of open-shell atoms like F, O or

H and a closed-shell Ar atom. Magnetic atoms are interacting with each other, while Ar

atom acts like a bridge in the magnetic system and accounts for so-called super-exchange

[44, 45, 46]. It will be demonstrated that SOC MREOM results follow SOC MRCI+Q

results quite closely, while in addition the MREOM results are size-consistent for all prac-

tical purposes. Therefore, one can establish the geometrical dependence of the magnetic

interactions. This paper is organized as follows. In section 3.2, we discuss the underlying

theory of MREOM and the mean-field treatment of SOC. In section 3.3, computational

details regarding some variants of MREOM, and the details concerning the MRCI calcula-

tion in Molpro [47] are discussed. In section 3.4, we provide in depth comparisons for the

simple FArO model system, and we discuss a modification to the default spin-orbit mean-

field method in ORCA to maintain size-consistency. MREOM is then applied to magnetic

systems that have up to four magnetic sites to establish the promise of the method.
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3.2 Theory

The MREOM-CC approach [10, 11, 12] provides a convenient way to calculate a large

number of electronic excited states using an efficient transform and diagonalize strategy.

The starting point of MREOM calculation is a state-averaged CASSCF calculation, where

all states of interest are considered to be qualitatively well described by linear combination

of electronic configurations which comprise the CAS. Let us denote i′, j′, k′, l′ as inactive

core orbitals, w, x, y, z, as active orbitals, i, j, k, l as occupied orbitals, which can be either

inactive or active, a, b, c, d, as virtual orbitals, p, q, r, s, as general orbitals. The key idea

of MREOM methodology is that a sequence of many-body similarity transformations are

applied to the second-quantized Hamiltonian. In general, many body transformations with

respect to Kutzelnigg-Mukherjee normal ordering [48, 49, 50], can be expressed as follow:

Ĝ =
{
eŶ
}−1

Ĥ
{
eŶ
}
→
{
eŶ
}
Ĝ = Ĥ

{
eŶ
}
→,

Ĝ = (Ĥ
{
eŶ
}

)Connected − (
{
eŶ − 1

}
Ĝ)Connected = ...

= g0 + gpr
{
p†r
}

+
1

4
gpqrs
{
p†rq†s

}
+ · · · . (3.1)

A key observation is that such a transformed Hamiltonian is explicitly a connected operator

if Ŷ is connected, which is the case in MREOM.

In this work, we will describe a sequence of transformations which has been imple-

mented in the ORCA package, and which in full is referred to as the MR-EOM-T|T†|SXD|U

method. We will consider the implementation of operators T̂ , Ŝ, X̂, D̂, Û in terms of sim-

ilarity transformations. Below, we use the Einstein summation convention meaning that
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repeated indices are always summed over.

The excitation operator T̂ expressed in terms of the single and double spin-free generators

of the unitary group Êq
p and Êrs

pq is given by

T̂ = T̂1 + T̂2 = tiaÊ
a
i +

1

2
tijabÊ

ab
ij , (3.2)

where tia and tijab are single and double excitation amplitudes, respectively.

The Hamiltonian Ĥ is expressed in the usual second-quantized form, and the first

transformation in MREOM is obtained as

ˆ̄H = e−T̂ ĤeT̂

= h̄0 + h̄pq

{
Êq
p

}
+ h̄pqrs

{
Êrs
pq

}
+ h̄pqrstu

{
Êstu
pqr

}
+ · · · , (3.3)

noting that eT̂ is already in normal-ordered form.

The t-amplitudes are solved from [12, 51]

∑
k

ωk〈Rk|Ei
a

ˆ̄H|Rk〉 = 0, (3.4)

h̄abij = h̄abix = h̄abxy = 0, (3.5)

where |Rk〉 refers to states obtained from the state-averaged CASSCF and ωk is the corre-

sponding state weight.
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The second transformation in the MR-EOM-T|T†|SXD|U scheme [42] is written as

ˆ̃H = eT̂
† ˆ̄H2e

−T̂ †

= h̃0 + h̃qp

{
Êp
q

}
+ h̃rspq

{
Êpq
rs

}
+ h̃stupqr

{
Êpqr
stu

}
+ · · · , (3.6)

in which ˆ̄H2 is the similarity transformed Hamiltonian in Eq. (3.3), truncated up to two-

body operators. The de-excitation operator T̂ † is defined as

T̂ † = tai Ê
i
a +

1

2
tabij Ê

ij
ab, (3.7)

and the de-excitation amplitudes are assumed to be the same as the excitation amplitudes

tai ≈ tia, (3.8)

tabij ≈ tijab. (3.9)

The similarity transformation of Eq. (3.6) is performed to make the Hamiltonian ˆ̃H

approximately Hermitian.

The third transformation takes the form

F̄ =
{
eŜ2+X̂+D̂

}−1 ˆ̃H2

{
eŜ2+X̂+D̂

}
, (3.10)

in which ˆ̃H2 include the zero-, one- and two-body elements of ˆ̃H in Eq. (3.6). Here the
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Ŝ2, X̂ and D̂ operators are defined as

Ŝ2 = saxi′j′Ê
i′j′

ax , (3.11)

X̂ = X̂2 = xayxj′Ê
xj′

ay , (3.12)

D̂ = D̂2 = dayi′xÊ
i′x
ay . (3.13)

The SXD-amplitudes are solved from

faxi′j′ = fayxj′ = fayi′x = 0. (3.14)

In all above expressions, we only retain terms that are at most quadratic in the cluster

amplitudes [11].

The final similarity transformation of the MR-EOM-T|T†|SXD|U approach is given by

Ĝ = e−Û F̂2e
Û

= g0 + gpq

{
Êq
p

}
+ gpqrs

{
Êrs
pq

}
+ gpqrstu

{
Êstu
pqr

}
+ · · · , (3.15)

where F̂2 indicates that F̂ in Eq. (3.10) has been truncated up to two-body operators. The

operator Û is defined as

Û = Û2 =
1

2
uxyi′j′Ê

i′j′

xy . (3.16)

The U-amplitudes are solved from

gxyi′j′ = 0. (3.17)
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Once again, we discard terms that are more than quadratic in the amplitudes. All MREOM

amplitudes equations are expressed in terms of spatial state-averaged one-particle reduced

density matrices, and the state-averaged two-body cumulant. The detailed equations have

been derived using computer algebra, and a code generator is used to develop the computer

code in ORCA, written in the C++ language [41, 42].

The inclusion of SOC has been discussed in previous studies [13, 52, 53]. A good starting

point to introduce the SOC effect is that a number of I electronic states

|ΨSS
I 〉 =

∑
µ

CµI |ΦSS
µ 〉 (3.18)

are obtained following the diagonalization of the similarity transformed Hamiltonian [42,

53]. For the inclusion of SOC effects, the functions |ΨSM
I 〉 with spin projection number

M = −S, · · · , S can be generated by the repeated application of spin shift operators

on the states |ΨSS
I 〉. The energies of basis states |ΨSM

I 〉 treated by the quasi-degenerate

perturbation theory can be obtained by

〈ΨSM
I |Ĝ+ ĤSOMF |ΨS′M ′

J 〉 = δIJδSS′δMM ′E
(S)
I + 〈ΨSM

I |ĤSOMF |ΨS′M ′

J 〉, (3.19)

where the spin-orbit mean-filed (SOMF) operator is described in refs. [13, 54] and the

calculation of the SOMF matrix elements is given in ref. [53]. In this formulation, it is

crucial that the MREOM Hamiltonian Ĝ commutes with the spin operators. In addition,

we use the bare ĤSOMF rather than a transformed SOC operator. This is an approximation

that has been shown to work fairly well for atoms [55].
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3.3 Computational Details

The main strategy of MREOM methods for studying magnetic systems is that many elec-

tronic excited states can be obtained, while the preceding state-averaged CASSCF calcu-

lation is performed for only a few high-spin states. The amplitudes in MREOM are solved

using state-averaged density matrices from the CASSCF calculation. As shown in Table

3.1, two variations of MREOM including the definition of final MRCI diagonalization space

are discussed.

In this work, we employ both ORCA and Molpro quantum chemistry packages. The

complete active space configuration interaction (CASCI) or CASSCF and MRCISD+Q

[14, 15, 56, 57] approaches are performed to study the effect of dynamic correlation using

the Molpro package. Moreover, two MREOM approaches listed in Table 3.1 are performed

in ORCA to test the efficiency and the accuracy of the transform and diagonalize strategy.

Method Short name Transformation(s) Diagonalization space

MR-EOM-T|T†|SXD|U MREOM T̂1 + T̂2|T̂ †1 + T̂ †2 |Ŝ2 + X̂ + D̂|Û CAS, 1p,1h

MR-EOM-T|T†|SXD-ph MREOM 1p1h T̂1 + T̂2|T̂ †1 + T̂ †2 |Ŝ2 + X̂ + D̂ CAS, 1p,1h, 2h, 1p1h

Table 3.1: The characteristics of the two MREOM approaches.

All calculation that include SOC are denoted as SOC CASCI, SOC MRCISD+Q, SOC

MREOM and SOC MREOM 1p1h, and are performed to understand the effect of SOC on

magnetic systems. The default SOC approach in ORCA is defined as SOMF(1X), which

has been discussed in ref. [13]. In this default approach, there is a tight threshold to

include only states that are nearly degenerate with the ground state. This is not a good
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strategy for systems studied in this work (as will be shown later). Instead we use a modified

SOMF(1X) approach denoted as m SOMF(1X) in which the state-averaged density passed

to the SOC program is obtained over all states. It is also important to note here that a

full SOC MRCISD+Q calculation in Molpro requires a lot of memory. Therefore, a lower

level of accuracy approach is used in the Molpro package. The wavefunctions passed to

the spin-orbit program are generated by the MRCI with singles only, while the diagonal

elements are replaced by precomputed MRCISD+Q energies.

All calculations were performed using the cc-pVDZ basis set [58, 59].

3.4 Results

3.4.1 Analysis of Results for the FArO System

Let us first introduce the FArO artificial magnetic system. The geometric structure of the

system is given in Figure 3.1. To design a representative magnetic system, the distance

Ar

F O

120° R R 

Figure 3.1: The geometric structure of the FArO system. R = r(Ar− F) = r(Ar−O),
bond angle is 120◦.
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between F, O and Ar is fairly large. Hence, the system essentially consists of the magnetic

atoms F and O interacting with a spacer, while the atomic degeneracy is further lifted

through interaction of F and O. In reality, this system is highly unstable as the distant

open-shell atoms would react to molecules that are then weakly bounded to argon atom.

In our calculation, we constrain the geometries such that the open-shell identities of the

atoms in the cluster is preserved. In this section, we first give a brief qualitative picture

and analysis of such magnetic systems. In doing so, we have decided to look at the effect

of the Argon atom, spin-orbit coupling, dynamical correlation and magnetic coupling.

In addition, we report our analysis on testing the accuracy of the multireference methods

performed in this work. Finally, we present some results on the analysis of FArO at smaller

distances.

3.4.1.1 Consideration of the Argon Atom and Spin-orbit Coupling

We start from a CASCI using the Molpro package to illustrate the effect of spin-orbit

coupling and inclusion of the Ar atom on the statistical-mechanical properties analysis of

the low-lying states of magnetic molecules. At first, CASCI and SOC CASCI calculations

have been performed for FArO and FXO at bond length R = 2.9 Å. In FXO, the Ar atom

is replaced by auxiliary center such that F and O atoms are at the same positions as

in FArO. Below, we more conveniently denote FXO as FO. To illustrate the results of

the calculation in a convenient fashion, we draw a curve of excitation energy versus state

number referred to as an excitation energy plot, and we also provide the heat capacity as a

function of temperature. The heat capacity is obtained from a sum over states expression,

that includes all low-lying magnetic states. Given each energy level En and temperature
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T , we define

Z =
∑
n=0

e
−(En−E0)

kBT (3.20)

Pn =
1

Z
e
−(En−E0)

kBT (3.21)

U =
∑
n

PnEn (3.22)

Cv =
1

kBT 2

∑
n

Pn(En − U)2 (3.23)

In Figure 3.2, we present a plot of excitation energies of FArO and FO for a total of 54

low-lying states. For the CASCI calculation of FO molecule, all low-lying excited states
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Figure 3.2: The excitation energies curve of FArO and FO molecules obtained using the
CASCI.
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are located within 20 cm−1. However, for the CASCI calculation of FArO molecule, the

excitation energies for these low-lying states range from 0 ∼ 600 cm−1 with four basic

energy splittings, which indicates that the excitation energies are sensitive to the inclusion

of the Argon atom which acts as a spacer. To test the effect of spin-orbit coupling, we also

investigate the excitation energies and heat capacity plots for FArO using the CASCI and

SOC CASCI. In Figure 3.3, the excitation energies plot and heat capacity plot indicate

that CASCI and SOC CASCI calculations are quite different. In particular, the inclusion

of SOC gives rise to a smearing of the energy levels. Moreover, the energy difference

between the lowest and highest magnetic level increases significantly from 600 cm−1 to

around 970 cm−1. This indicates that the Argon atom and SOC are extremely important

for the magnetic energy level spacing.
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Figure 3.3: Plots of (a) excitation energies and (b) heat capacity for FArO using the CASCI
and SOC CASCI.
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3.4.1.2 Determination of the Effect of Dynamical Correlation

In the previous section, the qualitative performance based on the CAS level has been dis-

cussed. Those results support our motivation to explore this further in terms of the dynami-

cal correlation contribution on our statistical-mechanical properties of the low-lying excited

states. Here, we first report the performance of the SOC CASCI and SOC MRCISD + Q

for FArO molecule at bond length R = 2.9 Å. In Figure 3.4, it is clear that the shapes of

excitation energies plot and heat capacity plot are qualitatively similar, which indicates

that the contribution from dynamic correlation is not large, but it is still important for

quantitative accuracy [60]. As has been discussed in refs. [3, 12, 14, 15], MRCISD+Q

approach is considered to be fairly efficient but it is not rigorously size-consistent. MR-

CISD+Q method rapidly becomes expensive if the size of the molecule gets larger and in

particular if the number of magnetic sites increase. MREOM approaches scale in a bet-

ter way and are applicable to larger systems because of the reduced final diagonalization

space. As a result, it is of interest to make a comparison among the SOC MRCISD + Q,

SOC MREOM and SOC MREOM 1p1h calculations. In Figure 3.5, the excitation ener-

gies plot and heat capacity plot for SOC MRCISD + Q are seen to be closely comparable

to those of SOC MREOM and SOC MREOM 1p1h for FArO molecule at R = 2.9 Å. This

shows that MREOM approaches are convincingly accurate enough compared to MRCI+Q

approach. Also, the slight difference between SOC MREOM and SOC MREOM 1p1h

approaches indicates that the inclusion of the ph and 2h excitations is not significant.

It is also interesting to note that in Figure 3.5, there is a small peak at T =∼ 5K

for SOC MRCISD + Q approach in the heat capacity plot, which is not visible in the

SOC MREOM and SOC MREOM 1p1h results. This peak arises because there are two
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Figure 3.4: Plots of (a) excitation energies and (b) heat capacity for FArO using the
SOC CASCI and SOC MRCISD+Q.
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Figure 3.5: Plots of (a) excitation energies and (b) heat capacity for FArO using the
SOC MRCISD+Q, SOC MREOM and SOC MREOM 1p1h.
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low-lying excited states sitting at 5 cm−1 for SOC MRCISD + Q calculation, while the

two corresponding states energies are 0.3 cm−1 and 0.5 cm−1 for SOC MREOM and

SOC MREOM 1p1h, respectively. This illustrates that such a small difference can have

significant effects at low temperatures.

3.4.1.3 Consideration of the Magnetic Coupling Effect

Our next qualitative analysis concerns the effect of magnetic coupling or the difference be-

tween interacting and non-interacting atoms. In this case, we compare the total excitation

energies (in cm−1) of magnetic dimer FArO molecule with the sum of excitation energies of
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Figure 3.6: The excitation energies curve of interacting molecule (FArO) and non-
interacting molecules (ArF+ArO) using the SOC CASCI.
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ArF and ArO magnetic monomer molecules for each corresponding low-lying excited state.

In Figure 3.6, the excitation energies plots show that the energy levels between interacting

and non-interacting systems quite nearly match each other. This indicates that the true

magnetic coupling effects in the model systems are small. They strongly depend on the

interatomic distance, as will be discussed later.

3.4.1.4 A Test of Accuracy: Size-consistency

As has been reported in section 3.4.1.2, there is very little difference between MRCI and

MREOM approaches if one simply looks at these excitation energies and heat capacity

plots. Let us take a deeper look, however, at the magnetic coupling effect in a quantitative

perspective. To test the accuracy of MRCI and MREOM methods as well as to clearly

see the effect of size-consistency, we look at the excitation energies difference between

interacting and non-interacting moieties.

Let us here define the two-body energy, which can be used to focus on the effects of

magnetic interactions. This can be expressed as

∆Etwo−body
λν = ∆Eλν − (∆Eλ + ∆Eν) (3.24)

in which ∆Eλν is the excitation energy of FArO, while ∆Eλ and ∆Eν represent the corre-

sponding excitation energies of ArF and ArO, respectively. The sum energies (∆Eλ + ∆Eν)

are sorted such that they correspond to magnetic excitation energies of FArO, ∆Eλν .

We first compare the two-body energies of FArO using the SOC CASCI in both ORCA

and Molpro package. A set of calculations containing 13 bond lengths ranging from 2.5 Å
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Figure 3.7: Two-body energies for FArO using default SOC CASCI in Molpro and ORCA
for states 38 and 44.

to 10 Å are performed to make a detailed comparison. Quite surprisingly, it is observed

in Figure 3.7 that the default SOC approach denoted as SOMF(1X) in ORCA lacks of

rigorous size-consistency as the asymptote does not go towards 0 cm−1, for example for

states 38 and 44. This issue with size-consistency in default ORCA SOC calculations us-

ing SOMF(1X) is due to the definition of the state-averaging. By default only states are

included that are almost exactly degenerate. For FArO only one state is included, unless

the distance is very large. However, for the linear molecules ArF and ArO, two states are

included since the π states are doubly degenerate. This significantly affects SOC in the

mean field approximation, and this causes the unexpected behavior. The solution to the
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problem for these particular systems is fairly straightforward: we include all 54 magnetic

states in the definition of the average density that enters the SOMF(1X) procedure. An al-

ternative procedure would be to use the states that are used in the high-spin CASSCF. This

could be a most satisfactory general solution, but this requires a more substantial change

to the ORCA code, and this is not pursued here. ORCA calculation will be performed

under m SOMF(1X) again to test the size-consistency issue. In Figure 3.8, it can be seen

that the size-consistency error in SOC CASCI is fixed using the m SOMF (1X) approach.

In a further step, to test the size-consistency issue with inclusion of correlation energies,
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Figure 3.8: Two-body energies for FArO using default SOC CASCI in Molpro and m
SOMF(1X) in ORCA for states 38 and 44.
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we perform SOC MRCISD + Q and SOC MREOM calculations on FArO molecule at the

same 13 bond lengths. In all SOC MREOM calculations reported in this paper (including

previous section 3.4.1.2), we used the modified SOMF(1X) to include SOC. Figure 3.9

shows the behavior of two-body energies for states 40 and 47. As anticipated, the asymp-

tote of MREOM approach is perfect at 0 cm−1, as it is a nearly size-consistent method.

One also observes that SOC MRCISD + Q approach does not yield reasonable results, as

the asymptote is not flat at 0 cm−1 at larger bond distances. This clearly illustrates the

violation of size-consistency.
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Figure 3.9: Two-body energies for FArO using the SOC MRCISD+Q and SOC MREOM
for states 40 and 47.
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3.4.1.5 Determination of the Behavior of Excitation Energies for FArO at

Smaller Bond Distances

Let us again look at the analysis of excitation energies for FArO. In Figure 3.10, we report

the excitation energies plot for excited state 28 with respect to the increase of bond length

using the SOC MREOM. The plot indicates that the excitation energy is nearly converged
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Figure 3.10: Excitation energies for state 28 of FArO molecule obtained using the SOC
MREOM.

at bond length R = 3.1 Å, and definitely converges at R = 10.0 Å. This result supports our

motivation for performing a more detailed analysis on the behavior of excitation energies for

FArO at smaller bond lengths. Table 3.2 shows the molecular excitation energies of 9 low-

lying excited states using the SOC MREOM. In Figure 3.11, we explore the quadratic and
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State R=2.5Å R=2.6Å R=2.7Å R=2.8Å R=2.9Å R=3.0Å R= 3.1Å R=10.0 Å
17 1315.9 849.7 534.5 326.3 193.0 110.4 60.7 0.0
21 1379.1 912.7 596.2 385.8 249.1 161.5 104.4 0.0
25 1446.3 980.3 665.2 457.0 323.7 241.1 191.4 130.7
29 1581.2 1122.9 818.7 624.2 507.6 440.4 404.8 368.6
33 1644.3 1185.8 880.2 683.6 562.5 491.1 447.6 368.6
37 1711.4 1253.3 946.2 755.3 638.0 571.4 535.5 499.4
43 1906.7 1351.4 954.9 685.0 481.1 354.3 277.6 196.1
49 3337.7 2285.2 1549.5 1043.5 703.8 483.5 350.1 196.1
54 3601.1 2556.1 1830.7 1337.9 1013.5 809.8 690.4 564.7

Table 3.2: Molecular excitation energies for a number of excited states of FArO molecule
using the SOC MREOM. All results are in cm−1.
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Figure 3.11: Quadratic fit and linear fit plots of log (∆E−∆E converged) versus ∆log (R)
for a number of excited states of FArO molecule obtained using the SOC MREOM.
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linear relationship between log (∆E−∆E converged) and ∆log (R), where ∆E converged

is the converged excitation energy at R=10 Å, and ∆log (R) is given by log (R) - 0.45. It is

seen that the quadratic curve provides an excellent fit to the data. The stability of the fit

indicates the robustness of MREOM results with regard to a change in bond length, and

size-consistency is mandatory to achieve such a result. In Table 3.3, the linear expansion

coefficients of the two fits for these 9 excited states are reported. It is clear that the linear

coefficient for these two fits are quite comparable. From the linear fit, we can extract a

scaling law ∆E ∼ R−X , where X ranges from 12 to 16, depending on the state. Let us

emphasize that it is hard to get some theoretical estimate of the R-dependence of ∆E, as

∆E is the two-body effect in the excitation energy. The prime purpose of this section is to

illustrate the robustness of MREOM, indicating that MREOM is suitable to explore the

strength of magnetic coupling for different scenarios.

States Quadratic Fit Linear Fit
17 -14.71 -14.25
21 -12.21 -12.03
25 -14.71 -14.25
29 -16.93 -16.32
33 -13.20 -13.06
37 -16.91 -16.31
43 -14.69 -13.99
49 -14.68 -13.91
54 -15.32 -14.68

Table 3.3: Comparison of the linear expansion coefficients for quadratic fit and linear fit.
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3.4.2 Results for Larger Systems

Here we will explore further to two larger artificial systems: FArOF and FArOFH. The

geometric structures of these two molecules are presented in Figure 3.12. The total number

of low-lying excited states for FArOF and FArOFH is 324 and 648, respectively. Therefore,

the SOC MRCISD+Q calculation is quite expensive and is not available in this work.

Instead, we perform the SOC MREOM calculation for these magnetic molecules. The

full SOC MREOM calculation for FArOF and FArOFH takes about 2 CPU hours and 2

CPU days, respectively, on a single processor of a 12-core node, consisting of Intel XEON

2.93 GHz CPUs with 12.3 MB of shared cache memory. The excitation energies plot and

heat capacity plot for FArOF and FArOFH are illustrated in Figure 3.13 and Figure 3.14,

respectively. This indicates the applicability of MREOM approaches for large magnetic

systems.
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Figure 3.12: The geometric structure of (a) FArOF and (b) FArOFH molecules. All bond
lengths are identical. All bond angles are 90◦.
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Figure 3.13: Plots of (a) excitation energies and (b) heat capacity for FArOF using the
SOC MREOM. R = 2.9 Å.
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Figure 3.14: Plots of (a) excitation energies and (b) heat capacity for FArOFH using the
SOC MREOM. R = 2.8 Å.
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3.5 Conclusion

In this work, we established the accuracy of the MR-EOM-T|T†|SXD|U approach imple-

mented in the ORCA program, in conjunction with a modified SOMF(1X) inclusion of

spin-orbit coupling. The primary advantage of MREOM is the computational efficiency

for systems that have many (hundreds) of electronic states, but which share the same ac-

tive space. Magnetic systems can be considered as prototype examples to illustrate the

merits of MREOM. Even though MREOM is not strictly size-consistent, in practice this

is of no concern for systems of this type. The computational scaling of MREOM is not

fundamentally different from MRCI, and one cannot push the methodology to a very large

number of magnetic atoms. However, the method is sufficiently effective such that one

can treat system with up to about four magnetic sites of arbitrary spin S. Therefore, one

can treat magnetic coupling beyond two-body effects. In this paper, we have only tested

the applicability of the approach for artificial model systems. A next step would be the

application to move realistic models of magnetic materials, and the extraction of magnetic

model parameters along the lines discussed in refs. [3, 28].
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Chapter 4

Effective Hamiltonian Approach to

Magnetic Model Systems

As reported in the previous chapter, the computational cost using a strongly correlated

method, for example, SOC MREOM, for magnetic model system FArOFH is around 2

CPU days. The most time-consuming step in MREOM for such magnetic systems with

very many low-lying states in the diagonalization of the transformed Hamiltonian over

the CAS, 1p and 1h space. This will limit the applicability of the methodology. For this

reason, it is of interest to design more efficient methods to treat this final diagonalization

step that capitalize on the fact that much is known about the structure of the problem.

In this chapter, we assume we can extract a model Hamiltonian that describes interaction

between pairs of magnetic units, using a suitable basis of slater determinants. For small

systems, this model Hamiltonian can be diagonalized exactly. Our interest is to construct

an effective Hamiltonian method that upon diagonalization yields good approximation
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to the low-lying states energies of interest, which is significantly more efficient than the

diagonalization of the full magnetic Hamiltonian.

The effective Hamiltonian theory was initially formalized by Bloch and des Cloizeaux

[24, 25], and has been explained in many works [61, 62, 63, 64, 65]. In general, most

model Hamiltonians are constructed based on the large energy gap between the localized

ground states and excited states of a magnetic system such that one can restrict the

model Hamiltonian to a compact space of low-lying configurations. The studies discussed

hereafter present a so-called effective Hamiltonian approach to obtain low-lying states for

a Hamiltonian including pair interaction only. This chapter is exploratory in nature, and

at this stage, we neglect the inclusion of spin-orbit coupling and dynamical correlation.

The starting point would be a CASSCF calculation [40]. We first give a brief introduction

to the features of magnetic model systems in this work, and then describe the details of

effective Hamiltonian approach with its variants. Finally, the approach with its variants

are performed to some suitable magnetic systems to test the accuracy.

4.1 Introduction to Magnetic Model Systems

To illustrate the goal of the approach discussed in this chapter, let us first introduce some

artificial magnetic systems that cannot be made experimentally, such as Ar2N3, Ar2O3,

Ar2Cr3. They serve as illustrations and useful model systems. These systems are described

as open-shell systems, as nitrogen, oxygen and chromium atoms all have unpaired electrons.

In addition, the spin of unpaired electrons can create a magnetic field; as a result, each N,

O, Cr, atom is considered as a magnetic site. Meanwhile, Ar atom acts as a spacer. The
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geometry of the system is designed such that the magnetic atoms are well separated.

For each magnetic system, we would like to preserve a fixed number of particles on each

magnetic site, or equivalently we will neglect ionic configurations. At the level of the

second-quantized Hamiltonian, that is, the number of creation and annihilation operators

for each site should be equal. We assume in this proposal that

hrp = 0, unless (p, r) ∈ (i) (4.1)

hrspq = 0, unless (p, q, r, s) ∈ (i) or

 (p, r) ∈ (i), (q, s) ∈ (j)

(p, s) ∈ (i), (q, r) ∈ (j)
(4.2)

Here we use indices i, j to label two different magnetic sites. Localized orbitals centered

on magnetic sites are labelled as p, q, r, s. As a result, neutral configurations cannot couple

to ionic configurations. This setting to zero of matrix elements is to be accomplished by a

similarity transformation. We will here assume it to be accomplished and will not discuss

it further. Then, the ionic terms can all be excluded, after the transformation.

The new neutral Hamiltonian in a complete active space (CAS) is given by

Ĥ =
∑
i

∑
p,p′

hpp′ p̂
†p′ +

1

2

∑
i

∑
p1,p2,p3,p4

hp3p4p1p2
p̂†3p̂
†
4p̂2p̂1

+
1

2

∑
i,j

∑
p,q,p′,q′

hpqp′q′ p̂
†q̂†q′p′ +

1

2

∑
i,j

∑
p,q,p′,q′

hqpp′q′ q̂
†p̂†q′p′ (4.3)

The notations p, p′, p1, p2, p3, p4 denote localized orbitals on site i, while q, q′ indicate lo-

calized orbitals on site j.

The fourth term in Eq. (4.3) is the exchange term arising from the two-body integral. The
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spin can be exchanged between two sites during the operation.

p′αq†α

q′βp†β

Figure 4.1: Diagram representing the exchange interaction.

In order to investigate the magnetism of these model systems, the properties with regard

to the electronic configuration of each atom should be described first. We define low-lying

states corresponding to different atoms (or sites) i, j, k, l, · · · as |I〉, |J〉, |K〉, |L〉, · · · , and

high-lying states are denoted as |A〉, |B〉, |C〉, |D〉, · · · while the general states are labelled

as |P 〉, |Q〉, |R〉, |S〉, · · · , respectively. Likewise, if there is more than one state, we can use

the general labels |I ′〉, |J ′〉, |K ′〉, |L′〉, · · · , for the low-lying states, |A′〉, |B′〉, |C ′〉, |D′〉, · · · ,

standing for high-lying states, and |P ′〉, |Q′〉, |R′〉, |S ′〉, · · · , describing general states for

each different site. For example, if we take one single nitrogen atom into consideration,

there are 20 microstates, which can be labelled as |P 〉. The atomic term symbol for the

low-lying level (4 states) is 4S, and can be denoted as |I〉. We have 4 out of 20 states

accounted for. The remaining multiplets are 2D, 2P with 16 states, which are represented

by |A〉.

In a further step we define the neutral Hamiltonian in configuration space (as will be

discussed in section 4.2), which is written as

Ĥ =
∑
i

∑
P,P ′∈i

HP ′

P |P ′〉〈P |+
∑
i<j

∑
P,P ′∈i

∑
Q,Q′∈j

HP ′Q′

PQ |P ′Q′〉〈PQ| (4.4)
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In general, the molecular states in the basis of configurations are defined as

|Ψ〉 =
∑
P∈i

∑
Q∈j

∑
R∈k

∑
S∈l

∑
...

|PQRS · · ·〉CPQRS··· (4.5)

To continue our discussion on our magnetic systems, we first give the electronic configura-

tion for some representative atoms in Table 4.1.

Atom-Type Ground States Symbol Degeneracy Number of Neutral States Per Atom

N 4S 4
(
6
3

)
= 20

O 3P 9
(
6
4

)
= 15

Cr 7S 7
(
12
6

)
= 924

Table 4.1: Electronic configuration for three different atoms.

Then, we can quantitively explore the microstates of the magnetic model systems Ar2X3,

X=N, O, Cr in Table 4.2.

Molecule Total Valence States Total Neutral States Total Low-lying States

Ar2N3

(
18
9

)
= 48620 203 = 8000 43=64

Ar2O3

(
18
12

)
= 18564 153 = 3375 93=729

Ar2Cr3
(
36
18

)
=9.07E+09 9243=7.89E+08 73=343

Table 4.2: Microstates for Ar2X3 X=N, O, Cr.

Our aim is to reduce the size of the full space of complete active space self-consistent field

(CASSCF) [40] dimension, to that of the the low-lying states. For example, the number

of valence states is 48620 for Ar2N3, which results in a total number of 486202=2.36E+09

matrix elements in the calculation, while the number of matrix elements is 642=4096 con-

53



sidering only the low-lying states calculation. As a result, we need to find an appropriate

approximation to investigate these magnetic systems.

4.2 Construction of Configurational Magnetic Hamil-

tonian

To calculate the matrix element of the magnetic Hamiltonian over neutral configurations,

special procedures have been incorporated in the ACES II program [66]. In the first stage

of the calculations, a state-averaged CASSCF/CASCI calculation is done such that all

relevant configurations of the atom are included. Upon convergence of the CASSCF calcu-

lations, the active space orbitals are localized on the magnetic atoms. This is accomplished

quite readily and the resulting orbitals are localized and orthonormal. In a subsequent cal-

culation, the configurational matrix-elements are obtained. To obtain the one-body matrix

element HP ′
P as shown in Eq. (4.4), one simply constructs all neutral configurations |P 〉,

and evaluates matrix-elements of the Hamiltonian. By construction only the first two terms

in Eq. (4.3) can contribute. We also evaluate the full two-body Hamiltonian matrix HP ′Q′

PQ

over all neutral configurations |PQ〉. These matrix elements would involve contributions

from all elements in Eq. (4.3) localized on sites i and j. To get the one- and two-body

parts of the magnetic Hamiltonian matrix, one obtain

HP ′Q′

PQ = MP ′Q′

PQ − δP ′P HQ′

Q −HP ′

P δ
Q′

Q (4.6)
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This procedure is repeated for all pairs of magnetic sites i < j and the matrix elements

are then written to a file. This file is read by the program that performs the effective

Hamiltonian calculations.

4.3 Brief Outline of the Effective Hamiltonian Ap-

proach

We assume that the molecular magnetic Hamiltonian is expressed as

Ĥ =
∑
i

∑
P,P ′∈i

HP ′

P |P ′〉〈P |+
∑
i<j

∑
P,P ′∈i

∑
Q,Q′∈j

HP ′Q′

PQ |P ′Q′〉〈PQ| (4.7)

The zero order wavefunction for low-lying states is written as

|ΨIJKL···〉 =
∑
I∈i

∑
J∈j

∑
K∈k

∑
L∈l

∑
...

|IJKL · · ·〉CIJKL··· (4.8)

where CIJKL··· is the CI coefficient in space of low-lying states.

To describe the full wavefunction including the (small) contribution from high-lying con-

figurations, we use the ansatz:

|Ψ〉 =
∑
I∈i

∑
J∈j

∑
K∈k

∑
L∈l

∑
...

{
eT̂
}
|IJKL · · ·〉CIJKL··· (4.9)

Here, the normal-ordered exponential
{
eT̂
}

is employed such that we do not consider

terms in with T-operators acting on one atomic site more than once. Hence, for example,
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T̂AJ
′

IJ T̂BCJ ′K is excluded, because the excitation operates on site j twice. The cluster operator

in configuration space is defined as

T̂ = T̂1 + T̂2 + T̂s

=
∑
i

∑
I,A∈i

tAI |A〉〈I|+
∑
i<j

∑
I,A∈i

∑
J,B∈j

tABIJ |AB〉〈IJ |

+ (
∑
i,j

∑
I,A∈i

∑
J,J ′∈j

tAJ
′

IJ |IJ〉〈AJ ′|+
∑
i,j

∑
I,I′∈i

∑
J,B∈j

tI
′B
IJ |IJ〉〈I ′B|) (4.10)

It is of importance to note here that T̂s is denoted as two-body semi-internal operator, and

is the combination of last two terms in Eq. (4.10).

Let us assume for now that all T-coefficients are known, the equations will be discussed

later. The Schrödinger equation with respect to low-lying states in Eq. (4.9) can be ex-

pressed as

∑
I∈i

∑
J∈j

∑
K∈k

∑
L∈l

∑
...

Ĥ
{
eT̂
}
|IJKL · · ·〉CIJKL··· = E

∑
I∈i

∑
J∈j

∑
K∈k

∑
L∈l

∑
...

{
eT̂
}
|IJKL · · ·〉CIJKL···

(4.11)

and projection of this equation onto the possible low-lying configurations 〈I ′J ′K ′L′ · · ·|

produces a set of equations

∑
I∈i

∑
J∈j

∑
K∈k

∑
L∈l

∑
...

〈I ′J ′K ′L′ · · ·|Ĥ
{
eT̂
}
|IJKL · · ·〉CIJKL··· = ECI′J ′K′L′··· (4.12)
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Then, we can define the effective Hamiltonian Ĝ over the low-lying states by

Ĝ = Ĥ
{
eT̂
}
low−lying

(4.13)

=
[
Ĥ + Ĥ

{
T̂
}

+
1

2
(Ĥ
{
T̂ 2
}

) + · · ·
]
low−lying (4.14)

The energies of all low-lying states can be obtained through the diagonalization of the ef-

fective Hamiltonian Ĝ. This yields both the energies of the low-lying states and coefficients

CIJKL··· that in general will be different from the zeroth-order coefficients.

The coefficients of operator Ĝ can easily be evaluated: there can be no external virtual

labels (A, B, C, D) in Ĝ, which means that all virtual labels from the excitation operator

T̂ have to be summed against virtual labels from Ĥ. Since virtual labels from T̂ operators

are associated with kets, for example, |A〉, they will be summed with the corresponding

virtual labels in Ĥ represented by bras, for example, 〈A|. Since two-body matrix elements

HP ′Q′

PQ contain only one pair of bra labels, the expansion in Eq. (4.14) terminates exactly

with quadratic terms, irrespective of the rank of the T̂ operator. In addition, the only

components of T̂ operator that contribute to the quadratic terms of 1
2
(Ĥ
{
eT̂
}

)low−lying are

T̂1 and T̂s operators, and all elements in Ĝ are explicitly connected.

Let us now provide a brief scheme of the proposed effective Hamiltonian approach.

1. Determine the partition into low-lying and high-lying states.

2. Determine the amplitudes of T̂ .

3. Calculate the matrix elements of Ĝ.

4. Diagonalize Ĝ over low-lying configurations.
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A succinct summary to discuss each point mentioned above is given below. We will expand

on each step in subsequent sections.

Step 1. To determine the low-lying and high-lying states, we will perform a mean-field

calculation, which introduces a single-site density operator D̂.

Step 2. To determine the T-amplitudes, we will consider an independent pair approxima-

tion and obtain t-amplitudes using the low-lying eigenstates of pair Hamiltonian.

Step 3. In the calculation of matrix elements of Ĝ, we will introduce some renormalization

ideas that essentially allow us to redefine one-, two-, three- and four-site contributions.

This will use the single-site D̂ operators.

Step 4. In the diagonalization of Ĝ we will use a direct diagonalization of the effective

Hamiltonian matrix. This limits the number of sites that can be used in calculations.

4.4 Further Details of the Effective Hamiltonian Ap-

proach

4.4.1 Step 1: Mean-Field Calculation

Assume that the Hamiltonian with respect to configuration space is written as

Ĥ = Ĥ1 + Ĥ2

=
∑
i

∑
P,P ′∈i

HP ′

P |P ′〉〈P |+
∑
i<j

∑
P,P ′∈i

∑
Q,Q′∈j

HP ′Q′

PQ |P ′Q′〉〈PQ| (4.15)
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We will try to find low-lying single-site states that are linear combinations of basis states

|I〉 =
∑
P

|P 〉CPI (4.16)

This allows us to define a normalized density matrix

D̂P ′

P =
1

NI

NI∑
I=1

CPICP ′I (4.17)

in terms of orthonormal states ∑
P

CPICPI′ = δII′ (4.18)

Therefore, we obtain the trace of the density matrix

Tr(D̂) = 1 (4.19)

The density matrix can be used to define a mean-field one-site Hamiltonian or Fock oper-

ator.

F P ′

P (i) = HP ′

P (i) +
∑
j

∑
Q,Q′

HP ′Q′

PQ DQ′

Q (4.20)

59



The orthonormal coefficients CPI are obtained by diagonalizing the Fock operator. Hence

we can define a self-consistent field procedure:

FC = Cε (4.21)

D =
1

NI

∑
I

CCT (see Eq. (4.17)) (4.22)

F = H1 +H2D (see Eq. (4.20)) (4.23)

This procedure in effect minimizes the mean-field energy

ESCF =
∑
i

∑
P,P ′

HP ′

P D
P ′

P +
∑
i,j

∑
P,P ′,Q,Q′

HP ′Q′

PQ DP ′

P D
Q′

Q (4.24)

This procedure converges for all the systems we present in the results section, and it is

analogous to a Hartree Fock mean-field calculation in electronic structure theory. This

calculation is the first step in the procedure and is used to obtain the exact partitioning

between low-lying and high-lying states for a single site.

4.4.2 Step 2: Independent Pair Approximation for T2 and Ts

Amplitudes

For each pair of magnetic sites, we construct the pair Hamiltonian matrix.

MP ′Q′

PQ = HP ′

P δ
Q′

Q + δP
′

P H
Q′

Q +HP ′Q′

PQ (4.25)
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Here we diagonalize the M matrix and determine NI ∗ NJ low-lying eigenvectors Cλ
PQ,

where λ = 1, · · · , NI ∗ NJ . We first collect the low-lying square matrix C̃λ
IJ = Cλ

IJ , and

then invert this matrix to obtain SIJλ . Then we can define the T̃ -amplitudes as

T̃ IJPQ =
∑
λ

Cλ
PQS

IJ
λ (4.26)

It can be easily verified that

Cλ
PQ = T̃ IJPQC

λ
IJ

=
∑
µ,I,J

Cµ
PQ(Cµ

IJ)−1Cλ
IJ (4.27)

As T̃ IJI′J ′ = δII′δ
J
J ′ , we finally define excitation operator T̂ = T̃ , except that we explicitly set

all T IJI′J ′ = 0. If we only consider the two-site Hamiltonian, we obtain

Ĝ = (MT̃ )low−lying = [M(1 + T )]low−lying (4.28)

and it is easily verified that diagonalizing Ĝ over the low-lying states reproduces the exact

low-lying eigenvalues of the full pair Hamiltonian. This method is denoted as independent

pair definition of T̂ , since it is obtained by a sequence of independent pair calculations. We

can obtain the pairwise G-elements in this first approximation, but the full Ĝ also contains
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3- and 4-body operators. The mathematical expression can be given by

Ĝ = Ĝ2 + Ĝ3 + Ĝ4 (4.29)

=
∑
P,Q

ĤI′J ′

PQ T̂
PQ
IJ +

∑
Q

ĤJ ′K′

QK T̂ I
′Q

IJ +
∑
R,S

ĤK′L′

RS T̂ I
′S

IL T̂
J ′R
JK (4.30)

4.4.3 Step 3: Renormalization Transformation

Let us assume that we have obtained a suitable configurational basis, that can be parti-

tioned into low-lying states |I〉, |J〉, |K〉, |L〉, · · · and high-lying states |A〉, |B〉, |C〉, |D〉, · · · .

The general states are labelled as |P 〉, |Q〉, |R〉, |S〉, · · · corresponding to different sites

i, j, k, l, respectively.

We also have single-site density matrices D that have elements in the low-lying range only.

The only non-zero elements of D in the mean-field basis are

DI′

I = δII′
1

NI

(4.31)

and the density matrices are normalized. The formulae below are more general and can

use any DI′
I elements, or even DP ′

P , using the original basis.

Let us outline the nature of the renormalization procedure first, before supplying the full

details. Assume that the configurational Hamiltonian is expressed as usual as

Ĥ =
∑
i

∑
P,P ′∈i

HP ′

P |P ′〉〈P |+
∑
i<j

∑
P,P ′∈i

∑
Q,Q′∈j

HP ′Q′

PQ |P ′Q′〉〈PQ| (4.32)
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We can write this Hamiltonian in a different fully equivalent form

Ĥ = H̃0 +
∑
i

∑
P,P ′∈i

H̃P ′

P |P ′〉〈P |+
∑
i<j

∑
P,P ′∈i

∑
Q,Q′∈j

H̃P ′Q′

PQ |P ′Q′〉〈PQ| (4.33)

The new matrix elements H̃ satisfy the partial trace conditions

∑
P,P ′

H̃P ′

P D
P
P ′ = 0 (4.34)

∑
P,P ′

H̃P ′Q′

PQ DP
P ′ = 0 (4.35)

∑
Q,Q′

H̃P ′Q′

PQ DQ
Q′ = 0 (4.36)

This definition shows that it is arbitrary to some extent what one calls one-body and two-

body terms. The total Hamiltonian is invariant with respect to this artificial partitioning.

The above definition depends on the density matrices DP ′
P for each site. The renormalized

definitions include the state-averaged effects. Let us give a precise recipe for the renormal-

ization.

The formulae below are defined such that the partial trace conditions in Eqs. (4.34, 4.35,

4.36) are satisfied.

Ĥ =
∑
i

∑
P,P ′∈i

HP ′

P |P ′〉〈P |+
∑
i<j

∑
P,P ′∈i

∑
Q,Q′∈j

HP ′Q′

PQ |P ′Q′〉〈PQ| (4.37)
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For each pair of sites i and j, we obtain

Xij =
∑
P,P ′∈i

∑
Q,Q′∈j

HP ′Q′

PQ DP
P ′D

Q
Q′ (4.38)

H̄P ′Q′

PQ = HP ′Q′

PQ −Xijδ
P ′

P δ
Q′

Q (4.39)

V P ′

P (j) =
∑
Q,Q′

H̄P ′Q′

PQ DQ
Q′ (4.40)

V Q′

Q (i) =
∑
P,P ′

H̄P ′Q′

PQ DP
P ′ (4.41)

H̃P ′Q′

PQ = H̄P ′Q′

PQ − V P ′

P δQ
′

Q − δP
′

P V
Q′

Q (4.42)

Likewise for each single site, we obtain

Xi =
∑
i

∑
P,P ′∈i

HP ′

P D
P
P ′ (4.43)

H̄P ′

P = HP ′

P −Xiδ
P ′

P (4.44)

These expressions allow us to assemble the final elements

H̃0 =
∑
i

Xi +
∑
i<j

Xij (4.45)

H̃P ′

P = H̄P ′

P +
∑
j

V P ′

P (j) (4.46)

The renormalization transformation such that partial trace are zero can be performed

for any operator. Below, we will use renormalized T̂ -operators, and also renormalized Ĝ
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operators that can include up to four site operators. The prescription follows similar lines as

for the two-body Hamiltonian discussed in detail above. Let us emphasize that the physical

content of the operator is identical, e.g., diagonalizing either form of the Hamiltonian yields

the same results. This has been verified explicitly in the computer code.

4.5 Definition of Effective Hamiltonian and Different

Approximation Schemes

In the results section, we will consider a number of model magnetic systems that contain

up to 4 magnetic sites. We will explore a number of variations of the methodology, mainly

for the purpose of analyzing the importance of various effects. The model systems are

chosen such that one can identify a number of low-lying states and there is a fair gap to

the next higher states. Here we provide the first several steps in the calculation.

Step 1. Perform electronic structure calculation (CASSCF/CASCI) to extract the mag-

netic Hamiltonian parameters, as discussed in previous section 4.2.

Step 2. Identify the number of low-lying and high-lying states for each magnetic site.

Step 3. Solve the magnetic mean-field equation, and transform the Hamiltonian to the

mean-field basis; renormalize the Hamiltonian to satisfy partial trace conditions. The con-

stant term in the renormalized matrix element M is very large and is discarded as we are

only interested in excitation energies at present.

Step 4. Solve the independent pair T2 and Ts amplitudes by diagonalizing the pair Hamil-

tonians.

These steps are always the same, next we can introduce some different approximations.
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In the first, zeroth order or bare H approach, we set T2 and Ts amplitudes equal to zero,

and hence simply diagonalize Ĥ over the low-lying configurations. In the second approach,

that we label ”full-Ts-pair-G2”, the Ĝ2 operator is calculated for each pair, but no 3-

and 4-body effects are considered. Diagonalizing the Ĝ2 operator for a given pair exactly

reproduces the pair energies of the corresponding full Hamiltonian. In the third approx-

imation, we obtain the renormalized 1- and 2-body components of the full Ĝ operator,

but we neglect the 3-body and 4-body renormalized G-elements. In addition, we employ

the renormalized T̂s operator that has zero partial trace, and neglect the T̂1 part of the

renormalized T̂ -operators. These additional approximations are not needed, but they have

come about for historical reasons. We plan to correct this in the near future. The impor-

tant part is that this approach includes effects from the 3-body and 4-body G-elements.

The approach is termed as ”renorm-Ts-full-G2”. In order to compare the results from this

full-G2 approach, we also perform the pair-G2 approach with the renormalized T̂s operator,

which is denoted as ”renorm-Ts-pair-G2”. This will give us an idea of the importance of

higher-body effects.

4.6 Results

Let us first give a brief description of the computational details. The magnetic Hamiltoni-

ans are obtained from CASSCF calculations of the state-averaged high-spin manifold using

the 6-31G* basis set [67, 68] and a subsequent construction of the monomer and dimer CI

matrix over the neutral configuration. Such a procedure has been implemented in the

ACES II program [66]. This provides the input for the effective Hamiltonian calculations
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(see section 4.2).

In analogy to chapter 3, we test the methodology for magnetic model systems that consist

of an Ar atom that acts like a spacer, and this is surrounded by open-shell magnetic atoms,

O, F, N and H. Oxygen atom has 9 low-lying states (3P ground state) and 15 states in

total. For F, N, and H atoms, we would simply have 6 low-lying states, 4 low-lying states

and 2 low-lying states, respectively. It turns out that the effective Hamiltonian approach

is extremely accurate if there is a large energy gap. For example, for NArNN magnetic

system, the energy gap between low-lying and high-lying states is around 2.7 ev or 22,000

cm−1.1 In Table 4.3, we report the low-lying states energies for NArNN using the vari-

ous approximations, bare H, full-Ts-pair-G2, renorm-Ts-pair-G2 and renorm-Ts-full-G2 and

compared to the exact energies. This system has spin symmetry, and therefore we obtain

a multiplet structure. In the table, we present the energy for each magnetic level and

the degeneracy of each energy level. For the renorm-Ts-full-G2 approach, the degeneracy

pattern is broken, therefore we report the average energy in each multiplet, and the energy

spread is defined as Ehighest − Elowest within a multiplet.

From Table 4.4, it can be seen that the statistical errors for each variant of effective

Hamiltonian approach are extremely small. This indicates that decoupling all low-lying

magnetic states from the other configurations is not a challenging benchmark for systems

that have a large energy gap. This is an important result as the magnetic systems in

which we are interested have this feature that the low lying magnetic states are very well

separated from the high lying states. However, this does not seem to be very challenging,

as even diagonalizing the bare Hamiltonian gives good results. As a result, we need to find

1Calculated by CASCI using the basis set of 6-31G* in ACES II package. The bond distance of Ar-N
is 3.5 Å.
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Level Degeneracy Exact Bare H
Pair-G2 Renorm-full-G2

Full-Ts Renorm-Ts Avg-Energy Spread

1 10 0.000 0.000 0.000 0.000 0.005 0.009

2 16 60.133 60.213 60.127 60.127 60.131 0.009

3 12 106.935 107.046 106.933 106.933 106.937 0.007

4 6 106.992 107.046 106.986 106.986 106.990 0.003

5 4 140.339 140.498 140.349 140.349 140.352 0.005

6 4 140.415 140.498 140.419 140.419 140.423 0.003

7 8 140.453 140.498 140.454 140.454 140.458 0.004

8 4 160.409 160.569 160.426 160.426 160.430 0.003

Table 4.3: Comparison of low-lying states energies for different approaches of NArNN. All
results are in cm−1.

Molecule Statistical Errors Bare H
Pair-G2

Renorm-Ts-full-G2

Full-Ts Renorm-Ts

NArNN AVG 0.086 0.006 0.006 0.007

MAX 0.160 0.017 0.017 0.021

RMS 0.101 0.008 0.008 0.009

Table 4.4: Statistical analysis of effective Hamiltonian data compared to exact low-lying
states energies for NArNN.
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more challenging systems by identifying a gap within the magnetic manifold of states and

focusing the effective Hamiltonian approach on the low-lying states within the magnetic

manifold. The nitrogen magnetic site is not useful as all p-orbitals in N are occupied with

a single electron. However, the population of the p-orbitals in the F and O atoms is uneven

and this provides interesting possibilities. The oxygen and fluorine atoms are significantly

perturbed by the Ar atom. This means that the p-orbitals are not equivalent. For example,

at a bond distance (Ar-F) of 2.9 Å, the spectrum for ArF is split into 2 low-lying states

and 4-high-lying states with a gap of around 174 cm−1.2 Likewise, the magnetic states in

ArO can be subdivided into 6 low-lying states and 3 high-lying states with a gap of about

386 cm−1.3

In the next step, we present the geometric structures of magnetic model systems for the

more challenging test.

Atom Number of low-lying magnetic states Number of high-lying magnetic states

O 6 3

F 2 4

H 2 0

Table 4.5: The number of low-lying and high-lying magnetic states for O, F and H atom
with the inclusion of Argon atom.

2Calculated by CASCI using the basis set of 6-31G* in ACES II package.
3Calculated by CASCI using the basis set of 6-31G* in ACES II package.
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Figure 4.2: The geometric structure of FArF.

Figure 4.3: The geometric structure of FArO.
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Figure 4.4: The geometric structure of FArOF.

Figure 4.5: The geometric structure of HArFFF
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Figure 4.6: The geometric structure of FArFF

Figure 4.7: The geometric structure of HArOFF.
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The specific interatomic distance of each system is given in Table 4.6.4 For the FArOF

system, we consider three slightly different structures with different interatomic distances.

In addition, Table 4.6 also indicates the number of states and energy gap of each system.

From Table 4.7 to 4.14, we report the degeneracies and energies of low-lying states for each

magnetic system using the effective Hamiltonian approaches discussed in this work.

Molecules
Bond length (Å) Number of States Energy Gap (cm−1)

Ar-F F-F Ar-O O-F Total Low-lying Highest low-lying state lowest high-lying state

FArF 2.586 2.800 N/A N/A 36 4 22.891 62.281

FArFF 2.800 2.782 N/A N/A 216 8 13.988 99.358

FArO 2.700 N/A 2.700 2.700 90 12 166.387 332.532

FArOF(a) 2.900 3.854 3.360 3.142 540 24 7.196 81.815

FArOF(b) 2.900 3.1412 2.900 3.717 540 24 11.633 79.026

FArOF(c) 2.900 3.552 2.900 3.552 540 24 8.527 95.985

HArOFF 2.900 3.552 2.900 3.552 1080 48 38.454 85.244

HArFFF 2.800 2.78170 N/A N/A 512 16 47.894 99.437

Table 4.6: The interatomic distance, number of states and energy gap of magnetic model
systems.

Level Degeneracy Exact Bare H
Pair-G2 Renorm-Ts-full-G2

Full-Ts Renorm-Ts Avg-Energy Spread

1 3 0.000 0.000 0.000 0.000 0.000 0.000

2 1 22.891 26.536 22.891 22.889 22.889 0.000

Table 4.7: Comparison of low-lying states energies for different approaches of FArF. All
results are in cm−1.

4The bond length of Ar-H is not presented in the table. See Appendix.

73



Level Degeneracy Exact Bare H
Pair-G2 Renorm-Ts-full-G2

Full-Ts Renorm-Ts Avg-Energy Spread

1 4 0.000 0.000 0.000 0.000 0.000 0.000

2 2 43.930 50.309 43.930 25.685 25.685 0.000

3 4 136.334 150.889 136.334 153.197 153.197 0.000

4 2 166.386 177.422 166.386 174.034 174.034 0.000

Table 4.8: Comparison of low-lying states energies for different approaches of FArO. All
results are in cm−1.

Level Degeneracy Exact Bare H
Pair-G2 Renorm-Ts-full-G2

Full-Ts Renorm-Ts Avg-Energy Spread

1 4 0.000 0.000 0.000 0.000 0.062 0.102

2 4 13.988 15.890 14.032 13.489 13.575 0.029

Table 4.9: Comparison of low-lying states energies for different approaches of FArFF.All
results are in cm−1.

Level Degeneracy Exact Bare H
Pair-G2 Renorm-Ts-full-G2

Full-Ts Renorm-Ts Avg-Energy Spread

1 5 0.000 0.000 0.000 0.000 0.196 0.368

2 6 25.476 27.744 25.798 25.196 23.440 0.063

3 3 44.322 45.088 45.023 45.030 45.248 0.161

4 2 47.894 50.288 48.309 47.711 47.979 0.004

Table 4.10: Comparison of low-lying states energies for different approaches of HArFFF.
All results are in cm−1.
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Level Degeneracy Exact Bare H
Pair-G2 Renorm-Ts-full-G2

Full-Ts Renorm-Ts Avg-Energy Spread

1 6 0.000 0.000 0.000 0.000 0.008 0.019

2 6 5.550 6.773 5.656 7.368 7.449 0.038

3 4 8.551 8.739 8.623 8.306 8.315 0.014

4 4 9.057 9.403 9.305 9.148 9.156 0.014

5 4 13.853 15.213 14.033 15.464 15.547 0.029

6 4 14.864 16.114 14.918 16.484 16.564 0.040

7 2 15.974 16.290 16.102 15.620 15.630 0.015

8 2 21.025 22.451 21.253 22.558 22.645 0.017

9 2 26.780 27.205 27.102 26.941 26.950 0.007

10 2 28.667 29.233 29.094 28.781 28.791 0.005

11 2 31.946 33.302 32.095 33.480 33.748 0.012

12 4 33.020 33.511 33.496 33.654 33.490 0.011

13 2 34.144 33.542 34.339 35.768 35.856 0.019

14 4 38.453 39.802 39.651 40.363 40.455 0.027

Table 4.11: Comparison of low-lying states energies for different approaches of HArOFF.
All results are in cm−1.
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Level Degeneracy Exact Bare H
Pair-G2 Renorm-Ts-full-G2

Full-Ts Renorm-Ts Avg-Energy Spread

1 5 0.000 0.000 0.000 0.000 0.012 0.022

2 5 1.552 1.811 1.497 1.877 2.033 0.001

3 3 2.321 2.347 2.355 2.000 1.873 0.001

4 3 3.454 3.346 3.383 2.723 2.725 0.001

5 3 4.361 5.024 4.403 3.933 3.960 0.001

6 3 5.380 5.992 5.424 4.784 4.817 0.007

7 1 5.761 6.066 5.785 4.137 4.137 0.000

8 1 7.196 7.785 7.257 6.155 6.188 0.000

Table 4.12: Comparison of low-lying states energies for different approaches of FArOF (a).
All results are in cm−1.

Level Degeneracy Exact Bare H
Pair-G2 Renorm-Ts-full-G2

Full-Ts Renorm-Ts Avg-Energy Spread

1 5 0.000 0.000 0.000 0.000 0.002 0.003

2 3 1.292 1.352 1.294 1.210 1.222 0.011

3 1 1.936 2.032 1.943 1.816 1.829 0.000

4 3 2.859 3.411 3.127 3.032 3.044 0.000

5 5 8.313 9.615 8.586 9.925 10.083 0.022

6 3 9.451 10.789 9.750 11.024 11.182 0.011

7 1 10.018 11.371 10.328 11.572 11.730 0.000

8 3 11.633 12.940 11.649 12.902 13.061 0.000

Table 4.13: Comparison of low-lying states energies for different approaches of FArOF (b).
All results are in cm−1.
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Level Degeneracy Exact Bare H
Pair-G2 Renorm-Ts-full-G2

Full-Ts Renorm-Ts Avg-Energy Spread

1 5 0.000 0.000 0.000 0.000 0.014 0.027

2 3 1.799 1.961 1.880 1.753 1.767 0.002

3 3 2.042 2.147 2.045 1.793 1.809 0.013

4 1 3.078 3.250 3.084 2.697 2.712 0.000

5 5 5.704 6.628 5.687 6.988 7.063 0.013

6 3 7.591 8.520 7.517 8.690 8.764 0.006

7 3 7.594 8.601 7.610 8.700 8.777 0.002

8 1 8.527 9.561 8.557 9.534 9.609 0.000

Table 4.14: Comparison of low-lying states energies for different approaches of FArOF (c).
All results are in cm−1.

As can be seen in Table 4.7 and 4.8, the pair-G2 approach with full Ts amplitudes

reproduce the exact low-lying states energies for FArO and FArF. This is anticipated, as

there is no 3-body and 4-body effects for magnetic dimers. It is of interest to note that

the error of the renorm-Ts-full-G2 approach for FArO is large. This is a consequence of

the fairly small bond distance of 2.7 Å, which makes the system complicated.

Table 4.15 shows the statistical errors of these approaches compared to exact low-lying

states energies for magnetic trimers and tetramers. Let us look at RMS error, which is

a more straightforward look at the statistical errors. It is clear that the full-Ts-pair-G2

approach always yields the smallest RMS for each system. This illustrates the robustness

of full-Ts-pair-G2 approach.

In addition, for the results presented above, one can see that the low-lying states ener-
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gies for renorm-Ts-pair-G2 and renorm-Ts-full-G2 methods are close with the exception of

the HArFFF system. However, the renorm-Ts-full-G2 approach breaks the spin-symmetry.

This is unexpected and is undesirable. From the analysis of the results in Table 4.15,

we notice that the renorm-Ts-full-G2 is almost always worse than the renorm-Ts-pair-G2

approach. This is an unsatisfactory result. We anticipate that with the inclusion of 3-body

and 4-body terms in the effective Hamiltonian would improve results. The fact that the

spin-symmetry is broken in this approach is a clear indication that this is not a promising

direction.
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Molecule Statistical Errors Bare H
Pair-G2

Renorm-Ts-full-G2

Full-Ts Renorm-Ts

FArFF AVG 0.951 0.022 0.2496 0.238

MAX 1.902 0.044 0.499 0.413

RMS 1.345 0.031 0.353 0.295

HArFFF AVG 1.357 0.360 0.293 0.811

MAX 2.394 0.701 0.708 2.036

RMS 1.693 0.438 0.390 1.119

HArOFF AVG 0.778 0.264 0.946 1.123

MAX 1.426 1.198 1.910 2.002

RMS 0.924 0.394 1.200 1.270

FArOF (a) AVG 0.542 0.028 0.647 0.680

MAX 1.034 0.081 1.284 1.359

RMS 0.695 0.041 0.814 0.865

FArOF (b) AVG 0.320 0.041 0.633 0.658

MAX 0.663 0.071 1.624 1.624

RMS 0.408 0.046 0.791 0.798

FArOF (c) AVG 0.751 0.147 0.798 0.877

MAX 1.353 0.310 1.612 1.770

RMS 0.958 0.204 1.069 1.181

Table 4.15: Statistical analysis of effective Hamiltonian data compare to exact low-lying
states energies for magnetic model systems in this work. All results are in cm−1
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4.7 Concluding Remarks

When the work on magnetic systems was started, we had in mind to solve coupled equations

for the T-amplitudes. To avoid the enormous complexity of the equations, the renormal-

ization of amplitudes was introduced, such that partial trace were made to vanish. This

approach did not turn out to be successful, and we decided to change directions. The

investigation concerning the full versus renormalized Ts amplitudes in the current work

was done to shed light on this aspect of the original approach. From the results presented

in section 4.6, it is clear that the use of renormalized Ts amplitudes affects the results

considerably and makes them worse. The inclusion of 3-body and 4-body correction to Ĝ2

(using renormalization) is relatively minor, but it breaks state degeneracy. This is very

undesirable. From the present investigation, we can conclude that the independent pair

approximation to define the T-amplitudes works well, but the subsequent renormalization

is not a good idea.

It will also be useful to reflect on the fact that we designed systems to be quite challeng-

ing. Our initial goals were to calculate all low-lying states and to involve a decoupling

only from states in which magnetic atoms were not in the ground state. This turned out

to be a trivial problem since the gap is so large. Therefore, in the present calculations,

we designed the systems such that due to interaction with the Ar atom, the degeneracy of

the magnetic atoms was lifted and we defined an effective Hamiltonian for the subsequent

low-lying states. The pair-G2 with full Ts amplitudes approach yielded quite reasonable

results and we anticipate we can improve on this by obtaining the 3-body and 4-body
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contribution from the full effective Hamiltonian:

Ĝ = (Ĥ
{
eT̂
}

)low−lying (see Eq. (4.30)) (4.47)

This will be investigated in the near future. The method thus allows a reduction of the

diagonalization space from (number of total states)number of site to (number of low-lying

states)number of site. This will allow us to treat larger systems, but it does not fundamentally

affect the scaling. A possible solution to the diagonalization of Ĝ may be to focus on the

properties of interest: free energies and magnetic susceptibilities. It may be possible to use

similar ideas as presented here to make such calculation accessible. This is left to a future

investigation.

The present calculations employ a model Hamiltonian without spin-orbit coupling, without

dynamical correlation beyond CASSCF/CASCI, and we have neglected ionic interactions

within the CAS space. In principle, all these terms will have to be included in realistic

magnetic calculations. We think this can be treated mostly at the level of pairwise calcula-

tions, and we should be able to extract model magnetic Hamiltonians with the inclusion of

spin-orbit coupling for preceding MREOM calculations. All of this is to be accomplished

in future work.
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Appendix A

ZMAT for Model Magnetic Systems

in ACES II

A.1 NArNN

X

Ar 1 X

N 2 ArN 1 A

N 2 ArN 1 A 3 D

N 2 ArN 1 A 3 mD

X=1.0

ArN=3.5

A=145.0
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D=120.0

mD=-120.0

A.2 FArF

F

Ar 1 ArF

F 2 ArF 1 A60

ArF=2.8

A60=55.0

A.3 FArO

F

Ar 1 ArX

O 2 ArX 1 A60

ArX=2.7

A60=60.0

94



A.4 FArFF

X

Ar 1 X

F 2 ArF 1 A

F 2 ArF 1 A 3 D

F 2 ArF 1 A 3 mD

X=1.0

ArF=2.8

A=145.0

D=120.0

mD=-120.00

A.5 FArOF (a)

X

Ar 1 X

O 2 ArO 1 A

F 2 ArF 1 A2 3 D

F 2 ArF 1 A2 3 mD

X=1.0
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ArO=2.9

ArF=2.9

A=135.0

A2=135.0

D=110.0

mD=-110.0

A.6 FArOF (b)

X

Ar 1 X

O 2 ArO 1 A

F 2 ArF 1 A2 3 D

F 2 ArF 1 A2 3 mD

X=1.0

ArO=2.9

ArF=2.9

A=135.0

A2=135.0

D=130.0

mD=-130.0
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A.7 FArOF (c)

X

Ar 1 X

O 2 ArO 1 A

F 2 ArF 1 A2 3 D

F 2 ArF 1 A2 3 mD

X=1.0

ArO=2.9

ArF=2.9

A=135.0

A2=135.0

D=120.0

mD=-120.0

A.8 HArOFF

H

Ar 1 ArH

O 2 ArO 1 A

F 2 ArF 1 A2 3 D

F 2 ArF 1 A2 3 mD
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ArH=2.0

ArO=2.9

ArF=2.9

A=135.0

A2=135.0

D=120.0

mD=-120.0

A.9 HArFFF

H

Ar 1 X

F 2 ArF 1 A

F 2 ArF 1 A 3 D

F 2 ArF 1 A 3 mD

X=2.0

ArF=2.8

A=145.0

D=120.0

mD=-120.0
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