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A B S T R A C T

Coulomb explosion imaging is a technique of imaging the structure
of small molecules in the gas phase and their ultrafast dynamics by
inducing the rapid ionization and dissociation of the molecule into its
constituent atomic fragments. The momentum vectors of the atomic
fragments facilitate the retrieval of the molecule’s structure, however,
few attempts at geometry reconstruction appear in the published lit-
erature, whose vague methodology casts serious doubts on the geom-
etry reconstructions that have been performed, and motivating the
need for an investigation into the feasibility of geometry reconstruc-
tion. We develop a method for the fast and precise reconstruction
of triatomic molecular geometries by casting the task as a nonlinear
constrained optimization problem. We use this method to investigate
the uncertainty in geometry reconstructions as a function of mea-
surement uncertainty as well as the existence and nature of multiple
solutions to the geometry reconstruction problem. We map out the
conditions under which molecular geometries may be accurately re-
constructed and propose a framework for reconstructing geometries,
and therefore producing molecular movies using Coulomb explosion
imaging.
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1
I N T R O D U C T I O N

To image the structure and dynamics of a molecule by destroying
it seems paradoxical, yet that is precisely what Coulomb explosion
imaging (CEI) does. Exposing a molecule to the intense electric field
of an ultrashort laser pulse causes it to rapidly ionize and dissociate
into its constituent atomic fragments, in the case of complete disso-
ciation, termed a Coulomb explosion. The momentum vectors of the
“atomic shrapnel” contain a wealth of information about the molecule
and its dissociation, thus by measuring them the molecule’s original
geometry may be reconstructed. This is the basic idea behind CEI. The
laser pulse may be used to induce specific molecular dynamics then
dissociation at particular times, either through the temporal lengthen-
ing of the pulse or the use of a pump then a probe pulse, which CEI
can image forming a series of frames constituting a molecular movie.

motivation and research problem

A cursory review of CEI research articles would suggest that the re-
construction of molecular geometries is a well-understood process.
For example, Xu et al. (2016) writes, “CEI is an effective and straight-
forward tool to retrieve molecular structural properties, requiring no
prior assumptions about the molecule”, and Matsuda, Takahashi, and
Hishikawa (2014) states that “Coulomb explosion provides a direct
access to the instantaneous structure of the target molecule” (Mat-
suda, Takahashi, and Hishikawa, 2014). Vager (2001), in an older re-
view article of CEI, writes that “simultaneous determination of the
final fragments velocity vectors from each single molecule, which is
what CEI detectors do, resolves the 3D initial conformation”, how-
ever the article contains no molecular geometries or structures. This
is true of the majority of research articles employing CEI which tend
to study the momentum vectors themselves, inferring molecular dy-
namics and structure from the kinetic energy spectra of the atomic
fragments, and from the arrangement of the vectors through the use
of Newton plots and Dalitz plots (Ramadhan et al., 2016). For the few
that do attempt to determine the molecular structures, the methodol-
ogy is vague, sometimes even reduced to a single sentence, such as
“we find a three-dimensional structure that reproduces the measured
fragment velocities” (Légaré et al., 2005b).

In this thesis, we will attempt to address this knowledge gap by
developing a computational framework for geometry reconstruction
using CEI, with the aim of providing fast, accurate reconstructions

1



introduction

and quantifying the uncertainty on these geometry reconstructions.
The problem of geometry reconstruction may be thought of as an ill-
posed inverse problem with no analytic solution or iterative process
that guarantees a solution. However, inverse problems in science are
routinely tackled effectively using mathematical optimization tech-
niques, which we employ, and Bayesian inference, which we will pro-
pose and discuss.

thesis outline

Chapter 2 provides a brief overview of CEI including the method’s
aspirations and an experimental outline as well as a review of past
geometry reconstruction attempts.

Chapter 3 details the multi-step process of measuring the momen-
tum vectors for each atomic fragment following a Coulomb explosion,
and the quantification of measurement uncertainty for the momen-
tum vectors. We will also perform some exploratory data analysis
of the measurements then discuss how to computationally simulate a
Coulomb explosion using Hamiltonian mechanics. Finally, we will de-
tail some necessary conventions for describing molecular geometries
and momentum vectors.

Chapters 4 and 5 constitute the main portion of this thesis, detail-
ing the two different approaches taken to geometry reconstruction.
Chapter 4 discusses the lookup table approach and its motivation
to supersede a previous approach relying on the Nelder-Mead sim-
plex method. A lookup table is implemented and used to perform
geometry reconstruction using the OCS molecule as an example, and
to study the existence of degenerate geometries. Chapter 5, motivated
by the drawbacks of the lookup table, formulates the task of geom-
etry reconstruction as an optimization problem, which is tackled us-
ing nonlinear constrained optimization algorithms. Some theory from
mathematical optimization is introduced to understand the methods
employed, and an implementation in MATLAB is used to reconstruct
the OCS molecule and the two reconstructions are compared. The
optimization approach also allows for the further investigation of de-
generate geometries.

Chapter 6 addresses the important task of uncertainty quantifica-
tion for reconstructed geometries, which has not been addressed by
previous studies. A heuristic approach is employed at first and used
to provide insights into the effects of uncertainty. A more rigorous
and sophisticated approach in the Bayesian inference framework is
discussed and suggested as a next step.

2



2
C O U L O M B E X P L O S I O N I M A G I N G

2.1 An appealing proposition . . . . . . . . . . . . . . . . . 3

2.2 Experimental outline . . . . . . . . . . . . . . . . . . . 6

2.3 Molecular geometry reconstructions using CEI . . . . 8

2.3.1 Foil-induced dissociation . . . . . . . . . . . . 9

2.3.2 Imaging with ultrashort laser pulses . . . . . . 13

Coulomb explosion imaging (CEI) is a technique for studying the
structure and ultrafast dynamics of small molecules in the gas phase,
essentially by ionizing the molecule to induce fragmentation after
which the positively-charged fragments repel each other in a Coulomb
explosion1 and the momentum vector of each fragment is measured.
In principle, it is possible to reconstruct the molecular structure with
knowledge of the momentum vector. We will develop and implement
multiple general methods for doing this in the following chapters,
however we will slowly come to see the problem’s pathological na-
ture. On the other hand, the momentum vectors may themselves be
studied to infer molecular dynamics and changes in molecular struc-
ture.

In this section we will briefly discuss what makes CEI an appealing
technique and provide a cursory description of an experimental CEI
apparatus. This is followed by a review of molecular geometry recon-
structions performed using CEI, which are rather few in number.

2.1 an appealing proposition

This does not sound like a technique of interest in the 21st century—
the structure of virtually all small gas molecules is well known from
spectroscopic measurements, so what is left for CEI to tell us about?
One main goal would be the production of molecular movies that im-
age the ultrafast dynamics of small molecules as a function of time,
lending significant insights into important ultrafast chemical and bio-
chemical reactions. Once these ultrafast chemical processes are im-
aged and understood, it may become possible to control them (Miller

1 It is worth mentioning that the concept of a Coulomb explosion is independent of
CEI and refers to a cluster of many atoms repelling each other under their mutual
Coulomb repulsion following ionization, for example by the intense electromagnetic
field of a short laser pulse. Interestingly, a Coulomb explosion seems to be the mecha-
nism responsible for the explosive reaction of alkali metals, such as sodium or potas-
sium, with water, finally explaining the chemistry behind the classic high school
experiment (Mason et al., 2015).

3



2.1 an appealing proposition

et al., 2010; Weinstein and Hunt, 2012; Zewail, 2000). One recent ex-
ample is the imaging of proton migration using acetylene as a target
molecule by laser-induced CEI (Ibrahim et al., 2014) and x-ray core
ionization (Liekhus-Schmaltz et al., 2015).

Another application is determining the absolute (or stereochemi-
cal) configuration of chiral molecules that cannot be crystalized and
probed by x-rays, first proposed by Kitamura et al. (2001). Chiral
molecules are of particularly great interest in biochemistry (Gardner,
2005). Recent studies have looked at, for example, bromochloroflu-
oromethane (CHBrClF) (Pitzer et al., 2013) as well as cis and trans
molecular isomers of 1,2-dibromoethene (Ablikim et al., 2016). CEI
can also provide information about non-classical molecular structures
that elude other methods, such as helium trimer systems (Voigts-
berger et al., 2014) and the quantum halo state of He

2
(Zeller et al.,

2016) as well as image processes such as quantum unidirectional ro-
tation (Mizuse et al., 2015).

X-ray diffraction can also provide detailed information regarding
the structure of small molecules such as mercury fulminate (Beck et
al., 2007), whose structure eluded determination for over 200 years
and which was famously featured in “Crazy Handful of Nothin’”, the
sixth episode of the hit television series Breaking Bad during Heisen-
berg’s first meeting with Tuco.

Of course, it must be acknowledged that x-ray diffraction results
have contributed an absolutely incredible amount of scientific knowledge—
any accolade would be an understatement (Hendrickson, 1995). How-
ever, I find a certain appeal in the direct structure measurement as-
pect of CEI. Certainly at least one author became interested with
the prospect of imaging molecules using “lasers and [Coulomb] explo-
sions”. CEI directly answers the question of “what are we made of
and what does it look like?” first posed by the ancient Greeks and In-
dians, most famously by Democritus and his mentor Leucippus, who
may have been fictional (Taylor, 2010).

The idea of the four classical elements: earth, air, fire, and water
was proposed by many cultures to explain natural phenomena and
the complexity of matter in terms of simpler entities with some ex-
planations being tied to atomism, the idea that matter was made of
tiny, indivisible entities, such as Plato’s association of the Platonic
solids with the classical elements (see figure 1) first written about in
his dialogue Timaeus circa 360 B.C. (Cornford, 2014). While the ideas
evolved over time, it was not until the 1600’s that the theory was sub-
ject to experimental verification and eventually completely disproved
(Maxwell, 1873). Even today, the classical elements still feature promi-
nently in popular media.

One barely feels the sea breeze blowing during the sun’s rise every
morning, as if the air was made up of smooth octahedrons. But not
as smooth as the almost spherical icosahedron which rolls and flows,

4



2.1 an appealing proposition

Figure 1: The classical elements associated with the five Platonic solids.
Clockwise from the top left: the octahedron with air, tetrahedron with fire,
dodecahedron with the universe, the icosahedron with water, and the cube
with earth. Figure from Kepler (1619, Book 2, p. 53). English translation
available (Kepler et al., 1997).

5



2.2 experimental outline

just like the water contained in all the Earth’s rivers and oceans. The
sharp pain felt in close proximity to a warm crackling fire would sting
like the pointy ends of a tetrahedron. The cube is the only Platonic
solid to tessellate and fill Euclidean space, giving it the solidity and
stability of the unchanging earth. The remaining Platonic solid, the
dodecahedron, then must form everything else in the heavens. Just
as there is beauty in the simplicity of the Platonic solids and classi-
cal elements, there is beauty in the simplicity of Coulomb explosion
imaging.

2.2 experimental outline

CEI must be performed under high-vacuum conditions and so the
molecule must be ionized and detected within a position-sensitive
time-of-flight (PSToF) spectrometer that lies inside a vacuum cham-
ber. Figure 2 shows a very basic schematic of a CEI PSToF spec-
trometer used by Ramadhan et al. (2016). The molecules of interest
may be introduced simply as an effusive gas jet but for laser CEI,
a well-collimated supersonic jet of cold molecules is highly desired
to increase the resolution with which the time-of-flight and position
measurements may be made (Dörner et al., 2000) as well as prepare
molecules with a known velocity distribution.

In pump-probe CEI the ultrashort laser pulse is split into two pulses
through the use a beam splitter. The first is called the pump pulse and
is usually weaker than the second, the probe pulse. A time delay τ be-
tween the pulses is created by exposing the probe pulse to a longer
optical path length such that the pump arrives at the molecule at time
t = 0 followed by the probe pulse at time t = τ. The job of the pump
pulse is to initiate some change in the molecule, ideally a change that
we are interested in imaging. One important example would be an
isomerization of the molecule (Ibrahim et al., 2014; Liekhus-Schmaltz
et al., 2015). Thus the pump pulse pumps the molecule into some ex-
cited state.

The job of the more powerful probe pulse is to engulf the molecule
in an intense enough electric field such that multiple electrons (≥ 2)
are stripped off of it. The molecule is left in a highly charged and un-
stable state where the chemical bonds between the individual atoms
cannot hold it together any longer, and the molecule dissociates. It
may dissociate completely into its constituent atoms or dissociate
partially into a mixture of atoms and molecular fragments. The frag-
ments are left in a highly-charged state (although some neutral frag-
ments may be produced) and begin to behave as individual point
charges in a weak Coulombic potential. The entire process occurs in
the presence of a constant electric field and so the positively-charged
ions accelerate upwards towards the PSToF detector, which allows for

6



2.2 experimental outline

Figure 2: Basic schematic of a position sensitive time-of-flight spectrometer.
A cross-section of the rings is shown, which set up the constant electric
field by virtue of being biased to different voltages through the use of a
resistor chain. The size of the example triatomic molecule is greatly exagger-
ated for illustrative purposes. Note that electrons will be accelerated down-
wards, and may be detected using a separate second detector. This figure
was adapted from an earlier version meant to accompany Ramadhan et al.
(2016).

7



2.3 molecular geometry reconstructions using cei

the measurement of their momentum vectors (section 3.1). Thus the
probe pulse allows for the probing of the excited state.

The time delay τ between the pulses may be varied to image the
dynamics induced by the pump pulse at various times. Knowledge of
the molecular structure at each time delay allows for the production
of a series of frames showcasing the dynamics, or a molecular movie.

An alternative to pump-probe CEI uses a single laser pulse to both
pump and probe the molecule. In this case, the laser pulse length is
varied (not the time delay between two laser pulses) acting like the
shutter speed of a camera. This allows for the imaging of ionization
dynamics, and the variable pulse length allows for some control over
the ionization process. Karimi, Liu, and Sanderson (2016) provide a
review of this technique, termed Femtosecond Multiple Pulse Length
Spectroscopy (FEMPULS).

For details on the physical principles, Posthumus (2004) provides a
detailed review on the dynamics of small molecules in intense laser
fields.

2.3 molecular geometry reconstructions using cei

The original CEI experiment is usually traced back to Vager, Naaman,
and Kanter (1989) in which the Coulomb explosion is initiated by
passing a molecular beam through a thin foil. This may be because
it was the first work suggesting that full molecular structures may
be recovered by measuring the velocity (or momentum) vectors of
the atomic fragments, and even reported on a non-classical molecular
structure. However, previous works utilizing CEI do exist, even some
significant works that report on molecular structures (Kanter et al.,
1979).

Ultrashort laser pulses2as a means of inducing Coulomb explosions
made their entrance in the 1980’s where they were utilized to infer
molecular dynamics using covariance mapping (Frasinski, Codling,
and Hatherly, 1989). Highly charged ion impact is another method
of inducing a Coulomb explosion, and was first done in the 1990’s in
parallel with the development of more sophisticated coincidence map-
ping techniques. Since then, the laser has emerged as the more pop-
ular tool and has further developed the coincidence mapping tech-
nique. There do exist other methods of inducing Coulomb explosions,
for example, single photons from a synchrotron source utilizing the
Auger effect, x-ray pulses from a free-electron laser source, or electron
collision.

In this section we will trace the history of CEI back to the 1970’s
where it started with foil-induced fragmentation. We will then fol-
low it’s development to the present day where ultrashort laser pulses
are the most popular means of performing CEI. Throughout we will

2 In 1987, ultrashort would be referring to 0.6 ps laser pulses (Frasinski et al., 1987).
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2.3 molecular geometry reconstructions using cei

focus solely on the achievements of CEI in determining molecular
structures, and in creating molecular movies using these recovered
structures.3

Interestingly, the first-ever mention of the term “Coulomb explo-
sion” in the published literature comes from an unrelated study of
the fine structure of singly ionized helium by Novick, Lipworth, and
Yergin (1955). They measured the energy difference of the 2 2S1/2 and
2 2P1/2 states of ionized helium as a sensitive test of quantum elec-
trodynamics. Coulomb explosion (or space charge explosion) was the
dominant ion removal mechanism which they accounted for in mod-
eling the quenching rate4of metastable 2 2S1/2 ions by radio frequency
radiation to describe the observed resonance lineshapes (spending
two appendices on it).

2.3.1 Foil-induced dissociation

CEI was first performed by passing a molecular beam containing the
molecular ion of interest from a storage ring through a thin atomic
film. While in the solid film, the probability for Coulomb scatter-
ing of the individual atomic nuclei is small due to their small size
and consequently small interaction cross-section. The electrons will
be scattered to very wide angles due to their interaction with the
many electron clouds in the film. This process rapidly ionizes the
molecule, typically within the first few atomic layers, or the first fem-
tosecond. This time scale is faster than the characteristic times scale
for molecular vibration (> 10−14 s) and rotation (> 10−12 s). The now
highly ionized molecule exits the foil and rapidly breaks up into its
constituent atomic ion fragments which repel each other under their
mutual Coulomb repulsion in what is termed a “Coulomb explosion”
(Vager, Naaman, and Kanter, 1989). Figure 3 shows a schematic of
such an experiment. This specific experiment set out to measure the
absolute configuration of atoms in a chiral molecule in the gas phase,
which remains challenging. Early foil-induced CEI experiments can
be described by this schematic except for the fact that they did not
employ a mass selector and used a more primitive but still position-
sensitive detector. The atomic fragment trajectories (dashed lines) as-
sume that no rearrangement of the atoms occurs and that the system
evolves under a Coulomb potential.

The premise behind foil-induced CEI is that during this explosion,
the atoms simply repel each other and do not rearrange, thus pre-
serving the angles between them from the time they exit the foil to

3 Much of the molecular dynamics are inferred in CEI from studying the distribution
of the fragment momentum vectors (e. g. through the use of Newton and Dalitz
plots) and the distribution of kinetic energy carried away by each fragment. We will
be focusing on the original aim of CEI, that is, to measure molecular structures.

4 The term was more popular in decades past but simply means the extinction rate or
loss rate of metastable ions.
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2.3 molecular geometry reconstructions using cei

Figure 3: Schematic of a foil-induced Coulomb explosion imaging experi-
ment. From Herwig et al. (2013b). Reprinted with permission from AAAS.

the time they are detected at a position and time-sensitive detector.
As the potential energy of each pair of fragments i, j is converted to
kinetic energy according to

4qiqj

|ri − rj|
=

µ|Vi −Vj|2

2
(2.1)

it suggests that measurement of the asymptotic vector velocities com-
pletely defines the initial geometry of the molecule. Here qi, ri, and
Vi are the charge, position vector, and velocity vector of the atomic
fragment i while µ is the reduced mass of the two-body system of
fragments i, j. Vager, Naaman, and Kanter (1989) argues that the den-
sity of the measured ri vectors is an experimental measurement of the
square of the three-dimensional nuclear ground-state wave function,
and would additionally describe all possible correlations between the
molecule’s constituent nuclei.

The earliest example of a molecular geometry recovered using CEI
is reported by Gaillard et al. (1978). They used the foil-induced Coulomb
explosion to image the structure of the H +

3
molecular ion, showing

that it mainly exhibits an equilateral triangular shape using separate
pieces of evidence from three different experiments.5 Figure 4 gives a
few examples of the geometries they recovered.

It is unclear how the idea for such an imaging experiment came
to be, however it is worth noting that Gaillard et al. (1978) and co-
authors have been studying the effects of molecular beams passing
through thin foils for quite some time, mainly at Argonne National
Laboratory. See for example their studies of wake potentials gener-
ated behind charged particles as they pass through a solid (Gemmell
et al., 1975; Vager and Gemmell, 1976) and their study of the disso-
ciation of fast HeH+ ions traversing thin foils (Vager, Gemmell, and
Zabransky, 1976). It seems quite reasonable that studying the dissoci-
ation of small molecules and the angular distribution of the atomic

5 It is interesting to note that the experiment was repeated by three separate teams,
then reported on coherently in one manuscript. Each team, having access to different
equipment, produced separate pieces of data. It was the team in Rehovot, Israel that
recorded the projections of the exploded ions while the others measured energy
spectra and angular distributions.
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2.3 molecular geometry reconstructions using cei

Figure 4: Reconstructions of exploded H +
3

following foil-induced dissocia-
tion. On the top row are two photographs of exploded H +

3
recorded on pho-

tographic emulsion at a tilt angle of 30°. The bottom row shows a few recon-
structions (normally projected) made by inspection from the photographs.
The authors analyzed 350 such photographs and concluded that H +

3
mainly

exhibits an equilateral triangle geometry. A distribution of angles for the
equilateral geometries is given as well. From Gaillard et al. (1978). Reprinted
with permission from APS.

fragments would inspire researchers to attempt to infer molecular
structures using this data.

A better known CEI experiment was performed by Vager, Naaman,
and Kanter (1989) almost a decade later employing a ∼30 Å carbon
film. Their work was motivated by the opportunity of imaging non-
classical molecular structures that more established methods were
incapable of imaging. They were also the first to suggest that measur-
ing the velocity (or momentum) vectors of each fragment would be
provide all the information required to describe the molecule’s struc-
ture. Figure 5 shows one reconstruction for the C

2
H +

3
molecule based

on the measured velocity vectors. Assuming equation (2.1) holds, it
shows an inference of the molecule’s geometry based on the argu-
ment that is an experimental measurement of the square of the nu-
clear wave function, and is a convincingly pretty one at that.

However, they do not perform any geometry reconstruction and
report their fragment ion densities in a coordinate system defined by
the asymptotic velocity of each particle. Considering that they pro-
vide equation (2.1) for converting from velocity vector measurements
to position vectors, it seems rather unusual for them to report a dis-
tribution in velocity space as opposed to position space.

The promise of recovering molecular geometries in this simple fash-
ion seems quite empty now after glancing at the published literature
in the few decades since. One reason for this include the difficulty
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Figure 5: Reconstruction of C
2
H +

3
following foil-induced dissociation. The

densities of the fragment ions are plotted in a coordinate system defined by
the final velocities of each particle (relative to the mean carbon-ion velocity).
The carbon ion densities were reduced by a factor of 5 for display purposes.
From Vager, Naaman, and Kanter (1989). Reprinted with permission from
AAAS.
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2.3 molecular geometry reconstructions using cei

and inconvenience of preparing the molecular beam required, which
may not be possible for every molecule to be imaged. Another reason
is that the method assumes that no molecular rearrangement occurs
after the molecule passes through the thin film, which requires the
complete dissociation of the molecule. This is a crucial issue no mat-
ter the ionization method used, however a thin film may not be very
effective at inducing complete dissociation in many molecules of in-
terest, while an ultrashort laser pulse can be more effective.

Foil-induced CEI has found some uses and produced some inter-
esting work in recent years such as the imaging of the rovibrational
wave functions of H –

2
and D –

2
by studying the kinetic energy released

by the fragments (Herwig et al., 2013a; Jordon-Thaden et al., 2011),
and imaging the absolute configuration of chiral molecules in the gas
phase by studying the measured velocity vectors of the fragments
with Newton plots (Herwig et al., 2013b). Vager (2001) also provides
a review of some experiments. However, for the purposes of studying
molecular structures and dynamics, the ultrafast laser shortly there-
after became the tool of choice for CEI. The reason for the scarcity
of foil-induced CEI experiments in the published literature is mainly
due to its limitations which also include the scarcity of experimental
storage ring facilities, and the requirement the the molecule must be
prepared as a molecular ion beam. The latter may prohibit the study
of many molecules that cannot be prepared as such or which change
molecular structure upon excitation away from the neutral ground
state.

Of course, there are some assumptions that must hold for a com-
plete and accurate recovery of the initial geometry. However, just
by inspection of the schematic in figure 3 we can see that no rear-
rangement of the atoms must occur and that the molecular system
must evolve on a purely Coulombic potential, which requires the
rapid stripping of many electrons off the atom. Thus CEI becomes
increasingly difficult to perform with larger molecules so it is best
used to study smaller molecules. However, it is precisely these small
molecules in the gas phase that need to be studied using CEI as they
cannot be probed using other more established methods. Moreover,
many smaller molecules may exhibit non-Coulombic behaviour un-
less placed into a highly charged state, which may be impossible de-
pending on the apparatus in use.

2.3.2 Imaging with ultrashort laser pulses

Due to the limitations of foil-induced dissociation for CEI, the ultra-
short laser emerged as a powerful tabletop solution for rapidly ioniz-
ing molecules. This occurred in the early 1990’s following the devel-
opment of the first broad-bandwidth solid-state Ti:sapphire laser by
Moulton (1986) and the first demonstration of a mode-locked Ti:sapphire

13



2.3 molecular geometry reconstructions using cei

laser producing femtosecond laser pulses by Spence, Kean, and Sib-
bett (1991), as well as the introduction of a chirped-pulse amplifica-
tion scheme by Strickland and Mourou (1985) that allowed for the
generation of ultrahigh peak power laser pulses (Maine et al., 1988).

Attempt at an analytical solution

Before taking a tour of the molecular geometries recovered using
laser-induced CEI, it is worth mentioning that Nagaya and Bandrauk
(2004) have attempted to arrive at an analytical solution for calcu-
lating molecular geometries from the measured momentum vectors.
They were able to derive classical imaging formulae giving the image
of the squared vibrational wavefunction inverted from the momen-
tum distribution of the atomic ions for the Coulomb explosion of a
diatomic molecule, a linear symmetric triatomic molecule, and a lin-
ear asymmetric triatomic molecule. They are able to derive similarly
simple formulae for the diatomic as well as the linear, symmetric,
triatomic molecule, but the more general case of the asymmetric, lin-
ear, triatomic molecule proves much more formidable.6 The bulk of
their article focuses on that case, deriving a three-dimensional clas-
sical imaging formula in terms of Jacobi and hyperspherical coordi-
nates then reducing it to two dimensions. An extension to three di-
mensions for bent triatomic molecules is promised but could not be
found in the published literature.

As an example, their formula for the Coulomb explosion of a di-
atomic molecule AB is given as

|Ψimage(RI)|2 = S(p)
1

Pion(RI)

√
µqAqB

8πε0R3
I

(2.2)

where S(p) is the momentum distribution measured in the asymp-
totic region (when the atomic fragments are far apart and barely in-
teract), Pion(RI) = |Tion(RI)|2 is the ionization probability, µ is the
reduced mass of the diatomic molecule, qA and qB are the electric
charges on atoms A and B respectively, and RI = µqAqB/2πε0 p2 is
described elsewhere to be the R-coordinate corresponding to the total
energy E of the exploding fragments determined by conservation of
energy, E = E0 + q2/RI (Chelkowski and Bandrauk, 2002).

They proceed to compare their “classical” reconstructions for the vi-
brational wavefunction of various linear helium trimer systems (He 3+

3
and

He 6+
3

) to the predictions of the quantum theory, noting small discrep-
ancies. It seems that similar formulae were derived and actually used
in previous studies (Bandrauk and Chelkowski, 2001; Chelkowski
and Bandrauk, 2002), however, more recent studies do not seem to
employ these classical imaging formulae.

6 While a highly commendable effort, their unsaid conclusion seems to be that this
is an intractable problem as their research group seems to have gone silent on this
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2.3 molecular geometry reconstructions using cei

Figure 6: (a) Molecular structure of SO
2

using the SO 7+
2

charge state
(SO 7+

2
→O2+ + S3+ + O2+). The center of mass is at x = 0, y = 0, and the

y-axis is the bisector of the angle. (b) Radial distribution and (c) angular dis-
tribution of the reconstructed geometries with the dotted lines showing the
expected distributions for the ν = 0 stationary state structure of SO

2
. From

Légaré et al. (2005b). Reprinted with permission from APS.

Experimental reconstructions

Légaré et al. (2005a,b) were the first to use ultrashort laser pulses
(8 fs) and CEI to report on molecular structures and dynamics. Figure
6 shows a reconstruction of SO

2
using the SO 7+

2
→O2+ + S3+ + O2+

charge state.
While an intuitive way to plot geometries, we will show that such

a plot can hide unphysical correlations in the reconstructed geome-
tries. It would be interesting to see the radial distributions of both
bond lengths to help ascertain the robustness of their reconstruction
method. These marginal distributions are typically of the greatest in-
terest but we will show that they can be also used to hide unphysical
correlations (section 5.3.2), and that joint distributions, plotted using
a scatter plot for example, should be reported.

problem and future studies do not refer back to Nagaya and Bandrauk (2004) except
when discussing the difficulty of the problem.
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2.3 molecular geometry reconstructions using cei

To obtain the structures, they assume the explosion system evolves
under a purely Coulombic potential and use optimization methods to
make guesses at the structure that most accurately reproduces the ob-
served data. Treating the geometry reconstruction as an optimization
problem is exactly what we do in chapter 5. However, disappointingly
they only allot a couple of sentence to describing their methodology
and do not report the optimization methods employed, sidestepping
the question of whether their methods were appropriate for the opti-
mization problem as well as the nuances of the reconstruction process
that we will discuss in chapters 4–6. Without knowledge of the opti-
mization methods used, it is impossible to tell whether appropriate
methods were used.

While Légaré et al. (2005b) may have not provided sufficient infor-
mation regarding their methods for a third-party to reproduce their
results, they do provide some important insights into the general
problem of geometry reconstruction using CEI. They use simulations
of dissociative ionization to estimate the role of intermediate charge
state dynamics and show that discrepancies between reconstructed
geometries and true geometries of the equilibrium state are mainly
caused by ion motion during the ionization process. The ion motion
is introduced mainly due to the interaction between the molecule and
the finite pulse length of the laser (7 fs), which was not as much of
a concern with foil-induced dissociation’s interaction time of ∼ 0.1 fs
(Vager, Naaman, and Kanter, 1989). They subsequently argue that
their half bond length resolution images are sufficient for the obser-
vation of large-scale rearrangements of small molecules such as iso-
merization processes.

Gagnon et al. (2008) reported the reconstruction of dichloromethane
(CH

2
Cl

2
) using a home-made7 stochastic-based simulated annealing

algorithm that globally optimizes the molecular spatial configuration.
Such an algorithm is an example of a heuristic derivative-free opti-
mization algorithm, a class of algorithms that is sometimes described
as a “last resort”, such as by Conn, Scheinberg, and Vicente, 2009

who provide an introduction to derivative-free methods. Gagnon et
al. (2008) attempt to minimize an objective function in the form of a
scaled `∞ norm maxi |vi − v?

i |/vi where the index i ranges over the
atomic fragments, vi is the theoretical or simulated velocity vector for
the atomic fragment i, and v?

i is the experimentally measured velocity
vector for the atomic fragment i. Gagnon (2006, p. 49) suggests in his
thesis that choosing an objective function in the form of a χ2 statistics
may have been more desirable as it accounts for errors in the velocity
vectors as well. Figure 7 shows an example of a reconstruction.

7 There is nothing wrong with writing your own code here but nonconvex optimiza-
tion algorithms are tricky to get right and professional optimization libraries (both
proprietary and open-source) do exist. Fortunately, the methodology and implemen-
tation’s source code are publicly available in the main author’s thesis (Gagnon, 2006).
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2.3 molecular geometry reconstructions using cei

Figure 7: An example of a geome-
try reconstruction of dichloromethane
(CH

2
Cl

2
) for the CH

2
Cl

2
→H+ + H+ +

C+ + Cl+ + Cl2+ fragmentation chan-
nel. The three-dimensional stochastic
motion showing the trajectory of the
guesses or iterates of the simulated
annealing algorithm is shown (small
black dots apparently but looks more
like a solid black line) from the ini-
tial guesses for the positions (red cir-
cles) to the optimal solution found
by the algorithm (blue squares). From
Gagnon et al. (2008). Reprinted with
permission from IOP.

They are only able to obtain the molecular structure for five sets
of measured velocity vectors, out of potentially hundreds. Their re-
constructed geometries possess the expected tetrahedral structure of
CH

2
Cl

2
and they compare the reconstructions to spectroscopic mea-

surements, suggesting that the uncertainty in their geometry recon-
struction is not due to the algorithm itself, but rather to the uncer-
tainty in the velocity vectors, a relationship we explore quantitatively
in chapter 6.

The most recent, and perhaps the most interesting geometry recon-
struction effort using CEI so far, is the imaging of the long-predicted
but experimentally elusive Efimov state of the helium trimer (

4
He

3
)

by Kunitski et al. (2015), coming full circle to the very first images
of the hydrogen trimer (Gaillard et al., 1978), both excellent exam-
ples of non-classical molecular structures which may be imaged effec-
tively by CEI (Vager, Naaman, and Kanter, 1989). The ideal Efimov
trimer is about 100 times larger than a typical triatomic molecule
and does not exhibit a linear or equilateral structure. An impressive
Physics Today article by Greene (2010) further explores Efimov states
and universality in few-body physics. Figure 8 shows the theoretical
and experimentally reconstructed molecular structures for the helium
trimer. They plot their geometries in the center-of-mass coordinate
frame which we employ for our geometry plots as well.

Kunitski et al. (2015, supplementary material) describe their re-
construction method which uses a lookup table (with a somewhat
similar approach to the one we use in chapter 4). The lookup table
we describe in chapter 4 maps geometries (r12, r23, θ) to asymptotic
momentum vectors (described in a dimensionality-reducing conven-
tion). However, the lookup table they employed maps geometries
(R1, R2, R3) described using Dalitz coordinates to momentum space,
also described using Dalitz coordinates. Dalitz coordinates were intro-
duced by Dalitz (1953), and a more modern description of their use in
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Figure 8: Theoretical and experimental molecular geometries of the helium
trimer. The (A) theoretical and (B) experimental reconstructed excited-state
molecular structures are shown along with the (C) theoretical ground state
structure, with a much smaller length scale on both axes. The trimer’s center
of mass is shifted to the origin. The structures are also rotated such that the
principal axis with the smallest moment of inertia points along the y-axis,
and mirrored with respect to the x or y-axis such that one helium atom lies
in the first quadrant and the other two in the third and fourth quadrants.
From Kunitski et al. (2015). Reprinted with permission from AAAS.

CEI as Dalitz plots (a type of ternary plot) for describing momentum
vector arrangements can be found in Ramadhan et al. (2016).

An important feature of Dalitz coordinates is that they require 2
coordinates to describe a triatomic molecule, effectively reducing the
dimensionality of the geometry reconstruction problem to finding the
two Dalitz coordinates as opposed to finding the three bond lengths.
The third bond length is then calculated from the kinetic energy re-
leased (KER) by the three ions. Assuming the Coulomb explosion
begins with the molecule at rest, the KER must equal the potential
energy of the trimer (in atomic units)

KER =
1

R12
+

1
R13

+
1

R23
(2.3)

and so the kinetic energy release, which is easily calculated from the
measured momentum vectors using KER = p2/2m, is related to the
equilateral structure and a third bond length may be calculated if two
others are known. If the ions pick up some initial momentum from
the laser ionization process, however, (2.3) may not hold to a some
degree.

They simulate the Coulomb explosion of 10002 structures with dif-
ferent Dalitz coordinates. The forward simulation of the Coulomb
explosions is done using Newton’s equations of motion while on the
other hand we solve Hamilton’s equations (section 3.3). They launch
each trajectory six times with different randomly generated small ini-
tial momenta whose distribution is taken from measured KER spectra
of the single charged helium ion to account for ion motion due to the
laser ionization. They find that the initial values of the momenta do
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not alter their reconstruction results significantly, however initial mo-
mentum kicks smaller than one hundredth of the KER (∼ 0.25 eV)
can produce significant shifts in the Dalitz plot for other molecules
such as OCS4+ in the (2, 1, 1) fragmentation channel (Ramadhan et
al., 2016). This introduces additional error when attempting to recon-
struct other molecules unless accounted for.

They also notice an “ambiguity of momentum-to-structure relation”
for a small region in phase space (or structural space) which results
in the reconstruction of some irrelevant geometries. This is due to
the existence of multiple structures that produce the exact same set
of momentum vectors, which we refer to as degenerate geometries
in this thesis. We discuss them extensively in the following chapters.
It is interesting to note that even a simple structure such the helium
trimer’s results in degeneracies.

They filter our their degenerate geometries, which seem to be “ir-
relevant” or physically unrealizable as they cannot correspond to the
excited state of the helium trimer. While this may be true in this case,
it is possible that each degeneracy for another molecular structure
may represent a physically realistic geometry (section 5.4).

They believe an iterative approach to geometry reconstruction is
impracticable due to the highly nonlinear relation between the ini-
tial spatial geometry and the asymptotic momentum vectors coupled
with the initial momentum each ion picks up during the laser ion-
ization process. While true, especially for the simple structure of the
helium trimer, we believe an iterative optimization approach is su-
perior in general. Computing the last bond length from the KER of
the system using equation (2.3) would produce wildly inaccurate ge-
ometries as it assumes the process is 100% Coulombic, that is, the po-
tential energy of the molecular system is completely converted into
kinetic energy. However, this is not true for many molecules such as
OCS (Wales et al., 2014), and even for highly charged states of some
molecules such as CS 10+

2
for both the (4, 2, 4) and (3, 4, 3) fragmenta-

tion channels (Matsuda, Takahashi, and Hishikawa, 2014). If we can-
not compute the last bond length from the KER of the system then
we would have to start with a three-dimensional lookup table, and
lookup table storage space requirements scale up in an exponential
manner (section 4.3.1).

They suggest that extending their approach to four-body system
seems feasible, in which case four-particle Dalitz plots may be used
(Schulz et al., 2007), and may be an idea worth pursuing for cases
when (2.3) holds.
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The premise of CEI is simple enough for a quirky elevator pitch
yet the collection and analysis of data is a nuanced multi-step pro-
cess as we are attempting to measure the momentum vector of each
single atomic fragment precisely. This chapter will discuss the data
measurement and analysis process in detail from the measurement
of position and time to the calculation of the momentum vector com-
ponents and theoretical lower-bound estimates of the measurement
uncertainty. We will explore the collected data set as well as provide
some information regarding the simulation of a Coulomb explosion
and the conventions used throughout this thesis for describing the
geometries and momentum vectors.

3.1 data measurement

In this section we will go through the process of how the momen-
tum vectors of each atomic fragment are measured. This will require
some discussion regarding the apparatus, algorithms, and intricacies
of the process, all of which are essential to understand exactly how
the data is collected so that it can be analyzed appropriately. We will
also quantify the uncertainty in those measurements, which will be
useful in quantifying our uncertainty in the reconstructed geometries
in chapter 6.

3.1.1 Time and position measurement

The time-of-flight of each atomic fragment and its position on the
detector are required to calculate its momentum vector. The mea-
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3.1 data measurement

Figure 9: Schematic of a multi-
channel plate (MCP). The incident
particle need not be an electron, and
may in fact be any charged particle,
a high-energy photon, or a neutrally
charged particle with kinetic energy
larger than the work function of the
glass.

surement of time and position is carried out by a two-stage appara-
tus feeding electrical signals into a data acquisition (DAQ) computer
which analyzes the signals to determine time and position.

The first part of the two-stage apparatus is a set of two micro-
channel plates (MCP) placed in a chevron configuration.1 Figure 9

shows a schematic of an MCP. Once a charged particle is incident on
an MCP and collides with a channel wall, multiple secondary elec-
trons are emitted and accelerated up the channel due to the applied
voltage VD setting up a potential gradient along the channel and re-
plenishing the emitted electrons. Due to the angled channels, the emit-
ted electrons follow parabolic trajectories hitting the other wall and
continuing the amplification process until a large number of particles
(∼ 104, depending on the applied voltage) are emitted at the channel
output.

The job of the MCP is to amplify the signal of a single charged
particle enough such that it may be detected as an electrical signal by
an oscilloscope, much like a photomultiplier tube. Thus the output of
an MCP is a shower of charged particles, or rather a charged cloud.
The charged cloud may be fed into a second MCP to further amplify
the signal. A two-stage chevron MCP setup produces an amplification
of approximately 105 to 107 depending on the applied voltage VD

across the channels.
You may notice that while most of the MCP’s surface is covered in

channels, not all of it is, leading to an imperfect detection rate. Only
60% of the area is open to incident particles, and if a particle is in-
cident on the other 40% then it is not detected. Thus the detection
efficiency of a triple coincidence event is (0.6)3 ≈ 0.2 and so we see

1 The channels of an MCP are slanted, usually at a (bias) angle of 5° to 15° to increase
the probability that an incident particle collides with the channel wall. To further in-
crease this probability, the second MCP is oriented such that its channels are slanted
in the opposite direction forming a V-like (or chevron-like) channel configuration.
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Figure 10: Schematic of a symmetrized “modified backgammon with
weighted capacitors” (MBWC) anode for position detection. Figure from
Mizogawa et al. (2002). Reprinted with permission from Elsevier.

that detection efficiency decreases rapidly with the number of frag-
ments that must be detected, suggesting that larger molecules are
more difficult to study. There do exist “funnel” MCPs with an open
area ratio of 90% that increase the detection efficiency.

By itself this MCP setup is enough to provide time-of-flight infor-
mation but to obtain position information, this charged cloud output
is made incident on a position sensitive anode such as a “modified
backgammon with weighted capacitors” anode or readout pad built
as described by Veshapidze et al. (2002) and used by Ramadhan et al.
(2016). Figure 10 shows a schematic of such an anode.

The avalanche of charged particles, or the charged cloud, hits the
anode and induces a charge on it. This charged is induced via the
capacitive couplings from the feedback capacitors of the preampli-
fiers connected to the triangular conducting strips. The lines on the
anode are insulating gaps, splitting the anode into a series of trian-
gles whose arrangement resemble that of the backgammon board
game. The metal strips are capacitively coupled to the triangular
strips through the insulator. If the cloud lands on the right side of
the anode, then a larger fraction of the induced charge will flow to
Q3 and Q4. So we can see that x = 0 corresponds to the left side
of the anode, and x = 1 to the right side. If the cloud lands further
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up the anode, then a larger fraction of the induced charge will flow
through Q1 and Q3 so we see that y = 0 corresponds to the bottom
side of the anode and y = 1 corresponds to the top side. The de-
sign gets its name as it is a combination of two older designs, the
“backgammon” (BG) and the “weighted coupling capacitor” (WCC)
designs. Mizogawa et al. (1992) provides a more detailed explanation
of its operation. This setup provides position information on a scale
0 ≤ x, y ≤ 1 and must be multiplied by appropriate scaling factors
for each dimension, which depend on the physical dimension of the
setup, to retrieve the correct position information in meters.

These four Qi signals are subsequently fed into an Ortec 142 pream-
plifier in energy output mode, essentially acting as an operational
amplifier integrator. The integrated signal is then fed into a data ac-
quisition (DAQ) computer equipped with a four-channel oscilloscope.
Every time a laser pulse is fired into the experimental apparatus, an
electrical signal is sent to the oscilloscope as a trigger. The software
running on the DAQ computer examines the four signals following a
trigger and saves them if it detects evidence of charged particle detec-
tion, using a coincidence detection algorithm for improving detection
rates as described by Wales et al. (2012a).

A particularly good example of a triple coincidence detection event
can be seen in figure 11, wherein the fragmentation event showcased
is the concerted breakup process CS

2
→CS 3+

2
→C+ + S+ + S+.

As the carbon atom is lighter, the first step at 500 ns is the detec-
tion of the carbon atom. All four channels increase by roughly similar
amounts hinting that the carbon atom was detected near the center of
the detector by (3.1). Then the second and third events belong to the
two sulfur atoms, arriving later due to sulfur’s larger atomic mass. If
the molecule was aligned in a plane parallel to the detector, and both
sulfur atoms started with zero initial momentum, then they would
have remained at the same height throughout the Coulomb explo-
sion and been detected at the same time, producing one step in the
signal. However, one must have had some downward initial momen-
tum with the other having some upward initial momentum, which
may be a result of the molecule having been oriented vertically such
that one sulfur atom was closer to the detector. During the Coulomb
explosion, the closer atom will initially experience a kick towards the
detector while the other sulfur atom will initially experience a kick
away from the detector before being accelerated upwards due to the
constant electric field. This results in one sulfur atom arriving earlier,
and the other later. Looking at the individual signals, we see a signif-
icant increase in Q1 and Q2 at 800 ns suggesting that the first sulfur
atom was on one side of the detector while the more significant in-
crease in Q3 and Q4 at 900 ns suggest that the second sulfur atom was
on the other side. This makes some intuitive sense as we expect the
carbon atom to land somewhere near the middle and the two sulfurs
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3.1 data measurement

Figure 11: Spectrometer response during a triple coincidence event. This
was taken during a CEI experiment studying the dynamics of CS

2
at the

Canadian Light Source. The fragmentation event showcased is the concerted
breakup process CS

2
→CS 3+

2
→C+ + S+ + S+.

to land on opposite sides of the detector. The oscilloscope cards sport
an 8-bit bus and so the individual Qi channels were limited to 200 mV
to increase position detection accuracy. Triple coincidence events tend
to make up approximately (0.6)3 ≈ 0.2 of detected events due to the
detector’s imperfect detection rate, however rich and interesting sig-
nals such as this one can be rarer. The majority of events detected
tend to be single or double coincidences of course.

As a side note, if too many atomic fragments arrive at the detector
in a short enough time period, steps due to different molecules may
get mixed. The laser typically produces pulses with a repetition rate
of 1 kHz which will keep different events from overlapping. When the
experiment is carried out at a synchrotron facility, adjusting the light
intensity until a lower event rate is observed (100 Hz) works better
due to the lower level of control we have over the event rate (Ramad-
han et al., 2016). Another reason to keep the count rate low is that the
signals need time to decay back down post-integration otherwise the
signals will saturate the oscilloscope at 200 mV. The ringing artifacts
on the signal are due to impedance mismatches between the anode
and preamplifiers.

24



3.1 data measurement

Software can analyze the signals and determine the magnitude of
each Qi signal. If the change in baseline before and after an event is
denoted Q′i then the position of the electron is then calculated using

x =
Q′1 + Q′2

Q′1 + Q′2 + Q′3 + Q′4
, y =

Q′1 + Q′3
Q′1 + Q′2 + Q′3 + Q′4

(3.1)

where x, y ∈ [0, 1] are fractional positions. Multiplying x and y by the
dimensions of the MCP detector will yield the physical position of
the cloud’s centroid.

3.1.2 Calculating the atomic fragments’ momenta

Calculating the momentum vector of each atomic fragment is an el-
ementary physics problem once we have the time and position mea-
surements. The components of the three-dimensional momentum vec-
tor p = (px, py, pz) for each atom are calculated as

px =
m(x− x0)

t
, py =

m(y− y0)

t
, pz =

qV
2`

(
t2
0 − t2

t

)
(3.2)

where m is the atom’s mass, (x, y) is the location the atom collided
with the MCP detector, and (x0, y0) is the location that the Coulomb
explosion originated. The location (0.5, 0.5) corresponds to the phys-
ical center of the MCP detector. q is the net charge of the atom, V is
the value of the constant electric field the atom is subjected to, and `

is the distance from the location of the Coulomb explosion to the de-
tector. t is measured time of flight (between Coulomb explosion and
detection) of the atom and

t0 =

√
2d`
V

(
m
q

)
(3.3)

is the atom’s time of flight assuming no external forces act on it dur-
ing its trip to the detector.

3.1.3 Measurement uncertainty in the momenta

For any relation f = f (x1, x2, . . . , xn), assuming independent vari-
ables (neglecting correlations), the standard deviation (or absolute
uncertainty) in a quantity f , which we denote ∆ f , may be calculated
using the variance formula (Ku, 1966), which has been very popular
among physical scientists,

∆ f =

√√√√ n∑
i=1

(
∂ f
∂xi

∆xi

)2

(3.4)
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3.1 data measurement

where ∆xi is the standard deviation in the independent variable xi
and where the partial derivatives ∂ f /∂xi are evaluated at the mean of
xi. This formula relies on the linear characteristic of the gradient of f
and so it’s a good estimate for the standard deviation of f as long as
the standard deviations ∆xi are small compared to the partial deriva-
tives. However, as it employs a truncated Taylor series, it may even
be a biased estimate in some cases. Much can be said about which
formula to use in the propagation of uncertainty, and expository arti-
cles on the subject have been written by Birge (1939) and Ku (1966),
the latter of which provides an insightful derivation of (3.4). In our
case, we will not attempt to make accurate nor precise calculations of
any uncertainty, so we will not fuss about which method we choose
to propagate our uncertainties forward. We are simply interested in
making order-of-magnitude estimates of the uncertainties on the mea-
sured momentum vectors in order to make order-of-magnitude esti-
mates on the uncertainty of reconstructed geometries in chapter 6.

Using (3.4) we may calculate the uncertainty in the measured mo-
mentum values, which will be different for each component. In our
case, px is a function px(m, x, x0, t) and py = py(m, y, y0, t), however,
the uncertainty in the atomic mass m is orders of magnitude smaller
than the uncertainty in the other variables and so we will ignore its
effects. Thus we get that

∆px =

√(
∂px

∂x
∆x
)2

+

(
∂px

∂x0
∆x0

)2

+

(
∂px

∂t
∆t
)2

(3.5a)

∆py =

√(
∂py

∂y
∆y
)2

+

(
∂py

∂y0
∆y0

)2

+

(
∂py

∂t
∆t
)2

(3.5b)

where the partial derivatives can be calculated from (3.2) as

∂px

∂x
=

m
t

,
∂px

∂x0
=

m
t

,
∂px

∂t
= −m

x− x0

t2 (3.6a)

∂py

∂y
=

m
t

,
∂py

∂y0
=

m
t

,
∂py

∂t
= −m

y− y0

t2 (3.6b)

and so after plugging in the partial derivatives and rearranging slightly
we get that

∆px

px
=

√(
∆x

x− x0

)2

+

(
∆x0

x− x0

)2

+

(
∆t
t

)2

(3.7a)

∆py

py
= py

√(
∆y

y− y0

)2

+

(
∆y0

y− y0

)2

+

(
∆t
t

)2

(3.7b)
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3.2 exploratory data analysis

Repeating the process for pz = pz(q, V, `, t0, t) but ignoring the tiny
uncertainties in q, V, and `, we get

∆pz

pz
= pz

√√√√( 2tt0

t2
0 − t2

∆t0

)2

+

(
t2 + t2

0

t(t2
0 − t2)

∆t2

)2

(3.8)

To calculate the uncertainties in position, ∆x and ∆y, we repeat the
same process for equations (3.1) to arrive at

∆x =
1

QT

√
(1− x)2(∆Q2

1 + ∆Q2
2) + x2(∆Q2

3 + ∆Q2
4) (3.9a)

∆y =
1

QT

√
(1− y)2(∆Q2

1 + ∆Q2
3) + y2(∆Q2

2 + ∆Q2
4) (3.9b)

where QT = Q1 + Q2 + Q3 + Q4. The values of Qi are digitized with
the same resolution thus denoting ∆Qi = ∆Q for i = 1, 2, 3, 4 yields
simpler relations

∆x =
√

2
∆Q
QT

√
(1− x)2 + x2 (3.10a)

∆y =
√

2
∆Q
QT

√
(1− y)2 + y2 (3.10b)

3.2 exploratory data analysis

Before we attempt to reconstruct geometries based on the momentum
vectors measured, it would be a good idea to inspect and analyze the
raw data first. Such an analysis will help us identify any issues with
the data and really we should be making sense of the raw data before
attempting to analyze it further. Such an analysis is typically termed
exploratory data analysis, first promoted by Tukey (1977).

3.2.1 Momentum measurements

For each Coulomb explosion event, our measurements for OCS in-
clude a momentum vector (px, py, pz) for each atom or fragment.
Thus each event involves the measurement of 9 scalars, ultimately
forming a 9-dimensional multivariate dataset with some structure,
mainly imposed by the condition that momentum must be conserved
along each physical axis in the reference frame of the molecule, that
is the center-of-momentum (COM) frame.

For this section we will look at the momentum vectors measured
for OCS in the (2, 2, 2) fragmentation channel following Coulomb ex-
plosion by a 7 fs laser pulse, with all measurements kept in the lab
frame. This allows us to inspect the raw data before it is transformed
to the COM frame with the added benefit that it allows for the inspec-
tion of any instrumental or systematic errors. Qualitatively, the data
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Figure 12: Distributions for each atom’s momentum components measured
after Coulomb explosion by a 7 fs laser pulse for the (2, 2, 2) fragmentation
channel (in the lab frame). Kernel density estimates (with a Gaussian kernel,
see section 3.2.3) are overlaid to estimate probability distributions.

looks quite similar in the two frames, but the geometry reconstruc-
tion can only be done in the COM frame as the simulation assumes
that the molecule starts from rest such that momentum is always con-
served as the molecular systems undergoes a Coulomb explosion.

In figure 12 we plot histograms for each atom’s momentum com-
ponents and overlay the histograms with kernel density estimates
(using a Gaussian kernel) to estimate the probability density function
of each momentum component. Glancing at the distributions, they
seem to make sense qualitatively with some peculiarities.

We can infer some basic dynamics from these plots. For example,
we see that the oxygen and sulfur atoms tend to fly off with high
velocity in the x-direction while the carbon atom flies off with little
velocity in the x-direction. As conservation of momentum must hold,
the px component of the molecular system must sum to zero suggest-
ing that the oxygen and sulfur tend to fly off in opposite x-directions.
This is expected as they are both terminal atoms and confirms that the
data makes physical sense. The other distributions do not say much
except for the slight asymmetry in the oxygen and sulfur’s pz dis-
tributions which may be due to instrumental bias in measuring the
arrival time of atomic fragments. We also notice that the momentum
distribution is rather isotropic in the y and z directions but is bimodal
in the x direction, suggesting that the laser pulse’s electric field was
polarized along the x-axis. Kernel density estimates (with a Gaussian
kernel) are used to estimate the probability density function of each
momentum component. Such estimates are inherently not as effective
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3.2 exploratory data analysis

at estimating bimodal distributions thus the carbon and sulfur’s px

estimates appear over smoothed.
This analysis should be done for each data set collected. In our

case, this includes the 30 fs, 60 fs, 100 fs, and 200 fs data sets which we
include in appendix A as figures 31–34.

While figure 12 gives us some insight into the measurements, we
are looking at a multidimensional data set and might want to look at
correlations between each measurement. We do this using a pairs plot,
or a scatter plot matrix, which is a grid of scatterplots showing the
bivariate relationships between all pairs of variables in a multivariate
dataset. The pairs plot was first introduced by Hartigan (1975), how-
ever we use the more modern and generalized version introduced by
Emerson et al. (2013) as they provide an open-source implementation
in the form of an R package.

Figure 13 uses a pairs plot to showcase the relationship between ev-
ery pair of variables in our dataset. Due to the 9-dimensional nature
of our dataset, we end up with a 9× 9 grid of plots with some redun-
dancy. The diagonal repeats the kernel density estimates shown in
figure 12 but they are quite useful as a reference here. Below the diag-
onal are the scatter plots, however due to the high density of points,
contour plots are employed to showcase the same relationship above
the diagonal. So only 36 scatter plots are required but this format pro-
vides us with greater insight of our dataset, especially in scatter plot
regions with a large density of points.

For example, the scatter plot in row 7, column 1 plots the oxygens’s
px component on the x-axis and the sulfur’s px component on the y-
axis. The contour plot in row 1, column 7 shows the same relationship.
We see a negative correlation between oxygen’s px and sulfur’s px as
predicted in figure 12’s caption. Similarly we see negative correlations
between oxygen’s py and sulfur’s py as well as between oxygen’s pz

and sulfur’s pz, which makes physical sense due to the two atoms be-
ing terminal atoms, so they should fly off in approximately opposite
directions following a Coulomb explosion.

Pairs plots for the 30, 60, 100, and 200 fs data sets are included in
appendix A as figures 35–38.

3.2.2 Discrepancy in the momentum measurements

It is also worth looking at the measurements of the momentum vec-
tors for the three atoms to check if they sum to zero, that is if mo-
mentum is conserved. We will look at the momentum measurements
for a laser pulse length of 7 fs. We plot a histogram of the momen-
tum discrepancy ‖pO + pC + pS‖ exhibited by the measurements in
figure 14(a). In (b) we also plot a histogram for the total momentum
‖pO‖+ ‖pC‖+ ‖pS‖ for comparison.
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Figure 13: Pairs plot showing the bivariate relationship between each atom’s
momentum components measured after Coulomb explosion by a 7 fs laser
pulse for the (2, 2, 2) fragmentation channel. On the diagonal, kernel density
estimates (with a Gaussian kernel, see section 3.2.3) of the momentum com-
ponent designated by the label at the top of the column and end of the row
are given. Below the diagonal, scatter plots show the relationship between
the momentum components belonging to that row and column. Above the
diagonal, the same relationship is given using a contour plot instead.

Figure 14: (a) Momentum discrepancy and (b) total momentum for mo-
mentum vectors measured for the OCS (2, 2, 2) molecule after Coulomb
Coulomb by a 7 fs laser pulse. The vertical black line indicates the expected
momentum when exploding from the ground-state geometry.
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3.2 exploratory data analysis

We see that our the measured momentum vectors sum to zero with
a discrepancy of less than 5× 10−23 kg m s−1 in the vast majority of
cases. This is compared to the total momentum which peaks around
2.5× 10−21 kg m s−1. Thus the discrepancy corresponds to a < 2%
error due to momentum not being conserved.

The vertical black line in figure14(b) indicates the expected mo-
mentum when exploding from the ground-state geometry (rCO =

1.15 Å, rCS = 1.56 Å, θ = 172°), which we sometimes call a 100%
Coulombic explosion. In fact the total momentum is distributed about
the expected momentum, suggesting that the OCS (2, 2, 2) fragmen-
tation channel is “highly Coulombic”, or that the Coulomb potential
is a good approximation. The agreement is not perfect, however, and
this will introduce some error in the reconstructed geometries as we
assume a purely Coulombic potential. Significant amounts of initial
momentum carried by any of the atomic fragments will also intro-
duce error in the reconstructed geometries.

3.2.3 Kernel density estimation

Kernel density estimates (KDE’s) are used to estimate probability dis-
tributions in figures 12 and 13, and will be used to estimate proba-
bility distributions for the atomic positions of reconstructed geome-
tries in chapters 4 and 5. They are a method of performing nonpara-
metric statistics, that is, of fitting observations to a probability dis-
tribution that has no dependency on a parameter (Stuart, Ord, and
Arnold, 2010, §20.2-20.3). They serve roughly the same purpose as
a histogram, however histograms tend to be non-smooth and their
shape depends on both the width of the bins and the ends points of
the bins. To solve at least the first two problems, we can use a KDE.
They are especially effective for estimating high-dimensional prob-
ability distributions where histograms can be very sparse (see also
curse of dimensionality, section 5.1.6).

For independent and identically distributed univariate samples x1, x2, . . . , xn

drawn from an unknown probability distribution f , its KDE is

f̂h(x) =
1
n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K
(

x− xi

h

)
(3.11)

where K is the kernel, a function with zero mean that integrates to
one, and h > 0 is the bandwidth, a smoothing parameter analogous to
the bin width (Scott, 2015, p. 137). Many kernel choices exist such
as the rectangle or triangle function but the standard normal (or
Gaussian) kernel is the most popular. Multivariate KDE’s replace the
scalar bandwidth parameter h with a symmetric and positive band-
width matrix H with a variable number of smoothing parameters
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3.3 computationally simulating a coulomb explosion

(Wand and Jones, 1993) however full bandwidth matrices seem to
give markedly better performance (Duong and Hazelton, 2003).

Selection of the bandwidth h, as expected, is the most difficult as-
pect of KDE. Analytical formulae can be derived for the bandwidth h
(Scott, 2015, p. 143) that accurately estimate the unknown density f by
minimizing the mean integrated squared error (MISE) however they
require knowledge of the unknown density f and so cannot generally
be used. Fortunately, when estimating a normal (or Gaussian) density,
the bandwidth that minimizes the MISE is given by Silverman (1986)
as

h =

(
4σ̂5

3n

)1/(d+4)

≈ 1.06
(

σ5

n

)1/(d+4)

(3.12)

where n is the number of observations, σ̂ is the standard deviation of
the samples, and d is the dimensionality of the observations (so d = 1
for univariate observations and d = 2 for bivariate). This is termed the
normal distribution approximation or the “rule of thumb”. As most of
our data, especially the atomic positions of reconstructed geometries,
seems to roughly follow a normal distribution, we used the Silverman
(1986) rule of thumb in computing our kernel bandwidths. It is worth
noting that it does not perform well on multimodal data which is
why certain estimates in figure 12 appear over smoothed.

Other methods do exist, and univariate estimators are especially
effective as briefly surveyed by Jones, Marron, and Sheather (1996),
but bandwidth selection for multivariate kernel density estimates is
quite difficult for non-Gaussian densities (Scott, 2015, §6.5.2).

3.3 computationally simulating a coulomb explosion

To simulate a Coulomb explosion of a molecule containing n atoms,
we will make some simplifying assumptions to arrive at the simplest
possible simulation that will allow us to investigate the problem of
reconstructing geometries. We will assume that the motion of the ions
are governed only by their mutual Coulomb repulsion, so that the
chemical bonds are broken instantaneously at t = 0 and have no
effect on the trajectories of the ions, and that neutral fragments do
not interact with any other fragment. We model each atom as a point
particle with a fixed electric charge assigned at t = 0 so no charge
redistribution can occur. We assume that the atoms each begin at
rest at t = 0 and that their initial positions are determined by the
molecule’s equilibrium or ground-state geometry. Of course, these
assumptions force us to ignore the rearrangement of the atoms under
the influence of the laser pulse’s intense electromagnetic field, and
any initial momentum imparted on the atoms by this interaction.

Under such assumptions, we can solve the classical equations of
motion for each ion right after the explosion. We choose to use Hamil-
tonian mechanics to acquire a system of 6n first-order ordinary dif-
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3.4 describing geometries and momenta

ferential equations (ODE’s) which may be easily solved by numeri-
cal methods such as the ubiquitous fourth-order Runge-Kutta. If La-
grangian mechanics is used, then the resulting second-order must be
recast as a system of first-order ODE’s as numerical algorithms are
developed to solve systems of first-order ODE’s. The Hamiltonian of
the molecular system is

H(ri, pi, t) =
n∑

i=1

p2
i

2mi
+

1
4πε0

∑
{i,j}
i 6=j

qiqj

|ri − rj|
(3.13)

where i, j ∈ {1, 2, . . . , n} and so the second summation is over all i, j
pairs where i 6= j. Calculating Hamilton’s equations for the system,
we get

dri

dt
=

∂H
∂pi

=
pi

mi
(3.14a)

dpi

dt
= −∂H

∂ri
= − 1

4πε0

∑
j, j 6=i

ri − rj

|ri − rj|3
(3.14b)

where i is held fixed over the second summation. With appropriate
initial conditions this system of 6n scalar first-order ordinary differ-
ential equations may be easily solved using, for example, the classical
fourth-order Runge-Kutta method for numerically solving ordinary
differential equations. The atoms are assumed to be at rest so that
pi(t = 0) = 0, while the initial positions, ri(t = 0), are chosen to
correspond to the molecular geometry.

One way to think of the problem being tackled in this thesis is:
which initial geometry ri(t = 0) = 0 results in the momentum values
measured at the detector? The atoms are far enough apart after just
a few nanoseconds that by the time they arrive at the detector, they
feel almost no forces due to each other and their momenta attain
asymptotic values which we can denote pi(t→ ∞).

For some perspective, Slater et al. (2015) discuss the computational
simulation of ion trajectories for larger systems such as the the 3,5-
dibromo-3’,5’-difluoro-4’-cyanobiphenyl (DBrDFCNBph) molecule, and
who interestingly employ a pixel-imaging mass-spectrometry camera
for position detection.

3.4 describing geometries and momenta

While tackling the problem of geometry reconstruction, it will be cru-
cial to choose a convention for describing the geometries and momen-
tum vectors especially so that geometries and vector arrangements
can be compared with ease. Even more importantly, it provides us
with an opportunity to reduce the dimensionality of the problem
from 3N to 3N − 6 for a molecular system with N atoms. This stems
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3.4 describing geometries and momenta

from the fact that we only need to describe the relative position of
each atom, not its absolute position.

For example, a triatomic molecule can be described by two bond
lengths r12, r23 and a bond angle θ, or even three bond lengths (r12, r13, r23)
rather than three position vectors (r1, r2, r3).

For larger molecules, dihedral angles are required to describe the
geometry in addition to bond lengths and angles. Such coordinates
are called internal coordinates and multiple possible descriptions may
exist (Peng et al., 1996) although it is unclear how significantly the
choice of coordinate system will come into effect for molecules con-
taining several atoms. The Z-matrix, a tool from computational chem-
istry, may be used to store and convert between them and Cartesian
coordinates using the Natural Extension Reference Frame (NERF) al-
gorithm (Parsons et al., 2005). However, concerns regarding the Z-
matrix have been discussed (Baker and Chan, 1996; Baker and Hehre,
1991) and further investigation is required

Before attempting to compare simulated momentum vectors with
experimentally measured data, the momentum vector measurements
must be converted from the laboratory frame to the center-of-momentum
(COM) frame by removing any center-of-mass motion of the molecu-
lar system (see the removeCOMMotion.m code listing in appendix B).

The exact same molecule can produce different momentum vectors
after a Coulomb explosion depending on its initial orientation with re-
spect to the detector. We must use a momentum convention to ensure
a one-to-one mapping between geometries and measured momentum
vectors as we are strictly interested in the molecular structure, and not
the molecule’s orientation.

For triatomic molecules, the momentum vectors can be rotated into
a plane (see the rotateMomentum.m code listing in appendix B). We
further restrict the central atom’s momentum vector to lie along the
+x-axis and that the second terminal atom sits in the +x half plane.
Thus we are only left with five nonzero momentum components as
p1 = (p1x, p1y, 0), p2 = (p2x, 0, 0), and p3 = (p3x, p3y, 0). With conser-
vation of momentum, p3 = −(p1 + p2), and so we just need three
momentum components before we can determine all the momentum
vectors.

For larger molecules, the momentum vectors cannot always be ro-
tated into a plane although we can still employ a very similar proce-
dure. After the first three vectors are rotated into a plane, the remain-
ing vectors may point out of the plane.
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We begin our attempts at reconstructing geometries by taking a very
simple approach, the use of a lookup table. Simulating Coulomb ex-
plosions is computationally cheap, or fast, so we can simulate the
explosion of many geometries and create a large mapping of geome-
tries to asymptotic momentum vectors. Then reconstructing a geome-
try from measured momentum vectors is simply a matter of looking
up the geometry that produces the most similar momentum vector ar-
rangement. In this chapter we will describe an implementation of this
approach and use it to reconstruct molecular geometries for carbonyl
sulfide (OCS) in the OCS→O2+ + C2+ + S2+ concerted1 fragmentation
channel, denoted as the (2, 2, 2) channel.

First doing so however, we will motivate the need for a new ap-
proach to geometry reconstruction, the lookup table, by investigating
the failures of the previous attempt at reconstructing molecular ge-
ometries, which relied on the Nelder-Mead simplex method. We will
also take a brief historical look at lookup tables.

4.1 previous attempt using the nelder-mead method

Brichta, Seaman, and Sanderson (2009) proposed the reconstruction
of small triatomic molecules using a “simplex” algorithm. It should

1 Meaning that the molecule dissociates into its atomic fragments at the beginning
of the Coulomb explosion, simplifying the system’s dynamics and simulation. This
is opposed to, for example, stepwise dissociation in which the two bonds break at
different times, allowing for the formation of a diatomic rotor, or dumbbell, which
rotates numerous times before further dissociating into its atomic fragments.
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not be confused with the much better known simplex algorithm by
George Dantzig, also an optimization algorithm but for linear pro-
gramming (see section 5.1.1). The algorithm employed should be re-
ferred to as the Nelder-Mead method, downhill simplex method, or
amoeba method to avoid confusion between the two.2 We refer to it
as the Nelder-Mead method for this chapter, as Wikipedia does.

4.1.1 Previous reconstructions

Unfortunately, Brichta, Seaman, and Sanderson (2009) only report on
the reconstruction of molecular structures based on a few simulated
geometries for carbon dioxide (CO

2
) and formaldehyde (CH

2
O). In

an earlier work, Brichta et al. (2007) used this algorithm to report on
reconstructions of CO

2
geometries from experimental data (see figure

15), which seems ripe for discussion and investigation, however the
experimental data is not discussed and instead the focus is placed on
reconstructing simulated data. They plot the ground state geometry
of CO

2
as perfectly linear even though it should have a bond angle

of 172.5° (Mathur et al., 1992; Siegmann et al., 2002). Each plot is re-
ported to contain approximately 103 events (or geometries), however
figures 15(a) and (d) appear to contain quite different amounts of data.
It was also used by Bocharova et al. (2011) to report on the molecu-
lar structure of CO

2
(2, 2, 2) (see figure 16). They report a molecular

geometry of 〈rCO〉 ≈ 1.3 Å, 〈θOCO〉 ≈ 168° which is close the equilib-
rium geometry of 〈rCO〉 ≈ 1.16 Å (Greenwood and Earnshaw, 1997)
and 〈θOCO〉 ≈ 172° (Mathur et al., 1992; Siegmann et al., 2002).

They both produce nice and intuitive plots, showing what appears
to be an approximation to a molecular wavefunction with two broad
position distributions as one atom is fixed. Both works, however, do
not report the set of geometries used to form the initial simplex.

4.1.2 Testing the Nelder-Mead method

Before using the Nelder-Mead to reconstruct geometries besides CO
2
,

such as OCS, we decided to investigate the accuracy and reliability
of the Nelder-Mead method for geometry reconstruction, by testing
to see whether it could reconstruct simulated geometries. By this we
mean that we would chose a molecular geometry then use it to simu-
late a Coulomb explosion (see section 3.3) and compute the resulting
asymptotic momentum vectors. These momentum vectors are then
fed into the Nelder-Mead method to see whether it could recover the

2 It seems that Dantzig’s simplex algorithm finds more use in fields such as optimiza-
tion, operations research, and economics while the Nelder-Mead simplex method
has been historically popular in scientific and engineering fields due to it’s ability to
run on microcomputers.
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Figure 15: Reconstructed CO
2

geometries after Coulomb explosion by 50 fs
laser pulses using the Nelder-Mead simplex method for the (a) (1, 1, 1), (b)
(1, 2, 1), (c) (1, 1, 2), (d) (1, 2, 2), (e) (2, 1, 2), and (f) (2, 2, 2) fragmentation
channels. The carbon atom is placed at the origin with the higher charged
oxygen atom in the +x-quadrant. A 2D histogram is used to plot the spatial
distribution of the two terminal oxygen atoms with darker colors indicating
a higher count rate. The histogram is normalized such that the maximum
count rate is 1. The three circles represent the equilibrium or ground state
geometry of CO

2
. Figure from Brichta et al. (2007).

Figure 16: Reconstructed CO
2

geometries in the (2, 2, 2) charge state after
explosion by a 7 fs laser pulse using the Nelder-Mead simplex method. The
oxygen in the x > 0 plane is restricted to the x-axis with a probability
density curve showing its distribution in space, presumably calculated using
a kernel density estimate, although unreported. The circles pinpoint the
location of the carbon atom and the oxygen atom in the x < 0 plane relative
to the fixed oxygen atom and the triangles presumably pinpoint the centroid
(or average) position of each atom. Figure from Bocharova et al. (2011).
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CO
2

simplex OCS simplex
r12 (Å) r23 (Å) θOCO (°) rCO (Å) rCS (Å) θOCS (°)

0.9 1.2 165 1.8 2.4 165

1.4 1.0 165 0.8 1.5 165

0.9 1.9 165 1.8 3.8 165

0.9 1.2 180 1.8 2.4 180

Table 1: Initial CO
2

and OCS simplices used for testing the Nelder-Mead
method.

original molecular geometry, as done by Brichta, Seaman, and Sander-
son (2009).

Methodology: attempting to reconstruct simulated geometries

Simulated geometries are used for this analysis because we can check
exactly how far off the reconstructed geometry is from the known cor-
rect solution. The simulated geometry only experiences the Coulomb
force and so at least one solution is guaranteed to exist by our de-
terministic classical simulation. Simulated geometries are thus the
easiest geometries to reconstruct and serious doubts regarding an
algorithm’s utility must be raised if it cannot reconstruct them. When
dealing with experimentally measured data, we do not know the ge-
ometries a priori and so we need a trustworthy reconstruction algo-
rithm in order to trust any of the results it produces.

We attempted to reconstruct molecular structures for CO
2

and OCS,
both in the (2, 2, 2) fragmentation channel. Starting from their equi-
librium geometries we varied one parameter at a time to test whether
the Nelder-Mead method could recover the geometry. The initial sim-
plex we used for reconstructing CO

2
and OCS consist of four points

(or initial guess geometries) and are tabulated in table 1.

Results

Figure 17 shows the reconstruction results for CO
2
(2, 2, 2). We take

the ground state geometry of CO
2

to be rCO = 1.16 Å (Greenwood
and Earnshaw, 1997) and θOCO = 180° although θOCO = 172° would
be more accurate (Mathur et al., 1992; Siegmann et al., 2002).

In the first row of figure 17, the first C O bond length (r12) was
varied to create an “input geometry” which underwent a simulated
Coulomb explosion. The resulting momentum vectors from the ex-
plosion were fed into the Nelder-Mead method which converged to a
geometry we call the reconstructed or “output” geometry. The second
C O bond length (r23) and the bond angle θ were varied in the second
and third rows respectively. Solid black lines indicate the expected
output geometry, so deviations indicate a failure on the method’s
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Figure 17: Testing the Nelder-Mead method’s ability to reconstruct CO
2

ge-
ometries in the (2,2,2) fragmentation channel by starting with the ground-
state geometry of CO

2
and varying each parameter one-by-one. Solid black

lines indicate the expected output geometry.

ability to reconstruct the geometry. We see that the algorithm can
accurately reconstruct the geometry when a single bond length is var-
ied but completely fails once the bond angle is below approximately
176°, at which point the reconstruction code was instructed to sim-
ply return a row of zeros, thus the large number of data points with
output bond lengths and angles of zero in the third row.

Figure 18 shows the reconstruction results for OCS (2, 2, 2). For
OCS, we took the ground state geometry to be rCO = 1.1578 Å, rCS =

1.5601 Å (Lide, 2007), and θOCS = 180° although θOCS = 175° (Wales
et al., 2012b) would be more accurate (Wales et al., 2012b).

In the first row of figure 18, the C O bond length (rCO ≡ r12) was
varied to create an “input geometry” which underwent a simulated
Coulomb explosion. The resulting momentum vectors from the explo-
sion were fed into the Nelder-Mead algorithm which converged to a
geometry, the “output geometry”. The C S bond length (rCS ≡ r23)
and the bond angle θ were varied in the second and third rows re-
spectively. A triatomic molecule with a bond angle greater than 180°,
180°+ x° for example, is the same as a molecule with a bond angle of
180°− x°, and so it should not be necessary to attempt the reconstruc-
tion of geometries with bond angles greater than 180° but we attempt
it nonetheless with the aim of testing the method’s robustness. Solid
black lines indicate the expected output geometry, so deviations indi-
cate a failure on the algorithm’s ability to reconstruct the geometry.
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Figure 18: Testing the Nelder-Mead method’s ability to reconstruct OCS
(2,2,2) geometries by starting with the ground-state geometry of OCS and
varying each parameter one-by-one. Solid black lines indicate the expected
output geometry.

We see that the algorithm can accurately reconstruct the geometry
when a single bond length is varied but performs worse and worse
as the molecule bends, even slightly. There are some slight differ-
ences between molecules with bond angles of 180°+ x° and 180°− x°,
but the absolute errors on the reconstructed bond lengths and angles
seems to be similar for both cases.

Discussion

So we see that the Nelder-Mead method successfully retrieves the
bond lengths for the majority of cases but not the bond angles. In the
case of CO

2
it seems to completely fail at retrieving the geometry once

the bond angle falls below approximately 176°. For OCS, the absolute
error on the reconstructed bond angle seems to increase quadratically
as the molecule bends, even slightly.

A more thorough analysis should vary multiple parameters at once
to more fully explore the state space of the problem, however if the
method cannot even reconstruct geometries that slightly different
from the equilibrium state by a single parameter as we have done,
then the results of a more thorough analysis will probably be even
more worrying.

It should be noted that the Nelder-Mead method is quite sensitive
to the geometries chosen to represent the initial simplex. Changing
them could significantly impact the algorithm’s ability to converge on

40



4.1 previous attempt using the nelder-mead method

the correct geometry. Of course, this does suggest that there may exist
a set of initial geometries that significantly improve the algorithm’s re-
liability, however, I could not find such a set even after several dozen
attempts. Some choices improved the recovery of bond angles at the
cost of failing to recover the correct bond lengths. The initial simplex
used to produce figures 17 and 18 was chosen to maximize the num-
ber of successful reconstructions for very straight molecules which
constitute the majority of cases, however molecules with bond angles
θ < 175° are still very common and so even with this choice, we are
very unsure about the accuracy of the majority of reconstructions.

The Nelder-Mead algorithm is an ad-hoc or heuristic algorithm for
nonlinear optimization that can be used without computing deriva-
tives of the objective function3. It was first generalized to minimizing
functions by Nelder and Mead (1965) based off ideas by Spendley,
Hext, and Himsworth (1962). Nelder and Mead were researchers at
the National Vegetable Research Station in Warwick, England, lead-
ing an unidentified laboratory to doubt if these “turnip bashers could
be numerate” in response to their optimization algorithm (Wright,
2010). It has enjoyed widespread popularity due to its ease of imple-
mentation and intuitive inner workings but it is not appropriate to ev-
ery problem. In fact, it is not guaranteed to converge except for strictly
convex problems in 1 and 2-dimensions (Lagarias et al., 1998) and
thus fails when applied to some problems. It can even converge to
non-stationary points in some cases (McKinnon, 1998). Studies would
sometimes introduce modifications to the Nelder-Mead method that
would improve its performance on a specific problem Wright (2010).
Unfortunately, I believe geometry reconstruction is not an appropri-
ate problem for the Nelder-Mead method.

Conclusion

Perhaps Brichta et al. (2007) and Bocharova et al. (2011) happened to
find an optimal set of geometries to form their initial simplex used
to produce figures 15 and 16, however no mention of it is made any-
where, and thus we are unable to replicate their results or use the
Nelder-Mead method for further reconstructions. The necessity and
difficulty of fine tuning required should cast some doubt over their
geometry reconstructions and any consequent conclusions in their re-
spective works. We already have enough information to distrust the
Nelder-Mead method and begin searching for a new approach.

3 Wright (2010) provides a great discussion of the Nelder-Mead method, ending with
a comment by John Nelder regarding his algorithm, “Mathematicians hate it be-
cause you can’t prove convergence; engineers seem to love it because it often works.”
Press et al. (2007, section 10.4) describes the algorithm in detail and provides a well-
commented C++ implementation.
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4.2 an aside on lookup tables

The idea of using a lookup table to speed up calculations is as old as
mathematics itself with examples dating back to some of the earliest
mathematical texts produced by ancient Egyptian scribes during the
Twelfth Dynasty of Egypt (circa 1990–1800 BC) (Neugebauer, Sachs,
and Götze, 1945, p. 1, footnote 4). The Egyptian Mathematical Leather
Roll, a particularly well-preserved example of Egyptian mathematics
dating back to circa 1650 BC, contains perhaps the first such complete
lookup table and tabulates 26 sums of unit fractions equaling another
unit fraction. Glanville (1927) reports on the leather roll, housed at the
British Museum, and gives a photograph (figure 19) and schematic
(figure 20) of the table.

The Egyptian Mathematical Leather Roll, as well as the more fa-
mous and extensive Rhine Mathematical Papyrus, were brought to
the British Museum in 1864, however it took decades before archaeol-
ogists knew how to treat the leather to prevent its disintegration upon
unrolling it. Scott and Hall (1927) provides details of this process and
claim that, “the dissemination of the knowledge of the chemical treat-
ment of the leather, is of greater value than the publication of the
contents inscribed on it” upon discovery of what he considered to be
a rather mundane table.

An even more impressive lookup table is found in the extensive
Rhind Mathematical Papyrus, which (seemingly) methodologically
expresses the fractions 2/n for odd n ∈ {3, 5, . . . , 101} as the sum
of 2–4 unit fractions! We would have chosen to present photographs
of the papyrus had the figures of (Glanville, 1927) not been of such
high clarity. Gillings (1982) reports extensively on this 2/n table and
the several dozen problems posed and solved on the papyrus, making
extensive use of the table. The same table, verbatim, has found to be
in use by scribes more than a millennium after its creation suggesting
that it was of great utility. To this day, scholars argue about exactly
how the scribes knew to construct the table and what methods they
used (Abdulaziz, 2008; Gillings, 1974).

Maybe it is not so surprising that our first approach is to use a
lookup table, after all many others have done the same.4

4 Neugebauer, Sachs, and Götze (1945) reports on mathematical cuneiform texts used
by the ancient Babylonians during similar time periods as well. Other lookup tables
of historical importance include a 98-column Roman multiplication table from 493

A.D. (Maher and Makowski, 2001) and an ancient Indian sine table circa 499 C.E.
(Hayashi, 1997).
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Figure 19: Photograph of columns 3 (right) and 4 (left) of the Egyptian Math-
ematical Leather Roll. Columns 3 and 4 are duplicates of columns 1 and 2.

For example, row 9 of column 3 translates to
1
50

1
30

1
150

1
400

1
16

in mod-
ern fraction notation where addition is implied. Figure 20 is a schematic of
the table photographed here. Figure from Glanville (1927) which is accom-
panied by a translation of the hieroglyphics.
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Figure 20: Schematic of columns 1 and 2 of the Egyptian Mathematical
Leather Roll. Columns 3 and 4 are duplicates of columns 1 and 2. For exam-

ple, row 1 of column 1 translates to
1

10
1
40

1
8

in modern fraction notation
where addition is implied. Figure 19 is a photograph of the table outlined
here. From Glanville (1927) which is accompanied by a translation of the
hieroglyphics.
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4.3 implementation

The idea behind using a lookup table is quite simple: many Coulomb
explosions are simulated (see section 3.3) using a wide variety of
molecular structures as the initial condition, and the resulting mo-
mentum vectors from each simulation are stored. This creates a map-
ping from molecular structures to momentum vectors. Thus by stor-
ing the results from many simulations, we end up with a lookup table.
To determine the structure belonging to a certain set of observed mo-
mentum vectors, you simply read the table in reverse and search for
the momentum vectors that most closely match the observed set.

In our case, we quantify this through the use of the `2-norm squared
between the sets of vectors

∥∥p− p′
∥∥2

2 =
3N∑
i=1

(pi − p′i)
2 (4.1)

for an N-atom molecule and where i sums over each momentum
component for each atom, e. g.Ox, Oy, . . . , Sy, Sz for the OCS molecule.
We may sometimes refer to as the objective function and its value as
the absolute error.

Each molecular geometry and its corresponding post-explosion mo-
mentum vectors can be stored in a single row consisting of 9 entries,
3 to describe the molecular geometry of a triatomic molecule and 6 to
describe the momentum vectors. While only 3 scalars are enough to
describe the momentum vectors produced by a simulated Coulomb
explosion (the last momentum vector can be calculated from the oth-
ers using conservation of momentum, see section 3.4), we store all
6. This is to allow for comparison with real momentum data where
ignoring some component measurements may skew the reconstruc-
tion, especially if these specific components happened to carry a
large uncertainty. We have not tested this approach when only a sub-
set of our measurements are used, however it may provide a pow-
erful dimensionality-reduction measure when reconstructing larger
molecules.

A technical detail that is important to mention is the reason for stor-
ing and using bond lengths in units of picometers and bond angles in
degrees. The bond lengths and angles differ numerically by approx-
imately 12 orders of magnitude in SI units and so this was done to
keep the parameters all on the same order of magnitude, mainly to
avoid potential numerical instabilities and to make data analysis and
plotting more convenient. This becomes especially important for the
optimization approach we take in chapter 5 where derivatives and
Jacobian matrices need to be calculated. Equivalently, we could have
chosen angstroms (Å) and radians.

A cursory argument in favor of the lookup table would suggest that
this approach is simple to implement, fast, and precise as the time-
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consuming task of simulating many geometries is done only once
then stored. Searching through the lookup table to find a match takes
linear time O(n) where n is the number of table entries,5 and the pre-
cision is set when simulating the many geometries (0.05 Å and 0.25 Å
in our case). Big-O notation is used to refer to the asymptotic behav-
ior of an algorithm’s run time or storage space requirements. Even
issue we can foresee is that this approach assumes the true geome-
try is in the vicinity of the geometry found using the lookup table.
This is equivalent to assuming that every local minimum is a global
minimum (or that this is a convex optimization problem).

Momentum lookup tables can be generated using the simulateMomenta.m
function and the lookup table is implemented in the lookupGeometry.m
file (see appendix B for code listings).

4.3.1 Computational space complexity

One of the disadvantages of using a lookup table for this particular
problem is the amount of storage space it occupies. As a concrete
example, our lookup table for OCS contained geometries spanning
a cube in phase space (0.50 Å ≤ rCO, rCS ≤ 5.00 Å, 140° ≤ θOCS ≤
180 Å) that we believe should contain all physically realizable geome-
tries. Individual geometries spanned the discrete ranges rCO, rCS ∈
[0.50, 0.55, . . . , 4.95, 5.00]Å and θOCS ∈ [140.00°, 140.25°, . . . , 179.75°,
180.00°] giving a precision of 0.05 Å for the bond lengths and 0.25°
for the bond angle. This gives us a lookup table with 91× 91× 161 =

1, 333, 241 entries. Since each entry contains 9 64-bit floating-point
numbers, it requires 9 × 8 B = 72 B to store each entry.6 To store
the entire table, that is 1, 333, 241× 72 B = 95.993 MB. Such a table, if
stored in human-readable ASCII such as in a comma-separated value
file would take up more space (262 MB) but can be compressed effi-
ciently (24 MB using 7-zip).

For a molecule with N atoms, each entry would require 3N − 6 en-
tries to describe the geometry and 3N− 3 to describe the momentum
vectors for a total of 6N − 9 entries per geometry. If di denotes the
number of values simulated for parameter i (e. g.d1 = 91, d2 = 91,

5 It takes linear time because we must search through every single entry before con-
cluding that we have found the best match. If we could sort our entries in some way
then we could perform a binary search instead taking logarithmic time O(log n)
however that would require distilling each entry to an appropriate scalar, which
would differ for each geometry and take linear time to perform anyway.

6 There are 8 bits in a byte (B) so a single 64-bit float would take 8 bytes to store.
MATLAB uses 64-bit double precision floating point numbers by default but other
programming languages may use single precision 32-bit floating point numbers by
default, even when running on a 64-bit processor.
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and d3 = 161 for our lookup table described above) then the total
number of entries will be

3N−6

∏
i=1

di = d1 × d2 × · · · × d3N−6, (4.2)

or simply d3N−6 if di = d for all i so that we use the same number of
simulated values for each parameter. We require 8 B for each of the
6N − 9 enetries requires to describe each geometry, which we store
for d3N−6 geometries. Thus the total storage space used up by such a
lookup table, in bytes, is

8(6N − 9)d3N−6 ∼ O(NdN) (4.3)

which increases exponentially with an increase in the number of
atoms N and follows a power law in the number of simulated values d
per parameter. The number of simulated values d required to achieve
a certain precision ε � 1 is d = (pmax − pmin)/ε where [pmin, pmax]

is the range of possible parameter values we wish to simulate. So
the size of the lookup explodes very quickly with increased precision
requirements (ε → 0) as well, as the desired precision ε is inversely
proportional to the step size d.

Let us now calculate the size of a higher resolution lookup table
and a lookup table for a 4-atom molecule. For example, a lookup ta-
ble that is five times more precise than ours (εr = 0.01 Å and dr = 451
for bond lengths, εθ = 0.05° and dθ = 801 for bond angles) takes
up 8 B× 9× 4512 × 801 = 11.7 GB of storage space, or 122 ≈ 53 times
more space. Storing such a table in memory, and thus searching speed
which used to only take linear time, starts to become a major concern.
Going up to a larger 4-atom molecule such as acetylene and using
the same coarse precision as our lookup table did (εr = 0.05 Å and
dr = 91 for bond lengths, εθ = 0.25° and dθ = 161 for bond angles), a
lookup table would take up 8 B× 15× 913 × 1613 = 377 TB or almost
4 million times larger, now requiring a distributed database manage-
ment system; completely overkill to solve a relatively simple problem.
It seems that this lookup table approach will not scale at all to larger
molecules without massive sacrifices in precision. Plus, using giga-
bytes to store a lookup table suggests we must seriously look for a
method that does not require large amounts of data to reconstruct
geometries.

4.3.2 Zooming in for more precise reconstructions

Another immediate disadvantage of such an approach is that you are
limited to recovering only the geometries that are included in the
table. One way to increase the precision of the lookup table approach
without using up additional storage space is to use the table as a
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coarse first-order approximation. Once a geometry is found using the
lookup table, you can dynamically simulate many similar geometries
(neighbouring geometries in phase space) on-the-fly which can then
be searched for a more precise match. This can be applied iteratively,
reducing the volume of phase space searched at each iteration, until
a desired precision is reached.

In our case, we chose to increase the precision by a factor of 5
each iteration so that we search through a cube in phase space with
a volume that is 53 times smaller each iteration (in an attempt to pre-
cisely locate the local minimum). Each iteration we simulate geome-
tries with 10 values for each parameter, so 103 geometries in total. We
stop after 5 iterations or after a desired error threshold is reached.
Typically an error of 10−48 gives 1-2 significant figures of precision
while an error of 10−50 gives 2-3 significant figures. This step can
be computationally expensive, requiring the additional simulation of
thousands of geometries per geometry recovered, however a single
simulation takes on the order of 10 ms to complete on a personal lap-
top so it will complete in a reasonable timeframe and this lets us
arbitrarily increase the precision of our reconstruction without using
up an exorbitant amount of storage space. It does feel quite wasteful
though as it seems that the entire field of mathematical optimization
attempts to solve this very problem of finding minima.

One possible improvement is to store these thousands of extra sim-
ulations as extra lookup table rows, effectively extending the lookup
table. This storing or caching of the results of expensive function
calls is termed memoization. It may help if the geometries being re-
constructed tend to lie close to each other, however in practice the
sparsity of reconstructed geometries relative to the resolution of these
extra rows results in almost no improvements in performance.

4.3.3 Using simulations to test accuracy

Since we used simulations to test the accuracy of the Nelder-Mead
simplex method in section 4.1.2, it is only fair that we subject the
lookup table to the same analysis. Figure 21 shows the results of this
test.

We see that the lookup table is able to reconstruct the vast majority
of the geometries quite well, except for a single outlier, suggesting
that this approach is already much more reliable as no fine tuning
is required at all. It is important to note that we did not simulate
geometries that are already contained in the lookup table otherwise
the reconstruction is trivial as the table already contains the answer,
which is extremely unlikely if we are dealing with experimental data.
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Figure 21: Testing the lookup table’s ability to reconstruct OCS (2,2,2) ge-
ometries by starting with the ground-state geometry of OCS and varying
each parameter one-by-one. Solid black lines indicate the expected output
geometry.

4.4 reconstruction of experimental data

We will now attempt to use the lookup table to reconstruct the OCS
(2, 2, 2) geometry as an example. Figure 22 shows one such geometry
for the Coulomb explosion by a 7 fs laser pulse and may form the first
frame of a molecular movie.

Here we have plotted the geometries by placing the center of mass
at the origin, giving us three probability distributions, one for each
atomic fragment which allows us to see the variance in each atomic
fragment’s position. We could have placed the carbon at the center
resulting in just two distributions, one for each of the terminal atoms
much like Brichta et al. (2007) did in figure 15 however we felt that
this approach provides less information. Bocharova et al., 2011, in fig-
ure 16, plot the geometries with a terminal oxygen at a fixed position
along the x-axis and include a one-dimensional marginal distribution
of the oxygen’s position along the x-axis, which is an improvement
but we feel that it still provides less information. We use the same
visualization method as Légaré et al. (2005b) (see figure 6) who re-
vert to a plot like the one by Bocharova et al. (2011) in their later
work (Légaré et al., 2005a). The modal geometry is calculated to be
rCO = 1.74 Å, rCS = 1.59 Å, θOCS = 172.7° while the average geometry
of rCO = 1.93 Å, rCS = 1.61 Å, θOCS = 171.6° is slightly larger due to
outliers.
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Figure 22: Scatter plot showing the molecular geometry of OCS following
Coulomb explosion by a 7 fs laser pulse for the (2, 2, 2) fragmentation chan-
nel. Each geometry is represented by three colored points, one for each
atomic fragment; red for oxygen on the left, black for carbon in the center,
and yellow for sulfur on the right. The colors were chosen to imitate the CPK
coloring convention. Geometries are plotted such that the molecule’s center
of mass is at the origin to showcase the variance in each atomic fragment’s
position, and are rotated such that a vertical line bisects the O C S bond
angle. Bivariate kernel density estimates (with a Gaussian kernel), plotted
as shaded-in contours, are used to estimate the the probability density of
each atomic fragment’s position. Solid black lines are drawn between the
peaks of each atomic fragment’s kernel density estimate to illustrate the
modal geometry or most likely geometry. Along the top of the plot, marginal
distributions show the probability density of each atomic fragment’s posi-
tion along the x-axis and the same is done for the y-axis along the right. The
molecule is almost straight but an aspect ratio of approximately 12 : 1 is
employed to showcase variability in the y-axis.
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4.4 reconstruction of experimental data

Pulse width (fs) Geometries Reconstructions Success

7 795 584 73%
30 1000 518 52%
60 358 154 43%
100 531 226 43%
200 500 190 38%

Table 2: Statistics for geometry reconstruction by lookup table.

An argument could be made for each visualization method, how-
ever we will come back the issue of geometry plotting later in chapter
5, where we will look at correlations between bond lengths.

The calculated modal and average geometries may appear quite
worrying as they suggest a stretching of the C O bond while the
C S bond and the bond angle remains close to equilibrium. This is
mainly due to ion motion from the molecule’s interaction with the
laser pulse during the ionization process.

A critical issue worth investigating is quantifying how much uncer-
tainty there is in these reconstructed molecular geometries. This is a
complicated problem we will tackle in chapter 6.

We can repeat this analysis for the other laser pulse widths (30 fs,
60 fs, 100 fs, and 200 fs). In table 2 we tabulate the number of geome-
tries we were able to successfully reconstruct, which decreases as the
pulse length increases indicating a greater difficulty in reconstructing
geometries that are further from equilibrium. Or it could indicate a
greater difficulty in reconstructing geometries when the atomic frag-
ments had some significant initial momentum. The longer the laser
pulse, the more time the molecule has to distort its structure in re-
sponse to the laser’s intense electric field, reducing the validity of the
assumption that the molecule begins the Coulomb explosion process
in its equilibrium geometry.

To conserve space, the geometry reconstructions for Coulomb ex-
plosion by 30 fs, 60 fs, 100 fs, and 200 fs laser pulses are provided in
appendix A (figures 39–42).

Of particular interest might be the average and modal (most likely)
geometries recovered, which we tabulate in table 3.
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4.5 degenerate molecular geometries

Pulse Modal geometry Average geometry
length (fs) rCO rCS θOCS rCO rCS θOCS

(Equilibrium) 1.16 1.56 172 1.16 1.56 172

7 1.74 1.59 173 1.93 1.61 172

30 2.34 1.74 172 2.50 2.04 170

60 2.43 1.96 171 2.56 2.16 170

100 2.52 2.16 171 2.72 2.46 169

200 3.17 2.22 171 3.10 2.72 163

Table 3: Average and modal geometries reconstructed using a lookup table.
Bond lengths are given in angstroms (1 Å = 10−10 m) and bond angles in
degrees.

4.5 degenerate molecular geometries

In chapter 1 we hinted at the fact that due to the ill-posed nature
of the geometry reconstruction inverse problem, multiple solutions
may be possible. While investigating the reconstructed geometries,
this feature surprisingly did appear for the OCS molecule and the
lookup table can help provide some insight into these multiple solu-
tions, which we will call degenerate geometries.

Figure 23 shows an example of two degenerate geometries that
both produce the same set of momentum vectors after a Coulomb
explosion, pO = (0.398,−1.75, 0)× 10−20 kg m/s, pC = (0.853, 0, 0)×
10−20 kg m/s, and pS = (−1.25, 1.75, 0)× 10−20 kg m/s (described in
our convention).

More specifically, it is a 3D scatter plot in phase space of the 200
best geometries matching this particular set of measured momentum
vectors. Each point is colored according to the base-10 logarithm of
the absolute error (2-norm) squared between the measured momen-
tum vectors and the momentum vectors resulting from Coulomb ex-
ploding the geometry corresponding to that data point. So the dark-
est purple corresponds to an error of just under 10−47.8. The 200 best
geometries are clustered into two separate regions, indicating that
the particular set of measured momentum vectors mentioned above
could have resulted from the Coulomb explosion of two very differ-
ent molecular geometries, one where the C O bond is more stretched,
and another where the C S bond is more stretched and the molecule
is less bent. Interestingly, the points do not seem to form balls or
blobs in phase space, but rather possess elongated and angled rod-
like distributions. The region with the stretched C O bond seems to
have more points but this does not suggest that this geometry is more
likely. Rather, it may suggest that it is easier to converge to, or that it
may have a larger basin of attraction. We see that there are many yel-
low data points (relatively high error) surrounding one or two purple
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4.5 degenerate molecular geometries

Figure 23: 3D scatter plot in phase space of the 200 best geometries matching
a particular set of measured momentum vectors, showing the existence of
two degenerate geometries. Each point is colored according to the base-10
logarithm of the absolute error (2-norm) squared between the measured
momentum vectors and the momentum vectors resulting from Coulomb
exploding the geometry corresponding to that data point.

points (relatively low error) for each region indeed showing the low-
resolution nature of our lookup table. This same information may
be plotted using 2D color mapped volumetric slices or contour slices
which may even be animated to provide a visual scan through the full
phase space volume. However due to the angled distribution formed
by the spatial sets and the significance of only one or two data points,
it becomes very difficult to visually locate the local minima even with
angled slices. Another visualization method may be to use convex
hulls or alpha shapes which will also allow us to assign each region
a shape and volume (see section 6.1.2).

In figure 24 we take these two degenerate geometries, Coulomb
explode them, and plot their trajectories to show that even though
they show slightly different dynamics, both simulations result in the
exact same momentum vectors (and kinetic energy) being measured.

The plots on the left correspond to an OCS molecule with rCO =

1.8949 Å, rCS = 1.2990 Å, and θOCO = 160.601° while the plots on
the right correspond to an OCS molecule with rCO = 2.486 Å, rCS =

1.0755 Å, and θOCO = 164.568°. Triatomic molecules explode in a
plane so their momentum vectors can be plotted in the px py-plane
although the atomic fragments will possess some momentum in the
z-direction due to the presence of the constant electric field, it will
not deviate from equation (3.2) and is irrelevant for these simulated
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Figure 24: Atomic trajectories in position and momentum-space, and kinetic
energy, for the oxygen, carbon, and sulfur atoms of two degenerate OCS
molecular geometries in the (2, 2, 2) charge state undergoing a Coulomb
explosion staring from rest.

Coulomb explosions. The molecular geometries are quite different
yet when they undergo a Coulomb explosion, they produce the exact
same set of momentum vectors once rotated into our convention (see
section 3.4). By that we mean that we can make the absolute error
(or 2-norm) between the two sets of momentum vectors arbitrarily
small with increased precision in describing the geometries. We see
that the molecular dynamics are a little different yet in both cases, all
three atoms emerge with the exact same kinetic energy. These two
geometries were found by searching through the entire lookup ta-
ble for the geometries best matching a particular set of measured
momentum vectors (see figure 23). The lookup table actually does
not give us enough precision to recover these geometries to several
decimal places so we used the lookup table to find a measurement
corresponding to two degenerate geometries, and then used the op-
timization method from chapter 5 to actually recover the geometries
with much higher precision.

The high precision to which we were able to recover the two de-
generate geometries suggests that presence of degenerate geometries
corresponds to the existence of multiple global minima. This suggests
the use of a method that can locate multiple minima, which we will
employ in the next chapter.
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4.6 conclusions

Geometries may be reconstructed using a lookup table—We find this ap-
proach more reliable and robust that the Nelder-Mead simplex method
approach employed by Brichta, Seaman, and Sanderson (2009), and
it has provided us with some additional insight into the problem of
reconstructing geometries especially regarding the existence of de-
generate geometries. This makes the lookup table potentially useful
for future investigations and reconstructions of triatomic molecules.
However, it seems that it will not scale to molecules containing more
than 3 atoms, motivating the need for another method.

4.6.1 Lessons learnt

Inability to precisely reconstruct geometries—Using just the lookup table
itself, you are limited to recovering molecular geometries contained
in the lookup table and nothing in between, severely limiting the res-
olution of reconstructed geometries.

Inability to differentiate between global and local minima—The lookup ta-
ble cannot choose between two degenerate geometries and due to its
low resolution it cannot distinguish between global and local minima.
It may be easily modified to report on multiple solutions but doing
so may be computationally expensive. A more sophisticated approach
should be sought first.

Inability to scale to larger molecules—As discussed in section 4.3.1, try-
ing to use the lookup table to reconstruct molecules containing even
as little as 4 atoms requires prohibitive amounts of storage space
(>100 TB) to store the lookup table. This may be circumvented by fix-
ing some molecular parameters, such as maybe the C C triple bond
length in acetylene, if they vary very little and are not of interest.
However, this fix only reduces the dimensionality by one so it is un-
likely to be an overall solution.

4.6.2 Future applications for the lookup table

Finding an initial or first-order solution or initial guess—As the lookup
table may quickly find coarse-grained geometries, the recovered ge-
ometry may be used as an initial guess or first-order solution for
another algorithm.

Visualizing the reconstruction problem for a specific set of momentum vec-
tors—Such a plot would assign a scalar error value to every point
in phase space, allowing us to quickly visualize the objective func-
tion (as done in figure 23 but for all the geometries, not just the
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best 200). This would visualize the location of degenerate geome-
tries and provide some insight into the nature of the geometry re-
construction problem. For example, if it is smooth and convex with
a single global minimum, it would suggest that geometry reconstruc-
tion in that particular case is computationally easy. However, a jagged
and discontinuous function with multiple minima and saddle points
would suggest that geometry reconstruction is much more difficult.
For triatomic molecules the 3-dimensional space may be visualized
using colormapped volumetric slices or contour slices. Unfortunately
this becomes unfeasible for larger molecules due both the size of the
lookup table and the difficulty of visualizing an n-dimensional scalar
function (n > 3). Instead of generating a lookup table for larger
molecules, Coulomb explosions can be simulated for every geome-
try of interest, if the resolution is reduced. Fixing certain parameters
would reduce the dimensionality of the objective function, allowing
2-dimensional slices of it to be easily visualized. Or one could look
towards methods of visualizing high-dimensional scalar functions.

Finding degenerate regions of phase space quickly—At least for triatomic
molecules, where generating and storing a lookup table is feasible,
it may be quickly searched to determine whether a set of measured
momentum vectors correspond to just one geometry, or multiple de-
generate geometries.
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In the previous chapter, we saw that a lookup table approach could
be used to perform geometry reconstruction using Coulomb explo-
sion imaging. However, numerous drawbacks including the lookup
table’s exponential computational space complexity (severely limit-
ing its scalability to larger molecules) and its inability to both pro-
vide precise reconstructions as well as distinguish between local and
global minima leave much to be desired.

In this chapter, we will approach the task of geometry reconstruc-
tion as an optimization problem, allowing us to utilize the much more
sophisticated methods of constrained nonlinear optimization. Before
we describe our reconstruction methods, it will be worthwhile to pro-
vide some background on the theoretical framework underpinning
the optimization algorithms we utilize. We will then describe our im-
plementation and use it to reconstruct the same molecular structures
seen in the previous chapter, allowing for some comparison between
methods and for some verification of the results. We will then fur-
ther study the individual geometries recovered and the nature of the
degenerate geometries seen in section 4.5.

5.1 mathematical optimization

We will take a massively expedited tour of mathematical optimiza-
tion with the aim of explaining the inner workings of the primal-dual
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5.1 mathematical optimization

interior point methods used for nonlinear constrained optimization
in this chapter. To understand how these methods operate, we will
need to introduce some important concepts in optimization, namely
the duality principle, the Karush-Kuhn-Tucker (KKT) optimality con-
ditions, and the general concept of a trust region. This is prefaced
with a brief introduction to the subject.

No knowledge of mathematical optimization is required, however
we will assume some background knowledge throughout this section,
namely a familiarity with linear algebra, matrix algebra, vector cal-
culus, and some elementary concepts in analysis. Boyd and Vanden-
berghe (2004) provides an excellent introduction to mathematical opti-
mization, particularly convex optimization, and their freely-available
textbook is accompanied by video lectures and lecture slides. We will
follow their textbook for sections 5.1.1 to 5.1.3. Our problem is non-
convex, however, and so we also turn to Nocedal and Wright (2006)
for sections 5.1.4 to 5.1.5, who discuss the more advanced interior-
point methods suitable for nonlinear constrained optimization with
clarity.

5.1.1 Elementary concepts

The standard form of a (continuous) optimization problem is

minimize f0(x)

subject to fi(x) ≤ 0, i ∈ {1, . . . , m} (5.1)

hi(x) = 0, i ∈ {1, . . . , p}

where f0(x) : Rn → R is the objective function to be minimized over
the variable x ∈ Rn, fi(x) ≤ 0 are called the inequality constraints, and
hi(x) = 0 are called the equality constraints. The notation f : A → B
denotes that f is a function (or mapping) with domain A, that is A
is its set of acceptable inputs, and codomain B, that is B is its set of
acceptable outputs. We say that f maps values from A to B. R denotes
the set of real numbers, and Rn denotes the n-dimensional real, or
Euclidean, vector space, that is the set of n-dimensional vectors with
real components. The notation x ∈ S denotes that x is an element of
the set S.

We denote the domain of the optimization problem (5.1)by

D =
m⋂

i=1

dom fi ∩
p⋂

i=1

dom hi 6= ∅ (5.2)

and assume it is nonempty. The ∩ operator denotes the intersection
operation and the ∅ denotes the empty set, both from set theory (Hal-
mos, 2017). The operator dom f denotes the domain of the function f .
In effect, an optimization problem is only defined for regions where
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5.1 mathematical optimization

the objective function and all constraints are defined. An optimiza-
tion problem is solved once an optimal solution, usually denoted
x?, is found that minimizes the objective function f0(x) such that
f0(x?) ≤ f0(x) for all x ∈ D.

Taking our geometry reconstruction problem as an example, we
can describe our objective function as

f0(x) = |p(x)− pmeasured|2 (5.3)

where p(x) is the momentum vectors produced following Coulomb
explosion of a molecular with structure x, and the inequality con-
straints fi(x) ≤ 0 encapsulate the box constraints that limit the ge-
ometries recovered to physically reasonable values. For a triatomic
molecule, x = (r12, r23, θ) ∈ R3 may be used and p(x) ∈ R9 although
it may be reduced to contain only 5 or even 3 nonzero components
(see section 3.4). For a general molecule with N atoms, x ∈ R3N−6

and p(x) ∈ R3N−3 at most. We may wish to limit the reconstructed
C O bond length to lie between 100 pm to 500 pm in which case we
would employ the inequality constraints f1(rCO) = 100 − rCO ≤ 0
and f2(rCO) = rCO − 500 pm ≤ 0. Box constraints for the C S bond
length and bond angle can be placed in a similar manner. Other con-
traints may be employed limiting, for example, the bond length ratio
rCO/rCS to lie between certain values pertaining to physically realiz-
able geometries. We employ no equality constraints. Generally, p(x)
and pmeasured should be described in the same rotation convention
otherwise they cannot be compared.

Optimization problems can be classified based on the nature of
the objective function f0 and the constraints fi and hj, with each class
having their own algorithms. Perhaps the simplest commonly encoun-
tered class is the class of linear programs where the objective function
and constraints are linear, that is f0, . . . , fm, h1, . . . , hp all satisfy the
linearity property

fi(αx + βy) = α fi(x) + β fi(y) (5.4)

for all x, y ∈ Rn and α, β ∈ R. Although no analytical solution exists
to solve an arbitrary linear program, efficient algorithms with com-
putational run time O(n2m) exist to find solutions, such as George
Dantzig’s simplex method.

Convex optimization problems are a superset of linear programs and
are characterized by having an objective function and constraint func-
tions that all satisfy the convexity property

fi(αx + βy) ≤ α fi(x) + β fi(y) (5.5)

for all x, y ∈ Rn and all α, β ∈ R with α, β ≥ 0 and α + β = 1. Com-
monly encountered convex function include the exponential function
ex and the quadratic function x2. In general, very mature and effective
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algorithms exist to solve convex optimization problems. If a problem
can be transformed into convex form, then it becomes rather easy to
solve, however this process can be very difficult and many tricks ex-
ist. Linear programs and the linear least squares problems are special
case of convex optimization problems.

Nonlinear optimization describes the class of problems where the ob-
jective or constraint functions are not linear, but not known to be con-
vex. Unfortunately, there are no effective algorithms for solving non-
linear problems in general but there are a number of approaches that
may prove fruitful. These include the interior-point method we use
and sequential quadratic programming. Sun, Qu, and Wright (2015)
provide an expository article on “when nonconvex problems are not
scary”.

Unfortunately, the problem of geometry reconstruction falls under
the category of nonlinear problems. While our objective function (5.3)
seems to mimic a least-squares minimization problem, it is certainly
nonlinear in nature. There are two contributors to the nonlinear na-
ture of our objective function. One is the existence of multiple so-
lutions as evidenced by the existence of degenerate geometries we
encountered in section 4.5. The other is the nonlinear nature of the ob-
jective function. A one-dimensional convex function must have a non-
negative second-derivative, and a multi-dimensional convex function
must be twice-differentiable and have a positive semidefinite Hessian
matrix over its domain (Boyd and Vandenberghe, 2004, p. 71). Noth-
ing guarantees that this is true for our objective function.

Algorithms do exist for the solution of nonlinear least-squares prob-
lems such as NL2SOL (Dennis Jr, Gay, and Welsch, 1981) and the Lev-
enberg–Marquardt algorithm (Pujol, 2007), however, modifying them
to account for constraints usually introduces penalty functions and
trust regions and they begin to appear quite similar to the interior-
point methods described in section 5.1.5. Examples include the open-
source Interior Point OPTimizer (IPOPT) (Branch, Coleman, and Li,
1999).

5.1.2 Duality

In order to describe and understand the interior-point method we
use, it is necessary that we look at the concept of duality. Every op-
timization problem may be viewed from two different perspectives,
that of the original, or primal, problem and the dual problem. Solving
the dual problem provides a lower bound to the primal problem as
we will show. Additional, by attempting to solve both problems at the
same time, as interior-point methods do, an optimal solution may be
found more efficiently.
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We begin by defining the Lagrangian associated with the optimiza-
tion problem (5.1) as

L(x, λ, ν) = f0(x) +
m∑

i=1

λi fi(x) +
p∑

i=1

νihi(x) (5.6)

where L : Rm ×Rp → R and dom L = D ×Rm ×Rp. λi is the La-
grange multiplier associated with the inequality constraint fi(x) ≤ 0
and νi is the Langrange multiplier associated with the equality con-
straint hi(x) = 0. Together, λ ∈ Rm, and ν ∈ Rp, are called the dual
variables or Langrange multiplier vectors. The basic idea is that we’re ac-
counting for the constraint functions by adjusting the objective func-
tion to include a weighted sum of the constraint functions.

The Lagrange dual function is defined as the minimum value of the
Lagrangian L over x

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

[
f0(x) +

m∑
i=1

λi fi(x) +
p∑

i=1

νihi(x)

]
(5.7)

where g : Rm ×Rp → R. The inf operator refers to the infimum op-
erator, which may also be called the greatest lower bound operator. An
important property of the dual function is that it is concave even
when the problem is not convex, as it is the pointwise infimum of a
family of affine functions of (λ, ν).

Theorem 5.1. The Lagrange dual function yields a lower bound on the
optimal value of the problem (5.1) for λ � 0 and any ν.

Proof. Denote the optimal value of the dual function by p? and let
x′ denote a feasible input of the Lagrangian, that is it satisfies the
constraints fi(x′) ≤ 0 and hi(x′) = 0. Then for λ � 0 and any ν we
have that

m∑
i=1

λi fi(x′) +
p∑

i=1

νihi(x′) ≤ 0

so that

L(x′, λ, ν) = f0(x′) +
m∑

i=1

λi fi(x′) +
p∑

i=1

νihi(x′) ≤ f0(x′)

and
g(λ, ν) = inf

x∈D
L(x, λ, ν) ≤ L(x′, λ, ν) ≤ f0(x′)

which must hold for every feasible point x′ including the optimal
solution x? and thus

g(λ, ν) ≤ p? = f0(x?)
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As the lagrange dual function provides a lower bound on the opti-
mal value p? that depends on (λ, ν), we may be interested in finding
the best lower bound. This leads to the Lagrange dual problem associ-
ated with (5.1) which can be stated as

maximize g(λ, ν)

subject to λ � 0 (5.8)

and is always a convex problem as the dual function g(λ, ν) is al-
ways convex as mentioned when we introduced it. We can then talk
about dual feasible pairs (λ, ν) with λ � 0 and g(λ, ν) > −∞, optimal
Lagrange multipliers or the dual optimal pair (λ?, ν?), and the optimal
value of the dual problem, denoted d? . In some contexts involving
both the dual problem (5.8) and the original problem (5.1), the origi-
nal problem is called the primal problem.

If the optimal value of the dual problem d? and of the primal prob-
lem p? are equal, d? = p?, then we say that strong duality holds and
the optimal duality gap is zero, d? − p? = 0. Otherwise d? ≤ p? and we
say that weak duality holds.

5.1.3 Optimality conditions

It will be quite useful to impose conditions on what makes a feasible
solution an optimal solution for both the primal and dual problems.
This will provide a means of checking whether a proposed solution
is optimal, as every optimal solution must satisfy the optimality con-
ditions. Denoting the optimal primal solution by x? and the optimal
value by p? = f0(x?), we already know that it must satisfy the in-
equality and equality constraints,

fi(x?) ≥ 0 and hi(x?) = 0 (5.9)

giving us two optimality conditions so far. Denoting the dual optimal
by (λ?, ν?) we would like for

λ?
i ≥ 0 (5.10)

so that the dual function provides a lower bound on p? by theorem
5.1, giving us a third condition.
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For the fourth condition, we look to the dual function and assume
that strong duality holds, that is that f0(x?) = g(λ?, ν?). Then we can
write

f0(x?) = g(λ?, ν?)

= inf
x

[
f0(x) +

m∑
i=1

λ?
i fi(x) +

p∑
i=1

ν?i hi(x)

]

≤ f0(x?) +
m∑

i=1

λ?
i fi(x?)︸ ︷︷ ︸
≤0

+

p∑
i=1

ν?i hi(x?)︸ ︷︷ ︸
=0

≤ f0(x?) (5.11)

where we invoked the definition of the dual function on the second
line, and the third line follows from the fact that the Lagrangian eval-
uated at the optimal primal point x? provides a lower bound. Then
on the fourth line we realize that the equality constraint functions
hi(x) = 0 cause the third term to vanish, and we assumed that the
Lagrange multipliers obeyed λ?

i ≥ 0 while the inequality constraints
satisfy fi(x) ≤ 0 thus causing the second term to be nonpositive.
However we require that equality hold on the fourth line as f0(x?)
must equal itself. For equality to hold, we thus require that the sec-
ond term vanish just like the third term,

m∑
i=1

λi fi(x?) = 0 (5.12)

however each term is nonpositive so we can recast this condition as

λi fi(x?) = 0, i = 1, 2, . . . , m (5.13)

This provides a fourth optimality condition, known as complementary
slackness.

For the fifth condition, we realize that a function’s first-derivative
must vanish at a minima or maxima. Since x? minimizes the La-
grangian L(x, λ?, ν?) over x, its gradient must be zero at the minima
or maximum x?, giving us

∇ f0(x?) +
m∑

i=1

λ?
i∇ fi(x?) +

p∑
i=1

ν?i ∇hi(x?) = 0 (5.14)
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Together, we can summarize the five conditions we obtained

fi(x?) ≥ 0, i ∈ 1, . . . , m

hi(x?) = 0, i ∈ 1, . . . , p

λ?
i ≥ 0, i ∈ 1, . . . , m (5.15)

λ?
i fi(x?) = 0, i ∈ 1, . . . , m

∇ f0(x?) +
m∑

i=1

λ?
i∇ fi(x?) +

p∑
i=1

ν?i ∇hi(x?) = 0, i ∈ 1, . . . , m

which together are called the Karush-Kuhn-Tucker (KKT) conditions.
They are sometimes referred to as the first-order optimality condi-
tions, as second-order conditions do exist (Nocedal and Wright, 2006,
§12.5).

5.1.4 Trust regions

In general, when searching for an optimal solution an optimization
algorithm begins from an initial guess x0. Then successive guesses, or
iterates, denoted by xk for the kth guess or iterate are made with the
aim of converging on the optimal solution x?.

Switching gears a little bit in this subsection, we’ll look at a general
strategy of solving optimization problem using the concept of a trust
region which may be used to determine the next iterate xk+1. The idea
is to create and solve an approximate optimization problem at each
iterate xk with the hope that the approximation is easier to solve yet
locally accurate enough to help locate the true optimal solution. The
approximated is trusted only so much, up to some radius or region
boundary. A circular or spherical trust region may be used, but so
can box and elliptical regions. If a sufficiently better iterate xk+1 is
not found within the trust region then the region may be shrunk in
case the approximation becomes grossly invalid for points far way
from the iterate xk.

The approximation employed may be termed the model function so
that the approximate problem at iterate xk becomes

minimize
p

mk(xk + p) (5.16)

where p is the candidate step so that xk + p lies within the trust re-
gion. A very popular model function takes the form of a quadratic
approximation using the first two terms of a Taylor approximation of
the objective function at the iterate point

mk(xk + p) = f (xk) + pT∇ f (xk) +
1
2

pT H[ f (xk)]p (5.17)
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where∇ f (xk) and H[ f (xk)] are the gradient and Hessian respectively,
of the objective function f at the point xk (Moré and Sorensen, 1983).
Recall that the Hessian is a square matrix of second-order partial
derivatives with entries H[ f (x)]i,j = ∂2 f /∂xi∂xj. A quadratic function
is convex and thus such a convex “subproblem” that locally approxi-
mates the optimization problem can be solved efficiently.

Trust regions see a great deal of use in nonlinear optimization meth-
ods, and can be modified for constrained optimization. Beyond the
choice of approximation and trust region type, choosing the region
size and shape, the step size, and the method used to solve even the
trust region subproblem are important (Nocedal and Wright, 2006, ch.
4). Another class of methods serving a similar purpose are line search
methods where a direction is first chosen to search for the next iter-
ate, so that the step size is chosen second. Line search methods are
in a sense the dual of trust region methods, where the step size (trust
region radius or boundary) is chosen first, then a direction is chosen
(Nocedal and Wright, 2006, ch. 1).

5.1.5 Primal-dual interior point methods

Having discussed some important ideas and concepts from mathe-
matical optimization theory, we can now begin to discuss the interior-
point optimization method we rely on for geometry reconstruction in
this chapter.

Introduction of a logarithmic barrier function

The basic idea behind interior-point methods is to modify the original
optimization problem to take into account the constraint functions by
modifying the objective function to penalize guesses that leave the
feasible region, that is guesses that break the inequality and equality
constraints. As this may modify the optimal solution, the approxi-
mation is parameterized by a real parameter µ > 0 that is relaxed
as a local minimum is approached, so you are essentially solving a
series of approximate optimization “subproblems” that converges to
the original problem as µ → 0. A very popular approximation is to
use a logarithmic barrier that induces a penalty that approaches ∞ as
you approach any barrier defined by a constraint, that is the penalty
increases exponentially as a constraint is close to being violated. This
approach is derived and described in detail by Byrd, Gilbert, and No-
cedal (2000), Byrd, Hribar, and Nocedal (1999), and Waltz et al. (2006)
as well as by Nocedal and Wright (2006, ch. 19).
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To begin we will rewrite the original optimization problem (5.1) as

minimize f0(x)

subject to fi(x) + si = 0, i ∈ {1, . . . , m} (5.18)

hi(x) = 0, i ∈ {1, . . . , p}

where we have transformed the inequalities fi(x) ≤ 0 into equali-
ties by the introduction of so-called slack variables si ≥ 0. If the slack
variable si associated with the constraint fi(x) ≤ 0 is positive (s>0)
for a given solution, then the constraint is being obeyed and does
not restrict the possible steps the algorithm may take. Points with
si < 0 represent unfeasible solutions that do not obey the constraint
fi(x) ≤ 0. If si = 0 the constraint fi(x) ≤ 0 is said to be binding in that
the possible steps to be taken are restricted but the constraint is still
obeyed. The logarithmic barrier will penalize solutions exponentially
as any of the slack variables si approach zero.

Now that we have introduced slack variables that allow us to pe-
nalize solutions that are very close to breaking a constraint, we can
now modify the objective function by appending to it the logarithmic
barrier penalty function,

minimize
x,s

f0(x)− µ
m∑

i=1

ln si

subject to fi(x) + si = 0, i ∈ {1, . . . , m} (5.19)

hi(x) = 0, i ∈ {1, . . . , p}

where µ > 0 is a real positive parameter and ln denotes the natu-
ral logarithm function. The interior-point approach involves solving
the barrier subproblem (5.19) for a sequence of positive barrier pa-
rameters µk that converges to zero, thus reproducing and hopefully
solving the original optimization problem while accounting for the
constraints. Thus interior-point methods get their name from the fact
that iterates are prevented from leaving the region of feasible solu-
tions, however most modern interior-point methods can start from
any initial guess x0.

At each iteration, if the problem is locally convex then a trust re-
gion subproblem is created and solved to take the next step. Other-
wise, a direct step is taken that attempts to converge on an optimal
solution by solving the KKT optimality conditions (5.15). Thus such
methods are sometimes referred to as primal-dual interior-point meth-
ods as attempting to solve the KKT equations involves attempting to
solve both the primal and dual problem simultaneously.
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Direct step by solving the KKT optimality conditions

Applying Newton’s method to the KKT optimality conditions (5.15)
for the barrier subproblem (5.19) yields a system of equations for the
step size and direction to be taken, ∆x and ∆s, which may be written
in matrix form as (Nocedal and Wright, 2006, p. 566)

H 0 −JT
h −JT

f

0 Λ 0 S

Jh 0 0 0

J f −I 0 0




∆x

∆s

∆ν

∆λ

 = −


∇ f0(x)− JT

f λ− JT
h ν

SΛ− µe

h

f + s

 (5.20)

where f = ( f1, f2, . . . , fm), h = (h1, h2, . . . , hp), and s = (s1, s2, . . . , sm)

are vectors containing the inequality constraint functions, equality
constraint functions, and slack variables, respectively. λ ∈ Rm and
ν ∈ Rp are the Lagrange multipliers associated with the constraint
functions fi and hi respectively. H is the Hessian of the Lagrangian of
the objective function f0,

H = H[L(x, λ, ν)] = H[ f (x)] +
m∑

i=1

λi H[ fi(x)] +
p∑

i=1

νi H[hi(x)],

(5.21)
and J f and Jh are the Jacobian matrices of the constraint functions
fi(x) ≤ 0 and hi(x) = 0 respectively. Recall that the Jacobian matrix
is a square matrix containing the first-order partial derivatives of a
vector-valued function with entries J[ f (x)]i,j = ∂ fi/∂xj. In this case
the ith row of J f is the partial derivatives of the constraint function
fi(x), (∂ fi/∂x1, . . . , ∂ fi/∂xn). S = diag(s) and Λ = diag(λ) are diago-
nal matrices with diagonal entries given by the vectors s and λ. That
is, S = diag(s) = diag(s1, s2, . . . , sm) is a matrix with diagonal entries
s1, s2, . . . , sm, for example. e is a vector of ones with the same size as
h.

In order to solve for the steps ∆x and ∆s, MATLAB factorizes the
matrix into its LDL (or Cholesky) decomposition which constitutes
the most computationally expensive step of using an interior-point
method. This step also allows us to check whether we are at an op-
timal solution given by a local minima or maxima as the Hessian is
positive-definite at an optimal point (also called the second derivative
test).

Trust region step

If the Hessian is not positive-definite (that is, we have not arrived
at an optimal point), the algorithm may attempt a trust region step
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within a trust region of some radius R if the objective function is
locally convex. The trust region subproblem is given by

min
∆x,∆s
∇ f0(xk)

T∆x +
1
2

∆xT H[L]∆x + µeTS−1∆s +
1
2

∆sTS−1Λ∆s (5.22)

subject to the approximate constraints f + J f ∆x + ∆s = 0 and h +

Jh∆x = 0, where all the variables are as defined for the Newton step
described above. The steps ∆x and ∆s that minimize the quadratic
function are taken by the algorithm. H[L] denotes the Hessian of the
Lagrangian of the objective function f0. It is worth mentioning that
the calculation of the Hessian is a computationally intensive task and
thus it is approximated by one of a number of algorithms.

5.1.6 Curse of dimensionality and possible solutions

The curse of dimensionality, a term first introduced by Bellman (1957)
when considering problems in dynamic optimization, refers to the
exponential increase in volume when adding extra dimensions to Eu-
clidean space (Keogh and Mueen, 2010). It manifests itself in two
ways when tackling the geometry reconstruction problem for larger
and larger molecules, as we need 3N − 6 parameters to describe the
geometry of an molecule with N ≥ 3 atoms. Firstly, the parameter
space or phase space to be searched increases exponentially with N,
and with this increase may come an increase in local minima, and
possible an increase in the number of degenerate geometries. While
interior-point methods may still be feasible for polyatomic molecules
with several atoms, convergence will definitely take longer and mul-
tiple runs may be required before finding a feasible geometry or any
degenerate geometries, possibly necessitating the use of a supercom-
puter cluster.

The second manifestation, which seems more severe from prelim-
inary investigations of reconstructing acetylene (C

2
H

2
) molecular ge-

ometries, is the proliferation of saddle points in high-dimensional
spaces, termed the saddle-point problem as argued by Pascanu et al.
(2014) using evidence from statistical physics, random matrix theory,
and neural network theory. Fortunately, this is a very active area of
research due to the recent surge and revival of interest in artificial in-
telligence (Bengio, 2016; LeCun, Bengio, and Hinton, 2015) and the de-
velopment of new algorithms may be helpful in reconstructing larger
molecules. One recent example worth looking into for future improve-
ments include the saddle-free Newton method proposed by Dauphin
et al. (2014) which uses second-curvature information to rapidly es-
cape from high-dimensional saddle points.

One easy method of tackling this problem when attempting to re-
construct larger molecules is to fix certain parameters of the molecule’s
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geometry, ones which may exhibit very low variability. An example
may be the triple C C bond in acetylene.

5.2 implementation

As mentioned in the previous section, there are many complications
involved with implementing advanced optimization algorithms such
as the interior-point method we wish to use, and so we turn to the
readily-available and mature implementation in MATLAB’s Optimiza-
tion Toolbox in conjunction with the Global Optimization and Parallel
Processing Toolboxes. In the spirit of open science and reproducibility,
we strongly feel that we should have chosen an open-source imple-
mentation however this was not a consideration at the beginning of
this project and the MATLAB implementation seems to be superior
to most of the available alternatives we inspected, proprietary and
open-source, and is well-documented and easy to use as opposed
to specialized mathematical optimization software developed for re-
search purposes. So we see the use of MATLAB as a necessary evil
at this point in time to test out the effectiveness of interior-point opti-
mization methods for geometry reconstruction.

The concern behind relying on proprietary software is mainly to
do with scientific reproducibility in computational studies (Easter-
brook, 2014) for which Millman and Pérez (2014) and Wilson et al.
(2014) provide excellent advice. MATLAB is popular enough and a
standard piece of software in many fields that one may quite eas-
ily find a usable instance in an academic setting to run the code in
appendix B and replicate the results presented here. However, in or-
der to reproduce our results from scratch and verify their correctness,
the optimization code would need to be inspected, which is impossi-
ble in this case due to the proprietary nature of MATLAB. This was
not as big a concern with the lookup table as it did not rely on any
MATLAB-specific library functions that do not have direct analogues
in other programming environments.

For the implementation, the MATLAB Optimization Toolbox pro-
vides a general-purpose nonlinear programming solver through the
fmincon function that attempts to find the minimum of a constrained
nonlinear multivariable objective function. Among the algorithms fmincon
can employ is the interior-point method we described in the previous
section. We use it to find geometries whose post-explosion momen-
tum vectors most precisely match the measurements. We constrain
the solution using box constraints to ensure we recover triatomic ge-
ometries with the constraints that 100 pm ≤ rCO, rCS ≤ 500 pm and
140° ≤ θ ≤ 180° for the OCS molecule.

We use the objective function

log10 |p(x)− pmeasured|2 (5.23)
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where p(x) is the momentum vectors produced following Coulomb
explosion of a molecule with structure x = (r12, r23, θ). The optimiza-
tion routine seemed to perform slightly better after taking the base-
10 logarithm so that the absolute error is quantified on the order of
−10−2 as opposed to 10−50 as most optimization problems tend to
have a default error tolerance of 10−6 below which a solution is taken
to be optimal. However, introducing the logarithm also introduces sin-
gularities in the objective function since it diverges to −∞ as the op-
timal solution is approached. A better choice may have been a scaled
`2-norm such as 1050|p(x)− pmeasured|2 so that absolute errors below
1 correspond to good geometries and so the objective functions tends
to 0 as the optimal solution is approached. For the purposes of this
thesis, the choice of objective function did not seem to affect the per-
formance of the optimization routine as long as the error tolerance is
adjusted accordingly, however, it may for the reconstruction of more
complicated molecular structures.

While developing the lookup table we described the bond lengths
in units of angstroms (Å) but we will now describe them in picot-
meters (10−12 m), while the bond angles will still be described in units
of degrees to keep all the molecular parameters within the same order
of magnitude (as opposed to 12 orders of magnitude apart if we used
meters and degrees). This is especially important for optimization al-
gorithms which compute step sizes and trust region radii using the
values of the Hessian and Jacobian which may take on extreme values
when the derivatives of the objective function are very small or very
large, as may be the case when the parameters vary in magnitude
by 1012. A more visual description would be to imagine finding an
optimal point within a region described by a cuboid in phase space
when using picometers and degrees, and finding an optimal point
within an almost infinitesimally thin sheet in phase space when us-
ing meters and degrees. As expected, this turns out to be important
for fmincon as it performed much better, converging on the correct so-
lution more often and in fewer iterations when the parameters were
all numerically within the same order of magnitude.

To ensure that we have found geometries corresponding to global
minima and not just local minima, and to find degenerate geometries,
we run fmincon multiple times for each set of measured momentum
vectors, each time using a different initial starting point. This is done
using the MultiStart class from the Global Optimization Toolbox
which runs multiple instances of fmincon in parallel (requiring the
use of the Parallel Processing Toolbox) using a uniformly distributed
set of starting points in an attempt to find multiple solutions. Typi-
cally, only a single run is required to find a solution, especially when
using simulated data, but at least several runs may be needed before
finding a second degenerate geometry.
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As we may have many measurements to reconstruct, we would like
to make use of all available processor cores when running on a per-
sonal computer and we especially want to make full use of each core
when running on a supercomputer cluster, so the measurements are
iterated over using a parallel for loop or a parfor loop which executes
each loop iteration on a different core. When the number of cores ex-
ceeds the number of different starting points used by MultiStart, this
will ensure that the other cores are reconstructing other geometries
thus keeping CPU utilization at 100%.

5.3 reconstructions of experimental data

Now that we have a more sophisticated method for reconstructing
geometries, we should attempt to reconstruct the same geometries we
saw in section 4.5 for the OCS molecule following Coulomb explosion
by a 7 fs laser pulse for the (2, 2, 2) fragmentation channel, the results
of which are shown in figure 25. The modal geometry is calculated
to be rCO = 170 pm, rCS = 159 pm, θOCS = 173° while the average
geometry of rCO = 193 pm, rCS = 168 pm, θOCS = 171° is slightly
larger due to outliers.

Let us look at the process of analyzing and plotting the geometries
in detail that is involved in the production of figure 25 as we now pos-
sess more information about the recovered geometries (e. g. whether
the solution is optimal and whether degenerate geometries exist) than
the lookup table provided, allowing for some pre-processing and fil-
tering.

Before plotting, badly reconstructed geometries and duplicate ge-
ometries are filtered out. A badly reconstructed geometry satisfy at
least one of three criteria. It (1) does not satisfy the KKT optimal-
ity conditions from section 5.1.3 in which case the optimization al-
gorithm is said to not have converged and MultiStart assigns such
a geometry with an exit flag of 1 making it easy to filter out such
geometries. Or (2) it produces momentum vectors with a high abso-
lute error when compared to the measured momentum vectors. We
choose a threshold of 10−50 above which we say that the geometry is
not precise enough to be a good reconstruction. The vast majority of
reconstructions have significantly lower error (10−59 to 10−54) and in
general, geometries with a high absolute error do not satisfy (1) either.
Or finally, (3) it lies very close to the box constraints (within 0.001)
that form our cuboid of physically realistic geometries in phase space.
This usually indicates that the optimal geometry lies outside the con-
straints and that the solver asymptotically approached the boundary
(due to the logarithmic barrier) in an attempt to converge on an opti-
mal solution. Such bad geometries tend to also satisfy (1) and (2), but
some redundancy is desirable to find all badly reconstructed geome-
tries.
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Figure 25: Scatter plot showing a reconstruction of the molecular geom-
etry of OCS following Coulomb explosion by a 7 fs laser pulse for the
(2, 2, 2) fragmentation channel. Each geometry is represented by three col-
ored points, one for each atomic fragment; red for oxygen on the left, black
for carbon in the center, and yellow for sulfur on the right. The colors were
chosen to imitate the CPK coloring convention. Geometries are plotted such
that the molecule’s center of mass is at the origin to showcase the variance
in each atomic fragment’s position, and are rotated such that a vertical line
bisects the O C S bond angle. Bivariate kernel density estimates (KDE)
with a Gaussian kernel, plotted as shaded-in contours, are used to estimate
the probability density of each atomic fragment’s position (see section 3.2.3
for a discussion of KDE’s). Solid black lines are drawn between the peaks
of each atomic fragment’s kernel density estimate to illustrate the modal ge-
ometry or most likely geometry. Along the top of the plot, univariate KDE’s
show the probability density of each atomic fragment’s position along the
x-axis, and the same is done for the y-axis along the right. The molecule is
almost straight but an aspect ratio of approximately 10 : 1 is employed to
showcase variability in the y-axis.
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For our reconstruction, we configured MultiStart to use 50 uni-
formly distributed starting points, which in hindsight was highly ex-
cessive. Out of 1, 285 sets of measured momentum vectors, we at-
tempted to reconstruct each 50 times, recovering 53, 648 geometries
in total. 50, 615 represented duplicate geometries. Due to rounding
errors involved with the comparison of floating-point numbers, we
defined two triatomic geometries i and j to be duplicates if ∆ij < 0.1

where ∆ij = |ri
12 − rj

12|+ |ri
23 − rj

23|+ |θi − θ j| with bond lengths and
angles being numerically described in picometers and degrees. After
filtering out duplicate geometries, 3, 033 unique reconstructed geome-
tries remain. 1, 816 had an exit flag of 1 indicating a bad geometry (a
non-optimal solution). No geometries with high error (> 10−50) were
found, having all been previously found with an exit flag of 1. Then
a further 91 geometries were found very close to the box constraints.
Filtering out these 1, 816 + 91 = 1, 907 bad geometries, we are left
with 1, 126 “good” geometry reconstructions. 1, 072 were mapped to a
single geometry, 18 measurements to two distinct degenerate geome-
tries, and 6 to three distinct degenerate geometries. No measurement
mapped to 4 or more degenerate geometries, and 189 measurements
could not be reconstructed to satisfy our box constraints. In total,
2% of measurements mapped to multiple degenerate geometries and
1, 096 measurements were successfully reconstructed, giving an 85%
success rate.

The recovered geometries are plotted in figure 25 and the geome-
tries recovered for other laser pulse lengths (30 fs, 60 fs, and 100 fs)
are plotted in appendix A (figures 43–45). The 200 fs data was not
analyzed as the molecule seemed to have stretched too much for
the lookup table reconstruction to seem trustworthy. Reconstruction
statistics including success rate and number of degenerate geometries
found for each pulse length is tabulated in table 4. The modal and av-
erage geometries of for each pulse length are tabulated in table 5.

5.3.1 Comparision with the lookup table

Comparing figures 22 and 25 we do not see much qualitative differ-
ence between the two. Figure 25 does have a greater number of re-
constructions and data points. This is due to both the higher success
rate (85% versus 73%) and since 500 more measurements were found
since the lookup table was tested. Degenerate geometries contribute
a small amount as well. The atomic positions exhibit greater variabil-
ity in their positions, which may be because the optimization routine
is able to reconstruct more extreme geometries than the lookup table
could and with greater precision. The modal and average geometries
calculated from both reconstructions are extremely similar.

While the overall geometry is not very different, the absolute errors
on each geometry are much smaller. The lookup table produces ge-
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Pulse length (fs) Geometries Reconstructions Degenerate

7 1285 1096 (85%) 18+6 (2.2%)
30 1501 1164 (76%) 62+30 (7.9%)
60 358 249 (70%) 15+6 (8.4%)
100 1056 694 (66%) 39+13 (7.5%)

Table 4: Statistics for geometry reconstruction using constrained nonlinear
optimization. The geometries column lists the number of experimental mea-
surements (sets of momentum vectors) obtained, the reconstructions column
lists the number and percentage of these measurements that were success-
fully reconstructed, and the degenerate column lists the number of measure-
ments for which 2 and 3 degenerate geometries were found, respectively,
and the percentage of successful reconstructions that yielded degenerate ge-
ometries. No measurement ever yielded more than 3 degenerate geometries.

Pulse Modal geometry Average geometry
length (fs) rCO rCS θOCS rCO rCS θOCS

(Equilibrium) 116 156 172 116 156 172

7 170 159 173 193 168 172

30 231 177 172 243 215 168

60 238 196 172 242 232 166

100 249 206 171 256 254 165

Table 5: Average and modal geometries calculated from the geometries re-
constructed using constrained nonlinear optimization as a function of pulse
length. The bond lengths are given in picometers (10−12 m) and the bond
angles in degrees.
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Figure 26: Scatter plot matrix showing the bivariate relationship between the
parameters (rCO, rCS, θ) for the reconstructions of the molecular geometry of
OCS following Coulomb explosion by a 7 fs laser pulse for the (2, 2, 2) frag-
mentation channel. On the diagonal, histograms show the distribution of
bond lengths and bond angle for the reconstructed geometries (tick marks
at the bottom of each column). Below the diagonal, scatter plots show the bi-
variate relationship between each molecular parameter. Above the diagonal,
the same relationship is given using a contour plot instead.

ometries with absolute errors on the order of 10−48 at best due to its
low resolution but the optimization routine finds geometries with er-
rors on the order of 10−59 to 10−54, corresponding to an additional 3-5
decimal places of precision on the numerical values of the molecular
parameters.

The optimization routine is also able to precisely find degenerate
geometries by using multiple starting points, a task which would
have been non-trivial for the lookup table.

5.3.2 Investigating bond length correlations

Figure 25 provides an intuitive image of what a molecular geometry
looks like, but it would be interesting to also see a distribution of
bond lengths and bond angles to quantify the variability in each of
these parameters. Correlations between the bond lengths and bond
angles may also be looked at to study, for example, if longer C O
bond lengths correspond to longer C S bond lengths, or if more bent
geometries tend to have longer bond lengths. To visualize this rela-
tionship in figure 26 we utilize a scatterplot matrix.

The bond length distributions on the diagonal of figure 12 are some-
what expected; they peak slightly above the equilibrium values indi-
cating some molecular rearrangement and bond lengthening due to
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5.4 investigating degenerate geometries

the molecule’s interaction with the laser field. The bond angle distri-
bution shows less variability suggesting that the molecule may have
not had much time to bend yet, or that the molecule stretches due to
ion motion during the ionization process.

Comparing the C O bond length between equilibrium and after
Coulomb explosion by a 7 fs laser pulse we see a stretch of about
45% which is larger than the stretch exhibited by CO

2
Bocharova et

al., 2011 after Coulomb explosion by a 7 fs laser pulse. However, in
the case of OCS, the C S bond remains unchanged. Comparing the
bond angle distribution from figure 26 with theoretical simulations
of the bond angle distribution for OCS (2, 2, 2) (Wales et al., 2012b),
we see they are quite similar hinting that the bond angle, at least for
7 fs remains very close to equilibrium and that we are reconstructing
geometries with a reasonably accurate bond angle distribution.

What is very interesting, however, is the relationship between the
two bond lengths, rCO and rCS. We may intuitively expect both bond
lengths to lengthen as the three atoms should repel each other in
the (2, 2, 2) charge state, or possibly to have one bond stretch while
the other remains unchanged. However, the reconstructions actually
indicate the complete opposite—that while one bond stretches the
other shrinks, almost following a reciprocal relationship. This effect
becomes even more pronounced for reconstructions of molecular ge-
ometries exposed to longer pulse lengths (figures 46 – 48).

Unfortunately, to our knowledge no other studies performing ge-
ometry reconstruction using Coulomb explosion imaging have re-
ported the correlations between their bond lengths and bond angles,
so no comparisons or references can be made. When plotted, as in fig-
ure 25, the geometries seem to be physically reasonable and so do the
bond length and bond angle distributions on the diagonal of figure
26, it is only the correlations that do not.

At this juncture, such worrying results force us to distrust the ge-
ometry reconstructions we have produced thus far. While the average
geometries and overall dataset seems to be physically reasonable, the
individual geometries seem to not make physical sense. Additionally,
the same unusual relationship emerges out of at least two different
reconstruction methods. For now we will move on to utilize the op-
timization routine to further investigate the nature of the degenerate
geometries we are recovering, however we will come back and resolve
this issue in the next chapter. Analyzing the reconstructed geometries
produced by the lookup table results in a very similar relationship be-
tween the bond lengths of reconstructed geometries.

5.4 investigating degenerate geometries

The optimization approach should also be tested to study whether
it can accurately reconstruct simulated geometries in the same man-
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ner we tested the Nelder-Mead simplex method (section 4.1.2) and
the lookup table (section 4.3.3). We will also use this information to
further investigate the nature of the degenerate geometries we are
recovering.

The accuracy testing of the Nelder-Mead simplex method and the
lookup table was relatively cursory, and could be made more thor-
ough. We varied one molecular parameter at a time, which was how-
ever, sufficient to show the inadequacy of the simplex method. For a
more thorough test, we will substantially vary all the molecular pa-
rameters by simulating the Coulomb explosion of geometries within
a box in phase space described by 100 pm ≤ rCO, rCS ≤ 500 pm
and 140° ≤ θ ≤ 180°. For a low-resolution test, we pick geome-
tries rCO × rCS × θOCS where rCO and rCS are sets containing 10 uni-
formly spaced bond lengths between 100 pm and 500 pm, θOCS is a
set containing 10 uniformly spaced bond angles between 140 deg and
180 deg, and X × Y = {(x, y)|x ∈ X and y ∈ Y} denotes the carte-
sian product as expressed in set-builder notation (Warner, 1990, p. 6).
Thus we are reconstructing 103 = 1, 000 geometries from simulated
Coulomb explosions. We also perform a higher-resolution test using
203 = 8, 000 uniformly distributed geometries within the same box.

In both tests, we find that the optimization routine can reconstruct
the simulated geometries in 98.5% of cases using only a single start-
ing guess. Each reconstruction takes approximately one second. In
each of these reconstructions, the parameters of the recovered geome-
try numerically matched the original geometry up to several decimal
places. The absolute error between the recovered and simulated mo-
mentum vectors was below 10−55 for 95% of reconstructions, with
the mean error being approximately 10−57, is 10 orders of magnitude
lower than the absolute errors on momentum vectors retrieved using
the lookup table. Since we use the square of the `2-norm to quantify
the absolute error, this actually represents an improvement of approx-
imately 5 orders of magnitude in accuracy over the lookup table. Us-
ing multiple starting points recovers geometries for the other 1.2% of
cases.

While the optimization routine recovered very precise geometries
whose post-explosion momentum vectors very closely match the ex-
pected vectors, the geometries were not always the originally gen-
erated geometries which we expected. It seems that in about 5% of
cases, the routine returned a degenerate geometry. It is important
to make the distinction that when the Nelder-Mead simplex method
and the lookup table returned a different geometry than expected, it
was a failure in recovering the exact geometry as the momentum vec-
tors did not match closely resulting in a large absolute error (roughly
> 10−46) (except for a small number of cases where it had found a de-
generate geometry). However, in this case we are finding very precise
reconstructions and each different geometry represents a degenerate
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geometry. To showcase the nature of these degenerate geometry, we
plot arrows between the original (expected) geometry and the recov-
ered degenerate geometry in figure 27, which we will refer to as a
degeneracy map. If the recovered geometry was the original geometry
as expected, then no arrow is plotted.

We see some patterns in the degenerate geometries recovered. De-
generate geometries exist only for molecules with bond angles be-
tween approximately 150 deg and 170 deg which includes a sizable
minority of the molecules reconstructed as indicated by the bond an-
gle distribution in figure 26. They also exist mainly for molecules ex-
hibiting significant bond asymmetry and tend to be degenerate with
another molecule that is more bent and has a smaller degree of bond
length asymmetry. They also appear in two regions, one where the
C O bond length is longer, and another where the C S bond length
is longer. The discrete number of arrows figure 27(a) may suggest
the existence of a discrete number of these degenerate geometries,
however, repeating the test with a greater number of geometries pro-
duces very similar results except for a correspondingly higher den-
sity of lines, suggesting that regions exist in phase space where every
geometry is degenerate with another, i. e. that an uncountably infi-
nite1 number of degenerate geometries exist.

In these simulations we knew a priori which geometry we expected
to reconstruct, so we can assign a direction to each arrow. However,
when reconstructing experimental data, we have no prior knowledge
of what geometry we expected to recover, so the arrow could point
in either direction. In some cases it might be possible to choose one
degenerate geometry over the other(s) if one is physically unrealis-
tic, e. g. if it is very highly bent or exhibits an extreme bond length
asymmetry.

To further visualize the set of geometries we recovered, we utilize a
scatterplot matrix in figure 28 showing the bond length and angle dis-
tributions for the 8, 000 geometries used for accuracy testing as well
as their bivariate relationships. It is interesting to note that when-
ever degenerate geometries exist, the more bent geometry is found.
Perhaps these more bent solutions posess a larger basin of attraction,
which may or may not be strongly dependent on the optimization al-
gorithm employed. It might be interesting to visualize them, possibly
taking a similar approach as Asenjo et al. (2013) who actually employ
mathematical optimization methods to determine energy minimizing
molecular structures. They observe basins with rather complicated
boundaries, reminiscent of the beautiful and spatially chaotic patterns
produced by the magnetic pendulum.

For the feasibility of geometry reconstruction, however, this result
raises additional issues past the unusual bond length correlations

1 A countably finite set may refer to the set of integers Z = {0,±1,±2, . . . }, for exam-
ple, which may be enumerated. An uncountably infinite set has the same cardinality
as the set of real numbers R which cannot be enumerated (Halmos, 2017).
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5.4 investigating degenerate geometries

Figure 27: Mapping between degenerate geometries for the OCS (2, 2, 2)
molecule. The Coulomb explosion of (a) 1, 000 (103) and (b) 8, 000 (203)
uniformly distributed geometries within a box in phase space described by
100 pm ≤ rCO, rCS ≤ 500 pm and 140° ≤ θ ≤ 180° was simulated and then
reconstructed using the momentum vectors of the atomic fragments that
resulted from the simulations. If the reconstructed geometry matched the
original geometry exactly, then no arrow is plotted. However, an (a) arrow
or (b) line is plotted from the original expected geometry to the recovered
geometry if it represented a degenerate geometry. Some arrows and lines
appear small enough that they resemble points, they are actually slight nu-
merical difference between the expected geometry and the reconstructed
geometry, and do not necessarily represent a degenerate geometry.
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5.4 investigating degenerate geometries

Figure 28: Scatter plot matrix showing the bivariate relationship between the
parameters (rCO, rCS, θ) for the reconstructions of the molecular geometry of
OCS from momentum vectors obtained from simulated Coulomb explosions
of 8, 000 (203) uniformly distributed geometries within a cuboid in phase
space described by 100 pm ≤ rCO, rCS ≤ 500 pm and 140° ≤ θ ≤ 180°. On
the diagonal, histograms show the distribution of bond lengths and bond
angle for the reconstructed geometries with tick marks at the bottom of each
column (no vertical scale is given for the histograms). Below the diagonal,
scatter plots show the bivariate relationship between each molecular param-
eter. Above the diagonal, the same scatter plots are shown with the x and
y-axes interchanged to correspond with the axes labels and tick marks.
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found in the previous section. Even when the measured momentum
vectors can be mapped to a molecular geometry very precisely, the ex-
istence of multiple solutions corresponding to very different geome-
tries may make it impossible to perform accurate geometry recon-
structions, especially when multiple degenerate geometries represent
physically realizable geometries. Table 2 also suggests the existence
of triply degenerate geometries, which may further complicate the
task of geometry reconstruction.

Interestingly, we find that we recover degenerate geometries ap-
proximately 5% of the time while Kunitski et al. (2015, supplementary
information) report finding degenerate geometries approximately 10%
of the time, although they chose to disregard them for their analyses.

We considered whether these degeneracies could arise due to our
choice of momentum convention in section 3.4 however our conven-
tion simply rotates the three momentum vectors such that the car-
bon’s momentum vector lies along the +x-axis and all three momen-
tum vectors lie in a plane. The length of the momentum vectors and
the relative angles between them remain unchanged, and so two dif-
ferent geometries producing different momentum vectors cannot re-
sult in the same set of vectors after rotation into our convention, un-
less they represent degenerate geometries.

5.5 conclusions

Geometries may be reconstructed quickly and precisely using constrained
nonlinear optimization—This approach represents a significant improve-
ment over the geometry reconstructions provided by the lookup table.
Reconstructing a single geometry can be done in approximately one
second, which is faster than the lookup table if enhanced precision is
desired. Furthermore, the recovered molecular parameters are orders
of magnitude more precise than those provided by the lookup table,
and degenerate geometries may be found precisely.
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In the previous two chapters, we approached the task of geometry
reconstruction using two approaches, a lookup table which was only
feasible for the reconstruction of triatomic molecules, and the more
sophisticated optimization approach. We also ended on a rather trou-
bling note regarding the feasibility of geometry reconstruct, namely
that the reconstructed geometries exhibited unusual bond length cor-
relations (section 5.3.2) and that degenerate geometries can be found
in large region of phase space (section 5.4).

In this chapter we will begin by tackling the important task of quan-
tifying the uncertainty on our geometry reconstructions, which sur-
prisingly has not been performed by any previous study. We will
take a heuristic approach, which provides some valuable estimates
on the amount of uncertainty to expect and will help resolve the is-
sue of unusual bond length correlations. A more rigorous and sophis-
ticated approach of uncertainty quantification in the Bayesian infer-
ence framework has been considered and for which the motivation
and methodology of this approach will be discussed.

6.1 uncertainty on a reconstructed geometry

The question of interest in this section is, “how does uncertainty in the
measured momentum vectors affect the uncertainty of the reconstructed ge-
ometry?” We have already calculated the uncertainty on the momen-
tum vectors in section 3.1.3 but we cannot derive an analytic formula
for the uncertainty on the molecular parameters or the atomic posi-
tions.
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6.1 uncertainty on a reconstructed geometry

6.1.1 A heuristic approach

We will take a very basic approach here by attempting to generalize
a simple result for the propagation of error through a monotonically
increasing function, that is a function which is always increasing and
always has a nonnegative first derivative.

If a particular measurement x̄ of a variable x carries some un-
certainty ε such that the true value of x̄ lies within some interval
x̄ − ε ≤ x̄ ≤ x̄ + ε then the true value of some arbitrary monotoni-
cally increasing scalar function f (x) that is dependent on the value
of the measurement will lie within some interval

f (x̄− ε) ≤ f (x̄) ≤ f (x̄ + ε) (6.1)

Now if we relax the condition that f be a monotonically increasing
function, then the true value of f (x̄) can take on any value that f
attains within the interval x̄ − ε ≤ x̄ ≤ x̄ + ε, and we can say very
generally that it lies between

min
x̄− ε ≤ x ≤ x̄ + ε

f (x) ≤ f (x̄) ≤ max
x̄− ε ≤ x ≤ x̄ + ε

f (x) (6.2)

which however, may not yield a useful interval, especially in the pres-
ence of discontinuities or divergences. However, for finite-valued and
well-behaved functions that do not change rapidly within the interval
x̄− ε ≤ x̄ ≤ x̄ + ε, (6.2) may provide a useful upper bound on the un-
certainty in f (x̄). This could be particularly accurate for small neigh-
bourhoods about x̄. As geometry reconstruction produces physically
reasonable values for the molecular parameters without any discon-
tinuities or divergences, we will attempt to use this idea to quantify
the uncertainty on a geometry’s reconstruction.

Before generalizing these two ideas for multivariable measurements
and functions, it will be helpful to look at this idea for the case of mea-
surement of a vector of two variables x̄ = (x̄1, x̄2) with an uncertainty
described by the vector ε = (ε1, ε2) and error propagation through a
vector-valued function of two variables f(x) = ( f1(x), f2(x)). We will
treat f(x) as non-parametric and assume that it has no analytic form,
i. e. as a black box function as the mapping from momentum vector
measurements to geometries cannot be parameterized or given in any
analytical form.

In this case the true value of x̄ lies within a box described by x̄1 −
ε1 ≤ x̄1 ≤ x̄1 + ε1 and x̄2− ε2 ≤ x̄2 ≤ x̄2 + ε2 in the x1x2 plane. If both
f1(x) and f2(x) depend monotonically on x1 and x2 then determining
the range of possible values of f(x̄) would be simple. Evaluating f(x)
for

x ∈ xep =

{(
x1 − ε1

x2 − ε2

)
,

(
x1 − ε1

x2 + ε2

)
,

(
x1 + ε1

x2 − ε2

)
,

(
x1 + ε1

x2 + ε2

)}
(6.3)
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where ep is an abbreviation for “endpoints” (as xep denotes the set of
endpoints for the box containing feasible values of x in the x1x2 plane)
would produce 4 point in the f1 f2 plane, whose set we denote by fep

and whose rectangular boundary encloses the possible values of f (x̄).
Thus the propagation of uncertainty in this case can be thought of a
mapping from a rectangle in the x1x2 plane to a rectangle in the f1 f2

plane.
If f1 and f2 do not depend monotonically on x1 and x2, then values

of x1, x2 between the endpoints may produce values of f1, f2 that lie
outside the rectangular boundary. A further heuristic would be to not
only look at the endpoints, but also a set of uniformally distributed
points in the x1x2 plane within the box of possible values for x. In this
case, the propagation of uncertainty can be thought of as a mapping
from a rectangle in the x1x2 plane to an arbitrary region in the f1 f2

plane whose boundary may not be rectangular anymore, or even a
single region. In the case of a more complicated boundary, we will
generalize (6.2) by describing the boundary using a convex hull. The
convex hull C of a set of points S = {p1, p2, . . . , pn} where pi ∈ Rm

for all i can be expressd mathematically as

C =

{
n∑

i=1

λi pi

∣∣∣∣∣ λi ≥ 0 and
n∑

i=1

λi = 1

}
(6.4)

An analogy in two dimensions would be to stretch a rubber band
around the set of points and let it rest, its final shape being the convex
hull.

Extending this idea to our problem of geometry reconstruction, we
have 9 measurements p̄ = ( p̄1, . . . , p̄9) with uncertainty ε = (ε1, . . . , ε9)

and we are interested in the range of possible geometries as pro-
duced by g(p) = (r12(p), r23(p), θ(p)). The possible values of the
momentum components are contained within a 9-dimensional hyper-
rectangle or box in momentum space, and we would like to obtain
a 3-dimensional region in phase space describing the set of possible
geometries that the measurement could correspond to. Generating a
set of N uniformly distributed points within the 9-dimensional box
would produce N9 sets of momentum vectors, each of which must
be reconstructed. This represents a rather unfeasible number of re-
constructions to perform, thus we will start by looking at the set of
endpoints only, which contains 512 (29) sets of momentum vectors.
Attempting to reconstruct a geometry for each set of momentum vec-
tors will ideally provide us with 512 geometries that together give
us some idea into the range of possible geometries the measurement
could possibly belong to. By only reconstructing the endpoints of our
box in momentum space, we may be underestimating the range of
possible geometries as points within the box may produce more ex-
treme geometries when reconstructed.
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6.1 uncertainty on a reconstructed geometry

To carry out this idea for geometry reconstruction, we randomly
chose a representative geometry, (rCO, rCS, θ) = (130 pm, 190 pm, 169°)
that does not lie in any of the degenerate regions discussed in fig-
ure 27 to avoid having to account for degenerate geometries. Simu-
lating a Coulomb explosion using this geometry as the intial condi-
tion yields a set of momentum vectors, upon which we artificially
placed an uncertainty of 5% for each momentum component such
that ε = 0.05p, producing 512 sets of momentum vectors correspond-
ing to the corners of the 9-dimensional box in momentum space, that
is, a 9-dimensional version of (6.3). Reconstructing a geometry for
each set of momentum vectors, we obtain 512 geometries and all 512
sets of momentum vectors were successfully mapped to a unique
geometry. Histograms showcasing the bond length and bond angle
distributions of these reconstructed geometries are plotted in figure
29 along with scatter plots showcasing the bivariate relationships be-
tween the three molecular parameters.

We immediately see that a strikingly wide range of geometries are
reconstructed assuming the momentum components carry an uncer-
tainty of only 5%. Inspection suggests that the bond length and bond
angle distributions roughly form a Gaussian distribution about the
true parameters. The distributions encompass a wide range of possi-
ble bond lengths, 80 pm for the C O bond and 175 pm for the C S
bond. The variability in the bond angle is not as extreme, encompass-
ing a 6° range of possible bond angles.

The bivariate relationships shown in figures 29(d)-(f) suggest the
range of possible geometries. Interestingly, the bond length correla-
tion in figure 29(d) seems to follow a reciprocal relationship, a strik-
ingly similar one to the unusual one observed in the reconstructions
of experimental data. This suggests that uncertainty in the momen-
tum measurements may lead to the reconstruction of a geometry with
asymmetrically stretched bonds, and that the unusual relationship we
observed in section 5.3.2 may have been a manifestation of measure-
ment uncertainty and due to the highly sensitive nature of geometry
reconstruction.

Placing a larger uncertainty on the momentum vector components
further stretches the shape of the set of points in figure 29(d), modi-
fying it to further resemble the more extreme reciprocal relationship
between rCO and rCS found for longer pulse lengths (see figures 46 –
48).

Exposing the molecule to longer laser pulses provides a longer
amount of time for the molecule to rearrange and may impart the
atomic fragments with a larger initial momentum, thus decreasing the
certainty with which the measured momentum vectors correspond to
the true geometry. If we take a reciprocal relationship to be a signa-
ture indicating that too much measurement uncertainty is present for
trustworthy geometry reconstructions, then we must conclude that
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Figure 29: A heuristic estimate on the range of possible OCS (2, 2, 2) geome-
tries that may be reconstructed assuming a true geometry of (rCO, rCS, θ) =
(130 pm, 190 pm, 169°) and 5% uncertainty on the measured momentum vec-
tors. Histograms showcase the (a) C O bond length, (b) C S bond length,
and (c) bond angle distributions of the reconstructed geometries. Scatter
plots showcase the bivariate relationships between (d) rCO and rCS, (e) be-
tween rCO and θ, and (f) between rCS and θ. Each reconstructed geometry
is plotted as an open blue circle. The boundary of the set of reconstructed
geometries is calculated using two methods and plotted; The dotted red line
denotes the convex hull and the solid purple line denotes the alpha shape
(using (d) α = 15, (e) α = 22, and (f) α = 30) of the set of points.
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even an uncertainty as low as a few parts per hundred in the momen-
tum vector components is “too much” and that accurate geometry
reconstruction using Coulomb explosion imaging is unfeasible under
such conditions.

We may use the area formed by the set of points in figures 29(d)-(f),
plotted as red dotted lines by the use of a convex hull, as a quantita-
tive measure of uncertainty.

An interesting observation resulting from the close inspection of
the open blue circles in figures 29(d)-(f) is the clustering of geometries
in phase space as geometries seem to cluster in little groups. Each
geometry is actually paired with one other geometry (close inspec-
tion of the open blue circles should reveal that they appear in pairs,
sometimes appearing as a single blurred circle) so that 256 points
are visible unless the scatter plots are very closely inspected. As we
picked one of two extreme values, p̄− ε and p̄ + ε for each momen-
tum component, each component may be responsible for the “split-
ting of the geometries” into pairs or clusters. This suggests that some
uncertainty in certain momentum components may have a greater ef-
fect on the uncertainty of reconstructed geometries, and it may be
worth quantifying the relative effects of each component (e. g. the
components parallel and perpendicular to the bond lengths and the
component out of the plane of the molecule). Repeating the analysis
but with 1% uncertainty instead of 5% results in reconstructed ge-
ometries with 173 pm < rCO < 186 pm, 144 pm < rCS < 158 pm, and
173.4° < θ < 173.4°.

As we saw in section 3.2.2, the discrepancy in the OCS 7 fs (2, 2, 2)
momentum vectors is less than 2% and so while it will be a contribut-
ing factor to the uncertainty in the reconstructed geometries, most of
the error must be due to our assumption that the molecule starts ex-
ploding from its equilibrium geometry and that each atomic fragment
starts with zero initial momentum.

6.1.2 Convex hulls and alpha shapes

To quantify the uncertainty in the geometries, we will use two useful
concepts from computational geometry, namely convex hulls and al-
pha shapes, which allow us to assign a shape and a volume to a set of
points, and thus provide an additional heuristic quantitative measure
of uncertainty. The convex hull of a set of points, introduced earlier
and described mathematically by (6.4), is used to assign boundaries
in phase space for figures 29(d)-(f), plotted as a dotted red line. Many
algorithms exist to calculate the convex hull, especially in 2 or 3 di-
mensions (De Berg et al., 2008, ch. 11). However, the convex hull may
grossly overestimate the area, as in figure 29(e) in comparison to (d).

Another boundary may be provided by the alpha shape of the set of
points, plotted as solid purple lines. The concept of an alpha shape is
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a generalization of the convex hull used to assign shapes and volumes
to a set of points, parameterized by a real number α ≥ 0. The param-
eter α may be varied until a desired shape is produced. It may be
thought of as a linear approximation to the shape of the set of points.
They were first introduced by Edelsbrunner, Kirkpatrick, and Seidel
(1983) for two-dimensional shapes, then for three-dimensional shapes
(Edelsbrunner and Mücke, 1994) with applications in fields such as
computer graphics. Interestingly, alpha shapes have been used to an-
alytically compute shapes for macromolecules such proteins and esti-
mate their molecular areas and volume (Liang et al., 1998). The three-
dimensional alpha shape can be thought of intuitively as using an
ice-cream scooper to scoop out chocolate chip ice-cream. (Da, 2017)
describes this analogy better than any paraphrase I could come up
with. He writes, “imagine a huge mass of ice-cream making up the
space R3 and containing the points as “hard” chocolate pieces. Using
one of these sphere-formed ice-cream spoons we carve out all parts
of the ice-cream block we can reach without bumping into chocolate
pieces, thereby even carving out holes in the inside (e.g. parts not
reachable by simply moving the spoon from the outside). We will
eventually end up with a (not necessarily convex) object bounded by
caps, arcs and points. If we now straighten all “round” faces to tri-
angles and line segments, we have an intuitive description of what is
called the alpha-shape.” The radius of the carving spoon is

√
α.

A desirable feature of convex hulls is that they are unique for each
set of points, while multiple distinct alpha shapes exist. This is a
desirable property of alpha shapes as there is no formal concept of
shape so no algorithm can determine the correct shape for a set of
points, and indeed the alpha-shape is just one possibly family of
shapes. However, the concept allows for an α to be picked that pro-
duces the most desirable shape [see Edelsbrunner and Mücke (1994)
for concrete examples in three dimensions].

While a very haphazard measure of uncertainty, they are much eas-
ier to employ than the sophisticated uncertainty quantification frame-
work of Bayesian inference and satisfy our basic needs for now. Figure
30 shows the three-dimensional convex hull enclosing all the recon-
structed geometries from figure 29.
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Figure 30: Three dimen-
sional convex hull en-
closing the possible OCS
(2, 2, 2) geometries that
may be reconstructed
assuming a true geom-
etry of (rCO, rCS, θ) =
(130 pm, 190 pm, 169°)
and 5% uncertainty on
the measured momen-
tum vectors.

6.2 uncertainty quantification using bayesian inference

The heuristic uncertainty quantification performed in the previous
section does provide some insight on the process of geometry recon-
struction, and emphasized the large effect that measurement uncer-
tainty must have played in our reconstruction of experimental data.
This further highlights the importance of tackling the task of uncer-
tainty quantification in a rigorous and sophisticated manner, in which
case the Bayesian inference framework provides a mature set of meth-
ods, software, and learning material to do this.

In this section we will look at why a Bayesian approach makes
sense for the geometry reconstruction problem and for inference prob-
lems in science more generally. The aim is to be expository and to that
effect, many references are provided for further reading.

6.2.1 Why take a Bayesian approach?

The Bayesian point of view provides a more natural and intuitive
way of thinking about uncertainty in the physical sciences. While vir-
tually any analysis may be done in either the classical or Bayesian
framework, the Bayesian approach tends to make more sense and can
be philosophically superior (Gelman and Shalizi, 2013). Frequentist
statistics defines the probability as a limiting case of repeated mea-
surements and so after many repeated measurements, the true value
of a parameter of interest is typically given as being within some con-
fidence interval with 95% probability. The Bayesian approach allows
us to write down the exact probability distribution we wish to find
in terms of the measurements we have made and our prior beliefs
and solve the resulting equations for it using Bayes’ theorem, such
that our prior beliefs are updated based on the measurements we
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have made. Bayesian inference is also suitable for inferring unknown
parameters in inverse problems.

Bayesian statistics actually predates the more commonly taught fre-
quentist statistical methods (e. g. p-values, confidence intervals, etc.)
but has made a strong resurgence in recent years due to rising com-
putational abilities and more recently, available software for parame-
ter estimation in statistical models using Markov chain Monte Carlo
methods (Brooks, 2003). It is important to note that frequentist meth-
ods such as t-tests still have immense utility in the sciences, how-
ever, Bayesian inference methods provide the means of tackling more
complex problems that are intractable otherwise. Bayesian methods
have had large impacts in many scientific fields such as genetics
(Beaumont and Rannala, 2004) and more recently, machine learning
(Murphy, 2012), and an interpretation of quantum mechanics, termed
Quantum Bayesianism, exists as well (Timpson, 2008).

Many have argued for philosophical superiority of the Bayesian
approach, most famously by Efron (1986) in his article titled “Why
isn’t everyone a Bayesian?”. Cousins (1995) authored a similarly titled
article, “Why isn’t every physicist a Bayesian?” comparing both the clas-
sical and Bayesian frameworks in the context of particle physics. A
more recent article on the subject authored by Lyons (2012) appeared
in Physics Today. Extensive review articles have been written on the
general subject of Bayesian inference in physics and include numer-
ous examples and case studies D’Agostini (2003), Dose (2003), and
Toussaint (2011).

Numerous textbooks exist on the topic. Gelman et al. (2014) pro-
vide an excellent introduction to Bayesian data analysis, especially
the theoretical foundations of Bayesian statistics, and Kruschke (2014)
provides a practical and easy-to-follow introduction accompanied with
many examples. Although not particularly writing about just Bayesian
inference, Hogg, Bovy, and Lang (2010) provide a rather excellent
and extensive tutorial in fitting data to models in the form of an ar-
ticle, and include numerous exercises relying on the use of Bayesian
inference. VanderPlas (2014) also provides a primer comparing the
frequentist and Bayesian approaches with several examples imple-
mented in Python.

6.2.2 Bayes’ Theorem

At the center of Bayesian statistics lies Bayes’ theorem or Bayes’ rule
which describes the probability of an event based on prior knowl-
edge of conditions that may be related to the event. It was first in-
troduced by Reverend Thomas Bayes and published two years after
his death with revisions by Ronald Price in a work titled “An Essay
towards solving a Problem in the Doctrine of Chances” (Bayes and Price,
1763) although evidence suggests that the title was modified by Price
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to support a theological argument, and that Bayes intended it to be
“A Method of Calculating the Exact Probability of All Conclusions founded
on Induction” (Stigler, 2013). Pierre-Simon Laplace then developed it
further and published it in its modern form along with many fun-
damental results in statistics (Laplace, 1820). Dale (1999) discusses
the history in more detail, and McGrayne (2011) traces the history
of Bayes’ rule in her popular science book and its applications from
World War II to bioinformatics.

Bayes’ theorem in its simplest form states that probability of ob-
serving an event A given that B is true is

P(A|B) = P(B|A)P(A)

P(B)
(6.5)

where P(B|A) is the probability that event B occurs given that A is
true, and P(A) and P(B) are the probabilities that events A and B
occur respectively. P(A|B) denotes a conditional probability and can
be expressed as P(A|B) = P(A ∩ B)/P(B) where P(A ∩ B) is the
probability of both A and B occurring and ∩ denotes the intersection
operation from set theory.1

For Bayesian inference of model parameters given that certain mea-
surements or observations, the basic idea can be extracted from (6.5).
Let us use θ to denote the parameters of a model, for example θ =

(r12, r23, φ) for a model of a triatomic molecule, and y to denote data
that has been measured or observed. We are interested in finding the
posterior probability density P(θ|y), the probability that our model is de-
scribed by the parameters θ given that certain measurements y have
been made. Using (6.5), we can write

P(θ|y) = P(θ)P(y|θ)
P(y)

(6.6)

where P(θ) denotes the prior distribution, that is the probability distri-
bution encapsulating our belief regarding the model parameters prior
to making any measurements, and P(y|θ) is the likelihood function is
the distribution of observed data conditional on the model parame-
ters. P(y) is the marginal likelihood,

P(y) =
∫

P(θ)P(y|θ) dθ (6.7)

or the distribution of measurements marginalized over the model pa-
rameters. It can be difficult to compute as a high-dimensional integral.
As it does not depend on θ it is a constant when considering a fixed

1 The concepts of a probability measure and an event, which is a subset of a sample space,
can all be defined precisely in a modern framework. See Kallenberg (2002) for an
introduction to modern probability theory.
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set of measurements y, and thus we may instead be interested in com-
puting the unormalized posterior density

P(θ|y)︸ ︷︷ ︸
posterior

∝ P(θ)︸︷︷︸
prior

× P(y|θ)︸ ︷︷ ︸
likelihood

(6.8)

Using our geometry reconstruction problem for a triatomic molecule
as an example, we are modeling a molecule using the parameters θ =

(r12, r23, φ) where φ now denotes the bond angle, and the measure-
ments y constitute a set of three momentum vectors y = (p1, p2, p3)

so (6.5) gives

P(r12, r23, φ|p1, p2, p3) =
P(p1, p2, p3|r12, r23, φ)P(r12, r23, φ)

P(p1, p2, p3)
(6.9)

where P(r12, r23, φ) is the prior distribution and P(p1, p2, p3|r12, r23, φ)

is the likelihood, that is the probability that the momentum vectors
(p1, p2, p3) are observed given that the molecule is described by the
parameters (r12, r23, φ).

In our case, a uniform distribution or a guess distribution may
be used for the prior, or it may be obtained from quantum chem-
istry simulations for greater accuracy. Generally the posterior only
depends strongly on the prior in the absence of sufficient data. Gel-
man et al. (2014) discusses the choice of prior distribution in great
detail. The likelihood function P(p1, p2, p3|r12, r23, φ) is governed by
a deterministic simulation as exploding a certain molecule will pro-
duce exactly one set of momentum vectors, so in reality it is a Dirac-
delta function. However, in the presence of measurement uncertainty
it will form a proper probability distribution. I have thought of two
methods by which measurement uncertainty may be introduced into
the deterministic forward simulation of the Coulomb explosion. One
idea is to place Gaussian errors on the momentum vectors such that
pi ∼ wi + εi where wi is the measured momentum vector and εi mod-
els the measurement uncertainty on the momentum vector, which
may take the form of a multivariate Gaussian distribution, for exam-
ple. This in effect employs a hierarchical statistical model and adds
a second layer of variables [Kruschke (2014, ch. 9) and Gelman et al.
(2014, ch. 5) discuss hierarchical statistical models from a Bayesian
perspective]. A second idea is to allow the initial conditions of the
Coulomb explosion simulation (the molecular parameters and ini-
tial momenta) to be probability distributions themselves such that a
probabilistic solution of the differential equations is computed using
Bayesian uncertainty quantification and inference. Such an approach
has been recently developed, especially for the inference of parame-
ters in dynamical systems, by Chkrebtii et al. (2016) and further de-
tailed in her thesis (Chkrebtii, 2013).
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The denominator of (6.9),

P(p1, p2, p3) =
∫

P(p1, p2, p3|r12, r23, φ) dr12 dr23 dφ (6.10)

will be extremely difficult to calculate in general as it is the proba-
bility that the momentum vectors (p1, p2, p3) are measured, regard-
less of the molecular geometry that produced them. As the marginal
likelihood is simply a scaling factor, we will instead be interested in
computing the unnormalized posterior density

P(r12, r23, φ|p1, p2, p3) ∝ P(p1, p2, p3|r12, r23, φ)P(r12, r23, φ) (6.11)

Evaluating this expression can still be difficult, and the usual ap-
proach is to randomly sample from it, forming a posterior probabil-
ity density in the process. Markov chain Monte Carlo methods provide
the means of doing this. We can also see why Bayesian inference is
suitable for inferring latent variables in inverse problems as the prob-
ability density of interest for the inverse problem is directly related
to the probability density of interest for the forward problem, which
is generally known [see Stuart (2010) for a Bayesian perspective on
inverse problems].

6.2.3 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are a class of algorithms
for sampling from a probability distribution by constructing a Markov
chain whose equilibrium distribution is the same as that of the prob-
ability distribution we are sampling from. Extensive literature exists
on the theory of Markov chains (Levin, Peres, and Wilmer, 2009) and
their mixing times, that is, the time until they come close to their equi-
librium distribution. In practice, mature MCMC methods packaged
as well-documented software, such as JAGS (Plummer, 2003) or Stan
(Carpenter et al., 2017), do not require intricate knowledge of Markov
chains or MCMC sampling algorithms to use, however, it is always
useful for any practitioner to have some idea of their inner workings.

Diaconis (2009) gives an introduction to MCMC methods with a fo-
cus on their impact on the types of scientific and mathematical prob-
lems they have allowed us to solve, opening with a fascinating exam-
ple involving deciphering coded messages between prison inmates.
Richey (2010) and Robert and Casella (2011) give a short history of
MCMC methods and their development.

An extensive handbook on MCMC methods does exist (Brooks et
al., 2011) and includes a practical introduction to MCMC methods
in its first chapter, authored by Geyer (2011), who discusses some
important aspects of using Markov chains such as burn-in and con-
vergence checking, and provides an overview of some important sam-
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pling methods. Standard textbooks and references on MCMC meth-
ods include Gilks, Richardson, and Spiegelhalter (1995) and Christian
and Casella (1999).

Two popular random walk MCMC methods include the Metropolis-
Hastings algorithm and Gibbs sampling. The Metropolis-Hastings al-
gorithm, first proposed by Metropolis et al. (1953) performs a random
walk using some proposed probability density with some rejection cri-
terion, and can be quite inefficient especially for high-dimensional in-
tegrals. Gibbs sampling uses the Metropolis-Hastings algorithm, how-
ever, it samples from parameterized probability distributions thus re-
quiring no tuning which can be highly desirable when direct sam-
pling is difficult. Casella and George (1992) gives an introduction
to the Gibbs Sampler and it is discussed extensively throughout the
handbook by Brooks et al. (2011). Just another Gibbs Samples (JAGS)
(Plummer, 2003) along with its R package (RJAGS) are popular imple-
mentations. Brooks et al. (2011) discusses other random walk MCMC
algorithms, such as slice sampling and reversible jump MCMC, ex-
tensively.

One popular algorithm not based on random walks, Hamiltonian
MCMC, has risen in popularity in recent years due to its utility in
sampling from high-dimensional distributions more effectively than
random walk based algorithms. Inspired by a hybrid Monte Carlo
method first proposed by Duane et al. (1987) for the numerical simula-
tion of lattice field theories, Hamiltonian MCMC takes a Hamiltonian
mechanics approach to sampling by subjecting a fictional particle to a
potential energy function described by the target probability density
distribution. Random sampling is performed by solving Hamilton’s
equations for the fictional particle. While seemingly bizarre, Hamilto-
nian MCMC does indeed work quite well in many cases. Neal (2011)
provides an excellent and practical introduction. Stan (along with it’s
R wrapper, RStan, and Python wrapper, PyStan) is the most popular
and mature implementation (Carpenter et al., 2017), finding use in
many scientific fields and in the humanities as well.

If a method or framework for geometry reconstruction using Bayesian
inference is developed and implemented, we humbly suggest naming
it MMMGRUBS2 (Molecular Motion Movies and Geometry Recon-
struction Using Bayesian Statistics).

2 Grubs are beetle larvae, as enjoyed by Simba in the 1994 animated film The Lion King,
mmm!
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C O N C L U S I O N

We have shown that geometry reconstruction can be performed quickly
using two approaches, a heuristic lookup table discussed in chapter
4 and the more precise optimization routine relying on constrained
nonlinear optimization methods in chapter 5. We used both meth-
ods to investigate the existence of multiple solutions, or degenerate
geometries, and used different analyses to study their nature which
should be performed before attempting to reconstruct any molecular
geometry. We also investigated the effect of uncertainty in the mo-
mentum vectors on the reconstructed geometries in chapter 6, high-
lighting the sensitive nature of the task.

7.1 infeasibility of geometry reconstruction

We have found two major barriers to accurate geometry reconstruc-
tion. Firstly, it is highly sensitive to uncertainties in the momentum
vectors, however, even if they are measured accurately enough that
measurement uncertainty is no longer a concern, the initial momen-
tum carried by each atomic fragment would need to be measured
accurately as well since they introduce additional uncertainty that
cannot be inferred otherwise. Secondly, the existence of degenerate
geometries for large regions of phase space may make reconstruc-
tion difficult, especially if multiple degeneracies represent physically
realizable structures. The problem is exasperated in the presence of
uncertainty as the true geometry may now be contained in multiple
unconnected regions in phase space.

We only investigated the simplest case possible by assuming the
atomic fragments evolve on a purely classical Coulomb potential and
that they possess zero initial momentum, and yet the reconstruction
problem already seems to exhibit pathological behavior. Accounting
for additional complexity through the use of a more accurate non-
Coulombic potential, the measurement or estimation of initial mo-
mentum for the atomic fragments, and modeling the effect of the
laser’s electric field with the molecule are likely to increase the prob-
lem’s sensitivity to uncertainty in the momentum vectors, and thus
the entire task of geometry reconstruction appears to be quite com-
plex and only possible under certain conditions, and becomes even
more complex for larger molecules which require at least twice the
number of degrees of freedom to describe. Additional degrees of free-
dom, introduced due to the modeling of additional phenomena or
the study of larger molecules, would increase the dimensionality of

95



7.2 a framework for geometry reconstruction using cei

the optimization problem, possibly resulting in a problem that may
be difficult to solve with the already advanced optimization meth-
ods employed due to the curse of dimensionality. It is also possible
that accounting for additional complexity may introduce additional
degeneracies through the introduction of extraneous degrees of free-
dom, which would make the accurate reconstruction of molecular
geometries even more difficult.

7.2 a framework for geometry reconstruction using cei

While geometry reconstruction using CEI can be difficult, it may be
performed under certain conditions:

1. The momentum vectors are measured very accurately, with an
error less than 1%.

2. The atomic fragments carry very little initial momentum. Or in
the case that they do not, then the initial momenta of the atomic
fragments must be measured experimentally, or estimated accu-
rately (which would add further complexity to the geometry
reconstruction problem).

3. Negligible molecular rearrangement occurs during the ioniza-
tion process. This would require at least, the use of few-cycle
laser pulses and depends on the molecule as well, as some
may have a tendency to rearrange significantly on a time scale
shorter than the shortest intense laser pulses.

4. The reconstructed geometries are not degenerate with other ge-
ometries. Thus regions of phase space containing degenerate
geomtries must be mapped out.

5. The Coulomb potential very closely approximates the potential
experienced by the atomic fragments during the Coulomb ex-
plosion.

If these conditions above hold, then we propose the following frame-
work for geometry reconstruction:

1. Choose conventions for describing the molecule’s structure and
the orientation of the asymptotic momentum vectors following
a Coulomb explosion, for example, as described in section 3.4..

2. Map out the degenerate regions of your molecular system, that
is, find the regions of phase space which contain degenerate ge-
ometries (as done in section 5.4). You may choose to completely
ignore geometries from these regions if multiple degeneracies
correspond to physically realizable geometries.
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3. Filter out momentum vector measurements that exhibit a large
error, such as by not summing to zero, or that correspond to
an explosion that is highly non-Coulombic, that is the kinetic
energy of the atomic fragments significantly differs from the
kinetic energy expected by a purely Coulombic explosion. If not
using the Coulomb potential, then compare with simulations
using the more appropriate potential.

4. Set up the optimization problem (section 5.2) or the statistical
model (section 6.2) for geometry reconstruction. Inequality con-
straints may be used to constrain the reconstructed geometries
to have feasible parameters. If using Bayesian inference is used,
quantum chemistry simulations of the ground or excited state
may provide prior distributions, otherwise uninformative pri-
ors may be used.

5. If using Bayesian inference, then the calculated posterior distri-
butions should already have taken into account the effect of un-
certainty. If not, the uncertainty in the reconstructed geometries
must be quantified.

6. Plot the final geometry. Bond length and bond angle (as well
as dihedral angles) distributions should be reported, as well as
the correlations between each of these parameters (section 5.3.2).
This may constitute a single frame of a molecular movie.

7. Repeat this process for each frame, which may be for each pulse
length in a pump-probe CEI experiment, thus producing a molec-
ular movie.
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A
S U P P L E M E N TA RY F I G U R E S

This appendix contains supplementary figures, mainly pertaining to
measurements and geometry reconstructions made for pulse lengths
longer than 7 fs that seemed rather obstructive placed within chapters
3 to 5 yet may be referenced throughout this thesis.

a.1 momentum data measurements (30 fs to 200 fs)

a.1.1 Momentum distributions (30 fs to 200 fs)
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Figure 31: OCS (2,2,2) 30 fs momentum.
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Figure 32: OCS (2,2,2) 60 fs momentum.
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Figure 33: OCS (2,2,2) 100 fs momentum.
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Figure 34: OCS (2,2,2) 200 fs momentum.
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a supplementary figures

a.1.2 Momentum measurement scatter plot matrices (30 fs to 200 fs)
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Figure 35: OCS (2,2,2) 30 fs momentum pair plots.
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Figure 36: OCS (2,2,2) 60 fs momentum pair plots.
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Figure 37: OCS (2,2,2) 100 fs momentum pair plots.
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Figure 38: OCS (2,2,2) 200 fs momentum pair plots.

116



a supplementary figures

a.2 lookup table geometry reconstructions
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Figure 39: OCS (2,2,2) 30 fs lookup table geometry reconstruction.
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Figure 40: OCS (2,2,2) 60 fs lookup table geometry reconstruction.
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Figure 41: OCS (2,2,2) 100 fs lookup table geometry reconstruction.
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Figure 42: OCS (2,2,2) 200 fs lookup table geometry reconstruction.
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a supplementary figures

a.3 mathematical optimization geometry reconstruc-
tions

a.3.1 Geometry plots
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Figure 43: OCS (2,2,2) 30 fs geometry reconstructions using nonlinear con-
strained optimization.
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Figure 44: OCS (2,2,2) 60 fs geometry reconstructions using nonlinear con-
strained optimization.
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Figure 45: OCS (2,2,2) 100 fs geometry reconstructions using nonlinear con-
strained optimization.
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Figure 47: Scatter plot matrices for the OCS (2,2,2) 60 fs geometry reconstruc-
tions using nonlinear constrained optimization.

a.3.2 Scatter plot matrices
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Figure 46: Scatter plot matrices for the OCS (2,2,2) 30 fs geometry reconstruc-
tions using nonlinear constrained optimization.
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Figure 48: Scatter plot matrices for the OCS (2,2,2) 100 fs geometry recon-
structions using nonlinear constrained optimization.
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B
E S S E N T I A L C O D E L I S T I N G S

This appendix includes the most essential code required to replicate
the results presented in this thesis. The rest of the code, including
undiscussed extensions and scripts to reproduce the plots, is available
on the ali-ramadhan/msc-thesis-code GitHub repository. In the case
that the code is not available from GitHub for any reason, I should be
able to provide it via request by email or otherwise.

1 % hamiltonianDerivative.m:

2 % Computes the derivatives of the Hamiltonian (Hamilton's equations)

3 % for a triatomic molecule.

4 %

5 % Inputs:

6 % * time: a 1x2 row vector containing [InitialTime, FinalTime]

7 % * p : a 1x18 row vector containing position and momemtum parameters

8 % of the three particles, given as

9 % [x1 y1 z1 x2 y2 z2 x3 y3 z3 px1 px2 ... pz3].

10 % p stands for parameters.

11 %

12 % Output:

13 % * out : an nx19 matrix where each row contains [Time, Position[1x9],

14 % Momentum[1x9]] in the same format as p. In practice, only

15 % the final row is utilized to evaluate the final conditions

16 % of the system, i.e. we are only interested in the asymptotic

17 % momentum vectors.

18 %

19 % Notes: * All units are SI.

20 % * This function is written in the form of a system of

21 % first-order ordinary differential equations (ODE's),

22 % y' = f(t, y), so that it may be solved using MATLAB's

23 % 4/5th-order Runge-Kutta ODE solver, ode45. Pretty much all

24 % numerical ODE solvers expect the system of ODE's to be

25 % described in this form.

26

27 function out = hamiltonianDerivative(time, p)

28

29 % Physical constants

30 amu = 1.66053886e-27; % [kg], 1 atomic mass unit

31 e = 1.60217646e-19; % [C], 1 elementary charge

32 k = 8.987551e9; % [N m^2 C^-2], electrostatic constant

33

34 % Atomic masses and charges

35 m1 = amu*p(19); m2 = amu*p(20); m3 = amu*p(21);

36 q1 = e*p(22); q2 = e*p(23); q3 = e*p(24);

37

38 % Calculate the distance between ions. Note that this quantity does

39 % not preserve vector direction.

40 r12 = ((p(1)-p(4))^2 + (p(2)-p(5))^2 + (p(3)-p(6))^2)^0.5; % [m]

41 r13 = ((p(1)-p(7))^2 + (p(2)-p(8))^2 + (p(3)-p(9))^2)^0.5; % [m]
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b essential code listings

42 r23 = ((p(4)-p(7))^2 + (p(5)-p(8))^2 + (p(6)-p(9))^2)^0.5; % [m]

43

44 % pDot is a column vector with components [vx1; vy1; vz1; vx2; ... vz3;

45 % p'x1; ... p'z3]. These quantities are produced by taking the first

46 % derivative of the Hamiltonian with respect to the appropriate variable.

47

48 pDot = [p(10)./m1; p(11)./m1; p(12)./m1; ...

49 p(13)./m2; p(14)./m2; p(15)./m2; ...

50 p(16)./m3; p(17)./m3; p(18)./m3; ...

51

52 k*q1*q2*(p(1)-p(4))/r12^3 + k*q1*q3*(p(1)-p(7))/r13^3; ...

53 k*q1*q2*(p(2)-p(5))/r12^3 + k*q1*q3*(p(2)-p(8))/r13^3; ...

54 k*q1*q2*(p(3)-p(6))/r12^3 + k*q1*q3*(p(3)-p(9))/r13^3; ...

55

56 k*q2*q1*(p(4)-p(1))/r12^3 + k*q2*q3*(p(4)-p(7))/r23^3; ...

57 k*q2*q1*(p(5)-p(2))/r12^3 + k*q2*q3*(p(5)-p(8))/r23^3; ...

58 k*q2*q1*(p(6)-p(3))/r12^3 + k*q2*q3*(p(6)-p(9))/r23^3; ...

59

60 k*q3*q1*(p(7)-p(1))/r13^3 + k*q3*q2*(p(7)-p(4))/r23^3; ...

61 k*q3*q1*(p(8)-p(2))/r13^3 + k*q3*q2*(p(8)-p(5))/r23^3; ...

62 k*q3*q1*(p(9)-p(3))/r13^3 + k*q3*q2*(p(9)-p(6))/r23^3];

63

64 out = [pDot; p(19:24)];

65 end

1 % simulateMomenta.m:

2 % Given a list of geometries, simulate a Coulomb explosion for each and

3 % for each geometry, return the asymptotic momentum vectors for the

4 % atomic fragments.

5 %

6 % Inputs:

7 % * geometries: nx3 matrix where each row is of the form

8 % [r_12 r_23 theta]. r_12 and r_23 should be given in SI

9 % units [m] and theta in [deg].

10 % * masses: row vector [m1 m2 m3] with the atomic masses in amu.

11 % * charges: row vector [q1 q2 q3] with the atomic charges in units

12 % of the elementary charge e. So they should be integers.

13 %

14 % Output:

15 % * out: nx12 matrix where each row contains the molecular parameters

16 % r_12, r_23, and theta as well as the asymptotic momentum vectors

17 % of the three atomic fragments after the Coulomb explosion.

18 % [r_12 r_23 theta p_1 p_2 p_3]

19 %

20 % Notes: * All units are SI.

21 % * parfor loop requires the Parallel Processing Toolbox.

22

23 function out = simulateMomenta(geometries, masses, charges, debug)

24 nGeometries = size(geometries, 1);

25

26 if debug

27 fprintf('# Simulating asymptotic momenta for %d geometries...\n', ...

28 nGeometries);

29 fprintf('# Masses = (%.2f, %.2f, %.2f) [amu]\n', ...

30 masses(1), masses(2), masses(3));

31 fprintf('# Charges = (%d, %d, %d) [e]\n', ...
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32 charges(1), charges(2), charges(3));

33 end

34

35 out = zeros(nGeometries, 12);

36

37 r_12 = geometries(:, 1);

38 r_23 = geometries(:, 2);

39 theta = geometries(:, 3);

40

41 % Place each first atom to the left of central atom, along the

42 % y-axis.

43 x_1 = -r_12;

44 y_1 = zeros(nGeometries, 1);

45 z_1 = zeros(nGeometries, 1);

46

47 % Place each central atom at the origin.

48 x_2 = zeros(nGeometries, 1);

49 y_2 = zeros(nGeometries, 1);

50 z_2 = zeros(nGeometries, 1);

51

52 % Place each third atom to the right of the central in the +x/+y

53 % quadrant, forming an angle (180-theta) with the x-axis.

54 x_3 = r_23 .* cosd(180 - theta);

55 y_3 = r_23 .* sind(180 - theta);

56 z_3 = zeros(nGeometries, 1);

57

58 % For each geometry, calculate the asymptotic momentum vectors it

59 % would produce in a Coulomb explosion.

60 parfor i = 1:nGeometries

61 g = [x_1(i) y_1(i) z_1(i) x_2(i) y_2(i) z_2(i) x_3(i) y_3(i) ...

62 z_3(i)]; % initial positions

63 p_0 = zeros(1, 9); % initial momentum

64 p = coulombExplode([g p_0], masses, charges);

65 out(i,:) = [r_12(i) r_23(i) theta(i) p(1:3) p(4:6) p(7:9)];

66

67 % Write progress report to console every 100 simulations.

68 % Note: Simulations may not be done in order since loop

69 % iterations are executed in parallel in a nondeterministic order

70 % (parfor loop).

71 if debug && (rem(i, 100) == 0)

72 fprintf('Simulated geometry #%d/%d.\n', i, nGeometries);

73 drawnow('update');

74 end

75 end

76

77 % Extract each atom's momentum into 2D vectors in preparation to

78 % rotate into our convention.

79 p_1 = out(:, 4:5);

80 p_2 = out(:, 7:8);

81 p_3 = out(:, 10:11);

82

83 % Put each momentum into column vector form so we can use matrix

84 % multiplication.

85 p_1 = p_1'; p_2 = p_2'; p_3 = p_3';

86

87 % Calculate the angle between the central atom and the +x-axis then

88 % rotate the three momentum vectors back towards the origin by that
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89 % much so that the central atom's momentum vector points along the

90 % +x-axis.

91 for i = 1:nGeometries

92 theta_2x = atan2(p_2(2, i), p_2(1, i));

93

94 % Rotation matrix for rotating points in the xy-plane

95 % counterclockwise through an angle -theta_2x about the origin.

96 R = [cos(-theta_2x) -sin(-theta_2x); ...

97 sin(-theta_2x) cos(-theta_2x);];

98

99 % Rotate each vector.

100 p_1(:, i) = R*p_1(:, i);

101 p_2(:, i) = R*p_2(:, i);

102 p_3(:, i) = R*p_3(:, i);

103 end

104

105 % Put everything back into row vector form.

106 p_1 = p_1'; p_2 = p_2'; p_3 = p_3';

107

108 % Set the z components (and also y in case of carbon) to 0 so they

109 % all have exactly the exact same numerical value rather than 0.0000

110 % and -0.0000, etc. This makes data analysis and filtering more

111 % convenient as we can just check for equality with 0.

112 % Note: In our momentum vector convention for triatomic molecules,

113 % these components should all be zero anyways.

114 p_1(:, 3) = 0;

115 p_2(:, 2) = 0; p_2(:, 3) = 0;

116 p_3(:, 3) = 0;

117

118 out = [r_12 r_23 theta p_1 p_2 p_3];

119 end

120

121 % coulombExplode:

122 % Given the initial positions and momentum vectors of three ions forming

123 % a triatomic molecule, simulate their Coulomb explosion and return the

124 % asymptotic momentum vectors of the three ions.

125 %

126 % Inputs:

127 % * initialConditions: 18-element row vector containing the initial

128 % positions and momentum of the atoms, in the form

129 % [x1_0 y1_0 ... z3_0 px1_0 py1_0 ... pz3_0].

130 % * masses: row vector [m1 m2 m3] with the atomic masses in amu.

131 % * charges: row vector [q1 q2 q3] with the atomic charges in units

132 % of the elementary charge e. So they should be integers.

133 %

134 % Output:

135 % * out: A 9-element row vector containing the asymptotic momentum

136 % vector components for each ion in the form

137 % [px1 py1 pz1 ... pz3]

138

139 function out = coulombExplode(initialConditions, masses, charges)

140 % Set some error tolerances and initial step sizes for the ODE solver

141 % to use. See: https://www.mathworks.com/help/matlab/ref/odeset.html

142 options = odeset('AbsTol', 1e-27, ... % absolute error tolerance

143 'RelTol', 1e-6, ... % relative //

144 'InitialStep', 1e-18); % initial step size

145
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146 % Solve the first-order ODE system described in

147 % hamiltonianDerivative.m from t=0 to t=1e-11, by which time the

148 % atoms have long attained their asymptotic values. od45 uses

149 % adaptive time steps so the intermediate times won't be uniformly

150 % distributed.

151 [t,y] = ode45('hamiltonianDerivative', [0 1e-11], ...

152 [initialConditions masses charges], options);

153

154 % We have all the intermediate positions and momentum values but we

155 % only care about the asymptotic momentum components, so we return

156 % them and ignore everything else.

157 out = y(size(t, 1), 10:18);

158 end

1 % removeCOMMOtion.m:

2 % Takes a momentum triple [p_1 p_2 p_3] and returns it in the same order

3 % but with the center of mass motion removed. That is, we are converting

4 % the momentum vectors from the lab frame to the center-of-momentum (COM)

5 % frame (sometimes called the molecular frame).

6 %

7 % Inputs:

8 % * momentum: 9-element row vector containing the momentum triple in

9 % the form [px1 py1 ... pz3].

10 % * masses: 3-element row vector [m1 m2 m3] containing the mass of each

11 % atom in atomic mass units [amu].

12 %

13 % Output:

14 % * out: 9-element row vector containing the momentum triple in the

15 % form [px1 py1 ... pz3] in the COM frame.

16 %

17 % Notes: * This should only need to be done for experimentally measured

18 % momentum vectors. Simulated momentum vectors (e.g. from

19 % simulateMomenta.m) are already in the COM frame so this should

20 % do nothing to them.

21 % TODO: * Vectorize this function so it converts an entire set of

22 % momentum triples. That way the same function can be used for 1

23 % or 100 triples.

24

25 function out = removeCOMMotion(momentum, masses)

26 % Split the momentum triple into X, Y, Z system components.

27 p_X = momentum(1:3:7);

28 p_Y = momentum(2:3:8);

29 p_Z = momentum(3:3:9);

30

31 massSum = sum(masses);

32

33 % Eliminate center of mass motion.

34 p_X = p_X - sum(p_X) .* (masses)/massSum;

35 p_Y = p_Y - sum(p_Y) .* (masses)/massSum;

36 p_Z = p_Z - sum(p_Z) .* (masses)/massSum;

37

38 % Put the vectors back into the original [p1 p2 p3] form.

39 momentum(1:9) = reshape([p_X; p_Y; p_Z], 1, 9);

40

41 out = momentum;

42 end
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1 % rotateMomentum.m:

2 % Rotate the asymptotic momentum vectors produced by a Coulomb explosion

3 % such they lie in the xy-plane with the middle atom's momentum vector

4 % pointing along the +x-axis.

5 %

6 % Input:

7 % * momenta: 1x9 row vector of momentum components in the form

8 % [p2x p2y p2z p1x p1y p1z p3x p3y p3z]

9 % WARNING: MIDDLE ATOM FIRST, THEN FIRST, THEN THIRD ATOM!

10 %

11 % Output:

12 % * out: 1x11 row vector containing the momentum triples as well as the

13 % theta_v and chi angles in the form

14 % [p2x p2y p2z p1x p1y p1z p3x p3y p3z theta_v chi]

15 %

16 % Notes: * THIS FUNCTION REQUIRES THE MIDDLE ATOM'S MOMENTUM FIRST, THEN

17 % THE FIRST, THEN THIRD! I have no idea why I haven't changed

18 % it yet...

19 %

20 % TODO: * Vectorize this function so it rotates an entire set of momentum

21 % triples. That way the same function can be used for 1 or 100

22 % triples.

23

24 function out = rotateMomentum (momenta)

25 % We want to put the momentum components in the form

26 % [px1 py1 pz1 px2 py2 pz2 px3 py3 pz3].

27 momenta = reshape(momenta, 3, 3)';

28

29 % If all the vectors are already in the xy-plane, just return them.

30 z_components = momenta(:,3);

31 if z_components == [0; 0; 0]

32 % MATLAB Editor may complain about this equality above but it

33 % works for momentum vectors produced by simulateMomenta.m or

34 % vectors already rotated using this function.

35 % TODO: Assume the zeros may be floating-point and very close to

36 % zero.

37

38 theta_v = acos(dot(momenta(2,:), momenta(3,:)) / ...

39 norm(momenta(2,:)) / norm(momenta(3,:)));

40 chi = acos(dot(momenta(1,:), momenta(2,:)-momenta(3,:))/...

41 norm(momenta(1,:))/norm(momenta(2,:)-momenta(3,:)));

42 out = [momenta(2,:), momenta(1,:), momenta(3,:), theta_v, chi];

43 return

44 end

45

46 % First, check that all three momentum vectors form a plane.

47 % If this is the case, the determinant of the momentum vectors will

48 % be zero (or very close).

49

50 if det(momenta) < 1e-50

51 % The normal vector of the plane is the cross product of two of

52 % the vectors.

53 normal = cross(momenta(1, :), momenta(2, :));

54

55 % Normalise the normal vector!

56 normal = normal / norm(normal);
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57

58 % The components of the normal vector (A,B,C) define the plane.

59 % By construction, the plane goes through the origin. We must

60 % now find the angle this plane makes with the xy-plane, which is

61 % defined by the normal vector normal_xy = [0 0 1]. This angle is

62 % called the dihedral angle.

63 normal_xy = [0 0 1];

64 dihedral = acos(dot(normal, normal_xy)); % [rad]

65

66 % The two planes intersect in a line defined by crossing the two

67 % normal vectors.

68 intersection = cross(normal, normal_xy);

69

70 % if intersection - zeros(1,3) ~= 0 % this is only the case if

71 intersection = intersection / norm(intersection);

72

73 % Insert all of the relevant information into the matrix which

74 % performs the plane rotation.

75 momenta = rotatePlane(momenta, dihedral, intersection);

76

77 theta_v = acos(dot(momenta(2,:), momenta(3,:))/...

78 norm(momenta(2,:))/norm(momenta(3,:)));

79

80 % Determine phi, the minimum angle between one of the terminal

81 % atoms and the x-axis.

82 % phi = abs(atan2(momenta(2,2), momenta(2,1)));

83

84 % For some reason I couldn't get atan2 to work, so let's go with

85 % this.

86 phi = abs(atan(momenta(2,2)/momenta(2,1)));

87

88 if momenta(2,1) >= 0 && momenta(2,2) >= 0 % first quadrant

89 phi = phi;

90 elseif momenta(2,1) < 0 && momenta(2,2) >= 0 % second quadrant

91 phi = pi - phi;

92 elseif momenta(2,1) < 0 && momenta(2,2) < 0 % third quadrant

93 phi = pi + phi;

94 else % fourth quadrant

95 phi = 2*pi - phi;

96 end

97

98 % Rotate everything (clockwise) through the angle phi

99 M = [cos(-phi), -sin(-phi), 0; ...

100 sin(-phi), cos(-phi), 0; ...

101 0, 0, 1];

102

103 momenta(1,:) = (M*(momenta(1,:)'))';

104 momenta(2,:) = (M*(momenta(2,:)'))';

105 momenta(3,:) = (M*(momenta(3,:)'))';

106

107 % Flip in the y-axis (if necessary) such that the second end

108 % atom sits in the +x half plane.

109 if momenta(3,2) < 0

110 momenta(1:2:3,2) = -momenta(1:2:3,2);

111 end

112

113 if rand(1) > 0.5
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114 chi = acos(dot(momenta(1,:), momenta(2,:)-momenta(3,:))/...

115 norm(momenta(1,:))/norm(momenta(2,:)-momenta(3,:)));

116 else

117 chi = acos(dot(momenta(1,:), momenta(3,:)-momenta(2,:))/...

118 norm(momenta(1,:))/norm(momenta(3,:)-momenta(2,:)));

119 end

120

121 out = [momenta(2,:), momenta(1,:), momenta(3,:), theta_v, chi];

122

123 else

124 error('Momentum vectors cannot form a plane!')

125 end

126 end

127

128 % rotatePlane:

129 % Rotate the momentum vectors which define the plane Ax + By + Cz = 0 by

130 % the angle dihedral in the line of intersection defined by the direction

131 % cosines a, b, and c made with the plane z=0. This makes the momentum

132 % vectors exist only in the x-y plane while retaining their configuration

133 % and magnitude. The dihedral angle is in radians.

134 function out = rotatePlane (momenta, dihedral, intersection)

135 lineMagnitude = norm(intersection);

136 a = intersection(1) / lineMagnitude;

137 b = intersection(2) / lineMagnitude;

138 c = intersection(3) / lineMagnitude;

139

140 M = [a^2*(1-cos(dihedral))+cos(dihedral), ...

141 a*b*(1-cos(dihedral))-c*sin(dihedral), ...

142 a*c*(1-cos(dihedral))+b*sin(dihedral); ...

143 a*b*(1-cos(dihedral))+c*sin(dihedral), ...

144 b^2*(1-cos(dihedral))+cos(dihedral), ...

145 b*c*(1-cos(dihedral))-a*sin(dihedral); ...

146 a*c*(1-cos(dihedral))-b*sin(dihedral), ...

147 b*c*(1-cos(dihedral))+a*sin(dihedral), ...

148 c^2*(1-cos(dihedral))+cos(dihedral)];

149

150 for i = 1:3

151 newVector(i,:) = (M*(momenta(i,:)'))';

152 end

153

154 out = newVector;

155 end

1 % lookupGeometries.m:

2 % Takes in a 12-column momentum lookup table `table`, an auxillary lookup

3 % table `auxtable` for storing results from extra simulations, a list of

4 % momentum triples `momenta` that you want to find geometries for and an

5 % error tolerance to aim for.

6 %

7 % It will return a matrix bestGeometries with the best matching

8 % geometries for each momentum triple in momenta. If one could not be

9 % found, it will return a row of zeros. It will also return an updated

10 % auxtable with extra entries computed when running extra simulations.

11 %

12 % Outline of the lookup table implementation:

13 % 1. Check the momentum triple against all entries in the coarse lookup
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14 % table and auxillary lookup table, and find the best matching

15 % geometry by finding the geometry and momentum triple that minimizes

16 % the norm squared of the difference of the two momentum vectors.

17 % 2. If the geometry we found isn't good enough, simulate the experiment

18 % for geometries close to the best one we found from the lookup table

19 % and check if the best simulated geometry is good enough. If not,

20 % keep doing this iteratively for smaller regions around the best

21 % geometry so far until a good enough geometry has been found.

22 % 3. If successive iterations of step 2 don't yield a good enough

23 % geometry, we look at the top 100 geometries we found from step 1

24 % and try a different geometry. We try to pick a geometry from a

25 % different region in the parameter space in case there is more than

26 % one converging region.

27 % 4. If we have tried converging on three different geometries with no

28 % luck, just return zeros. We give up.

29 %

30 % Inputs:

31 % * table: nx12 matrix with each row containing geometries and their post

32 % Coulomb explosion momentum vectors in the form

33 % [r12 r23 theta p1x p1y ... p3z]

34 % * auxtable: optional mx12 matrix. You could put in an empty matrix or

35 % an existing momentum lookup table with the same format as

36 % `table`. lookupGeometries will use this table in addition

37 % to the coarse lookup table but whenever lookupGeometries

38 % simulates extra geometries, it will add the simulation to

39 % the table so it can be used in future calculations. I.e.

40 % memoization, or dynamically updating the table. It's mostly

41 % to make sure we don't run the same simulation twice as it's

42 % always faster to check against a lookup table than it is to

43 % simulate more data.

44 % * momenta: nx9 matrix

45 % * tolerance: error threshold below which a geometry is considered to be

46 % a good, or optimal, solution. Generally, using just the

47 % coarse lookup table, you can get down to errors of ~5e-48,

48 % which is barely 2 significant figures of accuracy if

49 % you're looking at angstroms and degrees. 1e-50 is about

50 % 2-3 significant figures, and 1e-52 is probably 3-ish. Of

51 % course, the lower the desired error tolerance, the longer

52 % it takes to converge and sometimes it might not be able

53 % to if it gets stuck in a local minimum, in which case a

54 % row of zeros is returned.

55 %

56 % Outputs:

57 % * bestGeometries: nx12 matrix

58 % * auxtable: nx12 matrix

59 %

60 % Notes: * All momentum triples should be ordered as OCS in table,

61 % auxtable and momenta matrices!

62 % * Lookup table can be generated using simulateMomenta.m. You

63 % must be careful that the momentum vectors are all in some sort

64 % of standard configuration or convention. For example, all OCS

65 % momentum vectors have the p_C vector pointing along the

66 % +x-axis, the p_S vector always points in the -x,+y direction

67 % and the p_O vector points in the -x,-y or +x,-y direction,

68 % it's on either side of the -y-axis. All momentum vectors have

69 % no z-components in the case of OCS and CO2 as they are

70 % triatomic and we can rotate the momentum vectors to lie in a
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71 % plane. simulateMomenta.m will produce momentum vectors with

72 % this configuration and rotateMomentum will put momentum

73 % vectors in that configuration if you're processing

74 % experimentally measure data.

75 %

76 % TODO: * Have the auxillary table update during simulations.

77 % * If it doesn't converge, maybe include the best geometry it

78 % found anyways then filter based on fitness?

79 % * Multiple debug message levels. Does MATLAB have a logger class?

80

81 function [bestGeometries, auxtable] = ...

82 lookupGeometries(table, auxtable, momenta, tolerance)

83

84 simulationSteps = 5;

85 geometriesToTry = 3;

86 coarseR_12Step = 0.05e-10; % inital rStep?

87 coarseR_23Step = 0.05e-10; % initial thetaStep?

88 coarseThetaStep = 0.25;

89 separationThreshold = 10;

90 successiveIterationThreshold = 0.05;

91

92 % For each momentum triple you want to find a geometry for...

93 for i = 1:size(momenta, 1)

94 momentum = momenta(i,:);

95

96 % If we're dealing with real data, we want to remove COM (center

97 % of mass) motion and rotate the momentum into a standard

98 % configuration. If you're dealing with simulated data, that's

99 % already been done so you should comment these lines out.

100

101 % TODO: only call removeCOMMotion is sum of p is not zero and

102 % only call rotateMomentum2 if p vectors aren't in a standard

103 % configuration. Easy to check and no need to comment.

104

105 %momentum = removeCOMMotion(momentum);

106 %momentum = rotateMomentum2(momentum);

107

108 % Search through the coarse and auxillary momentum tables for a

109 % best matching geometry. Don't expect an error of lower than

110 % ~5e-48 from just the coarse lookup table.

111 [bestGeometryCoarse, bestErrorCoarse] = ...

112 lookupGeometry(table, momentum);

113 [bestGeometryAux, bestErrorAux] = ...

114 lookupGeometry(auxtable, momentum);

115

116 % Save the best geometry we found from the two lookup tables.

117 if bestErrorCoarse < bestErrorAux

118 bestGeometry = bestGeometryCoarse;

119 bestError = bestErrorCoarse;

120 fprintf(['[%d] Found coarse geometry (%e, %e, %f) with' ...

121 'e = %.2e.\n'], i, bestGeometry(1), bestGeometry(2), ...

122 bestGeometry(3), bestErrorCoarse);

123 else

124 bestGeometry = bestGeometryAux;

125 bestError = bestErrorAux;

126 fprintf(['[%d] Found aux geometry (%e, %e, %f) with' ...

127 'e = %.2e.\n'], i, bestGeometry(1), bestGeometry(2), ...
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128 bestGeometry(3), bestErrorAux);

129 end

130

131 % The geometry number we're looking at. It will only go up if we

132 % fail to converge on the first coarse geometry we find.

133 geometryNum = 1;

134

135 topGeometries = top100(table, momentum);

136 for g = geometryNum:size(topGeometries,1)

137 g2 = topGeometries(g,1:3);

138

139 if (g2(1) < 0.95e-10) || (g2(1) > 4.50e-10) || ...

140 (g2(2) < 0.95e-10) || (g2(2) > 4.50e-10)

141 continue;

142 end

143

144 bestGeometry = topGeometries(g,:);

145 bestError = norm(bestGeometry(4:12) - momentum)^2;

146 fprintf(['[%d] Starting with geometry %d, (%e, %e, %f)' ...

147 'with e = %.2e.\n'], i, g, bestGeometry(1), ...

148 bestGeometry(2), bestGeometry(3), bestError);

149 break;

150 end

151

152 % If we haven't found a good enough geometry, we'll have to run

153 % simulations for geometries close to what we converged on to see

154 % if we can find a better one. Initially, the lookup table has a

155 % resolution of 0.05 A and 0.25 degrees so we start with those

156 % then the algorithm will make them smaller as it goes.

157 rStep = 0.05e-10;

158 thetaStep = 0.25;

159

160 originalGeometry = bestGeometry;

161 originalError = bestError;

162

163 while bestError > tolerance

164 rStep = rStep / 5;

165 thetaStep = thetaStep / 5;

166

167 simulatedTable = simulateRange(bestGeometry, i, rStep, ...

168 thetaStep, simulationSteps);

169 [bestGeometrySim, bestErrorSim] = ...

170 lookupGeometry(simulatedTable, momentum);

171

172 if abs(bestErrorSim - bestError)/bestError < 0.05

173 % This will happens if we fail to converge onto a

174 % geometry so even after simulating a deeper region, we

175 % still haven't found anything better. We look at another

176 % region if the error is less than 1% better for

177 % consecutive geometries. We usually expect the error to

178 % be ~1000% better per iteration for a nice convergence

179 % point.

180

181 if simulationSteps == 5 && geometryNum >= 2

182 fprintf(['[%d] Enhancing momentum lookup table' ...

183 'simulations from %d to %d!\n'], i, 10^3, 20^3);

184
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185 bestGeometry = originalGeometry;

186 bestError = originalError;

187 simulationSteps = 10;

188 rStep = 0.05e-10;

189 thetaStep = 0.25;

190 else

191 simulationSteps = 5;

192

193 if geometryNum == 3

194 fprintf(['[%d] We have looked at %d '...

195 'geometries. Giving up now.\n'], ...

196 i, geometryNum);

197 bestGeometry = zeros(1,12);

198 break;

199 end

200

201 geometryNum = geometryNum+1;

202 fprintf(['[%d] Cannot converge to a geometry.' ...

203 'Attempting to switch to a better' ...

204 'geometry...\n'], i);

205

206 topGeometries = top100(table, momentum);

207

208 space = [topGeometries(:,1:3) ...

209 kron(topGeometries(:,1), false)];

210 g1 = bestGeometrySim(1:3);

211

212 switched = false;

213 for g = geometryNum:size(topGeometries,1)

214 g2 = topGeometries(g,1:3);

215

216 if g2(1) < 0.95e-10 || g2(1) > 4.50e-10 || ...

217 g2(2) < 0.95e-10 || g2(2) > 4.50e-10

218 continue;

219 end

220

221 if ~isConnected(space, [g1 false], [g2 false])...

222 && separation(g1, g2) >= 10

223 bestGeometry = topGeometries(g,:);

224 bestError = ...

225 norm(bestGeometry(4:12) - momentum)^2;

226 fprintf(['[%d] Switched to disconnected' ...

227 'geometry %d, (%e, %e, %f) with' ...

228 'e = %.2e.\n'], i, g, bestGeometry(1),...

229 bestGeometry(2), bestGeometry(3), ...

230 bestErrorSim);

231 switched = true;

232 break;

233 end

234 end

235

236 if ~switched

237 for g = geometryNum:size(topGeometries,1)

238 g2 = topGeometries(g,1:3);

239 g2(1:2)

240

241 if g2(1) < 0.95e-10 || g2(1) > 4.50e-10 || ...

137



b essential code listings

242 g2(2) < 0.95e-10 || g2(2) > 4.50e-10

243 continue;

244 end

245

246 bestGeometry = topGeometries(g,:);

247 bestError = ...

248 norm(bestGeometry(4:12) - momentum)^2;

249 fprintf(['[%d] Switched to connected geometry'...

250 '%d, (%e, %e, %f) with e = %.2e.\n'], ...

251 i, geometryNum, bestGeometry(1), ...

252 bestGeometry(2), bestGeometry(3), ...

253 bestErrorSim);

254 break;

255 end

256 end

257

258 originalGeometry = bestGeometry;

259 originalError = bestError;

260 rStep = 0.05e-10;

261 thetaStep = 0.25;

262 end

263 elseif bestErrorSim < bestError

264 bestGeometry = bestGeometrySim;

265 bestError = bestErrorSim;

266 fprintf(['[%d] Found simulated geometry (%e, %e, %f)' ...

267 'with e = %.2e.\n'], i, bestGeometry(1), ...

268 bestGeometry(2), bestGeometry(3), bestErrorSim);

269 end

270 end

271 simulationSteps = 5;

272

273 % This will fail if no simulation was needed.

274 fprintf(['[%d] Converged to geometry (%e, %e, %f) with' ...

275 'e = %.2e.\n\n'], i, bestGeometry(1), bestGeometry(2), ...

276 bestGeometry(3), bestErrorSim);

277

278 % Doing 1:12 because sometimes (after enhancing), we end up with

279 % a 13th fitness/error column and I'm not sure why.

280 bestGeometries(i,:) = bestGeometry(1:12);

281 end

282 end

283

284 function [bestGeometry, error_min] = lookupGeometry(table, momentum)

285 error_min = 100;

286 j_min = -1;

287

288 for j = 1:size(table,1)

289 error = norm(momentum - table(j, 4:12))^2;

290

291 if error < error_min

292 error_min = error;

293 j_min = j;

294 end

295 end

296

297 if j_min == -1

298 bestGeometry = zeros(12);
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299 else

300 bestGeometry = table(j_min,:);

301 end

302 end

303

304 function out = simulateRange(geometry, i, rStep, thetaStep, ...

305 simulationSteps)

306 midR12 = geometry(1);

307 midR23 = geometry(2);

308 midTheta = geometry(3);

309

310 nStep = simulationSteps;

311

312 fprintf(['[%d] Simulating data for r_12 = [%e,%e], ' ...

313 'r_23 = [%e,%e], theta = [%f,%f].\n'], ...

314 i, midR12 - nStep*rStep, midR12 + nStep*rStep, ...

315 midR23 - nStep*rStep, midR23 + nStep*rStep, ...

316 midTheta - nStep*thetaStep, midTheta + nStep*thetaStep);

317

318 j = 1;

319 for r_12 = midR12 - nStep*rStep : rStep : midR12 + nStep*rStep

320 for r_23 = midR23 - nStep*rStep : rStep : midR23 + nStep*rStep

321 for theta = midTheta - nStep*thetaStep : thetaStep : midTheta + nStep*thetaStep

322 out(j,:) = simulateMomentum(r_12, r_23, theta);

323 j = j+1;

324 end

325 end

326 end

327 end

328

329 function out = top100(table, momentum)

330 % Keeping commented because if you use this function, you already

331 % have COM removed and momentum vectors rotated.

332

333 %momentum = removeCOMMotion(momentum);

334 %momentum = rotateMomentum2(momentum);

335

336 out = zeros(size(table,1), 13);

337 for i = 1:size(table,1)

338 out(i,:) = [table(i,:) norm(momentum - table(i,4:12))^2];

339 end

340

341 out = sortrows(out, 13); % Sort rows by error.

342 out = out(1:100,:);

343 end

344

345 % space is an nx4 matrix with (r_12, r_23, theta, false) data points

346 % corresponding to possible geometries from the lookup table. p1 and p2

347 % are possible geometries. isConnected returns true if p1 and p2 are

348 % within the same region of convergence, that is, they exists a path

349 % between p1 and p2 in the lookup table. Otherwise, it returns false.

350 % isConnected is usually used to check if two points in the top 100

351 % geometries are in the same region or not. If they are not within the

352 % same region, then we can use that point to check if it represents the

353 % geometry we're looking for to avoid searching for the right geometry

354 % simply locally.

355 function out = isConnected(space, p1, p2)
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356 [contained,idx] = ...

357 ismember(single(p1(1:3)), single(space(:,1:3)), 'rows');

358

359 % If p1 is not in space, return false. If p1 is in space and we've

360 % already checked it, then return false. Only continue if p1 is in

361 % space and we haven't already checked it.

362 if idx == 0

363 % disp('not in table');

364 out = false;

365 return;

366 else

367 if space(idx,4)

368 % disp('already visited');

369 out = false;

370 return;

371 else

372 % disp('new')

373 space(idx,4) = true;

374 end

375 end

376

377 if all(single(p1) == single(p2))

378 %disp('there!');

379 out = true;

380 return;

381 end

382

383 r_12Step = 0.05e-10;

384 r_23Step = 0.05e-10;

385 thetaStep = 0.25;

386

387 P = p2 - p1; % Direction from geometry p1 to p2.

388

389 possibleSteps = ...

390 [dir(P,1)*r_12Step 0 0;

391 0 dir(P,2)*r_23Step 0;

392 0 0 dir(P,3)*thetaStep;

393 dir(P,1)*r_12Step dir(P,2)*r_23Step 0;

394 dir(P,1)*r_12Step 0 dir(P,3)*thetaStep;

395 0 dir(P,2)*r_23Step dir(P,3)*thetaStep;

396 dir(P,1)*r_12Step dir(P,2)*r_23Step dir(P,3)*thetaStep;];

397

398 possibleSteps = unique(possibleSteps, 'rows');

399 possibleSteps( ~any(possibleSteps,2), : ) = [];

400

401 for i = 1:size(possibleSteps,1)

402 if isConnected(space, p1 + [possibleSteps(i,:) false], p2)

403 out = true;

404 return;

405 end

406 end

407 out = false;

408 end

409

410 function out = dir(v, d)

411 if v(d) == 0

412 out = 0;
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413 elseif v(d) > 0

414 out = 1;

415 else

416 out = -1;

417 end

418 end

419

420 function out = separation(g1, g2)

421 r_12Step = 0.05e-10;

422 r_23Step = 0.05e-10;

423 thetaStep = 0.25;

424

425 delta_g = abs(g2 - g1);

426 sep = delta_g(1)/r_12Step + delta_g(2)/r_23Step + ...

427 delta_g(3)/thetaStep;

428 out = sep;

429 end

1 % multiStartTriatomic.m:

2 % Given a list of momentum triples `momenta` for a triatomic molecule

3 % whose atoms have masses `masses` and charges `charges`, reconstruct the

4 % geometry corresponding to each momentum triple using nonlinear

5 % constrained optimization, namely through the primal-dual interior-point

6 % methods provided by the fmincon function. The MultiStart class is used

7 % to run fmincon using different initial starting points in parallel.

8 %

9 % Inputs:

10 % * momenta: nx9 matrix [p1x p1y ... p3z]

11 % * masses: row vector [m1 m2 m3] with the atomic masses in amu.

12 % * charges: row vector [q1 q2 q3] with the atomic charges in units

13 % of the elementary charge e. So they should be integers.

14 % * fOutFilenamePrefix: string prefix for the files containing the

15 % reconstructed geometries. See note below for more information.

16 % * startingIndex: Not relevant any more, just set to 1.

17 % * runs: integer number of times to run fmincon for each measured

18 % momentum triple.

19 %

20 % Output: None.

21 %

22 % Notes: * Requires the Optimization, Global Optimization, and Parallel

23 % Processing Toolboxes.

24 % * This function does not return anything as the reconstructions

25 % are done in parallel in a parfor loop. So to avoid multiple

26 % threads writing to the same out variable, the results of each

27 % reconstruction are saved to a separate file called

28 % `fOutFilenamePrefix_Gxxxxx.log` where xxxxx is the index of

29 % the geometry in the `momenta` matrix. Yes, there will be

30 % problems if you're trying to reconstruct more than 99,999

31 % geometries...

32

33 function multiStartTriatomic(momenta, masses, charges, ...

34 fOutFilenamePrefix, startingIndex, runs)

35 nMomenta = size(momenta, 1);

36

37 parfor i = startingIndex:nMomenta

38 fOutFilename = strcat(fOutFilenamePrefix, '_G', ...
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39 sprintf('%05d',i), '.log');

40 fOut = fopen(fOutFilename, 'a');

41

42 p = momenta(i, :);

43 p = removeCOMMotion(p);

44 p = rotateMomentum2(p);

45

46 pGoal = p;

47 residualNormObjective = @(g)residualNorm(g, pGoal, masses, ...

48 charges);

49

50 % These will be our bounds for the multi start algorithm. The

51 % algorithm will not search outside of these bounds. They include

52 % a wide variety of possible geometries but nothing super

53 % unrealistic (e.g. super compressed bonds). Lengths are in [pm]

54 % and angles in [deg] because computers don't like numbers that

55 % are too small (it seems to be harder to converge when one

56 % parameter is ~1e-12 and another ~1e2.) and I thought it would

57 % be nice to keep all numbers in the same order of magnitude.

58 r_12LowerBound = 100;

59 r_12UpperBound = 500;

60 r_23LowerBound = 100;

61 r_23UpperBound = 500;

62 thetaLowerBound = 140;

63 thetaUpperBound = 180;

64 lowerBounds = [r_12LowerBound r_23LowerBound thetaLowerBound];

65 upperBounds = [r_12UpperBound r_23UpperBound thetaUpperBound];

66

67 % You have to give the multi start algorithm a starting point so

68 % I thought might as well give it some middle point. It's not

69 % sensitive to the starting point at all which is great. It's

70 % going to guess different points anyways.

71 % Note: r_12 = 115 pm, r_23 = 156 pm, theta = 175 deg is ground

72 % state equilibrium.

73 r_12Initial = 250;

74 r_23Initial = 250;

75 thetaInitial = 170;

76 initialGeometry = [r_12Initial r_23Initial thetaInitial];

77

78 options = optimoptions('fmincon', ...

79 'Algorithm', 'interior-point', ...

80 'Display', 'off', ...

81 'MaxFunEvals', 3000);

82

83 problem = createOptimProblem('fmincon', ...

84 'objective', residualNormObjective, ...

85 'lb', lowerBounds, 'ub', upperBounds, ...

86 'x0', initialGeometry, ...

87 'options', options);

88

89 ms = MultiStart('UseParallel', 'always', ...

90 'Display', 'off', ...

91 'StartPointsToRun', 'bounds');

92

93 [g, fval, exitflag, output, solutions] = run(ms, problem, runs);

94

95 fprintf('G%05d DONE @ %s.\n', i, datestr(now));
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96 fprintf(['G%05d Best geometry found: ' ...

97 '(%.2f pm, %.2f pm, %.2f deg)' ...

98 'with log residual norm %.2f and exit flag %d.\n'], ...

99 i, g(1), g(2), g(3), fval, exitflag);

100 fprintf('G%05d Solver: funcCountNumber: %d\n', ...

101 i, output.funcCount);

102 fprintf('G%05d localSolverIncomplete: %d\n', ...

103 i, output.localSolverIncomplete);

104 fprintf('G%05d localSolverNoSolution: %d\n', ...

105 i, output.localSolverNoSolution);

106 fprintf('G%05d localSolverSuccess: %d\n', ...

107 i, output.localSolverSuccess);

108 fprintf('G%05d localSolverTotal: %d\n', ...

109 i, output.localSolverTotal);

110

111 % We don't always get back 'runs' solutions so we count how many

112 % we found.

113 numSolutionsFound = size([solutions.Fval], 2);

114

115 % We put each distinct solution we found into a row vector and

116 % print them all.

117 mostLikelyGeometries = ...

118 [i*ones(numSolutionsFound, 1), ...

119 reshape([solutions.X], 3, numSolutionsFound)', ...

120 [solutions.Fval]', ...

121 [solutions.Exitflag]'];

122

123 fprintf('G%05d Writing %s.\n', i, fOutFilename);

124 for j = 1:numSolutionsFound

125 fprintf('G%05d G %d\t%3.6f\t%3.6f\t%3.6f\t%2.2f\t%d\n', ...

126 i, mostLikelyGeometries(j,:));

127 fprintf(fOut, '%d\t%3.6f\t%3.6f\t%3.6f\t%2.2f\t%d\n', ...

128 mostLikelyGeometries(j,:));

129 end

130

131 fprintf('\n');

132 fprintf(fOut,'\n');

133 fclose(fOut);

134 end

135 end

136

137 % This is our objective or fitness function for the multi start

138 % algorithm. It takes a vector g with our molecule's configuration

139 % (r_12, r_23, theta) and simulates a Coulomb explosion for it. It then

140 % compares the asymptotic momentum produced with the goal momentum we are

141 % attempting to recreate and returns the log10 of the norm of the

142 % difference between the two momentum squared.

143 function rn = residualNorm(g, pGoal, masses, charges)

144 g = [1e-12*g(1) 1e-12*g(2) g(3)];

145 p = simulateMomentum(g, masses, charges);

146 p = p(4:12);

147 rn = log10(norm(pGoal - p)^2);

148 end

149

150 % rotateMomentum2 rotates the momentum to eliminate the z-component. We

151 % change format 123->213 (e.g. OCS->COS) because rotateMomentum expects

152 % 213/COS.
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153 function out = rotateMomentum2(momentum)

154 p_1 = momentum(1:3);

155 p_2 = momentum(4:6);

156 p_3 = momentum(7:9);

157

158 momentum = [p_1 p_2 p_3];

159 momentum = rotateMomentum(momentum);

160 momentum = [momentum(4:6) momentum(1:3) momentum(7:9)];

161

162 out = momentum(1:9);

163 end
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C O L O P H O N

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”.

Figures 22, 25, 43–42, and 43–45 were plotted using the Python
seaborn package (Waskom et al., 2017) which is built upon the Mat-
plotLib package (Hunter, 2007), and uses SciPy (Jones, Oliphant,
and Peterson, 2001–; Oliphant, 2007) to perform the kernel density
estimation.

Figures 17, 18, and 21 were produced in R (R Core Team, 2017)
using the multiplot function by Chang (2012).

Figures 12 and 31–34 were produced in R using the ggplot2 pack-
age (Wickham, 2009) and the ggthemes package (Arnold, 2017).

Figures 26, 26 , 35–38, and 46–48 were produced in R using the
ggally package (Emerson et al., 2013; Schloerke et al., 2017).

Figures 14, 23, 27, 28, 29 were produced in MATLAB. Figures 11

and 24 were produced in OriginPro. Figure 2 was very shamefully
created in Microsoft Powerpoint.
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