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Abstract 

Polymer electrolyte membrane fuel cells (PEMFCs) are electrochemical devices that 

efficiently convert hydrogen and oxygen into electricity and water. Their clean point of 

operation emissions and continuous operation have resulted in PEMFCs being highly touted 

as integral components of sustainable energy infrastructures, most notably in the transportation 

sector as a green alternative to the internal combustion engine. The issues associated with 

hydrogen production and distribution aside, the commercial viability of PEMFCs into the auto- 

motive sector is hindered by their high cost and inadequate long-term operational stability. The 

main factor behind both of these problems is the platinum-based electrocatalysts used at the 

cathode to facilitate the inherently sluggish oxygen reduction reaction (ORR). These expensive 

precious metal catalysts comprise almost half of the overall PEMFC stack cost and tend to 

degrade in the cathode environment that is very corrosive due to the acidic and 

potentiodynamic conditions. The current cost targets for PEMFCs are unattainable unless the 

extensive reliance on this precious metal is alleviated. The cost reduction can ultimately be 

accomplished by developing alternative cathode catalysts for the ORR. Research on new 

platinum catalyst supports or nanostructured platinum alloys to increase ORR activity on a 

precious metal mass basis have been largely successful. This approach is not ideal, however, 

due to the volatile pricing and geopolitical instabilities that can likely affect the supply of 

platinum. For these reasons,  the development of entirely non-precious metal catalysts 

(NPMCs) for the ORR is highly desirable. This is the objective of this thesis, as will be 

presented in the following sections. 
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Chapter 4 describe the operation of one-dimensional nanofibers are prepared by 

electrospinning an iron–polyaniline/polyacrylonitrile (Fe–PANI-PAN) metal-polymer blend, 

followed by subsequent heat treatment. PANI was selected as it has previously been shown to 

be an ideal nitrogen precursor to produce some of the most active NPMCs to date, owing to its 

aromatic ring structure with a high content and uniform distribution of nitrogen species that 

can readily form nitrogen-doped graphitic carbon structures during heat treatments.  PAN was 

also helpful as a low-cost polymer carrier to overcome the poor solubility of PANI in solution 

and as a secondary source of nitrogen. The addition of 10 wt. % PANI to the electrospinning 

mixture provides 100 and 70 mV improvements to the ORR onset potential and half-wave 

potential, respectively, rendering the most active NPMCs prepared by electrospinning to date. 

The high activity is attributed to the porous structure of the nanofibers, combined with the 

increased nitrogen content provided by the PANI incorporation. This unique synthetic 

approach, therefore, provides practical progress towards the development of one-dimensional 

NPMCs for PEMFC applications. 

Nitrogen-functionalized graphene substances have proved to be promising 

electrocatalysts for the ORR due to their high activity and exceptional stability in the alkaline 

environment. However, they exhibit much lower catalytic activity in acidic electrolytes. Hence, 

in Chapter 5, a hierarchically porous Co-N functionalized graphene aerogel is provided as an 

active catalyst for the ORR in an acid medium. In the synthesis procedure, PANI is introduced 

as a pore-forming substrate to promote the self-assembly of graphene structures into the porous 

aerogel networks and as a nitrogen precursor to induce in-situ nitrogen-doping. Accordingly, 

a Co-N decorated graphene aerogel framework with a large surface area (485 m2 g−1) and a 
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plenty of meso/macropores are formed after pyrolysis. Such complex structures provide an 

excess amount of exposed active sites for the ORR and also ensure secure mass transfer. These 

advantages render significant catalytic activity with the improved onset and half-wave 

potentials, low peroxide yield and remarkable stability in acid medium. 

In the next project (Chapter 6), we apply an ammonia treatment to tune the structure 

and activity of electrocatalysts derived from iron, polyaniline and carbon nanotubes (CNTs). 

By controlling the NH3 reaction conditions, we were able to tune the chemistry of nitrogen 

incorporation, including concentration and dopant type. The final catalyst had a robust 

morphology consisting of highly porous 2-D in-situ formed graphene-like structures that, along 

with the intermixed 1-D CNTs, were decorated with an abundance of nitrogen and iron species. 

The catalyst derived under the optimized condition (F-P-C_Ar-NH900) exhibited high catalyst 

activity, including an E1/2 of 0.80 V vs RHE through RDE testing. Under H2-air conditions that 

are application-friendly, current densities of 77 mA cm-2 at 0.8 V and 537 mA cm-2 at 0.6 V 

were achieved. Furthermore, a maximum power density of 335 mW cm-2 at 0.6 V was 

observed. The number of electrons transferred per reduced oxygen molecule was determined 

to be 3.90 by RRDE indicating that the catalyst exhibited very good selectivity toward the 4-

electorn transfer reaction. These electrochemical evaluations indicate that the chemical 

modification of Fe-PANI-CNT catalyst by NH3 results in a highly promising Pt-free PEMFC 

ORR electrocatalyst. 

In Chapter 7, we report the design of 3-dimensional graphitic meso-porous carbon 

spheres wrapped with 2-dimensional graphenized sheets. This heterostructure has a large 

electroactive surface area, abundant pore channels and tuned chemical structures that leads to 
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improved electrocatalytic performance. The nano-channels, acting as nanoscale reactors, 

provide easily accessible active sites, effective mass transfer and smooth charge transfer across 

the highly conductive carbon matrix. The obtained catalyst delivers a high maximum power 

density of 0.82 W cm−2 in a single H2−O2 fuel cell measurement, ranking it as one of the most 

promising NPMCs in PEMFCs. Moreover, fairly good fuel cell stability was also observed 

through accelerated degradation testing. This work provides a new avenue for NPMC design 

that can be a step towards practical commercial PEMFCs. 

Following the previous studies, an efficient strategy of utilizing dual nitrogen sources 

for preparing highly active Fe-N-C electrocatalyst with in-situ formed graphene-like structures 

and tuned micro/meso/macro-porous morphology is reported in Chapter 8. This approach is 

achieved by simultaneously using PANI as a graphene precursor and introducing 

phenanthroline (Phen) as a pore-forming agent, followed by several post–treatments. This 

research was accomplished via introducing Phen into the pores of carbon support by ball-

milling, which was then covered with a PANI shell through polymerization of aniline, followed 

by several subsequent pyrolysis and acid leaching steps leading to the formation of in-situ 3D 

porous graphene-like morphologies with multiple types of pores. Here, Phen acts as a pore-

forming agent that is capable of expanding the external PANI shell during the decomposition. 

Simultaneously, PANI shell converted to graphene-like structures through graphenization in 

the presence of iron species during pyrolysis processes. Extensive physical characterization 

indicates the final catalyst provides rich, porous graphene frameworks decorated with 

uniformly dispersed active sites. The catalyst exhibits high maximum power densities of 1.06 

W cm−2 and 0.38 W cm−2 in H2−O2 and H2−air fuel cell tests, respectively, representing one of 
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the highest reported values to date for NPMCs in PEMFCs. Moreover, good fuel cell durability 

is also observed through accelerated degradation testing. The unprecedented performance of 

this electrocatalyst in fuel cell is linked to the highly porous graphene frameworks with a vast 

distribution of pore sizes that maximizes the number of active sites with enhanced accessibility, 

facilitates the mass-transport properties, and improves the carbon corrosion resistance. 

Chapter 9 provides a summary of the conclusions of this body of work, along with 

strategies that can be engaged to capitalize on the scientific advancements made in this thesis. 

In summary, this research extends from catalyst synthesis to their actual use in a PEMFC, in 

order to develop commercially viable NPMCs. Various suggestions for prospect works are 

recommended in the last part of this chapter to further relate the knowledge to design highly 

active, durable, and low-cost NPMCs. 
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Chapter 1 

Introduction 

D. Higgins, P. Zamani, A. Yu, Z. Chen, Energy & Environmental Science, 9 (2016), 357-390 

H. Chung, G. Wu, D. Higgins, P. Zamani, Z. Chen, P. Zelenay, Springer International 

Publishing, Electrochemistry of N4 Macrocyclic Metal Complexes, (2016), 41-68 

Part of the work described in this chapter has been published as reference 1 with permission of 

the Royal Society of Chemistry and reference 2 with permission of Springer. 

 

1.1 Electrochemical energy challenges 

 In the 21st century, the topic of energy has become one of the most important 

technological issues that must be addressed to guarantee the sustainability of human 

technologies. Global energy demands continually soar to new highs with average growth rates 

in the consumption of energy rising by over 50% in the 25 year period from 1987 to 2012 3. 

Fossil fuel resources are thereby being consumed at unprecedented rates, leading to greenhouse 

gas emissions of more than 31 billion tons of CO2 due to the relatively "dirty" combustion 

process. It is clear that, as a society, we require clean transformative technologies that can 

revolutionize the way we produce, transport and use energy. The requirements of such 

technologies are no easy feat. They must be sustainable, clean, practically viable with regard to 

performance capabilities and efficiency, and most importantly, affordable.  

 Electrochemical devices have demonstrated the capacity to satisfy all of these 

requirements, operating with only environmentally benign emissions and boasting excellent 
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operational efficiencies. As one of the most capable renewable energy technologies to deal with 

the global energy concerns, fuel cells, principally polymer electrolyte membrane fuel cells 

(PEMFCs) are receiving increasing attention due to their high power density, high energy 

conversion efficiency, and environmental friendliness. 

PEMFCs operate by converting stored chemical energy in the reactants (generally 

hydrogen and oxygen) into electrical energy that can be used for a variety of different purposes 

including transportation, stationary, and backup power applications. When operating with 

hydrogen produced from renewable resources, PEMFCs offer a sustainable energy conversion 

technology emitting only environmentally benign products water and heat, at the point of 

operation.  

 While the target markets exist and are anxiously awaiting the arrival of practically 

viable clean energy technologies, remaining technical challenges for PEMFCs must be 

addressed mostly related to cost and stability 4-8. Cost reductions and stability improvements 

must be achieved to render these electrochemical devices commercially competitive with 

conventional technologies, such as the internal combustion engine (ICE) used in transportation 

applications. Although several functional components of PEMFCs work in tandem to produce 

electricity from the chemical energy stored in oxygen and hydrogen, the majority of cost and 

durability problems arise at the cathode 9-13. This issue is most notable when the sluggish 

electrochemical oxygen reduction reaction (ORR) occurs and must be facilitated by catalysts 

that are commonly comprised of platinum or other expensive constituents. Reducing the 

dependency on expensive catalyst technologies can only be accomplished by developing new 

catalysts that can achieve improved activity and performance, while simultaneously reducing 

costs.  
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1.2 Polymer membrane electrolyte fuel cells (PEMFCs) 

Fuel cells are electrochemical devices which convert chemical energy sources (often H2 

or H2-containing fuels and O2 from the air) directly to electricity, heat, and water, with a greater 

efficiency that that obtained by current means of energy conversion 4,14,15. Among all the fuel 

cell systems, PEMFCs are can achieve high power densities (> l W cm-2) required for portable, 

automobile, and stationary applications. The principal advantages of PEMFCs are their high 

electrical efficiencies (up to 60%), high energy densities, quiet operation and zero emissions 

14,16.  

A PEMFC stack consists of several cells connected in series to achieve useful voltage 

levels and practical power output. Each cell is comprised of three components: i) anode where 

the hydrogen oxidation reaction (HOR) occurs, ii) membrane which conducts protons from the 

anode to the cathode while being impermeable to electron flow and iii) cathode where the 

oxygen reduction reaction (ORR) occurs. Figure 1-1 provides a simplified schematic of what 

is commonly referred to as a membrane electrode assembly (MEA) 14,15.  

In a typical PEMFC, hydrogen and oxygen/air continuously enter the anode (negative 

electrode) and the cathode (positive electrode), respectively. The fuel hydrogen undergoes the 

HOR at the anode (Equation 1-1): 

Equation 1-1 

𝐻2 → 2𝐻+ + 2𝑒−           𝐸𝑜 = 0 𝑉 𝑣𝑠 𝑅𝐻𝐸 

 

Following this reaction, the generated protons diffuse across the electrolyte membrane 

towards the cathode. In PEMFC systems, the electrolyte membrane is Nafion, a perfluorinated 
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sulfonic acidic polymer. The negatively charged SO3
- groups strongly interact with the 

positively charged protons generated by the HOR. When the membrane is hydrated during 

PEMFC operation, the attraction between the protons and the SO3‐ groups weakens to provide 

the protons with mobility and allow them to diffuse through the membrane towards the region 

of lower concentration. It is a stringent requirement that the electrolyte membrane is resistant 

to electron flow, causing the electrons to flow through the external circuit power the attached 

load. After reaching the cathode, the electrons combine with the protons from the HOR along 

with oxygen molecules continuously fed to the cathode where the ORR occurs according to 

Equation 1-2: 

Equation 1-2 

𝑂2 + 4𝐻+ + 4𝑒− → 2𝐻2𝑂 

 

 

Figure 1-1 Simplified MEA and PEMFC schematic 
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In acidic electrolytes similar to the Nafion that is employed in PEMFCs for 

transportation applications, the ORR occurs either by the 4-electron reduction (Equation 1-3) 

the 2-electron reduction (Equation 1-4) or a combination of both. The overall 4-electron 

reduction mechanism is favorable owing to its obvious efficiency advantages (four electrons 

per oxygen molecule), and because it avoids the formation of hydrogen peroxide species in the 

electrode that can degrade the membrane and ionomer 17-19.  

Equation 1-3 

𝑂2 + 4𝐻+ + 4𝑒− → 2𝐻2𝑂 

Equation 1-4 

𝑂2 + 2𝐻+ + 2𝑒− → 𝐻2𝑂2 

 

Under acidic conditions, platinum is the only catalyst that has been shown to provide 

suitable activity and stability to date. The acidic ORR is inherently several orders of magnitude 

slower than the HOR 20 and therefore, rapid oxygen reduction kinetics is a necessity from a 

performance standpoint. Efforts are being undertaken to develop catalysts with higher activity 

towards the ORR, allowing for a decrease or elimination of expensive platinum required to 

achieve the appropriate power output. With the HOR and ORR coinciding during PEMFC 

operation, the theoretical open circuit voltage is given as 1.229 V and the overall fuel cell 

reaction can be summarized according to Equation 1-5: 

Equation 1-5 

𝐻2 +  1
2⁄ 𝑂2 →  𝐻2𝑂      𝐸𝑜 = 1.229 𝑉 
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Despite boasting a theoretical open circuit voltage of 1.229 V, the observed voltages 

during actual operations are always significantly lower than this value 14,15,21. This practically 

lower voltage is due to a phenomenon referred to as overpotential or irreversible voltage losses 

that can be attributed to different factors. Figure 1-2 provides an example of a typical PEMFC 

polarization curve. The first thing that can be noticed from it is that the open circuit voltage (no 

current being drawn) is significantly lower than the theoretical ‘No loss’ voltage marked by the 

dashed line. This voltage loss can be attributed to fuel crossover across the membrane 22 and 

platinum catalyst oxidation to some extent. 

 

 

Figure 1-2 Typical PEMFC polarization curve is showing the various regions of overpotential, 

or irreversible voltage losses. 

Reported with permission from22 copyright John Wiley and Sons, 2003. 
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Moving to the region where current begins to be drawn from the PEMFC, a sharp drop 

in cell voltage with increasing currents is observed. This region is due to activation 

overpotential and is directly related to the slow kinetics of the necessary electrode reactions. 

This overpotential arises primarily at the cathode due to the very sluggish ORR kinetics in 

comparison to the HOR which involves negligible losses. Using more efficient catalysts with 

deliberately designed nanostructures can serve to overcome these irreversible voltage losses 

and is a primary research objective of scientists and engineers 23,24. 

The region displaying a linear loss of cell voltage with increasing currents in the 

polarization curve in Figure 1-2 is attributed primarily to ohmic losses. The sources of 

resistance in PEMFCs can arise from the polymer electrolyte, cell connections or bipolar plates.  

These issues can be mitigated by appropriate selection of materials, including electrode 

structures with high conductivity 23,24. 

Finally, at substantial current densities, the voltage of the PEMFC will drop off 

dramatically as observed in Figure 1-2. This behavior arises because the necessary electrode 

reactions are proceeding at a rate faster than the reactants can be delivered to the catalyst 

surface. Using pure reactant feeds, or increased gas pressures can help to mitigate this 

occurrence, but also using well-designed catalyst layer architectures conducive to good reactant 

flow and accessibility will increase the current densities attainable in a PEMFC system 23,24. 

 

1.3 Advantages and Limitations of PEMFCs 

In principle, one main characteristic of PEMFCs is high efficiency. The chemical energy 

is directly converted to the electrical energy which makes them more efficient than piston- or 
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turbine-based ICEs 15,22,25. As fuel cells contain no moving parts except an air blower and 

hydrogen recirculation pump, they are very quiet and thereby, more reliable than ICEs or gas 

turbine power plants. This feature is of great significance in both portable power devices and 

local power generation in combined heat and powers (CHPs) 22,25. Low emission is one of the 

most important characteristics of fuel cells. When hydrogen is used as the fuel (such as in 

PEMFCs), the by-product is pure water, so that a fuel cell can be ‘zero emission’ in practice. 

In these cases, no NO2, NO3, SO2, or CO2 is released in a PEMFC system and therefore, is 

beneficial to lower urban air pollution, ozone levels and acid rain and mitigate global warming 

issues. This principle advantage is of great importance, as there is a need to decrease and 

eliminate vehicle emissions within cities.  

Despite the fact that PEMFCs have found marginal commercial success in niche 

markets such as backup power (i.e., telecommunications) and materials handling fleets (i.e., 

forklifts), 26 the ultimate target is at scale placement in the transportation area. One significant 

disadvantage is the preference of using hydrogen as a fuel for which no production and 

distribution infrastructure is currently in place. Besides the issues with storage, handling and 

distribution of hydrogen, two other factors limit the attractiveness of fuel cells in the automotive 

market: cost and durability/stability. 

In order to assist PEMFC projects to the point that they can eventually be integrated 

into efficient and clean driving light-duty vehicles, technical targets have been defined by the 

U.S. Driving Research and Innovation for Vehicle efficiency and Energy sustainability 

(DRIVE) Fuel Cell Technical Team (FCTT). In the FCCT Roadmap 4, the technical objectives 

of PEMFC systems, stacks, MEAs and the various components integral to their performance 

are outlined. Among the different elements, the catalysts needed to expedite the proper 
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electrochemical reactions are the biggest contributors to PEMFC price and durability issues 8. 

As electrocatalyst development is the subject of this thesis, all subsequent discussions focus on 

this important area of research.   

When considering the mass production of 500,000 units per year, the share of the 

electrocatalyst is estimated to be almost half of the entire PEMFC stack cost 27. Platinum is a 

precious metal with highly monopolized global distribution and is therefore does not benefit 

from the economy of scale production of other component substances. In order to decrease the 

cost of PEMFC systems, the essential platinum content must hence be lowered or ultimately 

replaced. Intensive studies have primarily focused on ORR catalyst development at the cathode 

where the ORR is several orders of magnitude slower than the anodic HOR and demands 

significantly higher platinum content to reach sufficient reaction rates. To minimize the 

platinum dependency at the cathode without sacrificing power productivity or efficiency, new 

catalysts must be developed with improved activity. This achievement must also be completed 

with a simultaneous advance in catalyst durability during long-term PEMFC service and during 

periods of fuel cell start-up/shutdown. 

 

1.4 Non-precious (Non-Platinum) ORR catalysts 

Currently, platinum-based catalysts are the only commercially available options for the 

ORR which are highly active and stable in both acidic and alkaline conditions. Thus, these 

catalysts are attractive options to be used in both technological applications. The issue with 

using platinum catalysts is their high cost which will significantly increase the cost of the device 

in which it is used and introduce further barriers to the commercialization of PEMFC. 
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The challenges with ORR catalysts emphasize the need to develop advanced materials. 

Three common directions have been followed in the various research and development 

activities to reduce or replace the platinum content and simultaneously increase the catalyst 

lifetime. These approaches include the development of (i) unique platinum nanoparticle 

supports and (ii) extended surface platinum alloy nanostructures. Although many efforts have 

been made to reduce the necessary amount of platinum, it does not eliminate the problem that 

the Earth has a small supply of platinum metal. Thus, the ultimate alternative to platinum-based 

catalysts is (iii) to employ non-precious metal catalysts (NPMCs) for the reduction of oxygen. 

The latter is the main subject of the current thesis, after providing some background and 

literature on recent developments of NPMCs. 

The first reported research in this direction was done by Jasinksi in 1965 regarding the 

ORR catalytic activity of cobalt phthalocyanine 28. Jasinski evaluated cobalt phthalocyanine as 

a potential cathode catalyst in KOH electrolyte and found it could catalyze the ORR. Often, 

this type of transition metal macrocycle catalyst 29-35 has been supported on high surface area 

carbon black and found to increase the stability of the catalysts significantly. Cobalt based 

macrocycles such as Co/phthalocyanine or Co/porphyrin have been shown to reduce oxygen 

through a 2-electron pathway to produce H2O2, whereas Fe-based macrocycles, such as 

Fe/phthalocyanine and Fe/porphyrin (Figure 1-3), were found to reduce oxygen through a 4-

electron pathway to produce H2O 12,30,36-38. Although providing a new avenue of research and 

showing great promise, the transition metal macrocycles, such as phthalocyanines and 

porphyrins, exhibit extremely low stability and cannot maintain their catalytic activity after few 

cycles in acidic conditions 39,40. 
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Figure 1-3 Structure of Fe/phthalocyanine and Fe/porphyrin macrocycles. 

 

Later on, significant improvements to the stability and activity of these types of NPMCs 

were achieved by carrying out high-temperature pyrolysis of the carbon-supported macrocycles 

12,36,41-47. Characterization of the resulting heat-treated catalysts indicated that the macrocycle 

underwent partial, if not, full decomposition of its structure. This led to significant questions 

regarding the active site of the heat-treated catalyst, where certain surface configurations were 

found after high-temperature treatment of the carbon-supported macrocycles 48,49. By 

employing various spectroscopic techniques, including X-ray 50-52 and mass spectroscopy 

48,49,53,54, M-Nx/Cy and N-C (M is a transition metal) surface configurations were detected and 

believed to represent the active sites formed after high-temperature pyrolysis 48,49. From this 

knowledge, a significant breakthrough was made regarding the synthesis of heat-treated ORR 

catalysts when it was proposed and shown that the M-N4 chelating structure of a macrocycle is 

not essential to forming active heat-treated catalysts. Instead, it is possible to synthesize active 

and stable ORR catalysts by pyrolyzing separate nitrogen, carbon, and transition metal 

precursors. A typical procedure involves filling the pores of a high surface area carbon material 

with a nitrogen and transition metal precursor followed by heat treatment in an inert atmosphere 
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at temperatures above 600 °C 12,36,55,56. Depending on the structure of the precursors and the 

heating temperature, it was possible to obtain different types of surface configurations, such as 

M-N2/C or M-N4/C 48,49 which have been proposed to represent various kinds of active sites. It 

is also worth noting that the nature of the active sites in NPMCs is still under debate. This 

dispute derives from the fact that the function of the transition metal during the catalyst 

synthesis remains unresolved. Regardless, the catalytic activity was found to strongly depend 

on the synthetic chemistry, including the structure of the nitrogen precursor, transition metals, 

heat treatment temperatures and the inclusion of support materials (i.e., carbon black). By 

describing recent breakthroughs in this field, a brief outline of the synthesis pathways for such 

heat-treated catalysts will be provided.  

 

1.5 Pyrolyzed M-N-C Catalysts 

Carbon and nitrogen precursors, combined with iron and/or cobalt precursors and heat 

treated at high temperatures to yield the transition metal-nitrogen-carbon complexes (M-N-C) 

have been deemed the most promising class of NPMCs to date. Unfortunately, these M-N-C 

catalysts still suffer from insufficient activity and stability during operation that pales in 

comparison to platinum-based materials. It is well understood that the performance of these 

NPMCs is directly linked to their nanostructure 57. To achieve well-performing catalysts, the 

selection of precursors, supports and synthesis conditions are critical. These factors play major 

roles in obtaining materials with the high activity and long-term durability required for effective 

catalysts 44,58. 
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1.5.1 Nitrogen – Carbon Precursors 

Heat-treated M-N-C catalysts are currently derived from various nitrogen precursors, 

which can be divided into three categories: (i) C≡N-based; (ii) C-N-based; and (iii) aromatic-

compound-based. According to the available experimental data, the C≡N and aromatic nitrogen 

precursors appear to be advantageous over the C-N based ones regarding resulting catalyst 

activity and durability. For example, catalysts derived from heteroatomic polymers show higher 

activity than catalysts obtained from simple amines, such as ethylenediamine 59. Two types of 

polymer-based catalysts were systematically compared using either polyaniline (PANI) or 

polypyrrole (PPy) as nitrogen precursors for catalyst synthesis. Electrochemical experiments 

with rotating disk electrode (RDE) show a higher overpotential (smaller onset potential) for 

ORR with the PPy-Fe-C (~ 0.85 V vs. reversible hydrogen electrode or RHE) than with PANI-

Fe-C (~ 0.91 V vs. RHE). Rotating ring disk electrode (RRDE) data further point out the 

superior selectivity of the PANI-based catalyst for the 4-electron reaction 60. 

On the other hand, PANI-Fe-C exhibits very good stability during the 200-hour life test. 

The difference in the durability of the two catalysts’ may be caused by the nature of the active 

ORR sites, water tolerance and/or other factors. There are some indications that precursors with 

an aromatic structure may stabilize interactions between the metal and nitrogen species that 

become embedded into the graphitic structure of the catalyst during heat treatment 2. This 

morphology can lead to improved stability of the active reaction sites and maybe one possible 

reason for the much better stability of PANI-derived catalysts. 
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Figure 1-4 Various carbon nanostructures observed from the catalysts derived from different 

nitrogen precursors.  

 

Figure 1-4 shows different carbon nanostructures that result using various 

nitrogen/carbon precursors during synthesis 61. It is worth noting that no graphitized carbon 

structure was formed when PANI was heat treated in the absence of transition metals. This 

result indicates the crucial role of the transition metal in the formation of highly graphitized 

carbon during heat treatment. The use of ethylenediamine and Co yields an abundance of onion-
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like carbon nanostructures formed during heat treatment (Figure 1-4, top). When cyanamide is 

used with Fe, bamboo-like carbon nanotubes tend to appear (Figure 1-4, mid part). Among the 

other extensively investigated precursors, PANI-derived catalysts are the only ones to 

demonstrate substantial graphene content following the heat treatment (Figure 1-4, bottom). 

This conclusion shows that the aromatic structure of PANI may be a factor in forming graphene, 

possibly arising due to their structural similarities. 

 

1.5.2 Transition Metal Precursors 

Metal-free nitrogen-doped carbon materials exhibit some ORR activity in alkaline 

media. In the more challenging acidic media, they become inactive and are not durable. The 

addition of transition metal is necessary to achieve good catalytic activity and improved 

durability 36,62. Some studies have shown the important effect of the type of transition metal 

ions used during synthesis on the oxygen reduction activity. Among other approaches, this 

effect was demonstrated with polyacrylonitrile-derived catalysts in both acidic and alkaline 

solutions 63. The nature of the metallic center in the precursors played a governing role in the 

resultant ORR catalysis. It has become well established that the most active catalysts in an 

acidic electrolyte are formed by using either iron or cobalt. Iron-derived catalysts especially 

lead to more positive onset potentials for the ORR than cobalt-derived catalysts, indicating 

higher intrinsic activity. The iron-containing catalysts also exhibit the highest 4-electron 

selectivity among the transition metals 63. In alkaline media, however, iron- and cobalt-based 

electrocatalysts often show similar activity 63. 
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In a recent report 64, Liao and co-workers systematically studied the effects of the 

addition of transition metals (Mn, Fe, Co, Ni, Cu) on the structure and performance of doped 

carbon catalysts derived from PANI and melamine. The results show that the doping of these 

transition metals significantly affects the structures and performance of the catalysts. Doping 

with Fe or Mn led to catalysts with graphene-like structures, whereby doping with Co, Ni, or 

Cu yielded disordered structures. As shown in Figure 1-5, the doping of transition metals can 

enhance the performance of the catalysts. The ORR activity of these doped catalysts in acidic 

solution decreases in the following order: Fe > Co > Cu > Mn > Ni. It is suggested that this 

trend is the result of the impact that the transition metal has on three properties: (i) N content 

of the catalyst, (ii) amount and type of residual metal species, and (iii) resulting catalyst surface 

area and pore structure.  

 

 

Figure 1-5 ORR polarization for catalysts derived from different transition metal precursors in 

(a) 0.1 M KOH and (b) 0.1 M HClO4 at 298 K. 
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1.5.3 Mass Transport Facilitation 

The cathode consists of a GDL coated with catalyst that consists usually of platinum 

nanoparticles dispersed on a high surface area carbon support, commonly abbreviated as Pt/C. 

The GDL is a carbon paper or carbon cloth that serves as the reinforcement for the electrode 

structure and also delivers and distributes the reactant gases over the whole electrode surface. 

Boosting the ORR performance of the electrocatalysts should significantly reduce the 

overall platinum requirement and costs while maintaining and even improving the performance. 

Following the progress in enhancing the activity of the NPMCs reported in the literature, recent 

efforts have turned in the direction of optimizing the catalyst layer instead of strictly 

concentrating on ORR activity enhancements. As NPMCs are only a fraction of the cost of 

conventionally used precious metals, it is economically feasible to use significantly higher 

loadings in the catalyst layer to achieve performance targets. The NPMC layers in fuel cells are 

as much as 100 µm in thickness. At this length scale, mass transport through both the electrode 

and catalyst structures becomes an important technological challenge that must be addressed 

65,66. If the developed catalysts have poor intrinsic mass-transport properties, electrode 

utilization will be very poor and PEMFC performance will suffer accordingly. It has become 

well established that a high content of meso- and macropores are essential for the efficient 

transport of the ORR species 67,68. This active transport includes the access of oxygen and 

proton to the catalytically active sites, along with the removal of the product water. To capitalize 

on the many recent advances, which have dramatically increased the intrinsic ORR activity of 

heat-treated M-N-C catalysts, rational meso- and macrostructure design strategies must be 

applied to facilitate effective mass transport. To accomplish this, a few different catalyst 

preparation strategies have been employed with varying degrees of success. 
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1.5.4 Recent Developments of M-N-C catalysts 

Various approaches have been applied to sinthesize alternative NPMCs 11,12,69, such as 

metal-organic framework (MOF) precursors 70, the sacrificial support method 71-75 and 

polymerization of nitrogen-containing monomers (i.e., aniline) 55,57,58,76. Serov et al. 75,77,78 have 

incorporated silica templates into the reaction mixture that consists of iron, nitrogen and carbon 

precursors. After a high-temperature heat treatment, the silica template particles are removed 

using an etchant such as hydrofluoric acid (HF). What remains are highly porous structures that 

are inverse replicas of the initial silica templates. By this approach, pore size and property 

tuning can be acheived by careful selection of the silica templates being employed. This 

technique not only leads to PEMFC performance gains but also can yield basic information 

regarding the effect of pore sizes and structures on catalyst activity and MEA performance.  

Another interesting approach taken to control M-N-C catalysts structurally was first 

pioneered by Ma et al. 79 and involves MOF-derived catalysts. In this work, they heat treated 

an in-house prepared cobalt imidazolate MOF to prepare a catalyst that showed promising half-

cell electrochemical activity towards oxygen reduction. Proietti et al. 65 advanced on this work 

by using a commercial zinc imidazolate framework mixed with 1,10-phenanthroline and iron 

acetate as iron and nitrogen precursors based on their previous investigations 56. Interestingly, 

after an initial pyrolysis in argon and subsequent heat treatment in ammonia, they attained a 

highly porous catalyst resulted with high content of both mesopores and micropores 65. This 

MOF approach is relatively straightforward and feasible, although only a limited number of 

MOFs are commercially available.  

Recently, an interesting study by Wu et al. 55,57 has shown that their developed approach 

to preparing M-N-C catalysts using PANI as a nitrogen precursor is capable of forming a high 
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proportion of nitrogen-doped graphene-like structures during the pyrolysis step. Formation of 

this structure can only be accomplished when a transition metal precursor is included in the 

reaction mixture. The ability of PANI to form graphene-based structures likely arises due to the 

similarity between the aromatic structures of PANI and graphene.55,57 Other carbon-nitrogen 

precursors, for example, amine-based ethylenediamine (EDA) 80 or melamine 81 mostly formed 

carbon nanotube structures. Interestingly, the abundance of graphene structures was partially 

credited for the increased current density at a low MEA voltage owing to the high surface areas 

and excellent conductivity. Improved MEA stability assessed by holding the cell potential at 

0.4 V for up to 550 hours was also demonstrated. This increased stability was also attributed to 

the abundance of graphene sheets and bubbles. This finding is consistent with a previous report 

that linked increased catalyst stability with the emergence of graphene-like structures 55. 
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Chapter 2 

Thesis objectives and approaches 

The ultimate purpose of this thesis is to develop and deliver new catalyst technologies that   are 

capable   of improving   the performance   of   PEMFCs,   while simultaneously replacing the 

expensive platinum. The approaches to meet the objective will include the development and 

investigation of NPMCs derived from metal-nitrogen-carbon complexes (M-N-C) at high-

temperature pyrolysis. To accomplish this, the following strategies will be pursued:  

(a) Electrospinning of one-dimensional nanostructured PAN/PANI nanofibers in the 

presence of iron precursor 

 We learned from this project that increasing nitrogen content using a rich source 

of N (PANI), can improve the catalytic activity. 

 We then tried to use PANI and GO to form N-doped graphene structures with 

improved activity and durability. 

(b) Apply a hydrothermal self-assembly technique to prepare a 2D porous graphene 

framework 

 We learned from this project that N-doped graphene with open structures are 

very well capable to catalyze ORR.  

 We then tried to form in-situ N-doped graphene structures directly from PANI 

(c) Hybrid porous graphene encapsulating carbon nanotubes via high-temperature 

pyrolysis, acid leaching, and subsequent ammonia treatment 
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 We were able to optimize a heat treatment protocol to get the highest activity 

 The poor durability of the catalyst could likely be due to the poor mass transfer 

properties of commercial CNT 

(d) In-situ polymerization of PANI on graphitic meso-porous carbon spheres to form a 

2D/3D hybrid carbon composite catalyst 

 We learned that introducing nano-channels inside the carbon support can be 

beneficial for mass transfer of catalyst layer 

 We tried to use this advantage to increase active site densities by introducing 

nitrogen dopants inside the pores of carbon support 

(e) In-situ graphenization of dual nitrogen precursors ingrained with nanoporosity to form 

porous graphene-like frameworks with enhanced density and accessibility of active sites 

as well as facilitated mass-transport through the porous voids 

 We were able to make catalyst with excellent activity and durability delivery. 

 

This project links several critical areas of electrocatalyst research and development. 

Figure 2-1 depicts a simplified breakdown of the project tasks conducted throughout this 

thesis. 
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Figure 2-1 Schematic of the project workflow. 

 

As already seen, Chapter 1 covered the background information relevant to the thesis 

work and Chapter 2 provides a description of the overall project objectives and task 

organization. Chapter 3 gives an introduction to the experimental procedures used throughout 

the project, with in-depth details and tasks completed within subsequent parts of the thesis. 

The subsequent chapters will provide details, results, and discussion about the specific work 

conducted throughout the entire project. Chapter 4 will introduce the reader to the development 

of one-dimensional nanofibers prepared by electrospinning a Fe–PANI/PAN metal-polymer 

blend, followed by subsequent heat treatment. The electrospinning procedure is rigorously 

investigated, and performance capabilities of the resulting nanofibers carefully 

elucidated. Chapter 5 describes the development of a hierarchically porous cobalt/nitrogen 
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functionalized graphene aerogel prepared via the hydrothermal method as an efficient catalyst 

for the ORR in an acid electrolyte. The structure and electrochemical activity of these materials 

are carefully evaluated and further challenges are outlined. In Chapter 6, we apply an ammonia 

treatment to tune the structure and activity of electrocatalysts derived from iron, polyaniline 

and carbon nanotubes. By controlling the reaction conditions, we are able to tune the chemistry 

of nitrogen incorporation, including concentration and dopant type. Chapter 8 focuses on the 

development of an efficient strategy of utilizing dual nitrogen sources for preparing highly 

active Fe-N-C electrocatalyst with in-situ formed graphene-like structures and tuned 

micro/meso/macro-porous morphology. Finally, Chapter 9 provides conclusions and summary 

of all the results reported in the thesis, along with recommendations for future work that can 

exploit the progress made throughout this thesis to improve PEMFC performance. 
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Chapter 3 

Experimental Methods and Characterizations 

 

3.1 Fabrication Techniques 

3.1.1 Electrospinning 

Electrospinning is a versatile, flexible technique that allows the continuous production 

of nanofibers with different constituent elements, compositions, and sizes 82,83. Electrospinning 

involves the processing of a polymer/precursor solution that is loaded into a syringe and 

pumped at a constant rate, using the typical experimental setup illustrated in Figure 3-1. The 

thin syringe-capillary tip is connected to a power supply (Gamma High Voltage Research Inc. 

ES50P-10W) that can generate voltages in the kilovolt range (up to 50 kV). A grounded counter 

electrode (typically aluminum foil) is placed close to (usually 5‐20cm) the syringe tip. During 

electrospinning, the conducting polymer solution is charged within the syringe while it is 

pumped at a constant rate using a syringe pump (Bio-Lynx Scientific Equipment Inc. NE-300-

U). As a droplet forms on the tip of the needle, it experiences electrostatic repulsion from the 

build-up of surface charge and the coloumbic forces due to the applied electric potential. Due 

to these forces, the droplet will form into a conical shape known as a Taylor cone. Once the 

electrostatic forces overcome the surface tension forces in the solution, a liquid jet will be 

ejected towards the grounded electrode, undergoing stretching and whipping 82-84. This 

phenomenon results in the formation of fibrous polymers. The electrospinning procedure 
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mainly depends on the solution prepared, where thicker or thinner diameter fibers can easily 

be produced by changing the concentration of the polymer within the solution. 

 

 

Figure 3-1 Schematic of a typical electrospinning setup 

 

3.1.2 High-Temperature Pyrolysis 

A key aspect of producing low cost highly active ORR catalysts is the use of high-

temperature heating in an inert atmosphere. A typical synthesis procedure begins by loading 

separate nitrogen and transition metal precursors onto a carbon support. The precursors are 

then loaded into a quartz tube to be used in a tube furnace. The tube is saturated with N2 or Ar 

gas before heated to a typical temperature range of 800 to 1000 °C. There will be more detailed 

synthesis procedures within the following chapters. 
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3.2 Physiochemical Characterization Techniques 

3.2.1 Scanning Electron Microscopy (SEM)  

SEM is a technique allowing for high magnification imaging of samples by shooting 

electrons at a target and detecting the resulting deflected or generated electrons. A sample is 

prepared on carbon tape and stuck onto a metal stage. The stage is placed inside a vacuum 

chamber where an electron gun is positioned straight above. The electron gun emits electrons 

which are then bombarded onto the sample. An image is constructed by detecting the intensity 

of incoming secondary or backscattered electrons due to the bombardment from the electron 

gun 85. In the proposed project, SEM (Leo FESEM 1530 located in WATLAB at University of 

Waterloo) will be utilized to investigate the distinct nanostructures of the fabricated 

electrocatalyst materials. 

 

3.2.2 Transmission electron microscopy (TEM) 

TEM allows high-resolution imaging of samples on the nanometer scale, whereby high-

resolution TEM imaging can approach the atomic scale. Samples are illuminated by an electron 

beam with constant current density, generally produced by field emission techniques and 

passed through several condensers to focus it upon a slight site of interest. When the electrons 

come in contact with the sample, they will be scattered either elastically or inelastically and 

collected. Based on electron diffraction theory, the signals from the collected diffracted 

electrons can be processed to produce an image. With such high resolution, TEM is capable of 

determining nanostructures, atomic arrangements, exposed crystal facets and defects within 
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the structure. In this thesis, TEM (Jeol 2010F located in CCEM at Mcmaster University) will 

be used. 

 

3.2.3 Energy Dispersive X-ray Spectroscopy (EDX) 

Energy dispersive X-ray spectroscopy (EDX) can be carried out simultaneously with 

the common imaging techniques by adding an EDX detector along with SEM and TEM 

devices. When electrons bombard a material surface of interest, X-rays are also emitted and 

can be collected by the detector of EDX. The energy of the X-rays and their corresponding 

intensities are related to the appropriate elemental identity and quantity of a particular material. 

Moreover, elemental mapping can also be done by analyzing the X-rays emitted from localized 

positions on the sample. Atomic contents depend on the emitted X-rays intensities at various 

locations and can be used to map the concentration of different elements over the entirety of 

the sample being investigated.  

 

3.2.4 Electron Energy Loss Spectroscopy (EELS) 

In EELS, the sample is exposed to a beam of electrons with a known, narrow range of 

kinetic energies. Some of the electrons will undergo inelastic scattering, which means that they 

lose energy and have their pathways slightly turned. The quantity of energy loss can be 

estimated through an electron spectrometer and analyzed to determine what caused the energy 

loss. EELS technique is considered to be complementary to EDX, which is particularly 

sensitive to heavier elements. EELS system has historically been a more complicated technique 
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but is in principle capable of measuring atomic composition, chemical bonding, and surface 

properties. 

 

3.2.5 Brunauer, Emmet, Teller Sorption Isotherm (BET)  

BET adsorption/desorption isotherm analysis provides a measure of the surface area or 

porosity of the material. The surface area of the material is often highly significant in the 

development of catalysts, since a high surface area implies a high density of exposed catalytic 

active sites. A sample is prepared inside a glass tube, and its weight is measured. The sample 

is then evacuated (degassed) at roughly 200 °C to remove water that may be adsorbed onto the 

sample surface. The sample tube is lowered to liquid nitrogen temperatures and exposed to 

nitrogen gas where its nitrogen adsorption/desorption isotherms are determined. From the 

obtained isotherms, it is possible to calculate the BET surface area and define the porosity of 

the material 86. In this thesis, N2 sorption (Micromeritics ASAP 2020 located in Advanced 

Carbon Nanotechnology Lab at University of Waterloo) was used. 

 

3.2.6 X-Ray Photoelectron Spectroscopy (XPS)  

XPS is the most common technique to determine the elemental composition of NPMCs. 

In particular, XPS is an excellent tool to ascertain the type and relative amount of nitrogen 

functionalities doped into carbon through deconvolution of high-resolution N1s spectra. Since 

ORR is strictly a surface reaction, the surface composition of the catalyst is often used to 

identify the catalytic active sites, which can be determined by the use of XPS. This technique 
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involves the use of X-rays to irradiate a sample, causing the sample to emit electrons due to 

the photoelectric effect. The emitted electrons exhibit specific binding energies associated with 

the atom where they originate. The resulting spectrum of intensity of binding energies can be 

used to determine the elements and the electronic state of the elements present at the surface 

of sample 58. XPS spectra were collected using a Thermal Scientific K-Alpha spectrometer. 

 

3.2.7 X-Ray Diffraction (XRD)  

XRD (Rigaku MiniFlex 600 located in Applied Nanomaterials & Clean Energy Lab at 

University of Waterloo) is used in the research to identify the presence of metal particles or 

metal oxides that may be present after high-temperature treatment of the catalysts. XRD is 

capable of determining the crystal structure of a material by detecting diffracted X-rays and 

employing Bragg’s Law (Equation 3-1).  

Equation 3-1 

sin 𝜃 =  
𝑛𝜆

2𝑑
 

 

Where n is a positive integer and λ is the wavelength of incident wave. The particular 

crystal structure obtained from the diffraction results can be used to link the sample to a specific 

material. The technique involves sweeping over a range of angles and detecting the intensity 

of diffracted X-rays. XRD depends on the crystallinity of substance and thus does not function 

when the material is amorphous 87. 
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3.2.8 Raman spectroscopy 

Raman spectroscopy is a useful technique to obtain the information on rotational and 

vibrational modes in a system. The Raman effect is small but accessible by the use of lasers, 

and the monochromatic light of laser interacts with the molecular vibrations, photons or other 

excitation in the sample that results in the energy of the laser photons being shifted. Thus, the 

change in energy provides the information about vibrational modes in sample 58. In this study, 

Raman spectroscopy is used as an important characterization tool for the investigation of defect 

sites in catalysts, as well as the study of the structure changes before and after heat treatments. 

However, the complexity of the carbon phase in such catalysts makes interpretation of Raman 

spectra very difficult. Raman spectra are affected by the ratio of sp2/sp3 bonds, crystallite size, 

bond-angle disorder, bond-length disorder, and heteroatoms 88 . Generally, the spectra around 

1580 cm-1 (G band) and 1350 cm-1 (D band) are known to correspond to the planar motion of 

sp2-hybridized carbon atoms in an ideal graphene layer and carbon atoms close to the edge of 

a graphene sheet, respectively 89. The D band is inversely proportional to the crystallite size. 

The ratio of ID/IG (where “I” denotes the band intensity) is often used to measure the degree of 

disorder in the graphene layer. The relative concentration of amorphous carbon could be 

assessed from G and D bands in the Raman spectra. Raman spectroscopy was carried out on a 

Bruker Senterra Raman Microscope operating with a wavelength of 532 nm. 
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3.3 Electrochemical Characterizations 

3.3.1 Half‐cell rotating disc electrode testing (RDE) 

Half‐cell RDE testing is a well‐established technique to screen the electrochemical 

activity of various catalyst materials. It is an ideal, simple, and fast way to investigate the 

catalyst materials 41. Half‐cell testing uses Pine electrochemical station (Model AFCBP-1), an 

electrochemical glass cell, filled with an electrolyte solution. For the present project, 0.1 M 

HClO4 or 0.5 M H2SO4 will be employed as the electrolyte to simulate the acidic conditions 

encountered during PEMFC operation at the cathode. The electrolyte is saturated with oxygen 

during ORR activity testing to ensure a consistent supply of oxygen for diagnostic purposes. 

RDE testing utilizes three electrodes; the working electrode is a glassy carbon disc, upon which 

the catalyst materials are deposited. Working electrode preparation first consists of creating a 

catalyst ink, by ultrasonically dispersing the catalyst materials in ethanol or propanol solvent, 

and then drop-casting it using a pipette onto the electrode surface. After drying, the entire 

electrode surface area should be uniformly coated with the catalyst materials. The ionomer 

(Nafion) can either be incorporated directly into the catalyst ink or deposited afterward onto 

the prepared electrode to serve as a binder. During testing, this electrode will be immersed into 

the oxygen saturated electrolyte solution, and the potential will be swept while measuring 

current to evaluate the ORR kinetics occurring on these materials. The second electrode is a 

counter electrode, consisting of a platinum wire or graphite electrode immersed in the 

electrochemical cell to complete the circuit. The third electrode is a reference electrode used 

to measure the working electrode potentials. Generally, for acidic ORR evaluation, Ag/AgCl 
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or reversible hydrogen electrode (RHE) reference electrodes are utilized. In order to measure 

the ORR activity, the potential of the electrode will be swept from ca. 1.1 to 0.0 V vs. RHE at 

10 mV s-1 while measuring current under saturated oxygen electrolyte conditions. Background 

currents obtained under saturated nitrogen conditions will be removed to account only for the 

Faradaic ORR. From this data, ORR electrokinetics occurring on the catalyst materials can be 

evaluated, whereby increased onset and half-wave potentials for the ORR and higher current 

densities indicate improved activity. Accelerated durability testing (ADT) was carried out by 

cycling the electrode in nitrogen saturated electrolyte between 0.6 and 1.0 V vs. RHE at 50 mV 

s−1 for several cycles. Pt/C electrode (TKK, 28.2% Pt) with a Pt loading of 20 μg cm−2 was 

measured in 0.1 M HClO4 solution as benchmark. 

 

3.3.2 Rotating Ring Disk Electrode (RRDE) 

The RRDE technique is a technique often used in the electrochemical characterization 

of catalysts. A potential range is scanned, and the current produced is measured using a 

potentiostat while the electrode is rotated within an electrolyte filled cell. A catalyst ink is 

prepared and coated onto an electrode. A Pine RRDE containing a glassy carbon disk (5 mm 

diameter) and Pt ring (5.52 mm inner-diameter, 7.16 mm outer-diameter, collection efficiency 

N = 0.26) served as the working electrode. The electrode was designed to be able to provide 

two current readings; current from the disk and current from the platinum ring. The ring 

potential was set to 1.20 V vs RHE and the current is used as an indication that hydrogen 

peroxide was formed during the potential sweep. If oxygen is reduced within the center disk 
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electrode into hydrogen peroxide, the hydrogen peroxide will travel towards the outer platinum 

ring, and be further reduced and generate current 41. 

 

3.3.3 Membrane electrode assembly (MEA)  

MEA is a typical single cell of a PEMFC to obtain more realistic performance of 

catalyst and electrode. The catalyst ink is prepared by the following receipt: catalyst powder 

(40 mg), DDI water (0.5 mL), iso-propanol (0.5mL), and Nafion (5 wt%, 400 mg). During 

fabrication of MEA, catalyst materials are painted onto a 5 cm2 Nafion 211 membrane until 

the obtained catalyst loading was approximately 4 mg cm−2. The catalyst deposition can also 

be done via different techniques such as spraying, filtration or electrodeposition 90. 

Commercial Pt deposited carbon cloth (0.2 mg cm−2 Pt, Fuel Cell Etc) as gas diffusion 

electrode (GDE) was used at the anode side. The anode GDE, Nafion membrane with brushed 

catalysts and gas diffusion layer (GDL, 29 BC, Ion Power) were then assembled using hot-

press at 120 oC for 5 minutes using 600 lbs force to ensure consistent contact and adhesion 

without any destruction.  

Fuel cell test is then done by a Model 850e fuel cell test system (Scribner Associates 

Inc.) at a cell temperature of 80 oC. Primarily, the performance evaluation is done by cycling 

the cell current from open circuit conditions (no current being drawn) to very high current 

densities. During this testing, the cell voltage is continuously monitored, resulting in an MEA 

polarization curve similar to the one provided previously in Figure 1-1. Several cycles are run 

before the performance is evaluated to ensure adequate hydration of the electrolytic membrane 
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and activation of the catalyst materials. H2 and O2 flow rates were both 300 sccm at 100% RH, 

and back pressure of 20 psi gauge was applied. H2-air fuel cell durability test was conducted 

using an MEA fabricated with Nafion 115 ionomer membrane following the testing conditions 

that are suggested by the US Department of Engineering (DOE) 91. The cell voltage was held 

at 0.4 V for 50 hours and the current was recorded. The cell temperature was set to 80 °C; all 

gases flow rates were 300 sccm and at 100 % RH; and the back pressure was 20 psi gauge on 

both sides. Before recording, H2 and air were fed for 1h to condition the MEA. 

EIS experiments were carried out using a potentiostat/galvanostat, Gamry Interface 

5000. Measurements were conducted at a cell voltage of 0.6 V, with amplitude of 5 mV, and 

in the frequency range of 0.01 Hz to 100 kHz. The impedance data were obtained by calculation 

and simulation with Gamry software. 
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Chapter 4 

Electrospun Fe-PANI-PAN Nanofibers 

P. Zamani, D. Higgins, F. Hassan, G. Jiang, J. Wu, S. Abureden, Z. Chen, Electrochimica 

Acta 139 (2014), 111-116 

Part of the work described in this chapter has been published as refrence 92, with permission 

from Elsevier. 

 

4.1 Introduction 

Replacing the high-cost Pt catalysts with alternative NPMCs for the ORR is highly 

desirable to reduce the cost of PEMFC systems 11,12. Through extensive investigations, it is 

believed that the active site structure identities and concentrations are governed by precursor 

and synthesis technique selection 11,12,93. However, the exact role and coordination chemistries 

of the individual atoms remain the subjects of debate. For different NPMCs, it is, therefore, 

necessary to optimize synthetic conditions to increase the ORR active site density and turnover 

frequency, while simultaneously providing high surface area and porosity for improved 

catalyst utilization 80,94. 

 Recently, one–dimensional nanostructured carbon materials have been used as 

electrocatalyst materials due to their excellent conductivity, tunable surface properties and the 

ability to be integrated into interconnected, highly porous electrode structures 95-97. Nanofibers 

have been fabricated via several techniques such as template synthesis, self–assembly, phase 
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separation, and electrospinning 82. Among these techniques, electrospinning is a highly 

attractive technique to reliably and cost-effectively fabricate continuous polymer nanofibers 

into porous web-like structures 82,98,99. Furthermore, its simplicity renders electrospinning 

highly applicable to the development of NPMCs for fuel cell applications 94,100-102. Previous 

studies have however been confined to metal-polyacrylonitrile (PAN) based nanofibers, that 

have been demonstrated in the presence of iron to provide ORR activity in both alkaline 94,103 

and acidic electrolytes 102-106. It is therefore highly desirable to investigate new synthetic 

strategies to prepare materials with improved ORR activity. 

In this study, we investigate the incorporation of PANI precursors into Fe-PAN 

polymer blends (Fe-PANI-PAN) produced by electrospinning, followed by pyrolysis. This 

approach comprises for the first time a mixture of polymers with complementary properties 

has been used for electrospinning to prepare NPMCs, with improved ORR activity 

demonstrated in acidic electrolytes. PANI was selected as it has previously been demonstrated 

to produce some of the most active NPMCs to date, due to its aromatic ring structure with a 

high content and uniform distribution of nitrogen species that can readily form nitrogen-doped 

graphitic carbon structures during heat treatment 55,58-60,93,107. PAN is also helpful as a low-cost 

polymer carrier to overcome the poor solubility of PANI in solution and as a secondary source 

of nitrogen. We demonstrate that the addition of 10 wt. % PANI to the Fe-PAN electrospinning 

solution significantly enhances the ORR activity of the resulting NPMCs based on the onset 

potential and half-wave potential, while demonstrating high selectivity towards the 4-electron 

reduction of oxygen. This unique synthetic approach, therefore, provides reasonable progress 

towards the development of one-dimensional NPMCs for fuel cell applications. 
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4.2 Experimental 

4.2.1 Fe–PANI Polymerization 

In a 500 ml beaker, 5 mL of aniline and 50 mg of iron chloride (FeCl3) were 

sequentially added to 300 mL of 1.0 M hydrochloric acid (HCl) under gentle stirring while 

keeping it below 10 oC using an ice bath. In another beaker, 11.4 g of ammonium persulfate 

(APS) was dissolved in 200 mL of 1.0 M HCl. This oxidant solution was then slowly added to 

the aniline mixture and stirring maintained for 24 h to allow complete polymerization. The 

liquid was removed using a rotary evaporator and the Fe–PANI complex was collected. 

 

4.2.2 Synthesis of Fe-PANI-PAN Electrospun Nanofiber Catalysts 

In a 25 ml vial, 1.0 g PAN (Mw 150,000), 100 mg of Fe–PANI and 315 mg of FeCl3 

were dispersed in 23 mL of dimethylformamide (DMF) by sonication for two days. 

Electrospinning was carried out using a needle–collector distance of 15 cm, solution flow rate 

of 200 µL h-1 and applied a voltage of 23 kV. The electrospun polymer nanofibers were then 

subjected to calcination at 250 oC for two hours in air using a heating rate of 1 oC min-1. The 

materials were then annealed in argon at 850 oC for two hours to obtain the final Fe-PANI-

PAN catalyst. As benchmarks, Fe-PAN and PANI-PAN samples were also prepared by similar 

methods without the incorporation of PANI and Fe precursors, respectively. 
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4.3 Results and Discussion 

The first step of the present study was to optimize the formation of electrospun 

nanofibers by modifying the Fe-PANI-PAN concentrations within the DMF precursor 

solution.  As shown in SEM images (Figure 4-1a and Figure 4-1b), when relatively low Fe-

PANI-PAN concentrations of 1 and 2 wt. %, respectively are used, only blood–cell shaped 

droplets were observed, indicating that the surface tension at this solution concentration was 

likely too high 108. By increasing the Fe-PANI-PAN concentration to 5 wt. %, nanofiber 

formation was clearly observed (Figure 4-1c). Diameters varying from ca. 30 to 150 nm 

(average of 100 nm) were found along with some bead structure.  The presence of more beads 

highlights the impact PANI incorporation has on the electrospinning process in comparison to 

the smoother and relatively uniform electrospun Fe-PAN nanofibers shown in Figure 4-1e. It 

should be noted that higher Fe-PANI-PAN concentrations were not appropriate due to the poor 

solubility of PANI that limited its dispersion in the DMF solution. 
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Figure 4-1 SEM images of Fe-PANI-PAN electrospun nanomaterials derived from (a) 1 wt. 

% (b) 2 wt. % and (c) Fe-PANI-PAN nanofiber derived from 5 wt. % polymer concentration 

in the DMF precursor solution and (d) Fe-PANI-PAN electrospun nanofibers derived from 5 

wt.% after heat treatment. SEM images of Fe-PAN electrospun nanofibers (e) before and (f) 

after heat treatment. 

 

The Fe-PANI-PAN nanofibers (Figure 4-1c) and Fe-PAN (Figure 4-1e) prepared from 

the 5 wt. % solution were then subjected to calcination in air at 250 oC and subsequent 

carbonization in argon at 850 oC (Figure 4-1d and Figure 4-1f, respectively). BET analysis 
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indicated a higher specific surface area of 355 m2 g-1 for Fe-PANI-PAN compared to 330 m2 

g-1 for Fe-PAN.  These values are significantly greater than those reported for non-porous 

carbon nanofibers 94,95 and similar to those of porous carbon nanofibers reported previously 94.  

The effect of adding PANI was investigated by conducting XPS analysis of Fe-PAN-

PANI and Fe-PAN nanofibers. The overall XPS spectra show the existence of carbon, oxygen, 

nitrogen, and iron in the catalysts. The high-resolution N 1s spectra provided in Figure 4-2 for 

Fe-PAN and Fe-PANI-PAN, respectively, revealed that the nitrogen content increased from 

3.63 to 5.35 at. % with the addition of PANI (Figure 4-2). Based on peak deconvolution, it was 

found that pyridinic and graphitic/pyrrolic N were present in higher concentrations in Fe-

PANI-PAN (pyridinic~2.50 and graphitic~2.45 at. %) compared to Fe-PAN (pyridinic~1.08 

and graphitic~1.93 at. %). The increased content of these structures could likely arise during 

pyrolysis due to the unique aromatic structure of PANI which is linked via nitrogen sites in a 

vast chain (a rich source of nitrogen atoms) 93,107. The increased nitrogen content of NPMCs 

has previously been associated with ORR activity both in alkaline and acidic environments 

80,109-111, potentially underlying the beneficial impact of PANI incorporation towards the 

improved electrochemical performance highlighted later. 
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Figure 4-2 Nitrogen content and species of (a,c) Fe-PAN and (b,c) Fe-PANI-PAN. 

 

Figure 4-3a shows CV plots of Fe-PANI-PAN in O2 and N2 saturated 0.1 M HClO4. 

From this graph, ORR activity is observed due to the emergence of a distinct reduction peak 

that is not noted in the absence of oxygen 112. Polarization curves of Fe-PANI-PAN are shown 

in Figure 4-3b along with the related Koutecky–Levich (K–L) plot (Figure 4-3c). The number 

of electrons transferred in RDE is calculated using the K–L equation (Equation 4-1) 113. 

Equation 4-1 

1

𝑖
=  

1

𝑖𝑘
+ 

1

𝑚√𝜔
 

Equation 4-2 

𝑚 = 0.201𝑛𝐹𝐶𝑂2
𝐷𝑂2

2 3⁄
𝜈−1 6⁄  

 

Here, ik is the kinetic current density, i is the experimental current density, m is the 

Levich slope (Equation 4-2) 113, and ω is the rotation speed. In Equation 4-3, n is the number 
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of electrons transferred, F is the Faraday constant, C is the dissolved oxygen concentration, D 

is the oxygen diffusion coefficient, and ν is the electrolyte kinematic viscosity 113. The number 

of electrons transferred was calculated to be ca. 3.87 at all electrode potentials investigated, 

demonstrating high selectivity towards an overall 4-electron reduction mechanism occurring 

on the Fe-PANI-PAN catalysts. Ring currents from RRDE measurements were also used to 

determine the number of electrons transferred using Equation 4-3 55. At all potentials below 

ca. 0.65 V vs. RHE, the number of electrons transferred was calculated to be ca. 3.89 

(Figure 4-3d), which is in good agreement with the results from K-L analysis. Accordingly, 

the peroxide yield (Equation 4-4) 59 for the Fe-PANI-PAN catalyst was also less than ca. 5.0 

%, indicating high selectivity toward the 4-electron ORR to produce H2O.  

Equation 4-3 

𝑛 = 4 ×  
𝐼𝐷

(
𝐼𝑅

𝑁⁄ ) + 𝐼𝐷 
 

Equation 4-4 

𝐻2𝑂2 (%) = 200 ×  

𝐼𝑅
𝑁⁄

(
𝐼𝑅

𝑁⁄ ) +  𝐼𝐷

 

Where N is the ring collection efficiency constant, and IR and ID are the ring and disk 

electrode current, respectively. 
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Figure 4-3 (a) CV curves of Fe-PANI-PAN in N2 and O2 saturated 0.1 M HClO4, (b) 

Polarization curves performed in O2 saturated 0.1 M HClO4 of Fe-PANI-PAN at different 

rotational speed, and (c) the associated K–L plot. (d) The peroxide yield and n, the number of 

electrons transferred for Fe-PANI-PAN in O2 saturated 0.1 M HClO4. Catalyst loading of 0.6 

mg cm-2. 

 

In Figure 4-4a, ORR polarization curves collected at 1600 rpm for catalysts derived 

from PAN-PANI, Fe-PAN, and Fe-PANI-PAN are demonstrated, with a comparison of the 

collected electrokinetic data summarized in Figure 4-4b. From these plots, it is seen that the 

addition of 10 wt. % PANI to Fe-PAN significantly improves the onset potential from 0.80 to 
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0.90 and the half–wave potential from 0.63 to 0.70 V vs. RHE. These results show greater than 

ca. 40 mV improvements in the onset and half–wave potentials in acidic media compared to 

the best results previously reported for NPMCs prepared by electrospinning and subsequent 

high-temperature heat treatment 104-106. Coupled with the high selectivity towards the 4-

electron reduction mechanism, Fe-PANI-PAN comprises the most active NPMCs prepared by 

electrospinning that has been reported to date. Although the exact origin of ORR activity in 

NPMCs is still unclear, the enhancements could potentially be linked to the relatively higher 

pyridinic and graphitic/pyrrolic nitrogen contents (Figure 4-2f) of Fe-PANI-PAN in 

comparison to Fe-PAN 59,60,110,112, along with the slightly higher surface area determined by 

BET analysis. 

  

 

Figure 4-4 (a) Linear sweep voltammetry curves performed in O2 saturated 0.1 M HClO4 for 

Fe-PAN, Fe-PANI-PAN, and PANI-PAN at 1600 rpm, and (b) Corresponding comparison of 

onset potential, half–wave potential and limiting current density. 
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4.4 Conclusions 

Fe–PANI-PAN nanofibers prepared via electrospinning and subsequent heat treatments were 

prepared as NPMCs. Electrochemical RDE and RRDE characterization revealed that the 

addition of 10 wt% PANI to PAN significantly improved the ORR activity of Fe-PANI-PAN 

in comparison to Fe-PAN. Based on XPS analysis, these enhancements can likely be attributed 

to the increased surface concentration of pyridinic and graphitic nitrogen species, probably 

arising due to the nitrogen, aromatic structure of PANI precursor. The preparation of Fe-PANI-

PAN, therefore, provides a unique synthetic approach to preparing the most active one-

dimensional NPMCs by electrospinning reported to date for the ORR.  
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Chapter 5 

Co-N Decorated Hierarchically Porous Graphene Aerogel 

(Co-N-GA) 

X. Fu, J-Y. Choi, P. Zamani, G. Jiang, Md. A. Hoque, F. M. Hassan, and Z. Chen, ACS 

Applied Materials & Interfaces, 8 (2016) 6488-6495 

Part of the work described in this chapter has been published as reference 114 with permission 

from American Chemical Society. 

 

5.1 Introduction 

Owing to their high fuel efficiency and zero emissions at the point of operation,  

PEMFCs currently represent one of the most promising classes of energy conversion 

technologies 28. For widespread commercialization of PEMFCs, one crucial factor is to reduce 

the high cost caused by the use of expensive platinum-based catalysts at the cathode due to the 

slow kinetics of the ORR 115-117. Therefore, the search for efficient and less costly NPMCs for 

ORR is extremely important to commercialize clean operating, efficient electrochemical 

devices 39,57,118-120. 

Recent research efforts towards replacing platinum-based catalysts have shown that 

nitrogen-doped carbon nanomaterials could act as effective ORR catalysts due to their low 

cost, excellent electrocatalytic activity, long durability and environmental friendliness 96,121-
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124. Among them, graphene-based carbon materials have attracted significant interest as 

alternative ORR catalyst due to their exceptional chemical and physical properties such as 

ultra-high surface area, superior conductivity, and excellent mechanical/chemical stability 125-

129.  However, most of the nitrogen-doped graphene materials which show promising ORR 

performance in alkaline electrolyte suffer from relatively low activity in acid medium, making 

them less competitive with commercial Pt/C catalyst. The introduction of transition metals 

(e.g. Fe, Co) to the above-mentioned graphene matrix results in M-N-C-based NPMCs which 

further enhances their ORR activity in acid media 36,130. Although the nature of the catalytically 

active sites in these NPMCs remains elusive, quantum mechanical calculations and 

experimental investigations both indicate that M-N moieties, in which metal cations 

coordinated by pyridinic nitrogen atoms, play a vital role in catalyzing the ORR 56,131,132. Also, 

according to a previous report, the limitations to enhancing the catalytic activity of these 

catalysts include the low density and utilization of M-N active sites and poor mass transport 

properties 133. Thus, turning to large surface area and highly porous graphene structures to 

afford both abundant, accessible M-N catalytic sites and proper channels for mass transport is 

a potential solution to advanced ORR catalysts 12. 

It is well known that graphene sheets tend to a drastic loss of steak together and lead 

specific surface area, which makes electro- active sites unacceptable for catalysis and inferior 

mass transfer. In order to improve the utilization of active sites and facilitate mass transfer 

through the entire volum of graphene-based catalysts, various strategies have been explored to 

prevent the stacking of individual graphene sheets. Spacer blocks such as carbon nanotubes, 

134 metal nanoparticles, and templates have been inserted between graphene sheets to prevent 
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their stacking 135,136. Different physical and chemical treatments have also been employed to 

yield porous frameworks that suppress their agglomeration 137-139. However, the use of 

hazardous reagents or the tedious synthesis procedures results in low production yields and 

high costs. Besides, the electrochemical performances still need to be improved. Based on the 

above considerations, high ORR performance materials are expected for example by designing 

and constructing interesting graphene frameworks with large surface area and suitable porosity 

as well as more active M-N moieties. It will certainly be a great development if such a novel 

graphene structure could be fabricated through a simple but efficient way. 

Here, we report a Co-N decorated graphene aerogel (Co-N-GA), which has unique 

hierarchical pores, large surface area and an abundance of potential Co-N active sites. A 

combined hydrothermal self-assembly, freeze-drying, and pyrolysis process was employed to 

efficiently prepare this porous graphene framework. Specifically, PANI is carefully selected 

as a pore-forming agent to aid in the self-assembly of graphene oxide (GO) species into a 

highly porous hydrogel structure, while also being an effective nitrogen precursor due to its 

unique chemical structure 58,59,140. The as-fabricated graphene aerogel was used as a catalyst to 

achieve the following: 1) maximum Co-N active sites density; 2) optimum utilization of active 

sites; 3) facilitating of the proper transfer of reactant and product. Benefiting from these 

excellent structural properties, the Co-N-GA developed herein exhibits impressive 

electrochemical performance in acid medium. 
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5.2 Experimental Section 

5.2.1 Synthesis of Co-N-GA 

In a typical experiment, a 30 ml of an as prepared GO (2 mg ml−1) aqueous solution 

containing Co(NO3)2·6H2O (15 mg) and PANI (80 mg) was sonicated for 1 h to form a stable 

suspension. Subsequently, this suspension was sealed in a Teflon-lined autoclave and 

hydrothermally treated at 180 °C for 12 h. Afterward, a hydrogel was lyophilized to prevent 

the agglomeration of graphene sheets during the drying process.  The uniform unified structure 

was then heated at 900 °C for 1 h under Ar. The heat-treated sample was then pre-leached in 2 

M H2SO4 at 80 °C for 24 h to extract unstable and inactive metallic species from the materials 

and carefully washed with DI water. Finally, the catalyst was pyrolyzed over in Ar at 900 °C 

for 3 h referred to form what we denote as the “Co-N-GA” catalyst. For comparison, the Co-

N modified graphene sheet catalyst (Co-N-GS) was prepared with a slightly modified 

approach. In the case of Co-N-GS, a 120 mL aqueous dispersion of diluted GO (0.5 mg ml−1) 

with cobalt salt (15 mg) and PANI (80 mg) was prepared and then processed following the 

same synthetic procedure as above. Due to the relatively low concentration of GO solution, an 

amorphous precipitate instead of a hydrogel formed during the hydrothermal treatment. N-GA 

was also prepared with the same procedure as Co-N-GA but without the cobalt salt. 

 

5.2.2 Electrochemical Measurements 

RRDE testing was conducted to evaluate the ORR activity. 10 mg of catalyst and 3 mg 

of Nafion was dispersed in 1 mL of a 1-propanol ink then 12 μL of the ink was deposited on a 
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0.19635 cm2 electrode. Electrochemical testing was conducted in 0.5 M sulfuric acid at 

ambient conditions by sweeping the electrode potential from 1.0 to 0.0 V (RHE) under oxygen 

saturation.  Accelerated durability testing (ADT) was conducted by cycling the electrode 

potential 5000 times between 0.6 and 1.0 V vs. RHE under nitrogen saturation. 

 

5.3 Results and Discussion 

The fabrication process for Co-N-GA is illustrated in Figure 5-1. In the first step, a 

stable aqueous suspension containing GO, Co(NO3)2·6H2O and PANI (Figure 5-2a) was 

hydrothermally treated to synthesize a graphene-based hybrid hydrogel (Figure 5-2b). 

Subsequently, a freeze drying and pyrolysis process were applied to obtain the aerogel with a 

unifrom architecture (Figure 5-2c). Finally, the as-prepared aerogel was pre-leached in 2 M 

H2SO4 to remove unstable and inactive species from the catalyst and then pyrolyzed again to 

yield the Co-N-GA. Here, PANI serves two essential functions in preparing the Co-N-GA 

catalyst. First of all, it helps with the assembly of graphene to form a hydrogel during the 

hydrothermal treatment, due to the hydrogen bonding and π-π interactions within GO which 

can prevent the restacking of GO and thereby form a hierarchical porous structure. Otherwise, 

a monolithic hydrogel could not be obtained in the absence of PANI. Second, it acts as an 

efficient nitrogen doping agent, due to its high N/C atomic ratio (0.17) and unique aromatic 

structure which can facilitate the incorporation of nitrogen-containing active sites into the 

graphene matrix 55. Meanwhile, along with the decomposition of PANI during the pyrolysis 
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process, a significant amount of nitrogen-containing gas is released, which can further expand 

the graphene sheets to have fewer layers and increased porosity. 

 

 

Figure 5-1 Schematic of the synthetic route for the Co-N-GA catalyst. 

 

 

Figure 5-2 (a), (b) and (c) Fabrication process for the porous Co-N-GA catalyst; (d) GO 

hydrogel prepared in the absence of PANI and cobalt salt; (e) GO-based precipitation. 
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The morphology and microstructures of Co-N-GA were first investigated by SEM and 

TEM. SEM imaging reveals a significant amount of open-pore structures that continue through 

the graphene framework (Figure 5-3a). Meanwhile, the magnified SEM image indicates the 

existence of numerous smaller pores contiguous with large pores (Figure 5-3b). These SEM 

results confirm that Co-N-GA with an interconnected porous network that is beneficial for a 

catalsyt was successfully prepared. Such a porous graphene skeleton could maximize the 

exposure of active sites to participate in the ORR process. Meanwhile, during the ORR process, 

these robust interconnected pores could function as arteries that shorten the diffusion length of 

reactant and product 141. In order to investigate the utilization of the pore structures, graphene-

sheet-based Co-N-GS catalyst was also prepared.  In contrast to Co-N-GA with loose porous 

networks, Co-N-GS exhibits a relatively agglomerated structure, which is disadvantageous for 

the contact of oxygen, electrolyte and active sites. TEM characterization of Co-N-GA reveals 

an almost transparent wrinkled surface characteristic of graphene, while some carbon 

composite structures which result from the carbonization of PANI and cobalt are also observed 

(Figure 5-3c). The high-resolution TEM (HRTEM) image of Co-N-GA further indicates the 

presence of graphitic carbon shells which are commonly observed in acid leached M-N-C 

catalysts (Figure 5-3d) 142,143. The graphitic carbon shell structure is likely to improve the ORR 

performance due to the increased exposure of sites responsible for oxygen adsorption and fast 

electron transport as well as exhibiting more corrosion resistance 135. 
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Figure 5-3 (a), (b) SEM and (c), (d) TEM images of as-obtained Co-N-GA. (e) N2 sorption 

isotherms of Co-N-GS and Co-N-GA catalysts, and (f) the pore size distribution from the BJH 

method of corresponding samples. 

 

The BET analysis of nitrogen adsorption−desorption isotherms (Figure 5-3e) reveals 

the absence of a plateau at high pressures indicating the presence of macropore. This 

conclusion is also supported by the rapid rise at low-pressure region. Meanwhile, the hysteresis 

in the middle-pressure range suggests the existence of a mesoporous structure that is likely 

formed by aggregates of lamellar graphene sheets. Remarkably, the specific surface area of 
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Co-N-GA is approximately 485 m2 g−1, which is about two times higher than that of Co-N-GS 

(222 m2 g−1). Such a high surface area graphene structure could have a high volumetric surface 

area and therefore, maximize the active site density to improve ORR performance. The pore 

size distribution (calculated by the B–J–H method) shows the presence of multiple porosities 

ranging from a few nanometers to the near micrometer scale (Figure 5-3f). It is worth noting 

that the Co-N-GA shows predominantly macro-pores compared to Co-N-GS which could 

shorten the diffusion length of reactive molecules and thus improve the ORR performance 144. 

It is therefore expected that the presence of numerous large pores could provide superior 

electrochemical performance for Co-N-GA. 

Raman spectroscopy and XRD were employed to characterize the physical structures 

of the graphene-based samples. As can be seen in Figure 5-4a, two peaks at ~1350 and 1580 

cm−1 representing the well-defined D band and G band, respectively, were obtained. In 

comparison to GO, the increased ID/IG intensity ratio of N-GA, Co-N-GS, and Co-N-GA 

illustrates their greater disordered feature presumably caused by the nitrogen-doping. The 

XRD pattern in Figure 5-4b only shows a broadened peak at ~23°, corresponding to the (002) 

planes of carbon materials. No clear diffraction peak of only Co phases or its oxides is observed 

which shows that the majority of large inorganic cobalt particles were likely removed by the 

acid leaching step and any particles that may remain are too small or too low in concentration 

to be detected. 
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Figure 5-4 Raman spectra (a) and XRD patterns (b) of GO, N-GA, Co-N-GS, and Co-N-GA; 

(c) and (d) High-resolution N 1s peak of the resulting Co-N-GA and N-GA 

 

 

Figure 5-5 (a) STEM image of Co-N-GA and corresponding EDX elemental mapping images 

of (b) C, (c) N and (d) Co. 

 

XPS measurements were further carried out to probe the chemical compositions and 

contents of the materials. The measured survey spectra of Co-N-GA and Co-N-GS reveal the 
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presence of C, O, N and Co peaks. Table 5-1 outlines the atomic surface concentrations with 

only small differences observed between the two catalysts. The high-resolution N 1s spectra 

of the two Co-N modified catalysts were deconvoluted into five different peaks with binding 

energies of 398.6, 399.3, 400.9 401.5 and 403.2 eV, corresponding to pyridinic N, Co-N, 

pyrrolic N, graphitic N and oxidized N, respectively 44,145. The detailed peak-fitting results of 

the N 1s are listed in Table 5-2, and show different N-bonding configuration that likely exert 

a significant influence on their catalytic performances. In particular, the Co-N functionalities, 

which are proposed as the most likely active sites play an important role for the ORR activity 

in acidic medium. 

 

Table 5-1 Elemental composition of the samples obtained from XPS results. 

Samples C 

(at.%) 

N 

(at.%) 

O 

(at.%) 

Co (at.%) 

N-GA 93.80 2.86 3.34 --- 

Co-N-GS 94.63 2.57 2.52 0.29 

Co-N-GA 94.54 2.10 3.12 0.24 
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Table 5-2 Atomic concentrations (at.%) of heterocyclic N components of samples in the N 1s 

binding energy region (398 ~ 405 eV). 

 

Pyridinic N Co-N Pyrrolic N Graphitic N Oxidized N 

398 eV 399 eV 400 eV 401 eV 402−404 eV 

N-GA 43.75% --- 25.2% 24.5% 6.5% 

Co-N-GS 26.3% 17.9% 18.9% 28.6% 8.2% 

Co-N-GA 25.8% 18.7% 21.4% 29.8% 4.2% 

 

EDX analysis was also employed to probe the elements and their locations in Co-N-

GA further. First, the EDX maps in Figure 5-5 confirm the presence of elemental C, N, O, and 

Co in Co-N-GA, in agreement with the XPS results. EDX elemental mapping was performed 

to further  identify the  distribution of  elements in  this catalyst. Unexpectedly, Co species 

were detected along with C, N and O elements to be uniformly distributed throughout the 

graphene structure (Figure 5-5a-d). Such finely dispersed Co species could coordinate with the 

N atoms to form Co-N moieties which are believed to be highly active for ORR. All in all, the 

well distributed Co-N sites and the porous structure are highly beneficial for the ORR 

performance. 

The catalytic performance of the prepared materials towards the ORR was evaluated in 

0.5 M oxygen saturated H2SO4 solutions by the RRDE method. For comparison, pure N-GA, 

Co-N-GS and commercial Pt/C (TKK, 28.2 wt.% Pt) were also investigated. As shown in 

Figure 5-6a, Co-N modified graphene materials (Co-N-GA and Co-N-GS) exhibit more 
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positive onset potential (Eo) and half-wave potential (E1/2) than that of N-GA. This higher half-

cell activity indicates the ability of Co-N moiety modified graphene materials to catalyze the 

ORR in acid medium efficiently. This result agrees with that of a previous report that a 

transition metal is necessary for nitrogen-doped carbons to be highly active catalysts, due to 

the formation of Co-N coordination structures 12. Moreover, the Eo  and E1/2  of Co-N-GA (Eo  

= 0.88 V, E1/2  = 0.73 V) are more positive than that of Co-N-GS (Eo  = 0.84 V, E1/2  = 0.68 

V), which is approaching the commercial Pt/C catalyst (Eo= 1.0 V, E1/2  = 0.86 V). 

Additionally, Co-N-GA also shows a slightly higher diffusion limiting current density than 

that of Co-N-GS at 0.3 V (Figure 5-6a).  

The peroxide yield and electron transfer number (n) of the prepared catalysts and Pt/C 

were further studied using the RRDE analysis. The measured H2O2 yield on the Co-N-GA 

electrodes is 7%−13% from 0.2 V−0.7V, which is slightly superior to that of Co-N-GS 

(10%−15%, Figure 5-6b). On the basis of the ring and disk currents, the n values for Co-N-GA 

were 3.75−3.85 over the potential range from 0.20−0.70 V, similar to that of Co-N-GS 

(3.71−3.80, Figure 5-6b), approaching that of Pt/C catalysts, indicating that both of the two 

Co-N modified samples proceed mainly via a 4-electron mechanism. Given the above analysis, 

the enhanced ORR activity of Co-N-GA could mainly originate from its unique hierarchically 

porous structure and more active Co-N moieties. On the one hand, the abundant hierarchical 

pores could sharply enhance the surface area of the catalyst, which could provide sufficient 

active sites to participate in the ORR process. Meanwhile, the hierarchical pores are favorable 

for mass transport and electrolyte accessibility. On the other hand, the potential Co-N moieties 
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could function as more active sites for the catalyst, which could further improve the ORR 

performance. All of these merits could contribute to the final excellent ORR performance. 

 

Figure 5-6 (a) RRDE polarization curves of the GA, N-GA, Co-N-GS, Co-N-GA and Pt/C in 

0.5 M H2SO4 at a scan rate of 10 mV s−1 and 1600 rpm; (b) electron-transfer number and H2O2 

yield of the catalysts; (c) ORR polarization plots of Co-N-GA and Pt/C before and after 5000 

potential cycles in N2 saturated 0.5 M H2SO4 at a scan rate of 10 mV s−1 and 1600 rpm. The 

potential was cycled between 0.6 and 1.0 V at a rate of 50 mV s−1. 

 

Apart from the ORR activity, stability is another important aspect of fuel cell catalysts 

to be considered. The durability of the Co-N-GA catalyst was assessed using an ADT by 

potential cycling between 0.6−1.0 V at 50 mV s−1 under N2 saturated solution. After 5000 

continuous cycles, a small negative shift of E1/2 (ca. 21 mV) was exhibited by Co-N-GA, which 

is similar to the ca. 15 mV negative shift observed in Pt/C (Figure 5-6c). This relatively good 

stability, suggests comparable durability of Co-N-GA in an acidic electrolyte, a feature rarely 

seen for NPMCs. The high electrochemical stability of this Co-N-GA catalyst could be 

ascribed to the high degree of graphitization of the carbon support and the lower H2O2 

production 60,63.  
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5.4 Conclusion 

In summary, a Co-N decorated graphene aerogel has been successfully fabricated via a 

simple approach. The introduction of PANI, which acts as a hydrogel-forming agent and a 

nitrogen precursor, can efficiently prevent the re-stacking of the graphene sheets and promote 

nitrogen doping. The resulting Co-N-GA framework possesses a high BET surface area and 

hierarchically porous skeleton as well as the homogeneous distribution of potential Co-N 

active sites, which can not only expose the more active sites to the electrochemical interface 

but also facilitate mass transport to improve the ORR performance. Based on these 

characteristics, the resultant Co-N-GA exhibits high ORR activity (E1/2 = 0.73 V), high electron 

transfer selectivity (n >3.75), and excellent electrochemical durability in acidic solution. The 

outstanding electrochemical performance makes the Co-N-GA a promising NPMC for 

PEMFC. 
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Chapter 6 

Highly active and porous graphene encapsulating carbon 

nanotubes (Fe-PANI-CNT) 

P. Zamani, D. C. Higgins, F. M. Hassan, X. Fu, J-Y. Choi, Md A. Hoque, G. Jiang, Z. Chen, 

Nano Energy 26 (2016) 267-275 

Part of the work described in this chapter has been published as reference 146, with 

permission from Elsevier. 

 

6.1 Introduction 

PEMFCs are highly promising clean energy devices and considered as ideal 

alternatives to the conventional fossil fuel based technologies used in the automotive industry, 

telecommunications backup and materials handling 98,147,148. Although target markets exist, 

technical challenges relating to cost and durability must be addressed 4. The major bottle-necks 

arise at the cathode where the ORR occurs 1,9-12,93. Currently, the only technologically viable 

ORR catalysts are platinum-based. The high price of Pt-based catalysts is the reason why 

developing new catalyst materials with high performance, at lower costs is of keen interest. 

NPMCs are attractive classes of materials to replace the platinum in conventional ORR 

catalysts. They are actively under development 2,11,12 and prepared via several synthetic 

approaches such as MOF application 70,149-151, sacrificial support method 71-74, hydrothermal or 
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solvothermal synthesis 114,152, pyrolyzing carbon supported complexes 58,153-156, and 

polymerization of nitrogen containing monomers 55,57,58,76,157. These approaches, using high-

temperature pyrolysis in the presence of iron and/or cobalt precursors, have yielded M-N-C 

complexes which are so far the most promising class of NPMCs. 

In the present study, we apply and optimize an ammonia treatment to tune the chemistry 

of a catalyst derived from iron, PANI, and CNT. This approach results in improved 

performance, under both half-cell and fuel cell conditions. NH3 contributes by enriching the 

N-dopant concentration. By controlling the temperature, we can tailor the particular identity of 

the nitrogen dopants to maximize catalytic activity. The overall synthesis process ultimately 

leads to in-situ graphitization of carbon and a catalyst structure that consists of multilayer 

highly porous graphene morphologies encapsulating CNTs with an abundance of nitrogen and 

iron defects. This surface chemistry renders the catalyst highly active towards the ORR, 

coupled with the robustness of the graphene-like morphology. 

 

6.2 Materials and Methods 

6.2.1 Functionalized Multiwalled Carbon Nanotubes  

Commercial carbon nanotubes with 30-50 nm diameters and 10-20 µm lengths were 

functionalized first by immersing 10.0 g in 400 ml of 70% nitric acid. The mixture was then 

refluxed at 85 oC for 8 hours while being vigorously stirred. Functionalized CNTs were then 

filtered and washed with DDI water and dried in an oven overnight.  
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6.2.2 FeCl3-PANI-FCNT polymerization  

3 ml aniline and 10 g FeCl3 were added into 300 ml HCl at room temperature and 

continuously stirring throughout the entire process.  Slowly, 5.0 g of (NH4)2 S2O8 (ammonium 

peroxidisulfate, APS) was added as an oxidant to polymerize the aniline in the above solution. 

The mixture was vigorously stirred at room temperature for 3 hours to allow full 

polymerization of the aniline fully. After 3 hours, a suspension of 400 mg CNTs in DDI water 

was slowly pipetted into the PANI mixture. The solution was then vigorously stirred for 48 

hours. After this, the liquid was evaporated and the solid polymer (FeCl3-PANI-CNT) was 

collected. 

 

6.2.3 Catalyst synthesis  

The catalyst precursors were first heat treated at 200 oC for 1 hour under 70 ml min-1 

of argon (Ar) and a 30 oC min-1 heating rate. The subsequent heat treatment for the resulting 

powder was done at 900 oC for 1 hour using the same heating rate and Ar flow rate. The solid 

samples were then leached in 0.5 M sulfuric acid at 80-90 oC for 8 hours to remove the inactive 

iron complexes as well as to introduce a porous morphology. As can be seen from the 

nomenclature outlined in Table 6-1, after this leaching process, some catalysts were heat-

treated in one step in ammonia at temperatures ranging from 900-1000°C. Others were 

pyrolyzed at 900 oC in Ar for 3 hours (Fe-P-C_Ar) to improve the ORR activity further and to 

remove surface functional groups. This step is referred to as the conventional second heat 
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treatment. After this step, ammonia treatment was done at temperature ranges from 800-1050 

oC for 15 minutes and under a 300 mL min-1 ammonia flow rate. These samples are designated 

Fe-P-C_Ar-NHxxx in which the “xxx” is replaced with the NH3 temperature (Table 6-1). A 

schematic of the catalyst synthesis is displayed in Figure 6-1. 

 

Table 6-1 Sample nomenclature 

Name Sample preparation (after acid leaching and filtration) 

Fe-P-C_Ar Heat treatment in Ar for 3 hours at 900 oC (i.e., conventional second heat treatment) 

Fe-P-C_Ar-NH800 Conventional second heat treatment and then NH3 treatment at 800 oC for 15 minutes 

Fe-P-C_Ar-NH900 Conventional second heat treatment and then NH3 treatment at 900 oC for 15 minutes 

Fe-P-C_Ar-NH950 Conventional second heat treatment and then NH3 treatment at 950 oC for 15 minutes 

Fe-P-C_Ar-NH1000 Conventional second heat treatment and then NH3 treatment at 1000 oC for 15 minutes 

Fe-P-C_Ar-NH1050 Conventional second heat treatment and then NH3 treatment at 1050 oC for 15 minutes 

Fe-P-C_NH900 NH3 treatment at 900 oC for 15 minutes 

Fe-P-C_ NH1000 NH3 treatment at 1000 oC for 15 minutes 
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Figure 6-1 Schematic of the catalyst synthesis procedure, (a) starting with CNT (b) after 

functionalization, (c) polymerized FeCl3-PANI-CNT composite, (d) pyrolyzed Fe-P-C_Ar, 

and (e) NH3-treated Fe-P-C_Ar-NH900. 

 

6.2.4 Electrochemical characterizations  

Half‐cell RDE testing, a well‐established method to evaluate the electrochemical 

performance of catalyst materials, was used to analyze the ORR taking place on the catalyst 

materials. More positive onset and half-wave potentials and increased current densities reflect 

higher activity toward the ORR. In order to simulate the acidic circumstances encountered 

during PEMFC operation at the cathode, a 0.5 M H2SO4 solution was used as the electrolyte 

and saturated with oxygen during ORR testing. The working electrode was a Pine glassy 

carbon disc (0.19635 cm2) coated uniformly by the catalyst ink to achieve a loading of 0.6 mg 
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cm-2. A graphite and Ag/AgCl electrode were utilized as the counter and reference electrodes, 

respectively. All potentials are converted to the RHE scale for the ease of analysis. In order to 

activate the catalyst, a CV was obtained in an oxygen saturated electrolyte at a scan rate of 50 

mV s-1. During ORR testing, the potential of the working electrode in an oxygen-saturated 

electrolyte was scanned from ca. 1.0 to 0.0 V vs. RHE using linear staircase voltammetry 

(LSCV) with a 30 mV amplitude and 30 s periods. For the half-cell durability test, the potential 

of the working electrode was cycled between 1.0 and 0.2 V vs. RHE at 50 mV s-1 in the N2 

saturated electrolyte. After different cycle numbers, ORR evaluation was performed with the 

conditions mentioned above. RRDE testing was also used to analyze the behavior of the 

catalysts with respect to the 4-electron reduction of oxygen to H2O. The ring potential was held 

at 1.2 V vs. RHE to reduce any peroxide species reaching the ring electrode surface.  

For performance under PEMFC operating conditions, the catalyst was applied to the 

fuel cell cathode and a commercial Pt-cloth gas diffusion layer (0.5 mg cm-2 Pt) served the 

anode. Cathode ink was prepared using a mixture of 40 mg catalyst, 480 mg isopropanol, 480 

mg DDI water, and 440 mg commercial Nafion solution (5 wt.%). In this way, the overall 

Nafion content in the dry catalyst ink was held at 35 wt%. A dry Nafion 211 membrane 

(previously immersed in 0.5 M boiling sulfuric acid for 1 hour and then in boiling DDI water 

for 1 hour) was placed on the vacuum table. After sonication for 1 hour, the ink was painted 

on the center of the membrane (5.0 cm2 area) to reach a cathode catalyst loading of 4.0 mg cm-

2. The MEA was prepared as follows: the catalyst-coated membrane (CCM) was placed on top 

of the anode, and a commercial GDL (SGL BC 25) on top of the painted catalyst. The entire 

assembly was then hot-pressed together at 120 oC for 4 minutes using a force of 600 pounds. 
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Fuel cell testing was carried out by flowing hydrogen to the anode at 200 standard cubic 

centimeters per minutes (sccm) and by flowing air or oxygen to the cathode at 200 sccm. The 

cell temperature was held at 80 oC and the back pressure was set at 20 psig for both the anode 

and cathode side. Once the appropriate potential was reached, it was changed in increment of 

0.03 V point-1 and held for 20 sec at each point.  

 

6.3 Results and Discussion 

The initial objective of the current research was to study the effects of the ammonia 

treatment temperature and heat treatment protocol. In order to optimize the heat treatment 

conditions after acid leaching, some catalysts were first pyrolyzed in Ar at 900 oC for 3 hours 

and then heat treated in ammonia at different temperatures. As benchmarks, some samples 

were heat treated in only ammonia at varying temperatures after acid leaching. Sample 

nomenclature in Table 6-1 indicates sample heating environment and temperature. SEM 

images (Figure 6-2a-c) show the morphology of the CNTs used as carbon supports and the 

resulting catalysts (before and after ammonia treatment at 900 oC for 15 min). As it can be seen 

from the SEM images (Figure 6-2b,c), after NH3 treatment a significant amount of porous 

structures are formed. A comparison of the TEM image of Fe-P-C_Ar (Figure 6-2d) with that 

of Fe-P-C_Ar-NH900 (Figure 6-2e) also supports the conclusion that the ammonia treatment 

increases the porosity. Both of the Fe-P-C_Ar-NH900 and Fe-P-C_Ar catalysts exhibit very 

high specific surface areas (higher for Fe-P-C_Ar-NH900) of ca. 1100 m2 g-1 and 1050 m2 g-1, 

respectively (Figure 6-2g). Such large surface areas are attractive from a mass transport 
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perspective and can facilitate reactant access to catalytically active ORR sites and thereby 

improve electrode utilization and performance 144. The TEM images (Figure 6-2d-f) also shows 

the formation of graphene-like structures (red arrows) after pyrolysis. The in-situ formation of 

graphene structures by using PANI is likely due to the similarity between graphene and the 

aromatic structures of PANI 55,57. The HRTEM image of Fe-P-C_Ar-NH900 indicates that the 

graphitic structures remained after ammonia treatment (Figure 6-2f).   
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Figure 6-2 SEM images of (a) CNT (b) Fe-P-C_Ar and (c) Fe-P-C_Ar-NH900. (d) TEM 

image of Fe-P-C_Ar. (e) and (f) HRTEM images of Fe-P-C_Ar-NH900 at different 

magnifications. (g) N2 sorption analysis of Fe-P-C_Ar and Fe-P-C_Ar-NH900. 
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XPS C1s spectra of the catalysts (Figure 6-3a) shows higher amounts of sp2 bonded 

carbon (284.85 eV) 158 and a lower amount of oxidized carbon species (286.35 eV) 159,160 for 

the NH3-treated samples in comparison to Fe-P-C_Ar. For instance, the Fe-P-C_Ar-NH900 

has 56.20 at% sp2 carbon and 11.69 at% oxidized carbon, compared to 52.02 at% sp2 carbon 

and 12.35 at% oxidized carbon for Fe-P-C_Ar which indicates a higher degree of 

graphitization and reduced amount of defect structures for the NH3-treated sample. The larger 

amount of graphitic carbon could be due to an additional high-temperature pyrolysis step 

(under NH3 atmosphere) in the presence of iron species. However, the amount of sp2 C=C 

decreases with increasing the NH3 temperature from 58.36 At% for Fe-P-C_Ar-NH800 down 

to 53.53 At% of sp2 carbon for Fe-P-C_Ar-NH1000. This finding suggests that the reaction 

between NH3 and graphitic carbon is facilitated at higher ammonia treatment temperatures, 

most likely due to the abundance of thermal energy to surpass the activation energy of the 

reaction. XPS N1s spectra of the catalysts derived from different NH3 heat treatment are also 

provided, in addition to the corresponding nitrogen content column plots in Figure 6-3b and d, 

respectively. It can be seen that while the ammonia temperature has no significant effect on 

the pyrrolic N species quantity (400.2 eV), it does affect the amount of pyridinic (398.6 eV) 

and graphitic/quaternary nitrogen contents (401.5 eV) 161.  

From the XPS results, an increase of the NH3 temperature from 800-1000 oC results in 

a higher graphitic/quaternary nitrogen atomic percentage (Figure 6-3c). The pyridinic N 

quantity, however, increases with temperature up to maximum at 900 oC (0.96 At%) and then 

decreases at higher temperatures. From the XPS data comaprison with the sample not treated 

with ammonia, it appears that the NH3 treatment results in an increase in nitrogen content, 
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accompanied by an increase in the relative concentration of pyridinic and graphitic nitrogen. 

While for Fe-P-C_Ar the amount of pyridinic and graphitic N were respectively 0.55 and 0.67 

At%, they are correspondingly as high as 0.6-0.96 and 1.08-1.71 after ammonia treatment and 

doping. This trend is consistent with previous reports 68,72. However, as these M-N-C systems 

are highly heterogeneous in nature, active site elucidation is very difficult and only recently 

have sophisticated in-situ synchrotron and Mossbauer techniques started to shed light on this 

important topic 68,162,163. With regards to the active site density on these catalysts, the NH3 

treatment etches some of the disordered carbon that can allow for exposure of buried ORR 

active sites. Additionally, the increased surface area and mesopore content could mean that the 

number of active sites accessible to oxygen is significantly increased. 

  

Figure 6-3 (a) C 1s, (b) N 1s spectra and (c) the corresponding nitrogen content and species 

distribution of Fe-P-C_Ar-NHxxx catalysts derived at different NH3 temperatures from 800 to 

1000 oC. 
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The STEM image shown in Figure 6-4a and the corresponding EELS images presented 

in Figure 6-4b-d outline the elemental distribution in the selected area of the catalyst. 

Considering that each pixel of the picture represents an area of 4.0 nm × 4.0 nm, these images 

confirm that the iron, nitrogen, and carbon species are very well dispersed throughout the CNT 

and in-situ formed graphene structures. The uniform distribution can mainly be seen when 

looking at the superimposed images of Fe-N-C (Figure 6-4e) and Fe-N elements (Figure 6-4f). 

Such well-dispersed Fe species suggest that they can potentially coordinate with the nitrogen 

atoms to form Fe-N and Fe-N-C moieties, which are believed to be highly active for ORR 

93,164. However, sophisticated methods, including in-situ XAS or Mossbauer spectroscopy are 

needed to confirm these structures. The highly mesoporous morphology formed after NH3 

treatment, as well as extremely high surface area and the well dispersed Fe-N-C distribution, 

are believed to be highly beneficial for the ORR performance 93. 
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Figure 6-4 (a) STEM image of Fe-P-C_Ar-NH900 and the corresponding EELS elemental 

mapping images for the selected spectrum area of (b) C, (c) N, (d) Fe, (e) superimposed Fe-N-

C (light green, red, blue), and (f) superimposed Fe-N (light green, red) with each pixel 

represents an area of 4.0 nm × 4.0 nm.  

 

From the ORR polarization curves collected at 900 rpm (Figure 6-5a,b), NH3 treatment 

improves the current densities, onset and half-wave (E1/2) potentials significantly. NH3 

treatment induces the formation of some type of heteroatom doping that is beneficial for ORR, 

by tuning the active sites via generating local heterogeneity in electron density. Moreover, the 

higher porosity of the NH3-treated catalyst could facilitate mass transport of oxygen into the 

catalyst layer and the removal of water molecules to the electrolyte. The effect of heat treatment 
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on ORR performance is shown in Figure 6-5a. Samples which undergo a pyrolysis in Ar before 

NH3 treatment show better performance compared to those that are directly heat-treated in 

ammonia. The key to the activity gains following this second pyrolysis arises mainly due to 

the acid leaching step. Any inactive inorganic metal species are removed through this 

procedure and so increase the porosity and surface exposure of the catalyst. This second heat 

treatment likely removes any residues remaining following the acid leaching process and 

enhances the degree of graphitization. In Figure 6-5b it can be seen that the catalyst generated 

by using an NH3 temperature of 900 oC shows the best ORR performance (E1/2 of 0.80 V vs. 

RHE) compared to those synthesized at higher ammonia temperatures. The obtained half-wave 

potential places this catalyst on par with some of the most active NPMCs reported to date 70,72. 

With respect to the XPS results in Figure 6-3c,d, the activity trends show that the pyridinic N 

content potentially makes an important contribution to the ORR activity since the sample with 

the highest pyridinic N content (Fe-P-C_Ar-NH900 with pyridinic N content of 0.96 At%) and 

relatively high amount of graphitic nitrogen exhibits the best ORR activity.  

  



 

 75 

 

Figure 6-5 ORR activity results for (a) catalysts derived from different synthesis protocols and 

(b) Fe-P-C_Ar-NHxxx catalysts derived at different ammonia treatment temperatures. (c) 

Durability results for Fe-P-C_Ar-NH900. All the polarization curves are performed in O2 

saturated 0.5 M sulfuric acid at 900 rpm rotational speed. (d) Fuel cell testing for Fe-P-C_Ar-

NH900 under H2-air anode-cathode feeds. Fuel cell tests used 0.5 mg cm-2 Pt at the anode. 

 

The reaction between NH3 and carbon-based materials includes the exchange of O2-

containing groups with nitrogen-based species, as well as etching of carbon by radicals formed 

during ammonia decomposition at high temperatures and therefore it is related to the NH3 
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treatment temperature 165. When the ammonia temperature is above 900 °C, the breakdown of 

the porous structures that were generated during overall previous pyrolysis steps could happen. 

A similar phenomenon was observed previously by another group, in which they showed that 

by increasing the NH3 temperature, the average mesoporous size decreased, pointing out the 

breaking down of the porous morphology 166. Moreover, from the C 1s XPS results in 

Figure 6-3b, it was observed that with increasing the NH3 temperature, higher amounts of sp2 

graphitic carbon species undergo breakdown. The collapse of graphitic carbon structures and 

the likeliness of porous morphologies decomposition could likely be the reasons for the lower 

ORR activity at ammonia treatment temperatures above 900 °C. 

RRDE measurements were also performed to investigate the 4-electron selectivity of 

catalysts based on Equation 4-3 and Equation 4-4. From RRDE results for Fe-P-C_Ar-NH900 

and Fe-P-C_Ar (Figure 6-6a,b), the number of electrons transferred per reduced oxygen 

molecule is measured to be 3.90 ± 0.05 at relatively high potentials (0.4-0.8 V vs. RHE), 

thereby showing a very good selectivity towards the 4-electron reaction. On the other hand, 

while the peroxide yields for Fe-P-C_Ar in that high potential range can be as high as 10 ± 5 

%, it was much lower for Fe-P-C_Ar-NH900 (almost 5 %) which indicates that after ammonia 

treatment, the selectivity to produce H2O during ORR increased meaningfully. The Fe-P-

C_Ar-NH900 catalyst also shows relatively good durability behavior (Figure 6-5c). After 5000 

cycles in N2, 20 mV and 45 mV potential losses toward ORR were observed in onset and half-

wave potentials, respectively.  
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Figure 6-6 (a) RRDE results of Fe-P-C_Ar-NH900 and Fe-P-C_Ar in O2 saturated 0.5 M 

sulfuric acid at 900 rpm rotational speed. The ring electrode was held at 1.2 V vs. RHE 

throughout the experiment. (b) The number of electrons transferred and H2O2 yield for Fe-P-

C_Ar-NH900 and Fe-P-C_Ar measured from RRDE results. 

 

In order to evaluate the Fe-P-C_Ar-NH900 catalyst particles under PEMFC operating 

conditions, they were integrated into the cathode of a single cell MEA. Although H2-O2 

performance provides a gauge of the intrinsic catalyst layer activity, testing under H2-air 

conditions enables its evaluation under working operating conditions. When applying air as 

the cathode reactant (Figure 6-5d), the MEA showed current densities of 77 mA cm-2 at 0.8 V 

and 537 mA cm-2 at 0.6 V, in addition to a maximum power density of 335 mW cm-2 To the 

best of our knowledge, the power densities and iR-free current densities in an H2-air fuel cell 

achieved by Fe-P-C_Ar-NH900 are the best results reported to date in the literature for an 

NPMC electrode. The electrocatalyst morphology, with its high surface area of ca. 1100 m2 g-
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1 and variety of pores ranging in sizes from 2 to 200 nm, are the likely causes of the high H2-

air performance. This catalyst structure is conducive to mass transport through the catalyst 

layer, a factor that is increasingly important when using air as the reactant feed. The tuned 

chemical modification and porous catalyst morphology render Fe-P-C_Ar-NH900 an attractive 

non-precious ORR catalyst for PEMFCs, based on half-cell and fuel cell performance 

evaluations. 

 

6.4 Conclusion 

An NH3 treatment was applied and optimized to tune the activity and improve the 

PEMFC performance of ORR catalysts derived from iron, PANI, and CNT. NH3 contributed 

by enriching the N-dopant concentration, while the careful choice of the temperature had an 

impact on nitrogen dopant identity and ORR activity. The final catalyst (F-P-C_Ar-NH900) 

consisted of in-situ formed graphene-like structures that had well-distributed nitrogen and iron 

defects. F-P-C_Ar-NH900 exhibited high catalyst activity, including an E1/2 of 0.81 V vs. RHE 

obtained from RDE testing. The MEA performance under H2-air conditions that are application 

friendly yields current densities of 77 mA cm-2 at 0.8 V and 537 mA cm-2 at 0.6 V. Furthermore, 

a maximum power density of 335 mW cm-2 at 0.6 V was observed. This catalyst also showed 

a very good selectivity towards the 4-electron reaction with the number of electrons transferred 

per reduced oxygen molecule calculated to be 3.90 ± 0.05 by RRDE. These electrochemical 

evaluations indicate that the chemical modification of Fe-PANI-CNT catalyst by NH3 results 

in a highly promising Pt-free PEMFC ORR electrocatalyst.  
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Chapter 7 

Engineered Architectures with Nano-Channel Reactors 

(PANI-Fe-MCS) 

This Chapter is adapted from a manuscript that is under revision in Nano Energy. 

 

7.1 Introduction 

PEMFCs are considered to be one of the most promising energy conversion 

technologies due to their technical benefits and environmental-friendliness.167,168 In order to 

attain a solid performance which can compete with traditional ICE technologies, the inherently 

sluggish ORR at cathode must be overcome using electrocatalysts.169 The main ORR catalysts 

are Pt-based but are expensive and their supply is monopolized.116,117,170,171 Therefore, 

development of economically viable NPMCs with high activity toward the ORR and durability 

is an important path to commercialization of PEMFCs.93  

M-N-C complexes currently represent the most promising candidates to substitute Pt-

based ORR catalysts in PEMFCs.161,172,173 By the careful selection of suitable metal and 

nitrogen precursors and catalyst supports as well as optimization of the synthesis conditions, 

a suite of highly attractive materials has been developed for PEMFCs.72,146,151,162,174-177 

Exploration of innovative synthesis strategies to tune the catalyst structures and morphologies 

that offer improved ORR activity and durability for hydrogen-powered PEMFCs, has become 

the key roadmap.178 For desirable M-N-C catalysts, abundant micro-pores are required to host 
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active sites for high catalytic activity,179 whereas sufficient meso- or macro-pores are also 

needed to ensure the effective mass transfer of reactant (air/O2) and product (H2O) through the 

entire thick cathode catalyst layer.180,181 In addition, a highly conductive graphitic carbon 

phase is also viewed as an essential factor to facilitate charge transfer of the electrons, reduce 

the cell impedance and improve fuel cell performance.182 These multifaceted requirements for 

catalyst morphologies and structures are crucial for designing and synthesizing the next-

generation NPMCs that perform comparably to commercial Pt/C catalysts. 

In this work, we present a 2D/3D hybrid carbon composite catalyst with improved fuel 

cell performance. This is achieved by in-situ polymerization of PANI on graphitic meso-

porous carbon spheres (MCSs), followed by post-treatment leading to a nitrogenous 

intertexture of 2D graphene-like sheets/3D porous carbon spheres. The 2D/3D architecture 

should facilitate mass transfer through its meso-pores in carbon spheres and graphene-like 

layers. Moreover, the composite is predominantly micro-porous, hosting uniformly and 

densely dispersed ORR active sites throughout the graphene sheets and also within the carbon 

spheres. In addition, the graphitic character of this framework could contribute to fast electron 

transfer and confer high carbon corrosion resistance to the catalyst. Furthermore, these pores 

act as nano-channel reactors which provide smooth access to dense active sites by reactants 

and electrons and so impart excellent electrocatalytic performance. 
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7.2 Experimental 

7.2.1 Preparation of MCS 

MCSs were prepared by an aerosol-assisted spray drying technique.183,184 Sucrose (6 

g), nitrate hexahydrate (5 g), HCl (3 g, 0.5 M) and silicate template (14 g, AS-40, LUDOX) 

were sequentially added to deionized water (30 mL) while rigorously stirring. The aqueous 

solution so obtained was then purged with nitrogen gas, passed through an atomizer to form 

aerosol droplets and later sent to the drying zone (400 °C). After that, spherical particles 

containing silica/sucrose/nickel were collected on a membrane filter paper and then peeled off 

and carbonized at 900 °C in argon for 5 hours. Finally, HCl (2 M) and HF (10 wt%) solution 

was used in sequence to remove the nickel and silica, respectively.  

 

7.2.2 Synthesis of PANI-Fe-MCS 

Aniline (3 mL), FeCl3 (5 g), APS, (2.5 g), and MCS (400 mg) were consecutively added 

to HCl solution (250 mL, 0.5 M). After constant mixing for 24 hours, the suspension was 

heated at 80 °C to dry. The collected solid materials were then calcined at 900 °C in argon for 

1 hour. The pyrolyzed materials were then washed with H2SO4 (0.5 M) at 80 °C for 10 hours 

and were calcined again in argon and finally in ammonia gas. 

 

7.2.3 Electrochemical Measurements 

ORR testing was conducted using a Pine electrochemical station (Model AFCBP-1) 

with a conventional three-electrode method to evaluate the ORR activity. Ag/AgCl (filled with 

3.0 M KCl) and graphite were used as the reference and counter electrodes, respectively. All 
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potentials in this study were then converted to RHE scale for better comparison. An RRDE 

containing a glassy carbon disk (5 mm diameter) and Pt ring (5.52 mm inner-diameter, 7.16 

mm outer-diameter, collection efficiency N = 0.26) served as the working electrode. The ring 

potential was set to 1.20 V vs. RHE to detect H2O2 formed at the disc electrode. The catalyst 

ink was prepared by dispersion of catalyst powder (10 mg) with 1-propanol (1 mL) in an 

ultrasonic bath for 2h. Then 15 μL of the catalyst ink was pipetted onto the glass carbon surface 

and dried thoroughly in the air. Afterward, 3 μL of 0.05 wt% Nafion solution was dropped 

onto the catalyst layer, leading to a catalyst loading of approximately 0.6 mg cm-2. The ORR 

activities were measured in an oxygen-saturated H2SO4 electrolyte (0.5 M) at room 

temperature by the stair-case method (potential step of 30 mV and wait-period of 30 s, 900 

rpm). Accelerated durability testing (ADT) was carried out by cycling the electrode in 

nitrogen-saturated electrolyte between 0.6 and 1.0 V vs. RHE at 50 mV s−1 for 30,000 cycles. 

The performance of a Pt/C electrode (TKK, 28.2% Pt) with a Pt loading of 20 μg cm−2 was 

measured in 0.1 M HClO4 solution as a benchmark. 

The PANI-Fe-MCS catalyst was tested on the fuel cell cathode side to evaluate its 

activity and durability under PEMFC operating conditions. The dispersed ink containing 

PANI-Fe-MCS (40 mg), deionized water (0.5 mL), iso-propanol (0.5 mL), and Nafion (5 wt%, 

400 mg), was directly painted onto a 5 cm2 Nafion 211 membrane, to yield a loading of 

approximately 4 mg cm−2. Commercial Pt-deposited carbon cloth (0.2 mg cm−2 Pt, Fuel Cell 

Etc) as gas diffusion electrode (GDE) was used on the anode side. The anode GDE, Nafion 

membrane with brushed catalysts and GDL (Sigracet 29 BC, Ion Power) were then assembled 

by hot-press at 120 °C for 5 mins using 600 lbs loading to fabricate MEAs. Fuel cell 



 

 83 

performance was tested at 80 °C on a Model 850e fuel cell test system (Scribner Associates 

Inc.). The H2 and O2 flow rates were both set to be 300 sccm at 100% RH and a back-pressure 

of 20 psi gauge was applied. An H2-air fuel cell durability test was conducted using an MEA 

fabricated with Nafion 115 ionomer membrane. The cell voltage was held at 0.4 V for 50 hours, 

and the current was recorded. The cell temperature was set to 80 °C; each gas was introduced 

at a rate of 300 sccm and 100 % RH and a back-pressure of 20 psi gauge was applied on both 

sides. Before recording, H2 and air were fed for 1 h to condition the MEA.  

Electrochemical impedance spectroscopy (EIS) experiments were carried out using a 

Gamry Interface 5000 potentiostat/galvanostat. Measurements were conducted at a cell voltage 

of 0.6 V, respectively, with an amplitude of 5 mV and frequency ranging from 0.01Hz to 100 

k Hz. The impedance data were analyzed using Gamry software. 

 

7.3 Results and Discussion 

The overall process for the catalyst synthesis is illustrated in Figure 7-1. Aerosol 

assistant spray technique was used to prepare MCSs at first.184 A silica sphere template with 

an average diameter of ca. 20 nm and nickel source were employed here to induce the porosity 

and enhance the graphitization degree of the carbon sphere, respectively.185 After that, PANI 

which acts as the graphene and nitrogen precursor was polymerized in the presence of FeCl3 

followed by a thermal process at an elevated temperature of 900 oC to form in-situ graphene-

like sheets on the MCS composite surfaces. This structure is denoted as PANI-Fe-MCS. For 

the purpose of comparison, support-free catalyst (PANI-Fe) and non-porous carbon sphere 
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based catalyst (PANI-Fe-NCS) were also prepared to highlight the clever combination of 

graphene-like sheets and porous carbon to boost fuel cell performance. 

 

 

Figure 7-1 Synthesis schematic of PANI-Fe-MCS catalyst. (a) Polymerization of aniline onto 

the surface of the MCS in the presence of FeCl3. (b) Subsequent calcination and acid leaching 

post-treatments. 

 

The spherical morphology of the obtained carbon support is observed through SEM 

and TEM which show the sphere size to range from 200 nm to greater than 1 μm (Figure 7-2a,b). 

Magnified TEM image reveals the highly mesoporous sponge-like sub-structure with an 

average pore size of 20 nm in the carbon spheres (Figure 7-2c). Further HR-TEM images 

indicate the existence of large amounts of graphitized carbon within the whole carbon sphere, 

implying that it is partially graphitized, which could improve the electron conductivity and 

corrosion resistance of the NPMCs.180 Upon polymerization and post-treatment, a significant 

amount of graphene-like sheet structure has grown (green arrows) and surrounds the carbon 

spheres (yellow arrows), as shown in the SEM and STEM images (Figure 7-2e,f). The carbon 

sphere morphology is likely to be preserved after the post thermal treatment and act as a spacer 
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to prevent the graphene-like layers from self-stacking. Moreover, the carbon spheres could 

provide potential channels to transfer ORR reactants and products. In addition, the close 

contact between the in-situ graphene and the graphitic carbon spheres should enable smooth 

electron transfer between them. Meanwhile, the large and extended multi-layer sheets could 

serve as large electroactive surface areas of catalysis. Notably, some nano-sized holes are 

readily observed on the in-situ formed graphene framework (Figure 7-2g), which probably are 

formed by the removal of Fe species during the sulfuric acid leaching step. These in-plane 

holes are favorable for mass transfer.  
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Figure 7-2 SEM (a), and TEM (b), (c) images of MCS. The red square designates the selected 

HR-TEM region. SEM (e), STEM (f), and HR-TEM (g) images of PANI-Fe-MCS. The green 

arrows designate the layered graphene-like sheets; the yellow arrows designate the porous 

carbon spheres, the green circle designates the selected HR-TEM region. Selected region 1 and 

2 from (f) and corresponding (i) EELS mapping of carbon, nitrogen, iron, and overlaid iron, 

nitrogen, and carbon map. 

 

EELS analysis was carried out to determine the elemental composition and its local 

distribution of C, N, and Fe across the catalyst composite. Two representive areas, (graphene 

sheets -region 1- and porous carbon -region 2) in Figure 7-2f, were selected for EELS imaging. 

The images in the upper row of Figure 7-2i confirm that the nitrogen, iron and carbon species 
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are well dispersed throughout the graphene-like structure while the lower ones suggest the 

nitrogen and iron elements may mainly reside in the outer layer of the carbon sphere. 

Moreover, the overlay of the carbon, nitrogen, and iron signals suggests that iron atoms are 

likely adjacent to nitrogen atoms at the atomic level, suggesting they could potentially 

coordinate with each other to form potential Fe-N moieties which are believed to be highly 

active for ORR.186 Such advanced 2D/3D architecture, possessing a graphitic framework with 

multiple pores and dense highly active centers would be beneficial to boost the ORR activity 

and fuel cell performance. 

Nitrogen adsorption-desorption measurements were conducted to analyze the BET 

surface areas and the porous nature of the prepared catalysts (Figure 7-3a). The MCS exhibits 

an isotherm with adsorption hysteresis, indicative of the presence of meso-pores. The BJH 

model shows that the pore size is centered at ca.20 nm, which is very consistent with the 

diameter of the silica templates. Such abundant meso-pores contribute a high BET surface area 

up to 1240 m2g−1 for MCS (Figure 7-3b). PANI-Fe (Figure 7-3a) exhibits a micro-porosity 

feature which is in line with the narrowly distributed pore sizes centered at approximately 2 

nm. This structure is further revealed by t-plot analysis that the microporous surface area (263 

m2 g−1) is predominant and occupies 86% of the total BET surface area (307 m2 g−1). With both 

the isotherm and pore size distribution plots of PANI-Fe-MCS are similar to PANI-Fe with a 

little variation (Figure 7-3a). However, its BET surface area (1295 m2 g−1), microporous surface 

area (1091 m2 g−1) and external surface area (204 m2 g−1) are dramatically increased in 

comparison with PANI-Fe (Figure 7-3b). Moreover, although the total BET surface area of 

PANI-Fe-MCS is close to MCS, the micro-pore and external surface areas are very different. 
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Specifically, the external surface area drops from 1189 m2 g−1 in MCS to 204 m2 g−1 in PANI-

Fe-MCS, whereas the micro-pore surface area climbs to 1091 m2 g−1 in PANI-Fe-MCS from 

51 m2 g−1 in MCS. Several can be provided for this dramatic variation in pore structures. First 

of all, the MCSs may act as spacers to prevent 2D graphene-like sheets from self-stacking as 

they are in PANI-Fe. As a result, the BET surface area of PANI-Fe-GMCS remains high. 

Hence, the fully exposed graphene-like sheets with dominant micro-pores could provide a large 

electrocatalytic surface area for the ORR. Second, after thermal activation, the MCSs may not 

collapse and probably still maintain their original meso-porous architecture in PANI-Fe-MCS, 

which could account for the enhanced external surface area. Such a high external surface area 

and large pore size of the PANI-Fe-MCS can promote the transfer of reactant and product 

efficiently toward and away from the catalytic sites within the bulk of the catalyst. Third, the 

drop of the external surface area of PANI-Fe-MCS (204 m2 g−1) in comparison with MCS 

(1189 m2 g−1) suspects that the newly formed graphene sheets partially block the meso-pores 

in MCS. In a word, such unique 2D/3D framework with dominant micro-pose and abundant 

meso-pores are favorable to improve the fuel cell performance. 
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Figure 7-3 (a) Nitrogen adsorption–desorption isotherms and the corresponding BJH model 

pore size distribution, (b) surface areas, (c) Raman spectra and (d) XRD spectra of MCS, 

PANI-Fe, PANI-Fe-MCS.  

 

Raman spectroscopy measurements were then employed to characterize the physical 

properties of the prepared materials. As can be seen in Figure 7-3c, D (1350 cm−1) and G (1580 

cm−1) peaks are observed and respectively correspondent to the distorted carbon frames and 

the hexagonally bonded carbon atoms inside the carbon networks.187 The IG/ID band ratio of 

MCS is about 1.98, which indicates its highly graphitic character. A band ratio of 0.96 is 

observed for PANI-Fe and a ratio of 1.12 is measured for PANI-Fe-MCS, implying a higher 

graphitic content than in PANI-Fe. XRD patterns of the samples were also collected to 

characterize their graphitic native further, as shown in Figure 7-3d. Remarkably, MCS gives a 

sharp peak at ca. 26.1° and the corresponding d space (002) is 0.341 nm, which is the strongest 
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evidence for the high-graphitic character of MCS. Meanwhile, PANI-Fe shows a relatively 

broad curve centered at ca. 24.8° with d space (002) of 0.358 nm, which is consistent with the 

formation of heteroatom-doped-graphene. As to PANI-Fe-MCS, a peak centered at ca. 25.4° 

with d space (002) of 0.348 nm was observed, due to the addition of graphitic MCS. The 

Raman, XRD and TEM results illustrate the highly graphitic character of PANI-Fe-MCS, 

which could contribute positively to the durability of the catalyst.188 

The steady-state ORR polarization curves for all of the catalysts in oxygen-saturated 

0.5 M H2SO4 electrolyte at a rotation speed of 900 rpm are provided in Figure 7-4a. All the 

carbon-supported (PANI-Fe-MCS and PANI-Fe-NCS) and unsupported (PANI-Fe) materials 

display similar ORR onset potentials, implying that the nature of the active sites is similar. 

The half-wave potential (E1/2) for PANI-Fe-MCS is 0.80 V, ~ 19 and 26 mV improvement 

over that of PANI-Fe-NCS and PANI-Fe, respectively. Additionally, an RRDE study further 

indicated the fairly good ORR selectivity of PANI-Fe-MCS (Figure 7-4b). Remarkably, a low 

average H2O2 yield (< 1.0 %) is achieved by PANI-Fe-MCS over the potential range from 0.80 

V to 0.20 V, when compared to that of PANI-Fe-NCS (1.0 % − 2.0 %) and PANI-Fe (1.5 % − 

2.3 %). The electron transfer number of the PANI-Fe-MCS catalyst is calculated to exceed 

3.98, which highlights the excellent selectivity toward the 4-electron reaction.  
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Figure 7-4 (a) RDE plots of prepared catalysts. (b) Electron transfer number and H2O2 yield of prepared 

catalysts. (c) Polarization and power density as functions of the current density for H2−O2 PEMFCs 

with the prepared composites as the cathode catalysts. Membrane: Nafion 211; cathode catalyst loading: 

4 mg cm−2. (d) Nyquist plots for PEMFCs with prepared catalysts at cell voltage of 0.6 V. (e) ORR 

polarization plots assessed after multiple voltage cycling. (f) Short-term stability test of a PANI-Fe-

MCS catalyst at a constant fuel cell voltage of 0.40 V. Membrane: Nafion 115; cathode catalyst loading: 

4 mg cm−2. All the RDE/RRDE test conditions: 0.5 M H2SO4 saturated with O2, 900 RPM, and catalyst 

loading of 0.6 mg cm−2. (g) A schematic illustration correlating the physicochemical structures of 

PANI-Fe-MCS to its electrochemistry performance. 
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The high ORR activity of PANI-Fe-MCS is further confirmed by PEMFC 

measurements. Figure 7-4c presents the polarization and power density curves of fuel cells 

using either PANI-Fe-MCS, PANI-Fe-NCS or PANI-Fe as the cathode catalyst. All the three 

catalysts exhibit similar current densities in the high voltage region (kinetic limitation region), 

whereas PANI-Fe-MCS delivers the highest performance in the lower voltage region 

(transport limitation region). Meanwhile, the maximum power densities (Pmax) of the cell with 

PANI-Fe-MCS reaches 0.83 W cm−2 at 0.40 V, significantly superior to that of 0.72 W cm−2 

at 0.43 V and 0.29 W cm−2 at 0.41 V for PANI-Fe-NCS and PANI-Fe, respectively. Such a 

high output power density can reach approximately 60 % of the Pmax (1.4 W cm−2) of Pt 

cathode (0.2 mgpt cm−2) tested under the same conditions, representing one of the highest 

values in the NPMC field.  

Further, the EIS was carried to evaluate the effect of catalyst properties on fuel cell 

performance. The Nyquist plots at a cell voltage of 0.6 V are shown in Figure 7-4d, from which 

one arc can be observed for both types of cells. The high-frequency intercept on the real axis 

yields the total ohmic resistance of the single cell (Rohm) according to the equivalent model 

presented in Figure 7-5 . The diameter of the arc is a measure of the charge transfer resistance 

(Rct) of the ORR.189,190 It is evident that Rohm does not differ significantly in the MEAs with 

PANI-Fe (0.14 Ω cm2), PANI-Fe-NCS (0.12 Ω cm2) and PANI-Fe-MCS (0.10 Ω cm2) because 

these MEAs were fabricated with the same technique and the same membrane. From the 

figure, it is clear that the Rct of 0.14 Ω cm2 for the MEA with PANI-Fe-MCS is much smaller 

than the values of 0.21 and 0.92 Ω cm2 for PANI-Fe-NCS and PANI-Fe at 0.6 V, respectively. 

The lower Rct value suggests that PANI-Fe-MCS is a more efficient electrochemical active 
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catalyst layer, which presumably can be attributed to the easily accessible dense active sites in 

both the extended graphene-like sheets and porous carbon support, as this is the main 

difference between these catalysts. These trends are consistent with their fuel cell behavior 

exhibited in Figure 7-4c: the lower the charge transfer resistance, the higher the single cell 

performance. 

 

 

Figure 7-5 Equivalent circuit model used to fit the impedance spectra for PEMFC using Gamry 

software 

 

To investigate catalyst durability, accelerated degradation testing (ADT) protocols 

based on the potentiodynamic method were performed to simulate the conditions of a practical 

cathode in a PEMFC system. The ADT involved potential cycling over a range of 0.6 to 1.0 V 

in a nitrogen-saturated 0.5 M sulfuric acid at a scan rate of 50 mv s−1 (DOE recommended 

conditions for non-Pt cathode catalysts).191 Figure 7-4e shows a minor variation in the ORR 

polarization curves of PANI-Fe-MCS after different numbers of potential cycles. Only a 29 

mV decrease in the half-wave potential is observed after 30,000 potential cycles, ranking it as 

one of the most durable NPMC catalysts reported in an acid electrolyte. To assess the 

durability of the MEA cathode made with PANI-Fe-MCS, a short-term durability test was 
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conducted at a constant cell voltage of 0.4 V (Figure 7-4f). The cell performance appears to 

remain very stable, showing only ca. 5 % loss of the initial current over 50 hours of operation. 

The excellent electrochemical durability of PANI-Fe-MCS for the ORR could be ascribed to 

the several features. Above all, the high degree of graphitization of the catalyst, including its 

in-situ formed graphene layer and graphitic carbon support, can enhance the resistance to 

carbon corrosion and avoid significant loss of active sites.121,182 The good durability of PANI-

Fe-MCS may also be related to the open porous structures that enhances oxygen transfer and 

water removal from the catalyst surface. This feature is very necessary for NPMC cathode 

layers that approach 100 mm in thickness.192 Moreover, the small yield of H2O2 may mitigate 

its severe attack on active sites and thus slow down the degradation of ORR activity.60,188  

In addition to focusing on the outstanding ORR performance of this catalyst, the major 

aim of this work is to probe and dig into the reason why the nano-scale architecture benefits 

fuel cell performance. Taking these extensive physicochemical characterizations into account, 

it is concluded that the 2D/3D framework plays a vital role in enhancing fuel cell performance, 

as shown schematically in Figure 7-4g. The figure depicts the overall structure of the catalyst 

as a coherent network of microspheres with nanopores on their surfaces that are wrapped with 

graphene nano-sheets. The pores on both structures act as nano-channels hosting the ORR. In 

addition, the ORR proceeds on improved active sites that are distributed with large populations 

on both catalyst textures. The improved performance can be explained in several ways. First, 

the 2D/3D intertexture can resist re-stacking of graphene and the aggregation of carbon spheres 

and produce a separated but connected layer/sphere framework with plenty of voids, favorable 

for mass transfer. Moreover, the carbon spheres further offer effective mass transfer through 
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their highly porous channels. Second, the graphene layers and carbon spheres provide an 

enormous electrocatalytic surface area which is populated with Fe-N ORR active sites. Third, 

the graphitic carbon layers and spheres provide a highly interconnected architecture that 

conducts the electrons throughout the entire catalyst. These features can well explain the 

enhanced activity and stability for the PANI-Fe-MCS catalyst. Last, the overall micro-sized 

structure provides an easy way for the catalyst layer deposition in the MEA. The possible 

synergistic strategy of building 2D/3D structures could provide a new approach in the design 

of ORR catalysts. 

 

7.4 Conclusion 

In summary, a framework containing 2D graphene-like sheets and 3D graphitic meso-

porous carbon spheres with nano-channel reactors was synthesized as an ORR catalyst for 

PEMFC. It has a unique composite structure and morphology that benefits active sites, oxygen 

mass transfer, water removal from catalyst surfaces, carbon corrosion resistance, and 

electronic conductivity. These factors lead to impressive ORR activity and durability in fuel 

cell: a peak power density of 0.82 W cm−2 in a H2−O2 fuel cell and maintenance of 95 % of its 

initial current density after 50 hours of operation in air at constant 0.4 V. This paper provides 

a fresh approach to explore promising NPMCs that consists of effective mass and charge 

transfer channels with high population of active sites and develop a practical synthesis strategy 

for preparing highly active and durable PEMFC catalysts. 
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Chapter 8 

In-Situ Polymer Graphenization Ingrained with 

Nanoporosity in Nitrogenous Electrocatalyst (Fe-N-C-

Phen-PANI) 

P. Zamani, X. Fu, J-Y. Choi, F. M. Hassan, G. Jiang, D. C. Higgins, Y. Zhang, Md A. 

Hoque, and Z. Chen, Advanced Materials 29 (2017) 1604456 

Part of the work described in this chapter has been published as reference 193, with 

permission from John Wiley and Sons. 

 

8.1 Introduction 

Over the past decades, traditional ICE technologies have been progressively replaced 

with more sustainable alternatives, especially in the automotive transportation 93. PEMFC is a 

highly efficient and environment-friendly energy conversion device that uses hydrogen and 

oxygen/air to generate electricity and has been considered one of the most attractive power 

sources for various applications including cars and backup powers 19. However, numerous 

challenges still need to be addressed in order for them to become commercialized 194. 

Currently, expensive Pt-based catalysts are the only viable catalysts. Yet, their high price, low 

stability, and limited reserves remain as the biggest challenges that hinder the 

commercialization 98,115-117. In this regard, development of cost-effective and readily available 
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alternatives, NPMC materials for ORR is the long term solution for commercial application of 

PEMFCs 1,2,195,196. 

Among these NPMCs, M-N-C complexes which have undergone high-temperature 

pyrolysis represent the most promising alternatives to replace Pt-based catalysts in PEMFCs 

11,39,92,114,146,197-201. As pioneers of this research area, Dodelet et al. have utilized filler materials 

and ball-milling to improve the ORR performance of Fe-N-C catalysts 56,65. Two research 

groups have used the sacrificial template method to elevate the catalyst fuel cell performance 

72,145. Recently, Zelenay’s research team in Los Alamos National Lab developed a new class 

of heteroatom polymer-derived catalysts with improved activity and durability in half cell and 

fuel cell tests 55,58,200. Despite these signs of progress, the current state-of-the-art M-N-C 

catalysts still suffer from moderate activity and mass-transport properties, and therefore have 

not yet reached the fuel cell performance achieved by Pt/C-based catalysts 118. In order to 

address these remaining challenges, it is necessary to maximize the electrochemical surface 

area of the catalyst, which is capable of hosting a large number of active sites towards ORR 

and hence boost the activity of M-N-C catalysts 12. Meanwhile, by tuning the morphology, it 

is possible to control the meso/macro-pore sizes distribution to promote mass-transport of 

ORR-involved species (H+, O2, and H2O) on the surface and within the bulk of the catalyst 180. 

In this study, we develop an efficient strategy to synthesize Fe-N-C catalyst with in-

situ formed 3D porous graphene-like structures by simultaneously using dual nitrogen sources, 

e.g., phenanthroline (Phen) and PANI. The dual nitrogen catalyst was achieved by introducing 

Phen into the pores of a carbon support by ball-milling, covering it with a PANI shell by 

polymerization of aniline, followed by several subsequent pyrolyses and acid leaching steps 
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leading to in-situ 3D porous graphene-like morphologies with a variety of types of pores. Phen 

appears to act as a pore-forming agent that is capable of expanding the external PANI shell 

during the decomposition. Simultaneously, the PANI shell is converted to a graphene-like 

structure in the presence of iron species during pyrolysis processes 61,202. In this way, the 

resulting graphene-like morphology can provide a high surface area carbon matrix that hosts 

active sites to catalyze ORR 55. Moreover, the abundant meso-/macro-pores generated inside 

the graphene framework can facilitate mass transfer. Electrochemical evaluation has shown 

that the dual nitrogen-derived catalyst exhibits a high half-wave potential (E1/2 = 0.8 V) and 

small H2O2 yield (< 2.5 %) towards the ORR. Fuel cell experiments using this composite 

cathode catalyst in H2−O2 and H2−air delivers maximum power densities (Pmax) of 1.06 W 

cm−2 and 0.38 W cm−2, respectively, ranking it among the best NPMC cathodes for fuel cell 

application. Also, the catalyst exhibits high electrochemical stability through ADT, displaying 

only an 18 mV decrease in the ORR half-wave potential after 10,000 potential cycles and 

maintaining 90% of its initial fuel cell current density at 0.6 V (non-iR-corrected) after 5000 

voltage cycles. Herein, we have successfully developed a new catalyst using dual nitrogen 

precursors resulting in a porous graphene-like framework with enhanced density and 

accessibility of active sites as well as facilitated mass-transport through the porous voids. This 

approach enables the production of a high-performance Fe-N-C catalyst, which is in the best 

interest of the practical applications of PEMFCs. 
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8.2 Experimental section 

For the synthesis of Fe-N-C-Phen-PANI, Phen (1,10-phenanthroline, 500 mg), Fe(Ac)2 

(30 mg) and commercial carbon KJ600 (Ketjenblack EC 600J, 500 mg) were first dispersed in 

ethanol (100 ml) and stirred at 80 °C until the liquid was completely evaporated and the 

remaining solids were ball-milled for 3 hours. The ball-milled powder mixture (400 mg) was 

then dispersed in 0.5 M HCl before adding aniline (1.5 ml), FeCl3 (5.0 g) and ammonium 

peroxidisulfate (2.5 g) consecutively. After 48 hours of vigorous stirring, the liquid from the 

suspension was allowed to evaporate overnight. The collected solid materials were then 

pyrolyzed at 900 °C in Ar for 1 hour. The resulting powders were subsequently leached in 0.5 

M H2SO4 for 8 hours followed by thorough washing with deionized water. Finally, the catalyst 

was heat-treated again in Ar for 3 hours and then in NH3 for 15 mins at the same temperature 

as the first heat treatment. For the synthesis of Fe-N-C-PANI, pristine KJ600 (400 mg) was 

mixed with aniline (3.0 mL), FeCl3 (10.0 g), and ammonium peroxidisulfate (5.0 g). After the 

polymerization, the mixture was heat-treated and acid leached in the same way as done to 

produce Fe-C-N-Phen-PANI. In order to synthesize Fe-N-C-Phen, the ball-milled mixture 

containing KJ600, Phen and Fe(Ac)2 was subjected directly to the same heat treatment and 

acid leaching steps as used for Fe-C-N-Phen-PANI without the addition of aniline. 

 

8.3 Results and Discussion 

A schematic diagram illustrating Fe-N-C-Phen-PANI catalyst synthesis is shown in 

Figure 8-1. In a quick look, the pristine KJ600 was first mixed with Phen and Fe(Ac)2 by ball 



 

 100 

milling method. In ball-milled composites (labeled as KJ600/Fe/Phen) as opposed to pristine 

KJ600, a much lower BET surface area (12 m2 g−1 versus 1321 m2 g−1), and discernable 

changes in SEM and TEM images were observed. The significant loss in BET surface area 

suggests that Phen fills the pores of the carbon support via ball-milling and occupy the majority 

of the mesoporous surface area and also block access to the internal porous surface area. 

Subsequently, PANI is coated onto these solid composites by polymerization of aniline in the 

presence of ammonium persulfate and FeCl3. Then, these catalyst precursors are pyrolyzed at 

900 °C under Ar atmosphere. Then, the heat-treated products are acid leached and subjected to 

remaining pyrolysis steps to obtain the final catalyst labeled as Fe-N-C-Phen-PANI. Here, 

Phen and PANI are employed not only as nitrogen-doping agents to promote catalytic activity 

towards ORR but also for their specific functions. In particular, Phen is primarily selected as a 

sacrificial pore-forming agent due to its lower thermal decomposition temperature compared 

to PANI. Hence, it tends to release a significant amount of gas when it decomposes during 

pyrolysis. The trapped gas increases the internal stresses and then expands the external PANI 

shell as it escapes, leaving abundant pores as accessible channels for gas and water to move 

within the catalyst layers. PANI is converted to a graphene-like structure during the 

graphitization process in the presence of Fe species 57. In this way, it can further enhance the 

surface area of the catalyst and expose more active sites to catalyze ORR. The co-use of Phen 

and PANI as nitrogen sources provides an advantageous morphology for Fe-N-C-Phen-PANI, 

benefiting its ORR activity and fuel cell performance. For the sake of comparison, a single 

nitrogen source (PANI or Phen) is used to prepare Fe-N-C-PANI and Fe-N-C-Phen, 
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respectively, according to the previously reported procedures with slight modifications to 

match the synthesis conditions of the Fe-N-C-Phen-PANI catalyst 55,56. 

  

 

Figure 8-1 Synthesis schematic of Fe-N-C-Phen-PANI catalyst. (a) Ball milling of KJ600 

carbon with Phen and Fe(Ac)2. (b) Polymerization of aniline onto the surface of the Phen/Fe/C 

composites. (c) Subsequent heat-treatment and acid leaching process. 

 

The surface morphology of these Fe-N-C catalysts was first analyzed by SEM and 

TEM. The co-use of dual nitrogen sources produce different carbon morphologies then that 
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observed in Fe-N-C-PANI and Fe-N-C-Phen. In comparison with KJ600, the pristine carbon 

black structures disappear in Fe-N-C-Phen and disordered carbon structures are formed 

(Figure 8-2b). Further HR-TEM image shows many amorphous carbon species (yellow 

arrows) within the Fe-N-C-Phen catalyst (Figure 8-2c). Similarly, the surface topologies of the 

PANI-based catalysts (Fe-N-C-PANI and Fe-N-C-Phen-PANI) also show bulk dense particles 

with average size of approximate 2 µm (Figure 8-2d,g). However, unlike the Fe-N-C-Phen 

catalyst, a significant amount of graphene-sheet-like structures are observed in the PANI-based 

catalysts (Figure 8-2e,h,). It is also evident from the HR-TEM images that the in-situ formed 

graphene-like sheets are multi-layered (green arrows) and surrounded by amorphous carbon 

(yellow arrows) (Figure 8-2f,i). Moreover, some differences between Fe-N-C-PANI and Fe-

N-C-Phen-PANI catalysts are observed. For example, the SEM image shows outstretched 

graphene-like sheets apparently interspersed in and decorated on the Fe-N-C-Phen-PANI 

catalyst (Figure 8-2g), suggesting more graphene surfaces are exposed compared with Fe-N-

C-PANI (Figure 8-2d). We propose that the decomposition of Phen molecules during pyrolysis 

likely expands the PANI shell during the formation of in-situ graphene-like sheets and inhibits 

their aggregation. TEM observation indicates a more porous graphene-like framework in Fe-

N-C-Phen-PANI catalyst (Figure 8-2h) than Fe-N-C-PANI (Figure 8-2e). This porous 

graphene-like structure likely originates from the holes generated by expansion of PANI shell 

when Phen decomposes. Such porous graphene-like structures are beneficial to catalyst 

performance in several ways. First, the highly porous graphene-like framework could 

maximize the exposure and accessibility of active sites. Second, these robust porous structures 

could function as channels that facilitate the diffusion of ORR-related species. Also, the 
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formation of graphene-like sheets likely enhances the electronic conductivity and corrosion 

resistance of the catalyst 60,121. Thus, such an advanced carbon structure could potentially play 

a crucial role in enhancing the ORR activity and fuel cell performance. 

  

 

Figure 8-2 (a) SEM, (b) TEM and (c) HR-TEM images of Fe-N-C-Phen; (d) SEM, (e) TEM 

and (f) HR-TEM images of Fe-N-C-PANI; (g) SEM, (h) TEM and (i) HR-TEM images of Fe-

N-C-Phen-PANI. (j) Surface areas of the prepared catalysts. (k) BJH model pores size 

distribution for the prepared catalysts. 
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 SEM images scale bar, 2 µm. TEM images scale bar, 100 nm. HR-TEM images scale bar, 5 

nm. Red squares designate the selected HR-TEM regions, green arrows designate the layered 

graphene-like sheets and yellow arrows designate amorphous carbon.  

 

Nitrogen adsorption-desorption measurements were further conducted to analyze the 

porous nature of these Fe-N-C catalysts. As shown in Figure 8-2j, total surface areas of 1265 

m2 g−1, 837 m2 g−1 and 416 m2 g−1 for Fe-N-C-Phen-PANI, Fe-N-C-PANI and Fe-N-C-Phen 

respectively are obtained. It is evident that the BET surface areas of Fe-N-C-Phen-PANI and 

Fe-N-C-PANI are higher than that of Fe-N-C-Phen, most likely due to the formation of 

graphene-like morphologies. On the other hands, the enhanced BET surface area in the dual 

nitrogen source-derived catalyst compare with Fe-N-C-PANI can be attributed to the addition 

of Phen as a pore-forming agent. Furthermore, vast differences in the surface area and pore 

size distribution (Figure 8-2j and Figure 8-2k) are observed among these three samples. The 

micro-porous surface area and external surface area are respectively 81 m2 g−1 and 335 m2 g−1 

for Fe-N-C-Phen, corresponding to widely-distributed pore sizes ranging from 1.7 nm to 110 

nm. On the other hand, the micro-porous surface area (781 m2 g−1) of Fe-N-C-PANI is 

predominant and occupies 93% of the total BET surface area (Figure 8-2j), which is in line 

with the narrowly distributed pore sizes centered at ca. 2 nm. In the case of Fe-N-C-Phen-

PANI, both the microporous surface area (1073 m2 g−1) and external surface area (192 m2 g−1) 

are increased in comparison with Fe-N-C-PANI. Such growth mainly comes from the highly 

porous structures which are formed by the decomposition of Phen inside the PANI shell during 

the formation of the in-situ graphene-like morphology, which is in good agreement with the 
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TEM image in Figure 8-2h. Apparently, Fe-N-C-Phen-PANI contains many micropores (< 2 

nm) as well as a significant amount of meso- and macro-sized pores in the range of 2 to 120 

nm (Figure 8-2k). According to previous reports, it is believed that micro-pores with the ability 

to host active sites contribute mostly to the catalytic ORR activity 44,203 while the 

meso/macropores are required to transport the reactants and products efficiently to and from 

the catalytic sites in the micro-pores 180,181.  

Raman spectroscopy and XPS analysis have also been conducted to investigate the 

physiochemical properties of these Fe-N-C catalysts. The Raman spectra in Figure 8-3a clearly 

show that the Fe-N-C-Phen-PANI and Fe-N-C-PANI have higher IG/ID ratios of 1.08 and 1.11, 

respectively, compared with 0.81 for Fe-N-C-Phen. The enhanced IG/ID ratio indicates the 

existence of more graphitic carbon in the Fe-N-C-Phen-PANI and Fe-N-C-PANI catalysts, in 

good agreement with the SEM and TEM images (Figure 8-2). From XPS surveys, it is found 

that Fe-N-C-Phen-PANI and Fe-N-C-PANI have similar overall N contents, which are higher 

than that of Fe-N-C-Phen. The high-resolution N 1s spectra of the three Fe-N-C catalysts have 

been further investigated. According to previous reports, the N 1s can be deconvoluted into 

five different peaks with binding energies of 398.2, 399.1, 400.2, 401.1, and 402.6 eV, 

corresponding to pyridinic N, Fe−N, pyrrolic N, graphitic N, and oxidized N, respectively 

(Figure 8-3b) 44,123. No significant difference exists in the atomic concentrations of N species 

in Fe-N-C-PANI and Fe-N-C-Phen-PANI. Moreover, the overall Fe content of these catalysts 

is also very close to each other. Therefore, the XPS results suggest a similar nature and 

concentration of potential active site species for Fe-N-C-PANI and Fe-N-C-Phen-PANI. This 
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implies that the differences in electrochemical properties are only weakly correlated to the 

active site type and content. 

  

 

Figure 8-3 (a) Raman spectra of pristine KJ600, Fe-N-C-Phen, Fe-N-C-PANI, Fe-N-C-Phen-

PANI; High resolution (b) N 1s and (c) Fe 2p peak of Fe-N-C-Phen-PANI. (d) STEM image 

of Fe-N-C-Phen-PANI (e) selected region from (d) and corresponding elemental mapping 

images of (f) C, (g) O, (h) N, (i) Fe and (j) S.  

 

The STEM image shown in Figure 8-3d,e and the corresponding EDX elemental maps 

in Figure 8-3f-j have been obtained to further probe the elements and their distribution in the 

Fe-N-C-Phen-PANI catalyst. N and Fe species, which likely make up active sites 68,162,163,204, 
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are finely and uniformly dispersed throughout the graphene-like formwork along with C, O, 

and S, suggesting that the active sites are homogenously distributed throughout the sample. 

Thus, it can be concluded that the highly porous graphene-like framework is an excellent 

material to host potential active sites in Fe-N-C-Phen-PANI and thus enhance its active site 

density. 

The steady-state ORR polarization curves indicated the dual nitrogen sources derived 

Fe-N-C-Phen-PANI catalyst exhibits slightly superior activity regarding the half-wave 

potential (E1/2 = 0.80V) compared with Fe-N-C-PANI (E1/2 = 0.79V) and much better 

performance than Fe-N-C-Phen (E1/2 = 0.67V) (Figure 8-4a, Table 8-1). Moreover, the ORR 

activity of Fe-N-C-Phen-PANI shows a small difference with a state-of-the-art Pt/C (TKK, 

28.2 wt%) catalyst, as the half-wave potential gap is ca. 70 mV. An RRDE study was further 

performed to investigate the selectivity of these Fe-N-C catalysts towards the 4-electron 

reduction of oxygen. The H2O2 yield of Fe-N-C-Phen-PANI catalyst remains below 2.5 % in 

the potential range from 0.80 V to 0.20 V, which is lower than 3.0 %−5.0 % and 3.0 %−10.0 

% for Fe-N-C-PANI and Fe-N-C-Phen catalysts, respectively (Figure 8-4b). The electron 

transfer number of Fe-N-C-Phen-PANI catalyst is above 3.95 (Figure 8-4b), superior to that of 

3.91 and 3.82 for the Fe-N-C-PANI and Fe-N-C-Phen catalysts, respectively, indicating a very 

high selectivity towards the 4-electron reaction.  
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Figure 8-4 (a) Steady-state ORR polarization plots of prepared catalysts; (b) Electron transfer 

number and H2O2 yield of prepared catalysts; Polarization and power density as the functions 

of the current density plots for (c) H2−O2 and (d) H2−air PEMFC with the prepared materials 

as the cathode catalysts. (e) ORR polarization plots assessed after multiple voltage cycling (f). 
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H2−O2 fuel cell polarization curves of the Fe-N-C-Phen-PANI catalyst cathode measured 

initially and after 5K cycles.  

Membrane: Nafion 211; cathode catalyst loading: 4 mg cm−2. All the RDE/RRDE test 

conditions: 0.5 M H2SO4 saturated with O2, 900 RPM, 10 mV s−1, catalyst loading of 0.6 mg 

cm−2. All the durability tests were done in nitrogen saturated electrolyte by cycling from 1.0 to 

0.6 V.   

 

Table 8-1 Physical and chemical properties and electrochemical performance of the catalysts 

Catalyst 

N content 

(at.%) 

E1/2 

(V) 

Pmax 

(H2−O2) 

(W cm−2) 

Pmax 

(H2−air) 

(W cm−2) 

BET surface 

area (m2 g−1) 

Microporous 

surface area          

(m2 g−1) 

External 

surface area  

(m2 g−1) 

Fe-N-C-Phen 1.89 0.67 0.56 0.26 416 81 335 

Fe-N-C-PANI 4.18 0.79 0.87 0.34 837 781 56 

Fe-N-C-Phen-

PANI 

3.96 0.80 1.06 0.38 1265 1073 192 

 

The improved ORR activity of Fe-N-C-Phen-PANI is further confirmed by the PEMFC 

tests. Polarization and power density curves have been obtained for MEAs consisting of the 

Fe-N-C catalysts as cathodes for ORR and Pt/C catalyst as the anode for hydrogen oxidation 

reaction. In H2−O2 fuel cells, the Fe-N-C-Phen-PANI MEA shows a kinetic current density of 

0.39 A cm−2 at 0.8 V (iR-corrected), which is higher than that of 0.33 A cm−2 and 0.16 A cm−2 

for Fe-N-C-PANI and Fe-N-C-Phen, respectively, ranking it among the most active NPMC-
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based cathodes reported to date. Figure 8-4c shows non-iR-corrected polarization and power 

density curves of the three catalysts and indicates that the fuel cell performance of Fe-N-C-

Phen-PANI outperforms that of Fe-N-C-PANI and Fe-N-C-Phen over the entire test range. At 

a working voltage of 0.6 V, the power density of the MEA made with Fe-N-C-Phen-PANI 

reaches 0.86 W cm−2, 125% and 205% higher than that of the MEA made with Fe-N-C-PANI 

(0.69 W cm−2) and Fe-N-C-Phen (0.42 W cm−2), respectively. Further, the Pmax of the cell with 

Fe-N-C-Phen-PANI achieves a high value of 1.06 W cm−2 at 0.46 V, significantly superior to 

that of 0.87 W cm−2 at 0.43 V and 0.56 W cm−2 at 0.41 V for Fe-N-C-PANI and Fe-N-C-Phen, 

respectively (Figure 8-4c). To the best of our knowledge, this is the highest reported H2−O2 

fuel cell power density to date by an NPMC cathode (Table 8-2).  

In order to acquire sufficient performance, NPMC-based membrane cathodes usually 

require higher catalyst loading compared with that of Pt-based cathodes, resulting in a thicker 

catalyst layer that inevitably limits mass transfer. However, the Fe-N-C-Phen-PANI based 

cathode with the catalyst loading of ca. 4.0 mg cm−2 and measured thickness of ca. 90μm 

(Figure 8-5), can attain approximately 75% of the Pmax (1.4 W cm−2) of a Pt cathode (0.2 mgpt 

cm−2) operated with H2−O2 under the same conditions (Figure 8-4c, Figure 8-6a), which is 

considerably higher than that of Fe-N-C-PANI (62%) and Fe-N-C-Phen (30%). Moreover, the 

polarization curve of Fe-N-C-Phen-PANI matches well with that of Pt/C at small current 

densities (< 0.5 A cm−2) and relatively close to Pt/C at high current densities (> 0.5 A cm−2) 

(Figure 8-4c, Figure 8-6a). This approach enabled us to synthesize catalysts with reproducible 

performances (Figure 8-7). 
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The top fuel cell performance of Fe-N-C-Phen-PANI and Fe-N-C-PANI in comparison 

with Fe-N-C-Phen is attributed to their relatively higher overall nitrogen content and the 

elevated surface area (Table 8-1). However, considering the similar elemental compositions of 

the Fe-N-C-Phen-PANI and Fe-N-C-PANI based on the XPS results, we suggested that the 

enhanced performance of Fe-N-C-Phen-PANI is not likely associated with N and Fe species 

and instead is linked to its increased surface area (Table 8-1). According to this table, the 

superior surface area originates from two factors, the micro-pores, and meso-/macro-pores. To 

the extent of our knowledge, among the NPMCs with high H2−O2 power densities referenced 

in Table 8-2 and other high-performance NPMCs reported up to date, Fe-N-C-Phen-PANI 

exhibits the highest micro-porous surface area which comprises the active sites and supplies 

sufficient ORR activity to achieve the high level of fuel cell performance. Also, although high 

microporosity is required as a prerequisite for good activity in NPMCs, meso-/macro-porosity 

are essential for effective mass transport. Thus, we believe that the large boost in meso-/macro-

porosity, about 3.4 times higher than that of Fe-N-C-PANI, imparts superior mass-transport 

especially at high current densities. Such surface area properties and other characteristics of 

Fe-N-C-Phen-PANI can repeatedly be achieved in different synthesis batches using the dual-

nitrogen method, so that the catalyst performance is easily reproducible with no major current 

density variations at 0.6 V (non-iR-corrected) (Figure 8-7).  

To simulate the actual operating conditions of PEMFCs, we tested the catalyst using 

air flow to the cathode as the oxidant. As shown in Figure 8-4d, the polarization curves of these 

Fe-N-C catalysts in H2−air conditions follow similar trends to that observed in the H2-O2 fuel 

cells. The current density values at 0.8 V (iR-corrected) are 0.12, 0.11 and 0.09 A cm−2 for Fe-
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N-C-Phen-PANI, Fe-N-C–PANI and Fe-N-C-Phen, respectively. The Fe-N-C-Phen-PANI 

yields a Pmax value of 0.38 W cm−2 at 0.56 V, which exceeds the values measured with Fe-N-

C–PANI (0.34 W cm−2 at 0.58 V) and Fe-N-C-Phen (0.26 W cm−2 at 0.55 V) and reaches 

approximately 63% of the Pmax (0.6 W cm−2) attained by the Pt cathode under the identical 

operating conditions (Figure 8-6b).  

 

Table 8-2 Comparison of fuel cell performance of Fe-N-C-Phen-PANI materials with 

published state-of-the-art M-N-C catalysts 

Catalyst 

T cell 

(°C) 

H2/O2 

flow rate 

(sccm) 

Back 

pressure 

(gauge)   

(psig) 

MEA 

area 

(cm−2) 

Pmax in H2−O2 

fuel cell 

(mW cm−2) 

 

Reference 

Fe-N-C-Phen-PANI 80 300/400 20 5 1060 This work 193 

F/N/C-SCN 80 300/300 29 1 1030 199 

Fe/Phen/Z8 80 300/300 15 5 910 65 

FeCBDZ 80 100/100 25 5 700 72 

PANI-FeCo-C 80 200/600 26 5 550 55 
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Figure 8-5 Direct measurements of the cathode catalyst layer thickness on an MEA with Fe-

N-C-Phen-PANI loading of ca. 4 mg·cm−2. 

 

 

Figure 8-6 Polarization and power density as functions of current density for (a) H2−O2 and 

(b) H2−air PEMFC with Pt/C as both the cathode and anode catalysts.  
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Nafion 211 was used as the membrane. The gas humidifier and cell temperature were 

maintained at 80 °C. The partial pressures of H2 and O2 (air) were both kept at 20 psig, and the 

gas flow rate for H2 and O2 (air) is 300 and 400 sccm, respectively. 

   

 

Figure 8-7 Reproducibility of the composite performance. Polarization plots for the H2−O2 

fuel cell with Fe-N-C-Phen-PANI composites obtained in three different batches.  

Catalyst loading: ca. 4 mg cm−2; cell temperature: 80; Nafion 211 membrane; the back pressure 

of 20 psig for H2 and O2; gas flow rate of 300 and 400 sccm for H2 and O2. 

 

Fe-N-C-Phen-PANI furthermore showed good stability based on ADT. The cycling 

was performed within a potential (RDE) and voltage (fuel cell) range of 0.6 to 1.0 V in nitrogen 

gas at a scan rate of 50 mV S−1. Figure 8-4e shows the variation of ORR polarization curves 
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of Fe-N-C-Phen-PANI catalyst after different numbers of potential cycles; the half-wave 

potential loss is only 18 mV after 10,000 potential cycles. It can also be seen in the polarization 

curve obtained after 5000 cycles that the MEA performance is well-maintained compared to 

the initial one and the current density loss at 0.6 V (non-iR corrected) is only 70 mA cm−2, 

retaining 90% of its initial fuel cell performance (Figure 8-4f). The excellent stability of Fe-N-

C-Phen-PANI for ORR is likely due to the presence of abundant graphene-like structures 

(Figure 8-2h) that are highly resistant to carbon corrosion compared with conventional carbon 

black materials 188. The improved stability can also be due to the low yield of H2O2 during 

ORR (Figure 8-4b), which is one of the primary sources for active site degradation and 

destruction of Nafion membrane 8,60. To put it in a nutshell, the dual nitrogen-based Fe-N-C-

Phen-PANI catalyst with unique 3D porous graphene-like framework shows exceptional fuel 

cell performance and remarkable durability and could serve as promising cathode material for 

PEMFCs. 

 

8.4 Conclusion  

In summary, two nitrogen precursors Phen and PANI have been used together to fabricate a 

new Fe-N-C catalyst for PEMFC. The catalyst possesses an abundance of 3D porous graphene-

like structures, which can host a high population of reactant-accessible active sites for ORR 

and also facilitate mass-transport. A membrane electrode assembly using this catalyst at the 

cathode has delivered unprecedented Pmax values of 1.06 W cm−2 and 0.38 W cm−2 in H2−O2 

and H2−air fuel cell, respectively, and also exhibit good stability. This study demonstrated the 
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in-situ formation of highly porous graphene structures that yield unprecedented performance 

of Fe-N-C-Phen-PANI catalyst, and paves the way for further development of active and 

durable Fe-N-C catalysts for PEMFC applications. 
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Chapter 9 

Conclusions and Future Work 

9.1 Summary and Conclusions 

Although the fuel cell performance of heat-treated NPMCs has been dramatically improved 

over the past two decades, further improvements are still required to compete with state-of-

the-art Pt catalysts. Since pyrolysis of different combinations of nitrogen precursors, metal 

precursors, and carbon supports produce catalysts with varying degrees of ORR activity, 

researchers have adopted a variety of precursors and synthetic approaches to advance NPMCs. 

Though indispensable, heat treatment destroys the initial structure of the precursors, producing 

a highly heterogeneous, complicated structure that makes it very difficult to elucidate and 

understand the active site(s) of the resulting NPMCs. For this reason, the development of 

NPMCs depends more on a trial-and-error type approach, rather than on a scientific basis that 

is rationally guided by fundamental knowledge concerning the active site structure(s) and 

formation. It is, therefore, becoming increasingly clear that a better understanding of active 

sites is required to propel NPMC development to new levels. According to published papers 

on NPMCs, nitrogen precursor selection plays one of the most important roles in the ORR 

activity when comparing a variety of NPMCs. Therefore, a better understanding of the 

influence of how the structure and properties of the different nitrogen precursors the 

nanostructure, surface properties and activity of the resultant catalysts after heat treatment is 

an important starting point. 
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Another important issue related to this type of NPMCs is durability. Until now, no 

NPMC has been shown to be durable under practical PEMFC operating conditions. From a 

practical application viewpoint, durability is as important as activity. Therefore, the 

understanding of the cause of performance loss of NPMCs and development of durable 

alternatives are also urgent research fields. The application of a host of diverse 

physicochemical analysis tools in conjunction with electrochemical and fuel cell tests is crucial 

to this endeavor and has been the focus of a large number of investigations. Considering the 

complex structure of NPMCs, thorough investigations must be carried out to provide 

fundamental insight, and build on previous studies. Sophisticated techniques, including a host 

of microscopy and spectroscopy methods, are required in tandem, with the ability to investigate 

catalysts in situ (either in “half-cell” or MEA) and provide breakthroughs in elucidating the 

active site structure(s) of the most active NPMCs prepared to date.  

In order to develop NPMCs with high ORR activity that exhibit adequate MEA 

performance and durability in the PEMFCs, several procedures were followed to synthesize 

different NPMCs. The first effort was to develop one-dimensional nanofibers prepared by 

electrospinning and subsequent heat treatment. Chapter 5 focused on the successful fabrication 

of a Co-N decorated porous graphene aerogel catalyst and an in-depth analysis of the nitrogen 

groups. In Chapter 6, ammonia treatment was applied to tune the structure and activity of 

electrocatalysts derived from Fe, PANI and a carbon support. Following this study, Chapter 8 

was concerned with utilizing dual nitrogen sources to prepare a highly active Fe-N-C 

electrocatalyst with in-situ graphene-like structures and tuned micro/meso/macro-porous 

morphology. A summary of all chapters is provided in the following paragraphs. 
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In Chapter 4, one-dimensional nanofibers were prepared by electrospinning an iron–

polyaniline/polyacrylonitrile metal-polymer blend, followed by heat treatment. PANI was 

selected as it had previously been demonstrated to be an ideal nitrogen precursor to produce 

some of the most active NPMCs to date, due to its aromatic ring structure with a high content 

and uniform distribution of nitrogen species that could readily form nitrogen-doped graphitic 

carbon structures during heat treatment.  PAN was also helpful as a low-cost polymer carrier 

to overcome the poor solubility of PANI in solution and as a secondary source of nitrogen. 

When 10 wt. % PANI was used to the electrospinning mixture, the resulting catalyst exhibited 

100 and 70 mV improvements to the ORR onset potential and half-wave potential, 

respectively, rendering the most active non-precious ORR nanofiber catalysts prepared by 

electrospinning as of the date of publication. The high activity is attributed to the porous 

structure of the nanofibers, combined with the increased nitrogen content provided by PANI 

incorporation. With this unique synthetic approach, practical progress has been made toward 

the development of one-dimensional non-precious metal-based catalysts for fuel cell 

applications. 

A procedure to synthesize a Co-N decorated graphene aerogel-based catalyst was 

explained in Chapter 5 to exploit several attractive features of graphene such as large corrosion 

resistance, and enhance ORR performance. PANI, which serves as a hydrogel-forming agent 

and nitrogen precursor, can block graphene sheets from re-stacking and raise the nitrogen 

dopant content. The final Co-N-GA framework has a high BET surface area and hierarchically 

porous skeleton as well as a uniform distribution of Co-N active sites, which can expose the 

more active sites to electrochemical interface and further facilitate the mass transport to 
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enhance the ORR activity and stability. The last Co-N-GA exhibited high ORR activity (E1/2 = 

0.73 V), superior electrochemical durability and high electron transfer selectivity (n >3.75) in 

an acidic environment. This prominent electrochemical performance makes the Co-N-GA a 

promising NPMC for PEMFCs. 

In the next research (Chapter 6), NH3 treatment was utilized to tune the morphology 

and performance of electrocatalysts fabricated from FeCl3, PANI, and CNTs. By controlling 

the NH3 reaction conditions, we were able to tune the chemistry of nitrogen incorporation, 

including concentration and dopant type. The final catalyst has a robust morphology consisting 

of highly porous 2-D in-situ formed graphene-like structures that, along with the intermixed 1-

D CNTs, were decorated with an abundance of nitrogen and iron species. The catalyst derived 

under the optimized condition (F-P-C_Ar-NH900) exhibited high catalyst activity, including 

an E1/2 of 0.80 V vs RHE based on RDE testing. When incorporated into an MEA under H2-air 

conditions, current densities of 77 mA cm-2 at 0.8 V and 537 mA cm-2 at 0.6 V were achieved. 

Furthermore, a maximum power density of 335 mW cm-2 at 0.6 V was observed. To the best 

of our knowledge, this is one of the best H2-air performances shown to date of publication for 

a Pt-free cathode. This catalyst also showed a very good selectivity towards the 4-electron 

reaction with the number of electrons transferred per reduced oxygen molecule was calculated 

to be 3.90 on the basis of RRDE measurments. These electrochemical evaluations indicate that 

the chemical modification of Fe-PANI-CNT catalyst by NH3 results in a highly promising Pt-

free PEMFC ORR electrocatalyst. 

In Chapter 7, a 2D graphene-like sheet and 3D graphitic meso-porous carbon sphere 

framework with nano-channel reactors was synthesized as an ORR catalyst for PEMFC. It has 
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unique composite structures and morphologies that benefit active site residence, oxygen mass 

transfer, water removal from catalyst surfaces, carbon corrosion resistance, and electronic 

conductivity. These modifications lead to impressive ORR activity and durability in fuel cell: 

a peak power density of 0.82 W cm−2 in a H2−O2 fuel cell and a maintenance of 95 % of its 

initial current density after 50 hours of operation in air at constant 0.4 V. This research, 

therefore, provides a fresh approach to developing promising NPMCs with effective mass and 

charge transfer channels containing a high population of active sites and developing a practical 

synthesis strategy to prepare highly active and durable PEMFC catalysts. 

Following the previous studies, an efficient strategy of utilizing dual nitrogen sources 

for highly active Fe-N-C electrocatalyst with in-situ formed graphene-like structures and tuned 

micro/meso/macro-porous morphology was reported in Chapter 8. This approach was achieved 

by simultaneously using PANI as the graphene precursor and Phen as the pore-forming agent, 

followed by several post–treatments. This research was accomplished by introducing Phen into 

the pores of carbon support by ball-milling, covering it with a PANI shell through 

polymerization of aniline, and then carrying out subsequent pyrolysis and acid leaching steps 

leading to the formation of in-situ 3D porous graphene-like morphologies with multiple types 

of pores. Here, Phen was capable of expanding the external PANI shell during its 

decomposition. Simultaneously, the PANI shell was converted to a graphene-like structure 

through graphenization in the presence of iron species during pyrolysis. Extensive physical 

characterization indicated that the final catalyst provided a rich, porous graphene framework 

decorated with uniformly dispersed active sites. The catalyst exhibited high maximum power 

densities of 1.06 W cm−2 and 0.38 W cm−2 in H2−O2 and H2−air fuel cell tests, respectively, 
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representing one of the highest reported values to date for NPMCs in PEMFCs. Moreover, 

ADT showed it to have good fuel cell durability. The unprecedented performance of this 

electrocatalyst in fuel cell is linked to the highly porous graphene framework with a broad 

distribution of pore sizes, which can maximize the number of active sites with enhanced 

accessibility, facilitate the mass transport, and improve the carbon corrosion resistance. 

 

9.2 Proposed Future Works 

Based on the findings of these studies, some future directions for the catalyst research can be 

suggested: 

 

9.2.1 High-performance NPMC development 

Synthesis of NPMCs with different nitrogen precursors based on the high surface area 

carbon support such as graphene is encouraged. Since few studies have been done on NPMCs 

with a graphene aerogel as support, various combinations of the currently available heteroatom 

or metal precursors will likely improve ORR activity further. However, since the activity and 

especially stability measured in RDE experiments may not reflect actual PEMFC performance, 

it should be tested in an MEA as well.  

Other approaches that can be used to synthesize highly porous and high surface area 

NPMCs include using spray dryering or aerosol-assisted surfactant self-assembly process. 
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High surface area catalysts should provide more exposed active sites for excellent mass 

transport of oxygen and water that will further improve ORR activity and stability.  

 

9.2.2 Catalyst layer development 

More study on various MEA compositions (e.g. different catalyst-to-Nafion ratios) can 

be done. Investigation into the hydrophilicity of the catalyst layers of micro/mesoporous, 

mesoporous, and macroporous dominating materials will provide more information regarding 

the wetting and its connection to stability. Catalysts with more or less hydrophobic support 

would likely perform uniquely, and together with amorphous or crystalline catalyst support 

(more or less prone to carbon oxidation), the search could supply more data on the relationship 

among the stability failure and the carbon oxidation. 

 

9.2.3 Pt and NPMC hybrid catalysts 

Although it is challenging to identify one unique degradation mechanism for all 

NPMCs owing to the diversity of synthetic designs and approaches, one mechanism that is 

broadly accepted involves the oxidative attack by H2O2 and its radicals. In spite of previous 

efforts, little success has been accomplished in understanding the loss, and no strong strategies 

have yet been investigated to address this challenge through a synthesis method. Interestingly, 

platinum is well known as being effective at enabling peroxide decomposition with negligible 

formation of hydroxyl radicals and so may possibly contribute to minimize the degradation of 

the NPMCs when used with Pt as a hybrid ORR catalyst. Therefore, by merging Pt and NPMCs 
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while attaining the optimum proportion and structural formation, a novel hybrid catalyst could 

be synthesized with an ORR activity supported by both NPMC active sites and low-loading 

platinum nanostructure and with enhanced NPMC support durability by promoting peroxide 

decomposition. 
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