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Abstract 

An experimental investigation is presented that examines the effects of extemal turbulence on the 

development and evolution of a nubuent isotherxuai coflowing jet. Three mtensities of extemal 

turbulence, two Werent jet model diameters, and two imtial jet velocities were combmed to obtain 

data for twelve different experimental conditions. The measured instantaneous velocity data 

resu4ing fiom these experiments were statistically pmcessed to obtagi mean velocities, Reynolds 

normal and shear stresses, mtegral length scaies, and energy specm both withm the jet and in the 

extemal flow. The experimental resuhs indicate that the presence of extemal turbulence be&s to 

affect the development of a jet in the range of 15 to 25 momentun radü downstream nom the jet 

exit by enhancing the diffusion ofjet momentum. 

A new entrainment velocity hction is developed for use m an mtegral model to predict the effect s 

of extemal turbulence on the evolution ofa coflowing jet. The resulting predictions are compared 

with experimentai data and yield accurate prediaions for the radiai spread and velocity decay for 

a jet m a laminar extemal coflow H e  yielding relatively good agreement for a jet m a turbulent 

extemal coflow. 
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Chapter 1 : Introduction 

1.1 Motivation and Scope of Research 

Hiaoncally, mankind has relied on the immense volume of the atmosphere and oceans to diiute 

poIlutmts thiit arise f?om our everyday hes. As the global population continues to gmw and the 

rate at which new technology is mtroduced continues to accelerate, the effects of releasing more 

and more pohtants into the atmosphere and ocems is of growing concem. Economics and 

government legislation wül continue to contend with each 0 t h  to dictate the lwel of poilutant 

emissions thrt are deemed controllable and acceptable. Unfortunately, this means that there will 

always be some level of pohtants released mto the natural environment. In addition, accidentai 

releases, such as the Bhopal disaster in India and the Chemobyl accident m the Ukraine, reiy solely 

on the diEsive nature of the natural environment to mute and reduce the level of contaminants 

released. Thus our understandmg of the behaMour of such phunes and jets interaaing with the 

natural environment is of great miportance in predicting pohtant transport and contaminant levels. 

Intuitively one would postdate that the effects of atmospheric turbulence on the evohrtion of a jet 

or plume would be to mcrease the dispersion of pohtants and thus cause an increase in the radial 

1 



spread and pethaps change the trajectory of the jet or phune. Very iittle experimentai data e d s ,  

however, to support this supposition The main reason for this is that typical jets and plumes 

released into the naturai anrirollfnent are extremeiy complex As an illustrative example, consider 

a smoke stack emisgon released mto the pianetuy boundpry iayer. In tbis layer of the atmosphere 

the mean wind and its turbulence structure depend, m varying degrees, on convective forces due 

to atmospheric heating, local topography, iarge sale horizontal pressure gradients, Coriolis forces, 

and vertical temperature stability. The source cm Plso htroduce complenties such as buoyancy 

into the flow. Thus in order to conduct experiments to mcrease our understanding of how the 

wohitioa of jets and plumes is afEected by an interacting turbulent background flow, the problem 

needs to be shplified and the numerous variables controned Realistically, this cm only be 

accomplished at the laboratory scale Snce accurate and conmlied hill scde experiments are both 

difficult and expensive to conduct due to the uncooperative nature of the atmosphere and due to 

the limitations of the present meteorological and remote senshg mstnimentation- 

Thus laboratory scale experiments are required that emphasize the interaction of a jet or plume with 

a turbulent extemal flow. Smce M e  experimental data exists for interacting turbulent flows, the 

experiments should reduce the complexity of the two flow fields by using the simplest possible 

flo ws in order to &st elucidate the mechanisms involved m the interaction of the two turbulent 

fields. To this end, grid-generated turbulence will be used to model the atmospheric or 

ewironmental turbulence and a simple isothermal turbulent coflowiug jet wiU be used to model the 

pollution source. One advantage of using these simple flows is that, mdividually, they are weli 

documented m the literature thus providing a usefid benchmark for the experimental results. 

These experhents are also reqiiired to postdate nid validate prediaive models for jets and plumes 

issuing into a turbulent background flow. One common predictive modei, used by govenunent and 

industiy, for this type of flow is the mtegral model which requires the specification of an 

entrainment velocity hction. In spite of th& relativeiy simplistic formulation, which is based on 

the Navier-Stokes ewations with realistic simplifying assumptions, the integrai model represents 

a sound engineering cornpromise between the complex physics of the flow and the ease of applying 



the mode1 to predict the overan dispersion in a fiow fieI& 

Traditiondy, however, integral models have largely disregardeci the inmeased rate of dispersion 

produced by the turbulence h the natural environment when modehg a jet or phune released mto 

the natural environment. This exclusion can again be a m i e d  to the faa that Iittle experimental 

data exias to quanti.@ the effects of environmentai turbulence and thus the few models that put 

fonh theoretical-based conjecture to account for its effects cannot be verified It is the purpose of 

this work to coaduct laboratory experiments to provide the means to evaiuate and understand the 

physics of the interacting turbulent 00ws From thk, an mtegrai model with an entrainment velocity 

hction can be fùrther developed and validated which will account for the effects of extemal 

turbulence on the evolution ofjets and phmes- 

1.2 Objectives of the Thesis 

The mam objectives for this thesis are thus twofold and c a .  be stated as: 

1. To acquire a new data base for turbulent isothermai jets released mto uniform turbulent 

extemai coflows that mcorpontes a range of characteristic turbulent scaies both withm 

the jet and the extemal coflow. 

2. To develop a new entrainment velocity hction, to be incorporated mto an mtegral 

model, that accoMts for the mteraction of the cofiowing jet with the turbulent extemal 

coflow by deteminhg the correct length and velocity scales that domhate the diffugon 

process as the jet evoives downstream. 



The thesis is divided into three mnin parts. The k i t  part, &en in Chapter 2, presents a review of 

the theory and iiterature which fonns the basis for the present work The second put  consists of 

three chapters and deals with the experimentd aspects of the m e n t  reseiuch. Chppter 3 gives a 

brief overview of the experimentai equipment, the experimental methodology, and the level of 

experimental uncertainty contained within the r e d s  Chapter 4 repons the experimental results 

for the exîemal flow both m the absence and presence of turbulence generating grids and Chapter 

5 details the experimental hdhgs of the various coflowing jet nms in various lwels of extemal 

turbulence. The third part of the thesis, given m Chapter 6, develops a predictive mtegral mode1 

and compares the predictions to the experimental data for a coflowing jet d g  a new entrainment 

velocity fimction. The thesis is concluded with Chapter 7 -ch details the main conclusions and 

contributions of the present research as weil as recommendations for fûture work. 



Chapter 2: Background and Literature Review 

Introduction 

The lderature pertaining to turbulent fluid motion and cifision is vas& and varies fiom application 

to application. G.L Taylor (l922), whiie çhidying smoke stack emissions, appears to be one of the 

fmt researchers to note that 'hubulent motion is capable of dinUsmg heat and other dBÙsiile 

properties through the interior of a fluid m =ch the same way that molecular agitation @es rise 

to molecular diaision." Since theq there has been a multitude of research devoted to the study 

o f  turbulence, 

The aim of this chapter is to review the theory and literature pextaining to the mechanisms o f  

interacting turbulent flow fields To nart, a bnef ovemiew of the qyantities used to characterize 

turbulent flows win be &en. Reviews of theoretical and experimental studies of grid-generated 

turbulence will be @en next. This will be foiiowed by a similar exambation of isothermal, 

coflowing jets m a la-ar extemd flow as weil as in a turbulent extemal flow. The chapter will 

conclude with a smmary of the m e n t  research objectives. 



2.2 Relevant Turbulence Background 

Turbulence is one ofthe chief outstandmg difiïculties in the ares of fluid mechanics (Bradshaw, 

1994). It has beai defined by Ehoze (1975) as "on hegulat condition of flow m which the various 

quantities show a rmdom variation w i t h  t h e  and space coordinates, so that statistically distinct 

averages cm be discerned" ûther researchers, such as Tennekes and Lumley (1972) avoid &hg 

a precise definition of turbulence but mstead list characteristics of turbulent flows. 

In spite of this lack of confiormity on the definition of turbulence, it is h o s t  universaüy accepted 

that turbulent h i d  motion satisfies, a wery moment m thne and space, the complete instantaneous 

unsteady and non-hear Navier-Stokes equations Unfortunately, the computationd requirements 

to directly sotve these equations at realistic Reynolds numbers are stül beyond current capacities. 

O O 

A common aitemative approach, often termed the detemimisiic approach, is to d e m i e  turbulent 

flows in terms of classical statistical concepts of random variables where the statisticai quantities 

are determined m both the amplitude domain (mean and turbulent velocities) and m the time domain 

(autocorrelations and turbulent energy spectra). These quatltities can, m hm, be used to derive 

other usefùl parameters The turbulence statistics to be used m this thesis are defined in the aext 

sub-sections. 

2.2.1 Amplitude Domain Statistics 

The two most common amplitude domam statics w d  to describe a turbulent flow are the time- 

mean average velocity (hereafter referred to as Pniply the mern velocity), which gives an indication 

ofthe bulk motion of the fluid flow, and the root-mean-s<luare (rms) or turbulent velocky, which 

@es a measure of the magnitude of the turbulence m a fiow. To obtain these vhes ,  the 

instmtaneous velocity si@ h m  the turbulent flow, U, must nrst be decomposed into an average 

value, LI, and a fluctuahg component, 24, where: 



The average velocity is statistically defined over a fiMe time intexval, T, as: 

where t,, is the start àme of the averaging period The averagbg period, T, should be d c i t l y  

large nich that the deative of the mean velocity with respect to t h e  is zero for steady state flows 

or negligibly m a i l  for flows with slightly varying mean velocities (Hinze, 1975). 

Since the mean of the fluctuahg velocity must be identically equai to zero by dennition, it is not 

a mitable parameter to characterize the mtensity of the turbulence. Instead, the root-mean-square 

(rms) velocity is used and is statistically defined as: 

Simüar dennitions to equations (2.2) and (2.3) are obtainable in the other coordinate directions. 

2.2.2 Time Domain Statistics 

Most signals arisng fiom physicai processes, mcluding those nom random processes, have some 

structure in tirne (Castro, 1989). For turbulent flows, one method used to d e t e d e  the degree 

of dependence between the turbulent velocity at one pomt m thne and the same turbulent velocity 

at later thes is to evaluate the autocorreiation hction which is defineci, assuming the mean flow 

is in the x direction, for the streanrwise direction as: 



and for the transverse or radial direction, &ch is taken cross Stream to the mean flow, as: 

wliere ~i and v, are the fiuctuating velocities m the streamwise and transverse or in this case radial 

directions, x is the downstream position, t is the tirne, and r is the tirne lag berneen the velocity 

signais being correlated. 

An alternative but complementary way of d-bmg the time domain dependence m turbulent flows 

is from a turbulent energy spectnun Turbulent energy is comprised of vortices of various 

hequencies containing a certam amount of turbulent h e t i c  enerky. At any position m the fiow 

there is an enerBy content of the turbuience associateci with a given fiequency (or size) of the eddy. 

Ifthe energy dengty content of a turbulent signature is deteimsied over a range of predetermined 

fkequencies, the resdt will give a distriiution or energy den* spectmm over the range of 

eequencies measured The spectrum thus represents the distniiution of turbulent kinetic energy 

across the various fiequencies of the flow. In particular, the streamwise power spectral density 

(PSD) function, E&), is defined such that E ' f  is the turbulent energy contniuted by the 

streamwise component of the turbulent flow over the fiequency range of f-dj72 to f+df/2. The 

radial or transverse PSD hction, E a ,  has a similu dennition. The mtegral of the PSD over the 

range of fiequencies is the turbulent kinetic energy per unit mass of the original turbulent signature. 

The autocorrelation function and the power spectral den* hction are not mdependent of each 

other but form an exact Fourier transfonu pair. Thus specification of one specifies the other. 



2.23 Integral Scales of Turbalence 

Physical Wations of the experimentai eq@pment only dow for time series to be rneasured at a 

single pomt in space at any one tirne- Thus any statistics determhed Eom the time &es w l l  be 

temporal and Eulerian m natue. 

Ushg the autocorrelation equations, mtegral time d e s  cm be calcuiated usbg: 

for the streamwise direction and: 

for the radiai or transverse direction. 

Unfortunately, mtegral time scales are dBcuit to physidy mterpret and are thus usudy converted 

to spatial scales using Taylor's theoly of fiozen turbulence. This hypothesis assumes that 'the 

fluctuations at a fixed pomt of the field may be imagined to be caused by the whole turbdent flow 

field passing that pomt as a 'fiozen' field" (Hmze, 1975, page 46). Taylor's hypothesis is only an 

approximation and valid ody when the convecting mean velocity is constant and when U » (FI'! 
Thus its application to shear flows should be viewed with some caution since the convecting mean 

wlocity varies with position and the turbulent velocities can be fàirly large m cornparison to the 

mean velocity. 

The integral length %aie m the streamwise dwctiotl is thetefore &ea by: 



and is generally considered to be typicai of the average to iarger sized energy contahg eddies 

whose history is determined by the geometnc or production scales of the flow. 

The mtegral length scaie m the transverse or radial direction is not as straight fornard since there 

is no obvious choice for a convecthg velocity m the radiai dnection. If; howwer, it is assumed that 

the turbulence structure remaïns ftozen over the mtegral tïme sale  as it is convected downstream 

by the mean streamwke velocity, thea a radial integral length scale can be defined as: 

Strictly speaking, this is not a m e  radiai Pite@ length d e  &ce iî is dependent on the conveasig 

streamwise velocity. It is, however, the mtegrai length sale that is representative of the correlation 

between the radial turbulent velocities. In Chapter 5, it will be shown after the fact that the Iength 

scale dehed by equation (2.9) does scale with the radius or geometric scale of the jet. 

The choice of (I to be used in the above equations is somewhat dependent on the flow. For the 

extemal grid generated turbulence, the mean velocity is constant throughout the flow field and is 

thus the obvious choice. In a coflowing jet, the convection velocity is dependent on both the 

streamwise and radiai positions. Antonia and Bilger (1973) have evaluated streamwise inregrai 

length scales on the centerihe of the jet and use the local mean velocity, LI, (which m this case is 

the local centerlnie velocity) as the convecting velocity. Smith and Hughes (1977) evaluate the 

convecting velocity to be 0.9 times that of the local mean velocity based on separation techniques 

using hot wires. Biringen (1986) calculates the convecting velocity, LI, using: 

According to the Iiterature on coflowhg jets, there is no apparent standard choice for the 

convecting velocity. Ifthe mean velocity profiles within the jet cm be show to be nmilu, then ail 



the jet mean velocities can be reiated back to each other. Thus the choice of a convecting velocity 

becomes somewhat ubîtrary since it can be related to any other mean velocity m the jet by 

similarity relations. 

Foilowhg Autonia and Biiger (1973), the present study wiii use the locai mean velocity as the 

convecting velocity in an cases. 

2.3 Grid-Generated Turbulence 

In a 195 1 paper, Baines and Paterson stated paradorcically that grids and screens could be used m 

a fluid flow field to either genente or reduce turbulence and to either create or elimmate large scale 

velocby or pressure non-unifondies. Wh aich a wide mge of applications the present Eterature 

review wiil concentrate solely on turbulence that is generated by the wakes and momentum jets 

fomed behind grids. 

Turbulence generating grids exkt m a wide variety of geometric configurations ranging fiom 

biplana. arrays of round or sqpare bars to perforated plates The conventionai method of describmg 

a grid is by the bar width, 6, the centre to centre me& spacing, M, and the grid soliàity, a, which 

is defined by the projected area per unit total area and cm be caiculated fiom: 

Experimental evidence aiggests that sigtdicant flow mstabilities resuît when ~ ~ 0 . 5 0  (Roach, 1987). 

An excellent review of grid-generated turôuience theory is piva m Hmze (1975). Typicdy, the 

behaviour of the stmumwe turbulent velody, (u 7% ) , and mtegral length scaie, L, are descnied 

by power laws of the f o m  



where x, is the streamwise distance fiom the grid plane and where the exponents obey the 

theoretical conjugate relation- (Lewane, 1990): 

To appreciate the range m the different theoretical vahies, without going into the theoretical detail, 

Khze (1975) states that d2=-0.5 and pc0.5 for the case of complete seif-preservation of 

turbulence, d2=-0.6 and p=0.4 when S a i k m ' s  nivariance is assumed, and 11/2=-0.7 14 and 

p=0.286 when Loitsianslai's hvariance assurnecl. 

George (1992), m a re-analysis ofhomogeneous isonopic turbulence (based on a more general fonn 

of self-preservation theory using higher order momentum shdady), has show that the decay of 

the turbulent energy m Md-generated turbulence is, m part, continuously detennined by the initial 

conditions of the flow. No single univerd state of self-preservation can thus be obtained d e s s  

the grid Reynolds number is innnite at which point the fIow becomes independent of the a i a l  

conditions. George (1992) bas derived for this case of mnaite grid Reynolds number a theoretical 

upper k t  on the decay exponent as ri/2=-0.5 and also notes that there is some experimental 

evidence to suggest that id2 mcreases towards -0.5 as the grid Reynolds number mcreases. 

Excenent reviews of gxid-generated turbulence experiments are also @en in Hmze (1975) as weil 

as Roach (1987). Hmze (1975) aumnnrizes the experimental data by stating the range for the 

exponents as -0.675s~d2o-0.600 and 0.30sppr0.53 while Roach (1987) suggests ushg 



d2=-0.7 14 and ~ 0 . 5  as the average of the experimental data. 

The present study uses grids composed of a biplanar may of square bars &ce the location of the 

flow separation on the bar is not sensitive to the Reynolds number of the fiow as m the case of 

round rods A list of other grid-generated turbulence experiments ushg this same grid 

configuration is &en m Table 2.1 which simmpiires the workmg medium and the initial conditions 

of the experiments. The ha c o h  m the table &es the gxid Reynolds number which is defined 

as Re,=(l&/v where U, is the strePmwise mean velo* m the flow and v is the kinematic viscogty 

of the &iid In addition, for thk configuration, Fink (1977) and Johnson and Johnston ( 1989) have 

demonstrated that the flow behmd the grid is ~ o r m  and homogeneous m planes pardel to the 

II Comte-BeUot and 
Corrçin ( 1966) 

II Johnson and 
Johnston ( 1989) 

water 1 1.27 

Nakamura and 
Ohya (1983) 

Sato ( 195 1) 

air 1 2.5 

Sirivat and 
Warhaft ( 1983) 

Tan and Lmg 
(1963) 

water 1 1.88 

air 1 0.476 

Table 2.1: Summary o f  the geomdc and flow condmons for square bar grid experiments. 



grid after 40 bar widths downstream nom the grïb 

For square bar grïds, Roach (1987) suggests the following semi-empincai Ps to the turbulent 

mtensities: 

and to the integral length scales: 

The data nom the experiments iïsted m Table 2.1 and ecpations (2.15) and (2.16) wiU be used to 

check the validity of the present expehentai results for grid-generated turbulence in Chapter 4. 

The present study also proposes to use water as a workmg medium Table 2.1 oidicates that ody  

Tan and Lmg (1963) and Johnson and Johnston (1989) have previously used water, neither of 

which made comparisons to simiJar results obtained m wind tunnel experiments. Note, however, 

that the grid soliàity of Tan and Lmg (1963) is 0.6 and thus the resuits are not reliable due to the 

flow instabiüties introduced when ~ 0 . 5  (Roach, 1987). Cornparison of the air and water results, 

a i  a given grid Reynolds number, should thus mdicate simiiar characteristics for grid-generated 

turbulence. 

In addition, the grid Reynolds number range, excluding that of Tan and Ling (1963), varies fiom 

900 up to 16700. This may provide a sufEciently broad range to ver@ if the initial conditions of 

the flow, and thus the grid Reynolds nurnber, have a continuous effect on the downstream 

development of the turbulence as postuiated by George (1992). 



2.4 Analytical Models for Coflowing Jets 

In the field of pollution dispersion modekg, the average behaviour of jets and plumes can be 

descnied by knowledge of the trajectory and spread (see, for example, Slawson and Csanady, 

1967 and 197 1.) These two parameters descrie respectiveiy the mean path that the jet or plume 

foilows in the aiviroament and the degree of transverse dispersion or dilution about the mean path. 

The spread and trajectory are assumed to be average quantities which, if obtained by field 

measurements, would require meen minutes to an hour averaging time f ime  m the planetary 

boundaiy layer. 

if an isothermal jet m a d o r m  extemai cofiow is taken to be a simplined version of real 

environmental smiations then its mean behaviour should also be satisfactorily predicted by its 

trajectory and spread Smce the jet orientation is horizontal and since the jet fiuid is i s o t h e d  the 

mean path of the jet exhaushg mto the coflow is nniply the horizontal extension of the axis of the 

jet mode1 hto the extemal coflow. There can, however, be a significant decay m the streamwise 

mean velocity, LI, of the jet with distance downstreun. Thus, in order to esàmate the distance 

rraveiled by £luid elements within the jet, the mean velocity decay must be predicted. [n the 

atmosphere, this is commonly avoided by hvokmg the beritswr plume ~sszintptior~ whereby it is 

assumed that the mean velocity of the jet or plume is equal to that of the mean wind. In addition, 

the behaviour ofthe jet radius, i?, as a bction of the distance downstream is Plso required to give 

an estimate ofthe spread Fredicting the merm behaviour of an isothennal jet in an extemal coflow 

can thus be translated into predicting U q x )  and R=g(x). 

The axial mean velocky and the radius are both mean quantities which depend on the tubdence 

structure within the jet which, m tum, is responaile for entraining the slower extemal fluid at the 

edge of the jet. The slower entrained extemal fluid resdts m a decrease in the mean jet velocity 

and an increase m the jet radius. When the exîemai coflow is olso turbulent, the effect on the mea. 

velocity and radius of the jet wül be dependent on the interaction of the turbulence within the jet 

with tbat in the extemal coflow. Thus, in modekg the jet m an extemal coflow which is turbulent, 



both the mean quanthies and the turbulent statistics of the jet and the extemal coflow mua be 

considered- 

2.4.1 Similarity Considerations 

A jet m a cofiowhg extemal strem is representative of a developing flow since, dependmg on the 

downstream location, the behaviour of the jet fàlls somewhere between that of a jet in a quiescent 

auroundhg and that of small velocity excess jet smiilar to a s d  defect wake except opposite m 

sign As a re* the radial profiles of the mean velocity and turbulent velocities are dependent on 

both the radial position and the downsaearn location. 

Similarity theory suggens that for many flows the profiles of the mean and turbulent velocities 

maintain the same fùnctional fonn with ooly the radial length scale and scales of the velocities 

changhg with downaream distance (Townsend, 1976). For s i m k k y  to occur m a coflowing jet, 

the variation of  the streamwise mean velocity and the turbulent stresses must be of the f o m  

where q d b ,  b is a sale of radial length and is dependent on the velody profile assumed, U. is the 

constant velocity in the extemal coflow? Ùis some scde ofthe mean velocity? ü2 is a scale of the 

turbulent stresses andf, g,, , g, , and g,, are the hctions dehing the radiai distn'bution for the 

various variables. Note that b, 0, and U 2  are fundons ofx ody and that the turbulent stresses 

are ailowed to have a scde factor which is mdependent of the scale factor for the mean velocity. 

Typicdty, the next step is to mvestigate under what conditions, ifany, the amüanty distniutions 

&en by equation (2.17) satisfi/ the equations for the conse~ation of mass and x-momentum. The 



simplified conservation of mass equation is &en by (see Appendix A for a complete derivation 

mcludmg turbulence terms): 

which cm be sohed for the radial mean velocity, V,, to give: 

The simplined x-momentum equation is given by 

Substitutmg equation (2.17) into equation (2.19), and recalling that the partial derivatives wR1i 

respect to x and r can be converted to partial derivatives with respect to q using the chah d e  of 

derivatives to get: 

then the radial velocity will have the fonn of 

Substituting this expression for Y,. dong with the similanty expressions @en by equation (2.17) 

into equation (2.20), resuits m 



where primes denote differentiation with respect to q. The terms m the square brackets are 

fünctions of q only and the tans in the curiy brackets are fimctions of x only. Ifthe flow is to 

display amüarity, then the vahe of each term must be identical for al1 values of x and q. Since 

there is no term m curly brackets m the seventh term on the lett hand side, simüarity is only possiïle 

if the six other t e m  in curly brackets are ail constant. 

The sixth term in curly brackets on the lefi hand side therefore gives bwx and, as a consequence? 

the fourth term redts m ~l ,Ü/u '~ being a constant. C2 can then be replaced by II, Ü and the first 

and fifth terms then give: 

b d o  --- - constant 
0 dx 

while the second term gives: 

b do -- = constant 
Ue dx 

The above two conditions can only be satisfied if Ü is a constant which gives a zero vahe for the 

derivative. However, the remaining terms m square brackets in eqyation (2.23) can ody be 

satisfied if Ù=u, Thus the ody solution that can be obtained fiom the conservation of mass and 

x-momentum equation are for simhiîy distn'butions with scale fiictors of &II', ù2 = Ü', and bex. 



'Ihis descnbes the case of a jet wÏth an imtial velocity ratio of unity and does not, m general, reflect 

the true development of jet in a d o m  extemal coflow as observed m expehents. In fa* 

previous experimental saidies on jets with W velocity ratios greater than unity, mdicate that the 

scale factor that collapses the radial profiles of the mean velocity is the centerline excess mean 

velociry, LI,, which is deked as the difference between the mean velocity at the jet centerhe and 

that of the extemal coflow and, as  such, is a hct ion of distance downstream, It must therefore 

be concluded that complete mathematical mnilaricy for a jet m a d o m  coflow does not exh. 

Similarity theory, however, c a .  provide two usefiil asymptotic limits on the behaviour of CI, and 

R if the condition that CI' is a constant is relaxed and Pnowed to be a fùnction of x (HüI, 1965, 

Ne- 1967, and m e ,  1975). The similarity analysis (see Newrmn, 1967, for the complete 

analysis) then yields the condition that Ü/u, is a constant. The f%st asymptotic lMit is @en by 

a very strong jet in a comparatively weak extemal coflow where U'IUod. Under these condition. 

the expected development of the jet cortesponds to Uo=fl and R=x. This behaviour has been 

observed in jets issuing mto quiescent backgrounds (Hussem et al, 1994) as well as in coflowiBg 

jets close to the jet exit (Biringen, 1986). The second asymptotic Iimit is given by a very weak jet 

in a comparatively strong background flow where U, lU,p 1. Under these conditions, the eqected 

development of the jet becomes U0=xXm and R d ?  Lmiited experimental data exïsts for the 

verification of this ha1 stage asymptote since the condition that U, /Cl0)A is only realized far 

doumtream fiom the jet exit. Biringen (1986) and Nickels and Perry (1996) bave stated that their 

far field data appears to approach the above trends. 

1.4.2 integral Modeis for a Jet in a Nearly Laminar Coiïow 

Most analyticai models for a jet m a neady Irnimar (i.e. very low turbulence levels) coflow begin 

the mode1 development by assimmig partiPl simiMy m that the mean axial velocity profiles become 

self-simüar by a certain distance downstream fiom the jet exit. USng a cbaracteristic length (i- e. 

the jet velocity hplfwidth, L, , or the jet radius, R) and a characteristic mean velocity (Le. the 



centerline excess mean velocity, Wo, or the top-hat mean velocity, 0), the radial profile of the axial 

mean velociey can then be specined, for example, b y  

whereffq) is some universai hct ion.  This recasts the problem mto sohg for the characteristic 

length and v e l o e -  

An integral momentum equation is then dweloped ushg the conservation of mass and the 

stream- momentun equation dong with siniplifymg assumptions The resulting equation can 

then be used to determine the relationship between local vahies of II, and L, As a simple 

illustrathe exaq.de, take a high Reynolds nurnber Bow where Mscous effects can be ignored and 

in addition assume that the momentum contribution fiom any turbulence quantity is small m 

cornparison to the momentum contribution fiom the mean quantities. The resulting integral 

momentum equation for such a case is ( m e ,  1975): 

where Mo is the momentum integnl constant. 

As a bnef aside, the momentum integral constant can be used to define a useftl length scale 

commonly referred to as the momentum thichess m planar flows (see, for example, Tennekes and 

Lumley, 1972). The momentum thickness is the length scde that compares the excess momennim 

flux of the jet to that ofthe background flow by eqyting Mo to an equivalent momentum flux usiug 

the external mean velocity, U, and a radsis, 8, such that: 



To keep the physicd sisnificance of 8 as clear as possiile, it wiîi be referred to as a momentum 

radius rathm than a thickness Since 0 defines a length scale waich is characteristic of a particdar 

combmation ofa jet and an extemal flow, it can be used as a normalimig lmgth sale m order to 

compare results fkom daferent experiments. 

ïhe mtegnl momentum equation, given by equation (2.27), is used for illustration purposes ody 

mice the assumptions used m the development exclude any effects of turbulence, both within the 

jet and within the extemal cofIow. Substitutmg the velocity profile assumption, equation (2.26), 

into equation (2.27) @es: 

If the streamwise mean velocity profiles are ~e~preserving, and providmg that f (q) is kno- 

equation (2.29) can be mtegrated fiom the centerline to the edge of the jet to yield an equation 

relating local values of U, and L, 

An additional equation, however, is required to determine the Gai variation of tbe mean velocity 

scale and the scale of jet spread. Several methods, detaiied in the fiterature, have been used to 

obtam this second equation and are b n e y  outhed below. 

Che of the tirst techniques, introduced by Squire and Trouucer (1944), uses a second momentun 

mtegral waluated îrom the centerhe to the jet velocity halfwidth, L,. Evaiuation of this second 

integral requires an estimate of the shear stress, r, at r=L, Squire and Trouncer (1944) used 

Randtl's mking length theory to approximate the shear stress as: 



and is the phenomenological turbulent eddy Mscositysity In additioq they assumed that the ruking 

length, 1, was always a constant proportion of the width of the flow. This effectively results m 

VFU, L, (Hill, 1965) and the turbulent Reynolds number, defined by: 

becomes a constant throughout the flow. This is physicaiiy unrealistic for a jet m a coflow suice 

the turbulent Reynolds number should decrease with increasing distance (Antonia and Bilger, 

1974). Forstail and Shapùo (1950) have shown that the method of Squire and Trouncer (1944) 

does predict the general order of magnitude of Uo and L, but presents a false picture of the way in 

wkch they v q  with the streamwise distance. 

A second method for obtaining a second equation mvolves multiplying the momentum equation 

by U* r" where m and ri are integers. Hill (1965) used ni=O and r2=2 to obtain a moment-of- 

momentum equation. The set of equations can be sobed for x and R as fùnctions of the mean 

velocity ratio to ghe: 



where 0 is the momentum thickness. AU the constants in the solutions are evaluated based on 

eqerirnental data for jets issuing mto a quiescent background (Le. a very strong jet). Hin (1965) 

found that his solution adequately predicted experimental data for a jet in a coflow provided 

LrM1 but a3ed in predictmg data den the jet degenerated mto a weak jet. Since the constants 

m the equation are determined fkom data for a jet m a quiescent background, its not qrising to 

see good agreement with data fkom strong jets. One advantage of this solution over the double 

integral method is that it û independent of any phenomenological turbulence theories such as eddy 

viscosities and mixing lengths. 

In addition to a moment-of-momentum equation, Hill ( 1965) suggests an energy mtegral equation 

where nz=l and r ~ 0 .  No solution, however, is presented for this case. It should be noted that the 

choice of ni and 12 in this method is somewhat arbitrary since ifthe exact solution is h o w n  it would 

satisfy any of the higtier moment equations. 

7 4-23 The Eliergy Eqtiatrio,~ wirh a Shear Stress Model 

Fink ( 1977) uses the energy equation to obtain the second equation relating the local radial length 

scale and mean v e l o w  scaie. In ushg the energy equation, however, a Reynolds shear stress term 

emerges which mua be modelled. Fink (1977) uses a turbulent eddy viscosity mode1 so that: 

where: 

v*=  Ci 0 ue 

and c, is an entrainment constant and 8 is the momentum radius. 

F i  ( 1977) appears to obtain good agreement between experimental data and the predicted values 



for the decay ofthe mean velocitycity No cornparison, however, is made for the radial spread of the 

jet men though the spread and the mean velocity decay are coupled through the integral momentum 

equation. One serious 8aw of the above mode1 Û that it relies on the radial gradient of the 

streamwise mean velocity which becornes zero at the jet centerline and at the edge of the jet. 

A founh rnethod for obtaining the second equation mvolves using Townsend's hypothesis of large 

eddy equilibrium. This hypothesis assumes that the largest eddies of the turbulent shear flow are 

in approximate energy equüibrium throughout a signincant part of their existence. This leads to 

a relationship between the mean rate of shear strain and the Reynolds shear stress which mvolves 

the scales of the largest eddies (Gartshore, 1966). In this method the turbulent Reynolds number. 

Re, is aiIowed to Vary with distance downstream m a paaicular flow as well as fkom one flow to 

another with the variation related to (aU/&)/(aU/ilr) at r=L,. A double integral technique simüar 

to Squire and Trouncer(l944) is also employed. The resulting set of equations is sohred 

numerically ushg a Runge-Kutta scheme and requires the mput of two empirical constants 

(Ne- 1967). In spite of the added sophistication and the additional assumptions regardhg the 

large eddy equilibrium hypothesis, the method does not show good agreement with experimental 

data (Patel 197 1). 

The use of a u x i b y  growth equations stems &om the assumption that the spatiai rate of growth of 

a mixing layer is dependent on the level of turbulence withh the rnixing layer which, in tum, is 

dependent on the mean velocity. Newman (1967), m an analogy to a derivation of Abramovich 

( 1963) for mixing layers m constant pressure, proposes an aiu0liary equation for plane jets in an 

extemal coflow of the form: 



This auxiliary equation is identical to that proposed by Townsend (1976) who arrived at it nom 

c o n s i d e ~ g  the entrainment hto  the shear flows and termed c, the entrainn~ent COILS~UH~.  Patel 

( 197 1 ), however, has &own that this awcüiary eqyation corresponds to an approximately constant 

eddy viscosity Reynolds number. To d o w  for variation in the turbulent Reynolds number, Patel 

( 197 1) has suggested an a d a r y  equation of the forni: 

Although there is only slight qualitative differences m the auxihry equations, equation (2.36) does 

szive the correct values for the turbulent Reynolds number for a strong plane jet and a weak plane 
C 

jet. Antonia and Büger (1974) have extended the method of Patel(L971) to an axkymmetric jet. 

lüe au* equation has the same form as equation (2.36) although the value of the constant c2 

is chosen to saasfi/ the growth rate of a strong axisymmetric coflowing jet. Antonia and Bilger 

( 1974) have conciuded that this method of using an auxilïary equation is s~tisfaaory when II, lu, 
is miall but is not acceptable when UJU, is large since the Îufiuence of the initial conditions is not 

destroyed. 

2 - 4 7  6 Etitrai1~1zertt Hypothesis 

The use of an entrainment hypothesis, ahhough quite nmilar to the awOliary growth equation 

technique, onginates in the field of air poilution dispersion modelling (see, for examples, Morton 

et ai, 1956, and Slawson and Csanady, 1967 and 1971) and is still comrnonly employed in 

atmospheric mtegral models The metbod assumes that the radial mtlow velocity at the edge of the 

jet is the result of entraiment of ambient fluid due to the action of turbulence. The turbulent 



velocities respodle  for the entrainment of ambient fiuid are assumed to be proportional to some 

mean velocity or mean velody dî5érence w i t h  the jet. The entrainment hypothesis is usuaiiy 

contained within the continuity equation which can be r e m e n  in the fonn- 

where ï, is the entrainment velocity. Typically, the mean velocity withsi the jet is assumed to have 

a top-hat distniuîïon nich that when Orrd,  U=n and when rzR, U=U,. The Bitegral in equation 

(2.37) can then be evaiuated to gTve: 

The entrainment hypothesis is then contained withtn the entraniment velocity. Morton ( 196 1) and 

Maczynski (1962) have both suggested that vc=a(Ü-LI,) where cr is the entrainment constant. 

Macry~ski (1962) has shown however that, @en the above entrainment hypothesis, a cannot 

remain a constant but mua mcrease between the iuitial region of the jet and the region far 

downsaeam ofthe exit. Mactynski (1962) States the reason for this is that in the initial region the 

jet velocity is large and may iuhibit mbing while fàrther downstream, the jet velocity decreases and 

the flow is more iike that of a wake which is hiown to have a greater vaiue of a than a jet issuhg 

into a quiescent background. 

Van Heyst ( 1 992) has proposed that vC=aff which @es a closed fonn analytical solution of R a  

and &x-' which is the asymptotic limit for a strong jet m a weak coflow. As migbt be expected, 

t h  entrainment hypothesis satisfactorily predicts the flow near the jet but f;lils to yield the correct 

asymptotic limit fàr downstream where the jet has degenerated into a very weak jet. 



Antorïia and Bilger ( 1974) have applied a two parameter turbulence mode1 developed by Rodi and 

Spaldmg (1970) and Spaldhg (1971). In the turbulence model the nubulent kinetic energy and 

a turbulence length scale are determined Eom the differential transport equations for these 

quantities. There is however no physicai basis for the diflierential equation for the turbulence Iength 

scaie which is derived by analogy to the turbulent kinetic energy equation. The method &es good 

predictions for the mean velocity decay and for the çpread of the jet while giving adequate 

predictions of the turbulent velocities and the Reynolds stress for values of CI,l(I, as low as three. 

The apparent success of the model is diminished, however, by the non-physical nature of the 

turbulence length sale equation, by the uncertainty m deteminhg some of the constants to be used 

in the equations, and by the possible dependency that these constants have on flow parameters. 

Nickels and Perry (1996) have used coherent structures <O model a coflowing jet in which they 

assume that the flow is domhated by double-roiler eddies wtiich are inclined to the streamwise 

direction. The characteristic velocity of the coherent structures is proportional to the centerline 

escess mean velocity and the characteristic length scale is proportional to the radius. Nickels and 

Perry ( 1996) try many dEerent eddy shapes but choose the one that &es the correct Reynolds 

stress ratios and reasonabiy good shapes for the spectra. The model shows reasonable agreement 

between the predicted values aiid experimental data for the Reynolds stresses and mean velocities 

but only fair agreement between turbulent energy spectra. The authors consider the chosen eddy 

sbape a "fkt aab" which @es resuhs which are fàbly consistent with the data, but admit that other 

posnile shapes dl need to be explored. 

2.4.3 Models Including the Effects of  External Turbulence 

Slawson and Csanady (1967 and 1971) have proposed a zone model where a turbulent jet or plume 

undergoes three distinct phases of growth. In the initiai phase, the sesgenerated turbulence within 



the plume or jet dominates the mïxhg and the growth. As distance fiom the source is increased 

an mtermediate phase is entered where the extemai turbulence m the mettial subrange dominates 

the mixing. The h a 1  phase is entered when the mkbg becomes dominated by the energy 

containing eddies wiihin the extenial flow. The existence of three distinct phases is a considerable 

simpüfication since m reality there is likely to be signincant overlap m growth mechaaisms between 

the phases. Slawson and Csanady (1971) have mcorporated the entraitment of external fluid into 

the jet or plume that is the result of the extemai turbulence by using an entrainment hypothesis 

wliich is dependent on the growth phase of the jet or phune. In the intermediate phase, Slawson 

and Csanady ( 1971) have proposed that v,=$dDRU) and in the final phase, v,=yvL/R where P and 

y are entrainment constants for each phase, E is the rate of energy dissipation per unit mas, R is 

the jet or phune radius, v is a turbulent root-mean-square velocity m the extema. coflow. and L is 

the len_& scale of the energy containmg eddies m the external coflow. 

Fink ( 1977) uses the zone model proposed by Slawson and Csanady (1971) but uses an eddy 

viscosity model to represent the self-generated W s i o n  of the jet and the added dBbsi0~1 caused 

by the turbulence in the extemal coflow rather than an entraniment hypothesis. The added eddy 

viscosity that is due to the effects of the external turbulence, v,, are modelled by v,,=O for the 

initial zone, and by v , , = ~ " ( L , ) ~  for the intermediate zone. F i  (1977) did not include a h a 1  

phase portion in his modeL For a turbulent external flow, the added eddy viscosity due to the 

external turbulence is linearly summed with that due to the jet m equation (2.34). Fmk ( 1977) 

concludes, however, that the overali enhanced a d  development of a jet m a turbulent coflow is 

poorly predicted by assuming a constant total eddy M'rosi@ composed of a self-generated pan and 

a supplement which is only inmienced by the characteristics of the eddies m the mertial subrange 

of the extemal coflow. 

Scahtmiann (1979), in developmg an mtegral model for plume rise, d o w s  the entrainment velocity 

to have several te=, each refiective of a specific entrainment mechanisrn This d o w s  for some 

overlapping between the various phases of plume and jet growth. The term which models the 

atmospheric phase has the same fom as that proposed by Slawson and Csanady ( 197 1) for the final 



phase. However, due to lack ofexperimental data on jets and phunes m extemai turbulence fields. 

the value of the constant is le@ undetermined. 

Wright ( 1994), m order to account for the effects of extenul turbulence generated by a bed of 

eravel on a coflowing jet, also uses an entrainment velocity hc t ion  simüar to the h a 1  phase of 
C 

Slawson and Csanady ( 197 1) but sets the characteristic turbulent velocity equal to the wail shear 

stress velocity at the grave1 beb A linear summation for the lamhar and turbulent entrainment 

fuoctions is also used. Wright (1994) obtains fair agreement to the radial spread of the jet but 

makes no cornparison with the mean velocity decay. 

2.4.4 Current Integral Mode1 

To predict the behaviour of the mean velocity and the jet radius as a fimction of downstream 

distance, the m e n t  integral model, to be developed in Chapter 6, wül use the entrainment velocity 

approach for the additional equation needed to relate the streamwise development of the mean 

velocity and the spread of the jet. This choice is based, in part, on the faa  that the entrainment 

velocRy has a physicany based meaning and that it is used m e*g environmental integral models. 

In addition, it can easily be modified to account for the effects of extenial turbulence as 

demonstrated by Slawson and Csanady ( 1967 and 197 1). 

2.5 Coflowing Jet Experiments 

One of the e s t  experimental mvestigations into cofiowing jets is that of Squite and Trouncer 

( 1944) who used the coflowing configuration as an extension to the problem of a jet issuhg into 

quiescent background. Smce then, there have been a number of experimentd studies regarding 

coflowing jets. The ones most relevant to the present study have th& initiai conditions Summarized 

m Table 2.2. The table presents the type ofjet use& the working fluid, the measurement technique 
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employed as weli as the specific diameter of the jet model d,, the average mean velocity at the jet 

exit, LI,, the extemal mean velocity, CI,, and the initiai velocity ratio, PR The last coluimi mdicates 

whether or not a turbulent extemal coflow was also considered. 

Note that only Van Heyst (1992) and Fmk (1977) have employed a turbulent extemal flow and that, 

m both cases, this was achieved uiag oniy one turbulence generating grid In each of these studies 

it was conciuded that the presence of turbulence m the extemal flow caused the mean velocities m 

the jet to decrease more rapidly and the jet characteristic widths to mcrease more rapidly over the 

case of a jet in a nearly laminar extemal flow. In addition, an increase m the magnitude of the 

strearmivise turbulent velocities and an mcrease in the magnitude of the streamwise mtegral length 

scales were also obsewed in the jet when the extemai flow was turbulent. 

Fink ( 1977) has pointed out that turbulent h g  processes mteract most effectively when the 

characteristic scales of turbulence are on the same order of mapitude. One shortcorning of both 

the experiments ofVan Heyst (1992) and Fmk (1977) is that only one turbulence generating grid 

is employed which Iimits the extemal turbulence to a single characteristic length scale and a single 

characteristic velocity scale, both of which evoive with downstream distance. In addition, both Van 

Heyst (1992) and Fmk (1977) use only one jet diameter, although Fmk (1977) uses three differeot 

initial jet velocities. Thus the characteristic scales of turbulence in the jet, especially the 

characteristic length scale, are ümited m range m these experiments. To expand the range of 

characteristic turbulence scaies in the experiments, multiple gnds having difEerent bar widths and 

multiple jet models havhg different jet diameters as well as severai initial jet velocities should be 

used. This would result m expeximental data that covers a range of characteristic turbulence scales 

both within the jet and m the extemai fiow which would better elucidate the mechanimis mvohed 

in two interacting turbulent flow fields. 



2.6 Research Objectives 

Upon review of the relevant background and literature, the primary objectives of the current 

research can b e  restated as: 

1. To acquire a new data base fur turbulent isothermal jets released into unifom turbulent 

exîemal coflows that incorporates a range of characteristic turbulent scales both within 

the jet and the extemal coflow. 

2. To develop a new entrainment velocity hction, to be incorporated into an integral 

modei, that accounts for the interaction of the cofiowhg jet with the turbulent extemal 

coflow by deteminhg the correct length and velocity scales that dominate the diffiision 

process as the jet evolves downstream 

with the secondary objectives being: 

1. To determine if the initial conditions of the grid, especially the grid Reynolds number, 

have a continuous effect on the behaviour of grid-generated turbulence at finite grid 

Reynolds numbers as suggested by George (1992). 

2. To mvestigate and perhaps determine the appropriate scaiing for the mean and turbulent 

velocities in the coflowing jet. 



Chapter 3 : Experimental Apparatus, Methods, 

and Uncertainty 

3.1 Introduction 

This chapter provides a brief diswson and overview of the equipment used to obtain experimental 

data for both the grid-generated turbulence investigation and the coflowing jet experiments. 

Attention is focused on the water flume test faciiity, the turbulence generating g d s ,  the coflowing 

jet modeis, and the laser Doppler anemometer (LDA) system 'Ibis is foiIowed by a discussion of 

the experimental methodology ernployed to obtain accurate results and the level of experimental 

uncertamty contained within the reailts. 

3.2 Experimental Apparatus 

The principal components of the experimental apparatus are of the water Bume facility, the 



turbulence genenting Mds, and the coflowing jet modeis which will be diçcussed m detd m this 

section. The details of the laser Doppler anemometry (LDA) system and the travershg ngs used 

to Iocate the LDA are lefk to the next section for discussion. 

The schematic @en m Figure 3.1 illustrates the test section of the water h e  and the relative 

placement of the turbulence generatmg grids and the coflowing jet models with respect to each 

other and with respect to the fiee surface and floor of the fiurne. 

3.2.1 Water Hume 

AU the eqeriments were conducted m the water flume test fàcility located m the Fiuid Mechanics 

Laboratory at the Uaiversity of Waterloo. The closed-loop water flume is 12.2 m long wah a cross 

section of 1.2 m wide by 0.8 m nominal operatmg depth. This large cross sectional area provides 

Water Flume Floor 

Figure 3.1: Schematic of the test section of the water flume with a jet mode1 and a 
turbulence generating grid msialled. 



a central working core fkee fiom fiee-nufiice effects as weiî as blockage effects due to boundary 

iayer development on the floor and side& Plexiglass sidewalls, spanning the entire test section, 

facilitate the use of a laser Doppler memorneter (LDA). 

The water supply for the h m e  onginates m a 90 m3 norage sump located beneath the pump room 

in the Fluid Mechanics Laboratory. The water is pumped fiom the sump to a 24 m3 constant 

v o h e  head tank, equipped with an oversjdI weir, located directly above the pump room. From 

the head tank, the water passes through a control valve and into a cylindrical head tank located at 

the start of the fime after which the water enters the chamel portion of the water flume. 

A series of bafnes, screens and a honeycomb located m the fint two metres of the water flume 

effectively reduce aiI scales of turbulence which results in a very Iow turbulent flow. A restriction 

plate. located at the end of the water flume, provides sdlicient regstance for the fiow to obtain a 

nearly uniform mean velocity profile in the test section 

Ouce the water passes through the restriction plate at the end of the flume, it retums to the storage 

sump via a trench located below the water flume facility. 

3.2.2 Turbulence Geaerating Grids 

The turbulent energy in the water flume is increased by inserting one of two Mereut turbulence 

generating grids upstream fiom the test section. Each grid is composed of a biplanar array of 

square aluminum bars with bar widths of b,= 1.27 cm and b*. 54 cm and mesh sp acings of Ms=5. OS 

cm and MF 10.16 cm where the subsaipts s and 1 refer to the snrll and large gxid respectntely. The 

grid soIidity for both gids is ~ 0 . 4 4 .  The grid Reynolds numbers, based on the bar width and the 

mean velocity, are R e p 9 0 0  and Re,,= 1800. Square bars were used for the construction of the 

gids due to their insensitMty to Reynolds number variation since the location of flow sepration 

is fked for a square bar (Comte-Bellot and Comin, 1966). This is not the case for round rods 
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where the location of flow separation is strongly dependent on the Reynolds number of the flow. 

The location of the gids upstream fiom the jet exit is set at 48 bar widths to ensure that the 

turbulence generated by the grïds is approximately homogeneous (see, for example, Johnson and 

Johnston, 1989) m planes paralle1 to the grid by the location of the jet exit. 

3.2.3 Coflowing Jet Models 

Two coflowing jet models have been designed and consmicted out of plexiglass tubmg with huer 

diameters of 0,953 cm and 2.223 cm and a wail thickness of O. 159 cm Both models are 1.3 metres 

in length and couid be suspended in the water flume by two sets of t h  wires with one set being 

located at the upstream start ofthe model and the other being located 30 cm upstream fiom the jet 

exit. Each set of moimtmg wires consists of four wires that are attached to the jet models at a 45 O 

angle 60m the principal coordinate axes so that the wakes generated by the wkes did not interfere 

with the jet in the measurement planes. This moimting configuration allows the jet to be aligned 

accurately with the flow and ensures that the jet is held ngidly in place. 

To d u c e  flow separation around the jet exit due to the thichess of the plexigiass tube wail, the 

end ofthe models have been machmed to produce a gradual taper to the exit. The boundary layer 

thichess along the jet models is estimated to be between 7 and 10 mm thick based on velocity 

traverses taken 2 mm down fiom the jet exit. nie thickness of the boundaiy on the jet models does 

not appear to be dramaticaiiy affected by the levels of turbulence m the extemai flow and thus ail 

experimentai nuis using the same jet model have approxmiately the same iuitial conditions at the 

jet exit. 

For the d jet wah an approximate initial velocity ratio (VR) of 3, the jet Reynolds number, based 

on the average mean velocity at the jet exit and the jet model diorneter, is approximateiy 2000. To 

guar;mtee that the flow leaving this jet is turbulent, smali screens had to be inserted mto the model 



tube upstream of the jet exit. The jet Reynolds number for the other experimental nms are on the 

order of 4000 or greater which is large enough to ensure the Bow leaving the pipe is turbulent 

(Munson et ai, 1990). 

The water flow to the jet mode1 is regulated ushg a cahbrated flow meter and is set by the desired 

initial jet velocity ratio so that the fîow rate leaving the jet model, dMded by the modei's cross- 

sectionai area, @es an average velocity eqyd to the initiai velocity ratio times the extemal mean 

velo city. 

3.3 Velocity Measuring System 

The primary component used to measure the bantaneous velocities m the water Bume is the laser 

Doppler anemometry (LDA) system The LDA employed m the current study is set up as a two- 
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Figure 3.2: Schematic of the LDA system operating m foward scatter mode. 



component two-colour forward scatter systern as ilhisnated by the dematic m Figure 3.2. The 

system consists of an argon-ion laser, two-component modular optics, a photomultiplier (PM), an 

electronic fiequency &ifter, couuters, an oscüloscope, and a data acquisition computer. The other 

major component of the meaauing system is the avershg ngs on which the LDA system and the 

PM are mounted 

3.3.1 Laser Doppler Anemometry (LDA) System 

The Ion Laser Technology (KT) mode1 SSOOA laser is an air-cooled coherent light source capable 

of generating laser light in the 457 nm to 5 14.5 nm regime of the electromagnetic spectnim The 

operating output power ofthe unit cm be adjusted fiom 10 mW to 500 mW. Typical laser power 

in the experiments ranged between 200 mW and 300 mW as dictated by the quality of the signal 

being received at the PM eom the control volume (CV). 

The Dantec 55X modula. optics are assembled mto a two-component, two-colour forward scatter 

system ' E s  optical arrangement allows for the simultaneous meanirements of the stxeamwise and 

transverse innantaneous velocities in the control volume and has a better signal-to-noise ratio then 

the same system operating m back scatter mode. 

Upon entering the LDA optics, the cyan laser beam is split mto two beams of equal intensity by a 

neutral beam splitter. One of the beams then passes through a Bragg ceil which, in conjunction 

with the fiequency Mer, optidy M s  the fiequency of the laser beam by +40 MHZ. The other 

beam passes through a glass rod to equalize the optical Iengths of the beams. Both beams then 

proceed through a senes of beam splitters which split the cyan beams mto a blue beam at 488 nm 

and a gieen beam at 5 14.5 nm Ali four beams then pass through a beam translater which allows 

the beams to leave the optics at a specified separation. Fmdy, the beams pass through a beam 

expander and a 600 mm focusing leos before leaving the module. 



Mer Ieaving the LDA optics, the laser beams pass through the plexighss Sde wall of the water 

flme and intersect each other in the flow field to form a control vohme. The beams continue to 

pass through the water and out the opposite side walI where they are blocked for s a f i  reasons- 

When two laser benms with the same fiepuency mtersect each other, a stationary interference 

pattern of mtengty f i g e s  result. In highiy turbulent flows and m revershg flows, this stationary 

interference pattern does not allow the LDA system to distinguish the flow direction and thus 

negative bias mors are mtroduced mto the velocïty data. However, when a fiequency sh .ed  beam 

and an unshifted beam intersect, the çame interference pattern is produced ody the fimges are no 

longer aationary but move with a known velocity- Thus in flows 6 t h  near zero mean velocities 

or reversing velocities, shiftmg one beam enables a paralle1 transformation to be performed m the 

f?eqyency domain that SWS the zero velocity away fiom the zero fiequency, m a h g  it possible to 

determine the flow direction &out introducing errors. 

When the natural hydrosol or particles present m the water pass through the control volume, they 

scatter iight from the blue and green beams' interfierence patterns. The photomuitiplier (PM), 

located on the opposite side of the water flume, is focused on the control volume and deteas the 

Doppler shift m the scattered light. The PM converts this optical velocity Somation to an 

electronic output which is sent to the two LDA counters for processbg. 

The output fkom the PM is a voltage with a fiequency that is proportional to the velocity of the 

flow. The signal that corresponds to each particle passing through the control volume is termed 

a Doppler burst. The Dantec 55L90a LDA counters, operathg in con.ct ion with the 5SN10 

fi-equency Mer ,  are used to h d  the fiecpency of these bursts and thus the velocity of the particle 

by determniing the time t takes the particle to travel over eight &kges. The LDA counters also 

provide advanced data validation techniques as weli as high-pass and low-pass filters to remove 

unwanted noise from the signai. 

An analog fiequency indication of the Doppler burst signal cm be monitored using an oscilloscope 



comected to the LDA counters- Simuttaneously, a digital output is sent to a 286 personal 

computer where on-line velocity statinics are computed and where the raw data is axchived in 

ASCII format for later processing. 

In aU the experiments, the sampling fiequency of the LDA system is set at 250 Hz with 40960 

paired mstantaneous velocity measurements being collected at each position 

3.3.2 Traversing Rigs 

A traversing ng for the laser and modular optics has beai designed and built m-house to aiîow the 

conml volume of the LDA system to be positioned anywhere withm the test section of the water 

flume. The traversing rig has duee mutually perpendiculv axes which are aiI controlled by stepper 

motors where each step of the motor corresponds to a displacement of 6-35 pm (400 seps per 

revolution). 'Ihe entire traversing ng is mounted on a sturdy steel table positioned on the concrete 

floor of the laboratory. The concrete fioor is 0.91 metres thick and effectively isolates the 

traversing rig fkom any structural vibrations occurring m the laboratory. 

A second traversing rig is used to move the P M  located on the oppogte side of the flume, in senes 

with the laser and opticr The PM traversing rig consists of two mutually perpendicular axes m the 

streamwke and vertical directions. Travershg m these two directions is accomplished using stepper 

motors m a similar manner as that ofthe LDA traversing ng. Smce the PM contains a focushg ring 

to adjua for the lateral or cross stream position ofthe contrd vohxne, no traversbg axis is required 

in this direction. 

AU stepper motors are wired to their respective drivers and power supplies which are controlled 

b y the main data acquisition computer via the p d e l  phter port. 



33.3 Noise Limitations of the LDA System 

Although LDA systems offer many advantages, such as theù non-mtrusive measuring technique, 

there can be disactvantages associateci wiih them as weii Besides the bithi cost of the system, one 

diçadvantage present in the current system, when opaotmg m a sample-and-hold processing mode, 

is the introduction of random or white noise into the signal due to the random steps thrt occur at 

the &al of new simples m the control vohime (Adrian and Yao, 1987). In addition, the sampie- 

and-hold process also tends to low-pass fiiter the combination of the tnie signal spectnun and the 

noise spectrum at a fiequency that can be d e t d e d  by the mean data rate. This low-pass flte&g 

is attributed to the 10% ofinformation that occurs over the 'hold' penods (Adrian and Yao, 1987). 

As a resuh, measured data m low turbulent intensity fiows can have their true spectra swamped by 

a noise spectnun at high freqwncies. 

ûne method of extractmg the tme specmun from the noise-contaminated measured spectrum is to 

run the measured times series data through a Savitzky-Golay or least-squares filter program The 

Uter program assumes that the tme variable is slowly varying over the measurement interval and 

that it is corrupted by random noise. Each data pomt is then replaced by a local average of the 

surroundhg data points. Smce nearby data points vev aearly measure the same underlying value, 

averaging can reduce the level of noise without biashg the vahe obtained 

Appendix B gives the complete details ofthe noise encmtered m the present low turbulent energy 

flows as well as the filtering techniques used to compensate for the noise contamination. 

3.4 Experimental Methodology and Uncertainty 

Uncertainty m measurements is due to two bdamental and distinct types of errors. The fïrst type 

are raadom or precision errors, S, which represent the scatter about the average value and are 

wially the result of the chuacteristics of the measuring system as weU as changes in the quantity 



behg rneasured Recision mors  can be quantified by using known statistical methods (see 

Appendix C). The second type of mors  are fixed or bias mors, B, and show up m measurements 

as a disphcement between the average masurecl vaiue and the average mie vahie. Unlike precision 

errors, bias erroa must be estimated since no simple statisticai method e d s  to quant@ them 

The total uncertabty, 6, m a measured remit is the combination of the precison errors and bias 

errors. The method used to combine the mors is the root-sum-square (RSS) method which is 

&&en by: 

where the Student t multiplier is a function of the degrees of fieedom used in calculatmg S. This 

method of error combination r e d t s  in a 95% confidence interval on the total uncertahty. Full 

details of an uncertamty analysis, mcludmg error propagation mto reported resdts, is &en m 

Appendix C. 

3.4.1 Grid-Generated Turbulence Experiments 

To a i w e  that accurate measurements m grid-generated turbulence are obtained, six independent 

time series consisting of 40960 instantaneous paired velocity samples are acquired at each 

downstream location. The processed mean velocities turbulent velocgies, integral length scales, 

and energy spectra, &en in Chapter 4, are thus the average of  the six time series The advantage 

of takuig six measurements at a single location is that it effectively reduces the precision error by 

a factor of 1/6=0.408. The uncenahty associated with these measurements is summarized m 

Table 3.1 Note that the effect of  t h g  six measurements is felt strongest in the power spectral 

density fùnctions where the precision m o r  is reduced fiom near 16% to a p p r o h t e l y  6.5%. 



power spectrai density &O. 1580/a-+Al0645 *0.0200 k0.13 1 
fùnctions; EJk) & EJk) 

Component 

mea. velocky, CI, 

Table 3.1 : Summary of the normalized precision, bias, and total errors for a 95% confidence 
interval in the measured Md-generated turbulence quantitier 

3.42 The Momentum Entegral and the Coflowing Jet Experiments 

Precision Enor, S 

*0.002/J6=~0.0008 

For a jet in a coflowing extemal Stream, one method available to determine the accuracy of the 

measurements is the momennim integral. This integral is a phygcal constraint for the flow in that 

the momennim added to the flow at the jet origh must be conserved across the jet at any 

downstream location. The momentwn mtegral, M, ais0 referred to as the excess jet momennim 

flux, is defhed by: 

Bias Enor, B 

k0.0 179 

1 r dr = constant 

Total Error, b,, 

*0.018 

wliere p is the fluid den*, R is the radius of the jet, U is the totd mem velocity withh the jet, Ut 
7 is the extemal coflow mean velody, and vf, and v + are the square of the streamwise, radiai, 

and azimuthal components of the twbulent velocity. The derivation of equation (3.2) is &en in 

Appendk A 



The momentum mtegrai, which is essentiaüy an initiai condition for the flow, provides a usefiil 

quantitative check for the m e a d  velocity profles since, m theory, it should be constant in the 

streamwise flow direction. However, m order to q i y  the momentwn mtegrai as dehed by 

equation (3.2) to the present data, some simplification is necessary. 

3-4-21 Approxinutto~z to the Monre~zturn Iiztegrail 

Smce it is asnuned that the jet is axisymmetric in the (r, 4) plane (Le. no variation relative to +), 

a measurement traverse dong the centerhe of the jet in a plane of symmetry is d c i e n t  to 

evaluate all temis m the momentum mtegraL Due to the physical ümitations of the laser Doppler 

anemometer (LDA), however, ody two velocity cornponents can be resoived at any one tirne (one 

of which must be the srreamwise component) and thus an assumption must be made about the third 

in order to wahate the mtegd  Based on the symmetry of the jet, two possibilities exist for a 

centerline traverse: either a vertical traverse at the lateral centre which yields streamwise and radial 

results or a hoiizontal traverse at the vedcal centre which yields streamwise and azimutha1 resuits. 

Figure 3.3 graphicaily ülustrates the two traversmg options. Since the primary interen of the 

current research is the turbulent entrainment of extemai fluid across the jet boundary, the velocities 

of  prima^^ interest are those that m s s  the jet boundary which are the radial velocities. The logical 

option for traversing is therefore the vertical traverse since it yields strearnwise velocities and the 

desired radiai velocities. 

In order to evaluate the momentum mtegral as &en m equation (3.2), an assumption regarding the 
7 behaviour of v i must fist be poshilated. Idedy this generai assumption would relate 5 back 

7-7 to either u - or v . so that equation (3.2) can be simplified with no new te= bemg mtroduced. 

7 To determine the general behaviour of v *, a set of preliminary experïments have been conducted 

that entail measurement traverses in both the veitical and horizontai planes of symmetry for the 

small jet at a downstream location of 5 4 0 . 2  cm with I/R=3 and 6 and m the absence of any 



Figure 3.3: Illustration of the two traversing options available for LDA 
measurements on the jet centerline in the (r, 4) plane. 

turbulence generating grids. It is found that, for a given initial velocity ratio, the mean velocity 

profiles exhibit the same profile shape, both in width and maximum velocity, when compared to 

each other thus substantiating the assumption of aWymmetry m the (r, 4) p h e .  The turbulent 

velocity results are presented in Figures 3.4 and 3.5 for C?Z = 3 and 6 respectively. Note that the 

axes m both plots have not been normalized so that an estimate of the reiative variation between 

the two travershg options can be obtained fiom the streamwise turbulent velocity component. 
7% Although there is some minor variation in the (u ) profiles between the dEerent traversing 

options, they essentiaily have the same profile shape m magnitude and in width, waich again 

confirms the assunption of aWymmetry in the (r, 4) plane. The remahhg data on Figures 3.4 and 

3.5 consists of (7)" measured m the verticai traverse and (q)% measured m the horizontal 

traverse. These profiles show good agreement with each other both m shape and in magnmide. 
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Figure 3.4: Turbulent velocity pronles for the s d  jet at VR = 3 and 

x,=40.2 cm 
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Figure 3 -5: Turbulent velocity profiles for the d jet a VR = 6 and 
x, = 40.2 c m  



7% It win thus be genefany assumed that (q)% can be approxbted by( v ,. ) , at least to withm the 

relative variation as demonstrated by the streamwise components. This assumption is also 

supponed by the radial and azimuthai turbulent velocity data of BUmgen (1986) for a jet m a 

Iaminar coflow. 

The momentum mtegral cm thus be a p p r o h t e d  by 

without Uraoduciug signXcant error. 

3-4-22  The Moniettcrm Ititegrat and the Euperinzet~tut Data 

Using equation ( 3 . 9 ,  the degree of consemation of initial momentum was checked at  each 

traversing location for each of the twebe experimental nms For the four nuis with a low turbulent 

background (Le. no turbulence generatîng grid instaiied), the initial jet momentum is conserved to 

within 90 percent or better up to the final tcaversing location. With the turbulence generating grids 

mstaüed, the initial momentum of the jet is conserved to within 85 percent or better. The greater 

degradation of momentum consernation m the later case is in part due to the fàct the equation (3 -3) 

neglects ternis that aise m the derivation due to the extemal turbulence (see Appendix A for 

detaiis). The effect of the extemal turbulence is not ody to augment the diffbsion ofjet momentum 

but also mask the turbulence of the jet thus making the jet momentum more difiicult to 

experimentdy detect. 

In the literature, it is o h  assumed that the square of the turbulent velocities make a negligiile 

conmion  to the total momenhim mtegriû (see, for example, Hmze, 1975). Antooia and Bilger 



(1973) and Capp (1983), however, have estimated that the conm%ution of the square of the 

turbulent velocities to the momentum integrai for a coflowing jet in a lammiar extemal flow is under 

ten percent b d  on extrapoîated estimates fkom jets in quiescent backgrounds. The present data 

for a jet in an extemal coflow mdicates that the effect of the (7-z) term in the mtegral is to 

increase the magnitude of the momentum mtegral between one and eight percent. This increase 

foilows the general trend of increasing very rapidly to a maximum shortly beyond the jet exit after 

which f begbs to dmiinish with increasing distance. Figure 3 -6 depicts this trend m the evolution 

of the percent contri%ution of the ( 7- cf term m the integral to the total magnitude of the 

momentun integral for the four cases of a jet m a Iow turbulent coflow (i.e. no turbulence 

eeaerating grid mstded). The average conaibution to the total momentum mtegral for the four 
C 

cases ehiited m Figure 3.6 is ody 3.6%. When the extemal flow is made nubulent through the 

use of a grid, the average percent conm%>uton ofthe 0ucniating temis is increased to 4.3% with 
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Figure 3.6: Percent contniiution of the ( 7- v 3 term m the 

momentum mtegral (equation 3 -3) to the total momentum for 
jets in a low turbulent coflow. 
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the smaii grid mstaiied and mcreased fiuther to 5.2% with the large grid mstalled. 

3-4-23 merimental Llncertainty for the Cofltnving Jet 

Estimates of the precision error, bias error, and total error for the principal coflowing jet quantities 

is summarized m Table 3.2. The difference between these enors and those presented for grid- 

generated turbulence is that the precinon emors are @en for a single time series. A detded error 

Component 

mean velocity, LI, 

W e n t  vel&ies; 
( U 2 ) l n  & ( v y  

integral length scaies; 
Ln &Lm 

Table 3.2: Sllmmary of the normalized precision, bias, and total errors for a 95% confidence 
intervai in the measured coflowing jet quantitier 

Precision Error, S 

*0.0020 

power spectral density 
fùnctions; EJk) & EJk) 

3.5 Closure 

*0.0068 

*O.O 168 

Details of the experimental apparatus have been presented m this chapter dong with the meaauing 

techniques used to check the experimental data and the uncertainties associated with the meawed 

data. 

Bias Emor, B 

*O.O 179 

IO. 1580 

Total Error, 6= 

*O-0 18 

*O-0 143 

*O-O393 

I0.020 

I0.052 

10,0200 k0.3 17 



Chapter 4: The Extemal Flow 

4.1 Introduction 

The objective of this chapter is to experimentally characterize the behaviour of the extemal flow 

field both in the absence and presence of turbulence generating grids and d o u t  the jet mode1 

mstailed The mean velocity and turbulent intensities of the extemal flow m the absence of a grid 

are f k t  examitled. This is followed by an an- ofthe extemal flow field with the d and large 

grids instaled which details the behaviour of the turbulent intensities, integral length scates, and 

turbulent energy spectra. A cornparison of these resuhs to relevant data and theory m the grid- 

generated turbulence Iiierature is aiso made. The chapter is concluded with a summary of the major 

hdings of the present experimental study. 



4.2 Extemal Flow in the Absence of a Grid 

4.2.1 Mean Velocity Profdes 

Typicai mean velocities, L/, meamed m the extemal flow m three vertical traverses in the absence 

of a grid, are &en in Figure 4.1. The downstream locations of the traverses are near the s t a t  

(+-IO cm), near the middle ( ~ 5 0  cm), and near the end @=IO0 cm) of the workbg wÏndow. This 

&es a representative vertical picture of the mean velocity over the entire travers@ regime. AU 
C 

three profiles are remarkably similar to each other both m their magnitude of Uc as well as their 

relative profile shape. Also mcluded m the figure is the a p p r o h t e  vertical location of the jet 

Figure 4.1: Verbcal variation of the extemal streamwise mean velocity on the 
transverse centreline of the flume in the absence of any grid. 



mode1 centeriine as welI as upper and lower W s  for the maximum jet radius conservatively 

esbmated at +IO cm based on the resuits m Chapter 5. Although the profile Ïs not unifonn over the 

distance covered by the M s  of the jet radius, it can be approlrsaated as such with D,=o.o~o~~ 

k0.00076 m/s where the *0.00076 represents one standard deviation fiom the average value. 

The lateral or cross-stream variation of CI, ahhougli not shown graphicaily, can be similariy 

summarized by ~'=0.0707~0.00055 m/s over the maximum diameter of the jet. 

4.2.2 Turbulent lntensity Profies 

The streamwise and transverse (or radial) turbulent ùitensities? defined respenively as: 

,/7 T =- 
" u, 

and 

are given in Figures 4.2 and 4.3 for the same three vertical traverses as for the mean velocity. The 

average value and standard deviation for T, over the maximum radial limits of the jet is given by 
- 
Tx=0=o.00868~0.00 103 while for T,, it is given by ~r=0.00387*~.00027 for the same range. Note 

that the turbulent mtensity in the radiai direction is less than half the value m the streamwise 

direction and that there is siificady less scatter in T,. than m T, as mdicated by the data m the 

figures and by the maguitudes of the respective standard deviatiom. This high level of anisotropy 

between the two turbulent intensity components is probably caused by the honeycomb located 

upstream of the test section which is more effective, due to its configuration, at reduchg the 
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Figure 4.2: Vertical variation of the extemai streamwise turbulent intensity m 
the absence of any grid. 

turbulent energy m the radiai direction than in the streamwise direction. 

The lateral or aosû.stream variation of the two turbulent mtensity components across the maximum 

jet diameter is @en by~=û.00782M.00078 and T,,=o.oo~S~IO.OOO~~ and are consistent with the 

trends observed for the vertical variation of the tubulent intensities. 

Note that the extemal flow m the absence of  o turbulence generatmg grid is not truiy laminar due 

to the existence of smaîl levek ofturbulence. 'Lhe extemal flow m the absence of a gird is therefore 

classified as a low turbulent extemal flow with turbulent htensities under one percent. 
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Tt- 
Figure 4.3 : Vertical variation of the extemal transverse turbulait mtensity in 

the absence of any grid 

42.3 Integral Length Scoles and Turbulent Energy Spectra 

The low levels of turbulent energy in the extemai flow with no grid mstaUed coupled with the 

inherent low level energy noise of the LDA systern made measurements of the integral length scales 

and turbulent energy spectra too uareliable to report meaningfùl results (see Appendix B for 

adetailed anaiysis of the problem). 



4.3 Extemal Flow in the Presence of Grids 

ui order to augment the turbulent energy of the extemal flow, turbuience generating grids are 

inserted upstream of the test section of the water f l ~ e .  The turbulence is created by the wakes 

and momentum jets formed behmd the grid which eventually coalesce downstream resuithg m 

nearly homogeneous turbulence in planes parde1 to the grid by x,/b=40 (see, for example, Johnson 

and Johnston, 1989). 

The traditional view of grid-generated turbulence is that the turbulent energy decay asymptotically 

approaches a cornmon universal self-preserving state for all grids (see, for example, Hinze, 1975* 

and Roach 1987) where the tem 'selCpreserving' is taken here to Unply that the flow hrs reached 

an equiliirium where al the dynamical oi8uences evoive together and no fiuther relative dynamical 

readjustment is required (George, 1989). George (1992) bas demonstrated, based on more general 

form of the traditional self-preservation theory, that the decay of turbulent energy in grid-generated 

turbulence is, m part, deteimmed by the initial conditions of the flow. Thus no universal seK 

preseMng nate can exist for al l  grids at h i t e  grid Reynolds numbers. 

in the present study, the grid Reynolds numbers for the two gxids are Re, ,=go0 and Re, ,= 1 800 

wbere the subscrïpts s and I refer to the small and large grids respectkeiy. The above discussion 

@lies that the decay of turbulent intensities, the growth of integral length scales, and the spectral 

decay of turbulent energy will be unique for each grid since the grid Reynolds numbers are m e .  

4.3.1 Turbulent Intensities 

The streamwise turbulent mtensities for the small and large grids are &en in Figure 4.4 as the 

honow circles and çquares respectively. Ind~dual ben fi power law equations to this data yield: 
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ui a similar m e r  to the çtrearnwise turbulent intensities, the present transverse turbuient 

intensities are given m Figure 4.5 as the hollow &cles and squares for the miall and large grid 

respectively. Individuai best fit power iaw equations to the data, also included m the figure, yield: 

-0.64 1 -0.604 

T r. s = 0.682( 2) & = 0.7" ( fa )  
where the exponents are again within the range reported by Hgue (1975). in addition, the large 

grid exponent (larger Re,) is greater than that for the smaii grid as expected based on the 

streamwise r e d t s  and George (1992). 

Experimental data fiom four other studies and the ernpirical fit of Roach ( 1987) (equation (2.15)) 

are also mciuded in the figure and behave in mufh the same Eishion as their streamwk counterparts 

&en m Figure 4.4. The two shidies reporting T, results at two values of Re, (Sirivat and Warhafk 
C 

1983 and the present audy) agah comktentiy report larger values for 7' at any given downstream 

location for the higher Re, expriment. This again pomts to a dependency on the niitial conditions 

of the flow within hihidual experiments. 

A cornparison between the present results for 7; and Tr mdicate that the two turbulent mtennties 

behave similarly except that the magnitudes for T' are smder at any downstream location. This 

anisotropy, which can be characterized by the ratio of the stmmwk turbulent velocity to the radial 

or transverse turbulent velocity, ranges fiom 1 .O7 to 1.18 for the s d  grid and fiom 1.1 O to 1.20 

for the large grid and are within the typical range of 1.0 to 1.5 as &en by Roach (1987). 





1.3.2 Turbulent Integral Length Seales 

The streamwise integral lemgth scdes, L,, normaiized by the grid bar width, ore &en m Figure 4.6 

for both the smail and large gid Power iaw fis to the current LJb data, included in the figure 

as the dashed lines, yield: 

where both exponents fdi within the expected experimentai range of O.3OspsO.53 as reported by 

Hinze ( 1975). Note, however, that the large grid expenences a fàster rate of growth for L, lb than 

the srnail grid- 

Studies reporting streamwise mtegral length scales appear to be iimited to that of Fmk (1977). 

Nakannva and Ohya ( 1983), and Sirivat and Wadiaft (1983). These results are also mcluded m the 

figure dong with the empirical fit of Roach (1987) &en by equation (2.16). In detetmbhg the 

empmcal nt, Roach (1987) used the data ofNakamura and Ohya (1983) and Sirivat and Warhaft 

(1983) and thus the agreement with these two data sets is not surprising. Fink (1977) and the 

present redts ,  however, show greater magnitudes for LJb at a &en non-dimensional distance 

domstream nom the grid and an overd slower rate of growth. Examination of the initial 

conditions of the experiments reveals that the grid solidity of Nakamura and Ohya (1983) and 

Sirivat and W& ( 1983 ) is ~ 0 . 3 4 - 0 . 3  5 wliüe the grid solïdity for F i i  (1977) and the present 

grids is much higher at ~ 0 . 4 4 .  Thus the gird solidity (initial condition) appears to have a 

significant effect on the size and growth rate of the streamwise mtegral length scales. 

In addition, the data of Sirivat and Wamafi (1983) and the present data, which report results at two 

vahes of Re, show that, at any @en downstream location, larger magnitudes of L, /b consiaently 

conespond to the experiment at the higher Re, thus mdicating that the gzid Reynolds number 

dependency extends to the integral length scales as wen as to the turbulent htensities. 





The transverse mtegrd lengdi sdes, L,, are @en in Figure 4.7 for both the and large grids 

normalized by the gxid bar width. Note that L, by its dennition (see equation (2.9)) is not strictly 

a mie transverse mtegrai lai@ sa le  since i relies on the mean convedng sireamWise veiocity to 

convert 60m a temporal scaie to a spatial scaie. Power iaw fïts to the present data yield: 

and are mcluded m the figure as the dashed lines. Again, the exponents are withm the experimental 

range as reported by Hmze (1975) with the larger grid (ie. higher Re,) exhibithg a larger value for 

the growth exponent. 

Other square bar grid experiments have not reported values for Lw. Roach (1987) proposes an 

empirical fit for L, , as &en by equation (2.16), by assuruhg that L,=L, 12. This empirical fit is 

included Bi the figure and displays the same relative behaviour in comparison to the present data 

as  that of the streamwise component. 

Based on the present transverse data, it is again apparent that there is a grid Reynolds number 

dep endency since larger values of L, /b are typically obtained wiih the large grid (ie. higher Re, 

d u e ) .  

A comparison of the present streamwise and radiai mtegral length scaies mdicates that the two 

components behave s'miilaly except that the magnitudes of LJb are nearly halfthat of LJ6 at  any 

downstream location. This lends credence to the assumption used by Roach (1987) in his 

derivation of an empirical fit to the radiai or transverse mtegral length scales- 





4.3.3 Streamwise Turbulent Energy Spectra 

As a means of examinhg the turbulent energy content at a @en wavenumber, k, the streamwise 

one-sided power spectra densty (PSD) fùnction, E,(k), evaluated at tiuee downstream locations 

for both the small and large grids, is &en in the top two gnphs of Figure 4.8. None of the 

previous studiek mentimed have reporteci nubulent energy spectra. Thug m order to compare the 

present data with other experimentiû data, the grid-generated turbulence spectra of Comte-Bellot 

and Comin (1971) (b4.953 cm, M=S.OS cm, ~ 0 . 3 4 ,  U,=12.7 mk, and Rep8000) are used and 

are &en m the bottom p p h  of Figure 4.8. Note, however, that Comte-Belot and Cornsin ( 197 1 ) 

inserted their grid upstream of a slight contraction (l.27:l) in an attempt to make the resulting 

turbulence behind the grid more isotropic. In addition, the data of Comte-Bellot and Corrsui 

( 197 1 ) is obtahed much M e r  downstream than the present results. Also included in the three 

fiegres for reference purposes is an a p p r o h t e  specaum for isotropic turbulence (Hmze. 1975) 

given by: 

T h i s  equation, however, strictly applies to homogeneous, isotropic turbulence and even then 

becomes invalid at very high wavenumbers. However, judging fiom Figure 4.8, all three sets of 

spectra follow the a p p r o h t e  spectrum for isotropic turbulence tkirly well up untilkLs=20 afier 

which the measured spectra decrease more rapidly than the approxhate spectnun 

In order for a flow to be m a state of self-presewation, there can be no dynamicd readjustments of 

the turbulent energy m the spectrum over the wavenumber regime. The three normalized spectra 

of Comte-Beliot and Corrsin (197 1) have the same relative shape at each downsueam location. 

It can therefore be conchided that flow has reached a state of self-preservation sometime before x, 

/b=220. 
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Figure 4.8: Normalized power spectra versus normaiized wavenumber for 

grid-generated turbulence. 



The normalized spectra for the large grid, given in the centre graph of Figure 4.8, inusnates that 

there is some readjusDnent ofthe turbulent energy at the iarger normalued wavenumbers between 

the streamwise locations of x, lb=M md 103. Howeveq by x, / 6> 100, the spectra maintain the 

same relative shape thus mdicating that the fiow has become ~e~preserving. The normalized 

spectra for the d grid, &en in the top graph of Figure 4.8 also indicates that a self-preserving 

nate is reached by xJb= 100. 

In c o m p a ~ g  the spectra between the small and large @ds, it is of mterest to note that the 

dSerences berneen the normalized spectra at xg/b=40 and 103 are not as great for the flow with 

the d grid mstaiied as they are for flow with the large grid mstded, thus mdicating that the flow 

with the miall grid is able to reacb a state of seif-preservation earlier than the flow with the large 

d This is not unexpected since the grids tend to extract turbulent energy £iom the mean flow 

at scales typical of theu geometnc scales The large g i d  would therefore create a greater range 

of wavenumbers (ie. fiom geometric d e s  to dissipative scales) over which the turbulent energy 

mua readjua before becoming self-presenimg. 

Cornparhg the self-preseivmg spectra of the three different grid-generated turbulence experiments 

illustrates that each grid experiment has a unique turbulent energy spectnun although they share 

many of the same features. The fsct that a state of self-preservation bas been reached in each 

experiment and that there is no universai self-preserving spectnim supporis the theory put fonh by 

George (1992) in that the initial conditions play a continuous role in determinhg the shape of the 

turbulent energy spectra and thus the decay of the turbulent mteasities and growth of the mtegral 

length scales. 

43.4 Dissipation Rate per Unit Mass 

The dissipation rate per unît mpss, + is an important parameter charactMPng the turbulence in the 

mertial sub-range of the extemai flow and is expected to be an mput mto the integral jet mode1 to 



be developed m Chapter 6. The dissipation rate is too complex to meawe dire* but can be 

estimated by assuining isotropie turbulence. Neglecting the e n ~ g y  dissipation in the lower 

wavenumber range, the total energy supply m the equiiiirium range is practicaliy equal to the total 

dissipation rate (HmK, 1975). Thus the dissipation rate can be esiimated ushg 

where rl, is the total turbulent khetic energy per unit mass m the extemal flow and can be 

estimated, m grid-generated turbulence, by: 

since the turbulence is assumed homogeneous m planes pardel to the grid. Since the turbulent 

velocities for each g-rid have been fitted by power law equations (in the form of turbulent 

mtensities), the dissipation rate per unit mass can be easily estirmted ifthe distance fiom the -grid 

plane is known. 

4.4 Closure 

The eaernal flow with no grid mstalled is approhtely  d o m  with a mean velocity of 
- 
Ue=0.0706 mls and with turbulent intensities less than one percent over the workuig section of the 

water flume. 

With the grids instalied, the experimentai data for the decay of the turbulent intensities and the 

growth of the integral length scales is weli predicted by power law equations for each grid where 

the exponents aü fiii wiihm the expected eqerimental range. The exponents for the large grid (ie. 

larger Re,), however, are greater m magnitude than those for the smail @d. This pomts to a grid 

Reynolds number dependency in the experünental data. In addition, the integral length scales are 



strongly afEected by Md solidity- Unique seIf-preservnlg turbulent energy spectra in the current 

sntdy occur byx,/b> 100. These hdbgs thus con- that the mitid conditions have a continuous 

effect on the behaviour of the grid-generated turbulence and that each grid produces a similar but 

unique state of self-preservation in the flow. 



Chapter 5 : Coflowing Jet Experimental Results 

S .  1 Introduction 

Twelve different cases of a jet issuing mto an extemal coflowing stream have been obtained by 

varying the jet mode1 diameter and the jet exit velocïty as weii as by varying the turbulence level 

of the extemal cofiow. The chapter starts with a summary of the initial conditions for the tweke 

different runs. This is fonowed by the presentation of the mean velocity results, mcludmg the radial 

spread of the jet, which in tuni is foilowed by a section devoted to the results obtamed fiom the 

Reynolds normal and shear stress data. The results for the turbulent mtegrai length scales and 

turbulent power spectral density fùnctions are next presented The chapter conchides with a 

summary of the major conclusions of the experimental mvestigation. 



5.2 Jet Initial Conditions 

The initial conditions for the tweive lvedient experimental nms are Summuued m Table 5.1. The 

experimental nms are grouped accordhg to the initial velocity ratio, Ut, and jet radais, Rj , so that 

the effects of varying the extemal turbulence leveis cm be compared directiy w i t h  a set. To 

negate some of  the influences caused by the minor viuiations m the initial conditions, the 

downstream distance, x, wül be normalized ushg the momentum radius, 8, since 8 is the length 

scale that is characteristic of a particuiar combination of a jet and an extemal flow. A non- 

dimensional vimial ongin, xJ8, has also been mchded m the table where an average value has been 

used for 8. The virtuai O* o f k t s  the effects of varying jet potential core lengths by projecting 

the am of a jet to an i m a m  point source of momentum The value of xdû is obtained fiom the 

data by detemiining the r/B intercept ushg a hear regtession on the data points where LI, IU'd0. 

Exp't 
# 

la 

Table 5.1: Initiai conditions for the tweive experimental runs. 
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i0.68 
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+0.68 

+0.68 

-1.05 

d g r i d  

large grid 

no grid 



Note that the vimial origin remains constant for a given PR and R, no matter the level of extemal 

turbulence, 

5.3 Mean Velocity Resuits 

In this section, the mean velocity profiles are used to c o h  the radial similarity of the excess 

mean veiocity profiles at various downstream locations. In addition, the decay of the centerhe 

excess mean velocity for the jets m a low turbulent co0ow will be compared with M a r  results 

£iom the literatwe as well as with the same jets m turbulent extemal flows. Fmany, the radial 

growth of the jets, based on a contour surfàce dehed by a percentage of the excess mean velocity, 

will be compared with the literature data as well as withm each set of jet expeliments. 

5.3.1 Simüarity of the Excess Mean Velocity Rofdes 

The practical pwposes of demonstrating the radial similanty of the excess mean velocity, U- Ut, 

are two-fotd The f h t  is to use radial similanty as a benchmark for the present data since simiIarity 

has been reported by Antonia and Bilger (1973), Smith and Hughes (1977) and Biriagen ( 1986) for 

jets m iaminar coflows and by F i  (1977) for jets in turbulent coflows. The second purpose cornes 

fiom a physical modekg point of view since simüarity wiil d o w  an the excess mean velocity 

Sonnation contained within a radiai profile to be clidlied to a single characteristic velocity sale 

and a single characteristic laigth scale without major l o s  of experimental idormation except 

perhaps at the edge of the jet. Revious studies on coflowing jets (Antonia and Bilger, 1973, and 

Biringen, 1986) have used the centerline excess mea.  velonty, (Io, and the jet velocity halfwidth, 

L , for these d e s .  The excess mean velocity at a downstream location can then be d e s d e d  by 



where f (q) is a unkersai hction, typically a Gaussian fimction defined by: 

where c is a constant @en by c=ln(2)=0.69 since by dennition ée=0.5 at FL,. The Gaussian 

fimction has been shown to give a sati&ctory nt to the non-dimensionalized excess mean velocity 

profiles (So and Hwang, 1989) and thus is a useful quaütative check for the present data. 

Figures 5.1 to 5.4 contain selected non-dimensionplized radial profiies of the excess mean velocity 

for the twelve experimental runs with initial conditions lined in Table 5.1. To reduce the number 

of data pomts presented, only the positive haif of each profile has been plotted since the jet 

centerline is an axk of symmetry. To give a representative picture of the downstream development 

of the excess mean velocity, six profiles have been selected aarting a a downstream location of 

1-10.2 cm and endmg at x=100.2 cm for each m. Also mcluded in the caption for each figure k 

the appro'cimate non-dimensional distance downstream given by (x-xJ8 where the value of 8 is 

die average of the local value for the three runs m each figure. 

Figure 5.1 contains the profiles for the large jet at KR=6 and represents the group of experiments 

that are closest to the jet exit in non-dimensional t e m .  As noted by other researchers, the 

Gaussian hction gives a very good fit to the experimentai data. Increasing the levei of extemal 

turbulence by mnahg a grid appears to have W e  effect on the non-dimensional excess mean 

velocity profiles, even by the final donastream location of (x-xo)/8= 1 5.4, thus mdicatmg that, close 

to the exit, the jet is unsffécted by externai hirbuience. Profiles for the large jet at PR.3 are @en 

m Figure 5.2 and also show good agreement with the Gaussian f'wiction. Wi a grid installe& the 

plots for the h a 1  two (x-xo)/O stations show an mcrease m the data scatter at the edge of the jet 

and, to a lesser extent, at the jet centerline. 'Ibis is more noticeable when the large grid is instalied 

since the entrahed externai flow has more turbulent aiergy located at larger length scaies which 

affects the jet developmait more than the extemal flow with the smali  gid mstded or with no grid 

inst alled. 



Figure 5.1: Excess mean velocity profiles for the lvge jet with m1.6. x (cm): +, 
10; x ,  20; A, 40; O, 60; U, 80; 0, 100. (x-xJ0: +, 0.8; x ,  2.3 ; A, 5.2; O, 8.6; 
0, 1 1.8; O, 14.8- -, Gaussian hction. 

Figure 5.2: Excess mean velocity profles for the large jet with P7ta3. x (cm): f 
10; x, 20; A, 40; O, 60; 0, 80; 0, LOO. (x-xJ0: +, 4.6; x ,  8.1; A, 15.2; O, 

22.2; Cl, 29.2; O, 36.2. -, Gaussian hction. 
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Figure 5.3 : Excess mean velocity profiles for the small jet with YRn6. x (cm): +, 
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Figure 5.4: Excess mean velocity profiles for the SIMU jet with me3. x (cm): +, 
10; x, 20; A, 40; O, 60; 0, 80; 0, 100. (x-xa)/8: +, 9.9; x, 19.6; A, 39.5; O, 

60.3;0, 81.8; O, 105.7. -, Gaussianhction. 



'Ihe non-dimensional profiles of the excess mean velocity for the smail jet are @en m Figures 5.3 

and 5.4 for K b 6  and 3 respective@. The profiles for the d jet at m.6 show approhte ly  

the same pattern and degree of çcptter in the experimental data as for the large jet at KR= 3 (Figure 

5.2). This is not unexpected since the non-dimensionai downstream distance is approxünately the 

same for both cases The s d  jet at m=3, however, travels the fkthest non-dimensional distance 

fiom the jet exit and displays the greatest amount of scatta m the experimental data. The level of 

scatter is so great for the case of the large grid instaiîed that the assumption of radial smiüarity 

becomes questionable by the iast two travershg locations. This is again the effect of entramnig 

extemai fluid which has greater levels of turbulent energy at larger length scales when the large grid 

is instailed, 

Two trends emerge fiom the above figures. The first is that, for a given extemal flow, the farther 

the non-dimensional distance travelled fkom the jet exit, the greater the scatter m the profile. The 

second trend is that, for a given location past (x-xo)/0>20, the jet with the large grid innailed 

displays the greatest scatter in the profile data foilowed by the jet with the small grid mstailed. 

5.3.2 Behaviour of the Jet Centerlùle Excess M a n  Veloeity 

To estabüsh confidence m the present data, the behaviour of the centerline excess mean velocity 

is compared to other data available m the literature. In Figure 5.5, the present data for LI, ILI, bas 

been plotted against (x-xJ0 for the four runs without a grid mstailed with rimilar renilts fiom six 

other studies on coflowing jets. A vilnial origin, x, is used for each data set where xo has been 

extrapolated from the data based on a linear regession. As c m  be seen fiom the figure, the 

majority of the data sets, after passhg through an initial development zone for the potential core, 

collapse to a single trend for the development of U,/U, Smce the data is plotted on a log-log plot, 

the dope of the line, which is approximately unity for the data in the figure, corresponds to an 

exponent in a power law relation@. Thus it is found k d  that Ue/Uo=x throughout most of the 

experimental regime for dl seven studies Wed m the legend in Figure 5 -5. 
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Figure 5.5: Jet centerhe excess mean velocity behaviour in a laminar external 
coflow. 



Chapter 2 presented two theoretical asymptotic Iiniits for the behaviour of LIo m a coflowing jet m 

a laminar extemai flow. ihe Euh, arrived at using smiilarity considerations, are dependent on the 

magnitude of UeIU, if WtIUod then the jet is strong m compvison to the extenid flow and the 

expected behaviour is Cl,* '. If U,lUj>l then the jet is weak in cornparison to the extemai flow 

and the expected behaviour is U0=x-? For reference purposes, iines with dopes of- and Z 3  

have been mcluded m Figure 5.5. Typicaily, very d vhes  of LI,/& are ody obtainable very 

CIO se to the jet exit. Experimental profiles of the mem velocity in this region, however, are not 

self-sim. due to the flow readjusting h m  the potential core where UJU, would be a constant. 

Adherence to the asymptotic lima, therefore, cm ody  be expected afker a short development length 

which the experimental data m Figure 5.5 supports. In spite of this, the experimentd data mdicates 

that U0=f1 up to Cl,/U'-20 (or (x-xJ9-200) wiih linle indication of an imminent change m dope 

to 2/3 except for the data of Antonia and Bilger (1973) at VR-=S. The absence of a universal 

CJ,=fm behaviour is either the r e d t  that mdficient distance has been travelled downstream to 

reach Ue /Wo»I or that the limit itselfis not physicaily realistic for a coflowing jet m a d o m  

extemal flow (see 82-41). 

Figure 5.5 also indicates that the magnitude of WeIUo for tbe present d jet at PR12.3 begins to 

mcrease over the other data at approximtely (x-xo)/0=40. This increase m &ILIo is the result of 

the low levels of turbulent energy in the extemal flow when no grid is mstalied (Le- turbulent 

intensities of 7''- 1%) affecthg the development of the jet t i r  downstream nom the exit. The 

literature data sets have been obtained in wind tunnels where the turbulent mtensities can typicaliy 

be an order of magnitude less than that in a water flume (see, for example, Antoaia and Bilger 

( 1973) where TX=O. 1%) and thus do not a e c t  the dwelopment of the jet. 

A cornparison betwem the behaviour of the centerline excess mean velocity in the absence and 

presence of turbulence generating gcids is &en m Figure 5.6 for the four sets of experiment al runs. 

Before conimenting on the resuhs, however, the issue of experimental uncertainty needs to be 

addressed. Untü this pomt, the information that h9s been gleaned fiom the presented resdts for the 

coflowing jets has beei more of a check to make cettain the present experiments are consistent with 
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(a) Large Jet, VI+6 

- (c )  S m d  Jet, P 6  

! (b) Large Jet, W 3  

- - - 
- (d) Small Jet, KR+3 = 

Figure 5.6: Centerline excess mean velocity behaviour. Symbols refer to the grid mstalled: 0, no 
grid; A, !mail grid; 4 large grid Enor bars are for precision errors only and are included 
only on data points where the error bar exceeds the limÏts of the data symbok 

enablished results. The data presented in Figure 5.6, however, is a direct cornparison of results 

wiihin an experimentd set which wiü phpoint a downstream location where the effects of extemal 

turbulence fîrst become significant The level of experimentd uncertainty contained within the 

presented data thus becomes extremely important as it wïU detemine where the effects become 

statisticdy significant. 



The total uncertainty within a measured value is composed of bias or &ed errors and precisioo or 

random errors (see Appenda C). Smce each exphentai  set is conducted using the same jet and 

measurement system, the bias errors are considaed to be the same no matter the level of extemal 

turbulence. Smce the bus mors represent an offset between the meanired and the tme value and 

since ic is the same for all three cases m each of the experimental sets, a cornparison of the renilts 

withm a set need not account for the bias error. Recision errors, on the other han& do need to be 

accounted for due to their random nature. In Figure 5.6, the error bars for the precûion errors are 

d withei the lsmts of the data symbols except fbr the d jet at K R 4  with the large grid mstailed 

at the very l a s  travershg location- An error bar has been mcluded for this pomt. 

Figure 5.6a presents the experimentai data for the large jet at PR=6 for the three levels of extemal 

turbulence. The figure indicates that there is no significant variation m (I'IU, over the aon- 

dimensional experimental regirne that can be amibuted to the level of extemal turbulence. In the 

three remaining experimental groups, the presence of a grid results in a statisticdy sigdicant 

increase in the growth of U,lUo by (Y-xO)If3=25 with a greater increase correspondmg to the jet 

with the large grid mstailed. By takmg the inverse of the relationships, the efEects of the extemal 

turbulence can be translated into a decrease in the centerhe excess mean velocity by (x-xJûd5.  

Smce the extemai 0ow with the large @d instailed contains more turbulent energy, which m s e s  

jet momentum away fiom the centerlme, than that with the small grid instaiied, which in tum 

contains more than that with no grid mstailed, it makes physical sense to expect a faster decrease 

in U, when more airbulent energy is present m the extemai fiow. 

5.3.3 Behaviour of the Jet Radius 

The true radius of the jet, R, is defined by the radial location where the excess mean velocity 

diminishes to zero. The drawback of this definition for the jet radius is that it is very clifficuit to 

reaiize eqerimentaliy since the excess mean velocity approaches a value of zero slowly at the edge 

of the jet. Due to the scatter and uncertainty associated with experimentai data, t therefore 



becomes very difEcuit to d e t h e  the precise location where W- LIe*. An aitemative definition, 

put fonh by Keffi and Bahes (1963), is to use the radiai location where the excess mean velocity 

drops to ten percent of the centerfine vahie* 'ibis radial location cm be more accurately determined 

fiom experimental data then the location where U-(I,=0 since there is stin a weii defined gradient 

in the excess mean velocity profile (see, for example, Figure 5.1). 

As with the centerhe excess mean velocities, the present jet radii with no grid mstalled are fkst 

compared to the lderature data to establish confidence m the m e n t  results. Most of the jet radial 

development reported m the literature is ümited to the jet velocity half widths. By asSummg a 

Giiussian profile for the radial disaibution of the excess mean velocity, and by ushg the reported 

centerhe value, the jet velocity half widths have been converted to effective jet radii and are 

presented, dong with the present resuhs, in Figure 5.7. 'Ibis collection of data, ploned on a log-log 

plot, indicates that aii the radü fonow approximately the same trend. Note that the degree of scatter 

m the radius data is greater than that m the centeriine excess mean velocity data given m Figure 5.5. 

Despite the higher lwel of scatter, the rad& after an mitial development zone, c m  be descnied by 

a h e  on the log-log plot with a slope approhtely equal to 213. At approximately (x-xJ8= 1 00, 

the slope of the line appears to decrease to approhte ly  i/3 although there is mdcien t  

exp erimental data past (x-xo)/û=3 00 to confinn this extrapolation. 

In Chapter 2, the two asymptotic limits for the radial behaviour of a coflowing jet are &en as: 

when UJUoa 1, then R=x and when UJLlO)) 1, R-x". For cornparison purposes, two lines with 

dopes of unity and 1/3 are a h  show m Figure 5.7. The experimental data, however, does not 

support the asymptotic iimit ofR- whai UjU,«l ehhough t h  is probably due to the readjusünent 

zone in the potential core where the mean velocity profiles are not simüar and thus similarity limits 

would not apply. Some of the data, however, mdicates that R d J  once (x-xJ/0>100. This 

corresponds to the a p p r o h t e  location where CI&- 8 nom Figure 5 .S. In the transition region 

between that of a saong jet in a weak coflow and that of a weak jet m a strong coflow, the radii 

~OUOW R-P. 
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Figure 5.7: Jet radiai behaviour m a laminar extemal coflow. 



Since the centerhe excess mean veloaty decays more quickiy for the curent small jet at VR=3 

than the 0 t h  data m Figure 5.5 f ier  (x-xO)/0>4O, its correspondhg radius should hcrease more 

rapidly than the other data in order to be consistent with contmuity. Figure 5.7 shows that the 

radius for the d jet at VRS3, while not inmiensely greater than the other data, is stiü one of the 

largest. 

To determine the effects that extemal turbulence has on the development of the jet radius, Figure 

5.8 contains plots of the four sets of experimental nms. As with the centerhe excess mean velocity 

plots, oaly the preckion mors are shown and ody for the data points where the error bars extend 

beyond the limits of the data symboL For the case of the large jet at m=6, given m Figure 5.8a, 

the effect of adding extemal turbulence is to maease the magnitude of the radius d e r  (x-xJ8 - 1 3, 

although the effects arp stiü fiiidy mialL As the non-dimensional distance is increased, as  in Figures 

5.8b and 5.8c, the e f f i s  of extemal turbulence becorne statisticaiiy more Sgnificant und m Figure 

X8d, the radius of the jet wiîh the large grid instded is on the order of one and a haiftimes larger 

than the same jet wÏth no grid mstded by the b a l  travershg station. 

The general trend that emerges fiom the figure is that the radius begins to show a marked increase 

in magnitude when a grid is mstaiied over no grid after (x-xs-20. The Iarger mcrease in jet 

radius corresponds to the jet with the large grid instaiied. When the smail grid is installed, there 

is an increase in the radius over the case with no grid mstalled but it is not as marked as the case 

with the large grid mstalled. 

5.3.4 Summary of Mean Velocity Results 

The present excess mean velocity profiles display radial mnilPnty when plotted as r/Lo versus 

(U-U'')/U' Once radial simüa&y is obtained after the potential core, it is maintahed for aIl leveis 

of  extemal turbulence except at large values of (x-xJ0 with the large grid mstalled. 
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Figure 5.8: Normaüzed radiai behaviour. Symbols refer to the turbulence generating grid 
instaiied: O, no grid; A, small grid; il, iarge g d .  

The present expimental data for the behaviour of UJCI, and RIB for coflowing jets m the absence 

of any grids &ree with simüpr resuits in the literature. The resuits show that U,d up to 

ll&-20 or (x-xo)/O-300 and that RKP up to UJUo-8 or (x-xo)/O- 100 after which there is 

some evidence to suggest that R=x? This is not entirely the expected behaviour based on 

aqmptotic limits arrived at using similanty hypotheses. 
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The effècts of extenial turbulence are to reduce IIo and mcrease R more qyickly than the case with 

no grid hstaiied starting afker (x-xo)/û-20 to 25. The jet with the iarge grid mstaiied experiences 

the greatest changes m Uo and R 

5.4 Reynolds Stress Results 

7 - The Reynolds stress results cm be subdivided mto normal spesses given by u and v ; and a shear 
- 

stress &en by 14 v ,  Physically, the normal stresses represent directionai components of the total 

turbulent kinetic aiergy vector M e  the shear stress represents the transfer of turbulent momentum 

f?om one component to the other. Smce it is more common m the literature to report turbulent 

velocities rather than normal shear stresses, the ctment data wül be presented as turbulent 
T velocities, (zi - and (y)!'. 

This section first looks at some considerations arising fiom amilanty theory m order to obtain a 

velocity =ale to non-dimensionalize the data. This is followed by the experimentai results for the 

radial profiles and centerline behaviour of the strearnwise turbulent velocity which is followed by 

similar results for the radiai turbulent velocity. Radial profiles and centerline behaviour for the 

Reynolds shear stress follow wah a brief sunnrury of the redts. 

5.4.1 Considerations from Simiiarity Tbeory 

7 

The conventional method of plotting radial profiles of the turbulent velocities, (Fyh and ( v ; y!, 
is to nofmalize them using the centerline excess mean velocity, Wo , with the radial distance 

nondimi  by L, This produces profiles of local turbulent intensity versus non-dimensional radius. 

The underlying phüosophy of this method is that since smiüPnty theory mdicates that the scale 

fàctor for the mean velocity and turbulent velocities must be identical (see s2.4.1) and since LI, is 

the scale factor for the excess mean velocity profiles, then it mua also be the d e  fhctor for the 



turbulent velocïty profiles Numerou studies have shown that, ushg (I, to non-dimdonalize the 

turbulent velocity profiles, Emiilonty is on& obtahed very Eu downstrem, if ever, with the 

centerline magnitude reaching various asymptotic vahies. One case in pomt is the data fiom 

Antonia and Bilga (1973). For th& jet a R-3, gmilPrity for (U')H/Uo profiles was not obtained 

until x>100 cm (correspondhg to x/0- 150) with the centerline value reachg  a constant of 

(~)%(,=0.50. For heir jet at m.5, Antonip and Bilger c h  similarity is obtaiued by x=80 

cm (x/8-75) ahhough there is still an mcreashg trend to be seen m the data right to the end of the 

travershg regime of x=MO (dB- 130). The quoted asymptotic centerline value for this case is 

(<>'?U0=0.29. Another case is BUmgen (1986) who found simi?arity for two out of three ofhis 

experimental nms. The centerline asymptotic vahies found were: for the jet at P=lO, 

(c,'"/U0=0.30 by de-25 and for the jet at YR-5, ( ~ ) % f O = 0 . 3 4  by x/0-50. The jet at p R 4 . 3  

did not reach simiiarity by the end of the travershg regime at de- 100. 

However, since simiMty disiributions do not, even approximately, sati* the govemhg equations 

of motion (except for the case of the two asymptotic Iùnits) the result that the scde factors for the 

mean velocity and the turbulent velocities must be the same is not applicable to a jet in a uniform 

coflow. In fact, both Hïnze (1975) and Townsend (1976) suggest that there cm be multiple 

velocity d e s  h a single flow. The problem now is the choice of a new sale factor m lieu of U, 

which will make the turbulent velocity profiles similar. 

A jet m a ulLiform coflow has two distinct mean velocities: that of the extemal coflow and that of 

the jet itself. The easiest method of combining these velocities is to take the merence which 

r ed t s  in an excess mean velocky whose vaiue at the centerlme is @en by Ua. However, m the 

mtegral momentum equation, the mean velocities are combmed as U(U-LI,) *ch is balanced m 

the integral by the dïfEerence m the square of the turbulent velocities. Tbus another choice for a 

velocity scale fictor becomes (LI(CI- LI,))', or, d e r  replacmg CI by the centerline vahe of Uo+U,, 

the new velocity scale fiaor becomes (U'(UOf WC))? Another mterpretation of the new velocky 

scale factor is as an average velocity scale for the two distinct velocity fields. Iocidently, for o jet 

m a quiescent background (U'=O), this new velocity scale reduces to (I, which is equivalent to the 



conventional veloaty sale for this particular now. 

In the sections to foilow, the radial pronles and centertine behaviour of both the streamwke and 

radial turbulent velocities wüi be presented by normaiizing the data with U, the conventional 

method, and with (U$(,+U'))q the new d e  fàctor. This results m two plots for each set of jet 

nms. These plots are presented on the rame page with the same sales for the abrcissa and ordbate 

axes to emphasize the diBirence m the normalimig schemes. 

5.4.2 Streamwhe Turbulent Velocity 

5-42 .  I Similarzty of Radial Profiles 

The radial profiles of the streamwise turbulent velocity have beeu presented m a çimilar mamer to 

that used for the excess mean velocity profiles in that six profiles have been selected to represent 

the downstream development for each jet nm and ody the positive halfîs presented m the figure 

since the centerline is an axis of symmetry. 

The radial profiles of streamwke turbulent velocity for the large jet at VRs6 are normaiized by LIo 

in Figure 5.9 and by (LI'(UO+Ue))"* in Figure 5.10. The merence between the two nomaking 

schemes is immediately apparent. When the profiles are normalized by the conventional velocity 

scale, Uo , the profiles do not reach a state of SMilPrity by the last travershg location whüe the 

profles normalized by the new velocity d e ,  ((I,(U'+Ue))Y: become approximately nmilar by 

(x-x,)/0-5.2. The effeas of extemai turbulence, however, are more apparent when the profiles 

are n o m a k d  by LI, In Figure 5.9, there is a notable mcrease in the turbulent velocity at the h a 1  

travershg location for the jet with the large grid instaIled over that with no grid mstalied In Figure 

5.10, however, the same profile is stül very smiilu to the other profiles This effect will become 

more apparent as the non-dimensional distance downstream is mcreased. 





Figures 5.11 and 5.12 show the radiai profiles of (ur)" for the lvge jet at l R = 3  using the 

conventional and new normalizing techniques respectiveiy. Again, it is apparent that ushg LI, 

s i m -  is not achieved over the experimntal regime while using (U'(Uo+Ue))))" results m W a r  

profiles by (x-xo@=8. 1 ahhough there is slightfy more scatter in the plot for the jet with the large 

oid  instded than m the other two plots. The effects of extemal turbulence can best be observed 
CI 

in Figure 5.1 1 where a noticeable merence m the profiles begins to occur &er (x-xo)/O= 15 -2 

wbere the jet with the large grid iostded exhibits the largest magnitudes for (u l ) " lLI ,  followed by 

the jet with the smaii grid haailed for a given downstream location. 

Figures 5.13 and 5-14 present the correspondmg infiormation for the small jet at U b 6 .  The same 

trends are again apparent: with the conventionai nomialization, smilarity is not achiwed, especiaily 

when a grid k hstaüed, whiie with the new normaiization, simüarity in ail three extemal ~ b u i e n c e  

levels is achieved d e r  (x-xJfb7.3 although the level of scatter in the no grid case is fairly hi& 

m cornparison to the other two cases. This higher Ievel of scatter in the no grid case is unexpected 

since typicaüy a higher degree of scatter corresponds to a higher Ievel of extemal turbulence. The 

effects of extemai turbulence, best seen m Figure 5.13, become apparent &er (x-x,)/e=f.3 where - 'rc the largest magnitudes of ( z i  ) -/LI, agam correspond to the jet with the large grid installed. 

Lady, Figures 5.15 and 5.16 present the meamWise turbulent velocity pronles for the small jet at 

IR4 .  This is the most striking case since it covers the greatea non-dimensional distance 

downstream The trend noted m the above three experimentai sets can again be observed m this 

data set Using conventional nomaihion, the profiles agah fàii to reach a state of similarity whiie 

using the new nonnalization, the profiies become siniilar by (x-xo)/8= 19.6. Figure 5.15 shows 

quite dramatically the effects that the extemal turbulence, which occur d e r  (x-xo)/8= 1 9.6, have 

on the streamwise velocity pronles. Again the largest magnitudes of ( F j h / U 0  occur for the jet 

with the large grid mstaüed In fact, by the ha traversing location with the large Md Biaaiied, it 

is difficult to disceai the typical hump in the profile that is usually associated wïth the jet fluid, thus 

indicatmg that the turbulent velocity withia the jet is becoming mdistmguishable &om that m the 

extemal flow. 
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Figure 5.1 1: Streamwise turbulent velocity profiles for the large jet with PR = 3 
normalized by LI,. x (cm): + 10; x, 20; A, 40; O, 60; O, 80; 0, 100. 
(x-xJ8: +, 4.6; x ,  8.1; A, 15.2; o, 22.2; Q29.2; O, 36.2. 
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Figure 5.12: Streamwise turbulent velocity profiles for the large jet with VR 3 
normaiized by (Uo(UO+Ue))))H. x (cm): +, 10; x, 20; A, 40; o, 60; 0, 80; 
0, 100. (x-xfl: +, 4.6; x, 8.1;~, 15.2; O, 22.2;0,29.2; o,36.2. 
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Figure 5.13: Streamsvise turbulent velocity profiles for the stuall jet with VR = 6 
normalized by Uo. x (cm): +, 10; x ,  20; A, 40; O, 60; O, 80; O, 100. 
(x-xJ8: +, 3.3; x, 7.3; A, 15.2; O, 23.4; Ci, 32.4; 0, 40.7. 
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Figure 5.14: Streamwise turbulent velocity profiles for the smaii jet with PZ 6 
nomdhd by ((&+Ue))? x (cm): f 10; x, 20; A, 40; O, 60; 0, 80; O, 

100. (x-xfl: +, 3.3; x, 7 . 3 ; ~ ~  15.2; O, 23.4; Cl, 32.4; 0,40.7. 



Figure 5.15: Streamwise turbulent velocity profiles for the smaii jet with Mz = 3 
normalized by U,. x (cm): +, 10; x, 20; A, 40; O, 60; 0, 80; 0, 100. 
(x-xJ8: +, 9.9; x, 19.6;~, 39.5; O, 60.3; 0, 81.8; 0, 105.7. 
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Figure 5.16: Streamwise turbulent velocity profiles for the small jet with PR = 3 
normalized by (LIo(Uo+U,))? x (cm): +, 10; x, 20; A, 40; O, 60; û, 80; 
0, 100. (x-xo)/8: +, 9.9; x, 19.6; A, 39.5; O, 60.3; 0, 81.8; 0, 105.7. 



In the majority of cases, especiaüy those close to the jet exit, the radial profile of the normalized 

streamwk turbulent velocïty reach a maximum peak value m the range of 0.7s Ir/Lo 1 r 1.0 giving 

the profiles a saddle-shaped appearance. This peak corresponds to the normallled radial position 

in the excess mean velocity pronles where the absohite value of the gradient of the excess mean 

velocity is a umhmm~ 

The behaviour of the centerline streamwise turbulent velocity, (ZrA, is &en m Figure 5.17 

nomahed by Ll. and m Figure 5-18 normaiized by (Uo(U +LI,))? UnWre the radial profiles m the 

previous section, the centerline data fiom ail the travershg locations have been mcluded- Again 

only the precision errors are reported for a @en experimental set and on& for those data points 

with error bars that extend beyond the ümits of the data symboL This occws only m the case of 

(~)""-normalized by Lo for the mian jet at VR = 3 with the large grid maalled at the las  travershg 

location- 

in addition to the jet centerline values, the extemal streamwise turbulent velocities have been 

included in the two figures, also normalized by W, and (U0(&+Ue))!))> to mdicate the relative 

behaviour of the streamwise turbulent velocities m the extemal flow. 

h Figure 5.17a (large jet, MZ=6), the magnitudes of (<FA/ (Io are not greatly afEected by either the 

absence or presence of grids m the extemal fiow. This is attriuted to the fàct that the jet centerline 

value of ( c ) ! ? W ,  is always much greater than the extemal value of (c:)"/Wo at any given 

downstream location. The turbulent velocity gaies m the two flow fields are thus mfiiciently 

different that they do not Pgnincantly influence each other. As the non-dimensional distance fiom 

the jet exit is mcreased, as m F i e s  5.1% and 5.17c, the magnitudes of (Cr 111, begh to reach 

lwels that influence the co~esponding vahie on the jet centerline. This is especially the case when 

the large grid is instaiied. ihese two plots clearly indicate that ( c ) H / U o  increases for the jet with 
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Figure 5.17: Jet centerhe and extemal streamwise turbulent velocities nonnalized by LI, 
Symbols refer to the jet centerlme for a &en gid: 0, no grid; A, small grid; large grid- 
Lines refer to the e x t e d  IeveIs: -, no grid; -- -- , s d  grid; - - -, large grid 

either grid mstaiied over that of the jet with no grid mstded by (x-xJû= 15. As the non- 

dimensional distance is increased M e r  still, as m Figure 5.1 Pd (d jet, YR= 3), the values of 

(TifAfUO m the e x t d  with the iarge grid mstded become larger than (z)H/U, for the jet with 

no grid instded by 50 momentum rad& The growth of (u)H/UO for the jet with the large grid 

mnded clearly indiates the influence that the extemai flow field has on its development 
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5.18: Jet centerline and extemal streamwise turbulent velodies normaiized by (LI, (LI, + 
U' ))? Symbols refer to the jet centerline for a @en grid: O, no grid; A, small grid; Cl, 
large grid. Lmes refer to the extemal lwels: -, no &d; -- -- , small grid; - - -, large 
grid. 

The increase m the jet centerline vahe of (<)HICI, when a grid is mstailed is the resuit of the jet 

entraining additional turbulent energy with the extemai fluid. For the jet with a grid installe& this 

renilts in an mcrease in (=)%/LI, over the jet with no extemai turbulence. As noted m the 

previous section, the jet centedme values do not reach an asymptotic limit when normalwd by the 

conventional velocity scaie, U' , for any of the cases &en m Figure 5.17. 



Figure 5.18 presents the same data as Figure 5.17 but with (=)% normolized by (LldU,+UJ) 

rather than (Io- Note also that the axes scales are identical to emphasis the differences in the two 

nonnalïzing techniques. AU enor bars for the precision enors are w i t h  the b i t s  of the data 

symbols and thus not displayed on the plots. The strïkiug feature about this figure is that dl the 

data appears to appmach an asymptotic state. This asymptotic ümit folls withm the range &en by 

(~)E/(UO(Uo+Ue))H=O. 190I0.024 where larger dues tend to correspond to a more turbulent 

extemal coflow. The exception to this is the s d  jet at VR-3 with the large grid maded where 

there is a slight rising trend in the centerbe magnitude due to the increashg extemal value. 

5.4.3 Radial Turbulent Velocity 

T 

As with the streamwise components, radiai profles of the radiai turbulent velocityy ( v  ; )'!, are 

presented in Figures 5-19 through 5.26. The same trends observed m the streamwise components 

are also apparent m the behaviour of the radial turbulent velocity. The graphs, however, are stdi 

presented for complet en es^^ 

When the radial turbulent velocties are normnlized by the conventional sale factor, Uo , the radial 

profiles Eiil to reach a state of smiüarityarity By normalizJng with the new scale Eictor, (Uo(Uo+U,))'A, 

a Gate of smilarity is achieved aithough the downstream location at which this occurs is somewhat 

dependent on the experimentai set but typicPny ocairs between six and eight momentum radü ftom 

the jet exit- The small jet at tlR4, however, requires a greater distance of approximately 20 

momentum radü before smiÜanty occurs. Normalimig with (Io, however, better emphasizes the 

effects of extemal tucbuience which is to increase the magnitude of (vf)%/U0 of the jet with a grid 

mstaiied over that of the jet with no grid instaiied by (x-xJ& 15. At a &en downstream location, 

the larger mcrease corresponds to the jet with the large grid mstalled m the extemal coflow. 

F a  for the d jet at K&3 with the iarge grid instded, the vaiues of (vf)?U, m the jet are 



1 Large Grid 

Figure 5.19: Radial turbulent velocity pronles for the large jet with F7? = 6 
normalued by Uo. x (cm): +, 10; x ,  20; A, 40; O, 60; 0, 80; 0, 100. 
(x-xJ8: +, 0.8; x ,  2.3; A, 5.2; O, 8.6; Ci, 11.8; 0, 14.8. 
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5.20: Radial turbulent velocity profiles for the large jet with VR = 6 
nomiplized by (U'(LIo+Ue))? x (cm): +, 10; x ,  20; A, 40; O, 60; Q80; 
0, 100. (x-xJ8: +, 0.8; x ,  2.3; A, 5.2; O, 8.6; Cl, 11.8; 0, 14.8. 
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Figure 5.2 1: Radial turbulent velocity profiles for the large jet with YR = 3 
normalized by Uo . x (cm): +, 10; x ,  20; A, 40; O, 60; 0, 80; 0, 100. 
(x-xO)Ie: + 4.6; x, ~ . L ; A ,  15.2; O, 22.2;a 29.2; 0, 36.2. 
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Figure 5.22: Radial turbulent velocity profiles for the large jet with = 3 
noimalized by (CI,(U'+U,))K x (cm): +, 10; x, 20; A, 40; O, 60; Q80; 
O, LOO. (x-xJ8: +, 4.6; x ,  8.1; A, 15.2; O, 22.2; Q29.2; o,36.2. 



Figure 5 -23 : Radial turbulent velocity profiles for the small jet with VR 5 6 
normaiized by CI,. x (cm): + IO; x, 20; A, 40; o, 60; O, 80; 0, 100. 
(x-xJ0: +, 3.3; x, 7.3; A, 15.2; O, 23.4; 4 32.4; 0,40.7. 
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Figure 5.24: Radial turbulent velocity profiles for the small jet with YR = 6 
normdized by (LIo(UO+U,))? x (cm): +, 10; x, 20; A, 40; O, 60; LI, 80; 
0, 100. (x-xJû: +¶ 3.3; x, 7.3; A, 15.2; O, 23.4; il, 32.4; 0,40.7. 
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Figure 5.25: Radial turbulent velocity profiles for the s d  jet with VR = 3 
normalized by Cl,. x (cm): +, 10; x, 20; A, 40; O, 60; fJ, 80; 0, 100. 
(w-xJ8: + 9.9; X, 19.6; A, 39.5; O, 60.3; 0, 81.8; O, 105.7. 
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Figure 5.26: Radial turbulent velofity profiles for the 
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approhteiy that of the e x t d  coflow by the iast few travershg locations. ?bis agah suggests 

that the turbulence structure within the jet is slowiy taking on the characteristics of the extemai 

coflow. 

In general, the radiai turbulent velocities are typicaliy d e r  m magarnide and display a flatter 

central core (aiter a few momentum radii fiom the jet exit) than their correspondmg streamwise 

components. 

- 
The behaviour of the centerline radial turbulent velocity, ( v ~ . : ) ' ~  is @en in Figure 5.27 

normalized by Uo and in Figure 5.28 normalized by (U'Uo+LI,))? The error bars for the precision 

emon are al1 wahm the Iimits of the data symbols and thus not reported on the two figures with the 

exception of the last data pomt for the small jet at PR=3 m Figure 5.27. In addition, the radial 

components of the turbulent velocity in the extemal fiow are mcluded for ali levels of extemal 

turbulence, 

The two figures bear a remarkable resemblance to the correspondmg plots for the streamwise 

nubulent veloaty component Figure 5.27 mdicates agah that close to the jet exit, the magnitudes 

of the radial turbulent velocities on the jet centerline and m the extemai coflow are sufficiently 

dinerent that any interaction is mmimized. As the non-dimensionai distance downstrearn is 

increased, the levels in the extemal coflow increase to a level where they begin to inhience the 

magnitude on the jet centerline. Based on the bias errors, this becomes statisticdy significant at 

(x-x,y8= 15. nie West changes on the jet centedme again correspond to the case when the large 

grid is mstalled. For the small jet at YR= 3, the extemai level of (c) In luo agah surpasses that - 
of the jet with no grid instded by (x-x,)/040. This results m a dramatic mcrease in ( v ~ , ~ ) ~ ~ / U , ,  

for the jet with the large grid hstalled. Again note that centetiine values do not reach an asymptotic 

limit over the experimental regime when normalized by the conventional scale factor, LI,,. 
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Figure 5.27: Jet centerlme and external radial turbulent velocities normaiized by U,. Symbols 
refer to the jet centerline for a &en grid: O, no grid; A, mail grid; 0, large grid. Lmes 
refer to the external levek -, no grid; - - - - , small grid; - - -, large grid. 

Figure 5.28 ilhistrates agah that by nomaiking the data with the new scaie Ictor, (Uo(UO+We))'/', - 
an approdte asymptotic vahe is reached of (V,,')~~I(U~(CI~+U~))~~. 156I0.0 17 m neariy ai l  

the experimental cases. The exception to this is again the d jet at KR= 3 with the large grid 

mstailed where there is a slight inmeashg trend in the data due to the increasing values in the 

exîernai coflow. As with the streamwise direction, a higûer lwel of extemal turbulence typically 

corresponds to a higher asymptotic limit. 
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Figure 5.28: Jet centerhe and extemai radial nubulent velocities normalized by (LI, (CI, + LI, ))'A. 
Symbols refér to the jet centeriine for a &en grid: O, no grid; A, smaiî grid; 0, large grid. 
Lines refer to the externa1 levels: -, no grid; -- - - , srnail gRd; - - -, large grid 



5.4.4 Reynolds Shear Stress 

5.4.4.1 Siniilarity of Radial Profies 

As with the nirbuietit velocity, the radial profiles of the Reynolds shear stress, uv are normalized 

by the conventional methoci Ugog Cl: and by the new metfiod using Uo(W,+U,). This results m two 

plots, again given on the same page for ease of cornparison, for each set of jet experiments. These 

plots are given in Figures 5.29 to 5.36. 

in order to better illustrate the radial behaviour of Kr, r/Lo extends to both the positive and 
- 

negative halves of the jet. ïhe resuiting disûliutions show a positive rmxhmm for u v r  when rlL, 

is negative and a negative maràmum for Zr when r/Lo is positive. The location of the maxima 

occurs m the range 0.7s Ir/Lol s 1.0 which corresponds to the peaks m the streamwise turbulent 

velocity profiles and the location of the ma- gradient in the excess mean velocity pronles. 

The trend m the Reynolds shear stress profiles are simüar to those obsewed in the streamwise and 

radial turbulent velocity profiles. When normaüzed by U:, the conventional scale factor, the 

profles fkii to obtain a state of Smilanty and when normnlized by U '  U,tUe), the new scale factor, 

the profiles obtain a reasonable state of sllnilanty after ody a few momentum radü downstream 

fiom the jet exit. The exception to this is again the small jet at mr3 which dispiays Smilarity after 

(x-xO)fû~ 10- The e f f i s  of e x t d  turbulence are best illustrated d e n  the radial profiles of 

are normalized by LI:. As expected f?om the turbulent velocity resuits, extemal turbulence 
- - 

increases the magnitude of u v ,  /U: after (x-x,)/&= 15. The largest mcrease in u v ,  /Uo2 again 

ocaus m the jet with the large gid 9isralled. This is most dramaticaiiy iiiustrated by the results for 

the small jet at V7t-3 given m Figure 5.35. For the jet wah the large grid mstalied the meaçured 

levels of u j U 2  are approximately &e times larger than the other two cases thus making it 

necessary to increase the scde on the ordinate axis for t h  pareicular case. 
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Figure 5.29 : Reynolds shear stress profles for the large jet with U? = 6 noormalized 
by CI, < x (cm): + 10; x, 20; A, 40; O, 60; Q80; O, 100. (x-x,)/8: + 0.8; 
x, 2.3; A, 5.2; O, 8.6; 0, 11.8; O, 14.8. 
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Figure 5.30 : Reynolds shear stress profiles for the large jet with YR = 6 noxmaiïzed 
by Uo(U0+(l,). x (cm): +, 10; x, 20; A, 40; O, 60; Cl, 80; 0, 100. (x-xo)/e: 
+, 0.8; x, 2.3; A, 5.2; O, 8.6; 0, 11.8; 0, 14.8. 
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Figure 5.3 1 : Reynolds shear stress profles for the large jet with YR = 3 normalized 
by (Io2. x (cm): +, 10; x, 20; A, 40; O, 60; 0, 80; O, 100. (PX,)/& +, 4.6; 
x, 8.1; A, 15.2; O, 22.2; Q29.2; O, 36.2. 

Figure 5.32 : 
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Reynolds shear stress promes for the large jet with VR = 3 normalized 
by UO(UO+U'). x (cm): +, 10; x, 20; A, 40; o, 60; 4 80; O, 100. (x-xo)18: 
+, 4.6; x, 8.1; A, 15.2; O, 22.2; Q29.2; 0,36.2. 



Figure 5.33 : Reynolds shear stress profiles for the 4 jet with U? = 6 normalized 
by U,'. x (cm): +, 10; x ,  20; A, 40; O, 60; Cl, 80; O, 100. (x-q,)/0: +, 3.3; 
x, 7.3; A, 15.2; O, 23.4; tl, 32.4; o,40.7. 

Large Grid 

Figure 5.34 : Reynolds &eu stress profiles for the s m d  jet with Ut = 6 normalized 
by U'(Uo+U,). x (cm): +, 10; x ,  20; A, 40; O, 60; Cl, 80; O, 100. (x-xJ0: 
+, 3.3; x, 7.3; A, 15.2; O, 23.4; Q32.4; o,40.7. 
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Figure 5.3 5 : Reynolds shear stress profiies for the small jet with VR = 3 normalized 
b y u : x ( m ) :  +, 10; x, 20iA, 40; 0, 60; O, 80; O, 100. (~ -~ ,ye :  +, 9.9; x, 

19.6; A, 39.5; O, 60.3; 0, 81.8; O, 105.7. 

Figure 5.36 : Reynolds shear stress profiles for the smail jet with VR = 3 normalued 
by UAU'U,). x(cm): +, 10; x, 20; A, 40; O, 60; Ci, 80; 0, 100. (PX,)/& +, 
9.9; x, 19.6; A, 39.5; O, 60.3; 0, 81.8; 0, 105.7. 



5 4 - 4 2  Average Mminiunt Behavimr 

The absolute nwcimum value of the Reynolds shear stresq 1 atm, taken as the average of the 

two experimentai maxima on both the positive and negatbe r-sides ofthe jet, are ploned in Figure 

5.37 normalized by Ut and m Figure 5.38 no-d by Uo(Uo+Uc)- Also mcluded m the figures - 
is the a p p r o h t e  level of Reynolds shear stress in the extemal coflow, 1 u v,l, for reference 

puposes. Error bars have been inchided for data points that have precision error bars that extend 

beyond the limits of their symbols. 

When the maximum Reynolds shear stress is normaiized by c, as m Figure 5.37, the data fds to 

reach an asymptotic level which would indicate a aate of shkitysmilaris. The effects of introducing a 
- 

grid mto the exîemal flow is to mcrease the magnitude of 1 z ï  v,l,/U' by a downstream location 

of approxhnately (x-xo)/O= 15. The largest mcrease again corresponds to the jets with the large 

grid installed. It is of interest to note that the extemal levels of the Reynolds shear stress are 

rehtively small in comparison to the jet maxima. (The extemal levels with no grid instded actually 

faii on the horizontal axis of the graph.) The exception to fhis is the smaü jet at C?Z=3 with the 

large grid instaîled. This would seem to mdicate the Reynolds shear stresses in the jet are not 

greatly dected by theu correspondhg extemal levels, but depend on other quantities withm the 

jet. Physicaüy this makes sense since the Reynolds shear stress ternis are responsible for the 

transfer of turbulent momentun between the streamwise and radial Reynolds normal mess te-. 
- 

Thus, the magnitude of u v ,  m the jet is more dependent on the levels of the normal stresses than 

the shear stresses in the extemal coflow. 

Normalking the maximum Reynolds shear stress using Wo(Clo+Ue), as m Figure 5.38, shows that 

the appro><imate asymptotic ümits are reached although there is a stight hump in the profile over 

the range of Ss(x-xo)/Bs20. in addition, the presence of a grid in the extemal coflow results m a 

slightly higher asymptotic limit d e r  ( x - x J b  I 5. The overali average asymptotic iimit, excludmg 

the nui for the srnail jet a t  MZ=3 with the large grid mstalled, is ~ ~ r ~ m m / ( ~ o ( ~ o + ~ e ) ) = =  0.012 

M.002. The limit for the smalljet at C12~3 with the large grid mstalled is 0.019. 
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Figure 5.37: Average maximum Reynolds shear stress normaiized by Uo2. Symbols refer to the 
jet for a &en grid: 0, no grid; A, d grid; O, iarge grid Limes refer to extemal levels: - , no grid; - - - -, d grid; - - -, large grid. 

5.4.5 Summary of Reynolds Stress Results 

When the Reynolds stresses are nomialized by the conventional method (turbulent velocities by Uo 

and Reynolds shear messes by LI'), the disaiutions Ezil to reach a aate of simünnty over the 

downstream regmie covered by the four sets ofjet experiments. NormalVmg the Reynolds stresses 

with the new method (turbulent velocities by (Uo(Uo+Oe))))Y. and Reynolds shear stresses by 
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Figure 5.38: Average maximum Reynolds shear stress normaiized by (Io( Uo+ll'). Symbok refer 
to the jet for a @en grid: O, no grid; A, srnaii grid; O, large gxid. Lmes refer to extemal 
levels: - , no grid; - - - - , small grid; - - -, large @d. 

U,(U,+U,)) effectively makes the distributions similar ofien within the fbst ten momentun radü 

fiom the jet exit. It can therefore be concluded that the Reynolds stresses (both normai and shear) 

in a coflowing jet scale with (U,(Wo+U,)) and not with U: which is the conventional method of 

scaling Reynolds stresses. Thus the new scale fhaor is the appropriate scale factor for norrmliPng 

Reynolds stresses This is advantageous m a modehg sense since the turbulent velocities are now 

dire* proportional to the new mean velocity d e  and can thus be rephced by it in the equations 

of motion. 



The asymptotic limits for the centerhe turbulent velocities are &en approhte ly  by: 

(<)!A/(Uo(U,,+UJ)qc_= O- 1 NMI.024 mis - 
(vV2 )?(uo(&+~c))K~~. 15at0.017 mk 

while the asymptotic Iùnit for the maximum Reynolds shear stress is given approximately by 

Inaoduchg a turbulence generating grid mto the extemal coflow results m larger magnitudes for 

the turbulent velocities and Reynolds shear stresses starhg m the range of 15 s(x-xJ0 5 20 with 

the largest magnitudes corresponding to the case with the large @d installed. 

5.5 Integrai Length Scales 

The streamwise and radial mtegrd length scafes L, and L,, obtained by multiplybg the integral 

cime scales of the streamwise and radial turbulent velocities by the local mean velocity, provide an 

mdication of how the average to larger energy containhg eddies withirï the jet Vary with distance 

downstream. Precision errors on mdividual values of the integral length scale, normaked by the 

jet radius, range between 2% and 20% dependmg on the jet initial conditions, distance downstream 

kom the jet exit, and the level of turbulence both withm the jet and the extemai coflow. To reduce 

the magnitude of this error, an average mtegral t h e  scale is obtamed for a given jet cross section 

which is then converted to an mtegral length scale using the average or top-hat mean velocity, Ü, 

for the &en jet cross section. This not ody reduces the preckion error by a factor of 1 1 6  where 

n is the number of data points used in the average, but makes the convecting velocity equal to the 

average velocity wahm the jet. 

The strearmvise integral length scales nonnahi by the jet radius, R, are &en m Figure 5.3 9 while 

the radial componcnts are &en m Figure 5.40. The symbols give the average vahe of the mtegral 

length sale over a piven jet cross section normalized by the jet radius. AU precision error bars are 

found to be within the limits of the data symbols and thus not reported on the figures. The dashed 
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Figure 5.39: Average streamwise integrai length d e s  normalized by the jet radius. Symbols 
refer to the jet for a given grid: O, no grid; A, smaii grid; 0, large grid Lmes refer to 
leveis in the extemal flow also normaîjzed by R: - - - - , small grid; - - -, large grid. 

h e s  give the magnitude of the integral length scales m the extemal flow, also normalized by the 

jet radius at a &en downstream location. Accurate vahies for the mtegral Iength scales in the 

absence of grid-generated turbulence are not obtainable due to the low turbulence levels coupled 

with the low energy noise of the LDA system 

For the jet without a grid mstalled, ail four plots m Figure 5.39 mdicate the streamwise integral 



(c) Small Jet, VR-o ! :(d) Small Jet, W 3  

Figure 5.40: Average radial integral length scales nonmked by the jet radius. Symbols refer to 
the jet for a &en grid: O, no gid; A, small @d; U, large grid. Lines refer to levels m the 
extemal flow also normalized by R: - - - - , smd grid; - - -, large grid. 

l e n e  scale is directly proportional to the jet radius which is the radial geometric scaie of the flow. 

The asymptotic value ofLJR varies fiom 0.39 for the large jet at VRr6 up to 0.57 for the smaii 

jet at K&3 with an average vahe of approhtely 0.46. 

When the large grid is mstaned m the extemal flow, the extemal vaiues of Lm,, /R are quite large m 

cornpanson to the average value m the jet with no grid mstalled. As a result, an mcrease in the 



magnitude of LJR m the jet occurs m an the experimental sets very sbortiy after the jet exit, 

roughly around (x -xJ Iû4 .  For the large jet at VRe6, the magnitude of L, I R  is ody slightly 

larger than that for the jets with no grid and small grid installeci, As the non-dimensional disiance 

is increased, as m Figures 5.39b and 5 . 3 9 ~ ~  the magnitude of L IR m the jet with the large grid 

inaalled increases towards the extemal level. In Figure 5.39c, the last two data pomts actuaily 

decrease m magnitude at a rate sîmiiar to that of the e ~ e m d  fiow. This is more apparent in Figure 

5.3 9d where there is an initial rise m LJR in the jet up until (x-xJ0 = 25 d e r  which L, IR decays 

as the Ievel in the extemal coflow is approached. 

When the small gxid is mnailed, the extemai value of L,jR drops to w i t h  the same order of 

magnitude as the average values withm the jet wah no grid iastalled, typica.Uy by 5 to 15 momentum 

radü downstream nom the jet exit. In fact, by the lan traversing location m each of the 

experimental sets, the level o f  L.,, /R m the extemal for the s m .  grid has decreased almost to the 

point as that found in the jet without a grid mstded Thus it is not surprishg that the values for 

LJR m the jet with the small grid instaned are only slightly iarger than those for the jet with no g i d  

installed. 

For the radial integral length scales Figure 5.40 mdicates again that for the jet with no grid 

inaaiied the integral length scdes are proportional to the radius of the jet. This result is not too 

surprishg since one could mtuiiively guess that the radial mtegral scale would be proportional to 

the radial geometric sale. Recall, however, that L, by its definition (see Chapter 2) is not stnctly 

a true radial scale since it relies on the average mean streamwise velocity for conversion fiom a 

temporal scale to a spatial scde. The asymptotic value of LJR for the jet with no grid mstaiied 

ranges 6om 0.14 for the large jet at VR=6 to 0.23 for the smaU jet at VRs3 with an average value 

of O. 18. (hi average, the radial integral length scales are approximately 40% the magnitude of the 

corresponding streamwise components. 

When the large grid is mstaiied m the extemai, the level of Lm, IR  is roughly haif an order of 

magnitude larger than the average level m the jet with no grid h d e d  which is the same trend 



observed for the streamwise component Despite this smiilinty m the extemai values, the 

behaMour ofLJR for the jet with the large grid mstaûed îs, however, somewhat different than 9s 

streamwise counterpaxt. The magnitude of LJR does not start to mcrease above the jet with no 

Md mstded untii (x-x0)/0= 15, which corresponds to the downstream location where the turbulent 

velocities for the jet with tbe lvge grid mstded began to deviate nom the no grid case. In 

addition, there is only a modes mcrease in LJR wïth the iarge grid hstalled for the large jet at 

CR4 and the srnail jet at VR.6 in compnrison to thei. streamwise components However, for the 

small jet at GR4, the mcrease m LJR is quite significant wirh the ha three data points actuaily 

fahg on the c m e  for the external b e l s  of LJR thus mdicating that the jet with the large grid 

mstded is acquiring the characteristics of the extemal flow. 

m e n  the d grid is mstailed, the external lwek of L,JR again drop to within the same order 

of magnitude as the average values in the jet with no grid Thus there is only a minor mcrease m 

LJR for the jet with the d grid gistaiied over the no grid case. 

in summaiy ,  both the average smamvk and radial integral lengths for the jet with no grid instded 

m the extemal flow are proportional to the radius of the jet. Increasing the level of turbulence in 

the extemal flow with the d grid r e d s  m ody minor mcreases m the average integral length 

scales within the jet over that of the jet with no @d mstalled. By insertkg the large grid m the 

extemal flow, however, the average streamwise mtegral length scaies become iarger than those for 

the jet with no grid instaiied by (x-xo)le=5. The average radial mtegrai length scales did not begh 

to do this und (x-x,)/8~ 15. Also, by the final three travershg locations for the d jet at K???zJ~, 

the magnitude of the average integral length d e s  in the jet are comparable to those m the extemal 

flow, especially m the radial directioa 



5.6 Power Spectral Density (PSD) Functions 

The streamwise and radial power spectral density fùnctions, E,V) and E,V), obtained fiom the 

measured nistantaaeous velocity time series, represent the âistriiution of turbulent kinetic energy 

over the rage of fiequaicies that comprise the velocity signal The precision error associrted with 

a signal spectrum is approhtely 32% which makes cornparison with other spectra questionable, 

especially if the spectra have only slightly difEerent energy levek To reduce this high level of 

precision error, an average turbulent energy spectra has been calculated for a given jet cross 

section. This reduces the precision error by II& where rr is the number of spectra used in the 

average. Typicaiiy, rr varies between 15 to 20 thus givïng a precision error on the order of 8% for 

the average specûa. 

The spectra have also been converted 6om the fiequency domain,f, to the wavenumber domain, 

k, since the turbuient energy content of eddies with diameters of order k-' can be determïned diuectly 

nom the spectrum. As with the mtegral scales of motion, a spatiai meanirement is easier to 

interpret than a temporal or fiequency based meosmement- To convert fiorn the fiequency domain 

to the wavenumber domam, use is again made of Taylor's theory of fiozen turbulence, namely: 

and: 

where the conveaing velocity is again assumed to be equal to the average mean velocity, Dy across 

the jet cross sectiot~ It should be kept m mind that Taylor's theory of fiozen turbulence is only an 

approximation tbt is reasonable in homogeneous turbulence and thus shouid be Mewed with some 

caution when applied in shear flows. 



The average turbulent energy spectnun represents the average disniution of turbulent energy per 

unit mass over the eddy sizes that comprise the fiow at a &en downstream location. These spectra 

can therefore by used to imistrate how the turbulent energy distnibution changes with downstream 

location as weil as with dinerent turbulent energy leveis in the extemai cofiow. T&e redting 

streamwise turbuient energy spectra, E, (k), are &en m Figures 5.4 1 to 5.44 for each of the 

experimental sets To give a representative depiction of the downstream development, six profiles 

have been selected for each lwel of extemal turbulence. In addition, the a p p r o h t e  location of 

the mtegral length d e s  (Lpkk1) have been mchided on the spectra for reference purposes to mark 

the evolution of the larger energy containhg eddies. Also mcluded m the figures are the turbulent 

energy spectra for the extemal flow with the smal i  and large grids installed. Typicai precision 

errors for these extemal spectra are on the order of 13%. A reasonably accurate turbulent energy 

spectrum for the extemal flow with no grid mstded could not be obtained due to the low level of 

turbulent energy coupled with the low energy noise of the LDA system. 

Close to the jet exit, as for the large jet at KR=6 &en in Figure 5.4 1, the average turbulent energy 

ivithin the jet is far greater than that m any of the extemal coflows. Thus the relative downstream 

molution of the average spectra within the jet are vhuaiiy unaffected by the presence of turbulence 

in the extemal flow. At fdither non-dimensional distances fiom the jet exit, as for the large jet at 

CR4 and the small jet at MZr6 given respectiveiy in Figures 5.42 and 5.43, the average turbulent 

energy within the jet decreases to a level where the turbulent energy with8i the extemal coflow 

begins to affect the behaviour of the average jet spectra. This is evidenced by the mcrease in the 

turbulent energy content at the smaller wavenumbers (or iarger length scdes) within the average 

jet spectra when a grid is mstalled m the extemai flow. At the f d e s t  non-dimensional locations, 

as for the smail jet at VR=3 given m Figure 5.44, the average turbulent energy within the jet has 

decreased to the levels m the extemal coflow when a grid is instalied. At the -est pomt, the 

average spectra ofthe jet, ahhough containhg slightiy more turbulent energy at ali wave-numbers, 

has acquired the same spectral shape as that in the turbulent e x t d  coflow. The greatest influence 

ofthe extemal turbulence on the evolutîm of the average turbulent energy spectra occur when the 

large g i d  is mstalled m the extemal flow. 











The average radinl turbulent energy spectra, E'(k), are presented in Figures 5.45 To 5.48 in a 

Smilar maimer as the streamwise components. Note that the shnpe of the average radial turbulent 

energy spectra diftier fkom the streamwise component by exhibithg a peak m the spectmm m the 

viciuity ofk- 100 m-' which, m a given experimental set, shifts to smaûer wavenumbers as distance 

f?om the jet exit is mcreased Also, the location of the integral length scales occurs M e r  d o m  

on E,(k) than for E, (k). 

Aside fiom the süght differences m shape, the behaviour of EJk) is not radically diffierent fiom 

E,(k). For the large jet at m=6, the turbulent energy content of the extemai flow with the large 

and small grids installed is too srnail at ail wavmumbers to drarnatically affect the average jet 

spectra. As the non-ditneasional distance is mcreased, as for the Iarge jet at VR=3 &en in Figure 

5 A6 and the small jet at VR.6 &en in Figure 5.47, the average turbulent energy wahin the jet 

decreases to a level that is Înfluenced by the level in the extemai flow. This is again evidenced by 

the greater amount ofhnbdent energy in the smder wavenumbers (or larger length scales) m the 

average jet spectra when a grid is mstalled by the final few travershg locations. This is especially 

apparent in the jet with the Iarge grid mstalled in the extemai flow. As the non-dimensional 

distance is mcreased M e r ,  as for the small jet at ms3 @en m Figure 5.48, the turbulent energy 

within the jet continues to drop util we begin to see the shape ofthe average spectra emulating 

the shape of the spectra for the extemal fiow. 
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5.7 Normalizing Variables and Mathematical Similarity 

The experimental redts mdicate that a fom of similanty m the various profiles is obtained when 

the mean velocities are normnlized by U,, and the turbulent velocRies by (CIo(Uo+U'))" with the 

radial position normalued by Lw In addition, a common behaviour for IIe /CIo for jets in nearly 

laminar coflows is obtabed when the do- distance is normalued by the momennim radius, 

0. S i m i M y ?  a common radial behaviour is obtained when the radius and dovmstream distance are 

both normalued by 8. 

in Chapter 2, complete mathematicai similanty of a jet in a coflow was considered with the end 

result being the derivation of equation (2.23) which gives the conditions under which complete 

similarity can be achiwed Substituthg the above scales mto the equation, however, does not 

sati* the eqyation mathematically. Thus it must be concluded that the simüuity indicated by the 

nomalized experimental results is only partial similady which may or may not apply outside the 

current experimental regime. 

5.8 Summary of Experimental Results 

Similarity of the excess mean velocdy profiles are obtained when they are normalized by the 

centeriine excess mean velocity? LIo, whüe simüuity of the turbulent velocity profles are obtamed 

when they are normalized by a new scaliag factor, (Uo(Uo+CIe))X Nomializing the turbulent 

velody profiles by the conventionai s d e  factor, LI,, Wed to produce Smilar profifes by the end 

of the experimental regime. It is thus concluded that a jet in an extemal coflow bas two velocity 

scales; one for mean velocities and one for the turbulent velocities. In addition, both the streamwise 

and radial integrai length scales are found to be proportional to the jet radius. 

For the jet m the absence of any grid-generated turbulence, the centerIine excess mean velocity 



follows UFf1 up to (x-xJû=300 with the radius folIoWmg R=? untii (x-xo)/O= 100 after which 

there is Mme indication that Rd! When a jet issues into a turbulent externai coflow, one can 

expect, based on the p n ~ t  results, that: 

a) the centerline excess mean velocity, U, wül decay fister beyond (x-xJ8 -20 to 25. 

b) the jet radius, R, win mcrease fister beyond (x-xJ0-20 to 25. 

c) the centerline turbulent velocities and Reynolds shear stresses, normaiized by U' will 

mcrease fister beyond (x-xJ0- 15 to 20. 

d) the average strePmwise mtegrpl length scales, normalized by the jet radius, wiU increase 

fàster d e r  (x-xo)/8-5 to 10 while the average radiai mtegrai letigth scales wiU mcrease 

faster d e r  (x-xJe- 15 to 20. 

m cornparison to the same jet in a nearly laminar extemal cofiow. 

The present resdts clearly show that the effects of grid-generated turbulence on the development 

of a cofiowing jet are not negligiible and are dependent on the scales of turbulence in the two flow 

fields. The extemal turbulence that has the largest impact on the evolution of the jet occurs when 

the large grid is installed m the external coflow. For this case, the extemal coflow contains more 

turbulent energy located at iarger lai@ d e s  than for the case with the smaii grid instded, which 

in nirn, contains more turbulent energy at larger le@ scales than for the case with no grid 

instailed in the extemal In Lct, by the finai travershg locations for the s m d  jet at C?Z=3, the 

average turbulent energy spectnun wiihm in the jet has acquired the same shape and almost the 

same turbulent energy level as that found m the externai coflow with the large grid installed thus 

indicating that the jet fluid is becoming mdistinguishable nom the external f i d .  



Chapter 6: Integral Mode1 Development 

Introduction 

ùitegral mode4 in combination with an entrainment velocity fùnction, have been used extensively 

m the field of air ponimon m o n  modehg to predict the trajectory and radial spread of jets and 

plumes in the natural environment. Their success can be attriiuted to their relatively simplistic 

formulation which is based on the NaMer-Stokes equations and realistic simpüfying assumptions. 

This produces a set of coupled ordinary differential equations that can be solved numericaily using 

a Runge-Kutta solution algo* ïbese equations are typically fkst order approximations to the 

M y  turbulent equations of motion since it is assumed that all the effects of turbulence cm be 

incorporated into the entrainment velocity hction. 

This chapter begins with a discussion of the phenomenologicai considerations mherent m the 

physics of two interacting turbulent fields 'Ihis Win be foiiowed by a brief review of the goveming 

equations of motion and the Snpiaymg assumptions appropriate for an isothermal, axkymmetrical 

jet in a coflowing extemd Stream Next, the posnilation of the various entrainment velocity 

fùnctions that are appropriate to the h&i, mtermediate and finai phases ofthe jet behaviour wiil 
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be presented. lbis win be foiiowed by the combmation of the entramment velocities for the three 

phases mto a single continuous entrainment velocity f'unction. Lady, the predicted results will be 

compared to experimental data. 

6.2 Phenomenological Considerations 

Before an attempt is made at mathematicaiLy modeiling a coflowing jet in a turbulent external flow, 

the phenomenological considerations inherent to diniiaon, d g ,  or entrainment of mteracting 

turbulent flow fields wîU first be examined m order to elucidate the physics of the problem 

In generai, the character of turbulence in any flow can be uniquely descnibed by its turbulent energy 

spectnun which represents the distribution of nirbuient energy over the range of freguencies or 

length scales that comprise the turbulent flow field Difnision or entrainment processes do not, 

however, occur over the entire spectrum range but tend to occur a d e s  comparable to the larger 

integrai scales of the flow (Tennekes and Lumley, 1972, and Towsaid, 1976). In addition, the 

turbulent energy spectnim, when mtegrated over the entire fiequency or wavenumber range that 

comprises the spectrum, yields a vahie equsl to the sguare ofthe turbulent velocity. Thus, for flows 

where dinuson and entrainment are the dominant concem, the character of the turbulence cm be 

adequately d e m i  by a characteristic turbulent mtegral length scale and a characteristic turbulent 

velocity scale. 

When two turbulent flow fields are mteracthg, such as a turbulent jet and a turbulent extemal 

CO flow, the degree of mteraction wül be dictated by the relative magnitudes of the characteristic 

scales of turbulence in both flows For the jet to be dynamicdy infiuenced by the external coflow, 

without resulting in the jet meandering, the extemal cofiow must have eddies which correspond to 

or are on the sime order of magniaide as those wahm the jet. Near the exit of the jet, the turbulent 

energy w i t h  the jet, generated primuily by the shear between the jet and extemai fluid, is much 

greater than thot m the extemal coflow and centred about lmgth scaies that are much smaller than 



those m the extemai coflow. Smce the scdes of turbulence in the two flow fields are so different, 

their mteraction wili be mhbized- Thus the difhion of the jet near the jet exit wiil be primvily 

detexmined by the seKgenerated turbulence ofthe jet. This defines the initiai phase ofjet @sion 

(Slawson and Csmady, 1967 and 1971). 

As the jet evolves downstream, the turbuient energy content of the jet Buid dimmisbes due to the 

decrease in shear between the jet &üd and the extemal Bud. In addition, the integral length scales 

within the jet, which scale with the radius of the jet, mcrease with distance downstream Thus the 

turbulent energy content within the jet decreases and shifts to larger length scales with distance 

fiom the jet exk At some downstream location, or downstream range, the turbulent energy withio 

the jet wüi have decreased nitlnciently and shated to large enough length scales that they wdi 

correspond to those within the extemai coflow. At this poht, the turbulence m the external coflow 

will begin to dynamicaliy infiuence the jet behaviour. This is the start of the second stage ofjet 

growth where the extemal turbulence eventually controls the &sion and entrainment within the 

jet. Slawson and Csanady (1967 and 1971) subdMde this second stage mto an intermediate phase, 

where the external turbulence with eddies m the mertiai subrange of the turbulent energy specmun 

dominates the jet e g ,  and a final phase, where the energy containhg eddies of the extemal 

tubdence dominate the mkhg. 

Realiaicaiiy, however, the evolution of a jet in a turbulent extemai coflow is likely to contam 

considerable ovedap between the various phases as one phase merges with another to dominate the 

diaision of the jet fluid 

6.3 Goveming Equations 

To simp1i.Q the M y  turbulent threadimensional Navier Stokes equations mto a form that is 

tractable, some SnpHjhg yet realistic assumptious regardmg the fiow fields are required. For the 

coflowing jet, it is assumed that the flow is steady, mcompressible, and fidy turbulent shortiy after 



the jet exit wah a Reynolds number dEciemiy iarge that viscous efkts cm be neglected It is also 

assumed that the jet is not subject to any mean flow m the azimutha1 direction. The extemal mean 

fiow is assumed to be d o m  both in magnitude and direction. The nrst order eqyations 

representing the consmation of mass and the conservation of streamwise momentum can then be 

reduced to (see Appendix A): 

respectively where U(x, r) is the mean velocity, R(x) k the radius of the jet, and v, is an entrainment 

velocity fhction that needs to be specined. These two equations represent a first order 

approximation to the fidi govemhg equations and thus do not âiredy account for the effects of 

turbulence, either within the jet or in the extemal flow. The effects of turbulence can, however, be 

accounted for mdiredy through the specification of an appropriate entrainment velocity hction. 

In order to evahate the mtegnls m equations (6.1) and (6.2), an asnimption about the mean 

velocity pronles is required. In Chapter 5 it was shown that the excess mean velocity profiles 

withm the jet, for d eqerimental sets, are approximately similar &a a short distance fiom the jet 

exit with a profile shape tbat is closely approximated by a Gaussion hction. By asswning 

similarity of the mean velocity profiles, however, the detailed radial structure of the jet is 

suppressed since the profde becomes chmcterized by a single length scde and a single mean 

velocity scale. Thus any mean velocity profile shape can be used without loss of any additional 

physical infiormation (Morton, 196 1). In addiiion, a Gaussian proiiie can be represented by its mean 

and standard deviation or width which are essentidy the parameters used to defhe a top-hat or 



average profile- Thus a simple top-hat velocity profile wili be aassumed as is conmuin for 

atmospheric deases. This greatiy reduces the complexïty of the mtegrations since ail variables m 

a top-hat profïie are a d  constant across the radius of the jet It should also be noted that the 

assumption of siada&y oftbe mean velocity profiles restxïcts the application of the mtegral mode1 

to downstream locations Iner which the experimental profiles exhibit saiilanty. 

The conservation of mass equation, assuming a top-hat mean velocity profle, becomes: 

where U is the top-hat or average mean velocity withiu the jet over O s r s R SimiIarIy. the 

conservation of x-momentum becomes: 

Equations (6.3) and (6.4) represent a pair of coupled ordmary difEerential equations that cm be 

solved for D(x) and R(x) once an entrainment velocity hct ion has been spe&ed- 

6.4 The Entrainment Velocity Function 

The ri& hand d e  of the conservation of m a s  equation (equation (6.3)) can be interpreted as an 

efféctive eddy diffiimày, K, (Siawson and Csanady, 1967) which is proportional to the product of 

a characteristic dif£ùsion length sale and a characteristic turbulent velocity scale. This 

interpretation of equation (6.3) assumes that the jet radius is proportional to the characteristic 

*on length scale and that the entrainment velocity is proportid to the characteristic turbulent 

velocity sale  responsiie for the &hg E the jet. From the experimentai data presented in 

Chapter 5, the ratio of the jet r a U  mtegral length scale (i-e. a a s i o n  length scale) to the jet 

radius, LJR, is neady m a n t  d e r  an initial development region for the jets with no grid and the 



smaü grid mstalled d e  for the jets with the large grid mstaiied, the behaviour of LJR, whiie not 

arictly constant, can be approximated as such. Thus the fist part of o u .  interpretation on the 

continuity equation is reasonably satisfied. What remains to be detennined is the fimaional fonn 

of the entrainment velocity such that it ir proportionai to the characteristic turbulent velocity 

domïnating the mixing of the flow. 

If the downstream wolution of the jet is dMded mto tkee phases such that the di8[ùsion and 

entrainment in each phas is controlled by a unique characteristic velocity scale of turbulence, then 

a unique entrainment velocity fùnction wiO be required for the Biitial, mtennediate and final phases 

to fiilly predict the behaviour of a jet m a turbulent extemal coflow. The following sub-sections 

detail the development of v, for each phase. For the initial phase, the predicted jet behaviour will 

be immediately compared to expimental data for jets m laminar coflows. For the mtermediate and 

final phases, howwer, cornparison with experimental data will wait until a complete entrainment 

velocity hction is defmed 

6.4.1 The Initial Phase 

When the jet's self-generated turbulence dominates the mixing process, whether it be for a jet m 

laminar extemal coflow or for a jet m the initlll phase m a turbulent extemal coflow, the 

entrainment velocity shouid ideaJly be proportional to a mean velocity or a mean velocity 

combination within the jet which, in tum, should be proportional to the turbulent velocity 

responsiile for entraining extemal fluide Setting the entrainment velocity proportional to a mean 

velocity combmation greatiy simplifies the problem since the solution neither requires the 

specification nor the prediction of any turbulent velocities within the jet. 

A jet m a coflow has two characteristic mean velocities: that of the jet, u, and that of the extemal 

coflow, U' nie  sinplest technique to combine these two velocities is as a mean velocity merence 

or as the excess top-bat mean velocity fien by ~o=u-U''. Ushg this method, Morton (196 1) 



proposes an entrainment velocity of the f o m  

and suggests that the en trabmeat constant, a, is 0.116. Physicaiiy, Moaon (196 1) argues that the 

entrainment of e x t e d  fiuid vises fiom the turbulence that is produced by the shear generated by 

the ciiffierence in the characteristic mean velocities thus suggestiag that the turbulent velocities need 

to scale with the mean velocity Merence. This speculation, however, is not supported by the 

experimental data m Chapter 5 which cleady shows that the turbulent velocities do not scde wah 

u o  - 

The experimental resuits, however, do show that the turbulent velocities scale with (U,(Cl,+LI')~, 

the new turbulent velocity scale factor. Ifthis scale fàctor is rewritten m terms of the average 

excess mean velocity, a new entrainment velocity hc t ion  can be proposed as: 

where the vaiue of the entrainment constant, a, must be determined fiom the available data. This 

new entrainment velocity is now proportional to a mean velocity scale which has been 

experimentally show to be proportional to the turbulent velocities within the jet which, in tum, are 

responsible for entraining extemai 0uid bto the jet. 

The above two entr-erit functim have been used in conjunction with equations (6.3) and (6.4) 

to predict the behaviour of UJu0 and RI8 for jets m a iaminar extemai coflow. The data for the 

srnaIl jet at K R 4  at a downstream location of (x-xo)1&3. 5 (roughiy corresponding to the location 

where both the excess mean velocity and turbulent velody profiles become Smilar) is used to 

initiate the solution aigorithm for both entrainment hctions. The results are &en in Figures 6.1 

and 6.2 for (1,/?7, and R/8 respectively dong wah the m e n t  experimentai data with no grid 

installed and the experimental data of six other studies on jets m b a r  extemal coflows. 
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Figure 6.1: Cornparison of predicted behaviour for (/'Do with experimental data for 
jets in laminar cofiows. 
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Figure 6.2: Cornparison of predicted behaviour for Ri0 with eqerimental data for jets 
in Iaminar cofiows. 



The predictions usiug the entrairunent velocity fimction of Morton (196 1) (qa t ion  (6.5)), &en 

as the solid iine m both figures, foilows the data reasonably wen up until (x-xJûs20 after which 

they start to mcreasiagiy imder p r d c t  the behaMour of both LI, /K and R/8 as the distance 

downstream is increased. lacreasing a to vaîues greater than 0.1 16 m order to match the fàr 

downstream data r ed t s  m an over prediction of& /q and R/8 closer to the source. Thus, over 

the given solution regime, the entrainment velocity fimctiotl of Mo- (196 1) c a ~ o t  correctiy 

predict the behaviow of UJC/~ and HO. Macqdci  (1962) reached essentiany the same conclusion 

by aating that a could not remah a constant but had to depend weakly on x. 

As expected based on the discussion above, the predictions using eqpation (6.6), &en as the 

dashed h e  m the two figures, betta predicts the behaviow of U, /Do and R/8 over the entire 

solution regMe than that based on Morton's entrainment velocity. The value of the entrhent  

constant, a~0.0922, is an average valw fiom the studies @en in the two figures. The range of 

values for the entrainment constant m ail the midies is 0.08sasO. 105 where there appears to be 

some dependency on the jet mode1 diameter and, to a lesser extent, the initial jet velocity ratio. As 

the jet diameter is hcreased or the initial velocity is increased, the magnitude of the entrainment 

constant decreases thus makhg a inversely dependent on the initial momenhim Resumably, if 

(fl(PCI,))" was a scaie fictor that reçuhed m true mathematicai sbdady,  than the value of a 

would be constant. 

6.4.2 The Intermediate Phase 

In the mtemediate phase, it is assumed that the extemal turbulence in the inertiai subrange of the 

turbulent energy spectrum wilI dominate the diffiison and entrainment withm the jet. The location 

of the meitial subrange within a spectrum is given by the wavenumber range k, « k « k, where k, is 

a typical wavenumber markkg the range of the iarge energy contaking eddies and k, is a typical 

wavenumber markmg the range of the m a i l  dissipative eddies. The concept behind the memal 



subrange as put forth by Kolmogoroff is that, nt sufücientiy high turbdeat Reynolds number, the 

energy speanim m the range of k, ii k k, is mdependent of the fluid viscosity and is solely 

determhed by the energy dissipation rate p a  unit mass, E, which has the d s  of m2/$ (Hmze, 

1975). 

Based solely on dimensional reasoning, a characteristic turbulent velocity or entrainment velocÎty 

can be defiued for the mtemediate phase ofjet growth uskg the e x t d  aiergy dissipation rate, 

E,, and an external turbulent Iength d e ,  I ,  typical of the meriial subrange. This yields: 

Equation (6.7) cm also be obtained by assuming that the effective turbulent tiüfûSnnty due to the 

external turbulence can be evaluated by supposing that the turbulent energy of the extemal eddies 

is "smeared" over a wavenumber range of width k (Fimk, 1977). The turbulent energy content 

shodd therefore be proportional to both the maximum vahe of the power spectrai density function, 

E(k), in the intemal as weil as the wavenumber band width. Smce the PSD fùnction in the inertial 

subrange is a fhction of the dissipation rate only at a &en wavenumber, ie: 

the effective eddy WsMty can be evaluated fiom: 

This gives a value of: 

Since k is a typicai vahe in the wavenumber band width of the ineitial subrange, its inverse wili 

yield a typical turbulent leigth scaie, 11, of the memal subrange. Also since K=Rve, the entrainment 



velocity for the mtennediate phase again becornes proportional to ( E  je)'". 

The selection of a length sale characteristic of the extemai turbulence in the merM subrange, 

however, must stiil be made. Tennekes and Lumley (1972) state that the energy exchange between 

the mean flow and the turbulence is govemed by the dynamics of the large eddies with scales 

comparable to the integrai length d e s .  Furthermore, the authors go on to state that all 

experimental evidence suggests that the spectral energy trander fiom the large scales down to the 

s r d l  dissq>ative d e s ,  proceeds at a rate dictated by the energy of the large eddies and their time 

or length scale. Thus m the hextial subrange, where there is an equilirium between the production 

and dissipation of turbulent energy, the characteristic length sale of the energy transfer is the 

integral length scale. The entrainment hction for the mtennediate phase ofjet growth thus has 

the f o m  

where L, is an mtegral length scale m the extemal flow. 

Based on simüarity theory of turbulence and the theory of relative diffusion through the use of the 

Richardson-Batchelor relationship, Slawson and Csanady (1967 and 1971) suggest that, for an 

atmosphenc release, the integral length sale  in the atmosphere is proportional to the radius of the 

jet, R, m the mtermediate phase of jet growth. This resuhs m an entrainment velocity of the fom 

where is an entrainment constant for the intermediate phase. Note, however, that in the 

atmosphere there can be a nibstantial mertial subrauge that spans several decades of wavenumbers 

(Batchelor, 1950). 

For a laboratory situation, F i  (1977) suggests an entrainment hct ion that essenWy matches 



the entranunent velocity of SIawson and Csmady (1967 and 197 1). However, m a laboratory flow 

where the extemai turbulence is generateâ by a grid, a substrntial merfial submge does not exist 

*ch makes the assumption of proportionaüty between the extemal integral Iength scale and the 

radius of the jet questionable. The reason for this is that the extemal turbulence m the inertial 

nibrange does not span a su&icintly wide range of wavenumbers to completely dominate the 

dBÙsion of the jet as t would in the case of the atmosphere. 

For the m e n t  study, the proposed entrainment velocity fimction for the mtermediate phase will 

thus foilow the more fundamental formulation @en by equation (6.1 1) by having the f o m  

where Lm is the radial integral length scde of the extemal coflow which can be evahated nom the 

relationships developed m Chapter 4 for grid-generated turbulence. Relimimaxy prediction runs 

support this formulation since the vaiue of P, when the extemal integral length scale is used, is 

constant. Ifthe jet radius is used in equation (6.13) m lieu of the extemal mtegral length scale, P 
is no longer a constant but is strongly dependent on the specific grid installed m the extemal £iow. 

Bear in min& however, that h c e  there is not a substantial mertial subrange in grid-generated 

turbulence, the h i d  viscosity, which has been assumed to be nonessential based on the concept of 

the inertial subrange, may be an important variable in the d e t e r d g  the transfer of turbulent 

energy in the spectnun and thus m determinhg the magnitude of p. 

The extemal energy dissipation rate for grid-generated turbulence can be estimated based on the 

isotropie relation (Hinze, 1975): 

where use has been made of Taylor's theory of fiozen turbulence and where the approximation 

takes mto account the Pnisotropy m grid-generated turbulence. As with the integral length scales, 



the values of the extemai turbulent veiocmes can be detemiued fiom the relationships developed 

m Chapter 4 for grid-generated nubuience. 

6.4.3 The Fia1 Phase 

In the final phase of the jet deveiopment, the energy containhg eddies of the extemal turbulence 

dominate the mkhg of the jet- 

Slawson and Csanady ( 1967 and 197 1) give a h a 1  phase entrainment velocity of the fom: 

where y is the e n t r h e n t  constant for the final phase, v is a turbulent velocity, L is a diffiision 

laigth scale, and R is the radius of the jet. This form of the entrainment velocity is again based on 

the theones of turbulence similanty and relative dfision for atmospheric releases. 

However, in the ha1  phase, t is assumed that the energy containing eddies m the extemal 

turbulence control the e s i o n  and entrainment withm the jet. If this is the case, then the 

geometrk scale ofthe jet shouid be proportional to the mtegnl Iength scaie of the turbulence which 

is dominating the mkbg process. h other words Rd, m the final phase. The logical choice for 

v is the extemal radial nirbuient velocity since it is the component that crosses the jet boundary. The 

final phase entrainment velocity hc t ion  can thus be simpüned to: 

where ihe constant of proportionaüty between the jet radius and the extemal mtegrd length scde 

is absorbed mto y. The value of the extemal radial turbulent velocity can be determined fiom the 

relationships derived in Chapter 4 for grid-generated turbulence. 



6.1.4 Corn bining the En trainment Velocities 

As mentioned previousiy, the tiuee phase regional mode1 is srniplistic since it dows  for no gradua1 

merging of one phase mto another. Ideally one entrainment velocity hc t ion  valid for the entire 

fIow field is desirable since it eliminates the necessary division of the flow field mto its various 

phases. The single entramment velocity would necesady have asymptotic iimits of the initial phase 

near the jet source and of the final phase fàr downstream In addition, it must give a smooth 

transition fiom one phase to another. 

Smce the mkîng effécts of the three asymptotic phases ofjet growth shouid be cumulative, a weiI 

h o w n  smoothhg technique (Churchill and Usagi, 1972) to join the asymptotes is used and is @en 

by: 

where 11 is optimized and found equal to 2 for the present data. This results m a root-sum-square 

( RS S ) summation which emphasizes the dominant phase of jet growth m the total entrainment 

velocity. The RSS summation method, ahhough not typicaIly used m the summation of entrainment 

velocities, has obtained wide acceptance and has been used extensively in the summation of 

different experimental errors in uncertainty analyses (Coleman and Steele, 1989). 

To satisQ the asymptotic limd near the jet exit, a weighting hction on vGl, wiû be required so that 

its contributions wdi be nUtiany smaU near the jet exit but increahgly grows until it domkates the 

entrainment velocity fiîr downstrem. A weightmg fuuction, W. of the fonm 

gives the comect asymptotic limb such that near the jet exit when u»LI,, w-O and far downstream 



when &LI, w- 1. A weighting hction is not required for the intermediate entrainment veiocity 

fiinction since its W conmcbutions wilI be d m cornparison to the initlll phase value. 

To sati* the asymptotic liinit fir downstream, no weigbting fhctioas are required since the 

entrainment velocity hc t ion  for the initiai phase approaches zero as D-(I, and the contniution 

f?om the mtermediate phase becomes negligible m cornparison to that of the final phase fir 

downstream, 

The h a i  form of the entrainment velocity to be used for the entire flow regime is thus @en by: 

6.4.5 Comparison with Experimental Data 

Ushg the sinplified conservation equations of m a s  and streamwise momentum and using equation 

(6.19) to spe* the entrainment velocity fimction, predicted vaiues for R/8 and U'lx have been 

generated for the cment set of jet experiments and the experiments of Fmk (1977). Table 6.1 

s u d s  the vaiues ofthe entrainment constants used in the entrainment velocity fùnction. Note 

that a varies mversely with the diameter of the jet mode1 end wïth the initial velocity ratio as noted 

earlier and is thus considerd a quasi-constant which is dependent on the initial jet momentum. The 

vahe of p remains constant for the m e n t  set of jet experiments m water but is decreased for the 

experiments of Fi& (1977) conducted m air. This is due to the fàct that in grid-generated 

turbulence there is not an hertial &range of any substantial bandwidth thus making the fluid 

viscosity an important parameter and, m d probabiiity3 making the value of  P dependent on the 

fluid Mscosity. The value of y for the h a i  phase remaius constant for aii experiments. 

The coupled ordmary differential equations, @en by eqyations (6.3) and (6.4), are solved 

numerically using a fourth order RungeKutta algonihm In order to initiate the integration, the 



let Case $ (mm. a P Y 

Smau jet, VR=6 9-5 0.087 0.65 1-40 

large jet, MZ=6 22.2 0-08 1 0-65 1.40 

Iarge jet, MZ=3 22.2 0.083 0.65 1.40 

Table 6.1: Entrahumnt constant vaiues used m the prediction of the various jet experiments. 

solution algorithm reguires a velocity and radius for the fkst point m the solution domab. For each 

of the current experimentai sets, the start of the mtegration roughiy corresponds to the location 

rvhere the mean and turbulent velocity profiles become similar. lhis typically occurs within the first 

ten momentum radii of the jet exit In the experiments of Fink (1977), the mean velocity 

Somation is reported much more fiequentiy than the correspondhg radial scales To begb the 

mtegration near the fk t  velocày data pomt (between ten and twenty momentum radü downstream 

fiom the jet exÏt), the radius at this Location is extrapolated fiom the downstream data by assuming 

that the momentwn integral is a constant at an downstream locations. 

The predicted resuits are @en in Figures 6.3 through 6.9 where the experimental data is &en by 

symbols and the predictions @en by hes.  in 1 cases, the top graph illustrates the behaviour of 

WB while the bottom graphs depicts that of CIJ~'. 

For the nimnt large jet at VR=6, the predictions for RIB, &en in Figure 6.3a, agree weli with the 

experimentai data while the predictions for Uc 1% @en m Figure 6.3b, are soxnewhat high for the 

jets with the grids installed Ahhough the difference in predictions for the jet with and without a 

g i d  instaiied are relatively small m this case, the mode1 does show that the effects of the extemal 

turbulence begin very soon after the initial mtegration pomt. For the iiuge jet at G11~3, &en m 



Figure 6.3: Cornparison of predictions and experimental data for the 
large jet at MZ=6. Data: 0, no grid; A, smaii grid; 0, large grid. 
Predictions: -, no grid; - - - - , small grid; - - -, iarge grid. 



Figure 6.4, the predictions ofN8 with the d and large grid mstalled are larger than the actuai 

data whüe for the jet with no grid instded, the predictions closely matches the data. The 

predictions of Il,/tf,, &en in the lower figure, match well the experimental data for the jet with 

the d and large g id  mstded M e  the prediction for the jet wïth no grid instded is slightly low. 

For the s d  jet at M(=6, &en m Figure 6.5, the predictions for RIB match the data weii m ali 

cases of extemai turbulence. However, the predicted vahies of U,/uo are high for the jet with the 

m a l  and large grids instded and somewhat low for the jet with no grid installed. The prediction 

for the jet with no grid mstailed, however, assumes that the extemal flow is pe&ectiy larninar which 

is know to be not the case. For the s d  jet at m=3, @en in Figure 6.6, we agam see that the 

predictions ofRIB agree weU with the data for the jet with the small and large grid inaalled while, 

for the jet witli no gid instaiied, the prediction increasinghl underestimates the data as downstream 

distance is mcreased. The predicted values for U, /O, also agree weil with the data for the jet with 

the small and luge grid installeci For the jet with no grid installed, we again see that the predicted 

value of U, lu,, mcreashgly underestimate the data as downstream distance is increased. The 

experiments with the small jet at K?=3 extend the fârthest non-dimensional &ance downstream 

£tom the jet exit. It is thus not surprising to see that the predictions based on a laminar extemal 

underestimate the data Snce the turbulence that is present in the extemai with no g i d  instdled has 

a greater distance over which it can affect the jet. 

Before examinmg the results based on the three jet runs of F i  (1977) who used one grid to 

generate extemal turbulence, it should be kept in mEid that the data pomts have been taken &om 

figures contaiaed within a conference proceedhgs and thus not only contain experimental errors 

but errors associated with reading data pomts fkom the figures. In spite of this, the predicted 

resuits agree quite fàvourably with the experimental data of Fi& (1977) with the exception of the 

radius prediction for the jet with the grid instaiied which is increasingly over predicted as distance 

downstream is mcreased The reason for this is not entireiy clear ahhough the values of fl and y 

have been somnvhat biased by the large quantity of mean velocity data in cornparison to the small 

number of radius pomts Figures 6.7,6.8, and 6.9 give the comparisons of the predicted results to 



Figure 6.4: Cornparison of predictions and experimental data for the 
iarge jet at MZr3. Data: 0, no grid; A, small grid; O, large grid. 
Predictons: -, no grid; - - - - , d grid; - - -, large grid. 



Figure 6.5: Cornparison of predictions and experimental data for the 
d jet at VRs6. Dna: O, no grid; A, small grid; O, large grid. 
Redictions: -, no grid; - - - - , smail grid; - - -, large gnb 



6.6: Cornparison of predictions and experimental data for the 
anaii jet at VRr3. Data: O, no grid; A, d grid; O, iarge grid 
Redictions: -, no grid; - - - -, small grid; - - -, large grid 



Figure 6.7: Cornparison of predictions and experimental data for Fmk's 
jet at KbS.75 .  Data: +, no grid; x, grid Predictions: -, no 
grid; - - - - , f i  



Figure 6.8: Cornparison of predictions and experimental data for Fink's 
jet at PR.4.5. Data: + no grid; *, grid Predictions: -, no 
grid;-- - -,pna 



Figure 6.9: Compvison of predictions and experimentd data for Fmk's 
jet at K!Z=3.1. Data: +, no grid; x, grid. Redictions: -, no 



the experimental data points for the jets at YR-5.75,4-5, and 3.1 respectiveiy- ûne additional 

comment for the jet at W 3 . 1  is that the experimentaî data for U, /O, for the jet with no g i d  

installed shows a marked iocrease m the rate ofgrowth of UJua at around (x-x,,)& 125 which the 

predicted values fiii to anticipate. The probable cause of this change m dope is that the very low 

levek of extemal turbulent energy with no g i d  mstded are finally reaching a date where they c m  

dynatnïCany infhience the behaviour of the jet by slowhg the jet d o m  and, presumably, mcreasing 

the radius. 

6.4.6 Behaviour of the Entrainment Velocity 

As a check to ensure that the contributions to the total entrainment velocity made by each phase 

of the model confonns with the theoretical discussion, the entrainment velocity for the small jet at 

VR= 3 with the large grid instalîed is presented m Figure 6.10. The total entrainment velocity is 

*en as the solid line and the contriutions f?om each phase of the model are &en by the dashed 

lines. Note that the final phase contn'bution is weighted us@ equation (6.18). 

As expected, near the jet exit, the conmiution 6om the initial phase is dominant and, after 

(x-xJû=50, the ha1 phase contn'bution becomes dominant. At no pomt is the total entrainment 

velocity dominatecl by the intermediate phase contriôution mice grid generated turbulence typically 

bas a very d mertiai subrange. Thus the contributions fiom each phase are m keeping with the 

theoreticai development. The root-nim-square method of combinmg the entrainment velocities 

fiom each phase resuhç m a snooth merging between phases which gives a smooth and continuous 

cuve  for the total entrainment velocity. Note that the transition region between the initial phase 

dominating the total entrainment velocity and the final phase dominating the total entrainment 

velociw lies approximately in the range of 15 ~ ( x - x J 0  ~ 5 0 .  



- - - .  initiai phase contribution 

- - - - - - -  intermediate phase contribution 

- - - -  final phase contiibution 

total entrainment velocity 

O 25 50 75 LOO 125 150 

Figure 6.10: Behaviour of the vasious components of the entrainment velocity for the smaii 
jet at Y R 4  with the iarge grid instaiied 

6.5 Extension of the Mode1 to Atmospheric and Oceanic Releases 

In order to extend the m e n t  coflowhg isothermal jet mode1 to real atmospheric and oceanic 

releases, a complete description of the extemal turbulence is required. In a laboratory situation 

using grid-generated turbulence for the extemal flow, the behaviour of the turbulent velocities, 

integral length d e s ,  and even the energy dissipation rate can be fàirly accurately predicted using 



available empirid f o d e  that have been developed based on the large quantity of experimental 

data. In atmosphenc and oceanic flows, the description of the e>bema.i turbulence cannot be 

predicted m general to the same level of certaiaty âue to additional complexities such as convective 

forces, local topography, large scde horizontal pressure gradients, Coriolis forces, and verticai 

temperature stabiiity. 'Ihus if accurate extemal turbulence information is available over the entire 

solution regime for an atmosphenc or oceanic release of an isothermal coflowing jet, the current 

model could be used to predia the behaviour of and R Ifthe extemal flow has a substantial 

inertial subrange, then a value of P cm be deterraitied which should be mdependent of the fluid 

viscosity. 

Most atmosphenc and oceanic releases, however, have additionai complexities that the modei, as 

it stands now, camot account for. These include buoyant forces in the jet (or plume). 

configurations other than coflowing (ie. a jet or phime m a cross flow), and non-uniform extemai 

flows (ie. turbulent boundaty iayers) which will require additional research m order to incorporate 

into the modeL 

6.6 Closwe 

For a cofiowing jet m a l a .  extemal flow, the behaviour of the mean velocity and the radius of 

the jet can be accurately predicted ushg an entrainment velocity of the fonn: 

where the entrainment constant is in the range of 0.080<a<0.105 and is mversely dependent, 

although weakly, on the jet diameter and the initiai velocity ratio. 

For a coflowing jet m a turbulent extemai flow, the behaviour of the mean velocity and the radius 

of the jet can be adequately predicted using a three phase entrainment model combmed using the 



root-surit-square method as &en by equation (6.19). The mode1 predias that the transition fiom 

the initial phase of jet growth, where the self-gmerated turbulence within the jet controls the 

diffusion, to the final phase ofjet growth, where the energy containing eddies in the external 

turbulence dominates the mkhg, occurs over the range of 15 ~(x-x,)/8 r S O  which cm, depending 

on the jet momentum, be fàirly close to the exit of the jet. 



Chapter 7: Closure 

7.1 Sufnrnary and Conclusions 

An experimental mvestigation mto the effects that extemal turbulence has on the development and 

evolution of turbulent isothetmal cofiowing jets has been presented. The prirnary objective of this 

mvestigation was to Vary the characteristic scales ofturbulence m the extemal flow and in the jet 

so that the evohrtion of the jet ranged fiom being buely affected to being dramaticdy dected by 

the extemal turbulence. The other main objective was to accurately model the newly obtained 

experimental data using an mtegral model with an entrhent  velocity hct ion that allows for 

various mechanisms to dominate the difision process. 

The main conciusions are: 

1. The downstream behaviour of the turbulent mtensities, the mtegral length sales, and the 

turbulent enagy spectra in grid-generated turbulence is continuousiy rffected by the grid's 

initial conditions, namely the grid Reynolds number and Md solidity, with the turbulence 

generated by each grid reaching a smiüar but ilaipiie state of ~ ~ p r e s e r v a t i o e  



2. A turbulent jet isnring mto an extemai coflow has two scaiing velocities; one for the mean 

velocaies and one for the turbulent velocities. The excess mean velociiies wiihin the jet 

were fond  to scde with the conventionai scde fbctor, CI,, while the turbulent velocities 

were fomd to sale with a new scde fktor, (Uo(Uo+U,))? 

3. Experimeotal renihs for an i s o t h d  jet m a nearly laminu extemal coflow mdicate that 

the decay in the excess centerline mean velocity is desniad by U0=xX1 as Eu downstream 

as (x-x0)/& 3 00 with the radius fonowhg R=P up to (x-xo)/û 100 d e r  which there is 

some indication that R=dn. These r e d s  are not entirely expected based on asymptotic 

similanty relationships. 

4. The effects of grid-generated turbulence on the evolution of a coflowing jet are not 

msignificant. Resent experimentai results mdicate that when a jet issues into a turbulent 

extemal coflow, one can expect bat: 

a) the jet centedsie excess mean velocity, LI, will decay fàster beyond (x-xJ0-20 to 25. 

b) the jet radius, R, wiil increase fâster beyond (x-xo)/8-20 to 25. 

c) the jet centetline turbulent velocities and Reynolds sbear stresses, nomaked by LI, d 
increase fàster beyond (x-xo)/O- IS to 20. 

d) the average streamwise mtegral length scales in the jet, when normalized by the jet 

radius, wiil mcrease faster d e r  (x-x0@-5 to 10 whiie the average radial integral length 

scales win mcrease frster &er (x-xo)/O- 15 to 20. 

in cornparison to the same jet in a nearty laminu extemal coflow. In all cases, the effects 

are more pronounced when the iiuge grid is mstded than when the small grid is mstded 

due to the greater amount ofturbulent energy generated at lrrger leagth scales by the large 

glid. 

5.  The behwiow of a coflowing jet in a laminar extemal coflow is accurately predicted using 

the new entrainment velocity of the form: 



where the vahe ofthe entrainment constnm is inverseiy dependeat on the initial momentum 

of the jet, namely the jet diameter and the initial velocity ratio, and thus varies between 

O.O%O<a~O.  105. 

6 .  Predictions of the b e h a d  of a coflowing jet in a turbulent extemal cofiow (made 

turbulent through the use of a grid) based on a three phase entrainment model where the 

individual te- are combmed ushg a root-sumsquare method to give: 

show acceptable agreement with experimental resuhs The range of vahies for a, based on 

available experimental data is again 0.080<a<O. 105. The vahe for P, at least m grid- 

generated turbulence, is dependent on the fluid (for water, P=0.65 and for air, P=0.26) 

whiie the value for y is constant and set equal to 1.40. 

7.2 Contributions 

There are NO priucipai c o n t n i o n s  of the present research. The f%st is a unique data set, 

cons ihg  of mean velocities, Reynolds stresses, integrai length scaies, and turbulent energy 

spectra, that characterises the evolution of various cofiowing jets issuing into extemai flows with 

various levels of turbulence. This data set is unique because it contains experhents that have 

varied the scales of turbulence m the extemal flow as weii as m the coflowing jet so that the 

evolution of the jet varies fiom being scarceiy afkted to bekg dramaticaUy afEected by the extemal 

turbulence. The second primary contniution is the dwelopment and validation of a new 

entramment velocity fiinction, used m conjunction with an mtegrd model, that accurately predicts 



the behaviour of jets in W a r  extemal coflows and adequateiy predias the behaviour of jets m 

turbulent extemai coflows, 

In establishmg these principal contributions, the fonowing additional contniutions have been made: 

1. The experimentd downstream behaviou of grid-generated turbulence has beem shown to 

be dependent on the grid's initiai condaions as speculated by George (1992). 

2. A new scaiing fàctor for the turbulent velocities in a coflowing jet has been postulated and 

verined with experimental data. 

3. An order of magnitude analysis, using experimental resuhs, has been conducted on the 

Navier-Stokes eqyations for a jet m an extemal cofiow (&en in Appendk A) to establish 

the relative importance of each term in the equations. 

Recommendations for Future Research 

The foUowing recommendations are put forth for fùture research: 

1. Additional experiments on jets iu a Inmmar extemal coflow need to be conducted that 

systematidy vaiy the jet model diameter and the initial velocity ratio in order to establish 

a fùnctional relationship with a, the quasi-constant of proportional@ for the entrainment 

m the initial phase ofjet growté 

2. Smce the effpds of extemal turbulence have been documenteci and predicted for a sniplified 

model of r d  atmospheric and oceanic releases, additional complexities can be mtroduced 

into the simplified model, such as source buoyancy, different release alignments (ie. jet m 

a cross-lw), and turbulent boundary iayers, for fiiture experimental and modehg 



endeavours in order to better mimic reai releases. 

3. Additionai experimaits are needed tbnt employ a technique to generate extemal turbulence 

that has an mertiai subrange of substantipl bandwidth m order to determine if the 

assumptions regarding grid-generated turbulence can be extended to other turbuleace 

generatmg methods and to determine the m e  value of the entrahunent constant for the 

mtennediate phase. To acbieve this enâ, fùlt =aie atmospheric or oceanic expehents will 

probably be required due to the impracticality of generating a substantial mertial subrange 

at a laboratory scale. 
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Appendix A: Integral Equations of Motion 

Introduction 

The development of the equations of motion for a jet in an extemal coflow cm follow two distinct 

approaches. 'Ine fkst technique, termed the contrai volume method, mvoives taking a fiMe slice of 

the jet, &, and balauciag the &es of mas, momentun, and energy entering and leaving the control 

volume with what is bemg stored within the control vohune. The resuheig equations can then be 

integrated with respect to the radiai coordinate, r, and soived numeri~aiiy~ This method has been 

primady used m the development of goveaimg equations for air poliution sources such as chimney 

plumes (see, for example, Slawson and Csanady, 1967 and 1971, and Bnggs, 1975). The main 

advantage of the control vohune method is that it is very clear how the fiux baiances are derived. The 

disadvantages are that it has a limited range of applicability (i.e. cm only mode1 simple extemal fiow 

conditions) and that it does not expli* demonstrate how the turbulence within the jet conaibutes 

t O the growth and development of the jet. 

The second method, refèrred to as the dierentrid me* seeks to descnie the flov 

location m the field and hence uses the fiilly turbulent, three dimensionai Navier-Stokes eqyations of 
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fluid mechanics which are fbt mtegrated wiih respect to the PzinnithP1 direction, 4, and then with 

respect to the radial dindon, r, with the aid of simplifying assumptions. This method has rlso been 

used to derive govemhg equations for air poliution sources (se, for example, Hirst, 1972, and 

Schatmiann, 1978) but has also been used in mauy otha appEcaticms such as boundaxy layers (Hinze, 

1975) and isothermai jets issukg into a quiescent background (Hussem et al, 1994). The main 

advantages of the Merentiai method are that it cm account for much more compiicated flow 

situations such as complex ambient conditions and that it expiicitly reveals the mamer in which the 

turbulence withïn the jet contxibutes to the growth and deveiopmmt of the jet. The drawback of the 

method is that since it is mathematicaiiy more rigorous, anishg at the h a 1  equations is more 

cornplicated and tedious than m the control volume method 

A.2 DBerential Approach 

Smce one of the piimny objectives of the present research is to d e t e d e  how the various turbulent 

quantities, both within the jet and in the extemal cofîow, conmiute to the development and growth 

of the jet, a detailed derivation of the equations of motion wiii be given following the Werentiai 

approach. 

A schematic of an rWSymmetric isothermal turbulent jet, either m a laminar or turbulent coflow, is 

given m Figure A. 1. The coordinate systern is defiued as (x,r,#. The mstantaneous velocities are 

decomposed into mean velocity components given by (U, Y, V,) and fluctuatmg components fien 

by (u,v,v& The extemal m e ~ n  flow is assumed to be Morin both m magnitude and direction (i.e. 

U, and P, are constants) abhough the turbulence ~uantities are assumed to Vary with distance 

downstream as is appropriate for grid-generated turbulence. The jet fiow is assumed to be steady, 

mcompressble, and fùily turbulmt shortly after the jet exit with a Reynolds number sdliciently large 

so that the viscous tenns cm be neglected (HSize, 1975). It is rlso assumed that the jet is not 
7 subjected to any mern swirl in the azimutha1 direction (i.e. V+=û and a( )/aw but v , +O 

necessariiy). 



Figure Al: Schematic of an axisymmetric isotheniial jet isnimg mto a uniform 
extemal coflow, 

The boundary conditions at the edge of the jet, where r = R(x), are as foliows: 

Smce the turbulence resuiting f?om grid-generated turbulence is nearly isotropie and homogeneous 

m planes p d e l  to the grid, it will be assumed that the radial and azimutha1 turbulent velocities are 

equal in magnitude ( le.  y e ( x ) = q e ( x ) )  at a @en downstream location In addition, for a neariy 

lammer coflow, it k a d  that ail turbulent velocity components are near zero (i-e. u f ( x )  -ye@) 
= q e ( x )  - ' ~ e ( x ) - ~ )  out side of the jet domain. 



A.2.1 Integral Conservation of Mass Equation 

Using the differential method and the assumptions outiined above, the equation represetlting the 

consewation of m a s  m a cyhdricai coordinate system can be reduced to: 

Taking this expression and mdtiplying it by rrlr and mtegrathg Eom to r=R(x) yields: 

The first tenn of equation (k2) is readiiy integrated, The second term, m order to  pdl the derivative 

operator outside ofthe mtegnl, r-s the appiication of Leibnids d e  for differentials of integrals 

since the upper linrit is a hction ofx. The resuiting expression, after some rearranghg, is: 

A.2.2 integral Conservation of Momentum 

The simplined equotions descriimg the consewation of rnomentum in cylindncal coordinates are: 

for the radial direction and: 



for the smPmwise directio~ The first step m denving the mtegnl form of the equations is to soive 

for the pressure distriiiution by muitipiymg the r-momentum eqyation by di and mtegrating the 

redting eqyation nom some arbitrary reference point within the jet, say r, to the edge of the jet, 

R(x). This gives: 

For convenience, let: 

uitegrating equation (A6) then &es: 

77 Smce r, is an arbitraiy position within the jet, let F P  and v , =v at r=r, and using the boundary 

conditions previously dehed for FR@), the integrated r-momentun equation becomes: 

T a h g  the derivative with respect to x gives an expression fbr the pressure gradient m the streamwise 

direction: 



'Ihis expression can now be substjtuted into equarion (A9 which m twn cm be rnultiplied by rd- and 

integrated fiom 14) to r=R(x) to yield: 

To simplify this expression M e r ,  a term by term ana&& is required 

Teml I: Using the conservation of mass equation and the product d e  for derivatives, tem 1 can be 

çimplified to: 

Evaluating the term in the square brackets using the Iimits gives LI, RV,(R). However, by using the 

h a 1  form of the mtegral conservation of ma as @en in equation (A.3), an aitemative expression 

for ü''RV,(R) can be obtained and substihited for the first tenn in equation (A 12). The second term 

in equation (A. 12) can be sioiplified using Lei'bnitz's d e  to give: 

Substituthg these results mto equation (A 12) results in: 



T e m  li: Smce the upper lioiit is again a fimaion of x, h i i s  d e  is used to PiapÜfy the term to: 

Additional simplidication ofterm II cannot be done at this point. An order of magnitude analysis wïil 

be conducted at the end to determine the relative importance that term II has on the mtegral 

momentun equation. 

Temz Ill d N :  Temi III and IV can be combinecl mto a single tenn Taking the derivative operator 

outside of the integral ushg Leibnitz's d e  and applying the boundary conditions at r=R(x) @es: 

Term V: Term V can be mtegrated dire* and evaluated ushg the boundary conditions: 

~ e r m  v = [ r  UV]R'" O = R mi 

Terni C7: Ushg Leibnitz's d e  to again extract the derivative operator outside the integral results in: 

At r;.R(x), it is a d  that the radial and amnithal turbulent velocities are that of the extemai fiow 

which are equai to each other due to p h a r  isotropy. The conm'bution of the second tenn on the 

nght hand side is thus MO. USng mtegration by parts, the k t  tenn on the nght hand side can be 

rewritten so that tenn VI has the fom (see Capp, 1983): 



The integral x-momennim equation, as @en by equation (A I l), c m  now be reassembled to give: 

A.2.3 Order of Magnitude Analysis 

The pupose ofthis order ofmagnitude an4sis is to establish the relative importance of each of the 

terms m equation (A20). Let b and L be length scales that chuacterize the dimensions of the jet m 

the radial direction (Le. the jet radius) and streamwise direction (Le. the distance h m  the jet nonle) 

respectheiy. The ratio of b / '  eom experiments for a jet in a neariy iaminar coflow varies 6om 0.06 

to 0.20 with a typical vahie of b/L=O. 13. Also, let 0 and ii2 be velocity scales thet characterize the 

streamwise meui velocities ( i e .  the excess mean velocity on the jet centerline) and the normal 

Reynolds stresses or sQuare ofthe turbulent velocities (ie. z-T-vf_ C2) respectiveiy- Typical 

values for ù/Ù fkom experiments range fiom O. 10 to 0.40 for a jet in a ne& laminar coflow with 

a representative value being around ii/ Ü=O.25. In addition, since the magnitude of the Reynolds 

shear stress, in cornparison to the n o d  stresses, depends on a correlation coefficient, Cm the 

Reynolds shear stress Win d e  as UV,- C, Ü2. The absoiute magnitude of C, Win vary anywhere 

between zen> for a isotropie hnbulait flow, to a maximum of one for a perfectty correlated turbulent 

flow. 

Table A. 1 provides a çummary of the reiative order of magnitudes for each of the terms in equation 

(k20). As mdicated by the table, any texmmvolvmg either T, or T, cm be d e i y  neglected since they 



are two orders of magnitude d e r  than the iargest tenn Terms mvohring the w a r e  of the 

turbulent velocrties (i-e. the normal stresses) are a single order of magnitude d e r  than the iargea 

tem Previous studies cm jets (Capp, 1983, and AntonL and Bilger, 1974) have estmiated that these 

normal stresses accouut for approximateiy ten percent of the totd momentum and wdl therefore be 

retained in the h a l  equation. The relative magnitude of the Reynolds stress term can be seen to 

d e p d  on C, Eit is a d  dut the vahie of C, is not smail, than this term must also be retained 

in the h a i  equation. Thus the final form of the integrai x-momenturn equation is: 

To highlight the different sources contributmg to the mtegral x-momentum equation, equation A2 1 

can be rewntten in the f o m  

where tenu 1 represents the conm'bution fiom the mean motion of the jet, term II gives the 

contribution of the Reynolds stresses within the je!t, and term III &es the cornnion 6om the 

Reynolds stresses m the extemal flow. For a neady 1aniina.r extemai fiow, the conm%ution fiom term 

becomes uegligiile and the remPining tenns cm be integrated to obtaiu: 
- 

where Mo is the momentum mtegral constant. 



O[;) Y'] 

- - -  

Relative Magnitude 

0[2.08 & i i 2 ]  

Table A 1 : Order of magnitude study on the integrai x-momentum equatioa 



A.3 Control Volume Approach 

In the coatrol volume approach to deriving the integral equations of motion, all the effects of 

turbulence are COIlSidered to be W e d  into m e  temi *ch controis the entrainment of extemal fluid 

into the jet This allw the teSuhmg equations for the conservation of m a s  and x-momentum to be 

fit order approximations which neglect the complicathg turbulence terms. The entrainment 

velocity, v,, is le& as an iinloiown fimction m the derivation which must be later specined. The 

formulation for the entrainment velocity is often based on physicaily reasoning backed up 

experimental data. 

U*g the control voiume approach (see, for example, Morton, 196 1 and Briggs, 1975), the mtegral 

equations for the conservation of mass and x-momentum are @en as: 

and: 

respectively. No assumption about the shape of the mean velocity profiles within the jet has been 

made at this time m order to facilitate a cornparison with the same equations derived i5om the 

differenitial approach. TypiCany, a top-hat velocity profile withm the jet is assumed which simplifies 

the integrais within the equations. 



A.4 Cornparison of the Methods 

By comparing the equations for the conservation of miss d e e d  fiom the differential approach 

(eqyation (A3)) with that @en for the control volume approach (equaticm (A24)), an approximation 

for the entrainment velocity can be obtained: 

which can be rewitten m the forni: 

with the aid of the results obtained ftom the differential derivation. Thus, the entrainment velocity 

is dependait on the man motion of the jet and the extemal fiow, the radius of the jet, the Reynolds 

normal stresses m the jet, and the Reynolds n o r d  and shear stresses in the turbulent extemal flow. 

Equation (A27) is an approximation of the entrainnient velocity that is used here to highlight factors 

that contribute to the entraiment of extemai fiuid. The exact foTmulation ofan entrainment velocity 

fùuction and the physiciljustifications behind it are dealt with m Chapter 6. 

AS Velocity Profile Assumption 

Up und this point, no assumptiion has been made regarding the shipe of the jet mean velocity profiles 

except for the fàct that they are assumed to be self-smiilpt. Chapter 5 ilhstrated that the mean 

veloQty profiles are approximateiy GauSSian m nature aiter an initial development zone. The use of 



a veIocity prome assrunption has the effect of cornpressing ail the eqerimental data measured in a 

radial profle down mto a single characteristic velocity d e  and a smgle characteristic radial length 

d e  which, for a Gausshn profile, are U, and Lu respectively. The end r e d  is that the radial detail 

of the velocity profile is distiüed mto the chuacteristic scales of the assumed pronle. Thus any 

velocity profile dehed by a velocity scale and a radiai length sale  can be used without the los  of 

any additionai experimental mformation. For this reason, it is often assume& especidy m 

atmospheric reteases, that the mean velocity profile hos a top-hat profile which cm be characterked 

by i7 and R. An ilhistration of the Gaussian and top-hat velocity profles is given Figure A2. The 

main advantage of the top-hat profile is that t reduces the complexity of the mtegrais m the 

conseivation of mass and streamwise momentum equations since the mepn velocity is assumed 

constant within the jet. Davidson (1986) has shom that even for buoyant jets m a cross-Bow, the 

predicted resuits using a top-hat profle are esentiany identical to the r e d s  predicted eom a 

Gaussian profile, except perhaps near the source. 

Gaussian Profile Top Hat Profile 

Figure A2: Schematic and nomenclature of velocity profiles comrnonly assumed, 



Ushg a top-hot mern velocity profile assumption, the equations for the conservation of mass and 

streamwise momentun c m  be SmpWed to: 

d -(R'Ü)=~Rv= 
dx (A-28) 

and: 

respectively. Equation (A.29) can be integrated directly to obtain the momentum integral, M.: 

which is a constant for a particular combination of a jet and an extemal flow. 



Appendix B : LDA Signal Noise Contamination 

Introduction 

At an eady stage in the eqeriments, it was not id  that the measured power spectra tended to level 

off at the same turbulent energy level at the higher fiequemies. This phenornenon became more 

evident as the turbulent energy withjn the flow decreased. It @cUy became apparent that a 

particular meanued spectnim congsted of the true spectnim of the turbulence bemg measured as 

well as a fiatter spectnim characteristic of whae or random noise with roll O& 

In order to pmpomt the source of the white noise contamination, various experiments were 

conducted dint Vased the photomiltiplier gui, the fiequency, the sample fiequency, the make 

and mode1 of the counter, and the water fhune velocity. In addition, the water fhme fàcility was 

grounded and the experiments were conducted with and without the overhead hotescent lights 

on 'Ibe resuls of ail these experiments showed that the LDA signal was di being contaminated 

by white noise. F w ,  a known la- pipe flow with a Reynolds number of approximately 800 

was m e a d  with the LDA. The resultiog spectnim, @en m Figure B. 1, is not negligibly smail 



as theoretidy expected for hmhm flows, but is typicai of white noise with rolî ofFoccurring &er 

a fkequency of approxhateiy 10 HZ Thus is was conchided that the source of the noise 

contamination is mherent in the LDA system and not due to some exteniai fiaor. 

B .2 Noise in the LDA System 

The presence of a particle m the LDA contr01 volume occurs at random t h e s  In order to genexate 

a regular interval times series fiom this randomly occurriig data, the LDA counters employ a simple 

Figure B. 1: Noise spectnim as measured usbg the m e n t  LDA set up for a known 
iaminar pipe flow operating at Rt-800. 



sample and hold processing technique whaeby the Lst vaiid Doppler signal is held until a new 

Doppler burst ocnus. This technique represents a simple fonn ofmteqolation between the data 

points and is an appropriate procedure when the average time between data pomts is smpll enough 

to resolve the stnicnire of the velocity fhictuatioas 

ui order to understand possible sources of noise tbt can be mtroduced mto the measured signal 

by the LDA system, the implications a&hg fiom the data densty, defined as the mean number of 

-les ocamhg in one T a o r  micro thne scale of the flow (A- 1983), and the burst density, 

N ,  defined as the average number of scatter particles w i t h  the control vohime at any one time, 

must be examined 

The average t h e  bewteen Doppler buras c m  be compared to the smali sale turbulence structure 

of the flow by u&g the data densïty which is caiculated fiom 

data dcarity = N$ 

where is the mean valid signal amVal rate and is the Taylor micro time scde. Ifthe data 

density is greater than five, the data deasity is consiàered high and if it is less than 0.5, the data 

d e n e  is considered to be low (Edwarâs, 1992). A high data den* -lies that the particles 

pashg through the control v o h e  are close enough together that a simple interpolation scheme, 

such as the sample and hold techaique, cm be used to tül in any missing data occwing between 

vaiid bursts without mtroducing serious statisticd errors. 

The burst den*, N, a n  be estimated fkom(Adrirn, 1983): 

where a is the minor eliiptical diameter ofthe control v o h e  m the direction of the mean flow and 

is estimatecl at 0.235 mm for the cment LDA set up. A low burst d e n e  (N,«l) is desired since 



the probabiiïty of more than one particle in the anad volume is d A high burst density (Np 1) 

may remit in mbiguity or phase emm king maoduced mto the measmed signd The errors, 

caused by more than one particle beïng presemt m the control volume9 genente a white noise 

speca~m which is the nsult of the mdom nepUency modulation generated by the random overlap 

of multiple bursts (Adrian and Yao, 1987). 

The results fiom the grid-generated turbulence experiments ushg the s d  grid are used as an 

ilhrstrative example. The odoscope, comected to the conter output, con be used to d e t e d e  

the average time between valid Doppler bursts originating at the control volume with the r e d t  

being approlemptety 10 ms. The inverse of this @es the mean vdid signal arrivai rate and is 

h i 0 0  Hi The Taylor micro time sale am be estimated using empmcai equations &en by Roach 

( 1987) for the smaii giid wah a mean velocity of U,=0.07 d s  to give Sp0.20 S. The data d e n e  

is therefore on the order of 20 and is thus considered hi& The burst density yields a value of 5.4 

which is also on the high side and thus the possbüity of ambiguity enor contamination of the 

measured data exists. The use, however, of amplitude discriminators (le. Schmitt triggers), and the 

use of muhiple zero crossing cornparison logic (ie. 518 cornparison) m the Dantec counters greatly 

reduce these errors. 

Adrian and Yao (1987) have shown, howwer, that the sample and hold process effeaively acts as 

a low p a s  filter to the tme spectrum with a low p a s  f i q ~ e d l c y  d e t d e d  by N/2x and, m addion, 

introduces a white noise component mto the measured velocity S@ The low pass filtering is 

caused by the resuh of the infbnnation loss that occurs over the hold paiods whüe the white noise 

is created by the fandom steps that occur at new Doppler bursts and is o f b  refmed to as 'sep' 

noise. In the lgnit of higb &a den*, the step noise is reduced and vanishes cornpletely m the 

limit. As the data density decreases however? theory predicts that the -le and hold process 

attenlliites the noise spectnim with a role offthat is characteristic of a first order low p a s  mer and 

mcreases the energy content of the low fiequenaes by adding more step noise (Adrian and Yao, 

1987). 



Thus the current white noise contamitdon ofthe LDA Sgnd is moa likeiy due to step noise with 

some contributions conhg fkom ambiguïty noise that eiudes the Datec cornter logic. Asnimmg 

that the noise and the velocity behg meaaired are statisticlny independent of each other, the 

measured si& wiii correspond to the sum ofthe tme signal and the white noise component. This 

assumption is usefbi since ît d e s  the recovery of the m e  signal possible fiom the contaminated 

measured signd 

Before addreshg the techniques avaiiable for the recovery of the tme signal, it is usefiil to have 

an mipression of how the magnitude of the noise spectrum compares with other measured spectra. 

This is @en m Figure B.2 which gives typical measured spectra on the jet centerline (large jet, 

' -  
L -* let Centreline 
I 

Figure B.2: Measund spectra m the extemai flow with and without a grid mstded, 
on the jet centerline, and m a hown laminar flow. 



U+3, no grid, and at -0.2 cm), in the extemai fiow with the smali grid Mtalled (xg=70 cm), m 

the low turbulence extenipl flow with no grid mstaüed, and for cornparison purposes, the noise 

speanim measured in the Reynolds number apparatus (Re=800). Note that the spectrwn for the 

low turbulence e x t d  flow, dthough displayhg a siight shouider m the turbulent energy content 

forF1, is similor to the noise spectmm but wiui more turbulent energy at the low fieqencies and 

a diarper roll off m energy at the higher fiequencies This implies that, for the externai flow with 

no grid inaalled, most of the spectrum is swamped by white noise wïth only the portion of the 

s p e c t m  withFl being part of the true signal For the extemal 0ow with a grid mstaiied, Î t  is 

fairly easy to identify that at f~ 10 the noise spectnim starts to swamp the true spectrum The 

spectrum on the jet centeriine, due to 3 s  large turbulent energy content at all fiequencies, is linle 

afEected by the noise spectnun 

B.3 Recovery of the Tme Signal 

Che simple technique for recovering the tme spectrum fiom the rneasured spe- is to subtract 

the noise spectruxn fiom the measured spectrum @jenidi and Antonia, 1995, and George and 

Lumiey, 1973)- 'This technique, however, requires that the noise specmim be known before hand 

and is of limited use since it oniy corrects the turbulent energy specirum and leaves a i l  the other 

statistics contaminated witb the noise- 

Anotber method of recovexhg not only the mie energy spectrum, but a h  ali 0 t h  statistics, is to 

low pass filter the data uaig a Savitsky-ûoiay or least-squares filter (Press et al, 1986). The 

premise upon wbich the 'snoothiug' effect of low p a s  filtering is based is that the underiying 

variable is slowing varying and comipted by noise. The assumption of a slowiy varying time series 

is not unrealistic in the present case since those flows that are contaminated most with noise have 

the least amount of turbulent energy and thus l e s  fluctuation m the time s d e s  Each data point 

in the time series cm then be replaced by a local average of the su~oundmg data pomts Smce 

nearby points m the t h e  series will -sure v q  ne@ the same underiying value, averaging cm 



reduce the Ievel of noise without biasing the value obtnmed (Press et al, 1986). 

The nIier starts m the time domain using the measund times sexies dak The idea is to approximate 

the tme undedymg signai over a moving window by a poîynomial of order n (typiciny a quadratic 

or quartic polynod). The window of data points is specified by ni+nr+l where nl and nr are the 

number of data pomts used to the left and to the right ofthe murent point. The resuiting least- 

square fit polynomial is volid for the ment data pomt O*. For the next data pomt, the whdow 

is shifted to the nght by one and a whole new least-square f3t polynominl is determined. 

From a compter codsg point of view, a subrouthe is used to caldate the filter coefficients based 

on the desireci poiynomial (order, n, and number of pomts to be use4 nf+nr+l) which are used to 

determine the cut off fiequency of the @terer A fast Fourier transform (FIT) is pediorxned on the 

time series and on the coefficient matrix and the resuhs are convohtted m fieguency domain. The 

final product of the convohition undergoes an inverse M back mto the time domain. This 

produces a filtered time series which cm be processed to o b t h  the desired statistical quantities. 

A more detailed discussion of the Savitzky-Goiay filter is &en m Ress et al (1986). 

As an example ofthe fiitexing process, the spectnim for grid-generated turbulence, &ai in Figure 

B.2, is passed through a SavitAq-Golay fiha with n=4 and + ~ 2 8 .  The resuh is &en m Figure 

B.3 which clearly shows that the shoulder m the measured s p e m  redtiug Eom white noise 

contamination is removed m the fjitered spectnun 

Although the resuhs of the mtering process are encouraghg for the cofïowing jet and for grid- 

generated turbulence, it is less so for the extemai flow with no grid instailed The main reason for 

this is that iittie of the tme spec tm is present above the white noise spectmm, thus makhg it 

difiicuh to correaly fit a polynomial to the underiyhg trend m the data. For this reason, ody the 

mean velocity and turbulent velocities are reported for the extemal flow with no grid iustded since 

the spectra and autocorreiation fûuctions cannot be accurptely restored. 



B.3: Gnd-generated turbulence spectra before and &er filtering using a 



Appendix C :  Uncertainîy Analysis 

C. 1 Introduction 

This appendix addresses the issue of uncértainty contained within the measured experimental variables 

and how this uncertainty is propagated mto the repoxted resuhs. The appendix will begin with a bnef 

d e m o n  of the types of uncertamty encountered This win be foilowed by an e h t i o n  of the 

uncertamtes 9i the mean and turbulent velocities and the power spectral d e n e  (PSD) hctions as 

measured usEig the LDA Mer this, eqyatiom to estimate the uncertainty in the reported resuhs wiU 

be given which are based on the data reduction equations and absolute senoiivity coefficients. 

AU measurements of a variable contain a certain amount of maccuracies or enors. Enor can be 

deked  as the Werence betweetl the tme value of the variable and the value recorded for a @en 

measmement ad, thus, is a fked number. Uncertainty, on the other bd, gives a possible range of 

values that the emr may have for a &en measurement based on a @en confidence mteival 

Uncertainty m measurements are due to two fhdamental types of errors. The kst type are random 
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or precision mors, S, which show up m a meamernent as scatter about the average v h e  and are 

uaidy caused by the characteristics of the meosaring system m combination with changes m the 

quantity being measured. Recision mors cm be d e t d e d  using statistical methoâs- The second 

type of errors are h e d  or bias errors, B, and show up m measpfements as a displacement between 

the average m e a d  vaiue and the Pvarge true due.  Bias emrs are considerd to remab constant 

for a given eqeriment and must be estimated &ce no siniplle statisticai methods exkt to define them 

(A more detaiied disnisson on mors can be found m Coleman and Steele, 1989.) 

Each measured variable cm have many dïEererit sources of precision and bhs errors. Each type of 

error is combmed using the root-sum-square (RSS) method which is &en b y  

for precision errors and by: 

for bias errors. The total combined uncertahty, 6, is @en by: 

where the Student t vahe is a hction of the degrees of fieedom used m calcuiating S. For a 95% 

confidence intervai and for -le sizes greater than thim, t is set equai to 2. 



C.2 Uncertainty Analysis of the LDA Measurements 

C.2.1 Meaa and Turbulent Velocities 

Recision enors in the LDA vel* measurements Prise primarily due to data processhg mors and 

can be d e t d e d  uhg standard statMcal techniques BUS enors, however, are predominantly the 

reailt of d g  effeas on the flow, the specific geome<iy of the iaser beams with respect to the flow 

and with respect to each other, and electronic enéas that can be associated wah the configuration 

of the counter processors. The bias error ana&& on the LDA data wül follow that of Van Heyst 

( 1992), WeckmPn (1987), and Patrick (1985). 

C. 2.1. I Precisio~z Enors 

The uncertabty resuhmg nom precigon erron m the LDA velocity measurements are estimated using 

the methods outlined 

detembed fiom: 

in Castro ( 1 989). The relative precision enor m the mean velocity, Su / LI, is 

where U is the mean velocity, ( F I Y  is the turbulent velocity, N is the number of samples which 

comprise the aun (N = 40960), and i , is the standard normal variate for a (100 - a) percent 

confidence internai which, for a 95% confidence interval, has a vahe of r, = 1.96. The relative 

precision error for the mean velocity thus langes m vnlue between 0.000 1 s Su/ Us 0.0020 since it 

is dependent on the magnitude of the turbulent velocity. 

The relative precison error for the turbulent velocity, Sm/ (VA, is caiculited by 



This yields a constant vaiue of S, l (FIr = 0.0068. 

To estimate the bias errors, typical vaiues of the optical con6guration parameters and counter 

parameters are required Nominal values and tolerances for the LDA opticd configuration 

parameters are &en m Table C. 1 wiih the LDA counter parameters &en m Table C.2. These vahies 

are considered representative of the range of vdues covered m the experiments. 

Paramet er 1 ,  

Laser Wavelength (nm) 1 514.5 1 I l 3  11 488 1 I l 2  

1 
I 

Beam Separation (mm) 

Oreen Beam (Vertical) 
I 

C.V. Position, &Ay=h= (mm) 1 11 

Biue Beam (Horizontal) 
1 

Nominal 

Intersection Angle (degrees) 7.0 *O. 10 
I 

Shift Frequency (IrtJz) 60 0.6 

Calibration Factor (m/s/MtIZ) 11 4.2 1 1 iû .  16 II 4.03 1 S. 15 

Tolermce 

Table C. 1: LDA opticd d g u r a i o n  parmeters 

Nominal , Tolerance 



II Doppler fiequency,l, - blue beam @Hz) 1 97 

Parameters 

II Mean velocity, U (mls) 1 O. 150 

Typicd Value 

1 Turbulent velo city , (Frh and (Vf)% (ds) 1 0.015 

Table C.2: Typicd LDA coimter processor parameters. 

C. 21 .2 .  a Seeding Errors 

Seeding effects cu l  result m bias errors being mtroduced mto the LDA velocity measurements due 

to flow distortion errors, seed paiticle lag errors, and mdividwl realization errors. 

Flow distortion errors are typicdy caused by artiûcial seeding of a flow field where the injection 

velocity of the seed particles is dinérent than that of the mean velocity in the flow field. ln the water 

f l u e  fâcility, artif id seeding is unnecessary shce the naturd hydrosol present m the water provides 

ample seed paiecles Errors due to flow distortion are thetefore negiigiile. 

Seed particle lag errors are the result of the mabiiity of a seed particle to accurately foiiow the flow 

field 'Ibis typidy ocnirs when the seeû p d c k  daisty is much greater thrn the ~d density, when 

the flow is bighly turbulent, or when large velocity gradients are present in the Bow. Patrick (1985), 

however, States that in mon liquid flows the seed particles wiii track the 0ow with minimum hg. 

Since water is used as the working medium m aU the experiments, the seed particle bias error is 

assumed negiigiile. 



Individual dkation gnns Prise h m  the fia that praporticmateiy more fsst seed particles than slow 

seed particles are comted in a d o n n i y  seeded flow whai rn arriva1 t h e  samphg method is used 

(Patrick, 1985). ?bis causes the average velocity to be biased townds the high side. However, when 

a regular time sampling techaique is used with a sampling fiequency set much d e r  than the 

validation rate, the mdividuai bips error can be assumed to be negligi'ble since there is an equal 

probabiüty of detectiag a fàst moving seed particle as there is of a slow moving particle (Weckman, 

1987). For this reason, the con6guration of the LDA counters was set to a reg* time sPrnp1i.g 

technique with the sampling fiequency never exceedmg one haifof the validation fiewency. 

The relative bias exrors associated wïth seedmg effects are Nmmarued in Table C.3. 

Table C.3: Summary of bias mors due to seeding effects. 

Type of Bias 1: 
Flow distortion bias 

Seed particle hg 
I 

Individual realization bias 

RSS Total ,- 

C.2.1.2.6 Bias Errars dw to the LDA Geometry 

Bias errors d g  fiom the specinc geometry ofthe mterxctmg laser beams with respect to each 

other and with respect to the fiow can be categorkd as (Patrick, 1985, and Weclmian, 1987): 

a) finite probe vohme mors 

b) positioning bias (both location bias and orientation bias) 

c) f%ge spacing uncertainty 

d) nonpardel f i g e  m s  (velocity broadening) 

Magnitude 

Mean Velocity 

negiigiîle 

negligiible 

negligiible 

negiigi'ble 

Turbulent Velocity 

nepiigiile 

negiigiible 

na. 

negiigiile 



e) negative velocity bia s 

f )  incoqlete signal bhs 

Finite probe volume mors mise since the velocities are measund over a hite control volume 

diameter. if significant velocÎty gradients exkt within the control volume, mors will result in the 

measured vahie. These mors, however, are mmtmind 0 0  O by m g  a beam expander in conjunction 

with the LDA optics to minmiire the diameter of the probe vohnne. The resuhmg probe diameter is 

approhte ly  0.25 mm and is a fiaction of the mtegnl length d e s  encoimtered m the flow fields 

(see Chapters 4 and 5). F i e  probe vohune mors are thus considered negligible- 

The position bias cm be divideci up hto a location bias and an orientation bias for both the mean and 

the turbulent velocities. The location bias is estùnrted by (Patrick, 1985): 

for the mean velocity and by: 

for the turbuleat velocities where U, is the primary velocity camponent bemg meaaired, (FyA is the 

turbulent velocity and rL, is the position in the x, direction. Maximum v&es for the location bias are 

obtained m the jet flow as it mages with the extemai flow. For a typicai velocity pronle m the jet, 

the normalized location biases are estimated at B&/ W = M.OO 10 and Ez / (p)% = I0.0005. The 

orientation bias is d d e r e d  negligible &ce the contd  volume was carefidly aügned with the mean 

flow direction (Weckman, 1987). 



The fihge spacing uncertahty is a resuit ofeither a viuhtion in the f i g e  spacing or by nonpardel 

f i g e s  (fiequency broaddg)  wah8i the controI voiume. The variation m the Enge spacing is 

govemed by the intersection angle and the wavelength ofthe laser beams and can be estimated by 

(Patrick, 1985): 

for both the mean and turbulent velocities where 012 is half of the intersection angle of the two 

incident laser beams and A012 is the tolerance associated wiih the halfangle. From the experimental 

parameters, the normalized m e  spacing bias is I0.0 143 for both velocities. 

For the fimges to be pardel, the laser beams must intersect at their respective waists- During 

aügnment of the optics, the location of the beam waists were found and adjusted so that they 

comcided wah the pomt of intersection This e n d  that the fikges would be panllel in the control 

volume. In addition, no large gradients m the mdex of refiaction were present since all the 

experiments were isothermaL The bias error caused by nonpardel f i g e s  is therefore assumed to 

be nepiigiile. 

In highly turbulent flows with near zero meros or flows with recircuiation, it is possbe to get 

negative velocities which c m  be reflected about the origin thus mahg them look positive. This 

mtroduces a negative velocity bias mto the average velocity. Using fiwpency shiftmg, where the zero 

velociîy is M e d  away h m  the zero frequency, e b t e s  negative velocity errors Smce fiequency 

shifting was used in ail the experiments, the negative velocity bias is negiigi. 

Incoqlete velocity bias results when a seed paxticle passes through the control volume at an angle 

other than perpendicular to the fige onentatioa Depending on the incident angle of the particle, 

the number of f iges  m the control volume, the mmmnmi number of fihges needed to produce a 



valid signal, and the ratio of the f i g e  velocity to the particle velocity, the seed parficle may not be 

able to cross enough mges for the counter process~r to validate it as a genuhe velocity sample. For 

the nirrrnt pa~ameters, the probability o f  detecting a partide wÏth an mcidmt angle of 30" fiom the 

normal of the f i g e  orientation is betta than 99.9% (Van Heyst, 1992, and Patrick, 1985). The 

mcomplete velocity bias mors are therefore considered negiigiile. 

A summary of the bias errors associated with the speçific geometry is &en in Table C.4. 

Finite probe volume bias 1 negligible 1 negligible 

Magnitude 
Type of Bias 

Location bias 11 M.0010 1 kO.0005 

Mean Velocity - Turbulent Velocity 

Incoqlete signal bias II negügible 1 negligible 

Nonparallel fiinge bias 

RSS Total 11 I0.0143 1 k0.0 143 

Table C.4: Sunmiary of bias errors due to the specinc geometry of the laser beams. 

negiigiile 

C.3 1.3.c Bias Errors due to the Counter Processors 

negiipiile 

Bias enon assocïated with the electronic counter procasors, used to convert the voltage signal from 

the photomultiplier mto a velocity, can be categorized as: 

a) dock synchronhtion mors 

b) ~uantimig mors 

c) tbreshold W errors 



d) electronic noise mduced emrs 

e) n1Ur setting errors 

Ctock synchroaization mors are the redt of a mismotch between the randomly occurring Doppler 

bursts and the start of the clock cycle. Estimations ofthe nomaiïzed clock synchronization mors 

for the mean and turbulent velociiies clln be made fiom (Patrick, 1985): 

and 

respectively wheref, is the Doppler fiequency,f, is the reference clock fiequency (500 MHZ), and 

ni is the number of &ges required by the processor for a vaiid signai. For a typical flow situation, 

the normalkd clock synchonization emors are therefore estenated at +0.0000 12 for both the mean 

and the turbulent velocities. 

Quantking errors axise 6om the detexmination of the eequency of the manalog Doppler signal using 

a di@ reference clock The <luaotimig emm resulimg fiom the current configuration and counters 

are extremely smail (on the order of WLO; Van Heyst, 1992) and are thus considered negügiile. 

Threshold liimt errors are the result of using non-zero voh Schmitt triggers to di* the Doppler 

burst. The normaîized threshold 19iiit mors cm be estimatecl by (Patrick, 1985): 

(C. 11) 



for the mean velocity and by: 

for the turbulent velocitycity B a s 4  on m = 8, the normalized threshold limit biases are +0.0 106 and 

-0.00003 for the mean and turbulent velocities respectively. 

Electronic noise induced enors ocau at low signal-to-noise ratios (SNR) where the electronic noise 

can be mked with the Doppler signal to cause sipifkant LDA bias mors. The error mechanism 

mvolved m electronic induced errors is dl under investigation (Patrick, 1985) but can be estimated 

b y: 

for the mean velocity component and by 

(C. 13) 

(C. 14) 

for the turbulent velocity component where f, and f, are the upper and lower cutoff fkequencies. 

Based on the counter parameters the electronic noise induced errors are M.00227 for the mean 

velocity and I0.0004 1 for the turbulent velociîy. 

Fiter errors are caused by the improper setting of the cutofFfiequency of the high pass pedestal 

removal mer. Ifthe mer is set too hi& the Doppler burst caused by a slow particle will be distorted 

by the filter or even dropped out cawhg a high biased velocity estimate. Ifthe mer is set too low, 



some of the bursts fiom the fàster particles wiü pass through the mter with residd pedestals which 

agah causes the veloaty to be bised (Patrick, 1985). However, wïth proper fiha Settmgs, the mer 

error is negligible. 

Table C.5 sunmiarizes the results for the bias mors due to the coimter processors 

Type of Bias 
Mean Velo Turbulent Velo 

II 1 

II CI OC^ synciuonization =or 11 +U.OOOO~~ 1 +O.OOOO~~ 

II Electronic noise hduced error 11 10.00227 1 M.00041 

Threshold limit error 

RSS Total 11 +0.0108 1 I0.0004 

nepiigiible 

+O.O 106 

1 

Table C.5: Summary of bias mors due to the counter processors. 

C. 2.1.3 Total NormaIi:ed Velocity Bier E m s  

negligiile 

-0.00003 

A sunmiruy of the bias emrs fkom the three ciiffirent sources is piva m Table C.6. The major source 

ofbias error is that due to the LDA specific geomary which, m tum, is predominantly caused by the 

uncertainty in the %ge spacing. 

Filter error negligible negligible 



LDA specific geometry 1 M.0143 1 I0.0143 

Source of Bias 

Seednig e f f i  

Counter processors 

Table C.6: Normalized bias errors m the mean and turbulent velocities. 

Magnitude 

C.2.2 PSD Functions 

Mean Velochy 

negligible 

The uncertaÏnty m the power spectrai daisty (PSD) fimction, E 0, is estimated based on techniques 

Turbulent Velocity 

negligiible 

outhed in Bendat and Piersd (1986). The normked precision emr can be determifled nom: 

(C. 15) 

where n,is the number of distinct subrecords. AU the the  series from the experiments are anaiysed 

using n,= 40 with subrecord sizes of 1024. The estimate of the normilized precision error is thus 

S,/EC/)= O. 158 which is quite large for any one PSD fùnctioa However, if an average of several 

PSD bctions is taken, the preckion error is reduced by (Coleman and Steele, 1989): 

(C. 16) 

where Nis the number of PSD fiinctions in the average. 



The noxmaiïzed bias error m the PSD Nnctions can be estimateci by: 

where Be is the resoiution brndwidth and Bris the haEpower pomt bandwidth. W e c h  (1987) bas 

estimatecl this to be Bm/ E O  5 0.02 based on the power spectral d e n e  processiug software and 

using the same numba and Sze of subrecords 

C.23 Summary of Uncertainty Analysb for the LDA Measurements 

A nunmary of the uncertahty anaiysk for the mean and turbulent velocities as welî as the power 

spectral den* fimctions is givm m Table C.7. The numbers m the table are fractions of the 

measured variable and represent the range that the mors may take on based on a 95% confidence 

Turbulent velocities 11 S.0068 1 M.0 143 1 I0.020 

Measured Variable 1 
Mean velocity 

PSD fùnctions 11 IO.L580(9ngle) 1 S.0200 1 M.3 17 

Table C.7: Sunimary of the normPlized uncertpmty for the measured variables (numbers listed are a 
fkaction of the variable). 

Recison Error, S 

10.0020 (mu<) 
Io.00Oi (min) 

Bias Error, B 

M.0 179 
-0.0 145 

Total Erior, 6, 

H.018 
-0.0 15 



C.3 Propagation of Errors into Reported Results 

For the genenl case, consider m experimentai resuh, q, which is a hction o f j  variables: 

Q = Q ( Y ~ , ~ ~ * - - - * Y / )  (c. 18) 

Equation C. 18 represents the data reduction equation used to evahmte q fkom the measured values 

ofyj. The propagation of precision erroa into q is given by: 

(C. 19) 

The derivation of equation C. 19 assumes that the data reduction equation is continuous and that its 

derivatives are also contmuous over the domain of mterest, that the measured y, are mdependent of 

each other, and that their associated uncertainty are a h  muainny mdependent (Coleman and Steele, 

1985). The partial derivatives of q with respect to the variables y, are dehed as the absolute 

sensitMty coefficients. 

Although the above case trpcks the propagation of precision errors into q, the same eqution c m  be 

written for either the bias mors or the total errors by replacing S with B and 6 respectiveiy. 

The following sections present equations for the propagation of precession error mto the repoited 

resuhr For more detailed information on the propagation of enors, see Coleman and Steels (1989), 

Moffit (1988), and Kline (1985). 



C.3.1 Mean Velocity RcsulQ 

The excess mean velocity is dehed as the difference between the mean velocity of the jet and that 

ofthe extemai flow. The normilized precision error for the excess mean velocity can be evaluated 

fi-om: 

The partiai derivatives become 1 and - 1 for diffierentiatim with respect to LI and Ue respectively. The 

equation can therefore be simpüned to: 

C. 3.1.2 Ratio of &terna1 Memz Velociîy to Centerline Excoss Mem Velociîy 

The normaüzed precison m o t  for U'/ U, can be eshated fiom: 

which ca8 be simplified to: 
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where the c e n t d e  excess mern velocîty precision error can be dculated fiom eqytion C.2 1. 

C.3.1.3 Jet V e l d t y  Hav Wldlh md Jet Miw 

Both the jet velocity halfwidth, L, and the jet radius, R, are defineci by a radiai location based on 

some value of(& (I,)/U, 'Lhe percent uncertahty m IOcatitlg Lo and R is thenfore that of the mean 

velocity ratio which c m  be determined fiom 

where the two terms on the nght hand side c m  be evaiuated using equation C.21. 

For the purposes of an uncextainty analysis, the momentum radius can be approhted as: 

where D is the average or top-hot velocity m the jet. USng this equation, the propagation of 

precision errors mto the momentum radius can be detemiined f?om 

The precision e m r  for the average velocity can be caîcuiated fiom Sv = Su / N" where N is the 

number of points averaged to get u. 



CA2 Turbulent Velocity Resuh 

The locai turbuleit mtensity is dehed as the turbuknt velocity normilized by the jet excess c e n t d e  

velocity. For convaiimce of notation, let 1. = (n* / Uo. Ilie normaiized precision error in the 

streamwise local turbulent mtensity is given b y  

7 la A similar equation can be &en for the radial local turbulent intensity where Ir=( v , ) / Uo- 

The turbulent velocities can also be normPlued by the velocity scale ( LI, ( LIo + LI, ))' to obtain 

another local turbulent mten*. Again, for convenience, let lxw = ( 7 ) I n /  ( LI, ( CI, + LI, )) ? The 

normalized precision enor m the streamwise direction is @en by: 

where U, is the centerline mean velocity. A Smüar equation cm be wrinen for the radial local 

turbulent intensity whexe 1,' =(y))'" / ( II, ( CI, + U' ))y 

C. 3.2.2 Local Nomalized Reynd& Stress 

The local nomialized Reynolds stress is @en as the Reynolds stress term normnlUed by the square 

of the centeriine velocity. For mvenience, l a  1*=uv,/ LI'. The propagation of precision error can 

then be determined eom: 



where the precision error for (Gu)* has the same vaiue as that for the turbulent velocities. 

As with the turbulent velocities, the Reynolds stress terni cm also be normilized using the velocity 
- 

scale ( LI, ( LI, + U* ))? Again for convenience, let 1' =u v,/ ( LI, ( LI, + LI, )). The precison error 

propagation can then be evaluated using: 

C3.3 Integral Length Sale  Resuits 

The autocorrelation fûnction m the smamwise direction is given by: 

- u ( x ;  t )  u ( x ;  t + A t )  
R*x - - 

For the purposes of an uncextainty aoplysis, equation C.3 1 wiii have the same level of uncertainty as: 

The propagation of precision error can therefore be estminted nom: 



A nmilar equation con be derived for the autocomelatio~ m the radiai dkection, R, 

C.3.3.2 hi tep>l  Lenglh Scuies 

The streamwise mtegral length sale is estimateci fiom: 

d e r e  the approxknate equation is that arrived at using a trapezoidal d e  for numericd htegration. 

For the puxposes of an error analyis, the term in brackets can be approximated as 2 &IL The 

propagation of precision errors cui then be determineci fiom: 

A similv equation con be derived for the intepai length d e s  in the radial dixection, L, 




