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Abstract

An experimental investigation is presented that examines the effects of external turbulence on the
development and evolution of a turbulent isothermal coflowing jet. Three intensities of external
turbulence, two different jet model diameters, and two initial jet velocities were combined to obtain
data for twelve different experimental conditions. The measured instantaneous velocity data
resulting from these experiments were statistically processed to obtain mean velocities, Reynolds
normal and shear stresses, integral length scales, and energy spectra both within the jet and in the
extemal flow. The experimental results indicate that the presence of extemal turbulence begins to
affect the development of a jet in the range of 15 to 25 momentum radii downstream from the jet

exit by enhancing the diffusion of jet momentum.

A new entrainment velocity fimction is developed for use in an integral model to predict the effects
of external turbulence on the evolution of a coflowing jet. The resulting predictions are compared
with experimental data and yield accurate predictions for the radial spread and velocity decay for
a jet in a laminar external coflow while yielding relatively good agreement for a jet in a turbulent

external coflow.
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Chapter 1: Introduction

1.1 Motivation and Scope of Research

Historically, mankind has relied on the immense volume of the atmosphere and oceans to dilute
pollutants that arise from our everyday lives. As the global population continues to grow and the
rate at which new technology is introduced continues to accelerate, the effects of releasing more
and more pollutants into the atmosphere and oceans is of growing concern. Economics and
government legislation will continue to contend with each other to dictate the level of pollutant
emissions that are deemed controllable and acceptable. Unfortunately, this means that there will
always be some level of pollutants released into the natural environment. In addition, accidental
releases, such as the Bhopal disaster in India and the Chernobyl accident in the Ukraine, rely solely
on the diffusive nature of the natural environment to dilute and reduce the level of contaminants
released. Thus our understanding of the bebaviour of such plumes and jets interacting with the
natural environment is of great importance in predicting pollutant transport and contaminant levels.

Intuitively one would postulate that the effects of atmospheric turbulence on the evolution of a jet

or plume would be to increase the dispersion of pollutants and thus cause an increase in the radial
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spread and perhaps change the trajectory of the jet or plume. Very little experimental data exists,
however, to support this supposition. The main reason for this is that typical jets and plumes
released into the natural environment are extremely complex. As an illustrative example, consider
a smoke stack emission released into the planetary boundary layer. In this layer of the atmosphere
the mean wind and its turbulence structure depend, in varying degrees, on convective forces due
to atmospheric heating, local topography, large scale horizontal pressure gradients, Coriolis forces,
and vertical temperature stability. The source can also introduce complexities such as buoyancy
into the flow. Thus in order to conduct experiments to increase our understanding of how the
evolution of jets and plumes is affected by an interacting turbulent background flow, the problem
needs to be simplified and the numerous variables controlled. Realistically, this can only be
accomplished at the laboratory scale since accurate and controlled full scale experiments are both
difficult and expensive to conduct due to the uncooperative nature of the atmosphere and due to

the limitations of the present meteorological and remote sensing instrumentation.

Thus laboratory scale experiments are required that emphasize the interaction of a jet or plume with
a turbulent external flow. Since little experimental data exists for interacting turbulent flows, the
experiments should reduce the complexity of the two flow fields by using the simplest possible
flows in order to first elucidate the mechanisms involved in the interaction of the two turbulent
fields. To this end, grid-generated turbulence will be used to model the atmospheric or
environmental turbulence and a simple isothermal turbulent coflowing jet will be used to model the
pollution source. One advantage of using these simple flows is that, individually, they are well
documented in the literature thus providing a useful benchmark for the experimental results.

These experiments are also required to postulate and validate predictive models for jets and plumes
issuing into a turbulent background flow. One common predictive model, used by government and
industry, for this type of flow is the integral model which requires the specification of an
entrainment velocity finction. In spite of their relatively simplistic formulation, which is based on
the Navier-Stokes equations with realistic simplifying assumptions, the integral model represents
a sound engimeering compromise between the complex physics of the flow and the ease of applying



the model to predict the overall dispersion in a flow field.

Traditionally, however, integral models have largely disregarded the increased rate of dispersion
produced by the turbulence in the natural environment when modelling a jet or plume released into
the natural environment. This exclusion can again be attributed to the fact that little experimental
data exists to quantify the effects of environmental turbulence and thus the few models that put
forth theoretical-based conjecture to account for its effects cannot be verified. It is the purpose of
this work to conduct laboratory experiments to provide the means to evaluate and understand the
physics of the interacting turbulent flows. From this, an integral model with an entrainment velocity
function can be further developed and validated which will account for the effects of external
turbulence on the evolution of jets and plumes.

1.2 Objectives of the Thesis

The main objectives for this thesis are thus twofold and can be stated as:

1. To acquire a new data base for turbulent isothermal jets released into uniform turbulent
extemnal coflows that incorporates a range of characteristic turbulent scales both within
the jet and the external coflow.

2. To develop a new entrainment velocity function, to be incorporated into an integral
model, that accounts for the interaction of the coflowing jet with the turbulent external
coflow by determining the correct length and velocity scales that dominate the diffusion

process as the jet evolves downstream.



1.3 Outline of Thesis

The thesis is divided into three main parts. The first part, given in Chapter 2, presents a review of
the theory and literature which forms the basis for the present work. The second part consists of
three chapters and deals with the experimental aspects of the current research. Chapter 3 gives a
brief overview of the experimental equipment, the experimental methodology, and the level of
experimental uncertainty contained within the results. Chapter 4 reports the experimental results
for the extemal flow both in the absence and presence of turbulence generating grids and Chapter
5 details the experimental findings of the various coflowing jet runs in various levels of external
turbulence. The third part of the thesis, given in Chapter 6, develops a predictive integral model
and compares the predictions to the experimental data for a coflowing jet using a new entrainment
velocity fimction. The thesis is concluded with Chapter 7 which details the main conclusions and

contributions of the present research as well as recommendations for future work.



Chapter 2: Background and Literature Review

2.1 Introduction

The literature pertaining to turbulent fluid motion and diffusion is vast and varies from application
to application. G.L Taylor (1922), while studying smoke stack emissions, appears to be one of the
first researchers to note that “turbulent motion is capable of diffusing heat and other diffusible
properties through the interior of a fluid in much the same way that molecular agitation gives rise
to molecular diffusion.” Since then, there has been a multitude of research devoted to the study
of turbulence.

The aim of this chapter is to review the theory and literature pertaining to the mechanisms of
interacting turbulent flow fields. To start, a brief overview of the quantities used to characterize
turbulent flows will be given. Reviews of theoretical and experimental studies of grid-generated
turbulence will be given next. This will be followed by a similar examination of isothermal,
coflowing jets in a laminar external flow as well as in a turbulent extemal flow. The chapter will
conclude with a summary of the current research objectives.



2.2 Relevant Turbulence Background

Turbulence is one of the chief outstanding difficuities in the area of fluid mechanics (Bradshaw,
1994). It has been defined by Hinze (1975) as “an irregular condition of flow in which the various
quantities show a random variation with time and space coordinates, so that statistically distinct
averages can be discemed.” Other researchers, such as Tennekes and Lumley (1972) avoid giving
a precise definition of turbulence but instead list characteristics of turbulent flows.

In spite of this lack of conformity on the definition of turbulence, it is almost universally accepted
that turbulent fluid motion satisfies, at every moment in time and space, the complete instantaneous
unsteady and non-linear Navier-Stokes equations. Unfortunately, the computational requirements

to directly solve these equations at realistic Reynolds numbers are still beyond current capacities.

A common altemative approach, often termed the deterministic approach, is to describe turbulent
flows in terms of classical statistical concepts of random variables where the statistical quantities
are determined in both the amplitude domain (mean and turbulent velocities) and in the time domain
(autocorrelations and turbulent energy spectra). These quantities can, in turn, be used to derive
other useful parameters. The turbulence statistics to be used in this thesis are defined in the next

sub-sections.

2.2.1 Amplitude Domain Statistics

The two most common amplitude domain statics used to describe a turbulent flow are the time-
mean average velocity (hereafter referred to as simply the mean velocity), which gives an indication
of the bulk motion of the fluid flow, and the root-mean-square (rms) or turbulent velocity, which
gives a2 measure of the magnitude of the turbulence in a flow. To obtain these values, the
instantaneous velocity signal from the turbulent flow, U, must first be decomposed into an average
value, U, and a fluctuating component, «, where:



U=U-+u (2.1)

The average velocity is statistically defined over a finite time interval, 7, as:

=% f 2.2)

where ¢, is the start time of the averaging period. The averaging period, T, should be sufficiently
large such that the derivative of the mean velocity with respect to time is zero for steady state flows
or negligibly small for flows with slightly varying mean velocities (Hinze, 1975).

Since the mean of the fluctuating velocity must be identically equal to zero by definition, it is not
a suitable parameter to characterize the intensity of the turbulence. Instead, the root-mean-square

(rms) velocity is used and is statistically defined as:

t,+T 12

\/:4:2: %fuzdt (2.3)
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Similar definitions to equations (2.2) and (2.3) are obtainable in the other coordinate directions.

2.2.2 Time Domain Statistics

Most signals arismg from physical processes, including those from random processes, have some
structure in time (Castro, 1989). For turbulent flows, one method used to determine the degree
of dependence between the turbulent velocity at one point in time and the same turbulent velocity
at later times is to evaluate the autocorrelation function which is defined, assuming the mean flow

is in the x direction, for the streamwise direction as:



R, (r)=tlm)u(xtr7) 2.4)

uz

and for the transverse or radial direction, which is taken cross stream to the mean flow, as:

R (t)= v'(x;t)‘i'fx;Ht) (2.5)

2
v,

where # and v, are the fluctuating velocities in the streamwise and transverse or in this case radial
directions, x is the downstream position, ¢ is the time, and t is the time lag between the velocity

signals being correlated.

An altemative but complementary way of describing the time domain dependence in turbulent flows
is from a turbulent energy spectrum. Turbulent energy is comprised of vortices of various
frequencies containing a certain amount of turbulent kinetic energy. At any position in the flow
there is an energy content of the turbulence associated with a given frequency (or size) of the eddy.
[f the energy density content of a turbulent signature is determined over a range of predetermined
frequencies, the result will give a distribution or energy density spectrum over the range of
frequencies measured. The spectrum thus represents the distribution of turbulent kinetic energy
across the various frequencies of the flow. In particular, the streamwise power spectral density
(PSD) function, E£_(/), is defined such that E_(f)df is the turbulent energy contributed by the
streamwise component of the turbulent flow over the frequency range of /~dff2 to f+df72. The
radial or transverse PSD function, £ (), has a similar definition. The integral of the PSD over the
range of frequencies is the turbulent kinetic energy per unit mass of the original turbulent signature.

The autocorrelation function and the power spectral density function are not independent of each

other but form an exact Fourier transform pair. Thus specification of one specifies the other.



2.2.3 Integral Scales of Turbulence
Physical limitations of the experimental equipment only allow for time series to be measured at a
single point in space at any one time. Thus any statistics determined from the time series will be

temporal and Eulerian in nature.

Using the autocorrelation equations, integral time scales can be calculated using:

8 = [ R, (r)de (2.6)
0
for the streamwise direction and:
8, = f R (t)dt 2.7
0

for the radial or transverse direction.

Unfortunately, integral time scales are difficult to physically interpret and are thus usually converted
to spatial scales using Taylor’s theory of frozen turbulence. This hypothesis assumes that “the
fluctuations at a fixed point of the field may be imagined to be caused by the whole turbulent flow
field passing that point as a ‘frozen’ field” (Hinze, 1975, page 46). Taylor’s hypothesis is only an
approximation and valid only when the convecting mean velocity is constant and when U » (u )%
Thus its application to shear flows should be viewed with some caution since the convecting mean
velocity varies with position and the turbulent velocities can be fairly large in comparison to the

mean velocity.

The integral length scale in the streamwise direction is therefore given by:
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L,.=US8,, (2.8)

and is generally considered to be typical of the average to larger sized energy containing eddies
whose history is determined by the geometric or production scales of the flow.

The integral length scale in the transverse or radial direction is not as straight forward since there
is no obvious choice for a convecting velocity in the radial direction. If, however, it is assumed that
the turbulence structure remains frozen over the integral time scale as it is convected downstream

by the mean streamwise velocity, then a radial integral length scale can be defined as:

er = Ugrr (29)

Strictly speaking, this is not a true radial integral length scale since it is dependent on the convecting
streamwise velocity. It is, however, the integral length scale that is representative of the correlation
between the radial turbulent velocities. In Chapter 5, it will be shown after the fact that the length
scale defined by equation (2.9) does scale with the radius or geometric scale of the jet.

The choice of U to be used in the above equations is somewhat dependent on the flow. For the
external grid generated turbulence, the mean velacity is constant throughout the flow field and is
thus the obvious choice. In a coflowing jet, the convection velocity is dependent on both the
streamwise and radial positions. Antonia and Bilger (1973) have evaluated streamwise integral
length scales on the centerline of the jet and use the local mean velocity, U, (which in this case is
the local centerline velocity) as the convecting velocity. Smith and Hughes (1977) evaluate the
convecting velocity to be 0.9 times that of the local mean velocity based on separation techniques

using hot wires. Biringen (1986) calculates the convecting velocity, U, using:

u?
Uc=U l+2-l-j—2- (2.[0)

According to the literature on coflowing jets, there is no apparent standard choice for the

convecting velocity. If the mean velocity profiles within the jet can be shown to be similar, then all
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the jet mean velocities can be related back to each other. Thus the choice of a convecting velocity
becomes somewhat arbitrary since it can be related to any other mean velocity in the jet by
similarity relations.

Following Antonia and Bilger (1973), the present study will use the local mean velocity as the

convecting velocity in all cases.

2.3 Grid-Generated Turbulence

In a 1951 paper, Baines and Paterson stated paradoxically that grids and screens could be used in
a fluid flow field to either generate or reduce turbulence and to either create or eliminate large scale
velocity or pressure non-uniformities. With such a wide range of applications, the present literature
review will concentrate solely on turbulence that is generated by the wakes and momentum jets
formed behind grids.

Turbulence generating grids exist in a wide variety of geometric configurations ranging from
biplanar arrays of round or square bars to perforated plates. The conventional method of describing
a grid is by the bar width, b, the centre to centre mesh spacing, M, and the grid solidity, o, which
is defined by the projected area per unit total area and can be calculated from:

=b(, 8
o M(Z M] (2.11)

Experimental evidence suggests that significant flow instabilities result when 6>0.50 (Roach, 1987).

An excellent review of grid-generated turbulence theory is given in Hinze (1975). Typically, the
behaviour of the streamwise turbulent velocity, (u ©)%, and integral length scale, L_, are described

by power laws of the form:



(Z)'" wx)? (2.12)

Lo=x! (2.13)

where x, is the streamwise distance from the grid plane and where the exponents obey the
theoretical conjugate relationship (Lewalle, 1990):

p=l+§ (2.14)

To appreciate the range in the different theoretical values, without going into the theoretical detail,
Hinze (1975) states that #7/2=-0.5 and p=0.5 for the case of complete self-preservation of
turbulence, #/2=-0.6 and p=0.4 when Saffinan’s mvariance is assumed, and n/2=-0.714 and

p=0.286 when Loitsianskii’s invariance assumed.

George (1992), in a re-analysis of homogeneous isotropic turbulence (based on 2 more general form
of self-preservation theory using higher order momentum similarity), has shown that the decay of
the turbulent energy in grid-generated turbulence is, in part, continuously determined by the initial
conditions of the flow. No single universal state of self-preservation can thus be obtained unless
the grid Reynolds number is infinite at which point the flow becomes independent of the initial
conditions. George (1992) has derived for this case of infinite grid Reynolds number a theoretical
upper limit on the decay exponent as »n/2=-0.5 and also notes that there is some experimental

evidence to suggest that /2 increases towards —0.5 as the grid Reynolds number increases.

Excellent reviews of grid-generated turbulence experiments are also given in Hinze (1975) as well
as Roach (1987). Hinze (1975) summarizes the experimental data by stating the range for the
exponents as -0.675<n/2<-0.600 and 0.30<p<0.53 while Roach (1987) suggests using
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n/2=-0.714 and p=0.5 as the average of the experimental data.

The present study uses grids composed of a biplanar array of square bars since the location of the
flow separation on the bar is not sensitive to the Reynolds number of the flow as in the case of
round rods. A list of other grid-generated turbulence experiments using this same grid
configuration is given in Table 2.1 which summarizes the working medium and the initial conditions
of the experiments. The last column in the table gives the grid Reynolds number which is defined
as Re,=U b/v where U, is the streamwise mean velocity in the flow and v is the kinematic viscosity
of the fluid. In addition, for this configuration, Fink (1977) and Johnson and Johnston (1989) have
demonstrated that the flow behind the grid is uniform and homogeneous in planes parallel to the

Reference m—n—lm
Present water 1.27 5.08 0.0721
2.54 10.16 0.44 0.0713 1800
Comte-Bellot and afr 0477 2.54 034 20 6400
Corrsin (1966)
Fink (1977) air 1.0 4.0 0.44 7 4700
Johnson and water 1.27 6.35 0.36 0.152 2100
Johnston (1989)
Nakamura and air 2.5 13.0 0.35 10 16700
Ohya (1983)
Sato (1951) air 0.5 2.5 0.36 5 1650
0.5 2.5 0.36 10 3300
Sirivat and air 0.476 2.54 0.34 3.4 1000
Warh 1983
arhaft (1983) 0.476 2.54 034 6.3 1800
Tan and Ling water 1.88 5.08 0.60 0.0292 550 1'
(1963)
0.706 1.905 0.60 0.0318 230 I
Warhaft and air 0.476 2.54 0.34 6.5 1900
Lumley (1978

Table 2.1: Summary of the geometric and flow conditions for square bar grid experiments.
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grid after 40 bar widths downstream from the grid.

For square bar grids, Roach (1987) suggests the following semi-empirical fits to the turbulent

mtensities:
-0.714 2 -0.714
2 X F b
T = ‘/“== 1.13| -£ & T =1—-=101| % (2.15)
U, b " i b
and to the mtegral length scales:
L . )% L < oo
_Z‘izo.zo( 7"-‘] & -—bl=0.10 f- (2.16)

The data from the experiments listed in Table 2.1 and equations (2.15) and (2.16) will be used to
check the validity of the present experimental results for grid-generated turbulence in Chapter 4.

The present study also proposes to use water as a working medium. Table 2.1 indicates that only
Tan and Ling (1963) and Johnson and Johnston (1989) have previously used water, neither of
which made comparisons to similar results obtained in wind tunnel experiments. Note, however,
that the grid solidity of Tan and Ling (1963) is 0.6 and thus the results are not reliable due to the
flow instabilities introduced when 6>0.5 (Roach, 1987). Comparison of the air and water results,
at a given grid Reynolds number, should thus indicate similar characteristics for grid-generated

turbulence.

In addition, the grid Reynolds number range, excluding that of Tan and Ling (1963), varies from
900 up to 16700. This may provide a sufficiently broad range to verify if the initial conditions of
the flow, and thus the grid Reynolds number, have a continuous effect on the downstream
development of the turbulence as postulated by George (1992).
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2.4 Analytical Models for Coflowing Jets

In the field of pollution dispersion modelling, the average behaviour of jets and plumes can be
described by knowledge of the trajectory and spread (see, for example, Slawson and Csanady,
1967 and 1971.) These two parameters describe respectively the mean path that the jet or plume
follows in the environment and the degree of transverse dispersion or dilution about the mean path.
The spread and trajectory are assumed to be average quantities which, if obtained by field
measurements, would require fifteen minutes to an hour averaging time frame in the planetary

boundary layer.

If an isothermal jet in a uniform external coflow is taken to be a simplified version of real
environmental situations then its mean behaviour should also be satisfactorily predicted by its
trajectory and spread. Since the jet orientation is horizontal and since the jet fluid is isothermal. the
mean path of the jet exhausting into the coflow is simply the horizontal extension of the axis of the
jet model into the external coflow. There can, however, be a significant decay in the streamwise
mean velocity, U, of the jet with distance downstream. Thus, in order to estimate the distance
travelled by fluid elements within the jet, the mean velocity decay must be predicted. In the
atmosphere, this is commonly avoided by invoking the bent-over plume assumption whereby it is
assumed that the mean velocity of the jet or plume is equal to that of the mean wind. In addition,
the behaviour of the jet radius, R, as a function of the distance downstream is also required to give
an estimate of the spread. Predicting the mean behaviour of an isothermal jet in an external coflow
can thus be translated into predicting U=fx) and R=g(x).

The axial mean velocity and the radius are both mean quantities which depend on the turbulence
structure within the jet which, in tum, is responsible for entraining the slower external fluid at the
edge of the jet. The slower entrained extemal fluid results in a decrease in the mean jet velocity
and an increase in the jet radius. When the extemal coflow is also turbulent, the effect on the mean
velocity and radius of the jet will be dependent on the interaction of the turbulence within the jet
with that in the external coflow. Thus, in modelling the jet in an external coflow which is turbulent,
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both the mean quantities and the turbulent statistics of the jet and the external coflow must be

considered.

2.4.1 Similarity Considerations

A jet in a coflowing extemnal stream is representative of a developing flow since, depending on the
downstream location, the behaviour of the jet falls somewhere between that of a jet in a quiescent
surrounding and that of small velocity excess jet similar to a small defect wake except opposite in
sign. As a result, the radial profiles of the mean velocity and turbulent velocities are dependent on

both the radial position and the downstream location.

Similarity theory suggests that for many flows the profiles of the mean and turbulent velocities
maintain the same functional form with only the radial length scale and scales of the velocities
changing with downstream distance (Townsend, 1976). For similarity to occur in a coflowing jet,

the variation of the streamwise mean velocity and the turbulent stresses must be of the form:

U=U,+Uf(n)

u? =

u? -zg“(n) @1
v,— =u gzz(n)

where n=7/b, b is a scale of radial length and is dependent on the velocity profile assumed, U, is the
constant velocity in the external coflow, Uis some scale of the mean velocity, #? is a scale of the
turbulent stresses and f, g,, , £,,, and g,, are the functions defining the radial distribution for the
various variables. Note that b, U , and #* are functions of x only and that the turbulent stresses

are allowed to have a scale factor which is independent of the scale factor for the mean velocity.

Typically, the next step is to investigate under what conditions, if any, the similarity distributions
given by equation (2.17) satisfy the equations for the conservation of mass and x-momentum. The
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simplified conservation of mass equation is given by (see Appendix A for a complete derivation
including turbulence terms):

w1
-

i (rv,)=0 (2.18)

A
or
which can be solved for the radial mean velocity, V,, to give:

1
-V == 22 rd
- ,{ rar (2.19)

uvr)= 0 (2.20)

Substituting equation (2.17) into equation (2.19), and recalling that the partial derivatives with
respect to x and r can be converted to partial derivatives with respect to 1 using the chain rule of

derivatives to get:

ox b dx 2n
30 180 @20
r b odn
then the radial velocity will have the form of:
1 d{0b?) 1 -db
-V e dn-U—
S dx {f’ﬂ n-0—ns (2.22)

Substituting this expression for V, along with the similarity expressions given by equation (2.17)

into equation (2.20), results in:
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U,U aqp b di?
v v

where primes denote differentiation with respect to 1. The terms in the square brackets are
functions of n} only and the terms in the curly brackets are functions of x only. If the flow is to
display similarity, then the value of each term must be identical for all values of x and 1. Since
there is no term in curly brackets in the seventh term on the left hand side, similarity is only possible

if the six other terms in curly brackets are all constant.

The sixth term in curly brackets on the left hand side therefore gives b=x and, as a consequence,
the fourth term results in U, {//# 2 being a constant. #?* can then be replaced by U, U and the first
and fifth terms then give:

<

= constant (2.24)

a."k

_b.
7

while the second term gives:

&

= constant (2. 25)

&IR

i
U.

The above two conditions can only be satisfied if U is a constant which gives a zero value for the
derivative. However, the remaining terms in square brackets in equation (2.23) can only be
satisfied if U=<U/. Thus the only solution that can be obtained from the conservation of mass and
X-momentum equation are for similarity distributions with scale factors of U«=U., %« U?, and bex.
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This describes the case of a jet with an initial velocity ratio of unity and does not, in general, reflect
the true development of jet in a uniform external coflow as observed in experiments. In fact,
previous experimental studies on jets with initial velocity ratios greater than unity, indicate that the
scale factor that collapses the radial profiles of the mean velocity is the centerline excess mean
velocity, U,, which is defined as the difference between the mean velocity at the jet centerline and
that of the external coflow and, as such, is a function of distance downstream. It must therefore
be concluded that complete mathematical similarity for a jet in a uniform coflow does not exist.

Similarity theory, however, can provide two useful asymptotic limits on the behaviour of U, and
R if the condition that U, is a constant is relaxed and allowed to be a function of x (Hill, 1965,
Newman, 1967, and Hinze, 1975). The similarity analysis (see Newman, 1967, for the complete
analysis) then yields the condition that U/U, is a constant. The first asymptotic limit is given by
a very strong jet in a comparatively weak extemal coflow where U, /U, «1. Under these conditions,
the expected development of the jet corresponds to U,=x" and R=<x. This behaviour has been
observed in jets issuing into quiescent backgrounds (Hussein ez al, 1994) as well as in coflowing
jets close to the jet exit (Biringen, 1986). The second asymptotic Limit is given by a very weak jet
in a comparatively strong background flow where U,/U»1. Under these conditions, the expected
development of the jet becomes U,«x*® and R<x'®. Limited experimental data exists for the
verification of this final stage asymptote since the condition that U, /U1 is only realized far
downstream from the jet exit. Biringen (1986) and Nickels and Perry (1996) have stated that their
far field data appears to approach the above trends.

2.4.2 Integral Models for a Jet in a Nearly Laminar Coflow

Most analytical models for a jet in a nearly laminar (i.e. very low turbulence levels) coflow begin
the model development by assuming partial similarity in that the mean axial velocity profiles become
self-similar by a certain distance downstream from the jet exit. Using a characteristic length (i.e.
the jet velocity half width, L, , or the jet radius, R) and a characteristic mean velocity (/.e. the
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centerline excess mean velocity, U,, or the top-hat mean velocity, U), the radial profile of the axial
mean velocity can then be specified, for example, by:

U=Ue+Uof(T|); whereﬂ=zr- (2.26)
where (1)) is some universal function. This recasts the problem into solving for the characteristic
length and velocity.

An integral momentum equation is then developed using the conservation of mass and the
streamwise momentum equation along with simplifying assumptions. The resulting equation can
then be used to determine the relationship between local values of U, and L,. As a simple
illustrative example, take a high Reynolds number flow where viscous effects can be ignored and
in addition assume that the momentum contribution from any turbulence quantity is small in
comparison to the momentum contribution from the mean quantities. The resulting integral

momentum equation for such a case is (Hinze, 1975):

E S

U(U-U \rdr = Mo
{ ( L)r by (2.27)

where A, is the momentum integral constant.

As a brief aside, the momentum integral constant can be used to define a useful length scale
commonly referred to as the momentum thickness in planar flows (see, for example, Tennekes and
Lumley, 1972). The momentum thickness is the length scale that compares the excess momentum
flux of the jet to that of the background flow by equating A/, to an equivalent momentum flux using
the external mean velocity, U, and a radius, 0, such that:

M
0= -
npU3

12

(2.28)
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To keep the physical significance of 0 as clear as possible, it will be referred to as a momentum
radius rather than a thickness. Since 0 defines a length scale which is characteristic of a particular
combination of a jet and an external flow, it can be used as a normalizing length scale in order to
compare results from different experiments.

The integral momentum equation, given by equation (2.27), is used for illustration purposes only
since the assumptions used in the development exclude any effects of turbulence, both within the
jet and within the external coflow. Substituting the velocity profile assumption, equation (2.26),
into equation (2.27) gives:

jaznf’(n)a'n+—U—"f11f(n)dn= at (2.29)
A u, 2‘1'|:p(U¢,Lo)2 )

If the streamwise mean velocity profiles are self-preserving, and providing that f(n) is known,
equation (2.29) can be integrated from the centerline to the edge of the jet to yield an equation
relating local values of U, and L.

An additional equation, however, is required to determine the axial variation of the mean velocity
scale and the scale of jet spread. Several methods, detailed in the literature, have been used to

obtain this second equation and are briefly outlined below.

2.4.2.1 Double Momentum Integral Technique

One of the first techniques, introduced by Squire and Trouncer (1944), uses a second momentum
integral evaluated from the centerline to the jet velocity half width, L,. Evaluation of this second
integral requires an estimate of the shear stress, €, at =L, Squire and Trouncer (1944) used

Prandt]’s mixing length theory to approximate the shear stress as:
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~

oU

er

r=—pﬂ-ﬁ=vr-‘:;—U where v, =p/?
r

(2.30)

and is the phenomenological turbulent eddy viscosity. In addition, they assumed that the mixing
length, /, was always a constant proportion of the width of the flow. This effectively results in
vrecU, L, (Hill, 1965) and the turbulent Reynolds number, defined by:

UD LO

Re .= "
T

(2.31)

becomes a constant throughout the flow. This is physically unrealistic for a jet in a coflow since
the turbulent Reynolds number should decrease with increasing distance (Antonia and Bilger,
1974). Forstall and Shapiro (1950) have shown that the method of Squire and Trouncer (1944)
does predict the general order of magnitude of U, and L, but presents a false picture of the way in
which they vary with the streamwise distance.

2.4.2.2 Higher Moments of the Momentum Equation

A second method for obtaining a second equation involves multiplying the momentum equation
by U™ " where m and n are integers. Hill (1965) used m=0 and #=2 to obtain a moment-of-
momentum equation. The set of equations can be solved for x and R as functions of the mean

velocity ratio to give:

3

X _ Ue ? - Ue % Uc -;. -
— =639 — +0.468 +5.38 +0.468 +1.76| — + 0.468 -8.30
0 U 7 U,

U

€

U

o

U 1
[2n[ 0.095-U—‘+o.0445]] 2

(2.32)

R
0
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where 0 is the momentum thickness. All the constants in the solutions are evaluated based on
experimental data for jets issuing into a quiescent background (i.e. a very strong jet). Hill (1965)
found that his solution adequately predicted experimental data for a jet m a coflow provided
U/U 1 but failed in predicting data when the jet degenerated into a weak jet. Since the constants
in the equation are determined from data for a jet in a quiescent background, its not surprising to
see good agreement with data from strong jets. One advantage of this solution over the double
integral method is that it is independent of any phenomenological turbulence theories such as eddy

viscosities and mixing lengths.

In addition to a moment-of-momentum equation, Hill (1965) suggests an energy integral equation
where m=1 and r=0. No solution, however, is presented for this case. It should be noted that the
choice of m and » in this method is somewhat arbitrary since if the exact solution is known it would
satisfy any of the higher moment equations.

2.4.2.3 The Energy Equation with a Shear Stress Model

Fink (1977) uses the energy equation to obtain the second equation relating the local radial length

scale and mean velocity scale. In using the energy equation, however, a Reynolds shear stress term

emerges which must be modelled. Fink (1977) uses a turbulent eddy viscosity model so that:

..t. Uy =V .a_.(_f (2 3-')
p r T ar -2

where:
vr=¢,00, (2.54)

and ¢, is an entrainment constant and 0 is the momentum radius.

Fink (1977) appears to obtain good agreement between experimental data and the predicted values
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for the decay of the mean velocity. No comparison, however, is made for the radial spread of the
jet even though the spread and the mean velocity decay are coupled through the integral momentum
equation. One serious flaw of the above model is that it relies on the radial gradient of the

streamwise mean velocity which becomes zero at the jet centerline and at the edge of the jet.

2.4.2.4 Townsend's Hypothesis of Large Eddy Equilibrium

A fourth method for obtaining the second equation involves using Townsend’s hypothesis of large
eddy equilibrium. This hypothesis assumes that the largest eddies of the turbulent shear flow are
in approximate energy equilibrium throughout a significant part of their existence. This leads to
a relatonship between the mean rate of shear strain and the Reynolds shear stress which mvolves
the scales of the largest eddies (Gartshore, 1966). In this method the turbulent Reynolds number.
Re,. is allowed to vary with distance downstream in a particular flow as well as from one flow to
another with the variation related to (3U/dx)/(3U/3r) at =L,. A double integral technique similar
to Squire and Trouncer(1944) is also employed. The resulting set of equations is solved
numerically using a Runge-Kutta scheme and requires the input of two empirical constants
(Newman, 1967). In spite of the added sophistication and the additional assumptions regarding the
large eddy equilibrium hypothesis, the method does not show good agreement with experimental
data (Patel, 1971).

2.4.2.5 Auxiliary Growth Equations

The use of auxiliary growth equations stems from the assumption that the spatial rate of growth of
a mixing layer is dependent on the level of turbulence within the mixing layer which, in tum, is
dependent on the mean velocity. Newman (1967), in an analogy to a derivation of Abramovich
(1963) for mixing layers in constant pressure, proposes an auxiliary equation for plane jets in an

external coflow of the form:



This auxiliary equation is identical to that proposed by Townsend (1976) who arrived at it from
considering the entrainment into the shear flows and termed c, the entrainment constant. Patel
(1971), however, has shown that this auxiliary equation corresponds to an approximately constant
eddy viscosity Reynolds number. To allow for variation in the turbulent Reynolds number, Patel

(1971) has suggested an auxiliary equation of the form:

dL, U

o

=¢,
dx U,+U,

(2.36)

Although there is only slight qualitative differences in the auxiliary equatious, equation (2.36) does
give the correct values for the turbulent Reynolds number for a strong plane jet and a weak plane
jet. Antonia and Bilger (1974) have extended the method of Patel (1971) to an axisymmetric jet.
The auxiliary equation has the same form as equation (2.36) although the value of the constant c,
is chosen to satisfy the growth rate of a strong axisymmetric coflowing jet. Antonia and Bilger
(1974) have concluded that this method of using an auxiliary equation is satisfactory when U, /U,
is small but is not acceptable when U, /U, is large since the influence of the initial conditions is not

destroyed.

2.4.2.6 Entrainment Hypothesis

The use of an entrainment hypothesis, although quite similar to the auxiliary growth equation
technique, originates in the field of air pollution dispersion modelling (see, for examples, Morton
et al, 1956, and Slawson and Csanady, 1967 and 1971) and is still commonly employed in
atmospheric integral models. The method assumes that the radial inflow velocity at the edge of the
jet is the result of entrainment of ambient fluid due to the action of turbulence. The turbulent
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velocities responsible for the entrainment of ambient fluid are assumed to be proportional to some
mean velocity or mean velocity difference within the jet. The entrainment hypothesis is usually
contained within the continuity equation which can be rewritten in the form:

R(x)

d f U(x,r)rdr=Rv, (2.37)
0

dx

where v, is the entrainment velocity. Typically, the mean velocity within the jet is assumed to have
a top-hat distribution such that when 0<r<R, U=U and when r>R, U=U,. The integral in equation
(2.37) can then be evaluated to give:

—{-(Rzl—/)=2Rv, (2.38)

dx

The entrainment hypothesis is then contamed within the entrainment velocity. Morton (1961) and
Maczynski (1962) have both suggested that v,=a(U-U,) where « is the entrainment constant.
Maczynski (1962) has shown however that, given the above entrainment hypothesis, o cannot
remain a constant but must increase between the initial region of the jet and the region far
downstream of the exit. Maczynski (1962) states the reason for this is that in the initial region the
jet velocity is large and may inhibit mixing while farther downstream, the jet velocity decreases and
the flow is more like that of a wake which is known to have a greater value of « than a jet issuing

into a quiescent background.

Van Heyst (1992) has proposed that v,=aU which gives a closed form analytical solution of Re<x
and Ue<x""' which is the asymptotic limit for a strong jet in a weak coflow. As might be expected,
this entrainment hypothesis satisfactorily predicts the flow near the jet but fails to yield the correct
asymptotic limit far downstream where the jet has degenerated into a very weak jet.



2.4.2.7 Other Analytical Models

Antonia and Bilger (1974) have applied a two parameter turbulence model developed by Rodi and
Spalding (1970) and Spalding (1971). In the turbulence model, the turbulent kinetic energy and
a turbulence length scale are determined from the differential transport equations for these
quantities. There is however no physical basis for the differential equation for the turbulence length
scale which is derived by analogy to the turbulent kinetic energy equation. The method gives good
predictions for the mean velocity decay and for the spread of the jet while giving adequate
predictions of the turbulent velocities and the Reynolds stress for values of U,/U, as low as three.
The apparent success of the model is diminished, however, by the non-physical nature of the
turbulence length scale equation, by the uncertamty in determining some of the constants to be used

in the equations, and by the possible dependency that these constants have on flow parameters.

Nickels and Perry (1996) have used coherent structures to model a coflowing jet in which they
assume that the flow is dominated by double-roller eddies which are inclined to the streamwise
direction. The characteristic velocity of the coherent structures is proportional to the centerline
excess mean velocity and the characteristic length scale is proportional to the radius. Nickels and
Perry (1996) try many different eddy shapes but choose the one that gives the correct Reynolds
stress ratios and reasonably good shapes for the spectra. The model shows reasonable agreement
between the predicted values and experimental data for the Reynolds stresses and mean velocities
but only fair agreement between turbulent energy spectra. The authors consider the chosen eddy
shape a “first stab™ which gives results which are fairly consistent with the data, but admit that other
possible shapes still need to be explored.

2.4.3 Models Including the Effects of External Turbulence

Slawson and Csanady (1967 and 1971) have proposed a zone model where a turbulent jet or plume
undergoes three distinct phases of growth. In the initial phase, the self-generated turbulence within
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the plume or jet dominates the mixing and the growth. As distance from the source is increased,
an intermediate phase is entered where the external turbulence in the inertial subrange dominates
the mixing. The final phase is entered when the mixing becomes dominated by the energy
containing eddies within the external flow. The existence of three distinct phases is a considerable
simplification since in reality there is likely to be significant overlap in growth mechanisms between
the phases. Slawson and Csanady (1971) have incorporated the entrainment of external fluid into
the jet or plume that is the resuit of the extemal turbulence by using an entrainment hypothesis
which is dependent on the growth phase of the jet or plume. In the intermediate phase, Slawson
and Csanady (1971) have proposed that v.=B€'°R** and in the final phase, v, =yvL/R where B and
y are entrainment constants for each phase, € is the rate of energy dissipation per unit mass, R is
the jet or plume radius, v is a turbulent root-mean-square velocity in the external coflow, and L is

the length scale of the energy containing eddies in the external coflow.

Fink (1977) uses the zone model proposed by Slawson and Csanady (1971) but uses an eddy
viscosity model to represent the seif-generated diffusion of the jet and the added diffusion caused
by the turbulence in the external coflow rather than an entrainment hypothesis. The added eddy
viscosity that is due to the effects of the external turbulence, v, are modelled by v,,=0 for the
initial zone, and by v, <e"*(L,)*” for the intermediate zone. Fink (1977) did not include a final
phase portion in his model. For a turbulent external flow, the added eddy viscosity due to the
external turbulence is linearly summed with that due to the jet in equation (2.34). Fink (1977)
concludes, however, that the overall enhanced axial development of a jet in a turbulent coflow is
poorly predicted by assuming a constant total eddy viscosity composed of a self-generated part and
a supplement which is only influenced by the characteristics of the eddies in the inertial subrange

of the external coflow.

Scahtzmann (1979), in developing an integral model for plume rise, allows the entrainment velocity
to have several terms, each reflective of a specific entrainment mechanism. This allows for some
overlapping between the various phases of plume and jet growth. The term which models the
atmospheric phase has the same form as that proposed by Slawson and Csanady (1971) for the final
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phase. However, due to lack of experimental data on jets and plumes in extemal turbulence fields,
the value of the constant is left undetermined.

Wright (1994), in order to account for the effects of external turbulence generated by a bed of
gravel on a coflowing jet, also uses an entrainment velocity function similar to the final phase of
Slawson and Csanady (1971) but sets the characteristic turbulent velocity equal to the wall shear
stress velocity at the gravel bed. A linear summation for the laminar and turbulent entrainment
functions is also used. Wright (1994) obtains fair agreement to the radial spread of the jet but

makes no comparison with the mean velocity decay.

2.4.4 Current Integral Model

To predict the behaviour of the mean velocity and the jet radius as a function of downstream
distance, the current integral model, to be developed in Chapter 6, will use the entrainment velocity
approach for the additional equation needed to relate the streamwise development of the mean
velocity and the spread of the jet. This choice is based, in part, on the fact that the entrainment
velocity has a physically based meaning and that it is used in existing environmental integral models.
[n addition, it can easily be modified to account for the effects of external turbulence as
demonstrated by Slawson and Csanady (1967 and 1971).

2.5 Coflowing Jet Experiments

One of the first experimental investigations into coflowing jets is that of Squire and Trouncer
(1944) who used the coflowing configuration as an extension to the problem of a jet issuing into
quiescent background. Since then, there have been a number of experimental studies regarding
coflowing jets. The ones most relevant to the present study have their initial conditions summarized

in Table 2.2. The table presents the type of jet used, the working fluid, the measurement technique
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employed as well as the specific diameter of the jet model, d;, the average mean velocity at the jet
exit, U, the extemal mean velocity, U,, and the mitial velocity ratio, VR. The last column indicates
whether or not a turbulent external coflow was also considered.

Note that only Van Heyst (1992) and Fink (1977) have employed a turbulent extemal flow and that,
in both cases, this was achieved using only one turbulence generating grid. In each of these studies
it was concluded that the presence of turbulence in the external flow caused the mean velocities in
the jet to decrease more rapidly and the jet characteristic widths to increase more rapidly over the
case of a jet in a nearly laminar external flow. In addition, an increase in the magnitude of the
streamwise turbulent velocities and an increase in the magnitude of the streamwise integral length

scales were also observed in the jet when the external flow was turbulent.

Fink (1977) has pointed out that turbulent mixing processes interact most effectively when the
characteristic scales of turbulence are on the same order of magnitude. One shortcoming of both
the experiments of Van Heyst (1992) and Fink (1977) is that only one turbulence generating grid
is employed which limits the external turbulence to a single characteristic length scale and a single
characteristic velocity scale, both of which evolve with downstream distance. In addition, both Van
Heyst (1992) and Fink (1977) use only one jet diameter, although Fink (1977) uses three different
initial jet velocities. Thus the characteristic scales of turbulence in the jet, especially the
characteristic length scale, are limited in range in these experiments. To expand the range of
characteristic turbulence scales in the experiments, multiple grids having different bar widths and
multiple jet models having different jet diameters as well as several initial jet velocities should be
used. This would result in experimental data that covers a range of characteristic turbulence scales
both within the jet and in the external flow which would better elucidate the mechanisms involved
in two interacting turbulent flow fields.



2.6 Research Objectives

Upon review of the relevant background and literature, the primary objectives of the current

research can be restated as:

1. To acquire a new data base for turbulent isothermal jets released into uniform turbulent
external coflows that incorporates a range of characteristic turbulent scales both within

the jet and the extemal coflow.

2. To develop a new entrainment velocity function, to be incorporated into an integral
model, that accounts for the interaction of the coflowing jet with the turbulent external
coflow by determining the correct length and velocity scales that dominate the diffusion

process as the jet evolves downstream.
with the secondary objectives being:
I. To determine if the initial conditions of the grid, especially the grid Reynolds number,
have a continuous effect on the behaviour of grid-generated turbulence at finite grid

Reynolds numbers as suggested by George (1992).

2. To investigate and perhaps determine the appropriate scaling for the mean and turbulent

velocities in the coflowing jet.



Chapter 3: Experimental Apparatus, Methods,
and Uncertainty

3.1 Introduction

This chapter provides a brief discussion and overview of the equipment used to obtain experimental
data for both the grid-generated turbulence investigation and the coflowing jet experiments.
Attention is focused on the water flume test facility, the turbulence generating grids, the coflowing
jet models, and the laser Doppler anemometer (LDA) system. This is followed by a discussion of
the experimental methodology employed to obtain accurate results and the level of experimental

uncertainty contained within the results.

3.2 Experimental Apparatus

The principal components of the experimental apparatus are of the water flume facility, the
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turbulence generating grids, and the coflowing jet models which will be discussed in detail in this
section. The details of the laser Doppler anemometry (LDA) system and the traversing rigs used
to locate the LDA are left to the next section for discussion.

The schematic given in Figure 3.1 illustrates the test section of the water flume and the relative
placement of the turbulence generating grids and the coflowing jet models with respect to each
other and with respect to the free surface and floor of the flume.

3.2.1 Water Flume

All the experiments were conducted in the water flume test facility located in the Fluid Mechanics

Laboratory at the University of Waterloo. The closed-loop water flume is 12.2 m long with a cross
section of 1.2 m wide by 0.8 m nominal operating depth. This large cross sectional area provides
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Figure 3.1: Schematic of the test section of the water flume with a jet model and a
turbulence generating grid installed.
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a central working core free from free-surface effects as well as blockage effects due to boundary
layer development on the floor and sidewalls. Plexiglass sidewalls, spanning the entire test section,
facilitate the use of a laser Doppler anemometer (LDA).

The water supply for the flume originates in a 90 m’ storage sump located beneath the pump room
in the Fluid Mechanics Laboratory. The water is pumped from the sump to a 24 m’ constant
volume head tank, equipped with an overspill weir, located directly above the pump room. From
the head tank, the water passes through a control valve and into a cylindrical head tank located at
the start of the flume after which the water enters the channel portion of the water flume.

A series of baffles, screens and a honeycomb located in the first two metres of the water flume
effectively reduce all scales of turbulence which results in a very low turbulent flow. A restriction
plate, located at the end of the water flume, provides sufficient resistance for the flow to obtain a

nearly uniform mean velocity profile in the test section.

Once the water passes through the restriction plate at the end of the flume, it returns to the storage

sump via a trench located below the water flume facility.

3.2.2 Turbulence Generating Grids

The turbulent energy in the water flume is increased by inserting one of two different turbulence
generating grids upstream from the test section. Each grid is composed of a biplanar array of
square aluminum bars with bar widths of 5,=1.27 cm and 5/~2.54 cm and mesh spacings of M/, =5.08
cm and M=10.16 cm where the subscripts s and / refer to the small and large grid respectively. The
grid solidity for both grids is 6=0.44. The grid Reynolds numbers, based on the bar width and the
mean velocity, are Re, .~900 and Re, ,~1800. Square bars were used for the construction of the
grids due to their insensitivity to Reynolds number variation since the location of flow separation
is fixed for a square bar (Comte-Bellot and Corrsin, 1966). This is not the case for round rods
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where the location of flow separation is strongly dependent on the Reynolds number of the flow.

The location of the grids upstream from the jet exit is set at 48 bar widths to ensure that the
turbulence generated by the grids is approximately homogeneous (see, for example, Johnson and
Johnston, 1989) in planes parallel to the grid by the location of the jet exit.

3.2.3 Coflowing Jet Models

Two coflowing jet models have been designed and constructed out of plexiglass tubing with inner
diameters 0f 0.953 cm and 2.223 cm and a wall thickness of 0.159 cm. Both models are 1.3 metres
in length and could be suspended in the water flume by two sets of thin wires with one set being
located at the upstream start of the model and the other being located 30 cm upstream from the jet
exit. Each set of mounting wires consists of four wires that are attached to the jet models at a 45°
angle from the principal coordinate axes so that the wakes generated by the wires did not interfere
with the jet in the measurement planes. This mounting configuration allows the jet to be aligned

accurately with the flow and ensures that the jet is held rigidly in place.

To reduce flow separation around the jet exit due to the thickness of the plexiglass tube wall, the
end of the models have been machined to produce a gradual taper to the exit. The boundary layer
thickness along the jet models is estimated to be between 7 and 10 mm thick based on velocity
traverses taken 2 mm down from the jet exit. The thickness of the boundary on the jet models does
not appear to be dramatically affected by the levels of turbulence in the external flow and thus all
experimental runs using the same jet model have approximately the same initial conditions at the

jet extt.

For the small jet with an approximate initial velocity ratio (VR) of 3, the jet Reynolds number, based
on the average mean velocity at the jet exit and the jet model diameter, is approximately 2000. To
guarantee that the flow leaving this jet is turbulent, small screens had to be inserted into the model
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tube upstream of the jet exit. The jet Reynolds number for the other experimental runs are on the
order of 4000 or greater which is large enough to ensure the flow leaving the pipe is turbulent
(Munson ez al, 1990).

The water flow to the jet model is regulated using a calibrated flow meter and is set by the desired
initial jet velocity ratio so that the flow rate leaving the jet model, divided by the model’s cross-
sectional area, gives an average velocity equal to the initial velocity ratio times the external mean

velocity.

3.3 Velocity Measuring System

The primary component used to measure the instantaneous velocities in the water flume is the laser

Doppler anemometry (LDA) system. The LDA employed in the current study is set up as a two-
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Figure 3.2: Schematic of the LDA system operating in forward scatter mode.
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component two-colour forward scatter system as illustrated by the schematic in Figure 3.2. The
system consists of an argon-ion laser, two-component modular optics, a photomultiplier (PM), an
electronic frequency shifter, counters, an oscilloscope, and a data acquisition computer. The other
major component of the measuring system is the traversing rigs on which the LDA system and the

PM are mounted.

3.3.1 Laser Doppler Anemometry (LDA) System

The Ion Laser Technology (ILT) model S500A laser is an air-cooled coherent light source capable
of generating laser light in the 457 nm to 514.5 nm regime of the electromagnetic spectrum. The
operating output power of the unit can be adjusted from 10 mW to 500 mW. Typical laser power
in the experiments ranged between 200 mW and 300 mW as dictated by the quality of the signal

being received at the PM from the control volume (CV).

The Dantec 55X modular optics are assembled into a two-component, two-colour forward scatter
system. This optical arrangement allows for the simultaneous measurements of the streamwise and
transverse instantaneous velocities in the control volume and has a better signal-to-noise ratio then

the same system operating in back scatter mode.

Upon entering the LDA optics, the cyan laser beam is split into two beams of equal intensity by a
neutral beam splitter. One of the beams then passes through a Bragg cell which, in conjunction
with the frequency shifter, optically shifts the frequency of the laser beam by +40 MHZ. The other
beam passes through a glass rod to equalize the optical lengths of the beams. Both beams then
proceed through a series of beam splitters which split the cyan beams into a blue beam at 488 nm
and a green beam at 514.5 nm. All four beams then pass through a beam translator which allows
the beams to leave the optics at a specified separation. Finally, the beams pass through a beam

expander and a 600 mm focusing lens before leaving the module.
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After leaving the LDA optics, the laser beams pass through the plexiglass side wall of the water
flume and intersect each other in the flow field to form a control volume. The beams continue to

pass through the water and out the opposite side wall where they are blocked for safety reasons.

When two laser beams with the same frequency intersect each other, a stationary interference
pattem of intensity fringes result. In highly turbulent flows and in reversing flows, this stationary
interference pattern does not allow the LDA system to distinguish the flow direction and thus
negative bias errors are introduced into the velocity data. However, when a frequency shifted beam
and an unshifted beam intersect, the same interference pattem is produced only the fringes are no
longer stationary but move with a known velocity. Thus in flows with near zero mean velocities
or reversing velocities, shifting one beam enables a parallel transformation to be performed in the
frequency domain that shifts the zero velocity away from the zero frequency, making it possible to

determine the flow direction without introducing errors.

When the natural hydrosol or particles present in the water pass through the control volume, they
scatter light from the blue and green beams’ interference pattemns. The photomultiplier (PM),
located on the opposite side of the water flume, is focused on the control volume and detects the
Doppler shift in the scattered light. The PM converts this optical velocity information to an

electronic output which is sent to the two LDA counters for processing.

The output from the PM is a voltage with a frequency that is proportional to the velocity of the
flow. The signal that corresponds to each particle passing through the control volume is termed
a Doppler burst. The Dantec 55L.90a LDA counters, operating in conjunction with the 55N10
frequency shifter, are used to find the frequency of these bursts and thus the velocity of the particle
by determining the time it takes the particle to travel over eight fringes. The LDA counters also
provide advanced data validation techniques as well as high-pass and low-pass filters to remove

unwanted noise from the signal.

An analog frequency indication of the Doppler burst signal can be monitored using an oscilloscope
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connected to the LDA counters. Simultaneously, a digital output is sent to a 286 personal
computer where on-line velocity statistics are computed and where the raw data is archived in
ASCII format for later processing.

In all the experiments, the sampling frequency of the LDA system is set at 250 Hz with 40960

paired instantaneous velocity measurements being collected at each position.

3.3.2 Traversing Rigs

A traversing rig for the laser and modular optics has been designed and built m-house to allow the
control volume of the LDA system to be positioned anywhere within the test section of the water
flume. The traversing rig has three mutually perpendicular axes which are all controlled by stepper
motors where each step of the motor corresponds to a displacement of 6.35 pm (400 steps per
revolution). The entire traversing rig is mounted on a sturdy steel table positioned on the concrete
floor of the laboratory. The concrete floor is 0.91 metres thick and effectively isolates the

traversing rig from any structural vibrations occurring in the laboratory.

A second traversing rig is used to move the PM, located on the opposite side of the flume, in series
with the laser and optics. The PM traversing rig consists of two mutually perpendicular axes in the
streamwise and vertical directions. Traversing in these two directions is accomplished using stepper
motors in a similar manner as that of the LDA traversing rig. Since the PM contains a focusing ring
to adjust for the lateral or cross stream position of the control volume, no traversing axis is required

in this direction.

All stepper motors are wired to their respective drivers and power supplies which are controlled
by the main data acquisition computer via the parallel printer port.
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3.3.3 Noise Limitations of the LDA System

Although LDA systems offer many advantages, such as their non-intrusive measuring technique,
there can be disadvantages associated with them as well. Besides the mitial cost of the system, one
disadvantage present in the current system, when operating in a sample-and-hold processing mode,
is the introduction of random or white noise into the signal due to the random steps that occur at
the arrival of new samples in the control volume (Adrian and Yao, 1987). In addition, the sample-
and-hold process also tends to low-pass filter the combination of the true signal spectrum and the
noise spectrum at a frequency that can be determined by the mean data rate. This low-pass filtering
is attributed to the loss of information that occurs over the ‘hold’ periods (Adrian and Yao, 1987).
As a result, measured data in low turbulent intensity flows can have their true spectra swamped by
a noise spectrum at high frequencies.

One method of extracting the true spectrum from the noise-contaminated measured spectrum is to
run the measured times series data through a Savitzky-Golay or least-squares filter program. The
filter program assumes that the true variable is slowly varying over the measurement interval and
that it is corrupted by random noise. Each data point is then replaced by a local average of the
surrounding data points. Since nearby data points very nearly measure the same underlying value,

averaging can reduce the level of noise without biasing the value obtained.

Appendix B gives the complete details of the noise encountered in the present low turbulent energy

flows as well as the filtering techniques used to compensate for the noise contamination.

3.4 Experimental Methodology and Uncertainty

Uncertainty in measurements is due to two fundamental and distinct types of errors. The first type
are random or precision errors, S, which represent the scatter about the average value and are

usually the result of the characteristics of the measuring system as well as changes in the quantity
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being measured. Precision errors can be quantified by using known statistical methods (see
Appendix C). The second type of errors are fixed or bias errors, B, and show up in measurements
as a displacement between the average measured value and the average true value. Unlike precision
errors, bias errors must be estimated since no simple statistical method exists to quantify them

The total uncertainty, 8, in a measured result is the combination of the precision errors and bias
errors. The method used to combine the errors is the root-sum-square (RSS) method which is

given by:

Bass = (1S + B2)'? (3.1)

where the Student ¢ multiplier is a function of the degrees of freedom used in calculating S. This
method of error combination results in a 95% confidence interval on the total uncertainty. Full
details of an uncertainty analysis, including error propagation into reported results, is given in

Appendix C.

3.4.1 Grid-Generated Turbulence Experiments

To ensure that accurate measurements in grid-generated turbulence are obtained, six independent
time series consisting of 40960 instantaneous paired velocity samples are acquired at each
downstream location. The processed mean velocities, turbulent velocities, integral length scales,
and energy spectra, given in Chapter 4, are thus the average of the six time series. The advantage
of taking six measurements at a single location is that it effectively reduces the precision error by
a factor of 1/V6=0.408. The uncertainty associated with these measurements is summarized in
Table 3.1 Note that the effect of taking six measurements is felt strongest in the power spectral

density functions where the precision error is reduced from near 16% to approximately 6.5%.
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Total Error, 5,

mean velocity, U, +0.002/v'6 =+0.0008 +0.0179 +0.018
turbulent velogijties; +0.0068/v6=+0.0028 +0.0143 £0.015
(“2 )m & ( Vr2 )uz

integral length scales; +0.0168/V6=+0.0068 +0.0393 +0.042
L. &L,

power spectral density +0.1580/v'6 =+0.0645 +0.0200 £0.131
functions; £_(k) & E _(k)

Table 3.1: Summary of the normalized precision, bias, and total errors for a 95% confidence
interval in the measured grid-generated turbulence quantities.

3.4.2 The Momentum Integral and the Coflowing Jet Experiments

For a jet in a coflowing external stream, one method available to determine the accuracy of the
measurements is the momentum integral. This integral is a physical constraint for the flow in that
the momentum added to the flow at the jet origin must be conserved across the jet at any
downstream location. The momentum integral, M, also referred to as the excess jet momentum
flux, is defined by:

R — vis

Mo=2npf UU-U,)+u?-= >
0

ch '

rdr = constant 3.2)

where p is the fluid density, R is the radius of the jet, U is the total mean velocity within the jet, U,
is the external coflow mean velocity, and # >, v 7, and v ; are the square of the streamwise, radial,
and azimuthal components of the turbulent velocity. The derivation of equation (3.2) is given in

Appendix A.
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The momentum integral, which is essentially an initial condition for the flow, provides a useful
quantitative check for the measured velocity profiles since, in theory, it should be constant in the
streamwise flow direction. However, in order to anply the momentum integral as defined by

equation (3.2) to the present data, some simplification is necessary.

3.4.2.1 Approximation to the Momentum Integral

Since it is assumed that the jet is axisymmetric in the (7, ¢) plane (i.e. no variation relative to ¢),
a measurement traverse along the centerline of the jet in a plane of symmetry is sufficient to
evaluate all terms in the momentum integral. Due to the physical limitations of the laser Doppler
anemometer (LDA), however, only two velocity components can be resolved at any one time (one
of which must be the streamwise component) and thus an assumption must be made about the third
in order to evaluate the integral. Based on the symmetry of the jet, two possibilities exist for a
centerline traverse: either a vertical traverse at the lateral centre which yields streamwise and radial
results or a horizontal traverse at the vertical centre which yields streamwise and azimuthal results.
Figure 3.3 graphically illustrates the two traversing options. Since the primary interest of the
current research is the turbulent entrainment of external fluid across the jet boundary, the velocities
of primary interest are those that cross the jet boundary which are the radial velocities. The logical
option for traversing is therefore the vertical traverse since it yields streamwise velocities and the

desired radial velocities.

In order to evaluate the momentum integral as given in equation (3.2), an assumption regarding the
behaviour of v, must first be postulated. Ideally this general assumption would relate v; back

to either # © or v ? so that equation (3.2) can be simplified with no new terms being introduced.

To determine the general behaviour of v J, a set of preliminary experiments have been conducted
that entail measurement traverses in both the vertical and horizontal planes of symmetry for the

small jet at a downstream location of x/=40.2 cm with V/R=3 and 6 and in the absence of any
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Figure 3.3: IHustration of the two traversing options available for LDA
measurements on the jet centerline in the (r, ¢) plane.

turbulence generating grids. It is found that, for a given initial velocity ratio, the mean velocity
profiles exhibit the same profile shape, both in width and maximum velocity, when compared to
each other thus substantiating the assumption of axisymmetry in the (r, ¢) plane. The turbulent
velocity results are presented in Figures 3.4 and 3.5 for VR = 3 and 6 respectively. Note that the
axes in both plots have not been normalized so that an estimate of the relative variation between
the two traversing options can be obtained from the streamwise turbulent velocity component.
Although there is some minor variation in the (u * )* profiles between the different traversing
options, they essentially have the same profile shape in magnitude and in width, which again
confirms the assumption of axisymmetry in the (r, ¢) plane. The remaining data on Figures 3.4 and
3.5 consists of (v 7)* measured in the vertical traverse and (v} )" measured in the horizontal

traverse. These profiles show good agreement with each other both in shape and in magnitude.
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It will thus be generally assumed that (v} )*can be approximated by (v )*, at least to within the
relative variation as demonstrated by the streamwise components. This assumption is also
supported by the radial and azimuthal turbulent velocity data of Biringen (1986) for a jet in a

laminar coflow.

The momentum integral can thus be approximated by:

R —_—
M=27rpf[U(U—U¢)+F-vf}rdr (3.3)
0

without introducing significant error.

3.4.2.2 The Momentum Integral and the Experimental Data

Using equation (3.3), the degree of conservation of initial momentum was checked at each
traversing location for each of the twelve experimental runs. For the four runs with a low turbulent
background (i.e. no turbulence generating grid installed), the initial jet momentum is conserved to
within 90 percent or better up to the final traversing location. With the turbulence generating grids
installed, the initial momentum of the jet is conserved to within 85 percent or better. The greater
degradation of momentum conservation in the later case is in part due to the fact the equation (3.3

neglects terms that arise in the derivation due to the external turbulence (see Appendix A for
details). The effect of the external turbulence is not only to augment the diffusion of jet momentum
but also mask the turbulence of the jet thus making the jet momentum more difficult to

experimentally detect.

In the literature, it is often assumed that the square of the turbulent velocities make a negligible
contribution to the total momentum integral (see, for example, Hinze, 1975). Antonia and Bilger
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(1973) and Capp (1983), however, have estimated that the contribution of the square of the
turbulent velocities to the momentum integral for a coflowing jet in a laminar external flow is under
ten percent based on extrapolated estimates from jets in quiescent backgrounds. The present data
for a jet in an external coflow indicates that the effect of the (% Z - v 7 ) term in the integral is to
increase the magnitude of the momentum integral between one and eight percent. This increase
follows the general trend of increasing very rapidly to a maximum shortly beyond the jet exit after
which it begins to diminish with increasing distance. Figure 3.6 depicts this trend in the evolution
of the percent contribution of the (% * - v ) term in the integral to the total magnitude of the
momentum integral for the four cases of a jet in a low turbulent coflow (i.e. no turbulence
generating grid installed). The average contribution to the total momentum integral for the four
cases exhibited in Figure 3.6 is only 3.6%. When the extemal flow is made turbulent through the

use of a grid, the average percent contribution of the fluctuating terms is increased to 4.3% with
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the small grid installed and increased further to 5.2% with the large grid installed.

3.4.2.3 Experimental Uncertainty for the Coflowing Jet

Estimates of the precision error, bias error, and total error for the principal coflowing jet quantities
is summarized in Table 3.2. The difference between these errors and those presented for grid-

generated turbulence is that the precision errors are given for a single time series. A detailed error

analysis is given in Appendix C.

| Component Bias Error, B Total Error, 5;;; Il
mean velocity, U, £0.0020 +0.0179 +0.018
turbulent velogities; +0.0068 +0.0143 +0.020
(uz )1/‘2 & (vr2 )uz
integral length scales; +0.0168 +0.0393 +0.052

Lo &L,
power spectral density +0.1580 +0.0200 +0.317
functions; £_(k) & E_(k)

Table 3.2: Summary of the normalized precision, bias, and total errors for a 95% confidence
interval in the measured coflowing jet quantities.

3.5 Closure

Details of the experimental apparatus have been presented in this chapter along with the measuring
techniques used to check the experimental data and the uncertainties associated with the measured

data.



Chapter 4: The External Flow

4.1 Introduction

The objective of this chapter is to experimentally characterize the behaviour of the external flow
field both in the absence and presence of turbulence generating grids and without the jet model
mstalled. The mean velocity and turbulent intensities of the external flow in the absence of a grid
are first examined. This is followed by an analysis of the external flow field with the small and large
grids installed which details the behaviour of the turbulent intensities, integral length scales, and
turbulent energy spectra. A comparison of these results to relevant data and theory in the grid-
generated turbulence literature is also made. The chapter is concluded with a summary of the major
findings of the present experimental study.

50
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4.2 External Flow in the Absence of a Grid

4.2.1 Mean Velocity Profiles

Typical mean velocities, U/, measured in the external flow in three vertical traverses i the absence
of a grid, are given in Figure 4.1. The downstream locations of the traverses are near the start
(x=10 cm), near the middle (x=50 cm), and near the end (x=100 cm) of the working window. This
gives a representative vertical picture of the mean velocity over the entire traversing regime. All
three profiles are remarkably similar to each other both in their magnitude of U, as well as their

relative profile shape. Also included in the figure is the approximate vertical location of the jet
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Figure 4.1: Vertical variation of the external streamwise mean velocity on the
transverse centreline of the flume in the absence of any grid.
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model centerline as well as upper and lower limits for the maximum jet radius conservatively
estimated at +10 cm based on the results in Chapter 5. Although the profile is not uniform over the
distance covered by the limits of the jet radius, it can be approximated as such with T/ =0.07055
£0.00076 m/s where the +0.00076 represents one standard deviation from the average value.

The lateral or cross-stream variation of U,, although not shown graphically, can be similarly
summarized by U =0.07078+0.00055 mv/s over the maximum diameter of the jet.

4.2.2 Turbulent Intensity Profiles

The streamwise and transverse (or radial) turbulent intensities, defined respectively as:

r =¥ (4.1)
R Uc
and
2
v
Tr Y re 4.2)
Ue

are given in Figures 4.2 and 4.3 for the same three vertical traverses as for the mean velocity. The
average value and standard deviation for 7, over the maximum radial limits of the jet is given by
7,=0.00868+0.00103 while for T, it is given by 7,=0.00387+0.00027 for the same range. Note
that the turbulent intensity in the radial direction is less than half the value in the streamwise
direction and that there is significantly less scatter in 7, than in 7, as indicated by the data in the
figures and by the magnitudes of the respective standard deviations. This high level of anisotropy
between the two turbulent intensity components is probably caused by the honeycomb located
upstream of the test section which is more effective, due to its configuration, at reducing the
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turbulent energy in the radial direction than in the streamwise direction.

The lateral or cross-stream variation of the two turbulent intensity components across the maximum
jet diameter is given by 7,=0.00782+0.00078 and 7,=0.00352+0.00024 and are consistent with the

trends observed for the vertical variation of the turbulent intensities.

Note that the external flow in the absence of a turbulence generating grid is not truly laminar due
to the existence of small levels of turbulence. The extemal flow in the absence of a gird is therefore
classified as a low turbulent external flow with turbulent intensities under one percent.
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the absence of any grid.

4.2.3 Integral Length Scales and Turbulent Energy Spectra

The low levels of turbulent energy in the extemal flow with no grid installed coupled with the
inherent low level energy noise of the LDA system made measurements of the integral length scales
and turbulent energy spectra too unreliable to report meaningful results (see Appendix B for
adetailéd analysis of the problem).
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4.3 External Flow in the Presence of Grids

[n order to augment the turbulent energy of the extemal flow, turbulence generatng grids are
inserted upstream of the test section of the water flume. The turbulence is created by the wakes
and momentum jets formed behind the grid which eventually coalesce downstream resulting in
nearly homogeneous turbulence in planes parallel to the grid by x /6=40 (see, for example, Johnson
and Johnston, 1989).

The traditional view of grid-generated turbulence is that the turbulent energy decay asymptotically
approaches a common universal self-preserving state for all grids (see, for example, Hinze, 1975.
and Roach, 1987) where the term “self-preserving’ is taken here to imply that the flow has reached
an equilibrium where all the dynamical influences evolve together and no further relative dynamical
readjustment is required (George, 1989). George (1992) bas demonstrated, based on more general
form of the traditional self-preservation theory, that the decay of turbulent energy in grid-generated
turbulence is, in part, determined by the initial conditions of the flow. Thus no universal self-

preserving state can exist for all grids at finite grid Reynolds numbers.

In the present study, the grid Reynolds numbers for the two grids are Re, ;=900 and Re, ~1800
where the subscripts s and / refer to the small and large grids respectively. The above discussion
implies that the decay of turbulent intensities, the growth of integral length scales, and the spectral
decay of turbulent energy will be unique for each grid since the grid Reynolds numbers are finite.

4.3.1 Turbulent Intensities

The streamwise turbulent intensities for the small and large grids are given in Figure 4.4 as the
hollow circles and squares respectively. Individual best fit power law equations to this data yield:
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x5

x -0.648 % -0.612
T =0.784| == & T =0857| =& (4.3)
b x! b

where x, is the distance from the turbulence generating grid. These equations are included as the
dashed lines in the figure. Both exponents in equation (4.4) are within the experimental range of
-0.675<n/2<-0.50 as reported by Hinze (1975) with the large grid exponent greater than that of
the small grid. This is consistent with George (1992) in that the exponent should increase towards
-0.5 as Re, increases towards infinity.

Six other square bar experimental data sets are also included in the figure along with the empirical
fit of Roach (1987) given by equation (2.15). The data for 7, follows similar decay rates as the
present results although there is significant scatter in the magnitude of 7, between individual
experiments at the same downstream location. Roach’s empirical fit approximates the average of

the data well near the grid but decays too rapidly thus underestimating 7, far downstream from the

grid.

In the studies reporting results at two values of Re, (Sato, 1951, Sirivat and Warhaft, 1983, and the
present study), larger values for T, are consistently measured at the higher Re, experiment at the
same normalized distance from the grid thus indicating that 7 is dependent on Re,, at least over the
range of 900<Re,<3300. This Re, dependency is not readily apparent when the entire data set, as
given in Figure 4.4, is considered. Failure of the data to collapse to a single universal state suggests
that either there is considerable experimental scatter in all the data sets or that each experiment has
a self-preserving state that is uniquely determined by the initial conditions of the flow as surmised
by George (1992). Since the difference within individual experiments reporting results at two
values of Re, is dependent on Re,, an initial condition of the flow, it seems most probable that the
overall variation of 7, is the result of different initial conditions rather than solely experimental
scatter. No discernable difference in the results, however, can be attributed solely to the working

fluid of the experiments.
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In a similar manner to the streamwise turbulent intensities, the present transverse turbulent
intensities are given in Figure 4.5 as the hollow circles and squares for the small and large grid
respectively. Individual best fit power law equations to the data, also included in the figure, yield:

-0.641 -0.604
X X
T, = 0.682[ -5&] & T,= 0.721[ 7‘) (4.4)
where the exponents are again within the range reported by Hinze (1975). In addition, the large
grid exponent (larger Re,) is greater than that for the small grid as expected based on the
streamwise results and George (1992).

Experimental data from four other studies and the empirical fit of Roach (1987) (equation (2.15))
are also included in the figure and behave in much the same fashion as their streamwise counterparts
given in Figure 4.4. The two studies reporting 7, results at two values of Re, (Sirivat and Warhaft.
1983 and the present study) again consistently report larger values for 7, at any given downstream
location for the higher Re, experiment. This again points to a dependency on the initial conditions
of the flow within individual experiments.

A comparison between the present results for 7, and 7, indicate that the two turbulent intensities
behave similarly except that the magnitudes for 7, are smaller at any downstream location. This
anisotropy, which can be characterized by the ratio of the streamwise turbulent velocity to the radial
or transverse turbulent velocity, ranges from 1.07 to 1.18 for the small grid and from 1.10 to 1.20
for the large grid and are within the typical range of 1.0 to 1.5 as given by Roach (1987).
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4.3.2 Turbulent Integral Length Scales

The streamwise integral length scales, L, normalized by the grid bar width, are given in Figure 4.6
for both the small and large grid. Power law fits to the current L_ /b data, included in the figure
as the dashed lines, yield:

L x 0.392 I € 0.465
=s _0427| 2 & =l-0369| £ 4.5)
b b b b

where both exponents fall within the expected experimental range of 0.30<p<0.53 as reported by
Hinze (1975). Note, however, that the large grid experiences a faster rate of growth for L_ /b than
the small grid.

Studies reporting streamwise integral length scales appear to be limited to that of Fink (1977),
Nakamura and Ohya (1983), and Sirivat and Warhaft (1983). These results are also included in the
figure along with the empirical fit of Roach (1987) given by equation (2.16). In determining the
empirical fit, Roach (1987) used the data of Nakamura and Ohya (1983) and Sirivat and Warhaft
(1983) and thus the agreement with these two data sets is not surprising. Fink (1977) and the
present results, however, show greater magnitudes for L,, /b at a given non-dimensional distance
downstream from the grid and an overall slower rate of growth. Examination of the initial
conditions of the experiments reveals that the grid solidity of Nakamura and Ohya (1983) and
Sirivat and Warhaft (1983) is 0=0.34~0.35 while the grid solidity for Fink (1977) and the present
grids is much higher at 0=0.44. Thus the gird solidity (initial condition) appears to have a
significant effect on the size and growth rate of the streamwise integral length scales.

In addition, the data of Sirivat and Warhaft (1983) and the present data, which report results at two
values of Re, show that, at any given downstream location, larger magnitudes of L_ /b consistently
correspond to the experiment at the higher Re, thus indicating that the grid Reynolds number
dependency extends to the integral length scales as well as to the turbulent intensities.
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The transverse integral length scales, L, , are given in Figure 4.7 for both the small and large grids
normalized by the grid bar width. Note that L, by its definition (see equation (2.9)) is not strictly
a true transverse integral length scale since it relies on the mean convecting streamwise velocity to

convert from a temporal scale to a spatial scale. Power law fits to the present data yield:

0.448

L 0417 L x
ZJ = 0,[96( ff.] & -%i =0.183 f— (4.6)

and are included in the figure as the dashed lines. Again, the exponents are within the experimental
range as reported by Hinze (1975) with the larger grid (/e. higher Re,) exhibiting a larger value for

the growth exponent.

Other square bar grid experiments have not reported values for L,,. Roach (1987) proposes an
empirical fit for L,,, as given by equation (2.16), by assuming that L, =L, /2. This empirical fit is
included in the figure and displays the same relative behaviour in comparison to the present data

as that of the streamwise component.

Based on the present transverse data, it is again apparent that there is a grid Reynolds number
dependency since larger values of L,, /b are typically obtained with the large grid (/e. higher Re,

value).

A comparison of the present streamwise and radial integral length scales indicates that the two
components behave similarly except that the magnitudes of L, /b are nearly half that of L, /b at any
downstream location. This lends credence to the assumption used by Roach (1987) in his
derivation of an empirical fit to the radial or transverse integral length scales.
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4.3.3 Streamwise Turbulent Energy Spectra

As a means of examining the turbulent energy content at a given wavenumber, £, the streamwise
one-sided power spectra density (PSD) function, £, (k), evaluated at three downstream locations
for both the small and large grids, is given in the top two graphs of Figure 4.8. None of the
previous studies mentioned have reported turbulent energy spectra. Thus, in order to compare the
present data with other experimental data, the grid-generated turbulence spectra of Comte-Bellot
and Corrsin (1971) (6=0.953 cm, AM=5.08 cm, 0=0.34, U,=12.7 m/s, and Re,~8000) are used and
are given in the bottom graph of Figure 4.8. Note, however, that Comte-Bellot and Corrsin (1971)
inserted their grid upstream of a slight contraction (1.27:1) in an attempt to make the resulting
turbulence behind the grid more isotropic. In addition, the data of Comte-Bellot and Corrsin
(1971) is obtained much further downstream than the present results. Also included in the three

figures for reference purposes is an approximate spectrum for isotropic turbulence (Hinze, 1975)
given by:

E. (k) _ 2

.ll—an Tt(l +(kL-“’)2)

&7

This equation, however, strictly applies to homogeneous, isotropic turbulence and even then
becomes invalid at very high wavenumbers. However, judging from Figure 4.8, all three sets of
spectra follow the approximate spectrum for isotropic turbulence fairly well up until kL_=20 after

which the measured spectra decrease more rapidly than the approximate spectrum.

In order for a flow to be in a state of self-preservation, there can be no dynamical readjustments of
the turbulent energy in the spectrum over the wavenumber regime. The three normalized spectra
of Comte-Bellot and Corrsin (1971) have the same relative shape at each downstream location.
It can therefore be concluded that flow has reached a state of self-preservation sometime before x,

/6=220.
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The normalized spectra for the large grid, given in the centre graph of Figure 4.8, illustrates that
there is some readjustment of the turbulent energy at the larger normalized wavenumbers between
the streamwise locations of x, /6=40 and 103. However, by x,/b>100, the spectra maintain the
same relative shape thus indicating that the flow has become self-preserving. The normalized
spectra for the small grid, given in the top graph of Figure 4.8 also indicates that a self-preserving
state is reached by x_/6=100.

In comparing the spectra between the small and large grids, it is of interest to note that the
differences between the normalized spectra at x,/6=40 and 103 are not as great for the flow with
the small grid installed as they are for flow with the large grid installed, thus indicating that the flow
with the small grid is able to reach a state of self-preservation earlier than the flow with the large
grid. This is not unexpected since the grids tend to extract turbulent energy from the mean flow
at scales typical of their geometric scales. The large grid would therefore create a greater range
of wavenumbers (je. from geometric scales to dissipative scales) over which the turbulent energy

must readjust before becoming self-preserving.

Comparing the self-preserving spectra of the three different grid-generated turbulence experiments
illustrates that each grid experiment has a unique turbulent energy spectrum although they share
many of the same features. The fact that a state of self-preservation has been reached in each
experiment and that there is no universal self-preserving spectrum supports the theory put forth by
George (1992) in that the mitial conditions play a continuous role in determining the shape of the
turbulent energy spectra and thus the decay of the turbulent intensities and growth of the integral
length scales.

4.3.4 Iiissipation Rate per Unit Mass

The dissipation rate per unit mass, €, is an important parameter characterizing the turbulence in the
inertial sub-range of the external flow and is expected to be an input into the integral jet model to
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be developed in Chapter 6. The dissipation rate is too complex to measure directly but can be
estimated by assuming isotropic turbulence. Neglecting the ene:gy dissipation in the lower
wavenumber range, the total energy supply in the equilibrium range is practically equal to the total
dissipation rate (Hinze, 1975). Thus the dissipation rate can be estimated using:

d
e=-U T

4.8
[ 4 e dx ( )

where ¢, is the total turbulent kinetic energy per unit mass in the external flow and can be

estimated, in grid-generated turbulence, by:

ue2 + v: . (4.9)

-l

c 2
since the turbulence is assumed homogeneous in planes parallel to the grid. Since the turbulent
velocities for each grid have been fitted by power law equations (in the form of turbulent
mtensities), the dissipation rate per unit mass can be easily estimated if the distance from the grid

plane is known.

4.4 Closure

The external flow with no grid installed is approximately uniform with a mean velocity of

U=0.0706 n/s and with turbulent intensities less than one percent over the working section of the

water flume.

With the grids installed, the experimental data for the decay of the turbulent intensities and the
growth of the integral length scales is well predicted by power law equations for each grid where
the exponents all fall within the expected experimental range. The exponents for the large grid (/e.
larger Re,), however, are greater in magnitude than those for the small grid. This points to a grid
Reynolds number dependency in the experimental data. In addition, the integral length scales are
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strongly affected by grid solidity. Unique self-preserving turbulent energy spectra in the current
study occur by x,/6>100. These findings thus confirm that the initial conditions have a continuous
effect on the behaviour of the grid-generated turbulence and that each grid produces a similar but

unique state of self-preservation in the flow.



Chapter 5: Coflowing Jet Experimental Results

5.1 Introduction

Twelve different cases of a jet issuing into an extemal coflowing stream have been obtained by
varying the jet model diameter and the jet exit velocity as well as by varying the turbulence level
of the external coflow. The chapter starts with a summary of the initial conditions for the twelve
different runs. This is followed by the presentation of the mean velocity results, including the radial
spread of the jet, which in turn is followed by a section devoted to the results obtained from the
Reynolds normal and shear stress data. The results for the turbulent integral length scales and
turbulent power spectral density functions are next presented. The chapter concludes with a

summary of the major conclusions of the experimental investigation.
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5.2 Jet Initial Conditions

The initial conditions for the twelve different experimental runs are summarized in Table 5.1. The
experimental runs are grouped according to the initial velocity ratio, VR, and jet radius, R;, so that
the effects of varying the external turbulence levels can be compared directly within a set. To
negate some of the influences caused by the minor variations in the mitial conditions, the
downstream distance, x, will be normalized using the momentum radius, 0, since 0 is the length
scale that is characteristic of a particular combination of a jet and an external flow. A non-
dimensional virtual origin, x,/0, has also been included in the table where an average value has been
used for 0. The virtual origin ofFets the effects of varying jet potential core lengths by projecting
the start of a jet to an imaginary point source of momentum. The value of x/0 is obtained from the
data by determining the x/0 intercept using a linear regression on the data points where U, /U =x/0.

Exp’t T U, VR = M, 0, x,/0 Turbulence
# fem] | [m/s] U.iu "m/s’ cm Grid
la i.111 | 0.0710 6.04 0.0727 6.81 | +0.68 |no grid
1b 1.111 | 0.0689 6.06 0.0702 6.75 | +0.68 | small grid
lc L.111 | 0.0699 6.07 0.0715 6.§_9__ +0.68 | large grid |
2a L.111 | 0.0699 3.29 0.0132 2.95_- -1.05 | nogrid "
2b L.111 | 0.0687 3.26 0.0125 291 | -1.05 | small grid "
2c 1.111 | 0.0698 3.17 0.0136 2.?_8__ -1.05 | large grid I
3a 0.476 | 0.0690 5.76 0.0094 2.54_ +0.59 | no grid I
3b 0.476 | 0.0662 5.64 0.0102 2.80 +0.59 | small grid
3¢ 5.72 +0.59 [ large grid
4a
4b
4c

Table 5. 1: Initial conditions for the twelve experimental runs.
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Note that the virtual origin remains constant for a given VR and R, no matter the level of external
turbulence.

5.3 Mean Velocity Results

In this section, the mean velocity profiles are used to confirm the radial similarity of the excess
mean velocity profiles at various downstream locations. In addition, the decay of the centerline
excess mean velocity for the jets in a low turbulent coflow will be compared with similar results
from the literature as well as with the same jets in turbulent external flows. Finally, the radial
growth of the jets, based on a contour surface defined by a percentage of the excess mean velocity,
will be compared with the literature data as well as within each set of jet experiments.

5.3.1 Similarity of the Excess Mean Velocity Profiles

The practical purposes of demonstrating the radial similarity of the excess mean velocity, U- U, ,
are two-fold. The first is to use radial similarity as a benchmark for the present data since similarity
has been reported by Antonia and Bilger (1973), Smith and Hughes (1977) and Biringen (1986) for
jets in laminar coflows and by Fink (1977) for jets in turbulent coflows. The second purpose comes
from a physical modelling point of view since similarity will allow all the excess mean velocity
information contained within a radial profile to be distilled to a single characteristic velocity scale
and a single characteristic length scale without major loss of experimental information except
perhaps at the edge of the jet. Previous studies on coflowing jets (Antonia and Bilger, 1973, and
Biringen, 1986) have used the centerline excess mean velocity, U,, and the jet velocity half width,
L , for these scales. The excess mean velocity at a downstream location can then be described by:

‘- - p=L
7 /() 'I-Lo

o

(5-1)
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where /(1) is a universal function, typically a Gaussian function defined by:

f(n)=ec" (5.2)

where c is a constant given by c=/n(2)=0.69 since by definition e*=0.5 at =L,. The Gaussian
function has been shown to give a satisfactory fit to the non-dimensionalized excess mean velocity
profiles (So and Hwang, 1989) and thus is a useful qualitative check for the present data.

Figures 5.1 to 5.4 contain selected non-dimensionalized radial profiles of the excess mean velocity
for the twelve experimental runs with initial conditions listed in Table 5.1. To reduce the number
of data points presented, only the positive half of each profile has been plotted since the jet
centerline is an axis of symmetry. To give a representative picture of the downstream development
of the excess mean velocity, six profiles have been selected starting at a downstream location of
x=10.2 cm and ending at x=100.2 cm for each run. Also inciuded in the caption for each figure is
the approximate non-dimensional distance downstream given by (x-x,)/0 where the value of 0 is

the average of the local value for the three runs in each figure.

Figure 5.1 contains the profiles for the large jet at YR~6 and represents the group of experiments
that are closest to the jet exit in non-dimensional terms. As noted by other researchers, the
Gaussian function gives a very good fit to the experimental data. Increasing the level of external
turbulence by installing a grid appears to have little effect on the non-dimensional excess mean
velocity profiles, even by the final downstream location of (x-x,)/0=15.4, thus indicating that, close
to the exit, the jet is unaffected by external turbulence. Profiles for the large jet at /R=3 are given
in Figure 5.2 and also show good agreement with the Gaussian function. With a grid installed, the
plots for the final two (x—x,)/0 stations show an increase in the data scatter at the edge of the jet
and, to a lesser extent, at the jet centerline. This is more noticeable when the large grid is installed
since the entrained external flow has more turbulent energy located at larger length scales which
affects the jet development more than the external flow with the small grid installed or with no grid

installed.



Y1 NoGrid 1 Small Grid Large Grid

\
] 4 _
09 1 B
0.8 1 j % . %
> 977 % | 1 &
~ 06 - = . —
= 15 - 4
5 05 % = N ¥
t 04 - 5 = = - k%
-) 1 r ! g
~ 03 - = . B !
02 = i ) A % = %
01 - & | =N | R
ol e, I ; 'ﬁ, [ S
00 — z - g - A
0.1 : ‘ ! . : . ‘ l
0 1 2 30 1 2 30 1 2 3
r/L o r/ Lo r/ Lo

Figure 5.1: Excess mean velocity profiles for the large jet with VR=6. x (cm): +,
10; %, 20; 4, 40; o, 60; 7, 80; ©, 100. (x-x,)/0: +, 0.8; x, 2.3; 4, 5.2; ©, 8.6;
(3, 11.8; 0, 14.8. ——, Gaussian function.

:::) g% No Grid "%% Small Grid  © Large Grid
09 - % - = + ¥
08 ¢ % - % Tk
> %7703 T & 7%
= %7 3 I 1%
< 05 - _ - & 4 B
" 04 - - . ¥
NP T
02 = - A '
iy j é&‘ﬁr ] % j E\%U?
0.0 e = é%ﬁzv
-0.1 . T T ; T T T T E g H T
0 1 2 30 1 2 30 1 2 3
rIL, riL, riL,

Figure 5.2: Excess mean velocity profiles for the large jet with VR=3. x (cm): +,
10; x, 20; a, 40; o, 60; [, 80; O, 100. (x-x,)/0: +,4.6; x, 8.1; a, 15.2; 0,
22.2;3,29.2; 0, 36.2. —, Gaussian function.



—
H
|
-
)

No Grid Small Grid Large Gnd

1.0
09
08
0.7
0.6
0.5
04
03
02
0.1
0.0
-0.1

\
- ut

L
L.l

>

|

g ]
%

% “®
X - =
=N Y
\ £ _ . el =

Sy : N | - T =
;

Ww-u,)'u,

ot

24

e b b a L_.I.J_L_L..I_L_I_]_A_J_Ar ).

1 2 30 1 2 3

riL, riL, r/L

Figure 5.3 : Excess mean velocity profiles for the small jet with VR=6. x (cm): +,

10; x, 20; a, 40; o, 60; 0J, 80; o, 100. (x-x,)/0: +, 3.3; x, 7.3; 4, 15.2; 0,
23.4;0,32.4;0,40.7. —, Gaussian function.

o
-
N
w
o

1.1 - R -

Lo 3 No Gnd % Small Grid %‘; Large Gnd
09 5 i =
08 — -%@' - -’b N ’GQ
D‘e 0.7 = = - % - _;D@
DQ’ 0.5 “: OX - x. -
o 0el Ty 4 1 5
> o 0
~ 03 - (X . 4 O Al
-} 2 0 \
02 ‘m\(’) — g - (‘;X_\A
0.1 :i @5 - @-\O - > &?
0.0 - s - h _ o)
S %‘};ﬁ o &%
-0.1 | R A L S T T "
0 1 2 30 1 2 30 1 2 3
r/La ri/L, r/La

Figure 5.4: Excess mean velocity profiles for the small jet with VR=3. x (cm): +,
10; x, 20; a, 40; ¢, 60; 07, 80; 0, 100. (x-x,)/0: +, 9.9; x, 19.6; 4, 39.5; o,
60.3; ], 81.8; 0, 105.7. ——, Gaussian function.

74



75

The non-dimensional profiles of the excess mean velocity for the small jet are given in Figures 5.3

and 5.4 for VR=6 and 3 respectively. The profiles for the small jet at VR=6 show approximately
the same pattem and degree of scatter in the experimental data as for the large jet at VR=3 (Figure
5.2). This is not unexpected since the non-dimensional downstream distance is approximately the
same for both cases. The small jet at VR=3, however, travels the farthest non-dimensional distance
from the jet exit and displays the greatest amount of scatter in the experimental data. The level of
scatter is so great for the case of the large grid installed that the assumption of radial similarity
becomes questionable by the last two traversing locations. This is again the effect of entraining
extemal fluid which has greater levels of turbulent energy at larger length scales when the large grid
is installed.

Two trends emerge from the above figures. The first is that, for a given external flow, the farther
the non-dimensional distance travelled from the jet exit, the greater the scatter in the profile. The
second trend is that, for a given location past (x-x,)/0>20, the jet with the large grid installed
displays the greatest scatter in the profile data followed by the jet with the small grid installed.

5.3.2 Behaviour of the Jet Centerline Excess Mean Velocity

To establish confidence in the present data, the behaviour of the centerline excess mean velocity
is compared to other data available in the literature. In Figure 5.5, the present data for U, /U, has
been plotted against (x-x,)/0 for the four runs without a grid installed with similar results from six
other studies on coflowing jets. A virtual origin, x,, is used for each data set where x, has been
extrapolated from the data based on a linear regression. As can be seen from the figure, the
majority of the data sets, after passing through an initial development zone for the potential core,
collapse to a single trend for the development of U,/U,. Since the data is plotted on a log-log plot,
the slope of the line, which is approximately unity for the data in the figure, corresponds to an
exponent in a power law relationship. Thus it is found find that U, /U ,=x throughout most of the
experimental regime for all seven studies listed in the legend in Figure 5.5.
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Figure 5.5: Jet centerline excess mean velocity behaviour in a laminar external
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Chapter 2 presented two theoretical asymptotic limits for the behaviour of U, in a coflowing jet in
a laminar extemnal flow. The limits, arrived at using similarity considerations, are dependent on the
magnitude of U, /U,. If U,/U,«l then the jet is strong in comparison to the extemnal flow and the
expected behaviour is U,«<x™". If U,/U»1 then the jet is weak in comparison to the external flow
and the expected behaviour is U, =x"**. For reference purposes, lines with slopes of unity and 2/3
have been included in Figure 5.5. Typically, very small values of U, /U, are only obtainable very
close to the jet exit. Experimental profiles of the mean velocity in this region, however, are not
self-similar due to the flow readjusting from the potential core where U, /U, would be a constant.
Adherence to the asymptotic limit, therefore, can only be expected after a short development length
which the experimental data in Figure 5.5 supports. In spite of this, the experimental data indicates
that U,ex™" up to U,/U,~20 (or (x-x,)/0~200) with little indication of an imminent change in slope
to 2/3 except for the data of Antonia and Bilger (1973) at VR=4.5. The absence of a universal
U,=x"* behaviour is either the result that insufficient distance has been travelled downstream to
reach U, /U_»1 or that the limit itself is not physically realistic for a coflowing jet in a uniform
external flow (see §2.4.1).

Figure 5.5 also indicates that the magnitude of U, /U, for the present small jet at /'R=3 begins to
mcrease over the other data at approximately (x-x,)/0=40. This increase in U, /U, is the result of
the low levels of turbulent energy in the external flow when no grid is installed (i.e. turbulent
intensities of 7,~1%) affecting the development of the jet far downstream from the exit. The
literature data sets have been obtained in wind tunnels where the turbulent intensities can typically
be an order of magnitude less than that in a water flume (see, for example, Antonia and Bilger
(1973) where 7,=0.1%) and thus do not affect the development of the jet.

A comparison between the behaviour of the centerline excess mean velocity in the absence and
presence of turbulence generating grids is given in Figure 5.6 for the four sets of experimental runs.
Before commenting on the results, however, the issue of experimental uncertainty needs to be
addressed. Until this point, the information that has been gleaned from the presented results for the

coflowing jets has been more of a check to make certain the present experiments are consistent with
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Figure 5.6: Centerline excess mean velocity behaviour. Symbols refer to the grid installed: ©, no
grid; a, small grid; O, large grid. Error bars are for precision errors only and are included
only on data points where the error bar exceeds the limits of the data symbols.

established results. The data presented in Figure 5.6, however, is a direct comparison of results
within an experimental set which will pinpoint a downstream location where the effects of external
turbulence first become significant. The level of experimental uncertainty contained within the
presented data thus becomes extremely important as it will determine where the effects become

statistically significant.
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The total uncertainty within a measured value is composed of bias or fixed errors and precision or
random errors (see Appendix C). Since each experimental set is conducted using the same jet and
measurement system, the bias errors are considered to be the same no matter the level of external
turbulence. Since the bias errors represent an offset between the measured and the true value and
since it is the same for all three cases in each of the experimental sets, a comparison of the results
within a set need not account for the bias error. Precision errors, on the other hand, do need to be
accounted for due to their random nature. In Figure 5.6, the error bars for the precision errors are
all within the limits of the data symbols except for the small jet at /R=3 with the large grid installed

at the very last traversing location. An error bar has been included for this point.

Figure 5.6a presents the experimental data for the large jet at VR=6 for the three levels of external
turbulence. The figure indicates that there is no significant variation in U, /U, over the non-
dimensional experimental regime that can be attributed to the level of extemal turbulence. In the
three remaining experimental groups, the presence of a grid results in a statistically significant
increase in the growth of U, /U, by (x-x,)/0=25 with a greater increase corresponding to the jet
with the large grid installed. By taking the inverse of the relationships, the effects of the external
turbulence can be translated into a decrease in the centerline excess mean velocity by (x-x,)/0=25.
Since the external flow with the large grid installed contains more turbulent energy, which diffuses
jet momentum away from the centerline, than that with the small grid installed, which in turn
contains more than that with no grid installed, it makes physical sense to expect a faster decrease

in U, when more turbulent energy is present in the external flow.

5.3.3 Behaviour of the Jet Radius

The true radius of the jet, R, is defined by the radial location where the excess mean velocity
diminishes to zero. The drawback of this definition for the jet radius is that it is very difficult to
realize experimentally since the excess mean velocity approaches a value of zero slowly at the edge

of the jet. Due to the scatter and uncertainty associated with experimental data, it therefore
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becomes very difficult to determine the precise location where U-U,=0. An altemative definition,
put forth by Keffer and Baines (1963), is to use the radial location where the excess mean velocity
drops to ten percent of the centerline value. This radial location can be more accurately determined
from experimental data then the location where U~ U =0 since there is still a well defined gradient
in the excess mean velocity profile (see, for example, Figure S.1).

As with the centerline excess mean velocities, the present jet radii with no grid installed are first
compared to the literature data to establish confidence in the current results. Most of the jet radial
development reported in the literature is limited to the jet velocity half widths. By assuming a
Gaussian profile for the radial distribution of the excess mean velocity, and by using the reported
centerline value, the jet velocity half widths have been converted to effective jet radii and are
presented, along with the present results, in Figure 5.7. This collection of data, plotted on a log-log
plot, indicates that all the radii follow approximately the same trend. Note that the degree of scatter
in the radius data is greater than that in the centerline excess mean velocity data given in Figure 5.5.

Despite the higher level of scatter, the radii, after an initial development zone, can be described by
a line on the log-log plot with a slope approximately equal to 2/3. At approximately (x-x,)/0=100,
the slope of the line appears to decrease to approximately 1/3 although there is msufficient
experimental data past (x-x,)/0=300 to confirm this extrapolation.

In Chapter 2, the two asymptotic limits for the radial behaviour of a coflowing jet are given as:
when U /U «l, then R=x and when U/U»1, R=x'?. For comparison purposes, two lines with
slopes of unity and 1/3 are also shown in Figure 5.7. The experimental data, however, does not
support the asymptotic limit of Re<x when U/U «1 although this is probably due to the readjustment
zone in the potential core where the mean velocity profiles are not similar and thus similarity limits
would not apply. Some of the data, however, indicates that R=x'” once (x-x,)/0>100. This
corresponds to the approximate location where U, /U, ~8 from Figure 5.5. In the transition region
between that of a strong jet in a weak coflow and that of a weak jet in a strong coflow, the radii
follow Rex?”.
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Since the centerline excess mean velocity decays more quickly for the current small jet at VR=3
than the other data in Figure 5.5 after (x-x,)/0>40, its corresponding radius should increase more
rapidly than the other data in order to be consistent with continuity. Figure 5.7 shows that the
radius for the small jet at VR=3, while not immensely greater than the other data, is still one of the

largest.

To determine the effects that external turbulence has on the development of the jet radius, Figure
5.8 contains plots of the four sets of experimental runs. As with the centerline excess mean velocity
plots, only the precision errors are shown and only for the data points where the error bars extend
beyond the limits of the data symbol. For the case of the large jet at VR=6, given in Figure 5.8a,
the effect of adding external turbulence is to increase the magnitude of the radius after (x-x,)/0~ 13,
although the effects are still fairly small. As the non-dimensional distance is increased, as in Figures
5.8b and 5.8c, the effects of external turbulence become statistically more significant until in Figure
5.8d, the radius of the jet with the large grid installed is on the order of one and a half times larger
than the same jet with no grid installed by the final traversing station.

The general trend that emerges from the figure is that the radius begins to show a marked increase
in magnitude when a grid is installed over no grid after (x-x,)/0~20. The larger increase in jet
radius corresponds to the jet with the large grid installed. When the small grid is installed, there
is an increase in the radius over the case with no grid installed but it is not as marked as the case

with the large grid installed.

5.3.4 Summary of Mean Velocity Results

The present excess mean velocity profiles display radial similarity when plotted as /L, versus

(U-U)YU, Once radial similarity is obtained after the potential core, it is maintamned for all levels
of external turbulence except at large values of (x-x,)/0 with the large grid installed.
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Figure 5.8: Normalized radial behaviour. Symbols refer to the turbulence generating grid
installed: O, no grid; a, small grid; {J, large grid.

The present experimental data for the behaviour of U/U, and R/O for coflowing jets in the absence
of any grids agree with similar results in the literature. The results show that Uz=x" up to
U./U,~20 or (x-x,)/0~300 and that Re<x** up to U/U,~8 or (x-x,)/0~100 after which there is
some evidence to suggest that Rex'?. This is not entirely the expected behaviour based on

asymptotic limits arrived at using similarity hypotheses.
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The effects of extemnal turbulence are to reduce U, and increase R more quickly than the case with
no grid installed starting after (x-x,)/0~20 to 25. The jet with the large grid installed experiences
the greatest changes in U/, and R.

5.4 Reynolds Stress Results

The Reynolds stress results can be subdivided into normal stresses given by # © and v and a shear
stress given by u v,. Physically, the normal stresses represent directional components of the total
turbulent kinetic energy vector while the shear stress represents the transfer of turbulent momentum
from one component to the other. Since it is more common in the literature to report turbulent
velocities rather than normal shear stresses, the current data will be presented as turbulent

velocities, (2 ~)* and (v 7 )~

This section first looks at some considerations arising from similarity theory in order to obtamn a
velocity scale to non-dimensionalize the data. This is followed by the experimental results for the
radial profiles and centerline behaviour of the streamwise turbulent velocity which is followed by
similar results for the radial turbulent velocity. Radial profiles and centerline behaviour for the
Reynolds shear stress follow with a brief summary of the results.

5.4.1 Considerations from Similarity Theory

The conventional method of plotting radial profiles of the turbulent velocities, (z )% and (v 7 )*,
is to normalize them using the centerline excess mean velocity, U, , with the radial distance
normalized by L, This produces profiles of local turbulent intensity versus non-dimensional radius.
The underlying philosophy of this method is that since similarity theory indicates that the scale
factor for the mean velocity and turbulent velocities must be identical (see §2.4.1) and since U, is
the scale factor for the excess mean velocity profiles, then it must also be the scale factor for the
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turbulent velocity profiles. Numerous studies have shown that, using U, to non-dimensionalize the
turbulent velocity profiles, similarity is only obtained very far downstream, if ever, with the
centerline magnitude reaching various asymptotic values. One case in point is the data from
Antonia and Bilger (1973). For their jet at VR=3, similarity for (u  )*/U, profiles was not obtained
until x>100 cm (corresponding to x/0~150) with the centerline value reaching a constant of
(u 2)4U,=0.50. For their jet at VR=4.5, Antonia and Bilger claim similarity is obtained by x=80
cm (x/0~75) although there is still an increasing trend to be seen in the data right to the end of the
traversing regime of x=140 (x/0~130). The quoted asymptotic centerline value for this case is
(«1)*/U,=0.29. Another case is Biringen (1986) who found similarity for two out of three of his
experimental runs. The centerline asymptotic values found were: for the jet at VR=10,
(@ Z)*UU=0.30 by x/0~25 and for the jet at VR=5, (u 2 )*/U,=0.34 by x/0~50. The jet at R=3.3
did not reach similarity by the end of the traversing regime at x/6~100.

However, since similarity distributions do not, even approximately, satisfy the governing equations
of motion (except for the case of the two asymptotic limits) the result that the scale factors for the
mean velocity and the turbulent velocities must be the same is not applicable to a jet in a uniform
coflow. In fact, both Hinze (1975) and Townsend (1976) suggest that there can be multiple
velocity scales in a single flow. The problem now is the choice of a new scale factor in lieu of U,

which will make the turbulent velocity profiles similar.

A jet in a uniform coflow has two distinct mean velocities: that of the external coflow and that of
the jet itself. The easiest method of combining these velocities is to take the difference which
results in an excess mean velocity whose value at the centerline is given by U/,, However, in the
integral momentum equation, the mean velocities are combined as U(U-U,) which is balanced in
the integral by the difference in the square of the turbulent velocities. Thus another choice for a
velocity scale factor becomes (U(U-U.))*, or, after replacing U by the centerline value of U,+U,,
the new velocity scale factor becomes (U (U,+U,))~. Another interpretation of the new velocity
scale factor is as an average velocity scale for the two distinct velocity fields. Incidently, for a jet
in a quiescent background ({/,=0), this new velocity scale reduces to U, which is equivalent to the
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conventional velocity scale for this particular flow.

In the sections to follow, the radial profiles and centerline behaviour of both the streamwise and
radial turbulent velocities will be presented by normalizing the data with U, the conventional
method, and with (U(U+U.))*, the new scale factor. This results in two plots for each set of jet
nuns. These plots are presented on the same page with the same scales for the abscissa and ordinate
axes to emphasize the difference in the normalizing schemes.

5.4.2 Streamwise Turbulent Velocity

5.4.2.1 Similarity of Radial Profiles

The radial profiles of the streamwise turbulent velocity have been presented in a similar manner to
that used for the excess mean velocity profiles in that six profiles have been selected to represent
the downstream development for each jet run and only the positive half is presented in the figure

since the centerline is an axis of symmetry.

The radial profiles of streamwise turbulent velocity for the large jet at YR=6 are normalized by U,
in Figure 5.9 and by (U(U,+U.))* in Figure 5.10. The difference between the two normalizing
schemes is immediately apparent. When the profiles are normalized by the conventional velocity
scale, U, , the profiles do not reach a state of similarity by the last traversing location while the
profiles normalized by the new velocity scale, (U(U,+U,))*%, become approximately similar by
(x-x,)/0~5.2. The effects of external turbulence, however, are more apparent when the profiles
are normalized by U, In Figure 5.9, there is a notable increase in the turbulent velocity at the final
traversing location for the jet with the large grid installed over that with no grid installed. In Figure
5.10, however, the same profile is still very similar to the other profiles. This effect will become

more apparent as the non-dimensional distance downstream is increased.
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Figures 5.11 and 5.12 show the radial profiles of (z *)* for the large jet at VR=3 using the
conventional and new normalizing techniques respectively. Again, it is apparent that using U,
similarity is not achieved over the experimental regime while using (U (U,+U.))* results in similar
profiles by (x~x,)/0=8.1 although there is slightly more scatter in the plot for the jet with the large
grid installed than in the other two plots. The effects of external turbulence can best be observed
in Figure 5.11 where a noticeable difference in the profiles begins to occur after (x-x,)/0=15.2
where the jet with the large grid installed exhibits the largest magnitudes for (u *)*/U, followed by
the jet with the small grid installed for a given downstream location.

Figures 5.13 and 5.14 present the corresponding information for the small jet at YR=6. The same
trends are again apparent: with the conventional normalization, similarity is not achieved, especially
when a grid is installed, while with the new normalization, similarity in all three external turbulence
levels is achieved after (x-x,)/0=7.3 although the level of scatter in the no grid case is fairly high
in comparison to the other two cases. This higher level of scatter in the no grid case is unexpected
since typically 2 higher degree of scatter corresponds to a higher level of external turbulence. The
effects of external turbulence, best seen in Figure 5.13, become apparent after (x-x,)/0=7.3 where
the largest magnitudes of (x *)*/U, again correspond to the jet with the large grid installed.

Lastly, Figures 5.15 and 5.16 present the streamwise turbulent velacity profiles for the small jet at
FR=3. This is the most striking case since it covers the greatest non-dimensional distance
downstream. The trend noted in the above three experimental sets can again be observed in this
data set. Using conventional normalization, the profiles again fail to reach a state of similarity while
using the new normalization, the profiles become similar by (x~x,)/0=19.6. Figure 5.15 shows
quite dramatically the effects that the external turbulence, which occur after (x-x,)/0=19.6, have
on the streamwise velocity profiles. Again the largest magnitudes of (z  )*/U, occur for the jet
with the large grid installed. In fact, by the last traversing location with the large grid installed, it
is difficult to discem the typical hump in the profile that is usually associated with the jet fluid, thus
indicating that the turbulent velocity within the jet is becoming indistinguishable from that in the

external flow.
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Figure 5.11: Streamwise turbulent velocity profiles for the large jet with VYR =3
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Figure 5.14: Streamwise turbulent velocity profiles for the small jet with VR = 6
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100. (x-x,)/0: +, 3.3; x, 7.3; a, 15.2; 0, 23.4; 0, 32.4; 0, 40.7.



"7 NoGrid 1 SmallGrid ] Large Grid

1.50 -7

(uZ)l/Z [ Uo

riL, riL, riL

Figure 5.15: Streamwise turbulent velocity profiles for the small jet with VR =3
normalized by U,. x (cm): +, 10; %, 20; a, 40; o, 60; OJ, 80; o, 100.
(x-x,)/0: +,9.9; x, 19.6; a, 39.5; ¢, 60.3; 7, 81.8; 0, 105.7.

L.75 -

NoGrid | SmallGrid | LargeGrid
150 - i
§. 1.25 - . -
* 1.00 ] ‘ ‘
ST | )
> 075 - - 1
&\ 3 p
|2_\ 0.50 — - =
:E' | ] ¢ ; OO -
_D%u%
Al
i 1 ' 1
1 2 3
r/L, r/L, r/L,

Figure 5.16: Streamwise turbulent velocity profiles for the small jet with /R =3
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In the majority of cases, especially those close to the jet exit, the radial profile of the normalized
streamwise turbulent velocity reach a maximum peak value in the range of 0.7<|r/L | <1.0 giving
the profiles a saddle-shaped appearance. This peak corresponds to the normalized radial position
in the excess mean velocity profiles where the absolute value of the gradient of the excess mean

velocity is a maximum.

5.4.2.2 Centerline Behaviour

The behaviour of the centerline streamwise turbulent velocity, (# 2 )*, is given in Figure 5.17
normalized by U/, and in Figure 5. 18 normalized by (U (U +U.))*. Unlike the radial profiles in the
previous section, the centerline data from all the traversing locations have been included. Again
only the precision errors are reported for a given experimental set and only for those data points
with error bars that extend beyond the limits of the data symbol. This occurs only in the case of
(u7)*normalized by U, for the small jet at R =3 with the large grid installed at the last traversing

location.

[n addition to the jet centerline values, the external streamwise turbulent velocities have been
included in the two figures, also normalized by U, and (U(U,+U.))* to indicate the relative

behaviour of the streamwise turbulent velocities in the external flow.

In Figure 5.17a (large jet, VR=6), the magnitudes of (« 2 )*/U, are not greatly affected by either the
absence or presence of grids in the external flow. This is attributed to the fact that the jet centerline
value of (u 2)*/U, is always much greater than the external value of (u - )*/U, at any given
downstream location. The turbulent velocity scales in the two flow fields are thus sufficiently
different that they do not significantly influence each other. As the non-dimensional distance from
the jet exit is increased, as in Figures 5.17b and 5.17c, the magnitudes of (z 2 )*/U, begin to reach
levels that influence the corresponding value on the jet centerline. This is especially the case when
the large grid is installed. These two plots clearly indicate that (z 2 )*/U, increases for the jet with



05

0.4
Q
)

~ 03
d
=

~ 0.2
Q
s
g

0.1

0.0

0.6

0.5
Q

- 04
S~
o

= 0.3
A
o

l ~ 02
)

0.1

0.0

= 0.5 —

] (a) Large Jet, VYR=6 (b) Large Jet, VR=3

| ~

7 0.4 7 oo=

i T LT

- 503 — EZ55 -

i ST =

: _adBa %= : g5 °

i 2= . é O

7B 02+ P

- B § -

b (Fﬂ -

Y 0.1 B - -

e - - j - -7

e . 100 G——= . ‘

0 5 10 15 0 10 20 30 40

- 1.6 — -

* (c) Small Jet, VR=6 14 - (d) Small Jet, VR=3 =

- o

- - = 1.2 -

—- = - A T L0 - —

S EERRT 7 ose 2T

_-;(—':. 0.6 —i D "/\/ ./_\- ~

= K Ot o 2 -

- 04 = O™ =Y

g o

;:_—— : j ] i T i ] 0.0 —T':T T ] i T T

0 10 20 30 40 0 25 5 75 100 125
x-x,)/0 x-x,)/0

Figure 5.17: Jet centerline and external streamwise turbulent velocities normalized by U,.
Symbols refer to the jet centerline for a given grid: O, no grid; 4, small grid; (3, large grid.
Lines refer to the external levels: —, no grid; ----, small grid; - - -, large grid.

either grid installed over that of the jet with no grid installed by (x-x,)/0=15. As the non-
dimensional distance is increased further still, as in Figure 5.17d (small jet, VR=3), the values of
(«1)*/U, in the external with the large grid installed become larger than (u 2 )*/U, for the jet with
no grid installed by 50 momentum radii. The growth of (u 2 )*/U, for the jet with the large grid
installed clearly indicates the influence that the external flow field has on its development.
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grid.

The increase in the jet centerline value of (u - )*/U, when a grid is installed is the result of the jet
entraining additional turbulent energy with the external fluid. For the jet with a grid installed, this
results in an increase in (u 2 )*/U, over the jet with no extemnal turbulence. As noted in the

previous section, the jet centerline values do not reach an asymptotic limit when normalized by the

conventional velocity scale, U,, for any of the cases given in Figure 5.17.
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Figure 5.18 presents the same data as Figure 5.17 but with (z ,)* normalized by (U (U ;+U )) *
rather than U,. Note also that the axes scales are identical to emphasis the differences in the two

normalizing techniques. All error bars for the precision errors are within the limits of the data

symbols and thus not displayed on the plots. The striking feature about this figure is that all the

data appears to approach an asymptotic state. This asymptotic limit falls within the range given by
(u 2)*(ULU,+U,)y*<0.190+£0.024 where larger values tend to correspond to a more turbulent

extemal coflow. The exception to this is the small jet at VR=3 with the large grid installed where
there is a slight rising trend in the centerline magnitude due to the increasing extemnal value.

5.4.3 Radial Turbulent Velocity
3.4.3.1 Similarity of Radial Profiles

As with the streamwise components, radial profiles of the radial turbulent velocity, (v 7)*, are
presented in Figures 5.19 through 5.26. The same trends observed in the streamwise components
are also apparent in the behaviour of the radial turbulent velocity. The graphs, however, are still

presented for completeness.

When the radial turbulent velocities are normalized by the conventional scale factor, U, , the radial
profiles fail to reach a state of similarity. By normalizing with the new scale factor, (U (U,+U,))*,
a state of similarity is achieved although the downstream location at which this occurs is somewhat
dependent on the experimental set but typically occurs between six and eight momentum radii from
the jet exit. The small jet at VR=3, however, requires a greater distance of approximately 20
momentum radii before similarity occurs. Normalizing with U, , however, better emphasizes the
effects of external turbulence which is to increase the magnitude of (v 2 )*/U, of the jet with a grid
installed over that of the jet with no grid installed by (x-x,)/0=15. At a given downstream location,
the larger increase corresponds to the jet with the large grid installed in the external coflow.
Finally, for the small jet at VR=3 with the large grid installed, the values of (v Z)*/U, in the jet are
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approximately that of the extemal coflow by the last few traversing locations. This again suggests
that the turbulence structure within the jet is slowly taking on the characteristics of the external

coflow.

In general, the radial turbulent velocities are typically smaller in magnitude and display a flatter
central core (after a few momentum radii from the jet exit) than their corresponding streamwise

components.

5.4.3.2 Centerline Behaviour

The behaviour of the centerline radial turbulent velocity, (;;‘,—2)”2 is given in Figure 5.27
normalized by U, and in Figure 5.28 normalized by (U (U_+U.))*. The error bars for the precision
errors are all within the limits of the data symbols and thus not reported on the two figures with the
exception of the last data point for the small jet at VR=3 in Figure 5.27. In addition, the radial
components of the turbulent velocity in the external flow are included for all levels of external

turbulence.

The two figures bear a remarkable resemblance to the corresponding plots for the streamwise
turbulent velocity component. Figure 5.27 indicates again that close to the jet exit, the magnitudes
of the radial turbulent velocities on the jet centerline and in the external coflow are sufficiently
different that any interaction is minimized. As the non-dimensional distance downstream is
increased, the levels in the external coflow increase to a level where they begin to influence the
magnitude on the jet centerline. Based on the bias errors, this becomes statistically significant at
(x-x,)/0=15. The largest changes on the jet centerline again correspond to the case when the large
grid is installed. For the small jet at VR=3, the external level of (v, )'*/U, again surpasses that
of the jet with no grid installed by (x-x,)/8=50. This results in a dramatic increase in (v, 2)"?/U,
for the jet with the large grid installed. Again note that centerfine values do not reach an asymptotic
limit over the experimental regime when normalized by the conventional scale factor, U.,.
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Figure 5.27: Jet centerline and external radial turbulent velocities normalized by U,. Symbols
refer to the jet centerline for a given grid: O, no grid; a, small grid; O, large grid. Lines
refer to the external levels: ——, no grid; ----, small grid; - - -, large grid.

Figure 5.28 illustrates again that by normalizing the data with the new scale factor, (U,(U,+U.))%,
an approximate asymptotic value is reached of (-v,?) 12 (UU+U,))%#=0.156+0.017 in nearly all
the experimental cases. The exception to this is again the small jet at VR=3 with the large grid
installed where there is a slight increasing trend in the data due to the increasing values in the

external coflow. As with the streamwise direction, a higher level of extemnal turbulence typically
corresponds to a higher asymptotic limit.
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5.4.4 Reynolds Shear Stress
5.4.4.1 Similarity of Radial Profiles

As with the turbulent velocity, the radial profiles of the Reynolds shear stress, # v,, are normalized
by the conventional method using U,? and by the new method using U (U,+U,). This results in two
plots, again given on the same page for ease of comparison, for each set of jet experiments. These
plots are given in Figures 5.29 to 5.36.

In order to better illustrate the radial behaviour of # v, , r/L, extends to both the positive and
negative halves of the jet. The resulting distributions show a positive maximum for z v, when r/L,
is negative and a negative maximum for z v, when /L, is positive. The location of the maxima
occurs in the range 0.7<|r/L,| <1.0 which corresponds to the peaks in the streamwise turbulent

velocity profiles and the location of the maximum gradient in the excess mean velocity profiles.

The trend in the Reynolds shear stress profiles are similar to those observed in the streamwise and
radial turbulent velocity profiles. When normalized by U,? the conventional scale factor, the
profiles fail to obtain a state of similarity and when normalized by U (U,+U ), the new scale factor,
the profiles obtain a reasonable state of similarity after only a few momentum radii downstream
from the jet exit. The exception to this is again the small jet at VR~3 which displays similarity after
(xx-x,)/0=10. The effects of external turbulence are best illustrated when the radial profiles of u v,
are normalized by U,?>. As expected from the turbulent velocity results, external turbulence
increases the magnitude of u v, /U}? after (x-x,)/0~15. The largest increase in u v,/U,* again
occurs in the jet with the large grid installed. This is most dramatically illustrated by the results for
the small jet at VR=3 given in Figure 5.35. For the jet with the large grid installed the measured
levels of u v /U}? are approximately five times larger than the other two cases thus making it
necessary to increase the scale on the ordinate axis for this particular case.
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Figure 5.30 : Reynolds shear stress profiles for the large jet with /R = 6 normalized
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Figure 5.34 : Reynolds shear stress profiles for the small jet with /'R =~ 6 normalized
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Figure 5.36 : Reynolds shear stress profiles for the small jet with ¥R = 3 normalized
by U(U,+U). x(cm): +, 10; x, 20; 4, 40; o, 60; 7, 80; 0, 100. (x-x,)/0: +,
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5.4.4.2 Average Maximum Behaviour

The absolute maximum value of the Reynolds shear stress, |uv |, ., taken as the average of the

two experimental maxima on both the positive and negative r-sides of the jet, are plotted in Figure
5.37 normalized by U.? and in Figure 5.38 normalized by U (U,+U,). Also included in the figures
is the approximate level of Reynolds shear stress in the external coflow, |# v,],, for reference
purposes. Error bars have been included for data points that have precision error bars that extend

beyond the limits of their symbols.

When the maxinum Reynolds shear stress is normalized by U2, as in Figure 5.37, the data fails to
reach an asymptotic level which would indicate a state of similarity. The effects of mtroducing a
grid into the extemal flow is to increase the magnitude of [« v,|,.../U,’ by a downstream location
of approximately (x-x,)/0=15. The largest increase again corresponds to the jets with the large
grid installed. It is of interest to note that the external levels of the Reynolds shear stress are
relatively small in comparison to the jet maxima. (The external levels with no grid installed actually
fall on the horizontal axis of the graph.) The exception to this is the small jet at /R=3 with the
large grid installed. This would seem to indicate the Reynolds shear stresses in the jet are not
greatly affected by their corresponding external levels, but depend on other quantities within the
jet. Physically this makes sense since the Reynolds shear stress terms are responsible for the
transfer of turbulent momentum between the streamwise and radial Reynolds normal stress terms.
Thus, the magnitude of u v, in the jet is more dependent on the levels of the normal stresses than

the shear stresses in the external coflow.

Normalizing the maximum Reynolds shear stress using U (U,+U,), as in Figure 5.38, shows that
the approximate asymptotic limits are reached although there is a slight hump in the profile over
the range of 5<(x-x,)/0<20. In addition, the presence of a grid in the external coflow results in a
slightly higher asymptotic limit after (x~x,)/0=15. The overall average asymptotic limit, excluding
the run for the small jet at VR=3 with the large grid installed, is |uv | _/AU/(U,+U,))= 0.012
£0.002. The limit for the small jet at VR=3 with the large grid installed is 0.019.
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Figure 5.37: Average maximum Reynolds shear stress normalized by 2. Symbols refer to the
jet for a given grid: O, no grid; a, small grid; (7, large grid. Lines refer to exteral levels:
no grid; - - - -, small grid; - - -, large grid.

5.4.5 Summary of Reynolds Stress Results

When the Reynolds stresses are normalized by the conventional method (turbulent velocities by U,
and Reynolds shear stresses by U,?), the distributions fail to reach a state of similarity over the
downstream regime covered by the four sets of jet experiments. Normalizing the Reynolds stresses
with the new method (turbulent velocities by (U,(U,+U,))* and Reynolds shear stresses by
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Figure 5.38: Average maximum Reynolds shear stress normalized by U,( U,+U,). Symbols refer

to the jet for a given grid: O, no grid; a, small grid; [J, large grid. Lines refer to external
levels: , no grid; - - - -, small grid; - - -, large grid.

U (U,+U.,)) effectively makes the distributions similar often within the first ten momentum radii
from the jet exit. It can therefore be concluded that the Reynolds stresses (both normal and shear)
in a coflowing jet scale with (U, (U,+U.,)) and not with U ? which is the conventional method of
scaling Reynolds stresses. Thus the new scale factor is the appropriate scale factor for normalizing
Reynolds stresses. This is advantageous in a modelling sense since the turbulent velocities are now
directly proportional to the new mean velocity scale and can thus be replaced by it in the equations

of motion.
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The asymptotic limits for the centerline turbulent velocities are given approximately by:
(u 2)*(U(U,+U.,))*~0.190+0.024 nv/s
(v, P YHULU,+U,)Y=0.156:0.017 m/s

while the asymptotic limit for the maximum Reynolds shear stress is given approximately by:
luv |, KU(U,+U,))=0.012+0.002 m*s’.

Introducing a turbulence generating grid into the external coflow results in larger magnitudes for
the turbulent velocities and Reynolds shear stresses starting in the range of 15<(x-x,)/0<20 with
the largest magnitudes corresponding to the case with the large grid installed.

5.5 Integral Length Scales

The streamwise and radial integral length scales, L, and L, obtained by multiplying the integral
time scales of the streamwise and radial turbulent velocities by the local mean velocity, provide an
indication of how the average to larger energy containing eddies within the jet vary with distance
downstream. Precision errors on individual values of the integral length scale, normalized by the
Jet radius, range between 2% and 20% depending on the jet initial conditions, distance downstream
from the jet exit, and the level of turbulence both within the jet and the external coflow. To reduce
the magnitude of this error, an average integral time scale is obtained for a given jet cross section
which is then converted to an integral length scale using the average or top-hat mean velocity, U,
for the given jet cross section. This not only reduces the precision error by a factor of 1/Vn, where
n is the number of data points used in the average, but makes the convecting velocity equal to the
average velocity within the jet.

The streamwise integral length scales normalized by the jet radius, R, are given in Figure 5.39 while
the radial components are given in Figure 5.40. The symbols give the average value of the integral
length scale over a given jet cross section normalized by the jet radius. All precision error bars are
found to be within the limits of the data symbols and thus not reported on the figures. The dashed
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refer to the jet for a given grid: O, no grid; a, small grid; OJ, large grid. Lines refer to
levels in the external flow also normalized by R: - - - -, small grid; - - -, large grid.

lines give the magnitude of the integral length scales in the external flow, also normalized by the

jet radius at a given downstream location. Accurate values for the integral length scales in the

absencé of grid-generated turbulence are not obtainable due to the low turbulence levels coupled

with the low energy noise of the LDA system.

For the jet without a grid installed, all four plots in Figure 5.39 indicate the streamwise integral
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length scale is directly proportional to the jet radius which is the radial geometric scale of the flow.
The asymptotic value of L_ /R varies from 0.39 for the large jet at VR=6 up to 0.57 for the small
jet at VR=3 with an average value of approximately 0.46.

When the large grid is installed in the external flow, the external values of L_ , /R are quite large in
comparison to the average value in the jet with no grid installed. As a result, an increase in the



114

magnitude of L,_/R in the jet occurs in all the experimental sets very shortly after the jet exit,
roughly around (x-x,)/0=5. For the large jet at VR=6, the magnitude of L_/R is only slightly
larger than that for the jets with no grid and small grid installed. As the non-dimensional distance
is increased, as in Figures 5.39b and 5.39c, the magnitude of L_. /R in the jet with the large grid
installed increases towards the extemnal level. In Figure 5.39c, the last two data points actually
decrease in magnitude at a rate similar to that of the extemal flow. This is more apparent in Figure
5.39d where there is an initial rise in L_ /R in the jet up until (x-x,)/0=25 after which L_ /R decays

as the level in the external coflow is approached.

When the small grid is installed, the extemal value of L_, /R drops to within the same order of
magnitude as the average values within the jet with no grid installed, typically by 5 to 15 momentum
radii downstream from the jet exit. In fact, by the last traversing location in each of the
experimental sets, the level of L, /R in the external for the small grid has decreased almost to the
point as that found in the jet without a grid installed. Thus it is not surprising that the values for
L_/R in the jet with the small grid installed are only slightly larger than those for the jet with no grid
installed.

For the radial integral length scales, Figure 5.40 indicates again that for the jet with no grid
installed, the integral length scales are proportional to the radius of the jet. This result is not too
surprising since one could intuitively guess that the radial integral scale would be proportional to
the radial geometric scale. Recall, however, that L by its definition (see Chapter 2) is not strictly
a true radial scale since it relies on the average mean streamwise velocity for conversion from a
temporal scale to a spatial scale. The asymptotic value of L , /R for the jet with no grid installed
ranges from 0.14 for the large jet at VR=6 to 0.23 for the small jet at VR=3 with an average value
of 0.18. On average, the radial integral length scales are approximately 40% the magnitude of the

corresponding streamwise components.

When the large grid is installed in the extemal, the level of L, , /R is roughly half an order of
magnitude larger than the average level in the jet with no grid installed which is the same trend
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observed for the streamwise component. Despite this similarity in the external values, the
behaviour of L_/R for the jet with the large grid installed is, however, somewhat different than its
streamwise counterpart. The magnitude of L, /R does not start to increase above the jet with no
grid installed until (x-x,)/0=15, which corresponds to the downstream location where the turbulent
velocities for the jet with the large grid installed began to deviate from the no grid case. In
addition, there is only 2 modest increase in L, /R with the large grid installed for the large jet at
VR=3 and the small jet at VR=6 in comparison to their streamwise components. However, for the
small jet at F'R=3, the increase in L,,/R is quite significant with the last three data points actually
falling on the curve for the external levels of L, /R thus indicating that the jet with the large grid
installed is acquiring the characteristics of the external flow.

When the small grid is installed, the external levels of L,, , /R again drop to within the same order
of magnitude as the average values in the jet with no grid. Thus there is only a minor increase in

L,./R for the jet with the small grid installed over the no grid case.

In summary, both the average streamwise and radial integral lengths for the jet with no grid installed
in the external flow are proportional to the radius of the jet. Increasing the level of turbulence in
the external flow with the small grid results in only minor increases in the average integral length
scales within the jet over that of the jet with no grid installed. By inserting the large grid in the
external flow, however, the average streamwise integral length scales become larger than those for
the jet with no grid installed by (x-x,)/0=5. The average radial integral length scales did not begin
to do this until (x-x,)/0=15. Also, by the final three traversing locations for the small jet at VR=3,
the magnitude of the average integral length scales in the jet are comparable to those in the external
flow, especially in the radial direction.
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5.6 Power Spectral Density (PSD) Functions

The streamwise and radial power spectral density functions, £ (f) and E , (f), obtained from the
measured instantaneous velocity time series, represent the distribution of turbulent kinetic energy
over the range of frequencies that comprise the velocity signal. The precision error associated with
a signal spectrum is approximately 32% which makes comparison with other spectra questionable,
especially if the spectra have only slightly different energy levels. To reduce this high level of
precision error, an average turbulent energy spectra has been calculated for a given jet cross
section. This reduces the precision error by 1/va where n is the number of spectra used in the
average. Typically, 2 varies between 15 to 20 thus giving a precision error on the order of 8% for

the average spectra.

The spectra have also been converted from the frequency domain, f; to the wavenumber domain,
k, since the turbulent energy content of eddies with diameters of order &' can be determined directly
from the spectrum. As with the integral scales of motion, a spatial measurement is easier to
interpret than a temporal or frequency based measurement. To convert from the frequency domain

to the wavenumber domain, use is again made of Taylor’s theory of frozen turbulence, namely:

2T

k=—
Uu

S (5.2)

and:

Ek) =L E() (5.3)
2

where the convecting velocity is again assumed to be equal to the average mean velocity, U, across
the jet cross section. It should be kept in mind that Taylor’s theory of frozen turbulence is only an
approximation that is reasonable in homogeneous turbulence and thus should be viewed with some

caution when applied in shear flows.
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The average turbulent energy spectrum represents the average distribution of turbulent energy per
unit mass over the eddy sizes that comprise the flow at a given downstream location. These spectra
can therefore by used to illustrate how the turbulent energy distribution changes with downstream
location as well as with different turbulent energy levels in the external coflow. The resulting
streamwise turbulent energy spectra, E_ (k), are given in Figures 5.41 to 5.44 for each of the
experimental sets. To give a representative depiction of the downstream development, six profiles
have been selected for each level of extemnal turbulence. In addition, the approximate location of
the integral length scales (L _<k") have been included on the spectra for reference purposes to mark
the evolution of the larger energy containing eddies. Also included in the figures are the turbulent
energy spectra for the external flow with the small and large grids mstalled. Typical precision
errors for these external spectra are on the order of 13%. A reasonably accurate turbulent energy
spectrum for the extermnal flow with no grid installed could not be obtained due to the low level of
turbulent energy coupled with the low energy noise of the LDA system.

Close to the jet exit, as for the large jet at I'R=6 given in Figure 5.41, the average turbulent energy
within the jet is far greater than that in any of the external coflows. Thus the relative downstream
evolution of the average spectra within the jet are virtually unaffected by the presence of turbulence
in the external flow. At farther non-dimensional distances from the jet exit, as for the large jet at
}'R=3 and the small jet at VR=6 given respectively in Figures 5.42 and 5.43, the average turbulent
energy within the jet decreases to a level where the turbulent energy within the extemnal coflow
begins to affect the behaviour of the average jet spectra. This is evidenced by the increase in the
turbulent energy content at the smaller wavenumbers (or larger length scales) within the average
jet spectra when a grid is installed in the external flow. At the farthest non-dimensional locations,
as for the small jet at VR=3 given in Figure 5.44, the average turbulent energy within the jet has
decreased to the levels in the external coflow when a grid is installed. At the farthest point, the
average spectra of the jet, although containing slightly more turbulent energy at all wave-numbers,
has acquired the same spectral shape as that in the turbulent external coflow. The greatest influence
of the external turbulence on the evolution of the average turbulent energy spectra occur when the
large grid is installed in the external flow.
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The average radial turbulent energy spectra, £, (k), are presented in Figures 5.45 To 5.48 in a
similar manner as the streamwise components. Note that the shape of the average radial turbulent
energy spectra differ from the streamwise component by exhibiting a peak in the spectrum in the
vicinity of k~ 100 m™ which, in a given experimental set, shifts to smaller wavenumbers as distance
from the jet exit is increased. Also, the location of the integral length scales occurs further down
on £_(k) than for £_ (k).

Aside from the slight differences in shape, the behaviour of £,, (k) is not radically different from
E_(k). For the large jet at VR=6, the turbulent energy content of the external flow with the large
and small grids installed is too small at all wavenumbers to dramatically affect the average jet
spectra. As the non-dimensional distance is increased, as for the large jet at VR=3 given in Figure
5.46 and the small jet at VR=6 given in Figure 5.47, the average turbulent energy within the jet
decreases to a level that is influenced by the level in the external flow. This is again evidenced by
the greater amount of turbulent energy in the smaller wavenumbers (or larger length scales) in the
average jet spectra when a grid is installed by the final few traversing locations. This is especially
apparent in the jet with the large grid installed in the external flow. As the non-dimensional
distance is increased further, as for the small jet at YR=3 given in Figure 548, the turbulent energy
within the jet continues to drop until we begin to see the shape of the average spectra emulating

the shape of the spectra for the external flow.
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5.7 Normalizing Variables and Mathematical Similarity

The experimental results indicate that a form of similarity in the various profiles is obtained when
the mean velocities are normalized by U, and the turbulent velocities by (U (U,+U.))* with the
radial position normalized by L, In addition, a common behaviour for U, /U, for jets in nearly
laminar coflows is obtained when the downstream distance is normalized by the momentum radius,
0. Similarly, a common radial behaviour is obtained when the radius and downstream distance are
both normalized by 6.

In Chapter 2, complete mathematical similarity of a jet in a coflow was considered with the end
result being the derivation of equation (2.23) which gives the conditions under which complete
similarity can be achieved. Substituting the above scales into the equation, however, does not
satisfy the equation mathematically. Thus it must be concluded that the similarity indicated by the
normalized experimental results is only partial similarity which may or may not apply outside the

current experimental regime.

5.8 Summary of Experimental Results

Similarity of the excess mean velocity profiles are obtained when they are normalized by the
centerline excess mean velocity, U/,, while similarity of the turbulent velocity profiles are obtained
when they are normalized by a new scaling factor, (U (U,+U,))*. Normalizing the turbulent
velocity profiles by the conventional scale factor, U, , failed to produce similar profiles by the end
of the experimental regime. It is thus concluded that a jet in an external coflow has two velocity
scales; one for mean velocities and one for the turbulent velocities. In addition, both the streamwise

and radial integral length scales are found to be proportional to the jet radius.

For the jet in the absence of any grid-generated turbulence, the centerline excess mean velocity
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follows U_=x" up to (x-x,)/0=300 with the radius following R=x>> until (x-x,)/0=100 after which
there is some indication that R=x'>. When a jet issues into a turbulent external coflow, one can
expect, based on the present results, that:
a) the centerline excess mean velocity, U,, will decay faster beyond (x-x,)/0~20 to 25.
b) the jet radius, R, will increase faster beyond (x-x,)/0~20 to 25.
¢) the centerline turbulent velocities and Reynolds shear stresses, normalized by U, will
increase faster beyond (x-x,)/0~15 to 20.
d) the average streamwise integral length scales, normalized by the jet radius, will increase
faster after (x-x,)/0~5 to 10 while the average radial integral length scales will increase
faster after (x-x,)/0~15 to 20.

in comparison to the same jet in a nearly laminar extemnal coflow.

The present results clearly show that the effects of grid-generated turbulence on the development
of a coflowing jet are not negligible and are dependent on the scales of turbulence in the two flow
fields. The external turbulence that has the largest impact on the evolution of the jet occurs when
the large grid is installed in the external coflow. For this case, the external coflow contains more
turbulent energy located at larger length scales than for the case with the small grid installed, which
in turn, contains more turbulent energy at larger length scales than for the case with no grid
installed in the external. In fact, by the final traversing locations for the small jet at ¥R=3, the
average turbulent energy spectrum within in the jet has acquired the same shape and almost the
same turbulent energy level as that found in the external coflow with the large grid installed thus
indicating that the jet fluid is becoming indistinguishable from the external fluid.



Chapter 6: Integral Model Development

6.1 Introduction

Integral models, in combination with an entrainment velocity function, have been used extensively
in the field of air pollution diffusion modelling to predict the trajectory and radial spread of jets and
plumes in the natural environment. Their success can be attributed to their relatively simplistic
formulation which is based on the Navier-Stokes equations and realistic simplifying assumptions.
This produces a set of coupled ordinary differential equations that can be solved numerically using
a Runge-Kutta solution algorithm. These equations are typically first order approximations to the
fully turbulent equations of motion since it is assumed that all the effects of turbulence can be

incorporated into the entrainment velocity function.

This chapter begins with a discussion of the phenomenological considerations inherent in the
physics of two interacting turbulent fields. This will be followed by a brief review of the goveming
equations of motion and the simplifying assumptions appropriate for an isothermal, axisymmetrical
jet in a coflowing external stream. Next, the postulation of the various entrainment velocity

functions that are appropriate to the iitial, intermediate and final phases of the jet behaviour will

129
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be presented. This will be followed by the combination of the entrainment velocities for the three

phases into a single continuous entrainment velocity function. Lastly, the predicted results will be
compared to experimental data.

6.2 Phenomenological Considerations

Before an attempt is made at mathematically modelling a coflowing jet in a turbulent external flow,
the phenomenological considerations inherent to diffusion, mixing, or entrainment of interacting
turbulent flow fields will first be examined in order to elucidate the physics of the problem.

In general, the character of turbulence in any flow can be uniquely described by its turbulent energy
spectrum which represents the distribution of turbulent energy over the range of frequencies or
length scales that comprise the turbulent flow field. Diffusion or entrainment processes do not,
however, occur over the entire spectrum range but tend to occur at scales comparable to the larger
integral scales of the flow (Tennekes and Lumley, 1972, and Townsend, 1976). In addition, the
turbulent energy spectrum, when integrated over the entire frequency or wavenumber range that
comprises the spectrum, yields a value equal to the square of the turbulent velocity. Thus, for flows
where diffusion and entrainment are the dominant concem, the character of the turbulence can be
adequately described by a characteristic turbulent integral length scale and a characteristic turbulent

velocity scale.

When two turbulent flow fields are interacting, such as a turbulent jet and a turbulent external
coflow, the degree of interaction will be dictated by the relative magnitudes of the characteristic
scales of turbulence in both flows. For the jet to be dynamically influenced by the external coflow,
without resulting in the jet meandering, the external coflow must have eddies which correspond to
or are on the same order of magnitude as those within the jet. Near the exit of the jet, the turbulent
energy within the jet, generated primarily by the shear between the jet and external fluid, is much
greater than that in the external coflow and centred about length scales that are much smaller than
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those in the external coflow. Since the scales of turbulence in the two flow fields are so different,
their interaction will be minimized. Thus the diffusion of the jet near the jet exit will be primarily

determined by the self-generated turbulence of the jet. This defines the initial phase of jet diffusion
(Slawson and Csanady, 1967 and 1971).

As the jet evolves downstream, the turbulent energy content of the jet fluid diminishes due to the
decrease in shear between the jet fluid and the external fluid. In addition, the integra} length scales
within the jet, which scale with the radius of the jet, increase with distance downstream. Thus the
turbulent energy content within the jet decreases and shifts to larger length scales with distance
from the jet exit. At some downstream location, or downstream range, the turbulent energy within
the jet will have decreased sufficiently and shifted to large enough length scales that they will
correspond to those within the extemal coflow. At this point, the turbulence in the external coflow
will begin to dynamically influence the jet behaviour. This is the start of the second stage of jet
growth where the external turbulence eventually controls the diffusion and entrainment within the
jet. Slawson and Csanady (1967 and 1971) subdivide this second stage into an intermediate phase,
where the extemal turbulence with eddies in the inertial subrange of the turbulent energy spectrum
dominates the jet mixing, and a final phase, where the energy containing eddies of the extemal

turbulence dominate the mixing.

Realistically, however, the evolution of a jet in 2 turbulent extemal coflow is likely to contain
considerable overlap between the various phases as one phase merges with another to dominate the
diffusion of the jet fluid.

6.3 Governing Equations

To simplify the fully turbulent three-dimensional Navier Stokes equations into a form that is
tractable, some simplifying yet realistic assumptions regarding the flow fields are required. For the
coflowing jet, it is assumed that the flow is steady, incompressible, and fully turbulent shortly after
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the jet exit with a Reynolds number sufficiently large that viscous effects can be neglected. It is also
assumed that the jet is not subject to any mean flow in the azimuthal direction. The external mean
flow is assumed to be uniform both in magnitude and direction. The first order equations
representing the conservation of mass and the conservation of streamwise momentum can then be
reduced to (see Appendix A):

d R(x)
e _{; U(x,r)rdr=Ryv, (6.1)
and,
d R(x)
e { Ux,r)(U(x,r)-U,)rdr=0 (6.2)

respectively where U(x, r) is the mean velocity, R(x) is the radius of the jet, and v, is an entrainment
velocity function that needs to be specified. These two equations represent a first order
approximation to the full governing equations and thus do not directly account for the effects of
turbulence, either within the jet or in the external flow. The effects of turbulence can, however, be
accounted for indirectly through the specification of an appropriate entrainment velocity function.

In order to evaluate the integrals in equations (6.1) and (6.2), an assumption about the mean
velocity profiles is required. In Chapter 5 it was shown that the excess mean velocity profiles
within the jet, for all experimental sets, are approximately similar after a short distance from the jet
exit with a profile shape that is closely approximated by a Gaussian function. By assuming
similarity of the mean velocity profiles, however, the detailed radial structure of the jet is
suppressed since the profile becomes characterized by a single length scale and a single mean
velocity scale. Thus any mean velocity profile shape can be used without loss of any additional
physical information (Morton, 1961). In addition, a Gaussian profile can be represented by its mean
and standard deviation or width which are essentially the parameters used to define a top-hat or
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average profile. Thus a simple top-hat velocity profile will be assumed as is common for
atmospheric releases. This greatly reduces the complexity of the integrations since all variables in
a top-hat profile are assumed constant across the radius of the jet. It should also be noted that the

assumption of similarity of the mean velocity profiles restricts the application of the integral model
to downstream locations after which the experimental profiles exhibit similarity.

The conservation of mass equation, assuming a top-hat mean velocity profile, becomes:
d /—
—(UR?)=2Rv -
——(UR?)=2Rv, (6.3)
where U is the top-hat or average mean velocity within the jet over 0 < r < R. Similarly, the

conservation of x-momentum becomes:

£ (0(T-0,)R?)=0 (6.4)

Equations (6.3) and (6.4) represent a pair of coupled ordinary differential equations that can be
solved for U(x) and R(x) once an entrainment velocity function has been specified.

6.4 The Entrainment Velocity Function

The right hand side of the conservation of mass equation (equation (6.3)) can be interpreted as an
effective eddy diffusivity, X, (Slawson and Csanady, 1967) which is proportional to the product of
a characteristic diffusion length scale and a characteristic turbulent velocity scale. This
interpretation of equation (6.3) assumes that the jet radius is proportional to the characteristic
diffusion length scale and that the entrainment velocity is proportional to the characteristic turbulent
velocity scale responsible for the mixing in the jet. From the experimental data presented in
Chapter 5, the ratio of the jet radial integral length scale (i.e. a diffusion length scale) to the jet
radius, L,,/R, is nearly constant after an initial development region for the jets with no grid and the
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small grid installed while for the jets with the large grid instailed, the behaviour of L, /R, while not
strictly constant, can be approximated as such. Thus the first part of our interpretation on the
continuity equation is reasonably satisfied. What remains to be determined is the functional form
of the entrainment velocity such that it is proportional to the characteristic turbulent velocity

dominating the mixing of the flow.

If the downstream evolution of the jet is divided into three phases such that the diffusion and
entrainment in each phase is controlled by a unique characteristic velocity scale of turbulence, then
a unique entrainment velocity finction will be required for the initial, intermediate and final phases
to fully predict the behaviour of a jet in a turbulent external coflow. The following sub-sections
detail the development of v, for each phase. For the initial phase, the predicted jet behaviour will
be immediately compared to experimental data for jets in laminar coflows. For the intermediate and
final phases, however, comparison with experimental data will wait until a complete entrainment

velocity function is defined.

6.4.1 The Initial Phase

When the jet’s self-generated turbulence dominates the mixing process, whether it be for a jet in
laminar external coflow or for a jet in the initial phase in a turbulent external coflow, the
entrainment velocity should ideally be proportional to a mean velocity or a mean velocity
combination within the jet which, in tum, should be proportional to the turbulent velocity
responsible for entraining extemnal fluid. Setting the entrainment velocity proportional to a mean
velocity combination greatly simplifies the problem since the solution neither requires the
specification nor the prediction of any turbulent velocities within the jet.

A jet in a coflow has two characteristic mean velocities: that of the jet, U, and that of the external
coflow, U, The simplest technique to combine these two velocities is as a mean velocity difference
or as the excess top-hat mean velocity given by U =U-U,. Using this method, Morton (1961)



proposes an entrainment velocity of the form:

14

e.lam e

=aU,=a(U-U,) (6.5)

and suggests that the entramment constant, , is 0.116. Physically, Morton (1961) argues that the
entrainment of external fluid arises from the turbulence that is produced by the shear generated by
the difference in the characteristic mean velocities thus suggesting that the turbulent velocities need
to scale with the mean velocity difference. This speculation, however, is not supported by the
experimental data in Chapter 5 which clearly shows that the turbulent velocities do not scale with
u,.
The experimental results, however, do show that the turbulent velocities scale with (U (U, +U.))*,
the new turbulent velocity scale factor. If this scale factor is rewritten in terms of the average

excess mean velocity, a new entrainment velocity function can be proposed as:

14

e.lam

=e(T,(T,+0,))" =e(T(T-U,))*" (6.6)

where the value of the entrainment constant, ¢z, must be determined from the available data. This
new entrainment velocity is now proportional to a mean velocity scale which has been
experimentally shown to be proportional to the turbulent velocities within the jet which, in turn, are

responsible for entraining extemal fluid into the jet.

The above two entrainment functions have been used in conjunction with equations (6.3) and (6.4)
to predict the behaviour of U, /U, and R/ for jets in a laminar external coflow. The data for the
small jet at VR=6 at a downstream location of (x-x,)/0=3.5 (roughly corresponding to the location
where both the excess mean velocity and turbulent velocity profiles become similar) is used to
initiate the solution algorithm for both entrainment functions. The results are given in Figures 6.1
and 6.2 for U, /U, and R/O respectively along with the current experimental data with no grid
installed and the experimental data of six other studies on jets in laminar external coflows.
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Figure 6.1: Comparison of predicted behaviour for U/ /U, with experimental data for

jets in laminar coflows.
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The predictions using the entrainment velocity function of Morton (1961) (equation (6.5)), given
as the solid line in both figures, follows the data reasonably well up until (x-x,)/0=20 after which
they start to increasingly under predict the behaviour of both U, /U, and R/ as the distance
downstream is increased. Increasing « to values greater than 0.116 in order to match the far
downstream data results in an over prediction of U, /U, and R/0 closer to the source. Thus, over
the given solution regime, the entrainment velocity function of Morton (1961) cannot correctly
predict the behaviour of U/U, and R/0. Maczynski (1962) reached essentially the same conclusion
by stating that & could not remain a constant but had to depend weakly on x.

As expected based on the discussion above, the predictions using equation (6.6), given as the
dashed line in the two figures, better predicts the behaviour of U, /U_ and R/0 over the entire
solution regime than that based on Morton’s entrainment velocity. The value of the entrainment
constant, €=0.0922, is an average value from the studies given in the two figures. The range of
values for the entrainment constant in all the studies is 0.08<a<0.105 where there appears to be
some dependency on the jet model diameter and, to a lesser extent, the initial jet velocity ratio. As
the jet diameter is increased or the initial velocity is increased, the magnitude of the entrainment
constant decreases thus making « inversely dependent on the initial momentum. Presumably, if
(U(U-U.))* was a scale factor that resulted in true mathematical similarity, than the value of «

would be constant.

6.4.2 The Intermediate Phase

In the mtermediate phase, it is assumed that the extemal turbulence in the inertial subrange of the
turbulent energy spectrum will dominate the diffusion and entrainment within the jet. The location
of the inertial subrange within a spectrum is given by the wavenumber range &, « k « k, where £, is
a typical wavenumber marking the range of the large energy containing eddies and %, is a typical
wavenumber marking the range of the small dissipative eddies. The concept behind the inertial
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subrange as put forth by Kolmogoroff is that, at sufficiently high turbulent Reynolds number, the
energy spectrum in the range of k; « k « &, is independent of the fluid viscosity and is solely
determined by the energy dissipation rate per unit mass, €, which has the units of m*/s* (Hinze,
1975).

Based solely on dimensional reasoning, a characteristic turbulent velocity or entrainment velocity
can be defined for the intermediate phase of jet growth using the external energy dissipation rate,
€,, and an external turbulent length scale, /, typical of the inertial subrange. This yields:

ve. ine

A CRA (6.7)

Equation (6.7) can also be obtained by assuming that the effective turbulent diffusivity due to the
external turbulence can be evaluated by supposing that the turbulent energy of the external eddies
is “smeared” over a wavenumber range of width k& (Fink, 1977). The turbulent energy content
should therefore be proportional to both the maximum value of the power spectral density function,
E(k), in the interval as well as the wavenumber band width. Since the PSD function in the inertial

subrange is a function of the dissipation rate only at a given wavenumber, /e:

E(k)<e¥Pg™SB (6.8)

the effective eddy diffusivity can be evaluated from:

K<R(JE(k)k (6.9)

This gives a value of:

K=<R(Jye®Pkr B =ReP' (6.10)

Since k is a typical value in the wavenumber band width of the mertial subrange, its inverse will
yield a typical turbulent length scale, /,, of the inertial subrange. Also since K«Ryv,, the entrainment
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velocity for the intermediate phase again becomes proportional to (€,/,)*".

The selection of a length scale characteristic of the external turbulence in the inertial subrange,
however, must still be made. Tennekes and Lumley (1972) state that the energy exchange between
the mean flow and the turbulence is governed by the dynamics of the large eddies with scales
comparable to the integral length scales. Furthermore, the authors go on to state that all
experimental evidence suggests that the spectral energy transfer from the large scales down to the
small dissipative scales, proceeds at a rate dictated by the energy of the large eddies and their time
or length scale. Thus in the mertial subrange, where there is an equilibrium between the production
and dissipation of turbulent energy, the characteristic length scale of the energy transfer is the
integral length scale. The entrainment function for the intermediate phase of jet growth thus has

the form:

ve.im = ( ee Le )”3 (6. 1 l)

where L, is an integral length scale in the external flow.

Based on similarity theory of turbulence and the theory of relative diffusion through the use of the
Richardson-Batchelor relationship, Slawson and Csanady (1967 and 1971) suggest that, for an
atmospheric release, the integral length scale in the atmosphere is proportional to the radius of the
jet, R, in the intermediate phase of jet growth. This results in an entrainment velocity of the form:

v, = BEPRI (6.12)

e,

where B is an entrainment constant for the intermediate phase. Note, however, that in the
atmosphere there can be a substantial inertial subrange that spans several decades of wavenumbers
(Batchelor, 1950).

For a laboratory situation, Fink (1977) suggests an entrainment function that essentially matches



141

the entrainment velocity of Slawson and Csanady (1967 and 1971). However, in a laboratory flow
where the external turbulence is generated by a grid, a substantial inertial subrange does not exist
which makes the assumption of proportionality between the external integral length scale and the
radius of the jet questionable. The reason for this is that the external turbulence in the inertial
subrange does not span a sufficiently wide range of wavenumbers to completely dominate the

diffusion of the jet as it would in the case of the atmosphere.

For the current study, the proposed entrainment velocity function for the intermediate phase will
thus follow the more fundamental formulation given by equation (6.11) by having the form:

=Bel®L," (6.13)

ve. int

where L, , is the radial integral length scale of the external coflow which can be evaluated from the
relationships developed in Chapter 4 for grid-generated turbulence. Preliminary prediction runs
support this formulation since the value of 8, when the extemnal integral length scale is used, is
constant. If the jet radius is used in equation (6.13) in lieu of the external integral length scale,
is no longer a constant but is strongly dependent on the specific grid installed in the extemnal flow.
Bear in mind, however, that since there is not a substantial inertial subrange in grid-generated
turbulence, the fluid viscosity, which has been assumed to be nonessential based on the concept of
the inertial subrange, may be an important variable in the determining the transfer of turbulent

energy in the spectrum and thus in determining the magnitude of p.

The external energy dissipation rate for grid-generated turbulence can be estimated based on the
isotropic relation (Hinze, 1975):

e =-Syd gy a1, (6.14)
2 de\ 2

ol
~
ae”

where use has been made of Taylor’s theory of frozen turbulence and where the approximation

takes into account the anisotropy in grid-generated turbulence. As with the integral length scales,
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the values of the external turbulent velocities can be determined from the relationships developed

in Chapter 4 for grid-generated turbulence.
6.4.3 The Final Phase

In the final phase of the jet development, the energy containing eddies of the external turbulence

dominate the mixing of the jet.

Slawson and Csanady (1967 and 1971) give a final phase entrainment velocity of the form:

ve.ﬁu = Y v £ (6. 15)
R

where v is the entrainment constant for the final phase, v is a turbulent velocity, L is a diffusion
length scale, and R is the radius of the jet. This form of the entrainment velocity is again based on
the theories of turbulence similarity and relative diffusion for atmospheric releases.

However, in the final phase, it is assumed that the energy containing eddies in the external
turbulence control the diffusion and entrainment within the jet. If this is the case, then the
geometric scale of the jet should be proportional to the integral length scale of the turbulence which
is dominating the mixing process. In other words R=L,, , in the final phase. The logical choice for
v is the extemal radial turbulent velocity since it is the component that crosses the jet boundary. The
final phase entrainment velocity function can thus be simplified to:

Vesin=Y (;-2—)“2 (6.16)

where the constant of proportionality between the jet radius and the external integral length scale
is absorbed mto y. The value of the extemal radial turbulent velocity can be determined from the
relationships derived in Chapter 4 for grid-generated turbulence.
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6.4.4 Combining the Entrainment Velocities

As mentioned previously, the three phase regional model is simplistic since it allows for no gradual
merging of one phase into another. Ideally one entrainment velocity function valid for the entire
flow field is desirable since it eliminates the necessary division of the flow field into its various
phases. The single entrainment velocity would necessarily have asymptotic limits of the initial phase
near the jet source and of the final phase far downstream. In addition, it must give a smooth

transition from one phase to another.

Since the mixing effects of the three asymptotic phases of jet growth should be cumulative, a well
known smoothing technique (Churchill and Usagi, 1972) to join the asymptotes is used and is given

by

Ve = [ (Vetam )" * (Verie)" * (Ve )" ] (6.17)

where n is optimized and found equal to 2 for the present data. This results in a root-sum-square
(RSS) summation which emphasizes the dominant phase of jet growth in the total entrainment
velocity. The RSS summation method, although not typically used in the summation of entrainment
velocities, has obtained wide acceptance and has been used extensively in the summation of

different experimental errors in uncertainty analyses (Coleman and Steele, 1989).

To satisfy the asymptotic limit near the jet exit, a weighting finction on v, ;, will be required so that
its contributions will be initially small near the jet exit but increasingly grows until it dominates the
entrainment velocity far downstream. A weighting function, w, of the form:

2

U

e

T

(6.18)

gives the correct asymptotic limits such that near the jet exit when U»U,, w-~0 and far downstream
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when U-U,, w~1. A weighting function is not required for the intermediate entrainment velocity
function since its initial contributions will be small in comparison to the initial phase value.

To satisfy the asymptotic limit far downstream, no weighting functions are required since the
entrainment velocity function for the initial phase approaches zero as U~ U, and the contribution
from the intermediate phase becomes negligible in comparison to that of the final phase far

downstream.

The final form of the entrainment velocity to be used for the entire flow regime is thus given by:

= [e(@@-w) P ofpe Ly P Lo BE)7T) T o

6.4.5 Comparison with Experimental Data

Using the simplified conservation equations of mass and streamwise momentum and using equation
(6.19) to specify the entrainment velocity function, predicted values for R/0 and U, /U, have been
generated for the current set of jet experiments and the experiments of Fink (1977). Table 6.1
summarizes the values of the entrainment constants used in the entrainment velocity function. Note
that « varies inversely with the diameter of the jet model and with the initial velocity ratio as noted
earlier and is thus considered a quasi-constant which is dependent on the initial jet momentum. The
value of B remains constant for the current set of jet experiments in water but is decreased for the
experiments of Fink (1977) conducted in air. This is due to the fact that in grid-generated
turbulence there is not an inertial subrange of any substantial bandwidth thus making the fluid
viscosity an important parameter and, in all probability, making the value of B dependent on the
fluid viscosity. The value of y for the final phase remains constant for all experiments.

The coupled ordinary differential equations, given by equations (6.3) and (6.4), are solved
numerically using a fourth order Runge-Kutta algorithm. In order to initiate the integration, the
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| decose | dem [ 2« [ g [ vy

large jet, VR=6 222 0.081 0.65 1.40

large jet, VR=3
Fink (1977), VR=5.75
Fink (1977), VR=4.5
Fink (1977), VR=3.1

Table 6.1: Entrainment constant values used in the prediction of the various jet experiments.

solution algorithm requires a velocity and radius for the first point in the solution domain. For each
of the current experimental sets, the start of the integration roughly corresponds to the location
where the mean and turbulent velocity profiles become similar. This typically occurs within the first
ten momentum radii of the jet exit. In the experiments of Fink (1977), the mean velocity
information is reported much more frequently than the corresponding radial scales. To begin the
integration near the first velocity data point (between ten and twenty momentum radii downstream
from the jet exit), the radius at this location is extrapolated from the downstream data by assuming

that the momentum integral is a constant at all downstream locations.

The predicted results are given in Figures 6.3 through 6.9 where the experimental data is given by
symbols and the predictions given by lines. In all cases, the top graph illustrates the behaviour of
R/O while the bottom graphs depicts that of U, /U,

For the current large jet at VR=6, the predictions for R/0, given in Figure 6.3a, agree well with the
experimental data while the predictions for U, /U,, given in Figure 6.3b, are somewhat high for the
jets with the grids installed. Although the difference in predictions for the jet with and without a
grid installed are relatively small in this case, the model does show that the effects of the external
turbulence begin very soon after the initial integration point. For the large jet at VR=3, given in
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Figure 6.4, the predictions of R/0 with the small and large grid installed are larger than the actual
data while for the jet with no grid installed, the predictions closely matches the data. The
predictions of U, /U,, given in the lower figure, match well the experimental data for the jet with
the small and large grid installed while the prediction for the jet with no grid installed is slightly low.

For the small jet at VR=6, given in Figure 6.5, the predictions for R/0 match the data well in all
cases of external turbulence. However, the predicted values of U, /U, are high for the jet with the
small and large grids mstalled and somewhat low for the jet with no grid installed. The prediction
for the jet with no grid installed, however, assumes that the external flow is perfectly laminar which
is known to be not the case. For the small jet at VR=3, given in Figure 6.6, we again see that the
predictions of R/ agree well with the data for the jet with the small and large grid installed while,
for the jet with no grid mstalled, the prediction increasingly underestimates the data as downstream
distance is increased. The predicted values for U, /U, also agree well with the data for the jet with
the small and large grid installed. For the jet with no grid installed, we again see that the predicted
value of U, /U, increasingly underestimate the data as downstream distance is increased. The
experiments with the small jet at VR=3 extend the farthest non-dimensional distance downstream
from the jet exit. It is thus not surprising to see that the predictions based on a laminar external
underestimate the data since the turbulence that is present in the external with no grid installed has
a greater distance over which it can affect the jet.

Before examining the results based on the three jet runs of Fink (1977) who used one grid to
generate external turbulence, it should be kept in mind that the data points have been taken from
figures contained within a conference proceedings and thus not only contain experimental errors
but errors associated with reading data points from the figures. In spite of this, the predicted
results agree quite favourably with the experimental data of Fink (1977) with the exception of the
radius prediction for the jet with the grid installed which is increasingly over predicted as distance
downstream is increased. The reason for this is not entirely clear although the values of f and y
have been somewhat biased by the large quantity of mean velocity data in comparison to the small
number of radius points. Figures 6.7, 6.8, and 6.9 give the comparisons of the predicted results to
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the experimental data points for the jets at VR=5.75, 4.5, and 3.1 respectively. One additional
comment for the jet at VR=3.1 is that the experimental data for U, /U, for the jet with no grid
installed shows a marked increase in the rate of growth of U, /U, at around (x-x,)/0=125 which the
predicted values fail to anticipate. The probable cause of this change in slope is that the very low
levels of external turbulent energy with no grid installed are finally reaching a state where they can
dynamically influence the behaviour of the jet by slowing the jet down and, presumably, increasing
the radius.

6.4.6 Behaviour of the Entrainment Velocity

As a check to ensure that the contributions to the total entrainment velocity made by each phase
of the model conforms with the theoretical discussion, the entrainment velocity for the small jet at
VR=3 with the large grid installed is preseated in Figure 6.10. The total entrainment velocity is
given as the solid line and the contributions from each phase of the model are given by the dashed
lines. Note that the final phase contribution is weighted using equation (6.18).

As expected, near the jet exit, the contribution from the initial phase is dominant and, after
(x-x,)/0=50, the final phase contribution becomes dominant. At no point is the total entrainment
velocity dominated by the intermediate phase contribution since grid generated turbulence typically
has a very small inertial subrange. Thus the contributions from each phase are in keeping with the
theoretical development. The root-sum-square method of combining the entrainment velocities
from each phase results in a smooth merging between phases which gives a smooth and continuous
curve for the total entrainment velocity. Note that the transition region between the mitial phase
dominating the total entrainment velocity and the final phase dominating the total entrainment

velocity lies approximately in the range of 15<(x-x,)/0<50.
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Figure 6.10: Behaviour of the various components of the entrainment velocity for the small
jet at VR=3 with the large grid installed.

6.5 Extension of the Model to Atmospheric and Oceanic Releases

In order to extend the current coflowing isothermal jet model to real atmospheric and oceanic
releases, a complete description of the external turbulence is required. In a laboratory situation
using grid-generated turbulence for the extemnal flow, the behaviour of the turbulent velocities,
integral length scales, and even the energy dissipation rate can be fairly accurately predicted using
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available empirical formulae that have been developed based on the large quantity of experimental
data. In atmospheric and oceanic flows, the description of the external turbulence cannot be
predicted in general to the same level of certainty due to additional complexities such as convective
forces, local topography, large scale horizontal pressure gradients, Coriolis forces, and vertical
temperature stability. Thus if accurate external turbulence information is available over the entire
solution regime for an atmospheric or oceanic release of an isothermal coflowing jet, the current
model could be used to predict the behaviour of U and R. Ifthe external flow has a substantial
inertial subrange, then a value of B can be determined which should be independent of the fluid

viscosity.

Most atmospheric and oceanic releases, however, have additional complexities that the model, as
it stands now, cannot account for. These include buoyant forces in the jet (or plume),
configurations other than coflowing (/e. a jet or plume in a cross flow), and non-uniform e»temal
flows (ie. turbulent boundary layers) which will require additional research in order to incorporate

into the model.

6.6 Closure

For a coflowing jet in a laminar extemal flow, the behaviour of the mean velocity and the radius of

the jet can be accurately predicted using an entrainment velocity of the form:

v,=a(U(T-U,))" (6.20)

where the entrainment constant is in the range of 0.080<a<0.105 and is inversely dependent,

although weakly, on the jet diameter and the initial velocity ratio.

For a coflowing jet in a turbulent external flow, the behaviour of the mean velocity and the radius

of the jet can be adequately predicted using a three phase entrainment model combined using the
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root-sum-square method as given by equation (6.19). The model predicts that the transition from
the initial phase of jet growth, where the self-generated turbulence within the jet controls the
diffusion, to the final phase of jet growth, where the energy containing eddies in the external
turbulence dominates the mixing, occurs over the range of 15<(x-x,)/0<50 which can, depending
on the jet momentum, be fairly close to the exit of the jet.



Chapter 7: Closure

7.1 Summary and Conclusions

An experimental investigation ito the effects that external turbulence has on the development and
evolution of turbulent isothermal coflowing jets has been presented. The primary objective of this
investigation was to vary the characteristic scales of turbulence in the external flow and in the jet
so that the evolution of the jet ranged from being barely affected to being dramatically affected by
the external turbulence. The other main objective was to accurately model the newly obtained
experimental data using an integral model with an entrainment velocity function that allows for

various mechanisms to dominate the diffusion process.
The mam conclusions are:

1. The downstream behaviour of the turbulent intensities, the integral length scales, and the
turbulent energy spectra in grid-generated turbulence is continuously affected by the grid’s
initial conditions, namely the grid Reynolds number and grid solidity, with the turbulence
generated by each grid reaching a similar but unique state of self-preservation.

158
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2. A wrbulent jet issuing into an extemal coflow has two scaling velocities; one for the mean
velocities and one for the turbulent velocities. The excess mean velocities within the jet
were found to scale with the conventional scale factor, U, , while the turbulent velocities
were found to scale with a new scale factor, (U,(U,+U,))~

3. Experimental results for an isothermal jet in a nearly laminar extemal coflow indicate that
the decay in the excess centerline mean velocity is described by U,=x! as far downstream
as (x-x,)/0=300 with the radius following Re<x*" up to (x-x,)/0=100 after which there is
some indication that R=<x'”. These results are not entirely expected based on asymptotic

similarity relationships.

4. The effects of grid-generated turbulence on the evolution of a coflowing jet are not
insignificant. Present experimental results indicate that when a jet issues into a turbulent
external coflow, one can expect that:

a) the jet centerline excess mean velocity, /_, will decay faster beyond (x-x,)/0~20 to 25.

b) the jet radius, R, will increase faster beyond (x~-x,)/0~20 to 25.

c) the jet centerline turbulent velocities and Reynolds shear stresses, normalized by U, will
increase faster beyond (x-x,)/0~15 to 20.

d) the average streamwise integral length scales in the jet, when normalized by the jet
radius, will increase faster after (x-x,)/0~5 to 10 while the average radial integral length
scales will increase faster after (x-x,)/0~15 to 20.

in comparison to the same jet in a nearly laminar external coflow. In all cases, the effects

are more pronounced when the large grid is installed than when the small grid is installed

due to the greater amount of turbulent energy generated at larger length scales by the large

grid.

5. The behaviour of a coflowing jet in a laminar external coflow is accurately predicted using

the new entrainment velocity of the form:
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Verum=a(T(T-U,))" (7.1)

where the value of the entrainment constant is mversely dependent on the initial momentum
of the jet, namely the jet diameter and the initial velocity ratio, and thus varies between
0.080<e<0.105.

6. Predictions of the behaviour of a coflowing jet in a turbulent external coflow (made
turbulent through the use of a grid) based on a three phase entrainment model where the

individual terms are combined using a root-sum-square method to give:
o~ [(O@-0) o [p(e P [ (E)7F) " 02

show acceptable agreement with experimental results. The range of values for &, based on
available experimental data is again 0.080<x¢<0.105. The value for 8, at least in grid-
generated turbulence, is dependent on the fluid (for water, $=0.65 and for air, $=0.26)
while the value for y is constant and set equal to 1.40.

7.2 Contributions

There are two principal contributions of the present research. The first is a unique data set,
consisting of mean velocities, Reynolds stresses, integral length scales, and turbulent energy
spectra, that characterizes the evolution of various coflowing jets issuing into external flows with
various levels of turbulence. This data set is unique because it contains experiments that have
varied the scales of turbulence in the external flow as well as in the coflowing jet so that the
evolution of the jet varies from being scarcely affected to being dramatically affected by the external
turbulence. The second primary contribution is the development and validation of a new
entrainment velocity function, used in conjunction with an integral model, that accurately predicts
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the behaviour of jets in laminar external coflows and adequately predicts the behaviour of jets in

turbulent external coflows.

In establishing these principal contributions, the following additional contributions have been made:

1.

(9% ]

The experimental downstream behaviour of grid-generated turbulence has been shown to
be dependent on the grid’s initial conditions as speculated by George (1992).

A new scaling factor for the turbulent velocities in a coflowing jet has been postulated and
verified with experimental data.

An order of magnitude analysis, using experimental results, has been conducted on the
Navier-Stokes equations for a jet in an extemal coflow (given in Appendix A) to establish
the relative importance of each term in the equations.

7.3 Recommendations for Future Research

The following recommendations are put forth for future research:

L.

Additional experiments on jets in a laminar external coflow need to be conducted that
systematically vary the jet model diameter and the initial velocity ratio in order to establish
a functional relationship with &, the quasi-constant of proportionality for the entrainment
in the initial phase of jet growth.

Since the effects of extemal turbulence have been documented and predicted for a simplified
model of real atmospheric and oceanic releases, additional complexities can be mtroduced
into the simplified model, such as source buoyancy, different release alignments (ie. jet in
a cross-flow), and turbulent boundary layers, for future experimental and modelling
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endeavours in order to better mimic real releases.

Additional experiments are needed that employ a technique to generate extemal turbulence
that has an inertial subrange of substantial bandwidth in order to determine if the
assumptions regarding grid-generated turbulence can be extended to other turbulence
generating methods and to determine the true value of the entrainment constant for the
intermediate phase. To achieve this end, full scale atmospheric or oceanic experiments will
probably be required due to the impracticality of generating a substantial inertial subrange

at a laboratory scale.
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Appendix A: Integral Equations of Motion

A.1l Introduction

The development of the equations of motion for a jet in an external coflow can follow two distinct
approaches. The first technique, termed the control volume method, involves taking a finite slice of
the jet, dx, and balancing the fluxes of mass, momentum, and energy entering and leaving the control
volume with what is being stored within the control volume. The resulting equations can then be
integrated with respect to the radial coordinate, », and solved numerically. This method has been
primarily used in the development of goveming equations for air pollution sources such as chimney
plumes (see, for example, Slawson and Csanady, 1967 and 1971, and Briggs, 1975). The main
advantage of the control volume method is that it is very clear how the flux balances are derived. The
disadvantages are that it has a limited range of applicability (i.e. can only model simple external flow
conditions) and that it does not explicitly demonstrate how the turbulence within the jet contributes
to the growth and development of the jet.

The second method, referred to as the differential method, seeks to describe the flow pattern at every
location in the field and hence uses the fully turbulent, three dimensional Navier-Stokes equations of
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fluid mechanics which are first integrated with respect to the azimuthal direction, ¢, and then with
respect to the radial direction, r, with the aid of simplifying assumptions. This method has also been
used to derive governing equations for air pollution sources (see, for example, Hirst, 1972, and
Schatzmann, 1978) but has also been used in many other applications such as boundary layers (Hinze,
1975) and isothermal jets issuing into a quiescent background (Hussein et a/, 1994). The main
advantages of the differential method are that it can account for much more complicated flow
situations such as complex ambient conditions and that it explicitly reveals the manner in which the
turbulence within the jet contributes to the growth and development of the jet. The drawback of the
method is that since it is mathematically more rigorous, arriving at the final equations is more

complicated and tedious than in the control volume method.

A.2 Differential Approach

Since one of the primary objectives of the present research is to determine how the various turbulent
quantities, both within the jet and in the external coflow, contribute to the development and growth
of the jet, a detailed derivation of the equations of motion will be given following the differential

approach.

A schematic of an axisymmetric isothermal turbulent jet, either in a laminar or turbulent coflow, is
given in Figure A.1. The coordinate system is defined as (x,7,$). The instantaneous velocities are
decomposed into mean velocity components given by (U,7,,V,) and fluctuating components given
by («,v,.v,).- The external mean flow is assumed to be uniform both in magnitude and direction (i.e.
U, and P, are constants) although the turbulence quantities are assumed to vary with distance
downstream as is appropriate for grid-generated turbulence. The jet flow is assumed to be steady,
incompressible, and fully turbulent shortly after the jet exit with a Reynolds number sufficiently large
so that the viscous terms can be neglected (Hinze, 1975). It is also assumed that the jet is not
subjected to any mean swirl in the azimuthal direction (ie. ¥, =0 and 3( )/3$=0 but v +0
necessarily).
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Figure A.1: Schematic of an axisymmetric isothermal jet issuing into a uniform
external coflow.

The boundary conditions at the edge of the jet, where r = R(x), are as follows:
U=U,
P=P,
uT=uZ(x)

VI=vI(x)

2= 2

uvr=(uvr)¢(x)

Since the turbulence resulting from grid-generated turbulence is nearly isotropic and homogeneous
in planes parallel to the grid, it will be assumed that the radial and azimuthal turbulent velocities are
equal in magnitude (i.e. v7 (x)=v (x)) at a given downstream location. In addition, for a nearly
laminar coflow, it is assumed that all turbulent velocity components are near zero (i.e. u Z(x)~v - (x)
=v; (x)=(uv,) (x)=0) outside of the jet domain.
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A.2.1 Integral Conservation of Mass Equation

Using the differential method and the assumptions outlined above, the equation representing the

conservation of mass in a cylindrical coordinate system can be reduced to:

19rV, au
= £ -0
r or * ox (A-1)

Taking this expression and multiplying it by rdr and integrating from =0 to r=R(x) yields:

R(x) arV R(x)

r cU
cy =0
{ = dr+{' ™ rdr (A2)

The first term of equation (A.2) is readily integrated. The second term, in order to pull the derivative
operator outside of the integral, requires the application of Leibnitz’s rule for differentials of integrals
since the upper limit is a function of x. The resulting expression, after some rearranging, is:

R(x)
d (. dR _
— { Urdr-R[ V,(R)+U¢—de (A3)

A.2.2 Integral Conservation of Momentum

The simplified equations describing the conservation of momentum in cylindrical coordinates are:

2 AT 22
y aVr+U6V,=_-1-_a£_av, -auvr+v¢ v, (A4)
" or dx p or or ox r

for the radial direction and:
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] oruv_
ar dx pox Jdx r or

for the streamwise direction. The first step in deriving the integral form of the equations is to solve
for the pressure distribution by multiplying the r-momentum equation by dr and integrating the
resulting equation from some arbitrary reference point within the jet, say ,, to the edge of the jet,
R(x). This gives:

vV, dr= - d 6
f cx . ar -[ p or cx ar r ro(A)

o -]

R(x)(UaV’ aV] R(x)[—_l_ap—auvr—a? ?_T:

For convenience, let:

r Re iarsiay i T " ouy,
= r an = r
! .[ dx " ar 2 d dx (A7)
Integrating equation (A.6) then gives:
R(x) . R(x) :3 - 7
{_ip] ST [ [ (A8)
p r, L£) A r

Since r, is an arbitrary position within the jet, let P=P and v >=v ? at r=r,, and using the boundary

conditions previously defined for 7=R(x), the integrated r-momentum equation becomes:

P -P - R(x)F_v—z
e = (T, +T,)-v2i+vi+ [ 2 T ar
p ( 1 2) re 'r [ , (A.9)

o

Taking the derivative with respect to x gives an expression for the pressure gradient in the streamwise
direction:
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. R(x)-_z__z
-la—P='—a-(Tl*Tz)*a—a’("z“’z)*aax [ v‘*’rv’ dr  (A10)

To

This expression can now be substituted into equation (A.5) which in tum can be multiplied by rdr and
integrated from =0 to r=R(x) to yield:

°x " ar A dx x
I I oI
R(x) R(x) —_— 2 2 (A-11)
x ap x ruv R(x) a R(x)vz_vz
+ rdr+ Tdr- L ¢ dr =
‘{; Fp { P { axf . dr|rdr=0
v v A

To simplify this expression further, a term by term analysis is required.

Term I: Using the conservation of mass equation and the product rule for derivatives, term I can be
simplified to:

R(x)

Term [=[rUV, [0+ | A%

dx

rdr (A.12)

Evaluating the term in the square brackets using the limits gives U, RV,(R). However, by using the
fnal form of the integral conservation of mass as given in equation (A.3), an altemative expression
for U,RV,(R) can be obtained and substituted for the first term in equation (A.12). The second term
in equation (A.12) can be simplified using Leibnitz's rule to give:

R(x) 2 R(x)
U, ar-4 fU’rdr—U,zR%& (A.13)
0

ox dx

x

Substituting these results into equation (A.12) results in:
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Rx)
_4d -
'l'enll-dx jo' UU-U,)rdr (A.14)

Term II- Since the upper limit is again a function of x, Leibnitz’s rule is used to simplify the term to:

R(x)
Termn--i"-f T+T)rdr (T, (R) +T,(R))R df (A.15)

Additional simplification of term II cannot be done at this point. An order of magnitude analysis will
be conducted at the end to determine the relative importance that term II has on the integral

momentum equation.

Term [l and IV: Term I and IV can be combined mnto a single term. Taking the derivative operator
outside of the integral using Leibnitz's rule and applying the boundary conditions at /=R(x) gives:

R(x)
d

- dR
Term I & IV =— ) —v +v, rdr+u ol S
dx (‘ ) dx (A.10)

Term V: Term V can be integrated directly and evaluated using the boundary conditions:

Term V = [ruv ]g“’ =R[u (A.17)

(4

Term VT: Using Leibnitz’s rule to again extract the derivative operator outside the integral results in:

R(x) Rx) .2 V2 v—z' R(x) v—z _ F dR
Term VI= — ® _r dr|rdr- % _rd4r|{ REE
f f r f r dx (A.18)
r, r, R(x)

At r=R(x), it is assumed that the radial and azimuthal turbulent velocities are that of the extemal flow
which are equal to each other due to planar isotropy. The contribution of the second term on the
right hand side is thus zero. Using integration by parts, the first term on the right hand side can be
rewritten so that term VI has the form (see Capp, 1983):
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Term VI=— [ — > ® rdr (A.19)

The integral x-momentum equation, as given by equation (A.11), can now be reassembled to give:

R(x) —_— -E,,_—-E a—
L8 f U(U-Uz)i—uz-h'___vi’_}+|,vr2¢+7'l4-7'2 rdr
dx o 2 (A.ZO)

(1, (R) + T, (R) + 3, )R%*—R(uv ). =0

A.2.3 Order of Magnitude Analysis

The purpose of this order of magnitude analysis is to establish the relative importance of each of the
terms in equation (A.20). Let b and L be length scales that characterize the dimensions of the jet in
the radial direction (i.e. the jet radius) and streamwise direction (i.e. the distance from the jet nozzle)
respectively. The ratio of /L from experiments for a jet in a nearly laminar coflow varies from 0.06
to 0.20 with a typical value of 5/L=0.13. Also, let U and # be velocity scales that characterize the
streamwise mean velocities (i.e. the excess mean velocity on the jet centerline) and the normal
Reynolds stresses or square of the turbulent velocities (i.e. u *~v 7 ~v § ~ #°) respectively. Typical
values for i/ U from experiments range from 0.10 to 0.40 for a jet in a nearly laminar coflow with
a representative value being around u#/ U=0.25. In addition, since the magnitude of the Reynolds
shear stress, in comparison to the normal stresses, depends on a correlation coefficient, C,,, the
Reynolds shear stress will scale as uv, ~ C,, #>. The absolute magnitude of C,, will vary anywhere
between zero for a isotropic turbulent flow, to a maximum of one for a perfectly correlated turbulent

flow.

Table A.1 provides a summary of the relative order of magnitudes for each of the terms in equation
(A.20). As indicated by the table, any term involving either 7, or 7, can be safely neglected since they
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are two orders of magnitude smaller than the largest term. Terms involving the square of the
turbulent velocities (i.e. the normal stresses) are a single order of magnitude smaller than the largest
term. Previous studies on jets (Capp, 1983, and Antonia and Bilger, 1974) have estimated that these
normal stresses account for approximately ten percent of the total momentum and will therefore be
retained in the final equation. The relative magnitude of the Reynolds stress term can be seen to
depend on C,. Ifit is assumed that the value of C,, is not small, than this term must also be retained
in the final equation. Thus the final form of the integral x-momentum equation is:

R(x)

[ U(U-U,)+u?-

0

-3 3
vV, +V b I ——
’ +v? rdr-u¢2R¥+R(uvr)e=0 (A.21)

b 4

4a
dx

To highlight the different sources contributing to the integral x-momentum equation, equation A.21

can be rewritten in the form:

R(x) Rx) o2 2
4 - d =_V V%
x{U(U U)"d"+z{[u2- - err+
I o (A.22)
R (;s_—i)dR_RdVi
re ~ Ue Tx‘ —-x- (uvr)e =0
m

where term I represents the contribution from the mean motion of the jet, term II gives the
contribution of the Reynolds stresses within the jet, and term III gives the contribution from the
Reynolds stresses in the external flow. For a nearly laminar external flow, the contribution from term
ITI becomes negligible and the remaining terms can be integrated to obtain:

Rx) 7 +v} M

[|U(u-u,)eu? - 222 )= 22 = constant (A.23)
A 2 2np

where M, is the momentum integral constant.
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d b( U)?
a _U d el ~2 -
= { U(U-U,)rdr o[L( a) ba } 0[2.085 2]
R(x) —2 _E —_— b -~ 2
d —_(Vr *"’4:) 2 0[—1’" ] =2
zf[u 5 +v"]rdr L 0[0.l3bu ]
R(x) 3 1AY:
d b U .
L [T rd == 64> 72
- { rdr 0[([,) ( ,}] U] 0[0.0355 4]
R(x)
d b)?, . -
o f T,rdr 0[(-[) buz] 0[0.0175 d?]
T.(R)R%E o[(é.)’[f]’b.;z] 0[0.0355 7]
x L a
T,(R)Rif- O{({-)zbﬁ’} 0[0.0175 2]
—?R% 0[-:-6 i 0[0.135 42]
R{uv,), olc,,54a?] ofc.,ba*]

w

Table A.1: Order of magnitude study on the integral x-momentum equation.
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A.3 Control Volume Approach

In the control volume approach to deriving the integral equations of motion, all the effects of
turbulence are considered to be lumped into one term which controls the entrainment of extemal fluid
into the jet. This allows the resulting equations for the conservation of mass and x-momentum to be
first order approximations which neglect the complicating turbulence terms. The entrainment
velocity, v,, is left as an unknown function in the derivation which must be later specified. The
formulation for the entrainment velocity is often based on physically reasoning backed up

experimental data.

Usmg the control volume approach (see, for example, Morton, 1961 and Briggs, 1975), the integral

equations for the conservation of mass and x-momentum are given as:

4@
— [ Urdr=Rv
dx{ ; (A.24)
and:
4
= { U(U-U,)rdr=0 (A.25)

respectively. No assumption about the shape of the mean velocity profiles within the jet has been
made at this time in order to facilitate 2 comparison with the same equations derived from the
differential approach. Typically, a top-hat velocity profile within the jet is assumed which simplifies
the integrals within the equations.
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A.4 Comparison of the Methods

By comparing the equations for the conservation of mass derived from the differential approach
(equation (A.3)) with that given for the control volume approach (equation (A.24)), an approximation

for the entrainment velocity can be obtained:

dR
~--V(R)+U 2
Ve~ ~V(R) +U, == (A.26)

which can be rewritten in the form:

R raf 2,2
v - L ifU’rdr*—-‘—i-f[uz— r @ | rdri+
¢ UR|dx dx 2
¢ 0 0 __ (A.27)
L (v—z-y)—d—‘g-Rdvrz'+(uv)
uitT “ldx roe

with the aid of the results obtained from the differential derivation. Thus, the entrainment velocity
is dependent on the mean motion of the jet and the external flow, the radius of the jet, the Reynolds
normal stresses in the jet, and the Reynolds normal and shear stresses in the turbulent external flow.
Equation (A.27) is an approximation of the entrainment velocity that is used here to highlight factors
that contribute to the entranment of external fluid. The exact formulation of an entrainment velocity
function and the physical justifications behind it are dealt with in Chapter 6.

A.5 Velocity Profile Assumption

Up until this point, no assumption has been made regarding the shape of the jet mean velocity profiles
except for the fact that they are assumed to be self-similar. Chapter 5 illustrated that the mean

velocity profiles are approximately Gaussian in nature after an initial development zone. The use of
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a velocity profile assumption has the effect of compressing all the experimental data measured in a
radial profile down into a single characteristic velocity scale and a single characteristic radial length
scale which, for a Gaussian profile, are U, and L, respectively. The end result is that the radial detail
of the velocity profile is distilled into the characteristic scales of the assumed profile. Thus any
velocity profile defined by a velocity scale and a radial length scale can be used without the loss of
any additional experimental information. For this reason, it is often assumed, especially in
atmospheric releases, that the mean velocity profile has a top-hat profile which can be characterized
by U and R. An illustration of the Gaussian and top-hat velocity profiles is given Figure A.2. The
main advantage of the top-hat profile is that it reduces the complexity of the integrals in the
_conservation of mass and streamwise momentum equations since the mean velocity is assumed
constant within the jet. Davidson (1986) has shown that even for buoyant jets in a cross-flow, the
predicted results using a top-hat profile are essentially identical to the results predicted from a

Gaussian profile, except perhaps near the source.

Ue | Ue
No.1ty —— — —— —
U R
\ |
LA (O ¢ S WY SN N SN
X __
L U
! o
2zl —
7 s
Gaussian Profile Top Hat Profile

Figure A.2: Schematic and nomenclature of velocity profiles commonly assumed.
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Using a top-hat mean velocity profile assumption, the equations for the conservation of mass and

streamwise momentum can be simplified to:

E";(R’U)=2Rv¢ (A.28)
and:
d (=7 11 \p2\.
=(o(v U,)R*)=0 (A.29)

respectively. Equation (A-29) can be integrated directly to obtain the momentum integral, M,

U(U-U,)R* == (A-30)

which is a constant for a particular combination of a jet and an external flow.



Appendix B: LDA Signal Noise Contamination

B.1 Introduction

At an early stage in the experiments, it was noticed that the measured power spectra tended to level
off at the same turbulent energy level at the higher frequencies. This phenomenon became more
evident as the turbulent energy within the flow decreased. It quickly became apparent that a
particular measured spectrum consisted of the true spectrum of the turbulence being measured as
well as a flatter spectrum characteristic of white or random noise with roll off.

In order to pinpoint the source of the white noise contamination, various experiments were
conducted that varied the photomultiplier gain, the shift frequency, the sample frequency, the make
and model of the counter, and the water flume velocity. In addition, the water flume facility was
grounded and the experiments were conducted with and without the overhead fluorescent lights
on. The results of all these experiments showed that the LDA signal was still being contaminated
by white noise. Finally, a known laminar pipe flow with a Reynolds number of approximately 800
was measured with the LDA. The resulting spectrum, given in Figure B.1, is not negligibly small
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as theoretically expected for laminar flows, but is typical of white noise with roll off occurring after
a frequency of approximately 10 HZ. Thus is was concluded that the source of the noise
contamination is inherent in the LDA system and not due to some external factor.

B.2 Noise in the LDA System

The presence of a particle in the LDA control volume occurs at random times. In order to generate
a regular interval times series from this randomly occurring data, the LDA counters employ a simple
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Figure B.1: Noise spectrum as measured using the current LDA set up for a known
laminar pipe flow operating at Re=800.
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sample and hold processing technique whereby the last valid Doppler signal is held until a new
Doppler burst occurs. This technique represents a simple form of interpolation between the data
points and is an appropriate procedure when the average time between data points is small enough
to resolve the structure of the velocity fluctuations.

In order to understand possible sources of noise that can be introduced into the measured signal
by the LDA system, the implications arising from the data deusity, defined as the mean number of
samples occuring in one Talyor micro time scale of the flow (Adrian, 1983), and the burst density,
N,, defined as the average number of scatter particles within the control volume at any one time,

must be examined.

The average time bewteen Doppler bursts can be compared to the small scale turbulence structure
of the flow by using the data density which is calculated from:

data density =N S, (B.1)

where N is the mean valid signal arrival rate and &, is the Taylor micro time scale. If the data
density is greater than five, the data density is considered high and if it is less than 0.5, the data
denstiy is considered to be low (Edwards, 1992). A high data density implies that the particles
passing through the control volume are close enough together that a simple interpolation scheme,
such as the sample and hold technique, can be used to fill in any missing data occuring between
valid bursts without introducing serious statistical errors.

The burst density, N,, can be estimated from (Adrian, 1983):

N=201\7
¢ Us,

(B.2)

where a is the minor elfiptical diameter of the control volume in the direction of the mean flow and
is estimated at 0.235 mm for the current LDA set up. A low burst density (V,«1) is desired since
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the probability of more than one particle in the control volume is small. A high burst density (V»1)
may result in ambiguity or phase errors being introduced into the measured signal. The errors,
caused by more than one particle being present in the control volume, generate a white noise
spectrum which is the result of the random frequency modulation generated by the random overlap
of multiple bursts (Adrian and Yao, 1987).

The results from the grid-generated turbulence experiments using the small grid are used as an
illustrative example. The oscilloscope, connected to the counter output, can be used to determine
the average time between valid Doppler bursts originating at the control volume with the result
being approximately 10 ms. The inverse of this gives the mean valid signal arrival rate and is
A=100 Hz. The Taylor micro time scale can be estimated using empirical equations given by Roach
(1987) for the small grid with a mean velocity of U,~0.07 m/s to give §,~0.20 s. The data density
is therefore on the order of 20 and is thus considered high. The burst density yields a value of 3.4
which is also on the high side and thus the possibility of ambiguity error contamination of the
measured data exists. The use, however, of amplitude discriminators (/e. Schmitt triggers), and the
use of multiple zero crossing comparison logic (/e. 5/8 comparison) in the Dantec counters greatly

reduce these errors.

Adrian and Yao (1987) have shown, however, that the sample and hold process effectively acts as
a low pass filter to the true spectrum with a low pass frequency determined by A/2x and, in addion,
introduces a white noise component into the measured velocity signal. The low pass filtering is
caused by the result of the information loss that occurs over the hold periods while the white noise
is created by the random steps that occur at new Doppler bursts and is often referred to as “step’
noise. In the limit of high data density, the step noise is reduced and vanishes completely in the
limit. As the data density decreases, however, theory predicts that the sample and hold process
attenuates the noise spectrum with a role off that is characteristic of a first order low pass filter and
increases the energy content of the low frequencies by adding more step noise (Adrian and Yao,
1987).
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Thus the current white noise contamination of the LDA signal is most likely due to step noise with
some contributions coming from ambiguity noise that eludes the Dantec counter logic. Assuming
that the noise and the velocity being measured are statistically independent of each other, the
measured signal will correspond to the sum of the true signal and the white noise component. This
assumption is useful since it makes the recovery of the true signal possible from the contaminated

measured signal.

Before addressing the techniques available for the recovery of the true signal, it is useful to have
an impression of how the magnitude of the noise spectrum compares with other measured spectra.

This is given in Figure B.2 which gives typical measured spectra on the jet centerline (large jet,
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Figure B.2: Measured spectra in the external flow with and without a grid installed,
on the jet centerline, and in a known laminar flow.
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VR=3, no grid, and at x=40.2 cm), in the extemnal flow with the small grid installed (x,=70 cm), in
the low turbulence extemal flow with no grid installed, and for comparison purposes, the noise
spectrum measured in the Reynolds number apparatus (Re=800). Note that the spectrum for the
low turbulence extemal flow, although displaying a slight shoulder in the turbulent energy content
for /<1, is similar to the noise spectrum but with more turbulent energy at the low frequencies and
a sharper roll off in energy at the higher frequencies. This implies that, for the external flow with
no grid installed, most of the spectrum is swamped by white noise with only the portion of the
spectrum with /<1 being part of the true signal. For the external flow with a grid installed, it is
fairly easy to identify that at /=10 the noise spectrum starts to swamp the true spectrum. The
spectrum on the jet centerline, due to its large turbulent energy content at all frequencies, is little
affected by the noise spectrum.

B.3 Recovery of the True Signal

One simple technique for recovering the true spectrum from the measured spectrum is to subtract
the noise spectrum from the measured spectrum (Djenidi and Antonia, 1995, and George and
Lumiey, 1973). This technique, however, requires that the noise spectrum be known before hand
and is of limited use since it only corrects the turbulent energy spectrum and leaves all the other

statistics contaminated with the noise.

Another method of recovering not only the true energy spectrum, but also all other statistics, is to
low pass filter the data using a Savitsky-Golay or least-squares filter (Press et al, 1986). The
premise upon which the ‘smoothing’ effect of low pass filtering is based is that the underlying
variable is slowing varying and corrupted by noise. The assumption of a slowly varying time series
is not unrealistic in the present case since those flows that are contaminated most with noise have
the least amount of turbulent energy and thus less fluctuation in the time series. Each data point
in the time series can then be replaced by a local average of the surrounding data points. Since

nearby points in the time series will measure very nearly the same underlying value, averaging can
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reduce the level of noise without biasing the value obtained (Press et a/, 1986).

The filter starts in the time domain using the measured times series data. The idea is to approximate
the true underlying signal over a moving window by a polynomial of order » (typically a quadratic
or quartic polynomial). The window of data points is specified by ni+nr+1 where nl/ and nr are the
number of data points used to the left and to the right of the current point. The resulting least-
square fit polynomial is valid for the current data point only. For the next data point, the window
is shifted to the right by one and a whole new least-square fit polynomial is determined.

From a computer coding point of view, a subroutine is used to calculate the filter coefficients based
on the desired polynomial (order, 7, and number of points to be used, n/+nr+1) which are used to
determine the cut off frequency of the filter. A fast Fourier transform (FFT) is performed on the
time series and on the coefficient matrix and the results are convoluted in frequency domain. The
final product of the convolution undergoes an inverse FFT back into the time domain. This
produces a filtered time series which can be processed to obtain the desired statistical quantities.
A more detailed discussion of the Savitzky-Golay filter is given in Press ef al (1986).

As an example of the filtering process, the spectrum for grid-generated turbulence, given in Figure
B.2, is passed through a Savitzky-Golay filter with /=4 and n/=nr=28. The result is given in Figure
B.3 which clearly shows that the shoulder in the measured spectrum resulting from white noise

contamination is removed in the filtered spectrum.

Although the results of the filtering process are encouraging for the coflowing jet and for grid-
generated turbulence, it is less so for the external flow with no grid installed. The main reason for
this is that little of the true spectrum is present above the white noise spectrum, thus making it
difficult to correctly fit a polynomial to the underlying trend in the data. For this reason, only the
mean velocity and turbulent velocities are reported for the external flow with no grid installed since

the spectra and autocorrelation functions cannot be accurately restored.
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Figure B.3: Grid-generated turbulence spectra before and after filtering using a

Savitzky-Golay filter.
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Appendix C: Uncertainty Analysis

C.1 Introduction

This appendix addresses the issue of uncertainty contained within the measured experimental variables
and how this uncertainty is propagated into the reported results. The appendix will begin with a brief
definition of the types of uncertainty encountered. This will be followed by an estimation of the
uncertainties in the mean and turbulent velocities and the power spectral density (PSD) functions as
measured using the LDA. After this, equations to estimate the uncertainty in the reported results will
be given which are based on the data reduction equations and absolute sensitivity coefficients.

All measurements of a variable contain a certain amount of inaccuracies or errors. Ermror can be
defimed as the difference between the true value of the variable and the value recorded for a given
measurement and, thus, is a fixed number. Uncertainty, on the other hand, gives a possible range of

values that the error may have for a given measurement based on a given confidence interval.

Uncertainty in measurements are due to two fundamental types of errors. The first type are random
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or precision errors, S, which show up in a measurement as scatter about the average value and are
usually caused by the characteristics of the measuring system in combination with changes in the
quantity being measured. Precision errors can be determined using statistical methods. The second
type of errors are fixed or bias errors, B, and show up in measurements as a displacement between
the average measured value and the average true value. Bias errors are considered to remain constant
for a given experiment and must be estimated since no simple statistical methods exist to define them.
(A more detailed discussion on errors can be found in Coleman and Steele, 1989.)

Each measured variable can have many different sources of precision and bias errors. Each type of

error is combined using the root-sum-square (RSS) method which is given by:

" 7]
s=( y s,?] C.1)

i=]

for precision errors and by:

" 12
B =[ ) B}] (C-2)

i=]
for bias errors. The total combined uncertainty, 8, is given by:

Bpes = (B2 +(185))"? (C.3)

where the Student ¢ value is a function of the degrees of freedom used in calculating S. For a 95%
confidence interval and for sample sizes greater than thirty, 7 is set equal to 2.
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C.2 Uncertainty Analysis of the LDA Measurements

C.2.1 Mean and Turbulent Velocities

Precision errors in the LDA velocity measurements arise primarily due to data processing errors and
can be determined using standard statistical techniques. Bias errors, however, are predominantly the
result of seeding effects on the flow, the specific geometry of the laser beams with respect to the flow
and with respect to each other, and electronic effects that can be associated with the configuration
of the counter processors. The bias error analysis on the LDA data will follow that of Van Heyst
(1992), Weckman (1987), and Patrick (1985).

C.2.1.1 Precision Errors

The uncertainty resulting from precision errors in the LDA velocity measurements are estimated using
the methods outlined in Castro (1989). The relative precision error in the mean velocity, S,/ U, is
determined from:

_S_U = :alz (;l-z-)“2
U U

(C4)

=

where U is the mean velocity, (u ?)* is the turbulent velocity, N is the number of samples which
comprise the sum (N = 40960), and z ., is the standard normal variate for a (100 - &) percent
confidence interval which, for a 95% confidence interval, has a value of z_, = 1.96. The relative
precision error for the mean velocity thus ranges in value between 0.0001 < .S,/ U < 0.0020 since it
is dependent on the magnitude of the turbulent velocity.

The relative precision error for the turbulent velocity, S,/ (u *)*, is calculated by:
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Sems C Zan .S
(;-z-)m AN (C.5)

This yields a constant value of S,/ (u % )*=0.0068.

C.2.1.2 Bias Errors

To estimate the bias errors, typical values of the optical configuration parameters and counter
parameters are required. Nominal values and tolerances for the LDA optical configuration
parameters are given in Table C.1 with the LDA counter parameters given in Table C.2. These values

are considered representative of the range of values covered in the experiments.

Blue Beam (Horizontal)
Nominal Tolerance Nominal Tolerance

Laser Wavelength (nm) 514.5 =13 488 +12
Beam Separation (mm) 72 +0.7 72 +0.7

Focal Length (mm)
C.V. Position, Ax=Ay=A:z (mm)

Intersection Angle (degrees)
Shift Frequency (kHz)
|LCalibration Factor (m/'ssMHZ)

Table C.1: LDA optical configuration parameters.
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Number of fringes, m 8
High pass filter setting, 1; (kHz) 4
Low pass filter setting, f;; (kHz) 256
Signal-to-noise ratio, SNR 10
Doppler frequency, f;, - green beam (kHz) 96
IDoppler frequency, f, - blue beam (kHz) 97
Mean velocity, U (m/s) 0.150
Turbulent velocity, (x )% and (v % )% (m/s 0.015

Table C.2: Typical LDA counter processor parameters.

C.2.1.2.a Seeding Errors

Seeding effects can result in bias errors being introduced into the LDA velocity measurements due

to flow distortion errors, seed particle lag errors, and individual realization errors.

Flow distortion errors are typically caused by artificial seeding of a flow field where the injection
velocity of the seed particles is different than that of the mean velocity in the flow field. In the water
flume facility, artificial seeding is unnecessary since the natural hydrosol present in the water provides
ample seed particles. Errors due to flow distortion are therefore negligible.

Seed particle lag errors are the result of the inability of a seed particle to accurately follow the flow
field. This typically occurs when the seed particle density is much greater than the fluid density, when
the flow is highly turbulent, or when large velocity gradients are present in the flow. Patrick (1985),
however, states that in most liquid flows the seed particles will track the flow with minimum lag.
Since water is used as the working medium in all the experiments, the seed particle bias error is

assumed negligible.
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Individual realization errors arise from the fact that proportionately more fast seed particles than slow
seed particles are counted in a uniformly seeded flow when an arrival time sampling method is used
(Patrick, 1985). This causes the average velocity to be biased towards the high side. However, when
a regular time sampling technique is used with a sampling frequency set much smaller than the
validation rate, the individual bias error can be assumed to be negligible since there is an equal
probability of detecting a fast moving seed particle as there is of a slow moving particle (Weckman,
1987). For this reason, the configuration of the LDA counters was set to a regular time sampling
technique with the sampling frequency never exceeding one half of the validation frequency.

The relative bias errors associated with seeding effects are summarized in Table C.3.

Type of Bias -
Mean Velo Turbulent Veloci

I Flow distortion bias " negligible negligible |

" Seed particle lag negligible negligible
Individual realization bias negligible

RSS Total |

Table C.3: Summary of bias errors due to seeding effects.

C.2.1.2.b Bias Errors due to the LDA Geometry

Bias errors arising from the specific geometry of the intersecting laser beams with respect to each
other and with respect to the flow can be categorized as (Patrick, 1985, and Weckman, 1987):

a) finite probe volume errors

b) positioning bias (both location bias and orientation bias)

c) fringe spacing uncertainty

d) nonparallel fringe errors (velacity broadening)
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e) negative velocity bias
f) incomplete signal bias

Finite probe volume errors arise since the velocities are measured over a finite control volume
diameter. If significant velocity gradients exist within the control volume, errors will result in the
measured value. These errors, however, are minimized by utilizing a beam expander in conjunction
with the LDA optics to minimize the diameter of the probe volume. The resulting probe diameter is
approximately 0.25 mm and is a fraction of the integral length scales encountered in the flow fields

(see Chapters 4 and 5). Finite probe volume errors are thus considered negligible.

The position bias can be divided up into a location bias and an orientation bias for both the mean and
the turbulent velocities. The location bias is estimated by (Patrick, 1985):

By aU,
2 ox_iAx (C-6)
U ox, 7

for the mean velocity and by:

B"’“ —\12
o s €7

for the turbulent velocities where U, is the primary velocity component being measured, (z %)% is the
turbulent velocity and Ax; is the position in the x; direction. Maximum values for the location bias are
obtained in the jet flow as it merges with the extemal flow. For a typical velocity profile in the jet,
the normalized location biases are estimated at BY;/ U = +0.0010 and B;>*/(u *)* = +0.0005. The
orientation bias is considered negligible since the control volume was carefully aligned with the mean
flow direction (Weckman, 1987).
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The fringe spacing uncertainty is a result of either a variation in the fringe spacing or by nonparallel
fringes (frequency broadening) within the control volume. The variation in the fringe spacing is
governed by the intersection angle and the wavelength of the laser beams and can be estimated by
(Patrick, 1985):

) (C.8)

for both the mean and turbulent velocities where 0/2 is half of the intersection angle of the two
incident laser beams and A0/2 is the tolerance associated with the half angle. From the experimental
parameters, the normalized fringe spacing bias is £0.0143 for both velocities.

For the fringes to be parallel, the laser beams must intersect at their respective waists. During
alignment of the optics, the location of the beam waists were found and adjusted so that they
coincided with the point of intersection. This ensured that the fringes would be parallel in the control
volume. In addition, no large gradients in the index of refraction were present since all the
experiments were isothermal. The bias error caused by nonparallel fringes is therefore assumed to
be negligible.

In highly turbulent flows with near zero means or flows with recirculation, it is possible to get
negative velocities which can be reflected about the origin thus making them look positive. This
introduces a negative velocity bias into the average velocity. Using frequency shifting, where the zero
velocity is shifted away from the zero frequency, eliminates negative velocity errors. Since frequency
shifting was used in all the experiments, the negative velocity bias is negligible.

Incomplete velocity bias results when a seed particle passes through the control volume at an angle
other than perpendicular to the fringe orientation. Depending on the incident angle of the particle,
the number of fringes in the control volume, the minimum number of fringes needed to produce a
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valid signal, and the ratio of the fringe velocity to the particle velocity, the seed particle may not be
able to cross enough fringes for the counter processor to validate it as a genuine velocity sample. For
the current parameters, the probability of detecting a particle with an incident angle of 30° from the
normal of the ftinge orientation is better than 99.9% (Van Heyst, 1992, and Patrick, 1985). The

mcomplete velocity bias errors are therefore considered negligible.

A summary of the bias errors associated with the specific geometry is given in Table C.4.

Type of Bias

Finite probe volume bias

Mean Veloci Turbulent Veloci
negligible negligible
+0.0010 +0.0005

Location bias

Orientation bias negligible negligible
Fringe spacing uncertainty £0.0143 +0.0143 ||
Nonparallel fringe bias negligible negligible

Negative velocity bias negligible n.a.

Incomplete signal bias negligible negligible

RSS Total | 00143 |  +0.0143

Table C.4: Summary of bias errors due to the specific geometry of the laser beams.

I

Bias errors associated with the electronic counter processors, used to convert the voltage signal from
the photomultiplier into a velocity, can be categorized as:

a) clock synchronization errors

b) quantizing errors

c) threshold limit errors
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d) electronic noise induced errors

e) filter setting errors

Clock synchronization errors are the result of a mismatch between the randomly occurring Doppler
bursts and the start of the clock cycle. Estimations of the normalized clock synchronization errors
for the mean and turbulent velocities can be made from (Patrick, 1985):

Bes _ Jp (1 ;rz]

F m—

YT (C.9)
-0
and
Bc";“ =+ fD 1- ._-;__2.—
PR AGNT (C.10)

respectively where f, is the Doppler frequency, /. is the reference clock frequency (500 MHZ), and
m is the number of fringes required by the processor for a valid signal. For a typical flow situation,
the normalized clock synchronization errors are therefore estimated at +0.000012 for both the mean
and the turbulent velocities.

Quantizing errors arise from the determination of the frequency of the analog Doppler signal using
a digital reference clock. The quantizing errors resulting from the current configuration and counters
are extremely small (on the order of 10'°; Van Heyst, 1992) and are thus considered negligible.

Threshold limit errors are the result of using non-zero volt Schmitt triggers to digitize the Doppler
burst. The normalized threshold limit errors can be estimated by (Patrick, 1985):

U
Bn_ 1 1
=+ +

U 12m o96m? (C.11)
-0
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for the mean velocity and by:

(x2)? (C.12)

576 m?

for the turbulent velocity. Based on m =8, the normalized threshold limit biases are +0.0106 and
~0.00003 for the mean and turbulent velocities respectively.

Electronic noise induced errors occur at low signal-to-noise ratios (SNR) where the electronic noise
can be mixed with the Doppler signal to cause significant LDA bias errors. The error mechanism

involved in electronic induced errors is still under investigation (Patrick, 1985) but can be estimated

/
BU
og| 22 | —3.12610g| 832 [Jte| _4 (C.13)
U SNR \ 2,

for the mean velocity component and by:

tog| 22 | - s6710g| 1636 |Jutl| _sg (C.14)
(1) SNR \ 2,

for the turbulent velocity component where f;, and f; are the upper and lower cutoff frequencies.

by:

Based on the counter parameters the electronic noise induced errors are £0.00227 for the mean

velocity and +0.0004 1 for the turbulent velocity.

Filter errors are caused by the improper setting of the cutoff frequency of the high pass pedestal
removal filter. Ifthe filter is set too high, the Doppler burst caused by a slow particle will be distorted
by the filter or even dropped out causing a high biased velocity estimate. If the filter is set too low,
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some of the bursts from the faster particles will pass through the filter with residual pedestals which
again causes the velocity to be biased (Patrick, 1985). However, with proper filter settings, the filter
error is negligible.

Table C.5 summarizes the results for the bias errors due to the counter processors.

Type of Bias
_ Mean Velo Turbulent Veloci

Clock synchronization error +0.000012 +0.000012
Quantizing error negligible negligible
Threshold limit error +0.0106 -0.00003
II Electronic noise induced error +0.00227 +0.00041
Filter error negligible ~ negligible

RSS Total +0.0108 +0.0004
-0.0023

Table C.5: Summary of bias errors due to the counter processors.

C.2.1.3 Total Normalized Velocity Bias Errors

A summary of the bias errors from the three different sources is given in Table C.6. The major source
of bias error is that due to the LDA specific geometry which, in tum, is predominantly caused by the
uncertainty in the fringe spacing.
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Source of Bias | |
| _Mean Velo Turbulent Velocity |
e

Seeding effects
LDA specific geometry

Counter processors

h

RSS Total +0.0179 +0.0143
-0.0145

Table C.6: Normalized bias errors in the mean and turbulent velocities.

C.2.2 PSD Functions

The uncertainty in the power spectral density (PSD) function, £ (f), is estimated based on techniques
outlined in Bendat and Piersol (1986). The normalized precision error can be determined from:
Sesp 1

‘Ev)‘ =E (C.15)

where r,is the number of distinct subrecords. All the time series from the experiments are analysed
using n,=40 with subrecord sizes of 1024. The estimate of the normalized precision error is thus
Spsp/ E(f)=0.158 which is quite large for any one PSD function. However, if an average of several
PSD functions is taken, the precision error is reduced by (Coleman and Steele, 1989):

=—_— (C.16)

where N is the number of PSD functions in the average.
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The normalized bias error in the PSD functions can be estimated by:

BPSD - I Be 2
B ?(E) R

where B, is the resolution bandwidth and B, is the half-power point bandwidth. Weckman (1987) has
estimated this to be B,5,/ E(f) = 0.02 based on the power spectral density processing software and

using the same number and size of subrecords.

C.2.3 Summary of Uncertainty Analysis for the LDA Measurements

A summary of the uncertainty analysis for the mean and turbulent velocities as well as the power
spectral density functions is given in Table C.7. The numbers in the table are fractions of the
measured variable and represent the range that the errors may take on based on a 95% confidence

mterval.

Measured Variable Total Error, 8,

Mean velocity +0.0020 (max)

+0.0001 (min)
Turbulent velocities +0.0068
PSD functions +0.1580 (single

Table C.7: Summary of the normalized uncertainty for the measured variables (numbers listed are a
fraction of the variable).
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C.3 Propagation of Errors into Reported Results

For the general case, consider an experimental result, g, which is a function of j variables:

I=q(VsYz---+¥;) (C.18)

Equation C. 18 represents the data reduction equation used to evaluate g from the measured values

of y;,. The propagation of precision errors into g is given by:
12
dq 2 dq 2 dq :
S =[] —=+S8 +| =L 8§ +...+| —=§ (C.19)
! [( 24 yl) [ 95, h] 9y;

The derivation of equation C.19 assumes that the data reduction equation is continuous and that its
derivatives are also continuous over the domain of interest, that the measured y;, are independent of
each other, and that their associated uncertainty are also mutually independent (Coleman and Steele,
1985). The partial derivatives of ¢ with respect to the variables y, are defined as the absolute
sensitivity coefficients.

Although the above case tracks the propagation of precision errors into ¢, the same equation can be

written for either the bias errors or the total errors by replacing S with B and & respectively.

The following sections present equations for the propagation of precession error into the reported
results. For more detailed information on the propagation of errors, see Coleman and Steels (1989),
Moffat (1988), and Kline (1985).



206

C.3.1 Mean Velocity Results

C.3.1.1 Excess Mean Velocity

The excess mean velocity is defined as the difference between the mean velocity of the jet and that
of the external flow. The normalized precision error for the excess mean velocity can be evaluated

from:

SU—U

L

U-J,

[ 4

1 eU-U) . )? 1 U-U) . )
= Syl + S, (C.20)
U-u, au v-u, au, “

€ e [ 4

The partial derivatives become 1 and -1 for differentiation with respect to U and U, respectively. The
equation can therefore be simplified to:

Sy- S =,
U-u, v . u, (.21
U-U, U-U, U-U,
C.3.1.2 Ratio of External Mean Velocity to Centerline Excess Mean Velocity
The normalized precision error for U,/ U, can be estimated from:
S, ? 3(UIU 2 3 2
v, - gg ( e “o ) SU - 24_:_ (Ue/ Uo ) SU (C_22)
U,/u, u, 29U, . u, 49U, °
which can be simplified to:

S 2 S 2 -S 2
v, - _U.' . u, (C,23)
U/, U U
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where the centerline excess mean velocity precision error can be calculated from equation C.21.

C.3.1.3 Jet Velocity Half Width and Jet Radius

Both the jet velocity half width, L, and the jet radius, R, are defined by a radial location based on
some value of (U-U,)/ U, The percent uncertainty in locating L, and R is therefore that of the mean

velocity ratio which can be determined from:

2 2 2
S(U-U,)/U, _ SU-U . 'SU,, (C.24)
(U-0,)/U, U-U, U,

where the two terms on the right hand side can be evaluated using equation C.21.

C.3.1.4 Momentum Radius

For the purposes of an uncertainty analysis, the momentum radius can be approximated as:

6=+(0"-TU, )" (C.25)

e

where U is the average or top-hat velocity in the jet. Using this equation, the propagation of

precision errors into the momentum radius can be determined from:
[s,,]’ [SR]’ 2T -U, sU
— = —— +
) R (U U )

The precision error for the average velocity can be calculated from S =S,/ N * where N is the

Sy, 2
U

[ 4

(C.26)

number of points averaged to get U.
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C.3.2 Turbulent Velocity Results
C.3.2.1 Local Turbulent Intensities

The local turbulent intensity is defined as the turbulent velocity normalized by the jet excess centerline
velocity. For convenience of notation, let /,=(u )"/ U,. The normalized precision error in the

streamwise local turbulent intensity is given by:

[i]:[s(?_)“]z:,( ff’_]z (C.27)
z) ) @

x o

A similar equation can be written for the radial local turbulent intensity where /,=(v 2)"?/U,.

The turbulent velocities can also be normalized by the velocity scale ( U, ( U, + U, ))* to obtain
another local turbulent intensity. Again, for convenience, let I.'=(u 2)"%(U,(U,+U,))'> The

normalized precision error in the streamwise direction is given by:

2 S 2
+[ v ] (C.28)
2U,

X

2
S[‘ - S(;—z)m 2 +( 2 Uo + Ue SUcl
1 ' (.u—z-)“2 2 Uo Ucl

where U, is the centerline mean velocity. A similar equation can be written for the radial local
turbulent intensity where /" =(v?)"?/(U,(U,+ U, )"~

C.3.2.2 Local Normalized Reynolds Stress
The local normalized Reynolds stress is given as the Reynolds stress term normalized by the square

of the centerline velocity. For convenience, let />=uv,/U,2. The propagation of precision error can

then be determined from:
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— = 2 —_—T + 2 — C.29
[ I? ] [ (uv )"2 u, €29

where the precision error for (u v, )* has the same value as that for the turbulent velocities.

As with the turbulent velocities, the Reynolds stress term can also be normalized using the velocity
scale (U,(U,+U.,))% Again for convenience, let I *=u v, /(U,(U,+U.,)). The precision error

+| —=

propagation can then be evaluated using:

S;2)? ) S@,-,;)m 2U,+U, Sy,
T (uv,)”2 U Ua

2

(C.30)

U

[ [/

C.3.3 Integral Length Scale Results

C.3.3.1 Autocorrelation Functions

The autocorrelation function in the streamwise direction is given by:

_u(x;t)u(x;t+At)
72

R

XX

(C.31)

u

For the purposes of an uncertainty analysis, equation C.31 will have the same level of uncertainty as:

R - ()" (s2)" (C32)

The propagation of precision error can therefore be estimated from:
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S, )2 2
BEES

A similar equation can be derived for the autocorrelation in the radial direction, R,

C.3.3.2 Integral Length Scales

The streamwise integral length scale is estimated from:

Lxx = Ufox(t)dr
A . (C.34)
= U-A'Z'E[ Rxx(o) <l‘R.u'(n) +2 E Rxx(i)]

i=]

where the approximate equation is that arrived at using a trapezoidal rule for numerical integration.
For the purposes of an error analysis, the term in brackets can be approximated as 2 R_n. The

propagation of precision errors can then be determined from:
S 2 S 2 2
S| | 22| | S (C.35)
LXX Rxx U

A similar equation can be derived for the integral length scales in the radial direction, Z,,.





