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Abstract

Persistence is a phenomena by which a resting neuron enters a state of persistent beha-
vior following a brief stimulus. Persistent neural systems can exhibit long-term responses
that remain after the stimulus is removed, switching from excitable, steady-state dynamics
to a period of tonic spiking or bursting. In Aplysia, such behavior, known as the after-
discharge, is exhibited by the bag cell neuron and regulated by second messenger calcium
dynamics. In this thesis, we construct a model for the electrical activity of the Aplysia
bag cell neuron is constructed based on experimental data. The model includes many fea-
tures of the bag cell, including use-dependence, non-selective cation channels, a persistent
calcium current, and the afterdischarge. Each of these features contributes to the onset
of afterdischarge. Several methods are used to fit experimental data and construct the
model, including hand tuning, parameter forcing, genetic algorithms for optimization, and
continuation analysis. These methods help to address common modeling issues such as
degeneracy and sensitivity.

Use-dependence in the calcium channels of Aplysia is thought to depend on calcium.
The model developed in this thesis verifies calcium as a viable driver for use-dependence.
The literature often emphasizes two potassium channels in the context of bag cell afterdis-
charge, but we show that afterdischarge behavior is produced with only a single potassium
channel in simulations. Experimental evidence suggests that nonselective cation channels
are a primary driver of afterdischarge behavior. In the model developed here, the nonse-
lective current is required for in silica afterdischarge to take place. Continuation analysis
is used to determine and tune the location and stability of fixed points in the model.

For exploratory analysis, an electrically-coupled network model is constructed to si-
mulate the observed dynamics in bag cell clusters in vivo. A simple two-neuron network
reproduces some experimental results. Larger networks are considered. Little is known
about the topology of Aplysia bag cell cluster. The final chapter of this thesis explores
different topologies in a 100-neuron network, including a ring topology, a cluster ring to-
pology, and a randomly-connected scatter network, exploring how the coupling constant,
topology, and size of the network affect the ability of the network to synchronize.
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Chapter 1

Introduction

The sea slug Aplysia belongs to the Phylum Mollusca, a member of the animal kingdom.
It is snail-like in shape and slug-like in texture, taking habitat in many oceans and seas
around the world. Molecular timescale analysis of invertebrates and vertebrates suggest
that Aplysia and humans share a common ancestor approximately 1000 million years ago
[43]. Despite this seemingly large temporal gap in our molecular evolution, invertebrate
research continues to have a positive impact on the state of vertebrate research [7] as con-
vergent and parallel aspects of evolution tie the molecular functions of seemingly disparate
species together [62][118]. A common example of this is gap junctions [5]. Gap junctions,
which facilitate electrical coupling between neurons, are emergent morphological structu-
res. In vertebrates, they tend to be formed of a class of protein called connexins. Fruit
flies and nematodes, which don’t have genes associated with connexin, achieve the same
result with innexins. Because these distinct species evolved gap junctions independent of
another, gap junctions are said to be a convergent trait. Another examples of conver-
gent evolution that is of interest to the present study is persistent dynamics in neurons,
in which the membrane potential of the neuron oscillates for an extended period of time
following a brief stimulus current of sufficient strength. Across nervous systems in nature,
persistence serves a broad range of functions, including working memory in humans, motor
function in turtles, and escape responses in lamprey [73], as well as lactation and birth in
mammals [92]. Because mathematical models can help quantify and inform the details of
nervous system behavior, it is of interest to develop neuron models representing distinct
neuron traits, such as persistence. Experimental observations of neuron behavior rely he-
avily on recordings of the membrane potential. Neuron models that explicitly quantify
other contributing factors can help give insight into their functional relationships.

In Aplysia, the bag cell neuron’s persistent behavior, the afterdischarge, initiates re-
production. The afterdischarge occurs when a short-term burst of current to a single bag
cell neuron initiates a prolonged oscillatory behavior period in membrane potential. In the
animal, the entire network of bag cell neurons exhibits afterdischarge behavior simultane-
ously, with the osccillations occuring synchronously. During this time, bag cell neurons
release peptides to the blood stream, initiating egg-laying in the animal for periods as
long as a half hour. Upon cessation of the afterdischarge, the bag cell neurons enter a
refractory period, where they can no longer exhibit afterdischarge behavior in response to
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the appropriate pulse stimulus. The refractory period lasts around 18 hrs, at which point
the bag cell neuron returns to the rest state where the afterdischarge can, once again, be
initiated.

One of the key results of this thesis is the development of a mathematical model of
the afterdischarge behaviour of the Aplysia bag cell neuron. The model is constructed
using the biophysical formalism first introduced by Hodgkin and Huxley [46]. The model
is capable of describing the rich dynamics of the afterdischarge and making predictions
about how second-messenger mechanisms might contribute to the afterdischarge.

Another novel aspect is the use of numerical continuation and bifurcation analysis
on the constructed Aplysia bag cell model to give some insight into the roles individual
modeling parameters play in excitability dynamics. This helps to tune the model closer to
experimental results and provides insight for future corrections and modifications to the
model. Finally, the resulting model is extended to an electrically-coupled neuron network.
The results of some preliminary exploration of how connection topology affects network
behavior are interpreted in light of the limited experimental evidence on biological bag cell
clusters.

In the remainder of Chapter One, we cover background topics including dynamical
systems, neurobiology, and fundamental concepts in theoretical neuroscience. A metho-
dology section is included at the end of Chapter One. In Chapter Two, we give more
details on the methodology of model construction pursued over the course of research.
This includes fitting of data from collaborators for individual ion currents, hypothesizing
models based on qualitative evidence, and modeling and synthesis of currents into a single
bag cell neuron. We consider calcium, potassium, and nonselective channels, as well as
their associated calcium-dependent kinetics. This chapter includes many methodological
approaches to complex neuron model construction. In Chapter Three, we provide an ana-
lysis of the sensitivity of the system through continuation analysis. In Chapter Four, the
model is extended to a network by electrically-coupling several instances of the Aplysia
bag cell model together, with some reproduction-by-simulation of biological experiments
on electrically-coupled bag cell neurons. We conclude with Chapter Five, highlighting in-
terpretations presented by the research and suggestions on the next steps to advance the
Aplysia bag cell model.

1.1 Background

1.1.1 Dynamical systems

Modeling approaches in neuroscience draw heavily on the concepts and language of dy-
namical systems. There is often overlap in the language between the field of dynamical
systems and the language in the fields their models describe. For instance, in biology dif-
fusion often describes molecular transport in a media, but in dynamical systems, diffusion
processes are any spatially extended difference process. To add to the confusion, physicists
will often call discretized version of diffusion-reaction systems, such as electrically-coupled
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neurons, “diffusively-coupled”. The author has taken as much care as possible to avoid
ambiguities like this, but should one come up, it is safe to assume a physics or mathematics
definition lies behind the word.

The discipline of dynamical systems is ultimately the study of how things change in
time. In a deterministic system, in which each state in time only has one possible future
state, the values over time, or trajectories, of the system can do one of four things as time
increases:

1. approach a single point

2. begin to oscillate periodically

3. enter more complex behavior such as oscillations with multiple frequencies or chaotic
behavior

4. take off to infinity

When a system’s solutions approach a single point, it can be said to be approaching the
steady state, a type of fixed point in the system. The steady state is an attractor because
it attracts trajectories towards it. Attractors may be other objects as well. Oscillations
in a dynamical system are associated with a limit cycle which describes the oscillations in
(at least) two non-temporal dimensions. For instance, for a ball swinging on a string in a
frictionless environment, the limit cycle would be traced out by the position, x, and the
velocity, v, of the ball. Plotting x vs. v would give a phase plot of the system. There also
exist chaotic attractors that can lead to complex , unpredictable trajectories. Trajectories
that approach a fixed point will never quite reach it, and are said to be approaching the
fixed point asymptotically. The same is true for trajectories approaching a limit cycle
or other attractor. Lastly, if the trajectory blows up to infinity, it is likely because of a
repeller, a fixed-point, limit cycle, or other object in the system that repels trajectories.
Only the first two cases will be considered here.

While phase plots are made up of the variables of the system, the parameters, such as
constants in the mathematical model, can be plotted against the fixed-points of the vari-
ables in a continuation curve. Sometimes changing parameters affects qualitative changes
in the dynamics of the system, in which case continuation curves becomes bifurcation dia-
grams with bifurcation points that govern where such changes (the bifurcations themselves)
occur. The only bifurcation discussed here is the Hopf bifurcation, for which examples will
be provided.

Analysis of bifurcation points involve a local measure of how variables relate to each
other, known as the Jacobian. Information can be extracted from the Jacobian, called
eigenvalues and eigenvectors, giving information about the stability and variable depen-
dencies, respectively, at the point where they are measured.
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1.1.2 Biological neuron models

Neurons are unique cells that can transmit electrical signals to each other. The distribution
of both positively and negatively charged ions within and around the neuron can generate
a voltage potential across the membrane, known as the membrane potential, whose value
is typically denoted V . Experimental work from the middle of the 20th century eventually
led to the development of an approach for mathematical modeling of the electrical activity
of the neuron. The canonical experiments and subsequent mathematical development of
the original model were carried out by Alan Hodgkin and Andrew Huxley [46][47][48]. In
the following, we will describe this approach in the context of ion channels, although these
were unknown to Hodgkin and Huxley.

The membrane potential in a neuron is governed largely by populations of ion channels
embedded in the membrane that selectively allow different currents through at different
times, resulting in a change in the membrane potential. The state of the channels them-
selves are, in turn, affected by the membrane potential, creating a feedback loop. Most
channels are selective, only allowing a certain species of ion through, but some ion channels
are nonselective, letting many different species of ion through.

The variables describing the state of the population of a given class of channels are
known as gating variables. Gating variables that determine the state of the channel po-
pulations are represented by a number varying between 0.0 and 1.0. They come in two
types: activation variables and inactivation variables. When activation variables are 0.0,
the relevant gate for the entire population of channels associated with them are closed,
whereas the relevant gate for the entire population is open when the activation variable is
1.0. Values in between 0.0 and 1.0 represent the fraction of channel gates that are open
at a given moment. Inactivation and activation gates both follow this convention. Cur-
rents typically have both activating and inactivation gating variables. Gating variables are
governed by differential equations the form

ṁ =
mss(V )−m
τm(V )

(1.1)

The function mss(V ) is called the steady state activation or inactivation, depending on
whether m is an activation or inactivation variable and τm(V ) is the time-constant. The
terms “steady state” and “time constant” refer to the roles of these functions in the equation
when the voltage is fixed. The author recognizes that “time constant” is a confusing term
to use for a voltage-dependent function, but this is the convention in neuron models.

A trace of the membrane potential of a neuron, being the most readily observed quantity
in the lab, can give insight into the electrophysiological activity of the neuron which relates
to how the principles of electrochemistry produce the action potential. In the voltage clamp
experiment, experimenters fix the membrane potential at a constant value, then observe
how membrane currents behave as the membrane potential is changed to a different fixed
value. It can help extract the voltage-dependent functions that represent the kinetics of
the relevant population of channels. Alternatively, the experimenter may deliver current
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to the neuron and measure the response of the membrane potential, often referred to as
current clamp. Experimentalists can use certain molecules to block some of the channels
involved, isolating currents of selected types of channels.

Mathematically, the voltage clamp is derived from the steady solution of the gating
variables in Equation 1.1. For a constant voltage, the solution is

m(t) = mss(Vc)− (mss(Vc)−mss(Vp))e
−t/τm(Vc). (1.2)

The experimental current, Ix can be fit using these equations to determine value of the
steady state functions (e.g., hss) and time-constant functions (e.g., τh) for a given clamp
potential, Vc, and preclamp potential, Vp. The current, Ix, has the form

Ix(t) = ḡxm(t)ph(t)(Vc − Vx), (1.3)

where Ix is the time-dependent current of channel x, ḡx is its maximal conductance, m
is the activation variable, h is the inactivation variable, p is a power used to shape the
curvature of activation, Vc is the clamp potential determined by the experimentalist, and
Vx is the reversal potential of current x. A typical curve for a given Vc is shown in Figure
1.1
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Figure 1.1: A trace of a current from a simulation a typical voltage clamp experiment.
Constructed from Eq. 1.3 with ḡx = 0.02 nA, mss(Vc) = 1.0, mss(Vp) = 0.0, hss(Vc) = 0.2,
hss(Vp) = 1.0, τm = 0.05 s, τh = 0.1 s, Vc = 60 mV, Vp = −60 mV, and Vx = 10 mV

Neurophysiologists typically take the resulting set of fits from the voltage clamp expe-
riment and use the points generated to fit to the steady-state and time-constant functions
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of a particular gating variable, extracting parameters such as the half-activation, the acti-
vation slope, and the time constant maximum(see Figure 3.1). The functions have the
form

mss =
1

2

(
1± tanh

V − V1

V2

)
(1.4)

τm = τm0

(
sech

V − V3

2V4

)
, (1.5)

where V1 and V3 are voltage shifts that determine the horizontal placement of the function
along the V -axis, V2 and V4 determine the width or slope of a function, and τm0 is the max-
imum time constant of the time-constant function. The sign in Equation 1.4 determined
whether the gating variable is activating (+) or inactivating (-). The equivalent Boltzmann
form is often used rather than the hyperbolic tangets we use here. The Boltzmann form is

1

1+e(V−Vq1)/(2Vq2) .
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Figure 1.2: Left: steady-state function with half-activation or voltage shift, V1 = 0 mV
and activation slope or width, V2 = 20 mV. Right: Time-constant function with maximum
time constant, tm0 = 1× 10−3 s, voltage shift, V3 = −30 mV, and slope, V4 = 10 mV.

There are different concentrations of ions inside and outside neurons. This difference in
concentration determines the reversal potential or Nernst potential. The reversal potential
can be described by

Vr =
RT

zF
ln
Xo

Xi

, (1.6)

where R is Boltzmann’s universal gas constant, T is the temperature, z is the valence of
the ion, F is Faraday’s constant, Xo is the ion concentration outside the cell, and Xi is
the ion concentration inside the cell. Together, Boltzmann’s constant and the temperature
determine how temperature affects the reversal potential. With higher temperatures, less
work (energy) is required to move ions against the diffusion gradient . The resulting reversal
potential for that ion would be Vr. The reversal potential defines at which membrane
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potential the currents involved in that channel switch from influx to efflux. Note, however,
that this simple model applies only to the ideal situation of a single ion species. In a real
neuron, where several species are present, the more complicated Goldman-Hodgkin-Katz
equation is often employed for detailed channel modeling [45]. The research here depends
largely on experimentally-derived empirical values for reversal potentials.

The reversal potentials, determine the driving force for a given current, given a parti-
cular membrane potential, via

Fx = V (t)− Vx. (1.7)

Along with the gating variables the and the maximum conductance, the driving force
helps describe the time-dependent current,

Ix = gxm(t)h(t)(V (t)− Vx). (1.8)

The current describes the behavior of a particular population (e.g. x) of channels in
the membrane. The population may be homogeneous or heterogeneous. A homogeneous
population consists of a single type of channel with very similar subunits (the component
proteins of channels), while a heterogeneous population may contain a lot of variety within
it. These nuances don’t directly effect the present mathematical formulations, which derive
kinetic parameters empirically from experimental results.

A complete neuron model typically requires putting populations of channels into a
membrane. The membrane introduces a capacitance as well as a leak current to represent
passive currents through the membrane. A simple example lies in the biologically-derived
Morris-Lecar model [79]. The Morris-Lecar model is derived from experiments on the
barnacle muscle fiber. It can be formulated

V̇ =
1

C
(I − gCamss(V (t)− VCa − gKn(t)(V (t)− VK)

ṅ =
nss − n
τn

,
(1.9)

where C is the membrane’s capacitance. The steady-state and time-constant functions
(mss, nss, and τn) have the same form as Equations 1.4 and 1.22. Note that the neither
the calcium current (Ca) or the potassium current (K) have inactivation gating variables.
The time course of potassium activation is determined by the for ṅ, whereas the calcium
current is directly dependent on the steady-state function mss. The calcium channel reacts
to a changing membrane potential much faster than the potassium channel, thus calcium
is assumed to have reached its steady-state value by the time potassium dynamics become
important. This assumption allows the Morris-Lecar model to perform efficiently in terms
of computer resource consumption and simulation times. The first equation of the Morris-
Lecar model (Equation 1.9) represents the membrane properties, equating the capacitave
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current, CV̇ , to the ion currents flowing across the membrane. An equivalent formulation
of the Hodgkin Huxley model is given by

dV

dt
=

1

C
[I − INa − IK − IL] (1.10)

dm

dt
=

mss(V )−m
τm(V )

(1.11)

dh

dt
=

hss(V )− h
τh(V )

(1.12)

dn

dt
=

nss(V )− n
τn(V )

, (1.13)

where m,h are the activation and inactivation gating variables for the sodium current and
n is the activation variable for the potassium current.

Most channels implemented in models are voltage-gated, but ion channels can also be
ligand-gated, meaning they are activated by molecular interactions. In synapses, channels
that rely on ligand activation are defined as ionotropic, as their activation allows ions
through a pore in the neuron, altering its electrical state. Another class of receptors, called
metabotropic receptors, act indirectly on ion channels through signal transduction, often
modulating the properties of ion channels. Molecules that are involved in this process are
known as second-messengers and can often include the ion species themselves. Other ion
channels can also be modulated by second messengers. One example of this modulation
on ion-channels is thought to underlie use-dependence in which Ca2+ acts as a second-
messenger on Ca2+ ion channels through repeated firing of the cell. The repeated firing
of the cell causes a gradual increase in the inactivation of the ion channel on a timescale
longer than the period of the action potential. Thus the inactivation associated calcium
channel is said to be use-dependent.

The action potential is the primary signaling mechanism in neurons, marked by a sharp
rise and fall in the membrane potential of the neuron (Figure 1.3). Channels in the neuron
membrane maintain multiple feedback relationships between the membrane potential and
their conductance state that leads to the threshold behavior neurons are known for. When
a sufficient depolarization is introduced to the cell, it activates channels that allow positive
ions into the neuron, raising the membrane potential. After some delay, another set of
channels opens, letting positive ions flow out and returning the membrane potential back
to its rest value.

1.1.3 Behavior of neuron models

Conductance based models like the Hodgkin Huxley model can display a wide variety of be-
haviors. The three well-known functional classes of neuronal spiking behavior are excitable,
oscillatory, and bursting. The most well known class of neuron, an excitable neuron, will
remain at resting potential until acted on by an external current. This causes the neuron
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Figure 1.3: The shape of the action potential shows the rise and fall in membrane potential
as channels within the membrane open and close. The upstrokes and downstrokes of the
action potential result from currents that operate over a similar voltage range. However,
the time constant associated with the downstroke is longer than that of the upstroke,
resulting in the spike shape of the action potential. In mammals, the upstroke is often
generated by a sodium current, rather than a calcium current as shown here.

to enter a transient excitation cycle before returning to the resting potential where it will
remain again until perturbed (Figure 1.4, left). Neurons that spike consistently in the ab-
sence of an external current are considered oscillatory, as they exist on a limit cycle (Figure
1.4, right). One such example is heart muscle cells, referred to as pacemakers in neurobio-
logy literature; their constant spiking activity keeps their excitable neighbors synchronized.
Both of these classes can be represented by a single two-dimensional conductance-based
model, such as the Morris-Lecar model [79]. The third class of neurons, bursting neurons,
requires a dynamic process on a slow time scale that allows the neuron to enter a short-
term oscillatory-like behavior before returning temporarily to a pseudo rest state (Figure
1.5). A canonical example is the Chay-Cook model [90][8].

Bag cell neurons introduce a fourth functional class of neurons, in which a short dura-
tion of stimulus leads a nominally excitable cell into a persistent oscillatory fit, followed by
a refractory period. The behavior exhibited by such neurons is often called afterdischarge,
a behavior typically associated with the pathology of epilepsy [9]. In Aplysia, the after-
discharge behavior is not pathological, but physiological, acting as a master switch that
initiates the mollusk’s reproductive behaviors. Following a short (usually 5-10 seconds) 5
Hz stimulus, a single bag cell neuron will erupt into a fit of oscillatory behavior, lasting
approximately 30 minutes, before entering a refractory period, where it returns to normal
excitable behavior typical of most neurons. Only during the afterdischarge do ELH levels
increase to sufficient level to initiate egg-laying [55]. It is of interest to study the mechanism
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Figure 1.4: Excitatory (top left) and oscillatory (top right) spiking behavior in the two-
dimensional phase space of Morris-Lecar neuron model. The phase space of the Morris-
Lecar model [79] represents the membrane potential, V, and the potassium channel popu-
lation’s open state, n.

of the afterdischarge for insights into the versatility of neurons as examples of dynamical
systems in nature.

Excitable systems of are interest to physicists and mathematicians because excitability
dynamics plays a role in many natural phenomena [83][2][84][23][88]. Of particular interest
is the behavior of networks of diffusively-coupled ensembles of such excitable elements,
which allow for wave propagation. In the case of a neuron network model,, the diffusion
is discretized (that is to say, the wave propagates from cell to cell rather than through
continuous space). The biological literature refers to this arrangement as electrical coupling.
In nature, the coupling is facilitated by the previously mentioned gap junctions.

1.1.4 Genetic algorithms

The genetic algorithm is an optimization method that draws on evolutionary processes to
search the parameter space of a model. Like other optimization algorithms, the genetic
algorithm tries several different parameter regimes for the model and measures the success
of each by comparing it to experimental data. What sets genetic algorithms apart from
other optimization algorithms is the way it groups parameters in functionally meaningful
ways and generates new parameter regimes from a combination of the traits of successful
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Figure 1.5: Bursting in Bertram’s version of the Chay-Cook model [8]. Reproduced with
Matlab.

parameter regimes. It then mutates some traits randomly. This final mutation step ensures
that the model doesn’t get stuck in local minimums (i.e. good fits) and can eventually find
the global minimum (i.e. best fit) of the system.

1.1.5 Aplysia Biology

Aplysia are a model organism in neurobiology [78], best known for their contributions to
a molecular understanding of learning and memory [75][19][6] that resulted from experi-
ments conducted on the gill and siphon withdrawal reflex [20][18][17]. More recent work
on Aplysia has focused on another pervasive aspect of nervous system function in animals:
the electrophysiological regulation of neuropeptides. The bag cell neurons in Aplysia rele-
ases neuropeptides, called egg-laying hormone (ELH), into the bloodstream to initiate egg
laying.

Neuropeptides are the largest class of chemical messenger in the nervous system, al-
lowing for the intercellular communication that facilitates important animal behaviors
[36][13]. Neuropeptides are produced in neurons and act on the metabotropic receptors of
other neurons, facilitating communication between functionally distinct neural populati-
ons. Their actions can affect gene expression, regulate blood flow, and modulate synaptic
and glial cell morphology of downstream neural populations, leading to emergent behavi-
ors in the organism. In Aplysia, the bag cell neuron acts as switch for peptide release in
egg-laying processes [76][81][25].

Aplysia have a relatively simple macroscopic architecture to their nervous system. The
central nervous system (CNS) of Aplysia consists of nine ganglia [63]. At the tail end of
the CNS is the abdominal ganglion, which houses the bag cell neurons in addition to the
well-studied R15 neuron [3][4][14][16][15][87][110]. Bag cells are found in the abdominal,
cerebral, and pleural ganglia of Aplysia and display descending activation in the CNS
[42]. They are coupled strongly to their neighbors through electrical synapses, known as
gap junctions [55]. In the abdominal ganglia, bag cells exist in two lateral clusters, each
containing approximately 200 neurons.

The electrophysiological activity of the bag cell neuron is made up of several ion currents
regulated by second-messenger interactions that result in use-dependence, refractoriness,
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and the afterdischarge itself. One class of calcium and two classes of potassium channels
underlie the action potential of the bag cell [50][98], while non-selective cation channels
appear to be responsible for the afterdischarge [50][69]. Additional potassium currents con-
tribute to the refractory period and secondary effects (such as inter-spike timing) [89][70].

Aplysia action potential

In the bag cell, the calcium current is responsible for the upstroke of the action potential.
Experimental measurements of bag cell calcium channel kinetics give a reversal poten-
tial about 60 mV, a half-activation potential around -6 mV, an activation slope near 5.6
mV, while the inactivation (following a prolonged holding potential of -60mV) has a half-
activation around -13.7 mV and an inactivation slope near 10.1 mV [99]. When a sequence
of input pulses with duration 50-150 ms is delivered to the bag cell neuron, the calcium
channels display use-dependent inactivation [50]. Shorter pulses (10-25 ms) failed to pro-
duce a significant use dependence. Calcium channels in the Aplysia abdominal ganglion
demonstrate a similar use-dependence, thought to be calcium-dependent [22][12][41]. Use-
dependence will play a significant role in the dynamics of the bag cell neuron, so it must
be carefully considered in the calcium channel model.

The potassium current associated with the fall of the action potential can be separated
into two components with distinct kinetics, suggesting two distinct types of channel make
up the potassium current [98]. In experiments by Strong, the slower potassium channel,
IK1 did not demonstrate an appreciable inactivation and was diminished by application of
forskolin and theophylline [98]. These chemicals are used by experimentalists to raise cAMP
in the cell, a 2nd-messenger known to attenuate potassium currents. The ratio between
the two currents varied from cell to cell, ranging from 0.33 to 2.0. Some experimental
research has partially isolated IK1 by inactivation of IK2 via a holding potential of -40
mV, but no kinetics were measured [82]. Expression of the Aplysia shab gene in frog
oocytes (unfertilized eggs) resulted in a channel with kinetics similar to that of the faster
component, IK2 [89], supporting Strong’s assumption that there are two main components
to basal potassium currents. However, it should be noted that Strong’s measurements
were made by analyzing the tail currents of repolarization in an experiment involving
different lengths of voltage steps, not the activation time constant proper. The kinetics
of the expressed shab channel properties were fit and modeled as two inactivated states
and a single activated state, resulting in a complicated electrophysiological description. In
concert with a calcium current model of unknown origin, the modeled potassium channels
were able to reproduce action potentials similar to those of the Aplysia bag cell neuron
[89].

The afterdischarge

A train of 150 ms 1.5 nA pulses at 5 Hz with a 10 s duration under sharp-electrode current
clamp or a treatment of acetylcholine [104] is usually sufficient to initiate afterdischarge.
The stimulus leads to an increase in the amplitude of the membrane potential of the neuron
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as well as an increase in the maximum of action potentials. in sharp-electrode experiments,
the membrane potential of the bag cell neuron continues to oscillate for approximately 20
minutes [28], during which the frequency of spiking begins to decrease, sometimes with
longer delays between bursts. Upon cessation of the oscillatory behavior, the bag cell
enters a refractory period, during which stimulus can still excite the bag cell to elicit
action potentials, but afterdischarge behavior cannot be evoked for another 18 hours or so.
The long-term spiking of the afterdischarge evokes peptide release from bag cell neurons.
Peptides are chemical messengers that can modulate and activate downstream neurons. In
the case of Aplysia, the peptides facilitate egg-laying by acting on downstream populations.

Experimental neuroscience literature provides a picture of the mechanisms underlying
the afterdischarge. It is suggested that voltage-independent non-selective cation channels
play a role [99] [50]. The activation of these channels results in a prolonged depolarization
current, raising the excitability of the bag cell neuron and bringing an increased calcium
influx. The increase in internal calcium concentration levels could lead to the activation of
voltage-dependent non-selective cation channels [69], allowing a large current through the
membrane, which may account for the persistent activation of basal calcium and potassium
channels that characterizes the afterdischarge. It has been observed that the increase of
inositol triphosphate (IP3) and protein kinase C (PKC) concentrations near the inside of
the membrane leads to a right shift in the calcium dependence of the cation channel, giving
PKC a more prominent role in cation channel activity and resulting in a in a lower spiking
frequency [37]. The channel is inactivated by protein kinase A (PKA) [69].

Refractory period

After a (roughly half-hour) period of afterdischarge behavior, the bag cell neuron enters a
refractory period in which afterdischarge can not occur for around 18 hours. This ensures
that downstream egg-laying processes can finish and eggs have sufficient time to mature.

The ability of the bag cell neuron to enter the afterdischarge state is modulated in part
by a calcium-activated potassium channel that carries the so-called BK (big potassium)
current. Increases in bag cell potassium currents have been observed over three hours after
afterdischarge [115], a comparable order of magnitude to the duration of the refractory
period. The mechanism behind this persistent behavior has been attributed to several
second-messengers, including calcium, PKC, and PKA. The BK current can be upregulated
by PKC, increasing the overall potassium current, resulting in decreased excitability in the
bag cell neuron. Interestingly, inhibition of PKC by H-7 attenuates the duration of the
afterdischarge, but this effect is diminished during the breeding season, when afterdischarge
is relevant to reproductive function [102].

PKA also demonstrates regulatory control over the BK current, particularly in adult
Aplysia, where increases in PKA activity correlate with a decrease in BK channel activity
[113]. Effects of PKA on ELH secretion do appear seasonal, positively correlating with
the breeding season in spring, but it’s not clear whether PKA’s effect on afterdischarge
behavior has a seasonal variance [115].
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Some experimentalists discuss two types of refractoriness [56], type I referring to the
propensity for an excitation on the bag cell process to invade the soma and elicit an action
potential, type II referring to the tendency for a bag cell to exhibit afterdischarge. Type I
seems to have no correlation with type II.

Bag cell clusters

Bag cells are multipolar neurons with numerous processes extending radially from the
soma to the connective tissue [55]. Some of these processes connect to neighboring bag
cells. Both types of bag cell processes contain numerous gap junctions. Similar observations
were made in culture, where it has further been observed that the strength of the connection
corresponded to the proximity of two bag cells. Considerations of spatial distance will not
be made here, as this paper encompasses a first attempt at a matured Aplysia bag cell
model. The point model derived here serves as a natural first step to spatial extensions.

Additional considerations

Outward potassium transient currents, also known as A-currents, provide a small (less
than 0.5 nA) current near resting potential, where activation occurs [97]. A-currents are
distinct from the fast K2 potassium current that participates in basal bag cell excitation
[98]. A hyperpolarizing pulse to -95 mV will cause the A-current to reach amplitudes over
10 nA, but these holding potentials should be irrelevant to the typical bag cell function.
The A current is further diminished by the 2nd-messenger, cAMP [58], which is elevated
during afterdischarge [97]. Thus, the A-current will be neglected in the model presented
in this research.

Much of the literature covered so far includes various discussion cAMP and its asso-
ciation with the afterdischarge [56][28]. Particularly, cAMP can initiate afterdischarge in
bag cell neuron and increase spiking frequency during afterdischarge [58]. This is thought
to be due to cAMP’s effect on potassium conductance . A complete model may, therefore,
require considerations of the modulator effect of cAMP on potassium currents.
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1.2 Methods

We use a conductance-based model, similar to the Hodgkin Huxley model. Of 55 parame-
ters used in the final single bag cell model (laid out in Appendix A), only about 25 had data
available for fitting. Most of this data pertains to the following parameter sets: calcium
activation, potassium activation, all reversal potentials, and much of the voltage-dependent
non-selective cation parameters. All available data was provided by the Magoski lab. Con-
ductances, use-dependence, inactivation, and many parameters of the nonselective cation
channels were tuned such that they produce the correct behavior in their given contexts,
including properties like spike shape, excitability, and propensity for afterdischarge. Some
currents observed in Aplysia were excluded.

1.2.1 Fitting methods

Data was fit using MATLAB’s optimiation tool box. For fitting, functions were chosen that
mathematically express current (such as in Equation 1.3) and experimental data provided
by the Magoski Lab was used as the input. For whole cell spiking, a least squares fit of the
membrane potential was used to quantify deviation of the model from the experimental
data.

Kinetics

Fitting of the steady-state functions of the gating variables, and their associated time-
constant functions, are performed in two steps, defined here as Phase I and Phase II.
In Phase I, the values of the voltage-dependent steady state function and the voltage-
dependent time constant function are determined for each clamp potential, Vc. In Phase
II, the steady-state and time constant functions themselves are fit from the points (yss, V )
and (τy, V ) that result from Phase I fitting.

Phase I fitting

The solution to the activation portion of Hodgkin Huxley model (Eq. 1.11) is

m(t) = m0 − [(m0 −m∞)(1− e−t/τm)]. (1.14)

For activation, in which we assume m0 = 0, this reduces to

m(t) = m∞(1− e−t/τm). (1.15)

For inactivation, in which we assume h0 = 1, the solution becomes

h(t) = e−t/τh + h∞(1− e−t/τh). (1.16)
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Figure 1.6: The calcium current under voltage clamp experiment discussed in Section
1.1.2 (see Figure 1.1, top). Experimental data provided by Magoskki lab (top) relies on
user-selected point for activation (cyan points) and inactivation (red points). Points are
selected such that no inactivation is taking place in the activation phase (cyan points)
and the activation has reached it steady state value in the inactivation phase (red points).
The corresponding mathematical fit is compared directly to the experimental result for
activation (bottom left) and inactivation (bottom right).

In Phase I fitting, if we assume a general current, Ix with activation x(t, V ) and inactivation
y(t, V ), a time dependent equation can be fit to the data from voltage-clamp experiments
(Figure 1.6, bottom left), using the form

xg = xss(1 +Be−
t
τx ), (1.17)

where the parameters of interests are the steady state function, xss, and its associated time
constant, τx. The parameter, B, allows for a time shift in case t = 0 isn’t well defined
for the experiment. When fitting activation, the quantity xg is the combined maximal
conductance and the activation function for the current, Ix = gxx(t)y(t)(V − Vr). When
fitting activation, we assume that the inactivation, yss = 1, thus

xg =
Ix

V − Vr
, (1.18)

where V is the membrane potential and Vr is the reversal potential of ion x. The resulting
xg can then be used to determine the inactivation, in a similar fit. From the data, Ix, one
wants the form
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yg =
Ix

xg(V − Vr)
, (1.19)

as in (Figure 1.6, bottom right) where

yg = A+ yss(1 +Be
− t
τy ), (1.20)

where A is a stand in for the isolated e−t/τh term in Eq. 1.16

Typically, experiments will provide data from both activation and inactivation expe-
riments, to better separate the two. In activation experiments, the membrane potential
is held at some pre-clamp potential, Vp, then raised to the clamp potential , Vc, which
changes with each experiment. In inactivation currents, Vp is typically higher than Vc and
it is Vp that varies with each trace while the clamp potential, Vc, remains the same.

Due to the complicated nature of the channels involved, no reliable activation data is
available. In the case of the Aplysia Ca2+ channel, inactivation becomes use-dependent,
presumably due to Ca2+-dependence, so a typical inactivation experiment (in which the
assumptions is that the current is considered solely voltage dependent) fails to model
the mechanics of inactivation. In the case of the Aplysia two potassium channels, their
inseparability poses numerous fitting problems that have yet to be successfully addressed.

Therefore, all Phase I fitting is done on activation experiments, using the in-step acti-
vation. This requires some manual adjustments to inactivation parameters in the ODE
model after fitting is completed. Because of the complexity of the bag cell and the vari-
ability in some channel properties, adjustment of parameters will ultimately be necessary
in the final model and optimization methods will need to be developed.

To assist in comprehensive feedback when fitting channels, a GUI was constructed in
MATLAB’s GUIDE and implemented for Ca2+ fitting (Figure 1.7). The GUI allowed
its user to quickly change fitting bounds and select the appropriate points to extract
parameters from. This helped visually avoid regions where activation and inactivation
overlapped. It also helped with technical details (such as variability in command current
onset between experiments). Additionally, it provides a way to visually verify the curve
fitting tool is behaving appropriately when variability from different cells is introduced.
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Figure 1.7: A GUI designed in MATLAB for performing Phase I fitting on the Ca2+

current. In the top right, a trace is selected for a given clamp potential. Output of fit
compared to data is shown in the bototm left and bottom right windows.

Phase II fitting

In Phase II fitting, accuracy and robustness suffer as each of the fits in Phase I has no
interdependency on any other fit, so Phase I fitting is blind to Phase II expectations. For
simple currents, this can easily be fixed with hand tuning (such as throwing out bad data
points or restricting the bounds of the Phase I fit) but for more complicated currents, some
innovation is required. This will be discussed more in the potassium fitting section.

Once the data has been collected for each voltage clamp experiment, a collection of
points for xss and τx are generated by the Phase I fitting for activation, while a similar
collection of points, yss and τy, are generated by Phase I inactivation fitting.

Phase II fitting consists of fitting those points to functions of the form
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xss =
1

2

(
1 + tanh

V − V1

V 2

)
(1.21)

τx = τ0 sech
V − V 3

2V 4
. (1.22)

Examples of the above are given in Figures 1.8 and 1.9 for potassium. Additional fitting
procedures are described as needed in the potassium section.
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Figure 1.8: Fitting smooth functions (red) to the points retrieved from Phase I fitting
(blue) for the K+ activation function. Data provided by Magoski lab.
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Figure 1.9: Fitting smooth functions (red) to the points retrieved from Phase I fitting
(blue) for the K+ time constant function. Data provided by Magoski lab.

Isolated currents

When current data was available, and once the kinetics of a channel have been determined
through fitting, they were verified in simulation, as initial conditions can introduce a layer

19



of complexity, as is the case with activation and inactivation variables. For them, any error
in assumption (such as h0 = 1 or m0 = 0) or calibration of initial conditions during fitting
can significantly affect trajectories. To verify the model, an ODE is written for the system
with the membrane potential, V , used as a parameter. For each simple current with no
modulations, the system is a simple pair of independent ODE’s with a voltage-dependent
steady state and a voltage-dependent time-constant (Equations 1.11-1.12). Once the gating
variables been simulated, the current can be reconstructed as

Ix = gxm(t)h(t)(Vc − Vx), (1.23)

where x is the current or ion species being modeled, gx is its maximum conductance, m
is the activation function, h is the inactivation function, Vc is the clamp potential. The
resulting curve (t, Ix) is compared to experiment as demonstrated later (Figure 2.7). Note
that, unlike the Hodgkin-Huxley formulation, the activation variable, m, in the current
equation is simply m, not m4, as Ca2+ activation slopes tend not to have as pronounced
of a sigmoid shape as sodium channels (Figure 1.8).

1.2.2 Voltage-independent nonselective cation current

No direct kinetic data is available for voltage-independent nonselective cation channels,
but some observations of its relationship to calcium concentration have been quantified
[50]. In this paper, it is modeled with activation and inactivation functions, analogous to
the voltage-dependent activation functions described above. Unlike calcium and potassium
currents, the time-constant was chosen as a true constant, and not a function. Lacking
explicit measurements of the time-constants, they are chosen to be large enough that the
depolarization preceding the onset of afterdischarge occurs after cessation of the external
applied current.

1.2.3 Voltage-dependent nonselective cation current

Unnormalized data was provided by experimental collaborators (normalized data published
in Lupinsky, 2006 [69]) and a fit was performed on two voltage-dependent curves with
varying calcium concentration to determine how calcium concentration altered the voltage-
dependent parameters (i.e. the half-activation and the activation slope). The calcium
current’s maximum time constant for activation, τm0, was chosen as the time-constant for
the voltage-dependent cation current,

1.2.4 Afterdischarge simulations

To elicit afterdischarge in the model, a train of pulses at 5 Hz with a 10 s duration was
used. The amplitude was 1.4 nA and the pulse width was 150 ms, corresponding to an
on-rate of 75% in the 200 ms duration of the cycle (Figure 1.10). In the present model,
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the long-term calcium delay, r, acts like an integrator on this command current. That
is, the area under the curve of the command current determines the influx of calcium
in the model. Channels dependent on this calcium influx were tuned such that a 5 Hz,
10s, 250 ms duration command current would provide sufficient calcium concentration
to evoke afterdischarge. Alterations to the command current can, therefore, lead to more
excitability (evoking afterdischarge quicker) or less excitability, leading to little or no spikes
before returning to the depolarizes resting potential.
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Figure 1.10: The command current. A 5 Hz pulse with a 150 ms width and 1.5 nA
amplitude. The command current is typically delivered for 10 s, only 1.0 s shown here.

With limited experimental data on nonselective cation channels, many of its parameters
were tuned manually such that they would reproduce afterdischarge.

1.2.5 Whole cell optimization

Because of the inherent nonlinearities that restrict analytical solutions, the Jacobian of
the system can also be difficult to compute, since analytical solutions are often not avai-
lable. The Jacobian must be analyzed numerically and cannot be given in a functional
form that would be of advantage to common optimization methods. This makes the ge-
netic algorithm a natural choice for model construction and parameter tuning [91][38][53].
Genetic algorithms (Figure 1.11) consist of a series of steps in which parameter points
are tested and ranked, and successful parameter points (those which produce neuron-like
spiking) exchange some parameter values with other successful parameter points (Cros-
sover or Mating). After exchanging parameters sets, individual parameters are randomly
selected for mutation and the process begins again with the new set of parameter points
(dubbed “offspring” of the original parameter points). In genetic algorithm nomenclature,
the parameter sets are chromosomes, while each parameter in a parameter point is a locus.

In the present study, two different genetic algorithms are implemented. One was engi-
neered from scratch in MATLAB, while the other is MATLAB’s onboard ga.m from the
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Figure 1.11: Selection: The genetic algorithm considers a population of parameter points
and tests them against experimental data. Crossover: parameter points that score well on
the tests swap some parameter values with other successful parameter points (as in top,
right box). Mutation: Some parameter values are randomly selected and altered slightly.
The new crossed, mutated parameter sets are tested and the cycle repeats. Lower-right
inset: examples of results from successful parameter points.

Optimization Tool Box. The homemade genetic algorithm was implemented as a proof-of-
concept and used to quickly find a parameter regime in the Morris-Lecar cell with added
Ca2+ kinetics that could reproduce the trajectory of the membrane potential observed in
experiments. Initial parameter points are generated as a small distribution around the
nominal parameter values of the Morris-Lecar neuron. Then, a least-squares-fit between
experiment and simulation results was used to rank the parameter points. After several
generations of ranking, crossover, and mutation, a good fit of the Morris-Lecar neuron to
the Aplysia bag cell neuron results (Figure 1.12).

Following this exercise, MATLAB’s onboard genetic algorithm was implemented for the
full bag cell model, as discussed in the Synthesis chapter.

1.2.6 Continuation Analysis

Continuation analysis is performed using Matcont, a MATLAB package. The user provides
an input file defining the system of ODEs to be studied. The equilibria of the model depend
on a given control parameter. In our case, the external applied current is used as the control
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Figure 1.12: Replicating aplysia bag cell spiking behavior (red) with a 2D Morris-Lecar
model (black) the model uses a floating Nernst-like reversal potential, dependent on the
Ca2+ concentrations of an internal domain (yellow).

parameter. Thus continuation curves show how points and stability change as the applied
current varies. Matcont also provides limit cycle continuation, which is implemented on
Hopf points in the present thesis, to show where periodic behavior might exist in the
system.

1.2.7 Network

A range of coupling constants for network simulations were chosen through trial and error
to produce a network that propagated excitation. The numerical values of this range
varied for different network topologies. Coupling constants at the lower end of the range
are defined as weak, while constants at the higher end of the range are considered strong.

Network topologies were chosen first, for simple analysis (as in the ring network) of wave
propagation. Once basic network nuances were determined in this simple case, cluster and
scatter topologies were implemented.

23



Chapter 2

Model Construction

We are interested in a theoretical validation of what experiments seem to suggest: that cal-
cium plays a critical 2nd-messenger role in onset of the afterdischarge. Model construction
is, therefore, guided largely by experimental data pertaining to this question.

In order to answer the question of the mechanisms driving afterdischarge, we wish to
construct a biologically accurate model of the bag cell neuron that includes appropriate
channel mechanics. This allows components of the model to be related to experimental
observations and can make model results informative by reproducing biology experiments
in silica. Since the afterdischarge pertains to action potentials of the bag cell neuron, the
primary currents of the bag cell action potential must be modeled

For the typical ion conductance model, a neuron is reduced to a point model: a unit
area of membrane with channels and their associated second-messenger systems embedded
within. This point model can be generalized for most cases [1]. A great deal of model
construction consists of modeling the kinetics of the channel, especially when kinetic design
is guided by experimental evidence. When such data is available and model assumption are
valid, channel design hinges on accurate fitting of the data to the appropriate equations.
There are many distinct phases of fitting, each with their own caveats. Some accuracy is
lost at each stage of the fitting, depending on how well-behaved fits are. In Phase I fitting,
the results of voltage clamp experiments for various values of membrane potential, V , are
fit as a function of time to extract the time constant and steady state values for each value
of the membrane potential. In Phase II fitting, a fit of the these values as a function of the
membrane potential is produced to be implemented directly in the differential equation.
The methodology of this process is available in Methods (Subsection 1.2.1).

After channel models have been constructed and implemented through Phase I and II
fitting, any associated second-messenger systems are then added to the existing channels
and some manipulations will often be required to get the fit result matching the experiment
again. In the case of the Aplysia bag cell, the Ca2+ channels exhibit a use-dependence that
appears to be moderated by a second messenger system involving, Ca2+ binding with
calmodulin.

Once models for all the major contributing ion channels and their second messengers
have been constructed, a synthesis protocol is required to bring them together into a single,
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comprehensive model of the Aplysia bag cell membrane potential. In the synthesis stage,
the relative conductance of each channel is manipulated, along with the capacitance and
applied current of the membrane. Further, a leak channel is added to represent unmodelled
currents and to set the resting potential of the cell.. This can be a difficult and tedious
task when guided by intuition alone, making optimization software necessary. Because the
gradient of such complex systems can’t readily be computed, genetic algorithms often make
an efficient choice for testing the parameter space. During this phase, kinetics should not
be altered unless they have to be, as the kinetics are informed by experiment, but relative
conductance can vary greatly depending on patch size and animal channel distribution
variation.

Once a region of parameter space is found that produces classic neural behavior with the
main contributors to current, secondary channels and additional second-messenger kinetics
can be applied that serve modulatory purposes. In the case of Aplysia, the secondary
channels are nonselective cation channels, which are presumed to be responsible for the
onset and duration of the afterdischarge.

Analytical solutions to the whole cell model are seldom available, thus computationally-
expensive numerical solutions are required. The effect of parameter changes in the system
must be measured by simulating its trajectory through phase space, and comparing the
observable variable (membrane potential) to experimental results. Further, adjustments to
the system are often unintuitive and can lead to losses in other aspects of model accuracy.
It is therefore beneficial to use a genetic algorithm to optimize the selection of parameter
points. In this way, many different parameter points can be simulated and only those
matching the successful condition are manually verified.

2.1 Ion current models

2.1.1 Calcium current

Calcium data for the Aplysia bag cell was provided by the Magoski lab, including both
published [50][99] and unpublished data. Experiments resulting from several different bag
cells provided consistent results when it came to fitting the activation and its associated
time constant.

A first attempt at fitting calcium compared the disjoint method (Figure 1.6), in which
activation is treated separately from inactivation, to the full trace method [105]. The full
trace method involves fitting the complete current equation, rather than independently
fitting activation and activation. Constants of the equation

ICa = mss(1− e−(t−t0)/τm)(hss + (1− hss)e−(t−t0)/τh)(V − 60) (2.1)

are fit directly to experimental data.
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The full trace method fits both activation and inactivation simultaneously, using data
from both activation and inactivation experiments. As stated previously, calcium inacti-
vation data does not fit the assumptions of a purely voltage-dependent channel, so the
in-step inactivation was used to represent inactivation data for the full trace method.
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Figure 2.1: An attempted fit (red) of Ca2+ using the full trace method (Equation 2.1),
fitted to data (blue) from experimental collaborators [50].

However, a difficulty arises with the full trace method in fitting. Because the activation
and inactivation steady state values are being fitted simultaneously and each voltage clamp
fit is independent of other voltage clamp fits, there is no unique combination, msshss and
the resulting values are noisy and arbitrary. This often resulted in meaningless results for
Phase II fitting (Figure 2.1). Eventually, the disjoint method (Eq. (1.17-1.20) and Figure
1.6) was used in place of the full trace method, yielding a more biologically consistent
result (Figures 2.2 and 2.3).
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Figure 2.2: The activation function, m (green), and inactivation function, h (red) for Ca2+

using the disjoint method for fitting (Subsection 1.2.1). Data provided by experimental
collaborators [50].

In total, data from eight different cells were used, implementing the disjoint method on
data provided by the Magoski Lab, kinetic parameters were extracted with the Phase I and
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Figure 2.3: Time constants functions for the activation, τm (green), and inactivation, τh
(red) for Ca2+ using the disjoint method for fitting (Subsection 1.2.1). Data provided by
experimental collaborators.

Phase II fitting methods described previously. Results for calcium channels show robust
kinetics (Figure 2.4). Values are provided (Table 2.1) along with a correlation table that
shows interdependency between parameters (Table 2.2). Knowledge of the correlations
between parameters helps when manually tuning the model or when devising rules for
optimization. Changes in one parameter often require adjustments in other parameters to
maintain desired model behavior. This is often the case for highly correlated parameters.
Using the correlation table, when necessary parameter adjustments produce undesired
results, additional modifications can be attempted on parameters that correlate well with
the changed parameter. The correlations were computed using MATLAB’s corr.m, which
computes the pairwise correlation coefficient via the Pearson method. Examples of both
highly correlated (-0.96) and poorly correlated (4.6 × 10−3) parameters resulted (Figure
2.5). It’s not surprising that V5 and V6 are correlated, as they are parameters in the
same steady-state activation function; the shift and the slop, respectively. This negative
correlation implies that an increase in one requires an decrease in the other to compensate
and maintain a consistent calcium response. This assertion relies on the assumption that
experimentalists are providing data of what they consider to be in the range of typical
calcium response for an active cell.

Aplysia bag cells display use-dependence in their calcium channels which is thought to
be Ca2+-dependent [50]. With repeated firing, calcium channels become more and more
inactivated. A first attempt at modeling use-dependence assumed that changes in the
internal calcium domain would lead to changes in the reversal potential, VCa of calcium
channels [109]. This, in turn, would reduce the driving force (V − VCa). A preliminary
model was able to reproduce use-dependence experiments. However, it did so with the
compromise of changing the kinetics fit from activation experiments. No parameter regime
was found in the system which reproduced both activation experiment and use-dependence
experiments simultaneously.

The present author later discovered a calcium-based use-dependence model that had al-
ready been established for Aplysia abdominal ganglia [21] in which Ca2+ binds to a protein
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0002a 0006a 0008a 2002 4000 4004 1004 Tam
V1 [mV] -7.23 -6.80 -4.47 -4.13 2.29 -17.28 -1.17 -6.30
V2 [mV] 12.73 10.60 12.60 11.61 11.49 11.37 12.30 11.20
V3 [mV] -24.63 -21.43 -18.75 - - - - -13.70
V4 [mV] 19.56 21.20 21.38 - - - - 20.20
V5 [mV] -17.03 -11.60 -23.57 -14.21 -45.03 -42.58 -10.54 -10.54
V6 [mV] 11.68 9.79 11.56 10.15 15.77 17.52 8.72 8.72
V7 [mV] -100.00 -9.18 -28.83 -12.75 1.94 -100.00 -100.00 -100.00
V8 [mV] 42.89 20.11 32.87 17.44 24.02 27.23 23.24 23.24
τm0 [ms] 0.02 0.01 0.01 0.02 0.03 0.01 0.02 0.02
τh0 [ms] 0.42 0.26 0.34 0.27 0.30 0.92 1.31 1.31
gCa [mV] 0.08 0.05 0.06 0.10 0.13 0.03 0.07 0.07
VCa [mV] - - - 57.35 52.58 40.10 54.38 54.38

Table 2.1: Fitted parameter values resulting from the disjoint method (Section 1.2.1) for
their given File ID and the Tam paper results [99].

V1 V2 V3 V4 V5 V6 V7 V8 τm0 τh0 gCa
V1 [mV] 1.00 0.11 - - 0.07 -0.31 0.77 -0.17 0.63 -0.86 0.84
V2 [mV] 0.11 1.00 - - 0.07 -0.07 -0.41 0.81 -0.01 -0.03 0.14
V3 [mV] - - - - - - - - - - -
V4 [mV] - - - - - - - - - - -
V5 [mV] 0.07 0.07 - - 1.00 -0.96 0.13 -0.00 -0.29 -0.55 -0.14
V6 [mV] -0.31 -0.07 - - -0.96 1.00 -0.37 0.09 0.19 0.75 -0.02
V7 [mV] 0.77 -0.41 - - 0.13 -0.37 1.00 -0.69 0.29 -0.77 0.48
V8 [mV] -0.17 0.81 - - -0.00 0.09 -0.69 1.00 -0.13 0.22 -0.12
τm0 [ms] 0.63 -0.01 - - -0.29 0.19 0.29 -0.13 1.00 -0.32 0.93
τh0 [ms] -0.86 -0.03 - - -0.55 0.75 -0.77 0.22 -0.32 1.00 -0.57
gCa [µS] 0.84 0.14 - - -0.14 -0.02 0.48 -0.12 0.93 -0.57 1.00

Table 2.2: Correlation of fitted parameter values, n=8, computed by taking the cross-
correlation between fitted parameter results.
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Figure 2.4: Results of fitting from multiple calcium channel voltage clamp experiments.
Data provided by experimental collaborators. No inactivation experiments were performed
on exp 6-8

(presumably Calmodulin) through which it can modulate channel dynamics. Building from
the original model, a voltage-dependent inactivation is added. The full calcium channel
model is described by
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Figure 2.5: Examples of highly correlated (left) and poorly correlated (right) parameters
as fitted from experimental data.

ṁ =
(mss −m)

τm
(2.2)

ḣ =
(hss −m)

τh
(2.3)

ṡ =
(1− Pb)ICa
−2Fv

−D(s− s0), (2.4)

where m and h are the usual Hodgkin Huxley gating variables and s is the calcium con-
centration. In Eq [2.4], Pb is the probability of a single Ca2+ ion binding to buffer, F is
Faraday’s constant, and v is the volume defining a microdomain near the channel inside
the membrane. Calcium leaves the microdomain with the rate of diffusion, D, until the
uniform internal calcium concentration, s0 is reached.

The calcium-dependent inactivation is implemented on the calcium current via

ICa =
gCamh(V − VCa)

1 +Ks
(2.5)

where K describes the channel’s inactivation sensitivity to Ca2+. Note that the calcium
concentration has units of M. This choice of units is arbitrary; as long as any changes in
the units of calcium are reflected in K and, later, calcium dependent activation functions,
then no numerical values need to be changed and the resulting simulation will have the
same outcome. To make the conversion, one would simply change all units of M to (for
instance) µM.

In the present study, this model is adapted to the calcium channel and acts similarly
to voltage-dependent inactivation (Figure 2.6). The calcium-dependent inactivation does
not replace voltage-dependent inactivation in the calcium channel, but supplements it. No
explicit fitting took place. Rather, through trial and error, the channel is simulated and
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Figure 2.6: Calcium-dependent inactivation of the calcium current as a function of Ca2+

concentration, s, using a model derived from observations in neurons L2 through L6 in the
Aplysia abdominal ganglia [21].
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Figure 2.7: A simulation of the calcium channel model (black) under voltage clamp compa-
red to the experimental voltage clamp (red). Data provided by experimental collaborators.

compared to the associated activation experiment (Figure 2.7). Additionally, a simulation
replicating experimental conditions [50] is run (Figure 2.8). These results validate the
calcium channel model.

As a final step, calcium-dependent enhancement is added to the calcium current model.
Previous research has observed that enhancement is mediated via protein kinase C (PKC)
and acts to recruit calcium channels, augmenting the calcium current [31]. Here, we model
it as a direct dependency on calcium,

Ḡ = gCa(1 +m
1

2
(1 + tanh

Cai − Ca1

Ca2

)), (2.6)

where gCa is the conductance when minimal Ca2+ is present, m dictates how much cal-
cium increases gCa, such that fully activated enhancement is (m + 1)gCa, Ca1 is the half-
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Figure 2.8: A simulation of use dependence in the calcium channel model yields similar
results to experiment (Figure 6D in vitro from Hung, 2007 [50]).

activation of the enhancement, and Ca2 is the slope. Enhancement parameters are tuned
after implementation of nonselective channels, to assist in reproducing the afterdischarge.

Together, standard Hodgkin-Huxley gating, a calcium-based use-dependence, and calcium-
dependent enhancement make up the complete calcium channel as it is modeled in the
whole bag cell neuron.

2.1.2 Potassium Channels

It has been known for decades that the Aplysia bag cell neuron has two components to
the potassium current [98]. The currents are, thus far, inseparable via standard channel
blocking methods. The slow current, IK1, and the fast current, IK2, make up the potassium
current via Kirchoff’s current law

IK = IK1 + IK2 (2.7)

where the individual currents are defined by

IK1 = gK1m(V, t)(V + 80) (2.8)

IK2 = gK2q(V, t)p(V, t)(V + 80) (2.9)
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where gK1 and gK2 are the maximal conductances, m(t, V ) and q(t, V ) are the typical
activation variables, p(t, V ) is an inactivation variable, and (V + 80) is the driving force
(assuming the potassium reversal potential is VK = −80). Notice that IK1 does not have
an inactivation variable associated with it, as experimental literature reveals that the K1

channel shows ”little or no inactivation” [98].

First attempts at resolving the ambiguities of two potassium channels involved using the
Quattrocki model [89] to describe IK2. In the associated experiment, Quattrocki expressed
K2 potassium channels in frog oocytes (unfertilized egg cells) and typical voltage clamp
experiments were performed on the oocyte patches, resulting in the development of a model
through fitting and finding appropriate functions. Because the Quattrocki experiment
isolated K2 from K1, attempts at modeling the full potassium current involved taking data
from the Magoski lab (which includes both currents) and subtracting the model-derived K2

from the data. However, the Quattrocki model presented many conflicting and problematic
characteristics and was eventually abandoned.
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Figure 2.9: Comparison of K+ activation time constants for Quattrocki [89] model (red)
to a fit constructed from data provided by experimental collaborators for three different
cells (blue).

The first conflict with the Quattrocki model was an order of magnitude difference in the
activation time constant for K2 when compared to data from collaborators (Figure 2.9).

Additionally, the formulation of the Quattrocki model is such that any adjustments or
manipulations made to the system can cause numerical problems as solutions blow up or
time steps approach zero. While one can take care to simply avoid regions where these
issue occur, it severely limits the capabilities of optimization methods (like the genetic
algorithm and the human-GUI interface) and requires hardcoding additional constraint
considerations and loss of generality. This is because of the choice of equations used to
represent the time constant and the steady state functions for the Quattrocki model which
cross zero and blow up for large membrane potentials. Any horizontal transformations
made to these functions could cause artifacts in the physiological range.

Another source of conflict with the Quattrocki data is that oocyte capacitance may
significantly alter the wave form [111]. The systems context is lost in the isolated K2
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experiment. In nature, where many channels are present, molecular crowding occurs, which
can play a significant role in cell kinetics [80]. Another phenomena, cooperation, can occur
as different ion species interact with buffers and 2nd-messenger systems. There is no way to
know how system phenomena like crowding and cooperation alter membrane responsiveness
to current. The membrane of a bag cell neuron is a complicated electrochemical system
and presents a different biological context than a lab-prepared oocyte.

An alternative to fitting separated currents is to attempt fitting both potassium currents
simultaneously. The previously mentioned issue with fitting independent voltage traces
applies even more strongly in the case of two currents. Using standard fitting practices
yields noisy, nonsensical results when there is no unique solution. To account for this, the
present study relies on ”parameter forcing”. With two superimposed currents, a total of
eight functions exist to describe the voltage response over time in the potassium current.
Each parameter is plotted and fit as usual with the addition of tight bounds. This allows
the user to control the general shape of some functions in ways that they expect the
outcome to be, given the data. For instance, K2 is much faster than K1, so the two
are bound in their relative magnitudes (Figure 2.10). Similarly, activation functions are
constrained to be activating (so that they start low and end high) and inactivation functions
are constrained to be inactivating (so that they start high and end low). The parameter
forcing avoids situations such as occurred with the full trace method (Figure 2.1). However,
parameter forcing does not avoid the problem of multiple solutions when such solutions
are physiologically meaningful. Adjusting the time constant to match experimental data
is not a trivial process given the complicated form of the model, so this approach was not
pursued.

Another consideration when fitting potassium parameters is that potassium tends to
have a lot of variety across cells within a single organism. While calcium channels tend to
be robust, potassium channels tend to be diverse [27] and, with respect to the Aplysia bag
cell, can change channel density based on activity[117].

Bag cell excitability varies from cell to cell. Experimental data on the kinetics of
potassium cells does not discriminate based upon whole cell excitability. To track how
variability in potassium channels related to cell excitability, experimental collaborators
at the Magoski lab provided data from cells containing both potassium voltage clamp
experiments and whole bag cell spiking experiments for the same cells. Some cells did not
spike at all or spiked poorly (Figure 2.11), so their potassium profiles were ignored. From
the cells that spiked more robustly (Figure 2.12) potassium voltage clamp profiles were
taken for fitting and the resulting values entered into the parameter forcing program for
Phase II fitting.

Initial attempts at fitting in this way appeared to go well when directly fitting the
voltage-dependent functions to the data (Figure 2.13), but when the derived parameters
were put into the ordinary differential equation, the results lost significant accuracy (Figure
2.13, blue squares). The source of this discrepancy was found to be due to initial conditions
for the activation of each channel and inactivation of K2, adding three additional fitting
parameters. Two of these three parameters have multiplicative operations between them
which can be satisfied by a large range of physiologically reasonable values, introducing
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Figure 2.10: Parameter forcing method. Forcing is implemented by constraining maximum
and minimum of fit with a voltage-dependent function (red lines) and providing a suggested
value (black lines). The fit results (blue lines) are often noisy and require forcing for them
behave in a biologically plausible way.

more ambiguity to the fitting result in the form of noise. In addition, it is the nature of
excitable systems that they demonstrate some sensitivity to initial conditions.

The errors resulting from fitting the time constants, which were still quite noisy them-
selves (Figure 2.10, right hand column), likely also played a significant role. When tuning
the system by hand, small changes to achieve one result would compromise changes to
other characteristics of the channel’s time course under voltage clamp.

To avoid the many complications encountered above, one particular potassium profile
from experimental collaborators in which the whole cell still demonstrated spiking stood
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Figure 2.11: Experimental measurement of the membrane potential of a bag cell with me-
dium excitability spikes under constant current injection. Data provided by experimental
collaborators.
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Figure 2.12: The recorded measurement of a spiking bag cell, held under constant cur-
rent injection. The membrane potential saturates around -18.0 mV. Data provided by
experimental collaborators.

out. Unlike most profiles, the time constants for the activation of K1 and K2 appear to be
closer together, allowing one to fit the voltage clamp experiments as if there were a single
channel involved (Figure 2.14).

Therefore, the single-channel is implemented in the final prototype of the Aplysia bag
cell neuron, forgoing some early, fast potassium current for a simple implementation. Neg-
lecting this nuance may affect action potential shape or alter eliminate important short-
term behavior, but separating the currents has proven to be too cumbersome during first
construction of the model.
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Figure 2.13: The direct fit solutions for voltage clamp (red) compared to the experimental
data (blue) and the ODE-generated simulation result (blue squares). Experimental data
provided by collaborators.

0 0.05 0.1 0.15

0

0.05

0.1

t

I K

 

 

Figure 2.14: K+ experiment (red) compared to a simplified single-current model (black).
The cell that produced this potassium curve also produced spiking (Figure 2.12). Data
provided by experimental collaborators.

2.1.3 Synthesis of Currents

Once individual channels have been constructed from voltage clamp studies, the whole
membrane can be constructed. However, at this point, many parameters become relevant
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for which there is no standardized data. In particular, the relative conductance of each
channel is an open question. While some measures are available, they vary greatly from
experiment to experiment depending on cell membrane variability, cell size, patch size,
junction potential compensation, capacitive artifacts, and variability in driving and recor-
ding amps. Using the conductance from a calcium experiment along with the conductance
from a potassium experiment is a meaningless combination given all the different environ-
mental factors that contribute to the conductance measurement for each. Experimental
intuition can, however, inform order of magnitude. Using reasonable bounds, informed by
experiment, can help focus a numerical search for the appropriate parameter space.

Figure 2.15: GUI program for parameter refinement. A - Output for whole bag cell model
(blue) compared to experiment (red), B - Output for use-dependence simulation of model,
C - Master control panel, D - Output for Ca2+ voltage clamp simulation (blue) compared
to experiment (red), E - Genetic Algorithm button, F - kinetics manipulator. See Figures
2.16-2.18 for details.

For the present study, a sufficient bag cell model must do three things. It must repro-
duce, with reasonable accuracy, the voltage spike waveform when run as a current clamp,
the calcium voltage clamp experiment, and use-dependent inactivation. For use-dependent
inactivation, a series voltage clamp pulses are delivered to the bag cell and the resulting
current is measured. Given the inherent variability in potassium, potassium parameters are
more free to assist in producing the correct spike shape and timing. For each manipulation
made to the model to better align it with one test, care must be taken that alignment is
not lost with another test. To ensure this, a GUI was constructed to provide an immediate
visual output for all three tests (Figure 2.15, A, B, and D). When changes are made to the
parameter point (Figure 2.15, C, F, and E) the GUI automatically updates the visual out-
put (A,B, and D) to reflect the changes. Further, because the use-dependence simulation
is computationally exhaustive, rerunning of the simulation can be disabled to more quickly
achieve a better fit for spiking (A) and calcium voltage clamp (D), then the simulation
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can be re-enabled to ensure the new parameter set satisfies a visual comparison to use-
dependence experiments. Using panels C and F, the user can manually change parameters
using different interfaces (see Figures 2.16 and 2.17), while the Genetic Algorithm button
(E) runs MATLAB’s ga.m from the Optimization Tool Box. A secondary GUI screen
allows the user to choose which parameters will be altered through the genetic algorithm
(Figure 2.18). Most of the parameters in the system are available for manipulation in the
genetic algorithm interface, including the maximum conductances and channel kinetics for
all channels, use-dependence terms, and global terms like capacitance and applied current.
Once the genetic algorithm is done optimizing about the chosen parameters, the result is
implemented and all the windows are updated so that the user can immediately see the
results of the new parameter set, and analyze its performance on the different tests.

The features combined in one one screen give the user a lot of efficient control, combining
both manual and automatic fitting procedures to optimize time spent exploring parameter
space.

Figure 2.16: GUI master control panel. ”Global Keys Mode” button allows key press
manipulation of the parameters listed above it, updating the parameters and plotting the
output with each key press. The ”Use Dependence” panel allows direct entry of diffusion
parameters, RESET resets to default parameters (hard coded in GUI code), the SAVE and
LOAD functions allow parameters to be saved while exploring the parameter space, and
loaded later. ”Experiment selection” allows user to select which tests make it to the visual
output. This allows time to be saved, particularly when using ”Global Keys Mode” it is
helpful to exclude (uncheck) ”Use Dependence” to skip the use-dependence test to avoid
long wait times. ”Update Use Dependence” runs all selected simulations again and plots
the new outputs (Figure 2.15, A, B, and D).
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Figure 2.17: GUI kinetic manipulation. The kinetics for each channel can be selected and
changed visually, using MATLAB’s ginput function to choose points. This allows for a
quick changes to be made based on intuition about the currents. The user chooses: three
points for activation (top left), with the first two points lying on the activation curve and
the third, the maximum conductance; three points for activation time constant (bottom
left), with the first two points lying on the curve and the third, the maximum time constant.
If inactivation is selected, two points are required for the inactivation curve (top right) and
three points, as before, for the inactivation time constant. Once points are chosen, the new
kinetics are plotted, the selected tests are run, and their corresponding outputs are redrawn
in GUI outputs (Figure 2.15 A,B, and D).
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Figure 2.18: GUI Genetic Algorithm options panel. Once manual tweaking through the
main control panel (Figure 2.16) is close enough, user can use a genetic algorithm with
a least-squares fit between experiment and model as the test. Additionally, the user can
choose which parameters to allow the genetic algorithm to work on. In the above example,
non-measurable parameters are perturbed 10% around the nominal values provided by the
main GUI output. Once the genetic algorithm completes running (when it has reached
the number of GENERATIONS designated) the simulations are repeated and the output
plotted (Figure 2.15 A,B, and D)
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2.1.4 Nonselective channels

With the basal currents modeled, the nonselective channels and enhanced calcium current
can be implemented in the bag cell in order to replicate experimental observations. In the
biological cell, depolarization of the membrane potential is observed following a 5Hz, 10 s
long stimulus to the bag cell neuron. The depolarization appears to be initiated by nonse-
lective voltage-independent channels at its onset, but is later thought to be dominated by
a PKC-enhanced calcium current related to calcium channel recruitment in the membrane
[31] as well as persistent activation of calcium [50].

Both cation channels require a delayed calcium variable for the model to have a delayed
response from the end of stimulus to the beginning of afterdischarge, as is typically observed
in vitro [50]. The delay is a simplification and could represent either internal processes, such
as internal calcium release via 2nd messenger signaling or calmodulin-facilitated kinetics
in the nonselective cation channels. It appears in the final model (Appendix A) as

ṙ =
r − s
τr

(2.10)

where s is the previously established calcium concentration at the internal domain. The
time constant. A convenient constant value is chosen for τr (see AppendixA) such that it
produces a delay prior to onset of afterdischarge.

Voltage-independent nonselective channels have a reversal potential of -45 mV and
appear to activate and inactivate depending on internal Ca2+ concentration [50]. Thus,
they can be modeled

ICATvi = gCATviθφ(V + 45) (2.11)

θ̇ =
θss − θ
τθ

(2.12)

φ̇ =
φss − φ
τφ

(2.13)

where

θss =
1

2

(
1 + tanh

Cai − Ca3

Ca4

)
(2.14)

φss =
1

2

(
1 + tanh

Cai − Ca5

Ca6

)
, (2.15)

in which the nonselective, voltage-independent current, ICATvi is computed with the con-
ductance, gCATvi, activation θ, inactivation φ, and the driving force, V +45. The activation
functions follow the modern formulation of the Hodgkin Huxley model, but the functions
are dependent on the delayed internal Ca2+ concentration, r, rather than the membrane
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potential, V . Note that the driving force, (V + 45) is still dependent on membrane poten-
tial. The time constant functions, τθ and τφ do not have functions associated with them,
but are treated as constants.

Similar to the voltage-independent nonselective channels, the voltage-dependent non-
selective channels also have a Ca2+ dependence. That dependence has been quantified in
experimental literature, along with measurements of the reversal potential (Vvdp = 10mV )
[69]. Because the data in the published work is normalized, the unnormalized data was
provide by experimental collaborators and a fit was performed. Because the channel functi-
ons as a voltage-gated channel and more data points are available for voltage-dependence,
the channel is treated as voltage-dependent with calcium-dependent modulation. That is,
the half-activation and slope constants of the voltage-dependent terms are dependent on
Ca2+ such that

V1 = Vi1 + Vi2
1

2

(
1 + tanh

Cai − Ca7

Ca8

)
(2.16)

V2 = Vj1 + Vj2
1

2

(
1 + tanh

Cai − Ca9

Ca10

)
, (2.17)

where Ca7−Ca10 are the usual activation-like Ca2+ parameters. Calcium influx modulates
the voltage-dependent half activation, V1, between the values of Vi1 and Vi2. The analogous
is true for the slope, V2, and its bounds, Vj1 and Vj2. There is no inactivation term for the
voltage-dependent channels, thus the current is modeled as

ICATvd = gCATvdη(V − 10) (2.18)

η̇ =
ηss − η
τη

, (2.19)

where

ηss =
1

2

(
1 + tanh

V − V1(Cai)

V2(Cai)

)
. (2.20)

and τη = τη0 is a constant rather than a function.

The final form of both channels and their associated parameters are included in Ap-
pendix A.
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2.2 Prototype Aplysia bag cell neuron model

Using the modular pieces developed thus far, the full bag cell neuron model was developed
into 10 differential equations with nonlinear interdependencies. The system exhibits many
different behaviors depending on parameter choice. Using the parameters established thus
far throughout the methodology, the system is manually tuned to meet three criteria. The
model must:

1. Sit at rest potential (≈ −55 mV) when zero current is applied at nominal values of
calcium concentration, s.

2. Show tonic spiking for positive applied currents.

3. Display persistence after cessation of the command current (5 Hz frequency pulse,
with 150 ms pulse width, 10 s duration, and 1.4 nA amplitude). The cell must
continue to spike when external current is no longer being applied.

Properties like wave shape and current contribution require finer analysis, which will
be handled later. Given the enormous complexity of the system coupled with a limited
data set, a system that produces the desired qualitative results becomes a good baseline for
continuation analysis. Qualitative changes to the system are often accompanied by fixed
points in the dynamical system that can be found with numerical analysis, an approach
which is much faster, computationally, than simulation analysis.

Starting with the results from the synthesis section (2.1.3), the voltage-dependent and
voltage-independent nonselective cation channels were added to the system (section 2.1.4),
along with calcium-dependent enhancement of the calcium channels (Equation 2.6). Using
the knowledge of parameter roles gained from all prior experience in ion-channel modeling,
parameter-tuning was performed manually and piece-wise as each component was added
until a set of parameters were found (Tables A.1-A.4 in Appendix A) that allowed the
system to meet the three criteria given above (Figures 2.19-2.27). The full Aplysia bag cell
model is given in Appendix A.

Most steady state functions (e.g. mss) and time constant functions (e.g. τm) are of
the standard form (Equations 1.4 and 1.22) with shifts labeled by odd-valued subscripts
(V1, V3, ...) and slope labeled by even-valued subscripts (V2, V4). The exceptions are φ, θ,
and η. For the voltage-independent cation channels, the steady state functions for the
gating variables φss and θss are calcium-dependent, rather than voltage dependent. For η,
there are two dependencies, such that ηss = ηss(V, r) expressed

ηss(r, V ) =
1

2

(
1 + tanh

V − V13(r)

V14(r)

)
(2.21)

V13(r) = 80 + 44.8

[
1

2

(
1 + tanh

r − Ca1

Ca2

)]
(2.22)

V14(r) = 51 + 28

[
1

2

(
1 + tanh

r − Ca3

Ca4

)]
(2.23)
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The numerical values for V13 and V14 were chosen from unnormalized data provided by
the Magoski lab. The associated published literature contains normalized figures of the
voltage-dependent nonselective cation channels [50]. Parameter values that successfully
met the primary three model requirements are listed in Tables A.1-A.4

2.2.1 Prototype Aplysia model behavior

The prototype Aplysia model (Appendix A) demonstrates all three criteria for qualita-
tive representation of afterdischarge in the Aplysia bag cell neuron. When no external
current is applied, the membrane potential holds around -55 mV, while calcium and pot-
assium channels drive tonic firing in the model cell (Figure 2.19). Wave shape is similar
in shape to experimental results, but broader and taller, reaching more extreme limits of
depolarization and hyperpolarization. The potassium current over the course of a spike
is two or three times that of the calcium current (Figure 2.20, top). Early in the spike
train, voltage-independent cation channels have little contribution as calcium and pot-
assium channels carry the action potential. Leaky channels carry the largest current, with
some small contribution from voltage-dependent channels (Figure 2.20, middle). Most of
the currents work against calcium, with the exception of the voltage-dependent channels,
which contribute to repolarization shortly after the spike. Finally, during the course of the
1.0 s current clamp, calcium concentration in the microdomain steps up with each spike,
while the calcium delay slowly rises to match (Figure 2.20, bottom).
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Figure 2.19: A profile of the action potential during current clamp (I = 0 nA, followed
by I = 1.4 nA starting at t = 0) in the whole cell model. Data provided by experimental
collaborators.

When the 5 Hz, 10 s command current (oscillating from 0.0 to 1.4 nA with a 150
ms duration) is applied to the bag cell model, it produces a similar action potential, but
recovery between spikes is much slower (Figure 2.21). The current profiles don’t diverge
much from standard current clamp. However, calcium influx has a slower average rise
compared to current clamp (Figure 2.22).
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Figure 2.20: A profile of the individual currents, calcium concentration, and calcium delay
term during current clamp (I = 0 nA, followed by I = 1.4 nA) in the whole cell model.
Note that current profiles (top and middle) are given for a single spike from the onset of
Figure 2.19, while the calcium profile (bottom) includes the entire duration.

The prototype Aplysia bag cell model demonstrates afterdischarge behavior. After 10
s of the 5 Hz command current, the external current is removed (I = 0 nA). At this point,
the membrane depolarizes to around −45 mV followed by immediate persistent spiking
(Figure 2.23). Looking at the current profile reveals that the command current raises
the calcium concentration in the internal domain (Figure 2.24, bottom). The delay term
slowly catches up, activating both voltage-independent and voltage-dependent nonselective
cation channels (Figure 2.24 middle). By the time the external current is removed, sufficient
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Figure 2.21: A profile of the action potential for the model cell (blue) during onset of alter-
nating 5 Hz command current (0nA < I < 1.4nA) with a 150 ms duration. Experimental
data for standard current clamp included for comparison (red).

calcium is present for calcium current enhancement (as governed by G in Eq. A.16). As
the afterdischarge continues, the frequency of firing gradually declines (Figure 2.24, top)
until the currents reach a stable peak to peak period of 900 ms (Figure 2.25).

A preliminary test showed that afterdischarge did not occur if either voltage-dependent
nonselective channels were removed or calcium enhancement was removed. Removing
voltage-independent channels only lowered the frequency of the afterdischarge. However,
the system is highly sensitive and this picture could change under slightly different parame-
ters for calcium or potassium kinetics. Additionally, because the reversal potentials of the
nonselective channels lie between the calcium and potassium resting potentials, too large
of a conductance drives trajectories to their reversal potentials, damping any oscillations.
For the depolarization to occur in the delayed manner observed in experiments after the 5
Hz stimulus, a calcium delay term was required indicating a second-messenger system may
play a role, responding to changes in calcium levels with a delay.

At the transition between the membrane’s command response and afterdischarge, when
voltage-independent channels are fully activated, there is a repolarization to about −45
mV before the onset of afterdischarge (Figure 2.26).

Under command current, the model bag cell spiked at 5 Hz, dropping to 2.3 Hz during
afterdischarge. The membrane potential amplitude is similar for both command response
and afterdischarge. This is in contrast to experimental observations, which show taller
peaks during afterdischarge. The current profile does demonstrate an increase in potassium
and calcium current from command to afterdischarge (Figure 2.27), which suggest that
some fine tuning of current contribution may be necessary to ensure membrane potential
isn’t over saturated by the leak or modulating currents. The calcium concentration at the
microdomain drops to a slightly lower steady state at the onset of afterdischarge.
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Figure 2.22: A profile of the currents and calcium concentration for the model cell during
onset of alternating 5 Hz command current (0 nA < I < 1.4 nA) with a 150 ms duration.

2.2.2 Conclusions

The prototypical Aplysia bag cell neuron meets the three criteria for a qualitative repro-
duction of the onset of afterdischarge in the natural cell. Many values were derived from fits
on experimental data from the Magoski lab. In particular, the calcium activation kinetics
and mixed (two-current) potassium kinetics, as well as reversal potentials for all currents.
Activation kinetics for the voltage-dependent nonselective cation channels were also provi-
ded. Calcium inactivation, and all components of the potassium current, have at least two
dependencies in them. As a result, there is no unique solution to fitting paradigms without
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Figure 2.23: The action potential during afterdischarge: 10s of the command current (See
Figure 2.22 for details) followed by zero input current. See Figure 2.26 for close a closer
look at the spikes.

some reasoned constraints. To address this, inactivation was split evenly between calcium-
dependent and voltage-dependent inactivation, then tuned until it matched activation (as
discussed in the calcium channel section). Similarly, because no unique solution exists for
a combination of two inseparable currents, an experimental potassium profile was found
that allowed the currents to be treated as one single, equivalent current. The cell from
which this data was taken also demonstrated spiking in current clamp, though the spiking
wasn’t sustained (Figure 2.12).

To address these problems, the next chapter will turn to numerical continuation for
analysis of the system’s fixed points and limit cycles. A handful of the 55 parameters will
be perturbed to observe their effect on the properties of these mathematical objects, which
can inform how the system will behave in different regions of parameter space without
numerous tedious simulations.
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Figure 2.24: Current underlying the action potential during afterdischarge simulation (See
Figure 2.23 for details).
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Figure 2.25: The current profile after 10 minutes of afterdischarge demonstrates a stable
900 ms duration between peaks.
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Figure 2.26: The membrane potential transitioning from external current drive to persistent
spiking as I = 0 nA at 10 s.
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Figure 2.27: Corresponding currents and calcium concentration for Figure 2.26.
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Chapter 3

Model parameter analysis:
continuation curves and sensitivity

Given the complex construction of the Aplysia bag cell neuron model and the 55 parameters
involved across numerous time scales (from milliseconds to minutes), it is of interest to
analyze how parameters affect the core behavior of the system. The continuation curve
of the prototype Aplysia bag cell neuron is computed across multiple values of different
parameters and guided by eigenvalue analysis. The insights gained from continuation
analysis allowed for finer tuning of the model to better match experimental observations.
A follow-up exploratory analysis examines how the continuation curve and associated Hopf
points are affected by parameter value changes. These insights can help guide tuning and
modifications to the model.

Continuation curves follow fixed points in the system as parameters evolve. In the
case of neural models where there is a designated external input parameter, I, fixed points
are analyzed as a function of I. Thus, in a continuation context, the applied current,
I, is the bifurcation parameter. Along the continuation curve, and often associated with
dynamical transitions in the system, are bifurcation points. In the case of the prototype
Aplysia bag cell, the bifurcations will be Hopf bifurcations, in which the system transitions
from steady-state behavior to oscillatory behavior, with the amplitudes of the oscillation
either growing to some finite point or decaying from some finite point as the bifurcation
parameter is increased. Examples follow.

3.1 Model tuning with continuation

Continuation analysis of the prototype Aplysia bag cell is performed using the applied
current, I, as the control parameter. At each value of I, the softwasre analyzes where the
equilibrium points are. The resulting set of points is plotted (Figure 3.1). A Hopf point
(H3) occurs around I = 15 nA, and a set of two Hopf points (H1 and H2) occurs near
I = 0 nA.
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Figure 3.1: Continuation curve (black line) for the Aplysia prototype model with Hopf
points (red asterisk). A horizontal expansion of the curve (inset) shows a complex arran-
gement of Hopf points. Hopf points H1, H2, and H3 have limit cycles associated with
them.

The true Hopf points were associated with limit cycles. The outlier Hopf point (at
I = 15 nA) is the source of the largest limit cycle in the range. The limit cycle begins with
small amplitudes at the Hopf point and grows larger as I → 0 nA (Figure 3.2). Near zero,
the amplitude of the limit cycle is more stable and the continuation curve contains many
Hopf points and limit points (Figure 3.2). It can also be observed that the limit cycle goes
right up to (and even passes) I = 0 nA.

A very small amplitude limit cycle connects Hopf points H1 and H2 around the point
(I, V ) =(.055 nA, -48 mV). Its largest amplitude is 2 mV about V = −48.3 mV. It’s
unclear whether these Hopf points play a role in dynamics, as they occur concurrently
with several limit points. It is in this region that the simulated system transitions from
steady state to periodic behavior. This may imply that H1 and H2 play a role in that
transition, as the limit cycle originating from H3 still exists in the region I < .054 nA, but
spiking behavior does not.

In the physiological system, spiking behavior is eliminated when the external current
exceeds 2 nA. In the model system, continuation reveals a limit cycle existing up to 15
nA, inconsistent with the physiology. To address this, the eigenvalues and eigenvectors of
H3 are examined. When a pair of eigenvalues have a real part that is approximately zero
and their associated eigenvectors are complex conjugates of each other, the eigenvector can
sometimes reveal what system variables are playing a role in the properties of the Hopf
point. For H3, the relevant eigenvector pair contained projections into m, the calcium
activation, and n, the potassium activation (Figure 3.5). Parameters relating to both were
varied and the effect on their continuation curves observed. While the m component had
the largest amplitude in the eigenvector, it was n that had the most dramatic effect on
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Figure 3.2: Continuation curve and limit cycle associated with H3 in the Aplysia bag cell
neuron model. The vertical traces represent the maximum and minimum values of the
membrane potential during spiking for a given value of applied current.
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Figure 3.3: In the physiological range, the limit cycle has complex structures for I < 0.2
nA. The vertical traces represent the maximum and minimum values of the membrane
potential during spiking for a given value of applied current.

Hopf point location.

Whereas many parameter changes will completely alter the shape of the continuation
curve, disrupting the established behavior, the time constant voltage-shift, V7, only changed
the location of the Hopf point along the curve (Figure 3.6). It had the additional effect of
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Figure 3.4: A small limit cycle structure connects Hopf points H1 and H2.
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Figure 3.5: The real (top) and imaginary (bottom) parts of an eigenvector from H3 for
which 1) the associated eigenvalue was approximately zero, and 2) a complex conjugate
existed.

eliminating neutral saddles as H3 drew closer to I = 0 nA. Similar observations were made
for the potassium time-constant, τn0 (Figure 3.7). It’s unclear why potassium activation
timing parameters would have this unique effect on the bifurcation diagram. Parameters
associated with the calcium activation timing yielded similar results, but to much less
effect.

A value of τ = .02 brought H3 down from I = 15 nA to I = 4.5 nA and greatly reduced
the number of spurious neutral saddles (Figure 3.8). H1 and H2 still remain. The model
still suffers gradual amplitude loss up to the new location of H3 (Figure 3.9). However,
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Figure 3.6: The change in location of H3 as V7, the potassium activation time-constant
voltage shift, varies. Value of V7 for each Hopf location is labeled.
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Figure 3.7: The change in location of H3 as τn0, the potassium time-constant maximum,
varies. Value of τn0 for each Hopf location is labeled.

the limit cycle no longer exists for values I < .05 nA (Figure 3.10).

These results are verified via simulation, confirming limit cycle decay and elimination
at the Hopf point, and confirming that the model still meets the three criteria: no spiking
at I = 0 nA, tonic firing for I > 0 nA, and afterdischarge behavior. Spike shape was
preserved, and the spike minimum was lifted to match physiological data better. However,
once transients from initial conditions settle, the spike maximum of the model becomes
lower than those observed in biology experiments (Figure 3.9). After some hand tuning,
the final value, τn0 = 0.018, is chosen as part of standard parameters for the modified
prototype.
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Figure 3.8: Continuation curve of the new parameter point, τn0 = 0.018, for the system
with H3 closer to physiological ranges.
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Figure 3.9: Limit cycle of the Aplysia model at the new parameter point, τn0 = 0.018.
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Figure 3.10: Limit cycle in the physiological range of the model at the new parameter
point, τn0 = 0.018.
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Figure 3.11: A time-series simulation of the system at its new parameter point, τn0 = 0.018.
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3.2 Sensitivity analysis with continuation

Continuation curves reveal the location of bifurcation points that are numerically calcu-
lable, independent of simulations. In a computational context, this can often save a lot
of time and resources in place of trial and error. It is therefore of interest to explore how
parameter changes can can affect continuation curves and associated Hopf points to gain
insights into how they might change the behavior of the system.

As before, the bifurcation parameter is the applied current, I. Continuation curves
follow fixed points in the system as parameters evolve. In the case of neural models where
there is a designated external input parameter, I, fixed points are analyzed as a function
of I. Transitions from rest state to tonic spiking can often be associated with bifurcation
points that are numerically discoverable, independent of simulations.

Using the new, established parameter point as the standard model, analysis is carried
forward with the MATCONT continuation software and some additional handwritten soft-
ware (wrappers) to facilitate its usage across parameters and generate graphics from the
results. Distinct parameters are perturbed and their continuation curves measured. For
each perturbation, a parameter or set of parameters is chosen and perturbed four times
about their nominal value from 80% to 120%. This is achieved by multiplying their nominal
values by p (which takes the values of 0.8, 0.9, 1.1, and 1.2) and examining their continu-
ation curves at each perturbation. Each of the figures are plotted with color coding such
that a black line corresponds to p = 0.8, a red line corresponds to p = 0.9, the green line
is the nominal system, a magenta line corresponds to p = 1.1, and a blue line corresponds
to p = 1.2.

Further continuation at Hopf points examines how changes in parameter might affect
the existence, amplitude, and current-dependency of the limit cycle. This analysis gives
insight into not only the sensitivity of certain parameters, but some of the qualitative out-
comes of changes to those parameters. Because the entire parameter set is sufficiently large,
priority was given to parameters which, through the intuition gained by hand-tuning the
system, were known to change the outcome in desired ways. The intuition generally follows
logical conclusions. For example, parameters that can increase calcium efficacy (such as
the maximum conductance and the associated kinetic parameters) will likely lead to more
excitability, while augmentation of potassium will likely reduce excitability. Parameters
that were found to be qualitatively sensitive through hand-tuning were investigated, such
as the enhancement multiplier, mgCa. Additionally, parameters were randomly selected to
ensure some coverage beyond the author’s cognitive grasp, such as use-dependence.

Perturbations on the slope of the calcium activation, V2, yielded large changes in the
continuation curve (Figure 3.12). This is not particularly surprising as changes to the
slope of activation curves have a significant effect on the voltage-dependence of channel
currents. Since the primary calcium channel plays a significant role in the behavior of the
bag cell model, changes to its activation slope will have significant consequences. As V2 is
increased, the Hopf point H3 approaches I = 0 nA. This would normally be desired given
the experimental evidence of a saturation point at I = 1.5 nA. However, changes in the
continuation curve either diminish or annihilate the limit cycle generated by H3 (Figure
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Figure 3.12: Variants of the continuation curve as V2, the slope of calcium activation, is
changed. Color of line maps [black, red, green, magneta, blue] to p = [0.80.91.01.11.2], the
multiplier on the nominal value.

3.13).

0 1 2 3 4 5

−50

−40

−30

−20

−10

0

H 

I [nA]

H V
 [
m
V
]

Figure 3.13: Limit cycle for V2 = 11.52 mV has small amplitudes near an unidentified Hopf
point, possibly H3.

When the diffusion rate is altered by the perturbation, p, little change in the continu-
ation curve is observed (Figure 3.14). The continuation curve is lifted and shifted right
slightly (Along with Hopf points H1, H2, and H3). No appreciable change in limit cycle
behavior is observed. Because of the influence of diffusion on the afterdischarge, care must
be taken. Since afterdischarge behavior depends on long-term changes in calcium, the
effects of changing D on afterdischarge behavior is not immediately apparent from these
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continuation curves, which are more informative about short-term dynamics in the system.
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Figure 3.14: Variants of the continuation curve as D, the rate of calcium diffusion out
of the domain, is changed. Color of line maps [black, red, green, magenta, blue] to p =
[0.8, 0.9, 1.0, 1.1, 1.2], the multiplier on the nominal value.

Observations from the simulated model demonstrate that a large D can cause calcium
to escape too quickly from the system, eliminating the afterdischarge, while smaller values
of D can cause oversaturation of calcium in the system, making it too excitable.
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Figure 3.15: Variants of the continuation curve as mgCa, the calcium-dependent calcium
conductance magnification, is changed. Color of line maps [black, red, green, magneta,
blue] to p = [0.8, 0.9, 1.0, 1.1, 1.2], the multiplier on the nominal value.

Calcium enhancement is modeled as a calcium-dependent magnification on the conduc-
tance of the calcium current. Not surprisingly, increasing this value raises the continuation
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curve (Figure 3.15) along with the Hopf points. Additionally, for increased values of mgCa
the cell becomes too excitable and the limit cycle persists for applied current values down
to I = 0 nA (not shown). Too many calcium channels have been introduced, bringing in
more calcium, which activates all the calcium-dependent channels. The resulting solution
is oscillatory, as calcium serves as the primary driver of the upstroke in bag cell model
oscillations.

When mgCa is decreased too much, afterdischarge behavior ceases. Thus, the continu-
ation curve isn’t able to show how changes in mgCa affect propensity for afterdischarge.
Again, this is because calcium enhancement pertains to the longer-term behavior of af-
terdischarge, while the continuation curve is more relevant to a short-term snapshot of
the dynamics. This result suggests that calcium enhancement plays a significant role in
initiating the afterdischarge.

To expand on previous potassium sensitivity analysis, both V6 and V8, the slopes of
the potassium activation and the potassium activation time constant, are perturbed by p.
Both parameters are varied simultaneously in order to cover changes in both the timing and
amplitude of the potassium current, as they pertain to wave shape of the action potential.
Similar to calcium kinetics, the curves show a high sensitivity to changes in potassium
kinetics. As the slopes are increased, the continuation curve and the associated Hopf
point, H3, move downward and towards increasing values of I (Figure 3.16). Limit cycles
are quickly annihilated with perturbations to the potassium parameters, as the delicate
balance between calcium and potassium currents is disrupted. The sensitivity of the results
to the slope of activation can be explained by its role in the model. A small change in
activation slope changes dependency on membrane potential across the entire physiological
range of the membrane-potential.

When the conductance of all five channels are simultaneously perturbed, the continu-
ation curve does not vary greatly. This is perhaps unsurprising, as the balance between
conductances is mostly preserved in this way. This is particularly true of the two major
players, calcium and potassium. Increasing the conductance of all channels results in the
continuation curve and H3 moving down and towards increasing I.

Continuation analysis is computationally expensive, especially when limit cycle conti-
nuation is involved, but it does allow broader investigations into the stability of a model
that can only be achieved by sampling the system for each value of applied current, I,
with simulations. Thus, continuation sacrifices some details in favor of a more general
understanding of how the system behaves. Details like wave shape, and the onset of after-
discharge are not immediately available from continuation analysis, but the excitability of
the cell and its saturation point, and the existence of limit cycles are all useful information
that can be extracted from continuation analysis.

3.2.1 Conclusions and Discussion

The high-dimensional parameter space associated with complex models can be a difficult
maze to navigate. Often, gains in model accuracy with respect to one experiment can cause
losses in accuracy with respect to another experiment. Tuning the model to be consistent
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Figure 3.16: Variants of the continuation curve as V6, the potassium activation slope, and
V8, the potassium activation time-constant slope, are simultaneously changed. Color of
line maps [black, red, green, magneta, blue] to p = [0.8, 0.9, 1.0, 1.1, 1.2], the multiplier on
the nominal value.
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Figure 3.17: Variants of the continuation curve as the conductance of all channels are
simultaneously changed. Color of line maps [black, red, green, magneta, blue] to p =
[0.8, 0.9, 1.0, 1.1, 1.2], the multiplier on the nominal value.

across all schemes, is not a trivial process. A first approach at addressing this issue relied
on a genetic algorithm to test and score the model for each of the experimental cases, using
a combined score at the end. While the genetic algorithm helped significantly in finding
the ballpark of parameter space necessary for limit cycle behavior, modeling afterdischarge
and ensuring an appropriate degree of excitability still required direct simulation.
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To address these issues and guide hand-tuning, continuation analysis provides a close
look at where oscillations come from in the system and what variables are associated
with them. Using this method of analysis, parameters were discovered in the system that
could alter the position of a Hopf point along the continuation curve without altering the
continuation curve itself. The result fits our intuition, based on the definition of the time
constant. Time constants don’t factor into any steady-state values. Rather, they describe
the time-course required for the relevant system variable to reach steady state. The shape
of the continuation curve, should therefore remain unaltered when these values change -
but they still affect the dynamics through manipulating the location of the Hopf point of
interest along the curve. This fact is not immediately apparent and required this in-depth
continuation analysis to bring it to light and make it actionable information.

The result of the parameter changes in the potassium timing create an interesting
picture. Quattrocki’s time constants for expressed IK2 channels are on the order of 10−2 s,
while our own measurements of the fast current in potassium voltage clamp data provided
by the Magoski Lab are on the order of 10−3 s (Figure 2.9). Meanwhile, Strong and
Kaczmarek measured tail currents of the potassium current to be on the order of 10−2 s
[98]. Prior to tuning via continuation analysis, we used a value of 4 × 10−2 s. However,
after continuation tuning τh = 1.8 × 10−2 s. It seems that timing constants on the order
of 10−2 s serve as a useful effective current to represent both IK1 and IK2. It would be
interesting to see how one could manipulate Hopf locations on the continuation curve when
including both of these currents!

The computational investment required to produce continuation curves is high and
the Matcont software is not automated, requiring different options for different regions of
parameter space to be attempted and discovered as they fail or succeed. A comprehensive
investigation into how parameter changes affect continuation curves would require a long-
term collaboration between analytical and applied mathematical disciplines, constrained
by the neurobiology. For example, here we use eigenvector analysis of the nominal system
at the location of relevant dynamics (e.g., the Hopf point in the case of the bag cell
model). This allows the model to be tuned to match biological observations. After some
investigation, much of this process could be automated. There are likely several other
analytical tools that could prove useful if applied in a similar fashion to modeling problems.
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Chapter 4

Wave propagation in various
topologies of the electrically coupled
Aplysia bag cell network model

Gap junctions are a distinct type of coupling that occurs between biological neurons. Unlike
chemical synapses, which involve a delay, gap junctions directly link the dynamics of the
membrane potential of neurons in a straightforward way that can be modeled relatively
easily using an electrical coupling term between participating neurons [61].

In Aplysia, the bag cell neurons exist in clusters in the abdominal ganglia, coupled
electronically via gap junctions. Little is known about the connectivity between neurons
in the bag cell cluster. In 1979, an experimental study of bag cell processes determined
that bag cell neurons are multipolar, having two or three major processes originating from
the soma [54]. Further, it was determined that electrical coupling that occurred near the
soma of the bag cell neurons was much stronger than the distal coupling between neuritic
processes that extended from bag cell neurons. These results imply network model con-
struction should implement sparse or nearest-neighbor coupling when considering network
topology in the absence of experimental work on a definitive topology for the Aplysia bag
cell cluster. Recent experimental work has shown that the connection strength of gap
junctions between neurons is decreased by Ca2+ influx [30]. Thus, an investigation into
how changes to the coupling strength affect network dynamics is desired.

When considering a network, N instances of the modified prototype Aplysia bag cell
neuron are generated. As such, an N -neuron network is encoded by 10N variables. For
the nth neuron, the membrane potential is modified such that

V̇n = V̇ +
Dn

C

N∑
m=1

Am,n(Vm − Vn) (4.1)

where V̇ is Eq. (A.1) as before, N is the number of neurons in the network, Vm is the mth
neuron in the network, Vn the nth neuron in the network, Dn is the coupling constant,
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and A is the association matrix that indicates which pairs of neurons have connections.
The matrix A is an N ×N matrix, where each row designates the mth neuron and column
entries for that row determine the relationship between neuron m and all other neurons in
the network. For instance, if the mth and nth neurons share a reciprocal connection, then
Am,n = An,m = 1. When there are no connections between a neuron, Am,n = An,m = 0.
Rectifying connections can be handled by Am,n = 0, An,m = 1 or Am,n = 1, An,m = 0.
Some common types of association matrix used include

Am =

[
0 1
1 0

]
, Ar =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 , As =


0 1 0 1 0
1 0 0 0 1
0 1 0 0 1
0 0 1 1 0
1 0 1 0 0

 ,
in which Am is a mutually connected two-neuron network, Ar is a four-neuron ring net-
work, and As is a five-neuron scatter network. The association matrix makes topology
construction intuitive and can be implemented with computational efficiency via vectori-
zation in Matlab.

ne
ur

on
 #

                                                   neuron #
2 4 6 8 10

2

4

6

8

10

2 4 6 8 10

Figure 4.1: The topology matrix for a ring (left) and scatter (right) network. Binary values
are represented by red (Am,n = 1) and blue (Am,n = 0).

4.0.1 Synchronization in a two-neuron network

The cross-correlation serves as measure of synchronization between two signals in experi-
mental contexts. Here, we use Matlab’s xcorr.m to reproduce the measure on simulated
neurons. The cross-correlation compares two signals by introducing a delay (known as
lags) between them and varying it to see how well correlated the signal is at each value for
the delay.
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A first verification of the network properties compares a simple 2-neuron model en-
semble to a similar experimental arrangement in culture. In the experiment, two pairs of
neurons are tested [29]. In each case, both neurons are driven at I = 1.0 nA, but only one
pair of neurons is coupled. For the uncoupled pair, no phase locking occurs. To achieve this
result in silica, the value for capacitance is varied for one of the neurons to elicit a unique
frequency dependence. As expected, the uncoupled in silica neurons are not phase-locked
(Figure 4.2). With strong coupling (Dn = 0.05 µS), the driven neurons quickly synchronize
with a delay similar to that observed in experiment (Figure 4.3). In the model, an applied
current of 1.5 nA is used.

3 3.2 3.4 3.6 3.8 4

−60
−40
−20

0
20
40

t [s]

V
 [

m
V

]

−1 −0.5 0 0.5 1
0

0.5

1

lag [s]

c
ro

s
s
−

c
o

rr
e

la
ti
o

n

Figure 4.2: The membrane potential (top) and cross correlation (bottom) for two uncoupled
model neurons driven at 1.5 nA. The intrinsic properties of the two neurons are identical
with the exception of capacitance, C1 = 1300 pF and C2 = 920 pF. Cross-correlation is
computed over 1.0 s window shown in top plot.

Another experiment in the same study examined the effects of driving one neuron of a
coupled pair with an applied current and observing the effects on the unstimulated neuron.
Unlike the experimental result, which showed a gradual ramping up in the amplitude of the
oscillations ([29], Figure 5D) the unstimulated model neuron appeared to be responding
as a temporal coder, wherein a superposition of closely timed inputs produces an a spike
(Figure 4.4). This disparity in results may indicate that the Hopf bifurcation in the model
points in wrong direction compared to the experiment. The ramping up of amplitudes is
consistent with a Hopf point starting at low I and growing with increased I, whereas the
model features a Hopf bifurcation at high I growing with decreased I, as demonstrated by
continuity analysis. Constructing or altering a model to enforce appropriately behaving
bifurcations is not a trivial task and the result could ultimately come down to unintuitive
network properties or additional currents, so this avenue was not pursued. For example,
addition of other, known Aplysia bag cell currents, or the splitting of the potassium current
into its component pair will likely alter the continuation curve of the model with respect
to I.
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Figure 4.3: The membrane potential (top) and cross correlation (bottom) for two coupled
model neurons (Dn = 0.01 µS) driven at 1.5 nA. The intrinsic properties of the two
neurons are identical with the exception of capacitance, C1 = 1300 pF and C2 = 920 pF.
Cross-correlation is computed over 1.0 s window shown in top plot.
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Figure 4.4: Two coupled model neurons (Dn = 0.015 µS) with only Vn2 driven at 1.5 nA.
The intrinsic properties of the two neurons are identical with the exception of capacitance,
C.

4.0.2 Wave propagation in a network

In order to study wave propagation, three network topologies are implemented on the
Aplysia network model. In a ring network, each neuron couples reciprocally to its two
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nearest neighbors, forming a chain. The first and last neurons are then linked together
to complete the ring. In the ring cluster network, a ring network is augmented with two
additional connections so that each neuron is coupled to its nearest neighbors as well as
its next nearest neighbors for a total of four connections per neuron. Finally, in a scatter
network, connections are determined randomly and have no linear order to them. The
results for scatter-type networks vary greatly depending on how dispersed the connections
are through the network. When connections get concentrated on a single neuron, the
electrical coupling often acts as a drain on the network, suppressing most of the neurons
from activating. In this case, only well dispersed networks are used, which are found mostly
through trial and error.

The membrane potential of each neuron was perturbed slightly from the resting po-
tential, using a normal distribution with approximate variance of 1.0 mV about -54 mV.
Additionally, the capacitance was perturbed using a normal distribution of 20% (272 pF)
about 1363 pF. These alterations introduce some variability to the network. A single, sti-
mulated neuron received 10s of 5 Hz stimulus, with maximum 1.4 nA and an on-duration
of 150 ms. The choice to stimulate a single neuron in an intact cluster follows from Brown
[11]. To date, Brown’s results have not been successfully repeated, but it is one of the only
cases of comprehensive experiments on bag cell networks reported in the literature.

As the stimulated neuron is excited by this experimental protocol, known to initiate
afterdischarge in experiments, the excitation spreads through the network. The network
is left running until it reaches a final time of tf = 120 s.

In the simple (nearest neighbor) network, with Dn = 0.015 µS, wave propagation initi-
ally only occurs within a small group of less than 20 neurons during external driving (Figure
4.5A). The waves themselves propagate at about 35 neurons per second, but don’t extend
past the first ten neurons on either side of the stimulated neuron (neuron 50). During
afterdischarge, the wavefront spreads to the whole network, sending waves of excitation at
a rate just under 2 Hz, traveling at the same approximate rate of 35 neurons per second
(Figure 4.5B). Inflections in the wave front temporally (the wave collision at neuron 37 vs.
the wave initiation at neuron 13) are a likely a result of the asymmetries in the network
introduced by varying initial conditions and capacitance. At this point, no neurons are
receiving external current, and the process is driven entirely by Ca2+-dependent channels,
as we will explore in more depth in the next section. A profile of the stimulated neuron
(neuron 50) and a distant neighbor (neuron 60) verifies that initially, the wave front is not
spreading to the distant neurons. However, the simulated neuron is spiking faster than the
driving current, likely due to feedback from its neighboring neurons, delivered through the
electrical coupling term (Figure 4.5C). This feedback may deplete energy from the wave
spread as it is returned to the stimulated neuron. During the persistent spiking phase, the
two neurons are locked in the traveling waveform (Figure 4.5D).

In the cluster (nearest and next-nearest neighbor) ring network, wave propagation co-
mes easier to the whole network at the same coupling strength (Dn = 0.015 µS) as used in
the simple ring network (Figure 4.6A). The waves travel at 85 neurons per second, sprea-
ding across the whole network with minimal failure at every peak of the stimulated neuron.
Feedback on the stimulated neuron is not as robust as in the simple ring network, causing
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Figure 4.5: Dn = 0.015 µS for a spatially extended 100 neuron ring network with a single
bag cell neuron being driven by a 1 nA, 5 Hz current for 10 s. A: the membrane potential
across the network for the first second of activity, B: the membrane potential across the
network over the 120th second of activity. C: a time-series plot of the driven neuron and
neighbor ten neurons away from the driven neuron in the first second, and D: the same
neuron pair after 119 seconds.

slower polarization (Figure 4.6C). This is likely a result of the stimulated neuron being
drained now by four nearby neurons instead of two, as in the simple ring case. The re-
sulting waveform during afterdischarge, two minutes later maintains the same approximate
wave speed of 85 neurons per second, over two times faster than the simple ring, but still
maintains an interwave frequency of less than 2 Hz (Figure 4.6B). This can be observed in
the stimulated neuron and the distant neighbor neuron, 10 neurons away (Figure 4.6D),
as their spike emissions are closer in time, but each neuron’s interspike delay remains just
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over 0.5 s.

The scatter network differs significantly from the ring networks in that its topology
is not well defined. Because a certain degree of dispersity of connections is enforced, the
resulting network tends to have no long distance connections within it. For example, in a
100-neuron ring network, you can be certain that neuron 01 and neuron 50 have the lon-
gest distance between them that a wave must travel. In a dispersed scatter network, any
would-be long distance connections are often shortcut by other, random connections. This
increases the overall energy dispersion in the network, so the coupling constant must be
increased to compensate for the additional drain on the stimulated neuron. For a scatter
network with a coupling strength of Dn = 0.02 µS, the network was immediately respon-
sive to the stimulated neuron during the driving phase (Figure 4.7A). Excitation appears
scattered, but may still contain wave-like behavior. Because a scatter topology cannot
be neatly mapped to two dimensional space like a ring network, the spatial component
(the neuron axis) of the spatiotemporal plots is not as informative in the scatter case.
However, spatial arrangement becomes less important during afterdischarge in the scatter
topology as the wave no longer travels across the network, but occurs across the network
in a much shorter window of time (Figure 4.7B), likely because of the shortcuts introdu-
ced through scatter coupling. For the scatter network, firing occurs nearly simultaneously
during persistent spiking for the previously stimulated neuron and its distance neighbor
(Figure 4.7D).

This preliminary look at spatiotemporal dynamics in the Aplysia bag cell cluster model
demonstrates how network topology can affect wave propagation. In some cases, topology
can even alter the requirements on the coupling strength, Dn, for wave propagation to
occur, as was the case in the scatter topology. Experimental investigations into the general
structure of network topology can help confine future bag cell cluster models, and these
theoretical insights may give experimentalists clues on ways to test propagation in a cluster.
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Figure 4.6: A cluster ring network topology withDn = 0.015 µS. A: the membrane potential
across the network for the first second of activity, B: the membrane potential across the
network over the 120th second of activity. C: a time-series plot of the driven neuron and
neighbor ten neurons away from the driven neuron in the first second, and D: the same
neuron pair after 119 seconds.
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Figure 4.7: A scatter network topology with Dn = 0.020 µS. A: the membrane potential
across the network for the first second of activity, B: the membrane potential across the
network over the 120th second of activity. C: a time-series plot of the driven neuron and
neighbor ten neurons away from the driven neuron in the first second, and D: the same
neuron pair after 119 seconds.
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4.0.3 Effect of coupling strength and network size on phase co-
herence

In biological neural networks, synchronization is thought to play an important role in
managing communication between networks of neurons, mediating relationships between
distinct subpopulations of neurons [100] by modulating their interactions [108]. Synchro-
nization is used for timed encoding in the hippocampus [26] and plays a role in directing
network processing to relevant perceptions in attention processes [96]. Further studies
have found synchronization to play a role in use-dependent plasticity, motor performance
enhancement, perception, and the dynamic grouping of neural populations [95] which ap-
pears to play a role in integrating large-scale processing across the nervous system [100].
In the Aplysia bag cell cluster, synchronization likely plays a role in increasing the efficacy
of peptide release, ensuring downstream neurons receive the signal to prepare each of the
slug’s participating cells for egg-laying behavior [29]. It is thus, of interest, to see how sy-
nchronization in a bag cell cluster may depend on network properties such as connectivity
of the network or the strength of the electrical coupling between neurons.

Care must be taken in defining synchrony. The phase coherence discussed in this section
is not comparable to the cross-correlations used earlier. For example, in the scatter network
of the previous section, firing of neurons happened more simultaneously across the network.
Pairs of neurons from this network would likely yield a high cross-correlation compared to
the ring network. However, phase coherence measures the disparity in phase between each
neuron in the network. In the ring network, at any given time, most neurons are all in the
rest state, thus they are more synchronized in the ring network from a phase-coherence
perspective, despite the scatter topology producing, arguably, more synchronized spiking.
It is sufficient to say that previously, cross-correlation was used and now phase-coherence
is being used and they are each measures of different aspects of synchrony of a system.

To measure phase coherence in the system, the Kuramoto order parameter is used [65].
The order parameter measures the average distance in radians between the phase angles
of members of the network and provides a value encoding the disparity in phase angle
across the network. In order to define a phase angle, two coordinates in the system must
provide a closed loop that define the system’s membrane potential oscillations. To find
such a coordinate pair, we first look at the Aplysia bag cell’s ten dimensions, comparing
the membrane potential, V , to each of the other dimensions. It is immediately obvious
that the V − n plane exhibits the most circle-like trajectories (Figure 4.8).

The center of the planar oscillation is defined by (V, n) = (−20, 0.26) (Figure 4.9, left),
the approximate center of the traces drawn by the trajectories over time (blue lines). The
phase angle, θi is measured from this point’s x-axis to the angle (red lines) given by the
direction vector from the origin to the trajectory’s point in (V, n) (red dots). From here,
the order parameter is defined

RejΨ =
1

N

N∑
i=1

ejθi , (4.2)

76



m h s

n q r

φ θ η

Figure 4.8: Trajectory projections of all 100 neurons on a two-dimensional plane comparing
the membrane potential (horizontal axes) to each of the other nine dimensions (labeled for
each plot).

where j =
√
−1, N is the total number of neurons, and θi is the phase angle of the ith

neuron, as defined by the transformed origin. The result is a complex number, RejΨ, which
can be decomposed into the order parameter, R, and the average phase angle, Ψ. Here,
we consider only the order parameter, extracting it with

R =
√

(<[RejΨ])2 + (=[RejΨ])2. (4.3)

where RejΨ is defined in Equation 4.2.

Extracting both R and Ψ for comparison, the distribution of average phase angles
over time and the disparity between them can be viewed in polar coordinates (Figure
4.9). In this case, we see the system is highly synchronized at 2400, near the rest state
(V, n) = (−60, 0.15). This isn’t surprising, as even oscillating trajectories tend to get
caught near the resting potential for some time as they pass by it and observations of the
active network demonstrate that neurons spend most time there between spikes.

To confirm that the order parameter measures synchronization in an intuitive way,
an uncoupled (Dn = 0) 100-neuron network is initiated. All neurons are set with the
exact same internal parameters and set to the same initial condition. The network fires
synchronously (Figure 4.10, top left) and a time-average of the resulting phase coherence
is taken from the period over which it’s displayed, yielding 〈R〉 = 1.0, indicating perfect
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Figure 4.9: Left: the angle, θi, in the Kuramoto order parameter is defined as the angle
from the transformed origin’s horizontal axis (black asterisk and black, dotted line) to the
ith neuron’s point in (V, n) for a single point in time. Right: the order parameter shows
the evolution of the the average phase of the network (polar angle of blue dot) and the
phase coherence (polar magnitude of blues dot) at each point in time, starting at t = 0 s
(black dot) and ending at t = 0.5 s (magenta dot). The time point cooresponding to figure
left is distinguished (red asterisk).

synchrony (Figure 4.10, top center). Next, the initial conditions and the capacitance of
each neuron are perturbed in a Gaussian distribution about their nominal values and the
(still uncoupled) network is stimulated. This time, the difference in firing rate and initial
conditions sets each neuron on its own path, leading to a noisy pattern and unsynchronized
firing (Figure 4.10, bottom left) and the corresponding order parameter is much lower
(Figure 4.10, bottom center). A moving average of the phase coherence, R, is taken and
denoted 〈R〉. Notice, however, that the phase coherence does still reach the instantaneous
phase coherence value, R = 1.0 frequently, when most of the network is in the rest state.
This demonstrates how the phase coherence measures synchrony of the system with no
bias towards a particular state. To the right, the Ca2+ levels are shown as they will play
a role in the coupled system.

To see how network topology affects phase coherence, the order parameter is applied to
the ring, ring cluster and scatter network topologies (recall Figure 4.1). The experiment
is performed in an afterdischarge schema, selecting a single neuron to receive the 5 Hz,
10 s input. The membrane potential of all neurons, including the stimulated neuron, are
set to values perturbed a small amount about the rest potential and the capacitance of
each cell is perturbed around the nominal capacitance value to emulate variability in the
network. In the case of the scatter network, a low 0.5 nA input current is injected into the
neurons to help propagate activity when the coupling constant is equivalent to the ring
and cluster ring topologies. A moving average of the phase coherence, R, is taken from the
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Figure 4.10: The uncoupled network, with all initial conditions and parameters homoge-
nized, fires synchronously (top left) giving an order parameter, R = 1.0 (top middle). An
uncoupled perturbed network appears disordered (bottom left) and the order parameter
(middle bottom) reaches lower values. The instantaneous phase coherence (black line) is
averaged over the given window to produce the mean phase coherence (red, dashed line).
The microdomain’s Ca2+ concentration, s, steadily increases with time (top and bottom
right). The color map’s orientation in color space decreases towards blue (s = 80 mM) and
increases towards red (s = 100 mM).

time-window over which its instantaneous value is plotted.

For the ring network, wave propagation is slow and discrete (Figure 4.11, top left).
That is, the wave front spreads only to a portion of the network at a time. It isn’t until
Ca2+ levels are sufficient within those neurons (Figure 4.11, top right) that they enter
discharge and spread the waveform to nearby, resting neurons. Because this is such a slow
process in the ring network at low coupling strength, the time stamps of measurement were
much later than for the other cases discussed in this section. It wasn’t until 210 s that
the entire network was caught in the traveling wave (Figure 4.11, bottom left). By this
time, the Ca2+ microdomain concentration has leveled off at 90 mM (Figure 4.11, bottom
left) denoted by the green hue. The phase coherence starts out high (〈R〉 = 0.97) for
the network, as most neurons are initially all sharing the rest state, but eventually falls
〈R〉 = 0.90 as the excitation spreads.

When the coupling strength is increased to Dn = 0.05 µS, waves easily entrain the entire
network at the onset of afterdischarge (Figure 4.12, top left, t = 10 s). This correlates with
Ca2+ saturating at 100 mM (Figure 4.12, top right, red hue) just before afterdischarge.
After 120s, the Ca2+ concentration has leveled out to 88 mM (Figure 4.12, bottom right)
and the moving average of the order parameter has settled to 〈R〉 = 0.94 (Figure 4.12,
bottom middle).

In the ring cluster, at D = 0.015 µS, the results are similar to the simple ring network
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Figure 4.11: The membrane potential (left), phase coherence (middle), and Ca2+ concen-
tration (right) for a ring network with D = 0.015 µS. Action potentials reach over 20
mV peaks (see Figure 4.10 for a higher resolution example). . The microdomain’s Ca2+

concentration, s, steadily increases with time (top and bottom right). The color map’s
orientation in color space decreases towards blue (s = 80 mM) and increases towards red
(s = 100 mM). The instantaneous phase coherence (black line) is averaged over the given
window to produce the mean phase coherence (red, dashed line).

with a higher coupling constant (Figure 4.13, top left). However, distinct from the simple
ring network, Ca2+ levels to do not saturate across the network (denoted by less red in the
spatiotemporal plot in Figure 4.13, top right) like they do for the strongly coupled ring
network, but eventually settle to a larger microdomain concentration of s = 92 mM. The
average phase coherence after 110 s of afterdischarge is 〈R〉 = 0.89.

In the scatter network, slow network propagation occurs at D = 0.07 µS (Figure 4.14,
top left). The network activity is initially confined to a small handful of neurons, but
begins to spread across the network after 20 seconds. Calcium levels remain low (Figure
4.14, top right) and phase coherence is high while most neurons sit at resting potential.
At 120 seconds, when the majority of the network has entered a persistent spiking phase
(Figure 4.14, bottom left), the overall microdomain concentration is approximately s = 92
mM (Figure 4.14, bottom right). Because of the random nature of electrical coupling in
the scatter plot, some neurons often get left out of network activity (denoted by the streaks
of blue in both the membrane potential and microdomain concentration spatiotemporal
plots). The time-averaged order parameter is relatively high (〈R〉 = 0.92), but during
spiking, the instantaneous phase coherence drops as low as R = 0.5.

When the coupling constant is increased to Dn = 0.015 µS, complete network activa-
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Figure 4.12: The membrane potential (left), phase coherence (middle), and Ca2+ concentra-
tion (right) for a ring network with D = 0.05 µS. The microdomain’s Ca2+ concentration, s,
steadily increases with time. The color map’s orientation in color space decreases towards
blue (s = 80 M) and increases towards red (s = 100 M). The instantaneous phase cohe-
rence (black line) is averaged over the given window to produce the mean phase coherence
(red, dashed line).

tion is instantaneous (Figure 4.15, top left). By t = 10 s, Ca2+ levels in the microdomain
are sufficient to induce activation of the whole network (Figure 4.15, top right). The
time-averaged phase coherence after 120 s does not differ significantly from that for the
weakly coupled scatter network, despite the instantaneous phase coherence reaching mini-
mums near R = 0.25 (Figure 4.15, bottom middle). The Ca2+ concentration within the
microdomain holds steady at 90 mM (Figure 4.15, bottom right).

Regardless of topology, the spread of activity through the 100-neuron network was
dependent on sufficient internal levels of Ca2+ (as shown best by Figures 4.11, 4.13, and
4.15, top right). Calcium concentrations in the microdomain tended to stabilize around
90 mM and the networks appear to have reached a stable state of persistence by 120 s.
Activity spread across the network in phases dependent on internal Ca2+ levels. First, rest
neurons are stimulated by active neurons (which can be either the stimulated neuron or
a neuron that has entered persistence). During this phase, waves travel short distances
(in terms of number of neurons the signal propagates through), briefly stimulating nearby
neurons, but with decreased excitability at long distances. As the neurons are stimulated,
their internal Ca2+ levels rise, and they begin to excite their nearby neighbors.

This process unfolds slowly when connections are limited and the coupling constant
is small, as in the weakly-coupled ring network in which excitations travel to neurons 1-
25, originating from neurons 25-50, which have entered a persistent state, as indicated by

81



t 
[s

]

0

10

20

<R>=0.86

t 
[s

]

neuron #

25 50 75

100

110

120
0 0.5 1

R

<R>=0.89

neuron #

25 50 75

−60

−40

−20

0

20

V [mV] s [Ca]
 

0.08

0.085

0.09

0.095

0.1

Figure 4.13: The membrane potential (left), phase coherence (middle), and Ca2+ concen-
tration (right) for a ring cluster network with D = 0.015 µS. The color map’s orientation in
color space decreases towards blue (s = 80 M) and increases towards red (s = 100 M). The
instantaneous phase coherence (black line) is averaged over the given window to produce
the mean phase coherence (red, dashed line).

their raised resting potential (Figure 4.11, top left) and their increased internal Ca2+ levels
(Figure 4.11, top right). This ring network is a unique case, as the asymmetry induced by
varying initial conditions and capacitance has randomly prohibited wave travel to the right.
It’s not until t = 200 s that internal Ca2+ levels in neurons 50-60 (Figure 4.11, bottom
left) reach sufficient levels for the neurons to get in phase with the rest of the network (as
demonstrated by the minimum of R increasing after all neurons have entered persistence
(Figure 4.11, bottom middle). Increasing the connectivity (as in the ring cluster and the
scatter network topologies) or increasing the electrical coupling conductance, Dn, both
make this process faster (as in Figures 4.13, 4.12 and 4.15).

Within, the bag cell clusters of the biological Aplysia, the coupling strength is regulated
by various processes. Calcium, in particular, had an effect on coupling strength when mea-
sured in Aplysia bag cell cultures [30], reducing coupling strength as Ca2+ levels increased.
Adding such a dependency to the present Aplysia bag cell model will likely require an un-
derstanding of how different topologies and coupling strengths correspond to different Ca2+

levels. This preliminary work looks across the various options for insights into how such
a dependency may look, quantitatively. To this end, phase coherence analysis is extended
statistically on the ring and ring cluster networks, running sets of 10 120-second trials and
averaging the time-averaged phase coherence, 〈R〉, across trials from the last 20 s of run
time, as was done for spatiotemporal plots (Figure 4.15). In this way, the long-term phase
coherence is measured across changing coupling strength as well as network size.
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Figure 4.14: The membrane potential (left), phase coherence (middle), and Ca2+ concen-
tration (right) for a scatter network with D = 0.007 µS. The color map’s orientation in
color space decreases towards blue (s = 80 M) and increases towards red (s = 100 M). The
instantaneous phase coherence (black line) is averaged over the given window to produce
the mean phase coherence (red, dashed line).

In the simple ring network, average phase coherence and its associated standard devi-
ation grow with increasing Dn over the the range 0.05 to 1.0 µS (Figure 4.16, top). At
Dn = 0.05 µS, the low-variance average of 〈R〉 = 0.91 was consistent across different net-
work size (Figure 4.16, middle) but for stronger coupling, phase coherence decreased as the
size of the network increased (Figure 4.16, bottom). Results for the ring cluster network
were similar for the weakly coupled case, but the coupling strength becomes too strong at
Dn = 0.5 µS. At this coupling strength, the stimulated neuron is being drained by it’s four
neighbors and isn’t able to elicit an action potential, let alone a wave of excitation. As a
result, the whole network settles at the resting potential once the 5 Hz, 10s stimulation
ceases, resulting in 〈R〉 = 1.0 (Figure 4.17, top).

Consistent with the observation that large coupling constants tend to drain the network,
and very weak coupling constants don’t allow any wave transmission at all, there exists
a restricted range of Dn over which network propagation can occur. For example, in
the simple ring network, phase coherence grows in the range Dn ∈ (0, 1] µS, but hasn’t
quite reached 〈R〉 = 1.0, where network collapse occurs and waves can no longer propagate
(Figure 4.16 top). For the cluster ring, in which more connections are involved, the network
has already collapsed at Dn = 0.5 µS (Figure 4.17, top), indicating that for this network
topology, the window of coupling strengths for which the network can propagate waves
is much smaller than the window of the simple ring network. If this network topology
is similar to the biological Aplysia bag cell cluster’s topology, it may explain why Ca2+-
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Figure 4.15: The membrane potential (left), phase coherence (middle), and Ca2+ concen-
tration (right) for a scatter network with D = 0.015 µS. The color map’s orientation in
color space decreases towards blue (s = 80 M) and increases towards red (s = 100 M). The
instantaneous phase coherence (black line) is averaged over the given window to produce
the mean phase coherence (red, dashed line).

dependent down-regulation of the coupling strength is necessary to facilitate afterdischarge
in the entire cluster [30].

4.0.4 Conclusions and Discussion

The network model constructed here starts with Aplysia bag cell prototype model, con-
structed over previous chapters. This model relies, largely, on Ca2+-dependent processes,
such as Ca2+ channel inactivation, Ca2+ channel enhancement, and the activation of both
voltage-dependent and voltage-independent nonselective cation currents. In the network
implementation, only membrane potential is coupled between neighboring neurons, while
these second-messenger processes are intrinsic and isolated to each neuron.

Simulations on a two neuron network reproduced similar results to biological bag cell
neurons grown in culture with some exceptions. The unstimulated, coupled neuron in the
experiment exhibited variable amplitudes as it approached synchrony with the stimulated
neuron, while the unstimulated model neuron exhibited all-or-nothing firing. Additionally,
hyperpolarization of the model neuron (not shown) occurred with a much faster time
constant in the model neuron than in the experimental neuron. These differences could
be the result of model deficiencies excluding channels involved in the A-current, or the
implementation of a single, effective potassium current. They could also stem from differing
assumptions between the experimental context and the inherently isolated, theoretical

84



0 0.2 0.4 0.6 0.8 1
0.8

0.9

1

D
n
 [µS]m

e
a
n
(〈

R
〉)

 ±
 s

td
(〈

R
〉

0.8

0.9

1

D
n
 = 0.05 µS

40 50 60 70 80 90 100
0.8

0.9

1

  
  

  
  

  
  

  
 m

e
a

n
(〈

R
〉)

 ±
 s

td
(〈

R
〉)

N

D
n
 = 1.0 µS

Figure 4.16: Top: Mean value of the phase coherence (black line) with standard deviation
(red lines), taken from the last 20 s of a 120 s run across coupling strength, Dn for a
100-neuron network. Lower, the order parameter across changes in network size, N for
weak coupling (middle axes) and strong coupling (bottom axes). Each point is average
from n = 10 runs. The initial conditions and capacitance are randomly perturbed for each
neuron in the network.

model neuron.

In the 100-neuron network, network excitability was determined by the propensity
for a wave to spread from the stimulated neuron to its immediate neighbors, and for this
process to continue until the whole network is saturated. This required a coupling constant
strong enough that nearby neighbor were sufficiently excited, but also weak enough that
the neighbors did not drain the stimulated neuron of its spiking capacity. With more
connections per neuron, this effect became more pronounced, as evidenced by the results
for the cluster ring network and the scatter network. Distances in the network become
important for traveling waves. For instance, in the simple ring network, waves travel
slowly as the ring network requires series transmission through the whole network, from
one neuron to the next. If this distance is shortened, by additional connections (as in
the cluster ring topology) or adding random shortcuts (as in the scatter topology), signals
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propagate across the network much faster.

In the literature, there is only a limited picture of how excitation spreads through
biological bag cell cluster. The in silica simulation experiments performed here bear some
resemblance to experiments in the literature. Namely, experiments in which a single bag
cell neuron in the pleural ganglion is excited and measurements in another region of the
intact bag cell cluster were taken [10][11]. The author, Brown, proposes a “temporal spread
of excitation” through the cluster, but doesn’t give any explicit quantitative picture of the
speed of that spread. An isolated two-neuron experiment in culture shows stimulation
of a single neuron on an its electrically-coupled neighbor, in which propagation of action
potentials from the stimulated cell to the unstimulated cell took approximately 1.5 s [30].
Yet another experiment, using an acetylcholine bath to initiate afterdischarge in an intact
cluster, reported the onset of afterdischarge occurring roughly one minute after submersion
in the bath [104], though this delay is likely due to diffusion of the acetylcholine into the
cluster. Kuperfermann & Kandel reported fast and robust synchrony across the bag cell
cluster [64]. Experimental collaborators have verified this through personal communication.
Thus, it is highly probable that the scatter network model best represents the bag cell
cluster.
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Chapter 5

Conclusions

5.1 Prototype Aplysia bag cell and network models

Looking at an example of the time-series evolution of the membrane potential over time
during an afterdischarge (Figure 5.1, top), there are three obvious ways such a behavior
could arise in a dynamical system representing it. In the simplest case, the apparent
transitions from a steady state to a limit cycle could imply a bistable system in which both
of these attractors exist (Figure 5.1, left bottom). In this case, actions that transition the
system from one attractor to another would be considered external to the system. Given
the experimental evidence, initiation of the afterdischarge comes from another neural cell,
external to the bag cell [104]. Therefore, in a model of a bag cell neuron, the perturbation
that causes trajectories to leave the steady state and get captured in the limit cycle must be
considered external. Thus, we must exclude the single attractor case (Figure 5.1, bottom
right). Since the refractory period is presumed to be internal, what results is a system with
a single steady state at the resting potential and a limit cycle quasi-attractor (Figure 5.1,
bottom middle). The quasi-attractor captures trajectories for a finite period before they
are pulled (or pushed) back to the steady state. In the case of the bag cell neuron, that
finite period is the duration of the afterdischarge. However, the model developed in this
thesis focuses on the onset of afterdischarge, and therefore does not include any intrinsic
machinery to initiate a refractory period. As such, the model constructed here consists of
two attractors, as in Figure 5.1, left bottom.

The biologically motivated construction of the Aplysia bag cell model relies heavily on
calcium dependent mechanisms and could help to inform experimentalists of the quanti-
tative details underlying calcium mechanisms within the bag cell. For instance, measure-
ments derived from calcium inactivation experiments predict a much sharper inactivation
than what is observed in the in-step inactivation phase of activation experiments. This
can be explained by a combination of calcium-dependent and voltage-dependent inactiva-
tion (Figure 2.7). Because calcium concentration acts as a much slower variable in the
system, the in-step inactivation, having a low pre-clamp voltage, is likely to have lower
values of calcium. The inactivation experiment, typically involves pre-clamp values at high
voltages, in which case calcium is entering the cell and may be affecting inactivation kine-
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Complexity

Figure 5.1: Various arrangements that could produce afterdischarge behavior. Left: a bis-
table system, middle: a single steady state and an attractor ruin, right: a strange attractor
or complicated limit cycle. Afterdischarge trace (top) extracted from Scholarpedia [114].

tics. The quantitative details of this interplay aren’t immediately available in the lab, but
can be demonstrated (relatively) quickly via mathematical model. Through this calcium-
dependence, the calcium channel constructed here displays use-dependence, as observed in
biological bag cells [50]. Additionally, a calcium-dependent enhancement of the calcium
current[31] was implemented (Equation 2.6). Complementing the calcium channels, the ob-
served two-component potassium current was condensed into a single effective potassium
channel (Figure 2.14) after several failed attempts at representing both currents in an
accurate and robust way. This included parameter forcing and basic subtraction methods.
Subtraction methods failed, likely because current experiments do not completely isolate
the two channels. The parameter forcing method may have been more successful with a
more careful approach to implementing initial conditions, which generated ambiguities in
the present attempt. The necessity of parameter forcing becomes clear when carrying out
two-phase fitting, in which ambiguities that arise in Phase I of fitting can be resolved,
to a degree, by the expectations of Phase II fitting. In this regard, the fitting was quite
successful (Figure 2.13, red). It was carrying the analysis through to a dynamical systems
context (Figure 2.13, blue squares) where failure took place, due largely to oversight on the
author’s part. However, it appears that the single effective potassium channel is sufficient
for a decent approximation of the spike waveform and generation of the afterdischarge.
After extracting the kinetic parameters from experimental data, the conductances of the
calcium, potassium, and leak channels (and any subsequent adjustments to use-dependence
or potassium kinetics) were determined and optimized. Through both systematic trial and
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error, using a self-coded GUI in Matlab (Figure 2.15) as well as optimization via genetic
algorithm, model output was compared to experimental observations until spike shape,
use-dependence behavior, and calcium activation reflected experimental results.

To elicit afterdischarge, the nonselective channels have been modeled for the first time,
drawing on experimental data for their kinetics [69][50][70] and, using trial and error, de-
termining appropriate conductances. The time constants were derived from a qualitative
assessment of experimental data and basic intuition about the role time constants play,
mathematically, in their associated current. Preliminary results showed that the nonse-
lective channels were necessary for afterdischarge, as was the introduction of a delay term
to nonselective channel response. The delay term may represent the time it takes for cal-
modulin binding and conformation to occur. Deeper modeling of this mechanism is likely
required to enhance the model delay, as it currently is still a much shorter delay than ob-
served in experiment. It’s also possible that the nonselective channels draw from entirely
different calcium pools than the microdomain near the calcium channels [69][44][37].

A preliminary analysis of the system using continuation curves provides a novel appro-
ach to constructing and tuning models. Comparing the continuation curves of a system
as parameters are changed provides a quantitative measure of system sensitivity as well
as qualitative insights into what aspects of system behavior particular parameters may be
responsible for. For example, parameters associated with the time constant of potassium
only modified the location of the Hopf point along the continuation curve (Figures 3.6 and
3.7), a change that maintained important properties like waveshape and afterdischarge,
but tightened the range over which the applied current evoked spiking, better matching
experimental observations.

To date, this is the only known network model of the electrically coupled bag cell cluster.
The network propagates waves of excitation in a manner consistent with the observations
of Brown [10] with a time delay that depends on positive feedback mechanisms. Brown
experimentally highlighted the contribution of bag cell peptides to positive feedback, while
the present study depends solely on calcium mechanisms. Long-range network propagation
in the simple ring network clearly depended on intrinsic calcium mechanisms to activate
nonselective channels, while short-range propagation enabled those calcium mechanisms to
occur through low-frequency spiking (Figure 4.11). Not surprisingly, a stronger coupling
strength and a higher number of connection per neuron, as demonstrated in the ring cluster
and scatter networks, made this process occur much faster, but the phenomena can still
be observed taking place over a shorter time scale (Figure 4.15).

A precursory analysis of phase coherence in the system observed along-side calcium
levels suggest that most networks had reached a state of stable dynamics by 120 s with the
exception of the weakly coupled ring (Figure 4.11 and statistical cases in which propagation
never occurred due to a large coupling constant (Figure 4.17, Dn > 0.5 µS). It is plausible
that the network has been captured by a stable limit cycle and spiking behavior will
continue indefinitely in the current model. To address the refractory period, additional
second-messenger modeling will probably be required.
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5.1.1 Discussion and Outview

From a dynamical system perspective, the prototype Aplysia bag cell neuron contributes
to persistence models; a class of neuron model distinct from the three traditional model
types (excitable, oscillatory, and bursting cells). A similar persistence model describes a
neural integrator proposed to underlie observations of persistence in neural populations in
the prefrontal cortex during mammilian anticipation [34]. Similar to the present Aplysia
model, it utilizes calcium-dependent modulation to generate positive feedback in the cell.
Another integrator model relies on spatially extended calcium waves for persistence [68].
Both models include models of calcium dependent nonselective cation currents. A third
author proposes an attractor with a dynamic fixed point for the attractor basin as the
basis for the integrator [32]. This collection of papers offer some sophisticated tools in
persistence modeling that may be of use to future modeling of persistence in the Aplysia
bag cell model.

There are many issues with the present model that could be addressed. Splitting
the effective potassium channel into the component pair typically observed in biological
bag cells is likely to yield different observations, corresponding to an altered continuation
curve, which may yield a more accurate waveform. The relative conductances of channels,
particularly nonselective channels, is not derived from experimental data because of the
sensitivity of channel conductance to experimental context. A more comprehensive appro-
ach to continuation analysis could help guide in tuning the Aplysia bag cell model deeper
into biological relevance. For example, transforming the direction of the Hopf bifurcation
might resolve discrepancies in the 2-neuron stimulation experiment (Figure 3.9). In Section
3, a parameter was revealed that shifted the location of the Hopf bifurcation, H3, along the
continuation curve, without changing the curve itself. Flipping the limit cycle associated
with H3 could require, first, shifting it towards I approaches 0, then trying to alter it’s
stability (or, possibly, the stability of Hopf points H1 and H2). It is still unclear what
bifurcation underlies the transition from steady state (resting potential) to the limit cycle
(tonic spiking), a feat which would require exploring the capability of various continua-
tion software more deeply. Another analytical approach to tuning may lie in phase-plot
analysis, touched on briefly as part of the development of the order parameter. Adjus-
tments to parameters, followed by quantification of different projections in the system,
will undoubtedly provide insight into underlying dynamics. For instance, the phase-planes
involving the membrane potential (Figure 4.8) immediately tell us that the use-dependent
inactivation, calcium concentration, and delay term (h, s, and r respectively) describe an
evolution in state, while the other activation variables (m, n, q, and η) describe short
term oscillatory dynamics. The kinetics of the voltage-independent cation channels (φ, θ)
haven’t yet responded to calcium, which is at insufficent levels for t < 0.5.

In the mathematical model, the afterdischarge elicited following the 5 Hz protocol
happens a short time after cessation of the input (Figure 2.23), compared to typical ex-
periments. This is likely because the calcium delay term associated with the voltage-
independent nonselective cation channel is a direct time delay on microdomain calcium
levels, which decay rather quickly in the absence of stimulus. The result was that the
delay variable was just long enough to allow voltage-dependent channels to depolarize.
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Extending the system with proper second-messenger dynamics may help sustain the ca-
tion’s activation, θ, at low currents for a long enough time to account for the slow delay to
the onset of afterdischarge. Alternatively, the previously mentioned integrator neuron mo-
del was able to produce a longer delay using a hyperpolarizing current [34]. Implementation
of the refractory period could be relatively simple to implement, using a calcium-dependent
activation function with a long time constant, but would require very long simulation ti-
mes to test and verify, given the lengthy duration of afterdischarge. A more complicated
and biologically relevant model could be derived from experimental evidence, which would
require an implementation of PKC and/or the addition of the BK+ current [71][72][116].

Experimental measurements of Aplysia bag cell’s electrical junctions yield a conduc-
tance of 8-10 nS [29]. The simple ring network model exhibited “weak” coupling at 15 nS,
while the ring cluster network model exhibited “strong” coupling at 15 nS. The scatter
network exhibited “weak coupling” at Dn = 7 nS. Assuming that more connections in the
network requires a smaller conductance value for similar behavior, the experimental result
implies that the average number of connections per neuron should be more than four (as in
the ring cluster topology). Finally, the network is lacking heterogeneity. It has previously
been demonstrated that heterogeneity can be a necessary driver of system dynamics in
systems. For example, taking averages can miss important regions of parameter space [74],
heterogeneity can diminish effective negative feedback, enhancing network interactions [86],
and heterogeneity raises the responsiveness of neural networks [66].

Network dynamics of the Aplysia bag cell neuron may be interesting in the context
of spatiotemporal reaction-diffusion systems. Electrically coupled neurons are mathema-
tically identical to discretized reaction-diffusion systems. The electrically-coupled Morris-
Lecar network is similarly capable of wave propagation, and additionally exhibits transient
spatiotemporal chaos [60]. It is possible that there is a physiologically relevant regime
in which Aplysia bag cell clusters exhibit transient spatiotemproal chaos once a refrac-
tory period has been implemented. Experimentalists should look to evidence in the form
of neurons intermittently exhibiting spikelets and full action potentials in intact clusters.
The existence of such behavior might suggest such the interplay of complex dynamics [60].
Spikelets occur when electrically-coupled neurons don’t elicit full action potentials, as has
been observed in hippocampal neurons [101]. The spikelets are a result of draining from
coupled neighbors and, as such, often require very fine tuning of the coupling constant, Dn.
As is, the Aplysia bag cell model is unlikely to yield chaos, given the apparent stability of
its oscillations and phase coherence. A more robust measure would require evaluating the
Lyapunov exponent of the network [93].

In order to make the Aplysia bag cell network model more consistent with the biological
Aplysia bag cell cluster, an experimental analysis of the bag cells cluster’s connectome
would be informative. As demonstrated here, topology can have an effect on what values
of Dn are considered “strong” or “weak” coupling, and varying the longest distance in the
network can reduce the time it takes for the network to synchronize. On the theoretical
aside, a more systematic approach to construction of scatter networks or deriving a method
to model the topology of a three dimensional, spherical cluster of neurons may yield more
relevant results. For instance, rules that enforced a maximum number of connections per
neuron (or equivalently, a maximum number of 1’s per row in the matrix, A), and an
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additional rule set that would confine the longest maximum and minimum distances in the
network. This is not a trivial task, and I hereby declare it outside my scope. I suggest
any hopeful graduate students reading this learn when to do the same when the time
is appropriate. I leave you, now, with this quote, taken from an introductory text on
statistical mechanics. And what are neurons to a geometrist besides particles of not 4, but
10 dimensions?

Ludwig Boltzmann, who spent much of his life studying statistical mechanics, died in
1906, by his own hand. Paul Ehrenfest, carrying on the work, died similarly in 1933. Now
it is your turn to study statistical mechanics. Perhaps it will be wise to approach the subject
cautiously...

-David Goodstein, States of Matter [39]
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Appendix A

Full Model and Parameters

A.1 Model

dV

dt
=

1

C
[I − ICa − IK − ICATvi − ICATvd − IL] (A.1)

dm

dt
=
mss(V )−m
τm(V )

(A.2)

dh

dt
=
hss(V )− h
τh(V )

(A.3)

ds

dt
=

(1− Pb)(ICa + ICATvi + ICATvd)

−2Fv
−D(s− s0) (A.4)

dn

dt
=
nss(V )− n
τn(V )

(A.5)

dq

dt
=
qss(V )− q
τq(V )

(A.6)

dr

dt
=
s− r
τr

(A.7)

dφ

dt
=
φss(r)− φ

τφ
(A.8)

dθ

dt
=
θss(r)− θ

τθ
(A.9)

dη

dt
=
ηss(r)− η

τη
, (A.10)

where
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ICa =
ḠCamh(V − VCa)

1 +Ks
(A.11)

IK = ḡKn
4q(V − VK) (A.12)

ICATvi = ḡCATviφθ(V − VCATvi) (A.13)

ICATvd = ḡCATvdη(V − VCATvd) (A.14)

IL = gL(V − VL) (A.15)

G = gCa

(
1 +M

1

2
(1 + tanh

r − Ca1

Ca2

)

)
(A.16)

Pb =
Bt

Bt + kA
(A.17)

Bt =
kABtot

s+ kA
, (A.18)

and

m =
1

2

(
1 + tanh

V − V1

V2

)
(A.19)

τm = τm0
1

2

(
1 + tanh

V − V3

V4

)
(A.20)

h =
1

2

(
1 + tanh

V − V5

V6

)
(A.21)

τh = τh0
1

2

(
1 + tanh

V − V7

V8

)
(A.22)

n =
1

2

(
1 + tanh

V − V9

V10

)
(A.23)

τn = τn0
1

2

(
1 + tanh

V − V11

V12

)
(A.24)

q =
1

2

(
1 + tanh

V − V13

V14

)
(A.25)

τq = τq0 (A.26)

θss =
1

2

(
1 + tanh

r − Ca3

Ca4

)
(A.27)

τθ = τθ0 (A.28)

φss =
1

2

(
1 + tanh

r − Ca5

Ca6

)
(A.29)

τφ = τφ0 (A.30)
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ηss =
1

2

(
1 + tanh

V − V15(r)

V16(r)

)
(A.31)

V15 = Vi1 + Vi2
1

2

(
1 + tanh

r − Ca7

Ca8

)
(A.32)

V16 = Vj1 + Vj2
1

2

(
1 + tanh

r − Ca9

Ca10

)
(A.33)

τη = τm0 (A.34)
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A.2 Parameters

Parameter Global Values Eq.

Capacitance C [pF] 1360 A.1

Ca2+ conductance ḡCa [µS] 93.5 A.16

K+ conductance ḡk [µS] 31.9 A.12

V-independent conductance ḡCATvi [µS] 0.05 A.13

V-dependent conductance ḡCATvd [µS] 0.2 A.14

Leak conductance ḡL [µS] 4.04e-02 A.15

Parameter
Reversal

Potentials
Eq.

Ca reversal VCa [mV] 60 A.11

K reversal VK [mV] -80 A.12

V-independent reversal VCATvi [mV] -45 A.13

V-dependent reversal VCATvd [mV] 10 A.14

Leak reversal VL [mV] -60 A.15

Variable
Initial

Conditions
Eq.

membrane potential Vi [mV] -54.8 N/A

Ca activation mi 1.00e-03 N/A

Ca inactivation hi 0.86 N/A

Ca concentration si [M] 7.14e-02 N/A

K activation ni 6.07e-02 N/A

K inactivation qi 1.0 N/A

Ca delay ri [M ] 7.14e-02 N/A

V-dependent activation φi 0.0 N/A

V-dependent inactivation θi 1.0 N/A

V-independent activation ηi 3.70e-03 N/A

Table A.1: Initial Conditions, Global Values, and channel Reversal Potentials for the
Aplysia bag cell model
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Parameter Ca activation Eq.

activation shift V1 [mV] -5.0 A.19

activation slope V2 [mV] 14.4 A.19

time constant shift V3 [mV] -40. A.20

time constant slope V4 [mV] 9.25 A.20

time constant max τm0 [s] 6.60e-03 A.20

Parameter Ca inactivation Eq.

inactivation shift V5 [mV] -18 A.21

inactivation slope V6 [mV] 40 A.21

time constant shift V7 [mV] -55 A.22

time constant slope V8 [mV] 15 A.22

time constant max τh0 [s] 1.5 A.22

Parameter
Use

Dependence
Eq.

Ca diffusion D [s−1] 6.50 A.4

volume of microdomain v [µM3] 1.70e-05 A.4

Faraday’s constant F [C/M] 9.65e+04 A.4

internal calcium concentration s0 [M] 0.07 A.4

rate constant ratio K [M−1] 2.00e+03 A.11

buffering rate constant ratio kA [M] 1.00e-04 A.17-18

Concentration of buffer Btot [M] 1.00e-04 A.18

Parameter
Calcium

Enhancement
Eq.

enhancement shift Ca1 [M] 0.07 A.16

enhancement slope Ca2 [M] 0.01 A.16

enhancement multiplier M 3.0 A.16

Table A.2: Calcium kinetics. Parameters V1 and V2 are the shift and slope of the activation
function, V3 and V4 are the shift and slope of the time constant function, and τn0 is the time
constant maximum. Parameters V9 through V12 and τh0 are analogous for the inactivaiton.

108



Parameter K activation Eq.

activation shift V9[mV ] 0 A.23

activation slope V10 [mV] 40 A.23

time constant shift V11 [mV] -5 A.24

time constant slope V12 [mV] 35.4 A.24

time constant max τn0 [s] 1.8e-02 A.24

Parameter K inactivation Eq.

inactivation shift V13 [mV] 0 A.25

inactivation slope V14 [mV] 10 A.25

inactivation time constant τq [s] 0.1 A.25

Table A.3: Potassium kinetics

Parameters
Voltage-

independent
Eq.

Ca delay constant τr [s] 5.0 A.7

shift modulation shift Ca3 [M] 0.08 A.27

shift modulation slope Ca4 [M] 1.00e-04 A.27

activation time constant τθ [s] 20 A.28

slope modulation shift Ca5 [M] 0.1 A.29

slope modulation slope Ca6 [M] 1.00e-03 A.29

inactivation time constant τφ [s] 120 A.30

Parameters
Voltage-

dependent
Eq.

V15 lower bound Vi1 [mV] 80 A.32

V15 additive Vi2 [mV] 44.8 A.32

V16 lower bound Vj1 [mV] 51 A.33

V16 additive Vj2 [mV] 28 A.33

enhancement shift Ca7 [M] 0.21 A.32

enhancement slope Ca8 [M] 0.5 A.32

enhancement shift Ca9 [M] 0.09 A.33

enhancement slope Ca10 [M] 1.80e-02 A.33

time constant max τm0 [s] 6.60e-03 A.34

Table A.4: Nonselective cation channel kinetics
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