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Abstract 

 

The development of autonomous vehicle desiderates tremendous advances in three-

dimensional (3D) high-definition roadmaps. These roadmaps are capable of providing 3D 

positioning information with 10-to-20 cm accuracy. With the assistance of 3D high-definition 

roadmaps, the intractable autonomous driving problem is transformed into a solvable localization 

issue. The Mobile Laser Scanning (MLS) systems can collect accurate, high-density 3D point 

clouds in road environments for generating 3D high-definition roadmaps. However, few studies 

have been concentrated on the driving line generation from 3D MLS point clouds for highly 

autonomous driving, particularly for accident-prone horizontal curves with the problems of 

ambiguous traffic situations and unclear visual clues.  

This thesis attempts to develop an effective method for semi-automated generation of 

horizontally curved driving lines using MLS data. The framework of research methodology 

proposed in this thesis consists of three steps, including road surface extraction, road marking 

extraction, and driving line generation. Firstly, the points covering road surface are extracted 

using curb-based road surface extraction algorithms depending on both the elevation and slope 

differences. Then, road markings are identified and extracted according to a sequence of 

algorithms consisting of geo-referenced intensity image generation, multi-threshold road 

marking extraction, and statistical outlier removal. Finally, the conditional Euclidean clustering 

algorithm is employed followed by the nonlinear least-squares curve-fitting algorithm for 

generating horizontally curved driving lines.  

 A total of six test datasets obtained in Xiamen, China by a RIEGL VMX-450 system 

were used to evaluate the performance and efficiency of the proposed methodology. The 
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experimental results demonstrate that the proposed road marking extraction algorithms can 

achieve 90.89% in recall, 93.04% in precision and 91.95% in F1-score, respectively. Moreover, 

the unmanned aerial vehicle (UAV) imagery with 4 cm was used for validation of the proposed 

driving line generation algorithms. The validation results demonstrate that the horizontally 

curved driving lines can be effectively generated within 15 cm-level localization accuracy using 

MLS point clouds. Finally, a comparative study was conducted both visually and quantitatively 

to indicate the accuracy and reliability of the generated driving lines.  
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Chapter 1 Introduction 

1.1 Motivation  

In recent years, the design and development of autonomous vehicles with intelligent and 

coordinated action capabilities to achieve self-driving without human interactions, has been the 

object of considerable interest in the artificial intelligence and automotive engineering 

communities (Lozano-Perez, 2012). An autonomous vehicle has the capability to determine the 

best navigation routes, drive itself on the most challenging road networks, and avoid collisions 

with fixed or moving road users (e.g., pedestrians, cyclists and cars) without direct human 

operations (Fagnan and Kockelman, 2015). Consequently, many worldwide prominent 

automotive manufacturers (e.g., General Motors, BMW, Mercedes-Benz, Audi, Fiat Chrysler, 

Toyota, and Ford) and information and communication technology (ICT) companies (e.g., 

Google, Uber, Apple, Tesla, Baidu and Nvidia), are investing heavily, adjusting their 

development strategies, and indicating their ambitions to participate in the emerging market of 

self-driving vehicles (Sisson, 2017).  

According to the new policy on automated vehicle development released in May 2013 by 

the U.S. Department of Transportation’s National Highway Traffic Safety Administration 

(NHTSA), five levels are defined for vehicle automation: no-automation (Level 0), function-

specific automation (Level 1), combined function automation (Level 2),  limited self-driving 

automation (Level 3), and full self-driving automation (Level 4) (NHTSA, 2013). These five 

levels are detailed as follows:  

Level 0 - Function-specific automation. Specific control functions are automated, 

including adaptive cruise control, automated parallel parking and lane keeping. Drivers are 
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completely responsible for driving safety and overall control (i.e., the drivers are fully engaged 

for steering and braking).  

Level 1 - Combined function automation. Multiple and integrated functions are 

automated, such as adaptive cruise control with the assistance of lane centering. The driver has 

responsibility to monitor the roadway and safe operation. However, drivers are disengaged from 

vehicle’s operation under specific conditions.  

Level 2 - Limited self-driving automation. Drivers are able to cede all safety-critical 

functions in certain conditions, and are not expected to constantly monitor the roadway while 

driving.  

Level 3 - Self-driving under specified conditions. Vehicles can achieve highly 

autonomous driving functions under specified conditions.  

Level 4 - Full self-driving automation. Vehicles are capable of performing highly 

autonomous driving on all road networks, speed ranges and environmental conditions without 

any direct human operations.  

Typically, a fully autonomous vehicle (Level 4) are equipped with several data 

acquisition devices that work in combination with each other to achieve highly autonomous 

driving (Guizzo, 2011). Radar sensors mounted on the front and rear bumpers enable the car 

monitor the positioning information of surrounding vehicles. Video cameras are capable of 

detecting traffic lights, roadside signs, and keeping track of vehicles nearby, while also detecting 

pedestrians and other obstacles. Moreover, LiDAR sensors mounted on the roof of the vehicle 

are able to detect road edges and identify road markings by emitting continuous laser pulses and 

receiving the reflected signals. Finally, a central computing system analyzes all of the data 
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obtained from the multiple sensors to manipulate the steering, acceleration and braking. However, 

these multiple on-board sensors cannot provide effective and safe navigation services for 

autonomous vehicles under certain traffic conditions, including the limited sight distance of 

sensors and ambiguous visual clues (Rupp and King, 2010). Additionally, autonomous vehicles 

cannot achieve highly autonomous driving function in rural road environments without road 

markings or the curbs of the roadways. Therefore, autonomous vehicles depend on dynamic 

three-dimensional (3D) high-definition roadmaps to support precise vehicle positioning and route 

navigating services for all road environments (Dokic et al., 2015).  

Compared to the conventional road maps, the 3D high-definition roadmaps are developed 

for more precise traffic navigation with high accuracy and detailed road network information 

(e.g., lanes, road edges, centrelines, and restrictions). According to the final report of the 

Enhanced Digital Mapping Project submitted to the United States Department of Transportation 

(USDOT) in 2004, the lane-level accuracy performance of 3D high-definition roadmaps can 

reach 30 cm (USDOT, 2004). Furthermore, 3D high-definition roadmaps can provide 

autonomous vehicles with an extended monitoring range, allowing cars to anticipate turns and 

intersections far beyond the reach of onboard sensors. With the assistance of conventional 2D 

navigation maps, it is very challenging for onboard sensors to identify the traffic sign early if this 

traffic sign is blocked by obstacles or the car is moving fast on highways, which results in 

potential traffic risks. Accordingly, a 3D high-definition roadmap is indispensable to not only 

provide highly precise sub-lane level information of road networks (e.g., accidents, roadside 

signs, lane marking types, slope, curvature, and road speed limit information), but also solve the 

problems of detection and reaction early to events happening on the traffic lanes (Bauer et al. 

2016). Based on detailed 3D high-definition roadmaps, autonomous vehicles have the capability 
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to drive in accordance with the restrictions of road specifications and the behaviours of other 

traffic participants, particularly for complex urban road networks and highway environments 

(Seif and Hu, 2016). 

 In order to capture real-time road information and generate 3D high-definition roadmaps 

for autonomous vehicles, Mobile Laser Scanning (MLS) technique is applied to acquire high-

resolution topographic data and construct 3D road models with highly sensitive information 

about road infrastructures (Marshall and Stutz, 2011). Meanwhile, Airborne Laser Scanning 

(ALS) and Terrestrial Laser Scanning (TLS) techniques are also capable of collecting high-

density and geo-referenced point clouds with highly accurate positioning information. However, 

ALS cannot penetrate fog, dust, clouds and dense vegetation. The laser beams will not detect the 

ground below dense conifers and multistory buildings. Terrestrial laser scanners are normally 

mounted on a tripod, which provides a maximum scanning range of 250–1000 m with a 

measurement accuracy of 5-10 mm by using time-of-flight scanning pattern (Vosselman and 

Mass, 2010). Nevertheless, due to its low flexibility and mobility characteristics, TLS technique 

is not widely used in the application of 3D high-definition roadmaps. Compared to 3D highly 

dense point-based techniques, aerial and satellite image-based methods are also applied to 

generate high-definition roadmaps. High-resolution optical imagery has capability to provide 

rich textural, spectral, and semantic information for different ground features. Since the 

limitations of passive remote sensing technique, the feature extraction and classification accuracy 

can be affected by a variety of factors, including inconstant luminance, perspective effects of 

high-resolution imagery, weather conditions, shadows and operation time of the day. Therefore, 

high-resolution imagery with high-quality geographic data is normally used as a basic map layer 

for 3D high-definition roadmaps (HERE, 2016).   
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Accordingly, a MLS system is the vehicle-based mapping systems that integrate various 

navigation and data acquisition devices, including laser scanners, optical cameras, a Global 

Navigation Satellite System (GNSS), an Inertial Measurement Unit (IMU), a Distance 

Measurement Indicator (DMI), and an integrated computing system (Guan, 2013). It produces 

3D MLS point clouds from the surrounding objects by utilizing profiling scanning technique 

(Haala et al., 2008). Moreover, MLS systems are capable of providing highly accurate, geo-

referenced data with higher time-efficiency and better cost-saving in comparison to traditional 

surveying methods, such as human fieldwork and satellite imagery (Puente et al., 2013). 

Additionally, considering their prominent mobility and flexibility characteristics, MLS systems 

are more appropriate for developing 3D high-definition roadmaps, particularly in both urban 

roadways and highway environments with high-density traffic flows and complicated traffic 

situations (Toth, 2009). Currently, based on MLS technologies, a consortium of 15 Japanese 

automakers and manufactures (e.g., Toyota, Honda and Mitsubishi Electric) have cooperated 

together to develop detailed 3D high-definition roadmaps for obtaining additional road 

information (e.g., lane divisions, lane curvatures and widths, lane closures and usage rules), 

which aims to decrease the number of casualties and improve the safety of autonomous driving.  

Therefore, depending on 3D high-definition roadmaps established by using MLS data to 

generate effective and reliable driving lines, autonomous vehicles can identify and leapfrog 

slow-moving traffic, negotiate interchanges, determine the correct lane to drive through 

horizontal curves and make predictive decisions in case of emergency (Schwarz, 2010). The 

driving lines that typically locate at central positions between two line-shaped road markings 

(e.g., centrelines, edge lines and lane lines), are considered as driving paths or navigation routes 

for autonomous vehicles in various road environments. Determining safe and reliable driving  
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Figure 1.1 Lines in high-definition roadmaps defined in this thesis.  

lines in advance can greatly overcome the limitations of the vehicle’s on-board sensors, extend 

the monitoring range for autonomous vehicles, and enables these vehicles to react early in case 

of traffic emergencies. Figure 1.1 presents several types of line-shaped curved road markings 

(e.g., white solid lines around the green belt indicate centrelines, white solid lines on the both 

sides of the road represent edge lines, white dashed lines are lane lines and yellow dashed lines 

show driving lines in this thesis). Additionally, the probability of traffic accidents would increase 

greatly for autonomous vehicles in complex traffic conditions including turns, curves, 

intersections, roundabouts and highways (Peden, 2004; Urmson, 2008). As an important element 

of roadway design and construction, horizontal curves have a considerable impact on traffic 

safety and efficiency due to the gradual change in direction of curves and limited sight distance 

for both drivers and onboard sensors (Khan et al., 2012). In the U.S., the average collision rate at 

horizontal curves is about three times that of other highway segments (Torbic et al., 2004). Thus, 

eliminating safety hazards at horizontal curves is an inevitable process in the development of 

autonomous vehicles. Accordingly, considering the turning speed limitation, driving lane 
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departure and vehicle-handling capability issues, one of the most challenging tasks for 

autonomous driving is to enable autonomous vehicles to design the best effective and safest 

driving lines at horizontal curves without human operations (Choi et al., 2008). 

However, processing of a massive amount of 3D point clouds is regarded as a grand 

challenge. For instance, a RIEGL VMX-450 system is capable of collecting point clouds up to a 

total of 120 GB within one hour at a normal driving speed (RIEGL, 2017). Consequently, it 

requires not only a high-performance computation system but also high-efficiency processing 

algorithms for road information extraction. Therefore, developing an effective and reliable 

method to generate horizontally curved driving lines from high-density MLS point clouds has 

become a large market demand in order to support the development of 3D high-definition 

roadmaps for fully self-driving automation (Level 4).  

This thesis will focus on elaborating reasonable rationales and proposing semi-automatic 

algorithms to generate reliable and effective driving lines using MLS point clouds at horizontally 

curved road sections. Based on geomatics, computer vision, mobile mapping technologies and 

road design regulations, the proposed methodology in this thesis is to enable a prospective 

application of MLS data for the development of 3D high-definition roadmaps and autonomous 

vehicles. Additionally, the methodology proposed in this thesis is capable to minimize manual 

intervention for an advanced processing of large-volume MLS point clouds. This thesis research 

will improve route-planning strategies for autonomous driving, especially for the accident-prone 

horizontally curved road scenarios. Furthermore, this study demonstrates the huge market 

potentials and opportunities of MLS data in mobile mapping, surveying, cartography and 

automotive industries. 
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1.2 Objectives of the Thesis 

The purpose of this thesis is to develop semi-automated algorithms for the detection and 

extraction of road markings particularly for lane lines, centrelines and edge lines at the 

horizontally curved road sections. Furthermore, to generate horizontally curved driving lines 

based on high-density MLS point clouds can support the development of autonomous vehicles. 

The specific objectives of this thesis are described as follows: 

1) Presenting semi-automatic algorithms for the detection and extraction of road 

markings from large-volume MLS data, particularly for horizontally curved road 

sections; 

2) Developing semi-automatic algorithms for the generation of horizontally curved 

driving lines by taking road design regulations and curve-fitting functions of curved 

road markings into consideration; 

3) Conducting an accuracy assessment to quantitatively evaluate the extracted road 

markings, and implementing a comparative study with existing methods to verify the 

performance of the proposed road marking extraction algorithms; and  

4) Performing an accuracy assessment to validate the accuracy and reliability of the 

generated driving lines both visually and quantitatively.  

1.3 Structure of the Thesis 

 This thesis contains the following five chapters. 

Chapter 1 describes the motivation and background of this thesis, followed by presenting 

the research objectives and the structure of the thesis.  
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Chapter 2 presents a thorough review of the state-of-the-art literature. At the beginning, 

the basic information about autonomous vehicles and MLS technique is briefly introduced. Next, 

the requirements for 3D high-definition roadmaps are afterward described. Moreover, the current 

advanced methods for the extraction of road surface and road markings using MLS data are 

systematically and comprehensively reviewed. Finally, this chapter ends with introducing 

previous related studies concentrating on road parameters extraction at horizontal curves from 

MLS point clouds. 

Chapter 3 details the methodology including the proposed algorithms. Moreover, 

methods for accuracy assessment using the unmanned aerial vehicle (UAV) imagery and 

comparative study with previous methods are introduced.  

Chapter 4 presents the test datasets and reference data by first. Then, this chapter 

provides the experimental results obtained by six test datasets using the proposed methods. 

Furthermore, the performance assessment results and comparison results are also presented. 

Chapter 5 draws a conclusion with findings, summarizes the contributions and discusses 

limitations of this thesis. Moreover, the research challenges and suggestions for future studies are 

also discussed. 
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Chapter 2 Background and Related Studies 

This chapter contains a systematic and comprehensive literature review of backgrounds 

and studies related to this thesis topic. Firstly, an introduction to autonomous vehicles and their 

requirements for 3D high-definition roadmaps are presented in Section 2.1. Secondly, the 

principles of MLS systems are detailed in Section 2.2. Then, the state-of-the-art methods for road 

surface detection using MLS data are reviewed in Section 2.3 followed by road marking 

extraction in Section 2.4, and road horizontal parameters extraction in Section 2.5. Through a 

review of previous related techniques and methods for extracting road information, this chapter 

elaborately provides a theoretical background in understanding principles of MLS technology, 

applications of 3D high-definition roadmaps and methodologies used in this study.  

2.1 Research Background 

2.1.1 Introduction to Autonomous Vehicles  

An autonomous vehicle is a robotic vehicle, which has the capability to sense its 

surrounding road environment, determine the best routes, drive itself on the most challenging 

road networks, navigate numerous types of road environment and avoid collisions with fixed or 

moving objects (e.g., pedestrians, cyclists and vehicles) without direct human operations (Guizzo, 

2011). Recent advances in sensing and navigation devices, computational capabilities, and 3D 

high-definition roadmaps have the potential to dramatically facilitate the development of 

autonomous vehicles (Casner et al., 2016). Firstly, radar sensors mounted on the vehicle are 

capable of monitoring the positions of other surrounding road users, while the Light Detection 

and Ranging (LiDAR) sensors can be applied to detect the road edges and identify road markings 

by emitting continuous laser pulses and recording corresponding reflected signals. Video 

cameras have the ability to collect detailed road information and analyze image data of vehicles,  
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pedestrians and other obstacles. Additionally, according to the Google’s Driverless Car Report in 

2016, the vehicle-mounted LiDAR sensors detect a range of 100 m with rotational ability of 360° 

around the car and establish a real-time dynamic 3D roadmap of the current road environments. 

Finally, based on high-performance computation and storage techniques, an integrated computer 

system is employed to record, manage, and analyze multiple data sources from the various 

sensors for manipulations of steering, acceleration and braking (Anderson et al., 2014). However, 

autonomous vehicles not only need onboard sensors to sense their surroundings, but also need 

precise 3D high-definition roadmaps to better understand the traffic situations far beyond the 

reach of sensors. Thus, autonomous vehicles are dependent on advanced 3D high-definition 

roadmaps to support precise localization and navigation services (Seif and Hu, 2016).  

Table 2.1 Specifications of two commercial laser scanners. 

Company RIEGL Velodyne 

Laser  

scanner  

component 

Laser scanner RIEGL VQ-450 HDL-64E 

Laser wavelength near infrared near infrared 

Maximum range 800 m 120 m 

Minimum range 1.5 m 1.5 m 

Measurement precision 5 mm (1𝜎) - 

Absolute accuracy 8 mm 2 cm 

Scan frequency 400 lines/sec - 

Angle measurement resolution 0.001° 0.09° 

Scanner field of view 360° 360° 

 

Table 2.1 describes detailed specifications of two commercial laser scanners, which are 

RIEGL VQ-450 and Velodyne HDL-64E integrated in RIEGL VMX-450 system and Google’s 

Driverless cars, respectively (Glennie and Lichti, 2010; RIEGL, 2017). It is identified that the 
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laser scanners integrated in MLS system are capable of providing higher measurement accuracy 

and further measurement range than autonomous vehicles’ on-board laser scanners. 

Consequently, 3D high-definition roadmaps established by using laser scanners in MLS system 

can provide highly effective route navigation services for autonomous vehicles.   

2.1.2 3D High-definition Roadmaps 

 A 3D high-definition roadmap provides a highly accurate and realistic representation of 

the current road networks, which is capable of updating in real-time and recording traffic 

changes such as accidents, lane closure, traffic congestion, and updated speed limitation at cm-

level accuracy (Miller, 2014). The 3D high-definition roadmap is a significant element of highly 

autonomous driving technology, assisting autonomous vehicles precisely localize themselves on 

the road and providing autonomous vehicles with an extended monitoring range to anticipate 

turns and intersections far beyond the view of sensors (Guizzo, 2011). Therefore, compared to 

the conventional road navigation maps, 3D high-definition roadmaps are designed for highly 

precise route navigation services with high accuracy and detailed traffic network information 

(e.g., lanes, lane markings, roadside objects, and restrictions).  

With regard to a great market demand, digital map suppliers such as HERE (a mapping 

company owned by BMW, Daimler, and the Volkswagen Group) and TomTom are dedicated to 

the research and development of high-definition roadmaps to provide advanced lane guidance 

and high-efficiency route navigation services for autonomous driving. As shown in Figure 2.1, 

the HD Live Map established by HERE consists of dynamic content layers to provide detailed  
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Figure 2.1 The HD Live Map designed by HERE.  

and real-time road information, including detailed lane level information (e.g., color lines 

indicate different line-shaped road markings and generated driving lines, while various arrows 

represent the driving direction for autonomous vehicles), dynamic road networks and health 

situation changes, roadside infrastructures (e.g., traffic signs), and speed profile data (HERE 360, 

2016). Moreover, the HD Live Map is one of the most advanced layer-based cloud services, in 

combination with timely accident reports, dynamic traffic flow data, and speed profile data, this 

HD Live Map is capable of supporting automobile companies in their strategies of developing 

autonomous driving and mobility. For instance, the map layer assembled in HD Live Map is a 

precise sub-lane level representation of the road network. Subsequently, the activity layer records 

dynamic traffic events including traffic conditions and collision warnings beyond the sight 

distance of onboard sensors. Additionally, the analytics layer collects and analyzes long-term 
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location-based drivers’ behaviour data to navigate a highly automated vehicle and provide 

customized convenience services for the drivers. Currently, HERE is using satellite and aerial 

images as a foundation for high-definition roadmaps. Moreover, employing MLS technology to 

capture complex road environments in 3D world is an effective method to obtain high-resolution 

information with accurate and precise geo-referenced data (Jakubiec and Mullinix, 2013). 

Meanwhile, TomTom depends on “Depth Maps” by using LiDAR sensors, and rebuilds a 3D 

view of the road networks around a moving car in real time particularly for dynamic and 

uncertain road environments and operating conditions. 

2.1.3 Horizontal Curve 

 Horizontal curves are significant and necessary elements in the geometric design of 

roadways and highways since these curves provide gradual change in direction and additional 

centripetal forces on vehicles (Khan et al., 2012). Additionally, horizontal curves can be 

classified into four fundamental categories: simple circular curves, compound curves, reverse 

curves, and spiral curves (McCormac et al., 2012). As shown in Figure 2.2 (a), a simple circular 

curve is a segment of a circle that is bounded by two tangents. The radius determines the 

sharpness and flatness of the circular curve.  The compound curve consists of multiple 

consecutive simple curves and inner tangent segments (see Figure 2.2 (b)). The third category of 

horizontal curve is the reverse curve, which is composed of two simple circular curves curving in 

opposite direction (see Figure 2.2 (c)). As illustrated in Figure 2.4(d), the spiral curve is a 

horizontal curve that has a changing radius. It is identified that majority of curved road sections 

are designed as simple circular curves in order to ensure traffic efficiency and reduce road 

hazards, this thesis mainly focuses on developing effective driving lines for autonomous vehicles 

at horizontally circular curved road segments. 



15 
 

 

               (a) Simple circular curve                                              (b) Compound curve 

 

                (c) Reverse curve                                                          (d) Spiral curve 

Figure 2.2 Four types of the horizontal curves.  

Horizontally curved road segments are highly related to traffic accidents for all road users. 

Traffic collisions can be caused due to failures of driver attention and misperception of speed 

and curvature associated with horizontal curves (Charlton, 2007). Accordingly, McDonald (2004) 

indicated that the accident frequency could increase by 34% for per sharp curve per km. 

According to the report of A Guide for Reducing Collisions on Horizontal Curves, it indicates 
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that over 25% of traffic fatalities are killed in the road accidents at horizontal curves annually in 

the U.S. (Torbic et al., 2004). Additionally, based on the Preliminary 2016 ORSAR Selected 

Statistics submitted to the MTO, it reports that about 11.9% fatal and injury collisions occurred 

in Ontario are related to horizontal curves (ORSAR, 2016). Thus, in order to reduce the rate of 

traffic accidents, autonomous vehicles should have the capability to design the most efficient and 

reliable driving lines at horizontally curved road sections. Accordingly, 3D high-definition 

roadmaps that established by using highly dense MLS point clouds can provide autonomous 

vehicles with an extended sensing range to help such vehicles solve the problems of detection 

and reaction early (Dokic et al., 2015; Boudette, 2017). Therefore, in order to develop highly 

accurate 3D high-definition roadmaps especially for horizontally circular curved road sections, 

the following sections systematically and comprehensively review relevant methods including 

road surface extraction, road marking extraction and road horizontal parameters extraction using 

MLS data.   

2.2 Principles of MLS System Operations 

2.2.1 Introduction of MLS System 

In general terms an MLS system is based upon laser scanning sensors, which collect 3D 

point clouds using profiling scanning technique and then detect laser pulses reflected from the 

target surfaces. According to the velocity of light, the travel time of laser pulses can be used to 

determine the precise range. Thus, highly accurate 3D coordinates for each laser point can be 

calculated based on range measurement, angular measurement, position and orientation 

information. Additionally, MLS data collection rate can be determined by the laser beam 

repetition rate and scanning mirror-deflecting pattern. Typically, most commercial MLS systems 
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can reach 50,000 – 550,000 measurements per second, which are capable to produce high-

density point clouds data with time-saving measurements (Kukko, 2013).  

 For navigation solutions, the GNSS receivers can constantly obtain real-time and geo-

referenced geodetic coordinates using a GNSS antenna phase unit. Then, an advanced POS 

system is employed to correct position and orientation information and improve the overall 

navigation solution especially for survey areas with poor GNSS signals. For instance, an 

Applanix POS/LV 420 POS system consists of a GNSS antenna, an IMU, and a DMI, while 

GNSS antennas are used to receive satellite signals and the DMI can be accessed to update 

precise vehicle velocity (Ussyshkin, 2009). Meanwhile, high-resolution digital cameras (e.g., 

CCD cameras or panoramic cameras) can be applied to acquire texture information from 

surrounding objects. Furthermore, by combining laser pulse frequency and field-of-view (FOV) 

of LiDAR sensors with scan angles and range values between laser scanners and the targets, 

XYZ-coordinates of point clouds are calculated. Finally, according to the integrated POS system, 

real-time and highly accurate 3D information of scanned targets can be obtained. 

2.2.2 Direct Geo-referencing of MLS Data  

The principle of direct geo-referencing is elucidated in the Figure 2.3. According to the 

scanning angle 𝛼 and the scanning range 𝑑 of a specified point P, the location of point P can be 

determined in its coordinate system. In addition, the location of point P in the coordinate system 

of mapping frame can be transformed from the laser scanner system.  

 Table 2.2 indicates parameters used in the direct geo-referencing transformation, and the 

coordinate of target point P can be calculated by (Guan, 2013): 

[
𝑋𝑃

𝑌𝑃

𝑍𝑃

] = 𝑅𝑀
𝐼𝑀𝑈(𝜔, 𝜑, 𝜅) ∙ (𝑅𝐼𝑀𝑈

𝑆 (∆𝜔, ∆𝜑, ∆𝜅) ∙ 𝑟𝑃
𝑆(𝛼 𝑑) + [

𝑙𝑋
𝑙𝑌
𝑙𝑍

] + [
𝐿𝑋

𝐿𝑌

𝐿𝑍

]) + [

𝑋𝐺𝑃𝑆

𝑌𝐺𝑃𝑆

𝑍𝐺𝑃𝑆

]            (2.1) 
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Figure 2.3 Principle of direct geo-referencing.  

 As shown in Table 2.2, [𝑋𝑃, 𝑌𝑃, 𝑍𝑃]𝑇  represents the positioning information vector of 

point P in the given mapping frame; [𝑋𝐺𝑃𝑆, 𝑌𝐺𝑃𝑆, 𝑍𝐺𝑃𝑆]
𝑇  indicates the positioning information 

vector of the GNSS antenna in the same mapping frame; 𝜔,𝜑, 𝜅 are roll, pitch and yaw details of 

IMU in the mapping coordinate system; ∆𝜔, ∆𝜑, ∆𝜅 are bore sight angles that align the scanners 

with the IMU; 𝛼 and 𝑑 refers to the scan angle and scan range of the laser beam; and other 

parameters are identified through system calibration and measurement.  
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Table 2.2 Parameters used in the direct geo-referencing. 

Parameters Description Source 

𝑋𝑃, 𝑌𝑃, 𝑍𝑃 Coordinate of target P in the mapping frame - 

𝑅𝑀
𝐼𝑀𝑈(𝜔, 𝜑, 𝜅) Rotation matrix from IMU coordinate system 

to mapping frame 

IMU 

𝑅𝐼𝑀𝑈
𝑆 (∆𝜔, ∆𝜑, ∆𝜅) Rotation matrix between the laser scanner and 

IMU coordinate system  

System calibration & 

measurement 

𝑟𝑃
𝑆(𝛼 𝑑) Relative position of point P in the laser 

scanner coordinate system 

Laser scanners 

𝑙𝑋 , 𝑙𝑌, 𝑙𝑍 The offsets from the origin of IMU to the laser 

scanner origin 

System calibration & 

measurement 

𝐿𝑋, 𝐿𝑌, 𝐿𝑍 The offsets from the GNSS origin to the IMU 

origin 

System calibration  & 

measurement 

𝑋𝐺𝑃𝑆, 𝑌𝐺𝑃𝑆, 𝑍𝐺𝑃𝑆 Coordinate of GNSS antenna in mapping 

frame 

GNSS antenna 

 

2.3 Road Surface Extraction from MLS data 

In order to generate driving lines correctly and effectively for autonomous vehicles, the 

first procedure is to extract road surface from raw large-volume point clouds data. A variety of 

methods and algorithms were developed to detect and extract road surface from MLS data. 

Typically, these methods are mainly classified into three categories based on: 1) road geometric 

shape; 2) MLS data characteristics and road properties; and 3) 2D or 3D geometric feature 

filtering. The following subsections provide a comprehensively review of related studies.  

2.3.1 Extracting Road Surface by Road Structure 

Some methods detected road surface directly, while others extracted road surface by first 

detecting and fitting road boundaries. Typically, several model fitting methods, such as 

RANdom SAmple Consensus (RANSAC), Hough Transform and weighted least-squares linear 

fitting were employed for direct extraction of planar road surfaces (Smadja et al., 2010, Yuan et 

al., 2010). For instance, according to Hough Transform approach, Ogawa and Takagi (2006) 
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directly extracted pavement lanes with curvature, yaw angles and offsets from raw point clouds. 

Nevertheless, utilizing Hough Transform for large-volume MLS data is inefficient and time-

consuming. Moreover, based on maximum entropy theory, Yuan et al., (2010) applied a fuzzy 

clustering method to segment MLS point clouds, and then employed a weighted least-squares 

linear fitting algorithm to make a distinction between linear and nonlinear distributed point 

segments. Similarly, these methods, which require intensive computations to identify road 

surfaces from large-volume raw point clouds, are time-consuming. Additionally, according to 

road geometric shape, Smadja et al., (2010) performed a two-step algorithm for road surface 

detection and extraction. Firstly, each scan line was processed individually using a RANSAC 

algorithm to determine rough road boundaries. Then, a multi-frame accumulated map was 

generated to select the curb candidates for further road surface extraction.  

In order to improve completeness and computational efficiency, many studies have been 

conducted to extract road surface by first detecting road sides (Brenner 2009; Yoon et al., 2009; 

Yang et al., 2013; Kumar et al., 2014; Guan et al., 2014). For example, Yoon et al., (2009) 

proposed a two-criterion strategy: using slope and standard deviation calculated from raw MLS 

data for road boundaries detection. Yang et al. (2013) suggested that detecting and tracking road 

curbs using both road properties (e.g., smoothness and topology) and local shape features 

extracted from MLS data. Then, using a moving window operator to model different kinds of 

road edges. In addition, Kumar et al. (2014) applied an automated road edge extraction algorithm 

by creating a set of lines from raw MLS point clouds and detecting road edges based on intensity, 

slope and pulse width information. Furthermore, Guan et al. (2014) extracted road curbs by first 

partitioning the raw MLS data into blocks and profiles according to the vehicle trajectory data, 

then small height jumps were used to differentiate road surface points and ground points. 
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2.3.2 Extracting Road Surface by MLS Data Characteristics and Road Properties 

In the second category, many methods were developed for pavement detection and 

extraction by taking MLS data characteristics (e.g., intensity and point density), road properties 

(e.g., road width and edge elevation) and their combinations into consideration. According to the 

working principles of a MLS system, point density is negatively correlated with the increase of 

scanning range from the vehicle trajectory. Therefore, Manaddahar and Shibasaki (2002) 

suggested that conducting road surface extraction from MLS data with small variation in 

elevation, slope and high point density. Ibrahim and Lichti (2012) detected ground points based 

on the variety of point densities. Additionally, other MLS data characteristics, including local 

point patterns, intensity, pulse width, height and height-generated information (e.g., slope and 

height jump), were widely applied to road surface extraction. Typically, extracting road surface 

points requires the combination of several MLS data characteristics (Jaakkola et al. 2008; Yoon 

et al., 2009; Pu et al., 2011; Kumar et al., 2014). For instance, Pu et al. (2011) presented a rough 

classification of elements into three categories of point clouds (road surface, ground objects, and 

off-ground objects) by using data characteristics including size, shape, and road width 

information. In addition, road properties (e.g., curb height, road elevation and road curvature 

information) can be applied to separate pavement points from entire MLS data (Guo et al., 2015). 

Moreover, road curb plays a significant role in the process of road surface extraction owing to 

the boundaries representation of the road environment. Accordingly, many related studies have 

been conducted to identify road curb points and then extract road surfaces (Guan et al., 2014; 

Wang et al., 2015).  

2.3.3 Extracting Road Surface Based on 2D or 3D Geometric Features 

Road surface detection and extraction can be implemented on 3D point clouds or 2D 

feature images derived from 3D points. Road segmentation of range scan lines was performed in 
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2D, Zhao et al. (2003) proposed a method to differentiate geometric features (e.g., buildings, 

trees and road surfaces) by analyzing height deviation. Accordingly, with the assistance of the 

scan line segment between vehicle’s trajectory points, Wang et al. (2012) implemented a method 

to detected road edges and extracted road surfaces by taking height difference values, altitude 

mean values and altitude variances into consideration. Subsequently, Yang et al. (2012) extracted 

road surfaces by generating geo-referenced feature (GRF) images to separate road surface points 

from the entire MLS point clouds. Riveiro et al. (2015) performed a road segmentation method 

using a curvature analysis directly interpreted from MLS data. Additionally, Yu et al. (2015) 

proposed a voxel-based upward growing algorithm to filter out ground points from raw MLS 

data directly. By calculating normal vector of each point, Hervieu and Soheilian (2013) extracted 

road curbs efficiently based on angular distances. In order to enhance computational efficiency, 

trajectory data were widely applied (Pu et al., 2011; Guan et al., 2014; Wang et al., 2015). As 

mentioned before, the spatial configuration of the scan line relies on related parameters of a 

specified MLS system (e.g., driving speed, sensor trajectory and scanner orientation). Thus, the 

high-density pavement points increase the computational efficiency in road segmentation by 

processing scan lines (Zhao et al., 2003; Yang et al., 2013; Guan et al., 2014). Moreover, based 

on information derived from scan lines, Manandhar and Shibasaki (2002) classified the MLS 

point clouds into two separated groups: road points and building points.  

 Several road surface extraction methods were performed by first segmenting raw MLS 

point clouds into line sections, then data characteristics and road properties can be further 

extracted (Cabo et al., 2015; Riveiro et al., 2015). For example, Smadja et al. (2010) suggested 

that a RANSAC algorithm was performed to determine road edges in each scan line.  
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 Additionally, it is an effective way to decrease time cost and achieve computational 

improvement at the stage of road surface extraction if generating 2D feature images from 

massive MLS data. With the assistance of the existing image processing approaches, road 

boundaries and road surfaces can be identified effectively. In the study conducted by 

McElhinney et al. (2010), high elevation points were filtered out from the profiles and then 

determined the rapid slope changes in the spline. In addition, Yang et al. (2013) used a moving 

window on successive road cross sections interpreted from 3D MLS data to detect corner points 

of roads.  

Table 2.3 is a summary about several kinds of road surface detection and extraction 

methods. The applications of the elevation, intensity and point density are straightforward and 

time-saving. However, both completeness and correctness of the corresponding extracted road 

surfaces are relatively low. Additionally, extracting road surfaces by taking MLS data 

characteristics and road properties into consideration is flexible and valid to implement but 

difficult to process large-volume point clouds with large elevation variance. Moreover, the road 

surface segmentation using scan line focused on road edges detection by analyzing height 

deviation in urban road environments (Zhao et al., 2013). Furthermore, rapid changes in slope 

between two adjacent points in 3D point clouds can be applied to identify points belonging to the 

road edges (Guan et al., 2014; Wang et al., 2015). Meanwhile, some studies concentrated on 

extracting road surfaces directly from MLS data based on the smoothness of road surface (Zhang, 

2016). Compared with 2D features-based road surface extraction, 3D geometric features filtering 

can segment road surfaces in the global scale. Besides, converting 3D laser point clouds into 

geo-referenced 2D feature images can extract road surfaces effectively using the existing image 

processing algorithms and achieve computational improvement (Yang et al., 2013), but it is 
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challenging to handle steep terrain environment. Therefore, with the assistance of other data 

sources (e.g., ALS and TLS), the accuracy of extraction results can be improved according to 

additional high-resolution road information.     
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Table 2.3 Several road surface extraction methods. 

Categories Methods Information Strengths Limitation Instances 

R
o
ad

 g
eo

m
et

ri
c 

sh
ap

e 

 

 
RANSAC o Smoothness o No need for 

trajectory data 

o Computationally 

efficient 

 

o Cannot deal with 

large MLS data 

o Accuracy requires 

the model fit the 

data  

Using RANSAC to fit a plane for ground, 

and determining the road points within the 

given distance to the plane (Zhou et al., 

2012). 

Hough 

Transform 

o Line 

curvature 

o Yaw angles 

o Offsets 

o No need for 

trajectory data 

o Time consuming 

and computation 

inefficiency for 

large volume MLS 

data 

Road lanes with curvature, yaw angles and 

offsets can be extracted from MLS data 

(Ogawa and Takagi, 2006).  

Weighted 

least-squares 

linear fitting 

o Linear 

features 

o No need for 

trajectory data 

o Intensive 

computation 

o Time consuming  

Performing weighted least-squares linear 

fitting approach to differentiate linear and 

nonlinear distributed point segments (Yuan 

et al., 2010). 

M
L

S
 d

at
a 

ch
ar

ac
te

ri
st

ic
s 

an
d

 r
o
ad

 p
ro

p
er

ti
es

 MLS data 

characteristics 

driven 

o Slope 

o Intensity 

o Point 

density 

o Elevation 

o Pulse width 

 

o Straightforward  

o No need for 

trajectory data 

o Could handle steep 

terrain 

o Accuracy depends 

on how the model 

fit the data 

o Cannot deal with 

large volume MLS 

data 

o Need combine 

with other road 

surface extraction 

criteria 

Detecting ground points based on a variety 

of point densities (Ibrahim and Lichti, 

2012).  

Classifying the point clouds into ground 

surface, objects on ground, and objects off 

ground parts by analyzing data 

characteristics including size, shape, and 

road width information (Pu et al., 2011) 

Road 

properties 

driven 

o Road width 

o Edge height 

o Road 

curvature 

o Straightforward 

o Could handle road 

curves 

o Cannot deal with 

large volume MLS 

data 

o Need combine 

with other road 

surface extraction 

criteria 

Identifying road curbs based on curb height 

information to further extract road surfaces 

(Guan et al., 2014, Wang et al., 2015) 
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2
D

 g
eo

m
et

ri
c 

fe
at

u
re

s 
2D features 

filtering 

o Elevation  

o Point 

density 

o 2D geo-

referenced 

imagery 

o Straightforward  

o High computation 

efficiency 

o Hard to deal with 

steep terrain  

o Cannot detect the 

boundary lines 

Using a geo-referenced 2D feature image to 

segment road surface from MLS data (Yang 

et al., 2012). 

Removing high elevation points from the 

profiles and determining the rapid slope 

changes in the spline for road surface 

segmentation (McEIhinney et al., 2010) 

Scan line 

segmentation 

o Height 

deviation  

o Scan range  

o Based on the 

smoothness of the 

road 

o Fit urban road 

environment with 

road curbs 

o Need trajectory 

data for profiling  

o The curb-based 

road segmentation 

fail in rural area 

Partitioning MLS points into road cross 

sections to detect border points of ground 

(Yang et al., 2013). 

The histogram analysis was implemented 

along scan line to detect the height 

deviation and extract road surface 

(Manandhar and Shibasaki, 2002). 

Analyzing the height deviation and then 

performing segmentation of range scan lines 

to differentiate buildings, trees and road 

surfaces from MLS data (Zhao et al., 2013). 

3
D

 g
eo

m
et

ri
c 

fe
at

u
re

s 

3D features 

filtering 

o Height 

difference 

o Normal 

vector 

o Curvature 

o Implement in global 

scale  

o The complexness 

of method is 

determined by 

calculation of 3D 

features 

o Time consuming 

Road segmentation was implemented using 

a curvature analysis directly derived from 

3D point clouds (Riveiro et al., 2015). 

Detecting road sides using angular distance 

to ground normal (Hervieu and Soheilian, 

2013). 

Voxel-based 

algorithm 

o Connectivity 

in vertical 

direction 

 

o No need of 

trajectory data 

o High computation 

efficiency  

o Cannot deal with 

point clouds with 

high elevation 

variation  

Removing ground points from MLS data by 

using a voxel-based upward growing 

algorithm (Yu et al., 2015). 
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2.4 Road Marking Extraction from MLS data 

Road markings, as significant elements in traffic management systems, play an inevitable 

role to provide guidance, warning and bans for all road users (e.g., drivers and pedestrians). 

Identifying and extracting road markings correctly is crucial for autonomous driving systems to 

design reliable driving lines and prevent accidents especially in highways and populated urban 

road environments (Zhang, 2016). Typically, road markings are highly retro-reflective paintings 

on pavements. Therefore, the relatively high intensity can be regarded as a unique characteristic 

to identify and extract road markings from MLS data (Jaakkola et al., 2008; Yang et al., 2012; 

Kumar et al., 2014; Guan et al., 2014; Riveiro et al., 2015).  

Based on segmented road surfaces from MLS data, road markings are then identified and 

extracted by analyzing high reflectance with the assistance of laser intensity values. According to 

semantic knowledge (e.g., shape and size) and laser intensity characteristics, road marking 

extraction process is mainly classified into two types: 1) 2D GRF image-based extraction; and 2) 

3D point-based extraction.  

Most studies extracted road markings from 2D geo-referenced feature images interpreted 

from 3D point clouds. Therefore, the existing image processing algorithms, including multiscale 

threshold segmentation, Hough Transform, morphology and Multi-scale Tensor Voting (MSTV) 

were applied with regard to semantic information of road markings (Toth, 2009; Vosselman et al., 

2009; Smadja et al., 2010; Yang et al., 2012; Guan et al., 2015; Riveiro et al., 2015). For instance, 

based on the generated 2D feature images from raw MLS data, Smadja et al. (2010) performed a 

global intensity filtering method to roughly detect road markings. Accordingly, with the 

assistance of intensity distribution in a searching window, Toth (2008) implemented intensity 

threshold segmentation for the extraction. In addition, Yang et al. (2012) generated a geo-
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referenced reflectance intensity image by first and used a Hough Transform approach in four-

connected regions of the image to extract broken lane line markings and continuous road edge 

lines. However, Hough Transform method has a limitation in processing complex types of road 

markings (e.g., words) while specifying the number of road markings to be extracted. In contrast, 

the MSTV algorithm has the capability of noise suppression and road marking preservation. 

Accordingly, Guan et al. (2015) implemented a dynamic multiple thresholding method by 

determining their relationships between scanning range and intensity values, followed by a 

morphological nearest operation with a linear road structures. Then, further improvement was 

achieved by using the MSTV algorithm. Moreover, multiscale thresholding segmentation 

methods are efficient to overcome intensity inconsistency caused by scanning pattern. In order to 

reduce the influence of intensity inconsistency, Vosselman (2009) performed a distance-

dependence thresholding method, which was expressed as a function of the distance, to detect 

and extract road markings. Kumar et al. (2014) employed a range-dependence thresholding 

algorithm to identify and extract road markings from intensity and range images. Additionally, 

intensity variance has a great impact on the extraction results due to non-uniformity of point 

clouds distribution. Jaakkola et al. (2008) projected the raw 3D point clouds into the raster 

images, and then applied image processing algorithms for road marking extraction.   

Meanwhile, many studies focused on extracting road markings from 3D point clouds 

directly rather than from 2D geo-referenced feature images. Typically, extracting road markings 

from large-volume MLS point clouds with various point densities is a very challenging task. 

Accordingly, Yu et al. (2015) implemented the road marking extraction directly from 3D point 

clouds and classified road markings into edge lines, stop lines, zebra crossing lines, arrow 

markings, rectangular markings and centerlines. Based on road curbs and trajectory data, large 
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size road markings through spatial density filtering and multi-segment thresholding methods 

were extracted by first, while Otsu’s thresholding algorithm was adopted to determine optimal 

thresholds (Otsu, 1979). Subsequently, small size road markings were extracted according to the 

principal component analysis (PCA) and machine learning methods. Additionally, Chen et al. 

(2009) introduced profile-based intensity analysis algorithms to extract painted markings directly 

from raw point clouds. Firstly, raw 3D points were segmented into point cloud slices with the 

assistance of trajectory data. Next, road surfaces were identified based on the geometric 

properties of road edges, barriers and boundary lines. Finally, linear road markings were 

successfully extracted by analyzing the peak value of intensity within each scan line.  

Table 2.4 is a summary about road marking extraction methods in terms of 2D GRF 

image-driven extraction and MLS point-driven extraction. Extracting road markings by 

generating 2D GRF images from MLS data is effective to overcome intensity inconsistency and 

intensity variance issues caused by scanning patterns. However, extracting complex types of road 

markings (e.g., words and hatchings) is a very difficult task using 2D feature image processing 

algorithms. Thus, compared with 2D image-based extraction, MLS point-based extraction 

methods aiming to directly detect and extract road markings using raw MLS data, is capable to 

improve completeness and correctness in extraction results within a short computational time. 

Additionally, their geospatial information of road markings is preserved after extraction, which 

can be utilized in further applications. Nevertheless, automated extraction of road markings from 

a mass of 3D laser points especially with huge concavo-convex features and unevenly distributed 

point clouds is still a very challenging task (Yu et al., 2015). 

 

 



30 
 

Table 2.4 Comparison of road marking extraction methods. 

Categories Method Information Advantages Limitations 

2
D

 G
R

F
 i

m
ag

e-
b
as

ed
 e

x
tr

ac
ti

o
n
 

Multiple 

thresholding 

extraction (Toth 

et al. 2008, 

Riveiro et al. 

2015) 

o Intensity  

o Scan distance 

o Semantic 

knowledge 

o Efficient to overcome 

intensity inconsistency 

and intensity variance 

problems of MLS data. 

o Straightforward 

 

o Difficult to handle 

complex road 

scenes. 

Hough 

Transform 

(Yang et al., 

2012) 

o Intensity o Computation efficiency 

 

 

o Difficult to handle 

complex types of 

road markings (e.g., 

words). 

Multi-scale 

Tensor Voting 

(Guan et al., 

2015) 

o Intensity values 

o Scan range 

o Achieve extraction 

improvement  

o Suppress noises 

o Preserve road markings 

o Need prior 

knowledge to select 

stop iteration 

criteria. 

o Difficult to remove 

small noisy 

fragments. 

3
D

 M
L

S
 p

o
in

t-
b
as

ed
 e

x
tr

ac
ti

o
n
 Deep learning 

and PCA (Yu et 

al., 2015) 

o Small road 

marking types 

o Efficient for small size 

road marking 

extraction.  

o Geospatial information 

of road markings is 

preserved. 

o Need massive 

labeled training 

samples. 

Profile-based 

intensity 

analysis (Chen 

et al., 2009) 

o Intensity  

o Trajectory data 

o Do not require lane 

models. 

o Computation efficiency. 

o Difficult to handle 

complex types of 

road markings. 

o The curb-based road 

segmentation fail in 

rural area. 

 

2.5 Road Horizontal Parameter Estimation from MLS data 

Horizontal curves have been regarded as an important element in the process of urban 

road network design and construction. McDonald (2004) indicated that the accident frequency 

could increase by 34% for per sharp curve per km. Moreover, drivers’ behaviours including 

misperceptions of speed and poor visibility at horizontal curves, can lead to the increase of 
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potential risks of traffic accidents. Thus, detecting traffic health condition especially at 

horizontally curved road sections and determining road horizontal parameters (e.g., curvature) 

are significant for autonomous vehicles to determine reliable driving lines and prevent collisions 

(Charlton, 2007). Typically, MLS systems provide precise positioning information, high-density 

point clouds and thermal information, which can be applied to monitor and analyze road 

conditions (Gräfe, 2008).  

Many studies have been performed to extract geometric parameters at horizontally curved 

road sections by using MLS systems (Gräfe 2008; Karamanou et al., 2009; Gikas and Stratakos, 

2012; Holgado-Barco et al., 2015). For instance, Karamanou et al. (2009) developed a software 

for precise estimations of road horizontal geometric features using a suitably equipped vehicle 

moving along the road in a two-way trip. Road centrelines were extracted by first with the 

assistance of trajectory data. Subsequently, the parameters of horizontal features were 

determined according to a least-squares optimization of the characteristic curves. Moreover, 

based on dynamic measurements of GNSS, Di Mascio et al. (2012) implemented a procedure to 

define the road geometry of horizontal elements. Firstly, the centrelines were regarded as the 

middle points between trajectories in two directions. Then, a least-squares adjustment was 

applied to estimate the horizontal elements (e.g., straight lines, circle arcs, and clothoids). 

Additionally, Gikas and Stratakos (2012) performed an automated solution to estimate curvature 

diagrams and analyze the horizontal geometric features by considering trajectory data. 

Meanwhile, Lakakis et al. (2013) developed a cost-effective system based on data acquisition 

from GNSS sensors to calculate the vertical alignment of a road. Holgado-Barco et al. (2015) 

suggested that semi-automatically extract the road geometry of horizontal alignment from MLS 

data. The proposed algorithm mainly includes two steps: 1) extracting the related features to 
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model road axis from MLS data; 2) calculating the geometric design features of the horizontal 

alignments according to azimuth and curvature information. Table 2.5 is a summary about MLS 

data-driven methods for the extraction of road horizontal geometric features.   

Table 2.5 Summary of horizontal parameter extraction methods using MLS data. 

Categories Data sources Advantages Limitations Examples 

MLS 

point-

based or 

mobile 

mapping 

system 

based 

techniques 

o Mobile 

laser 

scanners 

o GNSS/IMU 

o Trajectory 

data 

o High data 

quality 

provides 

precise 

positioning 

information 

o Efficient for 

small-size 

road 

network 

o Some results 

validation are 

usually non-

quantitative 

due to the lack 

of a 

comparative 

ground-truth. 

o Heavily 

depends on 

data quality of 

trajectory. 

Based on trajectory data, 

Di Mascio et al., (2012) 

performed a solution for 

road geometry 

extraction of horizontal 

alignment.  

A least-squares 

optimization was 

employed to extract 

horizontal curves from 

MLS data (Karamanou 

et al., 2009). 

 

 

2.6 Chapter Summary  

 This chapter introduced backgrounds about autonomous vehicles and 3D high-definition 

roadmaps by first, including basic information of autonomous vehicles and their requirements for 

3D high-definition roadmaps. Accordingly, the significance and necessity of developing reliable 

driving lines for autonomous driving at horizontally curved road sections were presented. Then, 

the principles of a MLS system were described followed by direct geo-referencing of MLS data. 

In addition, a variety of state-of-the-art road surface detection and extraction algorithms 

by using MLS data were reviewed.  It can be summarized that MLS point clouds are capable of 

providing highly accurate and geo-referenced data for road surface extraction. However, large-

volume point clouds, unevenly distributed point density and complex road structures of MLS 
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data account for huge challenges in road surface extraction. Moreover, extracting road surface 

particularly for complex road environments based on trajectory data is still the most state-of-the-

art methods. Therefore, according to Guan (2014), an improved algorithm will be performed to 

segment road surface especially focusing on horizontal curves in Chapter 3.  

Furthermore, many studies concentrating on road marking extraction were reviewed. 

Extracting road markings from 2D GRF images generated from MLS data is straightforward to 

implement based on semantic knowledge. Meanwhile, detecting road markings directly from 3D 

point clouds can achieve accuracy improvement with detailed geospatial information of road 

markings, but resulting in great difficulties for computational efficiency enhancement. Thus, in 

allusion to the problems in previous studies, a revised multiscale thresholding extraction 

algorithm will be proposed in Chapter 3.  

Additionally, the existing studies for road horizontal parameters extraction were also 

discussed.  It is identified that the MLS data is more appropriate than satellite imagery to detect 

and extract horizontal curves information. Based on a prior knowledge of road design regulations, 

a novel algorithm will be proposed to generate driving lines for autonomous vehicles by using 

MLS data in Chapter 3.  
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Chapter 3 Methodology for Generating Driving Lines 

This chapter details the proposed methodology of semi-automated generation of 

horizontally curved driving lines. Firstly, Section 3.1 introduces the specifications of a RIEGL 

VMX-450 system. Then, the study area and data collection are detailed. Section 3.2 presents a 

step-wise methodology, including curb-based road surface extraction in Section 3.3, multiscale 

thresholds-based road marking extraction in Section 3.4, and best-fitting curve-based driving line 

generation at horizontal curves in Section 3.5. Finally, methods for accuracy assessment of road 

marking extraction and driving line generation are presented in Section 3.6. 

3.1 Data Collection  

The MLS point cloud datasets used in this study were collected by a research team at 

Xiamen University (XMU) using a RIEGL VMX-450 system mounted on a Buick GL8 Van (see 

Figure 3.1). The VMX-450 system comprises: two fully calibrated RIEGL VQ-450 laser 

scanners, four RIGEL VMX-450-CS6 digital cameras with pixel array of 2452H by 2056V, and 

one integrated Applanix POS LV 520 processing system with one GNSS antenna, one IMU, one 

DMI and one POS computing system (PCS). Based on a point-of-sale synthetic computer system, 

main components are assembled within a case and mounted on the roof of a motorized vehicle. 

Table 3.1 indicates the detailed specifications for main components integrated in a RIEGL 

VMX-450 system. The overall performance is mainly determined by the accuracy of the 

resultant positions and orientations. 

Two dual-frequency GNSS antennas (regarded as a primary receiver and a secondary 

receiver) are used in the RIEGL VMX-450 system for navigation solution. Both receivers can 

record raw GNSS satellite observation data and process in a Applanix POS LV 520 navigation 
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system. In addition, the secondary receiver is employed by a GPS Azimuth Measurement System 

(GAMS) to calculate additional orientation information.    

 

Figure 3.1 System configuration of a RIEGL VMX-450 system. 

Table 3.1 Specifications of the RIEGL VMX-450 system. 

Components Specifications 

Laser scanner component 

Laser scanner RIEGL VQ-450(2) 

Laser wavelength near infrared 

Measurement range 1.5 - 800 m 

Measurement precision 5 mm (1𝜎) 

Absolute accuracy 8 mm 

Scan frequency 400 lines/sec 

Angle measurement resolution 0.001° 

Scanner field of view 360° 

POS component 

GNSS types POS LV-520 

Roll & Pitch 0.005° 
Heading 0.015° 

Imagery component 

Camera types 500 MP (6) 

Lens size 2/3" CCD 

Field of view 80°× 65° 

Exposure 8 
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In Figure 3.1, two laser scanners are symmetrically configured on the left and right sides 

with the tilted angle of these scanners approximately 135°, this configuration is named “X” or 

“Butterfly” pattern. Each of two RIEGL VQ-450 laser scanners is capable to emit de-noised and 

gapless 360° profiles with a measurement rate of 550,000 measurements/sec and a scanning rate 

of 200 profiles/sec. Three kinds of pulse repetition are applied to different scenarios, for instance, 

1.1 MHz is designed for short-range and high-resolution MLS applications in urban regions, 600 

KHz for medium-range applications, and 300 KHz for long-range applications. Moreover, the 

maximal measurement range for each RIEGL VQ-450 laser scanner can reach approximately 

200 m, and the precision of a RIEGL VMX-450 system can achieve 5 mm (1σ) (RIEGL, 2017). 

Additionally, precisely time-stamped images can be complemented using the RIEGL VMX-450-

CS6 camera system. According to the RIEGL Datasheet Introduction, RIEGL provides three 

kinds of software (i.e., RiACQUIRE, RiPROCESS and RiWORLD) for data process and data 

transformation. For instance, RiACQUIRE is employed to project-oriented acquisition for MLS 

data, and RiWORLD is applied to transformation of raw scanning data into geo-referenced point 

clouds.  

 The XMU team collected 3D MLS point clouds at multiple road corridors around the 

City of Xiamen, Fujian, China (see Figure 3.2 (a)). The total length of whole surveyed road 

corridors was over 40 km, including road sections on the Huandao Road, Xiahe Road, Haijing 

Road and G15 Highway (highlighted in red in Figure 3.2 (a)). The majority of roads are two-side 

and two-lane roads with fences on both sides. Numerous tall buildings, big trees (e.g., palms and 

sago cycas) and shafts (e.g., traffic lights and light poles) are along the sides of these roads. In 

addition, six samples of the surveyed data were selected at horizontally curved road sections as 

test datasets in order to evaluate the proposed algorithms. Figure 3.2 (b) presents two 
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horizontally curved road sections in the study area using MLS data. The UAV imagery obtained 

by a DJI Inspire 2 can provide 4 cm high-resolution images, which is used to evaluate the 

accuracy of the generated driving lines. Moreover, the vehicle trajectory data stored in TXT 

format is more than half million points. 

The point densities of the datasets range from 4000 to 5000 points/m2. Meanwhile, a 

large number of digital images were acquired via high-resolution digital cameras with one-

second interval at an average driving speed of 40-50 km/h. Additionally, the vehicle trajectory 

data was obtained based on a navigation solution provided by a POS LV-520 GNSS subsystem. 

The test datasets were afterward converted into the file format of LAS, which is the standard file 

format of MLS point clouds. The LAS specification was standardized and developed by the 

American Society of Photogrammetry and Remote Sensing (ASPRS). As the most recent 

approved versions, LAS 1.4 specification was released on November 2011.  

 

(a) Location of the City of Xiamen and surveyed corridors. 
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(b) Horizontal curves in MLS point clouds. 

Figure 3.2 The surveyed corridors in Xiamen and horizontal curves in MLS data. 

 

3.2 Workflow of the Proposed Methodology  

 

Figure 3.3 Workflow of the proposed methodology. 
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To guarantee solid and precise navigation solutions for autonomous vehicles in complex 

urban road environments, this semi-automatic methodology endeavors to generate driving line 

especially at horizontal curves by using MLS data. This methodology consists of three modules: 

1) road surface extraction, 2) road marking extraction, and 3) driving line generation (see Figure 

3.3).      

The trajectory data that represents the real-time localization information of the moving 

vehicle facilitates road surface detection and extraction from MLS data. With respect to the 

assumption that road curbs separate sidewalks or green insulated belts from asphalt pavement 

surfaces, a curb-based road surface extraction method is carried out to detect height jumps with 

the assistance of vehicle trajectory data. Firstly, the raw test MLS data is partitioned into a series 

of data blocks, in each of which a corresponding profile is sliced with a pre-defined width. Next, 

each profile is gridded to generate a pseudo scan-line, and a principal point is then selected 

within each grid cell. Consequently, road curb points are identified and extracted depending on 

both elevation and slope differences. Accordingly, a cubic B-spline interpolation algorithm is 

carried out to obtain smooth road edges. Moreover, in order to detect and extract road markings, 

an inverse distance weighted (IDW) interpolation approach is first performed to generate geo-

referenced intensity feature imagery. Subsequently, a multi-threshold segmentation algorithm is 

employed to identify road markings, followed by a statistical outlier removal (SOR) filter in the 

PCL package to remove noises. After extracting road markings from the generated intensity 

imagery, a conditional Euclidean clustering method is employed to classify the discrete road 

marking points into a series of organized clusters based on the distances between a certain point 

and its nearest neighbours. Furthermore, to identify the best-fitting mathematical functions and 

implement curve fitting, a nonlinear least-squares curve fitting algorithm is conducted using the 
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clustered curved road markings. In combination with road design and construction standards, the 

mathematical functions of desired driving lines are then determined according to the 

mathematical functions of lane lines, centrelines and edge lines. Therefore, the driving lines at 

horizontally curved road sections can be generated.   

The programming platform of Microsoft Visual Studio 2010 and a third-party 

programming library Point Cloud Library (PCL) were employed to implement the proposed 

algorithms, including curb-based road surface extraction, road marking extraction, SOR filter, 

conditional Euclidean clustering and driving line generation. Meanwhile, CloudCompare V2.6.2 

and Quick Terrain Reader V8.0.3 were applied to display and analyze the test datasets and 

experimental results. In addition, ArcGIS Desktop 10.2.2 was utilized to generate orthoimagery 

that obtained by an UAV borne imaging system in the same study area. 

3.3 Road Surface Extraction  

The MLS point clouds captured by the VMX-450 system contain a large number of 

highly dense and unevenly distributed point clouds, including buildings, trees, traffic 

infrastructures, pedestrians and other ground points. In order to eliminate the disturbance of non-

ground laser point clouds and improve computational efficiency for road marking extraction, the 

curb-based road surface extraction algorithms is firstly implemented by using the vehicle’s 

trajectory data (Guan, 2013). As illustrated in Figure 3.4, the proposed road surface extraction 

method mainly consists of four steps: 
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Figure 3.4 Workflow of the proposed road surface extraction method. 

Step 1, point clouds profiling. Depending on the vehicle trajectory data, the raw test 

datasets are partitioned into a sequence of point cloud data blocks, in each of which a 

corresponding profile is sectioned with a certain width accordingly.  

Step 2, pseudo scan-line generation. The point clouds contained in the profile are 

projected onto the plane perpendicular to the direction in which the vehicle is forward. Each 

profile is then gridded to generate a pseudo scan-line and a principal point is determined within a 

grid cell accordingly.  

Step 3, road curb detection. Based on both elevation and slope differences, road curbs are 

detected and extracted from each pseudo scan-line. Based on the final report of the Code for 

Design of Urban Road Engineering submitted to PRC Minister of Construction in 2012, majority 

of curb heights within the study area are ranging from 8 cm to 30 cm.  
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Step 4, road edge fitting. Finally, a cubic B-Spline interpolation algorithm is employed to 

fit the curb points derived from all pseudo scan-lines into two smooth road edges. All point 

clouds located between two smooth edge lines are regarded as road surface points. Thus, the 

point clouds pertaining to pavements are extracted from the raw MLS data.  

3.3.1 Trajectory-based Point Clouds Profiling 

The trajectory data regarded as a driving route that a moving vehicle follows along the 

road as a function of time, is captured by the integrated navigation solution while laser scanners 

carry out time-of-flight measurements. In combination with GNSS base station records, the raw 

GNSS data, and IMU data are processed in the Applanix POSacTM MMS software. The vehicle 

trajectory data and the preprocessing calibration parameters are then employed to generate geo-

referenced point clouds.  

Furthermore, according to the vehicle trajectory, the raw MLS data are partitioned into a 

number of point cloud blocks at a specified width (𝐵𝑔) by first. Accordingly, within each data 

block, a corresponding profile is sectioned using a given width (𝑃𝑔). Thus, each profile contains 

point clouds belonging to pavement surfaces and other point clouds pertaining to non-ground 

objects including buildings, trees, traffic lights, vehicles and curbs. As illustration in Figure 3.5, 

the blue lines with the width of 25 cm represent sliced profiles. Two parameters (the block width 

and the profile width) will be discussed in Section 4.2.1. Figure 3.6 indicates a test sample of the 

raw MLS point clouds, the red rectangles represents the sliced profiles and yellow line indicates 

the vehicle’s trajectory data. As for the VMX-450 system used in this study, the right-handed 

orthogonal coordinate system is defined as the vehicle frame while its origin is a user-specified 

point. In addition, the sliced profile images are shown in Figure 3.7, laser points within each 
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profile are projected onto the planes that perpendicular to the vehicle trajectory. As can be 

perceived, the road curbs are distinctly identified through a zoom-in view on each profile slice.  

 

Figure 3.5 Illustration of trajectory-based point clouds profiling. 

 

Figure 3.6 Profiling process on the MLS point clouds. 

 

Figure 3.7 The sliced profile images (Source: Guan et al., 2014). 
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3.3.2 Pseudo Scan-line Generation  

As for the VMX-450 system used in this study, the orientation of the vehicle frame is 

defined as a left-handed Cartesian coordinate system so that the positive X, Y, and Z axes 

towards the vehicle’s moving direction, the right of the vehicle, and the top of the vehicle, 

respectively. As shown in Figure 3.8, all laser points in a profile image are projected onto the 

YOZ-plane in the vehicle frame. According to two magnifier views, it is demonstrated that the 

road curbs are sharp height jumps and vertical to the road surfaces. Thus, curb points can be 

identified by analyzing both elevation and slope-difference thresholds, and road surfaces are then 

extracted from raw MLS data.  

 

Figure 3.8 Curb identification in a profile image.  

Additionally, as shown in Figure 3.9, the principal points can be determined by 

performing a resampling manipulation by first. In order to select the principal point in each grid 

cell, a Quick Sort algorithm is carried out to sort and arrange the entire point clouds in this grid 

cell by considering their elevation attributes. Starting from the point with lowest elevation, the  
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Figure 3.9. The generated principal points in a profile image. 

elevation jumps ∆𝐸𝑖 (𝑖 = 1,2,3,….N) of two adjacent points are calculated to divide these points 

into different layers, where N is the quantity of points in each grid cell. Then, two consecutive 

points are grouped into a same layer if the elevation difference between these two points is no 

more than a pre-defined threshold 𝐸𝑇, namely, ∆𝐸𝑖 ≤ 𝐸𝑇 . Conversely, a new layer is established 

to partition these two points if the elevation difference is higher than 𝐸𝑇  (namely ∆𝐸𝑖 > 𝐸𝑇). 

Suppose that 3D laser points pertaining to the road surfaces are located in the lowest layer, a 

principal point in each grid is then selected by identifying the point with highest elevation within 

the lowest layer. Thus, majority of outliers (e.g., tree and utility pole point clouds) covering the 

road surface can be filtered out.  

3.3.3 Road Curb Detection 

In this study, the proposed road surface extraction algorithms for curb detection are 

performed at the scanning centre according to both slope and elevation evaluation. Indeed, these 

algorithms mathematically define the slope between two adjacent principal points (highlighted in 
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red dots) within a generated pseudo scan-line (see Figure 3.10) and the elevation difference of a 

certain point to its nearest points in the pseudo scan-line.   

 

Figure 3.10 A pseudo scan-line of a profile image. 

Typically, the MLS points on road edges provide 5-to-30 cm higher elevation than points 

belonging to pavement surfaces in different countries. Moreover, the slopes at the shoulders of 

pavements or road curbs are typically larger than the slopes of points belonging to the roadway. 

Therefore, based on these two criteria, a point can be identified whether it is a curb point or not. 

Firstly, non-road points such as vehicles and curbs can be detected according to the slope. Then, 

the curb corners are extracted from the non-road points with the assistance of the elevation 

difference. Based on the final report of the Code for Design of Urban Road Engineering 

submitted to PRC Minister of Construction in 2012, most of curb heights are ranging from 8 cm 

to 30 cm. These two observations are therefore defined by:  

                             ∀𝑝𝑖: {
𝑖𝑓 ((𝑆𝑠𝑙𝑜𝑝𝑒 > 𝑆𝑇)&(𝐻𝑚𝑖𝑛 ≤ 𝐻𝑖 ≤ 𝐻𝑚𝑎𝑥)) , 𝑐𝑢𝑟𝑏 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑛𝑜𝑛 − 𝑐𝑢𝑟𝑏 𝑝𝑜𝑖𝑛𝑡𝑠

                (3.1) 
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where 𝑆𝑠𝑙𝑜𝑝𝑒 represents the slope of two consecutive neighbour points. 𝑆𝑇 denotes a pre-defined 

slope threshold. 𝐻𝑖 is the elevation difference of a specified point to its adjacent point. 𝐻𝑚𝑖𝑛 and 

𝐻𝑚𝑎𝑥 indicate the minimal and maximal curb height thresholds (e.g., 𝐻𝑚𝑖𝑛=5 cm and 𝐻𝑚𝑎𝑥 =

30 𝑐𝑚 in this thesis). Furthermore, 𝑆𝑠𝑙𝑜𝑝𝑒 can be calculated by: 

  𝑆𝑠𝑙𝑜𝑝𝑒 = arctan (
𝑍𝑖+1−𝑍𝑖

(𝑋𝑖+1−𝑋𝑖)
2+(𝑌𝑖+1−𝑌𝑖)

2)           𝑆𝑠𝑙𝑜𝑝𝑒  𝜖 [−
𝜋

2
, +

𝜋

2
]                              (3.2) 

where (𝑋𝑖, 𝑌𝑖 , 𝑍𝑖) and (𝑋𝑖+1, 𝑌𝑖+1, 𝑍𝑖+1) denote the coordinates of two adjacent MLS points within 

a pseudo scan-line while X and Y coordinates locating on the YOZ-plane and Z coordinate 

heading to the elevation direction. Therefore, according to Figure 3.10, Eq. (3.2) can be 

simplified as:   

                                            𝑆𝑠𝑙𝑜𝑝𝑒 = arctan (
𝐻𝐷

𝐷(𝑖,𝑖+1)
)        𝑆𝑠𝑙𝑜𝑝𝑒  𝜖 [−

𝜋

2
, +

𝜋

2
]                                          (3.3) 

where 𝐻𝐷  is the height difference between two consecutive points and 𝐷(𝑖,𝑖+1)  indicates the 

distance between two consecutive points on the YOZ-plane. Aware that there are both positive 

and negative values in Eq. (3.3). A positive slope represents that point queue adding an off-road 

point from road at the curb edge, and a negative slope value means point queue switching an off-

road point to road at the curb edge.  

The proposed curb-based extraction algorithms begin the labelling processing by using 

the vehicle’s position, which means the initial labelling is able to enter from the road into curb. 

Thus, a point will be regarded as a curb candidate if the slope of this point is equal or larger than 

the pre-defined slope threshold 𝑆𝑇  (i. e. , 𝑆𝑠𝑙𝑜𝑝𝑒 ≥ 𝑆𝑇 ). Moreover, the elevations of these curb 

candidates are calculated from all the curb candidates to remove non-curb points (e.g., cars and 

traffic poles) and identify real curb points. If the elevation difference of a road curb candidate 
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point is within the range of [𝐻𝑚𝑖𝑛, 𝐻𝑚𝑎𝑥], this candidate point can be labelled as a real curb point. 

Otherwise, it will be grouped into the non-curb points. Based on a prior knowledge of the road 

design and construction standards, these curb candidate points nearest to the vehicle’s moving 

trajectory are determined as the road curbs.  

3.3.4 Road Edge Fitting 

Since the raw MLS data are sectioned into a sequence of data blocks along the vehicle 

trajectory at a certain interval, all curb points extracted from the profiles are sparse and discrete. 

Therefore, an interpolation approach is employed to generate two smooth road edges for each 

road from the extracted road curb points and eventually separate the road surfaces from the non-

road point clouds. The proposed algorithms use the cubic splines to build smooth curves 

according to a great number of curb points.  

 The cubic spline interpolation contains weights attached to a flat surface at the points to 

be connected. Based on these weights, a smooth curve is thus created. It is more stable and 

reliable for road edge fitting by using splines rather than a polynomial with higher possibility of 

oscillations between the points.  

 Theoretically, the proposed interpolation method is defined as a piecewise function as 

follows: 

                                                    𝐺(𝑥) =  {

𝑔1(𝑥)    𝑤ℎ𝑒𝑛  𝑥1 ≤ 𝑥 < 𝑥2

𝑔2(𝑥)    𝑤ℎ𝑒𝑛  𝑥2 ≤ 𝑥 < 𝑥3

⋮
𝑔𝑛−1(𝑥)    𝑤ℎ𝑒𝑛  𝑥𝑛−1 ≤ 𝑥 < 𝑥𝑛

                                          (3.4) 

where 𝑥𝑖 (𝑖 = 1,2, … 𝑛) indicates X coordinate of the point clouds, 𝑔𝑖 denotes a three-degree 

polynomial expressed by: 

      𝑔𝑖(𝑥) = 𝑎𝑖(𝑥 − 𝑥𝑖)
3 + 𝑏𝑖(𝑥 − 𝑥𝑖)

2 + 𝑐𝑖(𝑥 − 𝑥𝑖) + 𝑑𝑖,    (𝑖 = 1,2, … 𝑛 − 1)            (3.5) 
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Then, the first and second derivatives of these functions are indispensable to carry out this fitting 

process, which are described as: 

       𝑔𝑖
′(𝑥) = 3𝑎𝑖(𝑥 − 𝑥𝑖)

2 + 2𝑏𝑖(𝑥 − 𝑥𝑖) + 𝑐𝑖                                              (3.6) 

      𝑔𝑖
′′(𝑥) = 6𝑎𝑖(𝑥 − 𝑥𝑖) + 2𝑏𝑖                                                                          (3.7) 

Finally, all road points located between two fitted smooth road edges are considered as road 

surface points. Figure 3.11 shows that a horizontal curve can be effectively extracted from raw 

MLS data by using the proposed curb-based road surface extraction algorithms. 

 

                       (a) raw point clouds                          (b) extracted road surface (highlighted in red)           

Figure 3.11 An Example of extracted road surface (Source: Guan et al. 2014). 

3.4 Road Marking Extraction 

The proposed curb-based algorithms have been described in Section 3.3 for road surface 

detection and extraction using MLS data. In order to segment road markings completely and 

effectively, the labelled road surface points are firstly interpolated to generate a 2D GRF image 

(e.g., intensity imagery). Then, to eliminate the influence of noisy points and improve road 

marking completeness, a multi-threshold segmentation approach is performed on the produced 

GRF image to identify and extract road markings using a morphological operation. Moreover, 

experimental results and discussion are detailed in Section 4.2.3. As shown in Figure 3.12, this 

road marking extraction method can be described as a step-wise procedure. It mainly consists of 

the following three parts:  
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Figure 3.12 Workflow of the proposed road marking extraction method.  

Stpe 1, generation of geo-referenced intensity imagery. Road surface points are first 

extracted from raw MLS data by utilizing the proposed curb-based extraction algorithms, these 

road points are then interpolated into geo-referenced intensity imagery based on the IDW method 

in combination with intensity information and local-global elevation data.   

Step 2, multi-threshold extraction. Then, based on the generated intensity imagery, the 

multi-threshold extraction algorithms are employed to extract road markings (Otsu, 1979). 

Step 3, noise removal. Finally, a statistical outlier removal filter is carried out in order to 

eliminate noises and enhance road marking completeness.  
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3.4.1 Geo-referenced Feature Image Generation 

 

Figure 3.13 An illustration of the determination of gray values.  

Road surface points are first extracted from raw MLS data. Subsequently, these extracted 

road points are afterward utilized to generate intensity imagery, in which the gray value of a 

pixel can be interpolated from its closest neighbours by utilizing the IDW interpolation method. 

Although the interpolation process might reduce accuracy, the computational efficiency can be 

improved greatly particularly for large-volume of MLS data by using the existing 2D image 

processing algorithms. Guan et al., (2014) proposed an algorithm for the GRF image generation 

by extending the IDW interpolation. Moreover, the grid resolution determined by point density is 

a critical parameter to store the results of the IDW interpolation, as shown in Figure 3.13. There 

are two crucial rules for a geo-referenced intensity imagery generation: (1) the greater intensity 

value of a certain point, the greater weight should be assigned; and (2) the closer from a certain 

point to the centre of the grid, the greater weight should be assigned. The detailed mathematic 

description of two rules can be founded in Guan’s (2014) study. Determining a fine grid 

resolution can improve the accuracy and the computational efficiency for road marking 

extraction. The smaller grid cell size contributes to higher spatial resolution and more distinct 
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details with large data volume. Thus, in order to enhance the computational efficiency and 

generate accurate road marking extraction results, the analysis about the grid resolution used in 

the IDW interpolation process will be undertaken in Section 4.2.2. 

3.4.2 Determination of Multi-thresholds 

On the generated GRF intensity imagery, a multi-threshold extraction is performed for 

road marking extraction. However, although the proposed equalization method lessens the 

influence of intensity imbalance, the intensity values of road markings are gradually reduced 

rather than being consistent from the vehicle trajectory to its both sides (the red line indicates the 

vehicle’s trajectory and red dots represent the trajectory points), as illustrated in Figure 3.14 (a). 

This variation is because the intensity values rely on: (1) the incident angle of active laser pulses, 

(2) the distances from laser scanners to the scanning target, and (3) surface material properties of 

the scanning targets. Therefore, dynamic multi-threshold extraction algorithms are carried out 

depending on the range of scanning distances. The local multi-threshold extraction parameters 

are determined and optimized within various ranges of scanning distances.   

 

                                                       (a)                                                                                        (b) 

Figure 3.14 Determination of multi-thresholds: (a) the MLS test data, (b) statistical analysis of 

the test data.  
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In order to overcome the variation of vehicle trajectory data, road surface points extracted 

by using the curb-based extraction algorithms are processed block by block. As described in 

Section 3.3.1, each data block has a corresponding profile. Subsequently, the point density of 

each profile is statistically analyzed, as shown in Figure 3.14 (b).  It is identified that the 

distribution of point density approximates the Gaussian distribution. Therefore, a Gaussian 

distribution is adapted to acquire two significant parameters: mean value 𝜇1  and standard 

deviation 𝜎1. Moreover, intensity variations of the generated intensity imagery follow the “68-

95-99.7” rule of a Gaussian distribution (Pukelsheim, 1994). The “68-95-99.7” rule defines about 

68% of values within one standard deviation away from the mean, about 95% of values within 

two standard deviations, and almost 99.7% within three standard deviations. Consequently, the 

corresponding range is analyzed based on the “3𝜎” rule to vertically divide point clouds into a 

set of bins, for each of which an estimated threshold is determined for road marking extraction.  

 Then, based on the vehicle trajectory and the estimated road width (𝑊 ) from the 

generated road surface data, the distances from the vehicle trajectory to the road left side (𝑊𝐿) 

and the road right side (𝑊𝑅) can be calculated. Subsequently, with the assistance of the estimated 

mean 𝜇1 and standard deviation 𝜎1, the range (𝑟) of one sigma (1𝜎) of the Gaussian distribution 

function is determined. Thus, the number of bins can be calculated as follows:  

                                                                          𝑁𝐿 = 𝐼𝑁𝑇 (
𝑊𝐿

𝑟
) + 1                                                                   (3.8) 

                                                                          𝑁𝑅 = 𝐼𝑁𝑇 (
𝑊𝑅

𝑟
) + 1                                                                  (3.9) 

where 𝑁𝐿  and 𝑁𝑅  indicates the number of bins from the scanning centre to its both sides, 

respectively. Typically, the vehicle trajectory has an impact on the number of bins. For instance, 

there are five bins in the data block while the vehicle was moving along the right lane of the road 
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curve (see Figure 3.14 (b)). With the assistance of vehicle trajectory, the fitted Gaussian 

distribution of the point density can be applied to calculate the number of bins to be sectioned.  

3.4.3 Multi-threshold Extraction  

The Otsu’s thresholding approach (Otsu, 1979), which is widely performed for threshold-

based image processing, is then employed to segment road markings based on the discriminant 

analysis. This method is straightforward to implement and capable of obtaining high-efficiency 

segmentation results while only two types of classes exist within the imagery. The Otsu’s 

thresholding approach supposes that an image is bimodal and its illumination is consistent, the 

bimodal brightness is thus calculated by analyzing the different properties of surface materials. 

Furthermore, the generated intensity imagery can be divided into two classes: road markings as 

foreground, and others (e.g., road surfaces) as background. Then, their cumulative probabilities 

and mean levels are determined, accordingly. Consequently, the intensity imagery is segmented 

automatically by selecting optimum thresholds to minimize the within-class variance.  

3.4.4 Noise Removal 

Although the proposed multi-threshold extraction can extract road markings effectively, 

noises (e.g., isolated points, outliers) inevitably exist that reduce the accuracy of extraction 

results and affect the completeness of the road markings. Therefore, to minimize the effect of 

noises, a SOR filter in the PCL package (PCL, 2016) was performed to remove noises from the 

extracted road marking point clouds. The SOR filter is defined by point cloud processing library 

in the PCL package. Additionally, PCL is a large-scale and open-source library, which consists 

of a large number of algorithms using C++ programming language for point cloud processing. 

Moreover, these algorithms and data structures defined in PCL have been widely applied in point 

cloud applications including point cloud acquisition, registration, filtering, identification, 
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segmentation, surface reconstruction, feature extraction and visualization. Furthermore, the 

proposed algorithms in this thesis aiming to generate the driving lines at horizontal curves for 

autonomous driving are developed to be applied in commercial applications. Thus, the open-

source PCL package that provides a high-efficiency and free-of-charge commercial library is 

appropriate to be directly used in this study.  

 

            Figure 3.15 The principle of the SOR filter. 

 According to statistical analysis, image denoising algorithms have been widely developed 

in a number of research projects (Rusu et al., 2011; PCL, 2016). Firstly, this algorithm defines 

the number of nearest searching points 𝑘 (determined by average point density) from a specified 

point and calculates their corresponding distances from this point to its neighbours. Then, the 

mean distance 𝑑𝑖  (𝑖 = 1,2, … , 𝑁𝑚)   of each point 𝑝𝑖 (𝑖 = 1,2, … ,𝑁𝑚)  to its neighbours is 

computed, where 𝑁𝑚 is the total amount of points in the specified road marking point clouds. 

Moreover, assumed that the distribution of computed mean distances for all points should be 

fitted to a Gaussian distribution with the mean 𝜇2 and standard deviation 𝜎2, points that locating 

outside a thresholding interval are described as noise points and then removed from the road 

marking points. In addition, the thresholding interval can be determined according to the mean 
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𝜇2  and standard deviation 𝜎2  in the Gaussian distribution. As illustrated in Figure 3.15, it 

indicates the principle of the SOR filter using the PCL package, which the distances from a 

certain point 𝑝𝑖 to its neighbour points can be calculated.  

In order to reduce the time and space complexity, the proposed image denoising 

algorithms are applied after extracting road markings from the generated intensity imagery. 

Figure 3.16 shows road markings extracted by using the multi-threshold extraction algorithms, 

the tiny white dots around the zebra crossing, edge lines and centreline are regarded as noises. 

Accordingly, Figure 3.17 shows the refined road markings after noise removal. It is worth noting 

that most noises are effectively removed by using SOR filter.  

 

Figure 3.16 Extracted road markings using the proposed method. 

 

Figure 3.17 Refined road markings after noise removal.  

3.5 Generation of Horizontally Curved Driving Lines 

Although outliers and noises have been removed from the extracted road markings, 

points pertaining to the same semantic object are still unorganized and isolated. The topological 
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relationships among the extracted road marking points are ambiguous. In order to generate 

driving lines at horizontal curves successfully, the sparse and unorganized road marking points 

are first clustered into topological and semantic objects using the conditional Euclidean 

clustering method. Then, to determine the best matching functions and perform curve-fitting for 

curved road markings, a least-squares curve-fitting method is applied on the generated clustered 

points by minimizing the sum of the squares of the residuals. Furthermore, based on the final 

repot of Code for Design of Urban Road Engineering submitted to PRC Minister of Construction 

in 2012, the driving lines at horizontal curves are determined for the application of autonomous 

driving. Thus, as illustrated in Figure 3.18, the driving line generation method consists of three 

steps: 

 

Figure 3.18 Workflow of the proposed driving line generation method. 

Step 1, road marking clustering. According to the distances between a certain point and 

its nearest points, a conditional Euclidean clustering method is employed to segment the 3D 

discrete road marking points into a series of organized clusters.  
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Step 2, nonlinear least-squares curve fitting. A nonlinear least-squares curve fitting 

algorithm is carried out to determine the best-fitting horizontal curves.  

Step 3, driving line generation. The driving lines are determined based on the 

mathematical functions of the generated best-fitting curves and the road design and construction 

standards.  

3.5.1 Conditional Euclidean Clustering 

There are no definite topological relationships among points in the noise-removed 3D 

road marking point clouds. In order to identify and distinguish different types of road markings 

(e.g., centrelines, zebra crossing, lane lines and edge lines), the conditional Euclidean clustering 

algorithm is then applied to organize these discrete road marking points into topological and 

semantic point clusters. Moreover, by determining the Euclidean distances between a certain 

point and its nearest neighbours, this method is capable to group all unorganized points into a set 

of clusters. Firstly, a pre-defined Euclidean distance threshold 𝑑𝑒 is given by taking point density 

and resolution of the generated road marking point clouds into consideration. Subsequently, two 

adjacent points will be assigned into the same cluster if the Euclidean distance 𝑑𝑖 is less than or 

equal to 𝑑𝑒 . Otherwise, these two points will be grouped into different clusters. The principle of a 

conditional Euclidean clustering method is presented as follows:   

 

                            (a)                                                       (b)                                                            (c) 

Figure 3.19 The conditional Euclidean clustering method. 
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As shown in Figure 3.19 (a), all road-marking points are labelled as non-clustered points 

𝑝𝑖 (𝑖 = 1,2, … ,𝑁) at first, where 𝑁 indicates the total number of non-clustered points. Then, this 

method randomly selects a point 𝑝𝑖 as the starting point and assigns 𝑝𝑖 with a cluster identifier 

𝑝𝐿𝑎𝑏𝑒𝑙. Subsequently, 𝑝𝑖 is defined as the centre of a sphere, in which 𝑟𝑐 is the radius of this 

sphere. Next, as shown in Figure 3.19 (b), all non-clustered points that located within the 

spherical periphery are marked as clustered points (e.g., red points in the figure) and assigned to 

the same cluster identifier 𝑝𝐿𝑎𝑏𝑒𝑙  as the point 𝑝𝑖  accordingly. Additionally, as illustrated in 

Figure 3.19 (c), these clustered points are selected as the starting points respectively to perform 

the conditional Euclidean clustering method, and then the same clustering pattern is carried out 

repeatedly. Thus, this algorithm consistently labels non-clustered points as clustered points and 

assigns them with the same cluster identifier 𝑝𝐿𝑎𝑏𝑒𝑙, while these non-clustered points are within 

the certain spherical periphery. This repetitive process stops if no more non-clustered points can 

be detected within the spherical periphery of clustered points. Furthermore, a new starting point 

is selected from the rest of non-clustered points, then the same clustering pattern is executed until 

all non-clustered points are marked as clustered points. As a result, points labeled with the same 

class identifier are grouped into the same cluster. Figure 3.20 indicates two clustering results 

using the conditional Euclidean clustering algorithm. Figure 3.20 (a) shows power line MLS 

points and Figure 3.20 (b) presents the guardrail MLS points can be distinguished and clustered 

effectively after implementing the conditional Euclidean clustering method.  

 

                                   (a) power line                                                         (b) guardrail 

Figure 3.20 Results of conditional Euclidean clustering (Source: Yang et al., 2017). 
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As shown in Figure 3.20, the conditional Euclidean clustering algorithm has the 

capability to effectively segment unorganized road marking points into a series of independent 

semantic point clusters. Based on this method, the segmentation process can be conducted with a 

high computation-efficiency and low time-complexity.  Since the clustering targets in this study 

are road markings particularly for lane lines, centrelines and edge lines at horizontal curves, a 

prior knowledge (e.g., shape, width and scanning distance) and related urban street design 

regulations of the curved road markings can be utilized for complete filtering. For example, 

several useless clusters (e.g., including road diamond, road words and arrows) for further driving 

line generation at horizontal curves, are removed to improve the computational efficiency at the 

stage of clustering. Additionally, the final road marking clusters at horizontal curves are 

optimized using the following criteria: 

                                 {𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑑 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠, 𝑖𝑓 𝑑𝑟 ≤ 𝑑𝑐 ＆ 𝑤𝑟 ≥ 𝑤𝑐 
𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠, 𝑖𝑓 𝑑𝑟 > 𝑑𝑐 or 𝑤𝑟 < 𝑤𝑐 

                                     (3.10) 

where 𝑑𝑐  denotes a scanning distance threshold, 𝑤𝑐 indicates a clustered road marking width 

threshold and 𝑑𝑟, is the scanning distance. The scanning distance indicates the distance from the 

vehicle trajectory to the clustered points in the XOY-plane, and the width of a cluster can be 

determined depending on corresponding coordinates. Accordingly, the clusters will be removed 

if their scanning distance 𝑑𝑟 is less than the given 𝑑𝑐 or their width 𝑤𝑟 is larger than the given 𝑤𝑐.  

3.5.2 Nonlinear Least-Squares Curve Fitting 

The flexible mobility and powerful ability of collecting high-density point clouds make 

MLS data to be applied not only in large-scale road features detection, but also in detailed road 

parameters extraction and modelling. Moreover, MLS point clouds directly indicate precious 3D 

coordinates from real horizontally curved scenes, which facilitates the generation of driving lines 
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in 3D high-definition roadmaps for autonomous vehicles. Thus, in order to determine the best-

fitting mathematical functions and further implement curve-fitting, a nonlinear least-squares 

curve fitting algorithm is employed using clustered curved road markings. Typically, the 

nonlinear least squares is one of the least squares analysis used to fit a series of p observations by 

using a linear model with q unknown parameters ( p > q) (Marquardt, 1963). The advantage of 

nonlinear least squares method is the multiple range of functions with unknown parameters can 

be fit.  Based on the road design and construction standards, majority of horizontally curved road 

segments are designed as compound curves and spiral curves, a nonlinear least squares curve 

fitting algorithm is thus used to determine the best-matching mathematical functions of these 

horizontal curves. By minimizing the sum of the squares of the residuals (i.e., the offsets), this 

algorithm is capable of fitting a huge number of MLS points from the clustered road markings, 

and then approximating the nonlinear models to construct the planar B-spline curves for the 

horizontal curves by iterative optimization. Furthermore, according to the road design 

regulations, the horizontal curves are normally designed and constructed with small curvatures to 

meet the requirement of minimum turning radius, provide the broad sight for road users, and 

decrease the risks of traffic accidents at horizontally curved road sections. The principle of the 

nonlinear least-squares curve fitting algorithm is described as follows: 

The residuals 𝛿𝑖 (𝑖 = 1,2, … ,𝑚) defined in the least-squares fitting method indicate the 

offsets between all clustered road marking points to the desired fitting curves in this study. 

Subsequently, for a certain point 𝑝𝑖(𝑥𝑖 , 𝑦𝑖) that is projected on the XOY-plane and given the 

function as:  

      𝑦𝑖 = 𝑓(𝑥𝑖)                                                                                          (3.11) 
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where 𝑖 = 1,2, … ,𝑚, and 𝑚 is the total number of clustered road marking points to be fitted, this 

algorithm is performed to determine the best-fitting mathematical function as:   

           𝑦𝑖 = 𝑔(𝑥𝑖)                                                                                          (3.12) 

then, Eq. (3.12) is regarded as the best-fitting function for all points if both the deviation between 

the approximated curve (e.g., defined by Eq. (3.12)) and the primitive curve (e.g., defined by Eq. 

(3.11)) and the sum of the squares of the residuals are minimized, which is presented as: 

       𝑚𝑖𝑛 ∑ 𝛿𝑖
2𝑚

𝑖=1 = ∑ (𝑔(𝑥𝑖) − 𝑦𝑖)
2𝑚

𝑖=1                                             (3.13) 

Figure 3.21 shows a curve fitting result obtained using the nonlinear least-squares fitting 

algorithm. Figure 3.21(a) presents the independent and discrete points 𝑝𝑖(𝑥𝑖, 𝑦𝑖)  (𝑖 = 1,2, … ,𝑚) 

that projected onto the XOY-plane, where 𝑚 indicates the total number of the clustered  

 

(a) A scatterplot                                                (b) A curve generated 

Figure 3.21 A curve generated using the nonlinear least-squares curve fitting algorithm 

road-marking points. Next, assumed that a fitting polynomial is presented to fit all data points 

using the following equation: 

𝑦 =  𝑎0 + 𝑎1𝑥 + ⋯+ 𝑎𝑘𝑥
𝑘                                                                   (3.14)  
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where 𝑘 represents the degree of the polynomial and 𝑎𝑘 denotes the coefficient of the 𝑘-degree 

polynomial. Then, the sum of distances between each point 𝑝𝑖(𝑥𝑖, 𝑦𝑖) to the proposed polynomial 

curve, namely the sum of the squares of the residuals, is calculated by: 

∑ 𝛿𝑖
2𝑚

𝑖=1 = ∑ (𝑦𝑖 − (𝑎0 + 𝑎1𝑥 + ⋯+ 𝑎𝑘𝑥
𝑘))2𝑚

𝑖=1                          (3.15) 

                                           𝑎0 ∑ 𝑥𝑖
𝑘𝑛

𝑖=1 + 𝑎1 ∑ 𝑥𝑖
𝑘+1𝑛

𝑖=1 + 𝑎2 ∑ 𝑥𝑖
2𝑛

𝑖=1 + ⋯+ 𝑎𝑘 ∑ 𝑥𝑖
2𝑘𝑛

𝑖=1 = 0              (3.16) 

furthermore, the partial derivative of the residuals is indispensable to obtain the values of these 

coefficients 𝑎𝑘, which is described using a simplified matrix as follows: 

[
 
 
 
1 𝑥1 ⋯ 𝑥1

𝑘

1 𝑥2 ⋯ 𝑥2
𝑘

⋮ ⋮ ⋱ ⋮
1 𝑥𝑚 ⋯ 𝑥𝑚

𝑘 ]
 
 
 

[

𝑎0

𝑎1

⋮
𝑎𝑘

] = [

𝑦1

𝑦2

⋮
𝑦𝑚

]                                                         (3.17) 

therefore, the coefficient matrix 𝐴 = [𝑎0 𝑎1 ⋯ 𝑎𝑘]𝑇 can be obtained and the corresponding 

fitting curve for the clustered road-marking points is afterward determined, as shown in Figure 

3.21 (b).  

As illustrated in Figure 3.21, the nonlinear least-squares curve fitting algorithm is capable 

of determining the best-fitting curve for a large number of discrete points. Since all data points 

used in this method are derived from the clustered road markings (e.g., centrelines and edge 

lines), the related road design and construction standards are conducive to provide useful road 

information (e.g., horizontal curvature) for calculating the coefficients of curve-fitting 

polynomial. Moreover, in order to overcome the challenges of ambiguous traffic situations and 

unclear visual clues, such as poor visibility at horizontal curves, the horizontal curvatures of 

urban streets are regulated less than a pre-defined threshold based on the surrounding terrain, 

road features and other related control conditions (PRC Minister of Construction, 2012). Thus, 
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the majority of urban horizontal curves are designed in the form of circular curve and elliptic 

curve. As mentioned in Section 2.1.3, all horizontal curves used in this study are belong to 

circular horizontal curves. Based on this basis, the curve-fitting process can be time-saving and 

conducive efficiently. Figure 3.22 presents a typical circular curve of radius R, and Table 3.2 

summarizes all elements of a horizontal circular curve.  

 

Figure 3.22 The elements of a circular horizontal curve. 

Table 3.2 Horizontal circular curve elements. 

Symbols Descriptions Units 

D Degree of curvature degrees per 100 ft of centreline 

R Radius of curve (measured to centreline) ft 

L Length of curve (measured along centreline) ft 

PC Point of curvature, start of the horizontal curve - 

PT Point of tangency, end of the horizontal curve - 

PI Point of tangent intersection - 

∆ Subtended angle of curve (PC to PT) degree 

T Tangent length ft 

M Middle ordinate ft 

LC Length of long chord (from PC to PT) ft 

E External distance ft 
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3.5.3 Driving Line Generation 

The driving line generation at horizontally curved road sections from MLS data 

completely depends on the curve-fitting results of the extracted road centrelines, lane lines and 

edge lines. As mentioned before, based on the road design and construction standards, these 

curved road markings approximate to horizontal circular curves or elliptic curves. Therefore, the 

generated best-fitting mathematical functions for these road markings are in the form of circular 

function and elliptic function after implementing the nonlinear least-squares curve fitting 

algorithm. Subsequently, according to a prior knowledge, the generated driving lines should be 

parallel to the road centrelines and edge lines to guarantee the traffic safety. Additionally, 

assumed that the curvature of the generated driving line is equal to curvatures of road centerlines 

or edge lines, and then the centres of these horizontal curves should be the same. Consequently, 

based on this assumption, the best-fitting mathematical functions of driving lines can be 

efficiently determined by the adjusting related coefficients of the function (e.g., radius and 

central position of the horizontal curve). Therefore, the related horizontal circular curve elements 

defined in this thesis (see Table 3.2) can be determined using the following equations 

(McCormac et al., 2012): 

𝐷 =  
360

2𝜋𝑅
∗ 100 =

5729.6

𝑅
                                                          (3.18) 

𝐿 =  
100∆

𝐷
                                                                                       (3.19) 

𝑇 = 𝑅 tan
1

2
∆                                                                               (3.20) 

𝑀 = 𝑅(1 − cos
1

2
∆)                                                                  (3.21) 

𝐿𝐶 = 2𝑅 sin
1

2
∆                                                                          (3.22) 

𝐸 = 𝑅(
1

cos
1

2
∆
− 1)                                                                       (3.23) 
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As a result, each element (e.g., degree of curvature and the length of curve) of the 

generated best-fitting horizontal curve function can be obtained.  

3.6 Validation 

3.6.1 Accuracy Assessment of Road Marking Extraction 

 To validate the performance and reliability of the proposed road marking extraction 

algorithms, an accuracy assessment is thus performed based on the manually created reference 

data. 

 Table 3.3 presents a confusion matrix for the binary classification, where 𝑡𝑝  and 𝑡𝑛 

represent a true positive and negative classification while 𝑓𝑝 and 𝑓𝑛 indicate a false positive and 

negative classification, respectively. In this thesis, the target class (positive class) is the extracted 

road marking class, and the road surface class is regarded as the negative class.  

Table 3.3 Confusion matrix of binary classification 

                                                  Classified 

                 Class   
Positive Negative 

Positive 𝑡𝑝 𝑓𝑛 

Negative 𝑓𝑝 𝑡𝑛 

 

 In this study, the accuracy assessment mechanism of road marking extraction is based on 

Recall, Precision and 𝐹1 -𝑠𝑐𝑜𝑟𝑒  (Powers, 2011). As shown in Eqs. (3.24) to (3.26), recall 

indicates how complete the extracted road markings are, while precision describes what 

percentage of the extracted road markings are valid. In addition, 𝐹1-𝑠𝑐𝑜𝑟𝑒 represents an overall 

score with the integration between recall and precision.  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
                                                                      (3.24) 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
                                                                  (3.25)    

𝐹1-𝑠𝑐𝑜𝑟𝑒 =  
2∗𝑐𝑝𝑡∗𝑐𝑟𝑡

𝑐𝑝𝑡+𝑐𝑟𝑡
=

2𝑡𝑝

𝑓𝑝+𝑓𝑛
+ 1                                             (3.26) 

3.6.2 Orthoimage Generation  

UAV imagery was used as the reference data for validation at the stage of driving line 

generation. Digital images captured by an UAV with high-resolution optical cameras are capable 

of capturing rich information about urban road networks. Although the UAV imagery has 

distortions, the 3D MLS point clouds provide absolute coordinates and geometric information. 

Thus, optical distortions should be calibrated in order that these UAV images can be regarded as 

reference data. In this section, the UAV orthoimagery is generated by first to validate the 

performance of the driving line generation algorithms, and an accuracy assessment is afterward 

conducted.   

 

Figure 3.23 Directly geo-referenced 3D point clouds in a local mapping frame.    
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Figure 3.23 presents directly geo-referenced 3D point cloud within a local mapping frame. 

The orientation of the mapping frame is specified as the left-handed Cartesian coordinate system 

so that the positive X, Y, and Z axes towards the vehicle’s moving direction, the right of the 

vehicle, and the top of the vehicle, respectively. These 3D point clouds are projected onto a 

horizontal XOY-plane and the result contains detailed 2D information. Thus, the generated 

driving lines from the MLS point clouds can be evaluated by analyzing their projections on the 

horizontal XOY-plane. Consequently, these driving lines are overlapped on the UAV 

orthoimagery for both visual inspection and quantitative assessment.  

Furthermore, in order to produce orthoimagery of the projected MLS data in the XOY-

plane, a set number of ground control points (GCPs) were selected in raw MLS data. 

Subsequently, (X, Y) coordinates of these GCPs were utilized to generate the base map. The 

UAV orthoimagery was created using the Georeferencing module packaged in ArcGIS Desktop 

10.2.2. Firstly, the UAV images are rasterized into raster layers into ArcMap 10.2.2. Then, in 

order to determine the spatial information of these raster layers, the relationship is established by 

connecting locations on the raster layer with their corresponding locations on the base map. As a 

result, these locations of pixels in the raster layer are calibrated according to the coordinate 

information of the selected GCPs.   

 Moreover, determining the number of GCPs has influenced on the accuracy of the 

generated orthoimagery. Several modules for raster generation have been defined in ArcGIS. 

Specifically, one GCP is designed for the zero-order transformation, three GCPs for the first-

order polynomial transformation, six GCPs for the second-order polynomial transformation, and 

ten GCPs for the third-order polynomial transformation. The more GCPs, the more distortions in 

the UAV imagery can be adjusted.  
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3.6.3 Evaluation  

 In this study, the generated driving lines were overlapped on the corresponding UAV 

orthoimagery in ArcGIS to conduct visual inspection and quantitative evaluation. The accuracy 

of the generated driving lines was assessed based on recall and miscoding. Moreover, as 

indicated in Eq. (3.27), the miscoding represents what percentage of the generated driving lines 

are located outside of the reference buffer (the reference buffers were created with a given width 

around the generated driving lines). The following equation was used to calculate the miscoding: 

𝑀𝑖𝑠𝑐𝑜𝑑𝑖𝑛𝑔 =  
𝐿𝑟

𝐿
∗ 100                                               (3.27) 

where 𝐿𝑟 denotes the length of a generated driving line located outside of the reference buffer, 

and 𝐿 indicates the total length of the generated driving line.   

3.7 Chapter Summary 

 This chapter presents a detailed workflow for the driving line generation at horizontally 

curved road sections using MLS data. The rationales of the curb-based road surface extraction, 

generation of geo-referenced intensity imagery, multi-threshold road marking extraction, SOR 

filter, conditional Euclidean clustering and nonlinear least-squares curve fitting are presented in 

details. The performance of road marking extraction is evaluated with three measurements in 

term of recall, precision and 𝐹1-score. Meanwhile, the generated driving lines can be evaluated 

by both visual inspection and quantitative assessment with the assistance of the generated UAV 

orthoimagery. Additionally, several experimental datasets will be employed to evaluate the 

efficiency and reliability of the proposed algorithms in Chapter 4. 
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Chapter 4 Results and Discussion 

This chapter presents and discusses the experimental results of driving line generation 

using MLS point clouds at horizontally curved road sections. Section 4.1 describes the MLS test 

datasets and reference data used in this study. The experimental results obtained using the 

proposed step-wise methods are demonstrated and discussed in Section 4.2. Finally, the results of 

accuracy assessment and comparative study are presented in Section 4.3 in order to evaluate the 

performance of the proposed methods in reliability and efficiency.  

4.1 Test Datasets  

4.1.1 Test MLS Datasets 

As shown in Figure 4.1, six test datasets were selected from the point clouds obtained by 

the VMX-450 system. Dataset 1 is an MLS point cloud dataset of a typical two-side and two-

lane horizontally curved road section with 6,568,656 MLS points, where contains road-side trees, 

light poles and fences (see Figure 4.1(a)). Dataset 2 is a test dataset of a one-way horizontal 

curve with 3,928,845 MLS points, where includes a part of a viaduct (see Figure 4.1(b)). Dataset 

3 presents a two-side and two-lane horizontal curve with 5,693,607 MLS points, and the total 

length is over 126 m (see Figure 4.1(c)). Dataset 4 indicates a two-side and two-lane horizontal 

curve with 2,063,626 MLS points, where contains several types of road markings including lane 

lines, centrelines, and zebra crossing (see Figure 4.1(d)). Figure 4.1(e) shows the Dataset 5, a 

two-side and two-lane horizontal curve with 3,661,745 MLS points in approximately 80 m. 

Dataset 6 is a point cloud dataset of a one-way horizontal curve with 18,561,253 MLS points, 

and its length is approximately 200 m (see Figure 4.1(f)).  

Experimentally, Datasets 1 and 3 were selected because they contain typical types of 

horizontal curves (e.g., no sharp turnings) in the study area. Additionally, Dataset 2 was selected 
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to test if the proposed algorithms will be influenced by occlusions of trees and viaducts. Dataset 

4 and 5 were used to evaluate the validity and reliability of the proposed method in the process of 

road marking extraction. Since autonomous vehicles are capable of dealing with complex road 

environments, Dataset 6 was therefore used to validate the flexibility and computational 

efficiency of the proposed algorithms in complex horizontally curved road scenes containing 

road-side trees, light poles, traffic signs and many types of road markings. Additionally, Datasets 

1, 4 and 6 are selected as test datasets used in the comparative study of road marking extraction. 

 

(a) Dataset 1                                                    (b) Dataset 2 

 

(c) Dataset 3                                                    (d) Dataset 4 
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(e) Dataset 5                                          (f) Dataset 6 

Figure 4.1 Six test datasets used in this thesis. 

Figure 4.2 presents point density distributions of the selected six test datasets. As 

mentioned in Chapter 2, several factors including incident angle, measurement ranges between 

laser scanners and the scanning targets, and frequency of emitted laser beams, can make impacts 

on the value of point density. The average point density of each point cloud is various. In this 

thesis, the point density analysis was carried out by using volume density analysis module 

packaged in CloudCompare V2.6.2. The test datasets were gridded into 1 × 1 × 1 m3 volumes 

by first, the number of each point cloud in these volumes was then determined. Moreover, 

different colours indicates different point densities of each study area (see Figures 4.2 (a) – (f)). 

Subsequently, Figures 4.2 (a-1) – (f-1) present the corresponding point density distribution of 

each test dataset, respectively. As discussed in Section 3.1, the scanning features that near to the 

vehicle trajectory have higher point densities than those of roadside features and ground objects 

have higher point densities than off-ground objects. Additionally, Figures 4.2 (a-1) – (f-1) show 

the average point densities of Datasets 1 to 6 are 10835.45, 3890.21, 2107.64, 2253.02, 2196.74, 

and 2071.73 points/m3, respectively.  
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(a) Dataset 1                            (a-1) Point density distribution chart of Dataset 1 

       

(b) Dataset 2                             (b-1) Point density distribution chart of Dataset 2 

      

(c) Dataset 3                             (c-1) Point density distribution chart of Dataset 3 
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(d) Dataset 4                            (d-1) Point density distribution chart of Dataset 4 

       

(e) Dataset 5                               (e-1) Point density distribution chart of Dataset 5 

       

(f) Dataset 6                              (f-1) Point density distribution chart of Dataset 6 

Figure 4.2 Point density distributions of six test datasets. 
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4.1.2 Reference Data 

 High-resolution optical imagery captured by an UAV-borne camera was used as 

reference data for performance assessment of the driving line genereation. These geo-referenced 

UAV imagery with WGS84 coordinate system was selected to generate the UAV orthoimagery, 

see Figure 4.3 (a). The manually created reference data was ulitized to evaluate the overall 

performance of the proposed road marking extraction algorithms, see Figure 4.3 (b).  

    

(a) (b) 

Figure 4.3 Reference data used in this study. 

4.2 Experimental Results 

4.2.1 Road Surface Extraction  

Several parameters, values and thresholds used in this section are described in Table 4.1. 

As mentioned in Section 3.3, the extraction results by implementing the curb-based road surface 

extraction algorithms are determined by six parameters including the width of a block (𝐵𝑔), the 

width of a profile (𝑃𝑔), the point spacing of a specified pseudo scan-line (𝑆𝑃), the elevation 

difference of two neighbour points (∆𝐸𝑖), the elevation difference (𝐻𝑖), and the slope threshold 

( 𝑆𝑠𝑙𝑜𝑝𝑒 ) for road curb identification. As illustrated in Table 4.1, 𝐵𝑔  and 𝑃𝑔  are used for 

partitioning and slicing the raw MLS data; 𝑆𝑃 and ∆𝐸𝑖 are utilized in the process of scan-line 
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generation; 𝐻𝑖  and 𝑆𝑠𝑙𝑜𝑝𝑒  are employed in the period of road curb detection. Therefore, these 

parameters have great effects on the efficiency and accuracy of the proposed curb-based road 

surface extraction algorithms. Based on the road design regulations and a prior knowledge, four 

parameters including 𝐸𝑇 , 𝐻𝑚𝑖𝑛 , 𝐻𝑚𝑎𝑥  and 𝑆𝑇  were pre-defined (see Table 4.1), each of which 

have a slight influence on the overall performance of the proposed algorithms.  

Table 4.1 Parameters for road surface extraction algorithms. 

Parameters Definition Pre-defined threshold 

𝐵𝑔 The width of a block - 

𝑃𝑔 The width of a profile - 

𝑆𝑃 The point spacing of a generated 

pseudo scan-line 

- 

∆𝐸𝑖 The elevation jump of two 

adjacent points for determining 

the principal points. 

𝐸𝑇 = 0.05 m 

𝐻𝑖 The elevation difference for 

detecting road curbs 

Based on a prior knowledge, the 

minimum height difference and the 

maximum height difference of the curb 

are: 

𝐻𝑚𝑖𝑛 = 0.05 m , 𝐻𝑚𝑎𝑥 = 0.30 m 

𝑆𝑠𝑙𝑜𝑝𝑒 The slope criterion for detecting 

road curbs 

Based on a prior knowledge, 𝑆𝑇 > 𝜋/3 

 

Parameter 𝐵𝑔, the width of a block, has an influence on the capability of the proposed 

road surface algorithms since it determines the size of a data block to be sectioned. Consequently, 

it controls the number of blocks can be acquired for detecting road curbs, and determines the 

number of curb points can be used to conduct a cubic spline interpolation method. Additionally, 

parameter 𝑃𝑔  also plays a crucial role in the proposed algorithms, because the value of 𝑃𝑔 

determines the number of points to be counted at the stage of pseudo scan-line generation. 

Moreover, the point spacing of a generated pseudo scan-line can be determined by the 
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parameter𝑆𝑃, which controls the precise position of the extracted road curb points. Therefore, 

experiments were implemented by using different sets of values for parameters 𝐵𝑔,𝑃𝑔, and 𝑆𝑃. 

According to a set of data experiments, the width of a block was set ranging from 𝐵𝑔 =

0.5 m to 𝐵𝑔 = 2.0 m in this thesis according to the trajectory data and curvatures of horizontal 

curves. That is, if the horizontal curve is a sharp curve, experiments keep 𝐵𝑔 = 0.5 m in order to 

obtain more points belonging to the road curb for curb detection. Otherwise, a larger value of 𝐵𝑔 

was selected to improve computational capability. In addition, the value of 𝐵𝑔 can be controlled 

by the trajectory data, which directly reflects possible curves by determining the direction of 

GNSS positions of two consecutive trajectory points. Therefore, the six test datasets were 

partitioned into 26, 24, 61, 12, 32 and 69 data blocks, respectively. Each data block has a 

corresponding data profile accordingly. Based on a series of experimentation, the value of 𝑃𝑔 was 

set to 0.25 m. Each profile was then gridded into a number of grids with an adaptive grid width 

𝑆𝑃 of 0.05 m to generate pseudo scan lines. Moreover, based on the final report of Code for 

Design of Urban Road Engineering, China in 2012, the related road design and construction 

regulations determine the curb height of urban road networks ranging from 0.05 m to 0.30 m. 

Figures 4.4 presents road surface extraction results of the six test datasets using the proposed 

curb-based road surface extraction algorithms. Table 4.2 indicates the number of non-road-

surface points that can be removed after implementing the proposed algorithms, which 

demonstrates the proposed algorithms enhance computational efficiency greatly.  
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Table 4.2. The number of MLS points after road surface extraction. 

Test datasets Raw 3D points  Road surface points Percentage of road surface points 

1 6,568,656 3,717,442 56.6% 

2 3,928,845 1,952,461 49.7% 

3 5,693,607 3,275,666 57.5% 

4 2,063,626 1,202,819 58.3% 

5 3,661,745 2,575,698 70.3% 

6 18,561,253 4,714,745 25.4% 

 

 

Figure 4.4 Road surface extraction results obtained using six test datasets. 

As shown in Figure 4.5, point density distributions of the extracted road surface points 

were implemented in the six test datasets. The average point density of six datasets are 16469.15, 



79 
 

5126.98, 2813.40, 3104.08, 2881.12, and 2951.90 points/m3 respectively. It is worthing noting 

that the avarage point density increases after removing off-pavement points for each dataset.  

              

             (a) Road surface of Dataset 1           (a-1) Point density distribution chart of road suface 1 

              

           (b) Road surface of Dataset 2            (b-1) Point density distribution chart of road suface 2 

   

            (c) Road surface of Dataset 3            (c-1) Point density distribution chart of road suface 3 
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          (d) Road surface of Dataset 4             (d-1) Point density distribution chart of road suface 4 

         

          (e) Road surface of Dataset 5              (e-1) Point density distribution chart of road suface 5 

                             

           (f) Road surface of Dataset 6              (f-1) Point density distribution chart of road suface 6 

Figure 4.5 Point density distributions of the extracted road surfaces. 

4.2.2 Geo-referenced Intensity Image Generation  

Based on the extracted road surface points, the IDW interpolation algorithm was 

afterward employed to generate GRF intensity imagery with different resolutions. Table 4.3 
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indicates fine image resolutions can increase the data volume and decrease computational 

efficiecy for a MLS test dataset, accordingly.  

Table 4.3 Resolution of Geo-referenced intensity image and its data size. 

Resolution      (cm) 2 4 6 8 10 

Image size   (MB) 19.2 3.22 1.42 0.83 0.53 

 

A group of experiments keep the grid size ranging between 2 cm and 10 cm, while the 

gerenated GRF intensity imagery become blurred, as shown in Table 4.4. The smallest road 

markings (i.e., broken lines with width of 15 cm) can be preserved and presented in the 

genereated intensity imagery when setting the image resolution to be 4 cm. Thus, the extracted 

road surface points were rastered into intensity imagery with the resolution of 4 cm by using the 

IDW interpolation method.  

Table 4.4 Geo-referenced intensity images with different resolutions. 

Resolution 

(cm) 
2 4 6 8 10 

Zebra 

Crossing (7.5 

* 6.0 m2 )      

 

Futhremore, Figure 4.6 presents the intensity imagery generated by the IDW interpolation 

with the image resolution of 4 cm. Additionally, the road markings indicate higher illumination 

than pavements with respect to intensity information.  
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Figure 4.6 Geo-referenced intensity image generated by IDW interpolation. 

4.2.3 Road Marking Extraction  

Several parameters involved in the process of road marking extraction, including the 

numbers of bins (𝐵𝑛), the intensity values of road markings (𝐼𝑖 ), and the distances between 

vehicle trajectory to the road markigns (𝐷𝑖),  are listed in Table 4.5. Among these parameters, 𝐵𝑛 

is determined by the point density. 𝐼𝑖 and 𝐷𝑖 are used to identify and extract road markings from 

the genereated intensity imagery. Since the study area in this thesis mainly concentrate on the 

horizontally curved road sections, each generated intensity imagery includes two or three types 

of road markings, as summarized in Table 4.6. 

Table 4.5. Parameters for road marking extraction algorithms. 

Parameters Definition Pre-defined threshold 

𝐵𝑛 The number of bins Determined by the point density 

𝐼𝑖 The intensity values of road markings To be determined 

𝐷𝑖 The distances between vehicle trajectory to 

the road markings 

To be determined 
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Table 4.6. Road marking types in geo-referenced intensity images. 

Intensity imagery name Road marking types 

Road_surface_1 Solid edge lines and centreline 

Road_surface_2 Solid edge lines 

Road_surface_3 Solid edge lines and broken lane line markings 

Road_surface_4 Solid edge lines, broken lane line markings and zebra crossing 

markings 

Road_surface_5 Solid edge lines and hatch markings 

Road_surface_6 Solid edge lines 

 

Road marking 

examples 
Raw road marking points 

Multi-threshold road marking 

segmetnation results 

Sample1 

  

Sample2 
  

Sample3 

  

Sample4 

  

  Figure 4.7 Four types of road markings and their extraction results.  

A series of experiments were carried out to verify the performance of the proposed multi-

threshold road marking extraction algorithms while keeping the resolution of 4 cm for all 
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genereated intensity imagery. Moreover, four types of road markings are presented in Figure 4.7. 

All results in the second column indicate that all road markings, including solid edge lines, 

broken centrelines, hatch markings and zebra crossing markings, can be correctly detected and 

completely extracted. Furthermore, these intensity imagery can generate their own 𝐵𝑛 thresholds 

using Otsu’s method, and the other two parameters 𝐼𝑖  and 𝐷𝑖  can be determined by visual 

interpretation and quantitative measurement based on the road materials and dimensions. As 

shown in Figure 4.7, visual inspection indicates most road markings can be detected and 

extracted correctly using the proposed multi-threshold extraction algorithms. However, discrete 

noises still can be identified, which has influence on the recall and precision of extracted road 

markings. 

4.2.4 Noise Removal  

K-nearest neighbourhoods should be identified by first in order to implement noise 

removal using the SOR filter. Based on the point densities of raw test datasets, the value of 

parameter 𝑘 can be determined, where 𝑘 denotes the number of points shoule be searched around 

a centain point. In this study, a series of experiments keeping 𝑘 = 20 were conducted according 

to the point density. As shown in Figures 4.8 (a) – (f) the extracted road markings of the six test 

datasets are presented, while their corresponding noise removal results are shown in Figures 4.8 

(a-1) – (f-1), Consequently, discrete noises (e.g., red rectangles in each figure) are completely 

eliminated. However, due to the inevitable damage of painted markings caused by moving 

heavy-duty trucks and weather conditions (e.g., salt-fog corrosion), there exist small gaps in the 

extracted road markings, as illustrated in blue rectangles in Figures 4.8 (c), (c-1), (d) and (d-1). 

Thus, these results demonstrate that discrete noises are successfully removed and the 

completeness of extracted road markings can be preserved after implementing the SOR filter.  
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     (a) Extracted road markings of Dataset 1                 (a-1) Refined road markings of Dataset 1 

         

     (b) Extracted road markings of Dataset 2                 (b-1) Refined road markings of Dataset 2 

         

     (c) Extracted road markings of Dataset 3                 (c-1) Refined road markings of Dataset 3 
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     (d) Extracted road markings of Dataset 4                 (d-1) Refined road markings of Dataset 4 

         

     (e) Extracted road markings of Dataset 5                 (e-1) Refined road markings of Dataset 5 

         

     (f) Extracted road markings of Dataset 6                  (f-1) Refined road markings of Dataset 6 

Figure 4.8 Results of noise-removed road markings. 

After eliminating the noises, most of road markings are completely extracted from the 

raw datasets expect two incomplete road markings (see blue rectangles in Figures 4.8 (c), (c-1), 

(d) and (d-1)). The road marking decay, the losses of road marking reflectance, the lack of 

sufficient laser points and the value of  𝑘 that used to conduct the SOR fitler can account for 

these errors.  

4.2.5 Road Marking Clustering 

After extracting road markings and implementing noises removal, there are still no 

distinct topological relationships among the remaining MLS point clouds. Based on the Gaussian 
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point density distributions and the resolution of the generated noise-removed points, a series of 

experiments using parameters 𝑑𝑒  and 𝑤𝑐  were implemented for classification using the 

conditional Euclidean clustering algorithm. The details of these two parameters are indicated in 

Table 4.7.  

Table 4.7 Parameters for the conditional Euclidean clustering method. 

Parameters Definition Pre-defined threshold 

𝑑𝑒 The range of scanning distances To be determined 

𝑤𝑐 The width of a road marking Based on a prior knowledge 

 

Figures 4.9 (a), (b), (c), (d), (e) and (f) present the road marking clustering results after 

implementing the conditional Euclidean cluster algorithm. As can be perceived, majority of road 

markings (e.g., centrelines, edge lines and zebra crossing road markings) can be successfully 

clustered by adjusting both thresholds of 𝑑𝑒 and 𝑤𝑐. Moreover, disordered points in the noise-

removed road marking datasets have topological relationships and the genereted clusters are 

regarded as semantic objects. 

 

 

         (a) Clustered road markings of Dataset 1        (b) Clustered road markings of Dataset 2 
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         (c) Clustered road markings of Dataset 3        (d) Clustered road markings of Dataset 4 

 

         (e) Clustered road markings of Dataset 5        (f) Clustered road markings of Dataset 6 

Figure 4.9 Road marking clustering results: (a), (b), (c), (d), (e) and (f) are road marking 

clustering and segmentation results for each dataset, respectively. 

4.2.6 Curve Fitting  

Since disordered road marking points are clustered into different semantic objects, the 

topological relationships among clustered edge line or centreline points are capable of 

implementing curve fitting. The results obtained by the nonlinear least-squares curve fitting 

algorithm are determined by the two parameters: the degree of the polynominal 𝑘  and the 

corresponding coefficients 𝑎𝑘. These two parameters are detailed in Table 4.8. 

Table 4.8. Parameters for the nonlinear least-squares curve-fitting algorithm. 

Parameters Definition Pre-defined threshold 

𝑘 The degree of the generated polynomial To be determined 

𝑎𝑘 The coefficients of the genereated 𝑘-degree polynomial To be determined 
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Based on the road design and construction standards and curvature analysis of the 

genreated road edge lines, centrelines and lane lines, a collection of experiments were performed 

to examine the sensitivity and flexibility of parameters used at the stage of curve fitting. Figures 

4.10 (a) – (f) show the noise-removed road marking extraction results of six test datasets, and 

Figures 4.10 (a-1) – (f-1) indicate their corresponding mean curvature distributions with kernel 

size of 0.2 m. Based on Figure 4.10, it can be concluded that the mean curveture of a horizontal 

curve is smaller than 0.15. Due to the existence of non-curved road markings (e.g., hatch 

markings) and the discontinuity of centrelines (see Figure 4.10 (c)), the mean curvature of each 

test dataset is overestimated in the final result. According to road design and construction 

standards, majority of horizontal curves are designed as circular curves. Therefore, these 

experiments keep 𝑘 = 2 (the second-degree polynomial) for all the datasets. 

                       

(a) Noise-removed road markings of Dataset 1 (a-1) Corresponding mean curvature distribution 

 

(b) Noise-removed road markings of Dataset 2 (b-1) Corresponding mean curvature distribution 
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(c) Noise-removed road markings of Dataset 3   (c-1) Corresponding mean curvature distribution            

               
(d) Noise-removed road markings of Dataset 4   (d-1) Corresponding mean curvature distribution 

   

(e) Noise-removed road markings of Dataset 5   (e-1) Corresponding mean curvature distribution 

 

                          
(f) Noise-removed road markings of Dataset 6    (f-1) Corresponding mean curvature distribution  

Figure 4.10 Mean curvature distributions of road marking results.  
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As a result, Figures 4.11 (a) – (f) present planar B-spline curves with coordinate 

information generated by implementing the nonlinear least-sqaures curve fitting method, and 

Figures 4.11 (a-1) – (f-1) show their corresponding mean curvature distributions with kernel size 

of 0.2 m. As can be seen, majority of best-fitting functions of horizontal curves (e.g., edge lines 

and lane lines) can be elaborately determined. Additionally, compared with Gaussian mean 

curvature values of the noise-removed road marking extraction results, this value of each dataset 

becomes smaller after implementing curve fitting. Furthermore, non-curved road markings (e.g., 

zebra crossings) can be successfully removed by using the nonlinear least-sqaures curve fitting 

algorithm in order to improve computational efficiency at the stage of driving line generation.  

              

             (a) Curve-fitting results of Dataset 1   (a-1) Mean curvature distribution of curve-fitting 1 

                            
           (b) Curve-fitting results of Dataset 2    (b-1) Mean curvature distribution of curve-fitting 2 

                                 

            (c) Curve-fitting results of Dataset 3   (c-1) Mean curvature distribution of curve-fitting 3 
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            (d) Curve-fitting results of Dataset 4   (d-1) Mean curvature distribution of curve-fitting 4 

 

                        

           (e) Curve-fitting results of Dataset 5    (e-1) Mean curvature distribution of curve-fitting 5 

 

            (f) Curve-fitting results of Dataset 6    (f-1) Mean curvature distribution of curve-fitting 6 

Figure 4.11 Mean curvature distributions of curve-fitting results. 

4.2.7 Driving Line Generation 

In this section, driving lines at horizontally curved road sections can be generated 

according to the calculated best-fitting functions of curved road markings. Based on a prior 

knowledge and the road design and construction restrictions, most of curved road markings, 

including solid edge lines, centrelines and broken laneline markings, are parallel to each other in 
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the XOY-plane to guarantee safety for road users. Therefore, the results can be determined by 

analyzing their corresponding functions of the generated curve-fittings. Moreover, parameter 𝑑𝑠 

used in this section is shown in Table 4.9, which indicates the distances from edge lines or 

centrelines to the driving lines to be generated. Since majorities of the genereated curve-fitting 

functions belong to circular arc curve and elliptic arc curve functions, related mathematical 

functions are therefore used to calculate the coordinate information for the final driving lines. 

Additionally, for the purpose of reducing the time complexity and improve the precision of this 

method, a Quick Sort algorithm is applied to reorganize the entire point clouds within the 

genereated curve-fitting point clouds.  

Table 4.9 Parameters used in driving line generation algorithms. 

Parameter Definition Pre-definied threshold 

𝑑𝑠 
The distances from the edge lines, lane 

lines or centrelines to the driving lines 

Based on road design 

regulations 

 

 

Figure 4.12 The generated circular curve of a driving line. 
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Accordingly, Figure 4.12 presents the generated best-fitting curve of a driving line for 

test Dataset 1. As can be perceived, all points pertaining to this driving line are located on a part 

of a circular curve, which demonstrates this circular curve is capable to model and calculate a 

driving line effectively. Thus, the corresponding mathematical function of this generated driving 

line in the XOY-plane can be determined as follows: 

                                    𝑥2 + 𝑦2 − 816.68𝑥 − 432.40𝑦 − 213191.38 = 0                                (4.1) 

where 𝑥  and 𝑦  indicate the relative coordinates of a point in XOY-plane. Consequently, the 

coordinates of all 3D MLS points belonging to a driving line can be determined according to the 

Eq. (4.1). 

Furthermore, the driving line generation results are presented in Figure 4.13. The final 

results demonstrate that all driving lines at horizontal curves can be generated successfully on the 

six test datasets by using the proposed algorithms. As can be seen, most of generated driving 

lines are located at central positions between road lane lines and edge lines (or centrelines), 

which provides the best-matching driving lines that meet the ruquirements of 3D high-definition 

roadmaps and guarantee traffic safety for autonomous vehicles. However, these algorithms are 

still influenced by disconnectivity of edge lines or centrelines. As shown in Figure 4.13 (d), two 

generated driving lines between road edge lines and centrelines interrupt due to the existence of 

zebra crossing marking and discontinuties of edge lines and centrelines.  
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         (a) Generated driving lines of Dataset 1             (b) Generated driving line of Dataset 2 

 

         (c) Generated driving lines of Dataset 3             (d) Generated driving lines of Dataset 4 

 

         (e) Generated driving lines of Dataset 5             (f) Generated driving line of Dataset 6 

Figure 4.13 Driving line generation results. 

Moreover, these generated driving lines not only provide accurate navigation solutions 

for autonomous vehicles at horizontally curved road sections but also offer detailed curve 

information related to urban road design and traffic safety. Therefore, according to the 

genereated mathematical functions of these driving lines, the coresponding elements including 

radius, length, and degree of a curve, can be calculated in order to improve the urban road 
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alignments. As shown in Table 4.10, relevant elements of a generated circular curve are 

determined based on the genereated mathematical function of a driving line. Compared with the 

road design and construction regulations defined by local governments (see Table 4.11), it is 

worth noting that all elements calculated from the generated driving line can meet the 

requirements for traffic safety at horizontal curves. For example, radius of the curve described in 

Table 4.10 approximates 462 ft (i.e., 140 m), which indicates the driving speed at this horizontal 

curve should be no more than 30 km/h to ensure the traffic safety for all road users.  Accordingly, 

based on the final report of Xiamen Urban Road Safety Regulations submitted to the Xiamen 

Transportation Bureau in 2006, the speed limit of this road is 30 km/h, it is concluded that the 

generated driving line meet the requirements of urban road design standards. 

Table 4.10 Elements of a generated driving line. 

Symbol Definition Units Values 

PC Start of horizontal curve - - 

PT End of horizontal curve - - 

D Degree of curvature degrees per 100 ft 

of centreline 

12.4 

     ∆ Central angle of curve, PC to PT degrees 10.49 

R Radius of curve ft 462.06 

L Length of curve ft 84.65 

T Tangent length ft 42.42 

M Middle ordinate ft 5.94 

LC Length of long chord, from PC to PT ft 84.48 

E External distance ft 5.83 
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Table 4.11 Code for Design of Urban Road Engineering, China (Version CJJ 37-2012, 2012). 

Driving speed 

(km/h) 

Minimum radius of a 

circular curve (m) 

Minimum length of a 

circular curve (m) 

Stopping sight distance 

(m) 

30 85 25 30 

40 150 35 40 

50 200 40 60 

60 300 50 70 

80 400 70 110 

 

4.2.8 Overall Performance Assessment 

Table 4.12 Computation efficiency of all proposed algorithms. 

Test datasets 1 2 3 4 5 6 

Size (MB) 213  127  184  67  118  601  

The number of points 6,568,656 3,928,845 5,683,607 2,064,205 3,661,745 18,561,253 

Road surface extraction (s) 41.25  36.03  40.62  13.32 34.58  82.62  

Road marking extraction (s) 12.44 15.93 22.32 9.05 21.24 47.50 

Noise removal (s) 1.62 0.76 1.54 1.49 4.02 3.30 

Clustering (s) 14.84 11.16 6.03 19.52 27.43 31.79 

Driving line generation (s) 0.03 0.04 0.02 0.01 0.03 0.05 

Total time (s) 70.18 63.92 70.53 43.39 87.30 165.26 

 

 To summarize, Table 4.12 shows the computational efficiency of all proposed post-

processing algorithms in this thesis. The operation time of each algorithm has been calculated for 

six test datasets. Additionally, the workstation used in this study is a Dell Alienware x51 desktop 

with an Intel Quad CORE i5-6400 CPU, and an 8 GB RAM. The consuming time indicates the 

performances and efficiencies of road surface extraction, road marking extraction, image 

denoising, road marking clustering and driving line generation methods are high. Furthermore, as 
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mentioned in Chapter 1, the main objevtive in this study is to develop driving line generation 

algorithms at horizontally curved road sections. Thus, both the image denoising algorithms and 

road marking clustering algorithms utilized directly the commerical PCL programming packages, 

and road surface extraction algorithms took advantage of Guan’s (2014) research. Due to 

processing the entrie point clouds block by block, the larger curvature the horizontal curve has, 

the more data blocks and more computing time will be. Moreover, all MLS points belonging to 

road markings should be searched in the process of the conditional Euclidean clustering 

algorithm which is time-consuming. Therefore, the overall performance of the proposed post-

processing algorithms can be further improved by optimizing road surface extraction, road 

marking extraction and clustering at the stage of driving line generation.  

4.3 Validation Results 

4.3.1 Accuracy Assessment of Road Marking Extraction 

Figure 4.14 shows the extracted road markings after noise removal. 

     
(a)                                    (b)                                                       (c) 

     
(d)                                          (e)                                                       (f) 

Figure 4.14 Extracted road marking after noise removal from each of the six test datasets: (a) – (f) 

show the final extraction results from Dataset I to Dataset VI. 
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Table 4.13 Accuracy assesement of road marking extraction. 

Dataset 

Performance (%)  

1 2 3 4 5 6 Average 

Recall 90.06 93.73 90.42 88.02 92.71 90.42 90.89 

Precision 92.53 95.04 93.05 89.59 94.97 93.05 93.04 

F1-score 91.28 94.38 91.72 88.80 93.83 91.72 91.95 

 

As illustrastred in Table 4.13,  the quantitative assessments were conducted based on the 

recall, precision and F1-score. As a result, the proposed road marking extraction and noise 

removal algorithms are capable of obtaining 90.89% in recall, 93.04% in precision and 91.95% 

in F1-score, respectively. The value of precision is larger than that of recall for each sample, 

which demonstrates that centain road marking pixels were misclassified as road surfaces. 

Additionally, the size of manually labelled reference data are larger than the road markings due 

to the decay of them. Thus, the overall performance of the proposed road marking extraction 

algorithms is underestimated in the final results. Figure 4.15 (a) shows the extracted road 

markings after noise removal, and Figure 4.15 (b) indicates the manually labelled reference data 

to be used for accuracy assessment.  

         

(a) (b) 

Figure 4.15 Extracted road markings and the reference data: (a) the proposed method; (b) the 

reference data by manually labelled. 
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4.3.2 Comparative Study of Road Marking Extraction 

Furthermore, a comparative study was carried out concentrating on the extracted road 

marking results by using the proposed algorithms and other methods, i.e. Chen et al. (2009) and 

Yu et al. (2015). MLS point clouds were used directly in the process of road marking extraction 

in both Chen’s and Yu’s methods. Figures 4.16 to 4.18 present the road markings extracted using 

the three method. Consequently, Chen’s method mainly focuses on the lane marking extraction 

along the moving direction of the vehicle, resulting in limitations at the stage of complex and 

semantic road marking extraction (e.g., arrows, words and curved road markings).  Meanwhile, 

based on deep learning and PCA methods, Yu’s approach can be applied in the extraction of any 

types of road markings but it has limitations in the process of curved road marking extraction and 

also it requires rich prior knowledge.  

The overall performance of the proposed method and other three methods are evaluated 

based on the quantitative assessment (i.e., recall, precision and F1-score). As shown in Table 

4.14, Zhang’s (2009) method can achieve an average of 76.91% in recall, 91.27% in precision 

and 83.42% in F1-score, respectively; Yu’s (2015) method can achieve an average of 81.15% in 

recall, 91.17% in precision and 85.81% in F1-score, respectively; while the proposed method in 

this thesis can achieve an average of 90.26% in recall, 92.36% in precision and 91.30% in F1-

score, respectively. Table 4.14 indicates that the proposed method can achieve a better 

performance than both Chen’s and Yu’s methods in terms of both recall and precision. Moreover, 

it demonstrates the revised multi-thresholds extraction method in this thesis can effectively 

extract curved road markings (e.g., centrelines, edge lines and lane lines) at horizontally curved 

road sections.  
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Figure 4.16 Road marking extraction results using Dataset I: (a) raw pavement MLS points; (b) 

result of Chen’s study; (c) result of Yu’s study; (d) result of the proposed method; and (e) the 

manually labelled reference data.  

Table 4.14 Comparison of the three methods in quantitative evaluation. 

Test 

Datasets 
I IV V 

Methods 

Chen et 

al., 2009 

Yu et 

al., 

2015 

In this 

thesis 

Chen et 

al., 2009 

Yu et 

al., 

2015 

In this 

thesis 

Chen et 

al., 2009 

Yu et 

al., 

2015 

In this 

thesis 

Recall 

(%) 
72.95 81.83 90.06 74.95 76.27 88.02 82.84 85.34 92.71 

Precision 

(%) 
90.89 90.47 92.53 92.02 91.88 89.59 90.95 91.17 94.97 

F1-score 

(%) 
80.94 85.93 91.28 82.61 83.35 88.80 86.71 88.16 93.83 
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Figure 4.17 Road marking extraction results using Dataset IV: (a) raw pavement MLS points; (b) 

result of Chen’s study; (c) result of Yu’s study; (d) result of the proposed method; and (e) the 

manually labelled reference data.  
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Figure 4.18 Road marking extraction results using Dataset V: (a) raw pavement MLS points; (b) 

result of Chen’s study; (c) result of Yu’s study; (d) result of the proposed method; and (e) the 

manually labelled reference data.  
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4.3.3 Accuracy Assessment of Driving Line Generation 

The genereated driving lines were overlapped with the orthoimagery in ArcGIS Desktop 

10.2.2 to evalute the performance of driving line generation algotihms using both visual 

inspection and quantitative assessment.  

As illustrastred in Table 4.15,  the quantitative assessment was conducted based on recall 

and miscoding. Accordingly, four reference buffers with width of 5 cm, 10 cm, 15 cm, and 20 

cm were established to evaluate the performance of proposed driving line generation algorithms. 

As a consequence, the proposed algorithms are capable of achieving an average of 72.90 % in 

recall within 5 cm-level reference buffer, 91.80% in recall within 10 cm-level reference buffer, 

and 100% in recall within 15 cm-level reference buffer for two generated driving lines. The 

values of miscoding decrease with the increased width of reference buffers, which demonstrates 

that the majority of generated driving lines are located within the precision allowable reference 

buffers. Experimentally, the proposed algorithms can provide a 15 cm-level localization 

accuarcy in order to guarantee the quality requirments of of 3D high-definition roadmaps and 

safety of autonomous diving.  

Table 4.15 Accuracy assessment of driving line generation. 

       Driving lines 

Buffers 

1 2 

Recall (%) Miscoding (%) Recall (%) Miscoding (%) 

5 cm 74.82 24.48 70.98 28.23 

10 cm 92.33 7.24 91.27 8.32 

15 cm 100 0 100 0 

20 cm 100 0 100 0 
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Figure 4.19 Driving line generation results within reference buffers.
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As shown in Figure 4.19, the final results of generated driving lines are presented within 

5 cm, 10 cm, 15 cm, and 20 cm width of reference buffers. It is identified that black rectangles in 

Figure 4.19 indicate miscoding parts while setting the width of reference buffers to be 5 cm and 

10 cm. Moreover, it is worth noting that the generated driving lines are completely located 

within the reference buffers with width of 15 cm and 20 cm.  

4.4 Chapter Summary 

This chapter mainly presents the experimental results obtained using the proposed 

methods. According to the accuracy assessment and comparative study of road marking 

extraction, it indicates that the proposed road marking extraction algorithms can achieve high-

quality results with 90.89% in recall, 93.04% in precision and 91.95% in F1-score, respectively. 

Moreover, based on the accuracy assessment of generated driving lines, it can be concluded that 

the proposed algorithms are capable of generating driving lines with 15 cm-level positioning 

accuarcy at horizontally curved road sections. However, for those road surfaces with pavement 

dilapidation and curved road markings with disconnectivity, the proposed algorithms cannot 

generate driving lines successfully. Additionally, high curvature of a horizontal curve road 

section also accounts for a accuracy reduction on the final generation results.  

Furthermore, a computational efficiency of all proposed algorithms has also been 

evaluated. It is worth noting that the proposed methods at the stage of driving line generation are 

highly effective and time-saving. Nevertheless, the overall performance should be further 

improved by optimizing algorithms of road surface extraction and road marking clustering.   
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Chapter 5 Conclusions and Recommendations 

5.1 Conclusions 

 The autonomous vehicles have been developed and promoted by many worldwide 

automotive manufacturers and technology corporations, and fully-autonomous and self-

contained vehicles are predicted to hit the automobile market within a decade. Additionally, it is 

still a thorny problem for autonomous vehicles to anticipate turns and intersections far beyond 

the reach of onboard sensors. Therefore, a 3D high-definition roadmap plays a conspicuous role 

to assist autonomous vehicles deal with complex road patterns and complicated traffic 

environments, particularly for horizontally curved road sections with ambiguous traffic 

conditions and limited sight distances for traffic participants. However, establishing a precise 3D 

high-definition roadmap with accurate road lane geometry and detailed road network information 

is still a considerable challenge. Currently, the advanced MLS technique advances the 

development of large-scale data acquisition with high-precision and time-saving measurements. 

With the assistance of digital cameras and a GNSS positioning subsystem, MLS systems can 

utilize active laser imaging technique to collect point clouds both day and night, and obtain geo-

referenced, high-density and accurate data effectively. Thus, these point clouds acquired by MLS 

systems can be applied to extract rich road characteristics and generate driving lines for highly 

autonomous driving at horizontally curved road sections.  

However, disordered 3D laser points obtained by MLS systems are in large-volume and 

high-density with unevenly distributed intensity information, and these points donot have distinct 

topological relationships. Currently, there are few studies and relevant commercial software, 

which focus on driving line generation by using MLS data. Therefore, this thesis emphasizes the 
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significance and practical applicability to develop driving line generation algorithms for the 

research and development of 3D high-definition roadmaps and autonomous vehicles.  

Accordingly, high-efficiency and reliable driving line generation algorithms from MLS 

data are thus developed. With the assistance of vehicle trajectory data, road surface points are 

extracted by first from raw MLS data to enhance computational efficiency using the curb-based 

extraction algorithms. Subsequently, curved road markings (e.g., centrelines, lane lines and edge 

lines) are extracted from the generated intensity imagery based on a multi-threshold extraction 

method, and discrete noises are filtered out using the SOR filter. Next, these extracted road 

markings are segmented into semantic clusters according to the conditional Euclidean clustering 

algorithm. Then, the nonlinear least-squares curve fitting algorithm is employed to determine the 

best-fitting mathematical functions of curved road markings. Finally, the candidate points of 

driving lines can be calculated based on both road design and construction standards and the 

generated best-fitting functions of curved road markings.  

In this study, six datasets are used to evaluate the feasibility and validity of the proposed 

methods. Based on the quantitative assessment and comparative study, the proposed road 

marking extraction algorithms are capable of achieving 90.89% in recall, 93.04% in precision 

and 91.95% in F1-score, respectively. Moreover, with the assistance of high-resolution and UAV 

orthoimagery, it is indicated that the generated driving lines are completely located in the 15 cm-

level reference buffers using ArcGIS Desktop 10.2.2. According to the experimental results, it 

demonstrates that the proposed algorithms can successfully and effectively generate driving lines 

at horizontally curved road sections from six MLS datasets with 15 cm localization accuracy. 

Therefore, the proposed driving line generation algorithms have capability to develop 3D high-

definition roadmaps and autonomous vehicles. Additionally, these experimental results indicate 
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the proposed methods are not influenced by various curvatures of MLS test datasets. 

Nevertheless, for those roads with disconnectivity of curved road markings, the proposed 

methods cannot provide a valid solution to generate driving lines.  

The overall performance indicates that majority of proposed algorithms in the process of 

driving line generation are highly efficient and time-saving. This thesis concludes that the 

proposed methodology is capable of efficient generation of the driving lines at horizontally 

curved road sections from MLS data to provide highly accurate localization services. It also 

provides a reliable solution to overcome the huge challenges for worldwide automotive 

manufacturers, technology corporations and mapping companies, including BMW, Tesla, 

Google, HERE and TomTom, who are committed to the generation of 3D high-definition 

roadmaps and promotion of autonomous vehicles. 

5.2 Contributions 

The methodology proposed in this thesis contributes to the research and development of 

3D high-definition roadmaps and autonomous vehicles. Generally, the main objectives presented 

in Chapter 1 have been fulfilled. The primary contributions of this study can be summarized in 

the following perspectives: 

 A nonlinear least-squares curve fitting algorithm has been proposed using MLS data to 

generate the best-fitting functions of curved road markings. As mentioned in Chapter 3, 

determining the best-fitting functions of these curved road markings facilitates to 

generate the driving lines at horizontally curved road sections. Furthermore, these 

algorithms can be employed to effectively generate driving lines regardless of curvatures 

of different horizontally curved road sections.  
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 A semi-automatic driving line generation method at horizontal curves from MLS point 

clouds has been presented. Curved road markings are regarded as parallel curves in this 

study. According to road design regulations, the proposed algorithms improve accuracy 

by generating the driving lines directly from 3D point clouds. Moreover, it also 

guarantees highly computational performance to process large-volume MLS point clouds.     

5.3 Limitations and Recommendations for Further Studies 

Based on the experimental results presented in Chapter 4, there are some limitations in 

the proposed algorithms. In order to overcome these challenges and enhance the efficiency and 

reliability of these proposed methods, several recommendations are therefore propounded. The 

details have been discussed as follows: 

 The generation of geo-referenced intensity images have increased the contrast between 

road markings and pavements remarkably. However, complex road characteristics (e.g., 

road materials and roughness) with unevenly distributed point clouds have involved in 

huge influences on the efficiency and accuracy of the proposed method. Therefore, more 

research should focus on system calibration and data correction of MLS data for high-

performance road marking extraction algorithms. 

 In order to process large-volume MLS point clouds effectively, the overall performance 

of the proposed algorithms is need to be further improved. As described in Chapter 4, the 

road surface extraction and the SOR algorithms completely rely on the previous studies. 

However, these methods have been demonstrated to be time-consuming for the six test 

datasets. Thus, optimized algorithms of road surface extraction and noise removal 

deserve more research.  
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 The disconnectivity of curved road markings including road centrelines, edge lines and 

lane lines, has great influence on the completeness of the generated driving lines. Hence, 

more related studies should be involved in terms of computer vision, mathematical 

statistics, and data modelling to simulate and determine the broken parts of these road 

markings.   

 Majority of test datasets used in this study are two-side and two-lane roads with fences on 

both sides. Therefore, the proposed algorithms are only proved to be effective and solid 

in specified road scenes with horizontal curves. Complex road sections comprising 

intersections, sharp corners, and multiple-lane roads should be further tested in order to 

enlarge the application range of the proposed algorithms.   
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