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Abstract

The Landau–Lifshitz equation describes the dynamics of magnetization inside a ferromagnet. This equation is nonlinear and
has an infinite number of stable equilibria. It is desirable to control the system from one equilibrium to another. A control
that moves the system from an arbitrary initial state, including an equilibrium point, to a specified equilibrium is presented.
It is proven that the second point is an asymptotically stable equilibrium of the controlled system. The results are illustrated
with some simulations.
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1 Introduction

The Landau–Lifshitz equation is a partial differential
equation (PDE), which describes the magnetic be-
haviour within ferromagnetic structures. This equation
was originally developed to model the behaviour of do-
main walls, which separate magnetic regions within a
ferromagnet [1]. Ferromagnets are often found in mem-
ory storage devices such as hard disks, credit cards or
tape recordings. Each set of data stored in a memory
device is uniquely assigned to a specific stable magnetic
state of the ferromagnet, and hence it is desirable to
control magnetization between different stable equilib-
ria. This is difficult due to the presence of hysteresis in
the Landau–Lifshitz equation. Hysteresis indicates the
presence of multiple equilibria [2,3]. Because of this, a
particular control can lead to different magnetizations;
that is, the particular path of magnetization depends
on the initial state of the system and looping in the
input-output map is typical [2,3].

There is now an extensive body of results on control and
stabilization of linear PDE’s; see for instance the books
[4–7] and the review paper [8]. Stability results for the
Landau-Lifshitz equation are often based on lineariza-
tion [9–12]. In these works, the spectral properties of
the linear operator are determined. In [13], sufficient as-
sumptions are made that simplify a general form of the
Landau-Lifshitz equation into an ordinary differential
equation; and based on this, the magnetization dynam-
ics are shown to be stable.

The magnetic state of a ferromagnet can be changed by

an applied magnetic field, which is viewed as the con-
trol. From this physically meaningful perspective, the
control enters the Landau-Lifshitz equation nonlinearly.
In [14], the Landau–Lifshitz equation is linearized and
shown to have an unstable equilibrium; and to stabi-
lize this equilibrium a control that is the average of the
magnetization in one direction and zero in the other two
directions is used. In [15,16], solutions to the Landau–
Lifshitz equation are shown to be arbitrarily close to do-
main walls given a constant control. Experiments and
numerical simulations demonstrating the control of do-
mains walls in a nanowire are presented in [17,18].

In the next section, the uncontrolled Landau–Lifshitz
equation is described. It is known to have multiple stable
equilibria [19, Theorem 6.1.1]. In section 3, a control,
acting as the applied magnetic field, is introduced into
the Landau–Lifshitz equation nonlinearly. The control
objective is to steer the system dynamics between stable
equilibrium points. Results demonstrate the controlled
Landau–Lifshitz equation is stable, and the linearized
controlled Landau–Lifshitz equation is asymptotically
stable. In Section 4, simulations for the full equation are
presented.

2 Landau-Lifshitz Equation

Consider the magnetization

m(x, t) = (m1(x, t),m2(x, t),m3(x, t)),

at position x ∈ [0, L] and time t ≥ 0 in a long thin ferro-
magnetic material of length L > 0. If only the exchange
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energy term is considered, the magnetization is modelled
by the one–dimensional (uncontrolled) Landau–Lifshitz
equation [20],[19, Chapter 6]

∂m

∂t
= m×mxx − νm× (m×mxx) (1a)

m(x, 0) = m0(x) (1b)

where × denotes the cross product and ν ≥ 0 is the
damping parameter, which depends on the type of fer-
romagnet. The term mxx denotes magnetization differ-
entiated with respect to x twice. The Landau–Lifshitz
equation sometimes includes a parameter called the gy-
romagnetic ratio multiplying m ×mxx. The gyromag-
netic ratio has been set to 1 for simplicity. For more on
the damping parameter and gyromagnetic ratio, see [21].

The Landau–Lifshitz equation is a coupled set of three
nonlinear PDEs. It is assumed that there is no magnetic
flux at the boundaries and so Neumann boundary con-
ditions are appropriate:

mx(0, t) = mx(L, t) = 0. (1c)

Existence and uniqueness of solutions to (1) with differ-
ent degrees of regularity has been shown [22,23].

Theorem 1. [19, Lemma 6.3.1] If ||m0(x)||2 = 1, the
solution, m, to (1a) satisfies

||m(x, t)||2 = 1 (2)

where || · ||2 is the Euclidean norm.

The following statement is a more restrictive version of
the theorem stated in [22].

Theorem 2. [22, Thm. 1.3,1.4]. If m0 ∈ H2(0, L),
m0,x(0) = m0,x(L) = 0 and ‖m0‖2 = 1, then there ex-
ists a time T ∗ > 0 and an unique solution m of (1)
such that for all T < T ∗, m ∈ C([0, T ;H2(0, L)) ∩
L2(0, L;H3(0, L)).

With more general initial conditions, solutions to (1)
are defined on L3

2 = L2([0, L];R3) with the usual inner–
product and norm. The notation ‖ · ‖L3

2
is used for the

norm. Define the operator

f(m) = m×mxx − νm× (m×mxx) , (3)

and its domain

D = {m ∈ L3
2 : mx ∈ L3

2, mxx ∈ L3
2,

mx(0) = mx(L) = 0}. (4)

Theorem 3. [24, Theorem 4.7] The operator f(m) with
domain D generates a nonlinear contraction semigroup
on L3

2.

Ferromagnets are magnetized to saturation [25, Sec-
tion 4.1]; that is ||m0(x)||2 = Ms where Ms is the mag-
netization saturation. In much of the literature, Ms is
set to 1; see for example, [19, Section 6.3.1], [22,23,26].
This convention is used here. Physically, this means that
at each point, x, the magnitude of m0(x) equals the
magnetization saturation. The initial condition m0(x)
is furthermore assumed to be real–valued, and hence
m(x, t) for t > 0 is real–valued.

The set of equilibrium points of (1) is [19, Theorem 6.1.1]

E ={a = (a1, a2, a3) : a1, a2, a3 constants and aTa = 1}.
(5)

Theorem 4. [24, Theorem 4.11] The equilibrium set in
(5) is asymptotically stable in the L3

2–norm.

3 Controller Design

In current applications, the control enters as an ap-
plied magnetic field [9,10,14–16]. More precisely, a con-
trol, u(t), is introduced into the Landau-Lifshitz equa-
tion (1a) as follows

∂m

∂t
=m× (mxx + u)− νm× (m× (mxx + u))

=m×mxx − νm× (m×mxx)

+ m× u− νm× (m× u) , (6)

m(x, 0) = m0(x).

As for the uncontrolled system, the boundary condi-
tions are mx(0, t) = mx(L, t) = 0. Equation (6) is the
Landau-Lifshitz equation with a nonlinear control. Its
existence and uniqueness results can be found in [22,
Thm. 1.1,1.2] and is similar to Theorem 2.

As for the uncontrolled equation, since

1

2

∂||m(x, t)||2
∂t

=mT ∂m

∂t
=mT(m×mxx − νm× (m×mxx)

+ m× u− νm× (m× u)) = 0,

this implies ||m||2 = c, where c is a constant. The con-
vention is to take c = 1. It follows that any equilibrium
point is trivially stable in the L2-norm.

The goal is to choose a control so that the system
governed by the Landau–Lifshitz equation moves from
an arbitrary initial condition, possibly an equilibrium
point, to a specified equilibrium point r. The control
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needs to be chosen so that r becomes a stable equilib-
rium point of the controlled system. It can be shown
that zero is an eigenvalue of the linearized uncontrolled
Landau–Lifshitz equation [24, Chapter 4.3.2]. For finite-
dimensional linear systems, simple proportional control
of a system with a zero eigenvalue yields asymptotic
tracking of a specified state and this motivates choosing
the control

u = k(r−m) (7)

where r ∈ E is an equilibrium point of the uncontrolled
equation (1) and k is a positive constant control param-
eter.

Theorem 5. For any r ∈ E and any positive constant
k with control defined in (7), r is a locally stable equi-
librium point of (6) in the H1-norm. That is, for any
initial condition m0(x) ∈ D, where D is defined in (4),
the H1-norm of the error m− r does not increase.

PROOF. Let B(r, p) = {m ∈ L3
2 : ||m− r||L3

2
< p} ⊂

D for some constant 0 < p < 2. Note that since p < 2,
then −r /∈ B(r, p). For any m ∈ B(r, p), consider the
H1-norm of the error

V (m) = k ||m− r||2L3
2

+ ||mx||2L3
2
.

Taking the derivative of V ,

dV

dt
=

∫ L

0

k(m− r)Tṁdx+

∫ L

0

mT
x ṁxdx

=

∫ L

0

k(m− r)Tṁdx−
∫ L

0

mT
xxṁdx

=

∫ L

0

(
k(m− r)Tṁ−mT

xxṁ
)
dx. (8)

Let h = m− r, then the integrand becomes

khTṁ−mT
xxṁ (9)

and equation (6) becomes

ṁ = m× (mxx − kh)− νm× (m× (mxx − kh))

where the dot represents differentiation with respect to
t. It follows that

hTṁ =hT (m×mxx)− ν (m×mxx)
T

(h×m)

− νk||m× h||22 (10)

and

mT
xxṁ =− kmT

xx (m× h) + ν||m×mxx||22
+ νk (m× h)

T
(mxx ×m) . (11)

Substituting (10) and (11) into equation (9) leads to

khTṁ−mT
xxṁ =2νk (m×mxx)

T
(m× h)

− νk2||m× h||22 − ν||m×mxx||22
=− ν||m×mxx − km× h||22

Substituting this expression into equation (8) leads to

dV

dt
=− ν||m× (mxx + u)||2L3

2
≤ 0.

Thus, the H1-norm of the error does not increase.

For any equilibrium point r ∈ E of (6) and m ∈ D, let
m = r+v where v is any admissible perturbation; that
is, v ∈ D and ‖r + v‖2 = 1. The linearization of (6) at
r with control defined in (7) is

∂v

∂t
=r× vxx − νr× (r× vxx)

+ kv × r− kνr× (v × r) (12)

v(0) = v0.

The following lemmas are needed in the proof of Theo-
rem 8. The result in Lemma 6 is a consequence of the
product rule.

Lemma 6. For m ∈ L3
2, the derivative of g = m×mx

is gx = m×mxx.

Lemma 7. For m ∈ L3
2 satisfying (1c),∫ L

0

(m− r)T(m×mxx)dx = 0.

PROOF. Integrating by parts, and applying Lemma 6
and the boundary conditions (1c) implies that∫ L

0

(m− r)T(m×mxx)dx = −
∫ L

0

mT
x (m×mx)dx.

From properties of cross products, mT
x (m × mx) =

mT(mx ×mx) = 0, and hence the integral is zero.

Theorem 8. Let r ∈ E be an equilibrium point of (12).
For any positive constant k, r is a locally asymptotically
stable equilibrium of (12) in the L3

2-norm.

PROOF. For an admissible v with ||v− r||2 ≤ 2, con-
sider the Lyapunov candidate

V (v) =
1

2
||v − r||2L3

2
.
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It is clear that V ≥ 0 for all v ∈ D and furthermore,
V (v) = 0 only when v = r. Therefore, V (v) > 0 for all
v ∈ D\{r}.

Taking the derivative of V (v) implies

dV

dt
=

∫ L

0

(v − r)Tv̇dx

and substituting in (12) leads to

dV

dt
=

∫ L

0

(v − r)T(r× vxx)dx

− ν
∫ L

0

(v − r)T (r× (r× vxx)) dx

+ k

∫ L

0

(v − r)T(v × r)dx

− kν
∫ L

0

(v − r)T (r× (v × r)) dx.

The first integral is zero, and to show this the proof
is similar to the one in Lemma 7. Applying integrating
by parts, Lemma 6 and the boundary conditions (1c)
implies that

∫ L

0

(v − r)T(r× vxx)dx = −
∫ L

0

vT
x (v × vx)dx,

which is equal to zero from properties of cross products.
The second integral can be written as

∫ L

0

(v − r)T (r× (r× vxx)) dx

=

∫ L

0

(r× vxx)
T

((v − r)× r) dx

=

∫ L

0

(r× vxx)
T

(v × r) dx,

then integrating by parts, and applying Lemma 6 and
the boundary conditions leads to

∫ L

0

(r× vxx)
T

(v × r) dx = −
∫ L

0

(vx × r)
T

(r× vx) .

Therefore,

∫ L

0

(v − r)T (r× (r× vxx)) dx = ||vx × r||2L3
2
.

Letting h = v − r, it follows that

dV

dt
=− ν||vx × r||2L3

2
+ k

∫ L

0

(v − r)T(v × r)dx

− kν
∫ L

0

(v − r)T (r× (v × r)) dx

=− ν||vx × r||2L3
2

+ k

∫ L

0

hT(h× r)dx

− kν
∫ L

0

hT (r× (h× r)) dx.

The first integral is zero since hT(h×r) = rT(h×h) = 0,
and the last integral can be simplified using the fact that

hT (r× (h× r)) = (h× r)
T

(h× r) .

Therefore,

dV

dt
= −ν||vx × r||2L3

2
− kν||h× r||2L3

2
.

For k > 0,

dV

dt
= −ν

(
||vx × r||2L3

2
+ k||h× r||2L3

2

)
≤ 0

and furthermore, dV /dt = 0 if and only if vx × r = 0
and h× r = v× r = 0. This is true only if v = αr where
α is any scalar. Since ||r + v||2 = 1 and ||v − r||2 ≤ 2,
then α = 0.

It follows that r is a locally asymptotically stable equi-
librium point of (12).

4 Example

Simulations illustrating the stabilization of the Landau-
Lifshitz equation were done using a Galerkin approxi-
mation with 12 linear spline elements. For the following
simulations, the parameters are ν = 0.02 and L = 1
with initial condition m0(x) = (sin(2πx), cos(2πx), 0).
Figure 1 illustrates that the solution to the uncontrolled
Landau–Lifshitz equation settles to r0 = (0,−0.6, 0).

Stabilization of the Landau–Lifshitz equation with non-
linear control (6) is illustrated in Figure 2 with the sec-
ond equilibrium point chosen to be r1 = (− 1√

2
, 0, 1√

2
).

The control parameter is k = 10. It is clear from the
figure that the system converges to the specified equi-
librium point, r1. The control can also be applied after
the dynamics have settled to r0 as shown in Figure 3.
In Figure 4, the dynamics settle (without a control) to
r0, then the control is applied in succession twice, which
forces the system from r0 to r1, and then finally to
r2 = (0, 1, 0).
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5 Conclusion

The Landau-Lifshitz equation is a nonlinear system of
PDEs with multiple equilibrium points. In applications,
the control enters through an applied field and the con-
trol enters nonlinearly. The presence of a 0 eigenvalue
in the linearized equation suggested that a simple feed-
back proportional control could be used to steer the sys-
tem to an arbitrary equilibrium point. It was shown that
the controlled Landau-Lifshitz equation with a nonlinear
control has a stable equilibrium point and the lineariza-
tion has an asymptotically stable equilibrium point.

Simulations indicate that proportional control also sta-
bilizes the fully nonlinear model. This suggests the non-
linear equation has an asymptotically stable equilibrium
point. Proving this remains an open research problem.
This would be a significant contribution as the Landau–
Lifshitz equation is not quasi-linear, which means lin-
earization is not guaranteed to predict stability of the
nonlinear equation [27,28].
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Fig. 1. Magnetization in the uncontrolled Landau–Lifshitz
equation moves from initial condition m0(x), to the equilib-
rium r0 = (0,−0.6, 0).

Fig. 2. Magnetization in the Landau–Lifshitz equation with
nonlinear control moves from the initial condition m0(x)
to the specified equilibrium r1 = (− 1√

2
, 0, 1√

2
) with control

parameter k = 10.

Fig. 3. Magnetization in the Landau–Lifshitz equation
moves from the initial condition m0(x) to the equilibrium
r0 = (0,−0.6, 0) without a control. The control, u with
k = 10 is then applied to the equation nonlinearly and steers
the dynamics to the specified equilibrium r1 = (− 1√

2
, 0, 1√

2
).

Fig. 4. Magnetization in the Landau–Lifshitz equation
moves from the initial condition m0(x) to the equilibrium
r0 = (0,−0.6, 0) without a control. The control u with
k = 10 is then applied to the equation nonlinearly and steers
the dynamics to the specified equilibrium r1 = (− 1√

2
, 0, 1√

2
),

and then to another equilibrium, r2 = (0, 1, 0).
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