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Abstract

Inspection and Maintenance of medical devices are essential for modern health services,

but the low availability of devices or unnecessary maintenance can cause major problems. A

proper maintenance program can significantly reduce operational costs and increase device

availability. For any maintenance program, two questions arise: 1) What kinds of devices

should be included? and 2) How and when should they be inspected and maintained? This

thesis proposes methods to solve those two problems.

For the first question, numerous classification and prioritization models have been sug-

gested to evaluate medical devices, but most are empirical scoring systems, which can not

be widely used. To build a generalized scoring system, we propose a risk level classification

model. More specifically, we select three important risk factors (Equipment function, Loca-

tion of use and Frequency of use), then use provided data to find the relationship between

risk factors and risk levels. Four different classification models (Linear regression, Logistic

regression, Classification tree and Random forest) are used to analyze the problem, and all

of them are effective.

For the second question, some inspection and maintenance models have been developed

and widely used to assure the performance of medical devices. However, those models are

restricted to a few specific kind of problems. In contrast, our model provide a more

comprehensive response to current maintenance problems in the healthcare industry, by

introducing a condition-based multi-component inspection and maintenance model. We

first present a parameter estimation method to predict the deterioration rate of a system.

We use provided data and expectation-maximization algorithm to estimate the transition

matrix of system conditions. Then, we use Markov decision processes to solve the decision

model, which consists of two decisions: the next inspection time and whether to repair

the devices. The inspection interval is non-periodic in our model, and this flexibility of

non-periodic inspection model can avoid unnecessary inspections. We use relative value

iteration to find the optimal inspection and maintenance strategies and the long-run av-

erage cost. Changing the parameter of cost and the structure of the system clarified the

influence of these parameters. Our model achieves lower minimal average costs for complex

systems than previous periodic inspection models.

iii



Acknowledgements

I would like to thank my supervisors, Prof. Qi-Ming He and Prof. Hossein Abouee

Mehrizi, who made this thesis possible. I received from them valuable advice, support,

encouragement and more.

Thanks to my readers, Prof. Stanko Dimitrov and Prof. Fatih Safa Erenay for their

kind comments and suggestions.

Special thanks to my family and friends for all the support.

iv



Table of Contents

List of Tables viii

List of Figures x

1 Introduction 1

1.1 Motivation of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problems of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Basic Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Scope of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review 6

2.1 Classification Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Risk Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Classification Methods . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Inspection and Maintenance Model . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Non-periodic Inspection Models . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Muiti-component Maintenance Models . . . . . . . . . . . . . . . . 11

2.2.3 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . 12

v



3 Risk Level Classification 13

3.1 Risk Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Model Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.2 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.3 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.4 Classification Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.5 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Results and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Inspection and Maintenance Model 32

4.1 Model of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.2 Basic Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Estimation of the Transition Matrix . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 The Estimation-Maximization Algorithm . . . . . . . . . . . . . . . 35

4.2.2 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Decision Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.2 An Example of a Single Device . . . . . . . . . . . . . . . . . . . . 44

4.3.3 Long-run Average Cost . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

vi



5 Conclusion 76

5.1 Summary of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

References 79

APPENDICES 85

A Review of the Risk Factors 86

B Examples of Inspection Interval Greater Than One 96

vii



List of Tables

3.1 Selected factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Sample data from WRHA . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 The correlation between provided factors . . . . . . . . . . . . . . . . . . . 15

3.4 Linear regression results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Sample data of the medical devices . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Accuracy rate of the models . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 The sample data from WHRA . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Summary of the one-machine system . . . . . . . . . . . . . . . . . . . . . 47

4.3 The optimal decisions for 1-out-of-2 system . . . . . . . . . . . . . . . . . 51

4.4 Five different strategies for different cn and pc . . . . . . . . . . . . . . . . 54

4.5 The optimal strategies for different inspection cost and penalty cost . . . . 55

4.6 Seven different strategies for different cp and cc . . . . . . . . . . . . . . . . 56

4.7 The optimal strategies for different preventive repair cost and corrective

repair cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.8 The optimal decision for 1-out-of-1 system . . . . . . . . . . . . . . . . . . 59

4.9 The optimal decision for 1-out-of-3 system . . . . . . . . . . . . . . . . . . 59

4.10 Summary the results of the systems with different number of machines . . 61

viii



4.11 The optimal decision for 2-out-of-3 system . . . . . . . . . . . . . . . . . . 61

4.12 The optimal decision for 3-out-of-3 system . . . . . . . . . . . . . . . . . . 62

4.13 Summary the results of the systems with different number of k . . . . . . . 64

4.14 The optimal decision for 1-out-of-2 system with different devices . . . . . . 65

4.15 The summary of the comparison results . . . . . . . . . . . . . . . . . . . . 69

4.16 The devices in ‘Emergency Resus’ . . . . . . . . . . . . . . . . . . . . . . . 69

4.17 Risk factors of the medical devices . . . . . . . . . . . . . . . . . . . . . . 70

4.18 The optimal decisions for the system . . . . . . . . . . . . . . . . . . . . . 74

ix



List of Figures

3.1 Classification tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Distribution of the risk levels of the medical devices . . . . . . . . . . . . . 30

4.1 The inspection and maintenance model . . . . . . . . . . . . . . . . . . . . 33

4.2 The percentage of downtime of the 1-out-of-2 system. . . . . . . . . . . . . 52

4.3 The optimal results with different cn and pc. . . . . . . . . . . . . . . . . . 53

4.4 The optimal results with different cp and cc. . . . . . . . . . . . . . . . . . 56

4.5 The optimal results with different inspection interval and cs. . . . . . . . . 58

4.6 The percentage of downtime of the 1-out-of-n systems. . . . . . . . . . . . 60

4.7 The percentage of downtime of the k-out-of-3 systems. . . . . . . . . . . . 63

4.8 The percentage of downtime of the 1-out-of-2 system with different devices. 66

4.9 The comparison with periodical inspection for the 1-out-of-2 system. . . . 67

4.10 The comparison with periodical inspection for the 1-out-of-n systems. . . . 68

4.11 The structure of the system of ‘Emergency Resus’ . . . . . . . . . . . . . . 72

4.12 The percentage of downtime of the system at Emergency Resus. . . . . . . 75

x



Chapter 1

Introduction

Medical devices have been always an important part of health services, but their manage-

ment has become increasingly complex. One issue hospitals and healthcare organizations

face is to ensure the proper performance of their medical devices. To achieve this objec-

tive, a number of management strategies have been used, i.e. inspection and preventive

maintenance. Those strategies must be improved continuously if they are to keep up with

the increasing expectations and complexity of healthcare organizations.

1.1 Motivation of the Problem

Medical devices play an increasingly important role in modern medicine, especially with

the development of technologically advanced devices and increasing medical research activ-

ities. Although management strategies have been widely used in hospitals and healthcare

organizations, most organizations do not benefit from these strategies, which tend to in-

clude all medical devices and follow the manufacturers’ recommendations for inspection

and preventive maintenance. In fact, most of the inspection and maintenance is unneces-

sary [25].

The Winnipeg Regional Health Authority (WRHA) is one of the largest and most

diverse health regions in Canada. It operates or funds over 200 health service facilities
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and programs, which manage more than 3000 beds and approximately 10,000 different

types of medical devices. These devices are used in all aspects of health services [46]. A

comprehensive study indicates that, on average, each hospital has acquired 15-20 pieces

of medical devices for each staffed bed, and the annual medical-device maintenance and

management cost is approximately 1% of the total hospital budget. Thus, for a 500-bed

hospital, the total maintenance cost could be around $5 million per year [25]. Finding the

optimal maintenance strategy for minimizing the cost is a major focus of this thesis.

1.2 Problems of Interest

Performance Assurance (PA) program is a medical device risk management system provided

by WRHA [47, 14], which is a comprehensive framework for management of medical devices.

In WRHA’s framework, risk classification system is the foundation for its regular inspection

activity, but the lack of a generalized classification system is a problem. Moreover, the

inspection and maintenance activities are followed by the manufactures’ recommendation,

which may not be the best strategy for the operation. WRHA wants to develop an efficient

program, which could be more suitable for the organization.

In general, an efficient medical device management program should be able to solve two

problems:

1. Making decisions about whether a device should be included;

2. How should the devices be inspected and maintained.

With limited resources and time, we need to decide whether a device should be included

into a maintenance program. Normally, healthcare organizations have a wide variety of

medical devices: some of them provide primary health service to patients and cause serious

damage if they failed (e.g. defibrillator); while some devices provide ancillary service to

public (e.g. thermometer). Moreover, we need to know what kinds of factors should be

considered to make the decision. Many attributes affect the risk levels of medical devices

(e.g. function, cost, age et al.), while the situation of the operating environment should
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be considered as well. For example, the maintenance strategies could be different for

defibrillators used in emergency departments and those used in general patient care areas

or clinics.

The second problem is an optimization problem, which is based on the result of the first

problem. The medical devices would be corrupted while using it. Proper inspection and

maintenance can ensure the performance of the devices. Obviously, Frequent inspection

and maintenance could ensure the safety of the devices, but would affect the operation

of the health services and cost numerous money and manpower. Base on the motivation

outlined in section 1.1. Unnecessary inspection and maintenance waste hospitals’ budget.

So our objective is to reduce the percentage of unnecessary inspection and maintenance,

and to minimize the maintenance cost by using the optimal inspection and maintenance

strategies.

1.3 Basic Ideas

To solve the problems raised in section 1.2, we need to identify the subject of the research

problem first. In this section, it will be clarified that the subject is a group of medical

devices that provide health service as a system rather than a single device. The opera-

tion of the system requires the combination and cooperation of different devices, so the

optimal inspection and maintenance of a single device is not enough to ensure the optimal

performance of a system.

Since the subject of our problem is a system with multiple devices, it could be viewed

as a multi-component system. Cho and Parlar [9] define multi-component maintenance as

follows: Multi-component maintenance models are concerned with optimal maintenance

policies for a system consisting of several units of machines or many pieces of equipment,

which may or may not depend on each other. The dependence between components affects

the complexity of the systems. According to Thomas’s paper [41], the dependence between

components in the systems has three different types: economic, structural and probabilistic

dependence. In our research, we focus on economic dependence, a typical system with

economic dependence is k-out-of-n systems, which has wide applications in industry. A
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k-out-of-n system works if at least k components works. When we evaluate the risk level of

the medical devices in a hospital, we need to consider the backup ratio of the devices, which

could be viewed as a multi-component system. There are several machines for each type

in hospital (e.g. Defibrillator, Infusion pump and Exerciser treadmill), they have to make

sure that there are k minimal function machines available in each type, which implies

the k-out-of-n systems. Meanwhile, the combining inspection and maintenance actions

between the machines can also yield a lower total cost than inspecting or maintaining a

single machine, which implies the economic dependence between components.

For the risk level classification problem. We will review existing literature and use

provided data to select several essential factors. Then the relationship between the factors

and the risk level will be found out by using four different data analysis methods (e.g.

Linear regression, Logistic regression, Classification tree and Random forest). A generalized

classification system is obtained after the analysis and comparison.

For the inspection and maintenance optimization problem. The maintenance strategy

in our problem is condition-based maintenance (CBM), which has been widely accepted in

recent decades. CBM is an efficient strategy, as it reduces unnecessary maintenance actions

and eliminate the risks associated with preventive maintenance actions [1]. The research

of Olde Keizer et al., [27] is the first paper to consider CBM for multi-unit systems with

economic dependencies and redundancy (k-out-of-n systems). But they did not consider

the impact of inspection frequency. Inspection plays an important role in CBM model,

the inspection cost and frequency would be considered in our model, and the inspection

frequency becomes a decision variable. We implement a suitable method with the pro-

vided data to estimate the deterioration rate. Then, we applied Markov decision processes

model for CBM model considering the deterioration rate and estimated costs. The optimal

inspection and maintenance strategy is obtained by solving the model.

1.4 Scope of Research

Based on the motivation in Section 1.1 and basic ideas in Section 1.3, this thesis focuses

on management of medical devices. Two main problems will be addressed.
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1. The classification of medical devices. It is important to evaluate the medical devices

before looking for the optimal inspection and maintenance policy. Based on several

key risk factors, by using linear regression, logistic regression, classification tree and

random forest, we classify the medical devices into three different risk levels. Health-

care organizations and hospitals could make decisions on whether include a medical

devices in their maintenance program based on the risk level.

2. Inspection and maintenance of medical devices. Once the evaluation of medical de-

vices has been finished, the optimal inspection and maintenance policy would be

discussed. The goal is to find out the minimal cost policy. Different decisions will

generate different costs and affect the condition of the devices, so we applied Markov

Decision Processes to solve this problem. The final result provides the optimal policy

and the long-run minimal average cost of the policy.

1.5 Outline of the Thesis

This thesis consists of five chapters. Following this introduction, Chapter 2 is a literature

review on Risk Level Classification Model and Inspection and Maintenance Model.

In Chapter 3, the classification models are introduced and built in this part. Four

different models (Linear Regression, Logistic Regression, Classification Tree and Random

Forest) are discussed and compared. We use all four models to evaluate 10 different kinds

of devices.

Chapter 4 is the second part of this thesis, the inspection and maintenance model is

constructed. Specifically, a parameter estimation method is introduced at the beginning

of the inspection and maintenance model, followed by a decision model, which is a Markov

Decision Processes model. The optimal solutions are obtained and analyzed. A number

of numerical examples and a case study are presented at the end of this chapter to show

some interesting patterns of the optimal decisions.

The last chapter consists of a summary of the main results of this thesis and a brief

discussion on some problems for future research.
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Chapter 2

Literature Review

The problems discussed in Chapter 1 include medical devices classification and optimal

inspection and maintenance policy. Thus, in this chapter, we assess the status of research

on these two problems. The review of the literature is divided into two main categories,

which are classification of medical devices and device inspection and maintenance.

First, we review the medical devices classification topic. The focus of the review will be

on risk-based classification, which has become an essential task for healthcare organizations.

The purpose of this part is to know existing risk factors and scoring system. A brief review

of statistical classification methods is presented at the end of this subsection. Inspired by

existing literature and some successfully application, we developed our own scoring system

in Section 3.

Second, the topics related to maintenance will be reviewed. Both the maintenance

model and the decision-making model are discussed. The focus of the review will be on

condition-based maintenance (CBM) model. For the decision-making model, a brief review

on Markov decision processes will is presented.

6



2.1 Classification Models

2.1.1 Risk Factors

Joint Commission on Accreditation of Healthcare Organizations (JCAHO) in US has made

a medical standard for hospitals to decide which medical device should be involved in

Medical Equipment Management Program (MEMP) [24].They consider three factors, which

are maintenance requirements of medical device, equipment function and physical risk.

These three factors were originally introduced by Fennigkoh and Smith [12] in 1989 and

then be widely accepted in a lot of research works [15, 39, 40]. They classified medical

devices by scoring the devices equipment number (EN) as follows,

EN = Function+Risk +Required Maintenance

For each factor, they have a criteria. If the devices EM number is greater than 12,

then it should be involved in MEMP. Although this method has been widely accepted and

used, the method to evaluate a device is not appropriate, because it calculate an arithmetic

average over three factor without considering the weights of them. JCAHO also explained

that hospitals may use different strategies for different items as appropriate. Although

the three factors have been widely accepted, an increasing number of new factors have

been considered as indispensable factors to make medical equipment managerial decisions.

Wang and Levenson [45] added another factor called equipment utilization rate to JCAHOs

system, and their scoring equation is called Equipment Management Rating (EMR),

EMR = [Utilization rate× (mission critical + 2×maintenance)] + 2× risk

The American Society for Healthcare Engineering(ASHE) [26] presented a classifica-

tion method according to the five factors: equipment function (E),clinical application (A),

preventive maintenance requirements (P),probability of equipment failure (F), and envi-

ronmental use (U). The total score (T) is calculated by:
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T = E + A+

(
P + F + U

3

)
ASHE considered more factors and their related weights, especially, the environment

use factor distinguish the risk level of same type of device with different locations. But,

the scoring system is based on a sole or a few experts opinion, its hard to be used generally.

Obviously, the classification of medical devices is a multi-criteria decision-making (MCDM)

problem, different experts opinion should be considered rather than considering only one

sole experts evaluation. Taghipour et al. [39] used a MCDM scoring system for medical

devices classification based on six factors: risk, age, equipment function, mission criticality,

recalls and hazard alerts and maintenance requirements. They used analytical hierarchy

process to evaluate the devices. Furthermore, Jamshidi et al. [26] introduced a maintenance

framework for medical devices. The main idea of this research is a novel fuzzy multi-criteria

decision making approach to medical devices classification problem.

For more risk factors, we refer to following literature: location of equipment use [16],

age of equipment [39, 26], meantime between repair [28, 26], utilization [39, 40], available

of substitute [16, 40, 26]. Please see Appendix A for the summary of risk factors.

2.1.2 Classification Methods

According to the review above, the existing methods of medical devices evaluation are

very simple and most of them are based on experts’ empirical opinions. Meanwhile, many

statistical classification methods from data science area have been applied in many prac-

tical problems (e.g. Pattern recognition, Credit scoring and Medical image analysis). The

advantage of this kind of method is explicit expression and automation. By using historical

data, we can have a explicit function to evaluate the devices and the evaluation procedure

could be automatically finished by computer. In healthcare area, these methods have been

applied to solve many issues. Kononenko [29] reviewed the application of data analysis in

medical diagnosis problem, this paper emphasized on three classification methods, naive

Bayesian, Neural networks and Decision trees. A comparison of the performance in clas-

sifying patients between logistic regression and decision tree is discussed in literature [31].

8



However, there are few paper to discuss the application of statistical classification methods

in medical device evaluation problem. We briefly review several statistical classification

and evaluation methods as follows.

1. Linear Regression. The regression analysis deals with finding the best linear rela-

tionship between Y and x, quantifying the strength of that relationship, and using

methods that allow for prediction of the response values Y given values of the regres-

sor x [44]. Linear regression has been rigorously studied and widely used [48]. This

is because, comparing with non-linear model, linear model is easier to to fit and the

parameters are easier to determine.

2. Logistic Regression. Logistic regression is an appropriate regression analysis to clas-

sify a categorical outcome using a linear function of independent variables. The idea

was proposed by statistician David Cox [10]. If the number of outcomes is greater

than two, the problem should be analyzed in multinomial logistic regression, and if

the categories are ordered, ordered logistic regression should be applied [43].

3. Classification Tree. Classification tree is a method commonly used in data mining,

classification tree model can predict the value of a target variable based on several

input variables [34].

4. Random Forest. Random forest is an ensemble machine learning method for classi-

fication. Based on the idea of classification tree, it constructs a multitude of clas-

sification trees at training time and outputting the class that is the mode of the

classes [18].

These four statistical classification methods have been widely applied in many fields.

In our research, we are going to use all of them to solve our problem in Chapter 3.

2.2 Inspection and Maintenance Model

The literature on the inspection and maintenance optimization model is abundant. The

focus of these papers are changing as the times change. Traditionally, maintenance de-
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cisions are based on elapsed time, which is also called time-based maintenance (TBM)

model [36, 32, 17]. In recent years, condition-based maintenance (CBM) model has at-

tracted more attention as the development of computer and monitoring technologies. Com-

pare with TBM, which makes decisions based on historical data, CBM recommends main-

tenance decision based on the current condition of the devices. In the review, we will focus

on the CBM model.

We will review the CBM model based on two major characters, 1) Non-periodic in-

spection model, 2) Multi-component maintenance model. Then we will briefly review the

methodology, which is mainly about Markov decision process.

2.2.1 Non-periodic Inspection Models

Inspection is an essential part of CBM model, because inspection is the approach to acquire

the condition of the system. Many researches focus on the influence of inspection quality

and inspection frequency. For inspection quality, most of the literature assume perfect

inspection, which means the exact condition of the system can be revealed by inspection.

We can also find some literature about imperfect inspection. Zequeira and Berenguer [49]

assume there are three types of inspection available and three different failure types, one

of the failure types can only be detected by perfect inspection. The other two inspection

types are imperfect inspection and partial inspection. He et al. [17] considered a system

with periodic imperfect inspection. In this thesis, we assume the inspections are perfect.

For inspection frequency, most of the literature considered periodic inspection inter-

val [32, 23, 38, 2]. However, non-periodic inspection is a more efficient than periodic

inspection, especially if the inspection procedure is costly for the system. For CBM, the

inspection interval could be made based on the condition of the system. More inspections

should be conducted when the system is in a bad condition, while longer inspection interval

should be determined when the condition of system is pretty new. Barker and Newby [3]

studied a non-periodic inspection model with multivariate degradation character. Zhao et

al. [50] compared the difference of periodic inspection and non-periodic inspection in their

model. In they examples, they verified that periodic inspection is more expensive than
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non-periodic inspection. Castanier et al. [8] considered a two-unit condition-based main-

tenance model with non-periodic inspection, they used the semi-regenerative property to

calculate the cost, but for multi-unit system, they have to consider Monte Carlo simulation

method.

2.2.2 Muiti-component Maintenance Models

Most existing literature on CBM model concerned single component system. However, the

system could be more complex with multiple components in reality. According to [41],

there are three types of interactions between components:

1. Economic dependence: The cost of maintenance has interdependencies between

components, which means the cost of joint maintenance of a group components is

not equal to the total cost of individual maintenance. For example, due to economies

of scale, the average cost of maintenance falls as components increase.

2. Structural dependence: The components structurally form a part, one has to

maintain or at least dismantle some working components when repair a failure one.

3. Probabilistic dependence (a.k.a. Stochastic dependence): The failure of one com-

ponents would affect other components’ condition or failure rate.

In our problem, we focus on the economies dependence.

In the study of Castanier et al. [8], the economic dependence between two compo-

nents was discussed. Olde Keizer et al. [27] considered a condition-based maintenance for

multi-components system with redundancy and economic dependencies, they developed a

Markov decision processes model to find the optimal maintenance strategy, but they did

not consider the impact of inspection frequency and cost. Zhu et al. [51] studied a multi-

component system with high maintenance setup cost. High maintenance setup cost would

stronger the economic dependence, so joint maintenance is introduced in their model. They

proposed a nested approach to find out the optimal policy.

11



Meanwhile, other studies study maintenance models with probability dependence. Li

et al. [30] proposed a condition based maintenance model for multi-component system

with both economic dependence and stochastic dependence. Hong et al. [20] investigated a

condition-based model considering the dependency among the degradation of components

and different risk attitudes of the decision maker, they used a joint probability distribution

called copula function to characterize the dependency.

2.2.3 Markov Decision Processes

In the situation with uncertainty transition between states, the states can be controlled by

taking sequential actions or policy, and Markov decision processes are versatile and pow-

erful mathematical tool for solving probabilistic sequential decision problem. Howard [22]

develop this tool by using both Markov chain theory and dynamic programming principles.

Markov decision processes have been used in inspection and maintenance model in some

studies [2, 27]. In our research, we refer to [33, 42, 4] for some important properties about

Markov decision processes.
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Chapter 3

Risk Level Classification

Risk classification is an essential process for the inspection and maintenance of medical

devices. Different inspection and maintenance strategies are performed for devices with

different risk level. Currently, in Winnipeg Regional Health Authority, they developed two

mathematical model functions to transform risk factors score to final risk levels score, but

further investigation on the models are necessary. In this chapter, we use statistical classi-

fication methods to find out the functions, the selection of risk factors and the development

of risk scoring models are addressed.

First, we examine risk factors in existing literature. According to their definitions

and the provided data we selected several factors, then according to correlation and the

availability of the data, in the end, three risk factors (e.g. Equipment Function, Location

of Use and Frequency of Use) are selected.

Second, we introduce four existing scoring systems to find out the relationship between

the risk level and risk factors. Different methods explain the relationship form different

prospective, we can have better understanding of the relationship with all those methods

and identifies important factors and provides motivation to investigate these factors.

Last, we test the risk scoring systems by using data provided by Winnipeg Regional

Health Authority.
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3.1 Risk Factors

The first major task is the selection of critical risk factors. Some previous researches related

to medical equipments risk factors are summarized here.

Three basic factors were introduced by Fennigkoh and Smith in 1989 [12]: equipment

function, risk and required maintenance. Those three factors have been widely accepted

in the follow-up research works [15, 39, 40].

In addition, an increasing number of new factors have been considered as indispensable

factors to make medical equipment managerial decisions: location of equipment use [16],

age of equipment [39, 26], meantime between repair [28, 26], utilization [39, 40, 26], available

of substitute [16, 40, 26], etc.

After reviewing all the factors (see Appendix A), we summarize a few repeated men-

tioned factors in existing literature according to their definitions (see Table 3.1):

Table 3.1: Selected factors

Factors Definition

Age Actual age of a device and its predictable life span.

Utilization The total hours a device is used on average in a hospital.

Backup safety ratio Number of available identical devices.

Location The area in which it is primarily used

Maintenance requirement All aspects that affects the requirement for intervention

Function The main purpose for which it is to be used.

Meantime between failures The mean time interval between two consecutive failures

Meantime between repair The mean time interval between two consecutive repairs

Among those selected factors, after considering the availability of the data (Table 3.2),

we calculate the correlation between those factors. From the data, we can see that there are

seven different risk factors variables (e.g. Equipment Function, Location of Use, Locational

risk, Frequency of Use, Condition of use, PA Need and Physical Consequs).
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Table 3.2: Sample data from WRHA

Term Asset PA Required Risk Level Equipment Function Location of Use Locational risk Frequency of Use Condition of use PA Need Physical Consequ

Thermometer, infrared, ear 606Q Required Low 2 4 1 1 3 2 2

Patient monitor, vital signs KN016982 Required Low 4 2 1 1 3 2 2

Patient monitor, vital signs 01557 Vital Signs Monitor Required Low 4 2 1 1 3 2 2

Suction unit, transportable 016987 Required Medium 5 2 2 2 2 3 2

Suction unit, transportable 017676 Required Medium 5 2 1 1 2 3 2

Suction unit, transportable KN109875 Required Medium 5 2 2 2 2 3 2

Suction unit, transportable SC104898 Required Medium 5 2 2 2 2 3 2

Infusion pump, general-purpose KN040130 Required Medium 5 4 1 1 3 3 3

Infusion pump, general-purpose KN050182 Required Medium 5 4 1 1 3 3 3

Infusion pump, general-purpose KN002452 Required Medium 5 4 1 1 3 3 3

Infusion pump, general-purpose KN028885 Required Medium 5 4 1 1 3 3 3

From Table 3.3, we can see that PA Need is highly related (greater than 0.85) to Equip-

ment Function, while Physical Consequ is highly related (greater than 0.79) to Location

of Use. According to the data notes provided by WRHA, Condition of use also depends on

the location, so we eliminated this factor. Last, the correlation between Location risk and

Frequency of Use is 0.97, which means they are not independent at all. Some of selected

factors will be used in the inspection optimization. Eventually, we select three factors from

them to do data analysis: Utilization for Frequency of Use, Location for Location of Use,

and Function for Equipment Function.

Table 3.3: The correlation between provided factors

Equipment Function Location of Use Locational risk Frequency of Use Condition of use PA Need Physical Consequ

Equipment Function 1.00

Location of Use 0.46 1.00

Locational risk -0.06 -0.15 1.00

Frequency of Use -0.08 -0.20 0.97 1.00

Condition of use 0.54 0.55 -0.22 -0.25 1.00

PA Need 0.85 0.63 -0.05 -0.09 0.30 1.00

Physical Consequ 0.64 0.79 -0.06 -0.10 0.37 0.75 1.00

3.2 Model Definition

We first define the basic variables in our model.
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1. The risk level of device i, denoted by Ri.

Ri =


1, risk level is low

2, risk level is medium

3, risk level is high

In the provided data, there are three different levels of risk. Level three implies the

highest risk level and one for the lowest level.

2. Equipment function of device i, denoted by X1i.

There are six different levels of equipment functions. Level six implies the function is

critical while one means that the function is not important, i.e., X1i ∈ {1, 2, 3, 4, 5, 6}.
Specifically, 1. Miscellaneous – patient related; 2. Ancillary – diagnostic; 3. Ancillary

– therapeutic; 4. Essential / critical – diagnostic; 5. Essential / critical – therapeutic;

6. Life Support.

3. Location of use of device i, denoted by X2i.

The location of use would also affect the risk level of the devices. We have five

different level of locations. Location level 1 means this place is comparatively safer

than other places and the consequence of failure has less influence, while location level

five means that this place is more risky than other places. i.e., X2i ∈ {1, 2, 3, 4, 5}.
Specifically, 1. Non-patient areas; 2. General care areas; 3. Wet location/labs/exam

areas; 4. Critical care areas; 5. Anesthetizing locations.

4. Frequency of use of device i, denoted by X3i.

In the data, frequency of use of device are divided into three levels. Level three means

the usage of the device is more frequent, and level two means that the frequency is

low and level one is the lowest frequency. i.e., X3i ∈ {1, 2, 3}, Specifically, 1. Low; 2.

Medium; 3. High.

Then we are going to find out the relationship between the risk levels and the three

risk factors. The relation is denoted as: Ri = f(X1i, X2i, X3i).
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3.3 Methodologies

In order to find out the relationship, we are going to use four different methods to build

models (i.e. Linear Regression, Logistic Regression, Classification Tree and Random For-

est).

3.3.1 Data Processing

Before we build those four models, we have to process the data. Normally, we split data

into training set and testing set. We use training data to build the models, and use testing

data to assess the performance of our models. No matter which model we used, the details

of the model is based on the training data. For classification tree, the testing data plays

another essential role: preventing the overfitting model. Overfitting means the model we

built based on the training data is too complex to predict new sample data. So we use

testing data to implement the model and score the performance of the model. According

to the performance of different size of models, we can select the right size with the best

performance.

In our case, we randomly separate the data to 75% training data (4097 observations)

and 25% testing data (1366 observations). Then we have a learning data set L which

comprises n couples of observations (r1, x1),...,(rn, xn), where xi = (x1i, x2i, x3i) is a set

of independent variables and ri is the dependent variable associated with xi.

3.3.2 Linear Regression

In the linear regression model, we have the vector b = (b1,... , bn) as coefficient and b0

as intercept. In our case, xi= (x1i, x2i, x3i) are the independent variables, ri is response

variable, then the regression model is:

r̂ = b0 + b1x1 + b2x2 + b3x3, (3.1)

where r̂ is the estimated response value.
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For completeness and convenience, we provide details on the Linear regression method.

We use ordinary least squares to fit the data, which means using the coefficients b to

minimize the residual sum of squares (SSE) between the observed data and the responses

predicted by the model.

SSE =
n∑
i=1

(ri − r̂i)2 =
n∑
i=1

(ri − b0 − b1x1i − b2x2i − b3x3i)
2. (3.2)

Then differentiate SSE with respect to b0, b1, b2, b3 and equal to zero 0, get 4 new

equations. Solve the new equations then get a set of coefficients of the model.
∑n

i=1 ri − nb0 − b1

∑n
i=1 x1i − b2

∑n
i=1 x2i − b3

∑n
i=1 x3i = 0∑n

i=1 x1iri − b0

∑n
i=1 x1i − b1

∑n
i=1 x

2
1i − b2

∑n
i=1 x1ix2i − b3

∑n
i=1 x1ix3i = 0∑n

i=1 x2iri − b0

∑n
i=1 x2i − b1

∑n
i=1 x2ix1i − b2

∑n
i=1 x

2
2i − b3

∑n
i=1 x2ix3i = 0∑n

i=1 x3iri − b0

∑n
i=1 x3i − b1

∑n
i=1 x3ix1i − b2

∑n
i=1 x3ix2i − b3

∑n
i=1 x

2
3i = 0

(3.3)

We can get the coefficients by solving Equation (3.3). Usually, when the number of variables

exceeds two, we rewrite the above equation in matrix form and express the solution in

matrix form, which can facilitate the mathematical manipulation considerably. The matrix

notations are presented below.

For equation (3.1), we denote r =


r1

r2

...

rn

, X =


1 x11 x21 · · · xk1

1 x12 x22 · · · xk2

...

1

...

x1n

...

x2n · · ·

...

xkn

,

b =


b0

b1

...

bn

.

Then equation (3.2) can be expressed as:

SSE = (r−Xb)′(r−Xb). (3.4)
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Differentiate the SSE, we have ∂
∂b

(SSE) = 0. Equation (3.3) is simplified as:(
X

′
X
)

b = X′r. (3.5)

If the matrix X′X is nonsingular, then we have the solution:

b =
(
X

′
X
)−1

X′r. (3.6)

In this report, we only discuss the steps of matrices form manipulation. For more detail of

matrices manipulation, we refer to [44].

In our model, we get b0 = -0.225, b1 = 0.291, b2 = 0.183, b3 = 0.046.

Table 3.4: Linear regression results

Dep. Variable: y R-squared: 0.813

Model: OLS Adj. R-squared: 0.813

Method: Least Squares F-statistic: 5941

No. Observations: 4097 Prob (F-statistic): 0

Df Residuals: 4093 Log-Likelihood: 700.23

Df Model: 3 AIC: -1392

Covariance Type nonrobust BIC: -1367

coef std err t P > |t| [95.0% Conf. Int.]

const -0.2252 0.018 -12.837 0.00 [-0.260, -0.191]

x0 0.2909 0.003 91.029 0.00 [0.285, 0.297]

x1 0.1832 0.004 47.048 0.00 [0.176, 0.191]

x2 0.0458 0.004 11.137 0.00 [0.038, 0.054]

Although this is a multiple linear regression, we selected the variables before our model

building, and the result shows all three variables are important, which means the three

independent variables are supposed to be chosen. We test the adequacy of this model, the

coefficient of determination:

R2 =
SSR

SST
=

∑n
i=1 (r̂i − r)2∑n
i=1 (ri − r)2 , (3.7)

19



where r is the mean of response variables, r̂ is the estimated response value.

The result shows R2= 0.818, which means this model fits the data quite well.

Then we test the importance of individual coefficient, the result shows all of them have

significant influence on the model, the p-value less than 0.005. Here, we use t-distribution

with 4093 degrees of freedom (df ). We have

t =
bi

s
√
cii
, (3.8)

where s2 = SSE
df

,and ciiis the i -th diagonal element of matrix (X’X)−1 and

X =

 1 x11 · · · x31

...
. . .

...

1 x1n · · · x3n

 , (3.9)

We assume that the relationship between risk level and risk factors is linear in this model,

but since the risk levels are categorical variables, we round the results to the nearest integer.

Then we get the model as:

r∗ = [−0.225 + 0.291x1 + 0.183x2 + 0.046x3]. (3.10)

We summarize the computation steps as follows:

Step 1: Randomly separate the data to training data and testing data.

Step 2: Use training data to build the model. Risk factors are independent variables

x and risk levels are response variables r.

Step 3: Use matrix form function to compute coefficients b (see equation ((3.6))), and

then get the linear model as equation (3.1).

Step 4: Test the model by the coefficient of determination using equation (3.7).

Step 5: Test the individual independent variable using t-test of equation (3.8).

Step 6: Round the result to get the model as equation (3.10)

Step 7: Test the accuracy of the model using testing data. The result is shown in

result section. If the accuracy is good we can use the model to predict the risk level of
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other devices, otherwise, we need to consider changing the model or using more data to

train the model.

Step 8: The risk factors could be input in the model (3.10) as x1, x2, x3 respectively

and the risk level is the result r*.

It is hard to say whether a specific accuracy rate is good, it depends on the problem.

Comparing with the accuracy of the model in the project poster (67%) [14], we used almost

same factors but different models, our result is very good (98%).

3.3.3 Logistic Regression

In our problem, the objective is to find the relationship between the risk level and the risk

factors. Meanwhile, the risk level is a categorical outcome variable, which is quite suitable

to be analyzed by logistic model.

In logistic model, we will get the probability that a data sample allocated to a class.

Thus the model is written in terms of probability. For each class, we have a function as

follows

p=
1

1 + e−(b0+b1x1+...+bkxk)
, (3.11)

where k is the number of independent variables, xi is independent variables, p is the

probability that the sample belongs to this class.

However, there is another form of logistic regression model which is the odd ratio.

p

1− p
= e−(b0+b1x1+...+bkxk). (3.12)

Then we take ‘logit’ of the odd ratio.

log

(
p

1− p

)
= b0 + b1x1 + ...+ bkxk. (3.13)

The original problem is to find the relationship between y and {x1, x2, ..., xk}. However,

y takes integer values {0, 1}. We cannot apply the standard linear regression method

directly. The idea of this method is to transform an integer variable y problem into a
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continuous variable problem (3.13) such that we can use the standard linear regression

method to estimate parameters {b0, b1, ..., bk}. Then use equation (3.11) to estimate p

for {x1, x2, ..., xk}. Final, we use p to find y (=0 or 1). If p is in certain range, y = 1;

otherwise, y = 0. This logit model looks like the linear regression. The bigger the logit is

the bigger probability p is.

In order to get the coefficients, we need a cost function, we denote function (3.11) in

matrix form,

hθ (x) =
1

1 + e−θxT , (3.14)

where θ is the coefficients, θ = [b0, b1, ..., bk], hθ (x) is the estimated value, y is the response

and x is independent variables x= [1, x1, x2, ..., xk].

Then we denote the cost as follows:

J (θ) =
1

m

m∑
i=1

cost
(
hθ
(
x(i)
)
, y(i)

)
, (3.15)

where

cost (hθ (x) , y) =

{
−log (hθ (x)) if y = 1

−log (1− hθ (x)) if y = 0
,

and y = 0 or 1 always, m is the number of training samples, x(i) is the independent variable

of i -th observation, y(i) is the response of the i -th observation.

There are only two possible cases, y = 1 or y = 0. We can simplify the cost function

as follows:

J (θ) = − 1

m

m∑
i=1

( y(i)log
(
hθ
(
x(i)
))

+
(
1− y(i)

)
log
(
1− hθ

(
x(i)
))

). (3.16)

To minimize the above function over the coefficients θ (3.16), Sklearn package uses a

coordinate descent algorithm based on Liblinear. For more details about the cost function

of logistic regression model, please refer to [21].

In our model, since the risk levels are ordered categorical outcome, so we used ordinal

logistic regression [21]. The idea is the same as logistic regression, since there are three

risk levels, we need to define the possible events as follow:
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1. Being in risk level 1;

2. Being in risk level 1 or 2;

3. Being in risk level 1, 2 or 3.

Then we could use general logistic model to predict the probability of each events. The

risk factors are the independent variables x as defined in Section 2.

We have three functions to calculate the probability for each event.

P (R= 1) =
1

1+e−(47.22−7.34x1−6.84x2−0.30x3)
, (3.17)

P (R = 1 or 2) =
1

1 + e−(73.35−7.34x1−6.84x2−0.30x3)
, (3.18)

P (R = 1, 2 or 3) = 1. (3.19)

Then function (3.17) is the probability of (R= 1) , the difference between functions (3.18)

and (3.17) is the probability of (R= 2), the difference between function (3.19) and (3.18)

is the probability of (R= 3). Then the risk level R* of the device with {x1, x2, x3} is the

value of R with the biggest probability.

The computation steps are as follows:

Step 1: Randomly separate the data to training data and testing data.

Step 2: Use training data to build the model. Risk levels are the categories and risk

factors are the independent variables. We define three events according to the risk levels.

Step 3: For each event, we construct a binary variable, 1 for this event happens and

0 for not happen.

Step 4: Solve a minimization problem of (3.16) by using Newton’s method to get

coefficients for an event, get the model as equation (3.11).

Step 5: Repeat Step 2 and Step 3 for other two events, the probability of last event is

definitely 1.

Step 6: The final model includes three equations (3.17)(3.18)(3.19).
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Step 7: Take the difference of the equations and we can get the probability of each

risk level, and choose the one with the biggest as the risk level of the device with {x1, x2,

x3}.

Step 8: Test the accuracy of the model with testing data. The results are present in

the results section.

If the accuracy is good (e.g., great than 67%) [14], we can use the model to predict

the risk level of other devices, otherwise, we need to consider changing the model or using

more data to train the model. The result of this model is pretty good, so the risk factors

could be input in the models (equation 3.16,3.17,3.18) as x1, x2, x3 respectively and we can

get the probabilities of the sample belonging to every risk levels.

3.3.4 Classification Tree

Classification tree builds a model in the form of a tree structure. The final result is a tree

with decision nodes and terminal nodes. Normally, a decision node has two branches and

terminal node represents a classification.

There are two processes when building the classification tree: tree growing and tree

pruning. We randomly acquire a set of training data from the original data to build the

classification tree.

In the tree growing process, learning data L is recursively divided into two subsets by

binary split until the terminal nods are achieved. In order to decrease the impurity of the

node, the split selection is chosen according to Gini Index. Normally, we select the point

that most significant reducing impurity as the split point. The Gini index is shown as

follows (3.20):

Impurity (t) = 1−
n∑
k=1

p2
k, (3.20)

where pk: the proportion of cases in node t that belong to class k. Impurity (t) = 0 when

all cases belong to the same class in node t.

Then we need to calculate the information gain, which is based on the decrease in
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impurity after a decision node is split on a split point. We will find the split point that

returns the highest information gain by a tree algorithm CART [5].

Let t1 and t2 be the two children nodes of node t after splitting, and H(t) be the number

of cases in node t. Then we have

Information gain = impurity(t)− impurity(t1)×H(t1) + impurity(t2)×H(t2)

H(t)
(3.21)

After tree growing, each node is full pure, the tree may be too complicated and over-

fitting. Consequently, it should be pruned back, using cost complexity to choose the best

tree, however setting the minimum number of samples required at a leaf node or setting

the maximum depth of the tree are commonly used. In our case, there is no over-fitting

problem, so we didn’t prune the tree.

For evaluation of model performance, confusion matrix is a proper method, which

could visualize the performance of the model, but we only use the accuracy to evaluate the

performance of the model.

Accuracy =
The number of correct prediction

The number of total samples
(3.22)

The computation steps are as follows:

Step 1: Randomly separate the data to training data and testing data.

Step 2: Recursively partition the learning data into two sub-sets by binary split ac-

cording the Gini index (3.20).

2.1 For splitting, all features and all possible split points are evaluated. (e.g., x1<= 4.5

or x1>4.5).

2.2: Calculate the impurity of the node before and after the partition for each candidate

split points.

2.3: Calculate the information gain by subtracting impurity after split from the impurity

before the split and select the split point with the largest information gain as the new

decision node. (3.21)
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Step 3: Repeat Step 2 until the depth of the tree arrives the maximum depth, then

we get the final model.

Step 4: Test the accuracy of the model with testing data (3.22). The results shows in

the result section.

Step 5: The result of this model is pretty good, we can use the value of the variables

to make decision according to the tree (Figure 3.1), and then we can get the risk level once

we get a terminal node.

If the accuracy is good (e.g., great than 67%) [14], we can use the model to predict the

risk level of other devices, otherwise, we need to consider changing some parameters of the

model or using more data to training the model.

In this model, we can predict the risk level of a device based on its equipment function

and location of use, which means we only need two risk factors to predict the risk level in

the classification tree model. Figure 3.1 is the classification tree.

Figure 3.1: Classification tree
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3.3.5 Random Forest

Random forest takes the idea of classification tree further and grows many trees. To classify

a new object from an input vector, put the input vector down in each of the trees in the

forest. Each tree gives a classification, and we say the tree ‘votes’ for that class. The forest

chooses the classification having the most votes over all the trees in the forest [7].

But the trees in Random Forest are different from the tree in Classification Tree. In

Random Forest, each tree is built from a random sample drawn with replacement (i.e., a

bootstrap sample) from the training data set. Moreover, the split selection is chosen form

the best split of a random subset of the features. Although the bias of one tree slightly

increases, but the bias are normalized by dividing by the number of tree, hence normally

yielding a better model.

For the trees building, there is a step called tree bagging, which means selecting a

random sample with replacement of the training set and fits trees to the samples. This

method was proposed by Breiman [6]. For completeness, we describe the idea as follow,

1. Tree bagging:

For k = 1, ..., K, is a random sample with replacement of the training set L which

comprises n couples of observations (r1, x1),...,(rn, xn), where xi = (x1i, x2i, x3i) is a

set of independent variables and ri is the dependent variable associated with xi, call

it Lk. Then we can train a tree on Lk, call fk. Then prediction can be made by the

majority vote of the trees.

2. Feature bagging:

There is another bagging technique to improve the accuracy of random forest, which

is feature bagging. A random subset of the features is selected for each tree fk [19].

The reason to do this is reduce the correlation between different trees.

3. Voting:

After we have a lot of trees, we need to make decisions based on these trees. A typical

method is that the prediction can be made by the majority vote of these trees.
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We summarize the computation steps as follows:

Step 1: Randomly separate the data to training data and testing data.

Step 2: Set the number of trees in the model (e.g., 100).

Step 3: For each tree, get a bootstrap sample from the training data to build the tree.

The bootstrap sample size is always the same as the original training data size but the

samples are drawn with replacement.

Step 4: Follow the step of Classification Tree to build each tree, but in the split

selection step (Step 2 in Classification Tree), choose the best split from a random subset

of all features. Then there are 100 different trees.

Step 5: For each {x1, x2,..., xk}, every tree can have a classification decision, the model

choose the classification R having the most votes.

Step 6: Test the accuracy of the model with testing data, the results shows in the

results section.

If the accuracy is good (e.g., great than 67%) [14], we can use the model to predict

the risk level of other devices, otherwise, we need to consider changing the model or using

more data to train the model. The result of this model is good. The model is not explicitly

present in formula, so normally we use program to calculate the risk level of a given sample

data.

3.4 Results and Comparison

In this section, we present a few sample prediction results of those four methods, then we

compare the accuracy rate of those methods.

Table 3.5 shows ten sample results of four models. The results of linear regression

model has some disagreement with provided data, while logistic regression, classification

tree model and random forest model have 100% agreement with provided data.
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Table 3.5: Sample data of the medical devices

Device

i

Asset # Provided Ri Risk Factors Results of Scoring

models

X1i X2i X3i linear logistic tree forest

1 00123 High (3) 6 5 3 3 3 3 3

2 00923 High (3) 6 5 1 2 3 3 3

3 02132 High (3) 6 5 3 3 3 3 3

4 KN039397 Medium (2) 5 4 3 2 2 2 2

5 KN039400 Medium (2) 5 4 3 2 2 2 2

6 KN060102 Medium (2) 5 4 2 2 2 2 2

7 KN060198 Medium (2) 5 4 2 2 2 2 2

8 B02792 Low (1) 2 1 1 1 1 1 1

9 B02793 Low (1) 2 1 1 1 1 1 1

10 B03452 Low (1) 2 1 1 1 1 1 1

The distribution of risk levels and the accuracy rate of each model are presented in Ta-

ble 3.6 and Figure 3.2. All of the models have quite high accuracy rate, logistic regression,

classification tree and random forest have 100% accuracy rate.

Table 3.6: Accuracy rate of the models

Models Accuracy rate

Linear regression 0.98

Logistic regression 1.00

Classification tree 1.00

Random Forest 1.00
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Figure 3.2: Distribution of the risk levels of the medical devices

3.5 Conclusion

Through different methods, we can have different insights into the relationship of risk

factors and risk levels. According to the classification tree, we could explicitly find out

that how Equipment Function and Location of use classify the devices to different risk

levels. By Linear Regression and Logistic regression models, we can see that all those

three risk factors have critical influence on the risk levels.

By comparison, we find out that logistic regression, classification tree and random forest

have better performance on risk levels classification in our case. However, the results are
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obtained from the sample data, and the data is not very diverse (10 types of devices),

therefore, models need to be tested further with more diverse data.
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Chapter 4

Inspection and Maintenance Model

Based on the result of classification from Chapter 3, in this chapter, we are going to find

out the best policy to manage important devices. Inspection and maintenance model is a

data-driven optimization model, we use data to acquire the condition of the device and to

predict the deterioration rate, then, we use a decision model to get the optimal decisions

and the minimal average cost.

This chapter is organized as follows. Section 4.1 briefly introduce the main idea of

the model and a few basic assumptions of the model. In Section 4.2, the estimation of

transition matrix is discussed, a few practical examples from WRHA are presented. In

Section 4.3, we discuss and solve the Markov decision processes model. In the numerical

examples, we use the result of the example in Section 4.2 to find the optimal decisions

and the minimal long-run average cost. Furthermore, we extend the models to situation

with k-out-of-n systems in the numerical examples and compare our model with periodic

inspection model. A case study with heterogeneous devices is presented in Section 4.4.

4.1 Model of Interest

In this section, a brief description of the inspection and maintenance model is presented

at first, then we list a number of assumptions about the model.
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4.1.1 Model Description

The inspection and maintenance model can be roughly divided into two parts: the de-

terioration rate estimation and a decision model [13]. The deterioration rate estimation

is about the uncertain time to failure and the transition probabilities between different

states, and the decision model uses the result of estimated deterioration rate to determine

the optimal time and action of inspection and maintenance.

Figure 4.1: The inspection and maintenance model

In recent years, many research projects have been conducted on the prediction and

estimation of deterioration rate or matrix. Normally, some partially observable historical

data is available, but different type of historical data fits in with different models. In our

decision model, the inspection frequency is non-periodic inspection, so the data comes from

unequal observation intervals [11], some transitions would be unobservable. Without com-

plete information of the system, the EM algorithm will be used to estimate the transition

probabilities.
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Both maintenance and inspection decisions would be made, and through the inspection

process, we can collect the states of the system, which can be used in the deterioration

model. The stochastic dynamic programming model or discrete-time Markov decision

model that will be used for making decisions has been widely applied in maintenance,

inventory and telecommunication among others.

The combination of deterioration rate estimation and decision model can continuously

make decisions and generate required data to update the system condition. We discuss

these two parts separately in Section 4.2 and Section 4.3.

4.1.2 Basic Assumptions

We list a few assumptions about the model as follows. Assumptions 1 to 3 are about a

single device, which would be used in the estimation of transition matrix, the rest of the

assumptions are about the system, which would be used in the decision model.

1. There are three possible deterioration states T = {0, 1, 2}: a healthy state 0, an

unhealthy operational state 1, and a failure state 2.

2. States are unobservable without inspection.

3. The deterioration process of single device is a Markov chain {Xn, n = 0, 1, 2, ...} with

3 states and transition matrix P .

4. The system is a discrete-state discrete-time stochastic deteriorating system.

5. The state of the system with n devices can be denoted as a vector x = [x0, x1, ..., xn],

x0 is the time for the next inspection on the system, x1 to xn are the deterioration

level of the machine 1 to machine n. The deterioration level ranges from 0 (initial

new state) to 2 (failure state).

6. The system is not inspected each epoch. The possible inspection epochs range from

0 (inspect right now) to S (the largest inspection interval). The condition of the

system can be perfectly observed through inspection.
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7. The repair duration is negligible and the repair cost is supposed to be higher for

corrective repair than for preventive repair.

8. The repair always leads to an ‘as good as new’ machine.

4.2 Estimation of the Transition Matrix

In this section, based on the assumptions 1 to 3 in previous section, we are going to find

out the transition matrix P , which is a discrete-time homogeneous Markov chain.

The discrete-time homogeneous Markov chain is used to describe the state deteriora-

tion process, and it is a very popular model used for investigate the condition of machines,

since it is a powerful model to describe the pattern of failure. According to some existing

researches, more than 70% of the failure patterns are constant probability of failure at all

ages or infant mortality, followed by a constant or very slowly increasing failure proba-

bility [37], which indicates the homogeneous property is a reasonable assumption for the

failing system. Meanwhile, this model is simple and easy to track through matrix analysis.

An Estimation-Maximization (EM) algorithm will be introduced later and a few nu-

merical examples will be presented.

4.2.1 The Estimation-Maximization Algorithm

Craig and Sendi [11] developed an EM algorithm to estimate the transition matrix when

the observation intervals are unequal. We applied this method in our model.

Consider the system on the state-space T = {0, 1, 2}, where the state 0-1 are called

transit states, and state 2 means failure state, which is also the absorbing state. Suppose

the transition matrix P is

P =

 p00 p01 p02

0 p11 p12

0 0 1


Since the state of the system can never improve without intervention, so pij = 0 for i > j .
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First, we consider the situation with complete information of the transition. Suppose

the inspection interval is one-time-unit, and we want to get a one-time-unit transit matrix.

Based on the observation, we have an observed transition count matrix:

N =

 n00 n01 n02

0 n11 n12

0 0 n22


where nij is the number of occurrences that transition from state i to state j after one-

time-unit.

The maximum likelihood estimate of the transition matrix is the row proportions of N .

P̂ =


n00∑2
j=0 n0j

n01∑2
j=0 n0j

n02∑2
j=0 n0j

0 n11∑2
j=0 n1j

n12∑2
j=0 n1j

0 0 1


Then, we consider the situation without complete information of the transition, which

means the inspection intervals may be unequal and there are S inspection intervals which

are integer multiples (1, 2, 3,...,n) of the time-unit. The missing data are the unobservable

states for the system at the non-inspection period. So the EM algorithm needs to estimate

these states at the non-inspection period, and the expected number of transitions. Nor-

mally, an initial transition matrix is needed for the first iteration. However, convergence is

not guaranteed, so several different initial transition matrix are recommended. There are

two steps in EM algorithm, which are Expectation step and Maximization step.

For the E-step, we use the estimated matrix (or the initial matrix for the first iteration)

to compute the probability of each path a sample subject could have. Here the Chapman-

Kolmogorov equations are used to denote the probabilities. We have defined the one-

time-unit transition probabilities pij. According to Chapman-Kolmogorov equations, the

n-time-unit transition probability is pnij, which means a sample subject in state i will be

in state j after n-time-unit. Obviously, if the inspection interval is n-time-unit, then the

transition matrix would be

P (n) =

 pn00 pn01 pn02

0 pn11 pn12

0 0 1
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Denote the number of occurrences where the initial state i to state j after k -time-unit as

nkij. We need to estimate the possible path over k -time-unit. For example, the probability

of a sample following the path (0→ 1→ 1) over 2-time-unit is

p (0→ 1→ 1|0→?→ 1) =
p01p11

p2
01

If there are n2
01 samples transit from state 0 to state 1 after 2-time-unit, then the expected

number of samples to follow the path(0→ 1→ 1)is

n2
01

p01p11

p2
01

Based on the expected number of paths, we could get the expected one-time-unit tran-

sitions. For example, in the path (0→ 1→ 1), there are one (0→ 1)transition and one

(1→ 1) transition. Then a new one-time-unit transition count matrix is generated.

For the M-step, the maximum likelihood estimation method introduced with complete

information is used again, then a new transition matrix is created, which would be used to

estimate the probability of each path in the next iteration.

In general, there are three steps:

1. Initial step: Choose an initial transition matrix as current matrix,

2. E-step: Use the current matrix and the observed data to estimate the number of

paths and one-time-unit transitions nij.

3. M-step: Use the estimated number of one-time unit transitions nij to generate a

new transition matrix as the current transition matrix then back to E-step, stop the

iteration if ||Mn −Mn−1||1 is sufficiently small or the maximum iteration limit was

reached. (Note: ||A||1= max1≤j≤n{
∑n

i=1|ai,j|} for matrix A = (ai,j).)

4.2.2 Numerical Examples

Example 4.2.1 In this example, we simulate a data set from a three state model with two

different inspection intervals. A one year transition matrix is desired.
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Initial state Final state

0 1 2

One year

0 227 22 21

1 0 70 23

2 0 0 0

Two years

0 214 45 41

1 0 82 101

2 0 0 0

The first iteration of the EM algorithm is shown below:

Initial transition matrix:

M0 =

 0.4 0.3 0.3

0 0.7 0.3

0 0 1


E-step:

n00 = 227 + 2× 214 + 45×
(
p00p01

p2
01

)
+ 41×

(
p00p02

p2
02

)
;

n01 = 22 + 45 + 41×
(
p01p12

p2
02

)
;

n02 = 21 + 41×
(
p02 + p00p02

p2
02

)
;

n11 = 70 + 2× 82 + 101×
(
p11p12

p2
12

)
;

n12 = 23 + 101 + 41×
(
p01p12

p2
02

)
.

M-step:

p00 =
n00

n00 + n01 + n02

; p01 =
n01

n00 + n01 + n02

; p02 =
n02

n00 + n01 + n02

;
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p11 =
n11

n11 + n12

; p12 =
n12

n11 + n12

.

Then we get:

M1 =

 0.8407 0.0916 0.0676

0 0.6986 0.3014

0 0 1


After 10 iterations:

M10 =

 0.9682 0.0239 0.0079

0 0.6622 0.3378

0 0 1


After 100 iterations, the transition matrix is stable.

M100 =

 0.9682 0.0239 0.0079

0 0.6582 0.3418

0 0 1


In this example, after 100 iteration, the transition matrix stabilizes. However, we only

present one possible initial transition matrix, actually, the convergence is not guaranteed.

With different initial transition matrices, the result would be slightly different.

Example 4.2.2 In this example, we use the provided data from Winnipeg Health Reginal

Authority. We collect the data set of defibrillator with three different inspection interval,

the model of this device is ‘Lifepak 20’. After cleaning the data, we get the raw sample

data as follows

39



Table 4.1: The sample data from WHRA

Model Asset Date WO Result Interval year Condition

Lifepak 20 ˆ KN031471 2010-10-04 A Repair 307.9377 1 1

Lifepak 20 ˆ KN031471 2011-10-25 B Inspection 256.1514 1 0

Lifepak 20 ˆ KN031471 2012-10-29 B Repair 370.0084 1 1

Lifepak 20 ˆ KN031471 2013-10-03 A Repair 339.0581 1 1

Lifepak 20 ˆ KN031471 2014-10-24 B Inspection 385.8316 1 0

Lifepak 20 ˆ KN031471 2015-11-20 B Inspection 392.0418 1 0

Lifepak 20 ˆ KN030356 2010-10-29 B Repair 332.9872 1 1

Lifepak 20 ˆ KN030356 2011-10-25 B Inspection 361.0983 1 0

Lifepak 20 ˆ KN030356 2012-10-29 B Repair 370.0084 1 1

Lifepak 20 ˆ KN030356 2013-10-25 B Inspection 360.9365 1 0

Lifepak 20 ˆ KN030356 2014-10-24 B Inspection 363.9532 1 0

Lifepak 20 ˆ KN030356 2016-01-04 B Inspection 437.1581 1 0

Lifepak 20 ˆ KN030359 2010-09-14 A Failure 288.1373 1 2

Lifepak 20 ˆ KN030359 2011-10-25 B Repair 361.0983 1 1

Lifepak 20 ˆ KN030359 2012-10-29 B Repair 370.0084 1 1

Lifepak 20 ˆ KN030359 2014-10-24 B Inspection 724.8897 2 0

Lifepak 20 ˆ KN030359 2015-11-02 B Repair 374.1223 1 1

In the Table 4.1, 17 samples of the work-order after 2010 of three machines are shown.

In the column WO, B means inspection and A means repair, we interpret it as that B

means that after previous action, the machine is healthy, while A means that after previous

action, the machine is not healthy. In the column Result, Inspection means the machine is

healthy, Repair means the machine is unhealthy but operational, Failure means the machine

is failure. So we can see three different results by A action and two different results by

B action. Since our model in a discrete-time model, we rounded the time interval to year

time unit. The Condition column is directly from the Result column.
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After counting all transitions, we get the transition count matrix as follows. A one-

time-unit transition matrix is desired.

Initial state Final state

0 1 2

One year

0 106 42 3

1 0 35 7

2 0 0 0

Two years

0 2 1 0

1 0 0 0

2 0 0 0

Three years

0 0 0 0

1 0 1 1

2 0 0 0

We set the initial transition matrix as:

M0 =

 0.4 0.3 0.3

0 0.5 0.5

0 0 1


By the algorithm introduced above, we can get the transition matrix of this type of ma-

chines.

MEM =

 0.7222 0.2596 0.0181

0 0.8306 0.1694

0 0 1


The transition matrix has been obtained, the result will be used in decision model in

Section 4.3 for optimal inspection and maintenance decision making.
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4.3 Decision Model

In this section, we will introduce the decision model. First, we introduce some basic

function and variables, followed by an example with a single device. Then, an algorithm

to calculate long-run average cost will be presented. Last, some numerical examples are

presented and discussed.

4.3.1 Introduction

The inspection duration is negligible. After each inspection, n + 1 decisions are made: a)

the next inspection time; b) whether to repair the machines. Denote as D = [d0, d1, ..., dn],

where d0 is the next inspection time, d1 to dn are binary variables to decide whether to

repair the machines.

d0 ∈ {0, 1, ..., S}, dn=

1, if repairing the machine n, n > 0

0, if not repairing the machine n, n > 0.

During non-inspection epoch, no decision would be made. We set the decision D =

[0, 0, ..., 0] for convenience, which means no change for next inspection time and no repair

action occurred.

D=

[0, 0, ..., 0], if x0 > 0

[d0,d1,...,dn],d0>0, if x0 = 0

At the beginning of time t, after the decision and repair, the state of the system is:

x̄t = [xt0 + dt0, x
t
1(1− dt1), xt2(1− dt2), ..., xtn(1− dtn)]

Between two consecutive time units, the state transition of one machine follows the

transition matrix introduced in section 4.2:

P1 =

 p00 p01 p02

0 p11 p12

0 0 1


where pij is the transition probability from state i to state j.

42



So the transition probability of n machines is the Kronecker product of n transition

matrices P1, P2, ..., Pn. Denote as PN .

PN = P1 ⊗ P2 ⊗ ...⊗ Pn

So there are 3n states in the matrix PN . Denote the set of the states as Ω.

We introduce R(·), which equals 1 if the machine i is functioning, and 0 if it has failed.

Hence,

Ri(xi) =

1, if xi < 2,

0, if xi ≥ 2.

We introduce Q(·), which equals 1 if the system is working, and 0 if it is down.

Q(x) =

{
1, if

∑n
i=1Ri(xi) ≥ k,

0, if
∑n

i=1Ri(xi) < k,

where k is the minimum functioning components for the system, which means if there are

less than k functioning components, the system has failure.

Again, we introduce I(·), which equals 1 if the device is in inspection, and 0 if it is not.

Hence,

I (x) =

{
1, if x0 = 0,

0, if x0 > 0.

The costs of the system are given by

cn: Inspection cost, once an inspection happens, this cost is incurred. (per time)

cc: Corrective cost, once a repair for a failure device happens, this cost is incurred. (per

time, per device)

cp: Preventive cost, once a repair for an unhealthy operational device happens, this

cost is incurred. (per time, per device)

cs: Setup cost, once a repair happens, this cost is incurred. (per time)

pc: Penalty cost, once the system is down, this cost is incurred. (per time)
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Let Ct∗ (xt) denote the optimum cumulative cost from time t onward. Since the tran-

sition matrix is a discrete-state matrix, the cost function can be expressed as follows

Ct∗ (xt)
= min

D

{
I
(
xt
)
cn + pc

(
1−Q(xt)

)
+ cs

(
1−

n∏
i=1

(1− dti)

)

+
n∑
i=1

diRi

(
xti
)
cp +

n∑
i=1

di
(
1−Ri

(
xti
))
cc

+
∑

[xt+1
1 ,xt+1

2 ,...,xt+1
n ]∈Ω

Ct+1∗ ([x̄t0 − 1, xt+1
1 , xt+1

2 , ..., xt+1
n ]
)
p[x̄t1,x̄

t
2,...,x̄

t
n],[xt+1

1 ,xt+1
2 ,...,xt+1

n ]

}
(4.1)

where [x̄t0− 1, xt+1
1 , xt+1

2 , ..., xt+1
n ] is the state of xt+1, xt is the condition at time t, dti is the

repair decision for device i at time t.

4.3.2 An Example of a Single Device

For convenience, we give an example about the Markov decision processes of this model

with only one machine.

Suppose the initial state xt = [0, 0], so I (xt) = 1, R1 (xt1) = 1, Q (xt) = 1.

Let Ct (xt) denote the arbitrary cumulative cost from time t onward. If the decision is

Dt = [1, 0], then x̄t = [1, 0].

Ct
(
xt
)

= 1×cn+pc (1− 1)+cs×0+0×1×cp+0×(1− 1) cc+
2∑

xt+1
1 =0

px̄t1x
t+1
1
Ct+1

(
[0, xt+1

1 ]
)

= cn +
2∑

xt+1
1 =0

px̄t1x
t+1
1
Ct+1

(
[0, xt+1

1 ]
)

= cn + p00C
t+1 ([0, 0]) + p01C

t+1 ([0, 1]) + p02C
t+1 ([0, 2]) .

(4.2)
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Suppose xt+1
1 = 1, so I (xt) = 0, R1

(
xt+1

1

)
= 1, Q (xt+1) = 1.

Let Ct+1 (xt+1) denote the arbitrary cumulative cost from time t+ 1 onward.

If the decision is Dt = [1, 0], then x̄t = [1, 1].

(4.3)

Ct+1
(
xt+1

)
= 1× cn + pc (1− 1) + cs × 0 + 0× 1× cp + 0

× (1− 1) cc +
2∑

xt+2
1 =0

px̄t+1
1 xt+2

1
Ct+2

(
[0, xt+2

1 ]
)

= cn +
2∑

xt+2
1 =0

px̄t1x
t+1
1
Ct+1

(
[0, xt+1

1 ]
)

= cn + p11C
t+1 ([0, 1]) + p12C

t+1 ([0, 2])

If the decision is Dt = [1, 1], then x̄t = [1, 0].

(4.4)

Ct+1
(
xt+1

)
= 1× cn + pc (1− 1) + cs × 1 + 1× 1× cp + 1

× (1− 1) cc +
2∑

xt+2
1 =0

px̄t+1
1 xt+2

1
Ct+2

(
[0, xt+2

1 ]
)

= cn + cs + cp + p00C
t+2 ([0, 0]) + p01C

t+2 ([0, 1]) + p02C
t+2 ([0, 2])

Suppose xt+1
1 = 2, so I (xt) = 0, R1

(
xt+1

1

)
= 0, Q (xt+1) = 0.

Let Ct+1 (xt+1) denote the arbitrary cumulative cost from time t+ 1 onward.

If the decision is Dt = [1, 0], then x̄t = [1, 2].

(4.5)

Ct+1
(
xt+1

)
= 1× cn + pc (1− 0) + cs × 0 + 0× 0× cp + 0

× (1− 0) cc +
2∑

xt+2
1 =0

px̄t+1
1 xt+2

1
Ct+2

(
[0, xt+2

1 ]
)

= cn + pc +
2∑

xt+2
1 =0

px̄t1x
t+1
1
Ct+1

(
[0, xt+1

1 ]
)

= cn + pc + p22C
t+1 ([0, 2])
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If the decision is Dt = [1, 1], then x̄t = [1, 0].

(4.6)

Ct+1
(
xt+1

)
= 1× cn + pc (1− 0) + cs × 1 + 1× 0× cp + 1

× (1− 0) cc +
2∑

xt+2
1 =0

px̄t+1
1 xt+2

1
Ct+2

(
[0, xt+2

1 ]
)

= cn + pc + cs + cc + p00C
t+2 ([0, 0]) + p01C

t+2 ([0, 1]) + p02C
t+2 ([0, 2])

By Equations (4.2) to (4.6), we can get the costs and conditions for one time unit interval.

We summarize the results in Table 4.2. Furthermore, we present explicitly the recursive

functions for all cases when the inspection interval is greater than one in Appendix B.

Here, we summarize all situations in Table 4.2.

Note that in Table 4.2, the first column is the condition of the system, the second

column is the decision, the third and fourth column are corresponding costs and possible

next conditions given current condition and decision. For example, if the condition of

the system is [0,1], and the decision is [1,1], which means we inspect the system, and the

condition of the device is unhealthy and we decide to repair it, therefore the costs consist

of inspection cost (cn), set-up cost (cs) and preventive repair cost (cp). After the repair,

the condition of the system is [0,0], so the next possible conditions are {[0,0],[0,1],[0,2]}.
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Table 4.2: Summary of the one-machine system

Condition Decision Costs Next Condition

If the inspection interval is one.

[0,0] 1,0 cn [0,0],[0,1],[0,2]

[0,1] 1,0 cn [0,1],[0,2]

[0,1] 1,1 cn + cs + cp [0,0],[0,1],[0,2]

[0,2] 1,0 cn + pc [0,2]

[0,2] 1,1 cn + pc + cs + cc [0,0],[0,1],[0,2]

If the inspection interval is two.

[0,0] 2,0 cn [1,0],[1,1],[1,2]

[1,0] 0,0 0 [0,0],[0,1],[0,2]

[1,1] 0,0 0 [0,1],[0,2]

[1,2] 0,0 pc [0,2]

[0,1] 2,0 cn [1,1],[1,2]

[0,1] 2,1 cn + cs + cp [1,0],[1,1],[1,2]

[0,2] 2,0 cn + pc [1,2]

[0,2] 2,1 cn + pc + cs + cc [1,0],[1,1],[1,2]

If the inspection interval is n.

[0,0] n,0 cn [n-1,0],[n-1,1],[n-1,2]

[n-1,0] 0,0 0 [n-2,0],[n-2,1],[n-2,2]

[n-1,1] 0,0 0 [n-2,1],[n-2,2]

[n-1,2] 0,0 pc [n-2,2]

[0,1] n,0 cn [n-1,1],[n-1,2]

[0,1] n,1 cn + cs + cp [n-1,0],[n-1,1],[n-1,2]

[0,2] n,0 cn + pc [n-1,2]

[0,2] n,1 cn + pc + cs + cc [n-1,0],[n-1,1],[n-1,2]
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4.3.3 Long-run Average Cost

In the previous section, we use an example to present the Markov Decision Processes, in

this section, we are going to show an algorithm to solve this model.

First, we clarify that the object is minimizing the long-run average cost. Based on

the assumptions in Section 4.1, we can see that 1) the costs and transition probabilities

are stationary and time homogeneous; 2) for any states and actions, the cost is bounded;

3) the state space is finite. Under these three assumptions, all stationary policies would

generate a single irreducible class Markov chain. Before we illustrate the algorithm, we

show the long-run average cost for a stationary policy. In our problem, for each state, a

decision related to inspection and maintenance would be made, which is denoted as D in

the previous section. For a given set of decisions, we have a stationary policy, say R. We

say this policy is a unichain policy, which means this is a finite-state Markov chain with

single recurrent class. Therefore, the Markov chain will visit a recurrent state in finite

transitions. We denote n-step transition probability under policy R as P n
ij(R).

P n
ij(R) = P{Xn+k = j|Xk = i}, n ≥ 0, i, j ∈ Ω

where Ω is the set of states. By Chapmen-Kolmogorov equations, we have

P n+m
ij (R) =

∞∑
k=0

P n
ik(R)Pm

kj (R) for all n,m ≥ 0, i, j ∈ Ω

Denote by Vn(i, R) the total expected costs during first n decision epochs when the

starting state is i and policy is R, we have

Vn(i, R) =
n−1∑
t=0

∑
j∈Ω

P t
ij(R)cj(R)

where cj(R) is the total cost in state j under policy R. Then we have the average cost

function

gi(R) = lim
n→∞

1

n
Vn(i, R), i ∈ Ω
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By the theorem of stationary probability, we can prove that g(R) = gi(R), which means

the average costs are independent of the initial state. Next, we will present an algorithm

to calculate the minimal long-run average cost and optimal policy.

There are several method to calculate the optimal policy, e.g. Relative Value Iteration,

Policy Iteration and Linear Programming [33].

The method we applied is the relative value iteration. This method is a very mature

method. We refer to literature [33] for the functions.

Let vn be the optimal n-stage costs, rD be a vector for the cost under decision D in

all states and PD be the transition matrix under decision D. We present the algorithm as

follows, refer to literature [33, 42, 4] for more details.

Step 1. Choose arbitrary values for v0. For simplicity, set v0 = 0. Choose a fixed

state s. Specify ε > 0, set w0 = v0 − v0 (s) e, where e is the vector of ones, and set n =

0, and maximum iteration number N.

Step 2. Set vn+1 = minD∈R{rD + PDwn}, and wn+1 = vn+1 − vn+1 (s) e.

Step 3. If sp(vn+1 − vn) < ε or n > N go to Step 4, otherwise, increment n by 1 and

return to Step 2.

Step 4. Choose D∗ = arg minD∈R{rD + PDvn}.

However, in our problem, for any policy with inspection interval greater than 1, the

Markov chain is not aperiodic, or we say the Markov chain is not ergodic [35]. So we

have to apply some transformation to make sure all the policies with aperiodic transition

probability matrix as follows.

Choose γ ∈ (0, 1), denote r̃D be the transformed cost under decision D and P̃D be the

transformed transition matrix under decision D. We have

P̃D = (1− γ)I + γPD

r̃D = γrD

Then for all stationary policies, the transition matrix have strictly positive diagonal

entries and are aperiodic. The optimal decisions would be the same as before, but the
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average cost has changed since the cost has multiplied by γ, so the result should be devided

by γ to get the desired average cost.

4.3.4 Numerical Examples

Before the numerical examples, we summarize the computation steps as follows:

Step 1: Using maintenance data, estimate the transition matrix by the EM algorithm.

(See Section 4.2)

Step 2: Model the problem to a Markov decision processes. Calculate the costs

and transition probability for given conditions and decisions. (See Section 4.3.1 and Sec-

tion 4.3.2)

Step 3: Calculate the optimal policy and the minimal long-run average cost by relative

value iteration algorithm. (See Section 4.3.3)

Example 4.3.1 (1-out-of-2 system) In a location called Resus Room, two ‘Lifepak 20’

defibrillator machines are available, suppose at least one machine should be operational for

this location. So this is a 1-out-of-2 system. For the system, the components are identical.

For each components, there are 3 states (0, 1, and 2), and state 2 is the failure state. By

the Markov decision processes, the optimal maintenance strategy will be found.

The transition matrix is:

MEM =

 0.7222 0.2596 0.0181

0 0.8306 0.1694

0 0 1


For the cost parameters, we suppose the inspection cost is 100 per time, the set up cost

is 50 per time, the preventive repair cost is 150 per time per device, the corrective repair

cost is 200 per time per device and the penalty cost is 1000 per time. Denoted as: cn : 100;

cc : 200; cp : 150; cs : 50; pc : 1000.

The optimal maintenance decisions are shown in Table 4.3, and the average cost is

116.0181. The percentage of downtime of the system is shown in Figure 4.2.
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Table 4.3: The optimal decisions for 1-out-of-2 system

Condition [x1,x2] Repair [d1,d2] Inspection interval[d0]

0,0 [0,0] 4

0,1 [0,0] 3

0,2 [0,1] 4

1,0 [0,0] 3

1,1 [1,1] 4

1,2 [1,1] 4

2,0 [1,0] 4

2,1 [1,1] 4

2,2 [1,1] 4
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Figure 4.2: The percentage of downtime of the 1-out-of-2 system.

(The blue bars are for the machines, the red bar is for the system)

From Table 4.3, we can see that the inspection interval is actually a function of the con-

dition after repair, we denote it as d0 = f([x̄1, x̄2, ..., x̄n]). In this example, the relationship

is:

d0 =

4, if [x̄1, x̄2] = [0,0],

3, if [x̄1, x̄2] = [0,1]or [x̄1, x̄2] = [1,0].

According to the optimal decisions, we can see that the inspection intervals are four

years for most conditions, when only one machine is unhealthy, the inspection interval is
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three years. For the maintenance decisions, a machine would be repaired if the condition

is failure or another machine is not healthy.

Example 4.3.2 (Inspection and Penalty Cost Analysis) Based on Example 4.3.1, the

parameters of the model will be changed to see the difference of the costs and the optimal

decisions. First, we let the inspection cost to be a set of values {100, 150, 200, 250, 300,

350, 400, 450, 500, 550}, and the penalty cost to be a set of values {800, 900, 1000,

1100, 1200, 1300, 1400, 1500, 1600, 1700}. All the other parameters are the same as the

Example 4.3.1.

The minimal average costs and d0 for new system are shown in Figure 4.3a and Fig-

ure 4.3b. With the increasing of the inspection cost and penalty cost, the minimal average

cost increase.

(a) The minimal average costs (b) Inspection interval for new system

Figure 4.3: The optimal results with different cn and pc.

There are five different strategies for different parameters. For convenience, they are

named as S1 to S5 and presented in Table 4.4.
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Table 4.4: Five different strategies for different cn and pc

Condition S1 S2 S3 S4 S5

[x1,x2] d0 d1 d2 d0 d1 d2 d0 d1 d2 d0 d1 d2 d0 d1 d2

00 3 0 0 4 0 0 4 0 0 5 0 0 5 0 0

01 2 0 0 2 0 0 3 0 0 3 0 0 4 0 0

02 3 0 1 4 0 1 4 0 1 5 0 1 5 0 1

10 2 0 0 2 0 0 3 0 0 3 0 0 4 0 0

11 3 1 1 4 1 1 4 1 1 5 1 1 5 1 1

12 3 1 1 4 1 1 4 1 1 5 1 1 5 1 1

20 3 1 0 4 1 0 4 1 0 5 1 0 5 1 0

21 3 1 1 4 1 1 4 1 1 5 1 1 5 1 1

22 3 1 1 4 1 1 4 1 1 5 1 1 5 1 1

For different inspection cost and penalty cost, we obtain different optimal strategy

(Table 4.5). Obviously, the higher the inspection cost is, the longer the inspection interval

is. If the penalty cost is higher, the inspection interval would be shorter. Because more

frequent inspection would reduce the percentage of the downtime of the system.
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Table 4.5: The optimal strategies for different inspection cost and penalty cost

aaaaaaaaaaaa
pc

cn
100 150 200 250 300 350 400 450 500 550

800 S3 S3 S3 S3 S4 S4 S4 S5 S5 S5

900 S3 S3 S3 S3 S3 S3 S3 S4 S4 S4

1000 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

1100 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

1200 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

1300 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

1400 S1 S3 S3 S3 S3 S3 S3 S3 S3 S3

1500 S1 S1 S3 S3 S3 S3 S3 S3 S3 S3

1600 S1 S1 S1 S2 S3 S3 S3 S3 S3 S3

1700 S1 S1 S1 S1 S2 S3 S3 S3 S3 S3

Example 4.3.3 (Preventive Repair and Corrective Repair Cost Analysis) We let

the preventive repair cost to be a set of values {0, 20, 40, 60, 80, 100, 120, 140, 160, 180,

200}, and the corrective repair cost to be a set of values {200, 220, 240, 260, 280, 300,

320, 340, 360, 380, 400}. All the other parameters are the same as the Example 4.3.1.

The minimal average costs and d0 for new system are shown in Figure 4.4a and Fig-

ure 4.4b. Obviously, the minimal average cost would increase with the increasing of the

repair costs.
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(a) The minimal average costs (b) Inspection interval for new system

Figure 4.4: The optimal results with different cp and cc.

There are seven different strategies for different parameters. For convenience, they are

named as S0 to S6 and presented in Table 4.6.

Table 4.6: Seven different strategies for different cp and cc

Condition S0 S1 S2 S3 S4 S5 S6

[x1,x2] d0 d1 d2 d0 d1 d2 d0 d1 d2 d0 d1 d2 d0 d1 d2 d0 d1 d2 d0 d1 d2

00 3 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0

01 3 0 1 4 0 1 3 0 0 3 0 0 3 0 0 4 0 1 3 0 0

02 3 0 1 4 0 1 4 0 1 4 0 1 4 0 1 2 0 0 2 0 0

10 3 1 0 4 1 0 3 0 0 3 0 0 3 0 0 4 1 0 3 0 0

11 3 1 1 4 1 1 4 1 1 3 0 1 2 0 0 4 1 1 4 1 1

12 3 1 1 4 1 1 4 1 1 3 1 0 3 0 1 4 1 1 4 1 1

20 3 1 0 4 1 0 4 1 0 4 1 0 4 1 0 2 0 0 2 0 0

21 3 1 1 4 1 1 4 1 1 3 1 0 3 1 0 4 1 1 4 1 1

22 3 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1

For different preventive repair cost and corrective repair cost, we have different best

strategy (Table 4.7). We can see a trend in the table from the lower left corner (S0) to

the upper right corner (S5). From S0 to S6, the optimal strategies are becoming more and
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more risky, which means the repair action is less frequently conducted and the inspection

interval is longer.

Table 4.7: The optimal strategies for different preventive repair cost and corrective repair

cost

aaaaaaaaaaaa
cc

cp
0 20 40 60 80 100 120 140 160 180 200

200 S0 S0 S0 S0 S1 S2 S2 S2 S3 S4 S4

220 S0 S0 S0 S0 S1 S2 S2 S2 S2 S3 S4

240 S0 S0 S0 S0 S1 S1 S2 S2 S2 S3 S4

260 S0 S0 S0 S0 S1 S1 S2 S2 S2 S3 S4

280 S0 S0 S0 S0 S0 S1 S2 S2 S2 S2 S3

300 S0 S0 S0 S0 S0 S1 S1 S2 S2 S2 S3

320 S0 S0 S0 S0 S0 S1 S1 S2 S2 S2 S3

340 S0 S0 S0 S0 S0 S1 S1 S2 S2 S2 S2

360 S0 S0 S0 S0 S0 S0 S1 S2 S2 S2 S2

380 S0 S0 S0 S0 S0 S0 S1 S1 S2 S2 S2

400 S0 S0 S0 S0 S0 S0 S1 S5 S6 S6 S6

Example 4.3.4 (Potential inspection interval and Setup cost) We let the potential

inspection interval to be a set of values {1, 2, 3, 4, 5, 6, 7}, and the setup cost to be a set

of values {0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300}. All

the other parameters are the same as the Example 4.3.1.

The minimal average costs and d0 for new system are shown in Figure 4.5. We can see

that sufficient potential inspection interval is important for the cost optimizing. While the

setup cost does not have great influence on the problem when the cost is not high.
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(a) The minimal average costs (b) Inspection interval for new system

Figure 4.5: The optimal results with different inspection interval and cs.

A k-out-of-n system is a typical system with economic dependence, a k-out-of-n system

works if at least k components works. The 1-out-of-2 system has been discussed, but in

practice, both k and n are important system parameters, and they could be any positive

integer numbers as long as k less than or equal to n. In this section, we will use the same

data as before, but change the value of these two parameters. Some interesting patterns

are founded, which are presented by the following two examples.

Example 4.3.5 (Constant k with variable n) we consider a system with a constant k

but variable n. Following the Example 4.3.1, 1-out-of-1, 1-out-of-3 and 1-out-of-4 systems

would be discussed.

For 1-out-of-1 system, the optimal maintenance decisions are shown in Table 4.8, and

the average cost is 146.4859. The percentage of downtime of the system is shown in

Figure 4.6a. The percentage of downtime of the system is 0.0468.
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Table 4.8: The optimal decision for 1-out-of-1 system

Condition Repair Inspection

0 0 2

1 1 2

2 1 2

For 1-out-of-3 system, the optimal maintenance decisions are shown in Table 4.9, and

the average cost is 108.8438. The percentage of downtime of the system is shown in

Figure 4.6b. The percentage of downtime of the system is 0.0247.

Table 4.9: The optimal decision for 1-out-of-3 system

Condition Repair Inspection Condition Repair Inspection Condition Repair Inspection

0,0,0 [0,0,0] 5 1,0,0 [0,0,0] 5 2,0,0 [0,0,0] 4

0,0,1 [0,0,0] 5 1,0,1 [0,0,0] 4 2,0,1 [0,0,0] 3

0,0,2 [0,0,0] 4 1,0,2 [0,0,0] 3 2,0,2 [0,0,1] 4

0,1,0 [0,0,0] 5 1,1,0 [0,0,0] 4 2,1,0 [0,0,0] 3

0,1,1 [0,0,0] 4 1,1,1 [0,0,0] 3 2,1,1 [1,0,0] 4

0,1,2 [0,0,0] 3 1,1,2 [0,0,1] 4 2,1,2 [1,0,1] 5

0,2,0 [0,0,0] 4 1,2,0 [0,0,0] 3 2,2,0 [0,1,0] 4

0,2,1 [0,0,0] 3 1,2,1 [0,1,0] 4 2,2,1 [1,1,0] 5

0,2,2 [0,0,1] 4 1,2,2 [0,1,1] 5 2,2,2 [0,1,1] 4

For 1-out-of-4 system, the average cost is 108.2322. The percentage of downtime of the

system is shown in Figure 4.6c. The percentage of downtime of the system is 0.0165.

For 1-out-of-5 system, the average cost is 108.2322. The percentage of downtime of the

system is shown in Figure 4.6d. The percentage of downtime of the system is 0.0165.
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(a) 1-out-of-1 system (b) 1-out-of-3 system

(c) 1-out-of-4 system (d) 1-out-of-5 system

Figure 4.6: The percentage of downtime of the 1-out-of-n systems.

We summarize the results of the systems with different number of machines as follows:
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Table 4.10: Summary the results of the systems with different number of machines

Systems Average cost Percentage of downtime

1-out-of-1 146.4859 0.0468

1-out-of-2 116.0181 0.0235

1-out-of-3 108.8438 0.0247

1-out-of-4 108.2322 0.0165

1-out-of-5 108.2322 0.0165

Example 4.3.6 (Constant n with variable k) We consider a system with a constant

n but variable k. The 1-out-of-3, 2-out-of-3 and 3-out-of-3 systems would be compared and

discussed.

For 2-out-of-3 system, the average cost is 174.7510. The optimal decisions and the

percentage of downtime presented below:

Table 4.11: The optimal decision for 2-out-of-3 system

Condition Repair inspection Condition Repair inspection Condition Repair inspection

0,0,0 [0,0,0] 3 1,0,0 [0,0,0] 2 2,0,0 [1,0,0] 3

0,0,1 [0,0,0] 2 1,0,1 [1,0,1] 3 2,0,1 [1,0,1] 3

0,0,2 [0,0,1] 3 1,0,2 [1,0,1] 3 2,0,2 [1,0,1] 3

0,1,0 [0,0,0] 2 1,1,0 [1,1,0] 3 2,1,0 [1,1,0] 3

0,1,1 [0,1,1] 3 1,1,1 [1,1,1] 3 2,1,1 [1,1,1] 3

0,1,2 [0,1,1] 3 1,1,2 [1,1,1] 3 2,1,2 [1,1,1] 3

0,2,0 [0,1,0] 3 1,2,0 [1,1,0] 3 2,2,0 [1,1,0] 3

0,2,1 [0,1,1] 3 1,2,1 [1,1,1] 3 2,2,1 [1,1,1] 3

0,2,2 [0,1,1] 3 1,2,2 [1,1,1] 3 2,2,2 [1,1,1] 3

If k = 3, then we have a 3-out-of-3 system, the average cost is 312.5183. The optimal

decisions and the percentage of downtime presented below:
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Table 4.12: The optimal decision for 3-out-of-3 system

Condition Repair inspection Condition Repair inspection Condition Repair inspection

0,0,0 [0,0,0] 1 1,0,0 [1,0,0] 1 2,0,0 [1,0,0] 1

0,0,1 [0,0,1] 1 1,0,1 [1,0,1] 1 2,0,1 [1,0,1] 1

0,0,2 [0,0,1] 1 1,0,2 [1,0,1] 1 2,0,2 [1,0,1] 1

0,1,0 [0,1,0] 1 1,1,0 [1,1,0] 1 2,1,0 [1,1,0] 1

0,1,1 [0,1,1] 1 1,1,1 [1,1,1] 1 2,1,1 [1,1,1] 1

0,1,2 [0,1,1] 1 1,1,2 [1,1,1] 1 2,1,2 [1,1,1] 1

0,2,0 [0,1,0] 1 1,2,0 [1,1,0] 1 2,2,0 [1,1,0] 1

0,2,1 [0,1,1] 1 1,2,1 [1,1,1] 1 2,2,1 [1,1,1] 1

0,2,2 [0,1,1] 1 1,2,2 [1,1,1] 1 2,2,2 [1,1,1] 1
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(a) 1-out-of-3 system (b) 2-out-of-3 system

(c) 3-out-of-3 system

Figure 4.7: The percentage of downtime of the k-out-of-3 systems.

We summarize the results of the systems with a constant n and variable k as follows:
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Table 4.13: Summary the results of the systems with different number of k

Systems Average cost Percentage of downtime

1-out-of-3 108.8438 0.0274

2-out-of-3 174.7510 0.0269

3-out-of-3 312.5183 0.0536

Example 4.3.7 (Non-identical machines) Before, we assume the machines are iden-

tical. In this part, we discussed the system with non-identical machines. If the machines

have different deterioration rate and repair cost, the optimal decisions would not be similar

to the system with identical machines.

Suppose there are two machines in the system, one is the same as the Example 4.3.1,

another one has a different deterioration rate. We have two deterioration matrix:

M1 =

 0.7222 0.2596 0.0181

0 0.8306 0.1694

0 0 1


,

M2 =

 0.8950 0.0668 0.0382

0 0.8393 0.1607

0 0 1


.

Apparently, the second machine has lower deterioration rate. The optimal maintenance

decisions are shown in Table 4.14, and the average cost is 95.5293. The percentage of

downtime of the system is shown in Figure4.8.

64



Table 4.14: The optimal decision for 1-out-of-2 system with different devices

Condition [x1,x2], Repair[d1,d2], Inspection interval[d0]

0,0 [0,0] 4

0,1 [0,1] 4

0,2 [0,1] 4

1,0 [0,0] 3

1,1 [1,1] 4

1,2 [1,1] 4

2,0 [1,0] 4

2,1 [1,1] 4

2,2 [1,1] 4
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Figure 4.8: The percentage of downtime of the 1-out-of-2 system with different devices.

By the optimal decisions, we can see that the inspection intervals are four years for

most conditions, only when the first one machine is unhealthy, the inspection interval is

three years. For the maintenance decisions, the first machine would be repaired if the

condition is failure or both machines are not healthy, the second machine would be repair

if the machine is not healthy.

Example 4.3.8 (Comparison with periodical inspection) The model we adapted is

a non-periodical inspection model, which means the inspection interval could be different for

different conditions. Some research studied periodical inspection model, which means the

inspection interval would be the same for all different conditions. Apparently, non-periodical

inspection model is a more efficient model, since the inspection interval is more flexible,
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and the strategies of non-periodical inspection model include the strategies of periodical

inspection model. We will use this numerical example to show the result.All the parameters

are the same as the Example 4.3.1.

The minimal average cost for both models are show in Figure 4.9. In Table 4.3, we

get the optimal maintenance strategy for non-periodical model, and the inspection interval

could be 3 or 4 in that example. In the Figure 4.9, the blue line represents the value of

non-periodical inspection model, and it arrives the minimal value when the max inspection

interval greater than 3. The green line represents the value of periodical inspection model,

the optimal value is 118.1126 when inspection interval is 3, but it is still higher than the

minimal value of non-periodical inspection model, which is 118.0181.

Figure 4.9: The comparison with periodical inspection for the 1-out-of-2 system.
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We can consider more examples with different n in Example 4.3.5 and compare the

result with periodical inspection model.(See Figure 4.10).

(a) 1-out-of-1 system (b) 1-out-of-3 system

(c) 1-out-of-4 system (d) 1-out-of-5 system

Figure 4.10: The comparison with periodical inspection for the 1-out-of-n systems.

We summarize the results in Table 4.15.
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Table 4.15: The summary of the comparison results

Number of machine Periodical inspection Non-periodical inspection Improvement

1 146.4859 146.4859 0.00%

2 118.1126 118.0181 0.08%

3 110.4999 108.8438 1.50%

4 109.3225 108.2322 1.00%

5 109.3225 108.2322 1.00%

4.4 Case Study

In this section, we analyze a real case by our models.

There is an area called Emergency Resuscitation in some hospitals. Patients can get

immediate care in cardiac arrest, airway, breathing and circulation compromise. All re-

suscitative equipment (monitors, defibrillators, airway, intubation and surgical equipment)

available in the ‘Resus’ area.

In the data, we find there are two kinds of medical devices available, including three

defibrillators and a suction unit. We need to find out the optimal management strategy

for this ‘Resus’ area.

Table 4.16: The devices in ‘Emergency Resus’

Term Manufacturer Model Asset Description Location

Defibrillator/monitor Philips Medical Systems M3535A ˆHeartStart MRx 18641 Emergency Emergency Resus

Defibrillator/monitor Philips Medical Systems M3535A ˆHeartStart MRx 18647 Emergency Emergency Resus

Defibrillator/monitor Philips Medical Systems M3535A ˆHeartStart MRx 18648 Emergency Emergency Resus

Suction unit Devilbiss Healthcare 7305P-D KN053264 Emergency Physician Emergency Resus
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Table 4.17: Risk factors of the medical devices

Term Asset Location Equipment Function Location of Use Frequency of Use

Defibrillator/monitor 18641 Emergency Resus 6 5 3

Defibrillator/monitor 18647 Emergency Resus 6 5 3

Defibrillator/monitor 18648 Emergency Resus 6 5 3

Suction unit KN053264 Emergency Resus 5 2 3

By the classification result (e.g. the classification tree 3.1 in Chapter 3), the defib-

rillator/monitors are classified into high risk level, and the suction unit is classified into

medium risk level.

Then we assume both high and medium risk levels medical devices should be considered

into the maintenance program, and at least one working device available for each type of

devices to ensure the operating of the Emergency Resus.

Then we need to find out the transition matrices for both types of devices the method

introduced in Section 4.2.

The model of the defibrillators is Heartstart mrx m3535a. After cleaning the data, we

get the transition count matrix as follows. A one year transition matrix is desired.

Initial state Final state

0 1 2

One year

0 119 20 6

1 0 126 64

2 0 0 0

Two years

0 15 1 2

1 0 6 5

2 0 0 0

Initial transition matrix:
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M0 =

 0.4 0.3 0.3

0 0.5 0.5

0 0 1


After 1000 iterations, the estimated stable transition matrix is:

MEM
1 =

 0.9098 0.0699 0.0203

0 0.6901 0.3099

0 0 1


The model of this suction unit device is 7305P-D. After cleaning the data, we get the

transition count matrix as follows. A one year transition matrix is desired.

Initial state Final state

0 1 2

One year

0 602 132 9

1 0 55 71

2 0 0 0

Two years

0 44 26 1

1 0 9 18

2 0 0 0

Three years

0 1 3 0

1 0 0 0

2 0 0 0

Initial transition matrix:

M0 =

 0.4 0.3 0.3

0 0.5 0.5

0 0 1


71



After 1000 iterations, the estimated stable transition matrix is:

MEM
2 =

 0.8551 0.1372 0.0077

0 0.4940 0.5060

0 0 1


Note that this is no longer a k-out-of-n structure system, but a system with more

general structure.

Figure 4.11: The structure of the system of ‘Emergency Resus’

By the model introduced in Section 4.3, we can get the optimal maintenance strategy

and the minimal average cost.

Let x1 to x3 denote the deterioration level of the three defibrillator devices and x4

denote the deterioration level of the suction unit. Then we need to change the function

Q(·), which equals 1 if the system is up, and 0 if it is down.

Q(x) =

{
1, if

∑3
i=1Ri(xi) ≥ 1 and R4(x4) = 1

0, if
∑3

i=1Ri(xi) < 1 or R4(x4) = 0

For the cost parameters, we suppose the inspection cost is 100 per time, the set up cost

is 50 per time, the preventive repair cost is 150 per time per device for defibrillator and 100

per time per device for suction unit, the corrective repair cost is 200 per time per device
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for defibrillator and 150 for suction unit, and the penalty cost is 1000 per time. Denoted

as: cn : 100; cc: [200, 200, 200, 150]; cp: [150, 150, 150, 100]; cs : 50; pc : 1000.

Then Equation (4.1) would be expressed as follows

Ct∗ (xt)
= min

D

{
I
(
xt
)
cn + pc

(
1−Q(xt)

)
+ cs

(
1−

n∏
i=1

(1− dti)

)

+
n∑
i=1

diRi

(
xti
)
cpi +

n∑
i=1

di
(
1−Ri

(
xti
))

cci

+
∑

[xt+1
1 ,xt+1

2 ,...,xt+1
n ]∈Ω

Ct+1∗ ([x̄t0 − 1, xt+1
1 , xt+1

2 , ..., xt+1
n ]
)
p[x̄t1,x̄

t
2,...,x̄

t
n],[xt+1

1 ,xt+1
2 ,...,xt+1

n ]

}
(4.7)

where [x̄t0 − 1, xt+1
1 , xt+1

2 , ..., xt+1
n ] is the state of xt+1, cpi and cci is the preventive repair

cost and corrective repair cost for device i.

The optimal maintenance decisions are shown in Table 4.18, and the average cost is

154.4509. The percentage of downtime of the system is shown in Figure 4.12.
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Table 4.18: The optimal decisions for the system

Condition x Maintenance D Condition x Maintenance D Condition x Maintenance D

0000 20000 1000 20000 2000 20000

0001 20001 1001 20001 2001 20001

0002 20001 1002 20001 2002 20001

0010 20000 1010 20000 2010 20010

0011 20001 1011 20011 2011 20011

0012 20001 1012 20011 2012 20011

0020 20000 1020 21000 2020 20010

0021 20001 1021 21001 2021 20011

0022 20001 1022 21001 2022 20011

0100 20000 1100 20000 2100 20100

0101 20001 1101 20101 2101 20101

0102 20001 1102 21001 2102 20101

0110 20000 1110 20110 2110 20110

0111 20011 1111 20111 2111 20111

0112 20011 1112 21011 2112 20111

0120 20100 1120 21100 2120 20110

0121 20101 1121 21101 2121 20111

0122 20101 1122 21101 2122 20111

0200 20000 1200 21000 2200 20100

0201 20001 1201 21001 2201 20101

0202 20001 1202 21001 2202 20101

0210 20010 1210 21010 2210 20110

0211 20011 1211 21011 2211 20111

0212 20011 1212 21011 2212 20111

0220 20010 1220 21010 2220 20110

0221 20011 1221 21011 2221 20111

0222 20011 1222 21011 2222 20111
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Figure 4.12: The percentage of downtime of the system at Emergency Resus.

(The blue bars are for the machines, the red bar is for the system)

From the result, we find out that one of the defibrillators is redundant, and since there

is only one suction unit, the inspection frequency is quite often. Obviously, more suction

unit or increasing the backup ratio of suction unit could improve the performance of this

system.
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Chapter 5

Conclusion

5.1 Summary of the Thesis

Management of medical device has obtained many attentions in both research and practical

field, but there is still a big gap between theoretical research and real life application. In

this thesis, we started from a real problem proposed by WRHA, then integrated the real

problem with some proper methods from operations research and data analysis. We looked

into the challenge that the healthcare organizations are facing. We proposed our own

models, and eventually obtained some interesting results, which include the classification

of medical devices and making inspection and maintenance decisions.

(a) Classification of medical devices. In this part, we summarized the existing risk

factors and scoring system and methods. We developed a generalized and useful evaluation

model. Based on the given data, we divided the devices into three categories: High risk

level, Medium risk level and Low risk level. We selected three important factors (Equipment

function, Location of use and Frequency of use) in our model according to their definition

and their correlations, which are calculated by using given data. Then, we built four

different classification models (Linear regression, Logistic regression, Classification tree

and Random forest) to analyze the relationship between the risk factors and the risk levels.

Through cross-validation method, all four models are performed pretty well. The three risk
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factors have critical influence on the risk levels, and according to the classification tree,

we could explicitly find out that how the devices are classified into different risk levels by

Equipment Function and Location of use.

The result could be further used in maintenance work. By the classification, we can

easily decide what kinds of devices are suppose to be included in the devices maintenance

program.

(b) An inspection and maintenance model. The second part of this thesis is a condition-

based multi-component inspection and maintenance model. In this part, we first studied

the deterioration rate by using the provided data from WRHA and EM algorithm to

estimate a transition matrix of the system’s conditions. The transition matrix is a discrete

time and discrete states Markov chain, which is suitable for the decision model. Then, we

proposed a Markov decision processes model. Through this model, we can find out the

optimal inspection and maintenance decisions and the minimal long-run average cost. The

algorithm we used is relative value iteration. Another feature worth mentioning is that we

consider the inspection interval as a dimension of the condition, so that we can obtain the

optimal inspection interval and maintenance strategy at the same time.

The optimal inspection and maintenance decisions depend significantly on the cost

parameters and structure of the system. In the numerical part, changing parameters can

result in completely different optimal decisions. Moreover, we compared the minimal cost

of our model with the result of periodic inspection model, our model can achieve lower

minimal cost for complicated systems.

5.2 Future Research

The proposed models can be enriched by more realistic assumptions and considerations,

e.g. imperfect inspection, imperfect repair and finite life time of devices. Some other

techniques can also be used to improve our research.

(a) Connection between the two parts. In this thesis, the connection between the two

parts is not close. A possible improvement is constructing a decision-making model based
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on risk level directly. For example, we can use dynamic risk factors and partial observable

Markov decision processes model to estimate the system’s condition and make maintenance

decisions.

(b) Classification of medical devices. We selected our risk factors based on previous

researches, more research and investigation are required to select risk factors. The diversity

of the provided data is limited, the classification models need to be tested further with

more data.

(c) An inspection and maintenance model.

We only consider the discrete-time situation, while in practice, the inspection and

maintenance could happen in continuous-time. For the deterioration transition matrix,

the convergence is not guaranteed (may converge to local maximum), with different initial

transition matrix, we may have different final result. Further research is required for the

EM algorithm in our problem.

For the inspection and maintenance model, we discussed multi-component system. But

with the increasing of the number of devices, the number of states in our model would

soar. By Kronecker product, the number of states increase exponentially with the increase

of multiplier. Therefore, it is hard to solve large problem by this model. How to reduce

the number of states is a problem to investigate in the future. Another possible solution

is using heuristic or approximation methods. Although we have observed certain patterns

and properties by the numerical examples, a formal proof of the relationship is required.
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policy for multi-component systems with lévy copulas dependence. Reliability Engi-

neering & System Safety, 149:44–55, 2016.

[31] William J Long, John L Griffith, Harry P Selker, and Ralph B D’agostino. A compar-

ison of logistic regression to decision-tree induction in a medical domain. Computers

and Biomedical Research, 26(1):74–97, 1993.

[32] Toshio Nakagawa. Periodic inspection policy with preventive maintenance. Naval

Research Logistics (NRL), 31(1):33–40, 1984.

[33] Martin L Puterman. Markov decision processes: discrete stochastic dynamic program-

ming. John Wiley & Sons, 2014.

[34] Lior Rokach and Oded Maimon. Data mining with decision trees: theory and applica-

tions. World scientific, 2014.

[35] Sheldon M Ross. Introduction to probability models. Academic press, 2014.

[36] YS Sherif and ML Smith. Optimal maintenance models for systems subject to failure–a

review. Naval Research Logistics (NRL), 28(1):47–74, 1981.

[37] Anthony M Smith and Glenn R Hinchcliffe. RCM–Gateway to world class mainte-

nance. Butterworth-Heinemann, 2003.

[38] Sharareh Taghipour, Dragan Banjevic, and Andrew KS Jardine. Periodic inspection

optimization model for a complex repairable system. Reliability Engineering & System

Safety, 95(9):944–952, 2010.

82



[39] Sharareh Taghipour, Dragan Banjevic, and Andrew KS Jardine. Prioritization of

medical equipment for maintenance decisions. Journal of the Operational Research

Society, 62(9):1666–1687, 2011.

[40] Bassel Tawfik, Bassem K Ouda, and Yassin M Abd El Samad. A fuzzy logic model for

medical equipment risk classification. Journal of Clinical Engineering, 38(4):185–190,

2013.

[41] LC Thomas. A survey of maintenance and replacement models for maintainability

and reliability of multi-item systems. Reliability Engineering, 16(4):297–309, 1986.

[42] Henk C Tijms. A first course in stochastic models. John Wiley and sons, 2003.

[43] Strother H Walker and David B Duncan. Estimation of the probability of an event as

a function of several independent variables. Biometrika, 54(1-2):167–179, 1967.

[44] Ronald E Walpole, Raymond H Myers, Sharon L Myers, and Keying Ye. Probability

and statistics for engineers and scientists, volume 5. Prentice Hall, 2011.

[45] Binseng Wang and Alan Levenson. Peer review paper: Equipment inclusion criteria-a

new interpretation of jcaho’s medical equipment management standard. Journal of

Clinical Engineering, 25(1):26–hyhen, 2000.

[46] WRHA. Winnipeg regional health authority annual report. http://www.wrha.mb.

ca/healthinfo/reports/annual.php. Accessed: 2017-05-11.

[47] WRHA. Performance Assurance Guide - A guide for developing and implementing a

medical device performance assurance program. Winnipeg Regional Health Authority

(WRHA) Clinical Engineering Program, Winnipeg, 2015.

[48] Xin Yan and Xiaogang Su. Linear regression analysis: theory and computing. World

Scientific, 2009.
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Appendix B

Examples of Inspection Interval

Greater Than One

Here, we consider the situation when the inspection interval is greater than one.

If the decision is Dt = [2, 0], then x̄t = [2, 0].

Ct
(
xt
)

= 1×cn+pc (1− 1)+cs×0+0×1×cp+0×(1− 1) cc+
2∑

xt+1
1 =0

px̄t1x
t+1
1
Ct+1

(
[1, xt+1

1 ]
)

= cn +
2∑

xt+1
1 =0

px̄t1x
t+1
1
Ct+1

(
[1, xt+1

1 ]
)

= cn + p00C
t+1 ([1, 0]) + p01C

t+1 ([1, 1]) + p02C
t+1 ([1, 2])

(B.1)

There is no decision to be made at time t+1, but from the equation, we can get the

expected penalty cost, which is p02C
t+1 ([1, 2]).

If xt+1
1 = 0, so I (xt+1) = 0, R1

(
xt+1

1

)
= 1,Q (xt+1) = 1.
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(B.2)

Ct+1
(
xt+1

)
= 0× cn + pc (1− 1) + cs × 0 + 0× 1× cp + 0

× (1− 1) cc +
2∑

xt+2
1 =0

px̄t+1
1 xt+2

1
Ct+2

(
[1, xt+2

1 ]
)

=
2∑

xt+2
1 =0

px̄t+1
1 xt+2

1
Ct+2

(
[1, xt+2

1 ]
)

= p00C
t+2 ([1, 0]) + p01C

t+2 ([1, 1]) + p02C
t+2 ([1, 2])

If xt+1
1 = 1, so I (xt+1) = 0, R1

(
xt+1

1

)
= 1, Q (xt+1) = 1.

(B.3)

Ct+1
(
xt+1

)
= 0× cn + pc (1− 1) + cs × 0 + 0× 1× cp + 0

× (1− 1) cc +
2∑

xt+2
1 =0

px̄t+1
1 xt+2

1
Ct+2

(
[1, xt+2

1 ]
)

=
2∑

xt+2
1 =0

px̄t+1
1 xt+2

1
Ct+2

(
[1, xt+2

1 ]
)

= p11C
t+2 ([1, 1]) + p12C

t+2 ([1, 2])

If xt+1
1 = 2, so I (xt+1) = 0, R1

(
xt+1

1

)
= 0, Q (xt+1) = 0.

(B.4)

Ct+1
(
xt+1

)
= 0× cn + pc (1− 0) + cs × 0 + 0× 0× cp + 0

× (1− 0) cc +
2∑

xt+2
1 =0

px̄t+1
1 xt+2

1
Ct+2

(
[1, xt+2

1 ]
)

=
2∑

xt+2
1 =0

px̄t+1
1 xt+2

1
Ct+2

(
[1, xt+2

1 ]
)

= pc+p22C
t+2 ([1, 2])

Combining the equations, we get
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Ct
(
xt
)

= 1×cn+pc (1− 1)+cs×0+0×1×cp+0×(1− 1) cc+
2∑

xt+1
1 =0

px̄t1x
t+1
1
Ct+1

(
[1, xt+1

1 ]
)

= cn +
2∑

xt+1
1 =0

px̄t1x
t+1
1
Ct+1

(
[1, xt+1

1 ]
)

= cn + p00(p00C
t+2 ([0, 0]) + p01C

t+2 ([0, 1]) + p02C
t+2 ([0, 2]))

+ p01(p11C
t+2 ([0, 1]) + p12C

t+2 ([0, 2])) + p02(pc+p22C
t+2 ([0, 2]))

=cn + p2
00C

t+2 ([0, 0]) + p2
01C

t+2 ([0, 1]) + p2
02C

t+2 ([0, 2]) + p02pc
(B.5)

Suppose xt+2
1 = 1, so R1

(
xt+2

1

)
= 1, Q (xt+2) = 1.

Let Ct+2 (xt+2) denote the arbitrary cumulative cost from time t+2 onward.

If the decision is Dt+2 = [2, 0], then x̄t+2 = [2, 1].

(B.6)

Ct+2
(
xt+2

)
= 1× cn + pc (1− 1) + cs × 0 + 0× 1× cp + 0

× (1− 1) cc +
2∑

xt+3
1 =0

px̄t+2
1 xt+3

1
Ct+3

(
[1, xt+3

1 ]
)

= cn +
2∑

xt+3
1 =0

px̄t+2
1 xt+3

1
Ct+3

(
[1, xt+3

1 ]
)

= cn + p11C
t+3 ([1, 1]) + p12C

t+3 ([1, 2])

There is no decision to be made at time t+3, but from the equation, we can get the

expected penalty cost, which is p12C
t+3 ([1, 2]).

By the same procedure we can get
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(B.7)

Ct+2
(
xt+2

)
= 1× cn + pc (1− 1) + cs × 0 + 0× 1× cp + 0

× (1− 1) cc +
2∑

xt+3
1 =0

px̄t+2
1 xt+3

1
Ct+3

(
[1, xt+3

1 ]
)

= cn +
2∑

xt+3
1 =0

px̄t+2
1 xt+3

1
Ct+3

(
[1, xt+3

1 ]
)

= cn + p11(p11C
t+4 ([0, 1]) + p12C

t+4 ([0, 2])) + p12(pc+p22C
t+4 ([0, 2]))

=cn + p2
11C

t+4 ([0, 1]) + p2
12C

t+4 ([0, 2]) + p12pc

If the decision is Dt = [2, 1], then x̄t = [2, 0].

(B.8)

Ct+2
(
xt+2

)
= 1× cn + pc (1− 1) + cs × 1 + 1× 1× cp + 1

× (1− 1) cc +
2∑

xt+3
1 =0

px̄t+2
1 xt+3

1
Ct+3

(
[1, xt+3

1 ]
)

= cn + cs + cp +
2∑

xt+3
1 =0

px̄t+2
1 xt+3

1
Ct+3

(
[1, xt+3

1 ]
)

= cn + cs + cp + p00C
t+3 ([1, 0]) + p01C

t+3 ([1, 1]) + p02C
t+3 ([1, 2])

There is no decision to be made at time t+3, but from the equation, we can get the

expected penalty cost, which is p02C
t+3 ([1, 2]).

By the same procedure we can get
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Ct+2
(
xt+2

)
= 1× cn + pc (1− 1) + cs × 1 + 1× 1× cp + 1

× (1− 1) cc +
2∑

xt+3
1 =0

px̄t+2
1 xt+3

1
Ct+3

(
[1, xt+3

1 ]
)

= cn + cs + cp +
2∑

xt+3
1 =0

px̄t+2
1 xt+3

1
Ct+3

(
[1, xt+3

1 ]
)

= cn + cs + cp + p00(p00C
t+4 ([0, 0]) + p01C

t+4 ([0, 1]) + p02C
t+4 ([0, 2]))

+ p01(p11C
t+4 ([0, 1]) + p12C

t+4 ([0, 2])) + p02(pc+p22C
t+4 ([0, 2]))

=cn + cs + cp + p2
00C

t+4 ([0, 0]) + p2
01C

t+4 ([0, 1]) + p2
02C

t+4 ([0, 2]) + p02pc
(B.9)

Suppose xt+2
1 = 2, so R1

(
xt+2

1

)
= 0, Q (xt+2) = 0.

Let Ct+2 (xt+2) denote the arbitrary cumulative cost from time t+2 onward.

If the decision is Dt+2 = [2, 0], then x̄t+2 = [2, 2].

(B.10)

Ct+2
(
xt+2

)
= 1× cn + pc (1− 0) + cs × 0 + 0× 0× cp + 0

× (1− 0) cc +
2∑

xt+3
1 =0

px̄t+2
1 xt+3

1
Ct+3

(
[1, xt+3

1 ]
)

= cn + pc +
2∑

xt+3
1 =0

px̄t+2
1 xt+3

1
Ct+3

(
[1, xt+3

1 ]
)

= cn + pc + p22C
t+3 ([1, 2])

There is no decision to be made at time t+3, but from the equation, we can get the

expected penalty cost, which is p22C
t+3 ([1, 2]).

By the same procedure we can get
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(B.11)

Ct+2
(
xt+2

)
= 1× cn + pc (1− 0) + cs × 0 + 0× 0× cp

+ 0 (1− 0) cc +
2∑

xt+3
1 =0

px̄t+2
1 xt+3

1
Ct+3

(
[1, xt+3

1 ]
)

= cn + pc +
2∑

xt+3
1 =0

px̄t+2
1 xt+3

1
Ct+3

(
[1, xt+3

1 ]
)

= cn + pc + p22(pc+p22C
t+4 ([0, 2]))

=cn + pc + p2
22C

t+4 ([0, 2]) + p22pc

If the decision is Dt = [2, 1], then x̄t = [2, 0].

Ct+2
(
xt+2

)
= 1× cn + pc (1− 0) + cs × 1 + 1× 0× cp + 1

× (1− 0) cc +
2∑

xt+3
1 =0

px̄t+2
1 xt+3

1
Ct+3

(
[1, xt+3

1 ]
)

= cn + pc + cs + cc +
2∑

xt+3
1 =0

px̄t+2
1 xt+3

1
Ct+3

(
[1, xt+3

1 ]
)

= cn + pc + cs + cc + p00C
t+3 ([1, 0]) + p01C

t+3 ([1, 1]) + p02C
t+3 ([1, 2])

(B.12)

There is no decision to be made at time t+3, but from the equation, we can get the

expected penalty cost, which is p02C
t+3 ([1, 2]).

By the same procedure we can get
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Ct+2
(
xt+2

)
= 1× cn + pc (1− 0) + cs × 1 + 1× 0× cp + 1

× (1− 0) cc +
2∑

xt+3
1 =0

px̄t+2
1 xt+3

1
Ct+3

(
[1, xt+3

1 ]
)

= cn + pc + cs + cc +
2∑

xt+3
1 =0

px̄t+2
1 xt+3

1
Ct+3

(
[1, xt+3

1 ]
)

= cn + pc + cs + cc + p00(p00C
t+4 ([0, 0]) + p01C

t+4 ([0, 1]) + p02C
t+4 ([0, 2]))

+ p01(p11C
t+4 ([0, 1]) + p12C

t+4 ([0, 2])) + p02(pc+p22C
t+4 ([0, 2]))

=cn + pc + cs + cc + p2
00C

t+4 ([0, 0]) + p2
01C

t+4 ([0, 1]) + p2
02C

t+4 ([0, 2]) + p02pc
(B.13)

If the decision is Dt = [n, 0], then x̄t = [n, 0].

(B.14)

Ct
(
xt
)

= 1× cn + pc (1− 1) + cs × 0 + 0× 1× cp + 0

× (1− 1) cc +
2∑

xt+1
1 =0

px̄t1x
t+1
1
Ct+1

(
[n− 1, xt+1

1 ]
)

= cn +
2∑

xt+1
1 =0

px̄t1x
t+1
1
Ct+1

(
[n− 1, xt+1

1 ]
)

= cn + p00C
t+1 ([n− 1, 0]) + p01C

t+1 ([n− 1, 1]) + p02C
t+1 ([n− 1, 2])

There is no decision to be made from time t+1 to time t+ n−1, but from the equations

below, we can get the expected penalty cost.

If xt+1
1 = 0, so R1

(
xt+1

1

)
= 1, Q (xt+1) = 1.
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(B.15)

Ct+1
(
xt+1

)
= 0× cn + pc (1− 1) + cs × 0 + 0× 1× cp + 0

× (1− 1) cc +
2∑

xt+2
1 =0

px̄t+1
1 xt+2

1
Ct+2

(
[n− 2, xt+2

1 ]
)

=
2∑

xt+2
1 =0

px̄t+1
1 xt+2

1
Ct+2

(
[n− 2, xt+2

1 ]
)

= p00C
t+2 ([n− 2, 0]) + p01C

t+2 (n− 2, 1])

+ p02C
t+2 ([n− 2, 2])

If xt+1
1 = 1, so R1

(
xt+1

1

)
= 1, Q (xt+1) = 1.

(B.16)

Ct+1
(
xt+1

)
= 0× cn + pc (1− 1) + cs × 0 + 0× 1× cp + 0

× (1− 1) cc +
2∑

xt+2
1 =0

px̄t+1
1 xt+2

1
Ct+2

(
[n− 2, xt+2

1 ]
)

=
2∑

xt+2
1 =0

px̄t+1
1 xt+2

1
Ct+2

(
[n− 2, xt+2

1 ]
)

= p11C
t+2 ([n− 2, 1]) + p12C

t+2 ([n− 2, 2])

If xt+1
1 = 2, so R1

(
xt+1

1

)
= 0, Q (xt+1) = 0.

(B.17)

Ct+1
(
xt+1

)
= 0× cn + pc (1− 0) + cs × 0 + 0× 0× cp + 0

× (1− 0) cc +
2∑

xt+2
1 =0

px̄t+1
1 xt+2

1
Ct+2

(
[n− 2, xt+2

1 ]
)

=
2∑

xt+2
1 =0

px̄t+1
1 xt+2

1
Ct+2

(
[n− 2, xt+2

1 ]
)

= pc+p22C
t+2 ([n− 2, 2])

Combining the equations, we get that
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Ct
(
xt
)

= 1× cn + pc (1− 1) + cs × 0 + 0× 1× cp + 0

× (1− 1) cc +
2∑

xt+1
1 =0

px̄t1x
t+1
1
Ct+1

(
[n− 1, xt+1

1 ]
)

= cn +
2∑

xt+1
1 =0

px̄t1x
t+1
1
Ct+1

(
[n− 1, xt+1

1 ]
)

= cn + p00(p00C
t+2 ([n− 2, 0]) + p01C

t+2 ([n− 2, 1]) + p02C
t+2 ([n− 2, 2]))

+ p01(p11C
t+2 ([n− 2, 1]) + p12C

t+2 ([n− 2, 2])) + p02(pc+p22C
t+2 ([n− 2, 2]))

=cn + p2
00C

t+2 ([n− 2, 0]) + p2
01C

t+2 ([n− 2, 1]) + p2
02C

t+2 ([n− 2, 2]) + p02pc
(B.18)

Follow the process, we can finally get the equation

Ct
(
xt
)

= 1× cn + pc (1− 1) + cs × 0 + 0× 1× cp + 0× (1− 1) cc

+
2∑

xt+1
1 =0

px̄t1x
t+1
1
Ct+1

(
[n− 1, xt+1

1 ]
)

...
=cn + p2

00C
t+2 ([n− 2, 0]) + p2

01C
t+2 ([n− 2, 1]) + p2

02C
t+2 ([n− 2, 2]) + p02pc

=cn + p2
00(p00C

t+3 ([n− 3, 0]) + p01C
t+3 ([n− 3, 1]) + p02C

t+3 ([n− 3, 1]))

+ p2
01(p11C

t+3 ([n− 3, 1]) + p12C
t+3 ([n− 3, 1]))

+ p2
02(pc + p22C

t+3 ([n− 3, 2])) + p02pc
=cn + p3

00C
t+3 ([n− 3, 0]) + p3

01C
t+3 ([n− 3, 1]) + p3

02C
t+3 ([n− 3, 2]) + p02pc + p2

02pc
...

= cn + pn00C
t+n ([0, 0]) + pn01C

t+n ([0, 1]) + pn02C
t+n ([0, 2]) +

n−1∑
i=1

pi02pc

(B.19)

Suppose xt+n1 = 1, so R1

(
xt+n1

)
= 1, Q (xt+n) = 1.

Let Ct+n (xt+n) denote the arbitrary cumulative cost from time t+ n onward.

If the decision is Dt+n = [n, 0], then x̄t+n = [n, 1].
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(B.20)

Ct+n
(
xt+n

)
= 1× cn + pc (1− 1) + cs × 0 + 0× 1× cp + 0× (1− 1) cc

+
2∑

xt+n+1
1 =0

px̄t+n
1 xt+n+1

1
Ct+n+1

(
[n− 1, xt+n+1

1 ]
)

= cn +
2∑

xt+n+1
1 =0

px̄t+n
1 xt+n+1

1
Ct+n+1

(
[n− 1, xt+n+1

1 ]
)

= cn + p11(p11C
t+n+2 ([n− 2, 1]) + p12C

t+n+2 ([n− 2, 2]))

+ p12(pc+p22C
t+n+2 ([n− 2, 2]))

=cn + p2
11C

t+n+2 ([n− 2, 1]) + p2
12C

t+n+2 ([n− 2, 2]) + p12pc
...

=cn + pn11C
t+2n ([0, 1]) + pn12C

t+2n ([0, 2]) +
n−1∑
i=1

pi12pc

If the decision is Dt+n = [n, 1], then x̄t+n = [n, 0].

Ct+n
(
xt+n

)
= 1× cn + pc (1− 1) + cs × 1 + 1× 1× cp + 1× (1− 1) cc

+
2∑

xt+n+1
1 =0

px̄t+n
1 xt+n+1

1
Ct+n+1

(
[n− 1, xt+n+1

1 ]
)

= cn + cs + cp +
2∑

xt+n+1
1 =0

px̄t+n
1 xt+n+1

1
Ct+n+1

(
[n− 1, xt+n+1

1 ]
)

= cn + cs + cp
+ p00(p00C

t+n+2 ([n− 2, 0]) +p01C
t+n+2 ([n− 2, 1]) + p02C

t+n+2 ([n− 2, 2]))

+p01(p11C
t+n+2 ([n− 2, 1]) + p12C

t+n+2 ([n− 2, 2]))

+ p02(pc+p22C
t+n+2 ([n− 2, 2]))

=cn + cs + cp + p2
00C

t+n+2 ([n− 2, 0]) + p2
01C

t+n+2 ([n− 2, 1])

+ p2
02C

t+n+2 ([n− 2, 2]) + p02pc
...

=cn + cs + cp + pn00C
t+2n ([0, 0]) + pn01C

t+2n ([0, 1]) + pn02C
t+2n ([0, 2]) +

n−1∑
i=1

pi02pc

(B.21)
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Suppose xt+n1 = 2, so R1

(
xt+n1

)
= 0, Q (xt+n) = 0.

Let Ct+n (xt+n) denote the arbitrary cumulative cost from time t+ n onward.

If the decision is Dt+n = [n, 0], then x̄t+n = [n, 2].

(B.22)

Ct+n
(
xt+n

)
= 1× cn + pc (1− 0) + cs × 0 + 0× 1× cp + 0× (1− 1) cc

+
2∑

xt+n+1
1 =0

px̄t+n
1 xt+n+1

1
Ct+n+1

(
[n− 1, xt+n+1

1 ]
)

= cn + pc +
2∑

xt+n+1
1 =0

px̄t+n
1 xt+n+1

1
Ct+n+1

(
[n− 1, xt+n+1

1 ]
)

= cn + pc + p22(pc+p22C
t+n+2 ([n− 2, 2]))

=cn + pc + p2
22C

t+n+2 ([n− 2, 2]) + p12pc
...

=cn + pc + pn22C
t+2n ([0, 2]) +

n−1∑
i=1

pi22pc

If the decision is Dt+n = [n, 1], then x̄t+n = [n, 0].
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Ct+n
(
xt+n

)
= 1× cn + pc (1− 0) + cs × 1 + 1× 0× cp + 1× (1− 0) cc

+
2∑

xt+n+1
1 =0

px̄t+n
1 xt+n+1

1
Ct+n+1

(
[n− 1, xt+n+1

1 ]
)

= cn + pc + cs + cc +
2∑

xt+n+1
1 =0

px̄t+n
1 xt+n+1

1
Ct+n+1

(
[n− 1, xt+n+1

1 ]
)

= cn + pc + cs + cc
+ p00(p00C

t+n+2 ([n− 2, 0]) +p01C
t+n+2 ([n− 2, 1]) + p02C

t+n+2 ([n− 2, 2]))

+ p01(p11C
t+n+2 ([n− 2, 1]) + p12C

t+n+2 ([n− 2, 2]))

+ p02(pc+p22C
t+n+2 ([n− 2, 2]))

=cn + pc + cs + cc + p2
00C

t+n+2 ([n− 2, 0])

+ p2
01C

t+n+2 ([n− 2, 1]) + p2
02C

t+n+2 ([n− 2, 2]) + p02pc
...
=cn + pc + cs + cc + pn00C

t+2n ([0, 0]) + pn01C
t+2n ([0, 1])

+ pn02C
t+2n ([0, 2]) +

n−1∑
i=1

pi02pc

(B.23)
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