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Abstract

Fire separations in a building (e.g. walls) are often constructed from combustible

materials; those containing wood stud framing, mineral wool insulation, and gypsum

board wallcoverings are commonplace in Canadian residential buildings. These construc-

tion assemblies degrade under fire exposure, a process involving chemical decomposition

as well as physical damage. A fire separation’s ability to resist the spread of fire is

traditionally assessed by means of a fire resistance test, in which a construction assembly

is exposed to an intense furnace fire under prescribed conditions. This method of

assessment, while standardized and prescribed in the National Building Code of Canada,

can be restrictive to the design process. In contrast, a performance-based approach,

in which the adequacy of a fire separation is assessed on the basis of its real-world

use, can lead to designs with improved safety, efficiency, and flexibility. Such a design

approach requires a specific engineering toolset: models capable of predicting the thermal

degradation of construction assemblies under specified fire conditions. Development

of the next generation of thermal degradation models requires detailed study of the

phenomena occurring at the large-scale, in the context of real fires rather than prescribed

exposure conditions, and a controlled means by which to conduct this type of study.

Also, a diverse set of experimental data is required for the validation of such models.

The objective of the present body of work is to develop a novel large-scale experiment

tailored specifically for the study of thermal degradation of construction assemblies in

real fires, and to demonstrate the utility of the experimental procedure as applied to the

detailed study of thermal degradation phenomena. A selection of relevant experimental

techniques were identified, and a new apparatus and method of test were developed

for this stated purpose. In this new experiment, one wall of a fire compartment was

instrumented and monitored as it was subject to a realistic fire exposure. A novel

method for measurement of incident heat flux to a large area in a fire compartment

was developed, and used to characterize the conditions of the experiment for a wood

crib fire. A series tests were conducted on fire resisting compartment partitions that are

used in residential buildings in Canada. In the tests, thermal degradation phenomena

were observed and assessed relative to temperatures measured in the degrading walls.

The utility of this new approach in the experimental study of thermal degradation of

construction assemblies subject to real fire exposures was demonstrated. Furthermore, a

relevant set of experimental data was generated that may be used for validation of future

models of thermal degradation and integrated fire analysis.
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Chapter 1

Introduction

A fire may be described as a physical manifestation of a chemical reaction [1] — an

exothermic combustion process resulting in the generation of reaction products and the

release of thermal energy. While this definition may be technically suitable, it does not

represent the real-world experience of fire fighters and fire scientists. Fire is a generalized

term, and can refer to something as simple as a candle flame, or as complex as a fully

involved building fire. Furthermore, a fire is a dynamic process, evolving over time with

changes both in the fuels involved and in the surrounding environment.

The present body of work is concerned with fires of compartment-scale, i.e. fires

occurring in a physical volume that is consistent in size with a small room in a building,

and involving solid fuels which may typically be found in a building. The study of

compartment fires and the involved dynamics is an important and historically relevant

aspect of fire safety engineering [2]. The motivation for research in this field is to better

design structures with improved fire safety, both to reduce the likelihood of the occurrence

of a building fire, and to mitigate the extent of damages and loss of life in the event of a

building fire. As detailed below, the present work contributes to this field by advancing

the current understanding of the impact of real fires on structures.

One component of compartment fire dynamics is the relationship between the fire, the

gas environment within the compartment, and the solid boundaries of the compartment

(walls, floors, and ceilings). As a fire grows within a compartment, gaseous combustion

products accumulate and migrate toward the ceiling, and the compartment boundaries

are subsequently heated. In many cases compartment boundaries are constructed in
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part from combustible materials∗, and will undergo thermal degradation (chemical

decomposition as well as physical damage) upon exposure to a fire. If a boundary

degrades sufficiently, fire can spread into adjoining compartments. One design paradigm

for fire safety in buildings is to compartmentalize different regions of a building using

partitions that have been demonstrated to be resistant to the spread of fire. To fulfill this

objective, a partition must be able to inhibit the transport of heat, flames, and smoke in

the event of a fire [3].

Many compartment boundaries are comprised of a number of different materials

assembled in a particular configuration; such boundaries can generally be termed “con-

struction assemblies”. The materials that comprise construction assemblies are typically

non-homogeneous in composition, and many are classified as being combustible. The

thermal degradation of these materials is a complex process, and while a great deal of

recent research has been directed toward understanding this process (Chapter 2), much

work remains to be done on diversifying and generalizing this knowledge for use in fire

analyses. Notably, most thermal degradation analyses focus on small-scale scenarios,

in which physical damage is not prevalent. The damage that construction assemblies

undergo at the large-scale as a result of fire exposure presents an additional layer of

complexity. Certainly both decomposition of the materials and the physical stresses

induced within the materials are relevant factors, however there is a dearth of knowledge

of the underlying mechanisms for various damage phenomena.

Limited understanding of the mechanisms for thermal degradation does not preclude

the prescription of fire safety requirements in structures. In Canada, conformance is

achieved by an empirical process: the fire resistance of an assembly is evaluated in a

standard test [5, 6] and a fire resistance rating is subsequently assigned. An assembly

may then be used in a particular type of application within a building according to

the prescribed code requirements [3]. This process can result in deficiencies in the

identification of fire hazards (e.g. the impact of compartmentalization on fire growth

rates), and is restrictive both to novel design (e.g. atypical structures) and to design

optimization (i.e. fire safety, structural integrity, sustainability, energy efficiency, etc.).

A performance-based approach, wherein the fire safety of a given assembly for a particular

end use may be evaluated using engineering analyses, has significant advantages in this

regard. Not only would it facilitate the rapid deployment of novel designs, but it could

lead to implementations with better optimized fire protection capabilities [7].

∗The National Building Code of Canada [3] defines a “combustible material” as any material that

fails to meet the non-combustibility conditions of a CAN/ULC-S114 [4] combustibility test.
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Predictive modelling might be utilized in a performance-based approach to evaluating

the fire safety performance of a construction assembly in a structure, but would require an

in-depth understanding of the thermal degradation mechanisms, a reliable set of measured

thermophysical properties, and independent testing for validation. While research is

ongoing in this area, and the complexity of physical models is ever-increasing, current

approaches are not well validated beyond the relatively simplistic case of prediction of

thermal penetration into a composite construction assembly exposed to the standard fire

resistance exposure. This is troublesome since fire exposures in real building fires can

vary greatly from that of the fire resistance furnace; some issues include (but are not

limited to): spatial non-uniformity, growth rates and intensity, convective flows, smoke

and species interactions, and flashover potential. Perhaps the most significant issue

is localized regions of exposure, such as those that occur when a fire is located near a

construction assembly, and those that occur on vertical fire separations (walls) as a result

of the natural stratification of hot gases that evolves in a compartment fire.

Development of the next generation of thermal degradation models for construction

assemblies requires detailed study of the phenomena occurring at the large-scale, and

in the context real fires. Controlled experiments specifically tailored for this purpose

are required, and a diverse set of experimental results are required for model validation.

Therefore, the main objectives of the present work are:

• to design and implement a novel and controlled large-scale experiment tailored

specifically for the study of thermal degradation of construction assemblies in real

fires; and

• to demonstrate the utility of the experimental procedure in facilitating the detailed

study of large-scale thermal degradation phenomena.

The scope of the present work is limited to a particular type of construction

assembly, fire resisting compartment partitions (walls), though the experimental method

is adaptable to other scenarios. Once developed, the procedure will be applied in the

conduct of a series of fire tests on walls that are typically found in residential buildings

in Canada. In the tests, the response of the walls to realistic fire exposures will be

monitored, and a relevant set of data will be produced from measured results. This data

will be of direct use in supporting the development and validation of future models of

thermal degradation of construction assemblies.

The structure of the present dissertation is outlined as follows. First, background

information related to the fire performance and thermal degradation of construction
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assemblies is presented in Chapter 2, along with a clarification of the motivation and

intended outcome of the present research endeavour. Chapter 3 details the conduct

and findings of a preliminary investigation, for which the purpose was to evaluate the

suitability of various experimental techniques for the study of thermal degradation of

construction assemblies in real fires. Based on the findings of this preliminary work,

a refined experiment was designed (as detailed in Chapter 4) and characterized (as

detailed in Chapter 6), the latter necessitating the development of a novel method for

measurement of heat flux in a large-scale fire test (which is presented in Chapter 5).

Finally, a series of experiments was conducted on various fire resisting compartment

partitions, and the results of these tests are presented and discussed, as well as the

utility of the experiment for study of thermal degradation of construction assemblies, in

Chapter 7. The dissertation concludes with the main findings and contributions of the

work (Chapter 8).
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Chapter 2

Background

This chapter gives an overview of the role of construction assemblies and performance

requirements for fire separations in Canadian buildings, with a focus on residential

construction, which is the area of interest in the present research. Next, the topic

of thermal degradation of construction assemblies, in the context of building fires, is

explored. Finally, the state of the art in experimental investigation and modelling of the

thermal degradation of construction assemblies is outlined.

2.1 Fire Resistance of Construction Assemblies

The National Building Code of Canada (NBC)∗ [3] outlines the prescriptive requirements

for fire safety in Canadian buildings. A subset of those requirements are outlined here

for residential buildings to provide context to discussions that follow.

A typical fire occurring in a building is, at least initially, confined to a single room

or compartment. One of the design paradigms in building science is referred to as

“compartmentalization”; as it pertains to fire safety, the idea is to design a building

with appropriate fire separations to confine a fire to its compartment of origin. The NBC

defines a fire separation as a construction assembly (e.g. wall, ceiling, floor) that acts

as a barrier against the spread of fire, and has a specified fire resistance rating {NBC:B-

3.1.8.1}. The prescribed condition for thermal failure of a fire separation is contingent

upon the hazard level of adjoining compartments. A compartment containing a large

∗In-text references to the National Building Code of Canada in this section use the following format:

{NBC:<Division>-<Section>}.
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quantity of flammable materials (e.g. a large fire load†) represents a greater hazard than

one containing fewer flammable materials. Accordingly, the NBC defines high-, medium-,

and low-hazard occupant spaces by usage {NBC:A-1.4.1.2}, and stipulates the level of

fire protection required for separation of occupant spaces {NBC:B-3.1.3.1}. The level of

fire protection of a fire separation is quantified by a fire resistance rating: the duration

for which a fire separation can withstand a specific controlled fire exposure in a fire

resistance test without undergoing thermal or structural failure as defined by the test.

Fire resistance ratings in Canada are determined using a fire resistance test such as

ASTM E119 [5] or CAN/ULC-S101 [6].

In a fire resistance test, a construction assembly is subjected to exposure from a

furnace enclosure, which is heated by a series of gas burners. For walls, thermocouples

located 6 in (152 mm) from the exposed face of the wall record the furnace temperature,

and the gas flow rate to the burners is adjusted with time to equate the measured furnace

temperature to that prescribed in the relevant test standard; the temperature-time curve

prescribed in ASTM E119 [5] is shown in Figure 2.1. Failure of the separation occurs

when an average temperature rise of more than 140◦C is measured on the unexposed side

of the construction assembly, or when a maximum temperature rise of more than 180◦C

is measured at any one point on the unexposed side, or when flames or gases hot enough

to ignite cotton are observed to pass through the separation at any location.
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Figure 2.1: Furnace temperature curve prescribed in the ASTM E119 fire resistance test.

†A fire load represents the potential severity of a hypothetical fire, calculated from the products of the

calorific values of the materials present and their mass, divided by the compartment floor area (kJ·m−2).
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A typical residential house (referred to as a “single dwelling unit residence” in the

NBC) does not contain occupant spaces other than residential and therefore does not

required fire separations. An exception to this is the common scenario of a single dwelling

unit residence with an attached garage. Since these spaces represent different major

occupancies, it might be argued that a fire separation should exist between a garage

and adjoining residence. This would be a reasonable argument considering the potential

hazards that might exist in a garage space, for example: vehicles, combustible storage,

and flammable liquids. This situation warrants a special exception in the NBC: no

fire separation is required provided that the garage serves only a single dwelling unit,

contains no more than 5 vehicles, and the construction between the storage garage and

the dwelling unit provides an effective barrier to gas and exhaust fumes {NBC:B-3.3.4.2}.
This requirement is satisfied by the installation of an air barrier system between the

garage an the remainder of the building {NBC:B-9.10.9.16}.

As the number of dwelling units in a single residence increases, so too do the fire

protection requirements. Multiple dwelling unit residences usually require that adjacent

suites be separated by a 45 minute fire separation, or 1 hour for multiple-storey suites.

For example, a Group C occupancy building (residential) of no more than 3 stories in

height generally requires 45 minute fire resistance ratings on floors, mezzanines, and load

bearing walls {NBC:B-3.2.2.52}. Walls in a house with multiple suites which separate

dwelling units from each other need not comply with this requirement provided they are

protected by a continuous smoke-tight barrier with a minimum of 1/2 in (12.7 mm) thick

gypsum board installed on both sides of walls {NBC:B-9.10.9.14}. A requirement does

exist, however, for sound control — walls must provide a sound transmission class rating‡

of at least 43 {NBC:B-9.11.2.1}. The NBC contains a number of reference construction

assemblies with listed fire resistance and sound transmission ratings. It is observed that

the majority of these rated wall assemblies with sound transmission class of 43 also have

fire resistance ratings of 45 minutes or more {NBC:B-A.9.10.3.1}. So even though a fire

separation is not prescribed in this scenario, it is likely that some level of inherent fire

resistance does exist in walls separating multiple suites in such a structure.

Fire resistance ratings for a number of NBC reference assemblies have been developed

from information gathered from fire resistance tests, and by extrapolation in some

cases {NBC:B-A.9.10.3.1}. Assemblies not included in the NBC, for example those

incorporating new materials, must be tested by the manufacturer or designer to determine

‡Sound transmission class is a rating of sound attenuation performance of construction assemblies;

tests are conducted according to ASTM E90 [8] and classified according to ASTM E413 [9].
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their fire resistance rating. For example, a particular brand of R12 insulation may have

been tested by its manufacturer in a given wall configuration and found to provide 45

minutes of fire resistance. Builders could then select this insulation knowing that it would

adhere to the NBC for a given scenario. If a change occurs in performance requirements,

such as Supplementary Standard SB-12 of the Ontario Building Code mandating a

thermal efficiency of R14 in the same scenario [10], the manufacturer would be required

to develop a new material that conforms to the new requirements. Furthermore, this

material would have to be tested for conformance to the fire resistance requirements of

the NBC, even if the new design were based upon the identical material as that already

rated. With the constantly evolving nature of building codes, the development of new

building materials, and the costs of large-scale fire resistance testing, it is clear that the

combined use of experimental investigation and predictive modelling for the estimation

of real-world fire performance would provide a great benefit to the industry. This type

of modelling requires an in-depth understanding of thermal degradation mechanisms of

construction assemblies and their constituent materials when subject to realistic fire

exposures; these topics discussed in the following sections.

2.2 Thermal Degradation of Construction Assem-

blies in Fires

Thermal degradation refers to the process by which a material or structure breaks down

as its temperature becomes elevated. In the context of construction assemblies which

undergo heating by exposure to fire, thermal degradation is an exceptionally complex

process occurring simultaneously in multiple non-homogeneous materials, involving

changes both at the chemical and structural levels, and driven by complex boundary

conditions (multi-mode heat transfer, convective flow, and chemical reactions). The

motivation for the study of thermal degradation in this context is to better understand

the ability of a construction assembly to prevent the spread of fire within a structure. As

described in Section 2.1, typically this is assessed experimentally in a fire resistance test,

and expressed by a fire resistance rating. While the fire resistance rating is certainly a

pertinent design parameter, it does not provide adequate information to support detailed

fire safety analyses, e.g. fire spread between compartments, on a case-by-case basis.

With better understanding of the underlying physics of thermal degradation, it becomes

possible to develop predictive models capable of supporting such analyses.
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Much work has been done to date on the study of thermal degradation at the

material level. For combustible construction (in the context of residential walls), the

most commonly used materials can be divided into three categories based on their usage:

studs, insulation, and wall coverings.

2.2.1 Wall Studs

Both metal and wood studs are used in the fabrication of construction assemblies.

While metal studs will not degrade in the traditional thermochemical sense, they will

lose structural integrity at fire temperatures; the critical temperature§ of lightweight

steel studs is often taken to be 350–400◦C [11]. Wood studs, on the other hand, will

actively decompose as they are exposed to fire, with significant mass loss beginning

at approximately 280◦C, and 80% mass loss occurring by 400◦C [11]. A great deal of

literature exists on the thermal degradation of wood; Dietenberger and Hasburgh [12]

provide an excellent background on this topic. Wood studs will contract and char as

they burn, but retain much of their initial load capacity even with the reduced cross

sectional area. Steel studs, on the other hand, undergo thermal expansion and lose much

of their load capacity; for non-loadbearing walls, this typically does not present an issue

from a fire resistance perspective. A comparison of the two options is provided by Sultan

et al. [13, 14], who conducted full scale fire resistance tests on non-load bearing wall

assemblies, and found that wood studs provided better fire resistance than steel studs

in non-load-bearing walls with a double layer of gypsum on each side. One attributing

factor was the delayed thermal penetration in the case of the wood studs, due to the

lower thermal diffusivity of wood relative to steel. Notably, no particular benefits were

noticed for walls with staggered or double-row stud frames.

Wood framing is the focus of this work, as it is currently the most prevalent framing

type for residential construction in Canada, and there is recent demand to use wood in

larger commercial and residential structures [15]. Typically these frames are built using

2×4 or 2×6 SPF lumber (high grade timber produced from various Canadian spruce,

pine, and fir species). Studs may be installed in single-row, staggered, or double-row

configurations, depending on the desired fire resistance (single-row having the least fire

resistance). Studs may be spaced 16 in (406 mm) or 24 in (609 mm) on centres, although

stud spacing does not tend to affect the fire resistance of the construction assembly [3].

§Critical temperature in this case is the temperature at which a steel member no longer meets its

designed level of structural support in a given loading scenario.
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In the case of wood studs, thermal degradation analyses must consider not only the

thermochemical decomposition (charring) of the material, but also the resulting effect on

the structural integrity of the construction assembly.

2.2.2 Insulation

Common insulation types used in construction assemblies include: batts (e.g. min-

eral wool), foam boards (e.g. polystyrene), loose-fill (e.g. cellulose), sprayed foam

(e.g. polyurethane), and more. Primarily insulation is used to maintain the thermal

environment and noise within a building at levels suitable for human comfort, but

insulation also impacts a structure’s ability to withstand a fire exposure. Many insulation

materials are combustible and release toxic combustion products when heated and

burned, causing a greater hazard for building occupants and emergency responders even

in the early stages of a building fire. Mineral wool insulations are known to yield low levels

of toxic combustion products [16], in general, and are most prevalent in modern residential

constructions; these are are the focus of the present work. Mineral wool insulations may

be divided into three categories: glass wool or fibreglass (manufactured from glass fibres),

stone wool (manufactured from natural rock), and slag wool (manufactured from slag,

which is a byproduct of various industrial processes, and may include components such

as steel, copper, lead, and ceramics).

Mineral wool insulations are manufactured by melting the glass/rock/slag, and

spinning the molten material to produce fibres, which are then formed into batts using

organic binders (the exact composition of which is unique to the manufacturer and

the product). The mass percent of binder is generally greater in fibreglass insulations

(3–8%) compared to stone/slag wool insulations (0.5–3.5%) [17]. Both materials can

achieve a non-combustible rating in the ASTM E136 [18] “tube furnace” test, and a

flame spread rating of 15 in the ASTM E84 [19] “Steiner tunnel” test [20]. Despite

the non-combustibility rating of the materials, both are known to burn under the right

conditions. Upon exposure to direct flame, fibreglass insulation will melt, burn, and

release smoke, earning it a Euroclass¶ A2 rating; this degradation is caused first by the

binder burn-off beginning at 250–350◦C, followed by melting at 700–800◦C [11, 22]. In

contrast, stone/slag wool has a Euroclass A1 rating since it only experiences a mass

loss consistent with burning of the binder content between 200◦C and 550◦C [23]. In

¶Euroclass is the European fire classification system for materials, construction products, and building

elements; see BS EN 13501-1 [21].
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accordance with the Euroclass system, the maximum services temperatures for fibreglass

and stone/slag wool insulations are 450◦C and 900◦C, respectively [17].

Given its greater susceptibility for thermal degradation, construction assemblies using

fibreglass insulation typically have lower fire resistance ratings than those using stone/slag

wool. For example, Sultan et al. [13, 14] conducted full scale fire resistance tests on non-

load bearing wall assemblies, and found that the fire resistance ratings of walls insulated

with stone wool were 54% greater than those insulated with fibreglass.

2.2.3 Gypsum Board Wall Coverings

Aside from niche applications, gypsum board is by far the most prevalent form of wall

covering used in fire resistant compartment partitions in Canada. Gypsum board is

comprised of a core of calcium sulphate dihydrate sandwiched between layers of paper

backing. As part of a construction assembly, gypsum board coverings can protect

underlying components from direct fire exposure — in a fire resistance test, this delays

thermal penetration, and is an important factor in achieving good fire resistance ratings.

Additionally, some types of gypsum board use special additives such as glass fibres,

which further enhance the fire resistance of construction assemblies in which they are

used (e.g. “type X” or “firecode” gypsum board) [11].

As the material undergoes heating in a fire scenario, a dehydration/calcification

reaction occurs at approximately 120◦C [24]. This reaction absorbs thermal energy and

produces a heat barrier effect at the surface of the material. As the material is heated,

crystallized water is released and transformed into vapour, which is transported through

the porous gypsum material by pressure and by molecular diffusion. When migrating into

colder regions, the vapour can condense. This vapour transport and phase change are

mechanisms for heat transport within the material, along with heat conduction. As the

material continues to heat, a secondary reaction occurs between 210◦C (Andersson and

Jansson [25]) and 300◦C (Groves [26]), completing the dehydration process. Finally, a

third reaction has been observed to occur at temperatures in excess of 650◦C (Groves [27])

for type X gypsum board, presumably due to the breakdown of the additives.

2.2.4 Construction Assemblies

In the previous sections, the thermal degradation of constituent wall components is

described in terms of critical temperatures at which reaction phenomena occur. Typically
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these are assessed by means of thermogravimetric analysis, which is a bench-scale

experimental method for measuring the relative change in the mass of a material as

a function of increasing temperature. Using this data, it is common to model the mass

reduction of a material as its temperature increases by an Arrhenius equation [11]. At

larger scales, however, these models must account for much more than single-component

homogeneous reaction kinetics. Complicating the issue is that the temperature of the

materials is not uniform, and is usually not known, therefore the drive for the thermal

degradation must be specified in terms of a fire exposure. When multiple materials are

involved, as is the case with a construction assembly, the complexity of the coupled heat

and mass transport problem increases significantly. Engineering analyses of the thermal

degradation ultimately adopt simplified models for these complex physics.

In the typical case, the problem is simplified to one of heat conduction within a solid

material, and solved by a conservation of energy approach. One example of this is the

Advanced Calculation Methods provision (Annex B) of Eurocode 5, Parts 12 [28], which

provides a practical means by which to estimate the temperature rise and mass loss

of a material, and is suitable for many engineering analyses. Effective temperature-

dependent thermophysical properties of materials may be deduced by experimental

methods: density (e.g. thermogravimetric analysis), specific heat capacity (e.g. differ-

ential scanning calorimetry), and thermal conductivity (e.g. heat transfer experiment‖);

Sultan [30] provides an excellent listing of such properties relevant to the materials of

interest here. These curves implicitly represent some thermal degradation phenomena;

for example, Bénichou and Sultan [31] showed that the effective density of gypsum board

decreases and the effective specific heat capacity increases at 120◦C, corresponding to the

occurence of the dehydration reaction. Such models can reproduce good estimates of some

experimentally observed details; for example, Takeda and Mehaffey [32] used effective

thermophysical properties to predict the temperature rise in layered gypsum board,

and achieved excellent predictions of in-depth temperature rise, precisely capturing the

inflection corresponding to the dehydration reaction at 120◦C.

Beyond the basic energy conservation approach, mass transport and reaction kinetics

can also be included in a model. Rigorous mathematical formulations have been

‖Since combustible materials decompose at elevated temperatures, it is difficult to measure thermal

conductivity independent of other parameters. One approach is to use a custom heat transfer experiment

to deduce thermal conductivity of a material using measurements of temperature, control of boundary

conditions, and an energy conservation model. For example, Park et al. [29] used a slug calorimeter and

heat conduction model to deduce the thermal conductivity of gypsum board up to 700◦C.
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produced (see Weber [24] and Manzello et al. [33] for two clear examples of such

formulations). First, chemical reactions (e.g. wood decomposition, gypsum dehydration,

insulation binder decomposition) must be represented by gas-phase and liquid-phase mass

conservation, as well as energy conservation (typically these reactions are exothermic).

This requires knowledge of:

• the porosity of each material;

• the density of each material;

• the initial moisture content each material;

• the fraction of the pore space in each material occupied by gas and liquid phases;

• the molar concentration of water vapour in the gas mixture;

• the amount of water condensed and adsorbed into the solid; and

• the temperature of all involved species.

Gas momentum must also be conserved, which is typically treated using Darcy’s law for

mass transport through a porous material. In addition to the above stated parameters,

this requires knowledge of:

• the convective velocity of the gases;

• the diffusivity of the gases;

• the permeability of each material; and

• the viscosity of the gases.

Finally, energy conservation cannot be neglected. In addition to the above stated

parameters, this requires knowledge of:

• the specific heat capacities of the solids and the condensed and adsorbed vapours;

• the thermal conductivities of each solid-phase material; and

• the enthalpies of state and phase change, not only for exothermic combustion

reactions, but also for evaporation/condensation and adsorption/desorption.

Although more complex thermal degradation models are a better representation of the

underlying physics, the reality is that model uncertainty increases with model complexity

due to the uncertainty in many of the necessary input parameters. For example, Bal

et al. [34] applied five different models of varying complexity, which used between 3

and 30 input parameters depending on the model, to the problem of computational
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pyrolysis of polymethylmethacrylate (a process similar in theory to decomposition of

wood, insulation, or gypsum board). They found that the predicted results of all models

achieved similar levels of accuracy, due to the additional uncertainty introduced in the

more complex models. This work highlights an important issue with complex models

of decomposition: there is a very real possibility that compensation effects will exist

between the implemented mechanisms.

Regardless of the complexity of the model used to represent thermal degradation, it

is clear that the process is fundamentally dependent on the temperature of the involved

materials (which is, in turn, driven by the fire exposure). To properly investigate the

thermal degradation of construction assemblies, it is crucial to have information on

the temperature of the materials over time. Therefore, in any experiment tailored for

studying thermal degradation phenomena, temperature of the involved materials must

be considered a required measurement. With this in mind, the following section outlines

the state of the art in the experimental study, and modelling, of the thermal degradation

of construction assemblies in fires.

2.3 State of the Art on the Thermal Degradation of

Construction Assemblies

The previous section outlined some of the criteria for experimental investigation and

modelling of thermal degradation. As applied to construction assemblies subjected to

a fire, such models may be termed “fire endurance” models. In this context, the term

fire endurance is used to describe the ability of a construction assembly to withstand

a fire exposure; there is no implied performance requirement. Fire endurance models

simply aim to predict the thermal degradation of a construction assembly in terms

of its temperature, decomposition (mass loss), and structural integrity. fire resistance

models are a subset of fire endurance models with the specific requirement that the fire

exposure corresponds to that of a fire resistance test, and the intent is to predict failure

of construction assemblies according to the performance criteria of the test.

Fire endurance is an important concept in fire safety engineering because real

building fires will never produce exposure conditions consistent with a fire resistance test

(i.e. uniform spatially and consistent with a prescribed temperature-time relationship),

yet analyses of real-world problems are necessary. For example, a fire safety engineer
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might need to analyze how a code-compliant fire separation would hold up to low-

intensity high-probability fires in order to assess the potential for long-term damage

to that separation in the event of a small fire. Alternately, during a fire investigation, it

might be necessary to estimate the failure of a given wall in order to ascertain when and

how the fire spread to adjacent rooms. This latter calculation, when based simply on the

assumption that the wall failed completely after the time specified as its fire resistance

rating, will not result in a sensible re-creation of the fire scenario.

The basic form of a fire endurance model is a solution to the transient thermal

degradation problem of a construction assembly subject to a fire exposure on one

side, with some other conditions (typically an ambient environment) on the unexposed

side. The boundary conditions that evolve on both sides of the construction assembly

consist of convective and radiative heat exchange with the exposed- and unexposed-

side environments, as well as mass transport of vapours due to the interactions between

fire/ambient gases and the reacting solid boundary materials. Heat conduction and in-

cavity convection and radiation occur within the construction assembly, as well as mass

transport through any porous materials (driven by temperature and pressure gradients);

heat generation from the typically exothermic decomposition reactions of the constituent

materials also occurs. Analytic solutions of this problem are generally not possible, unless

gross assumptions are used. Numerical solutions may be adopted, which use spatial and

transient discretization and a solution methodology that can incorporate physics sub-

models and temperature-dependent material properties. The desired outputs of such

models include temperature, mass loss, and structural integrity. This third parameter,

which describes large-scale degradation phenomena (e.g. gypsum board paper burn-off,

shrinkage, cracking, joint separation, and ablation/sloughing), is as yet very difficult to

quantify and model.

2.3.1 Early Development of Fire Endurance Models

An early fire resistance model was developed by Fischl in the 1950s [35]. He derived

an expression for the rate of temperature rise on the unexposed side of a wall that

was subjected, on the exposed side, to the standard fire conditions specified by the BS

476 furnace test (ostensibly the same fire curve as ASTM E119 [5]). The model was

essentially an approximate analytical solution to a one-dimensional thermal resistance

network. A uniform heat flux boundary condition was assumed on the exposed side of

the wall, which was treated as a semi-infinite slab (no side boundary interactions) made
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of a single material with constant thermophysical properties. Thermal degradation,

multi-component characteristics of the wall, and structural failure mechanisms were

not considered. With these simplifications, the model was found to be unsuitable for

prediction of wall response to conditions of high thermal exposure as in a fire, although

it was found to be well suited to situations where the wall was exposed to lower

temperatures, such as home heating and cooling applications. Nonetheless, this type

of fundamental analysis was a starting point for more in depth models in the future.

By the 1960s, Tjoan [36] had built upon the simplified one dimensional wall model of

the type described above by accounting for the change in thermal conductivity of the wall

materials with increasing temperature. Experiments were conducted on concrete and clay

brick walls between 5 cm and 17 cm thick using the standard fire resistance exposure

on one face, and measuring the temperature of the walls. A power law relationship

between thermal conductivity and temperature was assumed and coefficients were deter-

mined to facilitate agreement between experimental and calculated results. This work

demonstrated that the use of temperature-dependent thermophysical properties, which

in this case were essentially a representation of un-modelled physics, could yield better

temperature predictions in a fire resistance model. This work also highlights an important

problem that even modern thermal degradation and pyrolysis models can suffer from [34]

— the derived “properties” are not properties at all, but are tuning parameters used to

minimize the differences between modelled and experimental results. The implication

of this is that these properties cannot be universally applied, for example, to a scenario

with a non-standard fire exposure. It is crucial that the thermophysical properties of each

material involved, as outlined previously in Section 2.2.4, be determined and validated

by independent experiment.

Improvements to the one dimensional models for conductive heat transfer through

walls continued through the 1990s. As computing resources facilitated ever-increasing

complexity of numerical analyses, the semi-infinite slab assumption was no longer

necessary — the thermal resistance network could be discretized in both time and space.

In addition to basic principles of heat transfer, models began to incorporate the effects

of heat generation and mass transport within the wall materials. For example, in 1997

Harada [37] investigated the behaviour of concrete walls subjected to a uniform thermal

exposure similar to that of the CAN/ULC S101 [6] furnace. Both heat and mass transport

(water vapour only) were modelled in one dimension for a solid wall of a single material

with constant thermophysical properties. Harada was able to demonstrate and model

the phenomenon of rapid temperature rise around 100◦C and delayed temperature rise
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from 100◦C to 150◦C as a result of water vapour transport within the concrete. This

phenomenon is relevant for all porous building materials, including gypsum board as

outlined in Section 2.2.

2.3.2 Prediction of Fire Resistance of Construction Assemblies

A significant breakthrough in the development of fire endurance models for walls came

in 1998 when Takeda and Mehaffey [32] released the WALL2D model. WALL2D was a two-

dimensional (depth and height) model for predicting heat transfer through uninsulated

wood-stud walls with gypsum board wall coverings. The model used temperature

dependent properties for gypsum board with the input values of material density, specific

heat, and thermal conductivity determined via independent experiments. The combined

effects of gypsum board shrinkage and paper burn-off were accounted for by adopting an

experimentally-derived relationship between the the net shrinkage (depth, into the wall)

and the wall temperature. Combustion of the wood studs was also modelled, assuming

that water vapourization and pyrolysis (single-stage reaction) followed the 100◦C and

288◦C isotherms, respectively. Cavity gases were assumed to be non-participating, and in-

cavity radiation was calculated using surface-to-surface view factors. In-cavity convection

was accounted for by assuming a constant convection coefficient of 9 W·m−2·K−1.

WALL2D model results were consistent with those of small-scale experiments conducted

in an electrical furnace, and with full-scale fire resistance tests. In these, the walls were

instrumented with thermocouples and moisture probes to track temperature evolution

and vapour transport. The radiative exposures used in both of the experiments were

spatially uniform over the entire wall, so any vertical thermal gradients predicted by the

model were solely a consequence of buoyancy effects within the wall cavity itself. The

model was found to be capable of making excellent predictions of temperature rise at the

small-scale, capturing temperature inflections corresponding to the onset of calcination

as well as temperature rise up to 800◦C through as many as four layers of gypsum board

over two hours of exposure. Furthermore, it was able to predict the onset of charring of

the wood studs in a furnace test to within 1.3%, and demonstrate good overall consistency

with temperature measurements around the studs over a 60 min ASTM E-119 [5] test.

A notable shortcoming of the model was its omission of damage mechanisms for the

exposed-side gypsum board (cracking, ablation, etc.), and consequently, any secondary

thermal effects that might have resulted from such phenomena. This is a threshold that

must be overcome if such models are to be used to reliably predict wall degradation and
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fire spread once damage has occurred.

In 1997, during the development of the previously-described WALL2D model, Lin and

Mehaffey [38] used a combination of a zone fire model, CFAST [39, 40], and fire endurance

model, WALL2D (a version pre-dating the 1998 release), to demonstrate a proof-of-concept

of how to integrate a fire model with an independent model for heat transfer through

a wall. CFAST was used to model a compartment fire environment for some prescribed

fire. The thermal boundary condition on the compartment walls (note that all walls are

treated as a single effective wall by a zone fire model [41]) was determined by the zone

model predictions: height of the developing hot gas layer over time, average temperatures

of the upper (hot) and lower (cool) gas layers, and the average heat flux to the walls in the

upper and lower gas layer regions. Using the CFAST results as the boundary conditions,

WALL2D was then used to model the resulting temperature profile within the wall. Six

compartment fire scenarios were considered; the construction assembly selected was an

uninsulated wood-stud wall with 1/2 in (12.7 mm) type X gypsum board wall coverings on

both sides. No experimental validation was performed in conjunction with these scenarios

as the study was meant only to demonstrate how an integrated fire and boundary analysis

might be utilized to predict thermal failure of fire separations under a non-uniform fire

exposure that is more typical of a realistic fire. Notable shortcomings were that the

analysis was uncoupled (the impact of the degrading wall on the fire development was

not considered), and that the vertical exposure domain consisted of only two regions.

Despite Lin and Mehaffey’s [38] proof-of-concept, in 2001 fire endurance models were

still predominantly used for the determination of fire performance in accordance with

performance-based building requirements [42]. Although it had been shown that custom

fire exposures could be specified and the ensuing boundary conditions applied, these

models were still primarily used with the uniform fire resistance test exposure. This

also meant that validation experiments were limited to furnace exposures. Instead of

pursuing coupled analysis, researchers chose instead to extend fire endurance models to

account for additional phenomena such as non-constant wall geometry, re-entrant corners

and gaps, radiation within the wall cavity, mass transport through wall materials, and

certain details of thermal degradation of gypsum board such as cracking and ablation.

Of relevance to the present research, Clancy [42] found that for uninsulated partitions,

in-cavity radiation into the studs was the dominant mode of heat transfer at high temper-

atures. Structural weakness of studs became apparent when the majority of a given stud

reached 100◦C due to vapours expanding through the wood pores and distributing heat.
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Further, Clancy compared model predictions using material properties for wood and

gypsum board determined by other researchers and found that independently obtained

material properties could be used in a fire endurance model, with careful consideration

to match the methods of determination of those properties to their use in predicting the

phenomena of interest. An example of this is the use of temperature-dependent specific

heat capacity and density to account for heat generation and mass loss associated with

phase change and thermo-chemical reactions in the gypsum board [43]. The assumption of

gypsum board cracking occurring at a critical temperature had been adopted, but gypsum

board from different manufacturers was found to crack at very different temperatures [42]

— the damage model was clearly an oversimplification. Furthermore, since multi-layered

gypsum board construction was quite common, it was noted that fire endurance models

should be extended to account for sequential sloughing of the sheets.

Later research by Takeda [32] focused on other areas of improvement to WALL2D. These

included modifications that allowed prediction of heat transfer through in-cavity fibreglass

or stone wool insulation [44], as well as polystyrene and polyurethane foam insulation [45].

Simplified models for the opening of joints between gypsum sheets (over studs), and

sloughing of gypsum layers, were also incorporated [44]. Finally, WALL2D was expanded

to model heat transfer through wood-framed exterior walls with various types of external

siding [46, 47]. During this period as well, Takeda [48] re-branded his version of the

WALL2D model as HTwall, after which there appears to be no further development. It must

be noted here that these advanced three-dimensional thermal degradation phenomena

were represented using simplified relationships based on experimental data — WALL2D and

HTwall were two-dimensional models only. Predictions in the context of a fire resistance

furnace exposure were improved, but these relationships will not apply universally.

At around the same time, Clancy and Young [49] conducted full-scale furnace

experiments to validate models for evaluating the fire resistance of uninsulated wood

framed walls. Their approach differed from models that focused solely on thermal failure

in that they considered the structural components. They designed an experiment to

measure the applied structural load on wall members, and determined the structural load

capacity of the assembly, which was then used in a fire resistance model to predict the time

to failure by structural collapse. Two key shortcomings of the existing research into the

fire endurance of walls were identified. These were: 1) limitations in understanding of the

mechanisms contributing to structural failure of construction assemblies beyond simply

the applied loads; and 2) a lack of consistency in the published values of the thermal

properties for wood and gypsum across the literature. Further, based in part on Clancy’s
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previous work [42], they stressed the importance of using independent material property

data rather than data tailored to ensure a fit between model and experiment. Clancy

and Young further noted that for the uniform temperature exposures experienced during

fire resistance tests, the use of two dimensional models was justified since variations in

temperatures inside the wall cavity were mainly due to in-wall convection and changed

primarily with height above the floor, while variations in temperature over the width of

the wall were less significant. In a real fire however, the wall exposure is not uniform and

thus, as is investigated in the present work, any two-dimensional simplification is likely

not suitable.

2.3.3 Fire Endurance For Realistic Fire Exposures

Manzello et al. [50] in 2005 published one of the first detailed investigations into the

response of partition walls to realistic compartment fires. In this work, a wall assembly

was exposed to an intense compartment fire, with a total burn time of 45 min and a

peak net heat flux to the wall of about 150 kW·m−2 after 13.5 min. This study is very

pertinent to the present research, and therefore is reviewed in detail here.

The compartment used measured 10.7×7.0 m, and 3.4 m in height, with a single

opening on one of the 7.0 m walls. The test wall, located opposite the compartment

opening, measured 2.44×2.44 m (8×8 ft). The test wall was non-load bearing, and

consisted of steel studs spaced 609 mm (24 in) on centres, with 15.9 mm (5/8 in) thick

type X gypsum board (USG Firecode®) attached vertically to the studs using drywall

screws, spaced at 305 mm (12 in). No insulation was used in these walls. All drywall

joints were taped.

Water-cooled Schmidt-Boelter heat flux gauges were mounted flush to the exposed

face of the gypsum board panels at four locations. It is apparent (from images present in

the article [50]) that the post-test condition of the panels was different near the gauges

locations. This speaks to a clear influence of the gauges on the decomposition of the

gypsum board panels — not surprising considering that the gauges were maintained

below 75◦C with water cooling during the tests.

K-type, 22 gauge, bead-welded thermocouples were attached to the exposed side of

the panels (methodology not indicated) and the unexposed sides of the panels (using

insulating pads per ASTM E119 [5]) at 30 locations. During the fire, several exposed-

side thermocouples failed (perhaps due to becoming detached from the wall). This points
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to an important practical consideration of this type of fire test — instrumentation failure

in the fire compartment must be accounted for in the experimental design.

In the tests, the temperature of the panel peaked at 750◦C on the exposed face and

500◦C on the unexposed face. Perhaps most interesting of these presented results are the

observations of the post-test condition of the wall. Paper burn-off had occurred, both

vertical cracks and transverse cracks were observed to have formed between the screw

locations, and the vertical joint had opened and expanded. These damage events were

likely caused by the contraction of the panels brought on by temperature increase and

calcification of the material, and the resulting stresses which developed between fixture

locations; ablation likely also played a role. While the post-test condition was certainly

interesting, much insight would be gained if damage events could be observed in realtime.

Manzello et al. [33] in 2007 extended his experimental testing to compare the fire

response of standard gypsum board to that of type X fire resistant gypsum board in

the same compartment fire conditions. Despite its improved thermal properties, type X

was found to be more prone than regular gypsum board to shrinkage and cracking at

the mounting points at elevated temperatures; consequently, the overall fire performance

(gauged in terms of thermal penetration to the unexposed side of the wall) of the two

materials was found to be similar. The model did not capture this result because,

although it took in-depth shrinkage into account, it did not capture the phenomena of

shrinkage, cracking, and failure of the gypsum board propagating from fixture locations.

The work of Manzello et al. [33, 50] confirmed that damage events occurring on a wall

involved in a real fire can relate the dynamic response of the wall to the conditions of the

fire compartment. The next step is to apply this knowledge to fire safety analyses.

This requires the development of advanced models of thermal degradation, likely in

three dimensions, and potentially with coupling of the dynamic fire environment to the

degrading structures.

2.3.4 Recent Refinements to Fire Endurance Models

Based on the research of Manzello et al. outlined above, Kukuck [51] continued investiga-

tion of heat and mass transfer through uninsulated steel stud, gypsum covered partitions

by incorporating simplified in-cavity radiation (transparent gas assumption), yielding

incremental improvements in the accuracy of predictions.

In different research, Craft [52] developed a two-dimensional finite element model for
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heat and mass transfer in uninsulated gypsum and wood frame floor assemblies. Craft

used similar methods to Takeda et al. [45] for representing heat transfer processes, and

focused in particular on mass transport. In WALL2D, a modified thermal conductivity

and specific heat were used to model vapour transport and heat from evaporation

and pyrolysis respectively in each material. In Craft’s model, reaction volatiles and

vaporization of moisture were considered in a mass transfer function. The rate of thermal

degradation of wood and gypsum materials was modelled by Arrhenius expressions reliant

on element temperature, and temperature-dependent material properties were used.

Craft’s work culminated with development of CUWoodFrame, a model for simulating

heat and mass transfer in gypsum and wood assemblies in order to predict the thermal

response of a wood-frame floor assembly under fire exposure. Full-scale fire resistance

tests (CAN/ULC-S101 [6]) were conducted using both the standard fire resistance test

exposure, and an experimental curve that was designed to be representative of a house fire

(different temperature-time curve, but still uniform spatially). In the tests, thermocou-

ples were installed at various locations within the floor assembly: on the joists, between

gypsum layers, on the inside surface of the gypsum board (in-cavity), and between

gypsum board and joists. The model yielded good temperature predictions compared

to experimental measurements for the standard furnace curve up to the point at which

sloughing of gypsum board layers began. This is to be expected, considering that the

model did not incorporate any mechanisms for gypsum sloughing. For the non-standard

furnace curve, which was a significantly greater fire exposure, sloughing of gypsum layers

began after only a few minutes of exposure, after which model predictions were unsuitable.

This work highlights the importance of accounting for damage phenomena in a complex

model of thermal degradation of construction assemblies.

Craft’s [53] work reaffirmed the recommendation of Clancy [42]; almost a decade

later, there was still a lack of robust and trustworthy thermophysical property data for

the construction materials used. Craft et al. [54] attempted to address this by using the

cone calorimeter to study the thermal degradation of wood and gypsum board (the same

used in his earlier work) under the well-defined boundary conditions of the apparatus in

order to obtain more representative thermophysical properties. While the results showed

some improvement, it was concluded that significantly more work still needed to be

done in terms of generating appropriate material property data for use in fire endurance

models. This issue was further investigated by Saidu [55], who in 2011 reported on the

spread in physical and thermal properties of wood and gypsum at elevated temperatures

as published by researchers across the industry. This is to be expected to some degree
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since some variability should be expected for manufactured materials such as gypsum or

stone wool insulation, which may vary in composition over different manufacturers and

even over different product lines from the same manufacturer. Similarly, raw materials

such as dimensional lumber can vary in composition even from the same mill year-to-

year. The determination of robust material data for specific materials continues to be an

important area of research required to support thermal degradation modelling.

Building upon Craft’s approach of using small-scale fire tests to study the thermal

degradation of constituent materials, Aire et al. [56, 57] conducted a series of small-scale

experiments on construction assembly mock-ups. Mock-ups were assembled in layers

consisting of gypsum board, insulation, and SPF wood. The specimens were instrumented

with thermocouples, placed in an insulated sample holder, and exposed to constant

irradiation from the electric resistance heater of a cone calorimeter. Many of the same

phenomena described previously, such as the representative reaction temperatures of

each material, were reproduced at the small-scale. Furthermore, the results were used to

validate a simple thermal degradation model (one dimensional in-depth conduction heat

transfer using effective thermophysical properties); given the temperature measurements

and well-defined boundary conditions, this data would also be useful for validation of more

complex models in the future. Where the small-scale mock-up experiments fell short

was in the reproduction of large-scale degradation phenomena, such as gypsum board

shrinkage, cracking, joint separation, and ablation. Such effects cannot be reproduced at

the small scale.

More recently Lu [58] developed a three-dimensional finite element model for unin-

sulated solid wood floor joist assemblies. Model setup was similar to that of Craft [52]

with the exception of the inclusion of mass transport, which was represented as a percent

reduction in density (a common simplification [43]). Arrhenius functions were used to

determine the rates of chemical reaction (single-stage) for pyrolysis of wood joists and

calcination of gypsum board, and moisture evaporation was assumed to occur locally

along the 100◦C isotherm (represented by an effective specific heat; mass transport was

neglected). In-cavity radiation was simplified to surface-to-surface (no gas radiation, and

no gas accumulation in-cavity due to the mass transport simplification). Gypsum board

falloff was assumed to occur locally at joist interfaces when the temperatures between the

wood joist and the gypsum board reached 300◦C (a gross simplification). The solution

methodology utilized a commercial finite element package (ABAQUS) and submodels for

time-varying distributed heat flux on the exposed face (a simulated fire exposure), and

a subroutine for internal heat generation from reactions and phase change.
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Lu’s model was used to predict failure (critical temperature criterion) of floor assem-

blies under exposure to a uniformly distributed furnace exposure. Predicted temperatures

were compared to CAN/ULC-S101 [6] test results using the standard thermocouple

placements, and to results obtained using Craft’s [52] model. In all cases, temperature

predictions were very good up to the point of gypsum falloff. Lu’s research is encouraging

in that it demonstrated that with modern computing resources it was possible to extend

fire endurance models to three dimensions; it remains to be seen whether this level of

modelling detail is necessary for fire endurance modelling of wall separations in realistic

fire environments. Further investigation into the thermal failure mechanisms of covering

materials is also necessary to advance the state of the art in this regard.

This section has outlined the development of fire endurance models over the past

60 years to their present state. The key points here are summarized in the following

section, where the motivation and intended outcome of the present research is put into

perspective.

2.4 Summary

Thermal degradation models for construction assemblies subject to a fire resistance

test exposure have evolved to the point of being suitable for predicting the failure

of some types of construction assemblies, up to the point of occurrence of significant

damage events. These models have not been demonstrated to be suitable for all types

of constructions and materials, and are not well validated for realistic fire exposures.

The complexity (and utility) of these models is limited by the current understanding of

thermal degradation phenomena, and the methods for representing these phenomena in

a model. At the present time the most advanced models adopt a numerical solution of

the heat and mass transfer equations over a three-dimensional finite element domain,

typically incorporating basic reaction kinetics for the decomposition of constituent

materials. These models are lacking in the capability to predict the occurrence of large-

scale damage phenomena, as well as the impact of these events on further degradation of

the assembly. Furthermore, models developed to date treat the fire exposure as a uniform

boundary condition — incorporation of multidimensional exposure conditions or coupled

analysis has not yet been fully realized (beyond one-dimensional treatments [59]).

Development of the next generation of thermal degradation models requires detailed

study of the phenomena occurring at the large-scale, and in the context of a real fire. This
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can only be accomplished by experimental methods. Experiments to date have mostly

been limited to those that use uniform furnace exposures (e.g. the fire resistance curve),

with very few exceptions. There is a need not only to conduct additional experiments

tailored to the above stated purpose, but also to develop a methodology that will facilitate

the generation of a diverse array of experimental data in a consistent and controlled

manner. Given these requirements, the main objective of the present research is to

design and implement a novel experimental method for the study of thermal degradation

of construction assemblies, in particular fire resistant compartment partitions, in real

fires.

As identified earlier in this chapter, it is crucial that the experimental method will

incorporate measurements of the temperature of the construction assembly in multiple

locations, as well as realtime observation of large-scale damage phenomena. Also,

sufficient information must be gathered about the fire conditions in order to reproduce the

exposure directly (e.g. as a boundary condition in a model of thermal degradation), or

indirectly (e.g. as a set of field conditions which define the coupled relationship between

a fire dynamics model and a thermal degradation model). The intended outcome is

that the experiment to be implemented will include such measurements, and that the

fire conditions will be characterized accordingly. Furthermore, it is expected that a

contribution of this research will be the generation of a relevant set of experimental data

from experiments involving construction assemblies that are used in residential buildings

in Canada exposed to realistic fires.

To begin, a preliminary investigation was conducted for the purpose of evaluating

the suitability of various experimental techniques for the study of thermal degradation

of construction assemblies in real fires; this is the focus of the following chapter.
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Chapter 3

Preliminary Investigation

A preliminary investigation of the thermal degradation of construction assemblies in

large-scale fires was conducted in August of 2014. The main objectives for this phase

of the research were to gain some insight into the damage and thermal penetration

that a wall would experience when involved in a realistic building fire, and to assess

various experimental methods for the study of these phenomena. To this end, a one-off

compartment fire experiment was conducted in which a compartment was constructed

of non-combustible materials except for a single wall, hereinafter referred to as the

“test wall”, which was a typical residential construction assembly. The test wall was

then exposed to a compartment fire environment. A visual assessment of the post-fire

damage to the wall was made, thermal penetration into the wall was measured, and the

effectiveness of the experimental procedures adopted were evaluated.

This chapter details the findings of this preliminary investigation, which provided a

foundation up which future work was based. The following section is concerned with the

construction of the fire compartment; subsequent sections detail the test methodology,

results, and findings of this phase of the research.

3.1 Construction of the Fire Compartment

A compartment was needed to house the test wall; at the University of Waterloo Fire

Research Facility, the two-storey steel burn house structure shown in Figure 3.1 was both

suitable and available for use in the study of large-scale building fires. The south-east

corner of the building was selected as the location for the fire compartment. This location
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was used in previous work for large-scale fires in other configurations, and a method for

fire protection of the structure itself∗ had already been established [60].

Figure 3.1: Burn house structure at the University of Waterloo Fire Research Facility.

The southeast corner of the structure is configured with a window on each of the east

and south building faces, and an interior door on the west wall. It was decided to use this

door as the sole source of compartment ventilation, therefore the windows were sealed

with spray foam insulation, as is apparent in Figure 3.1. Given this layout, the north

wall of the compartment was selected as the test wall.

The burn house structure is constructed of welded steel plate with I-beam supports. In

order to retain heat within the fire compartment, the ceiling and walls of the compartment

(aside from the designated test wall) were lined with insulating materials. From outside

to inside, the compartment lining on the walls and ceiling consisted of [60]:

∗The University of Waterloo steel burn house structure is used for various fire and smoke movement

experiments. In these, direct fire exposure to the steel structure must be avoided due to the potential

for thermal expansion, warping, and failure of welds.
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• 3/4 in (19.1 mm) Radiant Barrier Sheathing (RBS) plywood attached to I-beam

structural supports using high-strength beam clamps, 2 in (50.8 mm) cap screws,

and 3/8 in (9.5 mm) washers;

• 1×4 spruce strappings attached to the underlying plywood using 2 in (50.8 mm)

wood screws and 1/4 in (6.4 mm) washers; and

• 1/2 in (12.7 mm) Durock® cement board attached to the underlying strappings

using 3-1/4 in (82.5 mm) Tapcon® concrete screws and 1 in (25.4 mm) fender

washers.

Figure 3.2 shows the interior lining of the fire compartment at the time of the

installation of cement board. Once the cement board was installed, joints were faced with

mortar. Vertical studs were affixed at the location of the test wall, with the intention

that the wall be mounted on these. A steel burn pad was also present in the room, a

remnant of previous work [60], as shown in Figure 3.2.

Figure 3.2: Fire compartment with built-up cement board interior lining.

Fiberfrax Durablanket S® is a high temperature refractory ceramic fibre blanket

designed for use in high temperature insulation applications such as furnace linings,

gas turbines, and fire protection. Capable of withstanding temperatures up to 1430◦C,

29



the material is lightweight, has low thermal conductivity and heat storage, high heat

reflectance, and is extremely resilient to high temperature loading [61]. The compartment

interior was lined with this material, and was held in place using 20 gauge 1 in (25.4 mm)

hexagonal galvanized steel netting, which was affixed to the underlying cement board

using 3-1/4 in (82.5 mm) Tapcon® concrete screws and 1 in (25.4 mm) fender washers.

Figure 3.3 shows the fully insulated fire compartment.

Figure 3.3: Fire compartment with ceramic fibre insulation interior lining.

The insulated compartment had a footprint measuring 122×122 in (3.10×3.10 m),

and was 92 in (2.34 m) high; the door measured 34 in (0.86 m) wide and 78 in (1.98

m) high. The steel burn pad was centred in the compartment, re-bricked with high

temperature refractory bricks, and insulated underneath with Fiberfrax scraps.

With the construction of the fire compartment completed, the next step was to develop

a test protocol and instrumentation scheme to support the investigation of thermal

penetration into the test wall during a fire. The following section addresses this topic.
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3.2 Instrumentation and Test Methodology

For this investigative study, the wall of interest was constructed to the “W1c” specifica-

tion as defined in the NBC [3]. This type of residential construction assembly is often

used for interior walls which separate a dwelling unit and an attached garage. It has a fire

resistance rating of 30 min provided that the room is tight fitting. A wall with a low fire

resistance rating was selected for this investigation in order to cause significant thermal

penetration and damage to the wall with a fire of moderate intensity and duration. The

NBC stipulates that this type of wall be constructed as follows:

• 1.5×3.5 in (38.1×88.9 mm) wood studs spaced 16 in (406 mm) on centres;

• 3.5 in (88.9 mm) thick absorptive material (insulation) in cavities;

• a layer of 1/2 in (12.7 mm) gypsum board on the inside (exposed) face; and

• a layer of 1/2 in (12.7 mm) gypsum on the outside (unexposed) face.

The options for absorptive materials in this assembly include fibre processed from rock,

slag, glass, or cellulose, filling at least 90% of the cavity depth, and not overfilling the

cavity to the point of producing significant outward pressure on the finishes. Note that

the gypsum board barrier on the outside face of a W1c wall is optional, and other

sheathing materials may be substituted provided they satisfy the tight fitting requirement

(e.g. plywood, oriented strand board (OSB), or wafer board).

Based on these specifications, the test wall in this experiment was constructed using

CGC Sheetrock® lightweight gypsum board, Roxul ComfortBatt® R14 stone wool

insulation, and spruce studs and OSB sheathing from an Ontario mill. The exposed

side of the wall was faced in gypsum board, while the unexposed side was faced in OSB.

The wall measured 122 in (3.10 m) wide by 92 in (2.34 m) tall, with eight studs spaced

16 in (406 mm) on centres and a single stud spaced at 7 in (178 mm); this resulted

in a total of seven full-width stud cavities. Figure 3.4 shows the wall as it was being

constructed, with the stud frame and exposed-side gypsum board mounted in place. The

photograph was taken from the unexposed side of the wall, such that the front of the

compartment (with the door) was located on the right in the photograph. The small

cavity was therefore located at the rear of the compartment.

It was necessary to instrument the wall with thermocouples (for measuring thermal

penetration) before insulating and attaching wallcoverings to the unexposed side. The

thermocouple budget was dictated by the data acquisition system (DAQ) used, which was
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Figure 3.4: Stud wall being constructed, unexposed side of the wall.

a flexible and expandable Compact FieldPoint data acquisition system manufactured by

National Instruments. The DAQ was comprised of a set of modular backplanes (NI cFP-

1808 [62]), each of which is capable of supporting up to 8 Compact FieldPoint modules.

Each module supports up to eight measurements of temperature (NI cFP-TC-125 [63]),

or analog voltage or current (NI cFP-AI-110 [64]). Both types of module have 16-bit

resolution, built-in calibration and scaling, and signal conditioning via a 50/60 Hz noise

rejection filter. Two backplanes were used:

• the first backplane contained eight temperature modules devoted to measurements

of wall temperatures (64 channels); and

• the second backplane contained four temperature modules devoted to measurement

of wall temperatures (32 channels), one analog module devoted to measurement of

heat flux (8 channels), and one each of analog and temperature modules devoted

to measurement of velocity at the door (8 channels each).

Since 96 sensors were available for measurements of wall temperature, it was decided

to limit instrumentation to only five of the seven cavities, and to use a large number of

the sensors in the centre cavity in order to obtain detailed measurements of the in-depth
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thermal gradient at that location. The thermocouple layout schematic is provided in

Figure 3.8, at the end of this section.

K-type, bead-welded, exposed junction, Inconel sheathed thermocouples were in-

stalled at each position in the wall, as shown in Figure 3.8. For cavities 1, 3, and 5,

eight thermocouples per cavity were located on the exposed (a) and unexposed (e) sides

of the wall. The top row of sensors was located 6 in (152 mm) below the top of the wall,

the top three rows of sensors were spaced 6 in (152 mm) apart, the remaining five rows

were spaced 12 in (305 mm) apart. For cavities 2 and 4, four thermocouples per cavity

were located on the exposed (a) side of the wall, spaced 24 in (609 mm) apart. For cavity

3, additional thermocouples were positioned on both sides of the insulation batts as well

as in the middle of the insulation (b, c, d). Thermocouples were also placed on studs 4,

5, 6, and 7 at several locations in the upper region.

Thermocouples on the exposed side were not affixed to the wall, since fire exposure

would cause them to detach regardless. Instead, they were hung from the ceiling so as

to be positioned within 1 in (25.4 mm) of the wall (refer to Figure 3.5).

Figure 3.5: Exposed-side thermocouples hanging in front of the test wall.
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In-cavity thermocouples (cavity 3) were pushed into the insulation to the correct

depths from the back, and then bent 90 degrees such that the leads extended along the

back of the batts (location d) to the floor, exiting the wall at the bottom. Unexposed-side

thermocouples were affixed to the wall using masking tape, which pressed the junction

firmly onto the material; the unexposed side OSB was not expected to reach temperatures

high enough to cause the tape to detach.

In addition to the temperature measurements outlined above, heat flux was measured

at three heights on the side of the compartment opposite the test wall (aligned with the

centre of Cavity 3) using water-cooled Gardon gauges. The gauges were spaced 24 in (61

cm) apart vertically (corresponding to heights of 32 in (81 cm), 56 in (142 cm), and 80

in (203 cm) above the floor). An insulated rig was constructed within which heat flux

gauges were positioned, and data and water cooling lines were contained, as shown in

Figure 3.6.

Figure 3.6: Heat flux rig. Figure 3.7: Velocity rig.

Gas velocities at the doorway were measured at eight different heights using a rig

(shown in Figure 3.7) comprised of bi-directional probes attached to differential pressure

transducers, and corresponding thermocouples. Bi-directional probes were connected to
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the pressure transducers using a combination of stainless steel and high temperature

silicone tubing; the upper region of the rig was insulated with ceramic fibre insulation

prior to the test. This rig was repurposed from previous work by Obach [65]; construction

and calibration details may be found in that work.

The fire exposure was created by stacking two softwood cribs, each weighing approx-

imately 15 kg, side-by-side in the centre of the burn pad. Cribs were ignited using 200

ml of heptane in a foil pan located below each crib. The fuel type and ignition procedure

were adapted from previous work by Obach [65]. This same fuel source was later used

in future experiments; additional details are provided in Section 6.1. To prolong the

burning duration, firefighting personnel entered the compartment at regular intervals to

add additional cribs to the fuel bed. The timing for these events was determined on-the-

fly based on the monitored gas temperatures. Results of the experiment are presented in

the following section.
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Figure 3.8: Overall thermocouple instrumentation plan for the test wall.
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3.3 Results

Following ignition (t = 0), the door to the compartment was closed to an opening angle

of 30 degrees after 1.9 min in order to better contain heat within the compartment. At

t = 11.3 min the door to the compartment was opened, a third crib was added, and the

door closed again to 30 degrees. The same procedure was followed for the fourth and

fifth cribs, which were added at t = 18.9 min and 24.6 min, respectively. After 43.8 min

the door was fully opened, and the test concluded; data was recorded for a few minutes

following this final event. Figure 3.9 shows the state of the fire near the end of the test,

as the final crib burned.

Figure 3.9: Fire near the end of the test (t = 44 minutes).
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Region
Height of Sensor Above Compartment Floor (in)

Heat Flux Velocity at Door Gas Temperature at Wall

Upper 80 74 {77, 71} 74.5 {85, 79, 73, 61}
Middle 56 50 {65, 55, 45, 35} 43 {49, 37}
Lower 32 20 {25, 15} 19 {25, 13}

Table 3.1: Average sensor heights, in (individual sensor heights are given in braces).

The main results of interest here were the gas temperatures near the wall, the thermal

penetration into the wall, the heat flux to the wall, and the gas velocity profile at the

door. For purposes of clarity in the identification of trends in the measured data, the

presented results are divided into three regions based on the height of the sensors above

the compartment floor. Results are presented in terms of average values in the “upper”,

“middle”, and “lower” regions of the compartment, as defined in Table 3.1.

Figure 3.10 shows the gas temperatures near the wall measured by sensors located at

a height of 61 in (155 cm) above the floor (the upper-middle region of the compartment,

given that the compartment height was 92 in (234 cm)). Over all five cavities, the

temperatures measured were remarkably similar, which is a clear indication that gas

temperatures were fairly uniform in the horizontal dimension near to the wall.Gas	temperatures	on	the	exposed	side	of	the	wall	(Location	4,	all	cavities)
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Figure 3.10: Gas temperatures on the exposed side of the wall over all five cavities in the

upper/middle region (sensor height = 61 in (155 cm)).
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Figure 3.11 shows the gas temperatures near the wall, averaged over cavities 1–5 at

each height, and divided into the three regions based on height above the compartment

floor. Minimum and maximum temperatures measured in each region are also repre-

sented in the figure (lightweight lines with corresponding colours). The “upper” and

“lower” regions are representative of the upper and lower layer gas temperatures in the

compartment for the majority of the test (the min/max range is greater for the upper

region after about 35 min as the final crib was consumed and the hot gas layer dissipated).

Upper layer gas temperatures peaked at approximately 650◦C each time a new crib was

added, and averaged around 600◦C during the “steady burning” period from 12–32 min;

lower layer temperatures averaged approximately 260◦C during this same period. Based

on these gas temperatures and the controlled fuel load, this fire can be classified as a pre-

flashover fire (i.e. not fully-developed). For comparison, the furnace temperature in a fire

resistance test, which is not representative of a fuel-controlled fire, reaches approximately

650◦C after 10 min, and 850◦C after 30 min (see Figure 2.1).
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Figure 3.11: Gas temperatures on the exposed side of the wall averaged over all five

cavities in the upper, middle, and lower regions (min/max).

Figure 3.12 shows the heat flux measured at three heights opposite the test wall.

At the upper position of 80 in (203 cm), which is 12 in (30 cm) below the ceiling, the

maximum heat flux measured was 70 kW·m−2, and the average heat flux over the steady

burning period was about 50 kW·m−2. In comparison, irradiation from a blackbody

adjacent to the sensor at 600◦C would be about 33 kW·m−2; considering the influence of
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the fire plume and fuel bed, the measured values are reasonable. This level of exposure is

also consistent with that used in concurrent work, in which thermal penetration through

small-scale assembly mockups was measured using a cone calorimeter [57, 66, 67]. The

middle and lower heat flux probes were located at heights of 56 and 32 in (142 and 81

cm) respectively, so the average height of the two gauges was 44 in (112 cm). This is

approximately equal to the middle height of the compartment, 46 in (117 cm), so these

two gauges give an idea of the exposure levels above and below the middle of the wall.

Interestingly the lower gauge measured a slightly greater heat flux, which can likely be

attributed to the influence of the fire plume and fuel bed, as mentioned above. Regardless,

the results confirm that the exposure to the wall was greatest in the upper region.Heat	flux	in	the	upper,	middle,	and	lower	regions.
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Figure 3.12: Heat flux to the wall in the upper, middle, and lower regions.

Thermal penetration, in terms of the temperature rise on the unexposed side of

the wall, is measured and reported in a fire resistance test. It was of interest in this

test, however, to investigate the temperature gradient through the multiple layers of

the wall. Temperatures in the middle cavity were measured at five positions into the

depth of the wall, “a” through “e”, as detailed previously. The upper four temperature

measurements were averaged at each depth position to produce an average in-depth

temperature measurement in the upper region of the wall over time; results are plotted

in Figure 3.13. Similar plots were produced for the middle and lower regions, but are not

presented here for brevity — this discussion focuses on thermal penetration through the

more severely exposed upper region of the wall.
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In-depth	temperatures	in	the	middle	cavity	in	the	upper	region.
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Figure 3.13: Average in-depth temperatures in the upper region of the wall.

Temperatures on the back of the exposed-side gypsum board (b) did not rise

appreciably until approximately 2 min. The rate of temperature rise increased notably

after 18 min, when the temperature on the unexposed side of the gypsum board reached

about 120◦C. This behaviour is consistent with the expected behaviour of gypsum board

in this temperature range (Section 2.2.3), as the first stage of calcination occurs. Similar

behaviour is seen in the insulation, where the rate of temperature rise increased at 23

min at location “c” and 27 min at location “d”. These measurements are consistent with

those of Aire [56], who subject small-scale assembly mockups a constant irradiance, and

found a similar increase in the rate of temperature rise in the insulation material in this

temperature range. Likely this can be attributed to combined heat mass transport of

water vapour from the exposed gypsum board through the material, as decomposition of

the binder in the insulation does not occur until approximately 150◦C [23].

In addition to the time evolution of temperature within the wall assembly, it is also of

interest to visualize the two dimensional variation into the depth of the wall. Figure 3.14

shows a sequence of temperature contours into the depth of the wall after 10, 20, 25, and

30 min of exposure. The figure confirms that thermal penetration in the upper region of

the wall was greatest. It also shows that thermal penetration was fairly linear into the

depth of the wall in the upper region. In contrast, in the middle and lower regions, the

temperature gradient varied both with height above the floor and depth into the wall, as

evidenced in Figure 3.14.
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Figure 3.14: Temperature contours cavity 3 at t = 10, 20, 25, and 30 min.

Measurements of average gas velocity out of the compartment door are shown in

Figure 3.15 for the upper, middle, and lower regions. Near the top of the door the gas

velocity was positive throughout the test as hot fire gases exited the compartment, and

was negative in the lower region as fresh air was drawn into the compartment. These

results are very typical for a compartment fire [68], and speak to their validity. While not

directly pertinent to the present analysis, this gas velocity data is useful for validation of

fire models for this scenario, which might be implemented in the future.

Real-time observations of the state of the degrading wall were not possible in this

experiment due to the orientation of the test wall relative to the compartment door,

and because no video cameras were installed inside the compartment. Consequently,

only a post-fire assessment of the damage to the wall was made. Figure 3.16 shows the

state of the wall at the end of the test (t = 45 min). Significant cracking is visible

between fixtures (drywall screws). Also, large chunks of gypsum board fell off in the

upper region, causing the underlying insulation and wood studs to be directly exposed to

the fire environment. Damage to the gypsum board wallcovering was significant, despite

the exposure level being relatively moderate (an average of about 50 kW·m−2 over 30

min). The most significant damage was observed in the upper region, which is consistent

with the measured heat flux and temperatures being greater in the upper region.
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Velocity	in	the	upper,	middle,	and	lower	regions.
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Figure 3.15: Gas velocity out of the compartment at the door in the upper, middle, and

lower regions (min/max).

Despite failure of the thermal barrier, temperatures measured on the unexposed side

of the wall did not exceed about 45◦C. As is apparent in Figure 3.16, the rock wool

insulation remained intact through the fire exposure, with some brownish discolouration

and reduction in integrity (batts were brittle due to the binder burning off). It is apparent

that the insulation acted as a secondary level of fire protection to the underlying OSB

sheathing, as evidenced by the low measured temperatures. This explains how such a wall

is able to achieve a 30 min fire resistance rating under CAN/ULC S101 furnace exposure,

which is of much greater intensity than the fire exposure used here (gas temperatures of

900◦C and heat flux of 90 kW·m−2 after 30 min) [69].

Figure 3.17 shows the post-test remains of the wood stud frame. The studs had a

“carved out” appearance, with about 10% of the stud thickness burned away in the lower

regions of the wall, and about 60% of the stud thickness burned away in the upper regions.

In areas where the gypsum board had fallen off, some studs were charred through 90% of

the original depth. Again, despite this level of degradation, the unexposed OSB showed

no visual signs of charring or vapour penetration. These observations further support

the thermal penetration results presented in Figure 3.14 above.

Measured and observed results from the preliminary investigation have been presented

above. The following section provides further discussion with respect to the stated

objectives of this investigation, and summarizes the findings.
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Figure 3.16: State of the wall post-fire (t = 45 min).

Figure 3.17: Depths of charring of the wood studs.
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3.4 Discussion and Findings

The preliminary investigation confirmed the expected outcome that a wall exposed to a

realistic fire would preferentially degrade in the upper region. This was demonstrated by

measurements of thermal penetration through the depth of the wall, and confirmed by

observation of damage. Furthermore, temperature measurements into the depth of the

wall were consistent with those measured experimentally in small-scale mockups of the

same construction assembly, subject to a heat exposure of similar intensity. Despite this

similarity, conduct of large-scale experiments with real fire exposures is required in order

to investigate real-scale phenomena such as cracking of gypsum board and the interaction

of fire gases with the test wall. Future experiments should be of sufficient scale to make

such phenomena observable.

Thermal penetration into the depth of the wall was measured at several heights in a

single wall cavity, and a distinct vertical gradient was identified. Post-test observations

of the remaining stud wall frame (Figure 3.17) clearly show that this vertical gradient

was not the same in all cavities, varying strongly in three dimensions within the wall.

These results point to a fire exposure that varied not only in the vertical dimension, as

indicated by the measured heat flux, but also in the horizontal dimension. From this, it

is concluded that the fire exposure to a wall in a compartment fire must be specified in

two dimensions (over the entire surface of the wall) in order to adequately model thermal

degradation phenomena of interest. This brings to light a complication in the design and

conduct of this type of experiment — a single vertical probe rake of heat flux gauges is

not sufficient to measure the two-dimensional fire exposure to the required level of detail.

This difficulty must be addressed in future experiments.

The idea of using a compartment fire exposure (as opposed to a uniform furnace

exposure) to represent realistic fire conditions was demonstrated to be a success. Further

refinement to the experimental technique is required, particularly as pertaining to the

fire. Wood cribs are a useful fuel source for this type of experiment, but the burn time is

unsatisfactory for analyses demanding long-duration exposures. The idea to extend the

burn duration by having firefighters add additional fuel to the fire at regular increments

proved fruitful, however this process of entry and fuel addition had a significant impact

on the fire dynamics. The discontinuities seen in the gas temperature and heat flux

curves (which correspond to the re-fuelling events) are not representative of a realistic

fire environment. Therefore, future experiments must address this issue in the design of

a fire exposure.
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Although the fire exposure was non-uniform over the surface of the wall in both

horizontal and vertical dimensions, the gas temperature field adjacent to the wall varied

predominantly only in the vertical dimension. Certainly this would not have been the

case closer to the fire plume — the approximate fire area was 1150 in2 (7420 cm2), for

two cribs side-by-side, and the fire centreline was 69 in (175 cm) from the wall. However

the results indicate that when fire is not too close to the wall, the gas temperatures

near the wall do not appear to be significantly influenced by the non-uniform radiation

from the fire and compartment surroundings, but rather by the natural stratification of

gases which occurs in a compartment fire environment. This will of course depend on the

proximity of the fire to the wall and on fluid dynamics in the compartment; asymmetric

ventilation or fuel configurations will impact the uniformity of gas stratification.

The implication of this finding is that the two-dimensional gas temperature field

adjacent to the wall can be approximated by a one-dimensional (vertical) temperature

field. Furthermore, assuming that the gas layer stratification is uniform across the entire

compartment area (except near the fire plume of course), the temperature field near

the wall may actually be approximated by the global stratified gas layer temperature,

or “slice” temperature. The slice temperatures in a rectangular compartment can

be measured experimentally with vertical probe rakes, usually installed symmetrically

through the compartment (e.g. in the four corners). An advantage of approximating the

gas temperature field near the wall using the compartment slice temperature is that no

thermocouple instrumentation is required near the exposed side of the wall. If possible,

future experiments should avoid the use of exposed-side instrumentation for four reasons:

• sensors obscure the line-of-sight from the fire to the test wall, having a direct (and

difficult to quantify) influence on the exposure;

• the presence of permanent sensors adjacent to the test wall complicates construc-

tion, assembly, and post-test cleanup;

• the use of replaceable sensors adjacent to the test wall negates the previous point,

but adds significant preparation time and increases the infrastructure cost of each

test; and

• failure of instrumentation in a compartment fire environment is likely to occur over

time, therefore it is preferred to use robust, well protected, permanent probe rakes

that are positioned such that they don’t obstruct the test wall.
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A practical observation of relevance from this investigation was that the time to

construct the compartment and test wall, instrument the wall, run the experiment,

repair sensors after an experiment had been conducted, and prepare the compartment

for the next test was very long. Future experiments should optimize this procedure

to minimize the time taken to conduct a single experiment, facilitating the conduct of

multiple experiments in a short time frame. A significant issue in this investigation

was the limitations imposed by the selected medium — the steel burn house structure

presented multiple difficulties in being a confined space with configuration restrictions.

Future experiments should adopt a refined apparatus with accommodations for cable

routing, video recording, line-of-sight to the test wall, access to both sides of the test

wall, and a simple means of in-place construction of the test wall.

The findings of this preliminary investigation were the foundation upon which the

large-scale experiment developed in the present work was built. The following chapter

outlines the design of this experiment.
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Chapter 4

Design of Experiment

The experiment adopted in the present work is intended to be used to study the thermal

degradation of construction assemblies (specifically walls), involved in real fires. Given

this objective, and taking into account the findings of the preliminary work, several design

criteria were developed.

First, the experiment was to be capable of accommodating a wall of realistic size and

as-built construction. The minimum wall size was to be three standard wall cavities in

width (with stud spacing of up to 24 in (609 mm) on centres); the intent of this criteria

was to ensure that there will always be at least one cavity that is not directly subject

to the boundary conditions that will develop at the sides of the wall. The experiment

was also to accommodate a diverse range of wall types suitable for use in Canadian

construction; for example, offset studs, multilayered gypsum board, various types of

insulations, exterior wall assemblies, etc. Common residential construction opts for the

used of 2×4 or 2×6 stud walls; combining this with options such as offset studs, the

thickness of walls being studied was anticipated to be as large as perhaps 8 in (203 mm).

The second criterion was that the experiment must expose a wall to realistic fire

exposure conditions. This implies some degree of “non-uniformity” in the mixed-mode

thermal boundary condition, as opposed to a fire resistance test, as is expected in

a real pre-flashover fire. Furthermore, it was required that the experiment facilitate

realistic interactions between the fire gases and decomposing wall, as is typical in a

fire environment, and in contrast to a purely heat-based exposure such as that from a

radiant panel, for example. These first two criteria are both related to the realism of

the fire exposure, relative to that of an actual building fire. Therefore, a compartment
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fire style of experiment was adopted, which can produce fires of the desired realism

(i.e. compartment-scale fire plume and development of a distinct hot gas layer) when

appropriate fuels (i.e. solid materials typically found in structures, such as wood, plastics,

and textiles) are used, and is of an adequate scale to accommodate large walls (i.e. at

least three stud cavities wide, and height of a typical compartment). To keep the scope

of the experiment manageable, a single boundary of the compartment, designated the

“test wall”, is the focus of the thermal degradation assessment.

Next, the experiment was to produce repeatable results, such that the measured and

observed thermal degradation phenomena for a particular construction assembly and fire

exposure will be consistent test-to-test. A well-controlled compartment fire experiment

addressees this criteria to some extent. Due to the nature of large-scale fires, in particular

those utilizing solid fuels and natural ventilation, some test-to-test variability must be

accepted. For example, Fang [70] conducted a series of four compartment fire experiments

utilizing an upholstered furniture fuel load, and quantified variability in measured results

(heat flux, temperatures, event times, etc.) by a coefficient of variation, which was as high

as 13.3%. Nonetheless, good repeatability can be promoted by adequate control of the

relevant experimental variables (e.g. initial conditions, ambient conditions, ventilation,

and fuel load). Repeatability of the experiment is discussed in Chapter 6.

For practical reasons, the experiment was to facilitate the rapid preparation of

specimens, and the timely conduct of successive tests. A wall of compartment fire scale

can be constructed in a few hours, however instrumentation can add significantly to

specimen preparation time. Furthermore, any test involving a wall with gypsum board

tape lines must be afforded time for the joint compound to cure, typically two days under

controlled temperature and humidity conditions. For these reasons, it was decided that

the in-place construction of the test wall within a rigid mounting frame (taking cues from

the CAN/ULC S101 [6] and ASTM E119 [5] fire resistance tests) will best facilitate rapid

specimen preparation. The present work is concerned with non-loaded wall partitions,

but future work may consider loaded partitions. In this case, the experiment should be

able to incorporate some means for application of mechanical stress, e.g. hydraulic press.

Once a wall is constructed in-place, the compartment and test wall are conditioned for

two days prior to the start of a test. With regards to successive testing, the most time-

consuming factors are post-test cleanup (a compartment fire environment will retain heat

long after the test has been completed) and replacement of damaged instrumentation.

Affording these tasks two days, plus one day for conduct of a test, the expectation was

that successive tests may be conducted within a five-day timeframe.
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The apparatus was to be instrumented with sensors, and measurements be recorded

via a data acquisition system, in order to support both present engineering analyses and

future detailed modelling endeavours. This involved characterization of the compartment

fire environment, wall exposure, and thermal degradation process. Primarily this

necessitates the measurement of temperature, the primary variable in fire analyses; and

heat flux, the most useful parameter for investigating the thermal interaction between

a fire and a solid boundary. Furthermore, visual observations are a crucial component

of the experimental assessment. The instrumentation selected for this experiment is

discussed in detail in Section 4.2 below.

Finally, there were practical and budgetary constraints to be considered. Experimen-

tal design began in the late summer of 2015, and available resources delayed completion

of the apparatus until spring 2016. A finite budget existed for materials and contracting,

therefore in-house construction and on-hand materials were used whenever possible. The

budgetary constraint extended to instrumentation, which was designed to be robust

and survive multiple tests where possible. The most significant practical constraint

was physical accommodation on the University of Waterloo Fire Lab site. An indoor

installation of the desired scale was not possible, therefore it was required to construct an

apparatus outdoors. Given this constraint, and the cool winter temperatures in Waterloo,

Ontario, it was required that characterization and the first series of experiments be

completed by the autumn of 2016.

Taking into consideration the criteria and constraints outlined above, the following

sections detail the design and instrumentation of the large-scale experiment.

4.1 Apparatus

While there is no single configuration that is used universally for compartment fire

experiments, a historically relevant option is the ISO 9705 Room Corner Test [71]

configuration. While this test is often used for the study of post-flashover fires, the

configuration is universal and may be readily adopted to other work. This test standard

specifies a compartment measuring 3.6 m long, 2.4 m wide, and 2.4 m tall. The

compartment has a single vent (a doorway) measuring 0.8 m wide 2.0 m tall, located

on one of the short sides of the compartment. This configuration was used as the

starting point for the apparatus design in the present work. To build a compartment of

this size that is capable of withstanding fire exposures, some degree of non-combustible
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construction or fire resistant insulation was required. Since the location of the apparatus

in the present work was constrained to be outdoors, weatherproofing was also necessary.

The solution adopted here was to retrofit a standard 20 ft (6.1 m) sea container with an

integrated fire test area and instrumentation room. By consolidating the apparatus into a

single self-contained unit, flexibility in location was afforded, and weatherproofing would

not be a concern. Design drawings were produced in August 2015 (Appendix A), and

the modified container was fabricated by Secure Container Solutions Inc. and delivered

to the University of Waterloo Fire Lab site in November 2015.

The sea container, which has nominal dimensions of 6.1 m long, 2.4 m wide, and

2.4 m tall, was divided into three distinct sections: the “fire compartment”, “transition

section”, and “instrumentation section”. Sections were separated by frames fabricated

from 10 ga steel sheet and 3/16 in (4.8 mm) structural steel square tube, which were

welded directly to the steel interior of the the container. Figure 4.1 is an excerpt from

the construction drawings, and shows a section view along the length of the apparatus.

In the figure, the fire compartment is visible on the left and the instrumentation section

on the right. This drawing may be viewed in full detail in Appendix A, along with the

remainder of the construction drawings.
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Notes
  

The fire endurance test apparatus is a 20 ft shipping container (nominal exterior dimensions of 19'10.5" long, 8'0" 
wide, and 8'6" tall) modified with several steel frame inserts. The modifications are summarized below:
 
1. A rectangular section shall be cut out of the front wall of the container to accomodate a steel door and its frame. 
The front door frame shall be constructed of 2" square tube (steel) with an opening that measures 31.5" wide by 
78.75" tall (the same dimensions as the door in a ISO 9705 room). Refer to "Front Door Frame" for details.
2. A frame with an opening measuring 75.5" wide by 75.5" tall shall be installed 142" back from the inside front face 
of the container. The purpose of this frame is to mount a wall test specimen (73.5" wide by 73.5" tall) during a fire 
endurance test (the interior of the frame shall be lined with 1" ceramic fibre insulation on all 4 sides). With the test 
wall frame in this position, the dimensions of the room shall be 142" long, 92.5" wide, and 93.9" tall (the dimensions 
of an ISO 9705 room measure 142" long, 94.5" wide, and 94.5" tall). Refer to "Test Wall Frame" for details.
3. A frame shall be installed in the rear section of the container 3 ft from the back side of the test wall frame. The 
purpose of this rear door frame is to separate the back side of the test wall (hot environment) from the area where 
instrumentation and computer equipment will be located (cool environment). The rear door frame will include a door 
to allow access to the back side of the test wall frame pre/post test, as well as circular access ports for the routing of
cables near floor level. The dimension of the door on the rear wall frame is not critical, but is shown in these 
drawings as equal to the front door. Refer to "Rear Door Frame" for details.
4. A total of 8 access ports (2 on the front side, and 3 each on the left and right sides) shall be installed by cutting 
4.5" holes into the container and welding in place 4.5" OD steel pipes (wall thickness 0.237").
5. Exact details of front and rear doors (hinges and locking mechanism) shall be left to the discretion of the supplier. 
It is recommended that doors be reinforced with angle bar to prevent warping in the event of direct fire exposure.
 
Note that dimensions marked with a "*" symbol indicate critical dimensions for the design.
 

Note that tolerances and welds are not included in this design revision.

Section Along Container Length
 

SCALE: 1/16

Front of
container

Rear of
container

Front door frame Test wall frame
(wall specimen shown)

Rear door frameFront door
(shown open)

Rear door
(shown open)

Side access port for future gas pipe burner
(same on opposite side)

Additional Notes
  

In addition to the steel container modifications itemized before, the following modifications will be performed by UW:
 
1. The floor of the container shall be built-up using 2 layers of 2" fire bricks (to be even or slightly raised above the 
bottom of the front door frame).
2. Batwing doors shall be constructed and installed on the inside of the front door frame for the purpose of 
controlling ventilation during a fire test.
3. Thermocouples within the fire room shall be routed under the floor and up the sides of the container, tucked into 
the corrugations of the steel, and insulated and fire protected as necessary.
4. All instrumentation to the wall specimen shall be located on the back side of the test wall frame, with data 
transmission cables routed into the rear instrumentation room through access ports in the rear door frame.
5. The test wall frame will be exposed to significant heat loads during a test, and as such, warping or weakening of 
welds is a concern. To this end, it is suggested that the exposed face of the test wall frame be covered with a 
sacraficial layer of drywall or cement board for each test. This material may be loosely fitted in place using brackets 
(future modifications).

Side access port for gas sampling
(same on both sides)

Side access port for ventilation
(same on opposite side).

Note To Self.
 
As of August 11 revisions, the model 
is not actually to scale. The size of the
opening in the test wall frame should 
be 51.5" wide by 74.0" tall. This is to 
accomodate the full thickness of fibre 
insulation, which will ultimately make
mounting of specimens much easier.

Figure 4.1: Section view of the fire test apparatus (refer to Appendix A for details).

The frame separating the fire compartment from the transition section is termed

the “wall frame”, in which the test wall is mounted. The wall frame was designed

to fulfill the minimum wall size criterion (three 24 in (61 cm) stud cavities in width),

which amounts to a total width of 73.5 in (187 cm) on wood studs (and similar for

steel studs). Furthermore, it was decided to insulate the interior of the wall frame with

1 in (25.4 mm) of ceramic fibre insulation on all four sides, in order to insulate and
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better quantify the heat loss boundary conditions at those locations; given this design

consideration, the total width of the wall frame opening is 75.5 in (192 cm). Since the

height and width of the room are identical, it was decided to use a wall of identical

height and width, therefore the height of the wall frame opening is also 75.5 in (192 cm).

Note that this wall size is smaller than that of a fire resistance test (for which width

and height are at least 270 cm [5]), but still large enough to represent a compartment

boundary. The depth of the frame opening is 12 in (305 mm), thus accommodating

a large variety of different types of walls. The preliminary investigation demonstrated

that thermal penetration (Figure 3.14) and degradation (Figure 3.17) in a compartment

wall are least significant near the compartment floor, and most significant in the upper

regions. Given the intention of the experiment, it was decided to elevate the bottom

edge of the wall frame 12 in (305 mm) above floor level. This positioned a test wall

such that the spacing between the top of the wall and the ceiling of the compartment is

identical to the spacing between the sides of the wall and the sides of the compartment

(once insulated, as described below). The wall frame is shown in Figure 4.2; refer to

Appendix A for complete details.

The fire test apparatus was installed on site at the University of Waterloo Fire

Research Lab as shown in Figure 4.3. The rear of the container (instrumentation section)

faces the fire lab (the red building), while the front of the container (fire compartment)

faces the roadway. The container was oriented in this manner so as to prevent fire gases

from venting into the lab space, and to afford greater access to the fire compartment in

the event that suppression is required.

Once installed on site, the interior floor of the container was lined with 2.5 in

(63.5 mm) fire bricks to provide stability, thermal insulation, and fire protection to

the floor. The interior walls and ceiling of the fire compartment were insulated with

panels constructed from 1/2 in (12.7 mm) cement board and 1 in (25.4 mm) Fiberfrax

Durablanket S® refractory ceramic fibre blanket. This insulation system provides fire

protection to the steel container, prolonging the life expectancy of the apparatus, and

retains heat within the compartment as traditional building construction would. Lining

the compartment with gypsum board was another option, however this would necessitate

replacement each test, and could potentially break down mid-test, whereas the insulation

panels will survive multiple tests. Panels were assembled using machine screws (8-32

UNC, 2 in (50.8 mm) length), nuts (8-32 UNC, 5/16 in (7.9 mm) drive), and fender

washers (3/16 in (4.8 mm) inner diameter, 1 1/8 in (28.6 mm) outer diameter). After a

25% compression of the insulation at the screw attachment locations, the screws extended
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UW Intermediate-Scale Fire 
Endurance Test Apparatus
AUTHOR: Matt DiDomizio
COMPANY: University of Waterloo
REVISION: 03
DATE: August 17, 2015

SHEET SIZE: C
SHEET NUMBER: 5  OF 6 
DRAWING SCALE: As indicated (all dimensions in inches unless 
otherwise stated).

Test Wall Frame (Specimen Mounting)
 

SCALE: 1/24

From left to right:
 

1. The test wall frame with no test specimen mounted.
2. The inside of the frame is lined with ceramic fibre insulation
(1" thick) to reduce heat transfer from the steel frame to the
test specimen.
3. The wood stud frame of the test wall is constructed in-place
once the test wall frame has been lined with insulation. Studs
are attached to the inside of the steel frame with bolts.
4. The covering material (gypsum board) is screwed to the wood
stud frame such that it is flush with the steel sheet on the front
the test wall frame. Any drywall seams are taped and sealed with
drywall compound.
5. (Not shown) The remainder of the test specimen is constructed
in-place, from the back side of the test wall frame. This includes
insulation, sheathing, etc.
6. (Not shown) 1.75" wide strips of drywall are screwed into the
wood stud frame around the edges of the wall (over both the
edge of the stud as well as the exposed ceramic fibre insulation).
Drywall compound is then applied liberally around the edges to
minimize leakage gases through edges. See detail A below.

Test Wall Frame
 

SCALE: 1/16
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Figure 4.2: Profile and top views of the wall frame (refer to Appendix A for details).
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Figure 4.3: Fire test apparatus installed on site.
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through the back side of the panels by approximately 1/2 in (12.7 mm); this was done

to create an air gap between the back of the panels and the steel container surfaces.

Figure 4.4 shows the front (fibre) and back (cement board) sides of a constructed

insulation panel.

(a) Front side. (b) Back side.

Figure 4.4: Insulation panels used in the fire test apparatus.

Ceiling panels were suspended on beams of 1 5/8 in (41.3 mm) Unistrut channel

spaced 24 in (61 cm) apart, as shown in Figure 4.5. Note that the wall frame is also

visible in the figure, with steel sheet covering the opening; this is described in Section 5.1.

Next, wall panels were prepared, held in place by the rigidity of the cement board and

a friction fit under the ceiling; refer to Figure 4.6. The fully insulated compartment is

shown in Figure 4.7. The interior dimensions of the insulated compartment are reduced

to 138 in (351 cm) long, 90 in (229 cm) wide, and 90 in (229 cm) high. The bottom of

the wall frame is 12 in (31 cm) above the brick floor, and the top of the wall frame is

87.5 in (222 cm) above the brick floor, 2.5 in (63.5 mm) below the ceiling. Note that the

insulation along the top of the wall frame in Figure 4.7 had not yet been trimmed. The

two vertical steel channels in the figure contain temperature sensors, and are detailed in

the following section.
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Figure 4.5: Insulation panels installed on

the compartment ceiling.

Figure 4.6: Insulation panels installed on

the compartment walls.

Figure 4.7: Fully insulated fire compartment.
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4.2 Instrumentation

With the fire compartment constructed, the next step was to instrument the fire test

apparatus. The intended purpose of this experiment is to study the thermal degradation

of a test wall subjected to a realistic compartment fire exposure, as well as the interaction

between a compartment fire environment and its surroundings. Therefore it was necessary

to install sensors to monitor both the fire compartment and the test wall. While any

number of sensor types might be selected, and certainly the apparatus should be flexible

in its accommodation of a broad range of sensor types, the most important measurements

for the present work are gas temperatures, surface temperatures, heat flux at surfaces, and

visual observations. A complete overview of the instrumentation used in the experiment

may be found in Appendix B.1.

Measurement of gas temperatures in the fire compartment is crucial in order to

adequately describe the fire, and invaluable for purposes of fire model validation. Given

that gases will stratify vertically in a fire compartment, it is important to measure the

vertical temperature gradient at several locations; this was accomplished by use of vertical

probe rakes, which distribute sensors from the floor to the ceiling of the compartment.

Probe rakes were assembled by lining 1 5/8 in (41.3 mm) Unistrut channels with k-type

thermocouple cables (20 ga solid wires, glass fibre and Inconel sheathed, one duplex pair

per cable) and ceramic fibre insulation. Bead-welded exposed junction thermocouples

were extended 1/2 in (12.7 mm) from the channel at regular increments along its length,

as shown in Figure 4.8. This type of rake construction has been used in previous work [65],

and was demonstrated to be robust, capable of surviving multiple repeat fires.

Four rakes were assembled, and placed in each of the four corners of the fire compart-

ment; these are denoted T1, T2, T3, and T4 (refer to Figure B.6). Seven thermocouples

were used in each rake, plus an additional thermocouple extending from the top of the

rake to the ceiling of the compartment. The heights of the seven thermocouples within

the rakes ranged from 12 in (31 cm) to 84 in (213 cm) above the floor, such that the top

thermocouple was 6 in (152 mm) below the ceiling. The eighth thermocouple in each

rake was located 2-1/2 in (63.5 mm) below the ceiling, extending 1/2 in (12.7 mm) below

the ceiling channels.

Gas temperatures adjacent to the wall, as well as measurements of wall surface

temperature, would be excellent for purposes of model validation. However, the difficulty

in measuring the surface temperature of a decomposing material is well known [72], and

only exacerbated in the context of a harsh fire environment. Furthermore, it is critical
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Figure 4.8: Construction of the fire compartment thermocouple rakes.

(a) Positions in the compartment. (b) Extension from the channels.

Figure 4.9: Details of the fire compartment thermocouple rakes.
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that any type of fire-side instrumentation not interfere with the interaction between fire

and wall. As discovered in the preliminary investigation, temperature sensors positioned

directly adjacent to the test wall had a high rate of failure, necessitating frequent

replacements. This is undesirable for the permanent sensors outlined here; however,

several channels in the data acquisition system were set aside for future expansion which

can accommodate additional sensors of this nature, if desired.

Gas thermocouples were also installed in the transition section in order to monitor

the conditions on the unexposed side of the wall. The gas environment will be

relatively quiescent in this section, therefore a coarse measurement of the floor-to-ceiling

temperature gradient was all that was required. Thermocouple rakes were assembled by

looping Inconel-sheathed K-type thermocouples into vertically-hanging chains on the left

and right sides of the wall frame, with three sensors per chain; these are denoted TR and

TL (refer to Figure B.6). The top and bottom thermocouples in these chains were at

the same height as the top and bottom of the wall frame, and the middle thermocouples

were at the mid-way height of the wall frame. Note that the height of the transition

section is 93.5 in (238 mm), as opposed to the height of the fire compartment at 90 in

(229 mm), since it is uninsulated. The unexposed-side thermocouple rakes can be seen

in Figure 4.10 below.

In addition to the gas temperatures, the temperature of the steel frame adjacent

to the wall it is of interest from a heat transfer perspective (since the primary mode

of radiative heat exchange on the unexposed side of the wall will involve this steel

frame). Due to the high thermal conductivity and expected low temperatures of the

steel frame, a single sensor was placed on each side of the frame (at the same height as

the middle thermocouple in the unexposed side rakes). These two thermocouples were

welded directly to the steel frame, and are denoted BR and BL (refer to Figure B.6).

Figure 4.11 shows these sensors as-installed.

The temperature of the wall frame itself is critical in assessing heat losses. Eight

thermocouples were welded directly to the inside of the wall frame, two per side, 25 in

(63.5 cm) from the corners of the wall frame. As mentioned previously, the test walls

were surrounded by ceramic fibre insulation as-installed. These wall frame temperature

measurements may be used to quantify the heat losses through the border insulation,

providing a boundary condition specification which may be used in future models. These

thermocouples are denoted FL and FR (refer to Figure B.6).
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Figure 4.10: Thermocouple rakes on the

unexposed-side of the wall.

Figure 4.11: Thermocouples on the

unexposed-side surroundings.

As mentioned previously, the apparatus is designed to accommodate a stud wall

consisting of 3 cavities with studs 24 in (609 mm) on centres. Given this, 36 ther-

mocouples were allocated for use in measuring temperatures within a wall specimen.

Eight thermocouples were allocated for each wall cavity on the back side of the exposed

thermal barrier (Location 1), and four per wall cavity on the back side of the unexposed

thermal barrier (Location 2), as shown in Figure 4.12. This thermocouple allotment can

easily be adapted for a stud wall consisting of 4 cavities with studs 16 in (406 mm) on

centres, as shown in Figure 4.13. Additional details, including dimensions, are provided

in Figure B.7.

In addition to temperature measurements, events were monitored and recorded using

video cameras; hardware details are provided in Section 4.3 below. It was of interest

to monitor both the exposed and unexposed sides of the decomposing wall, in order to

aid assessment of the thermal degradation. Therefore two cameras were allocated for

this purpose. The front camera is positioned at the compartment door, but not mounted

permanently, so that it may be removed if thermal failure becomes eminent during a test.

The rear camera was positioned so as to maximize the view of the unexposed side of the

wall (on the floor at the base of the door in the rear wall frame, oriented up toward the

wall).
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Ceramic Fibre
Insulation

Wood Studs

Location 1

Location 2

Thermocouple
Locations

Exposed side of the wall (fire compartment)

Unexposed side of the wall (transition section)

Figure 4.12: Thermocouple locations on a test wall with 24 in (609 mm) stud spacing.
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Ceramic Fibre
Insulation

Wood Studs

Location 1

Location 2

Thermocouple
Locations

Exposed side of the wall (fire compartment)

Unexposed side of the wall (transition section)

Figure 4.13: Thermocouple locations on a test wall with 16 in (406 mm) stud spacing.
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The final consideration was to measure the exposure boundary condition (incident

heat flux) on the test wall during a test. In a compartment fire, the exposure is described

by the complex interaction of surface radiation (from the compartment walls), gas

radiation (fire plume, upper gas layer, lower gas layer), and convection heat transfer [73].

Given sufficient knowledge of the primary variables (temperature), it is possible to deduce

the exposure boundary condition on the wall; in fact, this would be the goal of a coupled

model of thermal degradation and fire dynamics. However it is desired in this experiment

to use heat flux sensors to measure the derived variable (incident heat flux) directly. Since

the distinguishing characteristic of this experiment is the realistic or “non-uniform” fire

exposure imposed upon the test wall, the primary consideration for sensor selection was

that heat flux over the entire surface of the wall needed to be measured, to a resolution

sufficient for quantification of the non-uniformity of the exposure field. Using traditional

“point source” sensors, this would necessitate multiple sensors installed over the wall

area.

The most useful types of heat flux sensors for a large-scale fire experiment are the

Gardon gauge, the thin-skin or slug calorimeter, and the directional flame thermometer

(DFT) [73]. Gardon gauges would have to be installed within the wall, with the measure-

ment face mounted flush with the wall surface, necessitating holes to be drilled into the

exposed-side thermal barrier at each gauge location. In addition to compromising the

structural integrity of the thermal barrier, the water-cooled gauges require cooling lines to

be installed, introducing undesired temperature differentials throughout the construction

assembly. On the other hand, calorimeter and DFT gauges could be suspended in front

of the wall rather than within it, but this poses problems similar to those of mounting

thermocouple probes or plate thermometers near to the wall. Therefore, rather than

measuring heat flux to the wall during each test, it was decided instead to first design a

well controlled compartment fire; to then characterize the exposure condition to the wall

for that design fire using a novel measurement procedure; and finally to reproduce that

design fire for subsequent fire tests. The measurement procedure and apparatus used are

outlined in Chapter 5, with results subsequently presented and discussed in Chapter 6.

First, an overview of the data acquisition procedure is provided in the following section.
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4.3 Data Acquisition

As outlined in the previous section, the apparatus was outfitted with a total of 84

temperature sensors, 36 of which were specific to the test wall, plus additional (as yet

unspecified) heat flux sensors and video cameras. The same data acquisition system used

in the preliminary investigation was used here (refer to Section 3.1 for details). As before,

two backplanes were used:

• the first backplane contained eight temperature modules, and was devoted to

measurements of compartment and boundary temperatures (48 active signals, 16

open channels for future expansion); and

• the second backplane contained six temperature modules, devoted to measurement

of wall temperatures (36 active signals, 12 open channels for future expansion), and

two modules dedicated to generic voltage measurements.

The two backplanes were connected to a network switch using gigabit ethernet, and

the switch connected to a computer running a custom LabVIEW virtual interface. Data

were sampled at a rate of approximately 0.9 Hz (sampling increment of 1.1 seconds),

and saved to Comma Separated Value (CSV) datafiles. Column headings in the datafiles

used the following naming convention: “MmCc (DAQb Mm)”, where:

• “b” is the backplane number, [1,2];

• “m” is the module number, [1,2,3,4,5,6,7,8]; and

• “c” is the channel number, [0,1,2,3,4,5,6,7].

Sensor locations and the corresponding DAQ channels are detailed in Chapters 6 and 7.

Video cameras were connected to a QSee high definition analog video recorder capable

of supporting up to eight simultaneous camera inputs. Video was recorded in real time to

SD flash, so that in the event of camera failures resulting from fire exposure, the recorded

video would not be compromised.

The data acquisition system and computer were located in the instrumentation section

of the apparatus (Figure 4.14). K-type thermocouple extension cables (20 ga solid wires,

polyvinyl sheathed, with 20 duplex pairs per cable) were used to connect thermocouples in

the fire compartment to the instrumentation section; cable routing is shown in Figure B.5.

Electronics were placed in enclosures in order to protect the equipment from heating, as

well as from water in the event of rainy conditions during a test.
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Figure 4.14: Data acquisition system in the instrumentation section.

This chapter has outlined the design of the experiment, but some details of the

experimental methods have been purposely omitted. Two types of experiments were

conducted in the present work: “steel wall tests” (characterization of the experiment

— Chapter 6) and “real wall tests” (assessment of thermal degradation of construction

assemblies — Chapter 7). Additional details of the experimental methods specific for each

of these types of experiments are provided in the respective chapters. First, however, the

following chapter outlines the procedures used for measurement of heat flux.
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Chapter 5

Measurement of Heat Flux

As outlined in Section 4.2, a novel apparatus and procedure for measurement of

the two-dimensional fire exposure on a wall was required to characterize the thermal

boundary condition that develops during a specified fire scenario. The concept for the

apparatus developed here is based on a thermal capacitance calorimeter sensor, similar

to those described in ASTM 457 [74] (slug calorimeter) and ASTM E459 [75] (thin-skin

calorimeter). In short, the sensor is comprised of a highly conductive object of which

the temperature is measured, and the net heat flux to the exposed area of the object is

deduced using a model of thermal energy storage.

At this point it is useful to clarify some terms, for posterity:

• incident radiative heat flux, or irradiance (q′′r,i), is the radiative heat flux incoming

to a surface;

• radiosity is the radiant heat flux outgoing from a surface, consisting of the reflected

incident heat flux (q′′r,o and the surface emission (q′′r,e);

• net radiative heat flux (q′′r,net) is the difference between the irradiance and radiosity

at a surface (outgoing, by convention);

• net heat flux (q′′net) is the combined net radiative heat flux and convective heat flux

(q′′c ) at a surface (outgoing, by convention).

The present work requires a measurement of the incident radiative heat flux dis-

tribution over the entire wall, therefore the exposed area of the sensor is equal to the

exposed area of a test wall. The sensor developed here, denoted the “steel wall sensor”,

is mounted into the wall frame in place of a real wall, and the incident radiant heat
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flux to the sensor during a fire exposure is deduced via measurements of temperature

and use of a thermal capacitance heat transfer model. The following section details the

design and construction of the sensor, and subsequent sections outline the development

and implementation of the heat transfer model.

5.1 Steel Wall Heat Flux Sensor

Given the limitations of a thermal capacitance heat transfer model∗, it was decided

to adopt a “thin-skin” design for this sensor. Accordingly, 18 gauge (1.27 mm) sheet

steel was used for the primary sensing surface. As shown in the construction drawings

(Appendix A), the opening size of the wall frame is 75-1/2×75-1/2 in (192×192 cm). A

1/4 in (6.35 mm) thick high-temperature silicone rubber gasket was used to insulate the

steel wall sensor from the wall frame, therefore the total exposure area of the steel wall

was 75×75 in (190×190 cm). Steel sheet is difficult to obtain in the widths required here,

therefore the wall was assembled in three sections, each being 25 in (64 cm) wide.

Next, a frame was designed to support the steel sheets, while remaining rigid during

the inevitable thermal expansion of the steel. Taking the linear thermal expansion

coefficient for steel to be 12E-6 K−1 [28], and assuming that the wall would experience a

temperature rise of 800 K, a linear expansion of about 3/4 in (19.1 mm) was expected.

Therefore it was decided to build a “floating” frame using 1-5/8 in (41.3 mm) Unistrut

steel channels. Details of the frame construction are provided in Appendix A. In

summary, each frame component was under-sized by 1/4 in (6.4 mm), and the frame

was assembled using standard Unistrut fittings and 1/2 in (12.7 mm) bolts (finger-tight).

With the frame in-place, 1/2 in (12.7 mm) holes were drilled into the frame and the steel

sheet. The sheet was then affixed to the frame using 1/4 in (6.4 mm) bolts (finger-tight)

and fender washers to distribute the load. The end result was a structure that was both

rigid and free to expand under fire exposure without buckling.

The main consequence of using such a rigid frame was an increased mass — the

total mass of the steel wall sensor including fittings was calculated to be approximately

128 kg using AutoDesk Inventor 2016, assuming a steel density of 7850 kg·m−3 for all

components. Also, this mass was not evenly distributed over the 2D wall area due to the

frame geometry. As detailed in the following sections, the heat transfer model for this

∗ASTM test standards for slug [74] and thin-skin [75] calorimeters provide an excellent overview of

the development, history, limitations, sensitivity, and accuracy of these types of sensors.
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steel wall adopts a simplified geometry, taking the volume of the wall to be simply the

product of the exposure area (A) and the depth (δ). Given the large thermal mass of the

frame, the effective wall thickness was calculated to be 4.5 mm:

δ =
m

ρA
, (5.1)

where m = 128 kg, A = 3.63 m2, and ρ = 7850 kg·m−3. Compared to the actual thickness

of the 18 gauge steel sheet (1.27 mm), this represents an increase in thickness of 3.5 times,

which is approximately equivalent to 8 gauge steel sheet.

A total of 24 channels on the data acquisition system were allocated for measurement

of the steel wall temperature. Sensors were distributed in three columns (corresponding

to each section of the steel wall), each with eight sensors distributed vertically; refer

to Appendix B.2 for specifics. 24 gauge K-type glass fibre sheathed thermocouple wire

was used; leads were welded directly to the steel with a 1–2 mm gap. The sheathed

thermocouple cable has a profile measuring 1.4 mm × 2.3 mm, and is rated to a

maximum temperature of 871◦C. Figure 5.1 shows the unexposed side of the steel wall

with thermocouples welded in place. All cable leads were routed neatly into the steel

channel below the wall, and into the instrumentation room (to the right in the photo).

In order to implement the aforementioned heat transfer model, knowledge of the

thermophysical properties of the constituent materials is required. The properties that

are relevant to a solid phase non-reactive heat transfer analysis are: density (ρ), specific

heat capacity (cp), and thermal conductivity (κ). In addition to temperature dependence,

these properties can vary widely depending on the composition and crystallographic

structure of the material, which themselves can change under fire exposure. The material

used in the present work was AISI 1020 cold-rolled carbon steel. Constant thermophysical

properties were assumed based on values for steel used in fire-specific applications [28, 76,

77] over the temperature range of 0–800◦C; refer to Figures 5.2–5.5 for more information.

The suitability and consequences of this simplification are discussed where relevant.

The model also requires the thermal conductivity of the silicone insulation to be

known (refer to Sections 5.2–5.5 below), which was taken to be 0.24 W·m−1·K−1 based

on the manufacturer’s specification [78]. The ceramic fibre insulation used elsewhere in

the apparatus is not involved directly in the heat transfer analysis, but it is beneficial to

list the thermophysical properties here. The insulation used here, “Fiberfrax Durablanket

S® refractory ceramic fibre blanket”, has a nominal density of 128 kg·m−3 and thickness

of 25.4 mm. The manufacturer’s specification [79, 80] gives a specific heat capacity of

1130 J·kg−1·K−1, and a thermal conductivity as detailed in Figure 5.6.
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Figure 5.1: Thermocouples installed on the unexposed side of the steel wall.
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Figure 5.2: Thermophysical properties of

steel — density.
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Figure 5.3: Thermophysical properties of

steel — specific heat capacity.
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Figure 5.4: Thermophysical properties of

steel — thermal conductivity.
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Figure 5.5: Thermophysical properties of

steel — thermal diffusivity.
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Finally, it is required to know the surface emissivity of the steel wall to deduce the

incident heat flux. The steel sheet used was flat and rust-free, however given sufficient

exposure the carbon steel would surely rust in time, greatly changing the radiative

surface properties. Therefore to achieve a consistent and well-characterized surface, a

high temperature coating was applied to the wall. Both sides of the steel wall were first

ground and polished in-place using an angle grinder and 80-grit flap disk; this also had

the benefit of removing any surface oils from the steel. At this point thermocouples

were welded to the wall as described above. Next, the entire wall (including the Unistrut

frame) was coated in matte black VHT Flameproof® paint, which is rated for continuous

operation up to 704◦C. The paint was applied in four light coats, alternating the angle

of application by 90◦ for each coat. The polished and painted steel wall is shown in

Figure 5.7.

Figure 5.7: Steel wall surface preparation (coating).
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With the steel wall prepared, the next step was to characterize the radiative surface

properties. This was done by conducting a series of small-scale tests on steel surrogates.

Four specimens were prepared from 1/4 in (6.4 mm) thick AISI 1020 stock cut into

squares with side lengths of 4-1/2 in (114 mm). The specimen surfaces were prepared in

an identical manner as the steel wall, including polishing and coating.

Steel specimens A and B had a K-type thermocouple welded to the top surface prior

to paint application (thermocouple leads were separated by a 1–2 mm gap). These

two specimens were used in conjunction with a hotplate and infrared (IR) camera

(manufactured by FLIR Systems, model T650sc) to estimate the emissivity of the surface;

thermocouple temperature was monitored using a Fluke 50 Series digital thermometer.

An IR camera works by measuring the radiant heat flux from emitting surfaces, and

deducing the temperature of those surfaces. Figure 5.8 shows schematically the radiative

heat exchange between an object, the IR camera, and the surrounding surfaces and

atmosphere. The total radiation received by the camera, Etot, is:

Etot = τatmεEb,obj + τatm (1− ε)Eb,sur + (1− τatm)Eb,atm , (5.2)

where τatm is the transmissivity of the atmosphere (assumed to be homogeneous and

isothermal), ε is the total emissivity of the object, % is the reflectivity of the object, and

it is assumed that the object’s surface is diffuse and grey over the entire electromagnetic

spectrum from λ = 0 to λ = ∞.

Crop box (3.4 in x 5.5 in)

Object IR Camera
Atmosphere

Surroundings

εEb,obj

ϱEb,sur

Eb,sur

τatmεEb,obj

τatm(1– ε)Eb,sur

(1 – τatm)Eb,atm
Tatm

Tsur

Tobj

Figure 5.8: Heat transfer schematic for IR camera measurement.
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In reality, not only is the surface of an object unlikely to be grey, but the IR camera’s

sensor is limited to a finite band of the IR spectrum. Typically IR cameras are designed

to operate in the mid-wavelength infrared (MWIR) band, from 2 µm to 5 µm, or the long-

wavelength infrared (LWIR) band, from 7.5 µm to 14 µm; the FLIR T650sc operates in

the LWIR band. Spectral blackbody emissive power, Eb,λ, is given by Planck’s law:

Eb,λ =
2πhc20

n2λ5 [exp (hc0/nλkT )− 1]
, (5.3)

where h is Planck’s constant (6.626×10−34 J·s), c0 is the speed of light in a vacuum

(2.998×108 m·s−1), k is Boltzmann’s constant (1.381×10−23 J·K−1), and n is the refractive

index of the transmission medium (assumed to be constant, and approximately equal to

1 for room temperature air) [81]. From this, total blackbody emissive power is:

Eb =

∫ ∞
0

Eb,λdλ = n2σT 4 , (5.4)

where σ is the Stefan–Boltzmann constant (5.670×10−8 W·m−2·K−4). Similarly, the band

blackbody emissive power, which is the total blackbody emissive power within a specific

spectral band λ1–λ2, is:

Eb,λ1−λ2 =

∫ λ2

λ1

Eb,λdλ = [f (nλ2T )− f (nλ1T )]n2σT 4 , (5.5)

where f (nλ1T ) represents the fraction of blackbody emissive power contained between 0

and nλ1T . This parameter, which is evaluated as a complex integral, may be calculated

in practice by an infinite series expansion:

f (nλ1T ) =
15

π4

∞∑
m=1

exp (−mζ)

m4

(
6 + 6(mζ) + 3(mζ)2 + (mζ)3

)
, (5.6)

where:

ζ =
hc0/k

nλT
.

Spectral blackbody emissive power is plotted in Figure 5.9 for various temperatures,

and the MWIR and LWIR bands are indicated. It is apparent that the band blackbody

emissive power depends strongly on temperature. As shown in Figure 5.10 (solid line

traces), the band blackbody emissive power is greater in the LWIR band than the MWIR

band at temperatures less than 350◦C, and conversely is greater in the MWIR band than
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the LWIR band at temperatures greater than 350◦C. Figure 5.10 also shows (dotted line

traces), that the blackbody emissive power in the LWIR band represents approximately

40–45% of the total emissive power at room temperature, and only 20% at 500◦C†. This

means that, at greater temperatures in particular, the thermal radiation seen by the IR

camera only represents a fraction of the actual thermal radiation.
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Figure 5.9: Spectral blackbody emissive power for various temperatures.

In consideration of the spectral limitations of the IR camera, care must be taken

in applying energy calculations based on its measurements. FLIR has implemented a

number of hardware and software corrections in its application of Equation 5.2. First,

rather than assuming that the surface of the object is grey (over the entire spectrum),

it is assumed that the surface of the object may be treated as being grey over the band

of interest (LWIR). This means that the emissivity of the surface represents a band-

averaged value; in other words, it is the ratio of the actual emissive power of the surface

(in the LWIR band) and the blackbody emissive power of the surface (in the LWIR band).

Temperature of the surroundings, temperature and relative humidity of the atmosphere,

and distance between the camera and the object are used to calculate the atmospheric

transmission and emissive power attributed to the surroundings and atmosphere.

†The ratio of total blackbody emissive power was calculated by dividing the band blackbody emissive

power (Equation 5.5) by the total blackbody emissive power (Equation 5.4) for a given temperature.
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Figure 5.10: Blackbody emissive power in the MWIR and LWIR bands.

In the present work, the IR camera was oriented above and perpendicular to the steel

specimen (Figure 5.11), and the average temperature in an elliptical region centred on the

thermocouple junction was measured using the IR camera (Figure 5.12). The specimen

was the heated until it reached a steady temperature, at which time the hotplate was

turned off, the lights in the room were turned off, and temperature measurements were

recorded as the steel cooled over time using both the IR camera and the thermocouple.

Two experiments were conducted, one each for specimen A and B.

After the experiments were conducted, FLIR ResearchIR 4 software was used to

adjust the emissivity parameter until the temperature measured by the IR camera was

equal to the thermocouple measurement at each measurement time. In consideration of

the aforementioned assumptions, emissivity deduced in this manner is representative of

the average hemispherical emissivity of the painted surface in the LWIR band (i.e. the

spectral hemispherical emissivity averaged over the LWIR band). The results are shown

in Figure 5.13, which shows the relation between band average emissivity and surface

temperature. While LWIR average emissivity increases with temperature, it should be

cautioned to presume that the total emissivity has the same dependence, as this may

partially be an artifact of the reduced blackbody emissive power within the LWIR band

at temperatures above approximately 100◦C — refer to Figure 5.10.
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Figure 5.11: Measurement of temperature-dependent emissivity (setup).

Figure 5.12: Measurement of temperature-dependent emissivity (IR image).
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In addition, spectral emissivity was measured at 21◦C using a SOC-400T reflectometer

(manufactured by Surface Optics Corp.) for the remaining two square specimens. The

device was calibrated relative to a gold reference prior to the tests; refer to Kotey [82] for

more information. The results are plotted in Figure 5.14, which shows that the painted

surface is, in fact, very near-black. The average value of spectral emissivity in the LWIR

band was 0.932; this measurement is consistent with the LWIR band emissivity measured

using the IR camera at room temperature. Based on these findings, ε was taken to be

constant value of 0.93 in the present work.
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Figure 5.13: Band average emissivity at

various temperatures (IR camera tests).
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Figure 5.14: Spectral emissivity at room

temperature (reflectometer tests).

This steel wall sensor was designed to measure temperature at multiple locations over

its surface, with the intent to deduce heat flux from these measurements. As mentioned

previously, a thermal capacitance model is used for calculation of this derived variable.

The following section outlines the derivation and application of this type of model for a

generalized situation (a zero-dimensional slug); subsequent sections refine the model for

the specific steel wall sensor application.

5.2 The Generalized Thermal Capacitance Model

Consider some generic and thermochemically inert object, described here as a “slug”.

Presuming that the density and specific heat capacity of the slug are known, and
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presuming that the slug may be treated as isothermal throughout its entire volume

under a given heating scenario, then the exposure condition on the surface of the slug

may be inferred given the measured temperature history. This is the generalized thermal

capacitance method, as represented schematically in Figure 5.15, in which an object is

exposed to some form of a heat transfer boundary condition (e.g. a combined radiative

and convective heat flux). The derivation of the thermal model follows.

T(t)
A V

k  ρ cp qnet
’’

qr,i
’’ qr,o

’’ qr,e
’’ qc

’’
T∞ hc

Figure 5.15: Heat transfer schematic for the generalized thermal capacitance model.

By conservation of energy, the rate of temperature change of the slug is given by:

ρV cp
dT

dt
= −Aq′′net , (5.7)

where q′′net is the net rate of heat transfer out of the slug per unit surface area A at time

t, V is the volume of the slug, ρ is the density of the slug material, and cp is the specific

heat capacity of the slug material. For some irradiance q′′r,i, the net heat flux is:

q′′net(t) = q′′r,o(t)− q′′r,i(t) + q′′r,e(t) + q′′c (t) ,

where q′′r,o is the reflected irradiance (equal to %q′′r,i, where % is the reflectivity of the

surface), q′′r,e is the emitted heat flux (equal to εEb, where Eb is the total emissive power

of the surface), and q′′c is the convective heat flux out of the surface:

q′′c (t) = hc(t) [T (t)− T∞(t)] ,

where hc is a convection heat transfer coefficient and T∞ is the gas temperature near the

slug. From an energy balance at the surface:

q′′r,i(t)− %q′′r,i(t) = αq′′r,i(t) ,

where α is the absorptivity of the surface, assuming that the surface is opaque (% = 1−α).

Combining terms, the net heat flux out of the slug is:

q′′net(t) = −αq′′r,i(t) + εEb(t) + hc(t) [T (t)− T∞(t)] .
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Finally, making the assumption that the surface is diffuse gray (α = ε), and representing

the total emissive power of the surface in terms of its temperature (Eb = σT 4), the net

heat flux out of the slug is:

q′′net(t) = −εq′′r,i(t) + εσT (t)4 + hc(t) [T (t)− T∞(t)] . (5.8)

Working from Equations 5.7 and 5.8, the system model is reduced to:

ρV cp
A

dT (t)

dt
= εq′′r,i(t)− εσT (t)4 − hc(t) [T (t)− T∞(t)] . (5.9)

A numerical solution to this non-linear differential equation was adopted. Represent-

ing the temporal derivative using a first order backward difference approximation, the

finite difference form of the differential equation is:

ρV cp
A

Tk − Tk−1
∆t

= εq′′r,ik − εσT
4
k − hck (Tk − T∞k) , (5.10)

where k is the time step and ∆t = tk − tk−1. By linearizing the dependent variable (T ),

a tractable solution is developed in which T k is implicitly represented; let:

hrk = εσT 3
k ,

where hrk is a radiation heat transfer coefficient. This presents a problem of approximat-

ing the heat transfer coefficient using the unknown value of T at the current time step.

This is addressed by simply evaluating the heat transfer coefficient using the value of T

at the previous time step:

hrk ≈ hrk−1 = εσT 3
k−1 .

This assumption is reasonable for a small ∆t, or for a very slow rate of temperature

change. However, the error associated with this assumption can be effectively negated

by iterative computation; refer to Appendix F (Section F.1, s general model.m, lines

65–84) for the implementation used here. By introducing the lumped heat transfer

coefficients αk and βk, Equation 5.10 reduces to:

Tk − Tk−1
∆t

+ βkTk = αk , (5.11)

where

βk =
A

ρV cp
(hrk + hck) ,

and

αk =
A

ρV cp

(
εq′′r,ik + hckT∞k

)
.
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This model can be run in two modes. The first, referred to as “forward” mode, is

used to compute the temperature of the slug given a known irradiance:

Tk = γkTk−1 + γk∆tαk , (5.12)

where

γk =
1

1 + βk∆t
.

The second, referred to as the “inverse” mode, is used to compute the irradiance given

the known temperature history of the slug:

q′′r,ik = α∗k
ρV cp
Aε
− hck

ε
T∞k , (5.13)

where

α∗k =

(
1

∆t
+ βk

)
Tk −

1

∆t
Tk−1 .

It should be noted that iterative computation of hrk is not required in the inverse model,

since the temperature at the current time step is known.

It is useful to demonstrate implementation of this model by means of example.

Consider the following scenario: a spherical steel slug with diameter of 1 cm is initially

at 300 K and at thermal equilibrium with its environment. At t=0, external heating is

applied; the irradiance increases at a rate proportional to t2 to a peak value of 50 kW·m−2

after 10 minutes. The fluid temperature is constant at 300 K, and the convection heat

transfer coefficient is constant at 10 W·m−2·K−1. The density, specific heat capacity, and

emissivity of the steel are taken to be 7850 kg·m−3, 600 J·kg−1·K−1, and 0.9, respectively.

The model was first run in forward mode to predict the temperature of the slug given

the known exposure, and subsequently run in inverse mode to predict the incident heat

flux given the known slug temperature.

As shown in Figure 5.16, in forward mode the model predicts that the slug tempera-

ture will increase to approximately 600◦C after 10 minutes of exposure. A large time step

of 10 seconds was used (61 steps total) and the model completed a total of 161 iterations.

This means that for each time step it took an average of 2.64 iterations for hr to converge.

When run in inverse mode, the model predicts exactly the irradiance that was originally

input to the forward model. This result is not meaningful in the context of the example,

but is simply a verification that the inverse equations have been implemented correctly

in the code. In reality, if noisy temperature data is used as the model input, there will

likely be issues with determining a convergent solution, due to the ill-posed nature of the
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Figure 5.16: Results of the forward and inverse generalized thermal capacitance model

for the example scenario.

problem. This issue is addressed in subsequent sections, below. The code listing for the

model implementation used here may be found in Appendix F (Section F.1).

The “thermally thin” assumption is critical in the formulation of the thermal

capacitance model; in other words, at any given time the temperature of the object

is the same through it’s entire volume. This condition can be evaluated by lumping the

effective radiation and convection heat transfer coefficients and calculating an effective

Biot number — the thermally thin assumption is generally acceptable for Bi < 0.1 [77].

For this example, it is assumed that the irradiance may be represented by the following

expression:

q′′r,i ≈ σT 4
∞ ,

then, from Equation 5.8, the net heat flux out of the object is:

q′′net = he (T − T∞) ,

where he is an effective heat transfer coefficient defined as follows:

he = hc + εσ (T + T∞)
(
T 2 + T 2

∞
)

. (5.14)

The Biot number may be calculated by:

Bi =
hδ

κ
,
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where h = he, κ is the thermal conductivity (taken to be 42 W·m−1·K−1 for steel), and

δ is the characteristic length, typically taken to be the volume of the object divided by

its surface area (δ = D/6 for the spherical slug, where D is the diameter of the sphere).

Figure 5.17 shows the effective Biot number calculated for various different characteristic

lengths for surface temperatures up to 600◦C, assuming a fluid temperature of 600◦C and

a convective heat transfer coefficient of 10 W·m−2·K−1 (a conservative estimate). Greater

values of either T∞ or hc, as might be expected in a compartment fire, will increase the

effective Biot number for a given characteristic length.
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Figure 5.17: Effective Biot number for steel for the generalized thermal capacitance

model.

Building upon the generalized method for calculation of irradiance by thermal

capacitance, the technique is applied to the steel wall sensor of interest in the present

work in the following section.

5.3 Thermal Capacitance Model for the Steel Wall

The steel wall sensor is essentially a thin, highly-conductive barrier separating the

compartment fire section from the intermediate section of the fire test apparatus. It

is assumed that the steel is thermally thin, such that the temperature on either side of
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the sheet is identical at a given time, for a given heat exposure; the suitability of this

assumption is addressed in Section 5.6. Furthermore, it is assumed that the radiative

heat transfer on either side of the steel wall may simply be treated as surface-to-surface

radiation within an enclosed volume. In practice this is a very poor assumption on

the exposed side of the wall, since it completely negates flame radiation as well as

the participation of gases in the transport medium. A consequence of this assumption

is that model uncertainty is quite high — this shortcoming will be addressed in the

following sections. On the unexposed side of the wall, where there is no flame radiation

or accumulation of fire gases, the assumption is reasonable. A schematic for this model

is provided in Figure 5.18 below, where the “f” subscript represents the exposed “fire”

side of the wall, and the “c” subscript represents the unexposed “cool” side of the wall.

Exposed side 
surroundings

Unexposed side 
surroundings

Unexposed
side gases

Exposed
side gases

qnet,c’’qnet,f’’

T∞,f hc,f T∞,c hc,c Ts,c
hr,c
Ac
εc

Ts,f
hr,f
Af
εf

T
A
ε ql’’

(boundary losses)

Figure 5.18: Heat transfer schematic for the generalized thermal capacitance model.

For this “two surface enclosure” [77] it is convenient to formulate the model in terms

of net heat flux rather than incident heat flux due to the interaction between the wall

surfaces and the surrounding surfaces on both sides. Assuming that both surfaces are

diffuse gray and that the wall is flat, the net radiative heat flux out of the wall on side

“x” (representing either the fire side or the cool side) is:

q′′r,net,x(t) =
σ

rx

[
T (t)4 − Ts,x(t)4

]
, (5.15)

where

rx =
1

ε
+

A

Ax

(
1

εx
− 1

)
.
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It is noted that for an enclosure in which the surroundings are much larger than the

surface of the wall (Ax >> A), the expression for net heat flux reduces to:

q′′r,net,x(t) = εσ
[
T (t)4 − Ts,x(t)4

]
.

In this case, the ratio of wall area to surroundings area is 0.10 on the fire side and 0.25

on the cool side, so the assumption that Ax >> A is not well justified; however, if the

emissivity of the surroundings is similar to that of the wall, the correction is minor.

The total net heat flux out of the wall on side x, including convection, is:

q′′net,x(t) =
σ

rx

[
T (t)4 − Ts,x(t)4

]
+ hc,x(t) [T (t)− T∞,x(t)] . (5.16)

Introducing an effective heat transfer coefficient for radiation, hr,x, the expression for net

heat flux reduces to:

q′′net,x(t) = hr,x(t) [T (t)− Ts,x(t)] + hc,x(t) [T (t)− T∞,x(t)] , (5.17)

where

hr,x(t) =
σ

rx
[T (t) + Ts,x(t)]

[
T (t)2 + Ts,x(t)

2
]

.

It is convenient to isolate the dependent variable T in Equation 5.17:

q′′net,x(t) = [hr,s(t) + hc,s(t)]T (t)− hr,x(t)Ts,x(t)− hc,x(t)T∞,x(t) . (5.18)

Given this formulation, the incident heat flux may be calculated using the following

expression (derived from Equation 5.8):

q′′r,i,x(t) = −1

ε
q′′net,x(t) + σT (t)4 +

hc,x(t)

ε
[T (t)− T∞,x(t)] . (5.19)

As was the case for the generalized thermal capacitance model, conservation of energy

is applied about the steel wall:

ρV cp
A

dT (t)

dt
= −q′′net,f (t)− q′′net,c(t)−

Al
A
q′′l (t) , (5.20)

where Al is the contact area around the four sides of the wall and q′′l (t) is the net rate of

conductive heat transfer out of the wall over the contact area. Discretizing the differential

equation in time and adopting a form that is consistent with the generalized model, the

model reduces to:
Tk − Tk−1

∆t
+ βkTk = αk , (5.21)
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where

βk =
A

ρV cp

(
hr,f k + hc,f k + hr,ck + hc,ck + hlk

)
,

αk =
A

ρV cp

(
hr,f kTs,f k + hc,f kT∞,f k + hr,ckTs,ck + hc,ckT∞,ck + hlkTlk

)
,

hr,xk ≈ hr,xk−1 =
σ

rx

[
Tk−1 + Ts,xk−1

] [
T 2
k−1 + Ts,x

2
k−1
]

,

and

hl =
Al
A

κl
δl

.

Implicit in this formulation is the discretization of the boundary heat losses in the spatial

dimension (denoted here by l). By Fourier’s law:

q′′l (t) = −κl
∂T (l, t)

∂l
,

where ∂T/∂l is the spatial temperature gradient at the edge of the steel wall. Discretizing

this expression over the thickness of the insulation surrounding the wall (δl) gives:

q′′l k =
κl
δl

(Tlk − Tk) ,

where T l is the temperature on the opposite side of the insulation.

Running the model in forward mode, the temperature of the wall can be predicted

given known temperatures of the fire-side gases and surroundings:

Tk = γkTk−1 + γk∆tαk , (5.22)

where

γk =
1

1 + βk∆t
.

Running the model in inverse mode, the net heat flux out of the wall on the fire-side

can be predicted given known temperature of the wall:

q′′net,f k = −α∗k
ρV cp
A

+ hr,ckTs,ck + hc,ckT∞,ck + hlkTlk , (5.23)

where:

β∗k =
A

ρV cp

(
hr,ck + hc,ck + hlk

)
,

and

α∗k =

(
1

∆t
+ βk

)
Tk −

1

∆t
Tk−1 .
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Finally, the incident heat flux on the fire-side can be calculated by the following expression

(the discretized form of Equation 5.19):

q′′r,i,f k = −1

ε
q′′net,f k + σT 4

k +
hc,f k
ε

[
Tk − T∞,f k

]
. (5.24)

The code listing for the heat transfer model as implemented here may be found in

Appendix F (Section F.2).

The forward application of this model for prediction of the steel wall temperature will

not be particularly accurate, due to the gross simplification of a complex fire exposure to

that of a simple 2-surface enclosure. However, the inverse application of this model,

presuming that the steel wall temperature is known with good accuracy, should be

expected to yield a good approximation of incident heat flux using Equations 5.23–

5.24. The issue with this approach is that the problem is inherently ill-posed —

small perturbations in measurement noise and model error will be amplified into large

perturbations in the recovered heat flux measurements. Recall that the irradiance is

essentially proportional to the rate of change of the wall temperature — even if the

measurement noise is very small, each fluctuation in the measured T will lead to a

magnified fluctuation in the calculated ∂T/∂t. In fact, this is a problem with all heat

flux sensors that work by deducing a derived variable (heat flux) from a primary variable

(temperature) by means of a thermal energy storage model. One might be tempted,

then, to simply apply a curve-fit or smoothing filter to the measured temperature before

substitution to the inverse model. If the objective is to present heat flux predictions in

a “nice” format, then perhaps this approach would be suitable. However, this would

eliminate any quantification of uncertainty in the predicted heat flux. What is needed is

a way to incorporate both the temperature measurements and the forward application

of the heat transfer model to produce the best possible estimate of heat flux, including

a quantification of uncertainty. The Kalman filter was used to address this need. The

theory and implementation of the filter to the present application is the focus of the

following section.

5.4 Model Optimization by Kalman Filter

The theoretical underpinning for the Kalman filter is based on Bayesian probability —

the determination of what is likely to be true based on past information. In short, it

must be admitted that for any given circumstance knowledge is limited, therefore beliefs
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should be altered based on the strength of the evidence available. By incorporating

some knowledge about how a system behaves (e.g. a thermal energy storage model) and

some uncertain measurements (e.g. thermocouple measurements with inherent noise and

measurement error), a Bayesian filter may be used to estimate the most likely value of

heat flux. The Kalman filter is an implementation of Bayesian filtering that resolves this

problem of limited knowledge in a mathematically optimal way [83].

To begin, all variables in the present analysis are treated as continuous random

variables. It is assumed that these variables are Gaussians, which is to say that they

have a normal probability density function (PDF) with mean µ and variance σ2; this is

denoted N(µ,σ2). For example, consider a temperature sensor which has a mean value of

20◦C and has a sensor variance of of 1◦C (given in the manufacturer’s specifications); the

PDF for this variable is shown in Figure 5.19. In the figure, one, two, and three standard

deviations (σ) about the mean are indicated — these represent a 68%, 95%, and 99.7%

(respectively) likelihood that the true value of the variable is within this range. It is

important to note that although the true value of the variable can never be determined

with 100% certainty, it is possible to estimate the most likely value of the variable given

the information available. In this case it is likely that the true value of the temperature

is between 19◦C and 21◦C, and exceptionally likely that the true value of temperature is

between 17◦C and 23◦C.
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Figure 5.19: Normal probability density function for temperature measurement.
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The Kalman filter capitalizes on the assumption of a normal probability distribution

for the involved variables — Gaussian arithmetic operations are very straightforward and

low-cost computationally. These arithmetic operations are used by the filter to calculate

state estimates at a current time step using priors (posterior estimates from the previous

time step), as well as the expected values of the states at the current time step based on

a process model, and measurement input. Figure 5.20 shows a process diagram of the

filter as implemented here.

Prior
State

Measurement
Input

Posterior 
State Results

Predict
Step

Update
Step

Increment
Iteration – heat transfer 
parameters to converge

Figure 5.20: Schematic of the Kalman filter with iteration step.

The first step in implementing the filter in the present work is designation of the state

variables. Given the thermal energy storage process model, temperature is the primary

state variable. The traditional notation used to represent the state is x, for the mean,

and P , for the variance. For n state variables, x is an n × 1 vector and P is an n × n
matrix; when n > 1 (e.g. a 2D process) P is the covariance between each state.

The next step is to develop a recursive process model for the predict step of the

algorithm. The process model consists of two expressions: one for the state mean

(Equation 5.25) and one for the state covariance (Equation 5.26). The process model

(state mean) has the following form:

xk = Fkxk−1 + Γkuk , (5.25)

where xk is the predicted state estimate at the current time step k, xk−1 is the prior state

estimate, F k is the state transition model (which governs the state innovation‡), uk is

‡Innovation refers to the incremental update to the state variables at each computation step, driven

by the state transition model (independent of any influence of control inputs).
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the control input (an input to the system of higher order than the innovation), and Γk

is the control input model (which transforms control input to state space).

Referring back to Equation 5.21, the process model (thermal energy storage) is already

formulated in a recursive manner, since a backwards difference finite difference expansion

of the temporal derivative was used:

Tk = γkTk−1 + ∆tγkαk .

Comparing this to Equation 5.25, the state mean (xk) is the temperature T k, the state

transition model (F k) is the heat transfer parameter γk, the control input mean (uk) is

the heat transfer parameter αk, and the control input model (Γk) is equal to ∆tγk.

The state covariance is given by:

P k = FkPk−1F
T
k , (5.26)

where P k is the predicted state covariance estimate at the current time step, P k−1 is the

prior state covariance estimate, and T is the matrix transpose operation.

Finally, it must be acknowledged that this process model is imperfect. Recall that

α (Equation 5.11) is essentially a representation of the incident heat flux, the “drive”

for temperature change, and that the assumed model for α was derived from a very

simple two-surface enclosure heat transfer model. Certainly there are higher-order and

un-modelled physics involved, and these are represented in the Kalman filter as process

noise (associated with the control input, uk). The convention for Kalman filter is to

model this error as white noise N(ω,Q) — a continuous random variable with mean ω

(equal to zero) and covariance Q. The complete forms of the state mean and covariance

equations that are utilized in the predict step of the Kalman filter are:

xk = Fkxk−1 + Γk (uk + w) , (5.27)

and

P k = FkPk−1F
T +Q . (5.28)

The process covariance is represented here using piecewise white noise, which is

assumed to be constant over a single time step, but vary step-to-step. Process covariance

is related to the control input variance, σ2
α. A linear relationship is presumed between

the control input standard deviation and the control input mean:

σα = φ · α , (5.29)
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where φ is denoted the process covariance gain. Physically this parameter represents the

strength of belief in the adequacy of the process model — setting φ = 0 will force the

process covariance to zero. In practice this parameter may be used to tune the model

output, as will be explored below. With σα determined, the process covariance is then:

Q = Γσ2
αΓT . (5.30)

The units for this expression are verified: α has units of K·s−1, the covariance on α has

units of K2·s−2, Γ has units of s, and Q has units of K2 (state covariance).

Next is the update step, for which measurements of the state variables are used to

update the predicted state estimates, resulting in the best possible posterior estimate

based on the information available. The posterior state mean and covariance are

calculated by:

xk = xk +Kkyk , (5.31)

and

Pk = (I −KkH)P k , (5.32)

respectively. Measurements are represented by the variables z (mean) and R (covariance).

The residual vector y is the difference between the measurement mean z and the state

estimate mean x:

yk = zk −Hxk , (5.33)

where H is a function that converts the the state estimate mean to measurement space.

For a system with m sensors, z is an m× 1 vector and R is an m×m matrix. Note that

there is no requirement that m = n; in other words, fewer sensors may be used than the

number of state variables that exist. However, if the number of sensors is equal to the

number of states (m = n), H is simply equal to the identity matrix I of size m×m.

The Kalman gain, K, can be thought of as a weighting factor for the influence of the

measurement on the posterior estimate. When K tends toward zero the model will favour

the process model predictions, and when K tends toward one the model will favour the

measurements. This parameter is calculated on the fly based on knowledge of the state

estimate covariance P and the measurement covariance R:

Kk = P kH
T
[
HP kH

T +Rk

]−1
. (5.34)

Upon completion of the predict and update steps, the heat transfer parameter α∗ is

calculated using the posterior result, and is compared to the value of α used as input to
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the predict step. If α and α∗ differ significantly (percent difference greater than 0.1%

was used here), then the predict and update steps are iterated using α∗ as the new

input. Once the heat transfer parameters have converged, the posterior state estimates

are used to calculate the fire-side incident heat flux (Equations 5.23–5.24). Both mean

and covariance of incident heat flux are calculated, based on the posterior state mean

covariance — this directly quantifies the strength of belief in the predicted results.

It is useful to demonstrate implementation of this model by means of an example.

For this example the actual dimensions of the steel wall and compartment were used, as

described previously, and the density, specific heat capacity, and emissivity of the steel

were taken to be 7850 kg·m−3, 600 J·kg−1·K−1, and 0.93, respectively. Initially the wall,

gases, frame, and surroundings were all at 25◦C. At t = 0 the fire-side gas temperature

and surroundings increased at a rate proportional to t2 to a peak value of 550◦C after 10

minutes; the cool-side gases and surroundings, and the wall frame, were maintained at

25◦C. In addition, some random noise was added to the fire-side temperatures to provide

some realism to the example.

First, the process model was run in the forward mode (Equation 5.22) to provide a

prediction of the wall temperature; this is depicted as a blue dotted line in Figure 5.21

below. Next, a set of t2 “measurement” data was generated such that the measured wall

temperature after 10 minutes was equal to the process model prediction at that time.

A very small amount of noise was added to this data (1/10 of the noise added to the

fire gas data). The measurement data is depicted as a red dotted line in Figure 5.21

below. The process model was then run in inverse mode (Equation 5.24) to produce

predictions of incident heat flux, as shown in in Figure 5.22 below (using the same colour

notation). It is clear from this example that direct substitution of measurement data into

the inverse model will result in predictions of incident heat flux with greatly amplified

perturbations, even when the measurement noise is barely perceptible. On the other

hand, direct substitution of the process model prediction into the inverse model will

yield much less noise, but the results cannot necessarily be trusted to be accurate given

the uncertainty present in the process model. The code listing for the steel wall thermal

capacitance model used here, including the data generation functions, may be found in

Appendix F (Section F.2).

Next, the Kalman filter was used to calculate estimates of the wall temperature and

incident heat flux. The process covariance gain, φ, was set to a value of 0.05. The

error for K-type thermocouple sensors is typically taken to be 2.2 K [84], therefore a
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mal capacitance model for the example

scenario (temperature, φ = 0.05).
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Figure 5.22: Results of the steel wall ther-

mal capacitance model for the example

scenario (incident heat flux, φ = 0.05).

measurement variance of 4.8 K was used. The Kalman filter temperature estimates are

plotted in Figure 5.21 along with the measurements and the process model estimates.

The Kalman filter estimates are much closer to the measurements than to the process

model, which is a desired result given the uncertainty present in the process model. The

incident heat flux predicted using the Kalman filter approach is shown in Figure 5.22,

along with one standard deviation above and below the mean. The Kalman filter result

has reduced fluctuations compared to the measurement result. The code listing for the

Kalman filter implementation used here may be found in Appendix F (Section F.3).

Figures 5.23–5.24 below show temperature and heat flux predictions when a value of

0.01 is used for the process covariance gain. In this case the filter favours the process

model over the measurements, resulting in both temperature and heat flux being under-

predicted. At the same time, since the process error is reduced, the fluctuations and

overall variance in the predicted incident heat flux are significantly reduced. This is

an example of the filter being “over-confident” – it is clear from plot of the primary

variable (temperature) that the filter is not producing a good estimate of the measured

temperature, therefore the apparent small variance in the derived variable (heat flux) is

erroneously small.

Figures 5.25–5.26 below show temperature and heat flux predictions when a value of

0.10 is used for the process covariance gain. In this case the filter very closely favours
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the measurements over the process model. This is an example of an “under-confident”

model, for which so great an importance is placed on the measurements that the signal

noise is over-represented. The consequence is excessively large fluctuations and variance

on the predicted heat flux. For any situation a compromise must be attained between the

over-confident and under-confident — for this thermal energy balance model, it seems

that φ = 0.05 is a good choice.

This example demonstrates some of the advantages of the Kalman filter as applied to

the problem of heat flux measurement, however the greatest strength of the Kalman filter

lies in its ability to incorporate multiple states and sensors into a tractable algorithm.

The following section extends the concepts introduced here to the desired problem —

measurement of incident heat flux over the surface of the wall, in two dimensions.
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Figure 5.23: Results of the steel wall ther-

mal capacitance model for the example

scenario (temperature, φ = 0.01).
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Figure 5.24: Results of the steel wall ther-

mal capacitance model for the example

scenario (incident heat flux, φ = 0.01).
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Figure 5.25: Results of the steel wall ther-

mal capacitance model for the example

scenario (temperature, φ = 0.10).
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Figure 5.26: Results of the steel wall ther-

mal capacitance model for the example

scenario (incident heat flux, φ = 0.10).
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5.5 Extension of the Model to Two Dimensions

The two-dimensional problem is one of in-plane heat transfer with prescribed conduction

losses at the boundaries§. The steel wall sensor can be divided into any number of

elements, however since 24 sensors (thermocouples) were used, it was convenient to

discretize the wall into 24 elements. Furthermore, heat conduction at the edges of the

frame needed to be modelled, therefore insulation elements were added on each of the

four sides of the wall. Figure 5.27 shows the element discretization used for the 24-

state implementation (on the left). Due to the size of the wall and the thermocouple

placement, each element is rectangular with an aspect ratio of approximately 8:3. A

secondary discretization scheme was also developed using 72 states, and is shown in

Figure 5.27 (on the right). For the 72-state implementation the element aspect ratio is

approximately 8:9, giving a more consistent finite element grid. In Figure 5.27 sensor

locations are depicted by a green highlight (sensors are located in the geometric centre

of a given element).

73 93 94 95 96 97 98 99 100 101 83

74 1 9 17 25 33 41 49 57 65 84

75 2 10 18 26 34 42 50 58 66 85

76 3 11 19 27 35 43 51 59 67 86

77 4 12 20 28 36 44 52 60 68 87

78 5 13 21 29 37 45 53 61 69 88

79 6 14 22 30 38 46 54 62 70 89

80 7 15 23 31 39 47 55 63 71 90

81 8 16 24 32 40 48 56 64 72 91

82 102 103 104 105 106 107 108 109 110 92

Steel wall element
Insulation element
Exterior frame (prescribed temperature)

111

113

112

114

W = 21.2 cm
H = 23.8 cm

25 45 46 47 35

26 1 9 17 36

27 2 10 18 37

28 3 11 19 38

29 4 12 20 39

30 5 13 21 40

31 6 14 22 41

32 7 15 23 42

33 8 16 24 43

34 48 49 50 44

Steel wall element
Insulation element
Exterior frame (prescribed temperature)

54

53

5251

W = 63.5 cm
H = 23.8 cm

Wall Discretization – 24 States Wall Discretization – 72 States

Figure 5.27: Discretization schemes used for the two-dimensional model.

§Given that the wall is constructed of a thin and highly conductive material, in-depth heat conduction

may be neglected provided the Biot and Fourier numbers are suitable; refer to Section 5.6.
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Building upon the 0D thermal capacitance model, conservation of energy is applied

about a given element. By convention it is assumed that conduction heat transfer is

directed into an element, and in-plane net heat flux directed out of an element on either

side of the wall (refer to Figure 5.28). Applying conservation of energy (and a backward

difference approximation to the temporal derivative in the energy storage term):

ρV cp
Tk − Tk−1

∆t
= −Aq′′net,f − Aq′′net,c + Ax1q

′′
x1

+ Ax2q
′′
x2

+ Ay1q
′′
y1

+ Ay2q
′′
y2

, (5.35)

where the conduction heat flux on a given side i of the element is

q′′i k =
κik
∆i

(Tik − Tk) ,

where ∆i is the length between the centre of the element and the centre of element i.

The in-plane heat flux on the fire-side and cool-side of the wall is given by Equation 5.18

as previously derived.

Tx2

Tx1

Ty1

Ty2

q00x1

q00x2

q00y2

q00y1q00net,f

q00net,c

Figure 5.28: Heat flow schematic for a general 2D element.

The 2D model is assembled in the same manner as the 0D model by introducing some

effective heat transfer coefficients:

Tk = ∆t
(
β̂k ◦ T̂k−1

)
+ ∆tαk , (5.36)

where ◦ denotes the Hadamard product binary operation [85], given that:

β̂k =
[
1/∆t− βtotk , βx1k , βx2k , βy1k , βy2k

]
,
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and

T̂k−1 =
[
Tk−1 , Tx1k−1 , Tx2k−1 , Ty1k−1 , Ty2k−1

]
.

The α and β terms are defined as follows:

αk = βr,f kTs,f k + βc,f kT∞,f k + βr,ckTs,ck + βc,ckT∞,ck ,

and

βtotk = βx1k + βx2k + βy1k + βy2k + βr,f k + βc,f k + βr,ck + βc,ck .

The fire-side exposure coefficients are:

βr,f k =
A

ρV cp
hr,f ,

and

βc,f k =
A

ρV cp
hc,f ,

while the cool-side exposure coefficients are:

βr,ck =
A

ρV cp
hr,c ,

and

βc,ck =
A

ρV cp
hc,c .

Finally, the conduction coefficients are:

βx1k =
Ax1
ρV cp

κx1k
∆x1

in the x1 direction,

βx2k =
Ax2
ρV cp

κx2k
∆x2

in the x2 direction,

βy1k =
Ay1
ρV cp

κy1k
∆y1

in the y1 direction, and

βy2k =
Ay2
ρV cp

κy2k
∆y2

in the y2 direction. The areas Ax1 , etc. represent the conduction pathway areas — these

are simply the product of the element dimension (∆x or ∆y) by the steel thickness (δ).

The 2D system model (Equation 5.36) may be readily implemented in the Kalman

filter (Equation 5.27) by identifying that the state transition function F k is assembled
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from ∆tβ̂k, and Γ is simply equal to ∆t. Calculation of F was achieved by a custom

algorithm:

algorithm
{

∆t
(
β̂k ◦ T̂k−1

)}
→ FkTk−1 .

First, a state reference array “n ref”, which describes the four elements bordering each

state, is assembled. For example, in the 24-state model, state 10 has references 2, 18,

11, and 9 for positions x1, x2, y1, and y2, respectively (refer to Figure 5.27). State

references were assembled manually and stored in “state ref ##.csv” data files; refer

to Appendix G for more details. Next, β̂ is calculated for each state, and the five elements

of β̂ are assigned to the elements of the state transition matrix F that correspond to the

state reference array. For example, for state 10, the five elements of β̂ are assigned to

row [10] columns [10, 2, 18, 11, 9] of F . All non-assigned elements of F default to zero

(e.g. state 10 does not directly conduct heat to state 14, therefore row [10] column [14]

of F will be zero). Complete details of the F matrix assembly may be found in the code

listings, Appendix F (Section F.4, f import state refs.m and f kf setup.m).

Calculation of incident heat flux follows the same approach as the 0D model. First,

the β heat transfer parameters are re-calculated using the posterior state predictions

(βr,f k and βc,f k are omitted in this inverse formulation). Then,

β∗totk = βx1k + βx2k + βy1k + βy2k + βr,ck + βc,ck ,

and the posterior β̂∗k is calculated:

β̂∗k =
[
1/∆t− β∗totk , βx1k , βx2k , βy1k , βy2k

]
.

The F matrix is re-assembled using β̂∗k , and then the posterior α∗k is calculated by re-

arrangement of Equation 5.36:

α∗k =
1

∆t
(Tk − FkTk−1) .

Net heat flux out of the fire-side is then:

q′′net,f k =
ρV cp
A

(
−α∗k + βr,ckTs,ck + βc,ckT∞,ck

)
, (5.37)

and incident heat flux to the fire-side is:

q′′r,i,f k = −1

ε
q′′net,f k + σT 4

k +
hc,f k
ε

[
Tk − T∞,f k

]
. (5.38)

Some important notes about the implementation of this model should be mentioned.

First, while the Kalman filter can technically accept any number of state and measure-

ment variables as input, it is up to the designer to select the appropriate state reference
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array and measurement space transformation function (H). State reference arrays for

the 24-state model (n = 54 and m = 24) and 72-state model (n = 114 and m = 24)

have been developed in the present work, and may be found in Appendix G; for other

implementations, these arrays would need to be formulated accordingly.

Second, in the present work, all thermophysical properties were taken to be constant.

Steel properties were taken to be: κ = 42 W·m−1·K−1, ρ = 7850 kg·m−3, and cp = 600

J·kg−1·K−1. The insulation, 1/4 inch (6.4 mm) silicone rubber gasket, was assumed to

have a thermal conductivity of 0.24 W·m−1·K−1. Total emissivity of the wall was assumed

to be constant at 0.93. Total emissivity of the surroundings on both fire-side and cool-

side was assumed to be 0.75¶. The total area of the fire-side surroundings was measured

to be 36.4 m2, and the total area of the cool-side surroundings was measured to be 14.3

m2 (the values of rf and rc depend on the particular state, per Equation 5.15). The

consequences of these simplifying assumptions on the model predictions are discussed in

Section 5.6 below.

5.6 Suitability of Modelling Assumptions

This solution methodology hinges on the appropriateness of the thermally-thin assump-

tion. The suitability of this assumption can be verified by performing two checks. For

one, the lumped approach for thermal energy storage within a solid is generally acceptable

when the Biot number is less than 0.1 [77]. Considering a worst-case scenario, when the

steel wall temperature is equal to the fire gas temperature and the wall is treated as a

blackbody, the effective heat transfer coefficient he (Equation 5.14) reduces to:

he = hc + 4σT 3 .

Taking the fire gas temperature to be 1200 K (a conservative estimate for a pre-flashover

compartment fire) and the convective heat transfer coefficient to be 30 W·m−2·K−1, the

effective heat transfer coefficient is calculated to be 400 W·m−2·K−1.

Recalling from Section 5.2, the expression for Biot number is:

Bi =
hδ

κ
,

¶Typically an emissivity of 0.9 is assumed for ceramic fibre insulation used in furnaces, but in reality

the value can range from 0.5 to 0.9 over the relevant temperature and spectral ranges [86].
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where κ = 42 W·m−1·K−1 for steel.

Two cases are considered:

• when the characteristic length is taken to be the actual thickness of the steel sheet,

1.3 mm, Bi is calculated to be 0.0124; and

• when the characterisic length is taken to be the effective thickness of the steel sheet,

4.5 mm (see Section 5.1), Bi is calculated to be 0.0428.

In both cases, Bi < 0.1, therefore the lumped energy storage approach is valid.

A second check of the thermally-thin assumption is to consider the analytical solution

for transient heat conduction through a plane wall undergoing convective heat transfer

on both sides (again lumping radiation and convection into a single effective heat transfer

coefficient). In this case, the temperature on both faces of the plane wall is equal to the

temperature at the centre of the plane wall when the Fourier number Fo is greater than

0.2 [77]. The expression for Fourier number is:

Fo =
α

δ2
t ,

where α is the thermal diffusivity (9.55 mm2·s−1). Again considering two cases:

• when the characteristic length is taken to be the actual thickness of the steel sheet,

1.3 mm, it is found that Fo = 5.65t; and

• when the characterisic length is taken to be the effective thickness of the steel sheet,

4.5 mm (see Section 5.1), it is found that Fo = 0.47t.

Taking the sampling rate to be 1 sample per second (t = 1 s), it is clear that Fo > 0.2

for both cases, again verifying the validity of the thermally-thin assumption.

As mentioned previously, the process model adopted here is relatively simplistic.

While the thermal energy balance approach for inverse calculation is quite sound given

the thermally-thin nature of the problem, the assumed process model for net heat flux

based on a 2-surface enclosure does not adequately represent the relevant physics in a

compartment fire. Furthermore the assumption of constant thermophysical properties is

unwarranted, since the temperature-dependent properties of the materials used here are

readily available (as given in Section 5.1).

Certainly it is possible to derive a more in-depth process model and accordingly

implement it via Kalman filter. In theory, such a process model would yield predictions

that are in better agreement with the actual (unknown) state values than the process
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model used here. This means that the strength of belief in the validity of the process

model estimate would be greater; consequently, the Kalman filter would give a greater

weighting to the process model in its posterior output. However, since a large number of

measurements with relatively low error are available, it is likely that the overall wighting

of the filter would remain in favour of the measurements. This means that the filter

prediction would not be significantly different if a better process model were used, but

the strength of belief in the validity of its predictions would be greater (variance in the

predicted heat flux Gaussians would be reduced).

Implementation of a Kalman filter heat transfer model necessitates a cost-benefit anal-

ysis to be conducted in order to select an appropriate process model and instrumentation.

When multiple states are involved, as is the case for any heat transfer problem with a

spatial dimension of 1 or greater, a decision must be made regarding the number of sensors

used in addition to the types of sensors and their inherent measurement errors. The

decision to adopt the simplified process model here was driven by practical constraints

— it was a more productive use of the available resources to use a large number of

thermocouple probes on the steel wall than it was to develop a more detailed process

model.

Even though the Kalman filter tends to favour measurement input over the process

model estimates in this case, the results are much more stable than direct inverse

calculation of heat flux based on measurements alone [87]. Use of the filter also provides

a quantification of the strength of belief in the predicted heat flux. Furthermore, it allows

for more detailed study of the incident heat flux by utilizing more state variables than the

number of sensors, thereby refining the discretization grid. The linear algebra involved

does not have an excessive computational overhead, therefore the model may be readily

expandable to a greater number of states. In this case, 72 states provided meaningful

insight into the heat flux distribution over the wall.

With the steel wall sensor designed and an algorithm developed for the calculation

of incident heat flux, a number of large-scale experiments were conducted, a fire was

designed, and the fire exposure to the wall was characterized. These experiments, and

the subsequent characterizations, are detailed in the following chapter.
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Chapter 6

Characterization of the Experiment

This chapter details the series of steel wall characterization tests conducted in the present

work. The objective in conducting these tests was to develop a characterization profile

of the experiment, in a particular configuration, which would later be reproduced in

subsequent tests. The first step in this endeavour was the design of a fire to be used in

this (and future) experiments, which is the focus of the following section. Subsequent

sections detail the conduct, result, and findings from this series of testing.

6.1 Design Fire

With a system in place for measurement of compartment temperatures (Section 4.2)

and heat flux to the wall (Section 5.5), the next step was to design a suitable fire to

achieve the target exposure levels. As previously stated, a major design consideration

for the experiment is that a wall be subjected to a realistic fire exposure. There are two

components to this objective:

• the spatial uniformity of the fire exposure should be representative of that experi-

enced in a real fire (e.g. varying in both horizontal and vertical dimensions); and

• the intensity and duration of the fire exposure should be representative of a fuel-

constrained fire (e.g. pre-flashover, and not a fully-developed∗ fire).

∗A fully-developed fire, in this context, describes the post-flashover fire environment. If flashover

does not occur, then the transition to a fully-developed fire does not occur [88].
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Certainly post-flashover fires are of interest in fire safety analyses, and such fires tend to

be well studied in the context of fire resistance tests. In the present work, however, it was

decided to start with pre-flashover fuel-constrained fires. One reason for this is that the

dynamics of fuel-constrained fires are typically easier to model (i.e. without a transition

to flashover), and the results from this experiment are intended to be used to support

fire model development and validation. Another reason to select fuel-constrained fires is

that the focus of the present work is on investigation of thermal degradation phenomena,

many of which are suspected to be directly related to highly non-uniform exposures. The

preliminary work established that a localized fire plume and distinct upper gas layer,

typical of a fuel-constrained fire, will impart a largely non-uniform exposure.

Given the above-listed constraints, it was decided to use a solid wood fuel source,

and to control fire evolution via fuel configuration and ventilation. Wood fuel generates

sufficient heat to produce the characteristic separation of “upper” and “lower” gas layers

within the compartment, as well as sufficient soot to visually identify the height of the

hot layer during an experiment [68]. Furthermore, fire evolution will be dependent on

fuel involvement, therefore configuration may be used to control the progression of the

“growth”, “steady burning”, and “decay” phases typical of a compartment fire [88]. Gas

burners are another option, and would certainly produce fires with improved repeatability,

but would arguably be less representative in terms of natural fire progression and hot

layer development. This is an option that may be considered in future work (in fact, the

apparatus was designed with burner entry ports at floor level with this in mind).

It is convenient to use modular “cribs” as the wood fuel source in large-scale fire tests.

Previous work from the University of Waterloo [65] standardized the construction of a

particular type of softwood crib. Cribs were constructed using bulk 2×2 spruce furring

strips, available inexpensively in 8 ft (244 cm) lengths from a local wood supplier. Each

strip was cut into four 24 in (61 cm) lengths and assembled using 2 3/8 in (60.3 mm)

framing nails with six pieces per layer, and six layers total (refer to Figure 6.1).

The same methodology of crib construction was followed in the present work. Cribs

were conditioned in a dehumidified room (set to 50% relative humidity) for one week

prior to testing in order to reduce the moisture content of the wood. The mass of each

crib was measured prior to each test. Based on the 40 cribs used for the characterization

experiments, and assuming a Gaussian PDF, the mass of a crib is N (15.048, 0.214) kg,

as depicted in Figure 6.2.
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Figure 6.1: Standard wood crib used in the large-scale experiments.

In his work, Obach [65] measured the effective heat of combustion of a typical crib to

be approximately 14.8 MJ·kg−1. He also measured the free-burning heat release rate of a

single crib and of various configurations of multiple cribs using a large-scale calorimeter.

In these tests, a liquid fuel pan located below each crib was ignited by spark to initiate

combustion of the crib(s). For a single crib fire, the heat release rate increased to a

peak value of 250 kW after 200 s, followed by steady burning for 400 s, and followed by

gradual decay for a total burn duration of approximately 30 min. Taking into account

the average mass and effective heat of combustion of a crib, as given above, the heat

release rate for a single crib may be represented as depicted in Figure 6.3 (presuming t2

growth and decay, total heat release of 222.7 MJ). This curve may readily be adopted as

input to a fire model.

Obach [65] also measured the heat release rate of two cribs placed side-by-side, which

were ignited simultaneously. He found that the peak heat release rate increased to

approximately 500 kW after 200 s, followed by a steady burning period of 400 s, and a

total burn duration of approximately 30 min. The resulting heat release rate was almost

exactly double those of the single crib. However, if the cribs were spaced further apart or

only one was ignited initially, the result was a very different heat release rate curve. In

the present work it was desired to achieve a total burn time of 45–60 min and to avoid

the transition to a fully-developed fire; this necessitated the determination of a suitable

number of cribs, and their configuration.
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Figure 6.3: Heat release rate for a single

wood crib.

To avoid the transition to a fully-developed fire, a limit on the total fuel load needed

to be determined. For a single-room compartment fire, the equation of Thomas [89] may

be used to estimate the heat release rate required for this transition (Q̇F ):

Q̇F = 7.8AT + 378AW
√
HW , (6.1)

where AT is the interior surface area of the compartment (7.22 m2), AW is the area of

the door (1.59 m2), and HW is the height of the door (1.99 m). From this, the transition

heat release rate was calculated to be approximately 900 kW. A secondary threshold

for the transition to a fully-developed fire is when the average gas temperature in the

compartment exceeds 600◦C [1]. This value does not define a physical threshold for

flashover, however it is a sensible reference value used in large-scale fire experiments [90].

Certainly gas temperatures in the lower layer should not exceed this value in the present

fire tests, given that flashover is not desired.

Given the results of Obach [65] described above, a 900 kW threshold on fire size

would imply that a maximum of four cribs should be used in the experiment. However,

heat release rate strongly depends on the surface area of fuel involved; four cribs in

a square configuration should be expected to produce a greater heat release rate than

four cribs in an in-line configuration. Furthermore, Obach’s work demonstrated that

increasing the number of cribs will not necessarily increase the burn duration if all

cribs are simultaneously involved, and fresh air is in ready supply. In the preliminary
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investigation (Chapter 3) the idea of extending the duration of a wood crib fire by

intermittently adding additional cribs at regular time increments was explored. While

this endeavour was successful in its intent, it required firefighting personnel to actively

enter the fire compartment in order to re-fuel the fire, and the resulting temperature-time

traces were consequently quite discontinuous. Therefore, the approach adopted for the

present characterization tests was to control fire growth by adjusting the number and

configuration of cribs, and the spacing between them. In addition, ventilation control was

used to influence air supply and exhaust at the compartment door. Details are provided

in the following sections.

6.2 Test Overview and Data Reduction

Given the large number of variables, and the complexity of modelling large-scale fire

dynamics, it is often most practical to design a fire using a combination of engineering

correlations (e.g. Equation 6.1 above), intuition, and consecutive experimentation. In the

present work a total of 12 characterization experiments were conducted. For the first six

experiments, various changes to fuel configuration and ventilation were applied to work

toward the design objectives. During the sixth experiment a structural failure of the

interior insulation panels occurred, necessitating repair. The seventh test used a reduced

fuel load in order to assess the condition of the repaired insulation. The final fuel and

ventilation configuration was selected by test #8, and tests #9-12 were repeats of #8

so that variability in the experiment could be assessed. A summary of test conditions

and events is provided in Table 6.1 (tests #1–6) and Table 6.2 (tests #7–12). Additional

details and results of each test are presented in the following section.

Raw data from each test were saved in the CSV format, and are provided in

Appendix D. A script was used to import raw data files to the MATLAB workspace

for post-processing and visualization, and the reduced data were saved to the *.mat

format; refer to Appendix E for details.

For fire gas temperatures, “slice” averages were calculated for each of the eight vertical

positions by averaging the measurements from the four probe rakes (in the corners of the

compartment) corresponding to each position. Fire gas slice temperatures are stored to

the EXP FIRE GAS variable, which has dimensions of n steps×8. The second dimension of

this array corresponds to the vertical position, from ceiling-to-floor of the compartment.
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Test Date Description

1 08/15/2016 Ambient conditions: 23.5°C, 60% RH, 96.46 kPa.
Fuel: Small pan (12 in diameter, 2 3/8 in height) filled with 1 L of methanol, 
located in the centre of the room.
Events : Door closed for test duration (no ventilation).

2 08/16/2016 Ambient conditions: 23.3°C, 90% RH, 97.38 kPa.
Fuel: Softwood pallet and scraps of red oak, total mass approximately 8 kg, 
located in the centre of the room.
Events : Door closed to 1 brick width (2.5 in gap) for test duration.

3 08/17/2016 Ambient conditions: 25.4°C, 67% RH, 98.07 kPa.
Fuel: 3 wood cribs, mass [15.58, 15.17, 15.36] kg, arranged in a "T" with 2 in the 
back, back row 36 in from wall, fuel pan under front crib with 500 mL methanol.
Events : Door fully open to start. Fire spread to rear cribs after 9.2 min s. Door 
closed to 1 brick width (2.5 in gap) after 34.6 min.

4 08/18/2016 Ambient conditions: 25.4°C, 67% RH, 98.07 kPa.
Fuel: 4 wood cribs, mass [15.81, 15.35, 15.64, 15.39] kg, arranged in a "T" with 3 
in the back, back row 36 in from the wall, fuel pan under front crib with 500 mL 
ethanol.
Events : Door fully open to start, then closed to 1 brick width after 24.5 min 
through the end of the test.

5 08/26/2016 Ambient conditions: 25.6°C, 60% RH, 98.15 kPa.
Fuel: 5 wood cribs, mass [16.33, 15.23, 14.59, 15.56, 15.05] kg, arranged in a 
2x2x1 configuration with 2 cribs in the back and middle rows, back row 36 in 
from the wall, fuel pan under front crib with 500 mL ethanol.
Events : Closed obstruction panel after 21.2 min, fire went out (rapid temperature 
drop), opened panel after 23.9 min.

6 08/29/2016 Ambient conditions: 24.3°C, 56% RH, 98.70 kPa.
Fuel: Same 5-crib configuration, mass [14.93, 15.21, 15.97, 15.41, 15.30] kg, fuel 
pan under fron crib with 500 mL ethanol.
Events : Obstruction panel angle of 30° to start, then closed to 20° at 19.6 min, 
then closed to 10° at 21.2 min, then fully closed at 38.4 min, through end of test. 
As the fire became underventilated pressure fluctuations occurred, and were 
significant enough to knock down 2 of the side-wall insulation panels. Significant 
heat retention caused warping of exposed steel members.

Lowered the door soffit from 78.5 in to 53.0 in.

Preliminary tests.

Added obstruction panel to front of compartment.

Table 6.1: Summary of conditions and events for characterization tests #1–6.
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Test Date Description

7 09/14/2016 Ambient conditions: 18.6°C, 60% RH, 98.56 kPa.
Fuel: 3-cribs in-line configuration (spaced 2 in apart) , mass [14.24, 14.45, 14.77] 
kg, back crib 24 in from the wall, fuel pan under front crib with 500 mL ethanol.
Events : Obstruction panel set to a constant 15°. Fire spread to second crib after 
14.9 min, and to third crib after 22.3 min.

8 09/18/2016 Ambient conditions: 23.5°C, 60% RH, 97.69 kPa.
Fuel: 4-cribs in-line configuration (spaced 2/4/8 in apart, 8 in spacing closest to 
the wall), mass [14.61, 14.92, 14.61, 14.57] kg, back crib 12 in from the wall, fuel 
pan under front crib with 500 mL methanol.
Events : Obstruction panel set to a constant 15°. Fire spread to second crib after 
14.1 min, to third crib after 27.5 min, and to fourth crib after 31.8 min.

9 09/19/2016 Ambient conditions: 24.9°C, 47% RH, 97.96 kPa.
Fuel: 4-cribs in-line configuration (spaced 2/4/8 in apart, 8 in spacing closest to 
the wall), mass [14.79, 14.64, 14.98, 14.74] kg, back crib 12 in from the wall, fuel 
pan under front crib with 500 mL methanol.
Events : Obstruction panel set to a constant 15°. Fire spread to second crib after 
15.2 min, to third crib after 23.4 min, and to fourth crib after 26.4 min.

10 09/20/2016 Ambient conditions: 24.6°C, 47% RH, 98.21 kPa.
Fuel: 4-cribs in-line configuration (spaced 2/4/8 in apart, 8 in spacing closest to 
the wall), mass [14.49, 14.64, 15.55, 14.69] kg, back crib 12 in from the wall, fuel 
pan under front crib with 500 mL methanol.
Events : Obstruction panel set to a constant 15°. Fire spread to second crib after 
18.4 min, to third crib after 27.0 min, and to fourth crib after 31.1 min.

11 09/21/2016 Ambient conditions: 25.2°C, 36% RH, 98.57 kPa.
Fuel: 4-cribs in-line configuration (spaced 2/4/8 in apart, 8 in spacing closest to 
the wall), mass [14.82, 15.14, 15.21, 15.07] kg, back crib 12 in from the wall, fuel 
pan under front crib with 500 mL methanol.
Events : Obstruction panel set to a constant 15°. Fire spread to second crib after 
15.2 min, to third crib after 22.2 min, and to fourth crib after 25.0 min.

12 09/23/2016 Ambient conditions: 15.6°C, 86% RH, 98.21 kPa.
Fuel: 4-cribs in-line configuration (spaced 2/4/8 in apart, 8 in spacing closest to 
the wall), mass [15.02, 14.86, 14.89, 14.32] kg, back crib 12 in from the wall, fuel 
pan under front crib with 500 mL methanol.
Events : Obstruction panel set to a constant 15°. Fire spread to second crib after 
17.1 min, to third crib after 28.1 min, and to fourth crib after 30.6 min.

Re-built side insulation panels and insulated ceiling supports.

Table 6.2: Summary of conditions and events for characterization tests #7–12.
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Steel wall temperatures were imported to the EXP WALL variable, which has dimensions

of n steps×8×3. The second dimension of this array corresponds to the vertical position

of the thermocouples on the wall, from top-to-bottom. The third dimension of this array

corresponds to the horizontal position on the wall, from left-to-right.

For the frame temperatures, average values were calculated for the positions at the

top, sides, and bottom of the wall. Frame temperatures were imported to the EXP FRAME

variable, which has dimensions of n steps×3. The first column corresponds to the

average of the two measurements at the top of the wall, the second column is the average

of the four measurements at the sides of the wall, and the third column is the average of

the two measurements at the bottom of the wall.

The gas temperature on the unexposed side of the wall was imported to the

EXP BACK GAS variable. There are a total of six measurement locations for this parameter:

top, middle, and bottom on both left and right sides of the wall. In the present analysis,

gas temperature on the unexposed side of the wall was assumed to be uniform at all

locations, therefore all six of these measurements were averaged.

The temperature of the unexposed-side surroundings was measured at two locations,

on the left and right side of the door. These two measurements were averaged and stored

to the EXP BACK SURR variable.

All raw data files may be found in Appendix D. In addition, an extensive set of

photographs and digital video were recorded for each experiment; these may be obtained

upon request to the fire research group at the University of Waterloo. A subset of

measurements is presented in the following section, along with the incident heat flux

calculated by the methodology outlined in Section 5.5.

6.3 Results and Discussion

In this section the results for the steel wall characterization experiments are presented.

For each test, four plots were created:

• a line plot of temperature versus time, which includes the fire-side slice temper-

atures at the top and bottom positions, as well as temperature measurements at

the centre of the wall and the corresponding 72-state Kalman filter predictions of

temperature at the centre of the wall (location 36, refer to Figure 5.27);
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• a line plot of fire-side incident heat flux versus time, which shows the mean incident

heat flux and one standard deviation above and below the mean at the centre of

the wall (location 36);

• a contour plot of wall temperatures predicted by the 72-state Kalman filter at a

time corresponding to the peak fire-side gas temperature; and

• a contour plot of fire-side incident heat flux to the wall at the same time.

It should be re-stated that the standard deviation shown on the plots of heat flux

versus time in this chapter is a representation of the strength of belief in the prediction

based on the overall measurement and model error. This belief is strongly influenced

by the process covariance gain, φ, which in one sense might be considered a “tuning

parameter”, leading to a subjective strength of belief in the prediction. With that said,

a systematic process was followed in order to deduce a value of φ that is suitable for this

problem, ensuring that the model is neither over-confident (small uncertainty but poor

prediction of the overall trend of the primary variable, T ) nor under-confident (large

uncertainty but good prediction of the overall trend of the primary variable, including

perturbations). As outlined in Section 5.4, the optimal value of φ for this problem (0.05)

is the smallest value which satisfactorily reproduces the overall trend of the primary

variable, the selection of which involves some subjective assessment.

For test #1, a 12 in (31 cm) diameter pan containing 1 L of ethanol was placed

in the centre of the room and ignited; the door was subsequently closed and remained

closed for the duration of the test. This test is useful for fire model validations since

the fuel source, heat release rate, gas velocities, and oxygen availability are all very well

controlled. The fuel configuration is shown in Appendix C, Figure C.6. Test results are

plotted in Figures 6.4–6.7.

The fire-side gas temperatures for test #1 reached a moderate 140◦C roughly 10

min after ignition. By this time, a thermal gradient had developed over the wall with

temperatures ranging from about 85◦C near the top to 55◦C near the bottom. Plume

radiation was not overwhelming for this small fire; stratification in compartment gases

was likely the primary cause for the measured temperature gradient. Incident heat flux

reached a peak of only 1.5 kW·m−2 at the centre of the wall. There appears to be a

localized region of high fire exposure in the upper-right region of the wall, however this

amounts to a difference of only 0.3 kW·m−2 from the centreline value, and is likely not a

result of significance considering the overall low levels of irradiance evolved in the test.
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Figure 6.4: Characterization test #1, tem-

perature line plot.
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Figure 6.5: Characterization test #1, heat

flux line plot.
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Figure 6.6: Characterization test #1, tem-

perature contour plot, t = 10 min.
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Figure 6.7: Characterization test #1, heat

flux contour plot, t = 10 min.

For test #2, an impromptu collection of hardwood and softwood was assembled in

the centre of the room and ignited using an ethanol-soaked rag. The door was partially

closed, propped open by brick such that a 2.5 in (6.4 cm) gap was available for ventilation,

for the duration of the test. This test was intended to evaluate the responsiveness of the

data acquisition system to the realistic generation of heat and fire gases from solid fuel

combustion. The fuel configuration is shown in Appendix C, Figure C.7, and the fuel

contents are detailed in Figure C.8. Test results are plotted in Figures 6.8–6.11.
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Figure 6.8: Characterization test #2, tem-

perature line plot.
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Figure 6.9: Characterization test #2, heat

flux line plot.
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Figure 6.10: Characterization test #2,

temperature contour plot, t = 24 min.
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Figure 6.11: Characterization test #2,

heat flux contour plot, t = 24 min.

The fire-side gas temperatures in test #2 reached a peak value of 270◦C roughly 24

minutes after ignition. The fire gas temperature-time curve is notably less continuous

than was the case in test #1, attributed to the complexity of the fuel source. Wall

temperatures at this time ranged from 190◦C near the top of the wall to 110◦C near

the bottom. While the temperature gradient is predominantly in the vertical dimension,

it is notable that even at these moderate temperatures the lower corners of the wall

are significantly cooler than adjacent areas; this trend is consistent through all tests.
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Incident heat flux ranged from 2.5 kW·m−2 at the bottom corners, to 6.0 kW·m−2 at the

top-centre of the wall; again, the heat flux gradient was predominantly in the vertical

dimension. It can be concluded that for small fuel loads, for which a significant fire plume

does not develop, no significant horizontal variance of irradiance should be expected.

For test #3, the standard softwood crib fuel bundles were used for the first time.

The mass of each crib was measured within 30 min of the start of a test, before any

significant amount of moisture could be absorbed by the wood. In this test three cribs

were arranged in a “T” shape, with one crib in front (near the door) and two at the rear

(near the wall), located 3 ft (91.4 cm) from the wall as shown in Appendix C, Figure C.9.

Test results are plotted in Figures 6.12–6.15.
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Figure 6.12: Characterization test #3,

temperature line plot.
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Figure 6.13: Characterization test #3,

heat flux line plot.

The cribs in test #3 were elevated 2.5 in (6.4 cm) above the floor prior to testing

by placing a fire brick in each corner. At the start of the test, an aluminum foil pan

containing 500 ml of methanol was placed under the front crib and ignited. The door was

initially left open to support well-ventilated burning of the wood cribs. It was eventually

closed once the fire had reached a state of decay in order to contain heat. Figure 6.16

shows the state of the fire after 7.5 min, when the first crib was fully involved. After 12.7

min the fire had spread to the rear cribs, and the entire fuel package became involved.

Figure 6.17 shows the state of the fire after 24 min, the time at which fire-side gas

temperatures were at a maximum. It is clear from these figures that a well-defined,

albeit short in height, fire plume developed in this test.
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Figure 6.14: Characterization test #3,

temperature contour plot, t = 24 min.
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Figure 6.15: Characterization test #3,

heat flux contour plot, t = 24 min.

Figure 6.16: Characterization test #3,

fire, t = 7.5 min.

Figure 6.17: Characterization test #3,

fire, t = 24 min.

Fire-side gas temperatures in test #3 reached as high as 470◦C after 24 min. After

36.8 min the compartment door was closed, resulting in an immediate spike in gas

temperatures. Following this, the rate of decay of compartment gas temperatures was

more gradual, confirming the intended outcome. Sensor fluctuations also decreased as

compartment ventilation was eliminated. The wall reached peak temperatures of about

370◦C, with significant variation in temperatures in both the horizontal and vertical

dimensions. The same can be said for incident heat flux, which ranged from 12–28

kW·m−2 over the wall after 24 min of fire exposure. Interestingly the greatest heat
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flux was localized in the centre of the wall rather than at the top, which is consistent

with the height of the fire plume and its proximity to the wall at that time. This test

confirms the hypothesis that thermal exposures on walls in a building fire are highly

non-uniform, and consequently that multidimensional thermal degradation phenomena

should be accounted for in comprehensive models of wall degradation in building fires.

Test #3 demonstrated that, despite fire growth being slowed by fuel configuration,

the burn duration was still too short. The target was to achieve a peak heat flux after

about 30 min, and to maintain relatively high exposure levels through 45–60 min. Also

the exposure level was below expectations; incident heat flux exceeding 50 kW·m−2 was

desired. Therefore, it was decided for test #4 to increase the fuel load to four cribs,

arranged in a “T” shape, with one crib in front and three at the rear, spaced 3 ft (91

cm) from the steel wall as shown in Appendix C, Figure C.10.

For test #4 the size of the door was reduced in order to restrict ventilation, with

the aim to increase fire gas temperatures and prolong burning duration. This was

accomplished by installing an insulation panel at the top of the door, lowering the soffit

by 1/3 of the initial height, reducing the door height from 78.5 in (199 cm) to 52.5 in

(133 cm), and reducing the door area from 1.59 m2 to 1.06 m2. By Equation 6.1, the heat

release rate necessary for a transition to a fully-developed fire is about 500 kW in this

new configuration. Given that 4 cribs were used, the door was partially closed once the

fire began to grow, thereby forcing the fire to become ventilation-limited, and ensuring

that the threshold conditions for transition to a fully-developed fire would not be met.

Figure 6.18 shows the fire after 24 min, when upper layer gas temperatures approached

600◦C. This was an indication that the fire was approaching a fully-developed state, so

at 24.5 min the door was closed to the width of a single fire brick (visible in the figure).

Results for test #4 are plotted in Figures 6.19–6.22. Fire-side gas temperatures

reached a peak of 615◦C before the door was closed, after which gas temperatures

sharply decreased. Following this, the fire established a new equilibrium, and upper

layer temperatures gradually increased to achieve peak values of 670◦C. This test was

very promising in that a burn duration of 60 minutes was achieved during which time gas

temperatures remained in excess of 300◦C. Despite this level of heat retention, however,

the incident heat flux only reached approximately 45 kW·m−2 at the centre of the wall

after 38 min. Inspection of heat flux contours at this time reveals that the fire exposure

was relatively uniform in the horizontal dimension, which is consistent with the “wide”

configuration of cribs used, and consequently the wide fire plume shown in Figure 6.18.
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Figure 6.18: Characterization test #4, fire, t = 24 min.
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Figure 6.19: Characterization test #4,

temperature line plot.
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Figure 6.20: Characterization test #4,

heat flux line plot.

Contour plots for test #4 show that the wall temperature and irradiance were greater

in the upper-right region of the wall. This can be attributed to an asymmetric ventilation

restriction at the door. The difference is quite significant, amounting to about 40◦C and

8 kW·m−2 from left-to-right at the top of the wall after 38 min of exposure.
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Figure 6.21: Characterization test #4,

temperature contour plot, t = 38 min.
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Figure 6.22: Characterization test #4,

heat flux contour plot, t = 38 min.

To promote a more symmetric airflow in subsequent tests, an adjustable “obstruction

panel” was designed, which afforded greater control of compartment ventilation. The

panel was constructed from spruce lumber insulated with ceramic fibre insulation. The

panel, positioned in front of the compartment door, could be pivoted from the bottom in

order to adjust the opening angle. This design preferentially restricted airflow into the

compartment versus exhaust of fire gases from the upper layer. A vertical slit was built

along the centreline so that the panel could be completely closed, while still allowing a

small amount of ventilation to support continued burning. The width of the slit was 2.5

in (61 cm), identical to the opening size used in previous tests (a single brick width).

Refer to Figures 6.23–6.24 for details.

For test #5, the number of cribs was increased to five, as shown in Appendix C,

Figure C.11. The idea was to further prolong the burning duration by increasing the fuel

mass, while limiting the overall fire size via harsh restriction of ventilation. The panel

was open at the start of the test, and closed fully after 21.2 min when the upper layer

gas temperature began to approach 600◦C. Figure 6.25 shows the fire after 10 min, as

the second row of cribs became involved, and Figure 6.26 shows the fire after 20 min, as

third row of cribs became involved and just prior to the obstruction panel being closed.

Results for test #5 are plotted in Figures 6.27–6.30. The fire-side gas temperatures

reached a peak of 550◦C before the panel was closed, after which time temperatures

sharply decreased. At this point there was a concern that the fire had become excessively

under-ventilated as upper layer temperatures dropped to 300◦C, therefore it was decided
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Figure 6.23: Ventilation obstruction

panel, fully opened.

Figure 6.24: Ventilation obstruction

panel, fully closed.

Figure 6.25: Characterization test #5,

fire, t = 10 min.

Figure 6.26: Characterization test #5,

fire, t = 21 min.

to open the panel back up after 23.9 min. With the introduction of fresh air the fire grew

in size rapidly, reaching upper layer temperatures in excess of 750◦C. With all four cribs

in the back two rows involved, this fire was much more intense than in previous tests,

with the peak irradiance at the centre of the wall reaching 75 kW·m−2 after 32 min. Heat

flux varied by over 30 kW·m−2 from top-to-bottom of the wall, a significant gradient.

Test #5 was successful in terms of increasing the intensity of wall exposure to the

desired levels, however it was apparent that the fire size was rapidly approaching the
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Figure 6.27: Characterization test #5,

temperature line plot.
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Figure 6.28: Characterization test #5,

heat flux line plot.
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Figure 6.29: Characterization test #5,

temperature contour plot, t = 32 min.

0.00 0.32 0.64 0.95 1.27 1.59 1.91

Horizontal Position (m)

0.00

0.32

0.64

0.95

1.27

1.59

1.91

V
e
rt

ic
a
l 

P
o
si

ti
o
n
 (

m
)

40

50

60

70

80

In
c
id

e
n
t 

H
e
a
t 

F
lu

x
 (

k
W

/m
2
)

Figure 6.30: Characterization test #5,

heat flux contour plot, t = 32 min.

threshold criteria for a transition to a fully-developed fire. Furthermore, it was apparent

that when the obstruction panel was fully closed, the slit was not quite large enough to

allow a fire of the desired size to develop. Therefore, for the next test it was decided to

dynamically adjust the angle of the panel in order to fine-tune the fire evolution.

The same fuel configuration was used in test #6 as was in test #5 (refer to

Appendix C, Figure C.12). The opening angle of the obstruction panel was initially

set to 30◦ (Figure 6.31). By 12 min the fire fire had spread to the second row of cribs
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(Figure 6.32), which was slightly slower than was the case for test #5, as expected. By

19.7 min the fire was beginning to grow rapidly as it spread to the back row of cribs, so

the opening angle of the obstruction panel was reduced to 20◦. This did not appear to

notably slow fire growth, therefore the opening angle was reduced to 10◦, after 21.2 min.

Figure 6.31: Obstruction panel opening

angle measurement.

Figure 6.32: Characterization test #6,

fire, t = 12 min.

Results for test #6 are plotted in Figures 6.33–6.36. It is clear that the reduction

of the opening angle at 21.2 min initially caused a rapid decrease in gas temperatures,

which in turn caused a significant reduction in incident heat flux to the wall. This is an

important observation — even small changes to the ventilation had a large impact on the

heat flux results. This impact is clearly unnatural (externally imposed), and undesirable,

therefore for future tests a constant opening angle was adopted.

The temperature of compartment gases in test #6 reached a peak after 32 min, before

decaying. By 38.4 min the upper layer temperature had dropped below 700◦C, therefore

the obstruction panel was fully closed in an attempt to contain hot gases within the

compartment, and prolong the decay period. This approach was successful for a time,

however as the fire became oxygen starved intense pressure fluctuations began to occur

within the compartment. These were so significant that after approximately 54 min a

structural failure occurred within the container — the middle wall insulation panels on

both sides of the compartment were knocked down and subsequently destroyed.

An assessment of the compartment interior after the test revealed that, in addition

to the structural failure of the insulation panels, some of the exposed steel members

(Unistrut supports) were warped. Therefore, as part of the repairs it was decided to also
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Figure 6.33: Characterization test #6,

temperature line plot.
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Figure 6.34: Characterization test #6,

heat flux line plot.
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Figure 6.35: Characterization test #6,

temperature contour plot, t = 32 min.
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Figure 6.36: Characterization test #6,

heat flux contour plot, t = 32 min.

fully insulate all previously-exposed steel members, including the ceiling supports and

the thermocouple rakes. Also, to help to stabilize the side insulation panels, a horizontal

member was added to each side of the compartment. The renovated compartment interior

can be seen in Figure 6.37.

In reviewing the results from test #6, it is clear that the ventilation restriction was

effective, however the fuel load was greater than strictly necessary. For test #7, it was

decided to re-think the approach in consideration of the design objectives. The previous
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Figure 6.37: Renovated compartment interior following the test #6 structural failure.

results show that increasing compartment gas temperatures will result in a greater fire

exposure; alternatively, a more intense fire exposure could be achieved by moving the

fire plume closer to the wall. Therefore, for test #7 a smaller fuel load of three cribs was

used, with the rear cribs spaced 24 in (61 cm) from the wall rather than the 36 in (91

cm) used previously (Appendix C, Figure C.13). Furthermore, the cribs were arranged

in-line in order to slow fire growth, allowing the compartment boundaries to heat in the

early-stage fire, and ultimately increasing the fire exposure during peak burning.

Ventilation restriction was utilized in test #7, setting the obstruction panel opening

angle to a constant 15◦. Results are plotted in Figures 6.38–6.41. Visual observations

confirmed that the rate of fire growth was slower than in the “T” configurations as the

fire spread from the first to the second crib after 14.9 min, and to the third crib after

22.3 min. Once the third crib became involved, the fire growth rate became significant,

ultimately reaching peak upper layer temperatures of 550◦C after 30 min.
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Figure 6.38: Characterization test #7,

temperature line plot.
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Figure 6.39: Characterization test #7,

heat flux line plot.
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Figure 6.40: Characterization test #7,

temperature contour plot, t = 30 min.
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Figure 6.41: Characterization test #7,

heat flux contour plot, t = 30 min.

After 30 minutes the temperature over the surface of the wall varied from 260–450◦C,

and the incident heat flux varied from 17–41 kW·m−2. Gradients of temperature and heat

flux are apparent both in the vertical and horizontal dimensions, clearly attributable to

the closer proximity of the fire plume to the wall. These results are much more in line with

the design objectives, with the overall fire size being smaller and the fire exposure being

very much non-uniform, as would be the case for a single burning item in proximity to

wall in a real fire. Still, the exposure levels were slightly lower than the design objectives,

therefore for the following test it was decided to increase the fuel load to four cribs.
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For test #8 the fuel configuration was increased to four cribs in-line, with greater

spacing between cribs nearer to the wall (Appendix C, Figure C.14). The intent with

the uneven spacing was to further slow fire growth as the third and fourth cribs became

involved. Also, the rear crib was positioned 12 in (31 cm) from the wall, to further increase

the intensity of the fire exposure. Results for test #8 are plotted in Figures 6.42–6.45.
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Figure 6.42: Characterization test #8,

temperature line plot.

0 15 30 45 60 75 90

Time (min)

0

10

20

30

40

50

60

70

In
c
id

e
n
t 

H
e
a
t 

F
lu

x
 (

k
W

/m
2
)

Kalman Filter ( )

Kalman Filter ( + )

Kalman Filter ( - )

Figure 6.43: Characterization test #8,

heat flux line plot.
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Figure 6.44: Characterization test #8,

temperature contour plot, t = 40 min.
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Figure 6.45: Characterization test #8,

heat flux contour plot, t = 40 min.
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Recalling from test #7, the second and third cribs became involved after 14.9 and

22.3 min, respectively. In comparison, the second and third cribs in test #8 became

involved after 14.1 and 27.5 min, respectively, and the fourth crib after 31.8 min. From

these results it seems that the fire growth rate was successfully slowed.

Fire gases reached an initial temperature plateau at 360◦C in the upper layer from

about 15–26 min; as the third and subsequently fourth cribs became involved, upper

layer temperatures increased to a peak value of 640◦C after 35 min. A relatively steady

period of burning was maintained through to about 42 min, after which time the fire

began to decay.

After 40 min, during the period of steady burning, the temperature gradient over

the wall was significant in both horizontal and vertical dimensions. The effect was even

more pronounced for the incident heat flux; by 40 min into the test the fire plume

was in very close proximity to the wall, and the irradiance pattern closely reflects this

fact (Figure 6.45). Incident heat flux at the top-centre of the wall reached about 58

kW·m−2, and only decreased to about 52 kW·m−2 at the bottom-centre of the wall, a

direct consequence of plume radiation. In contrast, heat flux at the bottom corners of

the wall was as low as 25 kW·m−2 at this time. This is precisely the type of non-uniform

exposure that is the goal for the experiment. Given this, fuel load from test #8 was

selected as the standard design fire for all subsequent tests.

Tests #9–12 were repeats of test #8, and were used to assess consistency of the

fire exposure from test-to-test; fuel configurations for each of the tests are shown in

Appendix C, Figures C.15–C.18. The results for tests #9–12 are shown below, in

Figures 6.46–6.61. Note that for test #10 data acquisition was terminated prematurely

after 75 min of exposure.
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Figure 6.46: Characterization test #9,

temperature line plot.
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Figure 6.47: Characterization test #9,

heat flux line plot.
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Figure 6.48: Characterization test #9,

temperature contour plot, t = 35 min.
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Figure 6.49: Characterization test #9,

heat flux contour plot, t = 35 min.
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Figure 6.50: Characterization test #10,

temperature line plot.
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Figure 6.51: Characterization test #10,

heat flux line plot.
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Figure 6.52: Characterization test #10,

temperature contour plot, t = 40 min.
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Figure 6.53: Characterization test #10,

heat flux contour plot, t = 40 min.
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Figure 6.54: Characterization test #11,

temperature line plot.
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Figure 6.55: Characterization test #11,

heat flux line plot.
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Figure 6.56: Characterization test #11,

temperature contour plot, t = 35 min.
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Figure 6.57: Characterization test #11,

heat flux contour plot, t = 35 min.
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Figure 6.58: Characterization test #12,

temperature line plot.
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Figure 6.59: Characterization test #12,

heat flux line plot.
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Figure 6.60: Characterization test #12,

temperature contour plot, t = 40 min.
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Figure 6.61: Characterization test #12,

heat flux contour plot, t = 40 min.
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6.3.1 Summary

With five repeat tests having been conducted, it is possible to make an assessment of

the consistency of the experiment, in terms of fire gas temperatures and wall exposures.

Figures 6.62–6.63, show the upper layer gas temperatures and the incident heat flux to

the centre of the wall for tests #8–12, along with the time-average over the five tests.
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Figure 6.62: Upper layer fire gas temper-

ature, tests #8–12.
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Figure 6.63: Incident heat flux to the

centre of the wall, tests #8–12.

A summary of relevant results from these data is given in Table 6.3; these include

the times corresponding to the start and end of the steady burning period (t1 and t2,

respectively), and the corresponding upper layer temperatures and heat flux to the centre

of the wall. The results for tests #8–12 were consistent, with a fire growth period of about

30 min, followed by 10 min of steady burning, and a gradual period of decay through

the total exposure duration of 90 min. Over the five tests, the upper layer temperature

during the steady burning period was about 635◦C on average, and the the heat flux to

the centre of the wall was about 55 kW·m−2 on average. Tests #9 and #11 had slightly

faster growth rates and the peak gas temperatures were slightly greater than the other

tests, though no relevant observations were made which could explain this difference

in behaviour. These differences can primarily be attributed to non-uniformity in the

fuel, coupled with unpredictable airflows into the compartment — realities that must be

conceded in large scale fire experiments. Still, both the upper layer gas temperatures

and the wall fire exposures are in good agreement over the five tests.
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Test
t1 t2 Temperature (◦C) Heat Flux (kW·m−2)
(s) (s) AVG MIN MAX AVG MIN MAX

8 33.5 43.5 613.4 570.6 641.7 52.05 42.28 59.89

9 28.5 38.5 643.5 612.2 665.7 56.32 45.91 62.67

10 33.5 41.5 632.3 614.5 647.4 52.96 47.94 57.22

11 26.5 37.0 660.1 624.7 687.8 58.56 50.09 66.47

12 32.5 43.0 628.2 600.3 659.0 53.53 47.00 62.96

AVG 30.9 40.7 635.5 604.5 660.3 54.69 46.64 61.84

Table 6.3: Summary of design fire statistics.

Figure 6.64 shows the average and standard deviation for upper layer temperature

and incident heat flux over the five repeat tests — these were simply computed on a time

basis, and the standard deviation here is only an indication of spread over the five tests,

rather than a representation of the strength of belief in the accuracy of the results. This

plot is a useful reference moving forward as it provides a concise description of the design

fire in terms of upper layer temperature and heat flux to the centre of the wall.

It is concluded that the design fire selected here produces the desired fire expo-

sures with sufficient consistency for use in the analysis of thermal degradation of wall

assemblies, thereby satisfying the stated objective of characterizing the conditions in

the experiment for the selected design fire. In contrast to standardized tests which

prescribe a single fire exposure, this experimental methodology allows for any number of

different exposures to be created by adjusting fuel and ventilation conditions. Additional

characterization tests are only necessary if validation of the exposures is desired. If,

on the other hand, the intent is simply to evaluate wall decomposition on the basis of

involvement with a compartment fire, which is described by and may be modelled using

the aforementioned conditions, then additional characterization tests are not necessary.

With the characterization of the experiment completed, the next step was to move

on to tests of real construction assemblies, which are detailed in following chapter.
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Figure 6.64: Average upper layer fire gas temperature and incident heat flux to the centre

of the wall over the five repeat characterization tests.
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Chapter 7

Assessment of Thermal Degradation

of Construction Assemblies

With the conditions of the experiment characterized for the selected design fire, the next

step was to demonstrate its utility as applied to the study of thermal degradation of

construction assemblies. A series of experiments was conducted, referred to as “real

wall” tests as opposed to the “steel wall” tests detailed in the previous chapter. The

focus of this chapter is to present the results and findings of these real wall tests, with

reference to the objective of demonstrating the utility of the experimental approach in

the study of thermal degradation phenomena. The following section provides an overview

of the five tests that were conducted in this series.

7.1 Test Overview and Data Reduction

The five tests in this series were conducted using the same fuel load and ventilation

configuration as was specified for the design fire (Chapter 6). Tests were conducted over

a five week period starting in October of 2016. While the fire gas temperatures and heat

flux to the wall were expected to be consistent with those given in Figure 6.64, some

deviation was expected as a result of the cooling weather conditions. This is one of the

shortcomings of locating the apparatus outdoors, which as detailed in Chapter 4 was a

compromise driven by practical constraints. Table 7.1 summarizes the conditions and

events for each of the tests in this series; detailed results are presented in the following

sections.
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Test Date Description
1 10/05/2016 Ambient conditions: 21.7°C, 62% RH, 98.35 kPa.

Wall type : W1c, 2×4 wood studs spaced 16 in on-centres, Roxul ComfortBatt® 
R14 stone wool insulation (all cavities), 1/2 in CGC Sheetrock Ultralight® 
gypsum board (both sides).
Fuel: 4 cribs in-line configuration, mass [14.13, 14.29, 14.60, 14.32].
Events : Obstruction panel set to a constant 15°. Fire spread to second crib after 
13.6 min, to third crib after 19.9 min, and to fourth crib after 21.7 min.

2 10/19/2016 Ambient conditions: 18.8°C, 52% RH, 98.11 kPa.
Wall type : W1c, 2×4 wood studs spaced 16 in on-centres, CertainTeed Building 
Insulation® R12 fibre glass insulation (all cavities), 1/2 in CGC Sheetrock 
Ultralight® gypsum board (both sides).
Fuel: 4 cribs in-line configuration, mass [17.11, 16.52, 16.66, 16.17].
Events : Obstruction panel set to a constant 15°. Fire spread to second crib after 
26.9 min, to third crib after 42.0 min, and to fourth crib after 47.3 min.

3 10/28/2016 Ambient conditions: 8.6°C, 62% RH, 98.58 kPa.
Wall type : W1d, 2×4 wood studs spaced 16 in on-centres, no insulation, 5/8 in 
CGC Sheetrock Firecode Core® gypsum board (both sides).
Fuel: 4 cribs in-line configuration, mass [15.72, 16.03, 16.17, 15.92].
Events : Obstruction panel set to a constant 15°. Fire spread to second crib after 
17.1 min, to third crib after 27.0 min, and to fourth crib after 31.2 min.

4 11/01/2016 Ambient conditions: 18.5°C, 73% RH, 97.68 kPa.
Wall type : W1c, 2×4 wood studs spaced 16 in on-centres, CertainTeed Building 
Insulation® R12 fibre glass insulation (left cavities, 1-2), Roxul ComfortBatt® 
R14 stone wool insulation (right cavities, 3-4), 1/2 in CGC Sheetrock Ultralight® 
gypsum board (both sides).
Fuel: 4 cribs in-line configuration, mass [16.03, 16.23, 16.41, 15.66].
Events : Obstruction panel set to a constant 15°. Fire spread to second crib after 
18.4 min, to third crib after 26.7 min, and to fourth crib after 28.9 min.

5 11/09/2016 Ambient conditions: 7.2°C, 64% RH, 98.05 kPa.
Wall type : W1c, 2×4 wood studs spaced 16 in on-centres, Thermafiber UltraBatt® 
R15 mineral wool insulation (left cavities, 1-2), Roxul ComfortBatt® R14 stone 
wool insulation (right cavities, 3-4), 1/2 in CGC Sheetrock Ultralight® gypsum 
board (both sides).
Fuel: 4 cribs in-line configuration, mass [16.03, 16.23, 16.41, 15.66].
Events : Obstruction panel was removed to accomodate additional video and IR 
thermography instrumentation. Fire spread to second crib after 14.6 min, to third 
crib after 21.8 min, and to fourth crib after 24.1 min.

Table 7.1: Summary of conditions and events for real wall tests #1–5.

Raw test data was saved in the CSV format, and are provided in Appendix D. A

script was used to import raw data files to the MATLAB workspace for post-processing,
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and the imported data saved to the *.mat format; refer to Appendix E for details.

Fire gas temperatures were stored to the EXP FIRE GAS variable, which has dimensions

of n steps×8×4. The second dimension of this array corresponds to the vertical

position of thermocouples, while the third dimension corresponds to the rake number.

Slice averages were calculated at each of the eight vertical positions by averaging the

corresponding measurements at each of the four rake in the corners of the compartment.

Slice temperatures were stored to the EXP FIRE GAS V AVG variable, which has dimensions

of n steps×8. Rake averages were calculated by averaging all eight measurements for

each rake. These temperatures were stored to the EXP FIRE GAS H AVG variable, which

has dimensions of n steps×4.

Wall temperatures were imported to the EXP WALL MAIN (temperature measurements

on the back of the fire-side gypsum board) and EXP WALL REAR (temperature measure-

ments on the back of the cool-side gypsum board) variables; the former variable has

dimensions of n steps×6×4 and the latter variable has dimensions of n steps×3×4.

The second dimension of these arrays corresponds to the vertical position, while the

third dimension corresponds to the cavity number. Cavity averages were calculated by

averaging all measurements in a given cavity over all heights (EXP WALL MAIN H AVG and

EXP WALL REAR H AVG), and height averages were calculated by averaging all measure-

ments at a given height over all cavities (EXP WALL MAIN V AVG and EXP WALL REAR V AVG).

For the frame temperatures, average values were calculated for the top, upper

sides, lower sides, and bottom of the wall. Frame temperatures were imported to the

EXP FRAME variable, which has dimensions of n steps×8; frame averages were saved to

the EXP FRAME AVG variable, which has dimensions of n steps×4.

The gas temperature on the unexposed side of the wall was imported to the

EXP BACK GAS variable, which has dimensions of n steps×6. Slice averages were taken

at each of the three heights (top, middle, and bottom) based on measurements at the two

rakes (left and right), and stored to the EXP BACK GAS AVG variable, which has dimensions

of n steps×3.

The temperature of the unexposed-side surroundings was measured at two locations,

on the left and right side of the door. These two measurements were imported to the

EXP BACK SURR variable (n steps×2), and the average of the left and right measurements

was stored to the EXP BACK SURR AVG variable (n steps×1).

All raw data files may be found in Appendix D. In addition, an extensive set

of photographs and digital video were recorded for each experiment; these may be
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obtained upon request to the fire research group at the University of Waterloo. A

subset of the measurements is presented in Sections 7.3.1–7.3.5 below; construction and

instrumentation details are first discussed in Section 7.2.

7.2 Construction and Instrumentation Details

The method of construction and instrumentation of walls tested in this apparatus is

unique to each wall type; for example, the mounting of a simple 2×4 wood stud wall would

differ from that of a wall with offset steel studs. While Chapter 4 provides an overall

description of the apparatus and instrumentation, specific details of the construction and

instrumentation of the walls considered here (Table 7.1) are provided below.

All of the walls considered in the present work used 2×4 wood stud frames, which were

constructed and mounted in-place in a four-cavity configuration, as shown in Figure 7.1

(refer to Figure 4.13 for more details). Each of the outer four sides of the stud frame

was lined with a strip of ceramic fibre insulation; these were cut to a depth of 6 in (152

mm) and pressed flush to the front-facing insulation as shown in Figure 7.2. A 1/2 in

(12.7 mm) gap (5/8 in (15.9 mm) for test #3) was left between the front-facing edge of

the stud frame and the edge of the front-facing insulation, to accommodate the fire-side

gypsum board. Studs were bolted to the steel frame at eight locations (the front-most

1/2 in (12.7 mm) mount holes in the steel frame; refer to Appendix A).

Next, fire-side gypsum board was cut to size and fastened to the stud frame using

coarse thread drywall screws (1-1/4 in (31.8 mm) length for 1/2 in (12.7 mm) gypsum

board and 1-3/8 in (34.9 mm) length for 5/8 in (15.9 mm) gypsum board) spaced 12 in

(305 mm) along the studs. Gypsum board sheets were installed horizontally with the full

size sheet at the top, per standard construction practice. The sheets used had nominal

dimensions of 48×96 in (122×244 cm); the top sheet was cut to a size of 48×73-1/4 in

(122×186 cm) and the bottom sheet to 25-1/4×73-1/4 in (64×186 cm).

With the fire-side gypsum board in place, six K-type bead-welded thermocouples

were attached to the back of the exposed-side gypsum board using masking tape (refer

to Figure 7.3), located at the centre of each cavity, and spaced 12 in (305 mm) apart.

The masking tape was positioned just below the junction so that the bead pressed firmly

against the gypsum board (refer to Figure 7.4).

For tests with in-cavity insulation, the batts were then installed in each cavity,

pressing the thermocouples tight between the insulation and the gypsum board. For
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Figure 7.1: Wood stud frame mounted in

the fire test apparatus.

Figure 7.2: Frame insulation and mount-

ing details.

Figure 7.3: In-cavity thermocouples, insu-

lated cavities.

Figure 7.4: Thermocouple surface attach-

ment details.

tests without in-cavity insulation, insulated pads were used to press the thermocouples

tightly to the gypsum board. The pads were made of 2×2 in (5.1×5.1 cm) squares of

ceramic fibre insulation, 3/8 in (9.5 mm) thick, attached using three 6 in (15.2 cm) strips

of duct tape as shown in Figures 7.5 and 7.6
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Figure 7.5: In-cavity thermocouples, unin-

sulated cavities.

Figure 7.6: Insulated pads for surface ther-

mocouples.

The cool-side gypsum board was installed flush on the wood stud frame in the same

manner, with the top sheet cut to a size of 48×73-1/4 in (122×186 cm) and the bottom

sheet to 22-3/4×73-1/4 in (58×186 cm) (the cuttoff from the bottom sheet on the fire-

side). This left a 2.5 in (6.4 cm) gap at the bottom of the wall, where the in-cavity

thermocouples exited. The leads were wrapped in ceramic fibre insulation, and scrap

pieces of gypsum board were attached to the bottom of the stud frame to fill in the space

at the bottom of the wall. Drywall compound was applied liberally to create a gas seal

(refer to Figure 7.7).

The horizontal joints on the fire-side and cool-side gypsum board were sealed using

CGC Sheetrock® paper joint tape and CGC Sheetrock® All Purpose drywall compound.

Fasteners were tightened to be just below flush with the wall surface, and then sealed with

drywall compound. The drywall compound was allowed three days to set, during which

time an electric heater was placed on both sides of the wall. Once dry, the surfaces of

the wall were sanded smooth. A finished wall mounted in-place in the fire test apparatus

is shown in Figure 7.8 from the perspective of the fire-side.

Each test was conducted using the design fire and ignition procedure described

previously. In addition to temperature instrumentation, video cameras were positioned

to record the state of the wall from both exposed and unexposed sides. Tests were allowed

to continue for 3 hours, after which time the observable state of the wall was recorded

and the test ended. The following section details the results for the five real wall tests

conducted in the present work.
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Figure 7.7: Finished wall, unexposed side,

filled bottom gap.

Figure 7.8: Finished wall, exposed side,

dried and sanded.

7.3 Results and Discussion

7.3.1 Test #1 – Stone Wool Insulation

The first test was conducted on a W1c wall with stone wool insulation and lightweight

1/2 in (12.7 mm) gypsum board coverings. Figures 7.9 and 7.10 show the slice and rake

averaged fire gas temperatures, respectively. As shown in both figures, the fire initially

grew for 22 min before reaching a period of steady burning, which was approximately 9

min sooner than was expected from the design fire. The steady burning duration was

about 10 min, and the average temperature near the ceiling was 690◦C (compared to the

expected 605◦C–660◦C of the design fire).

It is clear that the fire in test #1 burned more rapidly and more intensely over

a shorter duration than the design fire. It is tempting to attribute this solely to heat

retention within the compartment, given that the real wall is a much better insulator than

the steel wall — for example, the thermal diffusivity of steel is 8.92 mm2·s−1 (Figure 5.5)

compared to that of stone wool insulation, 1.65 mm2·s−1 [56], and gypsum board, 0.32

mm2·s−1 [56] (at room temperature). However there was also a significant deviation from

the normal methodology for this test that must be considered. The standard method

of fuel preparation was to assemble cribs three days prior to a test, and condition the

cribs in a room at 50% relative humidity during that time. This method gave a rough

control over the moisture content in the wood, resulting in a crib mass of N(15.05, 0.46)

kg for the cribs used in the characterization tests. The cribs used for this test, however,
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Figure 7.9: Test #1, fire gas temperatures,

slice average.
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Figure 7.10: Test #1, fire gas tempera-

tures, rake average.

were conditioned for 2 weeks following the final steel wall test, reducing their moisture

content, resulting in an average mass of 14.24 kg. Lower moisture content means that

less heat is required for the evaporation of water from the cellular wood, leading to a

greater propensity for ignition and flame spread, and ultimately resulting in a greater

mass burning rate of the fuel and greater rate of fire growth. These results highlight

the importance of consistency and proper conditioning of the fuel load in this type of

experiment.

From Figure 7.10 it is apparent that the rake averages were very close, indicating that

slice averages should also be a good representation of the stratified gas temperatures in the

compartment (far from the fire plume). In the early stages of the test, gas temperature

at rakes 3 and 4 were greater than those at rakes 1 and 2, which makes sense given

that the fire started at the front of the compartment. Interestingly temperatures at

rakes 1 and 3, which are located on the left side of the compartment, were about 30◦C

greater than those at rakes 2 and 4 during the steady burning period. This might be

attributed to asymmetric ventilation into the compartment, which is consistent with

visual observations — Figures 7.11 and 7.12 show the state of the wall after 66.1 min

and 79.5 min, respectively, as recorded by the fire-side camera. Deep cracking occurred

over the entire wall, but gypsum board falloff occurred only in the hotter upper-left

region of the wall. It is desirable to have symmetric ventilation in these experiments as

asymmetry in flows is more difficult to represent accurately in a fire model. In future
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work, an assessment of flow symmetry is recommended, and perhaps the inclusion of

wind baffles at the compartment opening to promote more symmetric flows.

Figure 7.11: Real wall test #1, fire-side camera, 66.1 min.

Figure 7.12: Real wall test #1, fire-side camera, 79.5 min.
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Figure 7.13 shows the average temperatures in each stud cavity on the back of the

fire-side gypsum board. Measured temperatures were similar in all cavities for the first

50 min of the test, indicating that the exposure was uniform in the horizontal dimension

for the first part of the test. Beyond this time, temperatures measured in cavities 3 and 4

(the right side of the wall) were greater than those measured in cavities 1 and 2 (the left

side of the wall). While falloff did not occur on the left side until 66 min, deep cracking

was present prior to this, allowing hot gases trapped between the gypsum board and

the insulation to escape, and thus measured temperatures to decrease. This occurred

preferentially on the hotter left side of the wall, explaining the differences noted above.
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Figure 7.13: Test #1, main wall tempera-

tures, cavity averages.
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Figure 7.14: Test #1, main wall tempera-

tures, height averages.

Figure 7.14 shows the averaged temperatures at each thermocouple height on the

back of the fire-side gypsum board. For the first 35 min of the test, the temperatures

followed the predictable trend of being greater near the top of the wall and lesser near

the bottom. For example, at t = 20 min (before the fuel became fully-involved), the

measured temperature ranged from 92◦C to 125◦C bottom-to-top. A sharp increase in

temperature occurred after 27 min, at which time the back of the fire-side gypsum board

was at approximately 140◦C. This transition in heating rate is consistent with transitions

that occurred in the preliminary experiments (Figure 3.13) and in small-scale mockup

experiments of the same construction assembly [56]. In those cases the temperature

at which the transition occurred was closer to 120◦C. In the present case it must also

be considered that the fire exposure was also rapidly increasing at this time, causing a
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rapid increase in temperature due to heat conduction into the wall. While this transition

certainly reflects the onset of the first stage of calcination (Section 2.2.3), the rapid

increase in fire exposure resulted in elevated temperature measurements at this time.

The back of the fire-side gypsum board reached a peak temperature of about 720◦C

before decreasing as the fire decayed. Up to this time temperatures in the upper region

of the wall (the black and light green traces in Figure 7.14) were greater than those

in the middle and lower regions. By approximately 40 min into the test, however, the

temperature at the bottom of the wall increased and began to fluctuate significantly.

When examined further, this behaviour was in fact found to be a response to an issue

with the experimental procedure, as explained below.

Figures 7.15 and 7.16 show the cavity and height averages of temperatures measured

on the back of the cool-side gypsum board. For the first 60 minutes or so, temperatures

were similar across all four cavities, eventually reaching slightly greater values on the right

side of the wall. Similarly the upper region was hotter than the lower region, although

this behaviour did not persist beyond approximately 50 min. This is also the time at

which the fire-side gypsum board temperature increased at the bottom of the wall, and

is also an artifact of the aforementioned experimental error, which is discussed below.
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Figure 7.15: Test #1, back wall tempera-

tures, cavity averages.
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Figure 7.16: Test #1, back wall tempera-

tures, height averages.

Both sides of the nominally 6×6 ft (183×183 cm) wall can almost completely be

covered using three 4×8 ft (122×244 cm) sheets of gypsum board. However, bcause the

gypsum board must extend to cover the studs on the edges of the wall, a small gap is
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left at the bottom of the unexposed side (Figure 7.7). Figure 7.17 shows the unexposed

side of the wall at the end of the test (>2 hours). The lack of covering allowed fresh

air to enter the wall at the bottom, facilitating combustion of the wood, and exhausting

of hot gases to the unexposed side of the wall — this is readily apparent from the burn

patterns seen on the gypsum board. As a result, the transition section of the apparatus

filled with hot gases, affecting the temperatures measured on the unexposed side of the

wall. This oversight was rectified in subsequent tests by filling the gap.

Figure 7.17: Real wall test #1, unexposed side of the wall, inadequate wallcovering.

Despite this issue, the the results still give meaningful insight into the temperature

rise of the cool-side gypsum board. An initial temperature plateau of 60◦C was reached

after 27 min, as the insulation absorbed thermal energy and the gypsum board reached

an unsteady equilibrium with the cool-side surroundings. As the fire exposure increased

rapidly at 21 min, heat propagated through the wall, eventually instigating a secondary

increase in temperature of the cool-side gypsum board. Fire gas temperatures began to

decrease after 37 min, while the fire-side gypsum board temperatures began to decrease
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after 41 min, and the cool-side gypsum board temperatures began to decrease after 59

min. Heat retention in the materials meant that thermal degradation continued long

after the fuel had been consumed by the fire. Given this, it was decided to collect data

for a duration of three hours in all subsequent tests.

7.3.2 Test #2 – Fibreglass Insulation

Test #2 used a similar wall as test #1, except with fibreglass instead of stone wool

insulation. New wood was purchased one week prior to the start of this test for fabrication

of the wood cribs. Cribs were built and conditioned for three days prior to the test per

the standard methodology; despite this, the average mass of the four cribs was 16.62

kg compared to the design fire cribs with mass of N(15.05, 0.46) kg. Clearly three days

conditioning time for green wood was not sufficient to reduce the moisture content of

the wood to levels of previous tests. Fire gas temperatures are plotted in Figures 7.18

and 7.19, for slice and rake averages, respectively.
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Figure 7.18: Test #2, fire gas tempera-

tures, slice average.
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Figure 7.19: Test #2, fire gas tempera-

tures, rake average.

The fire growth in test #2 was significantly slower than that of the design fire. The

slow growth continued for the first 40 min, followed by a gradual transition to steady

burning at 46 min (with an upper layer temperature of 665◦C), followed by decay after

58 min. Compared to the design fire, the transition to steady burning was delayed by 15

min, in part a consequence of the high moisture content and low propensity for ignition
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and flame spread of the fuel. Despite the slow growth, peak upper layer temperatures

and duration of steady burning were consistent with those of the design fire. Based on

the temperature profile of the fire-side gases, the intensity of the fire exposure to the

wall in this test was consistent with that of the design fire, although delayed in time by

about 15 min. Rake temperatures were consistent in the early stages of the fire, and

25◦C greater near the left side of the wall during the period of steady burning.

Temperatures of the fire-side gypsum board are shown in Figures 7.20 and 7.21 for

cavity and height averages, respectively. The exposed side of the gypsum board increased

in temperature slowly at first, and then rapidly after 47 min, corresponding to the 120◦C

temperature threshold identified previously. Fire-side gypsum board temperatures varied

by about 30◦C from the bottom to the top in the early stages of the fire, with a more

pronounced difference apparent as the exposure rapidly increased and more heat was

transferred into the wall. Peak temperatures were achieved after 60 min, at which time

the greatest temperatures were measured at the top and bottom two height positions.

This is a consequence of the proximity of the fire to the wall, and reflects perfectly the

exposure pattern identified in Chapter 6.
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Figure 7.20: Test #2, main wall tempera-

tures, cavity averages.
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Figure 7.21: Test #2, main wall tempera-

tures, height averages.

Cavity temperatures were very similar across the wall for the first 73 min, with

temperatures in the middle cavities being about 10◦C greater than the side cavities

starting from 60 min; this is expected based on the exposure symmetry. After 73 min,

the fire-side gypsum board temperature in cavity 3 began to increase significantly; the
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same can be said for cavity 2 after 89 min and cavity 4 after 94 min. At these times the

fire was well into its decay stage, and it was determined that these temperature increases

were a result of the fibreglass insulation burning under the remains of the fire-side gypsum

board. Figure 7.22 shows the state of the wall after 62.1 min, where deep cracking can be

observed over the exposed side of the wall, predominantly in the upper-central region. By

110.3 min the fuel had been completely consumed, yet the wall temperatures continued

to increase as the fibreglass insulation and wood frame burned (Figure 7.23). This is

clear evidence that combustible construction can be susceptible to catastrophic failure

even in the event of a fuel limited fire that does not reach flashover.

Figure 7.22: Real wall test #2, fire-side camera, 62.1 min.

The cavity and height averaged temperatures on the back of the cool-side gypsum

board are shown in Figures 7.24 and 7.25, respectively. Temperatures across cavities

were virtually identical for the first 60 min, after which time temperatures in cavity 2

began to increase more rapidly. By 100 min into the test, the temperatures over the four

cavities differed by 34◦C. These differences were driven by the burning of the fibreglass

insulation, which tended to occur more in the middle cavities than in the edge cavities.

The differences in temperature with height were consistent with the expected outcome,

with the bottom temperature being 64◦C, the middle temperature 91◦C, and the top

temperature in excess of 120◦C after 2 hours of exposure.
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Figure 7.23: Real wall test #2, fire-side camera, 110.3 min.
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Figure 7.24: Test #2, back wall tempera-

tures, cavity averages.
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Figure 7.25: Test #2, back wall tempera-

tures, height averages.

7.3.3 Test #3 – No Insulation

For the third test, a W1d wall was selected, which consists of non-insulated stud cavities

and 5/8 in (15.9 mm) firecode gypsum board on both sides of the wall. This test was

conducted in late October of 2016, and by this time the outdoor temperature had begun

to drop; the ambient temperature at the time of the test was only 8.6◦C compared to the

typical temperatures of around 20◦C in previous tests. Figures 7.26 and 7.27 show that
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the fire grew to its peak after 37.5 min, and burned steadily to 42.5 min at an average

upper layer temperature of 685◦C. Compared to the design fire, the fire in test #3 took

about 6 minutes longer to reach the steady burning period, which is consistent with a

delay associated with cooler initial conditions and inlet air. As in the previous tests, slice

averages exhibited the expected vertical stratification with hotter gases near the ceiling,

and rake averages were consistent in all four locations.
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Figure 7.26: Test #3, fire gas tempera-

tures, slice average.
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Figure 7.27: Test #3, fire gas tempera-

tures, rake average.

Comparatively little damage of the wall was visible in this test. Figure 7.28 shows

that, by the end of the test (after three hours of exposure) the only damage visible to

the fire-side gypsum board was paper burnoff, tape falloff at the horizontal joint, and

expansion of the horizontal joint; no cracking was visible. The cool-side side did not

appear to have undergone any notable decomposition, as is apparent from Figure 7.29.

Temperatures measured on the back of the fire-side gypsum board increased gradually

to approximately 120◦C after 39.5 min, at which time significant spikes in temperature

occurred in all four cavities (Figure 7.30) and at all six heights (Figure 7.31). Certainly

this can be partially explained by the calcination reaction described previously; related

to this thermochemical change, however, is the physical reduction in size of the panels,

referred to as “shrinkage”. Joint opening was a direct consequence of shrinkage, and as

the joint opened the wall cavity filled with hot gases. By this time the fire was in its decay

stage, but the effect is still strongly represented in the measurements at the bottom two

height positions, which increased as hot gases entered the wall cavity near the bottom
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Figure 7.28: Real wall test #3, fire-side camera, end-of-test.

Figure 7.29: Real wall test #3, cool-side camera, end-of-test.

of the wall, at the joint location. While joint opening certainly occurred in previous the

tests, as evidenced by video stills, gas propagation to the thermocouples on the back

of the fire-side gypsum board was inhibited by the insulation, which was pressed firmly

against the gypsum board. In test #3, the hot gases flowed unobstructed through the

cavities, causing the observed increase in temperature measured by the thermocouples

on the back of the gypsum board.
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Figure 7.30: Test #3, main wall tempera-

tures, cavity averages.
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Figure 7.31: Test #3, main wall tempera-

tures, height averages.

Prior to the joint opening (<40 min), a strong vertical temperature gradient had

developed from top-to-bottom of the fire-side gypsum board, with virtually no variation

across the cavities. This agrees with expectations based on the calculated design fire

thermal exposure. After joint opening, temperatures in the middle two cavities were

greater than in the side cavities, which can be attributed to the proximity of the fire and

remaining fuel to the centre of the wall.

On the unexposed side of the wall, the gypsum board temperature increased to peak

values of 90◦C after 65–70 min. In the same vein as the fire-side gypsum board, the

variation in cool-side gypsum board temperature across the cavities was negligible, while

the variation from bottom-to-top was quite discernible. Since the wall did not reach the

transition temperature, differences in thermal degradation would not have been realized;

the temperature gradients that developed were simply a function of heat transport within

the wall cavity. Temperatures measured on the cool-side gypsum board are shown in

Figures 7.32 and 7.33.

These results demonstrate that, in fact, the uninsulated wall with firecode gypsum

board was able to provide a level of fire protection similar to that of the previously tested

insulated walls with standard gypsum board wallcoverings for the fire conditions used

here. Compared to the previous two tests, thermal penetration to the unexposed side

was actually less (sub-100◦C) in the case of the uninsulated wall, although the cooler

initial conditions may well have contributed to this observed difference as well.
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Figure 7.32: Test #3, back wall tempera-

tures, cavity averages.
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Figure 7.33: Test #3, back wall tempera-

tures, height averages.

7.3.4 Test #4 – Stone Wool and Fibreglass Split

The fourth real wall test was a hybrid configuration of the first and second tests — a W1c

wall with fibreglass insulation in cavities 1 and 2 (on the left) and stone wool insulation

in cavities 3 and 4 (on the right). This test was intended to provide a direct comparison

between the response of the two insulation types under conditions encountered during a

realistic fire exposure, a topic of practical relevance in the industry [87].

The ambient temperature was quite suitable for this test at 18.5◦C. Fire gas tem-

peratures increased to an average value of 700◦C near the ceiling during the steady

burning period from 27–40 min, a result in reasonable agreement with the design fire.

Again, temperature measurements from rakes 1 and 3 were slightly greater than those

from rakes 2 and 4 during the steady burning period, a consistent behaviour that can be

attributed to the typical ventilation conditions typical for the apparatus given its outdoor

location. Slice and rake temperatures are given in Figures 7.34 and 7.35 below.

Figure 7.36 shows the state of the wall after 55.6 min of exposure, at which time the

fuel had been mostly consumed and the upper layer gas temperature had reduced to about

420◦C. Deep cracking can be observed over the fire-side gypsum board, predominantly in

the upper region, though also present in the lower region. Of importance, the wall can

be seen to be burning in cavities 1 and 2 (the side with the fibreglass insulation), which

is not the case on the stone wool side of the wall. By 107.8 min (Figure 7.37) gypsum
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Figure 7.34: Test #4, fire gas tempera-

tures, slice average.
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Figure 7.35: Test #4, fire gas tempera-

tures, rake average.

board falloff had occurred at the central cavities (2 and 3) and the fibreglass side of the

wall continued to burn even as the fire environment continued to cool. By the end of

the test (three hours), almost the entire upper gypsum board panel had fallen off, and

significant burning of the exposed fibreglass insulation was apparent. As shown in 7.38

even the studs on the fibreglass side of the wall were more significantly burned than those

on the stone wool side.

Figure 7.36: Real wall test #4, fire-side camera, 55.6 min.
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Figure 7.37: Real wall test #4, cool-side camera, 107.8 min.

Figure 7.38: Real wall test #4, cool-side camera, end-of-test.
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Temperatures on the back of the fire-side gypsum board are plotted in Figures 7.39

and 7.40. For the first 47 min of the test the temperature rise was virtually identical across

all four cavities, reaching peak values of 710◦C. As the fire decayed and temperatures

decreased, cracking of the fire-side gypsum board occurred and the studs and insulation

on the left side of the wall (cavities 1 and 2) began to burn; consequently, measured

temperatures in these cavities increased above those of the right side. The expected

vertical gradient in measured fire-side gypsum board temperatures was also present and

clearly defined for a large portion of the test.
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Figure 7.39: Test #4, main wall tempera-

tures, cavity averages.
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Figure 7.40: Test #4, main wall tempera-

tures, height averages.

On the cool-side gypsum board, temperatures increased above 100◦C after 60 min

of exposure, at which time temperatures on the left side of the wall increased above

those on the right side of the wall; this can be attributed to the burning insulation in

these cavities. The temperature-time trace for cavity 1 exhibits a discontinuity at 93

min, which is a result of one of the cool-side thermocouples becoming detached from

the surface of the gypsum board. Comparison of Figures 7.41 and 7.42 shows that this

was in fact the bottom thermocouple in cavity 1. Before the thermocouple became

detached from the wall, the temperature at this location increased dramatically. The

suggested cause for this was that a localized region of the fibreglass insulation near this

thermocouple location burned atypically, possibly due to non-uniformity of the material

(e.g. a concentrated region of binder). Aside from this particular measurement, the trend

of hotter temperatures occurring near the top of the wall remained in tact.
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Figure 7.41: Test #4, back wall tempera-

tures, cavity averages.
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Figure 7.42: Test #4, back wall tempera-

tures, height averages.

7.3.5 Test #5 – Stone Wool and Slag Wool Split

The fifth and final test was another hybrid, in this case a W1c wall with slag wool

insulation in cavities 1 and 2 (on the left) and stone wool insulation in cavities 3 and 4

(on the right). The slag wool insulation has an R15 rating compared to the R14 of the

stone wool, so ostensibly will provide a greater resistance to thermal penetration. Given

that both insulations are non-combustible, it was of interest to evaluate whether there

would be any difference in the response of the materials to this realistic fire exposure.

Test #5 was conducted in November of 2016, when the ambient temperature was only

7.2◦C. It was decided for this test to remove the obstruction panel so that additional

video and infrared thermography equipment could be used to assess the state of the

degrading wall from the perspective of the compartment doorway. Initially the fire was

consistent with test #4, reaching a steady burning period after 26 min and an average

gas temperature of 700◦C near the ceiling. The duration of the steady burning period was

only 10 min compared to the 14 min of test #4, and the compartment upper layer cooled

to 160◦C after 2 hours compared to 240◦C in test #4, so the fire exposure was certainly

less severe than in the previous test. As before, rake temperatures were slightly greater

on the left side of the compartment. Fire gas temperatures are shown in Figures 7.43

and 7.44 below.
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Figure 7.43: Test #5, fire gas tempera-

tures, slice average.
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Figure 7.44: Test #5, fire gas tempera-

tures, rake average.

With the obstruction panel removed, the front video camera was placed at the bottom

of the doorway and directed upward to cause the entire wall to be in frame. Figure 7.45

shows an interior view of the fire compartment after 27.1 min, at which time the fire was

growing rapidly and approaching the transition to steady burning. From this shot the

condition of the wall is visible to the sides of the fire plume, and paper burnoff can be

discerned.

Figure 7.45: Real wall test #5, fire-side camera, 27.1 min.
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Figure 7.46 shows the state of the wall after 68.2 min, by which time the fuel had been

almost completely burned. Deep cracking is apparent over the entire wall. By the end of

the test, as the fire-side gypsum board and the underlying wood stud frame continued to

degrade, a large portion of the fire-side gypsum board fell off. Falloff appeared to be more

significant on the right side of the wall (stone wool) compared to the left side of the wall

(slag wool), and a stud in the lower-right corner of the wall was actively burning at the

end of the test (Figure 7.47). It would appear that the differences in damage observed

between the two sides of the wall may be attributable to the different insulations used.

One possible explanation is that the slag wool has a lower thermal diffusivity than the

stone wool (it is much more dense), meaning that the rate of heat transfer through the

insulation was slower in the slag wool, and accordingly less of the binder material was

burned. This hypothesis that would require material testing (e.g. differential scanning

calorimetry) to confirm. Another possible explanation is that differences in binder agent

caused the stone wool insulation to produce more gases than the slag wool insulation as

the binder burned off, which would cause greater pressures to develop within cavities,

and consequently pushing against the brittle gypsum board. This could be confirmed by

study of the mass loss at elevated temperatures (e.g. thermogravimetric analysis).

Figure 7.46: Real wall test #5, fire-side camera, 68.2 min.

To gain an improved insight into the thermal degradation of the wall, an infrared

camera was used for this test. It was positioned at the front of the apparatus, so that

the test wall was in frame. Unfortunately the device was not capable of capturing the

temperature of the wall during the steady burning phase of the fire, due to the intensity
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Figure 7.47: Real wall test #5, fire-side camera, end-of-test.

of the flames saturating the camera, but relevant IR images were recorded during the

decay phase. The two images shown below correspond to 40 min (Figure 7.48) and 60

min (Figure 7.49) after ignition, respectively. The IR camera proved to be very useful for

identifying cracks in the gypsum board. Furthermore, the camera was able to capture

the burning of the underlying stud wall frame even as the gypsum board cooled in the

decay-phase fire environment.

Figure 7.48: Test #5, wall temperatures,

infrared camera, 40.0 min.

Figure 7.49: Test #5, fire gas tempera-

tures, infrared camera, 60.0 min.

Temperatures on the back of the fire-side gypsum board were consistent across all

four cavities for the first 40 min of the test, after which time gypsum board temperatures
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were greater in cavities 1 and 2 than in cavities 3 and 4 through to 75 minutes, and

finally cavities 3 and 4 were at a greater temperature through to 120 min (Figure 7.50).

Greater temperatures in cavities 1 and 2 during the decay phase of the fire is reasonable

considering the lesser thermal diffusivity of the slag wool insulation in those cavities. It

is not entirely clear why the temperatures on the stone wool side increased at around

75 min, though certainly this could be attributed to crack formation. In consideration

of the height-varied results (Figure 7.51), it appears that a crack may have formed near

the bottom of the wall at around this time, causing hot gases to enter the wall at this

location and consequently the measured temperature to increase.
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Figure 7.50: Test #5, main wall tempera-

tures, cavity averages.
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Figure 7.51: Test #5, main wall tempera-

tures, height averages.

On the cool-side of the wall (Figures 7.53 and 7.53), temperatures of cavities 1 and

2 were notably less than those of cavities 3 and 4, with the thermal penetration being

delayed by about 10 min at both the 44◦C plateau and the 90◦C plateau. From these

results it is demonstrated that the greater thermal resistance and density of the slag wool

did, in fact, delay and even reduce the thermal penetration to the unexposed side of the

wall, effectively increasing the fire resistance of the construction assembly. Furthermore,

the material appears to have held up better to direct fire attack, given that more of the

fire-side gypsum board remained in place in cavities 1 and 2 than in cavities 3 and 4.
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Figure 7.52: Test #5, back wall tempera-

tures, cavity averages.
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Figure 7.53: Test #5, back wall tempera-

tures, height averages.

7.3.6 Summary

The results presented here are a refined subset of the experimental data, which are most

useful for classification of the fire environment and identification of thermal degradation

phenomena for a wall subject to a realistic fire exposure. For example, slice temperatures

of fire gases can be used as direct validation in a fire dynamics model, and the uniformity

of rake temperatures demonstrates that, on the whole, compartment gases were evenly

stratified. Temperatures of the various wall components may be used not only to identify

the impact of damage phenomena on the wall, as was done here, but also to validate the

predictions of temperature rise and the occurrence of damage events future models of

thermal degradation. The algorithms developed for the generation of this refined subset

of data is given in Appendix E, and is of direct utility in the conduct of future tests and

in the interpretation of the corresponding data.

Temperature measurements of the unexposed-side gases, surroundings, and frame

were also assessed for each test, and generation of these refined data is also included

in the aforementioned code. These results were not presented here as they are not

conducive to the present analysis and discussion. The main use for these data is

in the specification of the edge and unexposed-side boundary conditions in a heat

transfer model, as demonstrated in Chapters 5 and 6 for the case of the steel wall,

and consequently also in a more complex model of thermal degradation. The complete

dataset is available in Appendix D.
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Five tests were conducted on walls representative of typical residential construction

assemblies, using various combinations of insulation and wallcoverings, as outlined in

this section. For each test, thermal degradation phenomena were observed and assessed

relative to temperatures measured in the degrading walls, as well as the temperatures

measured in the fire compartment, which describe the fire exposure. Some observations

of import include:

• the occurrence of gypsum board paper burnoff may be identified by visual and IR

cameras, presuming smoke and flame obscuration does not preclude this;

• the occurrence of gypsum board cracking may be identified in a similar manner,

and was observed to originate from fixture locations, eventually leading to falloff

once chunks of the barrier were no longer mechanically retained;

• it is possible to identify thermal degradation phenomena unique to a particular

wall construction, as evidenced by tests #4 and #5, in which portions of the wall

containing different types of insulation experienced different temperature increases

and damage;

• it is possible to identify the occurrence of known decomposition phenomena (e.g. the

burning of insulation binder and the onset of gypsum board calcination) by

measurement of temperatures within the wall; and

• the occurrence of gypsum board cracking led to measurable increases in tempera-

tures near the locations of cracks, indicating that mass transport of hot gases at

these locations is an important phenomena to be studied in the future.

From these findings, the utility of this new approach in the experimental study of

thermal degradation of construction assemblies subject to realistic fire exposure was

demonstrated. This new experimental approach may be used, moving forward, to develop

a better understanding of large-scale thermal degradation phenomena.

Finally, it is interesting to compare the results present here, for a realistic fire, to

those of a traditional furnace test. Such a comparison was made in previous work [69], in

which a CAN/ULC S101 fire resistance test was conducted on a similar wall to the W1c,

the “EW1”. While the W1c partition wall has gypsum board on the unexposed face, the

EW1 exterior wall has OSB sheathing and vinyl siding on its unexposed face; stone wool

insulation is mandated for such a wall, rather than fibreglass, in order to achieve a 1-hour

fire resistance rating. Despite this difference, the exposed-side degradation experienced

by the two wall types is expected to be comparable, presuming a consistent fire exposure.
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The fire resistance test subjected the wall to a much more severe fire exposure than

that of the present work — for example, gas temperatures of 850◦C compared to 700◦C

after 30 min, and 910◦C compared to 420◦C after 60 min. Accordingly, a greater degree

of thermal degradation should be expected in the fire resistance test. Figure 7.36 above

shows the exposed side of the W1c in the present work after one hour of exposure, while

Figure 7.54 below shows the condition of the exposed side of the EW1 wall at the end of

the fire resistance test (one hour).

Figure 7.54: Condition of the EW1 wall in the furnace test after 60 min of exposure.

Perhaps the most striking difference between the two conditions is that the gypsum

board had fallen off in the middle region of the wall in the furnace test, and the underlying

studs were actively flaming. In comparison, no falloff had occurred in the present work

after 60 min, although the central region was heavily cracked, and burning studs were

apparent behind the gypsum board. An important observation is that in the furnace

test, cracking and falloff occurred uniformly (from the top-to-bottom of the wall) in the

central region, and uniformly in the side regions (with minimal cracking). In contrast,

in the present work cracking was observed not only in the central region, but also to the
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wall extents in the upper region, where it was exposed to the developed hot gas layer.

These results reaffirm the finding that thermal degradation in realistic fires, and thus

per the methodology outlined in the present work, is very much unique from that of a

furnace test. Furthermore, it is apparent that thermal degradation which occurred in

the pre-flashover conditions of the present work was significant enough to allow for the

investigation of several phenomena of import, despite the lesser severity in comparison

to a fire resistance test.
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Chapter 8

Closure

While the current understanding of the thermal degradation of construction assemblies

has evolved sufficiently to support the predictive modelling of the fire resistance of

some types of construction assemblies, these capabilities cannot reliably be extended

to situations beyond the standard fire resistance furnace exposure. Presently, the most

significant limitation in this regard is an inadequate understanding of large-scale thermal

degradation phenomena, and how best to represent these phenomena in a predictive

capacity. This shortcoming is restrictive to performance-based fire safety engineering

analyses, which in many cases would benefit from more advanced models of thermal

degradation of construction assemblies in real fires. Development of the next generation

of thermal degradation models requires that the phenomena of interest be studied in a

controlled setting, representative of a real fire scenario; a compartment fire experiment

satisfies this requirement. This thesis presents the development and implementation of

such an experiment, as well as a demonstration of its utility in the context of fire resisting

compartment partitions exposed to realistic fires.

8.1 Conclusions

1. A selection of relevant experimental techniques for investigating thermal degradation

phenomena at the large scale were evaluated.

A preliminary compartment fire experiment was conducted in order to gain insight

into the thermal degradation that a wall would undergo in a realistic building fire, and

to develop a set of experimental techniques relevant to the study of large-scale thermal
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degradation phenomena. In the experiment, a large-scale wall was exposed to a pre-

flashover compartment fire environment. The wall degraded preferentially in the upper

region and in regions within close proximity to the fire, where temperatures and heat

flux were greatest. This response is expected of a wall in a real building fire (pre-

flashover), and is distinct from the response of a wall in a fire resistance test. It was

found that the limited number of heat flux sensors used (three, distributed vertically)

did not provide an adequate measure of the complex non-uniform fire exposure — an

alternative approach was needed. The temperatures of gases near the wall were found

to vary predominantly from floor-to-ceiling, despite the proximity to the fuel bed in

the central region. This means that a one-dimensional temperature field is suitable

for representation of the gas temperatures near the wall, which can be measured as

compartment fire slice temperatures. Due to the orientation of the test wall in this

experiment, it was not possible to record real-time observations of the degrading wall;

while post-test observations are useful, the next phase of the research would incorporate a

real-time observation component. The combination of compartment fire experiment with

a well-instrumented wall as one of the boundaries of the compartment was demonstrated

to be successful in satisfying the intent of facilitating the study of thermal degradation

of a wall subject to realistic fire exposures.

2. A novel apparatus and experimental methodology were developed for studying thermal

degradation of fire resisting compartment partitions in realistic fire scenarios.

Based on the findings of the preliminary work, a large-scale apparatus and test

protocol, which are among the main deliverables of the present research, were developed.

The apparatus accommodates a large test wall measuring 6 ft by 6 ft (1.83 m by 1.83 m),

and has an insulated fire compartment with interior dimensions of 138 in (3.51 m) long,

90 in (2.29 m) wide, and 90 in (2.29 m) high. Ventilation is controlled at the primary

compartment doorway, which is located opposite the test wall, affording multiple options

for real-time observation. The apparatus was instrumented with 84 thermocouples in

order to monitor temperatures of the degrading wall at various positions, temperatures

in the compartment fire environment, temperatures around the edges of the wall, and

temperatures on the unexposed side of the wall. The data acquisition system used is

flexible and can accommodate a large number of additional sensors. The video recording

system used can accommodate up to eight high definition cameras simultaneously; two

were used here.
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3. A novel experimental method was developed for characterizing the heat exposure over

a large area in a compartment fire.

A fire was designed which involved four wood cribs oriented in-line and ignited on the

end furthest from the test wall, such that the fire would grow toward the wall over time.

The two-dimensional exposure to the wall from the design fire was evaluated by means

of a series of characterization experiments. A custom sensor, a so-called “steel wall”,

was designed for this purpose, and a heat transfer model incorporating Kalman filtering

optimization was developed and used to deduce the exposure conditions. A series of five

repeat tests was conducted in order to characterize the fire exposure. On average, the

upper layer gas temperatures were found to increase to approximately 635◦C after 30

min, at which time the incident heat flux to the centre of the wall was approximately

55 kW·m−2. The distribution of heat flux over the wall varied significantly over time,

predominantly in the vertical dimension at the beginning of the test, and becoming very

non-uniform as the fire approached the wall. Thus, the experiment satisfies the stated

objective of producing a realistic fire exposure.

4. A series of tests were conducted on as-built fire resisting compartment partitions, and

the utility of this novel experiment in facilitating the detailed study of large-scale thermal

degradation phenomena was demonstrated.

Five experiments were conducted on various residential wall construction assemblies.

The materials used included wood studs, two types of gypsum board (lightweight and

firecode), and three types of insulation (fibreglass, stone wool, and slag wool). Procedures

for mounting and construction of the walls, installation of temperature probes, and

conduct of the experiments are documented; the methodology is reproducible and may

be adopted in future work. Temperature measurements within the wall cavities reflected

the expected behaviour of the constituent materials as they thermally degraded. Video

was recorded in each experiment, and the occurrence of large-scale thermal degradation

phenomena of interest was captured in each test. Infrared thermography was also utilized,

and found to be helpful in identifying phenomena such as paper burn-off and crack

formation that may not be visible to the naked eye at first; a shortcoming, however,

is that the fire can obstruct the camera’s line of sight, saturating the sensor. The

results presented demonstrate the utility of this new experimental approach in facilitating

the study of thermal degradation of construction assemblies subject to realistic fire

exposures, thereby achieving a positive outcome with respect to the stated objective

of this research. This new approach may be used to develop a better understanding
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of the large-scale phenomena of relevance to the thermal degradation of construction

assemblies. Furthermore, a large set of experimental data from experiments involving

real construction assemblies has been generated and made available for use in comparison

to, or for validation of, thermal degradation models. These data may be obtained by

accessing the digital version of this dissertation.

8.2 Recommendations

1. Utilize the data measured in these experiments to support development and validation

of the next generation of fire models.

Future research will work toward the development of a comprehensive model of

compartment fire dynamics and thermal degradation of compartment boundaries. Three

levels of validation data are required in support of this work:

• data from thermal decomposition experiments, e.g. thermophysical properties;

• data from compartment fire experiments, e.g. gas temperatures and heat flux to

the compartment boundaries; and

• data from thermal degradation experiments, e.g. fire gas temperatures, temper-

atures within a thermally degrading compartment boundary, and the onset of

damage phenomena.

The first level of validation data can be satisfied in-part by the present collection of

pertinent literature, and is an active area of research (e.g. pyrolysis modelling). The

“steel wall” test data from the present work, for which the compartment boundaries

were non-degrading, is suitable for use in the validation of temperature and heat flux

predictions of a compartment fire model. Furthermore, the data from the five “real

wall” tests in the present work is suitable for validation of thermal degradation models

for compartment boundaries. It is recommended that such next-generation models first

establish a good treatment of compartment fire dynamics coupled with 1D (in-depth)

thermal degradation (e.g. the middle of a wall cavity).

2. Conduct a calorimetric assessment of the fuel source for input into fire models.

The fuel source used in the present work, wood cribs, was previously evaluated using

an oxygen consumption calorimeter to measure the heat release rate and effective heat of

combustion of a typical crib. Using this information, the mass of each crib involved, and
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event tables, it is trivial to produce an effective heat release rate curve which describes

the overall heat generation in a fire test over time, however these curves would require

validation. It is recommended to validate the heat content of the fires in the present

work by conducting calorimeter tests on cribs in the same configuration as used here —

since the fire was fuel-controlled, the calorimeter should give a good measure of the total

heat release rate in the compartment fire. If a different fuel source were to be used, in

particular one that causes the compartment to become underventilated, an alternative

method for calorimetric assessment would have to be adopted. One method would be to

install load cells within the compartment to measure the rate of mass loss of the fuels

over time. These devices must not be allowed to heat significantly, so intense fires (in

particular those of long duration) would necessitate some form of cooling as well.

3. Conduct additional experiments which utilize different fuel types and configurations.

While the pre-flashover fires used in the present work were of sufficient size to produce

thermal degradation phenomena of interest, it can be argued that, despite the lower

probability of the occurrence of post-flashover building fires, the post-flashover fire is of

great importance from a fire safety perspective. The experiment can easily be modified

to incorporate fires of greater intensity by modifying the fuel load. It was shown in the

present work that control of fuel package configuration allows for control of fire growth

rates — this same concept can be applied to achieve fires of greater intensity and longer

duration. Furthermore, it might be reasonable to adopt different fuel types, such as

plastics and textiles as would commonly be found in structures. Regardless of the fuel

type, it is strongly recommended that tight control of the moisture content of the fuel

source should be ensured in order to improve test-to-test consistency.

4. Refine the ventilation procedure and implement flow measurement.

The procedure of ventilation control adopted in the present work involved blocking the

compartment opening in such a manner that the flow symmetry would not be impacted

(any more than would be the case in the absence of the device). A consequence of

this style of flow restriction was that the exposed-side camera’s view of the wall became

obstructed. Also, the presence of the device blocked the doorway such that a symmetric

configuration of bi-directional probes (for measurement of gas velocity entering and

exiting the compartment) was not possible. These are very useful measurements, so

it is recommended that alternative means of ventilation control and instrumentation at

the compartment opening be adopted in the future. Furthermore, it is recommended that

baffles be installed at the compartment opening to minimize the impact of crosswinds.
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5. Investigate in detail the phenomenon of gypsum board crack formation.

Of the phenomena identified in the present work, gypsum board crack formation

occurred consistently in all tests by propagation from fixture locations. Being the primary

form of protection of the wall from the fire, it is critical to understand what drives this

phenomenon, as well as the impact on heat and mass transport into the wall. Therefore

it is recommended that crack formation be the first damage phenomena to be studied in

detail, with the goal of ultimately developing a predictive model for the process. This

can begin with the mechanically constrained unloaded scenario (as in the present work),

and eventually work toward loaded scenarios as well.
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Appendix A

Construction Drawings

This appendix contains Portable Document Format (PDF) files of the construction

drawings for the fire test apparatus (dwg-fire-test-apparatus.pdf) and for the steel

wall sensor (dwg-steel-wall-sensor.pdf). The drawings were created using Autodesk

Inventor 2016, and exported to the PDF format. The page size is ANSI C landscape (22

in × 17 in).

If you accessed this thesis from a source other than the University of Waterloo, you

may not have access to these files. You may access them by searching for this thesis on

https://uwspace.uwaterloo.ca/UWSpace.
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Appendix B

Instrumentation

B.1 Real Wall Thermal Degradation Experiments

Table B.1 lists and provides descriptions of all data acquisition channels used in the fire

test apparatus for the real wall thermal degradation experiments. Headers in the raw

data files are consistent with the naming convention used here.

Figure B.1 shows a top-view schematic of sensor locations through the entire apparatus.

Additional details are provided in Figures B.2 (sensors within the stud cavities) and B.3

(sensors on the unexposed side of the wall). DAQ references in these figures correspond

to those given in Table B.1.

Figure B.4 shows a top-view schematic of the fire test apparatus with global dimensions

indicated. The height of the fire compartment is 90 in (brick floor to insulated ceiling),

while the height of the transition room is 93.5 in (brick floor to steel ceiling).

Figure B.5 shows the instrumentation cable routing used in the fire test apparatus. Red

lines represent thermocouple cables connecting to the DAQ1 data acquisition board, green

lines represent thermocouple cables connecting to the DAQ2 data acquisition board and

blue lines represent video cables.

Figure B.6 shows the locations of sensors installed in the fire test apparatus, including

dimensions. Red circles represent thermocouple locations, and blue circles represent video

camera locations. Height dimensions relative to the compartment floor are provided in

Tables B.1–B.4.

Figure B.7 shows the locations of sensors on the wall (4-cavity stud wall), including
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dimensions. In the figure, red circles represent thermocouples installed within stud

cavities, and green triangles represent thermocouples installed on the unexposed side of

the wall. Height dimensions relative to the compartment floor are provided in Table B.5.

DAQ MODULE CHANNEL DESCRIPTION

1 1 0 Fire compartment, TC rake 1, TC0 (top).

1 1 1 Fire compartment, TC rake 1, TC1.

1 1 2 Fire compartment, TC rake 1, TC2.

1 1 3 Fire compartment, TC rake 1, TC3.

1 1 4 Fire compartment, TC rake 1, TC4.

1 1 5 Fire compartment, TC rake 1, TC5.

1 1 6 Fire compartment, TC rake 1, TC6.

1 1 7 Fire compartment, TC rake 1, TC7 (bottom).

1 2 0 Fire compartment, TC rake 2, TC0 (top).

1 2 1 Fire compartment, TC rake 2, TC1.

1 2 2 Fire compartment, TC rake 2, TC2.

1 2 3 Fire compartment, TC rake 2, TC3.

1 2 4 Fire compartment, TC rake 2, TC4.

1 2 5 Fire compartment, TC rake 2, TC5.

1 2 6 Fire compartment, TC rake 2, TC6.

1 2 7 Fire compartment, TC rake 2, TC7 (bottom).

1 3 0 Fire compartment, TC rake 3, TC0 (top).

1 3 1 Fire compartment, TC rake 3, TC1.

1 3 2 Fire compartment, TC rake 3, TC2.

1 3 3 Fire compartment, TC rake 3, TC3.

1 3 4 Fire compartment, TC rake 3, TC4.

1 3 5 Fire compartment, TC rake 3, TC5.

1 3 6 Fire compartment, TC rake 3, TC6.

1 3 7 Fire compartment, TC rake 3, TC7 (bottom).

1 4 0 Fire compartment, TC rake 4, TC0 (top).

1 4 1 Fire compartment, TC rake 4, TC1.

1 4 2 Fire compartment, TC rake 4, TC2.

1 4 3 Fire compartment, TC rake 4, TC3.

1 4 4 Fire compartment, TC rake 4, TC4.

1 4 5 Fire compartment, TC rake 4, TC5.

1 4 6 Fire compartment, TC rake 4, TC6.
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1 4 7 Fire compartment, TC rake 4, TC7 (bottom).

1 5 0 Fire compartment, open.

1 5 1 Fire compartment, open.

1 5 2 Fire compartment, open.

1 5 3 Fire compartment, open.

1 5 4 Fire compartment, open.

1 5 5 Fire compartment, open.

1 5 6 Fire compartment, open.

1 5 7 Fire compartment, open.

1 6 0 Back room, wall frame, TC0 (top-right).

1 6 1 Back room, wall frame, TC1 (right-top).

1 6 2 Back room, wall frame, TC2 (right-bottom).

1 6 3 Back room, wall frame, TC3 (bottom-right).

1 6 4 Back room, rake 1 (right), TC4 (top).

1 6 5 Back room, rake 1 (right), TC5 (middle).

1 6 6 Back room, rake 1 (right), TC6 (bottom).

1 6 7 Back room, back wall (right), TC7.

1 7 0 Back room, wall frame, TC0 (top-left).

1 7 1 Back room, wall frame, TC1 (left-top).

1 7 2 Back room, wall frame, TC2 (left-bottom).

1 7 3 Back room, wall frame, TC3 (bottom-left).

1 7 4 Back room, rake 2 (left), TC4 (top).

1 7 5 Back room, rake 2 (left), TC5 (middle).

1 7 6 Back room, rake 2 (left), TC6 (bottom).

1 7 7 Back room, back wall (left), TC7.

2 1 0 Stud wall, cavity 4, TC1.

2 1 1 Stud wall, cavity 4, TC2.

2 1 2 Stud wall, cavity 4, TC3.

2 1 3 Stud wall, cavity 4, TC4.

2 1 4 Stud wall, cavity 4, TC5.

2 1 5 Stud wall, cavity 4, TC6.

2 1 6 Stud wall, cavity 3, TC5.

2 1 7 Stud wall, cavity 3, TC6.

2 2 0 Stud wall, cavity 3, TC1.

2 2 1 Stud wall, cavity 3, TC2.

2 2 2 Stud wall, cavity 3, TC3.
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2 2 3 Stud wall, cavity 3, TC4.

2 2 4 Stud wall, cavity 2, TC3.

2 2 5 Stud wall, cavity 2, TC4.

2 2 6 Stud wall, cavity 2, TC6.

2 2 7 Stud wall, cavity 2, TC5.

2 3 0 Stud wall, cavity 2, TC1.

2 3 1 Stud wall, cavity 2, TC2.

2 3 2 Stud wall, cavity 1, TC1.

2 3 3 Stud wall, cavity 1, TC2.

2 3 4 Stud wall, cavity 1, TC3.

2 3 5 Stud wall, cavity 1, TC4.

2 3 6 Stud wall, cavity 1, TC5.

2 3 7 Stud wall, cavity 1, TC6.

2 4 0 Stud wall, unexposed, cavity 4, TC1

2 4 1 Stud wall, unexposed, cavity 4, TC2

2 4 2 Stud wall, unexposed, cavity 4, TC3

2 4 3 Stud wall, unexposed, cavity 3, TC1

2 4 4 Stud wall, unexposed, cavity 3, TC2

2 4 5 Stud wall, unexposed, cavity 3, TC3

2 4 6 Stud wall, Open.

2 4 7 Stud wall, Open.

2 5 0 Stud wall, unexposed, cavity 2, TC1

2 5 1 Stud wall, unexposed, cavity 2, TC2

2 5 2 Stud wall, unexposed, cavity 2, TC3

2 5 3 Stud wall, unexposed, cavity 1, TC1

2 5 4 Stud wall, unexposed, cavity 1, TC2

2 5 5 Stud wall, unexposed, cavity 1, TC3

2 5 6 Stud wall, Open.

2 5 7 Stud wall, Open.

2 6 0 Stud wall, Open.

2 6 1 Stud wall, Open.

2 6 2 Stud wall, Open.

2 6 3 Stud wall, Open.

2 6 4 Stud wall, Open.

2 6 5 Stud wall, Open.

2 6 6 Stud wall, Open.
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2 6 7 Stud wall, Open.

Table B.1: Instrumentation overview for the fire test apparatus.

LABEL POSITION HEIGHT FROM COMPARTMENT FLOOR

T1/T2/T3/T4 0 87.5 in (2.5 in below fire-side ceiling).

T1/T2/T3/T4 1 84 in (6 in below fire-side ceiling).

T1/T2/T3/T4 2 72 in (18 in below fire-side ceiling).

T1/T2/T3/T4 3 60 in (30 in below fire-side ceiling).

T1/T2/T3/T4 4 48 in (42 in below fire-side ceiling).

T1/T2/T3/T4 5 36 in (54 in below fire-side ceiling).

T1/T2/T3/T4 6 24 in (66 in below fire-side ceiling).

T1/T2/T3/T4 7 12 in (78 in below fire-side ceiling).

Table B.1: Sensor height positions — fire compartment thermocouple rakes.

LABEL POSITION HEIGHT FROM COMPARTMENT FLOOR

TR 4 87.5 in (6 in below cool-side ceiling).

TR 5 49.75 in (43.75 in below cool-side ceiling).

TR 6 12 in (81.5 in below cool-side ceiling).

TL 4 87.5 in (6 in below cool-side ceiling).

TL 5 49.75 in (43.75 in below cool-side ceiling).

TL 6 12 in (81.5 in below cool-side ceiling).

Table B.2: Sensor height positions — transition room thermocouple rakes.
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LABEL POSITION HEIGHT FROM COMPARTMENT FLOOR

BR 7 49.75 in (43.75 in below cool-side ceiling).

BL 7 49.75 in (43.75 in below cool-side ceiling).

Table B.3: Sensor height positions — back side of the transition room.

LABEL POSITION HEIGHT FROM COMPARTMENT FLOOR

FR 0 87.5 in (6 in below cool-side ceiling).

FR 1 62.5 in (31 in below cool-side ceiling).

FR 2 37 in (56.5 in below cool-side ceiling).

FR 3 12 in (81.5 in below cool-side ceiling).

FL 0 87.5 in (6 in below cool-side ceiling).

FL 1 62.5 in (31 in below cool-side ceiling).

FL 2 37 in (56.5 in below cool-side ceiling).

FL 3 12 in (81.5 in below cool-side ceiling).

Table B.4: Sensor height positions — wall frame.

LABEL POSITION HEIGHT FROM COMPARTMENT FLOOR

C1/C2/C3/C4 0 (main) 79.75 in (67.75 in from bottom of wall frame).

C1/C2/C3/C4 1 (main) 67.75 in (55.75 in from bottom of wall frame).

C1/C2/C3/C4 2 (main) 55.75 in (43.75 in from bottom of wall frame).

C1/C2/C3/C4 3 (main) 43.75 in (31.75 in from bottom of wall frame).

C1/C2/C3/C4 4 (main) 31.75 in (19.75 in from bottom of wall frame).

C1/C2/C3/C4 5 (main) 19.75 in (7.75 in from bottom of wall frame).

C1/C2/C3/C4 0 (back) 79.75 in (67.75 in from bottom of wall frame).

C1/C2/C3/C4 2/3 (back) 49.75 in (37.75 in from bottom of wall frame).

C1/C2/C3/C4 5 (back) 19.75 in (7.75 in from bottom of wall frame).

Table B.5: Sensor height positions — real wall (4-cavity stud wall).
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Figure B.1: Instrumentation schematic for the fire test apparatus.
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Figure B.2: Instrumentation schematic for the fire test apparatus, from the perspective

of the unexposed side of the wall, sensors located within stud cavities.
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Figure B.3: Instrumentation schematic for the fire test apparatus, from the perspective

of the unexposed side of the wall, sensors located on the unexposed side of the wall.
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Figure B.5: Cable routing for instrumentation in the fire test apparatus.
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Figure B.6: Sensor locations in the fire test apparatus.
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B.2 Steel Wall Characterization Experiments

Table B.2 lists and provides descriptions of all data acquisition channels used in the fire

test apparatus for the steel wall characterization experiments. Headers in the raw data

files are consistent with the naming convention used here.

Figure B.8 shows a top-view schematic of sensor locations through the entire apparatus.

Additional details are provided in Figure B.9. DAQ references in these figures correspond

to those given in Table B.1.

Figure B.10 shows the locations of sensors on the steel wall, including dimensions. In

the figure, red circles represent thermocouples welded to the unexposed side of the wall.

Height dimensions relative to the compartment floor are provided in Table B.6.

DAQ MODULE CHANNEL DESCRIPTION

1 1 0 Fire compartment, TC rake 1, TC0 (top).

1 1 1 Fire compartment, TC rake 1, TC1.

1 1 2 Fire compartment, TC rake 1, TC2.

1 1 3 Fire compartment, TC rake 1, TC3.

1 1 4 Fire compartment, TC rake 1, TC4.

1 1 5 Fire compartment, TC rake 1, TC5.

1 1 6 Fire compartment, TC rake 1, TC6.

1 1 7 Fire compartment, TC rake 1, TC7 (bottom).

1 2 0 Fire compartment, TC rake 2, TC0 (top).

1 2 1 Fire compartment, TC rake 2, TC1.

1 2 2 Fire compartment, TC rake 2, TC2.

1 2 3 Fire compartment, TC rake 2, TC3.

1 2 4 Fire compartment, TC rake 2, TC4.

1 2 5 Fire compartment, TC rake 2, TC5.

1 2 6 Fire compartment, TC rake 2, TC6.

1 2 7 Fire compartment, TC rake 2, TC7 (bottom).

1 3 0 Fire compartment, TC rake 3, TC0 (top).

1 3 1 Fire compartment, TC rake 3, TC1.

1 3 2 Fire compartment, TC rake 3, TC2.

1 3 3 Fire compartment, TC rake 3, TC3.

1 3 4 Fire compartment, TC rake 3, TC4.

1 3 5 Fire compartment, TC rake 3, TC5.

1 3 6 Fire compartment, TC rake 3, TC6.
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1 3 7 Fire compartment, TC rake 3, TC7 (bottom).

1 4 0 Fire compartment, TC rake 4, TC0 (top).

1 4 1 Fire compartment, TC rake 4, TC1.

1 4 2 Fire compartment, TC rake 4, TC2.

1 4 3 Fire compartment, TC rake 4, TC3.

1 4 4 Fire compartment, TC rake 4, TC4.

1 4 5 Fire compartment, TC rake 4, TC5.

1 4 6 Fire compartment, TC rake 4, TC6.

1 4 7 Fire compartment, TC rake 4, TC7 (bottom).

1 5 0 Fire compartment, open.

1 5 1 Fire compartment, open.

1 5 2 Fire compartment, open.

1 5 3 Fire compartment, open.

1 5 4 Fire compartment, open.

1 5 5 Fire compartment, open.

1 5 6 Fire compartment, open.

1 5 7 Fire compartment, open.

1 6 0 Back room, wall frame, TC0 (top-right).

1 6 1 Back room, wall frame, TC1 (right-top).

1 6 2 Back room, wall frame, TC2 (right-bottom).

1 6 3 Back room, wall frame, TC3 (bottom-right).

1 6 4 Back room, rake 1 (right), TC4 (top).

1 6 5 Back room, rake 1 (right), TC5 (middle).

1 6 6 Back room, rake 1 (right), TC6 (bottom).

1 6 7 Back room, back wall (right), TC7.

1 7 0 Back room, wall frame, TC0 (top-left).

1 7 1 Back room, wall frame, TC1 (left-top).

1 7 2 Back room, wall frame, TC2 (left-bottom).

1 7 3 Back room, wall frame, TC3 (bottom-left).

1 7 4 Back room, rake 2 (left), TC4 (top).

1 7 5 Back room, rake 2 (left), TC5 (middle).

1 7 6 Back room, rake 2 (left), TC6 (bottom).

1 7 7 Back room, back wall (left), TC7.

2 1 0 Steel wall, panel 1, TC0 (top).

2 1 1 Steel wall, panel 1, TC1.

2 1 2 Steel wall, panel 1, TC2.
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2 1 3 Steel wall, panel 1, TC3.

2 1 4 Steel wall, panel 1, TC4.

2 1 5 Steel wall, panel 1, TC5.

2 1 6 Steel wall, panel 1, TC6.

2 1 7 Steel wall, panel 1, TC7 (bottom).

2 2 0 Steel wall, panel 2, TC0 (top).

2 2 1 Steel wall, panel 2, TC1.

2 2 2 Steel wall, panel 2, TC2.

2 2 3 Steel wall, panel 2, TC3.

2 2 4 Steel wall, panel 2, TC4.

2 2 5 Steel wall, panel 2, TC5.

2 2 6 Steel wall, panel 2, TC6.

2 2 7 Steel wall, panel 2, TC7 (bottom).

2 3 0 Steel wall, panel 3, TC0 (top).

2 3 1 Steel wall, panel 3, TC1.

2 3 2 Steel wall, panel 3, TC2.

2 3 3 Steel wall, panel 3, TC3.

2 3 4 Steel wall, panel 3, TC4.

2 3 5 Steel wall, panel 3, TC5.

2 3 6 Steel wall, panel 3, TC6.

2 3 7 Steel wall, panel 3, TC7 (bottom).

Table B.2: Instrumentation overview for the characterization experiments.

LABEL POSITION HEIGHT FROM COMPARTMENT FLOOR

P1/P2/P3 0 82.5625 in (70.5625 in from bottom of wall frame).

P1/P2/P3 1 73.1875 in (61.1875 in from bottom of wall frame).

P1/P2/P3 2 63.8125 in (51.8125 in from bottom of wall frame).

P1/P2/P3 3 54.4375 in (42.4375 in from bottom of wall frame).

P1/P2/P3 4 45.0625 in (33.0625 in from bottom of wall frame).

P1/P2/P3 5 35.6875 in (23.6875 in from bottom of wall frame).

P1/P2/P3 6 26.3125 in (14.3125 in from bottom of wall frame).

P1/P2/P3 7 16.9375 in (4.9375 in from bottom of wall frame).

Table B.6: Sensor height positions — steel wall.
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Figure B.8: Instrumentation schematic for the characterization experiments.
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Figure B.9: Instrumentation schematic for the characterization experiments, from the

perspective of the unexposed side of the wall.
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Figure B.10: Sensor locations for a steel wall test.
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Appendix C

Fuel Configurations

C.1 Real Wall Thermal Degradation Experiments

Figures C.1–C.5 detail the fuel configurations used for the five real wall thermal degra-

dation experiments.
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Figure C.1: Fuel configuration used for thermal degradation test #1.
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Figure C.2: Fuel configuration used for thermal degradation test #2.
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Figure C.3: Fuel configuration used for thermal degradation test #3.
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Figure C.4: Fuel configuration used for thermal degradation test #4.
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Figure C.5: Fuel configuration used for thermal degradation test #5.

C.2 Steel Wall Characterization Experiments

Figures C.6–C.18 detail the fuel configurations used for the 12 steel wall characterization

tests.
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Figure C.6: Fuel configuration used for characterization test #1.
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Figure C.7: Fuel configuration used for characterization test #2.

Figure C.8: Fuel contents for characterization test #2.
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D
oo

r

W
al

l F
ra

m
e

D
oo

r

C
on

ta
in

er
 D

oo
rs

InstrumentationTransitionFire Compartment

36 in

2
in

(T
Y

P)

Crib 4
15.39 kg

Crib 3
15.64 kg

Crib 1
15.81 kg

Crib 2
15.35 kg

Figure C.10: Fuel configuration used for characterization test #4.
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Figure C.11: Fuel configuration used for characterization test #5.
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Figure C.12: Fuel configuration used for characterization test #6.
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Figure C.13: Fuel configuration used for characterization test #7.
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Figure C.14: Fuel configuration used for characterization test #8.
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Figure C.15: Fuel configuration used for characterization test #9.
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Figure C.16: Fuel configuration used for characterization test #10.
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Figure C.17: Fuel configuration used for characterization test #11.
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Figure C.18: Fuel configuration used for characterization test #12.
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Appendix D

Raw Test Data

This appendix contains raw data files in the Comma Separated Values (CSV) format for

the experiments conducted in the present work, as detailed below:

Steel wall characterization test #1 steel-wall-test-01-2016-08-15.csv

Steel wall characterization test #2 steel-wall-test-02-2016-08-15.csv

Steel wall characterization test #3 steel-wall-test-03-2016-08-17.csv

Steel wall characterization test #4 steel-wall-test-04-2016-08-18.csv

Steel wall characterization test #5 steel-wall-test-05-2016-08-26.csv

Steel wall characterization test #6 steel-wall-test-06-2016-08-29.csv

Steel wall characterization test #7 steel-wall-test-07-2016-09-14.csv

Steel wall characterization test #8 steel-wall-test-08-2016-09-18.csv

Steel wall characterization test #9 steel-wall-test-09-2016-09-19.csv

Steel wall characterization test #10 steel-wall-test-10-2016-09-20.csv

Steel wall characterization test #11 steel-wall-test-11-2016-09-21.csv

Steel wall characterization test #12 steel-wall-test-12-2016-09-23.csv

Real wall thermal degradation test #1 real-wall-test-01-2016-10-05.csv

Real wall thermal degradation test #2 real-wall-test-02-2016-10-19.csv

Real wall thermal degradation test #3 real-wall-test-03-2016-10-28.csv

Real wall thermal degradation test #4 real-wall-test-04-2016-11-01.csv

Real wall thermal degradation test #5 real-wall-test-05-2016-11-09.csv

If you accessed this thesis from a source other than the University of Waterloo, you

may not have access to these files. You may access them by searching for this thesis on

https://uwspace.uwaterloo.ca/UWSpace.
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Appendix E

Raw Test Data Import Procedures

— Code Listings

E.1 Real Wall Thermal Degradation Experiments

s_import_raw_data_real_wall.m

1 % ============================================================

2 % Script: s_import_raw_data_real_wall

3 % ============================================================

4

5 %% SECTION 1: INITIALIZE SCRIPT

6

7 % Initialize script.

8 clear; clc;

9 SCRIPTNAME = 's_import_raw_data_real_wall ';
10 SCRIPTVER = 2.0;

11 disp('========================================================== ');
12 fprintf (['Running script: ' SCRIPTNAME ' (version ' ...

13 '%.2f) \n'], SCRIPTVER );

14 fileID = fopen('l_data_import.txt ','w');
15 fprintf(fileID , ['...\n' 'Script name: ' SCRIPTNAME ' (version ' ...

16 '%.2f) \n' 'Script initialized: ' datestr(now) '\n' ], SCRIPTVER );

17 fclose(fileID );

18

19 % Determine whether to import raw CSV data or MATLAB data.

20 tempvar1 = input('Import from CSV data file (y/n)? ','s');
21 if strcmp(tempvar1 ,'N') || strcmp(tempvar1 ,'n')
22 tempvar2 = input('Import from MATLAB data file (y/n)? ','s');
23 if strcmp(tempvar2 ,'N') || strcmp(tempvar2 ,'n')
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24 disp('No file selected. Script aborted. ');
25 disp('========================================================== ');
26 fileID = fopen('l_data_import.txt ','a');
27 fprintf(fileID , ['No file selected. \n' 'Script aborted: '...
28 datestr(now) '\n...\n'] );

29 fclose(fileID );

30 clearvars SCRIPTNAME SCRIPTVER filename tempvar1 tempvar2 fileID ans

31 return

32 else

33 filename = uigetfile('*.mat','Select a MATLAB data file');
34 if filename == 0

35 disp('No file selected. Script aborted. ');
36 disp('========================================================== ');
37 fileID = fopen('l_data_import.txt ','a');
38 fprintf(fileID , ['No file selected. \n' 'Script aborted: '...
39 datestr(now) '\n...\n'] );

40 fclose(fileID );

41 clearvars SCRIPTNAME SCRIPTVER filename tempvar1 tempvar2 fileID ans

42 return

43 end

44 load(filename );

45 disp(['MATLAB data was imported from: "' filename '"']);
46 if EXP_SCRIPTVER < SCRIPTVER

47 disp('Warning: Data version is less than script version!');
48 elseif EXP_SCRIPTVER > SCRIPTVER

49 disp('Warning: Script version is less than data version!');
50 end

51 disp('Script completed. ');
52 disp('========================================================== ');
53 fileID = fopen('l_data_import.txt ','a');
54 fprintf(fileID , ['MATLAB data was imported from: "' filename ...

55 '" \n' 'Script completed: ' datestr(now) '\n...\n'] );

56 fclose(fileID );

57 clearvars SCRIPTNAME SCRIPTVER filename tempvar1 tempvar2 fileID ans

58 return

59 end

60 else

61 disp('Select a raw data file in CSV format. ');
62 disp('Ensure that multiple data files have been concatenated!');
63 pause (1);

64 filename = uigetfile('*.csv','Select a CSV data file');
65 if filename == 0

66 disp('No file selected. Script aborted. ');
67 disp('========================================================== ');
68 fileID = fopen('l_data_import.txt ','a');
69 fprintf(fileID , ['No file selected. \n' 'Script aborted: '...
70 datestr(now) '\n...\n'] );

71 fclose(fileID );

72 clearvars SCRIPTNAME SCRIPTVER filename tempvar1 tempvar2 fileID ans

73 return

74 end

75 end

76
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77 % Labels for user -defined parameters.

78 EXP_CRIB_MASS_LABEL = cellstr (['Mass of crib #1'
79 'Mass of crib #2'
80 'Mass of crib #3'
81 'Mass of crib #4']);
82 EXP_EVENT_LABEL = cellstr (['DAQ started '
83 'DAQ time step '
84 'Ignition '
85 'Fire spread to crib #2'
86 'Fire spread to crib #3'
87 'Fire spread to crib #4'
88 'End of test ']);
89 % Values for user -defined parameters.

90 tempvar1 = input('Enter user -defined test parameters (y/n)? ','s');
91 if strcmp(tempvar1 ,'N') || strcmp(tempvar1 ,'n')
92 EXP_CRIB_MASS = 15*[1 1 1 1];

93 EXP_EVENT = [0 1.1 0 0 0 0 3600];

94 disp('Default values for user -defined parameters. ');
95 fileID = fopen('l_data_import.txt ','a');
96 fprintf(fileID , ['Default values for user -defined parameters. \n'] );

97 fclose(fileID );

98 else

99 for i = 1:4

100 EXP_CRIB_MASS(i)= input([char(EXP_CRIB_MASS_LABEL(i)) ' (kg): ']);
101 end

102 EXP_EVENT (1)= input([char(EXP_EVENT_LABEL (1)) ' (s): ']);
103 for i = 2:7

104 EXP_EVENT(i)= input([char(EXP_EVENT_LABEL(i)) ' (s): '])- EXP_EVENT (1);
105 end

106 end

107

108 % Import data from CSV data file

109 delimiter = ',';
110 startRow = 2;

111 formatSpec = '%q%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f...
112 %f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f...

113 %f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f...

114 %f%f%f%f%f%f%f%f%f%f%f%f%f%f%[^\n\r]';
115 fileID = fopen(filename ,'r');
116 dataArray = textscan(fileID , formatSpec , 'Delimiter ', delimiter , ...

117 'EmptyValue ' ,NaN ,'HeaderLines ' ,startRow -1, ...

118 'ReturnOnError ', false , 'EndOfLine ', '\r\n');
119 fclose(fileID );

120

121 %% SECTION 2: REDUCE DATA

122

123 % Time (ref time and ignition).

124 EXP_TIME (:,1) = dataArray {:,2};

125 EXP_TIME (:,2) = EXP_TIME (:,1) - EXP_TIME (1,1);

126 EXP_TIME (:,3) = EXP_TIME (:,2) - EXP_EVENT (3);

127 EXP_TIME_DT = EXP_EVENT (2);

128 EXP_TIME_IGN = EXP_EVENT (3);

129 EXP_TIME_TOTAL = max(EXP_TIME (: ,3));
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130

131 % Gas temperatures in the fire compartment.

132 EXP_FIRE_GAS (:,:,1) = [dataArray {:,3}, dataArray {:,4}, dataArray {:,5},...

133 dataArray {:,6}, dataArray {:,7}, dataArray {:,8},...

134 dataArray {:,9}, dataArray {: ,10}] - 273 .15;

135 EXP_FIRE_GAS (:,:,2) = [dataArray {:,11}, dataArray {:,12}, dataArray {:,13},...

136 dataArray {:,14}, dataArray {:,15}, dataArray {:,16},...

137 dataArray {:,17}, dataArray {: ,18}] - 273.15;

138 EXP_FIRE_GAS (:,:,3) = [dataArray {:,19}, dataArray {:,20}, dataArray {:,21},...

139 dataArray {:,22}, dataArray {:,23}, dataArray {:,24},...

140 dataArray {:,25}, dataArray {: ,26}] - 273.15;

141 EXP_FIRE_GAS (:,:,4) = [dataArray {:,27}, dataArray {:,28}, dataArray {:,29},...

142 dataArray {:,30}, dataArray {:,31}, dataArray {:,32},...

143 dataArray {:,33}, dataArray {: ,34}] - 273.15;

144

145 % Wall frame temperatures.

146 EXP_FRAME = [dataArray {:,35}, dataArray {:,36}, dataArray {:,37},...

147 dataArray {:,38}, dataArray {:,43}, dataArray {:,44},...

148 dataArray {:,45}, dataArray {: ,46}] - 273 .15;

149

150 % Back compartment gas temperatures.

151 EXP_BACK_GAS = [dataArray {:,39}, dataArray {:,40}, dataArray {:,41},...

152 dataArray {:,47}, dataArray {:,48}, dataArray {: ,49}] - 273.15;

153

154 % Back compartment surroundings temperatures.

155 EXP_BACK_SURR = [dataArray {:,42}, dataArray {: ,50}] - 273.15;

156

157 % Wall temperatures (main).

158 EXP_WALL_MAIN (:,:,1) = [dataArray {:,69}, dataArray {:,70},...

159 dataArray {:,71}, dataArray {:,72},...

160 dataArray {:,73}, dataArray {: ,74}] - 273.15;

161 EXP_WALL_MAIN (:,:,2) = [dataArray {:,67}, dataArray {:,68},...

162 dataArray {:,63}, dataArray {:,64},...

163 dataArray {:,66}, dataArray {: ,65}] - 273.15;

164 EXP_WALL_MAIN (:,:,3) = [dataArray {:,59}, dataArray {:,60},...

165 dataArray {:,61}, dataArray {:,62},...

166 dataArray {:,57}, dataArray {: ,58}] - 273.15;

167 EXP_WALL_MAIN (:,:,4) = [dataArray {:,51}, dataArray {:,52},...

168 dataArray {:,53}, dataArray {:,54},...

169 dataArray {:,55}, dataArray {: ,56}] - 273.15;

170

171 % Wall temperatures (unexposed).

172 EXP_WALL_REAR (:,:,1) = [dataArray {:,86}, dataArray {:,87},...

173 dataArray {: ,88}] - 273.15;

174 EXP_WALL_REAR (:,:,2) = [dataArray {:,83}, dataArray {:,84},...

175 dataArray {: ,85}] - 273.15;

176 EXP_WALL_REAR (:,:,3) = [dataArray {:,78}, dataArray {:,79},...

177 dataArray {: ,80}] - 273.15;

178 EXP_WALL_REAR (:,:,4) = [dataArray {:,75}, dataArray {:,76},...

179 dataArray {: ,77}] - 273.15;

180

181 %% SECTION 3: COMPLETE SCRIPT

182
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183 EXP_SCRIPTVER = SCRIPTVER;

184 EXP_FILENAME = filename;

185 disp(['CSV data was imported from: "' filename '"']);
186 disp('Script completed. ');
187 disp('========================================================== ');
188 fileID = fopen('l_data_import.txt ','a');
189 fprintf(fileID , ['CSV data was imported from: "' filename '" \n'...
190 'Script completed: ' datestr(now) '\n...\n' ] );

191 fclose(fileID );

192 clearvars SCRIPTNAME SCRIPTVER filename tempvar1 tempvar2 delimiter ...

193 startRow formatSpec fileID dataArray i ans;

194 save(replace(EXP_FILENAME ,'.csv','.mat'));

E.2 Steel Wall Characterization Experiments

s_import_raw_data_steel_wall.m

1 % ============================================================

2 % Script: s_import_raw_data_steel_wall

3 % ============================================================

4

5 %% INITIALIZE SCRIPT

6

7 % Select a CSV data file

8 clear;clc

9 disp('============================================================ ');
10 disp('Script to import raw data from a steel wall test.');
11 filename = uigetfile('*.csv','Select a CSV data file (raw test data)');
12 if filename == 0

13 disp('No file selected. Script aborted. ');
14 disp('============================================================ ');
15 clearvars filename ans

16 return

17 end

18 EXP_TIME_IGN = input('Ignition time (default 0 s): ');
19 EXP_TIME_DT = input('Time step (default 1.1 s): ');
20 EXP_TIME_TOTAL = input('Test duration (default 5400 s): ');
21

22 % Import data from CSV data file

23 delimiter = ',';
24 startRow = 2;

25 formatSpec = '%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f...
26 %f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f...

27 %f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%[^\n\r]';
28 fileID = fopen(filename ,'r');
29 dataArray = textscan(fileID , formatSpec , 'Delimiter ', delimiter ,...

30 'EmptyValue ' ,NaN ,'HeaderLines ' ,startRow -1, 'ReturnOnError ', false );
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31 fclose(fileID );

32

33

34 %% REDUCE DATA

35

36 % File name

37 EXP_FILENAME = strrep(filename ,'.csv','');
38

39 % Time (ref time , not ignition)

40 tempvar = dataArray {:,2};

41 EXP_TIME = tempvar - tempvar (1);

42 clearvars tempvar

43

44 % Fire gas temperature (horizontal slice average)

45 tempvar (:,:,1) = [dataArray {:,3}, dataArray {:,4}, dataArray {:,5},...

46 dataArray {:,6}, dataArray {:,7}, dataArray {:,8},...

47 dataArray {:,9}, dataArray {: ,10}];

48 tempvar (:,:,2) = [dataArray {:,11}, dataArray {:,12}, dataArray {:,13},...

49 dataArray {:,14}, dataArray {:,15}, dataArray {:,16},...

50 dataArray {:,17}, dataArray {: ,18}];

51 tempvar (:,:,3) = [dataArray {:,19}, dataArray {:,20}, dataArray {:,21},...

52 dataArray {:,22}, dataArray {:,23}, dataArray {:,24},...

53 dataArray {:,25}, dataArray {: ,26}];

54 tempvar (:,:,4) = [dataArray {:,27}, dataArray {:,28}, dataArray {:,29},...

55 dataArray {:,30}, dataArray {:,31}, dataArray {:,32},...

56 dataArray {:,33}, dataArray {: ,34}];

57 for i = 1:8

58 EXP_FIRE_GAS (:,i) = mean([ tempvar(:,i,1), tempvar(:,i,2),...

59 tempvar(:,i,3), tempvar(:,i,4)] ,2);

60 end

61 clearvars tempvar i

62

63 % Steel wall temperature (each location)

64 tempvar (:,:,1) = [dataArray {:,67}, dataArray {:,68}, dataArray {:,69},...

65 dataArray {:,70}, dataArray {:,71}, dataArray {:,72},...

66 dataArray {:,73}, dataArray {: ,74}];

67 tempvar (:,:,2) = [dataArray {:,59}, dataArray {:,60}, dataArray {:,61},...

68 dataArray {:,62}, dataArray {:,63}, dataArray {:,64},...

69 dataArray {:,65}, dataArray {: ,66}];

70 tempvar (:,:,3) = [dataArray {:,51}, dataArray {:,52}, dataArray {:,53},...

71 dataArray {:,54}, dataArray {:,55}, dataArray {:,56},...

72 dataArray {:,57}, dataArray {: ,58}];

73 EXP_WALL = tempvar;

74 clearvars tempvar

75

76 % Wall frame temperature (top , sides , bot)

77 tempvar = [dataArray {:,35}, dataArray {:,36}, dataArray {:,37},...

78 dataArray {:,38}, dataArray {:,43}, dataArray {:,44},...

79 dataArray {:,45}, dataArray {: ,46}];

80 EXP_FRAME (:,1) = mean([ tempvar (:,1), tempvar (: ,5)] ,2);

81 EXP_FRAME (:,2) = mean([ tempvar (:,2), tempvar (:,3),...

82 tempvar (:,6), tempvar (: ,7)] ,2);

83 EXP_FRAME (:,3) = mean([ tempvar (:,4), tempvar (: ,8)] ,2);
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84 clearvars tempvar

85

86 % Back compartment gas temperature (average)

87 tempvar = [dataArray {:,39}, dataArray {:,40}, dataArray {:,41},...

88 dataArray {:,47}, dataArray {:,48}, dataArray {: ,49}];

89 EXP_BACK_GAS = mean(tempvar ,2);

90 clearvars tempvar

91

92 % Back compartment surroundings temperature (average)

93 tempvar = [dataArray {:,42}, dataArray {: ,50}];

94 EXP_BACK_SURR = mean(tempvar ,2);

95 clearvars tempvar

96

97 %% COMPLETE SCRIPT

98

99 disp(['Raw data was imported from: "' filename '"']);
100 disp('Script completed. ');
101 disp('============================================================ ');
102 save(strrep(filename ,'.csv','.mat'),'EXP_BACK_GAS ','EXP_BACK_SURR ',...
103 'EXP_FILENAME ','EXP_FIRE_GAS ','EXP_FRAME ','EXP_TIME ',...
104 'EXP_TIME_DT ','EXP_TIME_IGN ','EXP_TIME_TOTAL ','EXP_WALL ');
105 clear;
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Appendix F

Computation of Incident Heat Flux

— Code Listings

F.1 Generalized Thermal Capacitance Model

s_general_model.m

1 % ------------------------------------------------------------------------

2 % Name: s_general_model.m

3 % Desc: This script calculates the forward and inverse solution for a

4 % generalized thermal capacitance model.

5 % ------------------------------------------------------------------------

6

7 %% PREAMBLE

8

9 % Start Model

10 clear;clc;

11 disp('-----------------------------------------------------------');
12 disp('Generalized Thermal Capacitance Model ');
13 disp('-----------------------------------------------------------');
14 plot_results = true;

15 save_results = true;

16 filename = 'fig -general -model ';
17

18 % Geometry (sphere)

19 D = 1/100;

20 A = 4*pi*(D/2)^2;

21 V = 4/3*pi*(D/2)^3;

22

23 % Properties
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24 spheat = 600;

25 density = 7850;

26 em = 0.9;

27 sbconst = 5.67e -8;

28 h_c = 10;

29

30 % Timing

31 dt = 5;

32 t_max = 600;

33 time = 0:dt:t_max;

34 n_count = t_max/dt+1;

35

36 % Input conditions - temperature

37 T = zeros(1,n_count );

38 T(1) = 300;

39 T_inf = T(1);

40

41 % Input conditions - heat flux

42 q_i = zeros(1,n_count );

43 q_i_initial = 0;

44 q_i_max = 50*1000;

45 q_i_rate = (q_i_max - q_i_initial )/ t_max ^2;

46 for k = 1: n_count

47 t = (k-1)*dt;

48 q_i(k) = q_i_rate*t^2 + q_i_initial;

49 end

50 q_i_inv = zeros(1,n_count );

51

52 % Convergeance criteria

53 threshold = 0.1;

54 max_iterations = 1000;

55 ht_count_max = 0;

56 ht_count_sum = 0;

57

58 %% MAIN

59

60 % Forward solution

61 disp('Computing forward solution... ');
62 for k = 2: n_count

63 % Setup state variable

64 T_old = T(k-1);

65 T_calc = T_old;

66 ht_count = 1;

67 while true

68 % Calculate heat transfer coefficients

69 h_r = em*sbconst*T_calc ^3;

70 beta = (A/( density*V*spheat ))*( h_r+h_c);

71 alpha = (A/( density*V*spheat ))*(em*q_i(k)+h_c*T_inf );

72 gamma = 1/(1+ beta*dt);

73 % Calculate temperature

74 T_new = gamma*T_old + dt*gamma*alpha;

75 % Check heat transfer coefficients

76 h_r_new = em*sbconst*T_new ^3;
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77 if f_param_check(h_r ,h_r_new ,threshold ); break; end;

78 T_calc = T_new;

79 ht_count = ht_count +1;

80 if ht_count > max_iterations

81 disp(['Abort: Failed to converge on step ' num2str(k) ' of ' ...

82 num2str(n_count) '.']);
83 disp('-----------------------------------------------------------');
84 return;

85 end

86 end

87 % Store new temperature

88 T(k) = T_new;

89 % Calculate performance stats

90 if ht_count > ht_count_max; ht_count_max = ht_count; end;

91 ht_count_sum = ht_count_sum + ht_count;

92 end

93

94 % Inverse solution

95 disp('Computing inverse solution... ');
96 for k = 2: n_count

97 h_r = em*sbconst*T(k)^3;

98 beta = (A/( density*V*spheat ))*( h_r+h_c);

99 alpha = (beta +1/dt)*T(k) - (1/dt)*T(k-1);

100 q_i_inv(k) = (density*V*spheat )/(A*em)* alpha - h_c/em*T_inf;

101 end

102

103 %% POST -PROCESSING

104

105 % Plot results

106 if plot_results

107

108 % Plot settings

109 disp('Plotting results... ');
110 plot_width = 3.2;

111 plot_height = 2.8;

112 plot_scale = 2;

113 range_start = 1;

114 range_end = k;

115 x_data = time(range_start:range_end )/60;

116 degC = [sprintf('%c', char (176)) 'C'];
117

118 % Plot Temperature and heat flux

119 clear y_data

120 y_data (1,:) = q_i(range_start:range_end )/1000;

121 y_data (2,:) = T(range_start:range_end )-273.15;

122 y_data (3,:) = q_i_inv(range_start:range_end )/1000;

123 f = figure (1); clf;

124 hold on;

125 yyaxis right

126 p(1) = plot(x_data ,y_data (1,:),'k-','LineWidth ',1.5*plot_scale );
127 yyaxis left

128 p(2) = plot(x_data ,y_data (2,:),'b:','LineWidth ' ,4* plot_scale );
129 yyaxis right
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130 p(3) = plot(x_data ,y_data (3,:),'r:','LineWidth ' ,4* plot_scale );
131 h = legend(p,'Forward model input (q^{\ prime\prime}_{r,i})',...
132 'Forward model result (T)',...
133 'Inverse model result (q^{\ prime\prime}_{r,i})');
134 xlabel('Time (min)');
135 xlim([0,t_max /60]);

136 yyaxis left; ylim ([0 ,600]); set(gca ,'ycolor ','k')
137 ylabel (['Temperature (' degC ')']);
138 yyaxis right; ylim ([0 ,60]); set(gca ,'ycolor ','k')
139 ylabel('Heat Flux (kW/m^2)');
140 s_plot_settings;

141 set(h,'Location ','Northwest ');
142 hold off

143 % if save_results; print ([ filename '.png '],'-dpng ','-r300 '); end;

144 if save_results; saveas(gcf ,filename ,'epsc'); end;

145 clear f p h

146

147 end

148

149 % Save results

150 if save_results; save([ filename '.mat'],'time','T','q_i','q_i_inv '); end;

151

152 % Complete script

153 disp('Script completed!');
154 disp(['Total number of steps: ' num2str(k)]);

155 disp(['Total number of iterations: ' num2str(ht_count_sum )]);

156 disp(['Average iterations per step: ' num2str(round(ht_count_sum/k ,2))]);

157 disp(['Maximum iterations per step: ' num2str(ht_count_max )]);

158 disp('-----------------------------------------------------------');
159 clear;

f_param_check.m

1 % ------------------------------------------------------------------------

2 % Name: f_param_check.m

3 % Desc: This function calculates the percent difference between two values

4 % and returns a pass/fail based on the specified % threshold.

5 % ------------------------------------------------------------------------

6 function [pass] = f_param_check(prior ,posterior ,threshold_percent)

7

8 % Calculate the percent difference between the prior and posterior

9 p_diff = abs(posterior -prior)./mean([posterior ,prior ] ,2)*100;

10 if p_diff < threshold_percent

11 pass = true;

12 else

13 pass = false;

14 end

15

16 end
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s_plot_settings.m

1 % ------------------------------------------------------------------------

2 % Name: s_plot_settings.m

3 % Desc: This script sets various plot settings for visual appearance.

4 % ------------------------------------------------------------------------

5

6 grid on;

7 box on

8 set(gca ,'LineWidth ',0.75*plot_scale );
9 set(gca ,'TickDir ','out');

10 set(gca ,'GridAlpha ',0.25);
11 set(gca ,'GridLineStyle ','-');
12 set(gca ,'GridColor ' ,[0 0 0]);

13 set(f,'PaperUnits ','inches ');
14 set(f,'PaperPosition ' ,[0 0 plot_scale*plot_width plot_scale*plot_height ]);

15 set(findall(f,'-property ','FontName '), 'FontName ', 'Times New Roman');
16 set(findall(f,'-property ','FontSize '), 'FontSize ', 10* plot_scale );

17 set(h,'FontSize ' ,8* plot_scale );
18 set(h,'Location ','Best');

F.2 Steel Wall Thermal Capacitance Model (0D)

s_steel_wall_model_0D.m

1 % ------------------------------------------------------------------------

2 % Name: s_steel_wall_model.m

3 % Desc: This script generates some dummy data for a steel wall test.

4 % ------------------------------------------------------------------------

5

6 %% PREAMBLE

7

8 % Start Model

9 clear;clc;

10 disp('-----------------------------------------------------------');
11 disp('Thermal capacitance model for steel wall sensor (0D).');
12 disp('-----------------------------------------------------------');
13 disp('Initializing... ');
14

15 % Script options

16 tempvar = input('Plot results (y/n)? ','s');
17 if tempvar == 'y'; plot_results = true; else; plot_results = false; end;

18 tempvar = input('Save results (y/n)? ','s');
19 if tempvar == 'y'; save_results = true; else; save_results = false; end;

20 tempvar = input('Add noise (y/n)? ','s');
21 if tempvar == 'y'
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22 filename = 'steel -wall -model -noisy ';
23 noise_fire = 10;

24 noise_wall = 0.5;

25 else

26 filename = 'steel -wall -model ';
27 noise_fire = 0;

28 noise_wall = 0;

29 end

30

31 % Compartment and wall geometry

32 D = 0.0045;

33 L = (75.0*25.4 )/1000;

34 A = L^2;

35 V = A*D;

36 A_c = (94.0*92.5+2*94 .00 *36.0 +2*92.5*36.00 )*0 .0254 ^2;

37 A_f = (88.5*89.5 +2*136 .5*89.5 +2*88.0*136.5)*0 .0254 ^2;

38 D_l = 6.35 /1000;

39 A_l = 4*L*D;

40

41 % Thermophysical properties

42 dens = 7850;

43 spheat = 600;

44 thcond_s = 42;

45 thcond_l = 0.24;

46 em = 0.98;

47 em_c = 0.75;

48 em_f = 0.75;

49

50 % Heat transfer parameters

51 sbconst = 5.6704e -8;

52 r_c = 1/em + A/A_c *(1/ em_c - 1);

53 r_f = 1/em + A/A_f *(1/ em_f - 1);

54

55 % Timing

56 dt = 5;

57 t_max = 600;

58 time = 0:dt:t_max;

59 n_count = t_max/dt+1;

60

61 % Baseline temperatures

62 T_proc = zeros(1,n_count );

63 T_proc (1) = 25+273 .15;

64 T_meas = T_proc;

65 T_inf_c = T_proc (1);

66 T_sur_c = T_proc (1);

67 T_l = T_proc (1);

68

69 % Fire temperatures

70 T_inf_f = zeros(1,n_count );

71 T_i = T_proc (1);

72 T_f_max = 550+273 .15;

73 T_rate = (T_f_max - T_i )/( t_max )^2;

74 for k = 1: n_count
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75 t = (k-1)*dt;

76 T_inf_f(k) = T_rate*t^2 + T_i + randn ()* noise_fire;

77 end

78 T_sur_f = T_inf_f;

79

80 % Heat flux

81 q_f_proc = zeros(1,n_count );

82 h_cf = f_chtc(T_inf_f (1), T_proc (1));

83 q_f_proc (1) = -1/em*0 + sbconst*T_proc (1)^4 + ...

84 h_cf/em*( T_proc (1) - T_inf_f (1));

85 q_f_meas = q_f_proc;

86

87 % Convergeance criteria

88 threshold = 0.1;

89 max_iterations = 100;

90 ht_count_max = 0;

91 ht_count_sum = 0;

92

93 %% MAIN

94

95 % Process model

96 disp('Computing solution using process model... ');
97

98 % Forward solution

99 for k = 2: n_count

100 % Setup state variable

101 T_old = T_proc(k-1);

102 T_calc = T_old;

103 ht_count = 1;

104 while true

105 % Calculate heat transfer coefficients

106 h_l = A_l/A*thcond_l/D_l;

107 h_cf = f_chtc(T_inf_f(k),T_calc );

108 h_rf = sbconst/r_f*( T_calc+T_sur_f(k))*( T_calc ^2+ T_sur_f(k)^2);

109 h_cc = f_chtc(T_inf_c ,T_calc );

110 h_rc = sbconst/r_c*( T_calc+T_sur_c )*( T_calc ^2+ T_sur_c ^2);

111 beta = (A/(dens*V*spheat ))*( h_rf + h_cf + h_rc + h_cc + h_l);

112 alpha = (A/(dens*V*spheat ))*( h_rf*T_sur_f(k) + ...

113 h_cf*T_inf_f(k) + h_rc*T_sur_c + h_cc*T_inf_c + h_l*T_l);

114 gamma = 1/(1+ beta*dt);

115 % Calculate temperature

116 T_new = gamma*T_old + dt*gamma*alpha;

117 % Check heat transfer coefficients

118 h_l = A_l/A*thcond_l/D_l;

119 h_cf = f_chtc(T_inf_f(k),T_new );

120 h_rf = sbconst/r_f*(T_new+T_sur_f(k))*( T_new ^2+ T_sur_f(k)^2);

121 h_cc = f_chtc(T_inf_c ,T_new);

122 h_rc = sbconst/r_c*(T_new+T_sur_c )*( T_new ^2+ T_sur_c ^2);

123 beta = (A/(dens*V*spheat ))*( h_rf + h_cf + h_rc + h_cc + h_l);

124 alpha_new = (A/(dens*V*spheat ))*( h_rf*T_sur_f(k) + ...

125 h_cf*T_inf_f(k) + h_rc*T_sur_c + h_cc*T_inf_c + h_l*T_l);

126 if f_param_check(alpha ,alpha_new ,threshold ); break; end;

127 T_calc = T_new;
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128 ht_count = ht_count +1;

129 if ht_count > max_iterations

130 disp(['Abort: Failed to converge on step ' num2str(k) ' of ' ...

131 num2str(n_count) '.']);
132 disp('-----------------------------------------------------------');
133 return;

134 end

135 end

136 % Store new temperature

137 T_proc(k) = T_new;

138 % Calculate performance stats

139 if ht_count > ht_count_max; ht_count_max = ht_count; end;

140 ht_count_sum = ht_count_sum + ht_count;

141 end

142

143 % Inverse solution

144 for k = 2: n_count

145 h_l = A_l/A*thcond_l/D_l;

146 h_cf = f_chtc(T_inf_f(k),T_proc(k));

147 h_cc = f_chtc(T_inf_c ,T_proc(k));

148 h_rc = sbconst/r_c*( T_proc(k)+ T_sur_c )*( T_proc(k)^2+ T_sur_c ^2);

149 beta = (A/(dens*V*spheat ))*( h_rc + h_cc + h_l);

150 alpha = (beta +1/dt)* T_proc(k) - (1/dt)* T_proc(k-1);

151 q_net = -alpha *(( dens*V*spheat )/A) + h_rc*T_sur_c + ...

152 h_cc*T_inf_c + h_l*T_l;

153 q_f_proc(k) = -1/em*q_net + sbconst*T_proc(k)^4 + ...

154 h_cf/em*( T_proc(k) - T_inf_f(k));

155 end

156

157 % Measurement model

158 disp('Computing solution using measurement model... ');
159

160 % Generate dummy data

161 T_meas = zeros(1,n_count );

162 T_meas_max = T_proc(n_count );

163 T_rate = (T_meas_max - T_i)/( t_max )^2;

164 for k = 1: n_count

165 t = (k-1)*dt;

166 T_meas(k) = T_rate*t^2 + T_i + randn ()* noise_wall;

167 end

168

169 % Inverse solution

170 for k = 2: n_count

171 h_l = A_l/A*thcond_l/D_l;

172 h_cf = f_chtc(T_inf_f(k),T_meas(k));

173 h_cc = f_chtc(T_inf_c ,T_meas(k));

174 h_rc = sbconst/r_c*( T_meas(k)+ T_sur_c )*( T_meas(k)^2+ T_sur_c ^2);

175 beta = (A/(dens*V*spheat ))*( h_rc + h_cc + h_l);

176 alpha = (beta +1/dt)* T_meas(k) - (1/dt)* T_meas(k-1);

177 q_net = -alpha *(( dens*V*spheat )/A) + h_rc*T_sur_c + ...

178 h_cc*T_inf_c + h_l*T_l;

179 q_f_meas(k) = -1/em*q_net + sbconst*T_meas(k)^4 + ...

180 h_cf/em*( T_meas(k)-T_inf_f(k));
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181 end

182

183

184 %% POST -PROCESSING

185

186 % Plot results

187 if plot_results

188

189 % Plot settings

190 disp('Plotting results... ');
191 plot_width = 3.2;

192 plot_height = 2.8;

193 plot_scale = 2;

194 range_start = 1;

195 range_end = k;

196 x_data = time(range_start:range_end )/60;

197 degC = [sprintf('%c', char (176)) 'C'];
198

199 % Plot temperature

200 clear y_data

201 y_data (1,:) = T_inf_f(range_start:range_end )-273.15;

202 y_data (2,:) = T_proc(range_start:range_end )-273.15;

203 y_data (3,:) = T_meas(range_start:range_end )-273.15;

204 f = figure (1); clf;

205 hold on;

206 p(1) = plot(x_data ,y_data (1,:),'k:','LineWidth ',1.0*plot_scale );
207 p(2) = plot(x_data ,y_data (2,:),'b-','LineWidth ',1.0*plot_scale );
208 p(3) = plot(x_data ,y_data (3,:),'r-','LineWidth ',1.0*plot_scale );
209 h = legend(p,'Fire gas',...
210 'Process model)',...
211 'Measurements ');
212 xlabel('Time (min)'); xlim([0,t_max /60]);

213 ylabel (['Temperature (' degC ')']); ylim ([0 ,600]);

214 s_plot_settings;

215 hold off

216 if save_results; saveas(gcf ,['fig -' filename '-T'],'epsc'); end;

217 clear f p h

218

219 % Plot heat flux

220 clear y_data

221 y_data (1,:) = q_f_proc(range_start:range_end )/1000;

222 y_data (2,:) = q_f_meas(range_start:range_end )/1000;

223 f = figure (2); clf;

224 hold on;

225 p(1) = plot(x_data ,y_data (1,:),'b-','LineWidth ',1.0*plot_scale );
226 p(2) = plot(x_data ,y_data (2,:),'r-','LineWidth ',1.0*plot_scale );
227 h = legend(p,'Process model)',...
228 'Measurements ');
229 xlabel('Time (min)'); xlim([0,t_max /60]);

230 ylabel('Incident Heat Flux (kW/m^2)'); ylim ([0 ,30]);

231 s_plot_settings;

232 hold off

233 if save_results; saveas(gcf ,['fig -' filename '-HF'],'epsc'); end;
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234 clear f p h

235

236 end

237

238 % Complete script

239 disp('Script completed!');
240 if save_results

241 % Vectorize constant temperatures

242 T_inf_c (1,1: n_count) = T_inf_c;

243 T_sur_c (1,1: n_count) = T_sur_c;

244 T_l(1,1: n_count) = T_l;

245 % Save data to standard format for reduced datafile

246 EXP_BACK_GAS = T_inf_c. ';
247 EXP_BACK_SURR = T_sur_c. ';
248 EXP_FILENAME = filename;

249 EXP_FIRE_GAS = [T_inf_f;T_inf_f;T_inf_f;T_inf_f;...

250 T_inf_f;T_inf_f;T_inf_f;T_inf_f].';
251 EXP_FRAME = [T_l;T_l;T_l].';
252 EXP_TIME = time. ';
253 EXP_TIME_DT = dt;

254 EXP_TIME_IGN = 0;

255 EXP_TIME_TOTAL = t_max;

256 EXP_WALL (:,1:8,1) = [T_meas;T_meas;T_meas;T_meas;...

257 T_meas;T_meas;T_meas;T_meas].';
258 EXP_WALL (:,1:8,2) = [T_meas;T_meas;T_meas;T_meas;...

259 T_meas;T_meas;T_meas;T_meas].';
260 EXP_WALL (:,1:8,3) = [T_meas;T_meas;T_meas;T_meas;...

261 T_meas;T_meas;T_meas;T_meas].';
262 EXP_HF = q_f_meas. ';
263 PROC_WALL (:,1:8,1) = [T_proc;T_proc;T_proc;T_proc;...

264 T_proc;T_proc;T_proc;T_proc].';
265 PROC_WALL (:,1:8,2) = [T_proc;T_proc;T_proc;T_proc;...

266 T_proc;T_proc;T_proc;T_proc].';
267 PROC_WALL (:,1:8,3) = [T_proc;T_proc;T_proc;T_proc;...

268 T_proc;T_proc;T_proc;T_proc].';
269 PROC_HF = q_f_proc. ';
270 save([ filename '.mat'],'EXP_BACK_GAS ','EXP_BACK_SURR ','EXP_FILENAME ',...
271 'EXP_FIRE_GAS ','EXP_FRAME ','EXP_TIME ',...
272 'EXP_TIME_DT ','EXP_TIME_IGN ','EXP_TIME_TOTAL ',...
273 'EXP_WALL ','EXP_HF ','PROC_WALL ','PROC_HF ');
274 disp(['Results saved to: ' filename '.mat']);
275 end

276 disp('-----------------------------------------------------------');
277 disp(['Total number of steps: ' num2str(k)]);

278 disp(['Total number of iterations: ' num2str(ht_count_sum )]);

279 disp(['Avg iterations per step: ' num2str(round(ht_count_sum/k ,2))]);

280 disp(['Max iterations per step: ' num2str(ht_count_max )]);

281 disp('-----------------------------------------------------------');

f_chtc.m
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1 % ------------------------------------------------------------------------

2 % Name: f_chtc.m

3 % Desc: This function calculates the convection heat transfer coefficient

4 % on a wall in a compartment fire using a correlation:

5 % <http :// jfs.sagepub.com/content /31/5/410 .full.pdf+html >.

6 % ------------------------------------------------------------------------

7 function result = f_chtc(T_gas ,T_surface)

8

9 % % Generalized method (Equation 15 of the paper)

10 % T_ratio = (T_gas -T_surface )/ T_gas;

11 % if T_ratio < 0.2

12 % h_star = (2e-3);

13 % else

14 % h_star = (16e-3)* T_ratio;

15 % end

16 % cp = 1000; % J/kgK

17 % rho = 1.2; % kg/m^3

18 % g = 9.81; % m/s^2

19 % l = 89.5*0.0254; % m

20 % result = h_star*rho*cp*(g*l)^(1/2); % W/m^2K

21

22 % Curve fit method (basically the same , but smoother at the transition)

23 result = 0.0583*abs(T_gas -T_surface) + 13.3;

24

25 end

f_param_check.m

1 % ------------------------------------------------------------------------

2 % Name: f_param_check.m

3 % Desc: This function calculates the percent difference between two values

4 % and returns a pass/fail based on the specified % threshold.

5 % ------------------------------------------------------------------------

6 function [pass] = f_param_check(prior ,posterior ,threshold_percent)

7

8 % Calculate the percent difference between the prior and posterior

9 p_diff = abs(posterior -prior)./mean([posterior ,prior ] ,2)*100;

10 if p_diff < threshold_percent

11 pass = true;

12 else

13 pass = false;

14 end

15

16 end

s_plot_settings.m

231



1 % ------------------------------------------------------------------------

2 % Name: s_plot_settings.m

3 % Desc: This script sets various plot settings for visual appearance.

4 % ------------------------------------------------------------------------

5

6 grid on;

7 box on

8 set(gca ,'LineWidth ',0.75*plot_scale );
9 set(gca ,'TickDir ','out');

10 set(gca ,'GridAlpha ',0.25);
11 set(gca ,'GridLineStyle ','-');
12 set(gca ,'GridColor ' ,[0 0 0]);

13 set(f,'PaperUnits ','inches ');
14 set(f,'PaperPosition ' ,[0 0 plot_scale*plot_width plot_scale*plot_height ]);

15 set(findall(f,'-property ','FontName '), 'FontName ', 'Times New Roman');
16 set(findall(f,'-property ','FontSize '), 'FontSize ', 10* plot_scale );

17 set(h,'FontSize ' ,8* plot_scale );
18 set(h,'Location ','Best');

F.3 Steel Wall Kalman Filter (0D)

f_chtc.m

1 % ------------------------------------------------------------------------

2 % Name: f_chtc.m

3 % Desc: This function calculates the convection heat transfer coefficient

4 % on a wall in a compartment fire using a correlation:

5 % <http :// jfs.sagepub.com/content /31/5/410 .full.pdf+html >.

6 % ------------------------------------------------------------------------

7 function result = f_chtc(T_gas ,T_surface)

8

9 % % Generalized method (Equation 15 of the paper)

10 % T_ratio = (T_gas -T_surface )/ T_gas;

11 % if T_ratio < 0.2

12 % h_star = (2e-3);

13 % else

14 % h_star = (16e-3)* T_ratio;

15 % end

16 % cp = 1000; % J/kgK

17 % rho = 1.2; % kg/m^3

18 % g = 9.81; % m/s^2

19 % l = 89.5*0.0254; % m

20 % result = h_star*rho*cp*(g*l)^(1/2); % W/m^2K

21

22 % Curve fit method (approximation of the same curve , but with a smoother

23 % transition and less computational cost)
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24 result = 0.0583*abs(T_gas -T_surface) + 13.3;

25

26 end

f_ht_calc_fwd.m

1 % ------------------------------------------------------------------------

2 % Name: f_ht_calc_fwd.m

3 % Desc: This function calculates the heat transfer coefficients used in

4 % the forward computation step of the 0D Kalman filter model.

5 % ------------------------------------------------------------------------

6 function [alpha ,gamma] = f_ht_calc_fwd(dt,x,T_inf_f ,T_sur_f ,T_inf_c ,...

7 T_sur_c ,T_l)

8

9 % Load geometry and thermophysical properties

10 load('properties.mat ');
11

12 % Calculate heat transfer coefficients

13 h_l = A_l/A*thcond_l/D_l;

14 h_cf = f_chtc(T_inf_f ,x);

15 h_rf = sbconst/r_f*(x+T_sur_f).*(x.^2+ T_sur_f. ^2);

16 h_cc = f_chtc(T_inf_c ,x);

17 h_rc = sbconst/r_c*(x+T_sur_c).*(x.^2+ T_sur_c. ^2);

18 beta = (A/(dens*V*spheat ))*( h_rf + h_cf + h_rc + h_cc + h_l);

19 gamma = (1+ beta*dt).^(-1);

20 alpha = (A/(dens*V*spheat ))*( h_rf.*T_sur_f + h_cf.*T_inf_f + ...

21 h_rc.*T_sur_c + h_cc.*T_inf_c + h_l.*T_l);

22

23 end

f_ht_calc_inv.m

1 % ------------------------------------------------------------------------

2 % Name: f_ht_calc_fwd.m

3 % Desc: This function calculates the heat transfer coefficients used in

4 % the inverse computation step of the 0D Kalman filter model.

5 % ------------------------------------------------------------------------

6 function [q_inc_m ,q_inc_s] = f_ht_calc_inv(dt,x_new ,x_old ,P_new ,...

7 T_inf_f ,T_inf_c ,T_sur_c ,T_l ,std_pro)

8

9 % Load geometry and thermophysical properties

10 load('properties.mat ');
11

12 % Calculate state stdev from covariance

13 s_new = sqrt(diag(P_new ));

14

15 % Calculate heat transfer coefficients

16 h_l = A_l/A*thcond_l/D_l;
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17 h_cf = f_chtc(T_inf_f ,x_new);

18 h_cc = f_chtc(T_inf_c ,x_new);

19 h_rc = sbconst/r_c*(x_new+T_sur_c).*( x_new. ^2+ T_sur_c. ^2);

20 beta = (A/(dens*V*spheat ))*( h_rc + h_cc + h_l);

21 alpha_m = (beta +1/dt).*x_new - (1/dt).*x_old;

22

23 % Calculate variance on alpha

24 gamma = (1+dt*beta).^(-1);

25 G = diag(dt*gamma);

26 S = std_pro*std_pro. '; % diag(std_pro. ^2);

27 Q = G*S*G. ';
28 alpha_s = sqrt(diag(Q))/( gamma*dt);

29

30 % Calculate net heat flux and variance

31 q_net_m = -alpha_m. *(( dens*V*spheat )/A) + h_rc.*T_sur_c + ...

32 h_cc.*T_inf_c + h_l.*T_l;

33 q_net_s = alpha_s. *(( dens*V*spheat )/A);

34

35 % Calculate incident heat flux and variance

36 q_inc_m = -1/em*q_net_m + sbconst.*x_new. ^4 + ...

37 1/em*h_cf.*(x_new - T_inf_f );

38 q_inc_s = 1/em*q_net_s + sbconst.*s_new. ^4 + 1/em*h_cf.*( s_new);

39

40 end

f_initial.m

1 % ------------------------------------------------------------------------

2 % Name: f_initial.m

3 % Desc: This function calculates the initial state , covariance , and heat

4 % flux for input to the 0D Kalman filter model.

5 % ------------------------------------------------------------------------

6 function [x,P,std_pro ,q_inc_m ,q_inc_s] = f_initial(dt,n,T_i ,...

7 T_inf_f ,T_inf_c ,T_sur_c ,T_l ,phi)

8

9 % State

10 x = ones(n,1)* T_i;

11

12 % Heat transfer parameters and process variance

13 load('properties.mat ');
14 h_l = A_l/A*thcond_l/D_l;

15 h_cc = f_chtc(T_inf_c ,x);

16 h_rc = sbconst/r_c*(x+T_sur_c).*(x.^2+ T_sur_c. ^2);

17 beta = (A/(dens*V*spheat ))*( h_rc + h_cc + h_l);

18 alpha = beta.*x;

19 std_pro = phi*alpha;

20

21 % State variance

22 P = diag(( std_pro (: ,1)*dt).^2);

23

24 % Heat flux
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25 [q_inc_m ,q_inc_s] = f_ht_calc_inv(dt,x,x,P,T_inf_f ,T_inf_c ,T_sur_c ,...

26 T_l ,std_pro );

27

28 end

f_kf_predict.m

1 % ------------------------------------------------------------------------

2 % Name: f_kf_update.m

3 % Desc: This function calculates the mean and variance for the predict

4 % step of the Kalman filter.

5 % ------------------------------------------------------------------------

6 function [x_new ,P_new] = f_kf_predict(x,P,F,Q,varargin)

7

8 % Resolve the optional control input function (B and U)

9 numvarargs = length(varargin );

10 if numvarargs > 2

11 error('Error: f_predict requires either 4 or 6 inputs ');
12 end

13 optargs = {0 0};

14 optargs (1: numvarargs) = varargin;

15 [B,u] = optargs {:};

16

17 % Calculate the new prior

18 x_new = F*x + B*u;

19 P_new = F*P*F.' + Q;

20

21 end

f_kf_setup.m

1 % ------------------------------------------------------------------------

2 % Name: f_kf_setup.m

3 % Desc: This function sets up the various inputs to the Kalman filter.

4 % ------------------------------------------------------------------------

5 function [F,B,u,Q,R,H] = f_kf_setup(dt ,alpha ,gamma ,std_pro ,std_sen)

6

7 % State transition function

8 F = diag(gamma);

9

10 % Control input function

11 B = diag(dt*gamma);

12

13 % Control input

14 u = alpha;

15

16 % Process covariance

17 G = B;
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18 S = std_pro*std_pro. '; % diag(std_pro. ^2);

19 Q = G*S*G. ';
20

21 % Measurement covariance

22 R = std_sen*std_sen. '; % diag(std_sen. ^2);

23

24 % Measurement transformation

25 H = eye(length(std_sen ));

26

27 end

f_kf_update.m

1 % ------------------------------------------------------------------------

2 % Name: f_kf_update.m

3 % Desc: This function calculates the mean and variance for the update

4 % step of the Kalman filter.

5 % ------------------------------------------------------------------------

6 function [x_new ,P_new] = f_kf_update(x,P,z,R,varargin)

7

8 % Resolve the optional measurement function (B and U)

9 numvarargs = length(varargin );

10 if numvarargs > 1

11 error('Error: f_update requires either 4 or 5 inputs ');
12 end

13 optargs = {0};

14 optargs (1: numvarargs) = varargin;

15 [H] = optargs {:};

16

17 % Calculate the system uncertainty , Kalman gain , and residual

18 S = H*P*H. ' + R;

19 K = (P*H. ')/S;
20 y = z - H*x;

21

22 % Calculate the new posterior

23 x_new = x + K*y;

24 P_new = (eye(size(x,1)) - K*H)*P;

25

26 end

f_param_check.m

1 % ------------------------------------------------------------------------

2 % Name: f_param_check.m

3 % Desc: This function calculates the percent difference between two values

4 % and returns a pass/fail based on the specified % threshold.

5 % ------------------------------------------------------------------------

6 function [pass] = f_param_check(prior ,posterior ,threshold_percent)
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7

8 p_diff = abs(posterior -prior)./mean([posterior ,prior ] ,2)*100;

9 if p_diff < threshold_percent

10 pass = true;

11 else

12 pass = false;

13 end

14

15 end

s_import_data_0D_KF.m

1 % ------------------------------------------------------------------------

2 % Name: s_import_data_0D_KF.m

3 % Desc: This script imports reduced datafiles from a steel wall test to

4 % be used with the 0D Kalman filter model. The user can also select

5 % a "dummy" datafile , created by "s_steel_wall_model_0D.m".

6 % ------------------------------------------------------------------------

7

8 %% MAIN

9

10 % Import test data

11 filename = uigetfile('*.mat','Select a steel wall test data file (MAT).');
12 if filename == 0

13 clear filename

14 return

15 else

16 load(filename );

17 end

18 tempvar = input('Is this a dummy data file (y/n)? ','s');
19 if tempvar == 'y'
20 dummy = true;

21 else

22 dummy = false;

23 end

24

25 % State references

26 n = 1;

27 m = 1;

28

29 % Timing

30 dt = EXP_TIME_DT;

31 n_offset = round(EXP_TIME_IGN/EXP_TIME_DT ,0)+1;

32 n_steps = round(EXP_TIME_TOTAL/EXP_TIME_DT ,0)+1;

33 time_range = n_offset:n_steps+n_offset -1;

34 t_tot = (n_steps -1)*dt;

35 time = 0:dt:t_tot;

36

37 % Fire -side gases and surroundings

38 T_inf_f = EXP_FIRE_GAS(time_range ,:).';
39 T_inf_f = mean(T_inf_f ,1);
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40 T_sur_f = T_inf_f;

41

42 % Cool -side gases and surroundings

43 T_inf_c = EXP_BACK_GAS(time_range).';
44 T_sur_c = EXP_BACK_SURR(time_range).';
45

46 % Wall frame

47 T_l_left = EXP_FRAME(time_range ,2).'; % Left

48 T_l_right = EXP_FRAME(time_range ,2).'; % Right

49 T_l_top = EXP_FRAME(time_range ,1).'; % Top

50 T_l_bot = EXP_FRAME(time_range ,3).'; % Bot

51 T_l = [T_l_left; T_l_right; T_l_top; T_l_bot ];

52 T_l = mean(T_l ,1);

53 clear T_l_left T_l_right T_l_top T_l_bot

54

55 % Steel wall (meas)

56 T_w_left = EXP_WALL(time_range ,1:8 ,1).';
57 T_w_mid = EXP_WALL(time_range ,1:8 ,2).';
58 T_w_right = EXP_WALL(time_range ,1:8 ,3).';
59 T_w_meas = [T_w_left; T_w_mid; T_w_right ];

60 T_w_meas = mean(T_w_meas ,1);

61 clear T_w_left T_w_mid T_w_right

62

63 % Steel wall (proc) -- dummy data only

64 if dummy

65 T_w_left = PROC_WALL(time_range ,1:8 ,1).';
66 T_w_mid = PROC_WALL(time_range ,1:8 ,2).';
67 T_w_right = PROC_WALL(time_range ,1:8 ,3).';
68 T_w_proc = [T_w_left; T_w_mid; T_w_right ];

69 T_w_proc = mean(T_w_proc ,1);

70 clear T_w_left T_w_mid T_w_right

71 end

72

73 % Heat flux -- dummy data only

74 if dummy

75 q_f_proc = PROC_HF. ';
76 q_f_meas = EXP_HF. ';
77 end

s_plot_settings.m

1 % ------------------------------------------------------------------------

2 % Name: s_plot_settings.m

3 % Desc: This script sets various plot settings for visual appearance.

4 % ------------------------------------------------------------------------

5

6 grid on;

7 box on

8 set(gca ,'LineWidth ',0.75*plot_scale );
9 set(gca ,'TickDir ','out');

10 set(gca ,'GridAlpha ',0.25);
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11 set(gca ,'GridLineStyle ','-');
12 set(gca ,'GridColor ' ,[0 0 0]);

13 set(f,'PaperUnits ','inches ');
14 set(f,'PaperPosition ' ,[0 0 plot_scale*plot_width plot_scale*plot_height ]);

15 set(findall(f,'-property ','FontName '), 'FontName ', 'Times New Roman');
16 set(findall(f,'-property ','FontSize '), 'FontSize ', 10* plot_scale );

17 set(h,'FontSize ' ,8* plot_scale );
18 set(h,'Location ','Best');

s_properties.m

1 % ------------------------------------------------------------------------

2 % Name: s_properties.m

3 % Desc: This script imports the geometry and thermophysical properties

4 % for use in the 0D Kalman filter model.

5 % ------------------------------------------------------------------------

6

7 % Start

8 clear

9

10 % Compartment and wall geometry

11 D = 0.0045;

12 L = (75.0*25.4 )/1000;

13 A = L^2;

14 V = A*D;

15 A_c = (94.0*92.5+2*94 .00 *36.0 +2*92.5*36.00 )*0 .0254 ^2;

16 A_f = (88.5*89.5 +2*136 .5*89.5 +2*88.0*136.5)*0 .0254 ^2;

17 D_l = 6.35 /1000;

18 A_l = 4*L*D;

19

20 % Thermophysical properties

21 dens = 7850;

22 spheat = 600;

23 thcond_s = 42;

24 thcond_l = 0.24;

25 em = 0.98;

26 em_c = 0.75;

27 em_f = 0.75;

28

29 % Heat transfer parameters

30 sbconst = 5.6704e -8;

31 r_c = 1/em + A/A_c *(1/ em_c - 1);

32 r_f = 1/em + A/A_f *(1/ em_f - 1);

33

34 % End

35 save('properties.mat ');
36 clear

s_steel_wall_model_0D_KF.m
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1 % ------------------------------------------------------------------------

2 % Name: s_steel_wall_model_0D_KF.m

3 % Desc: This script calculates the temperature of the steel wall sensor

4 % and heat flux to the steel wall sensor during a fire exposure

5 % using the 0D kalman filter model.

6 % Note: Increase the process gain to make the filter favour measurements

7 % over process estimates , but decrease certainty in the predictions.

8 % ------------------------------------------------------------------------

9

10 %% PREAMBLE

11

12 % Initialize script

13 clear;clc;

14 disp('-----------------------------------------------------------');
15 disp('Thermal capacitance model for steel wall sensor (0D KF).');
16 disp('-----------------------------------------------------------');
17 disp('Initializing... ');
18 s_import_data_0D_KF;

19 if not(exist('filename ','var'))
20 disp('No file selected. Script aborted. ');
21 disp('-----------------------------------------------------------');
22 return

23 end

24 disp(['Datafile selected: ' filename ]);

25 filename = replace(filename ,'.mat','');
26

27 % Script options

28 tempvar = input('Plot results (y/n)? ','s');
29 if tempvar == 'y'; plot_results = true; else; plot_results = false; end;

30 tempvar = input('Save results (y/n)? ','s');
31 if tempvar == 'y'; save_results = true; else; save_results = false; end;

32

33 % Process and sensor variance

34 phi = 0.05;

35 std_pro = zeros(n,n_steps );

36 std_sen = ones(n ,1)*2.0;

37

38 % Convergeance criteria

39 threshold = 0.1;

40 max_iterations = 100;

41 ht_count_max = 1;

42 ht_count_sum = 1;

43

44 % Pre -allocate variables

45 x = zeros(n,n_steps );

46 P = zeros(n,n,n_steps );

47 q_inc_m = zeros(n,n_steps );

48 q_inc_s = zeros(n,n_steps );

49

50 % Initial Conditions

51 T_i = T_w_meas (1);

52 [x(:,1),P(:,:,1), std_pro (:,1), q_inc_m (:,1), q_inc_s (:,1)] = ...

53 f_initial(dt,n,T_i ,T_inf_f (:,1), T_inf_c (:,1), T_sur_c (:,1),T_l(:,1),phi);
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54

55 %% MAIN

56

57 % Run the Kalman Filter

58 progress = 0;

59 n_update = 1;

60 for k = 2: n_steps

61 % Progress / housekeeping

62 if mod(k-1,n_update) == 0

63 fprintf(1, repmat('\b',1,progress ));
64 progress = fprintf('Running Kalman filter... %d of %d',k-1,n_steps );
65 end

66 ht_count = 1;

67 % Prior state and covariance

68 x_old = x(:,k-1);

69 x_calc = x_old;

70 P_old = P(:,:,k-1);

71 P_calc = P_old;

72 % Current measurements

73 z = T_w_meas(:,k);

74 % State calculations

75 while true

76 % Heat transfer coefficients

77 [alpha ,gamma] = f_ht_calc_fwd(dt,x_calc ,T_inf_f(:,k),T_sur_f(k),...

78 T_inf_c(k),T_sur_c(k),T_l(:,k));

79 % Process error

80 std_pro(:,k) = phi*alpha;

81 % Setup Kalman filter matrices

82 [F,B,u,Q,R,H] = f_kf_setup(dt ,alpha ,gamma ,std_pro(:,k),std_sen );

83 % Predict state

84 [x_new ,P_new] = f_kf_predict(x_old ,P_old ,F,Q,B,u);

85 % Update state

86 [x_new ,P_new] = f_kf_update(x_new ,P_new ,z,R,H);

87 % Update parameters

88 [alpha_new ,gamma_new] = f_ht_calc_fwd(dt,x_new ,T_inf_f(:,k),...

89 T_sur_f(k),T_inf_c(k),T_sur_c(k),T_l(:,k));

90 % Check parameters

91 if f_param_check(alpha ,alpha_new ,threshold ); break; end;

92 x_calc = x_new;

93 P_calc = P_new;

94 ht_count = ht_count +1;

95 if ht_count > max_iterations

96 fprintf(1, repmat('\b',1,progress ));
97 progress = fprintf('Iteration step did not converge.\n');
98 disp(['Aborted on step ' num2str(k) ' of ' num2str(n_steps) '.']);
99 disp('-----------------------------------------------------------');

100 return;

101 end

102 end

103 % Output posterior state and parameters

104 x(:,k) = x_new;

105 P(:,:,k) = P_new;

106 % Calculate heat flux (inverse solution)
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107 [q_inc_m(:,k),q_inc_s(:,k)] = f_ht_calc_inv(dt ,x_new ,x_old ,...

108 P_new ,T_inf_f(:,k),T_inf_c(k),...

109 T_sur_c(k),T_l(:,k),std_pro(:,k));

110 % Calculate performance stats

111 if ht_count > ht_count_max; ht_count_max = ht_count; end;

112 ht_count_sum = ht_count_sum + ht_count;

113 end

114

115 % Update progress

116 fprintf(1, repmat('\b',1,progress ));
117 progress = fprintf('Running Kalman filter...\n');
118

119 %% POST -PROCESSING

120

121 % Plot results

122 if plot_results

123

124 % Plot settings

125 disp('Plotting results... ');
126 plot_width = 3.2;

127 plot_height = 2.8;

128 plot_scale = 2;

129 range_start = 1;

130 range_end = k;

131 x_data = time(range_start:range_end )/60;

132 degC = [sprintf('%c', char (176)) 'C'];
133

134 % Plot temperature

135 f = figure (1); clf;

136 clear y_data

137 hold on;

138 if dummy

139 y_data (1,:) = T_inf_f(1, range_start:range_end )-273.15;

140 y_data (2,:) = x(1, range_start:range_end )-273.15;

141 y_data (3,:) = T_w_meas(1, range_start:range_end )-273.15;

142 y_data (4,:) = T_w_proc(1, range_start:range_end )-273.15;

143 p(1) = plot(x_data ,y_data (1,:),'k-','LineWidth ',0.5*plot_scale );
144 p(2) = plot(x_data ,y_data (2,:),'k-','LineWidth ',1.0*plot_scale );
145 p(3) = plot(x_data ,y_data (3,:),'r:','LineWidth ',1.0*plot_scale );
146 p(4) = plot(x_data ,y_data (4,:),'b:','LineWidth ',1.0*plot_scale );
147 h = legend(p,'Fire gas','Kalman filter ',...
148 'Measurements ','Process model');
149 else

150 y_data (1,:) = T_inf_f(1, range_start:range_end )-273.15;

151 y_data (2,:) = x(1, range_start:range_end )-273.15;

152 y_data (3,:) = T_w_meas(1, range_start:range_end )-273.15;

153 p(1) = plot(x_data ,y_data (1,:),'r-','LineWidth ',0.5*plot_scale );
154 p(2) = plot(x_data ,y_data (2,:),'k-','LineWidth ',1.0*plot_scale );
155 p(3) = plot(x_data ,y_data (3,:),'k:','LineWidth ',2.0*plot_scale );
156 h = legend(p,'Fire gas','Kalman filter ','Measurements ');
157 end

158 xlabel('Time (min)'); xlim([0,round(t_tot /60 ,0)]);

159 xticks (0: round(t_tot /60 ,0)/5: round(t_tot /60 ,0));
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160 ylabel (['Temperature (' degC ')']); ylim ([0 ,600]); yticks (0:100:600);

161 s_plot_settings;

162 hold off

163 if save_results; saveas(gcf ,['fig -' filename '-T'],'epsc'); end;

164 clear f p h

165

166 % Plot heat flux

167 f = figure (2); clf;

168 clear y_data

169 hold on;

170 if dummy

171 y_data (1,:) = q_inc_m(1, range_start:range_end )/1000;

172 y_data (2,:) = y_data (1,:) + q_inc_s(1, range_start:range_end )/1000;

173 y_data (3,:) = y_data (1,:) - q_inc_s(1, range_start:range_end )/1000;

174 y_data (4,:) = q_f_meas(1, range_start:range_end )/1000;

175 y_data (5,:) = q_f_proc(1, range_start:range_end )/1000;

176 p(1) = plot(x_data ,y_data (1,:),'k-','LineWidth ',1.0*plot_scale );
177 p(2) = plot(x_data ,y_data (2,:),'k-','LineWidth ',0.5*plot_scale );
178 p(3) = plot(x_data ,y_data (3,:),'k-','LineWidth ',0.5*plot_scale );
179 p(4) = plot(x_data ,y_data (4,:),'r:','LineWidth ',1.0*plot_scale );
180 p(5) = plot(x_data ,y_data (5,:),'b:','LineWidth ',1.0*plot_scale );
181 h = legend ([p(1) p(2) p(4) p(5)],'Kalman Filter (\mu)',...
182 'Kalman Filter (\mu\pm\sigma)',...
183 'Measurements ',...
184 'Process model');
185 else

186 y_data (1,:) = q_inc_m(1, range_start:range_end )/1000;

187 y_data (2,:) = y_data (1,:) + q_inc_s(1, range_start:range_end )/1000;

188 y_data (3,:) = y_data (1,:) - q_inc_s(1, range_start:range_end )/1000;

189 p(1) = plot(x_data ,y_data (1,:),'k-','LineWidth ',1.0*plot_scale );
190 p(2) = plot(x_data ,y_data (2,:),'r-','LineWidth ',0.5*plot_scale );
191 p(3) = plot(x_data ,y_data (3,:),'b-','LineWidth ',0.5*plot_scale );
192 h = legend ([p(1) p(2) p(3)],'Kalman Filter (\mu)',...
193 'Kalman Filter (\mu+\sigma)',...
194 'Kalman Filter (\mu -\sigma)');
195 end

196 xlabel('Time (min)'); xlim([0,round(t_tot /60 ,0)]);

197 xticks (0: round(t_tot /60 ,0)/5: round(t_tot /60 ,0));

198 ylabel('Incident Heat Flux (kW/m^2)'); ylim ([0 ,25]); yticks (0:5:25);

199 s_plot_settings;

200 hold off

201 if save_results; saveas(gcf ,['fig -' filename '-HF'],'epsc'); end;

202 clear f p h

203

204 end

205

206 % Complete script

207 disp('Script completed!');
208 if save_results

209 save(['results -' filename '.mat'],'time','x','T_w_meas ','T_inf_f ',...
210 'q_inc_m ','q_inc_s ','std_pro ');
211 disp(['Results saved to: results -' filename '.mat']);
212 end
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213 disp('-----------------------------------------------------------');
214 disp(['Total number of steps: ' num2str(k)]);

215 disp(['Total number of iterations: ' num2str(ht_count_sum )]);

216 disp(['Avg iterations per step: ' num2str(round(ht_count_sum/k ,2))]);

217 disp(['Max iterations per step: ' num2str(ht_count_max )]);

218 disp('-----------------------------------------------------------');

F.4 Steel Wall Kalman Filter (2D)

f_chtc.m

1 % ------------------------------------------------------------------------

2 % Name: f_chtc.m

3 % Desc: This function calculates the convection heat transfer coefficient

4 % on a wall in a compartment fire using a correlation:

5 % <http :// jfs.sagepub.com/content /31/5/410 .full.pdf+html >.

6 % ------------------------------------------------------------------------

7 function result = f_chtc(T_gas ,T_surface)

8

9 % % Generalized method (Equation 15 of the paper)

10 % T_ratio = (T_gas -T_surface )/ T_gas;

11 % if T_ratio < 0.2

12 % h_star = (2e-3);

13 % else

14 % h_star = (16e-3)* T_ratio;

15 % end

16 % cp = 1000; % J/kgK

17 % rho = 1.2; % kg/m^3

18 % g = 9.81; % m/s^2

19 % l = 89.5*0.0254; % m

20 % result = h_star*rho*cp*(g*l)^(1/2); % W/m^2K

21

22 % Curve fit method (approximation of the same curve , but with a smoother

23 % transition and less computational cost)

24 result = 0.0583*abs(T_gas -T_surface) + 13.3;

25

26 end

f_ht_calc_fwd.m

1 % ------------------------------------------------------------------------

2 % Name: f_ht_calc_fwd.m

3 % Desc: This function calculates the heat transfer coefficients used in

4 % the forward computation step of the 2D Kalman filter model.
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5 % ------------------------------------------------------------------------

6 function [alpha ,beta] = f_ht_calc_fwd(dt,a,b,x,T_inf_f ,...

7 T_sur_f ,T_inf_c ,T_sur_c)

8

9 % Heat transfer coefficients

10 h_cf = f_chtc(T_inf_f ,x);

11 h_rf = (x+T_sur_f).*(x.^2+ T_sur_f. ^2);

12 h_cc = f_chtc(T_inf_c ,x);

13 h_rc = (x+T_sur_c).*(x.^2+ T_sur_c. ^2);

14

15 % Beta

16 beta_tot = b(:,1) + b(:,2) + b(:,3) + b(:,4) + ...

17 b(:,5).*h_rf + b(:,6).*h_cf + b(:,7).*h_rc + b(:,8).*h_cc;

18 beta (:,:) = [(1/dt -beta_tot),b(:,1),b(:,2),b(:,3),b(: ,4)];

19

20 % Alpha

21 alpha_c = a(:,3).*h_rc.*T_sur_c + a(:,1).*h_cc.*T_inf_c;

22 alpha_f = a(:,2).*h_rf.*T_sur_f + a(:,1).*h_cf.*T_inf_f;

23 alpha = alpha_f + alpha_c;

24

25 end

f_ht_calc_inv.m

1 % ------------------------------------------------------------------------

2 % Name: f_ht_calc_fwd.m

3 % Desc: This function calculates the heat transfer coefficients used in

4 % the inverse computation step of the 2D Kalman filter model.

5 % ------------------------------------------------------------------------

6 function [q_inc_m ,q_inc_s] = f_ht_calc_inv(dt,n,n_ref ,a,b,x_new ,x_old ,...

7 P_new ,T_inf_f ,T_inf_c ,T_sur_c ,std_pro)

8

9 % Heat transfer coefficients

10 h_cf = f_chtc(T_inf_f ,x_new);

11 h_cc = f_chtc(T_inf_c ,x_new);

12 h_rc = (x_new+T_sur_c).*( x_new. ^2+ T_sur_c. ^2);

13

14 % Beta

15 beta_tot = b(:,1) + b(:,2) + b(:,3) + b(:,4) + ...

16 b(:,7).*h_rc + b(:,8).*h_cc;

17 beta (:,:) = [(1/dt -beta_tot),b(:,1),b(:,2),b(:,3),b(: ,4)];

18

19 % Inverse state transition function

20 F = zeros(n,n);

21 for i = 1:n

22 ref = n_ref(i,:);

23 for j = 1:5

24 F(i,ref(j)) = dt*beta(i,j);

25 end

26 end

27
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28 % Alpha

29 alpha_c = a(:,3).*h_rc.*T_sur_c + a(:,1).*h_cc.*T_inf_c;

30 alpha_m = 1/dt*( x_new - F*x_old );

31

32 % Variance on alpha

33 G = eye(n)*dt;

34 S = diag(std_pro. ^2);

35 % S = phi*(eye(n)* std_pro ^2);

36 Q = G*S*G. ';
37 alpha_s = sqrt(diag(Q))/(dt);

38

39 % Calculate net heat flux and variance

40 q_net_m = -a(:,1).^(-1).*( alpha_m - alpha_c );

41 q_net_s = a(:,1).^(-1).*( alpha_s );

42 q_net_v = q_net_s*q_net_s. ';
43

44 % Calculate incident heat flux and variance

45 sbconst = 5.6704e -8;

46 em = 0.98;

47 q_inc_m = -1/em*q_net_m + sbconst*x_new. ^4 + 1/em*h_cf.*( x_new - T_inf_f );

48 q_inc_v = 1/em*q_net_v + sbconst *( P_new. ^4) + 1/em*h_cf. *( P_new);

49 q_inc_s = sqrt(diag(q_inc_v ));

50

51 end

f_import_state_refs.m

1 % ------------------------------------------------------------------------

2 % Name: f_import_state_refs.m

3 % Desc: This function imports all state reference and heat transfer

4 % coefficient data for a given model formulation from CSV files.

5 % ------------------------------------------------------------------------

6 function [n,n_hid ,n_var ,n_wall ,n_wall_r ,n_wall_c ,n_ref ,n_T_f_ref ,a,b] ...

7 = f_import_state_refs(filename)

8

9 % Import data

10 delimiter = ',';
11 startRow = 2;

12 formatSpec = '%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%[^\n\r]';
13 fileID = fopen(filename ,'r');
14 dataArray = textscan(fileID ,formatSpec ,'Delimiter ',delimiter ,...
15 'HeaderLines ',startRow -1, 'ReturnOnError ', false ,...

16 'EndOfLine ', '\r\n');
17 fclose(fileID );

18 raw = repmat ({''},length(dataArray {1}), length(dataArray )-1);
19 for col =1: length(dataArray)-1

20 raw (1: length(dataArray{col}),col) = dataArray{col};

21 end

22 numericData = NaN(size(dataArray {1},1), size(dataArray ,2));

23 for col=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23]

24 rawData = dataArray{col};
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25 for row =1: size(rawData , 1);

26 regexstr = '(?<prefix >.*?)(?< numbers >([ -]*(\d+[\ ,]*)+[\.]{0 ,1}\d*...
27 [eEdD ]{0 ,1}[ -+]*\d*[i]{0 ,1})|([ -]*(\d+[\ ,]*)*[\.]{1 ,1}...

28 \d+[eEdD ]{0 ,1}[ -+]*\d*[i]{0 ,1}))(? < suffix >.*)';
29 try

30 result = regexp(rawData{row}, regexstr , 'names ');
31 numbers = result.numbers;

32 invalidThousandsSeparator = false;

33 if any(numbers ==',');
34 thousandsRegExp = '^\d+?(\ ,\d{3})*\.{0,1}\d*$';
35 if isempty(regexp(numbers , thousandsRegExp , 'once'));
36 numbers = NaN;

37 invalidThousandsSeparator = true;

38 end

39 end

40 if ¬invalidThousandsSeparator;
41 numbers = textscan(strrep(numbers , ',', ''), '%f');
42 numericData(row , col) = numbers {1};

43 raw{row , col} = numbers {1};

44 end

45 catch me

46 end

47 end

48 end

49

50 % Wall configuration

51 n = cell2mat(raw(1, 18));

52 n_hid = cell2mat(raw(1, 19));

53 n_var = cell2mat(raw(1, 20));

54 n_wall = cell2mat(raw(1, 21));

55 n_wall_r = cell2mat(raw(1, 22));

56 n_wall_c = cell2mat(raw(1, 23));

57

58 % State references

59 state = cell2mat(raw(:, 1));

60 state_x1 = cell2mat(raw(:, 2));

61 state_x2 = cell2mat(raw(:, 3));

62 state_y1 = cell2mat(raw(:, 4));

63 state_y2 = cell2mat(raw(:, 5));

64 n_ref = [state ,state_x1 ,state_x2 ,state_y1 ,state_y2 ];

65 n_T_f_ref = cell2mat(raw(:, 6));

66

67 % Beta

68 b_x1 = cell2mat(raw(:, 7));

69 b_x2 = cell2mat(raw(:, 8));

70 b_y1 = cell2mat(raw(:, 9));

71 b_y2 = cell2mat(raw(:, 10));

72 b_rf = cell2mat(raw(:, 11));

73 b_cf = cell2mat(raw(:, 12));

74 b_rc = cell2mat(raw(:, 13));

75 b_cc = cell2mat(raw(:, 14));

76 b = [b_x1 ,b_x2 ,b_y1 ,b_y2 ,b_rf ,b_cf ,b_rc ,b_cc];

77
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78 % Alpha

79 a = cell2mat(raw(:, 15));

80 a_rf = cell2mat(raw(:, 16));

81 a_rc = cell2mat(raw(:, 17));

82 a = [a,a_rf ,a_rc];

83

84 end

f_initial.m

1 % ------------------------------------------------------------------------

2 % Name: f_initial.m

3 % Desc: This function calculates the initial state , covariance , and heat

4 % flux for input to the 0D Kalman filter model.

5 % ------------------------------------------------------------------------

6 function [x,P,std_pro ,q_inc_m ,q_inc_s] = f_initial(dt,n,n_ref ,a,b,T_i ,...

7 T_inf_f ,T_inf_c ,T_sur_c ,phi)

8

9 % State

10 x = ones(n,1)* T_i;

11

12 % Heat transfer coefficients

13 h_cc = f_chtc(T_inf_c ,x);

14 h_rc = (x+T_sur_c).*(x.^2+ T_sur_c. ^2);

15

16 % Beta

17 beta_tot = b(:,1) + b(:,2) + b(:,3) + b(:,4) + ...

18 b(:,7).*h_rc + b(:,8).*h_cc;

19 beta (:,:) = [(1/dt -beta_tot),b(:,1),b(:,2),b(:,3),b(: ,4)];

20

21 % Inverse state transition function

22 F = zeros(n,n);

23 for i = 1:n

24 ref = n_ref(i,:);

25 for j = 1:5

26 F(i,ref(j)) = dt*beta(i,j);

27 end

28 end

29

30 % Alpha

31 alpha_m = 1/dt*(x - F*x);

32

33 % Process variance

34 std_pro = phi*alpha_m;

35

36 % State variance

37 P = diag(( std_pro (: ,1)*dt).^2);

38

39 % Heat flux

40 [q_inc_m ,q_inc_s] = f_ht_calc_inv(dt,n,n_ref ,a,b,x,x,P,...

41 T_inf_f ,T_inf_c ,T_sur_c ,std_pro );
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42

43 end

f_kf_H.m

1 % ------------------------------------------------------------------------

2 % Name: f_kf_H.m

3 % Desc: This function calculates the transformation matrix based on the

4 % user -selected number of sensors and states.

5 % ------------------------------------------------------------------------

6 function [ H ] = f_kf_H(m,n,n_hid)

7

8 % Transformation matrix for n states and m sensors (m = n, interpolated)

9 H = zeros(m+n_hid ,n);

10 for i = 1:m

11 H(i,i) = 1;

12 end

13 for i = 1:n_hid

14 H(m+i,(n-n_hid )+i) = 1;

15 end

16

17 end

f_kf_predict.m

1 % ------------------------------------------------------------------------

2 % Name: f_kf_update.m

3 % Desc: This function calculates the mean and variance for the predict

4 % step of the Kalman filter.

5 % ------------------------------------------------------------------------

6 function [x_new ,P_new] = f_kf_predict(x,P,F,Q,varargin)

7

8 % Resolve the optional control input function (B and U)

9 numvarargs = length(varargin );

10 if numvarargs > 2

11 error('Error: f_predict requires either 4 or 6 inputs ');
12 end

13 optargs = {0 0};

14 optargs (1: numvarargs) = varargin;

15 [B,u] = optargs {:};

16

17 % Calculate the new prior

18 x_new = F*x + B*u;

19 P_new = F*P*F.' + Q;

20

21 end

249



f_kf_setup.m

1 % ------------------------------------------------------------------------

2 % Name: f_kf_setup.m

3 % Desc: This function sets up the various inputs to the Kalman filter.

4 % ------------------------------------------------------------------------

5 function [F,B,u,Q,R,H] = f_kf_setup(dt ,n,n_hid ,m,n_ref ,alpha ,beta ,...

6 std_pro ,std_sen)

7

8 % State transition function

9 F = zeros(n,n);

10 for i = 1:n

11 for j = 1:5

12 F(i,n_ref(i,j)) = dt*beta(i,j);

13 end

14 end

15

16 % Control input function

17 B = eye(n)*dt;

18

19 % Control input

20 u = alpha;

21

22 % Process covariance

23 G = B;

24 S = diag(std_pro. ^2);

25 Q = G*S*G. ';
26

27 % Measurement covariance

28 R = diag(std_sen. ^2);

29

30 % Measurement transformation

31 H = f_kf_H(m,n,n_hid );

32

33 end

f_kf_update.m

1 % ------------------------------------------------------------------------

2 % Name: f_kf_update.m

3 % Desc: This function calculates the mean and variance for the update

4 % step of the Kalman filter.

5 % ------------------------------------------------------------------------

6 function [x_new ,P_new ,K] = f_kf_update(x,P,z,R,varargin)

7

8 % Resolve the optional measurement function (B and U)

9 numvarargs = length(varargin );

10 if numvarargs > 1

11 error('Error: f_update requires either 4 or 5 inputs ');
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12 end

13 optargs = {0};

14 optargs (1: numvarargs) = varargin;

15 [H] = optargs {:};

16

17 % Calculate the system uncertainty , Kalman gain , and residual

18 S = H*P*H. ' + R;

19 K = (P*H. ')/S;
20 y = z - H*x;

21

22 % Calculate the new posterior

23 x_new = x + K*y;

24 P_new = (eye(size(x,1)) - K*H)*P;

25

26 end

f_param_check.m

1 % ------------------------------------------------------------------------

2 % Name: f_param_check.m

3 % Desc: This function calculates the percent difference between two values

4 % and returns a pass/fail based on the specified % threshold.

5 % ------------------------------------------------------------------------

6 function [pass] = f_param_check(prior ,posterior ,threshold_percent)

7

8 p_diff = abs(posterior -prior)./mean([posterior ,prior ] ,2)*100;

9 if p_diff < threshold_percent

10 pass = true;

11 else

12 pass = false;

13 end

14

15 end

s_import_data_2D_KF.m

1 % ------------------------------------------------------------------------

2 % Name: s_import_data_2D_KF.m

3 % Desc: This script imports reduced datafiles from a steel wall test to

4 % be used with the 2D Kalman filter model. The user can also select

5 % a "dummy" datafile , created by "s_steel_wall_model_0D.m".

6 % ------------------------------------------------------------------------

7

8 %% MAIN

9

10 % Import test data

11 filename = uigetfile('*.mat','Select a steel wall test data file (MAT).');
12 if filename == 0
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13 clear filename

14 return

15 else

16 load(filename );

17 end

18 if exist('PROC_WALL ','var')
19 disp('Dummy data file selected , proc variables ignored. ');
20 end

21

22 % Import state references

23 staterefs = uigetfile('*.csv','Select a state references file (CSV).');
24 if staterefs == 0

25 clear staterefs

26 return

27 end

28 [n,n_hid ,n_var ,n_wall ,n_wall_r ,n_wall_c ,n_ref ,n_T_f_ref ,a,b] = ...

29 f_import_state_refs(staterefs );

30

31 % Timing

32 dt = EXP_TIME_DT;

33 n_offset = round(EXP_TIME_IGN/EXP_TIME_DT ,0)+1;

34 n_steps = round(EXP_TIME_TOTAL/EXP_TIME_DT ,0)+1;

35 time_range = n_offset:n_steps+n_offset -1;

36 t_tot = (n_steps -1)*dt;

37 time = 0:dt:t_tot;

38

39 % Fire -side gases and surroundings

40 T_inf_ff = EXP_FIRE_GAS(time_range ,:).';
41 T_sur_f = mean(T_inf_ff ,1);

42 T_inf_f = zeros(n,n_steps );

43 for i = 1:n

44 T_inf_f(i,:) = T_inf_ff(n_T_f_ref(i),:);

45 end

46

47 % Cool -side gases and surroundings

48 T_inf_c = EXP_BACK_GAS(time_range).';
49 T_sur_c = EXP_BACK_SURR(time_range).';
50

51 % Wall frame

52 T_l_left = EXP_FRAME(time_range ,2).';
53 T_l_right = EXP_FRAME(time_range ,2).';
54 T_l_top = EXP_FRAME(time_range ,1).';
55 T_l_bot = EXP_FRAME(time_range ,3).';
56 T_l = [T_l_left; T_l_right; T_l_top; T_l_bot ];

57 clear T_l_left T_l_right T_l_top T_l_bot

58

59 % Steel wall (meas)

60 T_w_left = EXP_WALL(time_range ,1:8 ,1).';
61 T_w_mid = EXP_WALL(time_range ,1:8 ,2).';
62 T_w_right = EXP_WALL(time_range ,1:8 ,3).';
63 T_w = [T_w_left; T_w_mid; T_w_right ];

64 clear T_w_left T_w_mid T_w_right

65
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66 % Interpolate measured data over the modelling grid

67 T_w = f_meas_interp(T_w ,n_wall_r ,n_wall_c ,n_steps ,false );

68 m = size(T_w ,1);

s_plot_contours.m

1 % ------------------------------------------------------------------------

2 % Name: s_plot_contours_quick.m

3 % Desc: This script builds contour plots for incident heat flux and

4 % temperature at a particular time.

5 % ------------------------------------------------------------------------

6

7 %% PREAMBLE

8

9 % Contour details

10 contour_plot_time = 40;

11 T_min = 0;

12 T_max = 600;

13 HF_min = 0;

14 HF_max = 60;

15 contour_divs = 15;

16 contour_lines = 'none'; % change to 'black ' to add contour lines

17

18 % Plot settings

19 plot_width = 3.2;

20 plot_height = 2.6;

21 plot_scale = 2;

22 save_vector = true;

23 save_raster = false;

24

25 %% TEMPERATURE PLOTS

26

27 % Wall geometry

28 W_tot = (75)*25 .4 /1000;

29 H_tot = (75)*25 .4 /1000;

30 W = W_tot/n_wall_c;

31 H = H_tot/n_wall_r;

32

33 % Assemble contour array (repeat each row/column twice)

34 plot_var = zeros (2* n_wall_r ,2* n_wall_c ,n_steps );

35 for k = 1: n_steps

36 for j = 1: n_wall_c

37 for i = 1: n_wall_r

38 tempvar = x(i+n_wall_r *(j-1),k)-273.15;

39 plot_var (2*i-1,2*j-1,k) = tempvar; % Top -left

40 plot_var (2*i-0,2*j-1,k) = tempvar; % Bot -left

41 plot_var (2*i-1,2*j-0,k) = tempvar; % Top -right

42 plot_var (2*i-0,2*j-0,k) = tempvar; % Bot -right

43 end

44 end

45 end
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46

47 % Contour spacing , horizontal

48 sx = W/2-0.001;

49 X(1,1) = 0;

50 for i = 2:2* n_wall_c -1

51 if mod(i/2 ,1)==0

52 X(1,i) = floor(i/2)*W-sx;

53 else

54 X(1,i) = floor(i/2)*W+sx;

55 end

56 end

57 X(1,2* n_wall_c) = n_wall_c*W;

58

59 % Contour spacing , veritcal

60 sy = H/2-0.001;

61 Y(1,1) = 0;

62 for i = 2:2* n_wall_r -1

63 if mod(i/2 ,1)==0

64 Y(1,i) = floor(i/2)*H-sy;

65 else

66 Y(1,i) = floor(i/2)*H+sy;

67 end

68 end

69 Y(1,2* n_wall_r) = n_wall_r*H;

70

71 % Universal Plot Settings

72 X_scale = 0: W_tot /6: W_tot;

73 Y_scale = 0: H_tot /6: H_tot;

74 Z_min = T_min;

75 Z_max = T_max;

76 Z_scale = 10;

77 degC = [sprintf('%c', char (176)) 'C'];
78

79 % Contour plot

80 contour_time = contour_plot_time;

81 contour_data = flip(plot_var (:,:,round(contour_time *60/dt ,0)+1) ,1);

82 f = figure (1); clf;

83 contourf(X,Y,contour_data ,contour_divs ,'ShowText ','off',...
84 'LineColor ',contour_lines );
85 colormap(parula(Z_scale*contour_divs ));

86 xlabel('Horizontal Position (m)');
87 ylabel('Vertical Position (m)');
88 box on;

89 caxis([Z_min ,Z_max ]); axis([0,W_tot ,0,H_tot ]);

90 set(gca ,'XTick ',X_scale );set(gca ,'XTickLabel ',sprintf('%1.2f\n',X_scale ));
91 set(gca ,'XTickLabelRotation ' ,0);
92 set(gca ,'YTick ',Y_scale );set(gca ,'YTickLabel ',sprintf('%1.2f\n',Y_scale ));
93 set(gca ,'linewidth ',0.75*plot_scale ); set(gca ,'TickDir ','out');
94 set(gca ,'GridAlpha ',0.25); set(gca ,'GridLineStyle ','-');
95 set(gca ,'GridColor ' ,[0 0 0]);

96 c = colorbar; c.Label.String = ['Temperature (' degC ')'];
97 set(f,'PaperUnits ','inches ');
98 set(f,'PaperPosition ' ,[0 0 plot_scale*plot_width plot_scale*plot_height ]);
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99 set(findall(f,'-property ','FontName '), 'FontName ', 'Times New Roman');
100 set(findall(f,'-property ','FontSize '), 'FontSize ', 10* plot_scale );

101 if save_raster

102 print(['fig -' filename '-' num2str(n_wall) '-contour -T-' ...

103 num2str(contour_time) '.png'],'-dpng','-r300');
104 end

105 if save_vector

106 saveas(gcf ,['fig -' filename '-' num2str(n_wall)...

107 '-contour -T-' num2str(contour_time )],'epsc');
108 end

109

110 %% HEAT FLUX PLOTS

111

112 % Wall geometry

113 W_tot = (75)*25 .4 /1000;

114 H_tot = (75)*25 .4 /1000;

115 W = W_tot/n_wall_c;

116 H = H_tot/n_wall_r;

117

118 % Contour array (repeat each row/column twice)

119 plot_var = zeros (2* n_wall_r ,2* n_wall_c ,n_steps );

120 for k = 1: n_steps

121 for j = 1: n_wall_c

122 for i = 1: n_wall_r

123 tempvar = q_inc_m(i+n_wall_r *(j-1),k)/1000;

124 plot_var (2*i-1,2*j-1,k) = tempvar; % Top -left

125 plot_var (2*i-0,2*j-1,k) = tempvar; % Bot -left

126 plot_var (2*i-1,2*j-0,k) = tempvar; % Top -right

127 plot_var (2*i-0,2*j-0,k) = tempvar; % Bot -right

128 end

129 end

130 end

131

132 % Contour spacing , horizontal

133 sx = W/2-0.001;

134 X(1,1) = 0;

135 for i = 2:2* n_wall_c -1

136 if mod(i/2 ,1)==0

137 X(1,i) = floor(i/2)*W-sx;

138 else

139 X(1,i) = floor(i/2)*W+sx;

140 end

141 end

142 X(1,2* n_wall_c) = n_wall_c*W;

143

144 % Contour spacing , veritcal

145 sy = H/2-0.001;

146 Y(1,1) = 0;

147 for i = 2:2* n_wall_r -1

148 if mod(i/2 ,1)==0

149 Y(1,i) = floor(i/2)*H-sy;

150 else

151 Y(1,i) = floor(i/2)*H+sy;
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152 end

153 end

154 Y(1,2* n_wall_r) = n_wall_r*H;

155

156 % Universal Plot Settings

157 X_scale = 0: W_tot /6: W_tot;

158 Y_scale = 0: H_tot /6: H_tot;

159 Z_min = HF_min;

160 Z_max = HF_max;

161 Z_scale = 10;

162

163 % Contour plot

164 contour_time = contour_plot_time;

165 contour_data = flip(plot_var (:,:,round(contour_time *60/dt ,0)+1) ,1);

166 f = figure (2); clf;

167 contourf(X,Y,contour_data ,contour_divs ,'ShowText ','off',...
168 'LineColor ',contour_lines );
169 colormap(parula(Z_scale*contour_divs ));

170 xlabel('Horizontal Position (m)');
171 ylabel('Vertical Position (m)');
172 box on;

173 caxis([Z_min ,Z_max ]); axis([0,W_tot ,0,H_tot ]);

174 set(gca ,'XTick ',X_scale );set(gca ,'XTickLabel ',sprintf('%1.2f\n',X_scale ));
175 set(gca ,'XTickLabelRotation ' ,0);
176 set(gca ,'YTick ',Y_scale );set(gca ,'YTickLabel ',sprintf('%1.2f\n',Y_scale ));
177 set(gca ,'linewidth ',0.75*plot_scale ); set(gca ,'TickDir ','out');
178 set(gca ,'GridAlpha ',0.25); set(gca ,'GridLineStyle ','-');
179 set(gca ,'GridColor ' ,[0 0 0]);

180 c = colorbar; c.Label.String = 'Incident Heat Flux (kW/m^2)';
181 set(f,'PaperUnits ','inches ');
182 set(f,'PaperPosition ' ,[0 0 plot_scale*plot_width plot_scale*plot_height ]);

183 set(findall(f,'-property ','FontName '), 'FontName ', 'Times New Roman');
184 set(findall(f,'-property ','FontSize '), 'FontSize ', 10* plot_scale );

185 if save_raster

186 print(['fig -' filename '-' num2str(n_wall) '-contour -HF -' ...

187 num2str(contour_time) '.png'],'-dpng','-r300');
188 end

189 if save_vector

190 saveas(gcf ,['fig -' filename '-' num2str(n_wall)...

191 '-contour -HF -' num2str(contour_time )],'epsc');
192 end

s_plot_settings.m

1 % ------------------------------------------------------------------------

2 % Name: s_plot_settings.m

3 % Desc: This script sets various plot settings for visual appearance.

4 % ------------------------------------------------------------------------

5

6 grid on;

7 box on;

256



8 set(gca ,'LineWidth ',0.75*plot_scale );
9 set(gca ,'TickDir ','out');

10 set(gca ,'GridAlpha ',0.25);
11 set(gca ,'GridLineStyle ','-');
12 set(gca ,'GridColor ' ,[0 0 0]);

13 set(f,'PaperUnits ','inches ');
14 set(f,'PaperPosition ' ,[0 0 plot_scale*plot_width plot_scale*plot_height ]);

15 set(findall(f,'-property ','FontName '), 'FontName ', 'Times New Roman');
16 set(findall(f,'-property ','FontSize '), 'FontSize ', 10* plot_scale );

17 set(h,'FontSize ' ,8* plot_scale );
18 set(h,'Location ','Best');

s_steel_wall_model_2D_KF.m

1 % ------------------------------------------------------------------------

2 % Name: s_steel_wall_model_2D_KF.m

3 % Desc: This script calculates the temperature of the steel wall sensor

4 % and heat flux to the steel wall sensor during a fire exposure

5 % using the 2D kalman filter model.

6 % Note: Increase the process gain to make the filter favour measurements

7 % over process estimates , but decrease certainty in the predictions.

8 % ------------------------------------------------------------------------

9

10 %% PREAMBLE

11

12 % Initialize script

13 clear;clc;

14 disp('-----------------------------------------------------------');
15 disp('Kalman Filter solution for a steel wall test (2D model)');
16 disp('-----------------------------------------------------------');
17 disp('Initializing... ');
18 s_import_data_2D_KF;

19 if or(not(exist('filename ','var')),not(exist('staterefs ','var')))
20 disp('No file selected. Script aborted. ');
21 disp('-----------------------------------------------------------');
22 return

23 end

24 disp(['Datafile selected: ' filename ]);

25 disp(['State references file selected: ' staterefs ]);

26 filename = replace(filename ,'.mat','');
27 staterefs = replace(staterefs ,'.csv','');
28

29 % Script options

30 tempvar = input('Plot results (y/n)? ','s');
31 if tempvar == 'y'; plot_results = true; else; plot_results = false; end;

32 tempvar = input('Save results (y/n)? ','s');
33 if tempvar == 'y'; save_results = true; else; save_results = false; end;

34

35 % Process and sensor variance

36 phi = 0.05;

37 std_pro = zeros(n,n_steps );
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38 std_sen = ones(m+n_hid ,1)*2.0;

39

40 % Convergeance criteria

41 threshold = 0.1;

42 max_iterations = 100;

43 ht_count_max = 1;

44 ht_count_sum = 1;

45

46 % Pre -allocate variables

47 x = zeros(n,n_steps );

48 P = zeros(n,n,n_steps );

49 K = zeros(n,m+n_hid ,n_steps );

50 q_inc_m = zeros(n,n_steps );

51 q_inc_s = zeros(n,n_steps );

52

53 % Initial conditions

54 T_i = mean(T_w (: ,1),1);

55 [x(:,1),P(:,:,1), std_pro (:,1), q_inc_m (:,1), q_inc_s (:,1)] = ...

56 f_initial(dt,n,n_ref ,a,b,T_i ,T_inf_f (:,1), T_inf_c (1), T_sur_c (1),phi);

57

58 %% MAIN

59

60 % Run the Kalman Filter

61 progress = 0;

62 n_update = 1;

63 for k = 2: n_steps

64 % Progress / housekeeping

65 if mod(k-1,n_update) == 0

66 fprintf(1, repmat('\b',1,progress ));
67 progress = fprintf('Running Kalman filter... %d of %d',k-1,n_steps );
68 end

69 ht_count = 1;

70 % Prior state and covariance

71 x_old = x(:,k-1);

72 x_calc = x_old;

73 P_old = P(:,:,k-1);

74 P_calc = P_old;

75 % Measurements

76 z(1:m,1) = T_w(:,k);

77 z(m+1:m+n_hid ,1) = T_l(:,k);

78 % State calculations

79 while true

80 % Calculate heat transfer coefficients

81 [alpha ,beta] = f_ht_calc_fwd(dt,a,b,x_calc ,T_inf_f(:,k),...

82 T_sur_f(k),T_inf_c(k),T_sur_c(k));

83 % Process error

84 std_pro(:,k) = phi*alpha;

85 % Setup Kalman filter matrices

86 [F,B,u,Q,R,H] = f_kf_setup(dt ,n,n_hid ,m,n_ref ,alpha ,beta ,...

87 std_pro(:,k),std_sen );

88 % Predict state

89 [x_new ,P_new] = f_kf_predict(x_old ,P_old ,F,Q,B,u);

90 % Update state
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91 [x_new ,P_new ,K_new] = f_kf_update(x_new ,P_new ,z,R,H);

92 % Update parameters

93 [alpha_new ,beta_new] = f_ht_calc_fwd(dt,a,b,x_new ,T_inf_f(:,k),...

94 T_sur_f(k),T_inf_c(k),T_sur_c(k));

95 % Check parameters

96 if f_param_check(alpha (1: n_var),alpha_new (1: n_var),threshold)

97 break;

98 end

99 x_calc = x_new;

100 P_calc = P_new;

101 ht_count = ht_count +1;

102 if ht_count > max_iterations

103 fprintf(1, repmat('\b',1,progress ));
104 progress = fprintf('Iteration step did not converge.\n');
105 disp(['Aborted on step ' num2str(k) ' of ' num2str(n_steps) '.']);
106 disp('-----------------------------------------------------------');
107 return;

108 end

109 end

110 % Output posterior state and parameters

111 x(:,k) = x_new;

112 P(:,:,k) = P_new;

113 K(:,:,k) = K_new;

114 % Calculate heat flux (inverse solution)

115 [q_inc_m(:,k),q_inc_s(:,k)] = f_ht_calc_inv(dt ,n,n_ref ,a,b,x_new ,...

116 x_old ,P_new ,T_inf_f(:,k),T_inf_c(k),...

117 T_sur_c(k),std_pro(:,k));

118 % Calculate performance stats

119 if ht_count > ht_count_max; ht_count_max = ht_count; end;

120 ht_count_sum = ht_count_sum + ht_count;

121 end

122

123 % Update progress

124 fprintf(1, repmat('\b',1,progress ));
125 progress = fprintf('Running Kalman filter...\n');
126

127 %% POST -PROCESSING

128

129 % Plot results

130 if plot_results

131

132 % Plot settings

133 disp('Plotting results... ');
134 plot_width = 3.2;

135 plot_height = 2.8;

136 plot_scale = 2;

137 range_start = 1;

138 range_end = k;

139 x_data = time(range_start:range_end )/60;

140 degC = [sprintf('%c', char (176)) 'C'];
141

142 % Plot temperature

143 f = figure (1); clf;
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144 clear y_data

145 hold on;

146 y_data (1,:) = T_inf_f(1, range_start:range_end )-273.15;

147 y_data (2,:) = T_inf_f(8, range_start:range_end )-273.15;

148 y_data (3,:) = x(round(n_wall /2,0), range_start:range_end )-273.15;

149 y_data (4,:) = T_w(round(m/2,0), range_start:range_end )-273.15;

150 p(1) = plot(x_data ,y_data (1,:),'r-','LineWidth ',0.5*plot_scale );
151 p(2) = plot(x_data ,y_data (2,:),'b-','LineWidth ',0.5*plot_scale );
152 p(3) = plot(x_data ,y_data (3,:),'k-','LineWidth ',1.0*plot_scale );
153 p(4) = plot(x_data ,y_data (4,:),'k:','LineWidth ',2.0*plot_scale );
154 h = legend ([p(1) p(2) p(3) p(4)],'Fire gas (top)',...
155 'Fire gas (bottom)',...
156 'Kalman filter (centre)',...
157 'Measurements (centre)');
158 xlabel('Time (min)'); xlim([0,round(t_tot /60 ,0)]);

159 xticks (0: round(t_tot /60 ,0)/6: round(t_tot /60 ,0));

160 ylabel (['Temperature (' degC ')']); ylim ([0 ,700]); yticks (0:100:700);

161 s_plot_settings;

162 hold off

163 if save_results

164 saveas(gcf ,['fig -' filename '-' num2str(n_wall) '-T'],'epsc')
165 end

166 clear f p h

167

168 % Plot heat Flux

169 f = figure (2); clf;

170 clear y_data

171 hold on;

172 y_data (1,:) = q_inc_m(round(n_wall /2,0), range_start:range_end )/1000;

173 y_data (2,:) = y_data (1,:) + ...

174 q_inc_s(round(n_wall /2,0), range_start:range_end )/1000;

175 y_data (3,:) = y_data (1,:) - ...

176 q_inc_s(round(n_wall /2,0), range_start:range_end )/1000;

177 p(1) = plot(x_data ,y_data (1,:),'k-','LineWidth ',1.0*plot_scale );
178 p(2) = plot(x_data ,y_data (2,:),'r-','LineWidth ',0.5*plot_scale );
179 p(3) = plot(x_data ,y_data (3,:),'b-','LineWidth ',0.5*plot_scale );
180 h = legend ([p(1) p(2) p(3)],'Kalman Filter (\mu)',...
181 'Kalman Filter (\mu+\sigma)',...
182 'Kalman Filter (\mu -\sigma)');
183 xlabel('Time (min)'); xlim([0,round(t_tot /60 ,0)]);

184 xticks (0: round(t_tot /60 ,0)/6: round(t_tot /60 ,0));

185 ylabel('Incident Heat Flux (kW/m^2)'); ylim ([0 ,70]); yticks (0:10:70);

186 s_plot_settings;

187 hold off

188 if save_results

189 saveas(gcf ,['fig -' filename '-' num2str(n_wall) '-HF'],'epsc')
190 end

191 clear f p h

192

193 end

194

195 % Complete script

196 disp('Script completed!');
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197 if save_results

198 save(['results -' filename '.mat'],'time','x','K','T_w','T_inf_f ',...
199 'q_inc_m ','q_inc_s ','std_pro ');
200 disp(['Results saved to: results -' filename '.mat']);
201 end

202 disp('-----------------------------------------------------------');
203 disp(['Total number of steps: ' num2str(k)]);

204 disp(['Total number of iterations: ' num2str(ht_count_sum )]);

205 disp(['Average iterations per step: ' num2str(round(ht_count_sum/k ,2))]);

206 disp(['Maximum iterations per step: ' num2str(ht_count_max )]);

207 disp('-----------------------------------------------------------');
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Appendix G

State Reference Data for the Heat

Flux Model

This appendix contains a Portable Document Format (PDF) file of the state reference

data for use with the 2D Steel Wall Kalman filter (data-state-refs.pdf). The data

files were created in Excel 2017 and exported to PDF. The page size is ANSI A portrait

(8.5 in × 11 in).

If you accessed this thesis from a source other than the University of Waterloo, you

may not have access to this file. You may access it by searching for this thesis on

https://uwspace.uwaterloo.ca/UWSpace.
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