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Abstract

The goal of spectral geometry is to establish how much information about the geom-
etry of compact Riemannian manifolds is contained in the spectra of natural differential
operators, especially Laplacians, defined on them. Ideally, one would like to be able to
recover the Riemannian manifold, up to isometry, from the spectra of one or several such
operators. This would be a very powerful result, as it would introduce an invariant way
to describe the shape of Riemannian manifolds. The consequences of such a result would
range from practical applications such as shape recognition to theoretical insights into
quantum gravity.

However, the most general form of such statements is known to be false. There are a
number of known counterexamples, that is isospectral but not isometric manifolds. Indeed,
there are even techniques to construct such counterexamples. Nonetheless, it is believed
that almost all Riemannian manifolds can be identified by their spectra. In other words,
the counterexamples are expected to be exceedingly rare special cases. This has been
shown to be the case in some restricted classes of manifolds. The proof in the general case
has remained elusive.

The main goal of this thesis is to move towards such a proof by studying the structure of
isospectral sets of metrics. The main tool we use for this purpose is perturbation theory, a
method ubiquitous in physics, but strangely underused in spectral geometry. Consequently,
a secondary goal of this work is to demonstrate the usefulness of perturbation theory to
the study of spectral geometry. We begin by a numerical exploration of spectral geometry
in a perturbative regime. Then, we show that sets of isospectral conformally equivalent
metrics on boundaryless manifolds of dimension two contain no convex subsets. This is an
entirely new type of result in spectral geometry. We argue that it could lead to a proof of
the rarity of counterexamples in the program of identifying shapes by their spectra.

The thesis also includes reviews of the fundamentals of the spectral theory of Laplace-
type operators, of major results in spectral geometry and of perturbation theory.
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Chapter 1

Introduction

Consider the wave equation in some compact domain Ω ⊂ R2,

∂2

∂t2
ψ + ∆ψ = 0 . (1.1)

This equation can be seen as the mathematical model for the vibration of the membrane
of a drum. From usual separation of variables considerations [54], a general solution for
this problem will involve solving the Laplacian eigenvalue problem:

∆ψn = λnψn . (1.2)

The eigenvalues {λn}∞n=0 depend on the geometry of Ω, as well as on the boundary condi-
tions imposed on ∂Ω. In principle, one can always obtain the spectrum {λn}∞n=0 given Ω
and the boundary conditions.

One can then pose the inverse problem. Given the {λn}∞n=0, can one find Ω? Since
the eigenvalues {λn}∞n=0 represent the squares of the resonant frequencies of a drum, this
question can be rephrased as “Can one hear the shape of a drum?” This formulation was
popularized by Mark Kac’s paper of the same title [64] 1.

More generally, analogous problems can be posed for the various differential operators
that one can define on compact Riemannian manifolds. The study of the relationship
between the spectra and the geometry of those manifolds is known as spectral geometry.
By far, the favorite subject in spectral geometry is the spectrum of the Laplace-Beltrami

1In [64], Kac attributes this picturesque phrasing to Lipman Bers.
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operator, the generalization of the usual Laplacian from multivariate and vector calculus.
Other operators, such as the Hodge Laplacian, are also commonly considered. The specific
problem of recovering the shape of a manifold from spectrum alone is sometimes known as
inverse spectral geometry. We will adopt this terminology.

The program of inverse spectral geometry makes some very tempting promises. Indeed,
suppose that one is able to reconstruct Riemannian manifolds from the spectra of some
Laplacians, up to isometry. This would provide a privileged description of shapes. Indeed,
the eigenvalues are geometric invariants. This means that they depend on the Riemannian
structure alone. This contrasts sharply with the usual descriptions of geometric shapes,
which all depend on choices like coordinates or spatial orientations.

Having access to such methods would be of great benefit in a number of fields. For
instance, in shape recognition, it has been proposed to use the Laplace-Beltrami spectrum
as a shape identifier [94]. Inverse spectral methods could be used to design resonators for
electromagnetic or acoustic waves. For example, inverse spectral ideas have been applied
to the design of musical instruments [11].

The most tantalizing of the potential applications of inverse spectral geometry is the
description of the shape of space-time in the context of (Euclidean) quantum gravity. A
major hurdle to the formulation of a theory of quantum gravity lies in the fact that one
does not have access to a unique description of possible configurations of space-time. It
has been proposed that inverse spectral geometry could be the solution to that problem
[69, 70]. Moreover, being at the interface of differential geometry and functional analysis,
spectral geometry seems like a natural candidate for a mathematical framework unifying
the very distinct worlds of general relativity and quantum theory. See [73, 37] for some
applications of spectral geometric ideas to the study of theories of gravity.

There is, however, a problem with the inverse spectral geometric program. Indeed,
there exist counterexamples to the reconstruction of shape from spectrum. In other words,
there exist pairs, or even continuous families, of isospectral yet non-isometric manifolds.
In fact, methods to construct such counterexamples have been devised [100]. Thus, in
general, one cannot hear the shape of a drum [51]. Nonetheless, it is expected that the
counterexamples are not generic. That is, it is believed that the manifolds that can indeed
be determined from their spectra form a residual set in a natural topology2. This is known
to hold on some special sets of manifolds [110, 111, 113]. In a general setting, however,
this conjecture remains unproven.

It is thus of interest to gain a better understanding of the nature of isospectrality.
This can be approached in two ways. The first is to understand the construction of coun-

2Residual sets consist of generic points in a topological space. See Appendix A for a precise definition.
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terexamples. The goal is to obtain a method that would produce all possible families of
isospectral non-isometric manifolds. The second way is to study the properties of sets of
isospectral manifolds. The present thesis adopts this second approach.

We choose a particular set of mathematical tools for our studies. In [69], it has been
proposed that the main difficulty of spectral geometry lies in the high nonlinearity of the
map between shape and spectrum. Consequently, we study the inverse spectral problem in
the perturbative regime. Perturbation theory is a ubiquitous tool in theoretical physics, but
is only rarely employed in spectral geometry (see [9, 12, 35] for exceptions). A secondary
objective of this thesis is to demonstrate the usefulness of perturbation theory in spectral
geometry.

We use explicit formulas for the first and second order eigenvalue perturbations in order
to rule out the existence of certain types of families of isospectral conformally equivalent
manifolds in dimension 2. We use this to obtain Theorems 5.10 and 5.12, the main results of
this thesis. In brief, they state that isospectral sets of conformally equivalent Riemannian
metrics in dimension 2 contain no convex subsets. To the best of our knowledge, this is
the first result on the geometry (or linear structure) of isospectral sets. Previously known
results dealt with their topology, namely their compactness [82, 18, 114].

We begin this thesis by a review of spectral geometry. Chapter 2 starts with the basic
definitions of Laplace-type operators and covers their spectral theorem. Then, the heat
and wave traces are defined and the geometric information that one can extract from
them is discussed. This is followed by a review of positive and negative results in inverse
spectral geometry. In particular, we review Sunada’s method for constructing isospectral
non-isometric manifolds. Finally, results regarding the compactness of sets of isospectral
manifolds are surveyed.

In Chapter 3, we begin our exploration of perturbative approaches to spectral geome-
try. Specifically, we conduct a numerical experiment regarding the reconstruction of small
changes in shape from small changes in spectrum. The success of this experiment provides
motivation to pursue our perturbative program.

Chapter 4 is dedicated to the fundamentals of perturbation theory. The focus of the
presentation is on the explicit formulas for eigenvalue corrections, rather than questions
of existence and convergence of perturbation expansions. The eigenvalue corrections are
first computed heuristically. A rigorous approach is then sketched, confirming the heuristic
results.

In Chapter 5, we compute the corrections of the Laplace-Beltrami eigenvalues due to
a perturbation of the Riemannian metric. Then, in Section 5.3, we use those formulas to
establish the main result of this thesis: isospectral sets of conformally equivalent metrics
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on surfaces contain no convex subsets. This is done in two steps. First, in Section 5.3.1, a
proof strategy valid in a more general perturbative context is presented. Then, in Section
5.3.2, the strategy is specialized to the geometric case at hand and the main results are
established.

We dedicate Chapter 6 to some observations and conjectures regarding integrals of
products of Laplace-Beltrami eigenfunctions. First, we speculate on the nature of the
space of functions spanned by the squares of the eigenfunctions. Then, we obtain an
infinite family of formulas similar to the Rayleigh quotient and numerically explore its
domain of definition.

Finally, in Chapter 7, we conclude this thesis by a discussion of our results and directions
for future research.

Unless specified otherwise, all manifolds are assumed smooth, connected, compact,
oriented and without boundary. We use Einstein’s summation convention throughout the
thesis.
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Chapter 2

Laplacians and Spectral Geometry

This chapter is an introduction to the field of spectral geometry. The discussion assumes
the reader to be familiar with the fundamentals of differential and Riemannian geometry.
For that, as well as for some advanced notions, we refer the reader to [40, 81].

In Section 2.1, we begin by introducing the notion of Laplace-type operator. The major
examples of such operators are defined. In Section 2.2, we state the spectral theorem for
Laplace-type operators and discuss four ways of proving it. Then, we define the heat and
wave kernels and their traces. The wave and heat traces are spectral invariants and provide
the main tools for extracting geometric information from spectra. The information that
can be extracted in this manner is reviewed in Section 2.3. Section 2.4 is a survey of major
results, both positive and negative, in spectral geometry. Finally, Section 2.5 reviews the
known results regarding the compactness of sets of isospectral manifolds.

2.1 Laplace-type Operators

Let (M, g) be a Riemannian manifold of dimension N . A second order differential operator
D defined on (M, g) is said to be of Laplace type if, locally, it can be written as

D = −gij∂i∂j + lower order terms. (2.1)

More precisely, let D act on Γ(E), the space of smooth sections of a vector bundle E over
M. Then, D is of Laplace type if M can be covered by coordinate neighborhoods that

5



trivialize E in which D takes the form in Equation (2.1). Notice that at the center of a
Riemann normal coordinate system, the above expression becomes

D = −
N∑
i=1

∂2
i + lower order terms. (2.2)

Up to a sign, this indeed looks like the usual Laplacian from vector calculus. The presence
of the negative sign is not fundamental. However, this choice turns out to be useful, as it
ensures that the eigenvalues of Laplace-type operators are unbounded towards ∞ rather
than −∞.

In this section, we define the most common Laplace-type operators, namely the Laplace-
Beltrami operator, Hodge Laplacian and the Covariant Laplacian. For further details, see
standard texts on differential geometry, say [81].

Laplace-Beltrami Operator

The Laplace-Beltrami operator is the generalization to Riemannian manifolds of the usual
Laplacian. This operator is the main object of study in spectral geometry in general, and
in this thesis in particular.

Recall that, in vector calculus, the usual Laplacian on functions is defined as the diver-
gence of the gradient.

∆f = div(grad(f)) =
N∑
i=1

∂2
i f (2.3)

Except for the sign convention, the Laplace-Beltrami operator is defined analogously. Let
f ∈ C∞(M). Then, its gradient is defined to be vector field that is the metric dual of its
exterior derivative. That is, grad(f) ∈ Γ(TM) is the unique vector field such that, for all
X ∈ Γ(TM),

g(grad(f), X) = df(X) = Xf (2.4)

In local coordinates, it takes the form

grad(f)i = gij∂jf . (2.5)

6



The definition of the divergence is somewhat more complicated. Let dVg denote the volume
form induced by g and let LX denote the Lie derivative in the direction of the vector field
X. Then, divX is the unique smooth function such that

LXdVg = (divX)dVg . (2.6)

In local coordinates, let det(g) denote the determinant of gij. The local expression for the
divergence of X then becomes

divX =
1√
|det(g)|

∂i

(√
|det(g)|X i

)
. (2.7)

Putting all of the above together, the definition of the Laplace-Beltrami operator is ob-
tained:

∆f = −div
(
grad(f)

)
= − 1√

|det(g)|
∂i

(√
|det(g)|gij∂jf

)
(2.8)

The coordinate expression for the Laplace-Beltrami operator is a key tool for our investi-
gations of its perturbations in Chapter 5.

It is straightforward to notice that the second order part of the above local expression
is indeed of the form −gij∂i∂j. Thus, the Laplace-Beltrami operator is, as expected, of
Laplace type.

Hodge Laplacian

The Hodge Laplacian is a Laplace type operator acting on smooth differential forms. In
terms of its importance to spectral geometry, it is a close second to the Laplace-Beltrami
operator. In fact, the Hodge Laplacian operator on 0-forms coincides with the Laplace-
Beltrami operator. While the main results of this thesis do not rely on the Hodge Laplacian,
some of the results surveyed later in this chapter do. It is thus convenient to briefly discuss
it here.

Let Ωp(M) denote the space of smooth sections of Λp(T ∗M). Ωp(M) is said to be the
space of smooth p-forms ofM. The Hodge Laplacian defined below is a map ∆ : Ωp(M)→
Ωp(M). Nonetheless, it is convenient to discuss it on the entirety of the exterior algebra:

7



Ω•(M) =
N⊕
p=0

Ωp(M) . (2.9)

Recall that the exterior derivative is an anti-derivation d : Ωp(M)→ Ωp+1(M). Recall that
the Riemannian metric g induces a L2 inner product on Ωp(M) and the Hodge star operator
∗ : Ωp(M)→ ΩN−p(M). It is well-known that the formal dual δ : Ωp+1(M)→ Ωp(M) of
d is

δ = (−1)Np+N+1 ∗ d ∗ . (2.10)

The Hodge Laplacian is then defined to be

∆ = δd+ dδ . (2.11)

It can be shown (see [81]) that this reduces to the Laplace-Beltrami operator on Ω0(M) =
C∞(M).

Depending on the context, the Hodge Laplacian can be studied as acting on either one
of the Ωp(M) or on all of the exterior algebra Ω•(M).

Showing that the Hodge Laplacian is of Laplace type is quite a bit more involved than
in the case of the Laplace-Beltrami operator and will thus not be discussed here. The
interested reader can consult [81].

Connection Laplacian and the Weitzenböck Remainder

The connection Laplacian is in a sense the most general form of Laplacian, in a sense
specified by Theorem 2.1 below. This can be used to show properties common to all such
operators, see [14] for an example of such an approach. For the details of the construction
sketched below, see [81].

Let E be a smooth vector bundle overM equipped with a linear connection ∇. Recall
that it is a linear map ∇ : Γ(E) → Γ(T ∗(M) ⊗ E) satisfying ∇(fu) = df ⊗ u + f∇u for
all f ∈ C∞(M) and u ∈ Γ(E). Let E be equipped with a fiber metric, that is a fiberwise
positive definite inner product. Together with the Riemannian metric g, this induces a
fiber metric on T ∗(M) ⊗ E. Integrating those inner products with respect to the volume
form dVg yields L2 inner products on sections of E and T ∗(M)⊗E. Using those L2 inner
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products one can define a formal adjoint to∇, denoted∇∗. Then, the connection Laplacian
∆ : Γ(E)→ Γ(E) is defined as

∆ = ∇∗∇ . (2.12)

It is no coincidence that this looks like the divergence of the gradient definition of the
Laplace-Beltrami operator. Indeed, the connection∇ and its adjoint∇∗ are the appropriate
replacements for the gradient and divergence operators, respectively. Note, however, that
they are not generalizations of the gradient and divergence operators. As an illustration
of this, consider the trivial connection on C∞(M). There, the connection is simply the
exterior derivative d. Its dual is, of course, δ. Together, this yields the Hodge Laplacian
on 0-forms, which is the same as the Laplace-Beltrami operator. Nonetheless, d 6= grad
and δ 6= div.

The position of the connection Laplacian as the general form of Laplace type operator
is established by the following theorem.

Theorem 2.1 (Weitzenböck Remainder). Let E be a smooth vector bundle over (M, g)
equipped with a fiber metric and let L : Γ(E) → Γ(E) be a Laplace-type operator on E.
Then, there exists a unique metric-compatible connection ∇ on E as well as a unique
bundle endomorphism R : E → E such that

L = ∇∗∇+R , (2.13)

where the adjoint is taken with respect to the L2 inner product induced by g and the fiber
metric on E. R is known as the Weitzenböck remainder.

Proof. See [81].

The above theorem gives a complete description of an arbitrary Laplace-type operator.
It thus can be used to obtain general statements about all such operators.

2.2 Spectral Theorem and Spectral Invariants

The first goal of this section is to state the spectral theorem for Laplace-type operators.
Without this theorem, the program of reconstructing shape from spectrum would fail to
make sense, as there would be no spectrum to speak of. The second goal is to introduce

9



the heat and wave traces, two important tools in spectral geometry. These objects depend
only on the spectrum; they are spectral invariants. As will be discussed later this chapter,
the study of the asymptotics of these invariants is the main way to extract geometric
information from the spectrum.

2.2.1 Spectral Theorem for Laplace-Type Operators

Let (M, g) denote an oriented compact Riemannian manifold without boundary and let
E be a vector bundle over it equipped with a fiber metric. Then, the following theorem
holds.

Theorem 2.2 (Laplace-Type Spectral Theorem). Let L : Γ(E) → Γ(E) be a symmetric1

Laplace-type operator. Then L has a spectrum consisting of discrete eigenvalues {λn}∞n=0

corresponding to eigensections {ψn}∞n=0 with the following properties:

(i) The eigensections {ψn}∞n=0 form an orthonormal basis for L2(E).

(ii) The eigenvalues {λn}∞n=0 are real.

(iii) The eigenspaces of L have finite dimension.

(iv) The spectrum has no finite accumulation point.

(v) The eigensections {ψn}∞n=0 are smooth.

There exists a multitude of ways of proving this theorem, especially the less general
versions dealing with specific Laplacians, rather than all symmetric Laplace-type operators.
We do not pursue a rigorous proof of it here. Instead, we briefly sketch three ways one can
approach it. A fourth approach is also mentioned. References containing the full proofs
are provided.

Proof 1: Compact Resolvent. The first approach relies on the spectral theorem for compact
normal operators (see [79] for the theorem). Since Laplace-type operators are unbounded,
this theorem cannot be directly applied to them. However, for λ in the resolvent set of
L, R(λ, L) = (λ − L)−1 can be shown to be compact [74]. This can be done by showing
that R(λ, L) can be written as an integral operator with a sufficiently well-behaved integral
kernel. Then, the spectrum of R(λ, L) is {(λ−λn)−1}∞n=0 and the eigensections are the same

1See Appendix B for a discussion of the difference between symmetric and self-adjoint operators.
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as those of L. In sum, the properties (i) through (iv) of the theorem directly follow from
the corresponding properties of the eigenvalues and eigenvectors of compact self-adjoint
operators, with property (iv) following from the fact that the spectrum of a compact
self-adjoint operator can only have λ = 0 as an accumulation point.

Property (v), however, cannot be deduced from a standard spectral theorem. An
additional ingredient is needed to be able to discuss differentiability. That ingredient is the
notion of elliptic regularity. Elliptic regularity is a property of elliptic operators, a category
in which all Laplace-type operators fall. Elliptic regularity states that the equation Du = v
only has smooth solutions u if D is elliptic and v smooth [81]. In particular, this means
that the eigenvalue equation (D − λn1)ψn = 0 only admits smooth solutions, as 0 is a
smooth section. The proof of elliptic regularity requires significant machinery that we do
not wish to introduce here. The interested reader is invited to consult the excellent [74],
as well as other sources [81, 42]. The author’s Master’s thesis contains an overview of the
subject [85].

Proof 2: Heat Equation. An alternative proof strategy is to study solutions of the following
equation on M× (0,∞):

∂

∂t
ψ(x, t) + Lψ(x, t) = 0 . (2.14)

This is known as the heat equation for L. For an initial condition ψ(x, 0), solutions ψ(x, t)
can be written as

ψ(x, t) = e−tLψ(x, 0) . (2.15)

Here, e−tL is known as the heat operator of L. Let dVg(y) denote the volume form induced
by g at y ∈M. Let Ex and Ey denote the fibers of E over x ∈M and y ∈M, respectively.
The heat operator can be shown to be of the form

e−tLψ =

∫
M
h(x, y, t)ψ(y)dVg(y) , (2.16)

where h(x, y, t) : Ey → Ex is a linear map. Moreover, h(x, y, t) is smooth on M×M×
(0,∞). The quantity h(x, y, t) is known as the heat kernel of L. We will return to this
important object shortly. In particular, certain proofs of its existence yield some of the
best known results of spectral geometry.
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The heat operator e−tL can be shown to be compact and self-adjoint on L2(E). By the
standard spectral theorem for such operators [79], properties (i) through (iv) follow. The
spectrum of e−tL is {e−tλn}∞n=0 and the eigensections are the same as those of L.

Property (v) can be deduced from the smoothness of h(x, y, t). Formally, for f ∈ L2(E)
and m ∈ N,

(∂i)
me−tLf =

∫
M

(
∂mi h(x, y, t)

)
f(y)dVg(y) . (2.17)

This argument can be made rigorous, which we do not pursue here. Thus, e−tLf has partial
derivatives of all orders. This implies that the eigensections of e−tL are smooth. As those
eigensections match those of L, property (v) is proven.

A complete proof using this approach can be found in [96] for the Laplace-Beltrami
operator and Hodge Laplacian. The Laplace-Beltrami case is also treated in [25].

Proof 3: Weak Formulation. Another proof strategy is to replace the eigenvalue problem
by a bilinear form, which is known as the weak formulation of the problem. For f ∈ L2(E),
consider the following problem:

Lψ = f . (2.18)

Let φ be an arbitrary test section of E. The precise space in which it lies will be specified
below. Let (·, ·) denote the appropriate fiberwise inner products on E and E ⊗ T ∗M.
Then, one can take the L2(E) inner product of the problem with φ.∫

M
(φ, Lψ)dVg =

∫
M

(φ, f)dVg (2.19)

Express L = ∇∗∇+R, as dictated by Theorem 2.1. Note that R is a symmetric operator
since L and ∇∗∇ are symmetric. Then, the expression can be rewritten as∫

M
(∇φ,∇ψ)dVg +

∫
M

(φ,Rψ)dVg =

∫
M

(φ, f)dVg . (2.20)

Require that this expression holds for all φ in an appropriate Hilbert space (see below).
This is said to be the weak formulation of Equation (2.18). Notice that the left-hand side
of the equation is a bilinear form, while the right-hand side is a linear functional. Denote
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the left hand side W (ψ, φ). Consider the above equation on the Sobolev space H1(E).
This space can be defined as the completion of Γ(E) with respect to the norm induced by
the following inner product:

〈φ, ψ〉H1 =

∫
M

(φ, ψ)dVg +

∫
M

(∇φ,∇ψ)dVg . (2.21)

H1(E) is a Hilbert space. In that space, one can show that W (ψ, φ) is symmetric and
continuous (∃C > 0 such that |W (ψ, φ)| ≤ C‖ψ‖H1‖φ‖H1). Furthermore, assume that
W (ψ, φ) is coercive (∃α > 0 such that W (ψ, ψ) ≥ α‖ψ‖2

H1
). This last assumption is a

condition on R. It is sufficient that (φ,Rψ) ≥ 0 for all ψ and φ. In particular, R = 0
yields the desired result. Note that R = 0 is satisfied in the case of the Laplace-Beltrami
operator. This is the only loss of generality in the present proof.

Under the assumptions of continuity and coercivity, the Lax-Milgram theorem (see [15])
tells that the weak formulation of Equation (2.20) has a unique solution ψ ∈ H1(E). This
fact can be used to define the following operator:

T : L2(E)→ H1(E)

f 7→ ψ .
(2.22)

T can be shown to be linear, symmetric and bounded. Since the injection H1(E) ↪→ L2(E)
is compact [15, 81, 74, 42], T can be seen as a compact self-adjoint operator T : L2(E)→
L2(E). By the spectral theorem for compact self-adjoint operators (see [79]), T has a basis
of orthonormal eigensections {ψn}∞n=0 corresponding to eigenvalues {µn}∞n=0. Applying the
weak formulation to the case f = ψn yields

W (φ, Tψn) =

∫
M

(φ, ψn)dVg , ∀φ ∈ H1(E). (2.23)

In other words,

W (φ, ψn) =

{
1
µn

∫
M(φ, ψn)dVg , µn 6= 0

0 , µn = 0
, ∀φ ∈ H1(E). (2.24)

Consequently, the eigenbasis {ψn}∞n=0 is the weak eigenbasis of L with eigenvalues given by
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λn =

{
1
µn

, µn 6= 0

0 , µn = 0 .
(2.25)

This establishes properties (i) to (iv). In order to show that the eigensections {ψn}∞n=0 are
indeed smooth, and thus that they are strong solutions to the original problem, one needs
to invoke elliptic regularity, as before. That established property (v).

A complete version of this proof for the case of the Laplace-Beltrami operator on
domains in Rn can be found in [15].

Proof 4: Pseudo-Differential Operators. This last approach discussed here is the deepest
and most complex one of the four. Indeed, it is too complex to satisfactorily sketch here.
This approach is best suited to prove the analogous theorem for all elliptic differential
operators and then specialize it to Laplace-type operators. The key advantage of this
approach is the generality of the obtained results.

We strongly encourage the interested reader to consult Chapter III of [74]. It is a
largely self-contained and quite clear introduction to the subject. A more general, but
harder to follow treatment can be found in Chapter 1 of [42]. It makes for an excellent
reference. Chapter 2 of the author’s Master’s thesis [85] can also be used as an introduction
to the subject, combining elements of the above texts with some alternative viewpoints
found in [81]. Note that the approach in [81] is comparable to that in [74] and [42], but
never introduces pseudo-differential operators, preferring to work with differential operators
instead. It can thus be considered somewhat simpler.

The above results also holds in the case where the boundary ∂M of M is nonempty,
provided that the boundary is sufficiently smooth and that appropriate boundary condi-
tions are imposed. For our purposes, it is sufficient to know that the spectral theorem
holds for manifolds with smooth boundary equipped with Dirichlet or Neumann boundary
conditions. Recall that Dirichlet boundary conditions require the sections of E to vanish
on ∂M, while Neumann boundary conditions require the same of their normal derivative
at the boundary. See [42] for a proof of this statement. Manifolds with less common
boundary conditions are studied in [43]. A simple treatment of the Dirichlet problem for
the Laplace-Beltrami operator on a manifold with boundary can be found in [25]. A reader
interested in the importance of boundary conditions is invited to consult [2] on the subject
of self-adjoint extensions of unbounded, densely defined, symmetric operators.
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2.2.2 Heat Kernel and Heat Trace

The notion of heat kernel has already been mentioned in the second proof of Theorem
2.2. There, it was defined as family of linear maps h(x, y, t) : Ey → Ex smooth on
M×M× (0,∞) that expresses e−tL as an integral operator:

(
e−tLψ

)
(x) =

∫
M
h(x, y, t)ψ(y)dVg(y) . (2.26)

Once one has access to the spectral theorem for Laplace-type operators, the heat kernel
can be expressed as

h(x, y, t) =
∞∑
n=0

e−tλnψn(x)⊗ ψ∗n(y) . (2.27)

Let f ∈ Γ(E). In order to see that the heat kernel in Equation (2.27) indeed yields the
desired result, we begin by writing f =

∑∞
i=0 ciψi. One can then compute the action of

e−tL on f .

(
e−tLf

)
(x) =

∫
M

(
∞∑
n=0

e−tλnψn(x)⊗ ψ∗n(y)
∞∑
i=0

ciψi(y)

)
dVg(y)

=
∞∑
n=0

e−tλnψn(x)
∞∑
i=0

ci

∫
M

(ψn(y), ψi(y))dVg(y)

=
∞∑
n=0

e−tλnψn(x)
∞∑
i=0

ci〈ψn, ψi〉L2

=
∞∑
n=0

e−tλncnψn(x)

(2.28)

This is precisely the expected result. The expression of the heat kernel of Equation (2.27)
is thus valid.

The convergence of the series for h(x, y, t) can be argued as follows. L can be shown to
be bounded below [42]. Then, one can order the eigenvalues such that λ0 ≤ λ1 ≤ λ2 ≤ ... .
In this ordering, it can be shown that λn grows fast enough with n to ensure the convergence
of the series [42, 74].
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This construction of the heat kernel is unavailable for the second proof of Theorem 2.2,
as it uses the existence of the heat kernel. Consequently, one has to obtain the heat kernel
through other means. When the studied operator is known, rather than abstract, the heat
kernel can be computed explicitly on certain manifolds. Especially useful is the kernel on
RN equipped with the standard euclidean metric. Indeed, in Riemann normal coordinates
around a point, it can be used as a first approximation of the heat kernel on a Riemannian
manifold.

Let Lx denote the operator L with partial derivatives taken with respect to the x
variable. The computation of its heat kernel on RN relies on the following properties of
the heat kernel:

(
∂

∂t
+ Lx)h(x, y, t) = 0

lim
t→0+

∫
M
h(x, y, t)ψ(x)dVg(x) = ψ(y) .

(2.29)

This establishes the heat kernel as the fundamental solution or Green’s function of the heat
equation for L. The second property can be rewritten as

lim
t→0+

h(x, y, t) = δy(x)1E , (2.30)

where δy(x) is the Dirac delta function centered at y ∈M and 1E is the identity operator
on E. This form enables one to use standard Fourier transform techniques to solve this
partial differential equation on RN . For instance, the heat kernel of the Laplace-Beltrami
operator on RN is given by

h(x, y, t) =
1

(4πt)N/2
e−

1
4t
‖x−y‖2 . (2.31)

The heat kernel on a Riemannian manifold (M, g) is then obtained by successive approxi-
mations with the euclidean heat kernel used as the first approximation. The computation
is quite technical and will not be presented here. For the Laplace-Beltrami operator, the
construction is carried out in [25] and [96]. See also [43] for the general case of Laplace-
type operators on manifolds with or without boundary. That last text treats a variety of
unusual boundary conditions.

Roughly speaking, one considers x to be in a small neighborhood of a fixed y ∈M. In
other words, the computations are valid near the diagonal x = y. In that neighborhood,

16



it is assumed that the heat kernel is a power series in t with coefficients uk(x, y) and the
euclidean heat kernel as the leading term. Requiring that the power series satisfies the
heat equation yields equations for all the coefficients. Once solved, a series expression for
h(x, y, t) near the diagonal is obtained. This series can be used to argue the existence of
h(x, y, t) globally, but doesn’t directly provide a global expression for it. This is of course
sufficient to complete the second proof of Theorem 2.2.

Once the existence of the heat kernel has been established, one can define a new quantity
H(t), called the heat trace of L. While the full heat kernel h(x, y, t) is a family of linear
maps Ey → Ex, the diagonal h(x, x, t) of the heat kernel is a pointwise linear map Ex → Ex.
Consequently, one can define the pointwise trace Tr

(
h(x, x, t)

)
. Then, the heat trace is

defined to be

H(t) =

∫
M

Tr
(
h(x, x, t)

)
dVg(x) . (2.32)

Essentially, this is the L2(E) trace of h(x, x, t). From Equation (2.27), one deduces

H(t) =
∞∑
n=0

e−tλn . (2.33)

Once again, the convergence of the series on (0,∞) is ensured by eigenvalue growth esti-
mates [42, 74]. Notice that H(t) depends solely on the spectrum {λn}∞n=0; it is a spectral
invariant. As will be discussed in Section 2.3, this quantity is our primary tool for the
extraction of geometric information from the spectrum.

Before proceeding further, it is worthwhile to note that, for a nonnegative L, knowledge
of H(t) is equivalent to knowledge of the spectrum. Manifestly, one can use the spectrum
to compute H(t). The other way is more involved. Consider the following expression:

∫ ∞
0

(
e−tλ

∞∑
n=0

δ(λ− λn)

)
dλ = H(t) =

∞∑
n=0

e−tλn . (2.34)

Thus, H(t) is the Laplace transform of a comb of Dirac deltas centered at the eigenvalues
of L. When an eigenvalue is m-fold degenerate, the corresponding Dirac delta is multiplied
by m. Consequently, one can obtain a representation of the spectrum as a Dirac comb
by taking the inverse Laplace transform of H(t). See standard texts, such as [54], for the
theory of Laplace transforms.
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2.2.3 Wave Kernel and Wave Trace

By analogy with the heat equation of L, one can study the wave equation of L.

∂2

∂t2
ψ(x, t) + Lψ(x, t) = 0 . (2.35)

As the wave equation is second order in time, the initial condition consists of a wave
configuration ψ(x, 0) and a time derivative ψ̇(x, 0). Using a standard separation of variables
approach [54], one assumes the solution has the form

ψ(x, t) =
(
a cos(ωt) + b sin(ωt)

)
φ(x) . (2.36)

for some constants a and b. Using this in the wave equation (Equation (2.35)) yields the
following eigenvalue problem

Lφ(x) = ω2φ(x) . (2.37)

This is, of course, the eigenvalue problem for L with ω =
√
λn and φ(x) = ψn(x). Conse-

quently, the general solution can be expressed as

ψ(x, t) =
∞∑
n=0

(
an cos(

√
λnt) + bn sin(

√
λnt)

)
ψn(x) . (2.38)

for coefficients {an}∞n=0 and {bn}∞n=0 prescribed by the initial conditions. In terms of the
initial conditions, the coefficients are determined by the expansions of ψ(x, 0) and ψ̇(x, 0):

ψ(x, 0) =
∞∑
n=0

anψn(x)

ψ̇(x, 0) =
∞∑
n=0

bn
√
λnψn(x) .

(2.39)

Unlike the solution of the heat equation, the general solution of the wave equation cannot
be written in terms of an operator L2(E)→ L2(E). This is simply due to the fact that one
needs two copies of L2(E) to contain both the initial conditions. Consequently, one can
build an operator L2(E) × L2(E) → L2(E) sending the initial condition into the solution
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at t > 0. This is not convenient. Instead, one assumes ψ̇(x, 0) = 0. This reduces the initial
condition and the solution to

ψ(x, 0) =
∞∑
n=0

anψn(x)

ψ(x, t) =
∞∑
n=0

an cos(
√
λnt)ψn(x) .

(2.40)

This is analogous to the relationship between the initial condition and general solution for
the heat equation. One then defines the wave kernel w(x, y, t) and wave operator cos(

√
Lt):

w(x, y, t) =
∞∑
n=0

cos(
√
λnt)ψn(x)⊗ ψ∗n(y)

cos(
√
Lt)φ =

∫
M
w(x, y, t)φ(y)dVg(y) .

(2.41)

The L2(E) trace of the wave operator yields the wave kernel:

W (t) =
∞∑
n=0

cos(
√
λnt) . (2.42)

Just like the heat trace, this is a spectral invariant. For nonnegative L, it can be written
as

W (t) =

∫ ∞
−∞

e−iωt

(
∞∑
n=0

1

2

(
δ
(
ω +

√
λn

)
+ δ

(
ω −

√
λn

)))
dω (2.43)

This is a Fourier transform. Consequently, the spectrum of L, represented as a comb of
Dirac deltas, can be recovered from W (t) via an inverse Fourier transform. Just like in the
case of the heat trace, knowledge of the wave trace is equivalent to that of the spectrum.

Unlike the heat trace, the wave trace is not smooth. Indeed, it is a distribution rather
than a function. This doesn’t reduce its usefulness.

As a final note on the wave operator, it is useful to discuss the intuition behind the
initial condition ψ̇(x, 0) = 0. From a physical standpoint, this seems like a significant loss
of generality. However, we are not interested in the physics of waves, but in the geometry
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of the underlying manifold (M, g). The purpose of the wave equation in this context is to
probe the geometry via the motion of waves. The velocity given by the initial condition
interferes with this program, as one would need to disentangle its effects from those of the
geometry. In sum, the initial velocity is of no interest for our purposes.

2.3 Geometric Information in Spectral Invariants

The heat and wave traces introduced above are the main tools used to extract geometric
information from the spectrum of Laplace-type operators. This is achieved through their
relationship to the corresponding kernels, which, in turn, are related to the operator under
study. Since Laplace-type operators have the Riemannian metric as the coefficient in their
leading term (see Equation (2.1)), it is not surprising that their traces contain geometric
information. We focus our attention on the heat trace, as the wave trace is a much more
complicated object. We briefly discuss it at the end of the section.

Consider the heat trace. While H(t) is smooth on (0,∞), limt→0H(t) = ∞. One can
obtain an asymptotic expansion as t→ 0.

H(t) ∼ 1

(4πt)N/2

∞∑
n=0

ant
n/2 (2.44)

The coefficients an are computed in terms of the coefficients un(x, y) of the local expansion
of h(x, y, t) near the diagonal x = y. Recall that these coefficients are used in the proof
of the existence of h(x, y, t). Since they depend solely on the spectrum, the coefficients an
are often termed the heat invariants of L.

The coefficients an are influenced by two distinct sources: the interior of the manifold
and the boundary. The interior geometry only contributes to an with n even. That is, in the
case of a manifold without boundary, only integer powers of t will appear in the asymptotic
expansion. Terms due to the boundary conditions, however, generically influence all of the
an. See [43] for the details.

Since asymptotic expansions are unique, one can obtain the {an}∞n=0 from knowledge
of the spectrum alone. This allows one to extract the geometric information contained
in these coefficients. Depending on the precise operator under study, the information one
can extract is slightly different. We concentrate our attention on the Laplace-Beltrami
operator. This is done for simplicity’s sake. The asymptotics of the heat trace of general
Laplace-type operators are treated in [41]. As it turns out, the formulas for the coefficients
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a0, a1 and a2 for other Laplace-type operators are similar to those for the Laplace-Beltrami
operator.

For the Laplace-Beltrami operator on a manifold without boundary the first two non-
vanishing coefficients in the asymptotic expansion of the heat trace are

a0 =

∫
M
dVg = Vol(M)

a2 =

∫
M

1

6
R dVg .

(2.45)

where Vol(M) is the volume of (M, g) and R is the scalar curvature. Proofs of these
expressions can be found in [25, 96]. A relatively simple heuristic computation can also be
found in [78].

When M has a boundary equipped with Dirichlet or Neumann boundary conditions,
it turns out that the coefficients a0 and a2 remain unchanged. In terms of Vol(∂M), the
volume of the boundary, the coefficient a1 is given by

a1 =

{
−1

4
Vol(∂M) , Dirichlet boundary conditions

1
4
Vol(∂M) , Neumann boundary conditions.

(2.46)

A heuristic computation of a1 for the case of a domain in R3 can be found in [5]. Starting
from a3 onwards, the expressions for the coefficients become increasingly more complicated
and harder to interpret. The situation becomes even worse with general Laplace-type
operators and more complicated boundary conditions. This situation is best illustrated by
the formula for a5 (Theorem 3.6.5 of [43]). It is worth the look.

The complexity of the expressions for the heat invariants leads one to ask whether there
exists a more compact way to write them. This is indeed the case. In [90], an alternative
expression for the coefficients un(x) of the asymptotic expansion of the diagonal h(x, x, t)
of the heat kernel is obtained. To compute the heat invariants it remains to integrate those
coefficients over the volume form. The expressions in [90] take a more compact form by
expressing the coefficients un(x) in terms of the Laplace-Beltrami operator and the distance
function of the manifold, rather than the usual expression in terms of the metric tensor
and its derivatives. However, this shorter form of the heat invariants is of little help for
the extraction of geometric information from the spectrum.

From the above formulas, one sees that the spectrum of the Laplace-Beltrami operator
determines the volume of the manifold and the volume of its boundary, if any. Moreover,
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note the factor 1
(4πt)N/2

in the asymptotic expansion. Since the heat trace can be computed

from the spectrum, the following theorem holds.

Theorem 2.3. Let (M, g) and (N , h) be two compact Riemannian manifolds with isospec-
tral Laplace-Beltrami operators. If M and N have boundaries, let them be equipped with
the same boundary conditions. Then, M and N have the same dimension, volume and
their boundaries have the same volume.

The asymptotic result regarding the volume of a manifold can also be recast in a
different form, originally due to Weyl for the special case of planar domains. Historically,
the next theorem can be seen as the first result in spectral geometry. It was known to hold
for a number of special cases where the spectrum is computable and there was significant
interest in establishing its general validity.

Theorem 2.4 (Weyl Estimate). Let (M, g) be a compact Riemannian manifold of dimen-
sion N and let {λn}∞n=0 be the spectrum of its Laplace-Beltrami operator. Let β(N) denote
the volume of a unit ball in RN . Then, for large n, the eigenvalues obey the following
asymptotic expansion:

λn ∼
(

(2π)N

Vol(M)β(N)

)2/N

n2/N . (2.47)

Figure 2.1 illustrates the Weyl estimate for a flat 2-torus.

We do not prove the above theorem here. An interested reader can find a generalization
of Weyl’s proof to domains in RN in [8]. The proof uses a clever construction that doesn’t
depend on the theory discussed in the present thesis. The main idea is to cover the domain
by a lattice of squares (or cubes in higher dimensions). Then the eigenvalues of the domain
can be estimated using the eigenvalues of the cubes in the lattice. Since the eigenvalues of
a cube can be readily computed, this yields the desired growth estimate.

A more modern proof relies on the Hardy-Littlewood-Karamata theorem (see [39] for a
precise statement). Informally speaking, this theorem links the asymptotics of a function
with the asymptotics of its Laplace transform. Recall that, by Equation (2.34), the heat
trace is a Laplace transform and that Equation (2.45) (specifically the expression for a0)
expresses its asymptotic behavior. Applying the Hardy-Littlewood-Karamata theorem
directly yields the desired result. A full proof following this strategy can be found in
[33]. Notice that in this approach the asymptotic expansion of the heat kernel is known in
advance through different means. Weyl’s approach, on the other hand, obtains the growth
estimate from scratch.
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Figure 2.1: Weyl estimate for a flat 2-torus constructed by imposing periodic boundary
conditions on the square [0, 2π) × [0, 2π) in R2. The eigenvalues are given by k2 + l2 for
k, l ∈ Z. The Weyl estimate reads λn ∼ 1

π
n.

As mentioned previously, the coefficients in the asymptotic expansion of the heat kernel
rapidly become unwieldy and hard to interpret. For operators more complicated than the
Laplace-Beltrami operator, the situation is even worse. Nonetheless, there are results that
rely upon the heat trace coefficients of such operators. For instance, the proof of the next
theorem uses the asymptotic expansions of the Hodge Laplacian on 0, 1 and 2-forms [88].

We begin by setting up some notation. Let apn(M) denote the nth coefficient of the
heat trace asymptotics of the Hodge Laplacian on p-forms on (M, g). Recall that (M, g)
is said to be Einstein if its Ricci tensor is given by Rij = Cgij for some constant C [10]. In
particular, it means that (M, g) has constant scalar curvature R = NC. Also recall that
the norm of a tensor is given by the square root of its contraction with its metric dual. For
instance, for the Riemann curvature tensor, ‖Rijkl‖ =

√
RijklRijkl. This is a slight abuse

of notation, as the left-hand side should not have any indices, while the right-hand side
respects Einstein’s summation convention. The purpose of the indices on the left-hand is
to distinguish the Riemann tensor Rijkl from the Ricci tensor Rij and the scalar curvature
R.

Theorem 2.5. Let (M, g) and (N , h) be boundaryless compact Riemannian manifolds of
dimension N ≥ 2. Then, the following statements hold.

(i) If ap4(M) = ap4(N ) for p = 0, 1, then (M, g) is flat if and only if (N , h) is flat.
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(ii) If ap4(M) = ap4(N ) for p = 0, 1 and a0
n(M) = a0

n(M) for n = 0, 2, then

• (M, g) is of constant sectional curvature K if and only if (N , h) is of constant
sectional curvature K.

• (M, g) is an Einstein manifold with scalar curvature NC if and only if (N , h)
is an Einstein manifold with scalar curvature NC.

(iii) If ap4(M) = ap4(N ) for p = 0, 1, 2, then ap4(M) = ap4(N ) for all 0 ≤ p ≤ N and∫
M
R2 dVg =

∫
N
R2 dVh∫

M
‖Rij‖2 dVg =

∫
N
‖Rij‖2 dVh∫

M
‖Rijkl‖2 dVg =

∫
N
‖Rijkl‖2 dVh .

(2.48)

(iv) If ap4(M) = ap4(N ) for p = 0, 1, 2 and a0
n(M) = a0

n(M) for n = 0, 2, then (M, g) has
constant scalar curvature R if and only if (N , h) has constant scalar curvature R.

Proof. See [88].

Recall that isospectrality of the Hodge Laplacian on p-forms implies the equality of the
coefficients apn. Thus, all of the conditions on the coefficients apn in the above theorem are
satisfied in the case of isospectral manifolds.

This concludes the present review of the geometric information one can extract from
the asymptotics of the heat trace. Notice that the results reviewed here are insufficient to
completely reconstruct manifolds from their spectra. Instead, only a few global properties,
such as flatness, are accessible. Even then, in order to use those results to establish the
properties of a manifold, one must have a reference manifold with the same spectra, or at
least the same first few coefficients apn. Moreover, the geometric properties of this reference
manifold must be known. This is not an easy task in general. This observation was one of
our original motivations for seeking new approaches to spectral geometry.

We close this section by briefly discussing the wave trace. It is very hard to do the
wave trace justice due to the amount of material one needs to introduce in order to paint
a full picture. See [112] for a review.

Similarly to the heat trace, the wave trace can be asymptotically expanded to yield
spectral invariants with geometric content. The difference is the point about which one
expands. Similarly to the heat trace,
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lim
t→0

W (t) = lim
t→0

∞∑
n=0

cos(
√
λnt) =∞ . (2.49)

An expansion about t = 0 is possible and yields invariants similar to those of the heat
equation. The key feature of the wave trace is that other expansions are of interest. The
values of t around which such expansions are possible are the lengths of periodic geodesics.
In the case of a manifold with boundary, the class of curves under study is enlarged by
billiard ball orbits, that is periodic paths that are geodesics in the bulk of the manifold and
that reflect off the boundary according to the laws of geometric optics. The set of lengths
of such geodesics is known as the length spectrum and is denoted Lsp(M, g).

One then considers the singular support SingSupp(W(t)) of W (t), that is the comple-
ment of the set of all t on which W (t) is smooth. It is known that

SingSupp(W(t)) ⊂ {0}
⋃

Lsp(M, g) . (2.50)

See [26, 29, 30, 34] for the boundaryless case. The wave trace can then be asymptotically
expanded around the lengths of periodic geodesics. Note that there is no difference be-
tween length and duration, as the speed of the waves is set to one. The invariants thus
obtained are of a different nature than the heat invariants. Given a periodic geodesic γ,
the wave invariants will only depend upon the metric in a neighborhood of γ. This marks
a significant difference with the heat invariants. Indeed heat invariants are computed as
integrals whose integrands can be determined locally in the neighborhood of a point (the
integral is still taken globally over M). In that sense, the wave invariants are less local
than the heat invariants. However, they are also more local, as a change in the metric
outside the neighborhood of γ will not alter the nature of γ as a periodic geodesic and
its wave invariants will remain the same. The heat invariants, in contrast, are generically
sensitive to changes in metric.

2.4 Spectral Geometry

In this section, we review results regarding the main problem of spectral geometry: the
identification of shape from spectrum. The results discussed here mostly use the Laplace-
Beltrami spectrum. Broadly speaking, the results can be divided into positive and negative
ones. The positive results are cases where identification of shape from spectrum is possible.
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Correspondingly, negative results are counterexamples to this program: isospectral non-
isometric manifolds. We begin by covering positive results, after which we review the
counterexamples. In particular, we sketch the Sunada construction, a famous technique
for constructing counterexamples.

2.4.1 Positive Results

There is a limited number of positive results in spectral geometry. Unlike the counterex-
amples discussed later, there is no general technique that can be used to find manifolds
that can be determined from their spectra. One thus often has to settle for quite weak
results.

This review follows [32]. In particular, we adopt the terminology of [32] regarding the
classification of positive results. Manifolds that can be determined by their spectra from
a wide class of manifolds are said to be spectrally unique in that class. A weaker notion
is that of local uniqueness, which is just spectral uniqueness in a neighborhood of the
studied shape, given an appropriate topology. This can be further weakened by studying
continuous deformations of a manifold. A manifold that admits no continuous isospectral
deformations is said the be spectrally rigid. Clearly, the following hierarchy of properties
holds.

Spectral uniqueness =⇒ Local uniqueness =⇒ Spectral rigidity (2.51)

We begin by discussing results of the spectral uniqueness variety. The most powerful
results of this type can be found in the work of Steve Zelditch and his collaborators [110,
111, 113, 61]. There, special classes of manifolds are studied and spectral uniqueness
results for the Laplace-Beltrami operator are proven for generic members of those classes.
A key assumption is that the manifolds are in some sense analytic. In the case of the
surfaces of revolution studied in [110], the requirement is that the surface is generated
by the rotation of an analytic curve. In the other cases, the manifolds under study are
reflection symmetric domains in RN with analytic boundaries. Then, some non-degeneracy
conditions are imposed on the periodic geodesics of the studied manifolds. Those conditions
are generic, in the sense that, in a suitable topology, they are satisfied by a residual set
within the class of manifolds (see Appendix A for the definition of residual sets). Those non-
degeneracy conditions enable one to study the wave trace asymptotics around a convenient
periodic geodesic. Then, one shows that the coefficients in the expansion determine all of
the Taylor coefficients of the boundary near an endpoint of the geodesic (or of the surface
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in the case of the surface of revolution). Then, the assumption of analyticity allow one to
recover the manifold.

Another powerful result is valid on generic surfaces of revolution of dimension N [57].
For the sake of notational simplicity, we discuss the more familiar two-dimensional case.
The general case is analogous. Let φ denote the azimuthal angle on the surface and let x
denote the other coordinate. The surface is defined as the rotation of a radial function R(x).
The generator of azimuthal rotations ∂

∂φ
has spectrum {m}m∈Z. To each m ∈ Z corresponds

a discrete family {λmk}k of eigenvalues of the Laplace-Beltrami operator. Then, under
suitable generic conditions on the surface, the knowledge of the joint spectrum {m,λmk}m,k
of ∂

∂φ
and ∆ allows one to explicitly reconstruct the surface. The proof of this result

is rather interesting, as it relies on an asymptotic analysis of the motion of a quantum
mechanical particle on the surface. This is also known as a semiclassical analysis. See [99]
for a general treatment of this technique. Once the angular part of the Laplacian is taken
care of, one is left with solving a one-dimensional Schrödinger eigenvalue problem. The
potential V (x) in that operator depends solely on R(x). In this picture, every Laplacian
eigenvalue corresponds to an energy level of the system. For every energy level E, one
can consider the classically allowed region {x : V (x) ≤ E}. In general, this region will
be disconnected into multiple potential wells. Then, the semiclassical treatment allows
one to recover the number and width of those wells. Since the energy E can be varied,
the shape of the individual wells can be recovered. It remains to position those potential
wells in the correct order. This is done by finding the extrema of the potential through
a variation of E. As E is increased, one can find signatures of new classically allowed
wells appearing and of old wells fusing into larger ones. The former indicates that E has
reached a local minimum of the potential, while the latter indicates that E has reached a
local maximum. Since the shape of the individual wells is known, this provides the distance
between consecutive minima and maxima. The potential V (x) is then recovered through
a combinatorial procedure. R(x) can then be calculated from V (x), solving the inverse
spectral problem.

It is also known that generic flat N -dimensional tori can be distinguished from other
such tori by their Laplace-Beltrami spectrum [108].

The other spectral uniqueness results are much more specialized. Indeed, they deal
with the uniqueness of some standard shapes, such as balls and spheres in RN .

Possibly the best known result of this type is that balls in RN possess a Laplace-Beltrami
spectrum distinct from all other compact domains in Rn with smooth boundary. This result
follows from the heat coefficients a0 and a1 (Equations (2.45), (2.46) and Theorem 2.3),
which give the volume of the domain Ω and its boundary ∂Ω. Since balls uniquely minimize
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the ratio Vol(∂Ω)/Vol(Ω) among all domains in RN [38], the result is established.

Analogous results are widely reported to hold for the standard N -dimensional sphere
SN = {x ∈ RN+1 : ‖x‖ = 1}, see the reviews in [10, 32], for example. While it is likely that
standard spheres have a unique spectrum, we find the proofs somewhat dubious. To the
best of our knowledge, and according to the citations in the reviews, the claim originates in
the works of Tanno [104, 105]. The proof strategy is roughly the following. First, one uses
the first few heat coefficients to show that a manifold isospectral to a manifold of constant
sectional curvature K is also of constant sectional curvature K. Then, without explicitly
presenting an argument, Tanno concludes that manifolds isospectral to the standard round
sphere SN are isometric to it. The best candidate for this missing step is the uniqueness
theorem for simply connected space forms. Recall that complete manifolds of constant
sectional curvature are known as space forms. Simply connected space forms of a given
sectional curvature K are unique up to isometry [10]. The issue with Tanno’s argument
is that simple connectedness is never established. With that condition as an additional
hypothesis, the results hold2.

Assuming the simple connectedness hypothesis to be fulfilled, the following results can
be stated. For N ≤ 6, SN is uniquely determined by its Laplace-Beltrami spectrum [104].
For arbitrary N , a spectral uniqueness result can be obtained using the spectra of the
Hodge Laplacian on 0 and 1-forms. It is an application of Theorem 2.5, originally proven
in [88] and used by Tanno in [104]. The best known result in arbitrary dimension using
solely the Laplace-Beltrami spectrum is one of local uniqueness [105].

Local uniqueness and spectral rigidity results have been obtained for wider classes of
manifolds. For instance, it is known that flat manifolds without boundary are locally
unique [72].

Similarly, boundaryless manifolds of constant negative sectional curvature are known
to be locally unique [98]. If one relaxes the assumption that the sectional curvature is
constant, spectral rigidity results can be obtained. In dimension 2, the spectral rigidity of
negatively curved manifolds has been established in [55]. Later, the result was extended
to negatively curved manifolds of arbitrary dimension obeying a curvature estimate [56].
The latter result has since been extended to arbitrary negatively curved manifolds [31].

Finally, it is known that ellipses are spectrally rigid among domains with the same
reflection symmetries as the ellipse [60].

2See Note 9.7.2.1 in [10]. There, it is observed that the heat coefficients of a space form are determined
by its sectional curvature and volume. This is not sufficient to reconstruct a general space form.
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2.4.2 Counterexamples

An important direction in spectral geometry is the construction of counterexamples, that
is isospectral non-isometric manifolds. Some counterexamples are constructed in an ad hoc
manner, while others are made using systematic approaches. The ultimate goal of this en-
deavor is to achieve a complete understanding of isospectrality by obtaining a construction
procedure (or a number of distinct construction procedures) that can be used to obtain
all possible counterexamples. This would provide a complete classification of all coun-
terexamples. This objective has not yet been achieved. Nonetheless, multiple systematic
constructions are available. Moreover, some of the ad hoc examples have since been recast
as special cases of the systematic techniques.

We begin by sketching the Sunada construction, a prototypical representation-theoretic
technique used to obtain isospectral non-isometric manifolds. Then, we review counterex-
ample construction procedures based on Riemannian submersions. Finally, we review
different types of known counterexamples. For a more complete a survey, see [45].

Sunada Construction

The Sunada construction, first described in [100], is a very important method for construct-
ing non-isometric isospectral manifolds. We use it to illustrate the general ideas involved
in the construction of counterexamples. For a review of various proofs and applications of
Sunada’s theorem, see [16]. Our treatment is inspired by the one found in [45].

The general idea of the Sunada method is to obtain two manifolds whose spectra are
subsets of the spectrum of a reference manifold. The core of the construction lies in
ensuring that those subsets are equal. The procedure outlined below works for Laplace-
type operators that commute with isometries. For the sake of notational simplicity, we
only consider the Laplace-Beltrami case. None of the key steps of the construction are
modified in the general case.

Let (M, g) be a compact oriented Riemannian manifold with or without boundary and
let ∆ be the Laplace-Beltrami operator on it. Notice that ∆ commutes with isometries.
That is, if j : M → M is an isometry, j∗ is the induced pullback and ψ ∈ C∞(M), the
following holds

∆(j∗ψ) = j∗(∆ψ) . (2.52)

In particular, if ψn is an eigenfunction of ∆ with eigenvalue λn,
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∆(j∗ψn) = λn(j∗ψn) . (2.53)

Consequently, j∗ maps eigenspaces of ∆ into themselves. Note that it doesn’t necessarily
maps eigenfunctions into themselves. In general, j∗ψn 6= ψn. Those eigenfunctions that
are mapped into themselves will soon become important.

Let H1 be a finite group of isometries of (M, g). Suppose that H1 acts freely, that is,
if h(x) = x for some h ∈ H1 and x ∈ M, then h is the identity isometry of M. In other
words, nontrivial isometries in H1 have no fixed points inM. The orbit of a point x ∈M
under the action of H1 is defined to be O(x) = {y ∈ M : y = h(x) for some h ∈ H1}.
The orbits of the points of M form a manifold denoted H1\M [40]. It is known as the
quotient of M by H1. Define π : M → H1\M by x 7→ O(x). H1\M can be equipped
with a Riemannian metric by requiring π to be a local isometry.

Definition 2.6 (Local Isometry). Let (M, g) and (N , h) be Riemannian manifolds. A
smooth map v : M → N is said to be a local isometry if for every x ∈ M there is an
open neighborhood U ⊂M such that x ∈ U , v(U) ⊂ N is open and v|U : U → v(U) is an
isometry [63].

The metric on H1\M defined by this procedure is known as the quotient metric.

Correspondingly, the Laplace-Beltrami operator on H1\M is closely related to that on
M. Begin by noting that functions on H1\M can be identified with those functions on
M that are invariant under H1. Indeed, let f ∈ C∞(M) be such that h∗f = f for all
h ∈ H1. Then, f(O(x)) is a well-defined smooth function on H1\M. Similarly, a function
F ∈ C∞(H1\M) defines an H1-invariant smooth function on M by F̃ (x) = F (O(x)).

Consequently, the eigenfunctions of ∆ on H1\M induce H1-invariant eigenfunctions of
∆ on M with the same eigenvalues. Moreover, all H1-invariant eigenfunctions on M are
induced in that way. Indeed, the contrary would lead to a contradiction, as an H1-invariant
eigenfunction onM induces an eigenfunction on H1\M that, in turn, induces the original
eigenfunction on M.

Thus, the spectrum of the Laplacian on H1\M can be obtained from that onM by the
following procedure. Let Vn be the eigenspace of ∆ on M with eigenvalue λn. Determine
all H1-invariant eigenfunctions in Vn. Let V H1

n denote the subspace of Vn spanned by
those functions and let D1,n denote its dimension. If D1,n 6= 0, then ∆ on H1\M has an
eigenvalue λn with multiplicity D1,n. Repeating the procedure for all n yields the spectrum
of ∆ on H1\M.
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Now, let H2 be another freely acting finite group of isometries of (M, g). We want the
quotient H2\M to be isospectral to H1\M. Let D2,n denote the dimension of V H2

n , the
H2-invariant subspace of Vn. In order to ensure isospectrality, we need a condition on H1

and H2 that ensures that D1,n = D2,n for all n.

This condition can be obtained through representation theoretic considerations. Indeed,
note that the action of H1 and H2 on Vn can be seen as the representation of a finite group
on a finite dimensional vector space. It is convenient to consider H1 and H2 as subgroups
of a larger finite group of isometries G. We need the following technical lemma.

Lemma 2.7 (Projector onto V H). Let H be a finite group represented on a finite dimen-
sional vector space V . Let V H denote the subspace of V spanned by vectors v that obey
hv = v for all h ∈ H. Then, the projection on V H is given by

PH =
1

|H|
∑
h∈H

h , (2.54)

where |H| is the cardinality of H.

Proof. Let v ∈ V H . Then, since hv = v for all h ∈ H,

PHv =
1

|H|
∑
h∈H

hv =
1

|H|
|H|v = v . (2.55)

Thus, PH acts as desired on V H . We now turn our attention to the remainder of the vector
space.

By standard representation theory, it is known that finite dimensional representations
of finite groups are completely reducible [102]. This means that, after an appropriate choice
of inner product and basis for V , the orthogonal complement V H⊥ of V H is an invariant
subspace of the representation. Let u ∈ V H⊥. Then PHu ∈ V H⊥. Let a ∈ H.

aPHu = a
1

|H|
∑
h∈H

hu =
1

|H|
∑
h∈H

(ah)u

=
1

|H|
∑
h∈H

hu

= PHu

(2.56)

31



Since a is arbitrary, PHu ∈ V H . This is a contradiction unless PHu = 0. Thus, PH maps
the orthogonal complement of V H to zero. Since PH is linear, this completes the proof.

As a consequence of this lemma, the dimension of V Hi
n can be computed as the trace

of PHi :

Di,n = Tr(PHi) =
1

|Hi|
∑
h∈Hi

Tr(h) for i = 1, 2. (2.57)

Our goal is to obtain a condition that ensures that Dn,1 = Dn,2. By the cyclic property of
the trace, Tr(aha−1) = Tr(h) for all a, h ∈ G. Let [h] = {k ∈ G : ∃a ∈ G such that k =
aha−1} be the conjugacy class of h ∈ G. Notice that, for all k ∈ [h], Tr(k) = Tr(h). It is
thus natural to use the conjugacy classes of G to compute Tr(PHi). Since, the conjugacy
classes are equivalence classes, the formula for Di,n becomes,

Di,n =

(∑
h∈G

∣∣∣Hi

⋂
[h]
∣∣∣)−1(∑

h∈G

∣∣∣Hi

⋂
[h]
∣∣∣Tr(h)

)
. (2.58)

Consider the following definition.

Definition 2.8 (Almost Conjugate Subgroup). Let H1 and H2 be subgroups of a finite
group G. H1 and H2 are said to be almost conjugate if every conjugacy class of G intersects
them in the same number of elements. Symbolically,∣∣∣H1

⋂
[h]
∣∣∣ =

∣∣∣H2

⋂
[h]
∣∣∣ , ∀h ∈ G. (2.59)

Thus, for almost conjugate subgroups H1 and H2, D1,n = D2,n. By the above discussion,
the following theorem is proven.

Theorem 2.9 (Sunada). Let (M, g) be a compact Riemannian manifold. Let G be a finite
group of isometries of (M, g) with two almost conjugate subgroups H1 and H2. Suppose
that H1 and H2 act freely. Then, the quotient manifolds H1\M and H2\M equipped
with the quotient metrics are isospectral for all Laplace-type operators that commute with
isometries.

Notice that the above theorem does not ensure that H1\M and H2\M are non-
isometric. Indeed, consider the case of conjugate H1 and H2, that is, the case when
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there exists h ∈ G such that H2 = hH1h
−1. As the terminology suggests, H1 and H2 are

then almost conjugate and Sunada’s theorem applies. Let O1(x) be the orbit of x ∈ M
under the action of H1 and let O2(y) be the orbit of y ∈ M under the action of H2. Set
y = hx. Then, O2(y) = hO1(x). This is an isometry from H1\M to H2\M.

This can be an obstacle in the construction of counterexamples. Consequently, one
must make sure that H1 and H2 are not conjugate. (Even then, one can show that there
always exists a local isometry (see Definition 2.6) between the manifolds constructed by the
Sunada method.) This has to hold not only within G, but also within the whole isometry
group of (M, g). This is very hard in general, as one rarely has access to the whole isometry
group. The practical solution to this issue is to use ad hoc means to verify that the quotient
manifolds H1\M and H2\M are not isometric. Up until that last verification step, one
can only make sure that H1 and H2 are almost conjugate, but not conjugate, within G.

The Sunada construction is part of a wider class of representation-theoretic techniques
used to construct isospectral non-isometric manifolds. The broad strokes of those methods
are the same as in the Sunada approach. For example, see [52] for an analogous construction
involving factoring Lie groups with left-invariant metrics by discrete subgroups. The result
is a continuous family of isospectral non-isometric manifolds.

A weaker variant of Sunada’s theorem has been obtained in [89]. There, the almost con-
jugacy condition is replaced by a weaker one. The resulting theorem ensures isospectrality
for the Laplace-Beltrami operator, but not necessarily any other Laplace-type operator.

Riemannian Submersions

Riemannian submersions can be used to construct isospectral non-isometric manifolds. In
a sense, the overall direction of this approach is opposite to the one used in the Sunada
technique. Instead of factoring a reference manifold into isospectral factors, the goal here
is to prove the isospectrality of two manifolds from the isospectrality of carefully chosen
submanifolds. Our discussion is based on the one found in [45].

Begin by recalling that a submersion π :M→N is a smooth map between manifolds
that induces a surjective push-forward π∗ : TM → TN . Assuming that M and N
are equipped with Riemannian metrics, the submersion π is said to be Riemannian if
π∗ : TM⊃ ker(π∗)

⊥ → TN is an isometry. A fiber of π (the pre-image π−1x for x ∈ N ) is
said to be totally geodesic if all geodesics ofM that start tangent to the fiber stay tangent
to the fiber. The following lemma then holds [106].
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Lemma 2.10. Let π :M→ N be a Riemannian submersion with totally geodesic fibers.
Let ∆M and ∆N be the Laplace-Beltrami operators on M and N , respectively. Then, for
all f ∈ C∞(N ),

∆Nf = ∆Mπ
∗f (2.60)

In particular, the spectrum of ∆N is the same as the spectrum of ∆M restricted to π∗C∞(N ).

Under some additional hypotheses, an analogous lemma holds for Hodge Laplacians [41].
The following theorem enables one to construct isospectral non-isometric manifolds. Some
familiarity with the fundamentals of principal bundles is required (see [81, 62]).

Theorem 2.11. Let T be a torus of dimension at least 2. Let M and N be principal T -
bundles equipped with Riemannian metrics. Let the fibers of M and N be totally geodesic
flat tori. For each subtorus S ⊂ T of codimension at most 1, suppose that the quotient
manifolds S\M and S\N have isospectral Laplace-Beltrami operators. Then M and N
are isospectral.

Sketch of Proof. The idea of this proof is to decompose the spaces of square integrable
functions L2(M) and L2(N ) into spaces of functions constant on various subtori S of T .
The maps M→ S\M and N → S\N are Riemannian submersions with totally geodesic
fibers. By hypothesis, the Laplace-Beltrami operators on S\M and S\N are isospectral.
By Lemma 2.10, the Laplace-Beltrami operators onM and N are then isospectral on the
space of functions constant on S. By varying S, the space on which the Laplace-Beltrami
operators are isospectral is eventually shown to be all of L2.

See [45] for a more detailed sketch of a proof. A full proof can be found in [46].

This approach is used in [46] to construct isospectral deformations of metrics on spheres
in dimension N ≥ 8 and balls in dimension N ≥ 9. Those metrics can be chosen arbitrarily
close to the standard ones.

Overview of Counterexamples

In this section we review a number of qualitatively different pairs or families of isospectral
non-isometric manifolds. The purpose of this review is to showcase various restrictions
one can impose on the studied manifolds without ruling out the existence of non-isometric
isospectrality.
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Figure 2.2: Famous isospectral non-isometric domains in the plane. Dirichlet boundary
conditions are imposed.

A number of counterexamples are known for planar domains. The most famous pair of
non-isometric isospectral domains is illustrated on Figure 2.2. Its construction can be cast
in terms of the Sunada method. See [48] for an informal discussion of this example and
[49] for a sketch of a proof. An explicit proof can be found in [24]. See also the review in
[44].

To the best of our knowledge, all known counterexamples in the plane are concave with
non-smooth boundaries. In dimension 4 and higher, convex isometric non-isospectral man-
ifolds are known [47]. In the hyperbolic plane, convex isospectral non-isometric polygons
have been constructed [50].

As mentioned previously, the Sunada construction always yields pairs of locally iso-
metric manifolds, in the sense that one can always construct at least one local isometry
(see Definition 2.6) between them. It is thus of interest to determine whether all pairs of
isospectral manifolds admit local isometries between them. This question has been solved
in [101]. There, a pair of isospectral manifolds that does not admit local isometries between
them is constructed. The spectra are computed explicitly. This construction can be recast
in terms of Riemannian submersions [45].

Recall that two metrics g and h over M are said to be conformally equivalent if there
exists a function f ∈ C∞(M) such that g = fh. In [19], isospectral sets of non-isometric
conformally equivalent metrics are constructed.
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Finally, counterexamples can form continuous families rather than mere pairs [52]. Con-
tinuous families isospectral for the Laplace-Beltrami operator, but not the Hodge Laplacian
on 1-forms have been constructed in [53]. Moreover, continuous families of conformally
equivalent counterexamples are known to exist [17].

2.5 Compactness of Isospectral Sets

Another approach to understanding isospectrality is to study the properties of isospectral
sets. Specifically, the goal is to show that the set of manifolds isospectral to a given reference
manifold is not too big. This is achieved by establishing that such sets are compact in a
natural topology. In this section, we review such compactness results.

The topology is which the isospectral sets are to be shown to be compact is defined
as follows. First, one constructs all Sobolev spaces of positive integer order on covariant
2-tensors on M. See [74, 42, 81] for the definition of Sobolev spaces on arbitrary vector
bundles. Then, a sequence of metrics {gi}i on M that converges for all Sobolev norms
is said to converge in the C∞ sense. This can be extended to the convergence of mani-
folds. Consider a sequence of Riemannian manifolds {(Mi, gi)}i. This sequence is said to
converge to a Riemannian manifold (M, g) in the C∞ sense if there exists a sequence of
diffeomorphisms χi :M→Mi such that the sequence of pullback metrics {χ∗i gi}i on M
converges to g in the C∞ sense. This topology is thus valid for equivalence sets of isometric
manifolds (Riemannian structures) and not merely Riemannian metrics.

The first compactness results were obtained for boundaryless manifolds in dimension
2, as well as for simply connected planar domains in [82]. The proof involves the heat
invariants as well as the determinant of the Laplace-Beltrami operator. This object is a
spectral invariant that has to be carefully defined since the Laplace-Beltrami operator is
unbounded. See [78] for a non-rigorous introduction to the determinant of the Laplacian.

In higher dimensions, analogous results are harder to obtain. In dimension 3, it is known
that sets of conformally equivalent isospectral metrics are compact [23]. The conformal
equivalence assumption can be removed at the cost of a different one. There is some choice
in the matter. For instance, one can assume a lower bound on the length of the shortest
periodic geodesic [3]. Alternatively, one can assume either that the isospectral manifolds
have negative sectional curvature or Ricci curvature uniformly bounded below [18].

Finally, in arbitrary dimension, it is known that isospectral families of metrics over
a fixed differentiable manifold are compact if their sectional curvatures are uniformly
bounded above and below [114].
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Outside of the above compactness results, not much is known about the structure of
isospectral sets. This observation was part of our motivation to study the geometry of
isospectral sets. Our results regarding the non-convexity of sets of isospectral conformally
equivalent metrics in dimension 2 can be found in Chapter 5.
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Chapter 3

Numerical Explorations of
Infinitesimal Inverse Spectral
Geometry

One of the key questions of spectral geometry is whether one generically can recover small
changes in shape from small changes in spectrum. This is what we term infinitesimal inverse
spectral geometry. In one way or another, the remainder of this thesis is concerned with
this problem. As one might expect, from the title of this thesis if nothing else, infinitesimal
inverse spectral geometry is related to the perturbation theory of Laplace-type operators.
From now on, we restrict our attention to the Laplace-Beltrami operator. In the coming
chapters we will present a rigorous treatment of the perturbations of said operator. For
now, however, we pursue a simpler endeavor. Our goal here is to numerically assess whether
the program of inverse infinitesimal spectral geometry is possible.

The results presented in this chapter were obtained by the author of this thesis and
were originally published in [86]. An early version of this can also be found in the author’s
Master’s thesis [85]. A similar numerical treatment for a Laplacian on graphs can be found
in [1]. Finally, on the more practical side, techniques similar to those used here were
applied to the design of musical instruments, specifically metallophones [11]. There, the
usual bars are replaced with whimsical shapes that nonetheless produce the correct notes
when struck.

In Section 3.1, we begin by discussing the general ingredients needed for our numerical
approach. Then, in Section 3.2, we apply said approach to the Laplace-Beltrami operator
on a set of planar domains. In Section 3.3 we conclude this chapter by discussing possible
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applications of our approach to more general manifolds.

3.1 General Numerical Setup

To reiterate, we want to obtain a numerical algorithm that would reconstruct small changes
of shape from small changes in spectrum. A number of ingredients are needed in order to
accomplish this. We begin by introducing a space of shapes G. The nature of the elements
of G can remain unspecified for now. The approach that we discuss here is quite general and
can be applied to a variety of objects other than Laplacians on manifolds, such as graph
Laplacians or Schrödinger potentials. We keep these options open for now. Of course, we
will later restrict our attention to a particular class of manifolds.

The space of shapes G can contain shapes equivalent by isometry, or any other appro-
priate notion of equivalence if G is not a set of manifolds. Furthermore, suppose that G is
parametrized in a well behaved way by RM . That is, we can abuse terminology and call
every point in RM a shape. The coordinates {xn}Mn=1 in RM will be called the shape degrees
of freedom.

Suppose that to each shape in G one can associate an eigenvalue spectrum. The precise
nature of that spectrum also does not need to be specified for now. In fact, even when
the space G is composed of compact Riemannian manifolds, there are multiple choices of
operators whose spectra one may consider. One can even use multiple spectra at once.

Since numerical methods are to be employed to find said spectra, only a finite number
N of eigenvalues will be accessible. They will be called the spectral degrees of freedom. For
instance, one might consider the ten lowest eigenvalues of the Laplace-Beltrami operator.
Then, N = 10. Alternatively, one might use, say, the smallest five Laplace-Beltrami
eigenvalues together with the smallest five eigenvalues of the Hodge Laplacian on 1-forms.
Then, N = 10 as well. The key idea is that one can construct a spectral map σ : RM → RN

that maps the M shape degrees of freedom into the N spectral degrees of freedom {λn}Nn=1.
If desired, one can further alter this map. For instance, one can consider the reciprocals
1/λn of the eigenvalues rather than the eigenvalues λn themselves, as we do in Section 3.2.
In any case, we suppose that all such choices have been made and denote the resulting
spectral map by σ. The study of the spectral geometry of G can then be replaced by the
study of the spectral map σ.

As our goal is to compare different shapes and their spectra, we need to introduce
metrics (in the sense of metric space, not necessarily Riemannian metrics) on the spaces of
shapes and spectra. This is a necessary step since numerical methods have finite precision
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and will never yield exact isospectrality or isometry. We will have to content ourselves
with isospectrality and isometry up to some thresholds εσ and εG, respectively. Since the
spectra are points in RN , we employ the standard Euclidean distance.

The situation with the space of shapes is more subtle. Suppose that G is equipped with
a complete metric dG(·, ·). Once again, this is a metric in the sense of metric space, not
necessarily a Riemannian metric. Recall that G is allowed to contain equivalent shapes,
by isometry in our case. Let [G] denote the set of such equivalence classes. Assuming that
each class g ∈ [G] is a compact subset of G, one can define a complete metric on [G]. This
is a fairly strong, but very convenient assumption. See Section 3.3 for a possible way of
avoiding this hypothesis. Recall the definition of the Hausdorff distance.

Definition 3.1 (Hausdorff Distance). Let (X, d) be a metric space. The Hausdorff distance
dH(·, ·) on the family of all bounded, non-empty closed subsets of (X, d) is defined by letting

dH(A,B) = max

{
sup
a∈A

d(a,B) , sup
b∈B

d(b, A)

}
, (3.1)

where d(a,B) = infb∈B d(a, b).

If (X, d) is complete, dH(·, ·) is a complete metric on the set of compact subsets of
(X, d) [36]. Consequently, we can define a complete metric d[G](·, ·) on [G] as the Hausdorff
distance on equivalence classes of G. This is the metric that we will be using to verify
whether two elements of G are equivalent. In practice, this requires the knowledge of the
equivalence classes of G. In the case of manifolds, one must be able to generate all of the
isometries. This is a hard task in general. In Section 3.2, we overcome this by studying
an especially well behaved set of manifolds. In Section 3.3, we propose a possible way to
entirely sidestep this issue.

We are now ready to discuss our numerical algorithm. Pick a starting shape A and a
target shape B. Our goal is to construct a path P (t) starting at A and ending at a shape
equivalent to B. For now view P (t) as a differentiable path. In truth, it will be a sequence
of points approximating a differentiable path.

The only tools we allow ourselves in the construction of P (t) are local behavior of σ
near P (t) and the target spectrum σ(B). We will achieve that by expressing P (t) as the
solution of a differential equation.

We cannot a priori guarantee that P (t) will reach its target point. Instead, we require
that the distance between the current and target spectrum is nonincreasing along the path:
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d

dt
‖σ(B)− σ(P (t))‖ ≤ 0 . (3.2)

This immediately gives us a first approach to constructing P (t). Indeed, consider the
following gradient descent equation:

d

dt
P (t) = −1

2
grad

(∥∥σ(B)− σ(P (t))
∥∥2
)
. (3.3)

The reason for the presence of the factor 1/2 and the squaring of the Euclidean distance
will become apparent shortly. At this point, we have replaced the inverse spectral problem
by a local optimization algorithm.

If P (t) satisfies this equation, it satisfies all of the requirements that we imposed above.
However, the gradient descent equation is not the best approach here. Define the Jacobian
matrix of σ:

J =



∂λ1

∂x1

∂λ1

∂x2

∂λ1

∂x3

. . .
∂λ1

∂xM
∂λ2

∂x1

∂λ2

∂x2

∂λ2

∂x3

. . .
∂λ2

∂xM
...

...
...

. . .
...

∂λN
∂x1

∂λN
∂x2

∂λN
∂x3

. . .
∂λN
∂xM


. (3.4)

Let vσ = σ(B)−σ(P ) and denote the transpose of J by J T . A straightforward component-
wise computation can be used to express Equation (3.3) as

d

dt
P (t) = −1

2
grad

(∥∥σ(B)− σ(P (t))
∥∥2
)

= J Tvσ . (3.5)

This expression is the reason why we use the square of the Euclidean distance as well as
the factor 1/2 in Equation (3.3). This new form suggests an improvement to the gradient
descent method. Let J + denote the pseudoinverse of J . See [95] for a definition. In
brief, the pseudoinverse inverts all that can be inverted and acts like 0 elsewhere. More
importantly, given a linear equation Ax = v, x = A+v is a least-squares solution. This
means that x is a vector such that ‖Ax−v‖ is minimal. Consider the following, alternative,
equation for P (t).
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d

dt
P (t) = J +vσ (3.6)

By the least squares property of J +, this equation makes P (t) vary in a way that is
as close as possible to a straight line towards the target spectrum. This is conceptually
similar to the idea of inverting the spectral map. Indeed, at each t, we locally pseudo-invert
the tangent to the spectral map. Note that this is a canonical generalization of the notion
of the inverse. An extremely important benefit to our purposes is that the pseudoinverse
is defined for maps between spaces of different dimension. In a sense, this will allow us to
study how well the M shape degrees of freedom are encoded in the N spectral degrees of
freedom.

Similarly to the gradient approach of Equation (3.3), the pseudoinverse approach of
Equation (3.6) is a local optimization algorithm. Indeed, the distance to the target spec-
trum is also non-decreasing along the path. Consider

d

dt
‖vσ‖2 = 2vσ ·

d

dt
vσ

= 2vσ ·

(
�
�
�
��d

dt
σ(B)− d

dt
σ(P )

)

= −2vσ ·
(
J d

dt
P (t)

)
= −2vσ ·

(
JJ +vσ

)
.

(3.7)

The last line follows from Equation (3.6). Since JJ + is the orthogonal projection onto
the image of J , vσ · (JJ +vσ) ≥ 0, which establishes that solutions to the pseudoinverse
method also satisfy Equation (3.2), as required.

While it is more discerning than the gradient method, the pseudoinverse method can
also get stuck in local minima of ‖vσ‖2. In fact, ker(J T ) = ker(J +) [95]. Thus, for a
given vσ, the right-hand side of Equation (3.5) vanishes if and only if the right-hand side
of Equation (3.6) vanishes. The two methods thus get stuck at the same shapes.

An advantage of the pseudoinverse approach, albeit one that we do not use in the present
thesis, is the possibility of setting secondary objectives for the optimization process [22].
Notice that 1−J +J is the projector onto ker(J ) = coker(J +), the subspace that does not
influence our objective function to first order. For example, given a function ρ : RM → R,
we can require for it to be increased (possibly maximized) alongside our main optimization
by setting
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d

dt
P (t) = J +vσ + (1− J +J )grad

(
ρ(P )

)
. (3.8)

We use the pseudoinverse approach in what follows. In order to numerically solve
Equation (3.6), we begin by discretizing the time variable t. From now on, t ∈ N represents
the number of the step in the solution. Then, we numerically integrate Equation (3.6) by
Euler’s method:

P (t+ 1) = P (t) + SJ +(t)vσ(t) , (3.9)

where S is a variable step size. J is computed using symmetric finite differences.

The value of S is varied according to the following rules. Let u > 1 and d < 1 be two
positive constants. If σ(P (t+ 1)) is closer to the target spectrum σ(B) than σ(P (t)), the
new step size is increased to Su. If σ(P (t + 1)) is further away from σ(B) than σ(P (t)),
the step is cancelled. Then, the step size is reduced to Sd and the step is attempted
again under the same rules. In our investigations, we used u = 1.1 and d = 0.7. These
values work well as they provide noticeable changes in step size without being too extreme.
Ultimately, however, the choice of u and d is arbitrary.

Were we to exactly solve equation (3.6), the situation where dσ(σ(P (t + 1)), σ(B)) >
dσ(σ(P (t)), σ(B)) would never arise. In the discrete setting, however, such things are
possible. This is why we compute P (t+ 1) again with a smaller step size.

The increase in step size serves to speed up the otherwise quite lengthy integration.
When the initial shape A and the target shape B start close together, which will be the
case in most of our study, this is of little consequence. However, when A and B are taken
to be very different from each other and, more to the point, have very different spectra,
this proves to be a major advantage. Of course, the exponential increase in step size will
eventually produce a step size so large we have to drop all pretense of approximating a path
satisfying a differential equation. Nonetheless, this approach remains a sound optimization
algorithm, as the shapes it produces will have a spectrum that is closer and closer to the
target spectrum.

The integration terminates if either of two conditions are fulfilled. The first one is the
convergence to the desired spectrum, up to tolerance. That is, if dσ(σ(P (t)), σB) ≤ εσ.
The second one is the reduction of the step size below some very small threshold εS > 0.
This occurs when the algorithm is repeatedly unable to reduce S in order to compute a
P (t + 1) that satisfies dσ(σ(P (t + 1)), σ(B)) ≤ dσ(σ(P (t)), σ(B)). In other words, this
occurs when the algorithm is stuck in a local optimum.
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The outcome of the algorithm is a final shape Pf . One can then compare Pf and σ(Pf ) to
the target shape B and target spectrum σ(B) using the metrics and tolerances introduced
above. Recall that d[G](·, ·) takes into account the equivalence of shapes. Isometry is the
relevant equivalence relation in the case of manifolds. Then, four outcomes are possible.

(1) Success: both the shapes and the spectra match.

(2) Local optimum: neither the shapes nor the spectra match.

(3) Potential counterexample: the spectra match, but the shapes do not.

(4) Numerical artifact: the shapes match, but the spectra do not.

The first two outcomes have already been discussed at length and require no further ex-
planation. Regarding the third outcome, it is important to remember that the algorithm
only uses N eigenvalues. Consequently all that was found is a pair of shapes isospectral
on N eigenvalues, up to tolerance. It is not necessarily a pair of isospectral non-isometric
manifolds. The fourth outcome is an unavoidable consequence of the way we compare
the final shape and spectrum to the target ones. Indeed, we tacitly assumed that balls of
radius εG in the space of shapes map to balls of radius εσ in the space of spectra, which is
not the case in general. Consequently, it is impossible to completely eliminate possibility
(4) by choosing compatible thresholds εG and εσ.

We are interested in the success rates of our algorithm. In order to do that, we run the
algorithm for randomly generated pairs of initial and target shapes (A,B). We then can
compute the success rates as functions of the initial shape distance d[G](A,B) between A
and B and the number N of considered eigenvalues. For the purposes of such statistics, the
dubious cases of outcome (4) are considered as failures. Consequently, we underestimate
our success rate.

Moreover, we study the prevalence of counterexamples. We compute the proportion of
potential counterexamples (outcome (3)), among all runs that reach the target spectrum
(outcomes (1) and (3)). By studying this quantity’s dependence upon the number of
eigenvalues N , it is possible to see whether the counterexamples are common or not.

This concludes the general setup of our method of numerical investigation. In the next
section, we apply it to a particular class of planar domains.
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Figure 3.1: Three shapes generated using Equation (3.10). In all the cases, the number of
shape degrees of freedom is M = 11.

3.2 Star-Shaped Planar Domains

In this section, we apply our numerical approach to a family of compact star-shaped do-
mains in R2. Those domains are defined by their boundaries. In standard polar coordinates
(r, φ), we set

r(φ) = a+ b exp

C0 +

M−1
2∑

k=1

[Ck cos(kφ) + Sk sin(kφ)]

 . (3.10)

In the above, the Fourier coefficients {Ck}
M−1

2
k=0 and {Sk}

M−1
2

k=1 form the coordinates for RM .
We choose a = 0.1 and b = 0.9 so that the vanishing of all Fourier coefficients produces a
disk of radius 1. Notice that r(φ) > 0 for all φ ∈ [0, 2π).

The spectral map σ : RM → RN is chosen to output the lowest N eigenvalues of the
standard Laplacian with Dirichlet boundary conditions, in ascending order. The spectra
are computed using Freefem++, a freely available finite element solver [59]. The technical
limitations of said solver require the presence of some a � 10−7 in equation (3.10). Oth-
erwise, the choice a = 0 and b = 1 would have provided a sufficiently rich space of shapes.
For an introduction to finite element methods, see [4], among many others.

As mentioned previously, we then take the reciprocals 1/λn of the eigenvalues. This
seems to increase the success rates, likely due to the fact that smaller eigenvalues are
typically less sensitive to small changes in shape than the large ones. In effect, using 1/λn
rather than λn seems to encourage the algorithm to first find a roughly correct shape and
then make smaller adjustments on it.
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The only missing ingredient is a metric on the space of shapes. Notice that the bound-
aries of the domains are compact subsets of R2. Indeed, they are continuous images of the
circle S1, which is compact. Thus, the Euclidean distance on R2 can be used to induce
a Hausdorff distance on the boundaries (see Definition 3.1). We use that as the metric
dG(·, ·).

We still need to define a metric d[G](·, ·) on the isometry equivalent classes of G. Recall
that all isometries of the plane can be produced as a composition of a translation, as
reflexion and a rotation. For simplicity, we slightly alter the space of shapes under study.
Instead of leaving the domains as produced by Equation (3.10), we translate them so
that their barycenters lie at the origin. This takes care of all translation isometries. The
remaining isometries can be expressed as either a rotation or a reflexion with respect to
the x axis followed by a rotation. Since S1 is compact and rotations are continuous, the
isometry equivalence class of a given domain is the union of two compact sets: those shape
equivalent by rotation alone and those equivalent by a reflexion followed by a rotation.
Since finite unions of compacts are compact, the isometry equivalence class of a domain is
compact in the dG(·, ·) metric. We can thus define d[G](·, ·) as a Hausdorff distance on those
equivalence classes. To reiterate, our metric on [G] is a Hausdorff distance of a Hausdorff
distance.

The range of the shape degrees of freedom under study gives rise to domains with a
diameter roughly between 1 and 10. We set the threshold for isometry to be much smaller
than this scale: εG = 0.005. The choice of a spectral tolerance is more subtle. Given a
large sample of shapes isometric up to tolerance, it is tempting to set the spectral tolerance
to the smallest number such that all isometric shapes are isospectral. This, however,
results in more near-isospectral non-isometric shapes counting as isospectral. Many false
counterexamples to the determination of shape from spectrum are then detected. In the
end, we chose to be stricter on the notion of isospectrality and set εσ =

√
10−9 ≈ 3.16·10−5.

This is roughly 10 times lower than what compatibility with isometry would suggest.

We applied our algorithm to domains generated with M−1
2

= 1...5. In other words, we
considered M = 3, 5, 7, 9, 11. The case M = 1 results in discs which are determined by
their spectrum (see Chapter 2). The omitted even values of M produce the same shapes,
due to the following trigonometric identity.

a cos(φ) + b sin(φ) =
√
a2 + b2 sin(φ+ δ) , for some δ ∈ [0, 2π) (3.11)

Depending on M , between 1250 and 1750 pairs of initial and target shapes (A,B) were
randomly generated. Pairs that started with d[G](A,B) ≤ εG were automatically rejected.
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Then, for each pair, the algorithm was ran for different numbers of eigenvalues N = 1...40.
An example of a successful run of the algorithm is illustrated in Figure 3.2.

We will only be discussing the results in the case M = 11, as it illustrates the general
behavior of all the studied cases. Moreover, it is the most complex case considered.

The first piece of information we are interested in is the rate of success of our algorithm.
Recall that we identify the initial shape distance d[G](A,B) and the number of eigenvalues
N as the variables that can influence the success rate. In order to probe their influence,
we represent the success rate in two ways.

First, we compute the proportion of successes among runs such that d[G](A,B) ∈ [a, b)
for some a,b. For N = 40, this is illustrated on Figure 3.3. Note the high rate of success
for nearby A and B as well as the rapid decay of the success rate as d[G](A,B) increases.

We are mostly interested in the success rate at small initial shape distances, as this
is what probes the local invertibility of the spectral map. Moreover, we want to see the
dependence of the short range success rate on the number of eigenvalues used. In order to
do that, we introduce the following quantity:

A(d,N) =
Number of successful runs with N eigenvalues and d[G](A,B) ≤ d

Number of runs with N eigenvalues and d[G](A,B) ≤ d
. (3.12)

It essentially is a success rate for d[G](A,B) ∈ (εG, d] using N eigenvalues. For M = 11,
A(d,N) is illustrated on Figure 3.4. Consider the top edge of the graph. This corresponds
to runs with small d[G](A,B). Notice that the success rate is very high there. Indeed, it
seems to go to 1 in the limit of small d[G](A,B), assuming that N is sufficiently large. This
indicates that it is possible to reconstruct small changes in shape from small changes in
spectrum, assuming enough eigenvalues are considered.

The question of how many eigenvalues are needed remains. One could expect that a
match between the number of shape and spectral degrees of freedom is required. Note that
the space of shapes studied here has one redundant degree of freedom, due to isometry by
rotation. Thus, one would expect A(d,N) to change behavior near N = M − 1 = 10. This
is indeed the case. A(d,N) increases dramatically as N goes from 1 to roughly 10, after
which it stays near 1 and only slightly improves with N . This is very encouraging, as it
indicates that this strategy could be applied in the case of infinitely many shape degrees of
freedom. If the number of eigenvalues required for local reconstruction grows at the same
rate as the number of shape degrees of freedom, the joint limit M,N →∞ could plausibly
be taken.
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Figure 3.2: Successful run of the algorithm for M = 11 and N = 20.
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Figure 3.3: Dependence of the success rate on the initial shape distance d[G](A,B) for
M = 11 and N = 40. Lower values of N produce analogous graphs, but with lower success
rates. Originally published in [86].
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the number of eigenvalues N for M = 11. Lower values of M produce similar results.
Originally published in [86].
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Figure 3.5: Proportion of isometric runs among isospectral ones as a function of N for
M = 11. Similar results are obtained for other values of M . Originally published in [86].

It remains to discuss whether our algorithm has found any isospectral non-isometric
manifolds. Due to the nature of our tools we can unfortunately not answer this question. In
fact, were we to find a pair of non-isometric shapes isospectral for the first N eigenvalues,
there is no guarantee that this isospectrality would remain when N + 1 eigenvalues are
considered. The best we can do is to estimate the proportion of runs resulting in an
isometric pair of shapes among all runs that produce shapes isospectral on the first N
eigenvalues. Call this proportion P (N). Since isospectral non-isometric manifolds are
expected to be rare, this proportion is expected to go to 1 as N increases and it becomes
increasingly harder to find shapes isospectral on the first N eigenvalues. This is indeed
what can be observed on Figure 3.5, where the behavior of P (N) is illustrated. This is an
indication of the rarity of isospectral non-isometric manifolds.

3.3 Possible Extensions

The results that we obtained for the star-shaped planar domains defined in Equation (3.10)
are very encouraging. Indeed, they indicate that isospectral non-isometric manifolds are
rare and that it is possible to locally reconstruct small changes in shape from small changes
in spectrum.

It would be of interest to extend such studies to other types of manifolds. Most ingredi-
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ents for this endeavor are readily available. Common finite element solvers, say FreeFem++
[59], can be used to compute Laplacian eigenvalues in dimensions 2 and 3 and it is theo-
retically possible to construct solvers for higher dimensions. The pseudoinverse approach
of Equation (3.6) applies as long as one has a way to parametrize the shapes under study
by RM .

Still, one key piece is missing. That piece is a way to check for isometries. For domains
in R3, a strategy similar to the one used here can be adopted. It is not so for curved
manifolds.

Fortunately, there is a result that can be used to numerically find isometries between
generic Riemannian manifolds. The appropriate notion of genericity is the non-degeneracy
of the Laplace-Beltrami spectrum. Indeed, metrics that give rise to such Laplacians form
a residual set in the C∞ topology [6]. Given such a manifold (M, g), a point x ∈ M is
said to be generic if none of the eigenfunctions of the Laplace-Beltrami operator vanish at
x. The set of such points has full measure in M as the nodal sets of the eigenfunctions
have a dimension smaller than that of the manifold [27]. Since a countable union of sets
of measure zero is also of measure zero, its complement has full measure. The following
theorem holds.

Theorem 3.2. Let (M, g) and (N , h) be two compact Riemannian manifolds with non-
degenerate Laplace-Beltrami spectrum. This is a generic condition. Let hM(x, y, t) and
hN (x̃, ỹ, t) denote the heat kernels of the Laplace-Beltrami operators of (M, g) and (N , h),
respectively. Let p ∈ M be generic in the sense given above. Let f : M → N be a map
such that f(p) is generic and

hM
(
p, y, t

)
= hN

(
f(p), f(y), t

)
, for all t > 0 and all y ∈M. (3.13)

Then f is an isometry.

A proof of the above theorem, as well as a numerical algorithm for shape matching can
be found in [83]. Moreover, one can use this algorithm to construct approximate isometries
between manifolds if an exact isometry is unavailable.

We suggest that one could use this method to compare shapes in a generalization of
our algorithm. Once a best possible map f is found and a convenient norm is chosen, a
notion of distance between shapes could be provided by

d(M,N ) =
∥∥hM(p, y, t)− hN (f(p), f(y), t

)∥∥ . (3.14)
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In the above, we purposefully leave the norm unspecified, as multiple choices are valid.
Realistically, due to the nature of numerical methods, one would only have access to a
discretized version of the heat kernel. Heat kernels would then be represented as finite
arrays of real numbers. This would allow for the usage of the usual Euclidean distance, for
example. Note that this notion of distance between shapes does not require the assumption
that the isometry equivalence sets in G are compact, unlike the notion of distance used in
Section 3.1.

We conclude this section with a discussion of a rigorous notion of distance between
compact Riemannian manifolds based on the heat kernel. See [67] for the details. For
ε > 0 and using the notation of Theorem 3.2, not necessarily continuous maps p :M→N
and q : N →M are said to be ε-spectral approximations if

e−(t+1/t) |hM(t, x, y)− hN (t, p(x), p(y))| < ε , ∀ t > 0, x, y ∈M
e−(t+1/t) |hM(t, q(a), q(b))− hN (t, a, b)| < ε , ∀ t > 0, a, b ∈ N .

(3.15)

The infimum of such ε is said to be the spectral distance between the Riemannian mani-
folds (M, g) and (N , h). If (M, g) and (N , h) admit no ε-spectral approximations, it is
understood that the spectral distance between them is ∞. This yields a metric (in the
sense of metric space) on the set of isometry equivalence classes of compact Riemannian
manifolds.

The spectral distance is of theoretical importance in the study of sequences of Rie-
mannian manifolds. More specifically, it arises in the study of the convergence of the
associated Laplacians. The sequences of manifolds under study can admit limit manifolds
with topologies and dimensions different from those of the elements of the sequences, mak-
ing questions of convergence nontrivial. See [65, 66, 103] for applications. We also refer
the reader to [76] for a discussion of an alternative notion of spectral distance, as well as
discussion of various notions of distance between Riemannian manifolds.

For the purposes of numerical experiments, the spectral distance may prove too ex-
pensive to compute in a reasonable time. Thus, an approximation to it in the sense of
Theorem 3.2 and Equation (3.14) is likely preferable.
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Chapter 4

Analytic Perturbation Theory

Having numerically demonstrated the viability of infinitesimal inverse spectral geometry,
we turn our attention to the theoretical tools required to perturbatively study the Laplace-
Beltrami spectrum. This endeavor will occupy all of this chapter, and most of the next
one. The aim of this chapter is to introduce the fundamentals of the analytic perturbation
theory of eigenvalues of linear operators.

Analytic perturbation theory concerns itself with one-parameter families of operators
of the form

H(t) = H(0) + tH(1) + t2H(2) + ... , (4.1)

where the {H(i)}∞i=0 are linear operators on some Hilbert space H and t is a real or complex
parameter in the neighborhood of 0. Consider the following eigenvalue problem:

H(t)ψn(t) = λn(t)ψn(t) , (4.2)

where ψn(t) ⊂ H is a family of eigenvectors and λn(t) a family of eigenvalues. The index n
serves to enumerate the distinct families of eigenvalues and eigenvectors of H(t). The two
goals of analytic perturbation theory are, first, to establish the conditions necessary for
those families to be convergent power series in t and, second, to compute the coefficients
of those series:

λn(t) = λ(0)
n + tλ(1)

n + t2λ(2)
n + ...

ψn(t) = ψ(0)
n + tψ(1)

n + t2ψ(2)
n + ...

(4.3)
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Notice that in all of the above the superscript in parenthesis matches the power of the
parameter t. That superscript in known as the order of the perturbation. Thus, H(1) is
the first order perturbation to H(0), H(2) the second order perturbation etc. The objects
with the superscript (0) are termed unperturbed. Sometimes, the term correction is used
instead of perturbation, especially for the eigenvalues and eigenvectors.

We are mostly concerned with the practical side of perturbation theory, that is the
computation of eigenvalue corrections, as the perturbation series that we study in the later
chapters have been shown to converge.

The first two eigenvalue corrections are sufficient for our purposes. We obtain the ex-
pressions for said corrections in two distinct ways. In Section 4.1 we present a heuristic
computation of these corrections using an approach typical of quantum mechanical text-
books. Then, in Section 4.2, we sketch the rigorous approach to the computation of the
eigenvalue corrections.

4.1 Heuristic Perturbation Theory

In this section, we pursue a heuristic approach to the determination of the first and second
order eigenvalue corrections. Unlike the treatments of perturbation theory found in text-
books on quantum mechanics, we do not assume that the perturbations H(i) for i ≥ 1 are
self-adjoint or even symmetric (see Appendix B for a discussion of the difference between
symmetric and self-adjoint operators). In fact, the perturbations of the Laplace-Beltrami
operator studied in Chapter 5 are not symmetric in general.

We begin by computing the eigenvalue corrections in the case of a nondegenerate un-
perturbed spectrum. Despite the title of this section, this first computation is rigorous.
Then, we proceed to treat the case of a finitely degenerate spectrum. There, the failings
of the heuristic approach will become apparent. The expressions obtained here remain,
nonetheless, valid.

4.1.1 Nondegenerate Case

Consider a self-adjoint operator H(0) on a Hilbert space H with inner product 〈·, ·〉. Let

the eigenvectors {ψ(0)
n }n of H(0) form a countable orthonormal basis for H and let the

corresponding eigenvalues {λ(0)
n }n be nondegenerate. If one further assumes that H(i) = 0

for i ≥ 2 and that H(1) is self-adjoint, the following formulas for the eigenvalue corrections
can be found in quantum mechanics textbooks, such as [77, 28].

54



λ(1)
n = 〈ψ(0)

n , H(1)ψ(0)
n 〉

λ(2)
n =

∑
k 6=n

|〈ψ(0)
k , H(1)ψ

(0)
n 〉|2

λ
(0)
n − λ(0)

k

(4.4)

For our purposes, we require a slight generalization of these results. Namely, we must
consider the case of non-symmetric perturbations H(i) for i ≥ 1 and of a perturbation with
changing inner product. As will be seen in Chapter 5, this situation arises when dealing
with perturbations of Laplacians induced by perturbations of the Riemannian metric. The
procedure followed here is entirely analogous to the one found in the standard textbooks
on quantum mechanics [77, 28].

Let {G(i)}i≥1 be bounded self-adjoint operators that define the following family of inner
products in some neighborhood of t = 0.

〈·, ·〉t = 〈·, ·〉+ t〈·, G(1)·〉+ t2〈·, G(2)·〉+ ... (4.5)

Consider the eigenvalue problem for H(t) (Equation (4.2)). Using the expansions for H(t),
ψn(t) and λn(t) (Equations (4.1) and (4.3)) both the right-hand and left-hand side of
Equation (4.2) become polynomials in t. Equating the coefficients order by order, up to
second order, yields

H(0)ψ(0)
n = λ(0)

n ψ(0)
n

H(0)ψ(1)
n +H(1)ψ(0)

n = λ(0)
n ψ(1)

n + λ(1)
n ψ(0)

n

H(0)ψ(2)
n +H(1)ψ(1)

n +H(2)ψ(0)
n = λ(0)

n ψ(2)
n + λ(1)

n ψ(1)
n + λ(2)

n ψ(0)
n .

(4.6)

The first line of the above is the unperturbed eigenvalue problem for H(0). The next two
lines encode the first and second order contributions to the eigenvalue problem of H(t),
respectively.

Before proceeding further with the computation of the eigenvalue corrections, it is
necessary to choose a normalization for the eigenvectors. The intuitive choice would be
to set 〈ψn(t), ψn(t)〉t = 1. However, this is not the most convenient approach. Instead,
following [97], we require

〈ψ(0)
n , ψn(t)〉t = 1 . (4.7)
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Order by order in t, up to second order, this condition becomes

〈ψ(0)
n , ψ(0)

n 〉 = 1

〈ψ(0)
n , ψ(1)

n 〉 = −〈ψ(0)
n , G(1)ψ(0)

n 〉
〈ψ(0)

n , ψ(2)
n 〉 = −〈ψ(0)

n , G(1)ψ(1)
n 〉 − 〈ψ(0)

n , G(2)ψ(0)
n 〉 .

(4.8)

Now, following the standard procedure, we take the unperturbed inner product of the
first order part of equation (4.6) with ψ

(0)
n .

〈ψ(0)
n , H(0)ψ(1)

n 〉+ 〈ψ(0)
n , H(1)ψ(0)

n 〉 = 〈ψ(0)
n , λ(0)

n ψ(1)
n 〉+ 〈ψ(0)

n , λ(1)
n ψ(0)

n 〉
λ(0)
n 〈ψ(0)

n , ψ(1)
n 〉+ 〈ψ(0)

n , H(1)ψ(0)
n 〉 = λ(0)

n 〈ψ(0)
n , ψ(1)

n 〉+ λ(1)
n

(4.9)

The second line of the above is obtained using the self-adjointness of H(0) and the fact that
ψ

(0)
n is normalized. Isolating λ

(1)
n gives:

λ(1)
n = 〈ψ(0)

n , H(1)ψ(0)
n 〉 . (4.10)

Similarly, taking the inner product of the first order part of the eigenvalue problem with
ψ

(0)
k for k 6= n and using the self-adjointness of H(0) together with the orthogonality of ψ

(0)
n

and ψ
(0)
k yields

〈ψ(0)
k , H(0)ψ(1)

n 〉+ 〈ψ(0)
k , H(1)ψ(0)

n 〉 = 〈ψ(0)
k , λ(0)

n ψ(1)
n 〉+ 〈ψ(0)

k , λ(1)
n ψ(0)

n 〉
=⇒ λ

(0)
k 〈ψ

(0)
k , ψ(1)

n 〉+ 〈ψ(0)
k , H(1)ψ(0)

n 〉 = λ(0)
n 〈ψ

(0)
k , ψ(1)

n 〉

=⇒ 〈ψ(0)
k , ψ(1)

n 〉 =
〈ψ(0)

k , H(1)ψ
(0)
n 〉

λ
(0)
n − λ(0)

k

.

(4.11)

Together with the normalization condition of Equation (4.8), this gives the following ex-

pansion of ψ
(1)
n in the eigenbasis of H(0):

ψ(1)
n =

∑
k 6=n

〈ψ(0)
k , H(1)ψ

(0)
n 〉

λ
(0)
n − λ(0)

k

ψ
(0)
k − 〈ψ

(0)
n , G(1)ψ(0)

n 〉ψ(0)
n . (4.12)

This expression is necessary in order to obtain the expression for the second order eigenvalue
correction λ

(2)
n . Begin by taking the inner product of the second order part of the eigenvalue

problem (third line of Equation (4.6)) and ψ
(0)
n :

56



〈ψ(0)
n , H(0)ψ(2)

n 〉+ 〈ψ(0)
n , H(1)ψ(1)

n 〉+ 〈ψ(0)
n , H(2)ψ(0)

n 〉 =

〈ψ(0)
n , λ(0)

n ψ(2)
n 〉+ 〈ψ(0)

n , λ(1)
n ψ(1)

n 〉+ 〈ψ(0)
n , λ(2)

n ψ(0)
n 〉 .

(4.13)

By the self-adjointness of H(0) and the normalization of ψ
(0)
n ,

λ(2)
n = 〈ψ(0)

n , H(1)ψ(1)
n 〉+ 〈ψ(0)

n , H(2)ψ(0)
n 〉 − 〈ψ(0)

n , λ(1)
n ψ(1)

n 〉 . (4.14)

Then, using the expression for ψ
(1)
n (Equation (4.12)) and the first order normalization

condition (Equation (4.8), line two) the following expression for λ
(2)
n is obtained:

λ(2)
n =

∑
k 6=n

〈ψ(0)
k , H(1)ψ

(0)
n 〉

λ
(0)
n − λ(0)

k

〈ψ(0)
n , H(1)ψ

(0)
k 〉 − 〈ψ

(0)
n , G(1)ψ(0)

n 〉〈ψ(0)
n , H(1)ψ(0)

n 〉

+〈ψ(0)
n , H(2)ψ(0)

n 〉+ λ(1)
n 〈ψ(0)

n , G(1)ψ(0)
n 〉 .

(4.15)

Finally, it remains to recall that λ
(1)
n = 〈ψ(0)

n , H(1)ψ
(0)
n 〉 in order to get

λ(2)
n =

∑
k 6=n

〈ψ(0)
n , H(1)ψ

(0)
k 〉〈ψ

(0)
k , H(1)ψ

(0)
n 〉

λ
(0)
n − λ(0)

k

+ 〈ψ(0)
n , H(2)ψ(0)

n 〉 . (4.16)

Compare this expression to the case of a symmetric H(1) (Equation (4.4)). The only change
is in the numerator of the first term. This has important consequences for our endeavors.
Specifically, the numerator is no longer guaranteed to be positive. As explained at the end
of Section 5.3.2, this is an obstacle to the generalization of the main results of this thesis.

Also note neither λ
(1)
n (Equation (4.10)) nor λ

(2)
n (Equation (4.16)) depend on the per-

turbation of the inner product. This is to be expected, as the eigenvalues of an operator
do not depend upon the inner product. Thus, strictly speaking, it was unnecessary to set
〈ψ(0)

n , ψn(t)〉t = 1. The usual normalization with respect to 〈·, ·〉 would have yielded the
same results. We will return to this point in the next section while discussing perturbations
of an operator with a finitely degenerate spectrum. An important feature of the rigorous
theory sketched in Section 4.2 is that no choice of normalization is ever necessary.

57



4.1.2 Finitely Degenerate Spectrum

Here, we heuristically obtain the procedure for the calculation of the first two eigenvalue
corrections for the case of a finitely degenerate eigenvalue of a self-adjoint operator. Com-
pared to the nondegenerate case presented above, the material in this section contains
significantly less standard and less rigorous material. Outside of questions of convergence,
which are nontrivial, all of the results in the nondegenerate case were obtained through le-
gitimate means. Here, however, many of the expressions obtained do not, strictly speaking,
make sense. That will require us to reinterpret the results of our formal manipulations as
the discussion goes on. Nonetheless, we believe that those formal manipulations are highly
instructive, as they shed light on the otherwise quite obtuse rigorous theory developed in
the subsequent sections.

Let λ
(0)
n be the eigenvalue of H(0) corresponding to an N -dimensional eigenspace. If

N > 1, the choice of the basis of eigenvectors in that eigenspace is no longer unique up
to a scalar factor. This turns out to be a very important feature of degenerate pertur-
bation theory, as making the correct choice of eigenbasis will be necessary to obtain the
eigenvalue corrections. Consequently, we cannot make a choice of eigenbasis yet. This
makes it impossible to use the strategy employed in the nondegenerate case, as it relies
on a certain eigenbasis being chosen. Instead, we treat the eigenspaces as separate objects
using projection operators.

Let Pn(t) be a family of projection operators onto the subspace spanned by the eigenvec-
tors of H(t) belonging to the eigenvalue λn(t). Such operators are termed eigenprojections.
Then, the following equation holds.

H(t)Pn(t) = λn(t)Pn(t) (4.17)

We assume, without proof for now, that Pn(t) can be written as a power series in t:

Pn(t) = P (0)
n + tP (1)

n + t2P (2)
n + ... (4.18)

For now, let P
(0)
n be the projection onto the λ

(0)
n eigenspace of H(0). This assumption will

not hold in general, but is useful in the meantime. Combining Equations (4.17) and (4.18)
yields, order by order in t,

H(0)P (0)
n = λ(0)

n P (0)
n

H(0)P (1)
n +H(1)P (0)

n = λ(0)
n P (1)

n + λ(1)
n P (0)

n

H(0)P (2)
n +H(1)P (1)

n +H(2)P (0)
n = λ(0)

n P (2)
n + λ(1)

n P (1)
n + λ(2)

n P (0)
n .

(4.19)
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Rewrite the first order equation as follows

λ(1)
n P (0)

n =
(
H(0) − λ(0)

n

)
P (1)
n +H(1)P (0)

n . (4.20)

Our goal is to isolate λ
(1)
n . Consider the above equation on the vector space P

(0)
n H, that

is on the λ
(0)
n eigenspace of H(0). Let the identity on P

(0)
n H be denoted by 1

P
(0)
n H

. Then,

multiplying by P
(0)
n on both sides, the equation becomes

λ(1)
n 1

P
(0)
n H

=((((
(((

(((([
P (0)
n

(
H(0) − λ(0)

n

)]
P (1)
n P (0)

n + P (0)
n H(1)P (0)

n P (0)
n

= P (0)
n H(1)P (0)

n .
(4.21)

Now, the left-hand side of the equation is a multiple of the identity, while the right-hand
side is merely a diagonalizable matrix. Thus, the equality need not hold and the above
expression need not make sense. We thus need to reinterpret this relation in a way that
brings meaning back into it. This is precisely the situation referred to in the introduction
of this section. Begin by diagonalizing P

(0)
n H(1)P

(0)
n on P

(0)
n H. Let {λ(1)

ni }Ii=1 denote the

set of the I distinct eigenvalues of P
(0)
n H(1)P

(0)
n and let {Q(1)

ni }Ii=1 denote the corresponding

eigenprojections. It is very important not to confuse Q
(1)
ni with P

(1)
n , as those are very

different objects, a fact which we emphasize by denoting them with different letters. Note
that P

(0)
n Q

(1)
ni = Q

(1)
ni . Then, on Q

(1)
ni H, Equation (4.21) can be recast in a meaningful form:

λ(1)
n 1

Q
(1)
ni H

= Q
(1)
ni H

(1)Q
(1)
ni = λ

(1)
ni 1Q

(1)
ni H

. (4.22)

The values of λ
(1)
n that satisfy this equation for some i correspond to the eigenvalues of

P
(0)
n H(1)P

(0)
n on P

(0)
n H. Thus, at first order, the N -fold degenerate eigenvalue λ

(0)
n splits

into I eigenvalues of the form λ
(0)
n + tλ

(1)
ni for i = 1, ..., I. The multiplicity of λ

(0)
n + tλ

(1)
ni is

equal to the dimension of the subspace Q
(1)
ni H. This gives us a procedure to calculate all

the possible values of λ
(1)
n .

The second order corrections can further split the degenerate eigenvalues. Begin by
considering the second order part of Equation (4.19) (third line) rewritten as follows:

λ(2)
n P (0)

n =
(
H(0) − λ(0)

n

)
P (2)
n +

(
H(1) − λ(1)

n

)
P (1)
n +H(2)P (0)

n . (4.23)

Similarly to the first order case, consider this equation on the subspace Q
(1)
ni H.
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λ(2)
n 1

Q
(1)
ni H

=
��

���
���

���[
Q

(1)
ni

(
H(0) − λ(0)

n

)]
P (2)
n Q

(1)
ni +Q

(1)
ni

(
H(1) − λ(1)

n

)
P (1)
n Q

(1)
ni

+Q
(1)
ni H

(2)P (0)
n Q

(1)
ni

= Q
(1)
ni

(
H(1) − λ(1)

n

)
P (1)
n Q

(1)
ni +Q

(1)
ni H

(2)Q
(1)
ni

(4.24)

Here, a situation similar to the one encountered during the computation of first order
corrections arises. Immediately, one recognizes that the possible values of λ

(2)
n are given by

the eigenvalues of the right-hand side on the subspace Q
(1)
ni H. In order to proceed further,

we need P
(1)
n . We will compute it using a method analogous to the one used to compute ψ

(1)
n

in the nondegenerate case. Some modifications are necessary since the object in question
is an operator rather than a vector. Consider the following expression for P

(1)
n .

P (1)
n = 1P (1)

n 1

=

(∑
k 6=n

P
(0)
k + P (0)

n

)
P (1)
n

(∑
k 6=n

P
(0)
k + P (0)

n

)
=
∑
k 6=n

∑
l 6=n

P
(0)
k P (1)

n P
(0)
l +

∑
k 6=n

P
(0)
k P (1)

n P (0)
n +

∑
k 6=n

P (0)
n P (1)

n P
(0)
k + P (0)

n P (1)
n P (0)

n

(4.25)

We thus have to compute three type of terms of the form P
(0)
k P

(1)
n P

(0)
l with various admis-

sible values of k and l.

We begin by arguing that P
(0)
n P

(1)
n P

(0)
n = 0. This is plausible, as it means that the first

order eigenvector corrections will lie outside the unperturbed eigenspace. Note that we
do not prove this. Recall the situation in the nondegenerate case. There, computing the
form of the first order correction to the eigenvector required the additional assumption of
a choice of normalization. In the usual quantum mechanical treatments of perturbation
theory, say [28], this yields that ψ

(1)
n is orthogonal to ψ

(0)
n . In the more general case

discussed in Section 4.1.1, an additional component lying in the original eigenspace must
be introduced in order to compensate for the changing inner product. This is quite peculiar,
as eigenvectors remain eigenvectors, no matter the choice of normalization. There should
thus be a normalization-independent argument for the vanishing of P

(0)
n P

(1)
n P

(0)
n . This will

have to wait for the rigorous theory sketched later in this chapter.

We can compute the rest of the terms through legitimate means. Multiplying the second
line of Equation (4.19) by P

(0)
k on the left and P

(0)
l on the right results in the following.
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P
(0)
k H(0)P (1)

n P
(0)
l + P

(0)
k H(1)P (0)

n P
(0)
l = λ(0)

n P
(0)
k P (1)

n P
(0)
l + λ(1)

n P
(0)
k P (0)

n P
(0)
l

λ
(0)
k P

(0)
k P (1)

n P
(0)
l + δnlP

(0)
k H(1)P (0)

n = λ(0)
n P

(0)
k P (1)

n P
(0)
l + λ(1)

n δknδnlP
(0)
n

When k 6= n and l 6= n, this implies that P
(0)
k P

(1)
n P

(0)
l = 0. Thus, the first term in Equation

(4.25) vanishes. When k 6= n and l = n, we get

P
(0)
k P (1)

n P (0)
n =

P
(0)
k H(1)P

(0)
n

λ
(0)
n − λ(0)

k

. (4.26)

Using this in Equation (4.25) gives

P (1)
n =

∑
m6=n

P (0)
n P (1)

n P (0)
m +

∑
k 6=n

P
(0)
k H(1)P

(0)
n

λ
(0)
n − λ(0)

k

. (4.27)

Since Q
(1)
ni H ⊂ P

(0)
n H and P

(0)
k P

(0)
n = δknP

(0)
k , P

(0)
k Q

(1)
ni = δknQ

(1)
ni . Thus, the following

holds

P (1)
n Q

(1)
ni =

∑
k 6=n

P
(0)
k H(1)Q

(1)
ni

λ
(0)
n − λ(0)

k

. (4.28)

We can now return to the calculation of the second order eigenvalue corrections. Using
the above in Equation (4.24), together with the fact that Q

(1)
ni P

(0)
m = δmnQ

(1)
ni , results in the

final expression for the operator that needs to be diagonalized on Q
(1)
ni H in order to obtain

all the possible values of second order corrections to the λ
(0)
n + tλ

(1)
ni family of eigenvalues.

λ(2)
n 1

Q
(1)
ni H

=
∑
k 6=n

Q
(1)
ni H

(1)P
(0)
k H(1)Q

(1)
ni

λ
(0)
n − λ(0)

k

+Q
(1)
ni H

(2)Q
(1)
ni (4.29)

Let’s now summarize the above discussion. For each distinct eigenvalue λ
(0)
n of H(0)

with eigenspace P
(0)
n H, define the following two operators:

Λ(1)
n = P (0)

n H(1)P (0)
n

Λ(2)
n =

∑
k 6=n

P
(0)
n H(1)P

(0)
k H(1)P

(0)
n

λ
(0)
n − λ(0)

k

+ P (0)
n H(2)P (0)

n .
(4.30)
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The first order eigenvalue corrections are given by the eigenvalues {λ(1)
ni }i of Λ

(1)
n on the

eigenspace P
(0)
n H of λ

(0)
n . Let {Q(1)

ni }i denote the corresponding eigenprojections. Then,

the second order eigenvalue corrections {λ(2)
nij}j to the family of eigenvalues λ

(0)
n + tλ

(1)
ni are

given by the eigenvalues of Λ
(2)
n on the space Q

(1)
ni H. In sum, the unperturbed eigenvalue

λ
(0)
n splits into families indexed by i, which in turn split into families indexed by j. This

process can be iterated further, if necessary. Since, the unperturbed eigenvalue is finitely
degenerate, the last split must occur at some finite order. Note that this doesn’t imply
that the degeneracy will necessarily be lifted.

This diagonalization procedure can be expressed in a different way. Let {ψ(0)
n }n be

an orthonormal eigenbasis of H(0) such that Λ
(1)
n is diagonal on the eigenspaces of H(0)

and Λ
(2)
n is diagonal on the eigenspaces of Λ

(1)
n . Then, the eigenvalue corrections can be

expressed in a form similar to the nondegenerate ones

λ(1)
n = 〈ψ(0)

n , H(1)ψ(0)
n 〉

λ(2)
n =

∑
k

λ
(0)
k 6=λ

(0)
n

〈ψ(0)
n , H(1)ψ

(0)
k 〉〈ψ

(0)
k , H(1)ψ

(0)
n 〉

λ
(0)
n − λ(0)

k

+ 〈ψ(0)
n , H(2)ψ(0)

n 〉 . (4.31)

For our purposes, this last form is the most convenient one. Note that in the above we
dropped the indices i and j, as the index n now goes through all basis vectors, rather than
eigenspaces. Also, higher order perturbations will not spoil these formulas, as they will
simply involve further choices of basis within the eigenspaces of Λ

(2)
n . No matter the basis

thus chosen, it will yield the same results at the level of the first two corrections. This is
enough for our purposes, as only the existence of a basis in which Equation (4.31) holds is
needed.

4.2 Sketch of the Rigorous Treatment

In this section we sketch a rigorous treatment of analytic perturbation theory. More accu-
rately, we sketch the process through which the eigenvalue corrections are computed. We
do not discuss the existence of the perturbation expansions.

For an introduction to this subject in a quantum mechanical context, see [77]. A very
thorough treatment of the finite dimensional case can be found in [7]. A reader interested in
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the existence of perturbation expansions, but not in explicit computations of the eigenvalue
corrections can consult [92, 93].

In Section 4.2.1, we begin by introducing holomorphic functional calculus, an important
tool in perturbation theory. In particular, it allows to straightforwardly compute projectors
onto the eigenspaces of an operator given that operator’s resolvent. It can also be used to
establish the convergence of the perturbation expansion [68], although we do not pursue
this here. Then, in Section 4.2.2, we obtain power series for the resolvent of a perturbed
operator. Together with the methods of holomorphic functional calculus, this yields power
series for the eigenprojections of H(t). Those series do not, however, distinguish between
the different branches taken by a degenerate eigenvalue whose degeneracy has been lifted
by the perturbation. Section 4.2.3 remedies that fact by a method known as reduction
theory. There, the formulas for the first two eigenvalue corrections are obtained. Our
discussion follows the one in [7].

4.2.1 Holomorphic Functional Calculus

Holomorphic functional calculus is a powerful formalism that allows one to define holomor-
phic functions of operators. It is necessary for our purposes, as it provides an invaluable
tool for degenerate perturbation theory. Specifically, it is used to compute the projections
onto the eigenspaces of perturbed operators.

First, an operator-valued integral is introduced. Then it is used to justify the existence
of the Cauchy-Riesz integral, the main tool of the functional calculus. Finally, that integral
is used to define holomorphic1 functions of operators, including eigenprojections.

One can define the integral of a continuous family of operators on a Banach space as
the limit of a Riemann sum.

Definition 4.1 (Operator Integral). Let B(t), for t ∈ [a, b] be a family of bounded operators
on some Banach space. Suppose this family to be continuous in the operator norm topology.
Let P = {[t0, t1], [t1, t2], ..., [tn−1, tn]} be a partition of the interval [a, b] into n parts such
that a = t0 < t1 < ... < tn = b. For all i = 1...n, pick t∗i ∈ [ti−1, ti]. Under the condition
that limn→∞ supi(ti+1 − ti) = 0, the integral of B(t) is defined as the n → ∞ limit of
Riemann sums: ∫ b

a

B(t)dt = lim
n→∞

n∑
i=1

B(t∗i )(ti − ti−1) . (4.32)

1In fact, one can use this to define piecewise-holomorphic functions of operators, that is functions that
are defined on a domain of disjoint open sets on each of which they are holomorphic.
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The above limit converges in the operator norm topology.

In the case of an operator on a finite dimensional space, this corresponds to an inte-
gration of the matrix elements. Of course, a Lebesgue analogue of the above integral can
be defined. The Riemann variant is sufficient for our purposes.

Now, recall the Cauchy integral formula:

f(z) =
1

2πi

∮
Γ

f(λ)

λ− z
dλ . (4.33)

where f is a holomorphic function on some open set D ⊂ C, Γ is a simple closed curve in
D that separates D into an interior I and an exterior E and z ∈ I. The goal is to obtain
an analogous formula for functions of operators. Let T be an operator. Tentatively, write

f(T ) =
1

2πi

∮
Γ

f(λ)(λ− T )−1dλ . (4.34)

It remains to make sense of this expression. Begin by noting that (λ−T )−1 is the resolvent
of T :

R(λ, T ) = (λ− T )−1 . (4.35)

Recall that the resolvent set of T is the set of all λ ∈ C such that (λ− T ) has a dense
range, is invertible on its range and the inverse (λ − T )−1 is bounded [79]. By definition,
the spectrum of T is the complement of the resolvent set [79]. Thus, the right-hand side of
the expression converges as an operator integral as long as the curve Γ lies in the resolvent
set of T or, equivalently, outside of the spectrum of T . Consequently, the above integral
exists.

It remains to ascertain that this definition of a function of an operator is meaningful. In
order to do that, it is sufficient to verify that monomials in T are reproduced correctly. By
linearity, so will be polynomials. We will only verify this in the case of bounded operators.
First, we need a technical lemma.

Lemma 4.2 (Resolvent for large λ). Let R(λ, T ) be the resolvent of a bounded operator T .
Then, for |λ| > ‖T‖,

R(λ, T ) =
∞∑
n=0

T n

λn+1
. (4.36)
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Proof. Recall the Neumann series [79]:

(1−B)−1 =
∞∑
n=0

Bn . (4.37)

This series converges for ‖B‖ < 1. Then, for |λ| > ‖T‖,

R(λ, T ) =
1

λ

(
1− 1

λ
T

)−1

=
∞∑
n=0

T n

λn+1
. (4.38)

We now can verify that the definition of a holomorphic function of an operator given
above is meaningful.

Lemma 4.3. Let T be bounded and let R(λ, T ) be its resolvent. Let Γ be a simple closed
curve lying outside the region |λ| > ‖T‖. Then,

1

2πi

∮
Γ

λmR(λ, T )dλ = Tm . (4.39)

Proof. From Lemma 4.2, the following series expansion is valid for |λ| > ‖T‖:

λmR(λ, T ) =
∞∑
n=0

λm−n−1T n . (4.40)

By Cauchy’s residue theorem,

1

2πi

∮
Γ

λm−n−1dλ = δmn . (4.41)

Then, the desired result is obtained:

1

2πi

∮
Γ

λmR(λ, T )dλ =
∞∑
n=0

T n
1

2πi

∮
Γ

λm−n−1dλ = Tm . (4.42)
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In the case of unbounded operators, additional complications arise. For our purposes,
however, only operators that can be expressed as weighted sums of projections are of
interest. This significantly simplifies matters.

Definition 4.4. (Holomorphic function of a weighted sum of projections) Let T be an oper-
ator on a Hilbert space H that can be represented as a weighted sum of mutually orthogonal
projections {Pn}n:

T =
∑
n

λnPn , (4.43)

where the {λn}n are distinct complex numbers such that, for each n, there exists ε = ε(n) >
0 such that |λn − λm| > ε for m 6= n. Let f(λ) be a function that is holomorphic in an
open neighborhood of each λn. For each n, let Γn be a simple closed curve enclosing λn and
no other λm. Suppose that each Γn is entirely contained in a domain of holomorphicity of
f(λ). Then f(T ) is defined as

f(T ) =
1

2πi

∮
⋃
n Γn

f(λ)R(λ, T )dλ . (4.44)

For our purposes, the case f(λ) = 1 is of special interest, as it can be used to construct
projections onto eigenspaces. For T as above,

R(λ, T ) =
∑
m

Pm
λ− λm

. (4.45)

Applying Cauchy’s integral formula (Equation (4.33)) to a single curve Γn (rather than⋃
n Γn) yields

1

2πi

∮
Γn

R(λ, T )dλ =
1

2πi

∮
Γn

∑
m

Pm
λ− λm

dλ = Pn . (4.46)

Similarly, by choosing an appropriate integration curve Γ, the same approach can be used
to build projectors onto multiple eigenspaces at once. This is done by picking Γ such
that it encloses the eigenvalues corresponding to the eigenspaces of interest and no other
eigenvalue. This crucial fact will be used later.

The key feature of this way of obtaining projection operators is that it turns an ordi-
narily quite involved process into a linear operation, provided that the resolvent (λ−T )−1
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is known. In the next section, we obtain series expansions for the resolvent for the purpose
of using them in such integrals.

4.2.2 Power Series of the Resolvent and Eigenprojections

The goal of this section is to compute the first few terms of the power series of the resolvent
of a perturbed operator. Thanks to the theory developed in the previous section, this will
allow us to compute the power series for the eigenprojections of said operator.

Let T and T0 be two neighboring operators, in a sense to be specified below. Our goal
is to obtain a series representation of R(λ, T ) in terms of R(λ, T0). Assume that λ is in
the resolvent sets of both operators. We begin by a formal computation. The relevant
convergence criteria are discussed below.

Consider the following formal manipulations.

R(λ, T ) = (λ− T )−1 =
(
(λ− T0)− (T − T0)

)−1

=
((
1− (T − T0)(λ− T0)−1

)
(λ− T0)

)−1

=
((
1− (T − T0)R(λ, T0)

)
(λ− T0)

)−1

= (λ− T0)−1
(
1− (T − T0)R(λ, T0)

)−1

(4.47)

Applying the Neumann series (Equation (4.37)) to the above gives

R(λ, T ) = R(λ, T0)
∞∑
n=0

(
(T − T0)R(λ, T0)

)n
. (4.48)

In the case of bounded T and T0, this series is guaranteed to converge for ‖T − T0‖ <
‖R(λ, T0)‖−1. In the unbounded case, the situation is more complicated and will not be
treated here. The interested reader can consult [68].

We can now return to our explicitly perturbative goals. Set

T0 = H(0)

T = H(t) = H(0) + tH(1) + t2H(2) + ...
(4.49)

The resolvent of H(t) can then be expressed as
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R(λ,H(t)) = R(λ,H(0))
∞∑
n=0

(
∞∑
i=1

tiH(i)R
(
λ,H(0)

))n

. (4.50)

We are primarily interested in R(λ,H(t)) as a power series in t.

R(λ,H(t)) =
∞∑
i=1

tiRi(λ) (4.51)

The coefficients {Ri(λ)}∞i=1 can be read off from Equation (4.50). The first three coefficients
are

R0(λ) = R(λ,H(0))

R1(λ) = R0(λ)H(1)R0(λ)

R2(λ) = R0(λ)H(2)R0(λ) +R0(λ)H(1)R0(λ)H(1)R0(λ) .

(4.52)

Let λ
(0)
n be an eigenvalue of H(0) isolated from the rest of the spectrum. Let [λ

(0)
n ](t)

denote the family of eigenvalues of H(t) that go to λ
(0)
n in the limit t → 0. The theorems

establishing the existence of perturbation expansions guarantee that, for sufficiently small
t, there exists δ > 0 such that the only eigenvalues of H(t) in the ball ‖λ − λ(0)

n ‖ < δ are

the eigenvalues in [λ
(0)
n ](t) [93].

Let Γn be a simple closed curve enclosing λ
(0)
n , but no other unperturbed eigenvalue.

Consequently, for sufficiently small t, the same curve Γn will enclose all of the [λ
(0)
n ](t)

and no other perturbed eigenvalue. Thus, the projection onto the eigenspaces of H(t)

corresponding to the eigenvalues [λ
(0)
n ](t) can be computed using the curve Γn and Equation

(4.46). This yields

Pn(t) =

∮
Γn

R(λ,H(t)) dλ . (4.53)

Note that this is not an eigenprojection, as it does not correspond to a single eigenvalue,
except for the unperturbed case t = 0. Pn(t) can be expanded in power series in t.

Pn(t) =
∞∑
i=1

tiP (i)
n (4.54)
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The coefficients P
(i)
n can be determined from the series for the resolvent. From Equation

(4.52), one immediately deduces that P
(0)
n is the projector onto the unperturbed eigenspace,

as expected. The expression for P
(1)
n will require a bit more work.

P (1)
n =

1

2πi

∮
Γn

R0(λ)H(1)R0(λ) dλ (4.55)

Assuming that H(0) is a weighted sum of projections, one has

H(0) =
∑
n

λ(0)
n P (0)

n

R0(λ) =
∑
n

P
(0)
n

λ− λ(0)
n

.

(4.56)

The expression for P
(1)
n then becomes

P (1)
n =

1

2πi

∮
Γn

∑
k

P
(0)
k

λ− λ(0)
k

H(1)
∑
m

P
(0)
m

λ− λ(0)
m

dλ

=
1

2πi

∮
Γn

∑
k

∑
m

P
(0)
k

λ− λ(0)
k

H(1) P
(0)
m

λ− λ(0)
m

dλ

=
∑
k

∑
m

P
(0)
k H(1)P (0)

m

1

2πi

∮
Γn

1

λ− λ(0)
k

1

λ− λ(0)
m

dλ .

(4.57)

A straightforward application of Cauchy’s integral formula yields

P (1)
n =

∑
m6=n

P
(0)
n H(1)P

(0)
m

λ
(0)
n − λ(0)

m

+
∑
k 6=n

P
(0)
k H(1)P

(0)
n

λ
(0)
n − λ(0)

k

. (4.58)

Compare this to Equations (4.25) and (4.27) from Section 4.1.2. The heuristic approach
correctly determined the second term. The first term will turn out not to matter, as in the
heuristic case. Most importantly, we never had to specifically require that P

(0)
n P

(1)
n P

(0)
n = 0.

Recall that this was the analogue of fixing a particular normalization of ψn(t) in the
heuristic approach for the degenerate case. The current approach makes such choices
unnecessary.
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4.2.3 Reduction Theory

In this section, we sketch what is known as the reduction process, or reduction theory.
This is the rigorous version of the heuristic approach to degenerate perturbation theory
adopted in Section 4.1.2. We present an abridged version of the very thorough discussion
found in [7].

In the previous section, we obtained a power series for Pn(t), the projector onto the

eigenspaces of H(t) associated to the eigenvalues [λ
(0)
n ](t). We haven’t however yet sepa-

rated Pn(t) into subprojections onto the individual eigenspaces of H(t). Neither have we
computed the associated eigenvalues. These two tasks turn out to be related.

The main idea of reduction theory is to iterate the process outlined in the previous
section. As was shown there, it is straightforward to obtain the first order term of the
projection onto the subspace associated to the eigenvalues [λ

(0)
n ](t). This is the operation

that will be iterated.

Consider the following family of operators.

Bn(t) =
1

t

(
H(t)− λ(0)

n

)
Pn(t) (4.59)

This can be written as a power series

Bn(t) =
∑
k=0

tkB(k)
n . (4.60)

Since H(t)Pn(t) = Pn(t)H(t), Bn(t)Pn(t) = Pn(t)Bn(t). This can be used to express the
lowest order term of the series for Bn(t) in a particularly convenient form.

B(0)
n = Bn(0) = Pn(0)Bn(0)

= P (0)
n

(
H(1)P (0)

n +
(
H(0) − λ(0)

n

)
P (1)
n

)
= P (0)

n H(1)P (0)
n +((((

((((
((([

P (0)
n

(
H(0) − λ(0)

n

)]
P (1)
n

= P (0)
n H(1)P (0)

n

(4.61)

Thus, Bn(t) can be viewed as a perturbation of B
(0)
n = P

(0)
n H(1)P

(0)
n . The process of

perturbation theory developed so far can begin anew on this operator. Notice that B
(0)
n

acts like 0 outside of the λ
(0)
n eigenspace ofH(0). It will thus typically have a large eigenspace

with eigenvalue 0. We are not interested in that eigenspace. Consequently, we start by
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determining its eigenvalues {λ(0)
nρ }ρ and its eigenprojections {Q(0)

nρ }ρ on the subspace P
(0)
n H.

For technical reasons that will become clear shortly, we assume all of the {λ(0)
nρ }ρ to be

nonzero. This can be done without loss of generality as one can always substitute the
study of B(t) for the study of B(t) + αP

(0)
n with a suitable constant α. This will merely

shift the {λ(0)
nρ }ρ by α, a change that can be undone later. The goal of this procedure is to

separate the eigenvalues of B
(0)
n on P

(0)
n H from its zero eigenvalue on (1− P (0)

n )H.

Let Γnρ be a simple closed curve separating λ
(0)
nρ from the rest of the spectrum of B

(0)
n ,

including 0. Let [λnρ](t) denote the eigenvalues of Bn(t) that go to λnρ as t → 0. The
projection onto all the eigenspaces of Bn(t) associated with [λnρ](t) can then be defined as
follows.

Qnρ(t) =

∮
Γnρ

R(λ,B(t)) dλ (4.62)

This expression is the reason why we required that the {λ(0)
nρ }ρ be nonzero. Qnρ(t) can be

expanded in power series in t.

Qnρ(t) =
∑
k=0

tkQ(k)
nρ (4.63)

We are now at the same point in the analysis of B(t) as we were in the analysis of H(t)
at the start of this section. Correspondingly, we retrace our steps and define a new family
of operators:

Cnρ(t) =
1

t

(
Bn(t)− λ(0)

nρ

)
Qnρ(t) . (4.64)

By an argument similar to the one for Bn(t), this is a perturbation of C
(0)
nρ = Q

(0)
nρB

(1)
n Q

(0)
nρ .

Denote the eigenvalues of C
(0)
nρ on the subspace Q

(0)
nρH by {λ(0)

nρµ}µ. Let {Q(0)
nρµ}µ be the

associated eigenprojections. One can then proceed as with B(t). Without loss of generality,
assume that none of the {λnρµ}µ vanish. Then, the projections on the [λnρµ](t) eigenvalues

of C
(0)
nρ are given by

Qnρµ(t) =

∮
Γnρµ

R(λ,C(t)) dλ . (4.65)
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The pattern of the reduction process should be apparent by now. It can be continued
indefinitely. We will not pursue this here. Instead, we will now show that the eigenvalue
corrections obtained through the reduction process match the ones derived heuristically in
Section 4.1.2.

The corrections to the eigenvalue λ
(0)
n of H(0) are given by

λn(t) = λ(0)
n + tλ(1)

n + t2λ(2)
n + ...

λ(1)
n = λ(0)

nρ

λ(2)
n = λ(0)

nρµ .

(4.66)

Thus, the possible values of λ
(1)
n are given by the eigenvalues of P

(0)
n H(1)P

(0)
n on P

(0)
n H.

This is in agreement with the heuristic results. Similarly, the possible values of λ
(2)
n are

given by the eigenvalues of Q
(0)
nρB

(1)
n Q

(0)
nρ on Q

(0)
nρH. It remains to compute Q

(0)
nρB

(1)
n Q

(0)
nρ in

order to confirm the results of our heuristic derivation.

From Equation (4.59), one deduces

B(1)
n =

(
H(0) − λ(0)

n

)
P (2)
n +H(1)P (1)

n +H(2)P (0)
n . (4.67)

Using the expression for P
(1)
n obtained in Equation (4.58) yields

Q(0)
nρB

(1)
n Q(0)

nρ =
∑
k 6=n

Q
(0)
nρH(1)P

(0)
k H(1)Q

(0)
nρ

λ
(0)
n − λ(0)

k

+Q(0)
nρH

(2)Q(0)
nρ . (4.68)

This is the same expression as the one obtained heuristically in Section 4.1.2. This con-
cludes our treatment of perturbation theory.
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Chapter 5

Perturbations of the
Laplace-Beltrami Spectrum

In this chapter, we finally get to the meat of our investigations. Indeed, by the end of
Section 5.3, we will have obtained the main results of this thesis. Namely, we will have
shown that isospectral sets of conformally equivalent metrics on surfaces contain no convex
subsets.

Before achieving that, however, we need to obtain the expressions for the corrections of
the Laplace-Beltrami eigenvalues subject to a perturbation of the Riemannian metric. We
do this in two steps. First, in Section 5.1, we obtain the expressions for the corrections of
the Laplace-Beltrami operator itself. Then, in Section 5.2, we use the formulas obtained
in Chapter 4 to compute the eigenvalue corrections. While the proof of our main results
only requires the expressions for the case of conformal perturbations in dimension 2, we
also discuss the general case. This is done for the sake of completeness.

Note that all the perturbations series studied here have been shown to converge in some
neighborhood of t = 0 [6].

5.1 Perturbations of the Laplace-Beltrami Operator

In this section, we carry out a calculation of the perturbations of the Laplace-Beltrami
operator induced by a perturbation of the metric. We begin by considering the simplest
case: a conformal perturbation of the metric on a manifold of dimension 2. Then, we
compute the general case.
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While we are by no means the first to compute the Laplace-Beltrami corrections (see
[9, 12, 13]), such results are not commonly found in the literature. Moreover, to the best
of our knowledge, the approach used here is original, except for the case of conformal
perturbations on surfaces.

Before proceeding further, we establish some notation. Given a Riemannian metric g,
the induced metric on 1-forms is denoted ḡ. Thus, in local coordinates, g is the lower
indices metric gij, while ḡ is the upper-indices metric gij. We sometimes refer to ḡ as the
inverse metric. This terminology is motivated by the fact that, in the local coordinate
basis, the matrices gij and gij are inverses of each other. Moreover, we continue to use the
notation for orders of perturbation established in Chapter 4:

g = g(0) + tg(1) + t2g(2) + ...

ḡ = ḡ(0) + tḡ(1) + t2ḡ(2) + ...

∆ = ∆(0) + t∆(1) + t2∆(2) + ...

(5.1)

∆(0) is always the Laplace-Beltrami operator induced by g(0).

5.1.1 Conformal Perturbation on Surfaces

Let (M, g(0)) be a compact oriented Riemannian manifold without boundary. Suppose
that M is of dimension N = 2. Let ψ ∈ C∞(M). Recall the local expression for the
Laplace-Beltrami operator for a metric g:

∆ψ = − 1√
|det(g)|

∂i

(√
|det(g)|gij∂jψ

)
. (5.2)

Let f ∈ C∞(M), f > 0. Then, fg is a valid metric on M. The following formulas can
easily be shown to hold:

|det(fg)| = f 2|det(g)|

[fg]ij =
1

f
gij .

(5.3)

Consequently, the Laplace-Beltrami operator induced by fg is
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∆ψ = − 1√
f 2|det(g)|

∂i

(√
f 2|det(g)| 1

f
gij∂jψ

)
=

1

f
∆(0)ψ .

(5.4)

This is inconvenient. It would be significantly simpler to have a formula linear in f . This
can be achieved by considering fḡ, rather than fg. Under such a transformation,

∆ψ = f∆(0)ψ . (5.5)

The usage of ḡ, rather than g, will be more convenient in the general case as well. Now,
let {f (i)}∞i=1 be a sequence of smooth functions. For sufficiently small |t|, consider the
following perturbation of ḡ(0)

ḡ =

(
1 +

∞∑
i=1

tif (i)

)
ḡ(0). (5.6)

This induces the following perturbation of the Laplacian:

∆ =

(
1 +

∞∑
i=1

tif (i)

)
∆(0) . (5.7)

Order by order in t,

∆(i) = f (i)∆(0) , for all i ≥ 1. (5.8)

This is an exceptionally simple expression. As will be seen below, this is special to the case
of conformal transformations in dimension N = 2. This simplicity is part of what enables
us to prove the results of Section 5.3.

5.1.2 General Perturbation of the Metric

In this section, we compute the first two corrections to the Laplace-Beltrami operator
induced by a perturbation of the metric.
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Let (M, g(0)) be the unperturbed manifold, assumed to be of dimension N . It is
convenient to rewrite the coordinate expression of the Laplace-Beltrami operator as follows:

∆ψ = − 1√
|det(g)|

∂i

(√
|det(g)|gij∂jψ

)
= −

(
∂i
√
|det(g)|√
|det(g)|

)
gij∂jψ − ∂i(gij∂jψ)

= −
(
∂i log

(√
|det(g)|

))
gij∂jψ − ∂i(gij∂jψ) .

(5.9)

This expression contains two distinct types of quantities that change under perturbation of
the metric, the inverse metric gij and the logarithm of the square root of the determinant

of the metric log
(√
|det(g)|

)
. Neither are linear in perturbations of the metric g, which is

quite inconvenient. This reproduces the issue that we already faced in the previous section.
The solution to this problem is the same: considering perturbations of the inverse metric
ḡ. Let {ḡ(i)}∞i=1 be a sequence of symmetric contravariant two-tensors. They will be the
corrections to ḡ(0) for sufficiently small |t|:

ḡ =
∞∑
i=0

ḡ(i)ti . (5.10)

Only log
(√
|det(g)|

)
remains to be expanded in power series in t. For that purpose, it is

convenient to write the perturbation of ḡ in multiplicative form. Let {h(i)}∞i=1 be the (1, 1)
tensors defined by

ḡ(i)kl = −ḡ(0)kph(i)l
p . (5.11)

For simplicity of notation, we will drop the indices and denote ḡ(0)h(i) = ḡ(0)kph
(i)l
p . This

allows us to write

ḡ = ḡ(0)

(
1− t

∞∑
j=1

h(j)tj−1

)
. (5.12)

We are now in position to compute the determinant of g.
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det(g) = det(ḡ)−1

=

(
det(ḡ(0))det

(
1− t

∞∑
j=1

h(j)tj−1

))−1
(5.13)

Recall [58] that for any square matrix A, det(A) = exp(Tr(log(A)), as long as the appro-
priate series converge, which is the case here as t is assumed near 0. The series expression
for the matrix logarithm [58] is

log(1− A) = −
∞∑
m=1

1

m
Am . (5.14)

Notice that our choice of sign for hi is adapted for this formula. Also, note that the trace
of h(i) is defined: Tr(h(i)) = h

(i)k
k . Then, using this series, we obtain

det

(
1− t

∞∑
j=1

h(j)tj−1

)
= exp

(
−
∞∑
m=1

tm

m
Tr

((
∞∑
j=1

h(j)tj−1

)m))
. (5.15)

Consequently, log
(√
|det(g)|

)
becomes, up to second order in the perturbation parameter

t,

log
(√
|det(g)|

)
= log

(√
|det(g(0))|

)
+

1

2

∞∑
m=1

tm

m
Tr

((
∞∑
j=1

h(j)tj−1

)m)

≈ log

(√
|det(g(0))|

)
+ t

(
1

2
Tr(h(1))

)
+ t2

(
1

2
Tr(h(2)) +

1

4
Tr(h(1)h(1))

)
+ ...

(5.16)

We are now ready to compute the first two corrections to the Laplace-Beltrami operator.
Together with the original expansion for the inverse metric (Equation (5.10)), the above

expression for log
(√
|det(g)|

)
can be inserted into Equation (5.9) to obtain the induced

perturbation of the Laplacian.
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∆(1)ψ = − 1√
|det(g(0))|

∂i

(√
|det(g(0))|ḡ(1)ij∂jψ

)
− 1

2

(
∂iTr(h(1))

)
ḡ(0)ij∂jψ (5.17)

∆(2)ψ = − 1√
|det(g(0))|

∂i

(√
|det(g(0))|ḡ(2)ij∂jψ

)
− 1

2

(
∂iTr(h(2))

)
ḡ(0)ij∂jψ

− 1

2

(
∂iTr(h(1))

)
ḡ(1)ij∂jψ −

1

4

(
∂iTr(h(1)h(1))

)
ḡ(0)ij∂jψ

(5.18)

The above formulas are valid for arbitrary perturbations of the metric. They become
significantly simpler when specialized to conformal perturbations. As before, let {f (i)}∞i=1

be smooth functions and set ḡ(i) = f (i)ḡ(0) and, consequently, h(i) = −f (i)
1. In other

words,

ḡ = ḡ(0)

(
1 +

∞∑
i=1

tif (i)

)
. (5.19)

The traces in Equations (5.17) and (5.18) can then be easily computed:

Tr(h(1)) = −f (1)N

Tr(h(2)) = −f (2)N

Tr(h(1)h(1)) = Tr
((
f (1)
)2
1

)
=
(
f (1)
)2
N .

(5.20)

Substituting these expressions into Equations (5.17) and (5.18) yields, after some simplifi-
cations,

∆(1)
c ψ = f (1)

(
∆(0)ψ

)
+
N − 2

2
(∂if

(1))ḡ(0)ij(∂jψ)

∆(2)
c ψ = f (2)

(
∆(0)ψ

)
+
N − 2

2
(∂if

(2))ḡ(0)ij(∂jψ) .

(5.21)

The subscript c in ∆
(1)
c and ∆

(2)
c indicates that the perturbation is strictly conformal. This

notation will become useful shortly. Notice that, unlike in Equations (5.17) and (5.18),
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there is no second order contribution to the Laplacian arising from the first order correction
to the metric. When N = 2, the second terms in the expressions for ∆(1) and ∆(2) vanish.
The expressions derived in Section 5.1.1 are thus recovered.

The relative simplicity of the conformally perturbed expressions raises the following
question: can one more easily express general perturbations of the Laplace-Beltrami oper-
ator by decomposing ḡ(i) into a conformal component and a remainder? Indeed one can.
In order to do so, one must obtain the general properties of said remainder.

Set h
(i)l
p = −f (i)δlp + r

(i)l
p with f (i) defined as above. Consequently, ḡ(i)kl = f (i)ḡ(0)kl −

ḡ(0)kpr
(i)l
p . Of course, we require g̃(i)kl = ḡ(0)kpr

(i)l
p to be symmetric. Otherwise, the pertur-

bation would fail to be symmetric. Moreover, we require r
(i)l
p to be orthogonal to δlp in the

inner product induced by g(0):

0 = r(i)l
p δpl = r(i)p

p = Tr(r) . (5.22)

Thus, r(i) is traceless. This is quite encouraging, considering the prevalence of traces in
Equations (5.17) and (5.18).

Before proceeding further, a short digression is in order. Some metric perturbations
can be seen as arising from the pullback of infinitesimal diffeomorphisms, that is the pull-
back induced by the flow of a vector field. These perturbations can be ignored, as they
lead to isometric and thus isospectral manifolds. However, these perturbations are not
orthogonal to the space of conformal perturbations. One thus cannot split the set of pos-
sible metric perturbations (symmetric covariant two-tensors) into those conformal to the
unperturbed metric, those induced by diffeomorphisms and the rest. Instead, a differ-
ent L2(M)-orthogonal decomposition holds. The space of two-tensors splits into tensors
conformal to the unperturbed metric, tensors representing a change in the conformal equiv-
alence class due to a diffeomorphism and so-called transverse traceless tensors, which we
do not define here. See [109] for the details. We do not use this decomposition in the
present thesis. Obtaining alternative formulas taking into account this decomposition of
the space of symmetric covariant two-tensors is a direction for future work.

We now return to the computation of the Laplace-Beltrami corrections. Directly from
the tracelessness of r,

Tr(h(i)) = −f (i)N , for all i. (5.23)

It remains to compute Tr(h(1)h(1)).
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Tr(h(1)h(1)) =
(
−f (1)δpl + r

(1)p
l

) (
−f (1)δlp + r(1)l

p

)
=
(
f (1)
)2
N − f (1)δpl r

(1)l
p − f (1)r

(1)p
l δlp + r

(1)p
l r(1)l

p

=
(
f (1)
)2
N − f (1)Tr

(
r(1)
)
− f (1)Tr

(
r(1)
)

+ Tr
(
r(1)r(1)

)
=
(
f (1)
)2
N + Tr

(
r(1)r(1)

)
(5.24)

We recover the conformal term
(
f (1)
)2
N , as well as a new contribution Tr

(
r(1)r(1)

)
. Note

that this last contribution will only vanish if r(1) = 0. Indeed, in the inner product induced
by g(0), ‖r(1)‖2 = Tr

(
r(1)r(1)

)
.

We are now ready to produce the expressions for the corrections of the Laplace-Beltrami
operator. We can summarize our results in the following lemma.

Lemma 5.1. Let ḡ(t) =
∑∞

i=1 t
iḡ(i) be a perturbation of the metric on 1-forms on a

manifold M of dimension N . For all i, write ḡ(i)kl = f (i)ḡ(0)kl − ḡ(0)kpr
(i)l
p , where =

f (i) ∈ C∞(M), r
(i)l
p is traceless and g̃(i)kl = ḡ(0)kpr

(i)l
p is symmetric. Let ψ ∈ C∞(M).

Then, the first two corrections to the Laplace-Beltrami operator take the following form:

(I) If r(i) = 0 for all i, the perturbation is said to be conformal and the first two correc-
tions to the Laplace-Beltrami operator are

∆(1)
c ψ = f (1)

(
∆(0)ψ

)
+
N − 2

2
(∂if

(1))ḡ(0)ij(∂jψ)

∆(2)
c ψ = f (2)

(
∆(0)ψ

)
+
N − 2

2
(∂if

(2))ḡ(0)ij(∂jψ) .

(5.25)

(II) In the general case,

∆(1)ψ = ∆(1)
c ψ +

1√
| det(g(0))|

∂i

(√
| det(g(0))|g̃(1)ij∂jψ

)
∆(2)ψ = ∆(2)

c ψ +
1√

| det(g(0))|
∂i

(√
| det(g(0))|g̃(2)ij∂jψ

)
+
N

2

(
∂if

(1)
)
g̃(1)ij∂jψ −

1

4

(
∂iTr(r(1)r(1))

)
ḡ(0)ij∂jψ .

(5.26)
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Proof. Part (I) was already proven above. Part (II) can be obtained by comparing the
general expressions in Equations (5.17) and (5.18) to the conformal ones. The additional
terms due to nonzero r(i) can then be directly read off. We note for future reference the
negative sign in ḡ(i)kl = f (i)ḡ(0)kl − g̃(0)kl.

5.2 Laplace-Beltrami Eigenvalue Corrections

In this section, we use the expressions obtained previously to compute the first two eigen-
value corrections due to a perturbation of the metric. As in the previous section, we begin
by the case of conformal perturbation on surfaces. We then obtain the first two eigenvalue
corrections in the case of a conformal perturbation on a manifold of arbitrary dimension.
Finally, we compute the first order correction in the case of a general perturbation of the
metric.

5.2.1 Conformal Perturbation on Surfaces

In order to apply the perturbation formulas (Equation (4.31)), one needs to compute〈
ψm,∆

(1)ψn
〉

for arbitrary m and n, as well as
〈
ψn,∆

(2)ψn
〉
. This is particularly simple in

the case of conformal perturbations on surfaces. Indeed, by Lemma 5.1, for any m,n and
i = 1, 2,

〈
ψn,∆

(i)ψm
〉

=
〈
ψn, f

(i)∆(i)ψm
〉

= λ(0)
m

〈
ψn, f

(i)ψm
〉
.

(5.27)

Since multiplication by f (1) is a self-adjoint operator, the Λ
(1)
n and Λ

(2)
n operators defined in

Equation (4.30) are diagonalizable on the relevant spaces. Then, applying Equation (4.31)
yields:

Lemma 5.2. Let M be a two-dimensional compact Riemannian manifold without bound-
ary. Let ḡ(t) =

∑∞
i=0 t

if (i)ḡ(0) with f (i) ∈ C∞(M) for all i. After an appropriate choice of
orthonormal eigenbasis of ∆(0), the first two corrections to the unperturbed Laplace-Beltrami
eigenvalue λ

(0)
n are:

81



λ(1)
n = λ(0)

n

〈
ψ(0)
n , f (1)ψ(0)

n

〉
λ(2)
n =

∑
k

λ
(0)
k 6=λ

(0)
n

λ
(0)
n λ

(0)
k

∣∣∣〈ψ(0)
n , f (1)ψ

(0)
k

〉∣∣∣2
λ

(0)
n − λ(0)

k

+ λ(0)
n

〈
ψ(0)
n , f (2)ψ(0)

n

〉
.

(5.28)

Note: If the spectrum is nondegenerate, any orthonormal eigenbasis suffices. See Chapter
4.

In the above, we used the self-adjointness of multiplication by f (1) to obtain the numerator
in the series.

5.2.2 General Perturbation of the Metric

The general case is significantly more complicated. Since expressions of the form
〈
ψm,∆

(i)ψn
〉

are linear in ∆(i), it is possible to use Lemma 5.1 to separately compute the contribution
due to the conformal and non-conformal parts of the metric perturbation.

Before computing the conformal contributions to
〈
ψm,∆

(i)ψn
〉
, we need some technical

machinery.

Definition 5.3 (Structure Constants). Let {ψn}∞n=0 be an orthonormal basis of smooth
functions for L2(M). M is assumed compact. The inner product on L2(M) is taken to
be the one induced by the Riemannian metric g via the volume form dVg. The structure
constants Cnmi are defined as

ψnψm =
∞∑
i=0

Cnmiψi

Cnmi =

∫
M
ψnψmψi dVg .

(5.29)

The notion of structure constants is more general [95]. The definition used here is special-
ized for the case of the algebra of smooth functions of a compact manifold.

Lemma 5.4. Let (M, g) be a compact Riemannian manifold and let {ψn}∞n=0 be an or-
thonormal eigenbasis of the Laplace-Beltrami operator on M. Let g(dψn, dψm) ∈ C∞(M)
denote the pointwise inner product of dψn and dψm. Then,
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g(dψn, dψm) =
1

2

∞∑
i=0

Dnmiψi , (5.30)

where Dnmi = (λn + λm − λi)Cnmi.

Proof. Begin by recalling the product rule for the Laplace-Beltrami operator [96]. For
f, h ∈ C∞(M),

∆(fh) = (∆f)h+ f(∆h)− 2g(df, dh) . (5.31)

This formula can be straightforwardly obtained in the center of a Riemann normal coor-
dinate system. In our case, it can be recast as

g(dψn, dψm) =
1

2

(
(∆ψn)ψm + ψn(∆ψm)−∆(ψnψm)

)
=

1

2

(
(λn + λm)ψnψm −∆(ψnψm)

)
=

1

2

(
(λn + λm)

(
∞∑
i=0

Cnmiψi

)
−∆

(
∞∑
i=0

Cnmiψi

))

=
1

2

∞∑
i=0

(λn + λm − λi)Cnmiψi .

(5.32)

In local coordinates,

g(df, dh) = (∂if)gij(∂jh) . (5.33)

Recall that similar terms occur in the expressions for the Laplacian corrections (Lemma
5.1). The purpose of Lemma 5.4 is to compute such terms. Also, this lemma, as well as
other analogous results, will be discussed in Chapter 6.

Let’s begin by computing the corrections in the conformal case. By Lemma 5.1, the
first two conformal corrections (i = 1, 2) to the Laplacian have the same form.

〈
ψ(0)
n ,∆(i)

c ψ
(0)
m

〉
= λ(0)

m

〈
ψ(0)
n , f (i)ψ(0)

m

〉
+
N − 2

2

〈
ψ(0)
n , g(0)(df (i), dψ(0)

m )
〉

(5.34)
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Expand f (i) as

f (i) =
∞∑
k=0

a
(i)
k ψ

(0)
k . (5.35)

Then,

〈
ψ(0)
n ,∆(i)

c ψ
(0)
m

〉
= λ(0)

m

〈
ψ(0)
n , f (i)ψ(0)

m

〉
+
N − 2

2

〈
ψ(0)
n ,

∞∑
k=0

a
(i)
k g

(0)(dψ
(0)
k , dψ(0)

m )

〉
. (5.36)

Using Lemma 5.4,

〈
ψ(0)
n ,∆(i)

c ψ
(0)
m

〉
= λ(0)

m

〈
ψ(0)
n , f (i)ψ(0)

m

〉
+
N − 2

4

∞∑
k=0

a
(i)
k

∞∑
l=0

Dkml

〈
ψ(0)
n , dψ

(0)
l

〉
= λ(0)

m

〈
ψ(0)
n , f (i)ψ(0)

m

〉
+
N − 2

4

∞∑
k=0

a
(i)
k Dkmn .

(5.37)

Consider the summation in the last term.

∞∑
k=0

a
(i)
k Dkmn =

∞∑
k=0

a
(i)
k (λ

(0)
k + λ(0)

m − λ(0)
n )

∫
M
ψ

(0)
k ψ(0)

m ψ(0)
n dVg(0)

=

∫
M

(
∞∑
k=0

a
(i)
k λ

(0)
k ψ

(0)
k

)
ψ(0)
m ψ(0)

n dVg(0)

+ (λ(0)
m − λ(0)

n )

∫
M

(
∞∑
k=0

a
(i)
k ψ

(0)
k

)
ψ(0)
m ψ(0)

n dVg(0)

=

∫
M

(
∆(0)f (i)

)
ψ(0)
m ψ(0)

n dVg(0) + (λ(0)
m − λ(0)

n )

∫
M
f (i)ψ(0)

m ψ(0)
n dVg(0)

=
〈
ψ(0)
n ,
(
∆(0)f (i)

)
ψ(0)
m

〉
+ (λ(0)

m − λ(0)
n )
〈
ψ(0)
n , f (i)ψ(0)

m

〉

(5.38)

All together, the above proves the technical lemma below.

84



Lemma 5.5. For i = 1, 2, let ∆
(i)
c be as in Lemma 5.1. Then,

〈
ψ(0)
n ,∆(i)

c ψ
(0)
m

〉
=

(
λ(0)
m +

N − 2

4
(λ(0)

m − λ(0)
n )

)〈
ψ(0)
n , f (i)ψ(0)

m

〉
+
N − 2

4

〈
ψ(0)
n ,
(
∆(0)f (i)

)
ψ(0)
m

〉
.

(5.39)

We are now ready to obtain the first two eigenvalue corrections in the case of a conformal
perturbation of the metric. The expressions obtained here are rather complicated, so we
begin by defining a few shorthands.

Definition 5.6 (Shorthands). Define the following expressions:

Akn =

(
λ(0)
n +

N − 2

4
(λ(0)

n − λ
(0)
k )

)
Ψkn =

〈
ψ

(0)
k , f (1)ψ(0)

n

〉
Φkn =

〈
ψ

(0)
k ,
(
∆(0)f (1)

)
ψ(0)
n

〉
.

(5.40)

Lemma 5.7 (Eigenvalue Corrections: Conformal Case). Let λ
(1)
nc and λ

(2)
nc denote the first

two corrections to λ
(0)
n in the case of a strictly conformal perturbation. Upon an appropriate

choice of an orthonormal eigenbasis of ∆(0), the eigenvalue corrections can be expressed as
follows.

λ(1)
nc =

〈
ψ(0)
n ,

(
λ(0)
n f (1) +

N − 2

4

(
∆(0)f (1)

))
ψ(0)
n

〉
(5.41)

λ(2)
nc =

∑
k

λ
(0)
k 6=λ

(0)
n

AnkAkn |Ψkn|2 +
(
λ

(0)
n + λ

(0)
k

)
N−2

4
ΨknΦkn +

(
N−2

4

)2 |Φkn|2

λ
(0)
n − λ(0)

k

+

〈
ψ(0)
n ,

(
λ(0)
n f (2) +

N − 2

4

(
∆(0)f (2)

))
ψ(0)
n

〉
.

(5.42)

Note: If the spectrum is nondegenerate, any choice of orthonormal eigenbasis yields the
result. See Chapter 4.
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Proof. Notice that, by Lemma 5.5, the Λ
(1)
n operator of this problem (see Equation (4.30))

is diagonalizable on the eigenspaces of ∆(0). This is due to the fact that multiplication by
functions is self-adjoint. Thus, λ

(1)
nc can be written in the form in Equation (4.31).

The expression for λ
(2)
nc requires some additional work. We begin by computing the

numerator arising in the series in Equation (4.31). Using the fact that multiplication by
f (1) and

(
∆(0)f (1)

)
are self-adjoint with respect to the L2(M) inner product, as well as the

fact that Ank + Akn = λ
(0)
n + λ

(0)
k ,

〈
ψ(0)
n ,∆(1)

c ψ
(0)
k

〉〈
ψ

(0)
k ,∆(1)

c ψ(0)
n

〉
=

AnkAkn

∣∣∣〈ψ(0)
k , f (1)ψ(0)

n

〉∣∣∣2
+
(
λ(0)
n + λ

(0)
k

) N − 2

4

〈
ψ

(0)
k , f (1)ψ(0)

n

〉〈
ψ

(0)
k ,
(
∆(0)f (1)

)
ψ(0)
n

〉
+

(
N − 2

4

)2 ∣∣∣〈ψ(0)
k ,
(
∆(0)f (1)

)
ψ(0)
n

〉∣∣∣2 .

(5.43)

The term due to ∆
(2)
c (second term in Equation (4.30)) is obtained in a manner entirely

analogous to the first order correction. It remains to show that the Λ
(2)
n operator of this

problem (see Equation (4.30)) is diagonalizable on the eigenspaces of Λ
(1)
n . This follows

from the self-adjointness of the multiplication by functions. The form in Equation (4.31)
can thus be used. Applying the shorthands of Definition 5.6 yields the desired result.

It remains to compute the eigenvalue corrections in the case of a general perturbation.
Due to the complexity of the second order expressions, we limit ourselves to the first order
corrections. Indeed, even at the level of conformal perturbations, it was necessary to resort
to a modified notation to compactly write the formulas. The interested reader can carry
out the computations using the expressions in Lemma 5.1. The last technique useful for
this computation, namely integration by parts, is illustrated in the proof of the following
lemma. Depending on one’s purposes, however, integration by parts may be unnecessary.

Lemma 5.8 (Eigenvalue Corrections: General Case). Let the metric g(0) be subject to a
general perturbation. Upon an appropriate choice of an orthonormal eigenbasis of ∆(0), the
first order eigenvalue correction can be expressed as follows.

λ(1)
n = λ(1)

nc −
〈
dψ(0)

n , r(1)dψ(0)
n

〉
(5.44)
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Where λ
(1)
nc is as in Lemma 5.7, r(1)dψ

(0)
n = r

(1)i
p ∂iψ

(0)
n and the inner product is the L2

inner product on 1-forms induced by g(0). Note: If the spectrum is nondegenerate, any
orthonormal eigenbasis of ∆(0) suffices.

Proof. First, we compute
〈
ψ

(0)
n ,∆(1)ψ

(0)
n

〉
. By Lemmas 5.1 and 5.7,〈

ψ(0)
n ,∆(1)ψ(0)

n

〉
=

〈
ψ(0)
n ,

(
λ(0)
n f (1) +

N − 2

4

(
∆(0)f (1)

))
ψ(0)
n

〉
+

〈
ψ(0)
n ,

1√
| det(g(0))|

∂i

(√
| det(g(0))|g̃(1)ij∂jψ

(0)
n

)〉
.

(5.45)

The second term can be rewritten in a more convenient form.〈
ψ(0)
n ,

1√
| det(g(0))|

∂i

(√
| det(g(0))|g̃(1)ij∂jψ

(0)
n

)〉
=

=

∫
M
ψ(0)
n

1√
| det(g(0))|

∂i

(√
| det(g(0))|g̃(1)ij∂jψ

(0)
n

)
dVg(0)

= −
∫
M

(
∂iψ

(0)
n

)
g̃(1)ij

(
∂jψ

(0)
n

)
dVg(0) = −

〈
∂iψ

(0)
n , g̃(1)ij∂jψ

(0)
n

〉
(5.46)

The last line was obtained by integrating the second line by parts and using the fact that, lo-

cally, dVg(0) =
√
| det(g(0))|dx1...dxN . By the symmetry of g̃(1)ij, this brings

〈
ψ

(0)
n ,∆(1)ψ

(0)
n

〉
into a symmetric form. One can thus choose an eigenbasis of ∆(0) such that Equation (4.31)
holds.

It remains to express this in a theoretically more appealing form. Indeed, as the ex-
pression is right now, it contains what looks like expressions in local coordinates and a
global inner product. This can be remedied as follows. Recall that g̃(1)kl = ḡ(0)kpr

(1)l
p . One

can see r
(1)l
p as acting on 1-forms. For our purposes, the relevant local form of this action

is r(1)dψ
(0)
n = r

(1)i
p ∂iψ

(0)
n . We can then give our expressions an invariant meaning:

〈
∂iψ

(0)
n , g̃(1)ij∂jψ

(0)
n

〉
=
〈
dψ(0)

n , r(1)dψ(0)
n

〉
. (5.47)

The inner product on the right-hand side is the L2 inner product on 1-forms induced by
g(0). This completes the proof.

An expression for λ
(2)
n can be obtained through similar means. We leave this exercise

to the reader.
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5.3 Geometry of Conformal Isospectral Sets on Sur-

faces

In this section we study the geometric properties of isospectral sets of conformally equiv-
alent metrics on surfaces. We begin by presenting a general argument for the triviality
of certain isospectral sets of operators. This argument does not involve any Riemannian
geometry and is solely based on perturbation theory in Hilbert spaces developed in Chap-
ter 4. Then, we specialize it to perturbations of Laplace-Beltrami operators on surfaces
induced by conformal perturbations of the metric. We then show that sets of isospectral
conformally equivalent metrics contain no convex subsets. The results presented here were
originally published in [87] with the author of this thesis as the principal contributor.

5.3.1 General Argument

In this section, we consider perturbations of an operator H(0) on a Hilbert space H. We
assume that all the relevant power series converge in a neighborhood of t = 0. Furthermore,
the eigenvectors of H(0) are assumed to span the whole space. The notation used in what
follows is the same as in Chapter 4. For convenience, we repeat the key points here.

H(t)ψn(t) = λn(t)ψn(t)

H(t) = H(0) + tH(1) + t2H(2) + ...

λn(t) = λ(0)
n + tλ(1)

n + t2λ(2)
n + ...

ψn(t) = ψ(0)
n + tψ(1)

n + t2ψ(2)
n + ...

(5.48)

Furthermore, for simplicity, assume the H(i) to be self-adjoint. Also, for now, let the
perturbation be strictly of first order. In other words, H(i) = 0 for i ≥ 2.

We now requireH(t) to form an isospectral family. In particular, the first two eigenvalue
corrections must vanish for all n. By Equation (4.31),

0 = 〈ψ(0)
n , H(1)ψ(0)

n 〉

0 =
∑
k

λ
(0)
k 6=λ

(0)
n

∣∣∣〈ψ(0)
k , H(1)ψ

(0)
n

〉∣∣∣2
λ

(0)
n − λ(0)

k

.
(5.49)
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If the spectrum of H(0) is degenerate, the above expression only holds after an appropriate
choice of orthonormal eigenbasis, as explained in Chapter 4. We will work in such a basis.

Consider Equation (5.49). Our goal is to use it show that H(1) vanishes under a reason-
able set of assumptions. That would establish that the isospectral family H(t) is trivial.
The first order part of Equation (5.49) expresses that the diagonal of H(1) vanishes in the

{ψ(0)
n }n basis. It remains to show that all off-diagonal elements

〈
ψ

(0)
k , H(1)ψ

(0)
n

〉
for k 6= n

also vanish.

This is where the second order perturbations come in. Indeed, the numerator in the

series in Equation (5.49) contains the off-diagonal elements
〈
ψ

(0)
k , H(1)ψ

(0)
n

〉
for λ

(0)
k 6= λ

(0)
n .

The remaining elements
〈
ψ

(0)
k , H(1)ψ

(0)
n

〉
for λ

(0)
k = λ

(0)
n and k 6= n vanish due to the choice

of eigenbasis of H(0). See Chapter 4 for details.

An additional hypothesis on the spectrum of H(0) is required to proceed further. Sup-
pose that the eigenvalues of H(0) are finitely degenerate and can be numbered such that

λ
(0)
0 ≤ λ

(0)
1 ≤ λ

(0)
2 ≤ λ

(0)
3 ... (5.50)

Thus, we require H(0) to mimic the spectral properties of Laplace-type operators on com-
pact manifolds (see Theorem 2.2). Only property (iv) of Theorem 2.2 is not fully needed

here. Indeed, it can be relaxed to have supn{λ
(0)
n } as the only accumulation point in the

spectrum. We need to arrange the spectrum in this way in order to construct an inductive
argument. General accumulation points can get in the way of this endeavor.

Consider the second order eigenvalue correction to λ
(0)
0 .

0 =
∑
k

λ
(0)
k 6=λ

(0)
0

∣∣∣〈ψ(0)
k , H(1)ψ

(0)
0 〉
∣∣∣2

λ
(0)
k − λ

(0)
0

= −
∑
k

λ
(0)
k >λ

(0)
0

∣∣∣〈ψ(0)
k , H(1)ψ

(0)
0 〉
∣∣∣2∣∣∣λ(0)

0 − λ
(0)
k

∣∣∣
(5.51)

We obtain that a sum of terms of the same sign vanishes. Thus, every term must vanish
individually.
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∣∣∣〈ψ(0)
k , H(1)ψ

(0)
0 〉
∣∣∣2 = 0 , for all k such that λ

(0)
k > λ

(0)
0 . (5.52)

If λ
(0)
1 = λ

(0)
0 , the choice of eigenbasis ensures that

∣∣∣〈ψ(0)
0 , H(1)ψ

(0)
1 〉
∣∣∣2 = 0. Otherwise, the

above result, combined with the fact that H(1) is self-adjoint also yields
∣∣∣〈ψ(0)

0 , H(1)ψ
(0)
1 〉
∣∣∣2 =

0. Consequently, the correction to λ
(0)
1 can always be expressed as

0 = −
∑
k

λ
(0)
k >λ

(0)
1

∣∣∣〈ψ(0)
k , H(1)ψ

(0)
1 〉
∣∣∣2∣∣∣λ(0)

1 − λ
(0)
k

∣∣∣ . (5.53)

Similarly to the λ
(0)
0 case, we deduce that∣∣∣〈ψ(0)

k , H(1)ψ
(0)
1 〉
∣∣∣2 = 0 , for all k such that λ

(0)
k > λ

(0)
1 . (5.54)

This process can be inductively repeated to yield〈
ψ

(0)
i , H(1)ψ

(0)
j

〉
= 0 , for all i, j. (5.55)

This is precisely what we sought to show, as it ensures that H(1) = 0 and thus that
the perturbation is trivial. For the sake of simplicity, we assumed that H(2) = 0. This
assumption can be significantly weakened. Recall that

λ(2)
n =

∑
k

λ
(0)
k 6=λ

(0)
n

∣∣∣〈ψ(0)
k , H(1)ψ

(0)
n

〉∣∣∣2
λ

(0)
n − λ(0)

k

+
〈
ψ(0)
n , H(2)ψ(0)

n

〉
. (5.56)

The above inductive argument remains valid if
〈
ψ

(0)
n , H(2)ψ

(0)
n

〉
≤ 0 for all n. In addition

to H(1) = 0, the proof then produces
〈
ψ

(0)
n , H(2)ψ

(0)
n

〉
= 0 for all n. Moreover, notice that

it is unnecessary to require all of H(t) to form an isospectral family. Indeed, it is sufficient

to ask that λ
(1)
n = λ

(2)
n = 0 for all n.

We are now ready to apply this strategy to conformal perturbations of metrics on
surfaces. Up to a few technicalities, the argument remains unchanged.
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5.3.2 Non-Convexity of Isospectral Sets on Surfaces

We now return to geometric considerations. Let (M, g(0)) be a compact, boundaryless,
oriented Riemannian manifold of dimension 2. We consider conformal perturbations of the
inverse metric ḡ(0):

ḡ(t) = ḡ(0)
(
1 + tf (1) + t2f (2) + ...

)
. (5.57)

By Lemma 5.2,

λ(1)
n = λ(0)

n

〈
ψ(0)
n , f (1)ψ(0)

n

〉
λ(2)
n =

∑
k

λ
(0)
k 6=λ

(0)
n

λ
(0)
n λ

(0)
k

∣∣∣〈ψ(0)
n , f (1)ψ

(0)
k

〉∣∣∣2
λ

(0)
n − λ(0)

k

+ λ(0)
n

〈
ψ(0)
n , f (2)ψ(0)

n

〉
.

(5.58)

Since the eigenvalues of the Laplace-Beltrami operator are non-negative, these expressions
have a form suitable for the inductive argument of the previous section. We immediately
obtain the following lemma.

Lemma 5.9. Let (M, g) be a compact, connected, boundaryless, oriented Riemannian
manifold of dimension 2. Let ḡ = ḡ(0)

(
1 +

∑∞
i=1 t

if (i)
)

be a conformal perturbation of

the metric on 1-forms with f (2) ≤ 0. If the first two eigenvalue corrections vanish, then
f (1) = 0 and 〈ψ(0)

n , f (2)ψ
(0)
n 〉 = 0 for all n.

Proof. Up to a minor modification, the lemma follows from the inductive strategy of Section
5.3.1 with the operators H(1) and H(2) replaced with f (1) and f (2), respectively. The issue
is with the eigenspace with eigenvalue 0. This eigenspace consists of functions constant
on the connected components of M. Since M is assumed connected, this eigenspace has
dimension 1. The corresponding eigenvalue and eigenfunction are λ

(0)
0 = 0 and ψ

(0)
0 (a

constant function), respectively.

The inductive argument of Section 5.3.1 can be used to show that〈
ψ

(0)
i , f (1)ψ

(0)
j

〉
= 0 , for all i, j ≥ 1. (5.59)

However, the case where either i or j is zero remains. Pick j ≥ 1. Then, since the {ψ(0)
n }∞n=0

form an orthonormal basis, there exists a constant c such that
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f (1)ψ
(0)
j = cψ

(0)
0 . (5.60)

In other words, f (1)ψ
(0)
j is a constant function. Let x ∈M be such that ψ

(0)
j (x) = 0. Such

points are known to exist, as 〈ψ(0)
j , ψ

(0)
0 〉 = 0 and ψ

(0)
0 is constant. Consequently, ψ

(0)
j has

to change sign in order for the integral defining the L2(M) inner product to vanish. The

smoothness of ψ
(0)
j (see Theorem 2.2) guarantees that x exists. Thus, f (1)(x)ψ

(0)
j (x) = 0.

Consequently, f (1)(p) = 0 on the complements of the nodal sets of ψ
(0)
j , that is on all

points on which ψ
(0)
j is nonzero. In [27], it is shown that nodal sets of Laplace-Beltrami

eigenfunctions are submanifolds of M of lower dimension. By continuity of f (1), we then
get f (1) = 0, as desired.

This result can be used to study the geometric structure of sets of isospectral confor-
mally equivalent metrics on surfaces. Recall that such metrics have been shown to exist
[19]. Before proceeding further, consider two metrics ga and gb. The path (1− τ)ga + τgb
for τ ∈ [0, 1] is composed of metrics. Indeed, (1− τ)ga+ τgb is symmetric for any τ ∈ [0, 1].
Moreover, it is the sum of two positive-definite tensors and is thus positive definite. Conse-
quently, the set of metrics overM is equipped with a notion of straight line. The convexity
of subsets of that set can thus be studied. The same holds for sets of metrics on 1-forms.
In fact, we begin by studying the convexity properties of isospectral sets of such “inverse”
metrics.

Theorem 5.10. Let Ḡ be an isospectral set of conformally equivalent metrics on 1-forms
over a surface M assumed connected, oriented, compact and without boundary. Then, Ḡ
contains no convex subset composed of more than one element.

Proof. Suppose the contrary. Let ḡ1 and ḡ2 be distinct elements of a nonempty convex
subset of Ḡ. In other words, for τ ∈ [0, 1], τ ḡ1 + (1− τ)ḡ2 ⊂ Ḡ.

We can obtain a perturbation expansion of the eigenvalues in a neighborhood of any
τ0 ∈ [0, 1]. Since ḡ1 and ḡ2 are conformally equivalent, this situation can be seen as a
conformal perturbation with f (i) = 0 for i ≥ 2. Lemma 5.9 then applies, yielding that
f (1) = 0. Thus, ḡ1 = ḡ2, a contradiction.

We now turn our attention to the space of metrics, rather than that of inverse metrics.
An analogous result holds there as well. Note that straight lines in the space of metrics do
not map to straight lines in the space of inverse metrics. The two results are thus distinct.
Moreover, the proof technique in the case of the space of metrics is slightly different.
Indeed, it requires a specialized expression for the eigenvalue corrections.
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Lemma 5.11. Let g(t) = g(0)
(
1 + tf (1)

)
with f (1) ∈ C∞(M) be a strictly first order con-

formal perturbation of the metric on a manifold of dimension 2. Then, after an appropriate
choice of eigenbasis of ∆(0), the Laplace-Beltrami eigenvalue corrections are given by:

λ(1)
n = −λ(0)

n

〈
ψ(0)
n , f (1)ψ(0)

n

〉
λ(2)
n =

∑
k

λ
(0)
k 6=λ

(0)
n

(
λ

(0)
n

)2 ∣∣∣〈ψ(0)
k , f (1)ψ

(0)
n

〉∣∣∣2
λ

(0)
n − λ(0)

k

+ λ(0)
n

∣∣〈ψ(0)
n , f (1)ψ(0)

n

〉∣∣2 .
(5.61)

Note: If the spectrum of ∆(0) is nondegenerate, any orthonormal eigenbasis suffices. See
Chapter 4.

Proof. All of our results apply to perturbations of inverse metric. Thus, we need to compute
the induced perturbation of the inverse metric ḡ before proceeding further. For small |t|,
we can use the Taylor expansion:

ḡ(t) = ḡ(0)
(
1 + tf (1)

)−1
= ḡ(0)

(
1− tf (1) + t2

(
f (1)
)2

+ ...
)
. (5.62)

The formula for λ
(1)
n then immediately follows from Lemma 5.2. The expression for λ

(2)
n

requires some additional work. Expand f (1)ψ
(0)
n in the eigenbasis of the Laplacian.

f (1)ψ(0)
n =

∞∑
k=0

〈
ψ

(0)
k , f (1)ψ(0)

n

〉
ψ

(0)
k (5.63)

This allows us to write 〈ψ(0)
n , (f (1))2ψ

(0)
n 〉 in a more convenient way.

〈ψ(0)
n , (f (1))2ψ(0)

n 〉 =
∞∑
k=0

∣∣∣〈ψ(0)
k , f (1)ψ(0)

n

〉∣∣∣2
=
∣∣〈ψ(0)

n , f (1)ψ(0)
n

〉∣∣2 +
∑
k

λ
(0)
k 6=λ

(0)
n

∣∣∣〈ψ(0)
k , f (1)ψ(0)

n

〉∣∣∣2 (5.64)

The terms omitted from the summation above are guaranteed to vanish due to the choice
of eigenbasis described in Chapter 4. One can then make the following simplification:
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∑
k

λ
(0)
k 6=λ

(0)
n

λ
(0)
k λ

(0)
n |〈ψ(0)

k , f (1)ψ
(0)
n 〉|2

λ
(0)
n − λ(0)

k

+ λ(0)
n

∑
k

λ
(0)
k 6=λ

(0)
n

|〈ψ(0)
k , f (1)ψ(0)

n 〉|2

=
∑
k

λ
(0)
k 6=λ

(0)
n

(λ
(0)
n )2|〈ψ(0)

k , f (1)ψ
(0)
n 〉|2

λ
(0)
n − λ(0)

k

(5.65)

Applying Lemma 5.2 gives the desired result.

Everything is now in place to prove the metric analogue of Theorem 5.10.

Theorem 5.12. Let G be an isospectral set of conformally equivalent metrics over a surface
M assumed connected, oriented, compact and without boundary. Then, G contains no
convex subset composed of more than one element.

Proof. Begin by considering a strictly first order conformal perturbation of a metric. Sup-
pose this perturbation isospectral. By Lemma 5.11 above,

0 = −λ(0)
n

〈
ψ(0)
n , f (1)ψ(0)

n

〉
0 =

∑
k

λ
(0)
k 6=λ

(0)
n

(
λ

(0)
n

)2 ∣∣∣〈ψ(0)
k , f (1)ψ

(0)
n

〉∣∣∣2
λ

(0)
n − λ(0)

k

.
(5.66)

The λ
(0)
n

∣∣∣〈ψ(0)
n , f (1)ψ

(0)
n

〉∣∣∣2 term in λ
(2)
n vanishes due to the first order isospectrality pre-

scribing that λ
(0)
n

〈
ψ

(0)
n , f (1)ψ

(0)
n

〉
= 0. Once again, we obtain a form suitable for the

inductive argument of Section 5.3.1. We thus have that f (1) = 0. This rules out the
existence of straight paths of isospectral metrics, completing the proof.

The significance of Theorems 5.10 and 5.12 will be discussed at length in Chapter 7.
For now, note the difference between their proof strategies. Indeed, the proof of Theorem
5.10 relied on Lemma 5.9, which requires that f (2) ≤ 0. In Theorem 5.12, on the other
hand, f (2) = (f (1))2 ≥ 0. Nonetheless, Lemma 5.11 shows that the expressions for the
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eigenvalue corrections conspire to once again produce the desired result. The condition
f (2) ≤ 0 of Lemma 5.9 is thus merely sufficient for our purposes, rather than necessary.

Before proceeding further, we would also like to draw attention to the fact that Theo-
rems 5.10 and 5.12 deal with metrics and not with isometry equivalence classes of Rieman-
nian manifolds. Consequently, our results can be applied to isospectral sets that contain
isometric metrics. In particular, our results hold on sets of isometric metrics, which are of
course isospectral.

Finally, it would be of interest to generalize our results to manifolds of higher dimen-
sion. Assuming that analogous theorems indeed hold, the proof technique would have to
be adjusted. Specifically, the form of the eigenvalue corrections of Lemma 5.7 does not
guarantee that the numerator arising in the formula for λ

(2)
n is positive. This would not

be a problem if ∆(1) were symmetric. Then, the strategy of Section 5.3.1 would apply
verbatim.
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Chapter 6

Some Observations on the Integrals
of Products of Eigenfunctions

Integrals of products of eigenfunctions arise in the perturbation theory of the Laplace-
Beltrami operator studied in the previous chapter. In this chapter, we make a few obser-
vations and conjectures regarding such operations. The content of this chapter is the most
speculative of the present thesis. In Section 6.1, we discuss the squares of the eigenfunc-
tions. More specifically, we are interested in the subspace of L2(M) spanned by them. In
Section 6.2, we turn our attention to products of three and more eigenfunctions. There,
we derive a class of formulas similar to the Rayleigh quotient and speculate on their sig-
nificance.

The integrals of products of eigenfunctions have attracted some attention in the past.
We refer the reader to [20, 21] for estimates of the L2 norm of certain products of eigen-
functions.

6.1 On the Squares of Eigenfunctions

Let (M, g(0)) be a compact, oriented Riemannian manifold without boundary of dimension
N = 2. Recall the first two perturbative corrections to the eigenvalues of the Laplace-
Beltrami operator subject to a conformal perturbation of the inverse metric (Lemma 5.2).
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λ(1)
n = λ(0)

n

〈
ψ(0)
n , f (1)ψ(0)

n

〉
λ(2)
n =

∑
k

λ
(0)
k 6=λ

(0)
n

λ
(0)
n λ

(0)
k

∣∣∣〈ψ(0)
n , f (1)ψ

(0)
k

〉∣∣∣2
λ

(0)
n − λ(0)

k

+ λ(0)
n

〈
ψ(0)
n , f (2)ψ(0)

n

〉 (6.1)

The first order term can be rewritten as

λ(1)
n = λ(0)

n

〈(
ψ(0)
n

)2
, f (1)

〉
. (6.2)

Requiring the perturbation to be isospectral, implies that λ
(1)
n = 0 for all n. This

produces an orthogonality relation between (ψ
(0)
n )2 and f (1). Thus, if f (1) ∈ spann((ψ

(0)
n )2),

this implies that f (1) = 0. The perturbation of the metric is thus trivial to first order. This
implies that the second order correction is reduced to

λ(2)
n = λ(0)

n

〈
ψ(0)
n , f (2)ψ(0)

n

〉
(6.3)

Similarly, if f (2) ∈ spann((ψ
(0)
n )2), isospectrality implies that f (2) = 0. This is very similar

to the results obtained in Lemma 5.9. However, as long as one can justify that f (1), f (2) ∈
spann((ψ

(0)
n )2), the proof is significantly simpler.

One then has to ask: what space do the squares of the eigenfunctions span? It is
tempting to conjecture that they span all of L2(M). This, however, cannot be true in full
generality. Indeed, consider the usual flat 2-torus T 2 with coordinates (x, y) ∈ [0, 2π) ×
[0, 2π). The Laplace-Beltrami operator then has eigenvalues of the form (m2 + n2) for
m,n ∈ N. The corresponding eigenfunctions can take the following forms.

ψmn = cos(mx) cos(ny) ψmn = cos(mx) sin(ny)

ψmn = sin(mx) sin(ny) ψmn = sin(mx) cos(ny)
(6.4)

Recall the following trigonometric identities:

sin2(θ) =
1− cos(2θ)

2
cos2(θ) =

1 + cos(2θ)

2
. (6.5)

Thus, the squares of the eigenfunctions on the torus become
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ψ2
mn =

(1 + cos(2mx))(1 + cos(2ny))

4
ψ2
mn =

(1 + cos(2mx))(1− cos(2ny))

4

ψ2
mn =

(1− cos(2mx))(1− cos(2ny))

4
ψ2
mn =

(1− cos(2mx))(1 + cos(2ny))

4

(6.6)

All that remains is the constant degree of freedom and cosines with even frequency. This
is not enough to span all of L2(T 2). The conjecture thus fails to hold in this case. An
analogous discussion can be carried out in the case of the standard sphere, once again
resulting in the failure of the conjecture.

However, the flat torus and standard sphere are highly symmetric manifolds with very
degenerate spectra. They cannot represent a generic situation. Indeed, in the degenerate
case, the choice of orthonormal eigenbasis is not unique. The squared eigenfunctions are
correspondingly not unique either.

In order to remedy this, we restrict our attention to the case of nondegenerate spectrum.
This is a generic situation. Precisely, given a manifold M, metrics inducing Laplace-
Beltrami operators with nondegenerate spectrum form a residual set in the C∞ topology
[6] (see Appendix A for a definition of residual sets). The eigenfunctions can be chosen to
be normalized. They are then unique up to a sign, which will disappear upon squaring.

The hypothesis of a nondegenerate spectrum could still prove insufficient to ensure
that the squares of the eigenfunctions are sufficiently varied to span all of L2(M). One
can however expect that a sufficiently bumpy metric would have little relationship between
the squares of the eigenfunctions. This is why we introduce an additional, unspecified,
genericity condition in the formulation of the conjecture below.

Conjecture 6.1 (Squares of Eigenfunctions). Let (M, g) be an oriented compact Rieman-
nian manifold without boundary. Suppose that (M, g) is in some sense generic among
manifolds with nondegenerate Laplace-Beltrami spectrum. Then L2(M) = spann ((ψn)2),
where the {ψn}∞n=0 are the eigenfunctions of the Laplace-Beltrami operator.

We will now numerically explore this conjecture. We consider a 2-torus with a metric
conformal to the flat one. The conformal factor is a randomly generated positive func-
tion. Specifically, we first generate a linear combination of eigenfunctions of the flat torus
(Equation (6.1), m,n = 1, 2) with uniformly distributed coefficients between −1 and 1.
Then, the resulting function is rescaled to take values in [−1/2, 1/2]. Adding 1 to it results
in a function with values in [1/2, 3/2]. This is appropriate as a conformal factor. Generi-
cally, the resulting manifold will not have nontrivial symmetries and the eigenvalues will
be nondegenerate.
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Figure 6.1: Decay of the Ei(n) with n for various values of i.

We use a finite difference method to compute the eigenfunctions of the resulting Lapla-
cian. Then, we compute their squares and construct an orthogonal projection onto their
span. This is done by applying the Gram-Schmidt process to {ψ2

i }i. One then obtains an
orthonormal basis onto which one can readily project.

Let Pn denote the orthogonal projection onto spanni=1{ψ2
i }. We can then study how

well do the squares of the eigenfunctions span the eigenfunctions themselves. Specifically,
we study the behavior of the following error:

Ei(n) =
∥∥ψi − Pnψi∥∥L2

. (6.7)

If, for all i, we have the limit limn→∞Ei(n) = 0, the squares of the eigenfunctions can be
linearly combined to form any element of a basis for L2(M). Thus, they would then span
the whole space. If, for some i, limn→∞Ei(n) = c > 0, then ψi has a component with norm
c in the orthogonal complement of span∞i=1{ψ2

i }. This would rule out the conjecture.

In Figure 6.1, we illustrate the errors Ei(n) for various values of i ≥ 1 and n = 1...300 on
a generically chosen manifold. Note that the constant eigenfunction ψ0 is always perfectly
reproduced, which is why we do not study E0(n). Note that the decay of the Ei(n) with
n is very slow, especially for high i.

It is difficult to draw conclusions from this. The Ei(n) have not settled into obvious
limiting behaviors. It is unclear whether Ei(n) decays to 0, or to some constant c > 0.
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Assuming that our conjecture holds, this would mean that the squares of the eigenfunctions
span the eigenfunctions in an inefficient manner. Indeed, one would need all of the {ψ2

i }∞i=0

to reproduce any given ψi. Contrast this with the eigenbasis of the flat torus of Equation
(6.1). There, ψi is either perfectly reproduced by Pn for a finite n or not reproduced at all.

In sum, it is unclear whether our conjecture holds. However, from perturbation the-
oretic considerations, it is of great interest to know the properties of the {ψ2

i }∞i=0. To
the best of our knowledge, this subject has only been touched once in the past, also in a
perturbative context [35]. Introduce the following set of functions:

A0(M, g) =

{
φ ∈ C∞(M) :

∫
M
φ dVg = 0

}
. (6.8)

Recall the expression for the first order eigenvalue correction due to a conformal pertur-
bation (Lemma 5.7). Set f (1) = φ ∈ A0(M, g). The expression for the first eigenvalue
correction can be seen as a quadratic form:

qkφ(ψ) =

〈
ψ2,

(
λ

(0)
k φ+

N − 2

4

(
∆(0)φ

))〉
. (6.9)

In [35], the following result is proven.

Lemma 6.2. Let (M, g) be a compact Riemannian manifold and let Ek be the eigenspace
corresponding to λk. Then, the following two conditions are equivalent.

(i) For all φ ∈ A0(M, g), the quadratic form qkφ(ψ) is indefinite on Ek.

(ii) There exists a finite family of eigenfunctions {ui}di=1 ⊂ Ek such that

d∑
i=1

u2
i = 1 . (6.10)

This lemma arises in the study of metrics critical for the eigenvalue λk. Intuitively, metrics
critical for λk are those metrics that have λ

(1)
k = 0 for all perturbations. This is the

appropriate analogue of a critical point of a function, that is a point where the gradient of
the function vanishes. See [35] for details.
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6.2 Rayleigh-Like Quotients

In the previous section, we have discussed the squares of the Laplace-Beltrami eigenfunc-
tions. We will now study general products of eigenfunctions. In Lemma 5.4 we have shown
the following formula

1

2
(λn + λm − λk)

∫
M
ψnψmψk dVg =

∫
M
g(dψn, dψm)ψk dVg . (6.11)

In a sense, this formula generalizes the Rayleigh quotient. Indeed, set n = m and k = 0.
Then,

λn

∫
M
|ψn|2 dVg =

∫
M
g(dψn, dψn) dVg

=⇒ λn =

∫
M g(dψn, dψn) dVg∫

M |ψn|2 dVg
.

(6.12)

If we allow ourselves to ignore the possibility of division by zero, our result can be rewritten
in a similar form.

1

2
(λn + λm − λk) =

∫
M g(dψn, dψm)ψk dVg∫
M ψnψmψk dVg

(6.13)

Notice that this quantity is spectrally determined. That is, assuming that the right-hand
side is defined, we have obtained a spectral invariant. In fact, we can do better. We can
construct an infinite family of expressions of this form.

Lemma 6.3 (Rayleigh-like Formulas). Let {ψni}Ii=1, I ≥ 2 be a sequence eigenfunctions
of the Laplace-Beltrami operator with eigenvalues {λni}Ii=1. Then, for any k,

(
I∑
i=1

λni − λk

)(∫
M
ψk

I∏
i=1

ψni dVg

)

=

∫
M
ψk

I∑
i=1

∑
j 6=i

g(dψni , dψnj)

(∏
l 6=i,j

ψni

)
dVg .

(6.14)
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Proof. First, we need to obtain a generalized product rule for the Laplacian. This is easiest
at the center of a Riemann normal coordinate system. There [96],

∆ = −
N∑
k=1

∂2
k g(dψ, dφ) =

N∑
k=1

(∂kψ)(∂kφ) . (6.15)

Applying this to a product of I eigenfunctions yields,

∆
I∏
i=1

ψni = −
N∑
k=1

∂2
k

I∏
i=1

ψni = −
N∑
k=1

∂k

I∑
i=1

(∂kψni)
∏
j 6=i

ψnj

= −
N∑
k=1

I∑
i=1

(
(∂2
kψni)

∏
j 6=i

ψnj + (∂kψni)

(∑
j 6=i

∂kψnj
∏
l 6=i,j

ψnj

))

=
I∑
i=1

λni

I∏
j=1

ψnj −
I∑
i=1

∑
j 6=i

g(dψni , dψnj)
∏
l 6=i,j

ψnj

(6.16)

The proof is completed by taking the L2(M) inner product product of both sides with ψk
and using the self-adjointness of ∆ on the left-hand side.

If the denominator does not vanish, we can write the above lemma as a generalized
Rayleigh quotient.

I∑
i=1

λni − λk =

∫
M ψk

∑I
i=1

∑
j 6=i g(dψni , dψnj)

(∏
l 6=i,j ψni

)
dVg∫

M ψk
∏I

i=1 ψni dVg
(6.17)

Once again, this is a spectrally determined quantity. It is thus of interest to know under
which conditions this is a legitimate way of expressing the above lemma.

Even in the simplest case of Equation (6.13), this is an important issue. Indeed, set
k = 0. Then ψk is the constant eigenfunction and

Cnm0 =

∫
M
ψnψmψ0 dVg = ψ0δnm . (6.18)
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Figure 6.2: Absolute value of the integral of the product of three eigenfunctions (|Cnmk|).
The indices n and m vary, while k = 10. Notice the apparent vanishing of the integrals far
from the diagonal n = m.

Besides this trivial example, we have to resort to numerics to determine when the de-
nominators vanish. In Figure 6.2, we plot the absolute values of Cnmk for k = 10 and
n,m = 0...300. The manifold used is the same as the one used in the previous section.
While the finite precision of the numerical methods does not allow us to conclusively find
pairs (m,n) such that Cnmk vanishes, it seems that nonzero values of Cnmk can be found
near the diagonal n = m (but not necessarily on the diagonal itself). Far away from the
diagonal, the Cnmk seem to vanish.

For integrals of products of more functions, the relationship will likely be different. Let

Cnmkl =

∫
M
ψnψmψkψl dVg . (6.19)

In Figure 6.3, we plot Cnmkl for k = 10 and l = 300. Except for low values of n and m,
the integral seems to be nonzero. This leads us to make the following conjecture.

Conjecture 6.4 (Rayleigh-Like Formulas). Let (M, g) be a generic compact Riemannian
manifold. Then, for sufficiently large I and generic {ni}Ii=1, Equation (6.17) is valid.

At the moment, we cannot provide even a tentative definition of what it would mean
for {ni}Ii=1 to be generic. Our conjecture is motivated by the apparent loss of structure
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Figure 6.3: Absolute value of the integral of the product of four eigenfunctions (|Cnmkl|).
The indices n and m vary, while k = 10 and l = 300. Notice the apparent vanishing of the
integrals for small n and m.

between Figure 6.2 and Figure 6.3. Indeed, pairs (n,m) with apparently nonzero integrals
are much more uniformly distributed in Figure 6.3. We expect that, for a large enough I
(number of multiplied eigenfunctions), the loss of structure would be even more pronounced
such that most choices (n1, ..., nI) would yield a nonzero denominator for Equation (6.17).

Supposing that our conjecture holds, it would be of interest to know if one can extract
any geometric information from Equation (6.17). Considering that the numerator contains
the metric, it is plausible that this is the case. Since the left-hand side of Equation
(6.17) depends solely on the spectrum, this would provide a new way to extract geometric
information from the spectrum.

To close this chapter, we would like to speculate on the relationship between the gener-
alized Rayleigh quotients of Equation (6.17) and the structure constants Cmnk of C∞(M)
(see Definition 5.3). This is important as knowledge of the structure constants jointly with
the Laplace-Beltrami spectrum is equivalent to the knowledge of the Riemannian manifold.

Indeed, the structure constants determine C∞(M) as an abstract algebra. This is
enough to reconstruct M as a differentiable manifold (see [80]) together with the eigen-
functions as functions on M, rather than abstract elements of an algebra. Together with
the knowledge of the spectrum of the Laplace-Beltrami operator this allows one to recover
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the Riemannian metric. There are multiple ways of doing this. One of them is to deduce
the leading order coefficients of the Laplace-Beltrami operator (−gij).

Consequently, the extraction of geometric information from the generalized Rayleigh
quotients can be approached from a different direction. One could attempt to use them to
obtain some information about the Cmnk, which would be of use for the reconstruction of
manifolds from spectra.
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Chapter 7

Conclusion and Outlook

In [69], it was observed that the key difficulty with understanding the relationship between
shape and spectrum is the high nonlinearity of the spectral map. Following this line
of thought, we studied the problem of inverse spectral geometry in an infinitesimal or
perturbative regime.

In Chapter 3, we began our investigations by a numerical exploration of the possibility
of reconstructing small changes in shape from small changes in spectrum. The numerical
experiment was carried out on a set of star-shaped planar domains. It has shown the
reconstruction to be possible on the condition that the number of considered Laplace-
Beltrami eigenvalues matches the number of shape degrees of freedom. This indicates that,
at least in the studied space of shapes, it is possible to preserve the local reconstruction of
changes of shape from changes in spectrum in the limit of infinitely many shape degrees of
freedom. It would be of interest to check whether this relationship holds in other spaces of
shapes. Especially interesting is the case of curved manifolds. This case is more difficult
than that of the planar domains due to the fact that the space of isometries of general
manifolds is much richer than that of R2. In that case, we propose to compare shapes
using the heat kernel matching methods developed in [83]. Moreover, the perturbation
formulas obtained in Chapter 5 can be used to speed up the computation of the Jacobian
matrix used by our numerical algorithm.

Motivated by the success of our numerical explorations, we pursued a perturbative
approach to spectral geometry. Specifically, we turned our attention to isospectral per-
turbations. This choice warrants a few comments. In our work, perturbation theory is
used in a way opposite to the usual one. This is a consequence of the fact that inverse
spectral geometry is indeed an inverse problem. A typical application of the perturbative
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expansions seeks to approximate the spectral decomposition of an operator using the more
easily accessible spectral decomposition of a neighboring operator. In practice, this means
starting with a well-understood operator and adding small corrections to it. Physically,
this corresponds to taking small, previously neglected, interactions into consideration. Our
usage of perturbation theory is very different. Indeed, by assuming the isospectrality of
perturbations, we begin with the knowledge of the eigenvalue corrections. In the case of
a self-adjoint perturbation (Section 5.3.1), we can use that to deduce the vanishing of the
corrections to the operator. Interestingly, very little knowledge of the unperturbed opera-
tor is necessary. One merely has to require that the eigenvectors span the whole Hilbert
space and that the eigenvalues are finitely degenerate and can be numbered such that
λ

(0)
0 ≤ λ

(0)
1 ≤ λ

(0)
2 ≤ ... This is the type of information provided by spectral theorems, such

as the one for Laplace-type operators (Theorem 2.2).

The fact that the perturbations of the Laplace-Beltrami operator induced by pertur-
bations of the metric are not self-adjoint complicates matters. Nonetheless, a situation
similar to the self-adjoint one was recovered in the case of conformal perturbations of
metrics on surfaces. This lead us to rule out the existence of certain types of isospectral
deformations of surfaces. In particular, strictly linear conformal perturbations of either
metrics gij or inverse metrics gij were found to never be isospectral. This was then used
to disprove the existence straight paths in the spaces of metrics and inverse metrics. A
fundamentally local statement about perturbations was thus converted in a global result
about the non-existence of convex sets of isospectral, conformally equivalent metrics on
surfaces (Theorems 5.10 and 5.12). To the best of our knowledge, this is the first result
regarding the geometry (or the linear structure), rather than the topology, of isospectral
sets.

The generalization of such non-convexity results to manifolds of higher dimension is a
natural direction of future research. As evidenced by the expressions for the eigenvalue
correction of Lemmas 5.7 and 5.8, the inductive argument of Section 5.3.1 will likely have
to be modified or, perhaps, replaced entirely. The main issue is that one can no longer
guarantee that the numerator in the expression for the second order eigenvalue corrections
is positive. Nonetheless, we expect that analogous results can be shown to hold in higher
dimensions. It is possible that using a different decomposition of the degrees of freedom of
the metric, such as the one in [109], would shed some light on this issue.

As a byproduct of our investigations into perturbations of Laplace-Beltrami opera-
tors, we arrived at two conjectures (see Chapter 6). The first one is that, generically, the
squares of the eigenfunctions span all of L2(M). We found some numerical evidence for
this. Proving this conjecture would provide one with powerful tools for further perturbative
investigations, especially into conformal perturbations. In fact, if one assumes that this
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conjecture holds, the proof of our main results (Theorems 5.10 and 5.12) becomes signifi-
cantly simpler. The proof would no longer require considering the second order eigenvalue
corrections, as the first order ones would already be sufficient.

The second conjecture stated in Chapter 6 has to do with the generalized Rayleigh
quotients of Lemma 6.3 and Equation (6.17). These formulas are spectral invariants that
could plausibly be used to extract geometric information from the Laplace-Beltrami eigen-
values. The issue with those invariants is an uncertain domain of definition. We conjecture
that, generically, they are defined. We obtained some numerical evidence in support of this
conjecture. The question whether those expressions can be used to extract geometric in-
formation from the spectrum remains open.

To conclude this thesis, we would like to speculate regarding the implications of our
non-convexity results for the rarity of isospectrality. Recall that the program of identifying
shape from spectrum would be put on solid mathematical footing if the set of all families
of isospectral non-isometric metrics formed a meager set (see Appendix A for a definition)
in the space of all metrics on a manifold.

Were there countably many isospectral families, this problem would be reduced to
showing that each set of isospectral non-isometric metrics is nowhere dense in the set of all
metrics. Recall that a set is nowhere dense if its closure has empty interior [71]. Also recall
that pre-images of closed sets under continuous maps are closed. Since eigenvalues are
continuous functions of the metric (see [6]) and countable intersections of closed sets are
closed, the isospectral sets are closed. It remains to show that they have empty interior.
This is very easy to prove, as it is sufficient to show that any member of such a family
can be deformed in a way that changes its spectrum. Note that a perturbation (1 + t)gij
of gij changes the volume of the manifold, no matter how small |t| is. Since the volume
is spectrally determined (see Equation (2.45)), this perturbation exits the isospectral set.
Thus, any given isospectral set is nowhere dense.

There are however uncountably many isospectral non-isometric families. Indeed, given
one such family, applying the deformation (1 + t)gij to all members of the family yields
another, different, isospectral family 1. This results from the fact that this changes the
Laplace-Beltrami operator from ∆ to (1+t)−1∆. This merely rescales the spectrum, which
preserves the isospectrality of the family. Since there are uncountably many real numbers,
this can be used to construct uncountably many isospectral non-isometric families.

Consequently, it is likely that one has to establish a result stronger than nowhere
density for the isospectral sets. Note that our Lemmas 5.9 and 5.11 are such results.

1We find it mildly amusing that the same deformation can be used to show both the nowhere density
of an isospectral set and the fact that there exist uncountably many such sets.
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Indeed, ruling out isospectral perturbations of the form (1 + tf (1))gij, with f (1) ∈ C∞(M),
is more than what is required to establish nowhere density. Whether this is enough to
show that counterexamples to the program of inverse spectral geometry form a negligible
set is the subject of further research.
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Appendix A

Meager and Residual Sets

The notions of meager and residual sets arise when discussing whether a given property is
satisfied by generic points of a topological space. In other words, those notions formalize
what it means for a subset of a topological space to be non-generic and thus negligible.
For a complete discussion of meager and residual sets we refer the reader to textbooks on
general topology, say [75, 107].

Begin by recalling the definition of a nowhere dense set.

Definition A.1 (Nowhere Dense Set). Let X be a topological space and let A ⊂ X. A is
said to be nowhere dense in X if its closure Ā has empty interior.

We can now proceed to define meager and residual sets.

Definition A.2 (Meager Set). Let X be a topological space and let A ⊂ X. A is said to
be meager if it is a countable union of nowhere dense sets.

Definition A.3 (Residual Set). Let X be a topological space and let A ⊂ X. A is said to
be residual if its complement is meager.

As the name suggests, meager sets are negligible. Correspondingly, their complements
(the residual sets) are considered non-negligible. The long term goal of spectral geometry
then becomes to show that, given an appropriate topology, a residual set of Riemannian
manifolds can be determined (up to isometry) from the spectra of some Laplace-type
operators. This has been shown to hold in some special classes of manifolds, see [110, 111,
113].

119



Neglecting meager subsets is analogous to neglecting subsets of measure zero in a mea-
sure space. By probabilistic arguments, points in a set of measure zero occur with vanishing
probability and will thus almost never be of relevance. Note that this is an analogy, not
an equivalence. This analogy is explored in [84].

We close this section with a minor comment on the terminology used here. Meager
sets are also known as sets of first category. Sets that are not meager are known as sets
of second category. This terminology is non-descriptive, which is why we prefer calling
sets of first category meager. Nonetheless, this terminology is used by many texts as it
historically arose in the formulation of the Baire category theorem, which we include here
for the sake of completeness.

Theorem A.4 (Baire Category Theorem). Let X be a complete metric space. Then, X is
of second category when viewed as a subset of itself. In other words, X is not a countable
union of nowhere dense subsets.
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Appendix B

Symmetric and Self-Adjoint
Operators

In this appendix, we briefly discuss the difference between symmetric and self-adjoint
operators on Hilbert spaces. We refer the reader to [2, 91] for the details.

Let H be a Hilbert space with inner product 〈·, ·〉. Let A be a linear operator on H. If
A is unbounded, it is not possible to define A on all of H. Let D(A) ⊂ H be the domain
of definition of A. A is said to be densely defined if D(A) is dense in H.

Definition B.1 (Symmetric Operator). Let A be a densely defined linear operator on H.
A is said to be symmetric if 〈ψ,Aφ〉 = 〈Aψ, φ〉 for all ψ, φ ∈ D(A).

The symmetry of an operator is insufficient to guarantee that it obeys a spectral theo-
rem. Self-adjointness, one the other hand, provides such a condition [91]. Begin by recalling
the definition of the adjoint of A.

Definition B.2. Let A be a densely defined linear operator on H. Let D(A†) ⊂ H be the
set of φ ∈ H for which there exists η ∈ H such that

〈Aψ, φ〉 = 〈ψ, η〉 , ∀ψ ∈ D(A) . (B.1)

With φ and η as above, the adjoint A† of A is defined as

A† : D(A†)→ H
φ 7→ η .

(B.2)

121



Notice that, in general, D(A†) 6= D(A). This difference in domains is what distin-
guishes symmetric operators from self-adjoint ones. Indeed, consider the definition of
self-adjointness.

Definition B.3 (Self-Adjoint Operator). A densely defined operator A is said to be self-
adjoint if A = A†. In other words, A is self-adjoint if and only if it is symmetric and
D(A†) = D(A).

Under certain conditions, the domain of a symmetric operator can be extended to make
the operator self-adjoint. This procedure is known as a self-adjoint extension. In the case
of differential operators, the extension takes the form of imposing boundary conditions.
We refer the reader to [2] for the details.

Self-adjoint extensions of differential operators are frequently done implicitly. Indeed,
this is how we approach the spectral theorem for Laplace-type operators (Theorem 2.2).
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