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Abstract

We analyze correlations between pairs of detectors quadratically coupled to real and
complex scalar bosonic fields in 3+1 dimensions. This is a first step toward studying the
entanglement structure of the fermionic vacuum through the entanglement harvesting
protocol. We find that, while a single quadratically coupled Unruh-DeWitt presents no
divergences, when one considers pairs of detectors there emerge persistent divergences
(not regularizable via smooth switching or smearing) in the entanglement they acquire
from the field. These divergences were not anticipated in previous studies. We charac-
terize the divergences, discuss whether a suitable regularization can allow for fair com-
parison of the entanglement harvesting ability of the quadratic and the linear couplings,
and finally find a UV-safe quantifier of harvested correlations.

One paper, submitted for publication, comprises the majority of work done in this
thesis [1]
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Chapter 1

Introduction

Motivation: Fermionic entanglement ambiguities

Is there an unambiguous way to characterize the entanglement of the fermionic field
between two disjoint regions of spacetime?

The answer to this question is not uncontroversial [2–19]. Due to the anti-commuting
properties and parity conservation of fermions, notions of separability and entanglement
that are all equivalent for bosons are in fact different for fermonic systems [20]. Fermionic
Entanglement is also affected by superselection rules [21–25]. Additionally, as has been
pointed out in the literature, in the past many studies of the entanglement structure of
fermionic systems have not fully taken into account the subtleties associated with the
braiding statistics of fermionic fields [5, 6, 10,26–32].

One way to avoid these subtle issues with fermionic entanglement structure is to
probe fermionic systems with localized detectors (see Section 2.4). The detectors can
become entangled or not depending on the entanglement present in the field. The study
of entanglement through particle detectors in the bosonic case has become known as
entanglement harvesting [33–36]. This protocol will allow us to operationally characterize
fermionic entanglement structure and make a comparison to the bosonic field.

A model describing a detector coupling to a fermionic field has existed in the literature
for quite some time [37–39]. However, previous studies focused only on transition rates,
and suffered divergences that needed careful treatment. Additionally, it was pointed out
that the models of fermionic particle detectors were riddled with persistent divergences
that made it impossible to compute anything but transition rates. For the study of en-
tanglement harvesting we need to fully characterize the detector’s density matrix [40].
Additionally, in order to apply this detector model to the entanglement harvesting sce-
nario, one must use pairs of detectors. The renormalization study only considered the
single detector and thus could not consider the entanglement structure of the field. This
motivates the future study of pairs of detectors coupling to fermionic fields.
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However, the fermionic detector model described above necessarily utilizes a quadratic
coupling to the field, as we will discuss more in depth later [40]. Because the coupling
of the fermionic detector model is quadratic and therefore necessarily different from
the coupling in the bosonic detector model primarily considered in the literature, we
need to characterize the quadratic bosonic detector model in addition to the fermionic
model. This will give us clues as to the source of any differences that may arise between
the fermionic and bosonic detector models. The differences could come from analytic
structure (spinor versus scalar), spin-statistics (fermionic versus bosonic) or the coupling
(linear versus quadratic). Only then can we make an equal-footing comparison of bosonic
and fermionic entanglement.

Thus we arrive at the goal of this thesis: to understand how the quadratic coupling
changes the character of the bosonic detector.

Context: Relativistic quantum information

This thesis is a contribution to the field of relativistic quantum information (RQI), which,
for the purposes of this work, we we will define as the study of the intersection of three
major fields: quantum theory, relativity, and information theory.

Early results in RQI studied entanglement in various settings, primarily between
field modes in curved spacetimes or accelerated frames. These studies often relied on
Bogoliubov transformations and the single mode approximation. Being limited by issues
of localization and identification of observable quantities [10,11,41], an alternative to this
bumpy road is to work with Unruh-DeWitt (UDW) detectors, which provide localized
and physically interpretable results. Additionally, with the UDW detector came a notion
of particle as “that which a particle detector detects” [42].

Detectors in quantum fields are only a small aspect of work being done in RQI, al-
though particle detector approaches to field theory are the most relevant work to this
thesis. Another research direction includes experimental proposals probing general rela-
tivistic effects in quantum scenarios, such as time dilation of clocks and interference of
photons [43–45]. Additionally there are more foundational questions being asked, such as
those related to causal structure of spacetime [46,47], the connection between information
and energy flows in quantum fields [48–50], black holes and information loss [6,6,11,51–55]
or the study of causality issues in quantum systems [56]. RQI is also concerned with the
light-matter interaction and how simplifications may break down when under the scrutiny
of relativistic concerns (see, among many others, [50,57–61]).
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Results: Divergences and entanglement harvesting

This thesis will present, along with the relevant context, an analysis of pairs of detectors
quadratically coupled to scalar bosonic fields. We then we show the relationship between
the complex bosonic detector model and the real quadratic detector model.

We will find that the quadratic model for pairs of detectors presents a divergence.
This divergence shows up at leading order in perturbation theory despite the choice of
smooth detector shapes and application of the renormalization scheme that successfully
renormalized the single quadratic model.

To regularize this divergence we will introduce a UV cutoff. For a given UV cutoff, we
find that the quadratic detector model exhibits qualitatively similar mutual information
and entanglement harvesting capabilities. However, the UV cutoff dictates which model
harvests more entanglement.

Finding that the quadratic model exhibited divergences, we looked for UV safe quan-
tifiers of correlations. We found the mutual information to be convergent in the limit of
removing the UV cutoff.
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Chapter 2

Review

2.1 Entanglement harvesting

The vacuum state of a quantum field displays quantum correlations between observables
defined in spacelike separated regions [62,63]. This vacuum entanglement has been stud-
ied in quantum foundations, and has found a variety of applications such as quantum
energy teleportation [49, 64], the black hole information loss problem [65] and firewalls,
along with black hole complementarity [53,54].

In a phenomenon called entanglement harvesting [66], correlations in a quantum field
(such as the electromagnetic field) can be swapped to particle detectors (such as atoms
or qubits, see Section 2.4). This is possible even when the particle detectors remain
spacelike separated throughout the duration of their interaction with the field. This was
first shown by Valentini [33] and later by Reznik et al. [34, 35].

Since then, entanglement harvesting has been shown to be sensitive to the background
geometry of spacetime [67–69], as well as the topology [70]. Additionally, it has been
shown that entanglement harvesting can be done sustainably and distilled into Bell pairs
in a process called entanglement farming [71]. This kind of process has also found appli-
cations within quantum metrology, for example in the detection of vibration (quantum
seismometer) [72] or range-finding [66]. Entanglement harvesting has also been studied in
detail in timelike separation contexts [73, 74] with implementation proposals in different
testbeds from quantum key distribution based on homodyne detection [75] to strongly
coupled superconducting qubits [76].

To model the entanglement-swapping interaction between the detectors and field, the
Unruh-DeWitt detector model is used (see Section 2.4). For the entanglement harvesting
protocol, this model utilizes a pair of first-quantized system (called a detector) linearly
coupled to a scalar bosonic field. While most of our knowledge of entanglement har-
vesting has been gleaned from this setup [58,67–72], there has been some exploration of
more realistic models such as electromagnetic coupling of atoms [77]. All these studies,
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however, analyzed entanglement harvesting for bosonic fields.

It is known from fundamental studies that there are differences between the en-
tanglement structure of the vacuum of fermionic and bosonic fields [2–19]. However,
a study of entanglement harvesting in fermionic setups has never been performed. A
study of detector-based entanglement harvesting from a fermionic vacuum could resolve
ambiguities in defining entanglement measures between disjoint regions of a fermionic
field [2–4,14–19]. The reasons why this has not been done can be traced back to funda-
mental difficulties associated with particle detector models for fermionic fields, and the
need for a renormalization scheme, as originally outlined in [40].

2.2 Some aspects of correlations in quantum theory

There are many different ways of quantifying correlations, depending on the type of
correlation of interest (eg. total correlations, entanglement) and the type of state(s)
under consideration (eg. mixed or pure, bi- or multi-partite). For the remainder of this
thesis we will be concerned with total correlations and entanglement of mixed bipartite
quantum states.

Entanglement can be quantified (measured) by any map that is non-increasing under
local operations and classical communication (LOCC), such as entanglement of formation
[78] and distillable entanglement [79], neither of which is efficiently computable [80].
In this paper we will use entanglement negativity, as it is a computable measure of
entanglement for mixed bipartite quantum states [80,81].

2.2.0.1 Entanglement negativity

Entanglement negativity of a bipartite state ρ is an entanglement monotone (under local
transformations) defined as

N (ρ) =
||ργA|| − 1

2
, (2.1)

where ργA denotes the partial transpose of ρ with respect to subsystem A. An equivalent
definition is the sum of the negative eigenvalues of the partial transpose of ρ [80]:

N (ρ) =
∑

λi∈σ[ργA ]

|λi| − λi
2

, (2.2)

2.2.0.2 Mutual information

The Mutual Information mutual information I(ρab) between two detectors quantifies
the amount of uncertainty about one detector that is eliminated if some information
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about the state of the other is revealed [82]. Thus, it constitutes a faithful measure of
correlations (regardless of if they are classical or quantum) between bipartite quantum
quantum states. [83]

In general, for a composite quantum system consisting of two subsystems A and B,
the mutual information given by

I(ρab) = S(ρa) + S(ρb)− S(ρab), (2.3)

where ρν = Trµ(ρνµ) is the partial trace of ρνµ with respect to subsystem µ ∈ {A,B}
and S is the von Neumann entropy given by S(ρ) = −Tr(ρ log ρ).

2.3 Basics of quantum field theory: Scalar fields

In this thesis we shall consider massless, scalar bosonic fields on 3+1 dimensional
Minkovski spacetimes. There will be some short discussion of fermionic fields to mo-
tivate the quadratic coupling used throughout this work, but knowledge of fermionic
fields beyond anything rudimentary is unnecessary for understanding the material that
will be presented herein.

Here we present a short introduction to scalar field theory, starting with the action
and equations of motion, discussing field expansions and commutation relations, and
culminating in a short calculation of the Wightman function and an application of Wick’s
theorem.

The following review relies on various sources [41, 84–86]

2.3.1 The massless, scalar bosonic field in flat spacetime

The Lagrangian density for a massless free scalar bosonic field, φ̂, is

L0 =
1

2
∂µφ̂∂

µφ̂. (2.4)

The Klein-Gordon equation minimizes the associated action of Eq. (2.4):

∂µ∂
µφ̂ = 0, (2.5)

Any solution to the differential equation (2.5) can be written in terms of a basic solution
set of functions, eg. plane waves,

uk = e−i(|k|t−x·k) and u∗k = ei(|k|t−x·k), (2.6)

which are orthonormal with respect to the Klein Gordon inner product,

(φ1, φ2)KG = i

∫
d3x [φ∗1 ∂t (φ2)− (∂t φ1

∗)φ2] . (2.7)
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This ‘inner product’ is positive definite only for positive frequency solutions, which satisfy

∂tuk(x, t) = −iωuk(x, t). (2.8)

Now we can express a classical scalar field as

φ(x, t) =

∫
dnk (a∗ku

∗
k + akuk) , (2.9)

where a and a∗ are complex amplitudes, which will depend on dimension (n) and |k|.
To quantize the field, we impose the canonical commutation relations on the field and

its canonical conjugate momentum π̂ = ∂tφ̂, promoting them both to operator status:
[
φ̂(x), π̂(y)

]
= iδn (x− y)

[
φ̂(x), φ(y)

]
=
[
π̂(x), π(y)

]
= 0. (2.10)

We then promote each complex amplitude a or a∗ to a creation or annihilation oper-
ator, âk, â

†
k. These operators inherit their commutation relations from the canonical

commutation relations
[
âk, â

†
k

]
= δn (k − k′)

[
âk, âk

]
=
[
â†k, â

†
k

]
= 0. (2.11)

Thus we can write the full field operator as

φ̂(x, t) =

∫
dnk√

2(2π)n|k|
(
â†ku

∗
k + âkuk

)
. (2.12)

where the normalization 1/
√

2(2π)n|k| follows from the commutation relation of the

operators âk and â†k together with normalization.

2.4 Particle detectors in flat spacetime

Unlike in first quantized systems, there are no position observables in a quantum field
theory (QFT). Thus it is difficult to extract spatiotemporal information from them [87].
Meanwhile, all experiments probe finite patches of spacetime. Furthermore, the defini-
tion of a particle in QFT is observer dependent, as quantization procedures for different,
non-inertial observers produce incompatible fock spaces [52, 88–91]. Reflecting on these
difficulties, UDW detectors were introduced as an operational way to circumvent the dif-
ficulties in defining the particle content of a bosonic quantum field and to probe localized
patches of spacetime [42,52].

An UDW detector consists of a two-level quantum emitter (detector) coupled linearly
to a scalar quantum field along its worldline. For a single inertial detector (labelled A)
in flat spacetime, the UDW interaction Hamiltonian in the interaction picture is given
by

Ĥ φ̂(t) = λaχa(t− ta)µ̂a(t)

∫
dnxF a(x− xa)φ̂(x, t). (2.13)
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Here, the monopole moment µ̂a(t) = σ̂+
a e

iΩat + σ̂−a e
−iΩat represents the two-level internal

degree of freedom of the detector, which couples linearly to a real massless scalar field
φ̂(x, t). 0 ≤ χa(t) ≤ 1 is the switching function that controls the time-dependence of
the coupling of strength λA. The spatial profile F (x) carries information about the
shape and size of the detector. The case of the point-like detector, commonly considered
in the literature, is a particular case of (2.13) where the smearing function is a delta
distribution, Fa(x) = δ(x).

As a quick aside, it is crucial to note that the hamiltonian (2.13) is not time inde-
pendent if χ is not a constant function. This means that we should not expect energy
conservation. This is important particularly when considering the vacuum excitation
probability (VEP) of a detector, that is the probability that a detector in its ground
state is excited by the vacuum. Further discussion of the energy flows in the UDW
model can be found in [59,92]

Modifications of the UDW model (2.13) where the detector is coupled quadratically to
the field [39] allow one to compare on equal footing the response of bosonic and fermionic
detectors (the latter necessarily being quadratic [38]). These models have been recently
analyzed in detail in [40]. The interaction Hamiltonian for a UDW detector coupled
quadratically to a real scalar field is given by

Ĥ φ̂2

(t) = λaχa(t− ta)µ̂a(t)

∫
dnxF a(x− xa) : φ̂2(x, t) :, (2.14)

where φ2(x, t) has been normal-ordered as prescribed by the analysis in [40]. If the
detector couples to a complex (charged) scalar field, then the Hamiltonian takes the
form

Ĥ Φ̂Φ̂†(t) = λaχa(t− ta)µ̂a(t)

∫
dnxF a(x− xa) : Φ̂ Φ̂† :, (2.15)

2.4.0.1 Persistent vs. regularizable divergences

It is convenient at this point to define two different types of ultra-violet (UV) divergences
that particle detector models may present. A regularizable divergence is one that can
be removed by use of a smooth switching function and/or a smooth spatial profile (see,
e.g., [93–95]). A persistent divergence is one that remains even with smooth switching
and smearing functions (such as the divergences renormalized in [40]).

Analysis of the detector response function [93–95] and a number of investigations
of entanglement harvesting and quantum communication with (linear) UDW detec-
tors [33–36, 59, 64, 66, 77, 96, 97] indicate that all leading order UV divergences present
in the time evolution of linearly coupled UDW detectors are regularizable. While this
is not the case for quadratically coupled detectors [37–39, 55], it has been shown that
all persistent divergences can also be renormalized for an individual quadratically cou-
pled detector [40]. We will demonstrate below that a straightforward application of the
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leading-order prescription in [40] cannot renormalize persistent leading-order divergences
in more complex scenarios with several detectors.

To analyze fermionic fields from the perspective of localized particle detectors a de-
tector model was introduced that consisted of a cavity coupled to a fermionic field [55],
much like Unruh’s original detector was a cavity coupled to a bosonic field [52]. Later,
Takagi introduced an UDW-like model for fermionic fields [37, 38], wherein a two level
system coupled quadratically to a fermionic field,

Ĥf ∝ µ̂ΨΨ. (2.16)

However, this model contained persistent divergences that could not be regularized by
an appropriate choice of switching and smearing functions, as it was found in [40]. Thus,
these investigations restricted themselves to studying transition rates instead of transition
probabilities. To track down the origin of these divergences in Takagi’s fermionic detector,
Hümer et al. studied three types of quadratically coupled UDW-like detectors [40]. They
concluded that these divergences are mainly due to the detector coupling quadratically
to the field instead of resulting from the analytic structure (spinor vs. scalar) or statistics
(fermionic vs. bosonic) of the fields involved. Persistent divergences in the single-detector
vacuum excitation probabilities (VEP) of quadratic UDW detectors were found to be
renormalizable by the same techniques used in quantum electrodynamics [40], eg. normal
ordering the interaction Hamiltonian.
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Chapter 3

Results and discussion

In the first three sections of this chapter, we will outline the calculation of the density
matrix elements of the three models studied in this paper: a pair of the (usual) linear
UDW detectors, a pair of detectors that quadratically couple to a real scalar field, and
a pair of detectors that quadratically couple to a charged scalar field. In the fourth and
fifth sections of this chapter, we will discuss divergences in the quadratic model and the
results of the entanglement harvesting protocol, respectively.

3.1 Linear Unruh-DeWitt detector

We begin by recapitulating results for the linear UDW model [36]. The method of
calculation here presents different pros and cons with respect to the numerical properties
of the resultant expressions. First, the terms that do not have a closed form in the
literature (namely, the terms responsible for entanglement harvesting) were numerically
unstable for small energy gap detectors and therefore this region of parameter space has
not been explored previously. With the calculations that follow, we are able to study
small gap detectors, but with the caveat that now we make the simplifying assumption
that the detectors are switched on simultaneously in their comoving frame. This is not
a fully general assumption, but one that is necessary to find closed forms for some of the
most challenging integrals in the density matrix elements.

The linear UDW Hamiltonian can be rewritten for the two-detector case as a sum
over detectors A and B (i.e. there are no detector-detector interactions)

Ĥ φ̂ =
∑

ν∈{A,B}
λνχν(t− tν)µ̂ν(t)

∫
dnxF ν(x− xν)φ̂(x, t). (3.1)

If we let the initial state of the field-detector system be ρ̂0, its time evolved state is
ρ̂
T

= Û ρ̂0Û
†, where the subscript T denotes the timescale where the switching function
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is non-zero. The time evolution operator Û is given by the time-ordered exponential

Û = T exp

(∫ ∞

−∞
dtĤ φ̂(t)

)
. (3.2)

Consequently, we can express the time evolution operator Û in terms of a Dyson expansion
as

Û = 1 + Û (1) + Û (2) +O(λ3
ν), (3.3)

where

Û (1) = −i

∫ ∞

−∞
dt Ĥ I(t) (3.4)

Û (2) = −
∫ ∞

−∞
dt

∫ t

−∞
dt′ Ĥ I(t)Ĥ I(t

′). (3.5)

It follows that ρ̂
T

can be expressed in a perturbative expansion,

ρ̂
T

= ρ̂0 + ρ̂(1,0)
T

+ ρ̂(0,1)
T

+ ρ̂(1,1)
T

+ ρ̂(2,0)
T

+ ρ̂(0,2)
T

+O(λ3
ν), (3.6)

where ρ̂(i,j)
T

= Û (i)ρ̂0Û
(j)†.

After time evolution, the time evolved partial state of the detectors is obtained by
tracing out the field degrees of freedom:

ρ̂ab,t = Trφ̂ (ρ̂
T
) . (3.7)

If we take the initial state of the field to be its lowest-energy (vacuum) state,

ρ̂0 = |0〉〈0| ⊗ ρ̂ab,0, (3.8)

then the first order term ρ̂(1,0)
T

+ ρ̂(0,1)
T

does not contribute at all to the detectors’ dynamics
(this is the case for all field states whose one-point function is zero, eg. Fock states, free
thermal states and therefore the vacuum state). In fact, for the vacuum state it can be
easily proved that Trφ̂

(
ρ̂(i,j)
T

)
= 0 when i+ j is odd (see e.g., [36]). Thus, we can express

the time-evolved density matrix of the subsystem consisting of the two detectors as

ρ̂ab,t = ρ̂ab,0 + λ2
aρ̂a,t + λ2

bρ̂b,t + λaλbρ̂cor,t +O(λ4
ν), (3.9)

where we have separated the local contributions to time evolution (proportional to λ2
a

and λ2
b at leading order) from the non-local terms (responsible for the correlations the

detectors acquire through the field) proportional to λaλb. Notice that, from Eq. (3.9),
we can quickly recover the case of the evolution of a single detector just by taking one
of the coupling strengths to zero (e.g. λb = 0).

Let us now particularize to the case where both detectors start out in the ground
state:

ρ̂ab,0 = |ga〉〈ga| ⊗ |gb〉〈gb| . (3.10)
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It is convenient to pick the usual [36] 4× 4 matrix representation for ρ̂ab,t in the basis

|gagb〉 = (1, 0, 0, 0)†, |eagb〉 = (0, 1, 0, 0)†,

|gaeb〉 = (0, 0, 1, 0)†, |eaeb〉 = (0, 0, 0, 1)†. (3.11)

In this basis, ρ̂ab,t takes the form

ρ̂ab,t =




1− Laa − Lbb 0 0 M∗

0 Laa Lab 0
0 Lba Lbb 0
M 0 0 0


+O(λ4

ν), (3.12)

as in [36]. The detectors coupled quadratially to either real or complex scalar fields
take the same form (see sections 3.2, and 3.3), and M and Lµν depend on the the field.
Additionally, M and Lµν depend on the nature of the coupling (e.g. different switching
and smearing functions).

The matrix elements of Eq. (3.12) for the linear coupling have been studied at length
in the literature (See, for instance, [36], which sets the notation that we will follow here)
and are given by

Mφ̂ =− λaλb
∫ ∞

−∞
dt

∫ t

−∞
dt′
∫

dnx

∫
dnx′M(t,x, t′,x′)W φ̂(t,x, t′,x′) (3.13)

Lνµφ̂ =λνλµ

∫ ∞

−∞
dt

∫ ∞

−∞
dt′
∫

dnx

∫
dnx′ L∗ν(t,x)Lµ(t′,x′)W φ̂(t,x, t′,x′), (3.14)

where the superscript φ̂ denotes linear coupling to the real scalar field and where, as-
suming that the switching function χ and the smearing function F are real, Lν and
M(t,x, t′,x′) are

Lν(t,x) =χν(t− tν)F ν(x− xν) e
iΩνt (3.15)

M(t,x, t′,x′) =La(t,x)Lb(t′,x′) + La(t′,x′)Lb(t,x), (3.16)

and the Wightman function, W φ̂ is given by

W φ̂(t,x, t′,x′) = 〈0| φ̂(x, t) φ̂(x′, t′) |0〉 . (3.17)

To find an explicit expression for the Wightman function, we will utilize a plane-
wave mode expansion of the field operator with regularization ε (see section 3.1.0.1 for a
discussion of interpreting ε as a soft UV cutoff),

φ̂(x, t) =

∫
dnk e−ε|k|/2√

2(2π)n|k|
(
â†ke

i(|k|t−k·x) + âke
−i(|k|t−k·x)

)
. (3.18)
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Here, â†k (and âk) are creation (and annihilation) operators that satisfy the canonical

commutation relations [âk1
, â†k2

] = δ(n)(k1 − k2).

This mode expansion allows us to write the Wightman function as

W φ̂(t,x, t′,x′) = 〈0|
(∫

dnk e−ε|k|/2√
2(2π)n|k|

(
â†ke

i(|k|t−k·x) + âke
−i(|k|t−k·x)

)
(3.19)

×
∫

dnk′ e−ε|k
′|/2

√
2(2π)n|k′|

(
â†k′e

i(|k′|t′−k′·x′) + âk′e
−i(|k′|t′−k′·x′)

))
|0〉 .

Using that 〈0| â†k = âk |0〉 = 0 we find

W φ̂(t,x, t′,x′) =

∫
dnk e−ε|k|/2√

2(2π)n|k|

∫
dnk′ e−ε|k

′|/2
√

2(2π)n|k′|
〈0| â†kâk′ |0〉 ei(|k|t−k·x)e−i(|k′|t′−k′·x′).

(3.20)

Since 〈0| â†kâk′ |0〉 = δk,k′ , then

W φ̂(t,x, t′,x′) =

∫
dnk

ei(|k|(t′−t)−k·(x′−x))−|k|ε

2(2π)n|k| . (3.21)

Particularizing to 3+1 dimensions, the two-point function becomes

W φ̂(t,x, t′,x′) =
1

4π2(x− x′)2 − (t− t′ − iε)2
. (3.22)

Note here that we see ε takes the form of the usual pole prescription for the Wightman
function.

3.1.0.1 ε-regularization as a soft UV cutoff

Typically, the introduction of ε in Eq. (3.18) could be associated with a regularization
procedure that leads to the usual pole prescription, in which the limit ε → 0 is well-
defined and eventually taken when evaluating observable quantities. However ε can also
be viewed as an ad hoc screening of the detector’s sensitivity to high frequency modes of
the field (i.e. a soft UV cutoff). This would effectively model, for example, a frequency
dependent coupling strength where a detector does not couple to frequencies much larger
than ε−1. When giving this kind of interpretation to the ε-regularization one should be
careful with possible non-localities introduced in the theory due to a finite value of ε [57].
Although this point will not be relevant when the limit ε→ 0 is well defined, it must be
taken into account when managing possibly UV divergent terms, especially in the case
of the quadratic coupling Eq. (2.14), as we will see in section 3.2.
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Dimensionless variable Expression Physical meaning

α ΩT Energy gap

η εT UV cutoff

β |xa − xb|/T Detectors’ separation

γν tνT switch-on times

δ σ/T Detectors’ size

Table 3.1: Collection of all the dimensionless quantities that are used throughout this paper.

3.1.1 Single detector contribution

The VEP is the probability of excitation of a single UDW detector initialized in its ground
state in the vacuum. We briefly review how to find a general expression for the VEP of
a single detector, given the two-detector state, for the usual linear UDW detector model.
Then, we will calculate the VEP in 3+1 dimensions for a Gaussian switching function
and spatial profile in section 3.1.1.1.

To find the time evolved state of a single detector, we begin with the bi-partite density
matrix Eq. (3.12), then set λb = 0. It is then simple to trace out detector B to find the
single-detector reduced state,

ρ̂a,T = Trb (ρ̂ab,T ) =

(
1− Laa 0

0 Laa

)
+O(λ4

a), (3.23)

in the basis |ga〉 = (1, 0)†, |ea〉 = (0, 1)†. The element Laa of Eq. (3.23) is the VEP of
detector A, and it is equivalent to Lµν in Eq. (3.14) when µ = ν = A,

Laa
φ̂ =λνλν

∫ ∞

−∞
dt

∫ ∞

−∞
dt′
∫

dnx

∫
dnx′ L∗a(t,x)La(t′,x′)W φ̂(t,x, t′,x′), (3.24)

where Lν(t
′,x′) is precisely Eq. (3.15),

Lν(t,x) =χν(t− tν)F ν(x− xν) e
iΩνt.

As expressed, Laa it is quite general and can be particularized to any spacetime dimen-
sionality, switching function and spatial profile.

3.1.1.1 Calculation of Lφ̂

For this analysis we will use a smooth switching function and spatial smearing function
that are only strongly supported in finite regions in time and space (T and σ respectively).
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Smooth switching and smearing will ensure the removal of all regularizable divergences
of the kind studied in [93]. In particular, we choose Gaussian switching and Gaussian
smearing,

F ν(x− xν) =
1

(
√
πσ)n

e−(x−xν)2/σ2

, (3.25)

χν(t− tν) = e−(t−tν)2/T 2

. (3.26)

As mentioned previously, in the literature UDW detectors are often considered to be
point-like. Notice that the Gaussian spatial profile can be particularized to the point-like
case by taking the limit σ → 0.

The VEP for a single linearly-coupled, 3+1 dimensional UDW detector with Gaussian
switching and smearing functions is given by Eq. (3.24) with substitutions made for

W φ̂(t,x, t′,x′), χν(t − tν) and F ν(x − xν). We substitute these functions with 3+1
dimensional Wightman function Eq. (3.22), the switching function Eq. (3.26), and the
spatial profile Eq. (3.25), respectively. Furthermore, to further simplify the calculation,
we apply the change of coordinates

u = t1 + t2, v = t1 − t2,
p =x1 + x2, q =x1 − x2. (3.27)

This results in

Lφ̂aa =
λ2

64π5σ6

∫ ∞

−∞
du e−

u2

2T2

∫
d3p e−

p2

2σ2

∫ ∞

−∞
dv

∫
d3q

e−
q2

2σ2− v2

2T2−ivΩ

(q2 − (v − iε)2)
. (3.28)

The above integrals in u, p and the angular parts of q can be easily evaluated in closed
form.

Taking a closer look a the integral over v, we see that the convolution theorem can
be used to compute the integral over v

f1 :=

∫ ∞

−∞
dv

ev
(ta−tb)

T2 − v2

2T2−ivΩ

(q2 − (v − iε)2)
. (3.29)

Some notation will help to find a closed form for Eq. (3.29). F denotes the Fourier
transform

F
[
g (x)

]
(Ω) :=

∫ ∞

−∞
dx g (x) eiΩx, (3.30)

and ∗ will be used to denote the convolution product, defined as

[g(x) ∗ h(x)] [x] :=
1

2π

∫ ∞

−∞
dτ g(τ)h (x− τ). (3.31)
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The convolution theorem allows us to write f1 in Eq. (3.29) as

f1 = F
[
g (v)

]
(Ω) ∗ F

[
h1 (v)

]
(Ω) , (3.32)

where g and h1 are functions defined as

g(v) := ev
(ta−tb)

T2 − v2

2T2 (3.33)

h1(v) :=
1

(q2 − (v − iε)2)
. (3.34)

The Fourier transforms of g(v) and h1(v) are

F
[
g (v)

]
(Ω) =

√
2πTe

(iT2Ω−ta+tb)
2

2T2 (3.35)

F
[
h1 (v)

]
(Ω) = − iπeΩ(ε−iq)

2q

[
2 sgn(Im(q) + ε)θ(−Ω sgn(ε+ Im(q)))

+ sgn(Ω)
(
−e2iqΩ sgn(|ε− Im(q)|) + sgn(|ε+ Im(q)|) + e2iqΩ − 1

)

− 2e2iqΩ sgn(ε− Im(q))θ(−Ω sgn(ε− Im(q)))
]

(3.36)

Thus, after convolution (Eq. (3.32)) we find that f1 takes the closed form

f1 =

[(
erfi

(
q − i (T 2Ω− itb + ε) + ta√

2T

)
+ i

)
e−

2qta
T2 + 2qtb

T2 + 2iqε

T2 +2iqΩ (3.37)

+ erfi

(
q + i (T 2Ω + ε)− ta + tb√

2T

)
− i

]
π

2q
e−

q2

2T2 + qta
T2 − qtbT2 − iqε

T2−iqΩ+ itaε

T2 − itbε

T2 + ε2

2T2 +Ωε,

where erfi is the imaginary error function, defined in terms of the error function erf, as

erfi(z) := −i erf(iz) (3.38)

erf (z) :=
2√
π

∫ z

0

dte−t
2

. (3.39)

At this point, it is convenient to continue to follow notation in [36] and rewrite the
result of the calculation in terms of dimensionless parameters α, β, γ, δ, andη as outlined
in Table 3.1 on page 14. After this process, Eq. (3.28) can be simplified to:

Lφ̂aa =− λ2i

8πδ3

∫ ∞

0

dξ ξeαη−iαξ− ξ2

2δ2
+ η2

2
−iηξ− ξ2

2

×
[

erfc

(
α + η − iξ√

2

)
− e2iξ(α+η)erfc

(
α + η + iξ√

2

)]
, (3.40)
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where ξ is a dummy variable of integration and erfc is the complementary error function,
defined in terms of the error function (Eq. (3.39)), as follows:

erfc (z) := 1− erf (z) . (3.41)

The expression Eq. (3.40) depends on an arbitrary cutoff parameter η. We can take
the UV cutoff scale to infinity (ε→ 0, or in dimensionless quantities, η → 0, as per Table
3.1 on page 14). The result is

lim
η→0
Lφ̂aa =

−iλ2

8πδ3

∫ ∞

0

dξ ξe−
ξ(2iαδ2+δ2ξ+ξ)

2δ2

[
erfc

(
α− iξ√

2

)
− e2iαξerfc

(
α + iξ√

2

)]
, (3.42)

which is not divergent. Fig. 3.1.(a) illustrates the behaviour of Lφ̂aa as η → 0 is reached.

3.1.2 Multi-detector contributions

The VEP does not provide full information about the time evolution of a pair of particle
detectors coupled to the field. Indeed, to characterize more complicated effects, such as
entanglement harvesting [33,34,36], or quantum communication [50,57,59,60,92,96,98],
the full time-evolved density matrix of two detectors coupled to the field is necessary.
The detectors’ time-evolved density matrix Eq. (3.12) has extra terms in addition to
the VEP. Two different kinds of non-local terms, Lab and M, now appear along with
their complex conjugates. To fully characterize the two detector system, we need to find
explicit expressions for these terms and study the regularity of their behaviour.

As we will discuss in detail below (and as mentioned in [36]), Lab is the term re-
sponsible for the leading order contribution to total correlations between the detectors,
whereas M can be thought of as responsible for the harvested entanglement from the
field to the detectors, as we will discuss in section 3.5.1. We will analyze these two terms
independently in the next two subsections.

3.1.2.1 Calculation of Lφ̂
AB

Here we will find Lab
φ̂ for linearly coupled UDW detector pairs with identical Gaussian

switching functions and spatial smearings in 3+1 dimensions. We start with Eq. (3.14)

and set ν = A and µ = B. Then we make substitutions for W φ̂(t,x, t′,x′), χν(t− tν) and
F ν(x−xν). In particular, we use the Wightman function in 3+1 dimensions Eq. (3.22),
the Gaussian spatial profile Eq. (3.25), and the Gaussian switching function Eq. (3.26)

in equation Eq. (3.14). The same change of coordinates as in the calculation of Laa
φ̂,

17



shown in Eq. (3.27), again simplifies the calculation. This transformation yields

Lφ̂ab =
λ2e−

t2a
T2−

t2b
T2−

x2
a
σ2−

x2
b
σ2

64π5σ6

∫ ∞

−∞
du e

tau

T2 + tbu

T2 − u2

2T2

×
∫

d3p e−
p2

2σ2 +pxa
σ2 +pxb

σ2

∫ ∞

−∞
dv

∫
d3q

e−
q2

2σ2 + qxa
σ2 − qxb

σ2 + tav

T2 − tbvT2 − v2

2T2−ivΩ

q2 − (v − iε)2
. (3.43)

The integrals over u, p, the angular part of q, and v can be evaluated in closed form
(using the same method of convolution shown in section 3.1.1.1). As before, we follow [36]
and rewrite these integrals in terms of the dimensionless parameters as outlined in Table
3.1 on page 14. The result is

Lφ̂ab =
λ2e−

β2

2δ2
− 1

2
(γa−γb)2

eαη+iγaη−iγbη+ η2

2

8πδβ

∫ ∞

0

dξ sinh

(
ξβ

δ2

)[
i
(
e2ξ(iα+γb+iη) − e2γaξ

)

+ e2ξ(iα+γb+iη)erfi

(−iα + γa − γb − iη + ξ√
2

)
+ e2γaξerfi

(
iα− γa + γb + iη + ξ√

2

)]

× e−iαξ−γaξ−γbξ− ξ2

2δ2
−iηξ− ξ2

2 , (3.44)

where ξ is a dummy variable of integration. Eq. (3.44) has a well-defined limit as η → 0,

lim
η→0
Lφ̂ab =

iλ2e−
β2

2δ2
− 1

2
(γa−γb)2

8πδ |β|

∫ ∞

0

dξ sinh

(
ξ |β|
δ2

)
e−iαξ−γaξ−γbξ− ξ2

2δ2
− ξ2

2

×
[
e2ξ(γb+iα)erfc

(
α + i(γa − γb + ξ)√

2

)
− e2γaξerfc

(
α + i(γa − γb − ξ)√

2

)]
.

(3.45)

Not only is the integrand well-defined, but the integral is convergent as well. We show
numerically how the convergent limit η → 0 of |Lφ̂ab| is reached in Fig. 3.1.(b).

3.1.2.2 Calculation of Mφ̂

In the following, we will derive Mφ̂ for a pair of quadratically coupled UDW detec-
tors with identical Gaussian switching functions and spatial profiles in 3+1 dimensions.
We begin with Eq. (3.13) and make the appropriate substitutions: we substitute into
Eq. (3.13) the Wightman function in 3+1 dimensions Eq. (3.22), the spatial profile
Eq. (3.25), and the switching function Eq. (3.26). The integrals take a particularly
simple form under the same change of coordinates Eq. (3.27) as in both previous calcu-

lations. In the case of Mφ̂, this change of coordinates also helps to de-nest the nested
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time integrals. This yields

Mφ̂ = −e−
t2a
T2−

t2b
T2−

x2
a
σ2−

x2
b
σ2

∫
d3p e−

p2

2σ2

∫ ∞

−∞
du e+ tau

T2 + tbu

T2 − u2

2T2 +iuΩ (3.46)

×
∫

d3q

∫ ∞

−∞
dv e−

v2

2T2 e−
q2

2σ2

[
λ2e−

qxa
σ2 + qxb

σ2 − tavT2 + tbv

T2

64π5σ6 (q2 − (v − iε)2)
+
λ2e−(− qxa

σ2 + qxb
σ2 − tavT2 + tbv

T2 )

64π5σ6 (q2 − (v − iε)2)

]
,

The integrals in u, p, and the angular parts of q can be evaluated in closed form. This
results in

Mφ̂ = e−
t2a

2T2 + tatb
T2 −

t2b
2T2−T

2Ω2

2
+itaΩ+itbΩ− x2

a
2σ2 +xaxb

σ2 −
x2
b

2σ2
λ2T

2π2σ(xa − xb)
(3.47)

×
∫ ∞

−∞
dv

∫ ∞

0

dq
e−

q2

2σ2− v2

2T2 q

(−q2 + (v − iε)2)
sinh

(
q(xa − xb)

σ2

)
cosh

(
v(ta − tb)

T 2

)
.

To obtain a closed form for the integral over v, we simplify Mφ̂ by choosing to
switch on the detectors simultaneously within their co-moving frame, i.e. we make the
simplifying additional assumption ta − tb = 0. Then, Mφ̂ (in dimensionless parameters
as shown in 3.1 on page 14) takes the form

Mφ̂
ta=tb

= − λ2

16π2δβ

∫ ∞

0

dq sinh

(
ξβ

δ2

)[[
2πerfi

(
ξT − iηT√

2T

)
− 2Ei

(
(Tξ − iTη)2

2T 2

)

+log

(
(ξT − iηT )2

T 2

)
−log

(
T 2

(ξT − iηT )2

)
−4 log(ξT − iηT ) +4 log(T )

]
e−

(ξT−iηT )2

2T2

+ e−
(ξT+iηT )2

2T2

[
2πerfi

(
ξT + iηT√

2T

)
+ 2Ei

(
(iTη + Tξ)2

2T 2

)
+ log

(
1

(ξT + iηT )2

)

+ 4 log(−ξT − iηT )− 2 log(ξT + iηT )

]]
e−

α2δ2T2−4iαγaδ
2T2+β2T2+ξ2T2

2δ2T2 , (3.48)

where ξ is a dummy variable of integration and Ei(z) is the principal value of the expo-
nential integral function defined as

Ei(z) := −P.V.

∫ ∞

−z
dt
e−t

t
. (3.49)

Mφ̂ is well behaved in the UV limit. If we remove the cutoff, taking the limit ε→ 0
(i.e. , η → 0), we obtain

lim
η→0
Mφ̂

ta=tb
= −λ

2e−
α2

2
+2iαγa− β2

2δ2

4πδβ

∫ ∞

0

dξ e−
ξ2

2δ2
− ξ2

2 i erfc

(
iξ√

2

)
sinh

(
ξ(β)

δ2

)
. (3.50)

The integral is convergent, and how the limit is reached as η → 0 is shown in Fig. 3.1.(c).
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3.1.2.3 Momentum representation versus position representation

We note that in previous literature closed expressions for Eq. (3.42), Eq. (3.45), and
Eq. (3.50) were found for Gaussian switching and smearing functions in 3+1 dimensions
by working in the momentum representation [36]. By contrast, here we have worked in the

position representation. One can readily check numerically that limη→0 Lµνφ̂ (Eq. (3.42)

and Eq. (3.45)) and limη→0Mφ̂ (Eq. (3.50)) are equivalent to those in [36]. While working
in position representation complicates the final expressions Eq. (3.42), Eq. (3.45), and
Eq. (3.50), we found that the equivalent expressions for the detector coupled quadratically
to the salar field (Eq. (3.81), Eq. (3.84), and Eq. (3.86)) require the position representa-
tion for numerical stability. Moreover, there is an additional advantage working in the
position representation in the linear case: the method of computing leading order density
matrix elements in the position representation used here yields results that have greater
numerical stability for small detector gap in those terms for which we do not have closed
expressions, neither in position nor in momentum representation in [36], as we will show
when we present numerical results in section 3.5.

3.2 Nonlinear Unruh-DeWitt detector

Quadratic single-detector UDW models (such as the quadratic scalar model introduced
by Hinton in [39], the cavity detector coupled to a fermionic field [55], or the fermionic
UDW-like detector model introduced in [37, 38]) have a VEP that presents persistent
divergences (not removable with a smooth switching and/or smearing as in the linear
case, see 2.4.0.1). However, the persistent divergences in the single detector model can
be renormalized with techniques analogous to those used in QED to renormalize tadpole
diagrams [40]. Once renormalized, the quadratically coupled single-detector UDW model
is regularizable both in its scalar and fermionic variants.

The renormalized, quadratic UDW Hamiltonian for two detectors is

Ĥ φ̂2

=
∑

ν∈{A,B}
λνχν(t− tν)µ̂ν(t)

∫
dnxFν(x− xν) : φ̂2(x, t) :, (3.51)

where ν ∈ {A,B} is the label identifying detectors A and B. Note that the coupling
strength in the quadratic case does not have the same dimensions as in the linear case.

Following section 3.1, one finds that the time evolved bipartite state of two detectors
interacting through a quadratic coupling in the field, initially uncorrelated in their ground
state,

ρ̂ab,0 = |ga〉〈ga| ⊗ |gb〉〈gb| , (3.52)
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takes the same form as with the linear detector model:

ρ̂ab,t =




1− Laa − Lbb 0 0 M∗

0 Laa Lab 0
0 Lba Lbb 0
M 0 0 0


+O(λ4

ν), (3.53)

where M and Lµν are

Mφ̂2

=− λaλb
∫ ∞

−∞
dt

∫ t

−∞
dt′
∫

dnx

∫
dnx′M(t,x, t′,x′)W φ̂2

(t,x, t′,x′) (3.54)

Lφ̂2

νµ =λνλµ

∫ ∞

−∞
dt

∫ ∞

−∞
dt′
∫

dnx

∫
dnx′ L∗ν(t,x)Lµ(t′,x′)W φ̂2

(t,x, t′.x′), (3.55)

where the superscript φ̂2 denotes quadratic coupling to the real scalar field and W φ̂2
is

the two-point correlator of the normal ordered field operator, : φ̂2 :. Explicitly,

W φ̂2

(t,x, t′,x′) = 〈0| : φ̂2(x, t) : : φ̂2(x′, t′) : |0〉 . (3.56)

These matrix elements are structurally analagous to the those in the linearly coupled
detector, Eqs. Eq. (3.14) and Eq. (3.13). Indeed, M and Lν are also defined as in Eqs.
Eq. (3.16) and Eq. (3.15), respectively.

In what follows, we will illustrate the relationship between the Wightman functional
of th linear model, W φ̂ (Eq. (3.17)), and the equivalent function for the quadratic model,

W φ̂2
. We start with the relationship between an operator Â and its normal ordered

version:

: Â : = Â− 〈0| Â |0〉 . (3.57)

Using this identity, W φ̂2
can be rewritten as

W φ̂2

(t,x, t′,x′) = 〈0| φ̂2(t,x)φ̂2(t′,x′) |0〉 − 〈0| φ̂2(t,x) |0〉 〈0| φ̂2(t′,x′) |0〉 . (3.58)

The first term of W φ̂2
(t,x, t′,x′) can be simplified. To do so, we will write the field

operator as φ̂ = φ̂+ + φ̂−, where φ̂+ and φ̂− are defined as

φ̂+(x, t) =

∫
dnk e−ε|k|/2√

2(2π)n|k|
â†k e

i(|k|t−k·x) φ̂−(x, t) =

∫
dnk e−ε|k|/2√

2(2π)n|k|
âk e

−i(|k|t−k·x)

(3.59)

which satisfy the commutation relation

[
φ̂−(xµ, tµ), φ̂+(xν , tν)

]
= Cµν1 (3.60)
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where Cµν ∈ C is given by

Cµν =

∫
dnk e−ε|k|/2

2(2π)n|k| e
i(|k|(tν−tµ)−k·(xν−xµ)). (3.61)

Using the notation φ̂ν ≡ φ̂(xν , tν), a scalar field vacuum four-point function
〈0| φ̂1φ̂2φ̂3φ̂4 |0〉 can be rewritten as

〈0|φ̂1φ̂2φ̂3φ̂4 |0〉 = 〈0| φ̂−1 φ̂−2 φ̂+
3 φ̂

+
4 |0〉+ 〈0| φ̂−1 φ̂+

2 φ̂
−
3 φ̂

+
4 |0〉 , (3.62)

where, to remove all vanishing summands, we have used that φ̂−ν |0〉 = 〈0| φ̂+
ν = 0 and that

only summands with as many φ̂+ as φ̂− contribute to the final expression. Commuting
the operators φ̂+ and φ̂− (using Eq. (3.60)), we can write the first summand in Eq. (3.62)
as

〈0| φ̂−1 φ̂−2 φ̂+
3 φ̂

+
4 |0〉 = C23C14 + C13C24 (3.63)

and the second as

〈0| φ̂−1 φ̂+
2 φ̂
−
3 φ̂

+
4 |0〉 = C12C34. (3.64)

Thus Eq. (3.62) can be written as

〈0|φ̂1φ̂2φ̂3φ̂4 |0〉 = C23C14 + C13C24 + C12C34. (3.65)

From the relation (Eq. (3.60)), we see that we can rewrite the Cµν coefficients as

Cµν = 〈0|
[
φ̂−µ , φ̂

+
ν

]
|0〉 = 〈0| φ̂−µ φ̂+

ν |0〉 = 〈0| φ̂µφ̂ν |0〉 , (3.66)

which allows us to rewrite Eq. (3.65) as

〈0| φ̂1φ̂2φ̂3φ̂4 |0〉 = 〈0| φ̂1φ̂2 |0〉 〈0| φ̂3φ̂4 |0〉+ 〈0| φ̂2φ̂3 |0〉 〈0| φ̂1φ̂4 |0〉
+ 〈0| φ̂1φ̂3 |0〉 〈0| φ̂2φ̂4 |0〉 . (3.67)

To apply this identity to Eq. (3.58), we set φ̂1 = φ̂2 = φ̂(t,x) and φ̂3 = φ̂4 = φ̂(t′,x′).
Then, the first summand in Eq. (3.58) becomes

〈0|φ̂2(t,x)φ̂2(t′,x′) |0〉 = 〈0| φ̂2(t,x) |0〉 〈0| φ̂2(t′,x′) |0〉+ 2
(
〈0| φ̂(t,x)φ̂(t′,x′) |0〉

)2

.

(3.68)

This allows Eq. (3.58) to be written as

W φ̂2

(t,x, t′,x′) = 2
(
〈0| φ̂(t,x)φ̂(t′,x′) |0〉

)2

, (3.69)
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which shows the correlation functions W φ̂ (Eq. (3.17)) and W φ̂2
(Eq. (3.56)) satisfy the

following relation

W φ̂2

(t,x, t′,x′) = 2W φ̂(t,x, t′,x′)2. (3.70)

This relation, along with the mode-expanded linear Wightman function, Eq. (3.21),

W φ̂(t,x, t′,x′) =

∫
dnk

ei(|k|(t′−t)−k·(x′−x))−|k|ε

2(2π)n|k| ,

let us write W φ̂2
explicitly as

W φ̂2

(t,x, t′,x′) =

∫
dnk1

∫
dnk2

ei((|k2|+|k1|)(t′−t)−(k2+k1)·(x′−x))−(|k1|+|k2|)ε

(2π)2n|k1||k2|
. (3.71)

If we particularize to 3+1 dimensions, the correlation function W φ̂2
is

W φ̂2

(t,x, t′,x′) =
2

[
4π2(x− x′)2 − (t− t′ − iε)2

]2 . (3.72)

Note here that the correlator for the quadratic UDW detector has a higher power
polynomial in x and t in its denominator than does the usual correlator for the linear
UDW detector.

3.2.1 Single detector contribution

Here we will find a general expression for the VEP for a detector quadratically coupled
to the real scalar field. Then, in section 3.2.1.1, we will particularize to 3+1 dimensions
and find a general expression for the VEP for a Gaussian switching function and spatial
profile.

The time evolved state of a single detector can be found by setting λb = 0 in the
bi-partite density matrix, then tracing out detector B. The result is exactly Eq. (3.23):

ρ̂a,T = Trb (ρ̂ab,T ) =

(
1− Laa 0

0 Laa

)
+O(λ4

a),

in the basis |ga〉 = (1, 0)†, |ea〉 = (0, 1)†. The element Laa of Eq. (3.23) is the VEP of
detector A, and it is equivalent to Lµν in Eq. (3.14) when µ = ν = A,

Laa
φ̂2

=λ2
a

∫ ∞

−∞
dt

∫ ∞

−∞
dt′
∫

dnx

∫
dnx′ L∗a(t,x)La(t′,x′)W φ̂2

(t,x, t′,x′), (3.73)

Now instead of the Wightman function, W φ̂ as in Eq. (3.17), we have the two-point

function of the normal ordered operator : φ̂2 :, W φ̂2
. Although Lν(t

′,x′) is still the same
as Eq. (3.15),

Lν(t,x) =χν(t− tν)F ν(x− xν) e
iΩνt.

As expressed, Laa
φ̂2

is quite general and can be particularized to any spacetime dimen-
sionality, switching function and spatial profile.
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3.2.1.1 Calculation of Lφ̂
2

Beginning with Eq. (3.73), we substitute the general functions W φ̂2
, F , and χ with partic-

ular expresions, namely the quadratic two-point correlator in 3+1 dimensions Eq. (3.72),
the Gaussian spatial profile Eq. (3.25), and the Gaussian switching function Eq. (3.26).
Applying These substitutions the same change of coordinates as in the linear case,
Eq. (3.27), yields

Laa
φ̂2

=
λ2

128π7σ6

∫ ∞

−∞
du e−

u2

2T2

∫
d3p e−

p2

2σ2

∫ ∞

−∞
dv

∫
d3q

e−
q2

2σ2− v2

2T2−ivΩ

(
q2 − (v − iε)2

)2 . (3.74)

The integrals over u, p, the angular part of q, and v can be evaluated in closed form
similarly to Eq. (3.40), where the integral over v is calculated using the convolution
theorem, where now the relevant integral is

f2 :=

∫ ∞

−∞
dv

ev
(ta−tb)

T2 − v2

2T2−ivΩ

(q2 − (v − iε)2)2 . (3.75)

As before, we will let F denote the Fourier transform as in Eq. (3.30) and let ∗ denote
the convolution product, as in Eq. (3.31). Then, the convolution theorem allows us to
write f2 in Eq. (3.75) as

f2 = F
[
g (v)

]
(Ω) ∗ F

[
h2 (v)

]
(Ω) , (3.76)

where g is the same as in Eq. (3.33) and h2 is defined as

h2(v) :=
1

(q2 − (v − iε)2)2 . (3.77)

The Fourier transform of g(v) is given in Eq. (3.35) and h2(v) is

F
[
h2 (v)

]
(Ω) =

(
sgn(Ω)

[
e2iqΩ(qΩ + i) sgn(|ε− Im(q)|) + (qΩ− i) sgn(|ε+ Im(q)|)

+
(
ie2iqΩ + qΩ + qΩe2iqΩ − i

) ]
+ 2
[
e2iqΩ(qΩ + i) sgn(ε− Im(q))θ(−Ω sgn(ε− Im(q)))

+ (qΩ− i) sgn(Im(q) + ε)θ(−Ω sgn(ε+ Im(q)))
])πeΩ(ε−iq)

4q3
. (3.78)
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Thus, using Eq. (3.76) we find that f2 takes the closed form

f2 =
1

4q3T 2
e−

(q+iε)(q+i(2T2Ω+ε)−2ta+2tb)
2T2

[
π

(
− iq2 + qT 2Ω + iqta − iqtb + qε− iT 2

+ π
(
T 2 + q

(
q + i

(
T 2Ω + ε

)
− ta + tb

))
erfi

(
q + i (T 2Ω + ε)− ta + tb√

2T

)

− 2
√

2πqTe
(q+i(T2Ω+ε)−ta+tb)

2

2T2 +

[
e

2q(i(T2Ω+ε)−ta+tb)
T2 (3.79)

×
(
T 2 + q

(
q − i

(
T 2Ω− itb + ε

)
+ ta

))(
erfi

(
q − i (T 2Ω− itb + ε) + ta√

2T

)
+ i

)])]
,

which we will use, along with the convention of using the the dimensionless parameters
α, β, γ, δ, η, as in [36] (see Table 3.1 on page 14), to express Eq. (3.74) in the form

Laa
φ̂2

=
λ2eαη+ η2

2

32π4δ3T 3

∫ ∞

0

dq
e−iαξ− ξ2

2δ2
−iηξ− ξ2

2

ξ

×
[
π

[
αξ + ηξ − i(ξ2 + 1) + e2iξ(α+η)

(
αξ + ηξ + i

(
ξ2 + 1

))
erfc

(
α + η + iξ√

2

)]

− 2
√

2πξe−
1
2

(α+η−iξ)2

+ π
(
iαξ + iηξ + ξ2 + 1

)
erfi

(
iα + iη + ξ√

2

)]
, (3.80)

where ξ is a dummy integration variable. For this integrand, the limit of no cutoff, i.e,
ε
T

= η → 0, at constant T , is well-defined:

lim
η→0
Laa

φ̂2

=
λ2

32π4δ3T 2

∫ ∞

0

dξ
e−

α2

2
−iαξ− 1

2( 1
δ2

+1)ξ2

ξ

[
− iπe

α2

2 ξ2 + πe
α2

2 αξ − iπe
α2

2

+ iπξ2e
1
2
α(α+4iξ) + παξe

1
2
α(α+4iξ) − 2

√
2πξe

1
2
ξ(ξ+2iα) + iπe

1
2
α(α+4iξ) (3.81)

− πeα
2

2

(
αξ − i

(
ξ2 + 1

) )
erf

(
α− iξ√

2

)
− πe 1

2
α(α+4iξ)

(
αξ + i

(
ξ2 + 1

) )
erf

(
α + iξ√

2

)]
.

This integral is convergent. How the convergent η → 0 limit is reached is shown numer-
ically in Fig. 3.1.(d).

3.2.2 Multi-detector contributions

The VEP provides only partial information about the time evolution of a pair of particle
detectors coupled to the field. The full time-evolved density matrix of two detectors,
Eq. (3.12), has extra terms in addition to the VEP, namely Lab andM, which are crucial
for more complicated effects, such as entanglement harvesting [33, 34, 36], or quantum
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communication [50, 57, 59, 60, 92, 96, 98]. To fully characterize the two detector system,
we need to find explicit expressions for these terms and study the regularity of their
behaviour.

As we will discuss in detail in section 3.5 (and as mentioned in [36]), the leading order
contribution to classical correlations between the detectors is controlled by a combination
of Lab and L (see section 3.5.2), whereas M and L combine to describe the amount of
entanglement harvested from the field to the detectors (see section 3.5.1). We will analyze
these two additional terms independently in the next two sections.

3.2.2.1 Calculation of Lφ̂
2

AB

In order to particularize Lφ̂
2

ab, Eq. (3.14), to 3+1 dimensional space and two detectors with
identical Gaussian switching functions and spatial profiles, we set ν = A and µ = B and
then substitute explicit expressions in for W φ̂2

, F , and χ, namely W φ̂2
in 3+1 spacetime

dimensions Eq. (3.72), a Gaussian spatial profile Eq. (3.25), and a Gaussian switching
function Eq. (3.26). As is now tradition, we will do the same change of coordinates as in
the calculation of the linear VEP, shown in Eq. (3.27). This transformation results in

Lab
φ̂2

=
λ2e−

t2a+t2b
T2 −

x2
a+x2

b
σ2

128π7σ6

∫ ∞

−∞
du e

(ta+tb)u

T2 − u2

2T2

∫
d3p e

p(xa+xb)

σ2 − p2

2σ2

×
∫ ∞

−∞
dv

∫
d3q

e
q(xa−xb)

σ2 +
v(ta−tb)

T2 − q2

2σ2− v2

2T2−ivΩ

(q2 − (v − iε)2)2 . (3.82)

The integrals over u, p, the angular part of q, and v can be evaluated in closed form
(details are analogous to the calculations in section 3.2.1). Following [36], we rewrite
these integrals in terms of the dimensionless quantities outlined in Table 3.1 on page 14.
The result is

Lab
φ̂2

=
λ2eαη−

(β)2

2δ2
− 1

2
(γa−γb)2+iγaη−iγbη+ η2

2

32π4δT 2(β)

∫ ∞

0

dξ
e−iαξ+γaξ−γbξ− ξ2

2δ2
−iηξ− ξ2

2

ξ2

×sinh

(
ξ(β)

δ2

)[
π
(
iαξ − γaξ + γbξ + iηξ + ξ2 + 1

)
erfi

(
iα− γa + γb + iη + ξ√

2

)

− 2
√

2πξe−
1
2

(α+iγa−i(γb+iη+ξ))2

+ π

[
αξ + iγaξ − iγbξ + ηξ − iξ2 − i (3.83)

+ e2ξ(iα−γa+γb+iη) (ξ (γa − γb − iα− iη + ξ) + 1) i erfc

(
i
−iα + γa − γb − iη + ξ√

2

)]]
,
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where ξ is a dummy variable of integration. Taking the limit η → 0 of Lab
φ̂2

yields

lim
η→0
Lab

φ̂2

=
λ2e−

β2

2δ2
− 1

2
(γa−γb)2

32π3δT 2(β)

∫ ∞

0

dξ
e−iαξ+γaξ−γbξ− ξ2

2δ2
− ξ2

2

ξ2
sinh

(
ξ(β)

δ2

)

×
[
(αξ + iξ(γa − γb − ξ)− i)erfc

(
α + i(γa − γb − ξ)√

2

)
−
√

8

π
ξe−

1
2

(α+i(γa−γb−ξ))2

+ e2ξ(iα−γa+γb)(αξ + iξ(γa − γb + ξ) + i)erfc

(
α + i(γa − γb + ξ)√

2

)]
, (3.84)

which has no divergences. Fig. 3.1 (e) numerically illustrates the behaviour of Eq. (3.84)
as the UV cutoff is lifted (as η decreases).

3.2.2.2 Calculation of Mφ̂2

In the following, we will derive Mφ̂2
. We will see that while Mφ̂ had only regularizable

divergences, Mφ̂2
exhibits persistent UV divergences (i.e., divergences that cannot be

regularized with spatial profiles or smooth swithchings, see section 2.4.0.1 for discussion
of persistent versus regularizable divergences in UDW detectors). This leads to the
soft UV cutoff interpretation of ε (see section 3.1.0.1), which is necessary to tame the
divergence analyzed in section 3.4.

For the quadratic model,Mφ̂2
is given by Eq. (3.13). To particularize to 3+1 dimen-

sions and detectors quadratically to the field with identical Gaussian switching functions
and spatial smearing, we need to make several substitutions. Namely, we substitute the
quadratic two-point correlator in 3+1 dimensions Eq. (3.72), the spatial profile Eq. (3.25),
and the switching function Eq. (3.26). The result of all these substitutions plus the change
of coordinates (3.27) is

Mφ̂2

=
−λ2e−

t2a
T2−

t2b
T2−

x2
a
σ2−

x2
b
σ2

128π5σ6

∫ ∞

−∞
du e

tau

T2 + tbu

T2 − u2

2T2 +iuΩ

∫
d3p e−

p2

2σ2 + qxa
σ2 + qxb

σ2 (3.85)

×
∫ ∞

−∞
dv

∫
d3q

e−
v2

2T2 e−
q2

2σ2

(q2 − (v − iε)2)2

[
e−

qxa
σ2 + qxb

σ2 − tavT2 + tbv

T2 + e−(− qxa
σ2 + qxb

σ2 − tavT2 + tbv

T2 )

]
.

The integrals over u, p, and the angular part of q can be evaluated in closed form:

Mta=tb

φ̂2

= −λ
2Te−

T2Ω2

2
+2itaΩ− (xa−xb)2

2σ2

4π4σ(xa − xb)

∫ ∞

0

dq

∫ ∞

−∞
dv

qsinh
(
q (xa−xb)

σ2

)

(q2 − (v − iε)2)2 e
− q2

2σ2− v2

2T2 . (3.86)

Furthermore, we can employ the simplifying assumption that the two detectors are
switched on simultaneously within their co-moving frame, setting ta − tb = 0. The result
we write as

Mφ̂2

ta=tb
= −λ

2e−
α2

2
+2iαγa− β2

2δ2

64π4δT 3β

∫ ∞

0

dξG (ξ) , (3.87)
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where ξ is a dummy integration variable. The full expression of the integrand G(ξ) is
defined as

G (ξ) :=
1

ξ2 (η2 + ξ2)
sinh

(
ξβ

δ2

)
e−

ξ2

2δ2

[
− 4ξ

(√
2πη2 − 2iη +

√
2πξ2

)

+ e−
ξ2

2

(
η2 + ξ2

)
(

2ie
1
2
η(η+2iξ)

(
ηξ + i

(
ξ2 + 1

) )[
Chi

(
1

2
(η + iξ)2

)

+ iπerf

(
η + iξ√

2

)
+ 2 log(ξ − iη)− log

(
(η + iξ)2

)
− Shi

(
1

2
(η + iξ)2

)]

+ e
1
2
η(η−2iξ)

[
2
(
iηξ + ξ2 + 1

)
Chi

(
1

2
(η − iξ)2

)
+ log

(
− (η − iξ)2

)

+ 2π
(
−ηξ + i

(
ξ2 + 1

))
erf

(
η − iξ√

2

)
+ 4

(
iηξ + ξ2 + 1

)
log(−ξ − iη)

− 2iξ(η − iξ) log
(

(η − iξ)2
)

+ 2
(
−iηξ − ξ2 − 1

)
Shi

(
1

2
(η − iξ)2

)

− 2
[

log(ξ + iη) + log
(

(η − iξ)2
)]])]

. (3.88)

Chi and Shi are the cosine and sine hyperbolic integral functions defined as

Shi(z) :=

∫ z

0

dt
sinh(t)

t
(3.89)

Chi(z) := γ̃ + ln z +

∫ z

0

dt
t cosh(t)− 1

t
. (3.90)

γ̃ is the Euler-Mascheroni constant, and everything is expressed in terms of dimensionless
variables as detailed in Table 3.1 on page 14.

3.3 The Unruh-DeWitt detector coupled to a com-

plex field

In previous sections we have limited ourselves to real scalar fields. In this section we will
consider a complex scalar field. A complex scalar field can be written in terms of a plane
wave expansion in a way analogous to the real-field expansion, Eq. (3.18):

Φ̂(x, t) =

∫
dnke−ε|k|/2√

2(2π)n|k|
(
â†k e

i(|k|t−k·x) + b̂k e
−i(|k|t−k·x)

)
, (3.91)

where, â†k b̂
†
k (and âkand b̂k) are creation (and annihilation) operators for particles and

antiparticles, respectively. These operators satisfy the canonical commutation relations
[âk1

, â†k2
] = δ(n)(k1 − k2), [b̂k1

, b̂†k2
] = δ(n)(k1 − k2) and [âk1

, b̂†k2
] = 0.
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An UDW detector coupled to a charged scalar field must (as is the case with the
fermionic detector) couple quadratically, else the Hamiltonian would either be non-self
adjoint or would break U(1) symmetry (see [40] for more details). Thus, we use the
following Hamiltonian

Ĥ Φ̂Φ̂†(t) =
∑

ν∈{A,B}
λνχν(t− tν)µ̂ν(t)

∫
dnxF ν(x− xν) : Φ̂(x, t)Φ̂†(x, t) :, (3.92)

where ν ∈ {A,B} identifies either detector A or B. As with the real quadratic case, the
coupling constant λ does not have the same dimensions the linear coupling constant.

We will follow the process outlined in sections 3.1 (for the linear detector model) and
3.2 (for the quadratic detector model). We find that the time evolved bipartite state of
two initially uncorrelated detectors in their ground state,

ρ̂ab,0 = |ga〉〈ga| ⊗ |gb〉〈gb| , (3.93)

which interact through a the vacuum state of a complex field takes the same form as
with the linear and quadratic real detectors (as originally shown in Eq. (3.12))

ρ̂ab,t =




1− Laa − Lbb 0 0 M∗

0 Laa Lab 0
0 Lba Lbb 0
M 0 0 0


+O(λ4

ν),

where M and Lµν take the form

MΦ̂Φ̂† =− λaλb
∫ ∞

−∞
dt

∫ t

−∞
dt′
∫

dnx

∫
dnx′M(t,x, t′,x′)W Φ̂Φ̂†(t,x, t′,x′) (3.94)

LΦ̂Φ̂†
νµ =λνλµ

∫ ∞

−∞
dt

∫ ∞

−∞
dt′
∫

dnx

∫
dnx′ L∗ν(t,x)Lµ(t′,x′)W Φ̂Φ̂†(t,x, t′,x′), (3.95)

where the superscript Φ̂Φ̂† denotes quadratic coupling to the charged scalar field.

As with the previous detectors studied, the effects of the field and coupling is entirely
captured by the correlation function W . The functions M and Lν are defined exactly as
Eqs. Eq. (3.16) and Eq. (3.15), namely

Lν(t,x) =χν(t− tν)F ν(x− xν) e
iΩνt

M(t,x, t′,x′) =La(t,x)Lb(t′,x′) + La(t′,x′)Lb(t,x).

Utilizing a similar process as was used to arrive at the two-point function Eq. (3.70),
we will show that the quadratic detector model’s response to a charged (complex) scalar
field is within a constant factor to that of a real scalar field.

For the UDW detector coupled to a complex field, W Φ̂Φ̂†(t,x, t′,x′) is

W Φ̂Φ̂†(t,x, t′,x′) = 〈0| : Φ̂(x, t)Φ̂†(x, t) : : Φ̂(x′, t′)Φ̂†(x′, t′) : |0〉 . (3.96)
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The relationship between an operator Â and its normal ordered version is given by
Eq. (3.57), namely

: Â : = Â− 〈0| Â |0〉

Using this identity, W Φ̂Φ̂† can be rewritten as

W Φ̂Φ̂†(t,x, t′,x′) = 〈0| Φ̂(x, t)Φ̂†(x, t)Φ̂(x′, t′)Φ̂†(x′, t′) |0〉
− 〈0| Φ̂(x, t)Φ̂†(x, t) |0〉 〈0| Φ̂(x′, t′)Φ̂†(x′, t′) |0〉 . (3.97)

The first term of W Φ̂Φ̂†(t,x, t′,x′) can be simplified. To do so, we will write the field
operator as Φ̂ = Φ̂+ + Φ̂−, where Φ̂+ and Φ̂− are defined as

Φ̂+(x, t) =

∫
dnk e−ε|k|/2√

2(2π)n|k|
â†k e

i(|k|t−k·x), Φ̂−(x, t) =

∫
dnk e−ε|k|/2√

2(2π)n|k|
b̂k e

−i(|k|t−k·x),

(3.98)

where the operators Φ̂+ and Φ̂− satisfy the commutation relation

[
Φ̂−(xµ, tµ), Φ̂+(xν , tν)

]
= 0, (3.99)

and

[
Φ̂−(xµ, tµ), Φ̂−†(xν , tν)

]
= Cµν1,

[
Φ̂+(xµ, tµ), Φ̂+†(xν , tν)

]
= Cνµ1, (3.100)

where Cµν ∈ C is precisely that in Eq. (3.60), namely,

Cµν =

∫
dnk e−ε|k|/2

2(2π)n|k| e
i(|k|(tν−tµ)−k·(xν−xµ))

Furthermore, if we define Φ̂ν such that

〈0| Φ̂(x, t)Φ̂†(x, t)Φ̂(x′, t′)Φ̂†(x′, t′) |0〉 = 〈0| Φ̂1Φ̂†2Φ̂3Φ̂†4 |0〉 , (3.101)

we can use Φ̂+ and Φ̂− (and their adjoints) to rewrite the first term in Eq. (3.97) as

〈0|Φ̂1Φ̂†2Φ̂3Φ̂†4 |0〉 = 〈0| Φ̂−1 Φ̂−†2 Φ̂−3 Φ̂−†4 |0〉+ 〈0| Φ̂−1 Φ̂+†
2 Φ̂−3 Φ̂+†

4 |0〉 . (3.102)

Note that here the expression differs from the real case (see Eq. (3.62)), although we still
use that

φ̂+†
µ |0〉 = 〈0| φ̂+

ν = φ̂−µ |0〉 = 〈0| φ̂−†ν = 0 (3.103)

and that only summands with as many Φ̂− as Φ̂−† and Φ̂+ as Φ̂+† give a non-vanishing
vacuum expectation
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By commuting operators using Eq. (3.60), we can write the the following

〈0| Φ̂−1 Φ̂−†2 Φ̂−3 Φ̂−†4 |0〉 = C23C14 〈0| Φ̂−1 Φ̂+
2 Φ̂−3 Φ̂+

4 |0〉 = C12C34. (3.104)

Thus Eq. (3.102) can be written as

〈0|Φ̂1Φ̂2Φ̂3Φ̂4 |0〉 = C23C14 + C12C34. (3.105)

We can rewrite the Cµν coefficients as

Cµν = 〈0|
[
Φ̂−µ , Φ̂

−†
ν

]
|0〉 = 〈0| Φ̂−µ Φ̂−†ν |0〉 = 〈0| Φ̂µΦ̂†ν |0〉 , (3.106)

which allows us to rewrite Eq. (3.65) as

〈0|Φ̂1Φ̂2Φ̂3Φ̂4 |0〉 = 〈0| Φ̂1Φ̂†2 |0〉 〈0| Φ̂3Φ̂†4 |0〉+ 〈0| Φ̂1Φ̂†3 |0〉 〈0| Φ̂2Φ̂†4 |0〉 . (3.107)

Using our definition of Φ̂ν in Eq. (3.101), this becomes

〈0| Φ̂(x, t)Φ̂†(x, t)Φ̂(t′,x′)Φ̂†(t′,x′) |0〉 = 〈0| Φ̂(x, t)Φ̂†(x, t) |0〉 〈0| Φ̂(t′,x′)Φ̂†(t′,x′) |0〉
+ 〈0| Φ̂(x, t)Φ̂†(t′,x′) |0〉 〈0| Φ̂(x, t)Φ̂†(t′,x′) |0〉 .

(3.108)

Thus the complex correlation function, originally expressed in Eq. (3.97), is

W φφ†(t,x, t′,x′) =
(
〈0| Φ̂(x, t)Φ̂†(x′, t′) |0〉

)2

. (3.109)

At this point, we will now make a comparison of Eq. (3.109) with the correlation
function of the real quadratic normal ordered field operator, Eq. (3.69):

W φ̂2

(t,x, t′,x′) = 2
(
〈0| φ̂(t,x)φ̂(t′,x′) |0〉

)2

,

Using the mode expansions for the complex field, Eq. (3.91) we can rewrite
〈0| Φ̂(t,x)Φ̂†(t′,x′) |0〉 from Eq. (3.109) as

〈0| Φ̂(t,x)Φ̂(t′,x′) |0〉 = 〈0|
[∫

dnke−ε|k|/2√
2(2π)n|k|

(
â†k e

i(|k|t−k·x) + b̂k e
−i(|k|t−k·x)

)

×
∫

dnke−ε|k|/2√
2(2π)n|k|

(
âk e

−i(|k|t′−k·x′) + b̂†k e
i(|k|t′−k·x′)

)]
|0〉 .

(3.110)

which simplifies to

〈0| Φ̂(t,x)Φ̂(t′,x′) |0〉 =

∫
dnke−ε|k|

2(2π)n|k|e
−i(|k|t−k·x)ei(|k|t′−k·x′). (3.111)
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Using the mode expansions for the real field, Eq. (3.18), we can rewrite the two point
correlator of the real field, 〈0| φ̂(t,x)φ̂(t′,x′) |0〉, as

〈0| φ̂(t,x)φ̂(t′,x′) |0〉 = 〈0|
[∫

dnke−ε|k|/2√
2(2π)n|k|

(
â†k e

i(|k|t−k·x) + âk e
−i(|k|t−k·x)

)

×
∫

dnke−ε|k|/2√
2(2π)n|k|

(
âk e

−i(|k|t′−k·x′) + â†k e
i(|k|t′−k·x′)

)]
|0〉 .

(3.112)

which simplifies to

〈0| φ̂(t,x)Φ̂(t′,x′) |0〉 =

∫
dnke−ε|k|

2(2π)n|k|e
−i(|k|t−k·x)ei(|k|t′−k·x′). (3.113)

Thus we find that the relation between the complex and real correlation functions is

W φφ†(t,x, t′,x′) =
1

2
W φ̂2

(t,x, t′,x′). (3.114)

As a side note, while the Hamiltonian is self adjoint, there is an asymmetry between
the coupling to the particle and antiparticle sectors (pointed out in [40]). The coupling
can be symmetrized,

HI ∝ ΦΦ† + Φ†Φ (3.115)

to avoid this. This symmetrization will give a factor 2, thus making the detector response
to charged and real fields exactly the same. This together motivates future studies
utilizing the symmetrized coupling.

3.4 Divergences in the quadratic model

In this section we will discuss a new kind of divergence that appears in the quadratic
model. This divergence appears for detectors coupled to either real or charged fields,
and discussion applies to both, since the the wightman functions are proportional. All
expression are particularized to detectors coupled to the real field.

Unlike the linear model, the non-local termMφ̂2
is not free of UV divergences, despite

the fact that the detector has a smooth switching and a Gaussian spatial smearing, and
despite the renormalization process (outlined in [40]) that removed the single-detector
divergences. Concretely, the integral in Eq. (3.87) is logarithmically divergent with the
UV cutoff scale, as illustrated in Fig. 3.1.(f).

To gain insight on the logarithmic divergence inMφ̂2
we examine the integrand G(ξ),

defined in equation Eq. (3.88).

32



We begin by noticing that G(ξ) has the limit η → 0

lim
η→0

G(ξ) =
4

ξ2
e−

(δ2+1)ξ2
2δ2 sinh

(
ξβ

δ2

)[
−
√

2πe
ξ2

2 ξ + iπ
(
ξ2 + 1

)
erfc

(
iξ√

2

)]
. (3.116)

Expanding in Laurent series and keeping the leading order O(ξ−1) results in the UV
divergent term

lim
η→0

GMφ̂2
ta=tb

∼ 4iπβ

δ2ξ
. (3.117)

This divergence is peculiar due to the fact that it shows up only in the two-detector
model, in spite of the fact that the VEP for the quadratic detector model is finite as
discussed in section 3.2.1 and in [40]. Thus, while a single quadratically coupled detector
does not require additional UV regularization, a cutoff is required for certain quantities
describing detector pairs, of which the M term in Eq. (3.87) is an example.

We would like to emphasize that these are persistent UV divergences, that is, they
are present regardless of the use of smooth switching functions and spatial profiles (for
example, in this case we have used Gaussian functions for both). Moreover, these diver-
gences appear after renormalization of the zero-point energy and at the same order in
perturbation theory at which the single detector dynamics is regular.

3.5 Harvesting correlations

To tackle the problem of entanglement harvesting with a pair of quadratically coupled de-
tectors, we will follow two different avenues: a) We will analyze the nature and strength of
the divergences in 3+1D flat spacetime, analyzing possible physically motivated regular-
ization scales in entanglement harvesting and b) we will propose a measure of correlations
between the detectors that are divergence free and use it to further our knowledge of the
differences between the use of linear and quadratic couplings of particle detectors to study
the entanglement structure of quantum fields.

In this section we will study two types of correlations that the two detector mod-
els can harvest from the field vacuum: a) those measured by the mutual information,
which quantifies both classical and quantum correlations [82], and b) the entanglement
negativity, which is a faithful entanglement measure for bipartite two-level systems [80].
These two types of correlation harvesting were studied for the linear model in [36]. Here
we will compare these results with the predictions for the real-field quadratic model.
Further more, we can extrapolate from the quadratic results presented here to the the
results for detectors coupled to a complex field, as the associated correlation functions
are proportional.
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3.5.1 Entanglement harvesting

We consider first the harvesting of entanglement from the vacuum and we quantify it with
the entanglement negativity Eq. (2.1) acquired between the two (initially uncorrelated)
detectors through their interactions with the field while remaining spacelike separated.

As seen, for instance, in [36], the entanglement negativity can be expressed in terms
of the vacuum excitation probability, Lνν , of each detector and the non-local term M.
Concretely, it is given by

N = max
[
N (2), 0

]
+O(λ2), (3.118)

where

N (2) = −1

2

(
Laa + Lbb −

√
(Laa − Lbb)2 + 4 |M|2

)
. (3.119)

When both detectors are identical (i.e. they have the same spatial profile, switching
function, coupling strength, and detector gap), Eq. (3.119) becomes

N (2) = |M| − Lνν (3.120)

from which we can justify the usual argument that entanglement emerges as a competition
between the non-local contribution M and the noise associated to the VEP for each
detector [35,36].

Figure 3.3 shows the behavior of the entanglement negativity with the spatial sepa-
ration of the detectors, for the linear and quadratic case and a range of detector cutoffs.

Recall that the termM is UV divergent in the quadratic model, therefore to compute
a physically meaningful value for the entanglement negativity further regularization and
eventual renormalization would be required. However for a fixed UV-cutoff scale, it is
possible to get an estimate of the quadratic model performance to harvest entanglement
relative to the linear model by computing entanglement harvesting for both models ap-
plying the same UV-cutoff scale. What is more, studying how entanglement negativity
changes as we start increasing the cutoff scale will help us see how the UV divergence of
M impacts entanglement harvesting.

As seen in Fig. 3.3, the magnitude of entanglement harvesting increases linearly with
the logarithm of the cutoff, which is not surprising since the two-detector quadratic
model suffers a logarithmic UV divergence. This implies that there would always exist
a value for the cutoff scale so that harvesting is possible at any distance, regardless of
the detector gap. It would also imply that for large enough cutoff frequencies we could
always ‘harvest’ more entanglement with the quadratic model than for the linear model.

One can therefore ask the following question: is there any finite value of the cutoff
scale that we could take in order to give some physical meaning to the finite cutoff results?
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Unlike the linear model—which has been shown to capture the fundamental features
of the atom-light interaction [66, 71]— the quadratic model does not have a direct com-
parison with something as simple as the atom-light interaction mechanism (maybe one
could think of non-linear optical media [99], but that is perhaps a stretch). Recall, how-
ever, that we do not use the quadratic Unruh-DeWitt model to necessarily reproduce
the physics of a particular experimentally motivated setup. Our motivation to explore
this model is double: a) probe the field with a different model to show model indepen-
dence/dependence of harvesting phenomena and b) advance towards the fermionic model
(which is a quadratic model that does indeed have physical motivation) where the study
of field entanglement remains still full of open questions.

The fact that this model cannot be connected with something as simple as an atom
interacting with light, makes it difficult to motivate a choice of cutoff. However, if we
were to take the result for a finite value of the cutoff scale seriously, and thus if we were
to choose some physically motivated cutoff, we could compare the two models when such
a cutoff is taken to be the Planck Frequency. In this scenario, the dimensionless cutoff
parameter η can be written as η = 1

kpT
, where kp is the Planck frequency. If we consider

scales for the detector gap Ω to be commensurate with the energy of the first transition
of Hydrogen Ωh ≈ 1015 s−1, then kp = 1029Ω. If we set T ≈ Ω−1

h (which means that
α ≈ 1 represents the case of a Hydrogen atom) the cutoff associated with the Planck
time is then η = 10−29. We can extrapolate the results in Fig. 3.2 to the Planck scale.
We show these results also in Fig 3.2, as the thin black lines. These plots illustrate
the slow logarithmic nature of the divergences, which makes the study of entanglement
negativity still meaningful for low energies with the quadratic detector model and does
not get significantly qualitatively modified even if the cutoff is transplanckian.

3.5.2 Harvesting mutual information

A way around the problems associated to the UV-divergent nature of M is to look at
UV-safe quantities. Namely, it is possible to find quantifiers of correlations that are, by
construction, UV-safe for the quadratic model. One such figure of merit is the mutual
information.

For a density matrix of the form Eq. (3.12), the mutual information Eq. (2.3) is given
by [36]

I(ρab) =L+ log(L+) + L− log(L−)− Laa log(Laa)− Lbb log(Lbb) +O(λ4
ν) (3.121)

where

L± =
1

2

(
Laa + Lbb ±

√
(Laa − Lbb)2 + 4 |Lab|2

)
. (3.122)

Note how I(ρab) is not dependent on the divergentM term at leading order in perturba-
tion theory. Hence, the mutual information is finite without any further regularization.
Because of this, it provides a UV-cutoff independent sense of the harvesting of correla-
tions from the vacuum, and can also be compared with previous results for the linear
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detector model in [36], making it a relevant figure of merit for the comparison in this
article.

Fig. 3.4 shows the behavior of the Mutual information with spatial and temporal
separation of the detectors for both the linear and quadratic case where the other pa-
rameters are the same as those used in Fig 3.2. First, we observe something that was
already present in previous literature on linear detector models [36]: Unlike entangle-
ment, the mutual information harvesting can be performed at any distance and detector
gap, albeit less efficiently as the distance (or the detector gap) increases, a feature that
comes from the fact that the detectors are harvesting classical correlations as well as
quantum correlations.

From Fig. 3.4 we observe that the linear detector model can harvest more entangle-
ment and for further distances than the quadratic detector model. This can in turn be
used to assess the scale at which the soft cutoff model introduced in the study of en-
tanglement negativity fails to capture the behaviour of UV-safe measures of correlations:
as illustrated in Fig 3.3, for cutoff scales that are of the order of η & 10−6, the linear
model can harvest more entanglement than the quadratic model in the parameter region
studied. This might suggest that comparison of entanglement negativity between the
two models can be trusted only for cutoffs above η = 10−6.
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Figure 3.1: All plots illustrate the behavior of relevant quantities as η decreases on a log scale
(i.e. as the UV cutoff is lifted). Plots on the top row are for the usual (linearly coupled) UDW
detector. Plots on the bottom row are for the quadratically coupled UDW detector. All plots use
parameters α = 1, δ = 1, γb − γa = 4, and β = 4, where relevant. Note how all plots (a)-(e)
indicate convergence, except (f), which (in contrast to (c)) shows shows linear growth of Mφ̂2

on a logarithmic scale of η, and thus a logarithmic divergence as the UV cutoff is lifted, η → 0.
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Chapter 4

Conclusion and suggestions for
further work

4.1 Conclusion

We have studied the behaviour of pairs of particle detectors quadratically coupled to
scalar fields introduced in [37–39] and renormalized in [40]. In particular we have focused
on the case of a pair of particle detectors harvesting entanglement from a scalar field, a
case previously studied only for linear detectors [34–36]. Understanding the harvesting of
correlations from quadratic couplings is a crucial step in understanding the entanglement
of Fermionic fields, since detectors must probe these fields with a quadratic coupling
[37,38,40,100]. Our motivation to explore this model is twofold: a) probe the field with
a different particle detector model to show model independence/dependence of harvesting
phenomena and b) provide a model that can be compared on equal footing for bosonic
and fermionic fields (for which the coupling necessarily has to be quadratic).

Perhaps the most remarkable finding of our investigation of harvesting with the
quadratic detector model is the appearance of a new logarithmic UV divergence at lead-
ing order in the two-detector setup. Notably, this divergence remains even when the
Hamiltonian is normal-ordered, and even when the switching functions and spatial pro-
file are smooth functions. This is in stark contrast with the linear case where smooth
smearing [94] or switching [93, 95] were enough to guarantee the UV regularity of the
model.

We emphasize that a single detector, at the same order in perturbation theory, does
not present this kind of divergence. Curiously, the UV divergence is only present in a
particular kind of term, namely that responsible for the entanglement of the two detectors.
This divergence is easily parametrized via a UV cutoff.

Once this was established, analysis and comparison with the linear model was possible.
We proceeded in two different ways. First, by using entanglement negativity to study
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entanglement harvesting. We discussed whether a finite value of the UV cutoff scale
allows for fair comparison of the entanglement harvesting ability of the quadratic and
the linear couplings. Following this, we found measures of harvested correlations that
are UV-safe. In particular we showed that the harvested mutual information from the
field vacuum is UV safe. It therefore constitutes a better figure of merit to compare the
harvesting of correlations from the vacuum without need for further regularization.

4.2 Fermionic entanglement harvesting

Understanding the particulars of entanglement harvesting with bosonic quadratic cou-
pling is important in order to properly answer questions about fermionic fields where
the study of field entanglement remains full of open questions [2–19]. A comparison of
bosonic and fermionic entanglement harvesting on equal footing requires knowledge of
the model-dependence entanglement harvesting, specifically the difference between linear
and quadratic coupling, as the latter is necessarily present in the fermionic case. The
entanglement structure of the fermionic vacuum remains an interesting open question,
one we are now prepared to address using the results we have obtained.

Lastly, this thesis posits the question: how can this particular model be renormalized
for future studies of entanglement harvesting with the fermionic UDW detector model.

40



Bibliography

[1] A. Sachs, R. Mann, and E. Mart́ın-Mart́ınez, Entanglement harvesting and diver-
gences in quadratic Unruh-DeWitt detectors pairs. To appear in Phys. Rev. D -
arXiv:1704.08263, 2017.

[2] M. Montero and E. Mart́ın-Mart́ınez, “Fermionic entanglement ambiguity in non-
inertial frames,” Phys. Rev. A, vol. 83, p. 062323, Jun 2011.
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