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Abstract

The task of complete coverage path planning in complex 2D environments is a classic NP-
Hard problem that has been an active research topic for well over 30 years. A common
approach to solving coverage problem in such environments is to partition, or segment, the
target environment into a set of cells that have some property that allows any given cell to
be covered in an optimal or near optimal manner. If each cell of an environment is visited
and covered by some agent, then the entire environment is said to be covered.

This work proposes a novel segmentation method, called the Constriction Decomposi-
tion Method (CDM), that works by locating constriction points in indoor, 2D environment
and then partitioning the environment based on the constriction points. When the CDM
is applied to 2D maps of office or laboratory environments, the CDM produces a segmen-
tation that closely resembles a room based decomposition. Once the environment has been
decomposed into regions, this work demonstrates that each room can be covered using a
simple coverage path planning algorithm that exploits the fact that the resulting cells do
not contain any constriction points. The lack of constriction points in each region means
that each region, or room, can be completely covered using a series of contour following
paths followed by a series of back and forth motions. Once a set of coverage paths are pro-
duced for each cell, a tour between all path is found using a heuristic Traveling Salesman
Problem (TSP) solver.

The proposed segmentation and coverage path planning methods are tested on a set of
15 indoor environments that are derived from a set of floor plans corresponding to five office
and seven laboratory environments. The quality of the segmentation produced by the CDM
is directly compared to existing methods on a qualitative and quantitative basis using a
series of metrics proposed by other authors. The set of coverage paths for each environment
are compared to existing work based on the ratio between the total path length and the
ratio between the inter-sector path and the total coverage path length. Based on these
metrics it is demonstrated that the CDM and the CDM coverage path planner produces
both superior segmentations and coverage plans in 2D indoor environments.
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Chapter 1

Introduction

Due to the growing availability of low-cost, low-power computation resources, the dream
of having a service robot cook, clean and tidy up your home or office is quickly becom-
ing a reality. Combined with incredible improvements in sensor technology, mapping and
localization algorithms, it is already possible to build and market commercial scale, au-
tonomous floor cleaning robots. However, this technology only allows the robot to localize
itself and follow provided paths. If an entire area must be covered, such as in the task of
floor cleaning, an efficient Complete Coverage Path (CCP) is required.

The applications of optimal CCP algorithms extend to ground, aerial and even un-
derwater robotics. Such uses include agricultural applications such as plowing, seeding,
fertilizing and crop harvesting, environmental applications such as coral reef inspection,
aerial surveys, pipeline inspection, civil applications such as building and bridge inspection
and even humanitarian efforts such as mine clearing [18], [27], [22], [21], [29].

Complete Coverage Path Planning (CCPP) is the task of determining an optimal path
that allows a robot to cover the entirety of free space in an environment that has a minimal
path length. It is most closely related to the Covering Salesman Problem, a variant of the
Travelling Salesman Problem [4]. In the Travelling Salesman Problem, an agent is provided
with a list of buyers along with their respective distances from one another. The task of
the agent is to visit each with the shortest total path. In the Covering Salesman problem
[3] each of buyers the salesman wishes to meet are willing to move some distance w. This
means, rather then visiting each buyer directly, the salesman instead come within a distance
w of all buyers in the network.

In the work of [4], the Covering Salesman Problem is proven to be NP-Hard, as one
would expect since the TSP itself is NP-Hard. If one considers a polygonal environment
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where all buyers are contained within a simple polygon and a circular or square agent
with size w, the task of mowing a lawn or cleaning a floor can be directly related to the
Covering Salesman Problem. In [3], Arkin describes the lawn mowing problem as the
coverage problem where an agent is allowed to move outside of the boundaries, and the
pocket milling problem, where the agent is not allowed to cross the boundary. For indoor
environments, it is assumed that walls are not passable by the agent, and therefore the
task of floor cleaning is analogous to the pocket milling problem which is also proven to
be NP-Hard for polygonal environments [3].

Using the same classification as Choset [11], CCP algorithms designed for robotic ap-
plications can usually be classified as either complete or heuristic. If a CCP is classified
as complete, it can be proven that the algorithm will cover the entirety of the free space,
otherwise the algorithm is classified as heuristic. Coverage methods may also be classified
as online or off-line depending on whether or not the method requires a known map of
the environment. Online methods adapt and can re-plan in real-time, but generally utilize
a heuristic method to generate coverage paths. Examples of online methods are found
in [13], [26], and [34]. Conversely, offline methods use a known map of the environment
to determine a coverage plan. For indoor environments, such as offices, laboratories and
warehouses, the assumption of a known map generally holds. Further, for most cases where
CCP is applied to floor cleaning in indoor environments, the map can generally be assumed
to be static. Exceptions to this assumption include objects such as furniture, shelving or
people. For this reason, the focus of this work is on offline methods.

A common approach to a NP-Hard problem such as the CCP is to reduce the problem
into a set of smaller problems that can be solved individually and then combined into an
approximate solution. In the case of working in a 2D polygonal environment, the environ-
ment is partitioned into smaller sub-polygons. The decomposition method tends to fall into
one of two categories, exact and inexact decompositions [11]. Exact decompositions typi-
cally break the environment down into smaller sub-sections, or cells, that have some kind
of topological characteristic that allows for a coverage path to be generated based on the
topological characteristics of the resulting cells. Examples of this include the trapezoidal
decomposition [18], the Boustrophedon decomposition [10], the Morse Cell decomposition
[12], and the Greedy convex polygon decomposition [13].

Inexact decompositions break the environment down into a set of regular sized cells
using a square or hexagonal grid [18]. Generally, these cells are at least as small as the
robot or agent performing the coverage such that if a robot visits a cell the area represented
by the cell is considered covered. Example methods that utilize an inexact decomposition
include the Wave-front, Spiral Spanning Tree Coverage (STC) [17] and the work of [26]
which demonstrates a grid based method for use on robots with limited sensing range.
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The major drawback of inexact and grid based methods is the direct correlation between
how well the environment is represented and the resolution of the map. As demonstrated
in Figure 1.1, curved surfaces and any portions of the environment a that run off-axis of
the grid are poorly represented. There is also an ambiguity as to whether or not a cell is
occupied in areas where only a small portion of the cell is occupied by an object. Marking
a cell that is only partially occupied will result in an area not being covered, but marking
it unoccupied may lead to a collision. As a result of poor approximation and the ambiguity
of of occupied cells, some areas of the floor will be uncovered during the execution of a grid
based coverage plan. Increasing the resolution of the map helps to reduce this error, but the
memory requirement of storing the grid information grows at a rate of n2 with increasing
resolution and any searches performed on the grid will also share a similar increase in run
time performance.

Figure 1.1: An example of a grid based
decomposition. The curved, off axis ob-
stacle edges cannot be well represented at
the grid resolution, resulting in a under-
representation of the free space [18].

While not directly addressed in the CPP
literature, a closely related area of research
is Room or Map segmentation. Room seg-
mentation can be viewed as an exact de-
composition method, as it seeks to break
the environment down into rooms. While
most exact decomposition methods break
the environment down into cells based the
desired coverage pattern used to cover the
cells [10], [12], [18], [13], room segmentation
methods seeks to decompose the environ-
ment in the same way that a human would.

The advantage of breaking an environ-
ment into rooms rather than just arbitrary
polygons is that it not only serves to decom-
pose the environment, but it also simplifies
task management and provides an intuitive way for a human to interact with the robot. If
a robot enters a room, and finishes its task completely before moving to the next room, a
typical user will be able to immediately understand and interpret the robot’s behaviour.
Further, if one wishes for a room not to be cleaned, removing the room from the list of
areas to be cleaned is quite simple from the user side. Additionally, such a method does
not require the whole map to be re-segmented, unlike the methods listed in [10], [13].
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1.1 Contributions and Approach

In this work, I make several contributions. First I develop and present a novel, exact
decomposition method based on constriction points in the environment. I term this de-
composition the Constriction Decomposition Method, or CDM. When applied to indoor
environments such as offices or commercial spaces, this novel decomposition method parti-
tions the environment into a set of cells that closely resembles a room based decomposition
by inserting edges at doorways and other tight space in the environment. Secondly, by cre-
ating a segmentation based on the constriction points in the environment, I demonstrate
that the resulting cells can always be covered by a series of contour following paths that
will have minimal overlap between passes. Using this assumption, I develop a coverage
path planning algorithm that produces a series of coverage paths that take advantage of
the unique characteristics of the cells produced by the CDM. I guarantee complete coverage
of the entire environment by ensuring each cell is covered by my coverage path planning
algorithm and by ensuring each cell is visited during a complete coverage operation. The
visitation ordering of each cell is found by transforming the cell visitation ordering prob-
lem into a Hamiltonian Tour problem and solving it using the Lin-Kernighan heuristic [28]
implemented by [20]. Final contribution is evaluation against multiple existing methods in
both decomposition and path planning for comparison.

The remainder of this thesis proceeds as follows. Chapter 2 presents background in-
formation and an outline of the formulation of the CCP problem for indoor coverage path
planning in polygonal environments. Chapter 3 presents the derivation and the develop-
ment of both the CDM and the CDM coverage path planner. Chapter 4 presents the results
of applying the CDM to a set of laboratory based environments and compares both the
segmentation results and complete coverage path results to existing work. Lastly, Chapter
5 provides a conclusion and a discussion of further work that could improve the results
and robustness of the CDM segmentation and possible improvements to the coverage path
planning results.
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Chapter 2

Background

2.1 2D Coverage Planning in Planer Environments

In the following work, it is assumed that a noise-free and accurate map of the operating
environment is provided. Further, any curves in the environment are assumed to be ac-
curately represented by a series of straight line segments. Let ξ ⊂ R2 be a connected,
bounded, polygonal environment, and let the boundary of ξ be represented by B = δξ.
Holes, or unreachable polygonal areas, in the interior of ξ are denoted by the set O and
the boundary of all holes is represented by H = δO. The free space in ξ can be written as
F = ξ \O. The boundary of the free space, δF , can be represented as a set of vertices, V ,
and edges, E, where each edge, eij ∈ E is defined as a line segment between two vertices
ei ∈ {vi, vj : i 6= j}. The set of all edges Ef = δF assumes that the environment and all
holes are defined by polygons. By inserting additional edges into the environment, E ′ ⊂ F ,
with vertices on B, F may be partitioned into a set of m cell, C = {c1, . . . , cm} where each
cell is defined a region bounded by subset of edges from Eci ⊂ E ′ ∪′ Ef such that cell ci is
bounded completely by Eci .

An effector, agent, or robot, with a coverage width, w, is said to cover all of the free
space in a cell ci ∈ C, if it follows a path, pi ⊂ Ci, for which the union of all coverage areas
along the path, pi, contains all points in ci, which can be expressed as

⋃
P a = Ci. Note

that this definition allows for overlap of coverage areas but requires complete coverage of
each cell. A complete path, P , which covers all cells in the free space, F , is formed by
the concatenation of coverage path of each cell, pi ∈ ci, and shortest length inter-path
segments in the free space, ρi,i+1 ⊂ F , as follows:
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P = [p1, ρ1,2, p2, . . . , ρm−1,m, pm] (2.1)

A complete path which covers the free space in an environment solves the CPP problem
and is referred to as a coverage path.

Lastly, it is assumed that the agent performing the coverage pattern is capable of accu-
rate localization on the order of 5-10 cm. This is currently possible for indoor environments
using a variety of SLAM algorithms such as [14], [32] and [24].

2.2 Related Work

2.2.1 Coverage Path Planning

One of the most common approaches to solving the CPP problem in 2D, polygonal envi-
ronments is to employ a divide and conquer strategy. In complex environments it is often
infeasible and computationally intractable to determine an optimal coverage path for an
entire environment in one step due to the NP-Hardness of the problem [3]. Rather, many
authors employ a decomposition step where they partition the environment into a set of
cells, calculate an optimal or near optimal path for each cell and then concatenate them
using the approaches described in 2.1. Methods that employ the partitioning approach are
referred to as exact cellular decomposition methods in the literature.

One of the earliest exact cellular decomposition methods developed for coverage path
planning is the trapezoidal decomposition method. The trapezoidal decomposition method
works by partitioning a polygonal environment into cells by inserting a set of edges up and
down from each obstacle vertex to the bounding polygon [25]. Every cell that is generated in
this fashion is trapezoidal, convex and can be covered in a series of back and forth motions
that are parallel to the inserted edges. While the trapezoidal decomposition method is
shown to be algorithmically complete, it typically generates a number large of cells that
can be merged and covered using the same coverage pattern. This idea is formalized in
the derivation of the Boustrophedon Decomposition [10].

The word boustrophedon comes from ancient Greek and literally means ”the way of
the ox” [10]. In the Boustrophedon Decomposition, a set of cells are generated assuming
that the robot covers a space in a series of back and forth motions similar to the way
farmers plow or work a field, hereafter referred to as boustrophedon paths. An example
of these motions is provided in Figure 2.1. Noting that a cell only needs to be created at
the start and end of an obstacle, rather then every vertex, [10] modifies the trapezoidal
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decomposition to monitor for intersections along the line, opening new cells when a new
obstacle is encountered, and closing cells once an obstacle has been passed over by the
scan line. Similar to the trapezoidal method, the resulting set of cells can be covered via a
series of boustrophedon paths that are aligned with the scan line used to create them and
by ensuring all cells are visited and covered, the method is shown to be complete [10].

Figure 2.1: A circular robot performing cov-
erage of a rectilinear environment using a
boustrophedon coverage pattern [18].

In later work, Choset [12] demonstrated
that the Boustrophedon Decomposition can
be generalized by proposing a cellular de-
composition based on the critical points
of Morse functions. The Morse Decom-
position can be generalized to any n-
dimensional space [12] and also allows for
different coverage patterns to be used such
as spiral, circular, or diamond patterns. In
the case of the Boustrophedon Decompo-
sition, its coverage pattern can be repre-
sented by the straight line. Similar to the
Boustrophedon Decomposition, any cells
generated by the Morse decomposition can
be covered by a robot following the cover-
age pattern used to create them. In many
environments however, it may be useful to select several different functions or directions
when creating a cellular decomposition based on some criteria, such as maximizing the
average length of the coverage swaths or minimizing the number of turns.

This idea was studied in the work of Oksanen et al. [29] which focused on the coverage
of agricultural fields using tractors and other agricultural equipment using two approaches.
Their first method is an exact cellular decomposition that aims to minimize a path-based
cost function and starts by applying a set of trapezoidal decompositions to an environment
using scan lines inclined at 0o, 30o, 60o, 90o, 120o, 150o. From the resulting decompositions,
the three directions that provide the lowest cost are selected, the step size in the selected
direction is halved and the process is repeated until the improvement per step falls below a
threshold, at which point the largest cell is removed from the environment and the process
is repeated on the remaining cells. The method is particularly well suited to convex fields
and fields that have long straight segments.

The second method explored by Oksanen et al. [29] uses an online recursive algorithm
to find a set of paths that also minimizes some cost function. In this algorithm, unlike the
Boustrophedon and trapezoidal decompositions, both straight lines and arcs are allowed.
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To prevent an infeasibly large search space from being considered, the algorithm only
considers curved segments that are either parallel to the outer contours of the environment
or parallel to a previous swath. The paths generated from this algorithm are better able
to handle a wider set of polygonal shaped fields that are non-convex, have curved edges,
or have large holes in them.

2.2.2 Room Decomposition

The topic of room segmentation is a closely related to the exact cellular decomposition
methods used in coverage path planning. Both room segmentation and exact cellular
decomposition algorithms attempt to partition an environment into a set of C cells based
on some kind of end use. For coverage path planning, the cells are created in such a
way that a near-optimal CCP can be generated for each individual cell. On the other
hand, room segmentation algorithms seek a more general solution, where cells are often
portioned in such a way that some tasks, such as robot scheduling, warehouse management,
navigation, and route planning can be done quickly and efficiently. In most literature the
end goal is to segment the environment into rooms, especially when the algorithms are
applied to indoor environments.

The majority of literature pertaining to the room segmentation field typically falls
into two categories: fully automatic and interactive segmentation. Fully automatic room
segmentation methods act directly on a provided map while interactive methods require
some degree of human input [7]. In this work, we focus solely on automatic segmentation
methods.

One of the earliest examples of applying segmentation algorithms for simplifying indoor
path planning is in the work of Thrun and Burken [31], [30]. In [30] an algorithm is derived
that breaks an environment, represented as an occupancy grid, down into a set of so-called
topological regions based on the location of critical nodes in a generalized Voronoi diagram.
A critical node in a generalized Voronoi diagram is defined as a node whos neighbours all
have a further distance to the boundary of the free space than the critical node. As such,
critical nodes indicate contritions in the environment and by inserting an additional edge
through this node, between the two closest points on the boundary of the environment, a
segmentation is produced, Figure 2.2.

The major drawback of this method is related to the end goal of simplifying indoor
path planning. As such, it has a tendency to produce a large number of cells in open areas
that may not correspond to rooms leading to the over-segmentation of the environment.
For many tasks, over-segmentation is an undesirable trait and in the work of Wurm et al
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[33], the authors present a method for improving the detection of critical nodes such that
the partitioning edges are more likely to be inserted at doorways. In the implementation
presented in [7], a set of merging steps are added to the Voronoi segmentation algorithm
that iteratively merges smaller cells into larger ones based on a set of heuristic methods
that are tuned by the end user based on the environment and desired results.

Figure 2.2: Detection of critical points and in-
sertion of critical lines in a Voronoi Diagram.
[31]

In the work of [6], a morphological seg-
mentation is presented. The algorithm op-
erates on grid map where each grid cell is
initially labelled as accessible or inaccessi-
ble. The original map is then copied into a
second map that is iteratively modified by
growing inaccessible regions inward using
a morphological dilatation operator with a
single pixel width. Before applying each di-
lation, the copied map is checked to see if
the number of disconnected regions have in-
creased in the current step in comparison to
the previous dilation step. If so, any newly
separated regions are given a unique label,
copied back to the original map and la-
belled as inaccessible, if the total size of the
new region is above a user-defined thresh-
old. The dilatation process continues until
all cells are labelled as inaccessible. Next,
the regions now labelled in the original map are grown outwards using a brushfire propaga-
tion that proceeds one pixel at a time [6]. This process repeats until all cells are labelled.
This process is highlighted in Figure 2.4, with the original map shown in Sub-figure 2.4a,
the state of the copied map after a number of dilation steps shown in 2.4b, the labelled
regions after completing the dilation are shown in Figure 2.4c and the final labelling after
applying the brushfire propagation is shown in Figure 2.4d.

Advantages of this method, as claimed by the author, include its algorithmic simplicity
and its high computational speed [7]. However, for the task of floor cleaning, this algorithm
has a tendency to break large cells down into multiple sub-cells leading to over segmenta-
tion. Another drawback of this method is the requirement of having to prescribe high and
low thresholds for room sizes, as it requires end user tuning depending on the environments
it is applied to.
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(a) Environment and its generalized
Voronoi diagram

(b) Critical Points in the generalized
Voronoi diagram

(c) Segmentation after merging several cells (d) Final Labeling

Figure 2.3: Voronoi segmentation example [7]
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(a) Original Map (b) Copied Environment after dilatation

(c) Initial Labelling (d) Final Labeling

Figure 2.4: Morphological Segmentation algorithm. (a) shows the original map, (b) shows
the current map after several dilatation steps, (c) is the resulting segmentation map and
(d) is the final segmentation after after applying the brushfire propagation step [7]

.
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2.3 The Straight Skeleton of a Polygon

For all of the environments explored in this work, the free space of the environment may be
represented as a polygon, F . For every such polygon F , it is possible extract its topology
using a geometric structure known as the straight skeleton S(F ). The concept of the
straight skeleton was first proposed by Aicholzer et al. [2], a refinement [16] of which is
available in the Computational Geometry Algorithms Library (CGAL) [9].

The construction of a straight skeleton, S(F ), can be thought of as a shrinking process
applied to F , where the boundary of the free space is contracted towards its interior in
a self-parallel manner [2]. Analogously, straight skeleton construction can be seen as the
propagation of a wavefront from all boundary edges inward at constant speed, ω over a
time t. The straight skeleton is then the collapse point graph of the shrinking environment.
As the shrinking process proceeds, the boundary vertices, vi ∈ V of F can be thought to
move along the angular bisector of adjacent edges, forming edges in the straight skeleton.
This process continues as long as the boundary does not change topologically.

During the shrinking process, there are two possible topological changes that can occur:
an edge event and a split event [2], [19]. An edge event occurs when an edge, ei, shrinks
to a length of zero, which causes its neighbouring edges to become adjacent. A split event
occurs when a reflex vertex of the wavefront collides with an edge and causes it to split
into two new edges, which in turn split the wavefront into two separate polygons. The
shrinking process then still continues in all polygons until all edges shrink to a length of
zero. The bisector line segments traced out by the vertices of the edges during the entire
process are called the skeleton edges, and the bisector arc start and end points are called
the nodes of S(F ). A node is said to be a contour node if it corresponds to a vertex in V
and a skeleton node if it does not.

The shrinking process also gives rise to a hierarchy of nested polygons, a subset of which
are shown in Figure 2.5 for an example polygonal environment along with the skeleton arcs,
edge and split nodes. In Figure 2.5, it can be noted that the location of a split node gives
rise to an additional polygon at the corresponding time steps. For the example polygon,
the first split occurs at t = 3.6 and second split occurs at t = 5.8.

The process of shrinking a polygon for some time t at speed, ω, can be related to the
task of creating a set of contour following paths. If an agent with a width, w, performing a
coverage operation was to follow the contours of the polygonal environment m times, the
polygon introduced for the mth pass is the same as the polygon created by the shrinking
process detailed above at a time t = w ·m, and indeed, ω = w in this case. Therefore, the
time that each node in S(F ) was created corresponds to the number of times an agent can

12



Figure 2.5: An example straight skeleton in a non-convex polygon along with offset poly-
gons located at t = {1, 2, ..., 10}. Skeleton arcs are highlighted with thin blue lines, skeleton
nodes are denoted by black dots and nodes that correspond to split events are circled in
red.
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circle the free space of an environment without overlapping previous paths.

In this work, the information-rich nodes of S(F ) are exploited to determine how to
segment the free space F into a set of cells, C. The time of creation of node n is denoted
as tn and letting N denote the set of skeleton nodes N = n ∈ S(F )|tn > 0. If a node has
a creation time of zero, it is referred to as a contour node. Each node n ∈ N also has an
event associated with its creation denoted τ ∈ νe, νs where νe denotes an edge event and νs

denotes a split event. Further, given that the skeleton is a graph-like structure, each node
also has a set of neighboring nodes M ⊂ N connected by an edge in S(F ). Therefore given
any node in S(F ), it is possible to query the type, creation time and of its neighbours.

2.3.1 Relation to the Generalized Voronoi Graph

While similar in structure, the generalized Voronoi diagram and the straight skeleton of
a simple polygon with holes are not equivalent [19]. The straight skeleton, as discussed
above is created by offsetting the line of polygon in a self parallel manner into free space
and the nodes and edges of the straight skeleton are located where wave fronts either
collide or shrink to zero. Conversely, nodes and edges of a Voronoi diagram are equidistant
from all nodes and edges of the original polygon. This also means the Voronoi diagram
is made up of curves rather than only straight line segments [19], as shown in Figure 2.6.
For the task of room segmentation, as observed in Figures 2.2 and noted in the work of
[7] and [33] for even relatively simple environments, the generalized Voronoi diagram can
have a large number of critical points that may not be located at doorways, leading to
over-segmentation. For a more complete discussion of the mathematical intricacies of the
generalized Voronoi diagram and Straight Skeleton, the reader is directed to the work of
Held et al. [19].
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Figure 2.6: The Generalized Voronoi Diagram (left) and Straight Skeleton (right) of an
example polygon. All edges in the Voronoi Diagram are equidistant from 2 or more points
along the boundary while the straight skeleton, all edges are located along the angular
bisectors of the boundary vertices. The Voronoi Diagram is made up of arcs while the
Straight Skeleton, as suggested by its name, only contains straight line segments.

15



Chapter 3

Methodology

By exploiting the information contained within the straight skeleton, a novel decomposition
is proposed. The method works by searching the straight skeleton of a simple polygon that
represents the entire environment for its split nodes. These split nodes are of the greatest
interest to this work as they encode the constriction points of an environment. Whenever a
split event occurs, the resulting polygon of the wave front is split into two separate polygons
which means that the nodes on either side of the split node are created at a later time.
Therefore, if the polygon is decomposed based on the split nodes in its straight skeleton,
it is possible to create a set of cells that have no split nodes in their straight skeletons.
That is, for such polygons, it will always be possible generate contour following paths
that spiral inwards without crossing over a previous path, as described below. We term a
decomposition based on this method the Constriction Decomposition Method (CDM).

3.1 The Constriction Decomposition Method (CDM)

As in Section 2.3, let the set of skeleton nodes be represented as N . Each of these nodes
have a time of creation ti and event type τ ∈ {τ s, τ e}, where s and e denote the node was
created in a split or edge event respectively. Each node ni ∈ N also has a set of neighboring
nodes, Mi, connected by an edge in the straight skeleton graph.

The CDM proceeds by performing an exhaustive walk of all skeleton nodes, N ∈ S(F ),
searching for split nodes. Whenever a split node is found, a new edge is inserted between
the vertex vi, vi ∈ V that causes the split node to occur and the edge ej,k ∈ E that is
impacted by the angular bisector of vi, such that the length of the new edge is minimized.
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To do this, a new vertex , v∗, is inserted at the closest point between the segment ej,k and
vertex vi, splitting ej,k into two edges, ej,∗ ∪ e∗,k = ej,k. This also adds v∗ to the set of
polygon vertices, V = V ∪ v∗. Next, a new edge, e∗,i between v∗ and vi is created, and
added to the set of cell boundaries, E ′. In the case where the nearest point on the edge is
equal to one of its vertices, e, is inserted between the closest vertex, {vj, vk} ∈ ej,k and vi.

The insertion of the edge e∗ results in a new cell ci ∈ F being created and also removes
a split event from the skeleton of the remaining, non-decomposed part of F ′ = F \ ci.
The process of removing and inserting new edges is repeated until no split nodes exist
and F is completely decomposed into a set of cells C. The CDM process is summarized
algorithmically below and applied to the polygon highlighted in Figure 3.1.

Let ψ : N → τ be a function that takes a skeleton node, n ∈ S(F ) and returns its
event type, either split or edge. Next, let η be defined as a function that takes a vertex,
vi ∈ V , and an edge, ej,k ∈ E, and returns a virtual vertex, v∗ on the edge, en,m such that
the distance between vi and v∗ is minimized, η(ejk , vi) → v∗. Then the CDM process can
be described as follows in Algorithm 1.

Algorithm 1 Constriction Decomposition Method

Skeleton Nodes: N
Initialize E ′ as: E ′ = E
for all ni ∈ N do

if ψ(ni) = τ s then
v∗ = η(vi, en,m)
E ′ = E ′ ∪ e∗,i

end if
end for

3.1.1 Determining Skeleton Node Type

Depending on the way the algorithm used to generate the straight skeleton is implemented,
the skeleton type, τ may not be recorded. This is the case of the CGAL implementation
of Felkel’s algorithm for generating a straight skeleton [16], [9]. Rather than recording the
skeleton type, the CGAL straight skeleton function instead records the ”collapse time” of
each skeleton node which is equal to the time, t, the node was created during the contour
shrinking process detailed in 2.3. By examining the collapse time of each node, the node
type can be determined using the following definition of the function ψ(ni).
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(a) Original Environment

(b) Decomposed by the CDM

Figure 3.1: The set of cells created by Constriction Decomposition Method (CDM) for
the environment depicted in Figure 2.5, along with the corresponding set of cell straight
skeletons. (a) shows the original environment and its corresponding straight skeleton while
(b) shows the resulting decomposition and the corresponding set of straight skeletons. In
(a), red circles indicate the split nodes and in (b) red lines indicate the new edges inserted
as part of the decomposition. In (b), the resulting set of straight skeletons contain no split
nodes as indicated by the corresponding set of contours shown for each cell.
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(a) Original

(b) Decomposed by the CDM

Figure 3.2: The set of cells created by the CDM when applied to a polygonal environment
with holes. (a) shows the original environment with split nodes highlighted in red while
(b) shows the resulting segmentation, with the new cell edges highlighted in red. As in
3.2, the resulting set of cells contain no split nodes in their straight skeletons.
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Figure 3.3: A split node, highlighted in red, has a lower collapse time, t, than both of its
neighbors, highlighted with black arrows. In this case the split node has a collapse time of
tn = 5.9, the left neighbor has a collapse time of tm1 = 7.54 and the right neighbor has a
collapse time of tm2 = 8.3.

As detailed in Section 2.3, split nodes ψ(n) = τ s are located at the point where two
wavefronts collide during the contour offsetting process and split the wavefront at that time
into two separate polygons. As the contouring process continues, the separate polygons
continue to shrink until all edges of all polygons shrink to zero, leaving a set of edge nodes,
ψ(ni) = τ k. This means that any split node must be attached to at least two edge nodes
and further, any edge nodes connected to a spit node must both have a higher collapse
time than the split node as highlighted in Figure 3.3.

Therefor if a split node exists, it must be connected to at least two edge nodes, and
these edge nodes must have a creation time, t, greater than the split node νsplit. Therefore
all nodes, n ∈ N can be labeled as a split or edge node by comparing the collapse time of
a given node n to all of its neighbors Mn ⊂ N , where Mn denotes the neighbors of node n.
If all neighbors m ∈ Mn of n have a greater collapse time than n, then n must be a split
node, ψ(n) = τs, otherwise n is an edge node ψ(n) = τe. If we let ω : n→ R be defined as
a function that takes a skeleton node and returns its collapse time, t, Algorithm 2 can be
used to label all nodes n ∈ N as split or edge.

Algorithm 2 starts by assuming each node, n ∈ N , is a split node, ψ(n) = τs, and labels
it as such. Next Algorithm 2 compares the collapse time of n to every neighboring node
m ∈ Mn. If any of n’s neighbors, m ∈ Mn have a collapse time lower than n, then n is
re-labeled as an edge node.
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Algorithm 2 Label Split nodes in S(F )

Skeleton Nodes: N
for all n ∈ N do
ψ(n) = τs
for all m ∈Mn do

if ω(n) ≥ ω(m) then
ψ(n) = τe

end if
end for

end for

3.2 Coverage Paths

The resulting cells from the CDM always have the property that their straight skeletons
do not contain any split nodes. This allows for non-convex cells produced by the CDM
to be covered though a set of inward spiraling, contour following paths. These paths will
appear identical to the offset polygons produced as part of the shrinking process discussed
in Section 2.3 and shown in Figure 3.1.

While this pattern will create a valid set of coverage paths, as the robot reaches the
middle of the cell, the distance between successive turns tends to get shorter, which in turn
will lead to inefficient paths. Further, by ending in the middle of the cell, a robot must
pass over an already covered area on its way to the next cell.

Instead, we propose a coverage method for non-convex cells which first performs contour
following starting from the border of the cell and spiraling in until the remaining free space
forms a convex shape, at which point a series of boustrophedon paths results in complete
coverage. This method is referred to as CDM coverage pattern, and has several advantages
over boustrophedon paths and spiraling coverage paths. Firstly, it does not lead to the
creation of additional cells as boustrophedon paths do, and secondly, in the case of agents
with non-holonomic constraints, it provides a headland to perform the turning operations
if required [29]. By covering the last portion of free space in a cell after spiraling inward,
the problem of sharp cornering near the middle of the cell is also avoided. Furthermore, for
many robotic applications the boundary of the free space is often treated with additional
care due to the greater risk of collision in the case of poor localization. An example of
paths produced by the CDM coverage planner when applied to a test environment is shown
in Figure 3.4.
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Figure 3.4: Coverage paths produced in an example environment using the CDM cov-
erage path algorithm. The green and red circle indicate the start and end of the paths
respectively, while the background colors indicate the cells produced by the CDM.
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3.3 Cell Visitation Order

The last step of any cellular decomposition method is to connect the coverage paths in such
as way that the inter-cellular travel is minimized. One issue that arises when attempting
to find the optimal cell visitation order, is that the location of where the agent performs
coverage in a cell produced by the CDM can have a dramatic effect on both the coverage
path length and the end point. In this work it was found that for the environments explored
in this work, the inter-cellular travel is usually less than 15 percent of the coverage path
length. Therefore to reduce the complexity of the cell-ordering problem, it is assumed that
all coverage paths start at the entrance to the cell that corresponds to the shortest coverage
path for that cell.

Once a set of coverage paths has been created, one for each cell, the optimal visitation
order must be determined. By creating a weighted, undirected graph between the end
point of each coverage path in each cell and the start points of all other coverage paths
as shown in 3.5, the cell visitation problem can be treated as the graph based Traveling
Salesman Problem and solved using a number of TSP approximation algorithms that are
readily available.

In this work, an adjacency matrix is used to represent an adjacency graph between
each cell, where the weights listed in the graph correspond to the distance between two
points which are found using Dijkstra’s Algorithm and a probabilistic road map (PRM)
[25]. The optimal visitation order is found using the LinKernighan heuristic (LKH) [28]
TSP approximation algorithm implemented by [20]. This implementation directly accepts
adjacency matrices as a problem input. The output from the LKH TSP solver is then used
to directly connect the start and end points of all paths and produce a complete coverage
tour as shown in Figure 3.6.
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1 - 9.5 12.1 9.1 10.0 9.8
2 8.9 - 12.7 5.5 8.9 7.4
3 9.4 11.8 - 11.4 7.0 12.4
4 6.7 3.7 10.7 - 8.6 3.5
5 7.2 9.5 8.6 9.2 - 3.7
6 7.8 7.5 12.1 6.7 9.7 -

(b)

(c)

To
1 2 3 4 5 6
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m

1 - 9.5 12.1 9.1 10.0 9.8
2 8.9 - 12.7 5.5 8.9 7.4
3 9.4 11.8 - 11.4 7.0 12.4
4 6.7 3.7 10.7 - 8.6 3.5
5 7.2 9.5 8.6 9.2 - 3.7
6 7.8 7.5 12.1 6.7 9.7 -

(d)

Figure 3.5: Adjacency graph and matrix for the the inter-cellular distances. (a) highlights
the inter-cellular paths between the end points of all coverage paths from cells 1-5 going
to the start point of cell 6’s coverage. (b) shows the corresponding row and distances for
(a). (c) highlights the paths between the end point of cell 6’s coverage path to the start
points of coverage paths 1-5 along with the corresponding distances highlighted in row 6
of the adjacency matrix as shown in (d).
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Figure 3.6: A complete coverage tour using the output from the LKH solver and the
adjacent matrix input highlighted in 3.5. Solid lines indicate coverage paths where the
robot is carrying out a task such as cleaning and the dashed lines indicate inter-cellular
travel where the robot is assumed to be doing no work. As before, green and red circles
indicate the start and end points of a coverage path respectively. In this example, the
robot starts at the cell in the bottom left and finishes in the cell located at the bottom
middle of the figure.
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Chapter 4

Experimental Results

The CDM segmentation algorithm is implemented in C++ and heavily relies on the Com-
putational Geometry Algorithms Library (CGAL). The straight skeletons for all examples
were generated using CGAL’s implementation of Felkel’s method [16, 9]. This algorithm is
capable of handling non-convex environments with holes with a computational complexity
on the order of O(qr+qlog(r)) where q is the number of vertices and r is the number of re-
flex vertices [16]. The environments themselves are represented using the 2D-Arrangements
library and any operations, such as edge insertion, are performed using methods from the
2D-Arrangements library. The path generation algorithm described in Section 3.2 relies
on the polygon offsetting library to produce spiraling paths.

The segmentation results of the CDM algorithm are compared to the morphological
and Voronoi segmentation algorithms described in [7] along with the Boustrophedon algo-
rithm [10]. The Boustrophedon decomposition algorithm, BD, also uses CGAL to perform
mathematical operations on 2-D polygons. The morphological and Voronoi segmentation
algorithms are implemented in a software package provided by [7] and run on the same
environments the CDM is tested on. The package provided by [7] also calculates a set
of quantitative metrics to evaluate and compare the numerical properties of the resulting
segmentations.

The CDM coverage path planning algorithm outlined in Section 3.2 is implemented and
applied to the room segmentation results produced by the CDM. The room segmentation
results are only compared to the paths generated using the BD and path generation function
outlined in [10]. Grid based methods such as the Spiral STC were not considered as they
do not result in an exact cellular decomposition and do not operate in the polygonal
environments studied in this work.
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4.1 Room Segmentation Results

The CDM algorithm is first tested on a set of simple, ideal, polygonal environments shown
in Figure 4.1. These test environments include a convex, a non-convex and a non-convex
environment with a non-convex hole. In all three test environments in Figure 4.1, the
CDM correctly identifies the split nodes in the environment and produces a segmentation.
When the CDM is applied to a concave polygon, as shown in Figure 4.1c, the segmenta-
tion is simply equal to the original polygon because the straight skeleton of any convex
environment will not contain any split nodes due to the lack of reflex vertices [2] [16].

(a) Original Image (b) Detected Boundary

(c) Extracted Contours (d) CDM Segmentation

Figure 4.2: Converting a grid map (a) to a
polygonal representation for the CDM shown
in (c). (b) shows the contours detected us-
ing the contour function in OpenCV and (d)
highlights the resulting segmentation using
the CDM on (c).

Next the CDM was tested on a set of en-
vironments with increasing complexity that
are selected from a set of environments pro-
vided by the work [7]. The test set of en-
vironments are provided as a set of JPEG
images with varying quality. Some of the
images appear to be produced from floor
plans of various offices, while others are pro-
duced from the results of various 2D laser-
SLAM algorithms. The varying image qual-
ity meant that only a subset of the maps
were usable in this work. From the 20 en-
vironments provided by [7], only 10 were
selected, 5 of the office environments and 5
of the laboratory environments. Since the
environments are provided as a set of im-
ages, they are treated as occupancy grids as
is done in [7]. To apply the CDM to these
environments the occupancy grid maps are
transformed to a polygonal representation
of the environment. This process is detailed
below.

The Open Computer Vision Library
(OpenCV) is an open source package that
contains a multitude of useful functions for
extracting information from images. In this case, the maps provided by [7] are converted
to a set of binary images using the thresholding function in OpenCV and contours are
extracted using the OpenCV contouring function using the simple approximation setting.
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(a) Convex Environment (b) Convex Segmented

(c) Non-convex Enviornment (d) Non-convex segmentated

(e) Non-convex with a hole (f) Non-Convex with a hole seg-
mented

Figure 4.1: The CDM applied to a test set environments. Figures 4.1c and 4.1d demon-
strate that for a convex environment, the CDM does not insert any additional edges as
expected. Figures 4.1c, 4.1d and 4.1e, 4.1f highlight the CDM applied to a convex and a
non-convex environment with holes. In all figures, the CDM correctly identifies constriction
points in the environment and inserts a set of additional edges.
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(a) Office 1 (b) Office 2

(c) Office 3 (d) Office 4

Figure 4.3: Office environment segmented with the CDM

The simple approximation setting removes any points that lay in a straight line along a
contour. This process is demonstrated in Figure 4.2 along with the resulting segmentation.

The CDM was tested on a set of twelve environments, ten of which are used in the
work of [7] and two that are generated from floor plans of two buildings at the University
of Waterloo, Ontario. The two floor plans are from the Engineering 5 (E5) building’s 3rd
floor and the Environmental 3 (ENV-3) building’s second floor and are referred to as the
UW environments. The resulting segmentations are highlighted in Figures 4.3, 4.4 and 4.5
and demonstrate the CDM’s results when applied to four of the tested office environments,
four of the lab environments and the two UW environments respectively.
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(a) Lab 1 (b) Lab 2

(c) Lab 3 (d) Lab 4

Figure 4.4: Lab environments segmented with the CDM
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(a) Engineering 5 - 3rd Floor

(b) Environment 5

Figure 4.5: Segmentation result of applying the CDM to UW environments
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4.1.1 Evaluation of Room Segmentation

To evaluate the overall quality of the CDM’s segmentation, the environments highlighted
in Figures 4.3, 4.4 and 4.5 were also segmented using the BD [10], Morphological and
Voronoi segmentation methods implemented by [7]. A side by side, visual comparison
of the segmentations produced by running the CDM, BD, Morphological and Voronoi
segmentation algorithms when applied to the office, laboratory and floor plan environments
are presented in Figures 4.6, 4.7, and 4.8 respectively.

Qualitative Evaluation

Several general patterns are observed in Figures 4.6, 4.7 and 4.8. First the CDM segments
the maps into more defined rooms and hallways in comparison to the Morphological and
Voronoi methods. In all cases, the BD is inferior to all other tested methods as it greatly
over-segments the environment and tends to make cells that span across two rooms and a
hallway if door ways are aligned, as observed in Figure 4.6 in Offices 1 and 2.

Overall, the Voronoi segmentation has the most similar results to the CDM, but has two
undesirable tendencies. Firstly, the Voronoi segmentation tends to have rooms that spill out
of the doorway and into hallways. This is most noticeable in Figure 4.6, Office 1 and 2 and
Figure 4.7 Lab 1, 2 and 3. Secondly, in all environments, the Voronoi segmentation method
over-segments hallways and other long, narrow passages. This tendency can be considered
both a negative and a positive depending on the final application. Over segmentation in
environments like Figure 4.6, can greatly simplify tasks such as path planning and region
based searching in comparison to the CDM. For example in the Office 1 environment, the
Voronoi segmentation method segments the main hallway into several regions while the
CDM treats the hallway as a single, long and highly non-convex shape. For the use of
coverage path planning however, over-segmentation is generally considered a negative trait
as over-segmentation generally results in greater inter cellular travel [10].

The Morphological segmentation method [6] yields identical results to the CDM on the
Offices 2, 4 and 5 environments (Office 5 is not shown here), but tends to under-segment
in Offices 1 and 3 and all laboratory environments. In all Lab environments, Figure 4.7,
there are at least four cells that contain partial portions of several rooms, or several rooms
a large portion of hallway, or an extremely large portion of the map such as Lab 1 where
5 rooms and a hallway are grouped into one cell.
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Quantitative Comparison

In [6], the authors present a set of metrics to qualitatively evaluate and compare segmen-
tation methods. Again, using software provided by [6], the metrics presented in [7] are
calculated for each tested environment and summarized across all segmentation methods.

Let Ai, Ki, and Bi indicate the area, perimeter, and the area of the rotated bounding
box of Cell Ci, respectively. The eigenvalues calculated using the principle component
analysis, PCA, of cell Ci are denoted as e1,i, and e2,i. Let GTi indicate a ground truth
cell such that the area of the intersection of GTi ∩Ci is maximized and let the area of the
intersection be denoted as AGTi∩Ci

. Using the above notation, the comparison metrics are
defined as follows.

• Cells: The number of cells created by the segmentation method
• Area: The average area of each cell, Ai, in m2

• Perimeter: The average perimeter of each cell, Ki, in m
• A-Compactness: The average of the cell area divided by its perimeter, Ai/Ki

• B-Compactness: The average of each cell’s area divided by the area of the rotated
bounding box of each cell, Bi, Ai/Bi.
• Shape: The quotient of the eigenvalues associated with each cell, e1,i/e2,i.
• Recall: The area of intersection AGTi∩Ci

, divided by the area of the cell, Ai.
• Precision: The area of intersection AGTi∩Ci

, divided by the area of the cell, AGTi

In general, fewer cells with relativity large areas and short perimeters are considered
ideal as they indicate the cell has a large amount of open space in relation to its border.
The metric, A-Compactness provides a unitless measure to quickly assess this value as it
is the ratio of the area divided by the squared perimeter. The squareness and convexity
of a cell can be evaluated by looking at the B-Compactness, which is the area of the cell
divided by the rotated bounding box that encompasses it. Square cells will have a high
B-Compactness value and cells that are long and spread out, such as the hallways, will
have a low B-Compactness.

The Shape metric is also a measure of squareness, as it is the ratio of the primary axis
over the secondary axis as found with the PCA of a cell. A shape value of 1 is observed
in a perfectly square cell and a shape value of 4 will be observed in rectangular cell where
the length is four times greater then the width.

The measurements of Recall and Precision are a way to compare the segmentation
quality with a ground truth in a quantitative manner. A value of 1 for both recall and
precision indicates a perfect match between the ground truth and the segmentation. Recall
is high in segmentations where large cells completely overlap and low if an environment
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is over segmented. Precision is high when an environment is over-segmented and low in
under-segmented environments. Figure 4.9 highlights two environments one with high
recall and low precision, 4.9a and the other with low Recall, high Precision 4.9b.

Ai = 21

AGT = 30

ACi∩GTi
= 21

Recall = 1

Precision = 0.7

(a) High recall and low precision

Ai = 26

AGT = 18

ACi∩GTi
= 18

Recall = 0.69

Precision = 1

(b) Low recall and high precision

Figure 4.9: Examples of recall and precision
metrics. Blue indicates the region of a ground
truth cell GTi and horizontal lines indicate
the segmented area Ci

Each of the metrics is calculated for the
five office, five lab and UW environments
outlined in 4.1.1 using each segmentation
method along with a set of ground truth
segmentations. For the lab and office envi-
ronments, the ground truth segmentations
are taken directly from [6] and for the UW
environments, the segmentation is based on
the location of doorways in the floor plans
used to create the Engineering 5 and Envi-
ronmental 3 maps. The average and stan-
dard deviation of each metric for each seg-
mentation method is presented in Table 4.1.

In Table 4.1 a strong match between a
segmentation and the ground truth is in-
dicated if both the metric’s average value
and standard deviation matches the ground
truth’s values. The importance of looking
at the standard deviation as well as the area
can be seen in Figures 4.3, 4.4 and 4.5, par-
ticularly in the Office 1 and 3, Lab 1, 2,
and 3 and Engineering 5 and Environment
3 floor plans. In these environments, the
characteristics of the resulting segmentation cells can vary dramatically depending if a cell,
Ci is associated with a hallway or a room. Hallways, which tend to be narrow, long and
highly non-convex, will have dramatically different Area, A-Compactness, B-Compactness,
Shape and Perimeter values compared to square cell associated with a simple room. This
variability is observed in standard deviation of each metric shown in Table 4.1. An environ-
ment such as Office 3, Figure 4.3c has a higher observed variation in each metric compared
to Office 2, Figure 4.3c.

From Table 4.1 the CDM, on average, produces fewer and larger cells in comparison
to all other segmentation methods as indicated by a relatively low A-Compactness, high
Recall and average Precision metric. The high Recall value is expected as the CDM, from
a room segmentation viewpoint, tends to under-segment environments, Figure 4.5b. The
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Table 4.1: Average and standard deviation of segmentation characteristics averaged over
all Lab, Office and Floorplan environments. Ground Truth indicates the characteristics of
a map that was hand labeled

Segmentation Method
CDM BD Morph Voronoi Ground Truth

Cells 34 ± 16 94 ± 42 36 ± 14 56 ± 21 40 ± 14
Area 31 ± 209 9.5 ± 38.2 25.28 ± 87 16.24 ± 46.5 24.81 ± 154
Perimeter 26.65 ± 101 20.17 ± 69.9 25.03 ± 87.5 16.42 ± 55.6 28.74 ± 109
A-Compactness 0.057 ± 0.09 0.033 ± 0.11 0.042 ± 0.04 0.051 ± 0.031 0.045 ± 0.178
B-Compactness 0.78 ± 0.6 0.03 ± 0.323 0.83 ± 0.503 0.92 ± 0.33 0.35 ± 0.316
Shape 4.88 ± 39 10.74 ± 80 4.51 ± 18 4.14 ± 14 6.05 ± 23.8
Recall 0.86 ± 0.12 0.58 ± 0.19 0.82 ± 0.26 0.80 ± 0.26 1.00 ± 0
Precision 0.76 ± 0.16 0.76 ± 0.10 0.78 ± 0.12 0.85 ± 0.14 1.00 ± 0

highest precision is observed by the Voronoi method as expected due to its tenancy to over-
segment all environments, yet maintain room like shapes in the resulting segmentations.
The BD scores the worst on almost all metrics, with the largest number of cells produced,
smallest average areas, large Shape values due to the elongated nature of the cells and a
dramatically lower Recall in comparison to all other segmentation methods.

Given that the primary goal of the CDM algorithm is to produce as few cells as possible
while still being able to cover the cells with a complete coverage path planning pattern,
the tendency of under-segmentation can be seen as a positive for coverage applications.
If the application is to instead navigate an environment, locate an obstacle or perform
the coverage operation with limited resources such that the agent cannot clean extremely
large cells without refueling, the Voronoi segmentation method would be considered more
effective.
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4.2 Coverage Path Planning Results

The CDM coverage planning algorithm outlined in section 3.2 is implemented in C++ and
applied to the lab, office and UW environments. An implementation of the boustrophedon
coverage planning algorithm [10] is also applied to segmentation cells generated using the
BD. The coverage path planning results for both the CDM and the BD are compared using
their normalized coverage path lengths ηcoverage = lcoverage

lopt
where lcoverage is the sum of the

length of all coverage paths of all cells and lopt is defined as the optimal coverage path
length. For the environments analyzed in this work, it is assumed that lopt = aF

w
where aF

is the area of the free space of the environment and w is the width of the robot or agent,
χ, performing the coverage operation. This formulation implicitly assumes that all regions
in the environment are reachable by χ and that χ can be placed anywhere in F . With the
exception of extremely simple environments such as a square, lopt is likely impossible to
achieve with a real robot. A value of ηcoverage = 1 indicates a perfect coverage path.

Figure 4.10: Over-segmentation of the map
by the BD leads cells that require overlap-
ping coverage passes to guarantee complete
coverage of each cell.

Both the BD and the CDM coverage
path planning algorithms are exact decom-
position methods that require the robot
performing coverage to travel along paths
between the start and endpoints of the cov-
erage patterns for each cell. During inter-
cellular travel it is assumed that the robot
is not performing any task, and so areas
passed over during inter-cellular travel are
not considered covered. The total length of
a complete coverage path of the entire en-
vironment, ltotal, is equal to the sum of the
length of the inter-cellular travel, lintercell
and lcoverage. Similar to the coverage plans,
the total coverage path lengths of the BD
and CDM is done using the normalized path
length, ηtotal = lcoverage+lintercell

lopt
.

Table 4.2 highlights ηtotal and ηcoverage
of paths generated using the CDM and BD

coverage planning algorithms applied to the segmentations of each environment discussed
in section 4.1. The results of 4.2 are generated using a robot with a width w = 1.0m. As
the data in Table 4.2 indicates, the CDM produces both shorter coverage paths and total
coverage paths on average as compared to the BD. This is due to the BD’s tendency to
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Table 4.2: The length of the coverage paths and total path length (Coverage path + Inter-
cellular path length) normalized by the theoretical optimal coverage tour length each map
using a robot of width 1.0m

BD CDM
Map Coverage Total Path Coverage Total Path
E5 1.27 1.73 1.07 1.19
Env 3 1.17 1.41 1.10 1.25
Lab 1 1.12 1.37 1.17 1.29
Lab 2 1.12 1.35 1.12 1.21
Lab 3 1.26 1.46 1.14 1.25
Lab 4 1.26 1.39 1.14 1.38
Lab 5 1.24 1.43 1.16 1.51
Office 1 1.10 1.38 1.08 1.40
Office 2 1.16 1.51 1.13 1.28
Office 3 1.20 1.52 1.17 1.42
Office 4 1.23 1.53 1.13 1.35
Office 5 1.22 1.76 1.05 1.42
Average 1.19 1.50 1.12 1.33
Stdev 0.06 0.14 0.04 0.10

over-segment the environment as shown in Table 4.1. Thin cells that are less than a robot’s
width must still have a path that passes through them, even though the path may overlap
with other neighboring cells as shown in Figure 4.10, leading to a non-optimal coverage
path length ηcoverage > 1. Due to over-segmentation, the BD also requires on average three
times as many inter-cellular paths as compared to the CDM.

The CDM also suffers from a similar issue of redundant coverage due to the spiraling
paths. If a long hallway or corridor is attached to a large room, there may be a requirement
to produce a coverage plan that has redundant coverage, see Figure 4.11. The two paths
shown in 4.11 highlight two robots of the same size covering the same environment. In
Figure 4.11b, the robot has a width of 1.25m and must perform an additional contour
following path to ensure the centre of the hallway section is covered. In Figure 4.11a, the
of width of 0.93 m can cover the same environment with very little overlap during the
last contour following path. The need for redundant coverage occurs when the modulus
of the width of the section, wsection, and the width of the section is not a multiple of two
robot widths, 2w, is non zero, wsection mod 2w 6= 0. Any remainder indicates the amount
of overlap on the final contour following path performed by the robot as shown in Figure
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(a) Robot width = 1.25 m, ηcoverage = 1.14 (b) Robot width = 0.93 m, ηcoverage = 1.03

Figure 4.11: The amount of overlap on contour following paths is dependent on the robot
size and the width of the hallway

4.11, with the worst case occurring when widthsection mod 2w = w which indicates a robot
must completely backtrack over the portion of its path within that area of the cell. As
the robot width increases, the more likely a significant overlap will be required to ensure
complete coverage. This trend is observed in Figure 4.12.
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Figure 4.12: Effect of robot width on the nor-
malized coverage and total path lengths.

The relation between agent widths of
0.25, 0.5, 0.75, 1.0, and 1.25 m and the
average normalized and total path lengths
for all environments is highlighted in Fig-
ure 4.12. As seen in 4.12 the CDM and
BD both become more efficient when cov-
erage is performed by a smaller agents as
expected from Figures 4.10 and 4.11.

Select examples of the CDM method
from Table 4.2 are shown in Figures 4.13
through 4.17 with the CDM coverage paths
generated for each cell. Figure 4.13 high-
lights a segmentation where a number of
rooms near the center of the environment
are grouped with the hallway. While from
a room segmentation point of view this is
perhaps undesirable, the CDM coverage al-
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gorithm from section 3.2 determines an efficient coverage path. Figure 4.14 highlights the
largest environment tested in this work that also has the largest variety of shapes of rooms
and hallways. Next, a pair of environments with curved segments that are approximated
as straight lines are shown in Figures 4.15 and 4.16, demonstrating that the CDM can
handle curvature if the curvature is approximated well enough. Lastly, an example of the
CDM when applied to stereotypical, rectilinear office environments is shown in figure 4.17.

In all examples the CDM produces coverage paths that are within 15 % of the theoretical
optimal for a robot of width 1.0 m. The inter-cellular travel is between 10 to 30 % of the
total path length for a 1.0 meter robot which is a significant portion of the total travel time.
In future work a modification to the coverage path generation could be made. Currently the
start and end points of each path used by the TSP solver are taken from the start point that
results in the best coverage path for each cell. In reality however, the coverage of a cell may
start at any edge that is shared with a neighbour. Further, the CDM coverage algorithm
could be modified in such a way that it always ends at a doorway into a neighbouring cell,
which will in turn reduce the total travel time.
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Figure 4.13: CDM Coverage paths generated for Lab 1. Despite the complex nature of
the largest, non-convex cell with 8 room-like regions combined with the hallway, the CDM
coverage path algorithm still determines a near optimal coverage path.
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Figure 4.14: CDM Coverage paths generated for Lab 2 highlighting the largest environment
explored in this work with a large variety of cell shapes.
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Figure 4.15: CDM Coverage paths generated for Office 1 showing coverage of a complex
hallway section and a small curved region.
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Figure 4.16: CDM Coverage paths generated for Office 2 highlighting coverage in an en-
vironment with curved outer boundaries that are approximated as a series of straight line
segments.
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Figure 4.17: CDM Coverage paths generated for Office 4 showing coverage in a standard,
rectilinear office environment.
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Chapter 5

Conclusion

The demand for efficient, intuitive and accurate segmentation and coverage path planning
algorithms will grow as the demand for both commercial and domestic, indoor service
robots expands in the coming years. The accurate segmentation of indoor environments
into rooms will allow service robots to behave and plan in a more human like manner.
In particular, room segmentation, as demonstrated in this work, can be used to develop
complete coverage path planning algorithms that can efficiently cover or clean a room
produced by the proposed room segmentation algorithm.

This work presents a novel room decomposition algorithm that allows for an efficient,
simple, yet intuitive coverage plan to be generated. Both the room segmentation algorithm
(CDM) and the coverage path planner are applied to a set of 12 realistic indoor office
and laboratory environments. The resulting segmentations are compared directly to the
Boustrophedon [10], Morphological and Voronoi decomposition methods outlined in [7]. In
the majority of the quantitative metrics, the CDM most closely represents the ground truth
room segmentations provided by [7]. The segmentation provided by the CDM allows a set
of coverage paths to be quickly generated that are on average no more than 1.2 times longer
than the theoretical optimal path length on all environments tested. The CDM coverage
path planner is compared to Boustrophedon Decomposition and cell coverage algorithm
[10] and shown to have shorter total coverage paths for all environments tested.

5.1 Future Work and Possible Improvements

The algorithms presented in this work also have significant potential extensions that could
improve both their robustness and efficiency. Possible improvements to the CDM include
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improving its robustness to noise in the map and deriving methods to handle furniture
such as tables or chairs. For use on actual service robots, the CDM will need to be able
to handle any noise in maps produced by any current state of the mapping or SLAM
algorithms. The CDM coverage path planner might also be improved by allowing it to
somehow classifying segmented cells as hallways or rooms and treating them differently
during coverage planning. In particular for office environments hallways can have numerous
connections between individual rooms, which often only have a single connection to the
hallway. As a result, the robot performing coverage must always enter and exit hallways
numerous times to reach each room, and therefore could coverer a large portion of the
sections of hallways as the robot moves between rooms. A more efficient solution will be
to plan and perform a coverage operation while moving between rooms through a given
hallway. Further, the cell coverage method can be improved using additional cell coverage
methods which follow a subset of wall edges, similar to the work of Oksanen et al. [29].
Such a solution will alleviate the problem of a path ending in the middle of a cell when
coverage is completed in a non-convex cell.
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[24] Mathieu Labbé and François Michaud. Online global loop closure detection for large-
scale multi-session graph-based slam. In 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 2661–2666. IEEE, 2014.

[25] Jean-Claude Latombe. Robot motion planning. Kluwer Academic Publishers, 1991.

[26] Tae-Kyeong Lee, Sanghoon Baek, and Se-Young Oh. Sector-based maximal online
coverage of unknown environments for cleaning robots with limited sensing. Robotics
and Autonomous Systems, 59(10):698 – 710, 2011.

[27] Yan Li, Hai Chen, Meng Joo Er, and Xinmin Wang. Coverage path planning for uavs
based on enhanced exact cellular decomposition method. Mechatronics, 21(5):876–885,
2011.

[28] Shen Lin and Brian W Kernighan. An effective heuristic algorithm for the traveling-
salesman problem. Operations research, 21(2):498–516, 1973.

[29] Timo Oksanen and Arto Visala. Coverage path planning algorithms for agricultural
field machines. Journal of Field Robotics, 26(8):651–668, 2009.

[30] Sebastian Thrun. Learning metric-topological maps for indoor mobile robot naviga-
tion. Artificial Intelligence, 99(1):21 – 71, 1998.
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