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Abstract 

The sensors mounted on a driverless vehicle are not always reliable for precise 

localization and navigation. By comparing the real-time sensory data with a priori map, the 

autonomous navigation system can transform the complicated sensor perception mission into 

a simple map-based localization task. However, the lack of robust solutions and standards for 

creating such lane-level high-definition road maps is a major challenge in this emerging field.  

This thesis presents a semi-automated method for extracting meaningful road features 

from mobile laser scanning (MLS) point clouds and creating 3D high-definition road maps for 

autonomous vehicles. After pre-processing steps including coordinate system transformation 

and non-ground point removal, a road edge detection algorithm is performed to distinguish 

road curbs and extract road surfaces followed by extraction of two categories of road markings. 

On the one hand, textual and directional road markings including arrows, symbols, and words 

are detected by intensity thresholding and conditional Euclidean clustering. On the other hand, 

lane markings (lines) are extracted by local intensity analysis and distance thresholding 

according to road design standards. Afterwards, centerline points in every single lane are 

estimated based on the position of the extracted lane markings. Ultimately, 3D road maps with 

precise road boundaries, road markings, and the estimated lane centerlines are created.  

The experimental results demonstrate the feasibility of the proposed method, which can 

accurately extract most road features from the MLS point clouds. The average recall, precision, 

and F1-score obtained from four datasets for road marking extraction are 93.87%, 93.76%, and 

93.73%, respectively. All of the estimated lane centerlines are validated using the “ground 
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truthing” data manually digitized from the 4 cm resolution UAV orthoimages. The results of a 

comparison study show the better performance of the proposed method than that of some other 

existing methods.  
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Chapter 1  

Introduction 

1.1 Motivation 

     Since the 1980s, an increasing number of companies have worked towards autonomous 

vehicle technology due to its great potential and vast development prospects. From the early 

exploration to nowadays’ fleet of driverless cars, autonomous vehicles have always attracted 

attention. Today, as one of the most well-known autonomous vehicle designer, Google has brought 

its driverless cars from laboratory into commercial research. In 2013, both Audi and Toyota 

published their autonomous vehicle projects, jumping into the new trend of commercial 

autonomous vehicle development (Hsu, 2013). According to a report by BCG (2017), wider 

commercialization of fully autonomous vehicle is expected to be launched in the next ten years, 

and by 2035, 12 million fully autonomous units could be sold a year globally. The market for 

partially and fully autonomous vehicles is expected to leap from about $42 billion in 2025 to nearly 

$77 billion in 2035.  

In recent years, with more and more driving assistance systems flooding into the market, 

such as lane departure warnings (LDWs), lane keeping assist systems (LKAS), and adaptive cruise 

control systems (ACC), driving becomes easier than before, and people are more likely to enjoy 

their driving experience (Thorsten et al., 2012). However, fully autonomous driving in real and 

complex urban areas remains a significant but exclusive goal. One primary limitation that in the 

way of this promising field is the lack of precise localization and navigation methods. 
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The precise localization of an autonomous vehicle is crucial for driving safety and 

efficiency. Autonomous vehicles could conduct a series of catastrophic behaviors with inaccurate 

localization and planning, such as driving on the wrong side of the road, or illegally changing lanes. 

Sometimes autonomous systems might identify sidewalks and maintenance lanes to be driveable, 

or believe a destination is inside of a large obstacle (Thorsten et al., 2012).  

Autonomous vehicles need to know their precise location. To help these “robots” make 

sense of the world, several sensors are commonly employed in autonomous technology, including 

image-based sensors like cameras and remote sensing devices like Radio Detection and Ranging 

(RADAR) and Light Detection and Ranging (LiDAR) (Thorsten et al., 2012). Also, Global 

Positioning System (GPS) antennas are mounted to measure the vehicles’ position and to estimate 

its motion. Generally, a “sense-plan-act” procedure is widely used by most autonomous systems 

(Siciliano & Khatib, 2008). With good perception, autonomous vehicles can perceive their local 

environments, thus achieving reasonable planning and acting.  

Nevertheless, all of these sensors have limitations. For instance, cameras are better at 

capturing data in sunny days than fog and rains. The ambient condition sensitivity becomes its 

primary limitation. Unlike camera-based systems, radar uses signals’ time of flight to detect 

objects and compute the distance to objects. Radio waves are useful tools that enable radar systems 

to gather data regardless of weather conditions. However, one critical shortcoming of radar is its 

reflectivity limitation, that is, only metallic objects can be successfully detected, while non-

metallic features become invisible to radar sensors. Particularly when it comes to pedestrian 

detection or road boundary detection, radar systems are considered as incompetent. Moreover, 

GPS signals weaken or become corrupted under dense canopy, urban structures and other shelters, 

resulting in a delayed reaction of navigation systems (Urmson, 2008). Most importantly, in the 
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field of precise trajectory design and detailed road information registration, sensors are not always 

reliable. In reality, autonomous vehicles need to know which area of the lane can be safely driven 

on, and when making lane-changing decisions, the system needs to extrapolate specific trajectories. 

Therefore, if some maps with pre-set information of the environment are available, the 

performance of autonomous navigation and can be drastically improved. 

Traditional maps commonly have an error range of approximately 10 m. Different from 

traditional 2D maps, high-definition maps are created from MLS data with the error of 10-to-20 

cm, containing billions of 3D point cloud data which could represent detailed 3D road network 

topologies. These high-precision maps can give autonomous vehicles greater ability to maneuver 

smoothly, while the on-board sensors are responsible for another part of the task: to ensure the 

driving safety. It is well-known that the detection range of sensors is limited due to the presence 

of corners, ramps, and obstacles like moving vehicles. If an autonomous vehicle can obtain real-

time data from a priori map, it can not only “expand” its detection range, knowing whether there 

are obstacles, or sharp curves in front of it, but also allows sensors to respond more quickly.  

By combining real-time sensory detection with a priori knowledge, a priori map with rich 

metadata can transform the complicated sensor perception mission into a simple map-based 

localization task. Today, the idea of map-aided localization has been widely accepted by 

automobile manufacturers. Compared with traditional localization methods like GPS / Inertial 

Navigation System (INS) integration method and the Simultaneous Localization and Mapping 

(SLAM) (Tao, 2013), map-aided localization is capable of long-distance path planning and never 

suffers from the problems that sensor-based odometry faces, such as wrong time integration and 

loop closure (Pink, 2009).   



 

 4 

However, map-aided localization still faces several challenges. First, MLS point cloud data 

can only be operated by specialists due to its massive data volume and high-complexity.  The size 

of a MLS dataset representing 1 km of road length can be over 1 GB. Moreover, the inconsistent 

distribution of point density makes MLS data difficult to process. Hence, there is no commercial 

software with comprehensive functions that can handle such types of data. Most existing methods 

for creating 3D road maps still require significant human input. To solve this problem, this study 

attempts to develop an automated approach for creating 3D high-definition road maps. 

 

 

 

 

 

 

 

 

Figure 1.1: A 3D high-definition road map (HERE, 2016) 

Figure 1.1 shows a sample of high-definition road maps in the 3D coloured point cloud 

environment, which clearly indicates the lane lines (highlighted in blue), road edges (highlighted 

in red), lane centerlines (highlighted in orange), and driving directions (presented with arrows). 

However, the detailed procedures for creating such maps cannot be found in literature. 
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1.2 Objectives of the Thesis 

As map-aided localization has been employed by increasing autonomous vehicle designers 

and manufacturers, a great number of consumer-grade 3D high-definition road maps are required. 

These regional specific 3D high-definition road maps tend to widely facilitate autonomous 

navigation and change people’s trip mode. However, there are no or few established methods for 

creating 3D high-definition road maps for autonomous vehicles. In this study, a semi-automated 

approach for creating 3D high-definition road maps is proposed. The intended objectives are listed 

below: 

1)  To develop a semi-automated algorithm for extracting curbs from massive MLS point 

clouds, generating road boundaries and extracting road surfaces. 

2) To develop a semi-automated algorithm for road marking extraction by semantically and 

topologically analyzing road characteristics, providing lane-level navigation for 

autonomous vehicles. 

3) To estimate lane centerlines and design appropriate trajectories for autonomous vehicles. 

4) To provide prototype procedures for creating 3D high-definition road maps using MLS point 

clouds. 

1.3 Structure of the Thesis 

The thesis is organized into five chapters. 

Chapter 1 briefly introduces the development of autonomous vehicles, the working 

principle of autonomous vehicles, as well as the motivation of this study – the requirement for 

3D high-definition road maps. Finally, the objectives and structure of this thesis are given. 
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Chapter 2 introduces some background information of this study, such as the working 

principle of MLS system, the components of a 3D high-definition road map, and the basic 

elements for lane-level navigation. This chapter also presents the literature review which related 

to this thesis, including road surface extraction techniques, road marking extraction techniques, 

and other existing road maps.  

Chapter 3 describes the study area, datasets, related software and platforms, followed by 

an explicit description of the proposed approach. In this chapter, the stepwise data processing 

algorithms are described in detail, including the voxel-based upward growing algorithm, the 

segmentation-based curb detection algorithm, the intensity analysis, the statistical outlier 

removal algorithm, the conditional Euclidean clustering, the RANSAC-based road edge 

refinement algorithm, and the lane marking extraction algorithm based on road design 

specification. Finally, this chapter will end with an accuracy assessment method that is adopted 

to evaluate the performance of the proposed algorithms. 

Chapter 4 presents the output of the proposed method. This chapter also discussed the 

accuracy of the experimental results and the efficiency of the proposed algorithms. Besides, two 

comparative studies are introduced. 

Chapter 5 summarizes the results and findings of this study, as well as the contributions 

and limitations. Finally, recommendations for future studies are proposed. 
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Chapter 2  

Background and Related Work 

This chapter presents the background information and literature review which related to 

this study. Section 2.1 briefly introduces the principle of mobile laser scanning. Section 2.2 

describes the elements of lane-level navigation and 3D high-definition road maps. Section 2.3 

provides the literature review of existing methods for road surface extraction, road marking 

extraction, and navigation map generation. Section 2.5 summarizes this chapter. 

2.1 Introduction to Mobile Laser Scanning 

Mobile laser scanning is a mapping technology that is used for collecting 3D geo-

referenced data (point clouds) of physical environments by laser scanners mounted on mobile 

vehicles (Schwarz and El-Sheimy, 2007; Marshall, 2011). MLS systems send out and receive near-

infrared laser beams to rapidly scan surfaces of objects and calculate the range using Time of Flight 

(TOF). Another range measurement technique of MLS system is Phase Shift (PS), which utilize 

continuous laser illumination and amplitude modulation of the signal to determine the range at 

high frequency (Kuuko, 2013). Compared with conventional mobile mapping systems using 

optical or digital cameras, MLS systems can obtain 3D coordinates and intensity properties of the 

scanned features, which makes it more suitable for long-distance and detailed mapping tasks 

(Olsen, 2013; GIM, 2013).  

During the data collection missions, the GPS and Inertial Measurement Unit (IMU) 

constantly calculate real-time geodetic coordinates (WGS84) of the vehicle at the phase centre of 

the GPS antenna, the laser scanner(s) keep transmitting and receiving laser pulses to measure 3D 
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points, and the camera(s) capture images with the distance measurement indicator (DMI) 

displacement (Puente, 2011). Eventually, real-time ranging and imaging data with accurate 

WGS84 coordinates can be obtained.  

Figure 2.1 illustrates the principle of direct geo-referencing, in which, the position of the 

point of interest (P) in the local mapping frame can be determined by Eqs. (2-3) and (2-4) (Glennie, 

2007). The parameters used in this calculation are listed in Table 2.1.  

 

 

 

 

 

 

 

 

Figure 2.1 Principle of direct geo-referencing 
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Table 2.1 Parameters of the direct geo-referencing  

Parameters Description 

𝑿𝑷, 𝒀𝑷, 𝒁𝑷 Coordinates of Point P in the mapping frame 

𝑿𝑮𝑷𝑺, 𝒀𝑮𝑷𝑺, 𝒁𝑮𝑷𝑺 Coordinates of GPS antenna in the mapping frame 

𝑹𝑴
𝑰𝑴𝑼(𝝎, 𝝋, 𝛋) 

Rotation matrix between IMU body frame and mapping frame. 𝜔, 𝜑, κ are the 

roll, pitch and yaw of IMU in the local mapping frame, respectively  

𝒓𝑷
𝑺 (𝜶 𝒅) 

 Range vector from the laser scanner to the Point P. α, and d are the scan angle 

and range measured by the laser scanner.  

𝑳𝑿, 𝑳𝒀, 𝑳𝒁 The lever arm offsets from the IMU to the laser scanner 

𝒍𝑿, 𝒍𝒀, 𝒍𝒁 The lever arm offsets from the IMU to the phase center of GPS 

𝑹𝑰𝑴𝑼
𝑺 (∆𝝎, ∆𝝋, ∆𝛋) 

Rotation matrix between the laser scanner and IMU. ∆𝜔, ∆𝜑, ∆κ are boresight 

angles which align the scanners with the IMU 

  

It is notable that some of these parameters are provided by the manufacturer, such as the 

lever arm offsets and the rotation matrix between different components, while other information 

cannot be acquired directly and needs to be calculated using geometrical relations of other 

measured vectors (Barber et al., 2008). In addition, the accuracy of the acquired MLS data highly 

depends on the performance of navigation solution system (GNSS receiver, IMU, DMI) and laser 

scanners, as most of the other errors such as boresight errors and lever-arm errors can be corrected 

by system calibration in advance (Wang, 2016). 

2.2 Introduction to 3D High-definition Road Maps 

The automotive industry is rapidly evolving, and the march toward autonomous vehicles 

has begun. However, there is much to accomplish before vehicles can really take control. 3D high-

definition road map is the most powerful tool that help autonomous vehicles plan the right 

maneuvers and strategies. By helping give foresight to a car’s computers, and adding redundancy 
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to the car’s understanding of the situation it faces, 3D high-definition road maps could ease the 

burden of autonomous navigation.  

Different from traditional road maps, 3D high-definition road maps can provide lane-level 

navigation with centimeter-level accuracy. Figure 2.2 presents a high-definition-map-based 

sample showing a street view with signage definitions and extraction. 

 

 

 

 

 

 

 

 

 

Figure 2.2: Street view with signage definitions and extraction (SANBORN, 2017) 

     In a 3D high-definition road map, each road is decomposed into a sequence of road 

segments, and in each road segment, the number of lanes is constant. Adjacent lanes of a given 

road segment going in the same direction are implicitly connected everywhere. A 3D high-

definition road map should contain abundant road information, including road reference lines, all 

types of road markings, road edges, traffic signs, and lane centerlines.  It is noteworthy that the 

Road Edge 

Road Edge 

Lane marking 

Lane marking 
Lane Centerline 

Lane Centerline 
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centerlines of each single lane are elaborately depicted in 3D high-definition road maps, as they 

can be used as position vectors offering precise localization and lane-level navigation during 

autonomous driving. Some basic elements of lane-level navigation are listed in Table 2.2. 

Table 2.2 Basic elements of lane-level navigation (CAMP, 2004) 

 

# Attributes Unit/Type Resolution Maximum error Priority 

L1 Number of Lanes Integer 1 0% Required 

L2 Road Types Speed dependant N/A 0% Required 

L3 Lane Number Integer 1 0% Required 

L4 Lane Types Normal N/A 0% Required 

Entrance Ramp 

Exit Ramp 

Ramp Junction 

Shoulder 

L5 Lane Width cm 1 cm 10 cm Required 

L6 Lane Markings Color N/A 100% Required 

Type 

Thickness 

Material 

L7 Lane Marking Width cm 1 cm 5 cm Required 

L8 Slope % 0.10% 0.20% Required 

L9 Curvature 1/m 0.00005 2% Required 

L10 Speed Limit km/hr 1 km/hr 0% Required 

L11 Minimum speed km/hr 1 km/hr 0% Optional 

L12 Lane Direction Degree 0.01 0.05 Required 

http://www.youdao.com/w/priority/#keyfrom=E2Ctranslation
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2.3 Related Work 

2.3.1 Road Surface Extraction 

The first step of creating a 3D high-definition road map is road edge detection and road 

surface extraction. It is usually difficult to identify or extract specific features from large-volume 

and dense MLS points clouds, especially without the help from ancillary data (e.g.  trajectory data). 

Many studies have focused on this complicated task using a variety of methods. Munoz et al. (2008) 

successfully detected road surface points using an Associative Markov Network. By analyzing the 

characteristics of MLS data in horizontal planes, their preliminary results reached a relatively high 

accuracy. A region adjacency graph representation method is applied by Hernandez and 

Matcotegui (2009) for automatically detecting road surfaces. However, their algorithm is time-

consuming and difficult to achieve, as it searches for neighboring points for each single point, and 

the points are irregularly distributed. To simplify the approach for road detection, some researchers 

mainly relied on elevation, point density, and point intensity to extract road information. For 

example, Li et al. (2004) proposed a method which used the density of projected points as a key 

criterion for road extraction. Clode et al. (2004) designed a hierarchal classification technique that 

can identify road and non-road objects based on elevation and intensity values. However, their 

accuracy for road segmentation was largely affected by cars and other objects on the road. 

Similarly, Guan et al. (2015) removed non-ground objects from the geo-referenced image using 

an elevation filter and segmented road points using a point-density filter.  

Different from 2D feature filtering approaches, some road segmentation methods 

attempted to fit lines to point clouds. MLS data is comprised of scan lines with dense points. The 

detection of road edges (curbs, kerbstones, guardrails) is used to determine road boundaries and 

segment the road surfaces. Yoon and Crane (2009) determined road seeds by detecting road curbs 
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and separating road surface from its surrounding environment. McElhinney et al. (2010) 

introduced 2D cubic splines to fit road cross sections, but it is difficult to assess the accuracy of 

the detected road edges. It is obvious that there will be misclassifications if some non-road points 

match the criteria of elevation difference (Vosselman, 2000; Roggero, 2001; Sithole, 2001; 

Vosselman et al., 2001). Thus, slope criteria are used to further determine road edges (Jakkola et 

al, 2008), combined with intensity (McElhinney et al., 2010), and vehicle proximity (Yu and Zhang, 

2006). Vosselman and Liang (2009) detected kerbstones from airborne laser scanning (ALS) data 

by searching for small height jumps, although the presence of cars occluding kerbstones reduced 

the accuracy of their road extraction results. Ibrahim and Litchti (2012) proposed a method to 

identify curbs and road surface from terrestrial laser scanning (TLS) point clouds. The ground and 

non-ground points are classified based on the variation of point density and the distance to the 

mobile vehicle’s trajectory. Subsequently, the extracted results were refined by analyzing the 

morphological characteristics of each points’ neighboring points. Hervieu and Soheilian (2013) 

computed normal vectors of point clouds and angular distances to normal vectors of the ground to 

detect curbs and curb ramps.  

Other methods for road surface extraction mainly involve 3D geometric features filtering, 

surface growing and voxel-based algorithms (Zhang, 2016). Yuan et al. (2008) developed an 

algorithm for road surface segmentation from terrestrial laser scanning data. In their approach, a 

fuzzy clustering method was applied to cluster raw TLS points. Then, they used straight lines to 

fit the linear clustered data. An approach proposed by Goulette et al. (2006) successfully identified 

road, trees and building facades from TLS data. The road was recognized as a horizontal plane 

with high point density, and the extracted road points were further used to calculate the road width. 

Elberink and Vosselman (2009) focused on the 3D modelling of highway infrastructure using both 
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airborne laser scanning data and 2D topographic maps. A seed-growing algorithm and the Hough 

transformation are employed in their approach to extract road polygons from 2D topographic map 

data. By combining the map polygons and LiDAR elevation, 3D reconstruction of highway 

infrastructures was achieved. RANdom Sample Consensus (RANSAC) is a widely-used algorithm 

for plane fitting. Lam et al. (2010) employed RANSAC to fit planes to many small regions of the 

raw point cloud data. Then, the Kalman filter was used to interconnect the fitted planes. Finally, 

the road surface is delineated by a combination of planes.  

Most of the existing algorithms are complicated and require some priori knowledge and 

experience. In order to simplify the road extraction approach, Cabo et al. (2013) proposed the 

space regular voxelization, in which the raw point clouds were partitioned into voxels, and all 

voxels were segmented into horizontal planes. Through a tridimensional neighborhood analysis, 

target poles were clustered in these horizontal slices and finally reconstructed. Yu et al. (2015) 

also developed a voxel-based algorithm to extract roads. An octree structure was applied to contain 

the partitioned point clouds. Each voxel kept growing upward towards its 9-neighbour voxels until 

it reached a boundary, and the ground clusters can be determined if the elevation of the topmost 

voxel is lower than the given threshold. 

Although most of the studies presented promising results, limitations inevitably existed in 

these approaches. For instance, some of the mentioned algorithms distinguished road points from 

non-road objects, but failed to generate smooth road edges. One more common limitation is that 

these algorithms mainly focused on a specific road type (i.e. straight roads, curve roads) or a 

particular study area (i.e. urban area, rural area, or highway). Probably high-accuracy experimental 

results can be produced in some specific conditions, but these algorithms are not suitable for all 

scenarios. For example, the algorithm proposed by Guan et al. (2016) performed well for straight 
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roads, but relatively poor for curves. Also, there would be tremendous challenges if we apply a 

road edge detection method for extracting road surface in rural areas, as most country roads 

comprises grass-soil without curbs or guardrails. Therefore, the lack of practical algorithms for 

large-scale areas is still a huge limitation in this field. In addition, the thresholds used in these 

studies are highly dependent on people’s priori knowledge and experience, which limits the usage 

of these algorithms to a selected group of people. Therefore, further research should have been 

done to reduce the dependency of parameters, thus achieving fully-automated road information 

identification and extraction. 

Table 2.3 Summary of different road surface extraction techniques 

Publication Core Algorithms Limitations Advantages 

Li et al. 

(2004) 

Point density & 

Elevation filtering 

Cannot identify the wheels of 

vehicles 

High computational 

efficiency 

Guan, et al. 

(2015) 

Point density 

&Elevation filtering 

Not suitable for steep terrain 

and curves 

Straightforward & 

High efficiency 

Clode et al. 

(2007) 

Point intensity & 

Elevation filtering 

Cannot detect boundary lines High computational 

efficiency 

McElhinney 

et al. (2010) 

Road Edge detection Require trajectory data & fail in 

rural area 

High accuracy  

Guan et al. 

(2014) 

Road Edge detection Require trajectory data & fail in 

rural area 

High accuracy  

Yang et al. 

(2013) 

Road Edge detection Require trajectory data & fail in 

rural area 

High accuracy 

Hervieu and 

Sohelian 

(2013) 

Normal vector 

analysis 

Cannot detect boundary lines & 

inefficient 

Can Handle large 

area 

Vosselman et 

al. (2004) 

Surface growing Cannot detect boundary lines & 

inefficient 

Can Handle large 

area 

Zhou et al. 

(2012) 

RANSAC plane 

fitting 

Performance depends on the 

model used  

High efficiency & 

Straightforward 

Yu et al. 

(2015) 

Voxel-based 

growing 

Not suitable for steep terrain 

and curves 

High efficiency  

Zhao & 

Shibasaki 

(2002) 

Height deviation & 

Scan range filtering 

Require trajectory data & 

Cannot detect lines 

Use smoothness to 

detect road surface 
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Some important road surface extraction techniques are summarised and compared in Table 

2.3. In summary, road edge detection based methods tend to produce more accurate results than 

other techniques, as they not only extract road surfaces, but also detect road edges and generate 

smooth boundary lines to refine the road extraction results. In addition, other attributes except 

elevation and slope can also be used to detect road and road edges, such as point density (Guan et 

al. 2007) and point intensity (Clode et al. 2007). As to computational time, region growing (or 

voxel growing) approaches have proven their high efficiency, as they process data in a global scale 

instead of local blocks. Also, ancillary data such as trajectory points is not necessary for these 

algorithms, resulting in less computational time during the pre-processing steps. However, 

balancing the accuracy and efficiency of an approach is always a tough problem, hence different 

approaches are designed for different research purposes.  

2.3.2 Road Marking Extraction Techniques 

Road markings are important features in traffic management systems, as they provide 

necessary information for drivers and pedestrians. Meanwhile, they also have the function of 

navigating autonomous vehicles. In general, road marking extraction methods can be divided into 

two categories: (a) digital images or video based and (b) LiDAR data based.  

Digital images and videos have been investigated for road marking extraction for a long 

time. Kheyrollahi and Breckon (2010) developed a multi-level-threshold segmentation method to 

identify road marking candidates. With a set of local thresholds, connected contours can be 

extracted from the image with inconstant luminance. Subsequently, the artificial neural network 

algorithm was applied to classify the extracted road markings based on their morphological 

characteristics. Wang et al. (2009) and Mathibela et al. (2015) also detected road markings from 

digital images. They both adopted an Inverse Perspective Mapping (IPM) method to transform the 
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viewing angle of the image from the original one to a top-view perspective. Then the Otsu 

thresholding (Otsu, 1979) was conducted to segment different road markings. However, either 

photographs or videos lack geometrical information. For example, images and videos cannot 

recognize the material of the road surface and capture the shape of road markings (Guan et al. 

2014). Besides, the performance of videos and digital images are affected by environmental factors, 

such as weather conditions, the time of day, and shadow from vehicles or trees. Also, human-

involved road inspection requires people to continuously take pictures on the road, which is time-

consuming, labor intensive, and dangerous.  

Compared with images and videos, MLS systems are more robust tools for road feature 

detection. Therefore, a variety of MLS-based road marking extraction algorithms have been 

developed in recent years. Generally, road markings have higher retro-reflectance than other 

objects on the road, thus making the reflectance or intensity value of a target an important 

information for road feature detection. Taking the study of Smadja et al. (2010) as an example, 

intensity information was the only attribute they used for extracting road markings. Jaakkola et al. 

(2008) implemented a radiometric correction for the LiDAR intensity data before extracting road 

markings. Chen et al. (2009) developed an algorithm focusing on lane marking extraction from 

MLS point clouds. Apart from intensity filter, the standard deviation of elevation was also 

analyzed in their approach, and finally the lane markings were classified through 2D Hough 

transformation. By intensity-thresholding, Butler (2011) clustered road markings and fitted convex 

hulls to them. A neighbourhood distance thresholding was also used to constrain the errors. Yang 

et al. (2012) introduced an approach that generated 2D images from the extracted LiDAR data and 

highlighted the outlines of road markings based on their priori knowledge of the local traffic 

system.  In Vosselman (2009), combined with a connected components analysis, a distance 
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thresholding method was applied to overcome the challenge of missing intensity data. Their 

strategy was also used by Kumar et al. (2014). In their study, a function extracted road markings 

based on range thresholding. Guan et al. (2014) conducted a multi-thresholding segmentation 

based on the distribution of point density. The road markings were segmented according to their 

special point density range, the estimated mean, and the standard deviation. Table 2.4 concludes 

the existing road marking extraction strategies as well as their advantages and limitations. 

Table 2.4 Summary of road marking detection techniques 

Publication Method Advantages Limitations 

Toth et al. 

(2008) 

Intensity filtering Efficient in simple scenes Inaccurate 

Smadja et al. 

(2010) 

Intensity filtering Efficient in simple scenes Inaccurate 

Jaakkola et al. 

(2008) 

Intensity & Distance filtering Relatively more accurate & 

less outliers 

Require trajectory data & 

Correction is rough  

Kumar et al. 

(2014) 

Intensity & Distance filtering Relatively more accurate & 

less outliers 

Require trajectory data & 

Correction is rough 

Guan et al. 

(2014) 

Multi-thresholding  Use point density to locate 

road markings 

Rely on priori knowledge  

Yu et al. 

(2015) 

Multi-thresholding Use distance to trajectory to 

locate road markings  

Performance relies on 

trajectory data 

Chen et al. 

(2009) 

Multi-thresholding Reduce the influence of 

missing data (intensity) 

Performance relies on 

trajectory data 

Cheng et al. 

(2017) 

2D Intensity filtering & region 

growing 

High accuracy Significant human input  
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     As shown in Table 2.4, intensity is the most important information that can be used for 

extracting road markings. Distance dependant thresholding is another common solution for 

achieving high accuracy in road marking extraction. By calculating the distance from a point to 

the vehicle’s trajectory, a strip area containing targeted road markings could be generated. 

However, trajectory data is not always reliable, as trajectory points are usually sparse and 

irregularly aligned, and even zigzagging due to lane changing behaviors. Thus, most of the studies 

tested their methods on intentionally selected areas, where trajectory points are neatly and linearly 

arranged. In addition, tedious pre-processing procedures should be done before people can acquire 

trajectory data. For example, the coordinate system transformation is necessary if different 

coordinate systems are used in data collection and data processing,  

In structured environments like highways and viaducts, a single intensity filter can produce 

acceptable results, as there are no other features with high reflectance painted on the road. However, 

when it comes to complicated urban scenes, one or more other attributes should be employed to 

generate accurate road marking extraction results, such as point density, elevation, etc.  

2.3.3 Road Map Creation 

LiDAR and MLS systems have been investigated for years, and they are widely applied in 

road inventory survey. In addition, the usage of MLS systems has been extended to many other 

fields, such as power-line inspection, Digital Terrain Model (DTM) generation, and many types of 

3D model reconstruction. However, the concept of 3D high-definition road maps just appeared in 

recent years, and there is no common standard regarding the format of such maps. Consequently, 

different research groups provided their own priori maps in different styles. For example, J. 

Levinson and S. Thrun (2010) produced a map with 2D infrared reflectivity from raw LiDAR data, 

which is matched against the reflectivity of the corresponding LiDAR point clouds. Urmson et al. 
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(2008) and Miller et al. (2011) matched the road topology network of maps with different visual 

features in a current view. In addition, Pink et al. (2009) utilized available aerial images as priori 

maps to assist the localization of an autonomous vehicle. 

In summary, there is no robust and explicit solution for generating 3D high-definition road 

maps. Most of the previous priori maps remain 2D, and no sufficient geographic information is 

embedded in those maps. Therefore, the lack of consumer-grade 3D high-definition road maps is 

a great challenge for autonomous navigation.  

2.4 Chapter Summary 

This chapter first introduced some background information of this thesis, including the 

working principle of MLS system and the components of a 3D high-definition road map. 

The related works of this thesis were also reviewed including the methods for road surface 

extraction, road marking extraction, and navigation map creation. In conclusion, different 

algorithms have their own advantages and limitations, as they focus on different data types and 

types of roads. However, no or few algorithms can produce promising results from large-scale 

datasets, and most of the methods still require some manual work. Therefore, creating 3D high-

definition road maps remains great challenges. In Chapter 3, the algorithms for road feature 

extraction and 3D high-definition road map creation will be proposed. 
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Chapter 3  

Methodology for Creating 3D High-definition Road Maps 

This chapter presents the methodology of this study. Section 3.1 introduces the 

characteristics of the test datasets and the computing platforms used in this thesis, followed by a 

stepwise workflow of the proposed methodology for creating 3D high-definition road maps in 

Section 3.2.  Sections 3.3 - 3.6 detail the individual procedures of the proposed methodology, 

including pre-processing, road edge detection, road surface extraction, road marking extraction, 

and lane centerline estimation. Section 3.7 describes the accuracy assessment method of this thesis. 

Section 3.8 summarizes this chapter.  

3.1 Test Datasets 

     The MLS datasets used in this study were collected by a research team at Xiamen 

University using a RIEGL VMX-450 system. The RIEGL VMX-450 system contains two 360° 

laser scanners with a tilted angle of 135°. The yaw offset of the scanners is ± 30°. In addition, four 

high-resolution optical cameras, one GNSS antenna, an IMU and a DMI are integrated into this 

system. RIEGL VMX-450 can scan the surface of an object within a distance up to 800 m and 

capture detailed features with a high precision of 5 mm at a distance of 200 m. Through using the 

RiPROCESS software, raw point clouds are transformed to LAS file in the World Geodetic System 

1984 (WGS84) or in the Universal Transverse Mercator (UTM) coordinate system.  

The MLS Surveys were conducted in Xiamen Island, Fujian, China (longitude 118°04'04"E, 

latitude 24°26'46"N). The data collection vehicle travels through the roads of interest at the speeds 

of up to 50 km/hr, resulting in the MLS point densities of 7000-8000 points/m2. The MLS point 
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clouds collected were processed and saved in multiple LAS files. The point density was extremely 

high, therefore, a single LAS file representing a 100 m long segment contains millions of points. 

Figure 3.1 shows the geographic location of Xiamen and the trajectory of the survey area. The 

scanning parameters of RIEGL VMX-450 system are shown in Table 3.1.  

(a)                                                                               (b) 

Figure 3.1: Study area in Xiamen (a) Geographic location of Xiamen, Fujian, China; (b) 

trajectory of the study area 

 

     

 

 

 

 

 

Figure 3.2 RIEGL VMX-450 system  
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Table 3.1 Scanning parameters 

Symbol Quantity Value 

SS Line Scan speed 400 line/sec  

SG Vehicle speed 30~50 km/hr 

LDist Scan-line-to-scan-line spacing 9.71 cm 

PDist Point-to-Point spacing 5.98 cm 

TDist Target distance 30 m 

LIncrement Scan line incremental angles 0.1143° 

PDensity Average point density 7500 points/m2 

 

     As the surveyed region contains important traffic roads in Xiamen and is quite busy. The 

average speed of the data-gathering vehicle was approximately 50 km/hr. As a result, TDist was set 

as 30 m, and SG was set 50 km/hr. 

Default values were used for other scanning parameters, including scan mode (line), scan 

increment angles (0.1143°), scan line start (0°) and scan line end (360°). Thus, according to the 

vehicle speed, the Line Scan speed SS, the line distance LDist, the point distance PDist, and the 

average point density are estimated as 400 line/sec, 9.71 cm, 5.98 cm and 7500 points/m2, 

respectively. In addition, all of the data was checked against reference data to assess their accuracy. 

By calculating their mean standard deviations of elevation accuracy and planimetric accuracy, we 

the data errors were controlled by ± 5 cm to meet the requirements for urban surveying (Guan et 

al. 2015). 
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A total of five test datasets were used in this thesis. Dataset 1 was acquired on September 

19th, 2016, while Datasets 2 to 5 were collected on December 20th, 2013. Dataset 1 (64 MB) is a 

simple urban road corridor that covers a small range of Huandao Road. The length of this road 

segment is about 30 m. The total number of points in Dataset 1 is 1,920,753 with the point density 

of 8000 points/m2.  

Dataset 2 (23MB) is an entrance of Yanwu Bridge, covering approximately 175 m of road 

length with only 696,891 points. Over 50% road surface data is missing as this region is not on the 

surveyed trajectory, and the MLS system captured these points from a side view. Dataset 2 contains 

both horizontal curves and vertical curves with sparse points, bringing great challenges for the 

proposed algorithms. This dataset is used to test the robustness of the curb extraction and road 

segmentation algorithm. 

Datasets 3, 4, and 5 are three segments of Yanwu viaduct, covered by 6,758,030 points, 

9,058,578 points, and 8,381,952 points, respectively. The lengths of these three segments are about 

176.525m, 175.453m and 176.438 m, respectively. The average point density is 7500 points/m2. 

Dataset 3 is a one-way two-lane road, while Dataset 4 and Dataset 5 are three-lane roads with lane 

reduction areas (from 3 lanes to 2 lanes).  The size of these three LAS files are 226 MB, 303 MB, 

281 MB, respectively.  

These five datasets contain a variety of road features, including different types of road 

markings, trees, traffic signs, and buildings. Apart from these five datasets, seven smaller datasets 

are selected as samples to test the performance of each step of the proposed method and to make 

comparison with other existing methods. UAV orthoimages are used to validate the experimental 

results of the proposed method. Detailed characteristics of these datasets are demonstrated in Table 

3.2.  
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Table 3.2 Datasets used in this study 

 Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 

Date 2016/09/19 2013/12/20 2013/12/20 2013/12/20 2013/12/20 

Size 64 MB 23 MB 226 MB 303 MB 281 MB 

Number of 

Points 

1,920,753 696,891 6,758,030 9,058,578 8,381,952 

Location Huandao Road Yanwu Bridge Yanwu Bridge Yanwu Bridge Yanwu Bridge 

Vehicle speed 

(km/hr) 

30 50 50 50 50 

Point density 

(pts/m2) 

7000-8000 7000-8000 7000-8000 7000-8000 7000-8000 

Road width 

(m) 

8-10 7-9 8-10 10-16 9-11 

Road length 

(m) 

30 175.324 176.525 175.453 176.438 

Number of 

lanes 

2 1 2 3-2 2-3 

 

As shown in Table 3.2, most of the datasets used in this thesis are collected on Yanwu 

viaduct. As reported by Korosec (2017), most autonomous vehicle test sites are located in special 

places with extremely structured roads and sufficient protective measures. As safety is still the 

most significant concern when it comes to self-driving, no or few companies test their autonomous 

vehicles on busy urban roads. Viaducts and highways with organized road markings, traffic 

infrastructures, and no pedestrians would be more suitable for testing autonomous vehicles, 
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especially at the preliminary stage of autonomous navigation technology (Baidu, 2016). Modest 

changes to our transportation systems are expected to better support autonomous vehicles, such as 

reprinting road markings and building protective road facilities. Just as NG and Lin (2016) 

reported:” Self-driving cars won’t work until we change our roads”.  Figure 3.3 presents the raw 

point clouds and UAV orthoimages of the five test datasets. 
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(e) 

Figure 3.3 Five datasets used in this thesis 

(a) Dataset 1; (b) Dataset 2; (c) Dataset 3; (d) Dataset 4; (e) Dataset 5 

(c) 



 

 28 

3.2 Workflow 

In order to produce a solid and robust solution for creating 3D high-definition road maps, 

a stepwise approach is introduced in this chapter. The proposed method endeavors to extract 

meaningful road information from MLS point clouds, including road edges, road surfaces, road 

markings, and lane centerlines. These road features can be identified and extracted by semantically 

and morphologically analyzing data characteristics. In addition, road design standards are used to 

estimate optimal thresholds. The idea of using road design standards is derived from some recent 

news and reports. For example, as reported in Eldege (2016), new road design guidelines and 

specifications will change our roads and highways in the next ten years for supporting autonomous 

vehicles. Figure 3.4 presents the workflow of the proposed methodology.  

 

 

 

 

 

 

 

 

 

Figure 3.4 Workflow of the proposed methodology 
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To improve processing efficiency and reduce redundant points, some pre-processing 

procedures are necessary before road feature extraction.  First, as the coordinate system of the 

MLS system is an arbitrary one with a random user-defined origin point, a coordinate system 

transformation function is performed to fix the orientation of the vehicle frame so that the points 

can be more easily interpreted. Second, a voxel-based upward growing method is applied to 

identify and remove non-ground points from ground points, such as canopies, buildings, traffic 

signs and other off-ground objects.  

To distinguish road surface regions, accurate road edge points are required to represent 

road boundaries. Thus, a road edge detection function is applied to detect road curbs from the 

remaining points. To accurately extract curb points, the data is first segmented into a large number 

of blocks. By analyzing the height difference and slope of consecutive points in each scan line, 

points with a certain range of height difference and slope are extracted. Then, a quick sort 

algorithm is applied to sort the road curb candidates by their elevation. The points with the lowest 

elevation on each side of the road are considered as the bottom of curbs or guardrails and are used 

to represent the road boundary. Based on the position of road curb points, the region of road surface 

can be determined. However, misclassification inevitably exists in curb extraction results. To 

acquire more accurate road edges, a RANSAC algorithm is used to refine the extracted curb points, 

removing outliers, and fitting a linear model to the generated road boundaries.  

In this study, road markings are divided into two categories and separately extracted. On 

the one hand, white and yellow lines whether solid or broken are classified as lane markings. It is 

well-known that lane markings are painted with reflective materials and are often drawn with 

specific distances to road edges. Thus, an intensity and distance-to-road-edge thresholding method 

based on road design standards is applied to distinguish these lane markings. Specifically, with the 
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refined road curb points as reference, a window continuously moves in each block searching for 

points with high retro-reflectance and apart from its corresponding reference line with a certain 

distance. On the other hand, arrows, symbols, and words are also important road markings that 

guide and control traffic. To extract these directional and textual road markings, an intensity filter 

is first applied to detect points with high intensity values. Next, a statistical analysis outlier removal 

algorithm is conducted to remove noise. After noise removal, all remaining points are organized 

into semantic clusters based on conditional Euclidean clustering algorithm. Afterwards, by 

analyzing the size and width of different clusters, arrows and words can be distinguished from lane 

markings. Finally, the clusters of lane markings are selected to calculate the coordinates of lane 

centerlines. Thus, a 3D high-definition road map with clear road boundaries, road markings, and 

the estimated lane centerlines is created.  

Lastly, to evaluate the experimental results, the created road maps are converted into SHP 

files and overlapped with UAV orthoimages in ArcGIS. Post-processing, such as format 

conversion, can be conducted to suit other research needs. Finally, the generated 3D high-

definition road maps are ready to navigate autonomous vehicles. 

The programming platform of this thesis is Microsoft Visual Studio 2015. A third-party 

programming library Point Cloud Library (PCL) is also utilized in this thesis to realize conditional 

Euclidean clustering and statistical analysis. In addition, Cloud Compare v2.6.3 and Quick Terrain 

Reader v8.0.6.2 are used to display data and visually interpret experimental outputs. MATLAB 

R2016 a (9.0.0.341360) is employed to conduct 3D line fitting, and ArcGIS v10.2.2 is used to 

process the generated lane centerlines and conduct accuracy assessment. 
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3.3 Pre-processing 

3.3.1 Coordinate System Transformation 

In this study, the MLS system utilized a right-handed orthogonal coordinate system with 

an arbitrary user-defined orientation and starting point. Such a random coordinate system makes 

it more difficult to depict the relative positioning of points. In order to reduce the complexity of 

interpretation in further processing steps, the orientation of the vehicle frame is fixed so that the 

x-axis faces towards the front of the vehicle, the y-axis is toward the right side of the vehicle, and 

the z-axis is toward the top of the vehicle. The coordinate system transformation can be carried 

out by: 

                                             XDi = D + (1+k) R(ɛx) R(ɛy) R(ɛz)XGi                                                          (3-1) 

                                                R(ɛx)= (
1 0 0
0 cos ɛx sin ɛx
0 − sin ɛx cos ɛx

)                                            (3-2)      

 

                                                     R(ɛy)= (
cos ɛy 0 − sin ɛy

0 1 0
sin ɛy 0 cos ɛy

)                                            (3-3)     

 

                                                      R(ɛz)= (
cos ɛz sin ɛz 0

− sin ɛz cos ɛz 0
0 0 1

)                                            (3-4)     

 

where XDi and XGi are the coordinates of MLS point clouds in the transformed coordinate system 

and original coordinate system, respectively. D = (𝚫X, 𝚫Y, 𝚫Z) is the translation matrix, and k is 

the scaling factor denoted as the ratio between the original and the transformed coordinates. Where 

ɛx, ɛy, ɛz are the three rotation angles of the 3D coordinate system and R(ɛx), R(ɛy), R(ɛz) are their 
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corresponding rotation matrix. To fix the orientation of x-axis and y-axis, two consecutive 

trajectory points are selected as reference points to calculate the rotation angle. Two points in the 

vertical plane are used to fix the orientation of z-axis. In addition, when dealing with curve roads, 

this step is not necessary. 

3.3.2 Non-ground Point Removal  

     Typically, MLS data involves large-volume and high-density points. There is no doubt that 

it would be difficult and inefficient to process these points simultaneously. Since this study only 

focus on extracting road information, the non-ground points have become relatively redundant. 

Thus, employing a method to remove non-ground points is significant to reduce the data 

complexity and reduce computational time. Also, with less outliers, the performance of further 

road feature extraction algorithms could be improved. Based on these consideration, a voxel-based 

upward growing algorithm (Yu et al., 2015) is applied to generally filter out non-ground points 

from the raw MLS data. 

Figure 3.5 shows the principle of the voxel-based upward-growing algorithm. In this 

algorithm, the raw data point clouds are first horizontally segmented into a number of blocks, and 

the width of each block is determined by the size of test datasets. Instead of processing the entire 

point clouds globally, this strategy can greatly reduce the influence of ground undulation and 

produce more accurate results. Furthermore, the points in each block will be further divided into a 

series of voxels. The certain width of voxels is determined by average point density using Octree 

Spatial Index. More voxels are needed if the average point density of datasets is higher. As shown 

in Figure 3.5 (c), there are totally 26 adjacent voxels for each voxel. The voxel-based upward 

growing algorithm can be described as follows: Each voxel will firstly grow upward toward its 9 

adjacent voxels. For example, in Figure 3.5 (c), the 9 ‘neighbours’ of voxel Vj are voxel L1, voxel 
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L2 voxel L3 ... voxel L9. Then, the upward growing algorithm will regard the ‘9 neighbours’ of 

voxel Vj as new starting points and continue grow upward following the same pattern. This process 

will not stop until all voxels have no adjacent voxels above them. 

 

Figure 3.5 Voxel-based upward-growing algorithm (Yu et al., 2015) 

 (a) Segmented raw point cloud; (b) Octree Spatial Index in a local block; (c) Voxel-based 

upward-growing pattern  

After the upward growing process, the topmost voxel with the maximum local height value 

in each growing region can be determined. The ‘local height value’ of a certain voxel is defined as 

the height difference between the certain voxel and the lowest voxel in its local block. And the 

‘global height value’ of a certain voxel is defined as the height difference between the certain voxel 

and the lowest voxel in the entire 3D point cloud. Then the following criterion is used to judge 

whether a voxel belongs to ground voxel or non-ground voxel: 

(1) If the global height value of a voxel is larger than a global ground undulation threshold he, 

or the local height value of the voxel is larger than a local ground undulation threshold hg, 

the voxel will be designated as a non-ground voxel and removed from the point cloud. 
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(2) If the global height value of a voxel is smaller than a global ground undulation threshold he, 

and the local height value of the voxel is smaller than a local ground undulation threshold 

hg, the voxel will be considered as a ground voxel and remain. 

The local ground undulation threshold hg is determined by the maximum z value in a specific 

growing region, while the global ground undulation threshold he is determined by the maximum z 

value of the entire test dataset. hg and he are useful thresholds that can constrain the largest ground 

undulation in local blocks and the entire 3D point cloud data, respectively.  

The voxel-based upward growing algorithm can successfully remove the majority of non-

ground point, enhancing the efficiency and reducing the computational time of further processing 

steps. Additionally, the integrity of the ground data is completely retained without any data missing. 

Figure 3.6 shows an example of non-ground points removal using voxel-based upward growing 

method. Figure 3.6 (a) presents raw 3D point cloud data with abundant non-ground points, and 

Figure 3.6 (b) illustrates the point clouds after non-ground point removal. As shown in the 

following figures, trees, traffic signs and light poles are successfully removed from the raw data, 

and only some shrubs are remained. 

 

 

 

 

 

Figure 3.6 Example of voxel-based upward-growing method 

(a)  A raw 3D point cloud 

Araw 3D point cloud 

(b) the remained ground points 



 

 35 

3.4 Road Edge Detection and Road Surface Extraction 

      It is well-known that road curbs perform as road boundaries that separate sidewalks and 

green spaces from road surfaces (Guan et al., 2015). As mentioned in Chapter 2, a number of 

studies determined road surface regions by detecting the position of curbs. In this thesis, a revised 

curb-based road surface extraction method is proposed. The algorithm consists of three steps: (1) 

data segmentation; (2) curb detection; (3) 3D fitting.  

(1) Data Segmentation 

As the coordinate system of the MLS data has been fixed so that the x-axis is toward the 

front of the vehicle, the data is first partitioned into many blocks with a user-defined interval (Lt) 

along the x-axis. In addition, the data partition can also be conducted perpendicular to trajectory 

points if trajectory data is available. Different from some previous research which use trajectory 

points to segment road surface, this method can let users define the length of each block or the 

total number of blocks, as trajectory data are sparse and fixed points along the trajectory with a 

certain interval. Rather than directly processing the entire dataset, processing points in each local 

block can greatly reduce the negative effects of road undulation. Most importantly, with more 

blocks, less points will be distributed in each block. The idea is setting a proper interval so that 

each block can have least but sufficient points. ‘Sufficient’ means at least one curb candidate points 

can be detected on each side of the local block, otherwise the length of blocks should be increased. 

In this thesis, the total number of blocks usually ranges from 30 to 500 depending on the size and 

the characteristics of test datasets. 
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(2) Curb Detection  

After data segmentation, raw point clouds are divided into a series of local blocks. For each 

block, the proposed algorithm detects curb points based on two criteria: slope and height difference. 

Based on the observation of the test datasets, pavements are higher than roadways in a 

neighbourhood with a 7-15 cm elevation jump. Moreover, slopes at the border of pavements and 

roadways are larger than that of continuous points on roadways. Figure 3.7 presents a typical road 

cross section shown in intensity point clouds.  

 

 

 

 

 

Figure 3.7 Example of a road curb in point clouds 

Therefore, these two criteria are applied to determine whether a point is a curb point. The 

criteria can be described as follows:   

      𝑃𝑖 {
𝑐𝑢𝑟𝑏 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒,        𝑖𝑓 (𝑆𝑠𝑙𝑜𝑝𝑒 > 𝑆𝑇 ＆ (𝐺𝑚𝑖𝑛 ≤ 𝐺𝑖 ≤ 𝐺𝑚𝑎𝑥) )

𝑛𝑜𝑛 − 𝑐𝑢𝑟𝑏 𝑝𝑜𝑖𝑛𝑡,                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                          (3-5) 

 

where Sslope is the slope of two consecutive points, ST is a user-defined slope threshold, Gi denotes 

the elevation difference of a point and its adjacent point in a scan line. Gmin and Gmax are the 

minimum and maximum elevation difference thresholds, respectively. Sslope is defined as  
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                               𝑆𝑠𝑙𝑜𝑝𝑒 = arctan(
𝑍𝑖+1−𝑍𝑖

√(𝑋𝑖+1−𝑋𝑖)2+(𝑌𝑖+1−𝑌𝑖)2
)                                                 

                                                  𝑆𝑠𝑙𝑜𝑝𝑒 ∈  (−
𝜋

2
,

𝜋

2
)                                              (3-6) 

where (Xi, Yi, Zi) and (Xi+1, Yi+1, Zi+1) are the coordinates of two consecutive points in a scan line. 

In each block, the algorithm will calculate the slope and elevation difference of any two 

consecutive points in each scan line. Once a point’s slope and elevation difference match the given 

thresholds, it will be considered as a curb candidate. By this strategy, several curb candidates will 

be extracted in each block. Subsequently, a quick sort algorithm is performed to sort all curb 

candidates within the block according to their elevation. The lowest points on each side of the 

block are regarded as the bottom point of curbs. Figure 3.8 illustrates the principle of the proposed 

curb extraction method. The red points are curb candidate points in local blocks, and the blue 

points mean the lowest curb candidate points on each side of the block. 

 

 

 

 

 

 

Figure 3.8 Principle of curb extraction method 

 

 

Block1 Block2 Block4 Block3 Block6 Block5 

Lowest curb candidate 
point (left) in block6  

Curb candidate points in 
block6  
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(3) Road Edge Refinement  

     Different from most existing methods, in this study, the position of lane marking points are 

determined by calculating the distance to the extracted road edges. Therefore, the accuracy of the 

extracted curb points is of great significance. All of the extracted curb points are expected to be 

the bottom of curbs or guardrails; however, it is inevitable that some extracted points have slight 

deviation. Although most of the offsets are very small, the extracted curb points still need to be 

refined, as the performance of lane marking extraction largely relies on the accuracy of the 

extracted curb points. Thus, a road edge refinement algorithm based on RANSAC is proposed to 

remove outliers. 

RANdom Sample Consensus (RANSAC) was presented by Fischler and Bolles (1981), 

which is an iterative algorithm that can be used to extract shapes and estimate parameters of a 

mathematical model from a set of data with outliers. The RANSAC algorithm achieves this goal 

by randomly and iteratively drawing a subset from the raw data. The selected minimal set are 

regarded as hypothetical inliers, and a model is defined based on these inliers. In addition, all 

parameters of the model are determined by the inliers. The estimated model or shape is tested 

against all other data to determine how many points also fit well to the candidate model, and if a 

point is well approximated by the model, it is considered as an inlier. A reasonably good model 

should contain sufficient points as inliers. To refine the candidate model, the parameters of the 

model are re-estimated when a series of points are classified as new inliers. Finally, to evaluate the 

model, a score is calculated according to the errors of inliers. As a result, models with insufficient 

inliers are firstly rejected, followed by models with lower scores. This procedure is repeated and 

after a fixed number of trials, the model which contains the most inliers and has the highest score 
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Outliers 

Inliers 

is extracted with its inliers. Figure 3.9 (a) shows an example of RANSAC linear model fitting. 

Figure 3.9 (b) illustrates the RANSAC curvilinear model fitting. 

 

  

 

 

 

 

 

Figure 3.9 An illustration of RANSAC 

RANSAC is a robust algorithm that has been proved in many research. It has the ability to 

estimate parameters of a model with a high accuracy. More importantly, it can handle data 

containing a significant number of outliers. The robustness of RANSAC makes it a popular 

algorithm, which has been used in a wide range of applications. Nevertheless, a disadvantage of 

RANSAC is that there is no upper limit on the computational time to estimate the optimal model. 

It will keep searching for better models until a user-defined limitation number is reached. In this 

thesis, as the number of the extracted curb points is usually no more than 300 with no or few 

outliers, the upper bound of iterations is set at 1000. Figure 3.10 shows a demonstration of road 

edge refinement.  

 

(a)  RANSAC linear model fitting  (b) RANSAC curvilinear model fitting  
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Figure 3.10 A demonstration of road edge refinement  

(a) original curb points (17 points); (b) the refined curb points (15 points) 

As shown in Figure 3.10, the black dots are curb candidate points displayed in 

CloudCompare v2.6.3. Four outliers (points in red circles) are removed from the extracted curb 

candidate points after this procedure. It is noteworthy that if curb points are not sufficient after 

refinement, a point interpolation method is applied to interpose points between consecutive curb 

points. The midpoints of any two consecutive curb candidates could be regarded as new curb 

candidates until a pair of curb points can be found in every local block. The detailed illustration of 

point interpolation method will be described in Section 3.6.  

Lastly, for straight roads, different linear models are used to fit the extracted road edge in 

both XY plane and 3D space based on the RANSAC algorithm. In the XY plane, the linear 

equation is described as: 

                                                         𝑦 = 𝑘𝑥 + 𝑏                                               (3-7) 

where k denotes the slope of the line, and b is the y-intercept. In the 3D space, the parametric form 

of the linear equation is used to depict the line:  

Outliers 

Interposed points 

(a) (b) 
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                                                            {

𝑥 = 𝑥0 + 𝑚𝑡
𝑦 = 𝑦0 + 𝑛𝑡
𝑧 = 𝑧0 + 𝑝𝑡

                                          (3-8) 

where P0 (xo, yo, zo) is a point that is on the line, vector 𝑣⃗ (m, n, p) is the directional vector that is 

parallel to the line, and t is a multiplier denoting how far from the original point that the point 

moves. As t varies over all possible values the line can be completely covered. The extracted road 

edge and the fitted linear model are projected onto the XY plane and the 3D space using MATLAB. 

Figure 3.11 presents an example of road edge fitting.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Example of road edge fitting (a) Dataset 1; (b) road edges in 3D scene; (c) the fitted 

road edge in XY plane; (d) the fitted road edge in XZ plane 

𝑥 
𝑦 

Z 

𝑦 

𝑥 

𝑧 

𝑥 

𝑦 =-239.708+0.610t 

𝑥 =3884.720+0.792t 

𝑧 =53.478-0.008t 

𝑥 =3887.530+0.788t 

𝑦 =-247.792+0.616t 

𝑧 =53.471-0.019t 

(a) (b) 

(c) (d) 
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(5) Road Surface Extraction  
 

Finally, two curb points are extracted in each block with one on each side. Based on the 

coordinates of these curb points, linear functions that passes any two consecutive curb points can 

be calculated. By this analogy, any two consecutive curb points will generate a local edge line. 

Then in each block, the points located in the inner side of the corresponding edge line are 

determined as road surface and extracted. An example of the road surface segmentation is shown 

in Figure 3.12. Figure 3.12 (a) shows the ground points before road surface segmentation. Figure 

3.12 (b) illustrates the extracted road surface. 

         

  

 

 

 

 

 

Figure 3.12 Example of road surface segmentation 

3.5 Road Marking Extraction 

Different road markings have different characteristics, such as width, length, shape, color, 

and position. Therefore, in this study, two algorithms are developed with each focusing on different 

types of road markings. On the one hand, a clustering algorithm based on morphological analysis 

is developed to extract directional and textual road markings, such as arrows, symbols, and words. 

On the other hand, a distance-to-road-edge thresholding algorithm based on road design standards 

(b) The ground points (a) the extracted road surfaces 
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Directional and 

Textual Road 

Marking Extraction 

Lane Marking 

Extraction 

is used to extract lane markings, such as solid and broken lines. Figure 3.13 presents the workflow 

of the proposed road marking extraction methodology. 

 

  

 

 

 

 

 

 

 

 

 

 

 

3.5.1 Directional and Textual Road Marking Extraction  

With the extracted road surface points, a directional and textual road marking recognition 

framework is proposed in this study, which includes three steps: (1) intensity analysis; (2) outlier 

removal based on statistical analysis; and (3) conditional Euclidean clustering.  

Intensity Analysis 

Road Marking 

Candidates 

Statistical Analysis (PCL, 

2015) 

Noise-removed 

Road Markings 

Euclidean Clustering 

Semantic 

Clusters  

Road Surface 

& Curb Points 

Distance-to-road-edge 

Thresholding 

Intensity Analysis 

Data Segmentation 

Road Surface 

Strips 

Width & Size Analysis 

Arrows & 

Symbols 

Road Surface 

Segments 

Lane Markings 

Figure 3.13 Workflow of road marking extraction methodology 

(c)  
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(1) Intensity Analysis 

As the wavelength of laser scanner is near-infrared, road markings have higher reflectance 

than the unpainted road surface. The intensity information is the key criterion that can be used for 

road marking detection. Therefore, an intensity thresholding algorithm is applied first, which 

recognizes road markings based on intensity information. The observation is defined as: 

                         𝑃𝑖 {
𝑅𝑜𝑎𝑑 𝑚𝑎𝑟𝑘𝑖𝑛𝑔 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒,        𝑖𝑓  (𝐼𝑚𝑖𝑛 ≤ 𝐼𝑖 ≤ 𝐼𝑚𝑎𝑥) 
𝑛𝑜𝑛 − 𝑟𝑜𝑎𝑑 𝑚𝑎𝑟𝑘𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡,                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                   (3-9) 

where Ii is the intensity value of a point. Imin and Imax are the minimum and maximum intensity 

thresholds, respectively. Once a point’s intensity value is within the given range, the point is 

regarded as a road marking candidate. However, point intensity largely depends on the scanning 

range and the incidence angle of the laser beam, contributing to a phenomenon that point intensity 

gradually fade from the vehicle trajectory to its two sides (Guan et al., 2015). In consequence, 

local optimal thresholds are required to be adaptively estimated. Specifically, Imin is usually set at 

small values in order to avoid the error of omission. Figure 3.14 (a) shows the road surface before 

intensity thresholding. Figure 3.14 (b) shows the extracted road markings by intensity filter. 

 

 

 

 

 

 

Figure 3.14 Example of road marking extraction 

(a) The road surfaces (b) the extracted road markings 
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 (2) Outlier Removal based on Statistical Analysis 

As shown in Figure 3.14, noise inevitably exists in MLS point clouds after road marking 

extraction. The noise may complicate the estimation of local point cloud characteristics, leading 

to erroneous values, which in turn might cause point cloud registration failures (PCL, 2015). In 

this study, most of the noise are isolated points and point mutations in some local areas. Thus, an 

outlier removal function is applied to remove outliers from the extracted road markings. The 

proposed outlier removal function is based on a statistical analysis filter in the PCL Library (PCL, 

2015), which is a large-scale open source C++ programming library. The PCL keeps absorbing 

valuable algorithms in the field of LiDAR data processing every year, and the most recent version 

is PCL library version 1.8.0, which was released on June 17, 2016. The new PCL library can 

support multiple platforms with a variety of functions including data acquisition, filtering, 

registration, visualization, etc.  

To identify outliers, the algorithm firstly attempts to find the k neighbour points from a 

certain point of interest. k is a user-defined threshold according to average point density. If no 

enough neighbors can be found within a stated radius, the point is regarded as an outlier and 

removed from the point cloud. Furthermore, if the k nearest points of the interested point are 

founded in the certain area, the mean distance from the point to its neighbors will be calculated. 

The algorithm assumes that the distribution of mean distance of all points should follow Gaussian 

distribution, and the points outside an interval defined by the global distances mean and standard 

deviation can be considered as outliers and trimmed from the dataset. Figure 3.15 (a) presents the 

principle of statistical analysis on points’ neighbourhood, and Figure 3.15 (b) indicates the mean 

k-nearest neighbour distance. 

.  
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Figure 3.15 Noise removal using statistical analysis (PCL, 2015) 

Figure 3.15 helps to visualize what the outlier removal function does. The user specifies a 

number k denoting k neighbors is required for every point within a specified radius to remain in 

the point Cloud. For example, if 1 neighbor is specified, only the yellow point will be removed 

from the point cloud. If 2 neighbors are specified then both the yellow and green points will be 

removed from the point cloud, and then the mean distance to neighbours will be calculated for the 

remaining points. Filtering out the noise can reduce the complexity of the remaining data and 

enhance the efficiency. Figure 3.16 (a) shows the extracted road markings by intensity filter. Figure 

3.16 (b) shows the road markings after outlier removal. 

 

 

 

 

 

 

Figure 3.16 Example of outlier removal  

r 

(a) Road markings before outlier removal (b) Outlier removal results 
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(3) Conditional Euclidean Clustering 

After outlier removal, road markings are primary components of the renaming data. 

However, points belonging to the same object are still isolated and unorganized, and there are no 

topological relationships between points. In other words, the extracted 3D scene is still comprised 

of millions of sparse and discrete points with no semantic information. Therefore, to distinguish 

specific objects (e.g. arrows, straight lines, etc.) and organize discrete points into semantic groups, 

a revised conditional Euclidean clustering method (PCL, 2015) is conducted. Figure 3.17 presents 

the principle of conditional Euclidean clustering method.  

 

 

 

 

Figure 3.17 Conditional Euclidean clustering process  

This method attempts to divide sparse points into different clusters according to the 

Euclidean distance between a certain point and its nearest points. Basically, the points will be 

designated into the same cluster if the Euclidean distance between them is less than the given 

threshold (dc), which is determined by the point density and resolution of the test data. The detailed 

principle of the revised conditional Euclidean clustering method is described below: 

(1) Initially, the algorithm randomly selects a point P as starting point, which is also firstly 

classified as a clustered point. Meanwhile, an empty list of clusters C is created, as well as 

a queue of the points that need to be checked Q.  

P 

d 

P 
P
i
 

P 
Pi 

d 

Clustered points Non-clustered points 
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(2) Next, the algorithm searches for point neighbours (Pi, i = 1, 2, …, n) of P in a sphere with 

radius dth, and adds Pi to the current queen Q. For every point neighbour Pi, the Euclidean 

distance form Pi to P is calculated. Points whose Euclidean distance is less than the given 

threshold dc are added to the list of clusters C. If all of the point neighbors have been 

processed, reset Q to an empty list.  

(3) The new clustered points are regarded as new starting points, and the same procedure is 

repeated. When no more non-clustered points can be found within the sphere, reset the list 

of clusters C, and randomly select a new starting point from the rest of non-clustered points. 

(4) The algorithm terminates when all points have been processed. 

When all of the points have been processed, the discrete and sparse points are successfully 

segmented into different semantic clusters. Figure 3.18 (a) presents the extracted road marking 

points. Figure 3.18 (b) presents three different semantic groups clustered by conditional Euclidean 

clustering. 

 

 

 

 

 

 

   (a) The extracted road markings                         (b) the semantic clusters 

Figure 3.18 Example of conditional Euclidean clustering 
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Based on the prior knowledge (e.g., height, size, width) of road markings, relatively wide 

clusters (arrows and words) can be distinguished by removing small clusters (straight lines and 

noise). A width threshold denoting the difference between maximum y value and minimum y value 

is applied to filter out unwanted clusters.  

3.5.2 Lane Marking Extraction  

Different from directional and textual road markings like arrows and words, lane markings 

are extracted by local intensity thresholding and distance-to-edge thresholding, as more precise 

lane marking extraction results are required to provide lane-level navigation. With refined road 

edges as reference, the position of lane markings can be determined by calculating the distance 

from the point to road edges. The thresholds used in this algorithm are determined by road design 

standards, which regulates road marking width, lane width, marginal strip width, and shoulder 

width.  

Different countries have their own road design standards. Since the study area of this thesis 

is Xiamen, China, road design standard of China is used in this study to determine the thresholds 

for the proposed method. Figure 3.19 presents the structure of urban median strip which is recorded 

in the Code for Design of Urban Road of China (CJJ37 -2012).  

 

 

 

 

Figure 3.19 Structure of median strips  

(b) Central strip (c) Left and right strip 



 

 50 

As shown in Figure 3.19, Wmc denotes the width of marginal strip, Wsc is the safety 

clearance, Wl is the lateral clearance, and Wc means the lane width. Marginal strip denotes the 

space between the outer edge of lane markings to curbs. The main role of marginal strips is to 

attract drivers’ attention and remind the lateral clearance. Usually, a 0.5m-marginal-strip should 

be set on the right side of highways and first-class roadways. The width of marginal strips on the 

left side of expressways and first-class roads should range from 0.5m to 0.75m. In addition, 

marginal strip is a component of hard shoulder or dividing strip. Table 3.3 provides detailed 

regulation of these parameters which are translated from the Code for Design of Urban Road of 

China (CJJ37 -2012). 

Table 3.3 Minimum width of road dividing strip 

Type Median Strip Left and Right Strip 

Speed Limit (km/hr) ≥60 <60 ≥60 <60 

Marginal Strip 

Width 

Motorway (m) 0.50 0.25 0.50 0.25 

Bicycle lane (m) ____ ____ 0.25 0.25 

Safety 

Clearance 

Motorway (m) 0.50 0.25 0.25 0.25 

Bicycle lane (m) ____ ____ 0.25 0.25 

Lateral 

Clearance 

Motorway (m) 1.00 0.50 0.75 0.50 

Bicycle lane (m) ____ ____ 0.50 0.50 

Minimum width of divider island (m) 2.00 1.50 1.50 1.50 

Minimum width of dividing strip (m) 3.00 2.00 2.50 (2.00) 2.00 

 

As shown in Table 3.3, lateral clearance is the sum of marginal strip and safety clearance. 

In addition, the width of marginal strip should not exceed 0.75 m and is included in the width of 

shoulder. In traffic terminology, shoulder denotes the space between roadway and ditch. The width 
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of protective shoulder on expressways should be less than 0.75m. Table 3.4 presents the width of 

shoulders for different types of roads recorded in the Code for Design of Urban Road of China 

(CJJ37 -2012). Figure 3.20 illustrates the position of shoulder and marginal strip.  

Table 3.4 Shoulder width of different road types 

 

 

 

 

 

 

 

 

Figure 3.20 Position of shoulder and marginal strip 

Speed Limit (km/hr) Highway & First-class road (2nd, 3rd, 4th, 5th ,6th)-class road 

120 100 80 60 80 60 40 30 20 

Width of hard 

shoulder on 

right side (m) 

Recommended 

value (m) 

3.50 3.00 2.50 2.50 1.50 0.75 –– –– –– 

Minimum 

value (m) 

3.00 2.50 1.50 1.50 0.75 0.25 

Width of soil 

shoulder (m) 

Recommended 

value (m) 

0.75 0.75 0.75 0.50 0.75 0.75 0.75 0.50 0.25 

0.50 

 
Minimum 

value (m) 

0.75 0.75 0.75 0.50 0.50 0.50 

(Marginal Strip) 

http://dict.youdao.com/w/recommended%20value/#keyfrom=E2Ctranslation
http://dict.youdao.com/w/recommended%20value/#keyfrom=E2Ctranslation
http://dict.youdao.com/w/recommended%20value/#keyfrom=E2Ctranslation
http://dict.youdao.com/w/recommended%20value/#keyfrom=E2Ctranslation
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Furthermore, road design standards also regulate and record the length and width of lane 

markings. For example, according to the Code for Layout of Urban Road Traffic Signs and 

Markings of China (GB 51038 – 2015), the width of single yellow dashed line should be 15 cm. 

The marking length and the distance between two consecutive line segments are 4 m and 6 m, 

respectively. Figure 3.21 presents some regulated width (cm) of different types of lane markings. 

               

                       

                        (a)                                                                                (b) 

      

 

                           

                               (c)                                                                                (d) 

       

 

                                     (e)                                                                                (f) 

Figure 3.21 Standards for road markings  

(a) Single yellow dashed line (separating lanes in one direction); (b)(c) single white dashed 

line (separating lanes in two direction); (d)(e)(f) roadway edge lines 

It is noteworthy that the width of different lane markings depends on the designated road 

speed limits. In this study, the speed limit of Huandao Road and Yanwu Bridge is 60 km/hr. Thus, 

according to the Code for Layout of Urban Road Traffic Signs and Markings of China (GB 51038 

– 2015), the width of these lane markings should be 15 cm. With these road design standards as 

priori knowledge, optimal local thresholds can be easily estimated.  Figure 3.22 shows the field 
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surveys in Xiamen. The principle of the proposed distance-to-road-edge thresholding method is 

illustrated in Figure 3.23.  

 

 

 

 

 

Figure 3.22 Field surveys in Xiamen 

Figure 3.23 Principle of distance thresholding 
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As shown in Figure 3.23, the proposed algorithm detects lane markings and roughly 

estimates lane centerlines based on the width information recorded in the Code for Layout of Urban 

Road Traffic Signs and Markings of China (GB 51038 – 2015), and the Code for Design of Urban 

Road of China (CJJ37 -2012). The algorithm initially regards the refined curb points (red points) 

as control points and segments data into a significant number of blocks. Similar to the segmentation 

method mentioned in Section 3.3, every two consecutive curb points will generate one block, and 

a linear function is calculated based on the coordinates of the two consecutive curb points. This 

segmentation strategy enables the algorithm to process a minimal set of data in local blocks, thus 

reducing the influence of errors on the global scale. After segmentation, a searching window starts 

moving from the two curb points in each local block and searches for points whose distance to the 

generated edge line is within a certain range. Meanwhile, a point-intensity-thresholding is applied 

to detect points with high retro-reflectance in certain strips. The criteria for detecting lane markings 

can be described as follows: 

        𝑃𝑖 {
𝐿𝑎𝑛𝑒 𝑚𝑎𝑟𝑘𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡,        𝑖𝑓  (𝐼𝑚𝑖𝑛 ≤ 𝐼𝑖 ≤ 𝐼𝑚𝑎𝑥 &𝐷𝑚𝑖𝑛 < 𝐷𝑖 < 𝐷𝑚𝑎𝑥) 
𝑛𝑜𝑛 − 𝐿𝑎𝑛𝑒 −  𝑚𝑎𝑟𝑘𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡,                                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       (3-11)                 

where Ii is the intensity value of a point. Imin and Imax are the minimum and maximum intensity 

thresholds, respectively. Di is the distance from the point to the generated road edge in the local 

block. Dmin and Dmax are minimum and maximum distance thresholds which are defined according 

to road design standards. For example, as shown in Figure 3.23, Dmin is usually set as the width of 

the marginal strip (d4) for the left side, and the shoulder width (d1) for right side. Dmax equals to 

the sum of the marginal strip width (d4) and the lane marking width (d2).  

Generally, marginal strip width ranges from 0.5 m to 0.75 m for urban roads, and shoulder 

width ranges from 1.5 m to 2.5 m for the test roads (as shown in Table 3.4). Furthermore, the width 
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of lane markings in the study area is 15 cm. Thus, Dmin and Dmax are usually set at 0.5 m and 0.9 m 

respectively. Additionally, lane width should not be less than 3.5 m for urban roads with a speed 

limit of 60 km/hr. 

Consequently, points with certain intensity values and within certain regions are extracted 

as lane markings. The nearest and farthest points on lane markings are regarded as the outer edge 

and inner edge of the lane marking and separately extracted. Finally, lane centerline points are 

roughly estimated by finding points with a certain distance (d2 + d1 + d3/2) to the right road edge. 

The equation of the distance from a point to a line is described as follows: 

                                                  𝑑 =
|𝑎𝑥0+𝑏𝑦0+𝑐|

√𝑎2+𝑏2
                                                         (3-12) 

where d is the distance from a point to a line, (x0, y0) represents the 2D coordinates of a point, and 

a, b, and c are the parameters of a linear function which is estimated by two consecutive curb points 

in local blocks. 

This method can produce promising results, especially for straight roads. It should be noted 

that when it comes to curves, partitioning data into smaller pieces is a useful strategy to improve 

the performance of the proposed method. The smaller the length of each block, the more similar 

the shape of the rectangle and its corresponding arc. When the area of the rectangle is 

approximately zero, the sides of the rectangle and the arc are almost coinciding. Figure 3.24 shows 

the proposed method applied to curve roads. Figure 3.24 (a) shows a curved road section 

segmented into 4 blocks (red rectangle). Figure 3.24 (b) shows an 8-block segmentation result of 

the same curve, in which, red points are the extracted curb points, yellow lines are the local road 

edge lines connected by consecutive curb points, blue points denote the detected lane marking 
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points. As shown in Figure 3.24, smoothed lane marking extraction results could be obtained by 

partitioning data into smaller pieces. 

 

 

 

 

 

                                                                                

 

(a) 

 

 

 

 

 

                                                                               (b) 

Figure 3.24 Extracting lane markings in curves using different thresholds  

(a) 4 blocks; (b) 8 blocks 
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3.6 Lane Centerline Estimation  

As shown in Figure 3.23, lane centerlines are roughly estimated by finding points with a 

certain distance to right road edges. In order to acquire more precise lane centerlines which are 

suitable for autonomous navigation, the lane centerline is estimated again based on the position of 

lane markings. To calculate the coordinates of lane centerline points, a same segmentation strategy 

as mentioned in Section 3.3 is applied here. The points of the extracted lane markings are 

segmented into hundreds of blocks, and in each block, the center points of lane markings on each 

side are extracted. The coordinates of center points in each block are calculated by: 

                       𝐶 (𝑋𝐶 , 𝑌𝐶 , 𝑍𝐶) ≈ (
𝑋𝑚𝑎𝑥+𝑋𝑚𝑖𝑛

2
,

𝑌𝑚𝑎𝑥+𝑌𝑚𝑖𝑛
2

,
𝑍𝑚𝑎𝑥+𝑍𝑚𝑖𝑛

2
)              (3-10) 

where Xmax, Xmin, Ymax, Ymin, Zmax, Zmin are the maximum values and minimum values of x, y, and 

z for each cluster in the local block, respectively. Two center points are extracted in each local 

block with one on each lane-marking cluster. Similarly, the coordinates of lane centerline points 

are estimated by calculating the coordinate mean of two extracted center points in every local block.  

Generally, a point cloud is segmented into hundreds of blocks, thus producing the same 

number of lane centerline points. However, for broken lines and faded lane markings, a center 

point interpolation method is applied to interpose center points in blank areas until sufficient lane 

centerline points can be generated. Figure 3.25 presents the principle of the proposed lane 

centerline estimation method. Figure 3.26 shows a demonstration of lane centerline estimation. 
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Figure 3.25 Principle of lane centerline estimation  

With the estimated lane centerline points as position vectors, the optimal path for 

autonomous vehicles can be generated. Combined with road edges and a variety of road marking 

clusters, a 3D high-definition road map is created. The extracted key points are linked in ArcGIS 

to produce smooth road edges and lane centerlines. The final experimental results will be presented 

and compared in chapter 4, as well as the performance and comments of the proposed algorithms.  
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                                    (a)                                                                           (b) 

Figure 3.26 Example of lane centerline estimation 

(a) The extracted road surface; (b) the estimated lane centerline points 

3.7 Accuracy Assessment 

3.7.1 Accuracy Assessment of Road Markings 

After extracting all useful information, an accuracy assessment is implemented to evaluate 

the performance of the proposed method. A set of reference pixels for each dataset is manually 

labeled in UAV orthoimages using ArcGIS v10.2.2. Also, the MLS point clouds are aligned to the 

same coordinate system (WGS84) of UAV orthoimages. With UAV orthoimages, the extracted 

road markings are overlapped with UAV images in ArcGIS. After pixel analysis, precision, recall, 

and F1-score are used to represent the accuracy of the experimental results. As shown in the 

following equations, precision represents how many relevant road marking pixels are extracted. 

Recall indicates how many extracted road marking pixels are correct. F1-score is a measure that 

combines precision and recall. It is also the harmonic mean of precision and recall in mathematics.  
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                                                𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝+𝑓𝑝
                                           (3-11) 

                                        𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝+𝑓𝑛
                                       (3-12) 

                               𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                       (3-13)                             

As shown in Eqs. (3-11) to (3-13), tp indicates number of true positive; fp and fn represent 

number of false positive and negative, respectively. In this thesis, the targeted road markings are 

regarded as positive, and the rest of classes are negative. 

3.7.2 Accuracy Assessment of Lane Centerlines 

In this study, lane centerlines are extracted as position vectors for autonomous navigation 

systems. The coordinates of these lane centerlines are estimated based on the position of lane 

markings. As they are simulated and unreal lines without obvious characteristics in 3D scenes, 

there are no available reference point clouds that can be used to assess the accuracy of the estimated 

lane centerlines. Therefore, the estimated lane centerlines are overlapped with UAV orthoimages 

in ArcGIS. Buffer zones with the width of 10~30 cm are manually drawn in base maps as reference, 

and the experimental results are evaluated by observing whether the estimated lane centerlines are 

in the buffer zones. If not, the offset should be calculated. The evaluation results of road marking 

extraction and lane centerline estimation will be described in Chapter 4. 

3.8 Chapter Summary 

This chapter introduced the study area, datasets, computing platforms, and relative 

software used in this study. The rationales of every step in the approach have been presented 

explicitly. First, the coordinate system transformation is performed to fix the orientation of the 

vehicle frame. Then, the non-ground points are removed by the voxel-based upward growing 
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algorithm. With ground points, curb candidates are detected by their elevation difference and slope, 

and road surfaces are segmented based on the position of the extracted curb points. As to road 

marking extraction, on the one hand, arrows, words, and symbols are extracted by intensity 

thresholding, outlier removal and conditional Euclidean clustering. On the other hand, lane 

markings are extracted based on intensity and distance-to-road-edge thresholding. This chapter 

provides prototype procedures for extracting different meaningful road features from massive 

MLS point clouds and creating 3D high-definition road maps for autonomous vehicles. The 

accuracy assessment mechanism is also described in this chapter. In the next chapter, the 

experimental results will be presented, as well as the accuracy assessment results.  
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Chapter 4  

Results and Discussion 

This chapter presents the experimental results of the proposed method. Section 4.1 presents 

the results of every individual procedure, including road surface extraction, non-ground points 

removal, outlier removal, Euclidean clustering, road marking extraction, and lane centerline 

estimation. Section 4.2 demonstrates the accuracy assessment results. Section 4.3 discusses the 

computing complexity of the proposed algorithms. Two comparative studies are described in 

section 4.4. Section 4.5 summarizes the main results of this chapter. 

4.1 Results and Evaluation  

4.1.1 Non-ground Point Removal 

As mentioned in Section 3.3.2, a voxel-based upward-growing method is adopted to 

remove non-ground points from raw datasets. Three parameters have great influence on the 

performance of the voxel-based upward-growing algorithm, which are: size of a voxel (Wv), local 

ground undulation threshold (hg) and global ground undulation threshold (he). In this study, 

according to the point density and characteristics of test datasets, these parameters were set at 

different values. For Dataset 1, Dataset 2, and Dataset 4, the voxel size Wv was set as Wv = 0.4 m, 

hg = 0.7 m, and he = 3.0 m, respectively.  For Dataset 3, Wv was set at 0.1 m, hg =0.8 m, he = 3.0 m. 

As Dataset 5 has a steep slope, the voxel size was set at 0.05 m, hg = 0.7 m, and he =3.0 m. Figure 

4.1 presents the non-ground removal result of Sample 7. Figure 4.1 (a) shows the raw point cloud 

of Sample 7. Figure 4.1 (b) presents the non-ground point removal results.  Table 4.1 lists the non-

ground removal results of the five test datasets and the proportion of non-ground points, which 
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proves that the computing efficiency of the proposed method can be considerably enhanced by 

removing non-ground points from MLS data. 

Table 4.1 Results of the non-ground removal 

Dataset Raw point cloud Non-ground points Percentage of non-ground 

points 

1 1,920,753 576,226 30% 

2 341,891 57,583 17% 

3 6,758,030 770,065 11% 

4 9,058,578 1,108,085 12% 

5 8,381,952 1,061,303 13% 

 

       

 

 

 

 

4.1 Non-ground removal results  

4.1.2 Road Edge Detection and Refinement 

In this study, road surfaces were extracted by detecting curb points as road boundaries. 

Three important parameters were pre-defined according to priori knowledge about road design 

standards, namely, minimum height difference Gmin = 7 cm, maximum height difference Gmax = 30 

cm, and slope Sslope = 70°. Figure 4.2 shows curb detection results of Dataset 1, Dataset 2, and 

Dataset 3. 

(a) The raw point clouds 

before non- 

(b) The extracted ground points 
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Figure 4.2 Curb detection results (a) Dataset 1; (b) Dataset 2; (c) Dataset 3: road intensity 

(left) and detected curb points (right) 

(c) 

(a) 

(b) 
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As shown in Figure 4.2 (c), outliers inevitably exist in the curb detection results due to 

misclassification. Therefore, road edge refinement based on RANSAC is conducted to remove 

outliers and interpose points. The road edge refinement result of Dataset 3 is presented in Figure 

4.3. Figure 4.4 shows the position of the extracted curb points in 3D scenes.  

 

 

 

 

 

 

Figure 4.3 Curb refinement results: (a) the extracted curb points; (b) the refined curb points  

 

 

 

 

 

 

 

Figure 4.4 Extracted curb points shown in blue from (a) Dataset 1; and (b) Dataset 5  

(a) (b) 

(a) (b) 
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4.1.3 Road Surface Extraction 

Based on the position of the extracted road curb points, points between left and right road 

edges are regarded as road surface and extracted. It is noteworthy that a road edge is defined as 

the straight line that passes the two nearest curb points. As shown in Figure 4.5, the blue area is 

the extracted road surface in Dataset 1. 

 

  

     

 

 

 

Figure 4.5 Road surface segmentation results  

As mentioned in Section 3.6, partitioning data into smaller pieces can improve the 

performance of the proposed algorithm. This strategy is particularly useful for curve roads, as the 

algorithm extracts road surfaces in each local block with a pair of local road edges as reference. If 

the area of each block is not small enough, the estimated road edge could not fit the true road edge. 

As shown in Figure 4.6 (a), the more smoothed road edges can be obtained based on the 300-block 

segmentation (b) compared with that based on the 50-block segmentation (a). This indicates that 

the more blocks are used, the more accurate road edges can be extracted. 
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Figure 4.6 Curved road surface sections segmented based on (a) 50 blocks and (b) 300 blocks. 

4.1.4 Directional and Textual Road Marking Extraction 

The proposed road marking extraction algorithm was tested on the five datasets, which 

contain different types of road markings including arrow, symbol, word, lane, and hatch markings. 

To achieve the best performance of the proposed method, local optimal thresholds were estimated 

based on the characteristics of different datasets. Generally, the minimum intensity threshold Imin 

was set as 28000, and the maximum intensity threshold Imax was set at 40000. Figure 4.7 presents 

the extracted road markings of a Dataset 5 section. 

 

 

 

 

Figure 4.7 Road marking extraction results 

An outlier removal function based on statistical analysis was performed to remove noise 

from road marking extraction results. The number of the nearest neighbours k should be set at 

(a) (b) 
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different values for different datasets according to their point density. Specifically, k was set at 5, 

7, 7, and 8 for Datasets 1, 3, 4, and 5, respectively. 

After outlier removal, the remained points still have no topological relationships. Thus, to 

organize discrete points into semantic groups, conditional Euclidean clustering is conducted. With 

a priori knowledge about road markings, the clusters of lane markings were removed from the 

results based on width analysis. Finally, only arrows, symbols, and words were remained in the 

3D scene. As the targeted directional and textual markings are always wider than 15 cm, wc was 

set to 17 cm, and dc = 0.1 m, where wc is a pre-defined width threshold, and dc is a Euclidean 

distance threshold. Figure 4.8 shows the road markings of Dataset 5 after outlier removal. Figure 

4.9 presents the extracted directional and textual markings. 

 

 

     

 

Figure 4.8 Noise-removed road markings of Dataset 5 

 

 

 

 

Figure 4.9 Extracted arrows and words of Dataset 5 
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4.1.5 Lane Marking Extraction  

Lane markings are extracted using a multi-thresholding method, which detects lane 

markings both relying on intensity information and the distance to road edges. As mentioned in 

Section 3.6, the distance thresholds are determined by road design standards. According to the 

Code for design of urban road and the Code for Layout of Urban Road Traffic Signs and Markings, 

dmin was set to 0.5 m, and dmax was set to 0.9 m for roads without shoulders. For roads equipped 

with shoulders, dmin = 1.5 m, dmax = 2.75 m for the right side, and dmin = 0.5 m, dmax = 0.9 m for the 

left side. Apart from distance thresholding, intensity information is also used to detect lane 

marking points. Specifically, Imin was set at 23000, and Imax = 40000. The results obtained by the 

lane marking extraction algorithm is influenced by the following parameters: 

• dmin: a pre-defined minimum distance threshold,  

• dmax: a pre-defined maximum distance threshold, 

• Imin: a pre-defined minimum intensity threshold, and 

• Imax: a pre-defined maximum intensity threshold. 

As mentioned in Section 3.1, approximately 50% of road surface data is missing in Dataset 

2. Dataset 2 is not suitable for testing the proposed lane marking extraction algorithm. Figures 4.10 

(a) to (d) show the lane marking extraction results and the extracted key points of Datasets 1, 3, 4, 

and 5. Figure 4.11 presents the detailed sections of the extracted lane markings and key points 

(curb points, lane marking edge points) of Datasets 1 and 3.  

 

 

 



 

 70 

 

 

 

 

 

(a) 

 

 

 

 

 

(b) 

 

 

 

 

 

(c) 
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(d) 

Figure 4.10 Extracted lane markings and key points (a) Dataset 1; (b) Dataset 3; (c) Dataset 4; 

(d) Dataset 5: road intensity (left) and key points (right) 

 

 

 

 

 

 

 

 

(a) 

0.5m 
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Figure 4.11 Detailed sections of the extracted lane markings and key points 

(a) A section of Dataset 1; (b) a section of Dataset 3 

As shown in Figures 4.10 and 4.11, most lane markings were successfully extracted from 

raw MLS data. However, some of the road markings in Figure 4.10 (d) are incomplete. The missing 

parts were primarily caused by the occlusions of large obstacles, as laser beams cannot reach the 

shadows of the obstacles. Another probable reason is that some road markings have been painted 

on the road surfaces for too many years. Thus, some parts of the road markings have been worn 

by vehicles and pedestrians. In summary, the proposed lane marking extraction method produced 

promising results. 

 

 

Curb Point 

Lane Marking 

Edge Point 

(b) 
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4.1.6 Lane Centerline Estimation 

The coordinates of lane centerline points were estimated according to the coordinates of 

lane marking points on both left and right sides. In this study, Wz was set to 2.0 m for Datasets 1, 

3, 4, and Wz = 0.5 m for Dataset 5. Wz is a pre-defined width threshold that denotes the width of 

each block. For example, with a 0.5 m local block width, Dataset 5 was partitioned into over 350 

blocks to estimate lane centerline points. Figures 4.12 (a) to (d) present the estimated lane 

centerline points of Datasets 1, 3, 4, and 5, respectively. 
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(d) 

Figure 4.12 The estimated lane centerlines of (a) Dataset 1; (b) Dataset 3; (c) Dataset 4; (d) 

Dataset 5  

4.1.7 3D High-definition Road Map Prototype 

With the extracted road markings, road edges, and the estimated lane centerline points, a 

prototype of 3D high-definition road map is created. The generated road map is a robust tool for 

autonomous navigation. By matching or associating map features and features detected by interior 
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sensors and calculating the offset, the navigation system can promptly make decisions in terms of 

steering, brake, throttle, lane changing, etc. If the offset is lower than a given threshold, meaning 

the 3D scene captured by sensors matches the 3D environment stored in the priori map, the 

designated lane centerline would be safe for the autonomous vehicle to drive along. Figure 4.13 

presents the road map of the whole viaduct area.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 3D high-definition map prototype of Dataset 3-4    
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After extracting all useful road information, the generated LAS file was converted to SHP 

file and further processed in ArcGIS. Separate lane centerline points were linked using a XY-Line 

tool in ArcGIS to create smooth trajectories. In addition, the map can be converted to other types 

of user-defined format. Finally, the map was ready for the navigation task of autonomous vehicles. 

The linked lane centerlines for Datasets 3 and 4 are shown in Figure 4.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 Generated trajectories in ArcGIS 
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4.2 Accuracy Assessment 

4.2.1 Road Marking Extraction 

As mentioned in Chapter 3, the performance of road marking extraction was evaluated by 

manually labeled reference pixels in UAV orthoimages. The manually interpreted orthoimage and 

the overlapped orthoimage are set in the same resolution. Figure 4.15 shows manually interpreted 

road marking polygons in UAV orthoimages and the orthoimages overlapped by the extracted road 

markings. Figures 4.15 (a) and (b) present the validation results of Dataset 4.  Figures 4.15 (c) and 

(d) present the validation results of Dataset 5.  The precision, recall, and F1-score of the five 

datasets are listed in Table 4.2.  
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Figure 4.15 Validation results (a), (c) manual interpreted polygons in the orthoimage of Dataset 

4, Dataset 5; (b), (d) orthoimage overlapped by extracted road marking pixels of Dataset 4, 

Dataset 5;  

 

 

 

(c) 

(d) 
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Table 4.2 Quantitative assessment of road marking extraction 

Dataset Precision (%) Recall (%) F1-score 

1 97.78 96.57 0.9717 

2* N/A N/A N/A 

3 95.65 95.54 0.9559 

4 96.83 89.72 0.9314 

5 85.21 93.22 0.8904 

*Note: As most road surface points are missing, Dataset 2 is not suitable for testing road 

marking extraction algorithms. 

As shown in Table 4.2, the proposed road marking extraction method can achieve 97.78 % 

in precision, 96.57 in % recall, and 0.9717 in F1-Score. Both precision and recall of Dataset 1 are 

very high, as Dataset 1 is a short and straight road with no obstacles. Similarly, Dataset 3 is a 

straight section of Yanwu viaduct, but much longer than Dataset 1. The recall of Dataset 4 is 

relatively lower, as a lane reduction area exists in Dataset 4. The number of lanes is reduced from 

three lanes to two lanes in same direction. As the effective width of the road is reduced, it is more 

difficult to estimate local optimal thresholds for lane reduction areas. As a result, the recall for 

Dataset 4 is lower due to some misclassification. As to Dataset 5, two moving vehicles block some 

road markings on the left side of the road, thus contributing to a low precision. The occlusion of 

shadows and obstacles is a common shortcoming of MLS system, as laser beams cannot penetrate 

most objects. Figure 4.16 shows some misclassification and incomplete extraction in Datasets 4 

and 5. 
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                       (a)                                                                            (b)  

Figure 4.16 Errors in road marking extraction (a) Dataset 4; (b) Dataset 5 

4.2.2 Lane Centerline Estimation 

As described in Section 3.7.2, UAV orthoimages were used to validate the simulated lane 

centerlines. The orthoimages were collected by an UAV on May 5th, 2017. Reference lane 

centerline pixels were manually interpreted in these UAV orthoimages using ArcGIS v10.2.2. 

Afterwards, buffer zones with different widths were created and overlapped with the simulated 

lane centerlines. Figures 4.17 (a) and (b) show the lane centerline validation results of Datasets 4 

and 5, respectively. Figures 4.17 (c) and (d) present buffers overlapped by the simulated lane 

centerlines in detailed road sections. 
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Figure 4.17 Lane centerline validation results (a) Dataset 4; (b) Dataset 5; (c) (d) Detailed 

sections of the extracted lane centerlines  
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All of the simulated lane centerlines were evaluated through manual inspection. The 

estimated lane centerlines of Datasets 1, 3, and 4 can perfectly match the real centerlines. All of 

these lane centerlines were located in 10-cm-wide buffer zones. The simulated lane centerline of 

Dataset 5 had a small deviation due to some misclassfication and incomplete extraction of road 

marking. The maximal distance error is approximately 15 cm. Thus, a 30-cm-wide buffer zone 

was drawn to cover the whole lane centerline of Dataset 5.  

In practice, the common width of cars is usually less than 2 m, and the width of a single 

traffic lane in China should be no less than 3.5 m. Thus, a 40-cm lateral clearance can ensure 

driving safety. According to the 2004 Enhanced digital mapping project final report by United 

States Department of Transportation, the accuracy requirement of lane centerline estimation is 0.3 

m. Therefore, all of the above simulated lane centerlines meet this safety requirement.  

4.3 Computing Complexity Analysis 

The proposed 3D high-definition map creation method was implemented using C++. The 

computer used in this thesis is a desktop with an 8 GB RAM and an AMD FX-6300(TM) CPU. 

The computing time of each step shows the high efficiency of the proposed algorithms. Taking 

Dataset 3 as an example, the proposed algorithm took 76.9 s for pre-processing, 262.3 s for road 

marking extraction, 121.5s for lane marking extraction and lane centerlines estimation. Table 4.3 

shows the computing time of each procedure in the proposed method.  
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Table 4.3 Efficiency of the proposed method 

 

It is noted that Dataset 5 requires more computing time than other datasets in the same 

procedures. The primary reason of this phenomenon is the high data complexity of Dataset 5, as it 

involves an expressway entrance and a horizontal curve. To improve the proposed method 

performance, Dataset 5 was segmented into a considerable number of pieces, thus costing more 

computing time.  

Dataset 1 2 3 4 5 

Size 64 MB 23MB 226 MB 303 MB 281MB 

Number of Points 1,920,753 696,891 6,758,030 9,058,578 8,381,952 

Coordinates Transformation 1.0s 0.8s 9.0s 9.8s 9.7s 

Ground Removal 1.4s 1.0s 13.1s 15.7s 16.0s 

Curb Detection  9.5s 9.0s 30.3s 40.3s 51.7s 

Road Edge Refinement 1.5s 1.2s 2.2s 2.5s 2.7s 

Road Surface Segmentation 8.0s 4.7s 22.3s 25.7s 40.3s 

Intensity Analysis 7.2s N/A 15.7s 17.6s 16.7s 

Nosie Removal 59.2s N/A 201.1s 255.7s 230.0s 

Clustering 39.7s N/A 45.5s 60.5s 56.7s 

Lane Marking Extraction 10.7s N/A  99.8s 144.8s 179.3s 

Lane Centerline 

Estimation 

10.0s N/A 21.7s 28.5s 26.6s 

Total Time 158.2s N/A 460.7s 601.1s 629.7s 
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In addition, the volume of data used in this study is generally larger than that of many 

previous studies, as they usually manually selected a small region to test their algorithms. The 

results show the capacity of the proposed method to efficiently process big data. 

4.4 Comparative Study 

To objectively assess the performance of the proposed method, this thesis also undertook 

two comparative studies. Section 4.4.1 describes the comparison between the proposed road edge 

detection method and Yu’s method (Yu et al., 2015). Section 4.4.2 shows the comparison between 

the proposed road marking extraction method and several existing road marking extraction 

methods. 

4.4.1 Comparative Study of Road Edge Detection 

The proposed road edge detection method is an improved version of Yu et al. (2015). Thus, 

the proposed method has some similarities to Yu et al. (2015). For example, both Yu et al. (2015) 

and the proposed method are segmentation-based methods, which partition the road into profiles 

and detect curb points in local blocks. However, Yu et al. (2015) partitions the road into a fixed 

number of pieces according to the position of trajectory points, while the proposed method can 

partition the road into any number of segments. Furthermore, Yu et al. (2015) detects curb points 

by generating pseudo scan lines and selecting the highest point within the lowest layer, while the 

proposed method directly detects the lowest curb candidates in every local block, and a road edge 

refinement algorithm is applied after road edge detection. To evaluate the performance of these 

two methods, the extracted road edges were overlapped with UAV orthoimages and checked 

against manually labeled reference pixels. Both MLS point clouds and UAV orthoimages were in 
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the same coordinate system (UTM). Figures 4.18 and 4.19 present the evaluation results of these 

two methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18 Extracted road edges from a Dataset 1 section: (a) raw point clouds; (b) Yu’s result; 

(c) the proposed method’s result; (d) manually labeled reference data  
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Figure 4.19 Extracted road edges from a Dataset 5 section: (a) raw point clouds; (b) Yu’s result; 

(c) the proposed method’s result; (d) manually labeled reference data  
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(b) 
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The performance of Yu’s method and the proposed method was quantitatively evaluated 

using precision, recall, and F1-score. Table 4.4 presents the quantitative evaluation results of these 

two methods. 

Table 4.4 Accuracy assessment results of different road edge detection methods 

Sample Dataset 1 Dataset 5 

Method Yu et al. (2015) The proposed Yu et al. (2015) The proposed 

Precision (%) 96.54 96.32 85.21 95.06 

Recall (%) 95.20 95.61 83.43 92.91 

F1-score  0.9586 0.9596 0.8431 0.9397 

 

Interestingly, Yu’s method and the proposed method achieved similar precision, recall, and 

F1-score for Dataset 1, but for Dataset 5, the proposed method is obviously superior to Yu’s method. 

The comparison results show that Yu’s method is not capable of handling scenes involving 

horizontal curves and obstacles.  

4.4.2 Comparative Study of Road Marking Extraction  

The proposed road marking extraction method was compared with some existing methods, 

including Chen et al. (2009), Guan et al. (2014), Yu et al. (2015), and Cheng et al. (2017).  In Guan 

et al. (2014) and Cheng et al. (2017), MLS point clouds were converted to 2D intensity images 

first. Then they extracted road markings from those 2D images with the help of software including 

ENVI and ArcGIS. On the other hand, Chen et al. (2009), Yu et al. (2015), and the proposed 

method directly extracted road markings from 3D MLS point clouds. In this section, the 

experimental results of these studies will be compared. Figures 4.20 and 4.21 present the 

evaluation results of these studies. 
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Figure 4.20 Extracted road markings from Sample 01: (a) road surface points; (b) Chen’s result; 

(c) Guan’s result; (d) Yu’s result; (e) Cheng’s result; (f) the proposed method’s result; (f) 

manually labeled reference data (Yu et al., 2015) 
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Figure 4.21 Extracted road markings from Sample 05: (a) road surface points; (b) Chen’s result; 

(c) Guan’s result; (d) Yu’s result; (e) Cheng’s result; (f) the proposed method’s result; (f) 

manually labeled reference data (Yu et al., 2015) 

 

(f) 
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Table 4.5 Accuracy assessment of different road marking extraction methods (Sample 01) 

Sample Sample 01 

Method Chen et al. 

(2009) 

Guan et al. 

(2014) 

Yu et al. 

(2015) 

Cheng et al. 

(2017) 

The 

proposed 

Precision (%) 75 86 93 89 95 

Recall (%) 91 90 92 96 92 

F1- score  0.82 0.88 0.93 0.92 0.94 

 

Table 4.6 Accuracy assessment of different road marking extraction methods (Sample 05) 

Sample Sample 05 

Method Chen et al. 

(2009) 

Guan et al. 

(2014) 

Yu et al. 

(2015) 

Cheng et al 

(2017) 

The 

proposed 

Precision (%) 71 89 93 91 95 

Recall (%) 92 91 91 98 90 

F1- score  0.80 0.90 0.92 0.94 0.93 

 

Tables 4.5 and 4.6 presents the quantitative evaluation results of the mentioned methods. 

It is noted that the proposed method achieves the highest precision among the five methods. 

However, our approach is inferior to Cheng et al. (2017) in terms of recall. As shown in Figure 

4.21, some outliers still exist in the experimental results, especially around the right-hand lane 

markings. Consequently, the outlier removal algorithm and clustering algorithm still need 

improvement in this thesis. 
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The proposed approach outmatches Chen et al. (2009) and Yu et al. (2015) both in precision 

and recall. Chen et al. (2009) only focuses on lane markings, while Yu et al. (2015) and the 

proposed method can extract all types of road markings. 

Compared with Guan et al. (2015) and Cheng et al. (2017), the proposed method never 

suffers from inconstant intensity and blurring data, thus achieving higher precision. As shown in 

Figures 4.20 and 4.21, road markings near the road boundary could not be successfully extracted 

using Guan’s and Cheng’s methods. Moreover, their methods greatly rely on third-party software 

and require extensive manual operation, which can be time-consuming. 

4.5 Chapter Summary 

This chapter presents the experimental results of the proposed method. The accuracy 

assessment demonstrates that the proposed method can successfully distinguish and extract road 

features with high accuracy. The estimated lane centerlines are suitable for autonomous navigation. 

However, the accuracy of the proposed methods is influenced by data complexity. The presence 

of sharp curves, shadows, and large obstacles could have negative effects on the proposed 

algorithms. 

This chapter also describes the computing complexity of the proposed method. The 

computing time of every steps are listed and compared, which indicates the high efficiency of the 

proposed method. However, the computational time should be further reduced, especially for road 

marking extraction and noise removal.  

Finally, this chapter introduces two comparative studies, which show the robustness and 

feasibility of the proposed method.  
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Chapter 5  

Conclusions and Recommendations 

This chapter presents the conclusions of this thesis, discusses its limitations, and puts 

forward some suggestions for future research. 

5.1 Conclusions 

The autonomous vehicle, also known as the driverless vehicle, is a vehicle that can perceive 

the environment and navigate itself without human input. Fully autonomous vehicles are expected 

to be launched in the next ten years. Among all autonomous techniques, map-aided localization 

plays a significant role in autonomous navigation, as priori maps can provide precise road 

information for a navigation system and enable it to make reasonable decisions. However, the 

map-aided localization technique remains elusive, as there are no robust solutions for creating 3D 

high-definition road maps.  In addition, the unique data structure and volume of LiDAR point 

clouds also increase the complexity of this important task.  

This study provides a semi-automated method for extracting meaningful road features and 

create 3D high-definition road maps for autonomous vehicles. The proposed method first removes 

non-ground points through a voxel-based upward growing algorithm. Then a road edge detection 

algorithm is performed to detect road curbs and segment road surfaces. Next, road markings, 

including arrows, symbols, and words, are preliminarily detected using a global intensity filter. 

Semantic clusters of these textual and directional road markings are extracted by the statistical 

analysis outlier removal algorithm and conditional Euclidean clustering algorithm. On the other 

hand, lane markings are extracted by local intensity analysis and distance-to-road-edge 
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thresholding based on road design standards. Finally, centerline points in each single lane are 

estimated based on the position of the extracted lane markings. Accordingly, 3D high-definition 

road maps with precise road boundaries, road markings, and the estimated lane centerlines have 

been created. 

Four datasets are tested to prove the robustness of the proposed road marking extraction 

method. The precision, recall, and F1-score obtained using the four test datasets (1, 3, 4 and 5) are 

(97.78%, 96.57%, 0.972), (95.65%, 95.54%, 0.956), (96.83%, 89.72%, 0.931) and (85.21%, 

93.22%, 0.890), respectively. The accuracy assessment results demonstrate the feasibility of the 

proposed method, which can successfully and accurately extract most targeted road features from 

the test datasets. However, the accuracy of the proposed method is influenced by data complexity. 

Curves, shadows, and different types of obstacles are significant factors that could affect the 

accuracy of the experimental results.  

In conclusion, this thesis presents a stepwise workflow to extract road edges, road surfaces, 

road markings, and lane centerlines from MLS point clouds. It also provides a robust solution to 

create 3D high-definition road maps for autonomous navigation systems. As map-aided 

localization is still an emerging concept and there is no regulation or standards for creating 3D 

priori maps, the proposed idea has the potential to meet the demands of the market, especially for 

automobile manufacturers and designers like Google, Tesla, and Baidu, who are endeavoring to 

have commercial models of their driverless cars. 
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5.2 Contributions 

The proposed methods and ideas contribute to the study of MLS point cloud processing, 

road feature extraction, and autonomous vehicles navigation. The contributions of this thesis are 

described as follows: 

(1) A revised curb detection and road surface segmentation algorithm. As discussed in 

Chapter 3, a segmentation-based algorithm is used to detect curb points. Different from 

several previous segmentation-based curb detection methods, a voxel-based upward 

growing algorithm is conducted first to remove non-ground points before curb detection. 

This strategy could largely reduce the data complexity and the computing cost of further 

processes. Furthermore, according to the characteristics of test datasets, the lowest curb 

candidate on each side of a local block is regarded as the bottom of curbs. As the study 

areas are viaducts and urban roads with well-defined and highly organized road features, 

the algorithms and thresholding strategies are designed based on the characteristics of 

these road types. Moreover, the majority of segmentation-based methods mainly focus 

on simple straight roads, while the proposed workflow can deliver accurate results from 

all datasets, including complicated scenes with curves and obstacles. The experimental 

results prove the applicability and robustness of the method put forward in this thesis.  

(2) A unique lane marking extraction method based on road design standards. It is 

noted that one of the biggest challenges to development 3D high-definition road maps 

is to extract lane-level road features from massive MLS point clouds. Traditional road 

marking extraction methods are usually based on global intensity analysis. This thesis 

presents a new algorithm that detect lane markings based on both intensity analysis and 

distance-to-road-edge thresholding, overcoming the uncertainty of distance-to-
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trajectory dependant thresholding methods. The thresholds used in this algorithm are 

determined by regional specific road design standards, which drastically reduce the time 

consumption of optimal threshold estimation. Finally, high-accuracy lane marking 

extraction results are produced from all test datasets, proving the robustness and wide 

applicability of the proposed lane marking extraction algorithm. 

(3) A guideline for creating 3D high-definition road maps. Since traditional road maps 

cannot meet the demand of autonomous driving, 3D high-definition road map has 

become a necessary element of map-aided localization. To accomplish autonomous 

driving, a diversity of road maps has been developed in recent years, including 2D 

infrared reflectivity map, road topology network map, and different types of aerial 

images. However, most of these road maps are 2D maps focusing on a certain road 

feature. This study extracts different road features and estimates lane centerlines for 

autonomous vehicles, offering an example of a 3D high-definition road map. It may also 

provide useful suggestions for researchers and companies in terms of creating priori 

maps in the future. 

5.3 Limitations and Future Work 

As reported in Chapter 4, some limitations still exist in this approach. The detailed 

limitations and recommendations for future research are described in this section. 

(1) The proposed method is mainly tested on urban roads and viaducts. Therefore, the 

proposed method might not be suitable for other road types, such as rural or coastal 

roads. Necessary changes should be made based on the characteristics of data to 

produce more accurate results for other road types.  
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(2) As discussed in Chapter 4, the accuracy of the experimental results is relatively lower 

in complicated scenes, such as curved roads. Also, the incomplete road feature 

extraction results show that the proposed method is affected by the occlusion of 

obstacles, such as moving vehicles. Therefore, the algorithms still need improvement 

to handle high-complexity scenes.  

(3) The efficiency of the proposed method needs further improvement for higher 

computing efficiency, especially when dealing with curved roads. In order to improve 

the road edge detection performance, the road surfaces are usually segmented into 

smaller pieces, which means a considerable number of blocks are generated to process 

data locally. As a result, more computing time will be spent on the segmentation 

process. In the future, without reducing accuracy, more efficient algorithms that can 

process data globally should be developed. 

(4) The proposed method relies on a priori knowledge and experience. A small part of 

human input is still required, such as estimating and setting parameters. Moreover, the 

parameters used in this study can have great influence on the performance of the 

algorithms. Thus, a parameter-free method is needed to decrease the sensitivity of 

parameters. Fully-automated algorithms are expected to be developed in future research.  

(5) The true colour images acquired by the four digital cameras of the mobile laser 

scanning system should be taken into consideration. By integration of such images with 

the point clouds, the detection of road curbs and road markings may also be improved. 

Therefore, it is suggested that the digital images and image-based feature recognition 

methods could be used to improve the performance of the proposed method. 

 



 

 98 

References 

ArcGIS, 2016. ArcGIS Help 10.2, 10.2.1, and 10.2.2. Retrieved from ArcGIS Resources.  

Atlassian, 2016. World Geodetic System 1984. Retrieved from Hydrographic and Marine Software 

Solutions: https://confluence.qps.nl/pages/viewpage.action?pageId=29855173 

BCG, 2017. Autonomous Vehicle Adoption Study. Retrieved from The Boston Consulting Group: 

https://www.bcg.com/expertise/industries/automotive/autonomous-vehicle-adoption-

study.aspx 

Brenner, C., 2009. Extraction of features from mobile laser scanning data for future driver 

assistance systems. Advances in GIScience, Springer, 25-42. 

Chen, X., Kohlmeyer, B., Stroila, M., Alwar, N., Wang, R., & Bach, J., 2009. Next generation 

map making: geo-referenced ground-level LIDAR point clouds for automatic retro-

reflective road feature extraction. In Proceedings of the 17th ACM SIGSPATIAL 

International Conference on Advances in Geographic Information Systems, 488-491.  

Cheng, M., Zhang, H., Wang, C., & Li, J., 2017. Extraction and Classification of Road Markings 

Using Mobile Laser Scanning Point Clouds. IEEE Journal of Selected Topics in Applied 

Earth Observations and Remote Sensing, 10(3), 1182-1196. 

Chrysler, C., 2014. Chrysler Active Park Assist Demo. Retrieved from Youtube: 

https://www.youtube.com/watch?v=5IiffHMGxEc 

Defense Mapping Agency, 2015. Supplement to DoD WGS 84 Technical Report. Retrieved from 

Official diagram of the WGS 84 Reference Frame: http://earth- 

info.nga.mil/GandG/publications/tr8350.2/TR8350.2-b/Sections%201-5.pdf 

Dickmanns, E. D., & Zapp, A., 1987. Autonomous high speed road vehicle guidance by computer 

vision. IFAC Proceedings Volumes, 20(5), 221-226. 

Dickmanns, E. D., 2007. Dynamic Vision for Perception and Control of Motion. Springer Science 

& Business Media. 

Fischler, M. A., & Bolles, R. C., 1981. Random sample consensus: a paradigm for model fitting 

with applications to image analysis and automated cartography. Communications of the 

ACM, 24(6), 381-395. 

https://confluence.qps.nl/pages/viewpage.action?pageId=29855173
https://www.youtube.com/watch?v=5IiffHMGxEc


 

 99 

Frankl, A., Zwertvaegher, A., Poesen, J. & Nyssen, J., 2013. Transferring Google Earth 

observations to GIS-software: example from gully erosion study. International Journal of 

Digital Earth, 6(2), 196-201. 

Gannes, L., 2014. Here’s What It’s Like to Go for a Ride in Google’s Robot Car. Retrieved from 

Recode: http://recode.net/2014/05/13/googles-self-driving-car-a-smooth-test-ride-but-a-

long-road-ahead/ 

GIM, 2013. Mobile LiDAR Mapping Focus for International LiDAR Mapping Forum. Retrieved 

from http://www.gim-international.com/content/article/mobile-LiDAR-mapping-focus-

for-international-LiDAR-mapping-forum?output=pdf 

Google, 2016. See Notes on Google Earth Releases. Retrieved from Earth Help: 

https://support.google.com/earth/answer/40901?hl=en HYPERLINK 

"https://support.google.com/earth/answer/40901?hl=en&ref_topic=2376010"& 

HYPERLINK 

"https://support.google.com/earth/answer/40901?hl=en&ref_topic=2376010"ref_topic=2

376010 

Google, 2016. Get to Know Google Earth. Retrieved from Earth Help: 

https://support.google.com/earth/answer/148176?hl=en 

Gruen, A., Huang, X., Qin, R., Du, T., Fang, W., Boavida, J., & Oliveira, A., 2013. Joint processing 

of UAV imagery and terrestrial mobile mapping system data for very high resolution city 

modeling. ISPRS Archives, 40(1/W2), 175-182. 

Guan, H., 2013. Automated Extraction of Road Information from Mobile Laser Scanning Data. 

Doctoral Dissertation, University of Waterloo: 

https://uwspace.uwaterloo.ca/handle/10012/8273 

Guan, H., Yu, Y., Ji, Z., Li, J., & Zhang, Q., 2015. Deep learning-based tree classification using 

mobile LiDAR data. Remote Sensing Letters, 6(11), 864-873. 

Guizzo, E., 2011. How Google's Self-Driving Car Works. Retrieved from IEEE Spectrum Online: 

http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-

driving-car-works 

Haala, N., Peter, M., Kremer, J., & Hunter, G., 2008. Mobile LiDAR mapping for 3D point cloud 

collection in urban areas—a performance test. ISPRS Archives, 37, 1119-1127. 

http://recode.net/2014/05/13/googles-self-driving-car-a-smooth-test-ride-but-a-long-road-ahead/
http://recode.net/2014/05/13/googles-self-driving-car-a-smooth-test-ride-but-a-long-road-ahead/
http://www.gim-international.com/content/article/mobile-lidar-mapping-focus-for-international-lidar-mapping-forum?output=pdf
http://www.gim-international.com/content/article/mobile-lidar-mapping-focus-for-international-lidar-mapping-forum?output=pdf
https://support.google.com/earth/answer/40901?hl=en&ref_topic=2376010
https://support.google.com/earth/answer/40901?hl=en&ref_topic=2376010
https://support.google.com/earth/answer/40901?hl=en&ref_topic=2376010
https://support.google.com/earth/answer/40901?hl=en&ref_topic=2376010
https://support.google.com/earth/answer/40901?hl=en&ref_topic=2376010
https://support.google.com/earth/answer/148176?hl=en
https://uwspace.uwaterloo.ca/handle/10012/8273
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works


 

 100 

Hata, A. Y., Osorio, F. S., & Wolf, D. F., 2014. Robust curb detection and vehicle localization in 

urban environments. In Proceedings of 2014 IEEE Intelligent Vehicles Symposium. 1257-

1262.  

Here, 2016. A sample of 3D high-definition road map. Retrieved from HERE introduction: 

https://here.com/en/products-services/products/here-hd-live-map 

Huang, X., Gruen, A., Du, R. Q., & Fang, W., 2013. Integration of mobile laser scanning data with 

UAV imagery for very high resolution 3D city modeling. The 7th International Symposium 

on Mobile Mapping Technology, Tainan, Taiwan, 1-3. 

Hyyppä, J., Jaakkola, A., Chen, Y., & Kukko, A., 2013. Unconventional LiDAR mapping from 

air, terrestrial and mobile. Proceedings of the Photogrammetric Week, Stuttgart, Germany, 

205-214. 

Ieng, S. S., Tarel, J. P., & Labayrade, R. 2003. On the design of a single lane-markings detectors 

regardless the on-board camera's position. In 2003 Intelligent Vehicles Symposium, 564-

569. 

Kammel, S., & Pitzer, B., 2008. LiDAR-based lane marker detection and mapping. In 2008 IEEE 

Intelligent Vehicles Symposium, 1137-1142.  

Kane, S., 2012. 2012 Family Cars with Self-Parking Technology. Retrieved from The Car 

Connection: http://www.thecarconnection.com/news/1067819_2012-family-cars-with-

self-parking-technology 

Lavrinc, D., 2012. Exclusive: Google Expands Its Autonomous Fleet with Hybrid Lexus RX450h. 

Retrieved from Wired: http://www.wired.com/2012/04/google-autonomous-lexus-rx450h/ 

Leick, A., Rapoport, L., & Tatarnikov, D., 2015. GPS Satellite Surveying. John Wiley & Sons. 

Lemmens, M., 2011. Geo-information: Technologies, Applications and the Environment. Springer 

Science & Business Media. 

Levinson, J., & Thrun, S, 2010. Robust vehicle localization in urban environments using 

probabilistic maps. In 2010 IEEE International Conference on Robotics and Automation 

(ICRA), 4372-4378.  

Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., & Sokolsky, M., 2011, 

June. Towards fully autonomous driving: Systems and algorithms. In 2011 IEEE 

Intelligent Vehicles Symposium, 163-168.  

http://www.thecarconnection.com/news/1067819_2012-family-cars-with-self-parking-technology
http://www.thecarconnection.com/news/1067819_2012-family-cars-with-self-parking-technology
http://www.wired.com/2012/04/google-autonomous-lexus-rx450h/


 

 101 

Lichti, D. D., 2010. Terrestrial laser scanner self-calibration: correlation sources and their 

mitigation. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 93-102. 

Lindner, P., Richter, E., Wanielik, G., Takagi, K., & Isogai, A., 2009. Multi-channel LiDAR 

processing for lane detection and estimation. In 12th International IEEE Conference on 

Intelligent Transportation Systems, 1-6.  

Loose, H., & Franke, U., 2010. B-spline-based road model for 3D lane recognition. In 2010 13th 

International IEEE Conference on Intelligent Transportation Systems (ITSC), 91-98. 

Luettel, T., Himmelsbach, M., & Wuensche, H. J., 2012. Autonomous ground vehicles—Concepts 

and a path to the future. Proceedings of the IEEE, 100(Special Centennial Issue), 1831-

1839. 

Manz, M., Luettel, T., von Hundelshausen, F., & Wuensche, H. J., 2011. Monocular model-based 

3D vehicle tracking for autonomous vehicles in unstructured environment. In 2011 IEEE 

International Conference on Robotics and Automation (ICRA), 2465-2471.  

Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D., Ettinger, S. & Johnston, D., 

2008. Junior: The Stanford entry in the urban challenge. Journal of Field Robotics, 25(9), 

569-597. 

Nam, T., & Pardo, T. A., 2011. Conceptualizing smart city with dimensions of technology, people, 

and institutions. Proceedings of the 12th Annual International Digital Government 

Research Conference: Digital Government Innovation in Challenging Times, MD, USA, 

282-291.  

Nixon, M. S., & Aguado, A. S., 2012. Feature Extraction & Image Processing for Computer 

Vision. Academic Press. 

Olsen, M. J., 2013. Guidelines for the Use of Mobile LiDAR in Transportation Applications. 

Transportation Research Board. 

Osborne, C., 2015. Google's autonomous car injuries: blame the human. Retrieved from ZDNet: 

http://www.zdnet.com/article/googles-autonomous-car-injuries-blame-the-human/ 

Otsu, N., 1979. A threshold selection method from gray-level histograms. IEEE Transactions on 

Systems, Man, and Cybernetics, 9(1), 62-66. 

Over, M., Schilling, A., Neubauer, S., & Zipf, A., 2010. Generating web-based 3D city models 

from Open Street Map: the current situation in Germany. Computers, Environment and 

Urban Systems, 34(6), 496-507. 

http://www.zdnet.com/article/googles-autonomous-car-injuries-blame-the-human/


 

 102 

Paromtchik, I. E., & Laugier, C., 1996. Motion generation and control for parking an autonomous 

vehicle. IEEE International Conference in Robotics and Automation, MN, USA, 4, 3117-

3122. 

Pink, O., Moosmann, F., & Bachmann, A., 2009. Visual features for vehicle localization and ego-

motion estimation. In 2009 IEEE Intelligent Vehicles Symposium, 254-260.  

PCL, 2015. Conditional Euclidean Clustering. Retrieved from PCL: 

http://pointclouds.org/documentation/tutorials/conditional_euclidean_clustering.php#con

ditional-euclidean-clustering 

PCL, 2015. Removing Outliers Using a StatisticalOutlierRemoval Filter. Retrieved from PCL: 

http://pointclouds.org/documentation/tutorials/statistical_outlier.php#statistical-outlier-

removal 

Poli, D. & Caravaggi, I., 2013. 3D modeling of large urban areas with stereo VHR satellite 

imagery: lessons learned. Natural Hazards, 68(1), 53-78. 

Pu, S., Rutzinger, M., Vosselman, G. & Elberink, S. O., 2011. Recognizing basic structures from 

mobile laser scanning data for road inventory studies. ISPRS Journal of Photogrammetry 

and Remote Sensing, 66(6), 28-39. 

Puente, I., González-Jorge, H., Martínez-Sánchez, J. & Arias, P., 2013. Review of mobile mapping 

and surveying technologies. Measurement, 46(7), 2127-2145. 

RIEGL, 2014. Data Processing Software, RiPROCESS for RIEGL Scan Data. Retrieved from 

RIEGL: 

http://www.riegl.com/uploads/tx_pxpriegldownloads/11_Datasheet_RiProcess_2014-09-

18.pdf 

RIEGL, 2015. Compact Mobile Laser Scanning System, RIEGL VMX-450. Retrieved from RIEGL 

Laser Measurement Systems: 

http://www.riegl.com/uploads/tx_pxpriegldownloads/DataSheet_VMX-450_2015-03-

19.pdf 

Rusu, R. B. & Cousins, S., 2011. 3D is here: Point Cloud Library (PCL). IEEE International 

Conference on Robotics and Automation, Shanghai, China, 1-4. 

Rybka, R., 2011. Autodesk and Bentley Systems talk about mobile LiDAR. LiDAR Magazine, 2. 

Retrieved from Spatial Media: 

http://www.LiDARmag.com/PDF/LiDAR_Magazine_Vol1No2_Rybka.pdf 



 

 103 

Sahin, C., Alkis, A., Ergun, B., Kulur, S., Batuk, F. & Kilic, A., 2012. Producing 3D city model 

with the combined photogrammetric and laser scanner data in the example of Taksim 

Cumhuriyet Square. Optics and Lasers in Engineering, 50(12), 1844-1853. 

Soilán, M., Riveiro, B., Martínez-Sánchez, J., & Arias, P., 2017. Segmentation and classification 

of road markings using MLS data. ISPRS Journal of Photogrammetry and Remote 

Sensing, 123, 94-103. 

Sprickerhof, J., Nüchter, A., Lingemann, K., & Hertzberg, J. (2011). A Heuristic Loop Closing 

Technique for Large-Scale 6D SLAM. Automatika: Journal for Control, Measurement, 

Electronics, Computing & Communications, 52(3), 199-222. 

Steder, B., Rusu, R. B., Konolige, K. & Burgard, W., 2011. Point feature extraction on 3D range 

scans taking into account object boundaries. IEEE International Conference on Robotics 

and Automation, Shanghai, China, 2601-2608. 

Tao, Z., Bonnifait, P., Fremont, V., & Ibanez-Guzman, J., 2013. Mapping and localization using 

GPS, lane markings and proprioceptive sensors. IEEE/RSJ International Conference 

on Intelligent Robots and Systems (IROS), 406-412. 

Tao, Z., Bonnifait, P., Fremont, V., & Ibanez-Guzman, J., 2013. Lane marking aided vehicle 

localization. IEEE International Conference on Intelligent Transportation Systems, 1509-

1515. 

Thorpe, C., Herbert, M., Kanade, T., & Shafer, S., 1991. Toward autonomous driving: the CMU 

Navlab. i. perception. IEEE Expert, 6(4), 31-42. 

Thrun, S., 2003. Learning occupancy grid maps with forward sensor models. Autonomous 

Robots, 15(2), 111-127. 

Thuy, M., & León, F., 2010. Lane detection and tracking based on LiDAR data. Metrology and 

Measurement Systems, 17(3), 311-321. 

Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M. N., ... & Gittleman, M. (2008). 

Autonomous driving in urban environments: Boss and the urban challenge. Journal of 

Field Robotics, 25(8), 425-466. 

Valente, J. & Soatto, S., 2015. Perspective distortion modeling, learning and compensation. 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 

Workshops, MA, USA, 9-16. 



 

 104 

Von Hundelshausen, F., Himmelsbach, M., Hecker, F., Mueller, A., & Wuensche, H. J., 2008. 

Driving with tentacles: Integral structures for sensing and motion. Journal of Field 

Robotics, 25(9), 640-673. 

Williams, K., Olsen, M. J., Roe, G. V. & Glennie, C., 2013. Synthesis of transportation 

applications of mobile LiDAR. Remote Sensing, 5(9), 4652-4692. 

Wolcott, R. W. & Eustice, R. M., 2014. Visual localization within LiDAR maps for automated 

urban driving. IEEE International Conference on Intelligent Robots and Systems, Chicago, 

USA, 176-183. 

Yang, B., Fang, L., Li, Q. & Li, J., 2012. Automated extraction of road markings from mobile 

LiDAR point clouds. Photogrammetric Engineering & Remote Sensing, 78(4), 331-338. 

Yang, B., Wei, Z., Li, Q. & Li, J., 2012. Automated extraction of street-scene objects from mobile 

LiDAR point clouds. International Journal of Remote Sensing, 33(18), 5839-5861. 

Yen, K. S., Ravani, B. & Lasky, T. A., 2011. LiDAR for Data Efficiency. WSDOT Research 

Report, No. WA-RD 778.1, Washington State Department of Transportation. 

Yu, Y., Li, J., Guan, H., Wang, C. & Yu, J., 2015. Semi-automated extraction of street light poles 

from mobile LiDAR point-clouds. IEEE Transactions on Geoscience and Remote Sensing, 

53(3), 1374 -1386. 

Ziegler, J., & Werling, M., 2008. Navigating car-like robots in unstructured environments using 

an obstacle sensitive cost function. In 2008 IEEE Intelligent Vehicles Symposium, 787-791.  

Zhang, H., 2016. Rapid inspection of pavement markings using mobile laser scanning point clouds, 

MSc Thesis, Department of Geography and Environmental Management, University of 

Waterloo. 

Zhang, Z., 1994. Iterative point matching for registration of free-form curves and surfaces. 

International Journal of Computer Vision, 13(2), 119-152. 

Zhou, M., 2016. Semi-automated extraction of 3D building windows from MLS data, MSc Thesis, 

Department of Geography and Environmental Management, University of Waterloo. 

Zhu, L. & Hyyppa, J., 2014. The use of airborne and mobile laser scanning for modeling railway 

environments in 3D. Remote Sensing, 6(4), 3075-3100. 

Zhu, L., Hyyppä, J., Kukko, A., Kaartinen, H. & Chen, R., 2011. Photorealistic building 

reconstruction from mobile laser scanning data. Remote Sensing, 3(7), 1406-1426. 

 


