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Abstract

Nonnegative matrix factorization (NMF) is a popular dimensionality reduction technique
because it is easily interpretable and can discern useful features. For a given matrix
M ∈ Rn×m whose entries are nonnegative and an integer r smaller than both n and m,
NMF is the problem of finding nonnegative matrices A ∈ Rn×r and W ∈ Rr×m such that
M = AW . The matrix M could be noisy, in which case one seeks a robust algorithm
that solves M ≈ AW . The nonnegativity constraint in NMF has wide applications [19] in
data science problems like document clustering [31, 41], facial feature extraction [25, 31],
hyperspectral unmixing [32] etc.

Geometrically, the rows of M can be viewed as a set of points in Rm. If we think of
the rows of W as the vertices of an (unknown) W -simplex, then the data points lie in this
W -simplex. Therefore, NMF asks us to deduce the vertices of the simplex given the data
points.

NMF is a computationally hard problem [23] though certain assumptions like separability
lead to polynomial time algorithms [1, 2, 35]. This assumes that all the vertices of the
unknown simplex are already present as data points. In practice, this is not true in many
settings [20]. Ge and Zou [17] assumed subset separability which uses higher dimensional
structures and gave a polynomial time algorithm to find the NMF robustly. In this thesis,
we effectively replace one of their key algorithms that finds faces. We show a quadratic
programming based approach which is efficient and can be employed in practice. Under
bounded noise, our algorithm finds the faces of the simplex which contain enough data
points, thus helping in finding the NMF.
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Notation

Let e, ei,0 respectively denote the vector of all 1’s, ith standard basis vector and vector
of all zeros, all of of appropriate dimension. For n ∈ N, We use [n] as a shorthand for
the set {1, 2, . . . , n}. For any matrix A ∈ Rn×m, let Ai or A(i, :) denote the ith row and
A(:, j) or Aj denote the jth column. For i < j, the submatrix of A with all rows, and
columns between i and j is written by A(:, i : j). Similarly, the submatrix of A consisting
all columns, and rows between i and j is written by A(i : j, :). The kth largest singular
value of A (defined later) is denoted by σk(A). We use bold letters for vectors, e.g., p. For
any subspace Q, let PQ denote the projection matrix to Q.
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Chapter 1

Introduction

Data observed in practice is often derived from multiple latent sources. One would like to
infer the latent sources which are the mixture components of the data, along with the mix-
ture distribution. A lot of linear dimensionality reduction (LDR) techniques are popular in
data analysis and machine learning [19], one of which is nonnegative matrix factorization
(NMF). Given a set of data vectors that are nonnegative, NMF extracts useful features
and it is considered to be a dimensionality reduction technique. This technique has wide
applications in data science [19, 21, 20].

Representing a set of n data points in Rm as a matrix M ∈ Rn×m, LDR usually en-
tails computing a set of basis elements wi ∈ Rm, 1 ≤ i ≤ r < m whose linear combinations
approximate the given data points. For each 1 ≤ j ≤ n, the data point M(j, :) is written
as,

M(j, :) ≈
r∑

k=1

aj,kwk (1.1)

for some weights aj = [aj,1 aj,2 . . . aj,r] ∈ Rr. Interpreting this as a LDR, the given
m-dimensional data points are written out in a affine subspace of dimension r with the
weight vectors aj’s providing the coordinates. Thus we are approximating a set of points
in Rm using an affine subspace of lower dimension.

The problem of low rank matrix approximation is equivalent to this formulation, once
we construct the weight matrix A such that the rows are the coordinates, A(j, :) = aj for
1 ≤ j ≤ n and the basis matrix W such that the basis elements form the rows, W (k, :) = wk
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for 1 ≤ k ≤ r. Then the LDR (1.1) is equivalent to finding A and W so that,

M ≈ AW for M ∈ Rn×m, A ∈ Rn×r and W ∈ Rr×m. (1.2)

Low rank matrix approximations are of interest since they help in extracting relevant in-
formation, especially in large sets of data (See [44],[20],[19] for further discussion). Some
examples of application include data analysis [29], control [33], machine learning and data
mining [15], graph theory [9] etc.

There are certain key issues we need to address in these models (1.1) and (1.2).

1. Approximation measure: There are many ways in literature to measure the er-
ror M − AW . Depending on the noise model, this could be the Frobenius norm
‖M − AW‖2F =

∑
i,j(M−AW )2ij which leads to principal component analysis (PCA).

Such a least squares error approach is popular due to the implicit assumption that
the noise is Gaussian [19], and the approximation can be efficiently found using trun-
cated singular value decomposition (SVD). It can also be shown that the resulting
minimization problem in A and W has all local minima to be global [20].

2. Assumptions on A and W : One can make different assumptions based on the problem
to be solved. Truncated SVD and PCA do not make any assumptions on A and W .
The k-means problem requires finding a set of centroids in the same dimensional
space as the data, so that the sum of the distances between each data point and the
closest centroid is minimized. This is the same as constraining each row of A to be
an element of the standard basis, so that the rows of W are the centroids. Problems
like sparse PCA [12] ask for low rank matrix decompositions which assume that A
and W are sparse. Independent Component Analysis [10] requires the columns of
W to be independent. NMF is one such problem which imposes a constraint on A
and W , namely the matrices are componentwise nonnegative. Thus, we require the
nonnegative matrix M to be decomposed as M ≈ AW where A ≥ 0 and W ≥ 0.

Further discussions in detail can be found in [19],[20] and [22].

1.1 The NMF model

NMF has been studied since 1979 [3, 6, 7] and formally named in 1994 by Paatero and
Tapper [37]. Subsequent works of Lee and Seung [31] as well as Donoho and Stodden [14]
led to more interest in the problem. We give a formal definition of NMF.
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Definition 1. Suppose M ∈ Rn×m such that M ≥ 0. Suppose for a given r < min(n,m),
we find matrices A ∈ Rn×r such that A ≥ 0 and W ∈ Rr×m such that W ≥ 0 satisfying

M = AW.

Then (A,W ) is called an exact nonnegative matrix factorization of M . The integer r is
called the inner dimension of the factorization and the smallest possible inner dimension
is called the nonnegative rank of M , denoted as rank+(M).

Finding (A,W ) such that of M = AW holds exactly is referred to in literature as exact
NMF [20]. If equality is not expected, then NMF can be written as the following nonconvex
optimization problem for a nonnegative matrix M ∈ Rn×m:

NMF : min
A∈Rn×r,W∈Rr×m

‖M − AW‖2F such that A ≥ 0, W ≥ 0. (1.3)

There is an implicit assumption of a Gaussian noise model in the above formulation which
does not apply in many practical settings. There are also other possible objective functions
(Kullback-Leibler divergence for text mining [8], earth mover’s distance for computer tasks
[39] etc.) In the rest of this section, we explore some features of NMF and provide a brief
survey of NMF algorithms relevant to our problem.

• Notice that M = IM = MI is a trivial factorization (I is the identity matrix). This
implies that the nonnegative rank satisfies rank(M) ≤ rank+(M) ≤ min(n,m). The
nonnegative rank is not less than the usual (real) rank of the matrix. Choosing an
inner dimension to solve NMF is usually tricky. This is the problem of order model
selection and there are certain techniques like looking at the singular value spectrum
of M , trial and error (trying different values and choosing the one giving best results
for the chosen problem) etc. that are used [19].

• The NMF problem is ill-posed, meaning there could be multiple solutions that fac-
torize the given matrix M . If we have (A,W ) as a solution, then so is (AH,H−1W )
for any matrix H such that both components AH and H−1W are nonnegative. If H
is the permutation of a positive diagonal matrix, then the new solution is simply a
scaling and permutation of some of the rank-one factors. If H is not such a permu-
tation, then it could lead to different interpretations of the solution, for example a
different set of topics and classifications in text mining [19]. We address the issue of
uniqueness in more detail in Chapter 2.
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• NMF is considered to be easily interpretable and automatically extracts sparse fac-
tors. Looking at the first order optimality conditions of the minimization problem
(1.3), one can see that the stationary points A and W contain zero entries. This
makes the NMF problem more interpretable and sparse, i.e., it yields the ‘true’ la-
tent factors A and W . Basis elements are similar to the given data due to the
nonnegativity constraint and weights can be thought of as mixture component coef-
ficients or ‘activation’ coefficients [20]. The weights being nonnegative allows us to
think of an additive construction of the data points from the basis elements, leading
to a parts-based and sparse representation of the data [31, 22].

• Another reason for the popularity of NMF arises from the wide applications of the
nonnegativity constraint. These include topic recovery and document clustering in
text mining [31, 41], facial feature extraction in image processing [25, 31], hyper-
spectral unmixing [32], computational biology [13], music analysis [16], collaborative
filtering [34], community detection [47] etc.

• As simple as the formulation is, NMF is a computationally hard problem. Vavasis [45]
proved that determining whether rank(M) = rank+(M) is NP-hard. There has been
a surge of interest in polynomial time algorithms with proven error bounds. Arora
et al., [2] showed for a subclass of NMF (under certain assumptions), there is an
efficient algorithm (O(mn)2

rr2) which was later improved by Moitra [35] to O(mn)r
2
,

which is polynomial in m,n for a fixed r. Further works can be found in [21] and
[38]. There are heuristic algorithms with no guarantee on convergence [31] though
they have been successful in many applications. Many of these run in O(pnr) [19].
Using standard nonlinear optimization techniques to find locally optimal solutions is
also a common approach but comes with no theoretical guarantee [22].

• There are practical NMF algorithms with strong theoretical guarantees [18, 22]. How-
ever, many of these techniques use the notion of separability, which is a strict condi-
tion that requires all rows of W to be already present in M . This was first introduced
by Donoho and Stodden [14] and has been a popular assumption but not too com-
mon in practice. Recently, there is some work on NMF with little assumptions on
the data except for the noise model e.g heavy noise model by Bhattacharya et al. [4].
Javadi and Montanari [28] use an archetypal analysis approach introduced by Cutler
and Breiman [11].
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1.2 Our contributions

We consider the work of Ge and Zou [17] where the notion of subset separability is intro-
duced. This is a milder assumption than separability, but nonetheless their algorithm uses
multiple convex programs to solve the problem. Such algorithms requiring linear and com-
plex programs are hard to scale [19] due to complexity issues. Our contribution replaces
the most expensive algorithm in their work, and we provide a quadratic programming (QP)
based approach for the same. Our model works for bounded noise under similar assump-
tions to [17] for the problem.

Structure of the thesis: The organization of the rest of the thesis is as follows. In
Chapter 2, we discuss preliminaries, define some of the concepts as well as provide lemmas
used to derive our results. In Chapter 3, we explain the problem being solved and lay
out the proposed QP model. In Chapter 4, we prove some theorems to show our model
working in noiseless and noisy settings, as well as discuss the post processing to extract
the required information out of the model. In Chapter 5, we perform some computational
tests on simulated data which shows experimental proof of our model, and we present our
conclusions.

5



Chapter 2

Preliminaries and Background

2.1 Algebraic preliminaries

2.1.1 Lagrangian Dual

Consider a quadratic programming problem in the unknown y ∈ Rn, of the form:

Primal : min cT0 y +
1

2
yTBy

subject to Qy ≥ b0

(2.1)

where c0 ∈ Rn, B ∈ Rn×n, Q ∈ Rm×n and b0 ∈ Rm. Assume B is a symmetric positive
semidefinite matrix. We wish to write down the dual of the problem (2.1).

We use the standard minmax Lagrangian dual formulation, as follows. Let d ∈ Rm be
the dual variable. Then the Lagrangian formulation can be written as:

min
y

max
d≤0

{
cT0 y +

1

2
yTBy + (Qy − b0)

Td
}

≥ max
d≤0

min
y

{
cT0 y +

1

2
yTBy + (Qy − b0)

Td
}

(∵ Minimax inequality)

= max
d≥0

min
y

{
cT0 y +

1

2
yTBy − (Qy − b0)

Td
}

= max
d≥0

min
y

{
(c0 −QTd)Ty +

1

2
yTBy + bT0 d

}
(2.2)
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The Minimax inequality in (2.2) is known to be tight (“strong duality”) in the case of
convex quadratic programming [5]. If c0 − QTd is not in the range of B, then the inner
problem is unbounded. Otherwise, in the inner minimization problem in y the minimizer
y∗ satisfies the first-order optimality condition,

By∗ = −(c0 −QTd). (2.3)

Subject to the constraints d ≥ 0 and QTd−By∗ = c0, the problem (2.2) is a maximization
problem in the variables d and y∗ with the objective function,

(c0 −QTd)Ty∗ +
1

2
(y∗)TBy∗ + bT0 d

= (c0 −QTd)Ty∗ − 1

2
(y∗)T (c0 −QTd) + bT0 d (∵ (2.3))

=
1

2
(c0 −QTd)T y∗ + bT0 d

= −1

2
(y∗)TB y∗ + bT0 d. (∵ (2.3)) (2.4)

Let z = −y∗ be a dual variable. Then (2.3) becomes the constraint

Bz +QTd = c0. (2.5)

With the objective function (2.4) and the constraints above, the problem becomes,

= max
d≥0

Bz+QTd=c0

{
− 1

2
zTBz + bT0 d

}
.

Therefore for the dual variables d ∈ Rm and z ∈ Rn, the dual problem to (2.1) is

Dual : max −1

2
zTBz + bT0 d

subject to Bz +QTd = c0

d ≥ 0.

(2.6)

Remark: How we deal with the dual variable z depends on B, the matrix corresponding
to the quadratic term. If rank(B) = 0, then z drops out of (2.6) and this is now a Linear
Program (LP). If B is of full rank, then z can be eliminated by solving the constraint (2.5)
by inverting B. Finally if 0 < rank(B) < n, then z can be eliminated by the introduction
of new notation. This case is applicable to a QP we use in Chapter 4 and the details can
be found there.
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2.1.2 Singular Values and Norms

We prove a few lemmas about singular values and norms, that are used in our analysis.
We start with the definition of singular value decomposition, given in Golub and Van Loan
[24].

Definition 2 (Singular Value Decomposition). Suppose A ∈ Rn×m. Then we can factorize
A as follows:

A = UΣV T , (2.7)

where U ∈ Rn×n satisfies UTU = I, V ∈ Rm×m satisfies V TV = I, and Σ ∈ Rn×m is
a diagonal matrix with the ith diagonal entry σi for some set of reals {σ1, . . . , σmin(n,m)}
satisfying

σ1 ≥ σ2 ≥ . . . ≥ σmin(n,m) ≥ 0.

The elements of the set {σ1, . . . , σmin(n,m)} are called the singular values of A and the
decomposition (2.7) is the singular value decomposition (SVD) of A.

More details of SVD and its properties can be found in [24, 48, 5]. In particular, the largest
singular value σ1 is often denoted as σmax and is equal to the 2-norm of the matrix A,

σmax(A) = sup
y∈Rn
y 6=0

‖Ay‖
‖y‖

= sup
y∈Rn

‖y‖=1,y 6=0

‖Ay‖ = ‖A‖2 . (2.8)

Denote the smallest or minimum singular value of a matrix A by σmin. The smallest
singular value is positive only for matrices of full rank. For a square matrix A ∈ Rn×n of
full rank, the condition number is defined as,

cond(A) = ‖A‖2
∥∥A−1∥∥

2
=
σmax(A)

σmin(A)
. (2.9)

We state the following theorem by Eckart and Young without proof. This is given, for
example, as Theorem 2.5.3 in [24]:

Theorem 3. Let A ∈ Ru×v and let k be an integer satisfying k < r = rank(A). Then,

min
rank(B)≤k

‖A−B‖2 = σk+1

where σk+1 is the (k + 1)th largest singular value of A.

8



The above theorem gives a good characterization of any singular value of the matrix. The
following lemmas are standard interlacing results and can be found, for example, in Golub
and Van Loan [24].

Lemma 4. Let A ∈ Ru×v. Then for any 1 ≤ u′ ≤ u and 1 ≤ v′ ≤ v,

‖A(1 : u′, 1 : v′)‖2 ≤ ‖A‖2 .

In other words, the 2-norm of a matrix is at least the 2-norm of a submatrix.

Proof. Consider A(:, 1 : v′) first. Then,

‖A(:, 1 : v′)‖2 = sup{‖A(:, 1 : v′)x‖ : ‖x‖ = 1}.

If x∗ is the argument where the maximum is attained above then ‖x∗‖ = 1 and,

‖A(:, 1 : v′)‖2 = ‖A(:, 1 : v′)x∗‖

=

∥∥∥∥∥∥∥∥A
x∗

0


∥∥∥∥∥∥∥∥

≤ sup{‖Ax‖ : ‖x‖ = 1}
(

∵

x∗

0

 is a candidate for sup

)

= ‖A‖2
=⇒ ‖A(:, 1 : v′)‖2 ≤ ‖A‖2 .

Similarly, one can see that ‖A(1 : u′, 1 : v′)‖2 ≤ ‖A(:, 1 : v′)‖2 and this completes the proof.

We prove a lemma about the singular value of a submatrix.

Lemma 5. If A ∈ Ru×v and let σi(B) denote the ith singular value of any matrix B. Then,

σi(A(1 : u′, 1 : v′)) ≤ σi(A)

for all 1 ≤ u′ ≤ u, 1 ≤ v′ ≤ v and 1 ≤ i ≤ min(u, v). In other words, the ith singular value
of any matrix is at least the ith singular value of any of its submatrices.
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Proof. From Theorem 3, for any i,

σi(A) = min{‖A−B‖2 : rank(B) ≤ i− 1}. (2.10)

Let B∗ be the minimizer above, then rank(B∗(1 : u′, 1 : v′)) ≤ rank(B∗) = i− 1. Hence,

σi(A(1 : u′, 1 : v′)) ≤

∥∥∥∥∥∥A(1 : u′, 1 : v′)− B∗(1 : u′, 1 : v′)︸ ︷︷ ︸
Candidate for optimizer

∥∥∥∥∥∥
≤ ‖A−B∗‖ (∵ Lemma 4)

= σi(A)

=⇒ σi(A(1 : u′, 1 : v′)) ≤ σi(A)

as desired.

Lemma 6. Let A ∈ Ru×v and D ∈ Rw×u. Then,

‖DA‖2 ≤ (max
i
|Dii|) ‖A‖2 .

Proof.

‖DA‖2 = sup{‖DAx‖2 : ‖x‖ = 1}

=
√
D2

11y
2
1 + . . .+D2

vvy
2
v (For y = Ax)

≤ (max
i
|Dii|)

√
y2
1 + . . .+ y2

v

≤ sup{(max
i
|Dii|) ‖Ax‖2 : ‖x‖ ≤ 1}

= (max
i
|Dii|) ‖A‖2 .

Note that in the second line of the proof, supremum is achieved by compactness.
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2.1.3 Simplex

Definition 7 (Simplex). Given a set of affinely independent points {xi}ni=0 ⊂ Rm, the
simplex U defined by these points is

U =

{ n∑
i=0

λixi :
n∑
i=0

λi = 1, λ = [λ0, λ1, . . . , λn] ≥ 0

}
.

The points {xi}ni=0 are the vertices of the simplex of dimension n and the simplex itself is
just the convex hull of its vertices.

Definition 8 (Face of a simplex). A face S ⊂ [n] ∪ {0} of a simplex is the convex hull of
the vertices {xj : j ∈ S}.

Note that we may refer to both the indices of the subset of vertices as well as the convex
hull of the subset by the same term face. This is clear from context. If we take the affine
hull of all the vertices of a face, we get a unique affine subspace, whose dimension is the
dimension of the face.

2.2 Geometric view of NMF

The NMF problem has a nice geometric interpretation that is often useful when developing
algorithms. In the case of exact NMF, one can assume without loss of generality that the
zero columns of M and W can be removed. Consider the diagonal matrices DM whose
jth diagonal entry is ‖M(j, :)‖1 and DW whose jth diagonal entry is ‖W (j, :)‖1. From
M = AW , we can scale all the matrices so that the new problem becomes,

D−1M M︸ ︷︷ ︸
M ′

= D−1M ADW︸ ︷︷ ︸
A′

D−1W W︸ ︷︷ ︸
W ′

. (2.11)

All rows of M ′, A′ and W ′ now sum to 1. Therefore without loss of generality, we can
always normalize the NMF. This leads to an interesting observation: All the rows of M
are in the convex hull of the rows of W [20, 17]. If we think of the rows of W as the
vertices of an (unknown) W -simplex, then the data points lie in this W -simplex. Given
the data points, NMF asks us to deduce the vertices of the simplex. This is also related to
the Nested Polytope Problem in computational geometry [20].
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The NMF problem is ill-posed, and there could be multiple factorizations possible. Given
a factorization M = AW with nonnegative matrices A and W , one could perturb the ver-
tices of W and maintain all the data points in M in the convex hull of the simplex. If we
wish to find a unique factorization (up to scaling and permutation of the rows of W ), then
additional constraints need to be imposed. Sparsity [42] and minimum determinant [40]
address the question of uniqueness. The aforementioned geometric viewpoint of NMF was
provided by Thomas [43] and Chen [7]. There is some work on necessary conditions for
uniqueness [36, 30]. Donoho and Stodden [14] introduced a condition called separability,
which is a sufficient condition for uniqueness.

Definition 9 (Separable NMF). A NMF is separable if for each {W i}ri=1, there exists a
row M ji (1 ≤ ji ≤ n) of M such that M ji = W i.

Geometrically, this means that the vertices of the W -simplex that we are trying to find,
are already present among the given data points. This is also equivalent to saying that
the rows of the matrix A contain a permutation of the identity matrix. A more detailed
analysis can be found in [27, 19, 20]. Though this seems like a simple enough geometric
problem, its robustness to noise is much more difficult. There is plenty of work in NMF
based on the separability condition or its variations [14, 2, 38, 1] where they try to set
a noise bound that can be tolerated while still being able to recover the vertices, up to
some error. In the presence of bounded noise, NMF can be solved in polynomial time
with respect to mn, and r under the separability assumption [2, 1, 35]. Nevertheless, sep-
arability is not always found in practice and is a strict assumption. Some instances of
practical occurences of separability are document classification, Raman spectral analysis
and hyperspectral unmixing [20],

Our work is based on Ge and Zou [17]. They introduced the notion of subset separability
that makes uses of higher dimensional structures of the simplex, not just the vertices. We
provide the necessary background to discuss their algorithm for the subset separable case,
which is defined in the next section.

2.3 Subset separability

Definition 10 (Filled Face). Given a factorization M = AW , a face of the W -simplex is
said to be filled if there is at least one data point M i in the relative interior of the face
(or trivially when the face itself is a single vertex, that vertex is a data point).
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We can now supply the definition of subset-separable NMF, a milder assumption than
separability [17].

Definition 11 (Subset-separable NMF). Given a factorization M = AW , the NMF is
said to be subset separable if there exists a set of filled faces {Si}ki=1 with Si ⊂ [r] such

that for each j ∈ [r], we have a subset {Sji}
kj
i=1 ⊂ {Si}ki=1 whose intersection is exactly the

vertex j.

Geometrically, this means that every vertex is the intersection of some set of filled faces.
Note that subset separability is equivalent to the property that for every j1 6= j2 ∈ [r],
there exists a row i of A such that Ai,j1 = 0 and Ai,j2 6= 0. A subset-separable NMF is a
separable NMF (Definition 9) in the special case where the set of filled faces are exactly
the vertices of the simplex.

As discussed previously, the NMF problem is ill-posed and aiming for a unique factor-
ization is of interest. Among other features, finding a minimal volume solution holds an
appeal. This means it is impossible to displace a single vertex such that the volume is
lowered and still obtain a valid factorization (i.e., all data points still lying inside the sim-
plex). Intuitively, this means there are some data points on the boundary of the simplex.

The following lemma due to Ge and Zou [17] shows that the filled faces being subset
separable is a necessary (but not sufficient) condition for W to be volume minimizing.

Lemma 12. Suppose M = AW where W is of rank r and minimal volume. Then W is
subset-separable.

Proof. Suppose the factorization is not subset-separable. Then there exists j1 6= j2 ∈ [r],
such that for every row i of A, either both Ai,j1 and Ai,j1 are both zero or both non-zero.
Suppose we define new matrices A′ and W ′ as follows, for some ε ∈ [0, 1]:

A
′

j =


1

1−εAj j = j1

Aj − ε
1−εAj1 j = j2

Aj otherwise

(2.12)

(W ′)j =

{
(1− ε)W j1 + εW j2 j = j1

W j otherwise.
(2.13)

Clearly, we found another NMF, M = A′W ′ = AW , since W is still nonnegative for the
given range of ε. The support of Aj1 and Aj2 are the same, therefore there is a value of ε
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that leaves A
′
j2

nonnegative. Therefore, we have a valid NMF of M with only one vertex
of the simplex changed. The ratio of the volume of W ′ to the volume of W is 1 − ε < 1,
which is a contradiction to the minimal volume assumption.

The filled faces defined above lie on the boundary of the convex hull of the data points. A
general class of filled faces, called properly filled faces are computationally efficient to find
[17] and we define them as follows.

Definition 13 ((N,H, γ) Properly Filled Faces). Let N be a positive integer, H > 0 and
γ > 0 be real numbers. A set of faces S1, . . . , Sk ∈ [r] of W is (N,H, γ) properly filled if:

1. (Center point.) For any filled face |Si| > 1, there is a row i∗ of A with support Si.
This row i∗ is in the convex hull of the other rows of A. Moreover, there exists a
convex combination M i∗ =

∑
i∈[n]\i∗ αiM

i, such that M i∗ =
∑

i∈[n]\i∗ αiM
i(M i)T has

rank |Si| with smallest singular value not less than γ. M∗ is called the center of
this face.

2. For any set |Si| > 1, at least N rows of A have support Si.

3. (General Positions Property.) For any affine subspace Q of dimension t ∈ (1, r), the
existence of at least N rows of M in an ε neighborhood of Q implies the existence
of a non-singleton set Si with corresponding affine subspace Qi with the following
property. Let Q = v0 + L where L is a linear subspace, and Qi = v1 + Li where Li
is a linear subspace such that v0 and v1 satisfy ‖v0 − v1‖ ≤ Hε. Additionally for an
orthonormal basis VLi, ‖PL⊥VLi‖ ≤ Hε holds.

The first condition means that while expressing the center point as a convex combination
of the other points, only those points making a nonzero contribution in the convex combi-
nation lie in the same face as the center point. The second condition means that properly
filled faces are unlike other subspaces, i.e., they are faces of the true solution since they
contain many points. The third condition intuitively means that every subspace contains
many points close to a properly filled face. Points that are not in the lower dimensional
faces S1, . . . , Sk are in general positions, so that a random subspace and a properly filled
face can be distinguished.

2.4 Face-Intersect algorithm

In their paper, Ge and Zou [17] produce what they call the Face-Intersect algorithm to
compute the NMF under the subset separability assumption. If M = AW is subset sepa-
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rable by properly filled faces S1, . . . , Sk, then their algorithm computes A and W in a time
polynomial in n,m and r. However in practical settings, data points often contain noise,
in this case every row of M has an added noise component (say with bound ε). They show
that if M = AW is subset separable by (N,H, γ) properly filled faces, and W has all rows
norm bounded by 1 and rth singular value of W not too small, then the Face-Intersect
algorithm solves the NMF robustly in polynomial time in n,m and r.

The gist of the Face-Intersect algorithm is as follows:

1. Find all subspaces corresponding to the properly filled faces S1, . . . , Sk (non-singletons).

2. Systematically take the intersection of subspaces to obtain the set of intersection
vertices.

3. Now the remaining vertices are the singleton sets. Run an algorithm to find these
anchors (singleton points).

4. This gives us W and using M , compute A.

We elaborate on each step in the following sections.

2.4.1 Finding non-singleton properly filled faces

The problem of finding filled faces occurs in the literature (subspace clustering [46], sub-
space recovery [26]) but the authors of [46] and [26] make strong assumptions on subspace
independence, among other conditions. These assumptions do not fit well with our prob-
lem. Moreover, our problem contains other useful information not used in these methods.
For example, the filled faces are on the boundary of the convex hull of data, a fact we can
utilize to our advantage.

As stated earlier, the first condition of Definition 13 means that if we write the center
point as a convex combination of the other points, only those points making a positive
contribution in the convex combination lie in the same face as the center point. Then to
get the subspace, one only needs to take the affine hull of these points. If we have noisy
data points with ε small compared to γ (which is smaller than the least singular value of
the matrix in the condition), then one can find this nice convex combination that gives the
data points using an iterative procedure [17]. Thus, the algorithm finds a properly filled
face given the center point.
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Algorithm 1 Finding one properly filled face given the center point

1: Input: Set of points {xi}hi=1 in Rm and a center point x0 ∈ Rm.
2: Output: Subspace L corresponding to a properly filled face that contains x0.
3: Initialize L = ∅ and Ldimchange > 0.
4: while Ldimchange > 0 do

I Only run if dimension of subspace increases.
5: Solve for the weights w as unknown and BL being any orthonormal basis of L:

w∗ =argmax tr(PL⊥

h∑
i=1

wixix
T
i PL⊥)

subject to wi ≥ 0 ∀ i ∈ [h]

h∑
i=1

wi = 1∥∥∥∥∥x0 −
h∑
i=1

wixi

∥∥∥∥∥ ≤ 2ε

diag

(
BT
L

( h∑
i=1

wixix
T
i

)
BL

)
≥ γ/2

(2.14)

6: Let d = dim(L). Set L′ to be the span of all singular vectors of
∑h

i=1w
∗
i xix

T
i whose

singular values are bigger than γ/2d.
7: Set Ldimchange = dim(L′)− dim(L) and L = L′.
8: end while

Notice that the objective function of (2.14) is the component of
∑n

i=1wixix
T
i outside the

subspace L. The constraints ensure we maintain the center point as a convex combination
of the other points while maintaining large singular values for the current subspace. The
authors [17] show that Algorithm 1 converges quickly, with the dimension of L increasing
until we terminate when it does not increase anymore. It arrives at a nice convex combi-
nation from which we can extract the subspace containing the properly filled face. They
only make the following assumptions:

1. The noise in the data is bounded by ε.

2. The unknown W -simplex does not have singular values too small.
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3. The center point x0 belongs to a properly filled face created by d vertices of the
W -simplex.

The algorithm could generate false positives, which are subspaces that do not correspond
to any properly filled faces. However, these subspaces do not contain enough data points,
because according to the general positions property (Condition 3 in Definition 13), any
subspace with enough number of points is close to a properly filled face. One can use this
to weed out these false positives.

Our contribution: This thesis focuses on a replacement for Algorithm 1. For the sake of
completeness, we present the rest of Ge and Zou’s method [17] to show how Algorithm 1
is used to compute an NMF.

Finding the properly filled non-singleton faces is accomplished with the following algo-
rithm:

Algorithm 2 Finding all properly filled faces

1: Input: Noisy data points M ∈ Rn×m with a subset-separable factorization and which
contains (N,H, γ) properly filled faces.

2: Output: All non-singleton properly filled faces.
3: for i = 1, 2, . . . , n do
4: Set the center point x0 = M i and x1, . . . ,xh as the other data points.
5: Run Algorithm 1 that finds a subspace L.
6: Check if dim(L) < r and there are at least N points within a small distance, then

add L to the collection of subspaces.
7: end for
8: Suppose we find two subspaces L1, L2 of different dimension (say dim(L1) < dim(L2))

in the collection and the component of L1 along the orthogonal complement of L2 is
small, then L2 is a false positive and can be removed. This is by the general positions
property in Definition 13.

9: Among the remaining subspaces in the collection, there could be some close to each
other and we merge them.

2.4.2 Obtaining vertices by taking subspace intersections

Suppose we have a noisy NMF which is subset-separable and contains (N,H, γ) properly
filled faces, Algorithm 2 gives us noisy subspaces Li which are close to the true subspaces.
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Each subspace is non-singleton and is the affine hull of some subset Si of the vertices of
the W -simplex. Recall the existence of filled faces S1, . . . , Sk ⊂ [r] in Definition 11 of
subset-separability. Assume the first h are non-singleton. Then our goal is to find the
intersection vertices, each of which is a unique intersection of the elements of some subset
of {S1, . . . , Sh} [17].

Problem of set intersections: Given some sets S1, . . . , Sh ⊂ [r], we wish to find an
unknown subset of vertices P ⊂ [r] with the property that for each vertex i ∈ P , there are
some {Sik} satisfying i = ∩kSik .

It is inefficient to simply take all possible combinations of the sets and we could also
get vertices that are not intersection vertices. Moreover, we only have access to subspaces
Li that correspond to each set Si. However, taking the intersection of subspaces is the
same as taking the intersections of the sets, i.e., intersection of subspaces leads to the
affine hull of intersection of the corresponding faces. Similarly, affine hull of subspaces are
akin to union of sets. The dimension of the subspace Li is one less than the size of the
set Si. The following algorithm by Ge and Zou [17] obtains all the intersection vertices.
As we observed above, working with sets or subspaces makes little difference since we can
perform the same operations.

Algorithm 3 Finding intersection vertices from subsets

1: Input: Sets S1, . . . , Sh which are not singleton.
2: Output: P ⊂ [r] I The set of all intersection vertices of the W -simplex.
3: Set R = ∅. I Set containing vertices we have already found.
4: Set S = ∅. I Result of systematically taking set intersections.
5: for i = 1, 2, . . . , r do
6: S = [r].
7: for j = 1, . . . , h do
8: if |S ∩ Sj| < |S| and S ∩ Sj 6⊂ R then

I Second condition ensures we avoid finding vertices already in R.
9: S = S ∩ Sj.
10: end if
11: end for
12: R = R ∪ S.

I If we have (S \R) ∩ P = ∅, add S to R and remove the vertices not in P .
13: Add S to P if |S| = 1. I Found an element of P .
14: end for
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Observe that R increases in size by at least one in every iteration and hence the algorithm
terminates in r iterations. The smallest singular value of W should not be too small, else
this proof may not work. Under this assumption, we can find all the vertices in P . Only
the singleton sets are left.

2.4.3 Finding singleton sets

We only need to find vertices in [r] \ P , which exactly correspond to the singleton sets
(|Si| = 1). If P = ∅, this is similar to the separability assumption discussed earlier. The
singleton vertices appear in the data points and an algorithm is adapted from Gillis and
Vavasis [22].

Algorithm 4 Finding the singleton sets remaining

1: Input: Noisy data M , intersection vertices found so far W 1, . . . ,W |P |

2: Output: W |P |+1, . . . ,W r I Remaining vertices of the simplex.
3: for i = |P |+ 1 to r do
4: Let L = affinehull{W 1, . . . ,W i−1}
5: Set W i = M j, where j = argmax ‖PL⊥M j‖.
6: end for

Thus we have found all the vertices of the W -simplex. This completes the steps of the
Face-Intersect algorithm.

2.4.4 Remarks about the Face-intersect algorithm

For a subset-separable NMF M = AW with M ∈ Rn×m and inner dimension r, let the
number of filled faces in the subset separability assumption be k ( i.e., the filled faces are
S1, . . . , Sk). The total running time of Face-intersect algorithm is O(nmr+nd.OPT+kr4+
nr3), where OPT is the running time of the convex optimization problem in Algorithm 1
[17]. The authors have reported the convergence of Face-Intersect after roughly k calls to
OPT .

Clearly, the subset-separability assumption is milder than separability, upon which many
previous works are based. Still we are required to solve many convex programs due to
Algorithm 1. Such algorithms are typically hard to scale [19] due to their high complexity.
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The Face-Intersect algorithm exploits collinearity properties to identify the data and makes
assumptions on ‘genericity’ [28]. Using the higher dimensional structure (faces) of the sim-
plex is a marked improvement over using just vertices in the case of separability.

Our contribution makes use of assumptions similar to Ge and Zou [17] and we replace
one of their key algorithms (Algorithm 1) with a quadratic programming problem. Run-
ning the convex program in Algorithm 1 is the most expensive part of the Face-intersect
algorithm and thus our contribution is an improvement on solving the NMF robustly.
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Chapter 3

QP formulation

Let us state the assumptions in our replacement for Algorithm 1:

1. Input: Set of points {xi}ni=1 in Rm which are the rows of M . The data points have
been translated so that x1 = 0. This is the point believed to be at the center i.e., x0

in Algorithm 1.

2. The data points have been scaled in a way to be described later.

3. Output: Linear subspace L corresponding to a filled face of the W -simplex. The
steps to recover the subspace L are described in Chapter 4.

To obtain L, we consider the following quadratic programming (QP) problem:

Primal : min
n∑
i=1

si + c
n∑
i=1

ti + c2
n∑
i=1

ui +
λ

2
‖p‖2

subject to pTxi + si + ti + ui ≥ 1 ∀ i ∈ [n]

si ≥ 0 ∀ i ∈ [n]

si ≤ 1− δ ∀ i ∈ [n]

ti ≥ 0 ∀ i ∈ [n]

ti ≤ δ ∀ i ∈ [n]

ui ≥ 0 ∀ i ∈ [n].

(3.1)

The values of the parameters c� 1, λ > 0 and δ ∈ (0, 1) are chosen appropriately later in
the thesis. Note that p ∈ Rm, {si}ni=1, {ti}ni=1 and {ui}ni=1 are the unknowns in this QP. We
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prove that every optimizer to the QP has the same value of the vector p, in the following
lemma.

Lemma 14. Let (p, s, t,u) and (p′, s′, t′,u′) be two optimizers to the QP (3.1). Then
p = p′ holds.

Proof. Suppose not. Let p 6= p′. Consider the tuple (pmid, smid, tmid,umid) = (p+p′

2
, s+s′

2
, t+t′

2
, u+u′

2
).

Because the linear constraints of the QP are convex, (pmid, smid, tmid,umid) is clearly a fea-
sible point. Since both (p, s, t,u) and (p′, s′, t′,u′) are optimizers, they have the same
objective value.

Optimal value =
n∑
i=1

si + c
n∑
i=1

ti + c2
n∑
i=1

ui +
λ

2
‖p‖2

=
n∑
i=1

s
′

i + c
n∑
i=1

t
′

i + c2
n∑
i=1

u
′

i +
λ

2
‖p′‖2

=
n∑
i=1

si + s
′
i

2
+ c

n∑
i=1

ti + t
′
i

2
+ c2

n∑
i=1

ui + u
′
i

2
+
λ

2
.

(
‖p‖2 + ‖p′‖2

2

)
=

n∑
i=1

smid
i + c

n∑
i=1

tmid
i + c2

n∑
i=1

umid
i +

λ

2
.

(
‖p‖2 + ‖p′‖2

2

)
=

n∑
i=1

smid
i + c

n∑
i=1

tmid
i + c2

n∑
i=1

umid
i +

λ

2
.

(∥∥∥∥p + p′

2

∥∥∥∥2 +

∥∥∥∥p− p′

2

∥∥∥∥2)
>

n∑
i=1

smid
i + c

n∑
i=1

tmid
i + c2

n∑
i=1

umid
i +

λ

2
.

∥∥∥∥p + p′

2

∥∥∥∥2 (∵ p 6= p′)

=
n∑
i=1

smid
i + c

n∑
i=1

tmid
i + c2

n∑
i=1

umid
i +

λ

2
.
∥∥pmid

∥∥2
= Objective value at the feasible point (pmid, smid, tmid,umid).

Thus we have found a feasible point which has lower objective than the optimizer, which
is a contradiction. Therefore p = p′ is true.

We can get the desired linear subspace from the minimizer p∗ of the above QP. If p
is specified, the problem is separable in the remaining variables. The other unknowns
{si}ni=1, {ti}ni=1 and {ui}ni=1 are separable by i and the optimal choices are as follows:
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• If (p∗)Txi ≥ 1, then si = ti = ui = 0.

• If 1− δ ≤ (p∗)Txi < 1, then si = 1− (p∗)Txi, ti = 0 and ui = 0.

• If 0 ≤ (p∗)Txi ≤ 1− δ, then si = 1− δ, ti = δ − (p∗)Txi and ui = 0.

• If (p∗)Txi ≤ 0, then si = 1− δ, ti = δ and ui = −(p∗)Txi.

Intuitively, p should make a large positive inner product with each data point xi. Because
of the si, ti and ui terms in the objective, the ideal case occurs when pTxi = 1 for every
i since this forces each si, ti and ui to zero. It is still good if pTxi > 1, which is the same
as the previous case except for a higher objective due to the norm term. Having pTxi < 0
for any i is bad, since this makes ui positive and this is penalized by a huge weight (c2).

As a consequence, the optimal p should almost be orthogonal to all xi’s in L. Other-
wise if p makes a positive inner product with some xi, then the well-centering assumption
forces p to make a negative inner product with another xj. This makes uj > 0 and the
objective value is high due to the penalty term on uj.

Define the optimal objective value given p, as follows:

φ(p) =
n∑
i=1

si + c
n∑
i=1

ti + c2
n∑
i=1

ui +
λ

2
‖p‖2 (3.2)

where si, ti and ui are chosen as per the steps above. We observe without proving, that
this is a piecewise quadratic convex function.

3.1 Assumptions on the data points

The noiseless data points are {xi}ni=1 ∈ Rm. Suppose we have a subspace L ⊂ Rm of
dimension k. Say that some of the data points lie exactly on L. Say l of the noiseless
data points {xi : i ∈ SL ⊂ [n]} lie on L. Without loss of generality, let us relabel the data
points such that SL = [l].
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x

y

L

p

Point close to L but not on L

Point on L

(0,0)

xi: data points in R2

L: subspace of interest

p: Solution vector to QP (3.1)

Figure 3.1: Example of subspace L in R2. Dimension of L here is k = 1. There are many
points almost collinear to L and the remaining points lie on one side of L. The optimum
vector p ∈ R2 to QP (3.1) is shown. Note that p is almost orthogonal to L and points
inward to the half-space containing the data.

Assume the data points are translated such that one of the data points is the origin (let
x1 = 0). We have two assumptions for well-centering. The first assumption is that 0 lies
in the convex hull of {x2, . . . ,xl}.

0 =
l∑

i=2

αixi (3.3)

where the weights αi are nonnegative and sum to 1. The second assumption for well-
centering is also a condition on the data. Let yi = αixi for all i ∈ [l]. Suppose Y =
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[y1, . . . ,yl]
T . We have a singular value condition on the data: the kth singular value of Y

(denoted by σY ) cannot be too small. This condition is similar to Condition 1 in Definition
13 in Chapter 2. If σY is the kth largest singular value of Y ,

σY = σk(Y ) = inf
‖x‖=1
x∈L

∥∥Y Tx
∥∥ . (3.4)

Figure 3.1 presents an example of data points in 2-dimensional space which satisfy the
above assumptions. The subspace L is of dimension k = 1. Note that origin is a data point
and the points in L are well-centered.

Recall the notion of W -simplex in Chapter 2. Let the vertices of the W -simplex be denoted
by v1, . . . ,vm+1. We use the following definition of quality of the shape of the simplex,
common in literature: the shape quality (given in (2.9)) is

κcond = cond(V̄ ) =
∥∥V̄ ∥∥∥∥V̄ −1∥∥ (3.5)

where V̄ ∈ Rm×m is given by V̄ = [v2, . . . ,vm+1] − v1e
T . Note that the definition (3.5)

is translation and rotation invariant, but depends on the choice of v1 (up to a constant
factor). Also assume scaling of the data, such that∥∥V̄ ∥∥ = 1 (3.6)

From the scaling of the data
∥∥V̄ ∥∥ = 1, we know that the data points have an upper bound:

For every j ∈ [n] let xj = V̄ θj where θTj e = 1 and θj ≥ 0. Then ‖xj‖ ≤
∥∥V̄ ∥∥ ‖θj‖ ≤ 1.

Therefore,
‖xj‖ ≤ 1 ∀j ∈ [n]. (3.7)

Suppose the data points are noisy, which is a realistic assumption. The noisy data points
can be described in terms of the noiseless data points with added noise:

x̂i = xi + εi for i ∈ [n] (3.8)

where εi’s are bounded random noise (say ||εi|| < ε for some ε > 0).

3.2 Lemma

We prove a lemma used in Chapter 4.
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Lemma 15. Let the vertices of the W -simplex be v1, . . . ,vm+1 and let L = affinehull{v1, . . . ,vk+1}
be a linear subspace of dimension k (and hence contains the origin). Then,

1. There exists p̂ ∈ Rm satisfying p̂Tx ≥ κ dist(x, L) for any
x ∈ conv{v1, . . . ,vm+1}and for a constant κ > 0 that depends on the data.

2. p̂Txi ≤ 1 for all i ∈ [n].

3. ‖p̂‖ ≤ 1.

Proof. Let V1 = [v1, . . . ,vk+1], V2 = [vk+2, . . . ,vm+1] and V = [V1, V2]. Let the square
matrix C ∈ R(m+1)×(m+1) be defined as follows.

C =

 V1 V2

eTk+1 eTm−k

 (3.9)

Recall the affine independence of the vertices of the W -simplex in Section 2.1.3, and it is
trivial to see that this is equivalent to stating that C is non-singular.

Say p̂ = PV2f , where P is the projector onto L⊥ and the vector f ∈ Rm−k is yet to
be determined. For x ∈ conv{v1, . . . ,vm+1}, we wish to show for a constant κ > 0,

p̂Tx ≥ κ dist(x, L). (3.10)

Let x = xL + x′, where xL ∈ cone{v1, . . . ,vk+1} and x′ ∈ cone{vk+2, . . . ,vm+1}. Observe
that both p̂Tx′ and dist(x′, L) are invariant if we add xL to x′ since xL ∈ L ⊂ p̂⊥.
Therefore to show (3.10) is true, it suffices to prove for some constant κ > 0 and for every
x′ ∈ cone{vk+2, . . . ,vm+1},

p̂Tx′ ≥ κ dist(x′, L) (3.11)

Since x′ ∈ cone{vk+2, . . . ,vm+1} and x ∈ conv{v1, . . . ,vm+1} , we can write x′ = V2λ for
some nonnegative vector of coefficients λ ∈ Rm−k satisfying λTem−k ≤ 1. Observe,

dist(x′, L) = ‖Px′‖ ≤ ‖x′‖
= ‖V2λ‖
≤ ‖V2‖ ‖λ‖
≤
∥∥V̄ ∥∥ ‖λ‖

=⇒ dist(x′, L) ≤ ‖λ‖ . (∵ (3.6)) (3.12)
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Our next step is to look for a lower bound on p̂Tx′. Observe,

p̂Tx′ = (PV2f)T (V2λ) = fTV T
2 PV2λ. (3.13)

We claim that PV2 ∈ Rm×(m−k) has full rank. Suppose not, then there exists a nonzero
vector y ∈ Rm−k such that PV2y = 0. If eTm−ky 6= 0, then we can rescale y such that
eTm−ky = 1. Let z = V2y. Then Pz = 0 implies z ∈ L, since P is the projector onto L⊥.
But L is the affine hull of the columns of V1. There exists d ∈ Rk+1 satisfying V1d = z
and eTk+1d = 1. Using (3.9),

C

d

y

 =

 V1 V2

eTk+1 eTm−k


 d

−y



=

 V1d− V2y

eTk+1d− eTm−ky



=

z− z

1− 1



=⇒ C

d

y

 = 0, (3.14)

which contradicts the non-singularity of C. We assumed above that eTm−ky 6= 0. In the
other case, let eTm−ky = 0. Construct z and d as above. Since 0 is in the affine hull of V1,
let d′ ∈ Rk+1 be a vector such that V1d

′ = 0 and eTk+1d
′ = 1. Then V1(d − d′) = z and

eTk+1(d− d′) = 0. Using the same argument to arrive at (3.14), we can see that

C

d− d′

y

 = 0

which again contradicts the non-singularity of C. Thus PV2 ∈ Rm×(m−k) has rank m− k.
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Now,

rank(V T
2 PV2) = rank(V T

2 P
2V2) (Since P is a projection matrix)

= rank
(
(V T

2 P
T ).(PV2)

)
= rank

(
(PV2)

TPV2
)

= m− k (∵ rank(B) = rank(BTB), for any matrix B)

=⇒ rank(V T
2 PV2) = m− k.

Thus the matrix V T
2 PV2 ∈ R(m−k)×(m−k) is of full rank and hence is invertible. If we

pick f = α(V T
2 PV2)

−1e, where e ∈ Rm is the vector of all ones and α ∈ R is yet to be
determined, equation (3.13) becomes,

p̂Tx′ = α((V T
2 PV2)

−1e)TV T
2 PV2λ

= αeTλ

= α ‖λ‖1 (∵ λ ≥ 0)

≥ α ‖λ‖2
=⇒ p̂Tx′ ≥ α ‖λ‖2 . (3.15)

From equations (3.12) and (3.15) we have the following conclusion,

p̂Tx′ ≥ α dist(x′, L) (3.16)

and hence equation (3.11) is true for κ = α.

To show p̂Txi ≤ 1 for all i, we first show an upper bound on p̂. Let us look for a bound
on (V T

2 PV2)
−1 in terms of the data. Let Z be an orthonormal basis of L = Range(V1).

Then we can write V1 = ZΛ for some Λ ∈ Rk×(k+1). Extend Z to an orthogonal ma-
trix Q = [Z, Y ], where Y is an orthonormal basis of L⊥. Then P = Y Y T and hence
V T
2 PV2 = V T

2 Y Y
TV2 = (Y TV2)

TY TV2. Therefore, the task simplifies to finding a lower
bound on the smallest singular value of Y TV2 ∈ R(m−k)×(m−k).

Because of the scaling of the data (3.6), the shape quality can be related to
∥∥V̄ −1∥∥,
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i.e.,
∥∥V̄ −1∥∥ = κcond. If we denote V ′1 = V1(2 : k + 1), observe

QT V̄ = [Z, Y ]T V̄

= [Z, Y ]T [V ′1 − v1e
T︸ ︷︷ ︸

∈Rm×k

, V2 − v1e
T︸ ︷︷ ︸

∈Rm×(m−k)

]

=

ZT (V ′1 − v1e
T ) ZT (V2 − v1e

T )

Y T (V ′1 − v1e
T ) Y T (V2 − v1e

T )

 .
Since Y is a basis of L⊥ and both v1 and the columns of V ′1 are in L, it follows that
Y T (V ′1 − v1e

T ) = Y Tv1e
T = 0. Therefore,

QT V̄ =

ZT (V ′1 − v1e
T ) ZT (V2 − v1e

T )

0 Y TV2



=⇒
∥∥V̄ −1∥∥ =

∥∥(QT V̄ )−1
∥∥ =

∥∥∥∥∥∥∥∥
[ZT (V ′1 − v1e

T )]−1 U

0 (Y TV2)
−1


∥∥∥∥∥∥∥∥ (U is some matrix)

=⇒
∥∥V̄ −1∥∥ ≥ ∥∥(Y TV2)

−1∥∥ =
1

σm−k(Y TV2)
(3.17)

where σm−k(Y
TV2) is the smallest singular value of Y TV2. From the shape quality (3.5),

we can see that σm−k(Y
TV2) ≥ 1

κcond
. We find an upper bound on p̂, as follows.

‖p̂‖ =
∥∥αPV2(V T

2 PV2)
−1e
∥∥

≤ α ‖V2‖
∥∥(V T

2 PV2)
−1∥∥√n

= α
√
n ‖V2‖λmax{(V T

2 PV2)
−1}

≤ α
√
n ‖V2‖κ2cond (From (3.17))

≤ ακ2cond
√
n (From (3.6))

=⇒ ‖p̂‖ ≤ κ̂ = ακ2cond
√
n.

If we choose α = 1
κ2cond

√
n
, then we have,

‖p̂‖ ≤ 1. (3.18)
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By the upper bound on the datapoints (3.7),

p̂Txj ≤ ‖p̂‖ ≤ 1. (3.19)

Therefore, (3.16), (3.18 and (3.19) show that:

1. There exists p̂ ∈ Rm satisfying p̂Tx ≥ κ dist(x, L) for any x ∈ conv{v1, . . . ,vm+1},
where κ = 1

κ2cond
√
n

is a constant that depends on the data.

2. p̂Txi ≤ 1 for all i ∈ [n].

3. ‖p̂‖ ≤ 1.

This completes the proof.
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Chapter 4

Subspace recovery

We highlight the choice of constants used in this chapter. The constants that depend
entirely on the data are n (number of data points), σY (well centering condition (3.4)), and
κ (constant in Lemma 15). For λ yet to be chosen, let us pick the following constants:

Constant c δ η η′

Value 8n3/2

σY

σY
8n3/2

σY
2nκ

√
λ σY

64n2

√
λ

(4.1)

4.1 Problem statement

Recall the quadratic program (3.1):

Primal : min
n∑
i=1

si + c
n∑
i=1

ti + c2
n∑
i=1

ui +
λ

2
‖p‖2

subject to pTxi + si + ti + ui ≥ 1 ∀ i ∈ [n]

si ≥ 0 ∀ i ∈ [n]

si ≤ 1− δ ∀ i ∈ [n]

ti ≥ 0 ∀ i ∈ [n]

ti ≤ δ ∀ i ∈ [n]

ui ≥ 0 ∀ i ∈ [n].

(4.2)
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Our goal in formulating the above QP (4.2) is to recover the subspace L. We simplify the
problem (4.2) by defining the following quantities:

y =

[
p s t u

]T
∈ Rm+3n

c0 =

[
0m en cen c2en

]T
∈ Rm+3n

B =



λIm 0m×n 0m×n 0m×n

0n×m 0n×n 0n×n 0n×n

0n×m 0n×n 0n×n 0n×n

0n×m 0n×n 0n×n 0n×n


∈ R(m+3n)×(m+3n)

Q =



xT1

... In In In

xTn

0n×m In 0n×n 0n×n

0n×m −In 0n×n 0n×n

0n×m 0n×n In 0n×n

0n×m 0n×n −In 0n×n

0n×m 0n×n 0n×n In



∈ R6n×(m+3n)

b0 =

[
en 0n −(1− δ)en 0n −δen 0n

]T
∈ R6n
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then we can write the problem (4.2) as a quadratic programming problem:

Primal : min cT0 y +
1

2
yTBy

subject to Qy ≥ b0.
(4.3)

Using the Lagrangian dual formulation in Chapter 2 Subsection 2.1.1, the dual of (4.3) for
the dual variables d ∈ R6n and z ∈ Rm+3n is

Dual : max −1

2
zTBz + bT0 d

subject to Bz +QTd = c0

d ≥ 0.

(4.4)

Let the dual variables corresponding to each of the six sets of constraints be
{q,d4, r,d4,w,d6} ⊂ Rn respectively. Then

d =

[
q d2 r d4 w d6

]T
.

Primal constraint Corresponding dual variable

pTxi + si + ti + ui ≥ 1 q

si ≥ 0 d2

si ≤ 1− δ r

ti ≥ 0 d4

ti ≤ δ w

ui ≥ 0 d6
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From the above table, we get the complementary slackness conditions. For all 1 ≤ i ≤ n,

(pTxi + si + ti + ui − 1)× qi = 0 (4.5)

si × d2(i) = 0 (4.6)

(si − 1 + δ)× ri = 0 (4.7)

ti × d4(i) = 0 (4.8)

(ti − δ)× wi = 0 (4.9)

ui × d6(i) = 0. (4.10)

Let z =

[
zp zs zt zu

]T
∈ Rm+3n. Then we have,

Bz =



λzp

0n

0n

0n


and, QTd =



x1 . . . xn 0m×n 0m×n 0m×n 0m×n 0m×n

In In −In 0n×n 0n×n 0n×n

In 0n×n 0n×n In −In 0n×n

In 0n×n 0n×n 0n×n 0n×n In





q

d2

r

d4

w

d6



.

The first constraint of (4.4) becomes,

λzp

0n

0n

0n


+



∑n
i=1 q(i)xi

q + d2 − r

q + d4 −w

q + d6


=



0n

en

cen

c2en


. (4.11)

34



The following constraints arise from (4.11):

n∑
i=1

q(i)xi = −λzp (4.12)

q + d2 − r = en (4.13)

q + d4 −w = cen (4.14)

q + d6 = c2en (4.15)

d ≥ 0. (4.16)

The objective function of (4.4) is now

−1

2
zTBz + bT0 d = −λ

2
‖zp‖2 + qTen − (1− δ)rTen − δwTen

=
−1

2λ

∥∥∥∥∥
n∑
i=1

qixi

∥∥∥∥∥
2

+ (1− δ)(q− r)Ten + δ(q−w)Ten (Using (4.12))

=
−1

2λ

∥∥∥∥∥
n∑
i=1

qixi

∥∥∥∥∥
2

+
n∑
i=1

[
(1− δ)(qi − ri) + δ(qi − wi)

]
.

Dropping the dual variables {d2,d2,d2} from the dual constraints (4.13)-(4.16) and in-
cluding the nonnegativity constraint d ≥ 0 for the remaining variables {q, r,w}, the dual
problem is of the following form.

Dual : max
−1

2λ

∥∥∥∥∥
n∑
i=1

qixi

∥∥∥∥∥
2

+
n∑
i=1

[
(1− δ)(qi − ri) + δ(qi − wi)

]
subject to qi − ri ≤ 1 ∀ i ∈ [n]

qi − wi ≤ c ∀ i ∈ [n]

qi ≤ c2 ∀ i ∈ [n]

q ≥ 0, r ≥ 0,w ≥ 0.

(4.17)
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For the dual feasible point q = r = w = 0 we can see that the dual objective has value 0.
Therefore for any dual optimizer (q∗, r∗,w∗), the objective value is at least 0.

0 ≤ −1

2λ

∥∥∥∥∥
n∑
i=1

q∗i xi

∥∥∥∥∥
2

+
n∑
i=1

[
(1− δ)(q∗i − r∗i ) + δ(q∗i − w∗i )

]
=⇒ 1

2λ

∥∥∥∥∥
n∑
i=1

q∗i xi

∥∥∥∥∥
2

≤
n∑
i=1

[
(1− δ)(q∗i − r∗i ) + δ(q∗i − w∗i )

]
=⇒ 1

2λ

∥∥∥∥∥
n∑
i=1

q∗i xi

∥∥∥∥∥
2

≤
n∑
i=1

[
(1− δ) + δc

]
(∵ (4.17))

=⇒

∥∥∥∥∥
n∑
i=1

q∗i xi

∥∥∥∥∥ ≤ √2λ
√
n+ n(1− δ) (∵ δc = 1 by (4.1))∥∥∥∥∥

n∑
i=1

q∗i xi

∥∥∥∥∥ ≤ 2
√
λn. (4.18)

4.2 Noiseless Data

We prove two theorems which help us detect L using the above formulation. For η and δ
in (4.1),

Theorem 16. If dist(xî, L) ≥ η for some î ∈ [n], then pTxî ≥ δ for the optimal p to the
QP (4.2).

Proof. Suppose not. Let pTxî < δ. Then from the primal constraints, sî = 1−δ and t̂i > 0.
Since we are looking at the optimizer, the complementary slackness conditions (4.7) and
(4.8) combined with the dual constraints (4.17) yields q∗

î
− r∗

î
= 1 and q∗

î
− w∗

î
= c. If

X = [x1 . . . ,xn] ∈ Rm×n then (4.18) is:

‖Xq∗‖ ≤ 2
√
λn. (4.19)

Consider the p̂ from Lemma 15, then ‖p̂‖ ≤ 1 and,

p̂TXq∗ ≤ ‖p̂‖ ‖Xq∗‖

=⇒
n∑
i=1

(p̂Txiq
∗
i ) ≤ 2

√
λn. (∵ (4.19)) (4.20)
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From Lemma 15, we can say that p̂Txi ≥ 0 for all i. Using Lemma 15 and the fact that
qî = wî + c ≥ c ≥ 0 (∵ wî ≥ 0),

n∑
i=1

(p̂Txi)qi ≥ p̂Txîqî ≥ cκ dist(xî, L) ≥ cκη = 4
√
λn. (∵ (4.1)) (4.21)

Using this in equation (4.20), we get

4
√
λn ≤ 2

√
λn. (4.22)

which is a contradiction and hence the assumption that pTxî < δ is false. This completes
the proof.

In the next theorem, we first show that the component along L of the optimal p to (4.2)
is small.

Theorem 17. The magnitude of the optimal p to the QP (4.2) has an upper bound of√
4n
λ

. Furthermore, the component of p along L is of magnitude at most σY
32n3/2 .

Proof. For the optimal p to the QP (4.2), the objective value is at least λ
2
‖p‖2 (since other

terms are nonnegative). At the feasible point where p = 0, we have si = 1− δ, ti = δ and
ui = 0 for all i ∈ [n]. The objective value at this point is not lower than the objective at
the optimizer. Therefore,

λ

2
‖p‖2 ≤ n(1− δ) + ncδ

≤ n+ ncδ (∵ nδ > 0)

= 2n (∵ δc = 1 from (4.1))

=⇒ ‖p‖ ≤
√

4n

λ
. (4.23)

Let the optimal p be written as p = pL︸︷︷︸
∈L

+ pL⊥︸︷︷︸
∈L⊥

. Then for all i ∈ [l] we have xi ∈ L and

hence pT
L⊥xi = 0. Therefore,

pTxi = pTLxi ∀ i ∈ [l]. (4.24)
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We use the well centering condition in L (3.3). Since 0 is in the convex hull of x2, . . . ,xl,
there exists nonnegative coefficients {αi}li=2 such that

∑l
i=2 αi = 1 and

∑l
i=2 αixi = 0.

l∑
i=2

αixi = 0

=⇒ pT
l∑

i=2

αixi = 0

=⇒
l∑

i=2

αip
Txi = 0

=⇒
l∑

i=2

αip
T
Lxi = 0 (∵ (4.24))

Let yi = αixi ∀ i ∈ {2, . . . , l}

=⇒
l∑

i=2

pTLyi = 0.

Let
µ , min

i∈{2,...,l}
pTLxi = pTLxj for some j ∈ {2, . . . , l}. (4.25)

Clearly, µ ≤ 0. Then for all g ∈ {2, . . . , l},

pTLyg = −
l∑

i=2
i 6=g

pTLyi

αgµ ≤ pTLyg ≤ −
( l∑

i=2
i 6=g

αi

)
µ ≤ −µ (∵ (4.25))

=⇒ pTLyg ∈ [αgµ,−µ]

=⇒ |pTLyg| ≤ −µ = |µ|. (4.26)
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Let Y = [y1, . . . ,yl]
T . From (3.4), we have this singular value condition on the data,

σY = inf
‖x‖=1
x∈L

∥∥Y Tx
∥∥

≤
∥∥∥∥Y T pL
‖pL‖

∥∥∥∥ (∵ pL ∈ L)

=

√√√√ l∑
i=1

(
yTi

pL
‖pL‖

)2

≤

√√√√ l∑
i=1

µ2

‖pL‖
2 (∵ (4.26))

=
|µ|
√
l

‖pL‖

≤ |µ|
√
n

‖pL‖

=⇒ ‖pL‖ ≤
|µ|
√
n

σY
. (4.27)

In order to get a good upper bound on ‖pL‖, we need an upper bound on |µ|. We know that
for some j, µ = pTLxj ≤ 0. From our discussions before (3.2), sj = 1 − δ, tj = δ, uj = |µ|.
Thus, the objective function value of the optimizer is at least c2|µ|. This should be lower
than the objective value at any another feasible point. Consider the case where p = 0 in
(3.2). The objective value here is exactly n(1− δ) + ncδ = n(2− δ) (∵ (4.1)). We have,

c2|µ| ≤ n(2− δ)

=⇒ 64n3

σ2
Y

|µ| ≤ 2n (∵ (4.1))

=⇒ |µ| ≤ σ2
Y

32n2
. (4.28)

Using (4.28) in (4.27),

‖pL‖ ≤
σY

32n3/2
. (4.29)

This leads to a converse to Theorem 17 except for a different value of η. For η′ given in
(4.1),
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Theorem 18. If pTxî ≥ δ for the optimal p to the QP (4.2) and for some î ∈ [n], then
dist(xî, L) ≥ η′.

Proof. Pick the optimal p to the QP (4.2). Suppose pTxî ≥ δ. For any 1 ≤ î ≤ n,

σY
8n3/2

= δ ≤ pTxî = pTLxî + pTL⊥xî

≤ ‖pL‖ . ‖xî‖+ pTL⊥xî

≤ σY
32n3/2

+ pTL⊥xî. (∵ (3.7),Theorem 17)

Suppose we split xî = xî,L + xî,L⊥ where xî,L ∈ L and xî,L⊥ ∈ L⊥. Then pL⊥ ⊥ xî,L.

Therefore, pT
L⊥xî = pT

L⊥xî,L⊥ and hence,

σY
8n3/2

− σY
32n3/2

≤ pTL⊥xî,L⊥ ≤ ‖pL⊥‖ .
∥∥xî,L⊥∥∥ ≤√4n

λ
.
∥∥xî,L⊥∥∥ (∵ Theorem 17)

=⇒
3σY

32n3/2√
4n
λ

≤
∥∥xî,L⊥∥∥ = dist(xî, L)

=⇒ η′ =
σY

64n2

√
λ ≤ 3σY

√
λ

64n2
≤ dist(xî, L).

4.3 Noisy case

Let us now consider the data points with noise. For each i ∈ [n], let the noisy data points
be x̂i = xi + εi, where the noise component is bounded, ‖εi‖ < ε for some ε > 0. Then
the new primal and dual problems are written for the noisy data points:

Primal : min
n∑
i=1

si + c
n∑
i=1

ti + c2
n∑
i=1

ui +
λ

2
‖p‖2

subject to pT x̂i + si + ti + ui ≥ 1 ∀ i ∈ [n]

si ≥ 0 ∀ i ∈ [n]

si ≤ 1− δ ∀ i ∈ [n]

ti ≥ 0 ∀ i ∈ [n]

ti ≤ δ ∀ i ∈ [n]

ui ≥ 0 ∀ i ∈ [n].

(4.30)
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Dual : max
−1

2λ

∥∥∥∥∥
n∑
i=1

qix̂i

∥∥∥∥∥
2

+
n∑
i=1

[
(1− δ)(qi − ri) + δ(qi − wi)

]
subject to qi − ri ≤ 1 ∀ i ∈ [n]

qi − wi ≤ c ∀ i ∈ [n]

qi ≤ c2 ∀ i ∈ [n]

q ≥ 0, r ≥ 0,w ≥ 0.

(4.31)

We prove similar results to Theorem 16 and Theorem 18. For η and δ in (4.1),

Theorem 19. If dist(x̂î, L) ≥ η for some î ∈ [n] and the noise upper bound satisfies

ε <
√
λ(

4nκ
σY

+ 64n3.5

σ2
Y

) , then pT x̂î ≥ δ for the optimal p to the QP (4.30).

Proof. Suppose not. Let pT x̂î < δ. Then from the primal constraints, sî = 1 − δ and
t̂i > 0. Since we are looking at the optimizer, the complementary slackness conditions
(4.7) and (4.8) combined with the dual constraints (4.31) yields qî− rî = 1 and qî−wî = c.

If X̂ = [x̂1 . . . , x̂n] ∈ Rm×n then (4.18) is:

∥∥∥X̂q
∥∥∥ ≤ ‖Xq‖+

∥∥∥∥∥
n∑
i=1

εiqi

∥∥∥∥∥
≤ 2
√
λn+ nc2ε. (∵ q̂i ≤ c2 by (4.31)) (4.32)

Consider the p̂ from Lemma 15:

p̂T X̂q ≤ ‖p̂‖
∥∥∥X̂q

∥∥∥
=⇒

n∑
i=1

(p̂T x̂iqi) ≤ 2
√
λn+ nc2ε (∵ (4.32))

=⇒
n∑
i=1

(p̂Txiqi − ‖p̂‖ ‖ε‖ qi) ≤
n∑
i=1

(p̂T x̂iqi) ≤ 2
√
λn+ nc2ε

=⇒
n∑
i=1

(p̂Txiqi) ≤ 2
√
λn+ 2nc2ε. (∵ q̂i ≤ c2) (4.33)
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From Lemma 15, we can say that p̂Txi ≥ 0 for all i. Using Lemma 15 and the fact that
qî = wî + c ≥ c > 0 (∵ wî ≥ 0),

n∑
i=1

(p̂Txi)qi ≥ p̂Txîqî ≥ cκ dist(x̂î − εî, L) ≥ cκη − cκε = 4
√
λn− cκε. (∵ (4.1)) (4.34)

Using this in equation (4.33), we get

4
√
λn− cκε ≤ 2

√
λn+ 2nc2ε

=⇒ 2
√
λn ≤ (cκ+ 2nc2)ε =

(
8n3/2κ

σY
+

128n4

σ2
Y

)
ε (∵ (4.1))

=⇒
√
λ(

4nκ
σY

+ 64n3.5

σ2
Y

) ≤ ε. (4.35)

Since we have the noise bound

ε <

√
λ(

4nκ
σY

+ 64n3.5

σ2
Y

) (4.36)

(4.35) is violated. This leads to a contradiction and hence the assumption that pT x̂î < δ
is false. This completes the proof.

We prove a theorem analogous to Theorem 17. Even for the optimal p to the noisy problem
(4.30), the component along L of the optimal p is small.

Theorem 20. The magnitude of the optimal p to the QP (4.30) has an upper bound of√
4n
λ

. Furthermore, the component of p along L is of magnitude at most σY
32n3/2 + ε 2n

σY
√
λ

.

Proof. For the optimal p to the QP (4.30), the objective value is at least λ
2
‖p‖2 (since

other terms are nonnegative). At the feasible point where p = 0, we have si = 1−δ, ti = δ
and ui = 0 for all i ∈ [n]. The objective value at this point is not lower than the objective
at the optimizer. Therefore,

λ

2
‖p‖2 ≤ n(1− δ) + ncδ

≤ n+ ncδ (∵ nδ > 0)

= 2n (∵ δc = 1 from (4.1))

=⇒ ‖p‖ ≤
√

4n

λ
. (4.37)
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For each i ∈ [n], we claim the following lower bound:

pT x̂i ≥ −
2n

c2
= − σ2

Y

32n2
. (4.38)

To prove this, assume that for some j ∈ [n] (4.38) does not hold. Then pT x̂i < −2n
c2

. The
first constraint of the primal (4.30) implies sj = 1− δ, tj = δ and uj = −pT x̂j >

2n
c2

. Since
all terms in the objective are nonnegative, the objective at the optimizer is at least c2uj.
Using the value of the objective at the feasible point p = 0 as an upper bound,

2n < c2uj ≤ n(1− δ) + ncδ < 2n,

which is a contradiction and hence (4.38) holds.

Let the optimal p be written as p = pL︸︷︷︸
∈L

+ pL⊥︸︷︷︸
∈L⊥

. Then for all i ∈ [l] we have xi ∈ L

and hence pT
L⊥xi = 0. Therefore,

pTxi = pTLxi ∀ i ∈ [l]. (4.39)

We use the well centering condition in L (3.3). Since 0 is in the convex hull of x2, . . . ,xl,
there exists nonnegative coefficients {αi}li=2 such that

∑l
i=2 αi = 1 and

∑l
i=2 αixi = 0.

l∑
i=2

αixi = 0

=⇒ pT
l∑

i=2

αixi = 0

=⇒
l∑

i=2

αip
Txi = 0

=⇒
l∑

i=2

αip
T
Lxi = 0 (∵ (4.39))

Let yi = αixi ∀ i ∈ {2, . . . , l}

=⇒
l∑

i=2

pTLyi = 0.

Let
µ , min

i∈{2,...,l}
pTLxi = pTLxj for some j ∈ {2, . . . , l}. (4.40)
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Clearly, µ ≤ 0. Then for all g ∈ {2, . . . , l},

pTLyg = −
l∑

i=2
i 6=g

pTLyi

αgµ ≤ pTLyg ≤ −
( l∑

i=2
i 6=g

αi

)
µ ≤ −µ (∵ (4.25))

=⇒ pTLyg ∈ [αgµ,−µ]

=⇒ |pTLyg| ≤ −µ = |µ|. (4.41)

Let Y = [y1, . . . ,yl]
T . From (3.4), we have this singular value condition on the data,

σY = inf
‖x‖=1
x∈L

∥∥Y Tx
∥∥

≤
∥∥∥∥Y T pL
‖pL‖

∥∥∥∥ (∵ pL ∈ L)

=

√√√√ l∑
i=1

(
yTi

pL
‖pL‖

)2

≤

√√√√ l∑
i=1

µ2

‖pL‖
2 (∵ (4.26))

=
|µ|
√
l

‖pL‖

≤ |µ|
√
n

‖pL‖

=⇒ ‖pL‖ ≤
|µ|
√
n

σY
. (4.42)

In order to get a good upper bound on ‖pL‖, we need an upper bound on |µ|. We know
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that for some j, µ = pTLxj ≤ 0. Using (4.38),

µ = pTLxj

= pT x̂j − pTεj (∵ (4.39))

≥ − σ2
Y

32n2
− ε
√

4n

λ
(∵ (4.38), (4.37) and Cauchy-Schwarz inequality)

=⇒ |µ| ≤ σ2
Y

32n2
+ ε

√
4n

λ
. (4.43)

Using (4.43) in (4.42),

‖pL‖ ≤
σY

32n3/2
+ ε

2n

σY
√
λ
. (4.44)

Similar to Theorem 18, the following theorem is a converse of Theorem 19, except for a
change from η to η′. For η′ given in (4.1),

Theorem 21. Suppose pT x̂î ≥ δ for the optimal p to the QP (4.30) and for some î ∈ [n].

If the noise upper bound satisfies ε ≤ min

(
σY

32n3/2(
σY

16n3/2
+
√

4n
λ

) , σ2
Y

64n5/2

√
λ

)
, then dist(x̂î, L) ≥ η′.

Proof. Suppose pT x̂î ≥ δ. For any 1 ≤ î ≤ n,

σY
8n3/2

= δ ≤ pT x̂î (∵ (4.1))

= pTLx̂î + pTL⊥x̂î

≤ ||pL||.||x̂î||+ pTL⊥x̂î

≤
( σY

32n3/2
+ ε

2n

σY
√
λ

)
(1 + ε) + pTL⊥xî + pTL⊥εî (∵ 3.7,Theorem 20)

≤ σY
16n3/2

(1 + ε) + pTL⊥xî + pTL⊥εî.

(
∵ ε ≤ σ2

Y

64n5/2

√
λ

)

Suppose we split xî = xî,L + xî,L⊥ where xî,L ∈ L and xî,L⊥ ∈ L⊥. Then pL⊥ ⊥ xî,L.
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Therefore, pT
L⊥xî = pT

L⊥xî,L⊥ and hence,

σY
8n3/2

− σY
16n3/2

(1 + ε) ≤ pTL⊥xî,L⊥ + pTL⊥εî (4.45)

≤ ‖pL⊥‖ .(
∥∥xî,L⊥∥∥+ ε)

≤
√

4n

λ
.(
∥∥xî,L⊥∥∥+ ε) (∵ Theorem 17)

=⇒
σY

16n3/2 − ε σY
16n3/2√

4n
λ

− ε ≤
∥∥xî,L⊥∥∥ = dist(xî, L)

=⇒
σY

16n3/2 − ε σY
16n3/2 − ε

√
4n
λ√

4n
λ

≤ dist(xî, L). (4.46)

Since we have the noise upper bound,

ε <
σY

32n3/2(
σY

16n3/2 +
√

4n
λ

)
(4.46) reduces to the desired inequality:

η′ =
σY

64n2

√
λ ≤ dist(xî, L).

In order for both Theorem 19 and Theorem 21 to work, a good choice of ε would be

ε < min

( √
λ(

4nκ
σY

+ 64n3.5

σ2
Y

) , σY
32n3/2(

σY
16n3/2 +

√
4n
λ

) , σ2
Y

64n5/2

√
λ

)

= min

(
σ2
Y

√
λ

4n(κσY + 16n2.5)
,

σY
√
λ

64n2 + 2
√
λσY

,
σ2
Y

64n5/2

√
λ

)

= min

(
σ2
Y

√
λ

4n(κσY + 16n2.5)
,

σY
√
λ

64n2 + 2
√
λσY

) (
∵

σ2
Y

√
λ

4n(κσY + 16n2.5)
<

σ2
Y

64n5/2

√
λ

)

=⇒ ε < min

(
σ2
Y

√
λ

4n(κσY + 16n2.5)
,

σY
√
λ

64n2 + 2
√
λσY

)
(4.47)

46



4.4 Post processing

Suppose we have the noisy data points and we solve the QP (4.30) efficiently. Now we obtain
the optimal p to the QP and partition the data points according to whether pT x̂i ≤ δ or
pT x̂i > δ. The Theorems 19 and 21 tell us how close each of the partitions are to L. If ε
is small enough so that

ε < η′ (4.48)

then from Theorem 21 we can see for all i ∈ [l],

dist(x̂i, L) < η′ =⇒ pT x̂i < δ.

Let N = {x̂1, . . . , x̂l, x̂l+1, . . . , x̂q} be the set of all noisy data points such that pT x̂i < δ. If
dim(L) = k, then we show that the kth singular value of [x̂1, . . . , x̂q] is large. Recall that∑l

i=1 αi = 1 and αi ≥ 0 in the well centering condition (3.3).

σk([x̂1, . . . , x̂q]) ≥ σk([x̂1, . . . , x̂l]) (∵ Lemma 5)

= inf
rank(B)≤k−1

‖[x̂1, . . . , x̂l]−B‖2 (∵ Theorem 3)

≥ inf
rank(B)≤k−1

‖[α1x̂1, . . . , αlx̂l]− [α1B(:, 1) . . . αlB(:, l)]‖2 (∵ Lemma 6)

= inf
rank(B)≤k−1

(
‖[α1x1, . . . , αlxl]− [α1B(:, 1) . . . αlB(:, l)]‖2

− ‖[α1x1, . . . , αlxl]− [α1x̂1, . . . , αlx̂l]‖2

)
≥ σY − ‖[α1ε1, . . . , αlεl]‖2 (∵ Definition of σY )

≥ σY − (max
i
|αi|) ‖[ε1, . . . , εl]‖2 (∵ Lemma 6)

=⇒ σk([x̂1, . . . , x̂q]) ≥ σY − ε. (4.49)

Since pT x̂i < δ for all points in N , by Theorem 19 we have dist(x̂i, L) < η. Let B ∈ Rm×k

be a basis of L. Then each point in N can be written as x̂i = Bf i︸︷︷︸
∈L

+ ni︸︷︷︸
∈L⊥

. We show that
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the (k + 1)th singular value of [x̂1, . . . , x̂q] is small.

σk+1([x̂1, . . . , x̂q]) = σk+1([Bf1 + n1, . . . , Bf q + nq])

= σk+1([Bf1, . . . , Bf q] + [n1, . . . ,nq])

≤ σk+1([Bf1, . . . , Bf q]︸ ︷︷ ︸
rank k

) + ‖[n1, . . . ,nq]‖

≤ η (∵ ‖ni‖ ≤ η, ∀ 1 ≤ i ≤ q)

σk+1([x̂1, . . . , x̂q]) ≤
σY
2nκ

√
λ. (4.50)

Note that the noise bound (4.47) combined with (4.48) yields,

ε < min

(
σY

64n2

√
λ,

σ2
Y

√
λ

4n(κσY + 16n2.5)
,

σY
√
λ

64n2 + 2
√
λσY

)
.

But σY
√
λ

64n2+2
√
λσY

< σY
64n2

√
λ and hence,

ε < min

(
σ2
Y

√
λ

4n(κσY + 16n2.5)
,

σY
√
λ

64n2 + 2
√
λσY

)
. (4.51)

We make our choice of λ now,

λ =
1024n4κ2

(32n+ κ)2
. (4.52)

This ensures that

σY
2nκ

√
λ =

σY
2nκ
× 32n2κ

(32n+ κ)

<
σY
2nκ
× 64n2κ

(32n+ κ)

=
32nσY

(32n+ κ)

= σY −
κσY

(32n+ κ)

= σY −
σY

32n2

√
λ (∵ (4.52))

< σY −
σY

64n2

√
λ

< σY − ε. (∵ (4.51))
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Combine this with equations (4.49) and (4.50) and use the value of λ in (4.52)

σk+1([x̂1, . . . , x̂q]) ≤
16nσY

(32n+ κ)
< σY − ε ≤ σk([x̂1, . . . , x̂q]). (4.53)

We have shown that for the matrix [x̂1, . . . , x̂q], the kth singular value is large and the
(k + 1)th singular value is small. It is clear that by choosing a smaller value of λ, one can
increase this gap arbitrarily, at the cost of placing a stricter upper bound on ε.

We update the constants (since we have picked λ) as follows:

Constant c δ η η′

Value 8n3/2

σY

σY
8n3/2

16nσY
(32n+κ)

κσY
2(32n+κ)

(4.54)

Substituting (4.52) in (4.51), the noise upper bound should satisfy the following inequality
for the above method to work:

ε < min

(
8σ2

Y nκ

(32n+ κ)(κσY + 16n2.5)
,

σY κ

64n+ 2κ+ 2κσY

)
. (4.55)

4.5 Summary

We summarize our algorithm, which is a replacement for Algorithm 1.
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Algorithm 5 Finding one properly filled face under well-centering assumptions

1: Input: Set of noisy points {x̂i}ni=1 in Rm. The magnitude of the noise has an upper
bound satisfying (4.55). It is known that a properly filled face L of dimension k contains
some data points obeying the well-centering assumptions. The points are scaled and
translated as described in Section 3.1.

2: Output: We compute k, the dimension of L and recover the subspace L approximately.
3: For parameters described in Section 3.1, solve the QP (3.1) and obtain any optimizer.

Let p∗ be the optimal value of the variable p.
4: Let N = [x̂1, . . . , x̂q] be a matrix comprised of all data points which obey (p∗)T x̂i < δ

(The parameter δ is given in Section 3.1).
5: The number of singular values of [x̂1, . . . , x̂q] greater than 16nσY

(32n+κ)
(due to (4.53)) gives

k, the dimension of L.
6: In the noiseless setting, the singular vectors corresponding to the largest k singular

values give an exact basis for L as δ → 0. When there is bounded noise in the data,
the singular vectors corresponding to the largest k singular values give an approximate
basis for L.

If there is no noise in the data, we can exactly obtain L using Step 6. With bounded noise,
we can still obtain an approximation to L (we obtain all data points within distance η to
L). The quality of the approximation depends on the noise.

Note that Algorithm 1 of Ge and Zou [17] is a quadratically constrained quadratic pro-

gram (QCQP) because of the constraint
∥∥∥x0 −

∑h
i=1wixi

∥∥∥ ≤ 2ε and needs to be solved

iteratively for each face. Algorithm 5 is a quadratic program (QP) which is less expensive
to solve than a QCQP. Our algorithm is only a single pass through a QP.
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Chapter 5

Experiments and Conclusions

5.1 Experiments

We tested Algorithm 5 for simulated data and observed that the algorithm performs well
even under presence of noise. The data was simulated by sampling from a Dirichlet dis-
tribution, a continuous multivariable distribution which is parameterized by a vector of
positive reals α of the same dimension of the data. Sampling from the Dirichlet distribu-
tion is done using a Gamma distribution sampler. We sample from the Gamma distribution
as many times as the dimension of the data, using the corresponding αi as the Gamma
parameter. The resulting vector is then normalized, so that the components sum to 1. For
noisy data, bounded noise was sampled from an uniform distribution and added to the data.

In our test case, we generate a set of data points lying on L as follows. Given k, the
dimension of L we choose a value of 100 for (k + 1) components of α and 0 for the other
components. The Dirichlet distribution yields a number of data points (say n1) which con-
tain exactly (k+1) non zero components lying inside the unit simplex. In the noisy case, we
choose a noise upper bond ε and generate a (m×n1) matrix of values sampled from the uni-
form distribution. We scale this by ε to keep the noise bound and add the noise to the data.

Next, we generate n2 data points corresponding to those not in L using the Dirichlet
distribution. For this purpose, we set an arbitrary number (< m) of components of α to
be 100 and the rest to be 1. This gives us points which are nonzero in every component
but these do not necessarily lie in L. The total number of data points is n = n1 + n2.
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An appropriate data point was chosen to be the origin. In the noisy case, since even
points in the first set have lots of nonzero components, we picked a point which had ex-
actly (k + 1) components above some threshold. We start the threshold at some small
value (say 10−4) and increase it by a factor of 10 until we find a point satisfying the above
condition. All data points were translated so that this point becomes the origin, to satisfy
the well-centering assumption. We used MATLAB 2016b Version 9.1 for implementing
the algorithm. The built-in quadratic program solver quadprog in MATLAB uses an
interior point method to solve the quadratic problem in Algorithm 5.
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Figure 5.1: Plot of ratio of consecutive singular values. Data without noise for 2000 data
points in R20. The subspace L has dimension k = 15.
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Figure 5.2: Plot of ratio of consecutive singular values. Bounded noise ( ε = 2−10 ≈ 10−3)
is added to the data used in Figure 5.1. The subspace L has dimension k = 15.
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Figure 5.3: Log plot of maximum noise tolerated by Algorithm 5 in order to get a clear
threshold of 20 in the ratio of singular values. The maximum noise tolerated for each
subspace dimension k ∈ [1, 19] is shown.

Figure 5.1 is an example of a data without noise, with 2000 points in R20. For the dimen-
sion k = 15 of the subspace L, we can see a big jump in the ratio of consecutive singular
values of the matrix in Step 4 of Algorithm 5. The jump occurs at the index 15, i.e., σ15/σ16
is large. We seek a jump above some threshold (say 40) in order to guess the dimension.
There is a jump above the threshold for the 15th ratio in Figure 5.1.
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Figure 5.2 is the same data as above, but bounded noise is added. The upper bound
of the noise is ε = 2−10 ≈ 10−3. with 2000 points in R20. For the dimension k = 15 of
the subspace L, we can see a big jump in the ratio of consecutive singular values of the
matrix in Step 4 of Algorithm 5. The jump occurs at the index 15, i.e., σ15/σ16 is large.
We seek a jump above a lower threshold than the noiseless case (say 20) in order to guess
the dimension. Notice the jump above the threshold for the 15th ratio in Figure 5.2.

The ratio test was introduced because we do not know σY in practice, so we cannot use
Step 5 of Algorithm 5 in a practical setting. Figures 5.1 and 5.2 show that the ratio test
is sensible in practice.

Figure 5.3 shows the maximum noise for which Algorithm 5 identifies the dimension of
L with the threshold 20 for jump in the ratio of consecutive singular values. We obtain
the maximum noise tolerated for dimensions of L from 1, . . . ,m− 1. The plot is in the log
scale and we observe that as the dimension k increases, there is a decrease in the maximum
noise for which the Algorithm 5. This shows that it is harder to find high-dimensional filled
faces, i.e., we can only find them for a noise level lower than low-dimensional faces. This
is expected since for random points in a high-dimensional face, it is less likely that one of
the points is well-centered.

5.2 Conclusions

We considered the work of Ge and Zou [17] who introduced the notion of subset-separability,
which is a milder assumption than separability. Moreover, this is a necessary but not suffi-
cient condition for the W -simplex to be volume minimizing (and hence unique). The most
expensive step in their Face-Intersect algorithm is the problem of finding a properly filled
face given the center point. Our replacement, Algorithm 5 makes assumptions about well-
centering of the data (as does Algorithm 1) and produces an efficient quadratic program
for finding a filled face, even in the presence of bounded noise. For a linearly constrained
quadratic program, the number of iterations of a good interior point method is approxi-
mately O(

√
n log(1

ε
)) with each iteration O(v2n) where ε is the error in computed value

compared to actual value, n is the number of polyhedral constraints and v is the number
of variables [49]. The noisy NMF problem can be solved using Algorithm 5 and the rest of
the procedure due to Ge and Zou [17] which was explained in Chapter 2.

Theoretically, one possible improvement to our algorithm could involve simplifying the
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QP formulation. The 2-norm in the objective is to control the magnitude of the variable
p. One could possibly use the 1-norm or the infinity norm and make the QP into a linear
program. Note that this results in little change in the time complexity, which seems to
depend only on the number of polyhedral constraints. Also the test in Step 5 of Algorithm
5 is complicated in practice, because we do not usually know σY from the data.

In this thesis, our algorithm was shown in action for simulated data in both noiseless and
noisy settings. Practically, our algorithm could be incorporated into the NMF procedure
and tested in experiments using real data to solve a NMF problem.
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[40] Reinhard Schachtner, Gerhard Pöppel, and Elmar Wolfgang Lang. Towards unique
solutions of non-negative matrix factorization problems by a determinant criterion.
Digital Signal Processing, 21(4):528–534, 2011.

[41] Farial Shahnaz, Michael W Berry, V Paul Pauca, and Robert J Plemmons. Doc-
ument clustering using nonnegative matrix factorization. Information Processing &
Management, 42(2):373–386, 2006.

[42] Fabian J Theis, Kurt Stadlthanner, and Toshihisa Tanaka. First results on uniqueness
of sparse non-negative matrix factorization. In Signal Processing Conference, 2005
13th European, pages 1–4. IEEE, 2005.

[43] LB Thomas. Rank factorization of nonnegative matrices (A. Berman). SIAM Review,
16(3):393, 1974.

[44] Madeleine Udell, Corinne Horn, Reza Zadeh, Stephen Boyd, et al. Generalized low
rank models. Foundations and Trends R© in Machine Learning, 9(1):1–118, 2016.

60



[45] Stephen A Vavasis. On the complexity of nonnegative matrix factorization. SIAM
Journal on Optimization, 20(3):1364–1377, 2009.
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