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Abstract

There has been significant research about cascade effects that occur when information is
spread through a network. Most models of such cascade effects are highly-localised, which
means that they assume a node’s behaviour in a social network is influenced only by its im-
mediate neighbours. ( ) argued that such models may not represent the
information diffusion process in several real world scenarios accurately. They proposed the tech-
nology diffusion model, where a node’s decision to accept a new piece of information can be
influenced by remote nodes it can communicate with.

Formally, the technology diffusion model is defined as follows : given an undirected graph,
G = (V,E), and a threshold function 6 : V — {2,...,|V|} on all nodes v € V, a node v is consid-
ered activated whenever it becomes adjacent to a connected component containing at least 6 (v)
active nodes. The objective, referred to as seed minimization, is to find a minimum cardinality
set of initially active nodes, called the seedset, that triggers a cascade that activates the entire
graph.

( ) showed that technology diffusion is NP-hard even on spiders (trees in
which at most one vertex, called the root, has degree larger than 2). In this thesis, we show that
the problem is polynomial-time solvable on spiders with a constant number of legs, i.e., spiders
where the root has a constant degree. We also show that, in this setting, there is a linear program
formulation for the problem of polynomial size. Finally, we initiate the study of the influence
maximization version of technology diffusion, which seeks for a seedset of a fixed size k which
maximizes the number of vertices eventually activated. Influence maximization problems of this
kind have been studied extensively in localized diffusion models, and therefore it is natural to
investigate the same question for technology diffusion models. We show that this problem is also
solvable in polynomial-time on spiders with a constant number of legs.
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Chapter 1

Introduction

Social networks have been studied across a number of domains for several decades. With the
recent growth of companies like Facebook and Twitter, research on social networks is now sup-
plemented with real-world data. It has lead to exciting applications of this research, and has also
lead to the formulation of several new lines of enquiry. One such area of research is the study
of cascade effects. Cascade effects model the dynamics of spreading information in a social net-
work. This information could be a rumour, a virus or a new technology. Given a social network,
it is often useful to find out how rapidly, and how much a newly introduced piece of information
is spread throughout the network.

One strong motivation for studying such cascade models is marketing. Traditional mass mar-
keting methods consist of marketing a product to all potential customers. This may not always
be the most optimal strategy, as an individual’s decision to buy a product could be influenced by
their friends and co-workers. Leveraging these social networks is often more profitable than sim-
ple mass marketing. Often, companies go for directed marketing campaigns. Directed marketing
takes several variables about potential customers into account, like previous purchases, demo-
graphic factors, and the people they interact with regularly, to narrow down a set of potential
customers, and markets products to just these people. The idea is that some ‘influential’ people
will be encouraged to adopt a product (for instance, by giving them free samples) and they will
influence their acquaintances to buy that product too, and the product will thus be promoted in the
network through a word-of-mouth campaign. If successful, such viral marketing campaigns are
more profitable and cost-effective than mass marketing [ ( )]
campaigns.

Several startups use social media data to identify influential people. PeerIndex (http://
peerindex.com/) and Influencer50 (http://influencer50. com), for example, assign ‘influ-


http://peerindex.com/
http://peerindex.com/
http://influencer50.com

ence scores’ to users based on their social media usage, and recommend those with high scores
to companies. They also identify key journalists associated with a topic. The companies use this
data to plan viral marketing campaigns. Users are encouraged to improve their score, as it would
increase their likelihood of getting offers from such companies.

Viral marketing has also been getting attention in computer science and mathematics re-
search. ( ) modelled a social network as a Markov random field
[ ( ), ( ), ( )], where each individ-
ual’s probability of purchasing some product is a function of both the utility of the product for
the individual and the influence of other customers. Employing heuristic data mining methods,
the authors used their framework to optimize the choice of a set of customers, called seedset,

to market to. ( ) later framed the question of identifying this seedset as a dis-
crete optimization problem. They focused on two cascade effect models: the linear threshold
[ ( ), ( )], and independent cascade [ ( )

models. In these models, an individual’s desire to buy a product is a function of the behaviour
of their immediate neighbours in a social network. The authors posed the problem of finding a
seedset of k initially active vertices(seeds) that cause all vertices to eventually buy the product,
where k is a given parameter. ( ) showed that this problem is NP-hard on inde-
pendent cascade and the linear threshold model with random thresholds, and presented a greedy
hill climbing algorithm that returns a seedset that activates a (1 — 1/e) fraction of the number of
nodes activated by an optimal algorithm.

While there have been extensive studies of cascade effects in social networks, most of these
studies use localized models, like the two mentioned above, where a node’s behaviour is a func-
tion of just its neighbours’ behaviour. ( ) argued that such highly localized
settings may not model the diffusion process in several real-world scenarios accurately. For ex-
ample, in communication networks, where a node using a new technology can potentially interact
with remote nodes using older technologies, it would be beneficial for the node if its remote con-
nection would upgrade to the newer technology it is using. ( ) defined
a new model for studying cascade effects, called technology diffusion, which is the subject of
this thesis. In this model, nodes are impacted if they are adjacent to a connected component of
impacted nodes of a sufficient size. We give a more formal description of Goldberg and Liu’s
model below.

Technology Diffusion (TD). Consider a simple, undirected graph, G = (V,E), that repre-
sents our population and their interactions. We wish to model the cascade effects of introducing
a new technology in a network. Each node is in one of two states, active or inactive. All nodes
are set to be initially inactive (modelling a population using an older version of a technology).
Once a node is active, it can never become inactive again.
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Nodes activate (upgrade to using the newly introduced technology) when they obtain suffi-
cient utility from the new technology. A threshold function, 6(u), is associated with each node
u and it used to determine how large u’s utility should be before it activates. In our technology
upgrade example, the threshold function could model the cost of upgrading a technology for a
node. We define a node u’s utility to depend on the size (i.e., the number of vertices) of the
connected component containing u and the active nodes reachable by u# in G. TD is defined as
the following optimization problem:

7

Technology Diffusion (TD)

INPUT : A simple, undirected graph, G = (V,E), and a threshold function
0:V—={2,...,|V|}

ACTIVATION PROCESS : We start with a set of active nodes at time step 0, Y C V,
called a seedset. The activation process proceeds in discrete time steps. A node u
activates at time ¢ if the connected component containing u in the subgraph induced
in G by nodes in the set {v € V : vis active at time  — 1 } U{u} contains at least 6 () nodes.

OBJECTIVE : Find a minimum cardinality seedset Y C V such that if every node in Y
1s activated at time step 0, then all remaining nodes in V eventually activate.

( ) proved that TD is NP-hard by reducing it to the set cover problem.
For this reason, they focused on approximation algorithms for TD. An approximation algorithm
is an algorithm that returns a solution to a (combinatorial) optimization problem that is provably
close to optimal, and runs in polynomial time. An algorithm is called an ¢¢-approximation algo-
rithm for a minimization problem Py, if for every instance I of P, it computes a feasible solution
to I of value at most & times the value of an optimal solution to /, with running time polynomial
in the input size.

Goldberg and Liu presented an approximation algorithm for the Technology Diffusion prob-
lem, based on randomized rounding applied to the solution of a linear program, that returns a
seedset of size O(rq -log(n)) times that of an optimal seedset, where r is the diameter! of the
given graph, and ¢ is the number of distinct thresholds used in the instance.

( ) improved upon this result by presenting a O(min{r, q}log(n))-approximation algorithm
by reducing TD to submodular set cover and a quota version of the node weighted Steiner tree.

I'The length of the longest path in the set of shortest paths between all pairs of vertices in a graph.
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( ) showed that TD is NP-hard even on spiders (trees in which at most one
vertex,called the root, has degree larger than 2) and that the problem also admits an O(log(g))-
approximation on these graphs. All these algorithms mentioned output a seedset that induces a
connected activation sequence, defined as follows.

Definition 1.0.1. A seedset Y induces a connected activation sequence if there exists a permu-
tation T = (vq,...,vy) of V such that : (i) the graph induced by vy, ...,v; is connected, for all
i=1,...,n, and (ii) v € Y whenever i < 0(v;).

( ) showed that the size of a minimum cardinality seedset that induces
a connected activation sequence has cardinality at most twice as that of the optimal seedset.

Our results and techniques: The starting point of our thesis is the work of

( ). As previously mentioned, they give a O(log ¢)-approximation algorithm for TD on spider
graphs, and they achieve that using a reduction to a problem of scheduling jobs with precedence
constraints. This problem asks for non-preemptive scheduling of a set of » unit-sized jobs on a
single machine, in such a way that chain-like precedence constraints among the jobs are satisfied.
Each job has a deadline, and the objective is to compute a schedule that obeys the precedence
constraints, while minimizing the number of jobs completed after their deadline (more details in
Section 3). ( ) proved the following: (i) there is an approximation-preserving
reduction from instances of TD on spiders with ¢ legs and ¢ different threshold values where one
seeks for connected activation sequences starting at the root of the spider, to instances of the
scheduling problem where precedence constraints are expressed as ¢ job chains, and there are
g distinct deadlines values; (ii) there is a O(logq)-approximation algorithms for the scheduling
problem; (iii) there is an exact polynomial-time algorithm for the scheduling problem if 7 is a
fixed constant.

Combining (i) and (ii) together with the result of Goldberg and Liu on connected activation
sequences, the O(logg)-approximation algorithm for TD on spider graphs follow. However,
the result in (ii1) does not carry over, since there are instances of TD on spider graphs (in fact,
even on paths) where an optimal solution does not induce a connected activation sequence. This
motivated us to investigate the complexity of solving TD in spider graphs with a constant number
of legs.

Our first result is an exact polynomial-time algorithm for TD on spider graphs with a constant
number of legs. Our algorithm is based on a simple dynamic program, and in fact, it works in
the more general weighted setting, i.e., when each vertex of the spider has an associated non-
negative weight, and the objective is to minimize the total weight of the chosen seedset, rather
than its cardinality.



Given that our problem is algorithmically solvable in polynomial-time, we then investigate
whether we can give a Linear Programming (LP) formulation for the problem of polynomial
size, and show that indeed this is the case. Specifically, we show that our algorithm fits into the
paradigm given by ( ), who developed a polyhedral characterization of discrete
dynamic programs, by viewing dynamic programming algorithms as seeking flows in directed
hypergraphs.

Finally, we initiate the study of the influence maximization version of TD, called maxTD,
which seeks a seedset of a fixed size k maximizing the number of vertices that will eventually
activate. Influence maximization problems of this kind have been studied extensively in local-
ized diffusion models, and therefore it is natural to investigate the same question for technology
diffusion models. Relying once again on dynamic programming, we show that also this problem
is solvable in polynomial-time on spiders with a constant number of legs.

Thesis Organization : In Chapter 2, we give a brief overview of some related works, in-
cluding the independent cascade and linear threshold models, which are among the most studied
models of cascade effects in networks. We also give a more detailed description of the results
on the technology diffusion problem. In Chapter 3, we describe our polynomial-time dynamic
programming algorithm for TD on spiders with a constant number of legs. In Chapter 4, we
transfer our results in Chapter 3 to a polyhedral characterization of TD on spiders. Finally, in
Chapter 5, we use our dynamic program in Chapter 3, to construct a polynomial time dynamic
programming algorithm for maxTD on spiders with a constant number of legs.



Chapter 2

Related Works

In this section we give a brief overview of three diffusion models. All the models are progressive,
meaning that a node, once activated, does not become inactive. First, we focus on two popular
stochastic models widely studied in the literature, independent cascade and linear threshold. For
a more detailed study of these models, we refer the reader to a comprehensive survey by

( ). Then, we look at the results on the technology diffusion model.

2.1 Localised Diffusion Models

Let us start by looking at the definition of a social network. Note that this applies to just the first
two localized models - information cascade and linear threshold.

Notational Convention: We model a social network as a directed graph, G = (V,E). The
set V is a finite set of n nodes, representing entities in a social network. The set E C V x V is the
set of directed edges connecting pairs of nodes, and it represents the relationships among entities
in the network. The models under consideration assume such relationships to be directed. We
also use Nj,(v) to denote the set of nodes that have arcs incoming to a node, v.

Suppose, we have a certain piece of information, and we want to trigger a cascade of infor-
mation diffusion from a small set of nodes, with the aim of reaching as many nodes in the social
network, G, as possible. The diffusion proceeds in discrete time steps, with time t =0,1,2,....n.
Each node v € V can have either of two possible states at a time step, inactive or active. The
active state of a node represents that it has received the information being propagated through
the network, while inactive state represents that the node has not received that information. We
assume that all nodes in the input graph are inactive. We define the set ¥; C V as the set of active
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nodes at time 7. The set Yj is referred to as the seedset, and nodes in this set, as seeds. These
seed nodes are the initial nodes selected to propagate some information, for example, they could
be the initial set of people who receive the new piece of information.

The influence of a set of nodes, H C V, is defined as the number of nodes that are active at
t =nin G if H was the seedset, i.e., Yy = H. This can be seen as the number of nodes H will
spread the information to, if all nodes in Y were given the information.

Clearly, computing influence of a set of nodes requires computing the sets Y; for all time steps
for which the activation process occurs. Computing these sets requires specifying how a node
changes its state from inactive to active, which is described by a diffusion model. A diffusion
model for a network G = (V, E) specifies the process of computing sets Y; for all 7 > 1 given the
seedset Yp. Let us now look at two examples of localized diffusion models. Recall that localized
models allow only a node’s neighbours to impact its behaviour.

2.1.1 Independent Cascade (IC) Model

The independent cascade (IC) model is one of the simplest, and also one of the most widely

studied diffusion models. It was inspired from interactions in particle systems [ ( ),
( )] studied in probability theory. Research in marketing theory by [

( ), ( )] has also heavily influenced the creation of this model. It also

has similarities to cascade models used in sociology and epidemiology [ ( )]

to study the spread of ideas and diseases respectively. The version we describe here is attributed

to ( ).



Independent Cascade (IC)

SETTING : A directed graph, G = (V,E) and a probability function p : E — [0,1] on
all the arcs. The probability function represents the likelihood of one node influencing
another node.

ACTIVATION PROCESS : We start with a set of active nodes, Y. The activation
process proceeds in discrete time steps. If a node, v, is activated at time step ¢, it can
activate each of the inactive nodes in its neighbourhood only at time step # + 1. Each
inactive node u € Nj,(v) is activated with probability p(v,u), and this activation attempt of
u 1s independent of all previous activation attempts, if any, by u’s other active neighbours.
Each discrete time step can have multiple nodes being activated. If u has multiple
neighbours activating at the same time, activation attempts of u occur in an arbitrary
sequence.

The independent cascade model makes activation events along edges mutually independent
of each other. This makes it particularly well suited to model simple cascade effects where
node activations may be triggered from a single source, such as the spreading of information or
viruses. However, several situations exhibit a much higher complexity in activation mechanisms.
In particular, situations in which exposure to multiple independent activation sources are needed
for an node to change its state. Such situations are more accurately modelled by the linear
threshold model, which is described next.

2.1.2 Linear Threshold (LT) Model

In several real world situations, exposure to one activation source, when adopting an innovation
may be insufficient for a node to change its state. People may need feedback from multiple
sources in their social network before they adopt the innovation. For example, a person thinking
about upgrading their phone to a newer, more expensive model may consult several sources
before making a decision.

Social scientists have proposed threshold behaviours to model these kinds of cascade effects
[ ( ), ( )]. These models define an aggregate function of all acti-
vation attempts made on a node. This function could simply be a summation of all the attempts,
or could be something more complex. When the value of the aggregate function associated to a
node exceeds a certain threshold, the node is activated. Linear Threshold is a popular model that



follows this rule. The version of the linear threshold model we describe here is also attributed to

(2003).

Linear Threshold (LT)

SETTING : A directed graph, G = (V,E), and a weight function b : E — [0, 1] on the
edges such that ZueNin(V)b(V,u) < 1. The weight function represents the extent of one
node’s influence on another node. We also have a random variable, called a threshold, 6,,
associated with each node, which takes a value uniformly at random from interval [0, 1],
and represents the weighted fraction of v’s neighbours that have to be active in order for v
to activate.

ACTIVATION PROCESS : We start with a set of active nodes, Yy. The activation
process proceeds in discrete time steps. At time step ¢, all nodes active at time step ¢ — 1
retain their active state, and any node v is activated at ¢ if the total weight of its active
neighbours, ¥, ¢ yin(y) (v, 1) > 6.

Linear threshold does not necessarily require multiple sources to activate a node, because
we select thresholds randomly from the interval [0,1]. However, it does represent more com-
plex mechanisms than the information cascade model, as thresholds can model the number of
activation sources required to change a node’s state.

Properties of Influence Functions in IC and LT Models

For both the independent cascade model and the linear threshold models, we can describe an
influence spread function.

Definition 2.1.1. An influence spread function, ¢ : 2V — R.,, in an information cascade model
maps each subset of the nodes S C 'V to a positive integer, which is the expected number of the
active nodes at the end of the activation process if S is the set of initially active nodes.

( ) and ( ) showed that computing this influence spread func-
tion is #P-hard for both the IC and LT models. #P is a complexity class of counting problems
associated with decision problems in NP. For example, asking whether there are any Hamilto-
nian cycles in an input graph is a problem in the complexity class NP. Counting the number of
Hamiltonian cycles in an input graph is a problem in the class #P. A problem is called #P-hard if
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every problem in #P can be reduced to it by a polynomial time reduction. #P-hardness is at least
as hard as NP-hardness, since counting the number of solutions determines whether a solution
exists.

Influence spread functions of both the independent cascade model and the linear threshold
model exhibit two common properties: submodularity and monotonicity, which we define below.

Definition 2.1.2. A function f : 2V — R is submodular if
f(AU{u}) — f(A) > f(BU{u}) — f(B)
forall ACBCUanducU.

We can interpret submodularity as a diminishing marginal returns property - as the set grows
larger, the effect of adding an element to it reduces.

Definition 2.1.3. A function f : 2V — R is monotonic if
f(AU{u}) = f(A)
forall ACUandu e U.

Monotonicity means that adding elements to a set will not reduce the function value.
( ) showed that the IC and LT models described have influence spread functions that
were both monotonic and submodular.

The properties of submodularity and monotonicity are used to design algorithms for the in-
fluence maximization problem, which we describe next.

Influence Maximization in IC and LT Models

Often, companies could have an upper limit on the number of potential customers they want to
market their product to. However, they still want their sales to be as high as possible. In this
case, we need to find a set of nodes such that if activated, would maximize the number of total
active nodes in the network. The cardinality of this seedset cannot exceed a fixed upper limit.
This is the influence maximization problem.

Definition 2.1.4. Influence maximization is the following optimization problem : given a graph
G = (V,E), a diffusion model on G, and a non negative integer, called a budget, k, the objective

10



is to find a seedset Y C'V of cardinality at most k, such that the influence spread of Y, o(Y),
under the given diffusion model is maximized. Formally, we compute Y such that

Y = argmax o(Y').

Y'CV|Y'|<k
( ) introduced influence maximization as an algorithmic tool
for viral marketing within a probabilistic framework. The authors modelled a social network as a
Markov random field [ ( ), ( ), ( )1,

where each individual’s probability of purchasing some product is a function of both the utility
of the product for the individual and the influence of other customers. They used data mining
techniques to identify a set of influential nodes to market to. ( ) later framed the
question of identifying this seedset as a stochastic discrete optimization problem.

( ) also showed influence maximization to be computationally hard for both of the IC and LT
models described before by a reduction to set cover. Also, a corollary of their result implies that
influence maximization is #P-hard [ ( )]

There is a simple greedy approach to solve the influence maximization problem, relying on
the fact that the influence spread function is submodular and monotonic. In fact, this approach
works for any diffusion models in which the influence spread function is submodular and mono-
tonic.

Algorithm 1 Greedy Algorithm for Seedset Selection

INPUT: A graph, G = (V,E), budget k < |V| and a monotone and submodular set function,
f V= R+.
OUTPUT: A seedset, Y C V, of cardinality k.

1: initialize Y < @
2: for alli € [k] do
3:  a<argmax f(YU{b})— f(Y)
beV\Y
Y +YU{a}
end for
return Y

AN A

Pseudocode for greedy algorithm for seedset selection
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The greedy algorithm, described in Algorithm 1, adds one element, a, into the candidate
seedset, Y, such that a provides the highest contribution to an objective function f with respect
to set Y. This procedure is repeated for & iterations.

When the set function f is monotonic and submodular, Algorithm 1, provides an approxima-
tion guarantee, as shown by the following theorem.

Theorem 2.1.5. ( ( )) Given a universe of elements, U, and a function
f:U — Ry such that f is monotone and submodular and f(&) =0, let Y* C U be the set that
maximizes f(Y) among all subsets of U with cardinality at most k. Then for the set Y’ computed

by Algorithm 1, we have
1 k
fY) = (1=-)f(r")

e
where e is the base of natural logarithm.

Using Theorem 2.1.5, with f as the influence spread function o, we get that Algorithm 1
guarantees an approximation ratio of (1 — %) However, Algorithm 1 requires repeated evalu-
ations of 6(Y) in Step 3, which we know to be #P-hard. Some approximation algorithms dis-
cussed next avoid explicit influence spread computation. ( ) used Monte Carlo
simulations to estimate influence spread in Algorithm 1, getting an approximation guarantee of
(1— % — €) with running time O(e2k’n’mlogn), where k is the number of iterations of the
greedy algorithm and m is the number of edges in the input graph.

This running time is too high for a graph with a large number of vertices and edges.

( ) used lazy evaluations [ ( )] of the influence spread functions to obtain up
to 700 times of speed-up for network optimization problems related to influence maximization.
This was shown empirically. ( ) and ( ) used batch estimates of
the influence spread function. ( ) reported that this technique improves running

time of the lazy evaluations for influence maximization in the IC models from 15% to 34%.

Even with the lazy evaluations and batch estimates, the resulting algorithm is still not prac-
tical for graphs having hundred of thousands of nodes. ( ), ( ).
( ) reported that on a directed graph with 76K nodes and 509K arcs, it took over

60 hours to find 50 seeds.

A number of heuristic algorithms have been proposed to deal with this problem [

(2009), (2010), (2011), (2012), (2012)]. These
algorithms avoid Monte Carlo simulations by exploiting specific aspects of the graph structure
and the diffusion model to significantly speed up the influence spread function computations.

12



Seed Minimization in IC and LT Models

In some scenarios, it may be useful to find the smallest set of nodes that have to be activated
in order to achieve a certain number of total active nodes in a social network. For example, in
a viral marketing campaign, a company could want to know the set of potential customers they
have to market their product to so that they achieve some target on the total products sold. To
minimize the costs of the campaign, they would want that set to be as small as possible. We call
this the seed minimization problem.

Definition 2.1.6. Seed minimization is the following optimization problem : given a graph G =
(V,E), a diffusion model on G, and a non-negative integer k < |V|, called coverage, the objective
is to find a minimum cardinality seedset Y C 'V, such that the expected influence spread of Y,
o (Y), under the given diffusion model is at least k. Formally, we compute Y such that

Y= argmin |Y/|

Y'CV, 6(Y)>k
Seed minimization contains the set cover problem as a special case [ ( )].
( ) showed that set cover is hard to approximate within a factor of (1 — €)Inn unless

NP has n@(0glogn)_time deterministic algorithms.

Seed minimization is also closely related to the submodular set cover problem. In an instance
of the submodular set cover problem, we are given a universe of elements, U, a monotone sub-
modular set function f: U — R, and a cost function, ¢ : U — R . The goalisto findasetY CU
minimizing ¢(Y) := ¥, ey ¢(y) such that f(Y) = f(U). Seed minimization corresponds to a gen-
eralized version of the submodular set cover problem, where we seek Y C U such that f(Y) > k.

( ) showed that a greedy algorithm returns a solution, Y, such that f(Y) =k, and ¢(Y)
is within a In[k/(k — f(X;—1)] factor of the optimal solution, where X; denotes the greedy solution
obtained after i iterations and ¢ is the minimum number of iterations needed by the algorithm to
achieve a coverage of k, i.e. f(X;) =k.

( ) studied seed minimization for a graph with a cost function associated
to vertices ¢ : V. — R, where the cost of the seedset, Y, is given by ¢(Y) =Y, cyc(v) . They
showed that Wolsey’s result does not guarantee an approximation for the seed coverage - infact, it
can perform arbitrarily badly compared to an optimal algorithm. The authors showed that when
the influence spread function is monotone and submodular, a simple greedy algorithm yields
a bi-criteria approximation: given a coverage, k and a parameter € > 0 the greedy algorithm
will produce a seedset, Y, such that 6(Y) > k—¢€ and ¢(Y) < (1 +In(k/¢€))c(Y*), where Y™ is
the optimal seedset whose influence spread is at least k. In an instance of the submodular set
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cover problem, we are given a universe of elements, U, a monotone submodular set function
f:U — Ry, and a cost function, ¢ : U — R. The goal is to find a set A C U minimizing

c(A) := Y eac(a) such that f(A) = f(U).

2.2 Technology Diffusion

Both the independent cascade and the linear threshold models described above are localized, i.e.,
they have an activation process that activates a node based on solely its neighbours’ behaviour.
The technology diffusion model we defined in the introduction, however, is not localized. Let us
look at the model again.

Technology Diffusion (TD)

SETTING: A simple, undirected graph, G = (V,E), and a threshold function on the
nodes, 0 :V — {2,....|V|}.

ACTIVATION PROCESS : We start with a set of active nodes at time step 0, Y C V.
The activation process proceeds in discrete time steps. A node u activates at time ¢ if
the connected component containing u in the subgraph induced in G by nodes in the set
{veV :visactive at time t — 1} U {u} contains at least 6 () nodes.

Note that this model has another difference from the IC and LT models - it is defined on an
undirected graph. It assumes that as long as two nodes are connected in a network, they can
impact each other’s behaviour. Also, all edges are weighted equally, which means that all nodes
exert the same amount of influence on the nodes that they are connected to. As far as we know,
a directed version of the TD model has not been studied.

The influence spread function of the technology diffusion model unfortunately does not ex-
hibit submodular (or supermodular properties) [ ( )]. This makes designing
approximation algorithms much harder. The greedy algorithm (Algorithm 1) we used for the IC
and LT models does not give the same approximation guarantee for technology diffusion because
it relies on the submodularity properties of ©.

As far as we know, there has been no work on influence maximization for this model. How-
ever, there are some results on seed minimization, which we describe next.
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2.2.1 Seed Minimization in TD

( ) gave a O(rq -logn) approximation for seed minimization in the tech-
nology diffusion model, where r is the diameter of G, and ¢ is the number of distinct threshold
values in the instance. This is a randomized rounding approach applied to the solution of a linear
program. They also used a reduction from the set cover problem to show that the problem does
not admit a o(logn) approximation, even if the diameter and number of distinct threshold values
are both constants.

( ) improved upon this result by presenting a O(min{r, g} logn)-approximation
algorithm based on combinatorial techniques. They presented two algorithms. The first was to
obtain a O(rlogn)-approximation, which they obtained by reducing a technology diffusion in-
stance to a submodular set cover instance. The second algorithm was for the O(qlogn) approxi-
mation, which used a reduction of a TD instance to one of the quota version of the node-weighted
Steiner tree! problem [ ( ), ( )]. They also showed that
the seed minimization problem in technology diffusion is as hard to approximate as the quota-
version of the unit-weight node-weighted Steiner tree problem.

'Tn an instance of quota-constrained node-weighted Steiner Tree problem, we are given an undirected graph
G = (V,E), aroot vertex, r € V, vertex weights w(v) for all vertices v € V, and a positive integral quota, ¢ € Z*.
The goal is to find a tree T containing r € T, that spans at least g vertices, and minimizes w(T) =Y c7 w(v).
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Chapter 3

Technology Diffusion on Spiders

Vo

Figure 3.1: A spider graph with 5 legs.

We here focus on the Technology Diffusion problem, defined in the introduction, on spider
graphs. Recall that a spider is a tree in which at most one vertex, vy, (called the root of the spider)
has degree larger than 2. Note that the edges of a spider can be naturally partitioned into a set of
k edge-disjoint paths with the root being one endpoint (see Figure 3.1). We call each such path a
leg of the spider.
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3.1 Connection with Scheduling

( ) found a connection between TD on spiders and a scheduling problem,
called the precedence-constrained single-machine deadline scheduling problem (pDLS). This is
a problem of scheduling a set of n jobs non-preemptively on a single machine. Each job, j, has a
non-negative processing time, weight, and deadline, and a feasible schedule needs to be consis-
tent with chain-like precedence constraints. A job is late if its processing is completed after its
deadline. The goal is to compute a feasible schedule that minimizes the sum of penalties of late
jobs. This problem is NP-hard [ ( )].

r

Precedence-Constrained Single-machine Deadline Scheduling (pDLS)

INPUT : A set [n] :={1,...,n} of jobs that need to be scheduled non-preemptively on
a single machine. Each job, j € [n], has a non-negative deadline, d; € N, a non-negative
processing time, p; € N, as well as a non-negative penalty, w; € N, associated with it. A
schedule pays a penalty of p; if job j is not processed before its deadline, d;. Precedence
constraints on jobs are given implicitly by a directed acyclic graph, G = ([n],E), which
is a collection of ¢ vertex-disjoint paths. Job i has to be processed after job j, where
i,j € [n], if G has a directed i, j -path.

OUTPUT : A feasible schedule that minimizes the total penalty of late jobs, where a
schedule is feasible if it is consistent with precedence constraints, and a job j is late if it is
completed after its deadline d;.

Theorem 3.1.1. ( ( )) pDLS has a O(logq) -approximation algorithm,
where q is the number of distinct job deadlines in the given instance. Furthermore, pDLS is
polynomial time solvable if { is a fixed constant.

As already mentioned, this problem was shown to have a connection with TD. The following
theorem was implicitly stated (without a formal proof) in ( ). We prove it
here.

Theorem 3.1.2. TD in spiders and pDLS with unit processing times and penalties are equivalent
whenever in the TD instance we look for a minimum cardinality seedset that induces a connected
activation sequence starting at the root.

Proof. Given an instance of TD on spider graph, G = (V,E), with V = {vg,v{,v2,...,v,—1 } and
root, vo, we generate a pDLS instance in the following way : create a job for each vertex v €
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(a) pDLS instance (b) Corresponding TD instance

The graph in (a) shows a pDLS instance with 9 jobs. The deadlines are node labels. The edge directions
indicate dependencies, i.e., an edge from a to b indicates that b has to be processed before a. There is no
optimal schedule that does not make at least six nodes late. Consider an optimal schedule that makes the
six pink nodes late.

The corresponding TD instance is shown in (b). The blue nodes are seeds in a connected activation
sequence starting at the root.

Figure 3.2: Converting a pDLS instance into a TD instance.

V\{w}, and let d, =n—0(v) + 1, and p, = w, = 1. Also, create a chain (a directed path) for
each leg of the spider in such a way that the job for vertex, v, has to be processed after all its
descendants in the spider leg.

We can represent feasible solution of both pDLS and TD by a permutation, P, on the set
of nodes, that indicates the order in which the nodes are scheduled or activated, respectively.
Consider the permutation of vertices that induce a connected activation starting at the root, P =
{my,my,..., Wy—1}, where m; = v; for all i € {0,...,n—1}. As it grows outward from the root,
no vertex precedes its descendant(s) in the spider. We can create a schedule, S, for the pDLS
instance by reversing P, i.e., S = {m,_1, ..., }. This schedule is feasible because every node is
processed before its parent. Vice versa, given a permutation S that represents a feasible solution
for pDLS, we can reverse it and add vq as a first node, to obtain a permutation P for TD that
induces a connected activation sequence starting at the root.

A node, v, is defined as a seed when its index (or activation time), i in P, is less than its
threshold, i.e., i < 8(v). In S, this node will have the index i’ =n—i+ 1. A node is late in pDLS
if its index in the schedule is more than its deadline, n — 6(v) + 1. By definition, seeds will be
at an index i’ > n— 6(v) + 1, which is past their deadline in pDLS. This implies that all seeds,
other than the root, correspond to late jobs, and vice versa.

Similarly, consider a pDLS instance, where the precedence constraints are given by directed
paths. We convert this into a TD instance by rooting the chains at a new common node, and
discarding the orientations. This naturally yields a spider (See Figure 3.2). Let the number of
nodes in the spider be n. Each node has a threshold 6(v) =n—d, + 1. The root has threshold set
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as n. Let a node, v, with deadline, d,, be processed late at time, ¢, in a feasible schedule, S. This
gives us d, < t. Reversing S gives us a valid connected activation sequence, P, as every node is
processed before its parent in a chain. A late node, processed at time 7 in S will be activated at
n—t+1inP. Asd, <t,n—d,+1=0(v) >n—t+ 1. This means that late jobs correspond to
seeds (other than the root) in TD, and vice versa. OJ

This result of ( ) shows equivalence only for TD instances that have a
minimum cardinality seedset inducing a connected activation sequence starting at the root of the
spider. However, this is not always the case. Figure 3.3 reports an instance of TD on a path
where the minimum seedset ¥ does not induce a connected activation sequence.

Figure 3.3: A TD instance on a path of 7 nodes.

The node labels indicate the thresholds. The optimal solution requires the activation of the two red nodes
with thresholds 7 as seeds. These nodes will eventually activate the entire path. However, the red nodes
are not connected. Any seedset inducing a connected activation sequence will contain at least 3 seeds.

For this reason, the second result in Theorem 3.1.1 does not immediately carry over to TD.
In particular, the result of Theorem 3.1.1 only shows that finding a minimum cardinality seedset
that induces a connected activation sequence, is polynomial-time solvable for TD on spiders with
a constant number of legs. In the next section, we will show that the problem remains polynomial
time solvable if we remove the restriction of looking for connected activation sequences.

3.2 Dynamic Programming for TD on Weighted Paths and
Spiders

We here consider TD in a more general setting, i.e., on vertex-weighted graphs. A graph G =
(V,E,w) is vertex-weighted if we have a function on the vertices, w:V — R . Here, the objective
of TD is changed from finding the minimum cardinality seedset to activate G. Now, the objective
is to find a minimum weight seedset to activate all vertices in G. Of course, when w, = 1 for all
v € V, we recover our original problem of finding a minimum cardinality seedset.

We will use dynamic programming to solve our problem. Dynamic programming is a pow-
erful technique often used to solve optimization problems. It consists of recursively splitting a
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large problem into smaller subproblems, and using the optimal solution of these smaller subprob-
lems to build the optimal solution for the larger ones. Usually, we want the number of distinct
subproblems to be small, so that it enables us to solve the optimization problem in polynomial
time. Problems like the shortest path, and the longest common subsequence can be solved effi-
ciently using dynamic programming [e.g. see ( )]. In this section, we
use this technique to solve Technology Diffusion on spiders with a constant number of legs in
polynomial time. To make the explanation simpler, we first describe how to solve the problem
on paths, and then extend the result to spiders.

Vi V] Vj
® L L @ @ *—©

Figure 3.5: TD instance on a path.

3.2.1 TD on Weighted Paths

Let us consider a path, P = (V,E), with V = {vy,...,v;} and E = Ujc,_1j{(vi,vi4+1)}. A TD
instance on a path, (P,w, 0), has the following property : if a vertex v; € V is the last vertex
activated in the entire path, and it is activated at time ¢, then the path segments vy,...,v;_1 and
Vi+1,-...,Vy are activated independently of each other before ¢, i.e, no vertex in the first segment
uses a vertex in the second segment to obtain its activation threshold, and vice versa.

This observation gives us a way to decompose our path TD instance into smaller TD in-
stances, which sets up our dynamic programming formulation. Formally, let D[i, j,{] := (w(Y),Y),
where 1 <i <[ < j <n,be a tuple storing the minimum weight seedset, ¥ C {v;,...,v,}, that ac-
tivates the segment v;, ..., vy, ..., v}, and activates v; last, and the sum of the weight of the vertices
in that seedset, w(Y). We use D to refer to a lookup table for all D[i, j,I] tuple values.

Let us take the base case, where the segment of length 1, i.e., is a single node. Clearly, the
node has to be a seed itself to be activated. This gives us

Dli,i,i] = (w(vz-),{w}>

for all i € [n]. Now, let us see what values D[i, j,[] takes for segments of length 2 (edges). Note
that here / can only take either i or j as its value, and j =i+ 1, as P is an edge, (i, j). Consider
the value of D[i, j,i]. This covers the case where v; is activated first, and v; second. Since v; is
activated first, it is a seed. Now, we have either of the two following cases :
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1. Q(Vi) >2
This means that v; cannot be activated by v;, i.e., v; has to be a seed. This gives D[i, j,i] =

(w0) (), vy} ).

2. 9<Vi) =2
This means that v; can be activated by v;. This gives D[i, j,i] = (w(vj), {vj}>.

The value of D[i, j, j] is initialised similarly. For segments of length longer than 2, we use the
observation on the last activated vertices discussed above. First, we need to define an addition
operation on these tuples. Addition of two D tuples, D[i’, j/,I'] and D[i",j",1"] yields a tuple,

containing the sum of weights and union of the seedsets, i.e., if D[/, j',I'] = (w(Y’),Y’ > and

D[i",j" 1" = <W(Y”), Y”> , and we wish to calculate D[/, /', I'| + D[i", j”,1"], we do the follow-
ing computation :

D[i/,j/,l/] —|-D[i//,j//,l,/] — <W(Y/>,Y,> _|_ <W(Y”),YH>

<W(Y’) Fw("),Y'U Y”> .

Furthermore, we let w(D[i, j,1]) := w(Y) for D[i, j,I] = (w(Y),Y). Now, we write D[i, j,[] as

Dli, j,l] = argmin w(D[i,l —1,i'])+ argmin w(D[l+1,,j']) + o (3.1)
D[i,l-1,1], D[I+1,j,/'],
i'cli...—1] JEl+1..))

where o = (w(v;),{w}) if j—i+1 < 0(v;), and (0, ) otherwise. In other words, it indicates
whether we make v; a seed when we activate v; last during activation of segment v;,...,v;,...,v;
or not. If the number of vertices in the segment are less than 6(v;), then v; is a seed.

On the right hand side of the recurrence, the first term finds the value i’ € {i, ..., — 1}, such
that if vy is the last activated vertex in the segment v;,...,v;_i, then the segment v;,...,v;_| is
activated by the seedset with minimum weight. This is done by checking all vertices vy €
{viy...,vi_1}, and selecting vy such that w(D[i,l — 1,i]) is minimized. Similarly, the second
term finds the value j' € {/+1,..., j}, such that if v is the last activated vertex in the segment
Vi+1,..-,Vj, then the segment v, 1,...,v; is activated by the seedset with minimum weight. Note
that the first term in the recurrence vanishes if / = i and the second term vanishes if / = j.

Algorithm 2 defines the method Path_TD, which computes the seedset for a TD instance on
a path using the recurrence in Equation 3.1.
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Algorithm 2 Path TD(P,w, 6)

INPUT: A TD instance, (P,w, 8), with n vertices.

OUTPUT: A lookup table, D, that stores all D[i, j,!] tuple values for 1 <i<I< j<n.

1: foralli € [n] do

2 Dli,i,i]= (w(w%{w})

3: end for

argmin
JE{l+1,.i+j}

4: forallie {2,...,n} do

5: forall je{l,...,n—i}do

6: forall/ € {j,....i+ j} do

7: if | == j then

8: D[j,i+j,l]= argmin w(D[l+1,i+j,j])
D[l+1,i+j,'],
J e+, it )}

9: else if / == i+ j then

10: D[j,i+j,I] = argmin w(D[j,[l—1,i])
D[.jJ_l:i/L
i€lj,nl—1]

11: else

12: D[j,i+j,l] = argmin w(D[j,[—1,i])+
D[.j7l*13iqa
7€[f,l—1]

13: end if

14: ifi+1 < 6(v;) then

15 Dlji+jid)+ = (wim). {u})

16: end if

17: end for

18:  end for

19: end for

20: return D

w(D[l+1,i+j,j'])

Pseudocode for method Path TD(P,w, 0)
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We find values of tuples DJ[i, j, 1] via Algorithm 2. Steps 1 - 3 fill in values for segments with
one node. Clearly, the minimum seedset for such a segment is just the vertex in the segment.
Steps 4-19 fill in values for segments larger than 1. In Step 4, iterator i fixes the size of the
segment. In Step 5, iterator j fixes the leftmost vertex of the segment (making the rightmost
vertex v;; ;). In Step 6, iterator / fixes the last activated vertex, which has an index in the set
{jy-,J+1i}. Steps 7-16 initialize tuple values corresponding to smallest possible seedsets that
activate sub-segments v, ...,v;_1 and v;4 1, ..., v;y j, starting with all the segments of length 2, then
3, and so on. As discussed earlier, this means calculating the tuples { argmin w(D[j,l—1, i’])}

D[jI1—1,{],
7€lj,l—1]

and { argmin ~ w(D[l+ 1,i+ j, j'])} respectively, and adding them. If the length of segment
D[l+1,i+j,j],
J e+, it}
Vi,...,v; 18 less than the threshold of the last activated vertex, v;, then it means that v; needs to be
in the seedseet, because the segment does not contain enough nodes to activate v;. In this case,
Steps 14-16 add (w(v;),v;) to the tuple DIi, j,I], putting v; in the seedset. Step 20 returns the

lookup table of D tuple values associated to each sub-segment in the input path.

Algorithm 3 CalculateSeedset(P, D)

INPUT: A path, P = (vq,....v,) and a lookup table of tuples, D, calculated via the method
Path_TD.
OUTPUT: A tuple containing a positive integer and a subset of vertices in P.

I (w(y),y) — argmin w(D[1,n,1])
D[1,n,l],
1e{1,...,n}

2: return (w(Y),Y>

Pseudocode for method CalculateSeedset(P, D)

Theorem 3.2.1. Algorithm 2 takes O(n’logn) time, and O(n®) space.
Proof. Addition of tuples is assumed to be performed in O(1). The loop in Step 1 takes n

iterations. Step 2 is a constant time assignment operation. This means Steps 1-3 are done in
O(n) time. In Steps 4-6, each of the loops iterators 7, j and [ iterate over values from a subset of

23



{1,...,n}. Finding a minimum weight D[, j, ] tuple associated to a segment of length n takes at
most n comparison operations, as there are n such tuples (the first and last vertices of the path
are fixed, and the last activated vertex can be any vertex in the path). Checking if v; is a seed
and updating the tuple (Steps 14-16) takes one comparison operation, one addition operation,
and one assignment operation. This means Steps 4-19 are done in O(n*) time. Finally, Step
20 returns the lookup table, D, in O(1) time. Hence Algorithm 2 takes O(n*) time in a naive
implementation.

Note that we can use a min-heap [ ( )] to store our D tuple values. If we associate
a min-heap with each segment (v;,...,v;), and use it to store tuples values of D[i, j,], where
le{i,...Jj}, with w(D[i, j,I]) as keys, we can compute the minimum weight seedsets for each
segment in @(1) time by retrieving the value at the root of the heap. Insertion into a heap takes
O(log(j—i+1)) time, as the heap has j—i+ 1 nodes. For a tuple D|[i, j, /], each of i, j and [ take
values from {1,...,n}, giving us a total of O(n) distinct tuples. Thus, we can perform Steps 4-19
in O(n?logn) time, reducing our total runtime to O(n*logn).

The input path has n vertices, and thus, n — 1 edges. Storing the graph as an adjacency list
would take O(n) space. As mentioned above, there are O(n?) distinct tuples. Assuming that each
tuple can be stored in O(1) space, our algorithm takes O(n?) space. O

Theorem 3.2.2. TD on paths can be solved in O(n’logn) time.

Proof. Theorem 3.2.1 shows that we can compute the table D in O(n?logn) time. The computa-
tion of the final seedset is done by the method CalculateSeedset(P, D), which calculates the value
of the tuple
argmin w(D[1,n,1]).
D[l’n7l}7
le{1,...,n}
This requires a ®(1) lookup operation at the root of the min-heap of size n. The result follows.
]

Extension to Cycles

This algorithm is directly applicable to cycles. A cycle, C, just adds an edge, (v,,v1), to the path
vi,va..., vy If v is the last activated vertex in C, and it is activated at time step ¢, it cuts C to form
apath v 1,...,vy,v1,...,vi—1 att — 1. There are n such paths. We can use the Path_TD method on
each of these paths, and thus solve TD on C.
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Extension to Trees

Clearly, there is a simple extension of this dynamic programming algorithm to trees. Consider
atree, T = (V,E), with n nodes. A TD instance on T would have the following property : if
a vertex v € V is activated last in 7, then all the trees in the forest induced in 7 by V — {v},
T[V — {v}], will be activated independently of each other.

The total number of subtrees in a tree is not necessarily a polynomial in n [ ( ),

( ), ( )]. In our algorithm, we need an entry for

every node in every connected subgraph of the the input graph. This means that our lookup table
can have non-polynomial size. Hence, this approach is not suitable for all trees.

However, spiders with a constant number of legs have a polynomial number of subtrees, as
we will show later. We use this fact to design an algorithm to solve TD on weighted spiders with
a constant number of legs next.

3.2.2 Extension to Weighted Spiders

Here, we formulate a dynamic program for TD in the case where the input graph is a spider
graph. We represent a spider with n nodes as S[B4, ..., Br] = (V,E) with ¢ < n legs, which are
indexed by [¢]. The parameter ¢ is a constant, positive integer. The leg lengths are denoted by
a set of £ non-negative integers, {Bi,...., B;}. Note that Y*_, B; = n— 1. A vertex is represented
as v; 4, and the subscript indicates that it is the i vertex from the root in the leg with index a,

a € {1,....,£}. The root of the spider is denoted by vy o (See Figure 3.6).

Each leg is represented by the path (V,, E,) for all a € [¢]. The vertex set of each spider leg
is given by V, := {vi 4,...,vp, o) for all legs a € [{]. The edge set of each spider leg is given by
Eq:={(vVja;Vj+1,a) | J € [Ba— 1]} for all legs a € [¢]. Note that the vertex set is the union of the
root vertex and the vertices of the legs, i.e., V. = {voo} UV UV, U...UV,. The edge set of the
spider is given by E = E1 U...UE,U{(v0,0,V1,1)---»(v0,0,v1,¢) }. We have weights on the vertices
assigned by the function, w: V — R, and a threshold function 6 : V — {2,...,n}. We also use
the notation 6(i,a) to represent 8 (v; ) forall v;, € V.

Let D[S[Bi, ..., B¢], i, j] :== (w(Y), ¥) be a tuple containing the minimum weight seedset, Y,
that fully activates the spider, S[Bi, ...., B¢], such that it activates the vertex v; ; € S[Bi, ...., Bf] last,
and the weight of that seedset, w(Y). Furthermore, we define w(DI[S[Bi,...., B¢, i, j]) := w(Y).
We will use the notation D[S, i, j] where the list of leg lengths is clear from context.

Also, for any path, P, of the form (viq,Vit1a;s---Vka), With 1 <i <k < B,, and any c €
{i,...,k}, we let the tuple D[(vig,Vit1,a;--Vka), ¢, a] = (w(¥Y'),Y’) contain the minimum weight
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Figure 3.6: A spider graph with 5 legs.

seedset, Y’, that activates P, such that Ve 18 the last activated vertex, and the weight of that
seedset, w(Y”). Furthermore, we define w(D[(Via,Vit1,a;---sVka),C,a]) = w(Y'). Again, we will
use the notation D[P, ¢, a] instead of D[(via,Vit1.4;---, Vka), C; @] Where the path vertex indices are
clear from context. Recall that this tuple can be computed with a Path_ TD method call, with P
as mput.

We define the following operations on the tuples.

1. Addition of D tuple values: This yields a tuple containing the sum of weights, and union
of the seedsets, i.e., if D[S',i,d'] = (W(Y’),Y’) and D[S",i",d"] = (w(Y”),Y”), and we

wish to calculate D[S',7',d’| + D[S",i" ,a"], we do the following computation :
D[S/7i/,a,:| +D[S//,i”,a”] — <W<Y’),Y/> _|_ <W(Y”),Y”>
- (w(Y’) Tw(¥"),Y'U Y”) .
2. a(S,i,a) : When i and a are non-negative integers such that v; , € V, this operation returns
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Algorithm 4 Spiders(S, k)

INPUT: A spider, S[Bi, ..., B¢] = (V,E), and a positive integer k < |V|.
OUTPUT: Connected subgraphs of S which have exactly k nodes, and contain the root vertex.

I: R=g

2: if k == 1 then

3% R={({v0},2)}
4: else

5. R = Spiders(S,k—1)

6: forall S'[by,...,b)] €R do

7: forall a € [/] do

8: R=RU{Join(S",b,+ 1,a)}
9: end for

10:  end for

11: end if

12: return R

Pseudocode for Spiders(S, k).
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atuple (w(Y),Y), where Y is set as {v; .} with w(Y) = w(v; ), if the number of vertices in
the spider S is less than the threshold of v; 4, and (&, 0) otherwise.

3. Split(S[Bi,..., Bel,i,a) : When i and a are positive integers such that i < f3,, a € [¢], this
operation returns a spider, S[By,..., Ba — (Ba—i+1),..., B¢ = S[B1, ...,i — 1, ..., B¢]. In other
words, it cuts off the leg segment v; 4, ...,vg, , from the input spider, S.

4. Join(S[Bi, ..., Bel,i,a) : When i and a are positive integers such that i = B, + 1, a € [¢], this
operation returns a spider, S[Bi,..., s+ 1,..., B¢]. In other words, it adds the vertex v; , to
the spider, S.

5. Spiders(S,k) : When k is a positive integer such that k < |V, this operation returns the set
of connected subgraphs of S which have exactly k nodes, and contain the root vertex.

The next four lemmas show that each of these operations can be performed in polynomial
time.

Proposition 3.2.3. The operation o(S,i,a) takes constant running time.

Proof. This operation requires just checking the condition 6 (i,a) > |V|, which is assumed to be
computable in constant time. [

Proposition 3.2.4. The algorithm for Join(S[Bi, ..., Bl,i,a) takes constant running time.

Proof. This operation requires adding a vertex and an edge to the sets V and E. Assuming that
the set of vertices and the set of edges in each leg are stored as a separate linked list, this would
require constant time. [

Proposition 3.2.5. The algorithm for Split(S[B1, ..., Be],i,a) takes O(n) running time.

Proof. This operation requires deleting at most n — 1 vertices and at most n — 1 edges. Since all
vertices in S have at most ¢ edges incident on them, this operation will require O(n) time. [

Proposition 3.2.6. The algorithm for Spiders(S, k) takes O(n") running time.

Proof. This operation requires arranging k — 1 vertices into at most ¢ legs such that they form a

connected spider graph. As the legs are distinct, there are (kféjffl) such arrangements.

Algorithm 4 gives the pseudocode to compute them. It starts with a root vertex (Steps 2-3),
and adds one vertex at a time. There are ¢ legs to which this new vertex can be added. So, we do
Join operations considering all ¢ arrangements, yielding ¢ distinct spiders. The next new vertex is
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added to each of these ¢ spiders. This is done recursively until all spiders created have k vertices
(Steps 4-11).

Addition of the i vertex is done iteratively on (’M 2) spiders, for all of their ¢ legs. Thus,
the running time of the algorithm, 7'(k), is given by

T(k):1+£-i<i;£_2)
<14¢- Z (HE 2)

n+0-2
< 7.
<l1+4/{-n ( /1 )
n+¢-2
)

zo(g.n. 1

=0((-n')
=0(n").

As / is a constant, running time is polynomial in 7. 0

To calculate the minimum cardinality seedset of a spider we observe two things:

1. If the last activated vertex is v; , 7 vo,0, then the spider can be seen as split into a smaller
spider, S[B1,....;Ba — (Ba —i+1),..., B¢], and a leg segment (viy14,.-.,Vp, 4)> Which are
activated independently of each other. As the leg segment is a path, and is activated in-
dependently of the all other vertices outside the segment, we can calculate the minimum
cardinality seedset to activate it with Equation 3.1.

2. If the last activated vertex is the root, we can calculate minimum cardinality seedsets for
each of the ¢ legs using Equation 3.1. This can be computed in polynomial time, specif-
ically, £- O(n*logn) = O(n*logn). The minimum seedset required to activate the entire
spider will be the union of the minimum seedsets to activate each of the ¢ legs, and the
result of ¢ (S,0,0), where the latter decides if the root has to be in the seedset.

In Algorithm 5, we use the observations above to calculate the tuple values for the connected
subgraphs of a spider. We start with an empty tuple lookup table, D, in Step 1. Steps 2-8
iterate over all legs (we define the legs as starting with the root vertex for the purposes of this
algorithm), and call the method Path TD(P,,w, ) on each leg, P,, where a € [¢]. This method
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Algorithm 5 Spider TD(S[By, ..., Be],w, 0)

INPUT: A TD instance on a spider, (S[Bi, ..., Be], w, 0), with n vertices.
OUTPUT: A lookup table of tuples, D.

10:
11:
12:

13:
14:
15:

16:

17:

18:

19:
20:

21:

A A ol e

D—o
for all a € [(] do
Pyi= (VO,Ovvl,aaVZ,aa ---vvﬁa,a)
D, = Path TD(P,,w,0)
for all D,[i, j,I] € D, do
D[(Vig,---sVja),l,a] = Dgli, j,1]
end for
end for

D[S0, ...,0],0,0] = (W(VO,O), {vo,o}>

forall k € [n—1] do
for all S'(b), ..., b;] € Spiders(S[B1, ..., B¢, k) do
for all b'; € {b},....b;} do

if '; < f3; then
ZA?j :b/J~+1
S'[El, ...,]A?g] = JOin(S/[bll,...,bZ],gj,j)

for all v;, Sdo

if i==5b; AND a == j then
D[S‘,l;j,j] = argmin w(D[Y,¢,d]) + a(S’,l;j,j)
D[S c,d],
Vc,dES/
else if i == 0 AND a == 0 then
Pd = (V17d, "’7vl3d,d) Vd € [E]
D[$,0,00= Y (argmin W(D[Fd,c,d])) +a($,0,0)

de[ﬂ] D[decid}v
Vc,dGPd

Pseudocode for method Spider_ TD(S[4, ..., B¢],w, 0).
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Algorithm 5 Spider TD(S[By, ..., Be], w, 0) (continued)

22: else

23: S[b1,...,bs] = Split(S,i,a)

24: P:= (viﬂLl:a""’VlA?a,a)

25: DIS,i,a] = argmin w(D[S, c,d]) 4 argmin w(D[P, c,d]) + &(S, i,a)
D[S,c,dj7 D[P,c,g].,

Ve d €S Vea€P

26: end if

27: end for

28: end if

29: end for

30: end for

31: end for

32: return D

Pseudocode for method Spider_TD(S[f4, ..., B¢], w, 6) (continued).
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returns a tuple lookup table for each leg, D,. We update D by putting the value of tuple D,][i, j,!]
in D[(Viga,-.,Vja),l,a]. Thus, we can get the minimum weight seedsets of all connected sub-
segments in each leg from D.

In Step 9, we initialise the tuple value for a spider containing just the root vertex. Steps
10-30 solve TD on connected subgraphs of S that contain the root vertex, increasing the size
of the subgraphs by one vertex with every increment in the iterator, k. In Step 11, the iterator
S'[bY, ..., b} iterates over all spiders with k vertices, where the set of these spiders is obtained by
using the Spiders(S, k) operation. In Step 12, the iterator b;- iterates over the set of leg lengths of
S'[b},....by]. If b, < B, which is the length of the 7" leg of the input spider, S, we add one vertex
to the j' leg of ', using the Join operation in Step 14, creating the spider S. Now, we need to
calculate D[S, i,a] for all Via € S. As in the case of paths (Theorem 3.2.1), we store D[S, i,dl
tuple values in a min-heap, where the keys are the w(D[S,i,a]) values. Every distinct spider is
assigned its own separate min-heap, and it stores D[§, i,a] values for all v; , € S.

The following lemma shows that each tuple D[S, i,a] can be computed in polynomial time.

Lemma 3.2.7. We need O(k) operations each to compute D[S, i, a] for all Via € S, where S has k
vertices, i.e., Steps (17-26) of Algorithm 5 can be computed in O(k) time.

Proof. There are three possible cases which occur when a vertex, v; 2 is joined to spider S’ to
Jo

form spider S, which has k vertices. Now, we want to compute D[S, i,a].

1. If the last activated vertex, v; , is the same as the newly added vertex, Vi, jo then to obtain

the minimum seedset required to activate the spider S, we sum the tuple value correspond-
ing to the minimum seedset required to activate S’, and a(S, b}, j) where the latter decides
if the new vertex has to be in the seedset (Steps 17-18).

The minimum seedset can be found by looking at the root of the tuple min-heap associated
to S’. This is a constant time operation. Insertion into the min-heap can be done in O(logk)
operations, as the number of vertices in S is k. As addition and computation of (x(ﬁ,l; i J)
takes constant time (Proposition 3.2.3), this case requires O(logk) time.

2. If the last activated vertex is the root, we can calculate minimum cardinality seedsets for
each of the ¢ legs of S using Equation 3.1. The minimum seedset required to activate
the spider S will be the union of the minimum seedsets to activate each of the ¢ legs and
the result of a(S$,0,0), where the latter decides if the root has to be in the seedset (Steps
19-21).
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Again, the minimum seedset that activates a path, P;, can be found by looking at the
root of the tuple min-heap associated to P;. This is a constant time operation, repeated
for £ = O(1) times. Insertion into the min-heap can be done in O(logk) operations, as the
number of vertices in S is k, and that is the upper bound on vertices in P,;. Hence, the union
of the minimum seedsets to activate each of the ¢ legs can be done in O(¢+logk) operations
and ¢ addition operations. Two additional constant time operations for computing and
addition of the result of ¢(S,0,0) are required. Thus, this case requires O(logk) (/ is a
constant) time.

3. Else, S can be seen as split into a smaller spider, S[b1,...,by] and a leg segment P =
(Vit1,a»-->VB,.q)> Which are activated independently of each other (as v; 4 is activated last).
Note that we have calculated tuple values both for S (as it has fewer vertices than S and
would have been considered in a previous iteration of the algorithm), and P (as we calculate
tuples for all sub-segments in a leg) (Steps 22-25).

This requires comparing all tuple values associated to S and P respectively to compute min-
imum seedsets to activate S and P. As S and P combined have k — 1 vertices by construc-
tion, the minimum seedset is calculated in O(1) operations, and insertion of the DI[S,i,d]
tuple into the min-heap for S takes O(logk) operations. There are 3 addition operations,
and two method calls to a(S,i,a) and Split. These methods have been shown to have con-
stant, and O(k) run times respectively ((Proposition 3.2.3) and (Proposition 3.2.5)). Thus,
this case takes O(k) operations.

Theorem 3.2.8. Algorithm 5 takes O(n'*?) running time.

Proof. Steps 1-8 make £ calls to the Path_TD method, which take O(n>logn) time each, as shown
in Theorem 3.2.1. Thus ¢ calls will take O(¢-n*logn) = O(n*logn). Steps 12-30 compute
tuples for all connected subgraphs of S that contain the root. Join operations were shown to
be performed in constant time (Proposition 3.2.4). As discussed above, a tuple, D[S ,i,al, can be
either of three types. Computation of each tuple, D[§ ,1,al, is dependant on the number of vertices
in S. As discussed earlier, for k vertices, there are (kzﬁz) distinct spiders with ¢ legs. Each of
these spiders have k associated tuples, one for each vertex fixed as the last activated vertex. Thus,

time to compute all tuples, 7(S), is given by
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Thus, the total running time is given by O(nlogn) + O(n'*?) = O(n'*?) (assuming £ >
. 0

Algorithm 6 CalculateSeedsetSpider(S, D)

INPUT: A spider, S and a lookup table of tuples, D, calculated via the method Spider_TD.
OUTPUT: A tuple containing a positive integer and a subset of vertices in S.

1: (w(Y),Y) = argmin w(D[S,i,a))
DIS.i.al,
WﬂES

2: return (w(Y), Y>

Pseudocode for CalculateSeedsetSpider(S, D)

Theorem 3.2.9. TD on a spider with { legs can be solved in O(n'+?) time.

Proof. Theorem 3.2.8 shows that we can compute the tuple lookup table D in O(n”z) time.
The computation of the final seedset is done by the method CalculateSeedsetSpider(S, D), which
calculates
(w(Y),Y) = argmin w(DIS,i,a])

D[SviaaL

Via€S
. This requires a ®(1) lookup operation at the root of the min-heap associated with S. The result
follows. [
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Chapter 4

Polyhedral Characterization for Dynamic
Programming Models on TD

Although we have a dynamic program to solve TD on paths and spiders in polynomial time, it
is worthwhile to transfer this result to derive a polyhedral characterization of TD on paths and
spiders.

In particular, we want to give a linear program whose optimal solutions can be mapped onto

optimal solutions to our TD instance. For this purpose, we use the directed decision hypergraph
paradigm in ( ).

4.1 The Paradigm

Let us first formally introduce the notions of a directed hypergraph.

Definition 4.1.1 ( ( )). A directed hypergraph is a pair, H = (S,A), where S
is a set of vertices (called states), and A is a set of hyperarcs. Each hyperarc is an ordered pair
(H,t), from a non-empty set of states (called the head set), H C S, to a node, t € S, called the tail
node.

( ) model dynamic programming algorithms as flows in a simple directed
hypergraph, H = (SU{@},A). The finite set of states, SU{@}, represents the vertices of the
hypergraph. S represents solutions to intermediate phases (corresponding to subproblems in
the dynamic program) of the problem. The null state & represents the empty solution. The
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set of directed hyperarcs is denoted by A. A hyperarc has the form (H,t), where head states
he€ HC SU{@} are combined to obtain the tail state t € S. Hyperarcs represent decisions
taken to combine solutions to a set of subproblems to arrive to a solution of a larger problem.
A complete final solution corresponds to one unit of flow in H from & to a final, global state,
denoted by o € S. The hypergraph is required to have the following properties.

1. Acyclic Property : The hypergraph is acyclic, i.e., there exists an integer-valued function,
o, on the set S that defines a total order on S. Formally,

c:S—{1,2,...,|S|}

such that
o(h) < o(t)forall (H,t) € A;h € H. 4.1)

2. Every state s € S has at least one incoming arc. With Equation 4.1, this means that we have
hyperarcs (H,t) € A such that H = &, for some ¢ € S.

3. The hypergraph, H, has a finite reference set, R, associated with it. Each state s € S is
associated with a non-empty reference subset, R[s] C R. These subsets need to satisfy the
following properties -

(a) Consistency Property : A partial order on elements contained in each reference subset
that is consistent with the ordering o on S. Formally,

R[h] CRt] forall (H,t) € A;he H. 4.2)

We require that ¢ has R[o| = R.

(b) Disjointness Property : Reference subsets of different heads of the same hyperarc
have to be disjoint, i.e.,

R[h|NR[hy]| =@ forall (H,t) € A; hy,hy € H; hy # hy. 4.3)

For a hyperarc (H,t) € A, where h; and h; are distinct elements in the head set H,
the intersection of the reference sets R[A;] and R[h;] is null (not to be confused with
the null state).

4. Every arc (H,t) € A has a non-negative cost associated with it, denoted by c[H ,1].
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4.2 Polyhedral Characterization

Consider a general instance, H, of the hypergraph model described above. Let OPTy denote a
set of hyperarcs representing the set of optimal decisions. We define a variable, z, s.t.

H 1] = 1 if (H,t) € OPTy
SLH = 0 otherwise

for all hyperarcs (H,t) € A. The following linear program models the problem of finding a
minimum cost flow of value 1 from the null state to the final state in H.

min Z c[H,t]-z|H,1]
(H,p)eA
S.t.
Y zH,0]=1.
(H,0)eh (PRIMAL)
forallyeS—{o} Y z[H,n]- ) Z[H, 1] =0
(Ht)eA (H,tp)eA withtyeH
forall (H,t) € A z[H,t] >0

The objective function states that we need a set of hyperarcs of minimum cost. The first
constraint represents the fact that exactly one hyperarc will lead to the optimal solution. The
second constraint represents a flow constraint requirement. We use the fact that if a state, #1, is
in the optimal solution, then it has an incoming hyperarc with z value 1. We consider this to be
incoming flow of 1 unit. Flow conservation is ensured by requiring that such a state must also
send that one unit of flow out, on arcs of the form (H,t,;) € A, where t, € S. The final constraint
imposes a non-negativity constraint on z values.

( ) showed that these three constraints are enough to ensure the existence
of an optimal binary solution vector to the above linear program. We now report the proof for
completeness.

To prove this claim, we first take the dual of the above linear program. The dual multiplier
for the first constraint is u[¢], and u[h] is the dual multiplier for the & (/)" row of the second
constraint, where 4 € S — { ¢ }. The dual linear program is given below.
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max ulo]
S.t.

forall (H,¢) € A ulo] — Y. ulh] < c[H, o] (DUAL)
heH

forall (H,t) € A, t # o ult]— Z ulh] < c[H,1]
heH, h#o

Feasible solutions to DUAL and PRIMAL are constructed as in Algorithm 7 and 8 respec-
tively.

Algorithm 7 DUAL Construction

INPUT: A hypergraph, H = (SU{@},A), and a cost function, ¢ : A — R
OUTPUT: A feasible solution for DUAL for H.

I: forallie 1,...,|S| do
2:  Lett € Sbe such that o(t) = 1.

33 u*[t]« min {c[H,t]+ u*h] }
(H,p)eA heH,Z;’z;é@

4: end for

5: return u*

Pseudocode for constructing a solution to DUAL.

Algorithm 7 computes dual multipliers for each row of the second and the third constraints
of PRIMAL.

Algorithm 8 computes a solution to PRIMAL, z*. We fist set all the z variables to O (Steps
1-3). Then, we associate a set Hy, and a state 5 € Hy in that set with each depth §. At depth
0 = 0, these are set as {-0} and o respectively (Steps 4-5). When the selected state i} € Hj is
processed, we select a hyperarc (Hg Y hg) such that

w[h5) = c[Hy, |, h5] + Z u* [h] 4.4)

heHs

38



and increment the corresponding z*[H Y hs] value and the depth (Steps 6-12). When there are
no more elements remaining in the set H5 for any depth §, the algorithm returns to Step 6 process
Hjs | (Steps 13-16).

Theorem 4.2.1 ( ( ). The solutions 7* and u* generated by the primal and
dual construction algorithms, Algorithm 8 and Algorithm 7 respectively, are optimal in their
respective problems, and 7" is integral.

Proof. First, we prove that z* and u* constructed by primal and dual construction algorithms are
feasible.

Consider DUAL. Steps 1-4 in Algorithm 7 are restatements of constraints of DUAL. The
initialization of u*[¢] in Step 3 is valid, because there is at least one incoming arc for all states
t € S. Also, the acyclic ordering will ensure that the first state, will have arcs with null heads, i.e.,
H = @ forall (H,t) € A and o(t) = 1. Thus, the initialization of u*[1] will be dual feasible. As
the next states in the ordering use u* values of states with o values lower than theirs, inductively,
all u™ values are dual feasible, and thus u™* is a feasible solution to DUAL.

Now consider the PRIMAL. The initialization of Hg_ , in Step 9 such that

w'lhy) = c[Hy, b5+ ) u'[h) (4.4)

heHs

is valid because there exists a Hg  ; which achieves the minimum in Step 3 of Algorithm 7, and
we have proved above that Algorithm 7 generates a feasible solution to DUAL.

A solution that is primal feasible should satisfy the flow constraints of PRIMAL. Initialization
of Hj as {-o} ensures that exactly one hyperarc with tail as o, (H,¢) € A, sets z*[H, o] =1,
which is the first primal constraint. Each z*[H,¢] incremented by 1 in Step 10 has its head, H, set
as H; 1 which is in the next depth, in Step 11. This ensures the that all states # € H maintain
flow conservation. This satisfies the second primal constraint, by ensuring the flow balance at all
depths. We have showed above that such a Hg , can always be found. Equality in Equation 4.4
ensures that the primal and dual construction algorithms return solutions, z* and u*, that satisfy

complementary slackness conditions.

Now, we look at integrality. The primal solution, z*, will always be a vector of positive
integers, because all elements in z* are initialized to 0, and incremented by 1 in Step 2 and 10
respectively in Algorithm 8. No other increments or decrements take place.

]

Having proved integrality and feasibility, we now prove that the hypergraph characterization
solves our original optimization problem.
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Algorithm 8 PRIMAL Construction

INPUT: A hypergraph, H = (SU{@},A), a cost function, ¢ : A — R and a feasible solution
to DUAL for H.
OUTPUT: A feasible solution for PRIMAL for H.

—

: forall (H,1) € Ado

22 '[H,t] +0

3: end for

4: §+0

5: Hy < {0}

6: while H is not empty and Hy # {<} do

7. Pick hj € Hy

8:  Update Hy <— H\hj

9:  Pick Hj 1 such that

w*[hg] = c[H, 5]+ Y, u'[A]

heHy

10 Z'[Hj,,,hy| 2" [Hg, |, h5]+1

1: 8§+ d0+1

12: end while

13: if 6 > 0 then

14: 6+ 6-1
15:  Return to Step 6
16: end if

17: return z*

Pseudocode for constructing a solution to PRIMAL.
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Theorem 4.2.2 ( ( )). The polytope given by the constraints of PRIMAL has
extreme points as binary vectors.

Proof. Theorem 4.2.1 shows that Algorithm 8 gives an integer optimal solution for every cost
function, implying that each extreme point of the feasible region is an integral vector. If Step 7

does not pick the same state twice, then no z[H:; H,hg] 1s incremented twice, and the solution

would be binary, and correspond to a flow of one unit from the @ state to o.

Let us assume that a state is picked twice. This occurs when the sequence of tail sets and states
processed by Algorithm 8 has two sub-sequences of tail sets and states, s1 = hy, Hy, hi, Hf ..., I

and s, = h, Hy,hi, HY, ...,h}",Hl*E;,ﬁ:;, ...,E; These sub-sequences first diverge at some depth

P, by using different tail states, E; # h},, and merge again, causing a repeated tail state, l_zfg/ = hy.

Using the consistency property of the paradigm, we have
Rlhs] © Rlhs_,] ... C Rlhp 1] C RlAp]

and 3 B B 3
R[h(g/] - R[h(s/_l] C..C R[hp+1] C R[hp].

We know that 75 = Is, which gives us Rlhg] =R [i5]. Since the reference sets are non empty,
we use the two equations above to get

R[h3] = R[hg) C R[] NR[).

This is in violation of the disjointness property, as the states h;’; ,E; € H;;, have intersecting refer-
ence sets. 0

4.3 LP formulation for TD on Paths

We go back to technology diffusion on a path, P = (V,E), with V = {vy,...,v, } and E = U1 { (vi, vit1) }-
Let us look at our dynamic programming formulation again.

Dli, j,I] = argmin w(D[i,l —1,i'])+ argmin w(D[l+1,j,j']) + o (3.1)
D[ialflvi,]v D[l+17Ja]/]7
i'cli...—1] JE[l+1...))

where ;j; = (w(v;),{vi})if j—i+1 < 0(v;), and (0,0) otherwise. We represent it in the hy-
pergraph paradigm as follows. Let our hypergraph instance be H, = (S, U{@},A ). We define
the properties of H,, below.
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1. The set of states has a state for all entries required in Equation 3.1, i.e., every DJi, j, /] for
1 <i <1< j<n. Additionally, it has a global node to represent the optimal solution, ¢,
1.e.,

Sp={@,j,1):1<i<I<j<n}U{op}.

2. The set of arcs is in the form of (H,t) such that H is the set of path fragments needed to
form path fragment ¢. If t = (i, j, /), which corresponds to the path fragment (v;,...,v;) in
P, H is the set of states that correspond to path fragments (v;,...,v;—1) and (vi11,...,v;),
ie., (i,l—1,q)and (I+1,j,q'), where 1 <i<qg<l<q <j<n.Ifl=i, the first fragment
does not exist. If [ = j, the second fragment does not exist. In such cases, H contains one
state, corresponding to the existing fragment. If r = (i,i,i), then H = {&}, as single node
fragments cannot be composed of smaller fragments. If = ¢, then the set H corresponds
to states representing the entire path, (vy,...,vy,),i.e., H={(1,n,1)}, where 1 <[ <n.

by ={(H1): H={(i.1=1.),(+1,.q)}, 1= (ij,). 1Si<g<l<q < j<n]
{0 H={j— L)} 1=(ijj), 1Si<q<j<n]
{ 1 :H={<i+1,j,q)},t=<i,j,i),1§i<q§jgn}

{

U
U
U
u{ ) H={(nD} t =0, 1gzgn}.

(H,1)
(H,1)
(H,0):H = {2}, t = (i,i,i), 1§i§n}
(H,1)

Note that the global state, ¢, has no outgoing arc.

3. We sort the states into buckets corresponding to the size of the fragments they represent.
We begin assigning an order in ascending order of the fragment size, which is given by the
difference between the second and the first coordinate of a state plus 1. In each bucket, we
can pick any ordering on the states, op : S, — R, such that op obeys the lexicographic
ordering of the state coordinates, with 6,(-¢) as the largest value. Formally,

GP(iajvl) < GP(i/7j/7l)
if
(@ j—i<j —1i, or,

(b) j—i=j —iandi<{, or,
() j—i=j—i,i=i, j=j,andl <.
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The buckets will ensure that smaller fragments have smaller 6p values, thus ensuring that
sub-fragments used to make larger fragments will obey the acyclic property.

4. We define the reference subset of a state, s € S, as the set of vertices in the fragment it

represents.
= ) e
{i,....j} ifs=(i},])
As the head of each arc contains states representing disjoint fragments, we have the dis-

jointness property. As the tail state represents a fragment joining these head fragments, we
get consistency.

5. The cost of a hyperarc represents whether the last activated vertex in the tail fragment, i.e.,
last coordinate of the tail state, was a seed or not. Arcs incoming to the global state have
no cost.

w(v) ifr=(i,j,/)and j—i+1<6(v)
iftr=(i,j,l)and j—i+1>6(v)

iftr=-o,

cp(H,t)=40
0

This function ensures that the hyperarcs used to build the solution have a combined cost
equal to the weight of the seeds used in the solution.

We have the following lemmas about the size of the hypergraph, H,.

Lemma 4.3.1. H,, has O(n®) states.

Proof. There is one state to represent the optimal solution, and one to represent the null state.
All other states have the form (i, j, 1), where 1 <i <[ < j < n. Thus, there are O(n>) such states.
This is the same as the number of tuple entries required for our dynamic program for TD on
paths. [

Lemma 4.3.2. H,, has O(n’) hyperarcs.
Proof. Let a hyperarc, (H,t). We have the following cases:

1. The tail state is # = (i, j,I) such that i # [ # j.
There are O(n*) such states.We know that the head states are the set H = {(i,] —1,q), (I +
1,j,4))}, where 1 <i<g<I<q <j<n. There are [ —i states of the form (i,/ —1,q)
and j — I states of the form (I+ 1, j,¢'). Thus there are (I —i) - (j — ) < n® possibilities for
H. This case will contribute O(n?) - n> = O(n’) arcs.
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2. The tail state is r = (i, j,1) such that i = [.
There are O(n?) such states. We know that the head states are the set H = {(i+ 1, j,q)},
where 1 <i < ¢ < j<n. There are (j — i) states of the form (i+ 1, j,q). Thus, there are
j—i < n possibilities for H. This case contributes O(n?) -n = O(n?) arcs.

3. The tail state is t = (i, j,/) such that j = [.
There are O(n?) such states. We know that the head states are the set H = {(i,j — 1,q)},
where 1 <i < g < j<n. There are j —i states of the form (i, j — 1,g). Thus, there are
j—i < n possibilities for H. This case contributes O(n?) -n = O(n?) arcs.

4. The tail state is t = (i,1,1).
There are n such states. In this cases, the head state is &.

5. The tail is 0. The head set is H = {(1,n,1)} where 1 <1 < n. There are n possibilities
for H. This case will contribute n hyperarcs.

Thus, there are O(n°) hyperarcs in H,. O

The construction of H, also gives us the following:

Theorem 4.3.3. Let (P,w, 0) be an instance of TD on a path, P, and (H,,c,) the corresponding
weighted hypergraph. Then the cost of an optimal solution to our TD instance is equal to the
optimal value of PRIMAL for (H,,c}).

Proof. The solution to PRIMAL, z*, gives a sequence of hyperarcs, m = (Hy,t1), (Hz,12)..., (Hp,tp)
in H,, where H; = {@} and t, = ¢, and z|H;,#;] = 1 for all i € [p]. Let us see what the tail states
in the hyperarcs in m represent in our TD instance.

For every hyperarc (H,t) € m, we consider the tail state r = (i, j,/). In our TD instance, we
construct a solution by activating state v; at time step j — i+ 1, as the state represents a fragment
(Vi,...;v1,...,vj) Where v; is activated last. Every arc has a cost, ¢,(H,t). In our TD solution, we
pay a cost of w(v;) for activation of v; if the fragment size, j — i+ 1, is less than the threshold
value of v;, 6(v;), because that means that v; is not connected to enough active nodes to be
activated, and has to be activated as a seed. If j —i+ 1 > 0(v;) then v; can be activated without
being set as a seed, and hence we pay no cost. Thus, the cost of our solution is equal to the cost
of m.

Let us take a solution, (w(Y),Y), of a TD instance returned by Algorithm 3. Each solution
is built up of tuples associated with subgraphs in P. Note that all entries in the lookup table,
D, used to build the solution output by this algorithm can be mapped to states in H,, because
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all entries have a corresponding state in [H,,. Moreover, these states together form a sequence
of hyperarcs, n’, in H,, because the entry D[i, j,{] for each segment (corresponding to a tail
state, (i, j,)) in D is calculated using entries of smaller segments, D[i,] — 1,¢] and D[l + 1,i,4']
(corresponding to the head set, {(i,/ —1,q),(I+1,j,4")}, where | <i<g<l<q <j<n)
that combine to form the segment, (v;,...,vs,...,v;). To complete m’ as a solution, we also add
the hyperarcs ({@}, (i,i,i)) and ({(1,n,[)},0p) to m’, where we have used the tuples D[i,,i]
and Dli,n,l] to form the (w(Y),Y). For every tuple DJi, j,] used to calculate Y, v; is added to
Y if j—i+ 1< 0(v). The cost of m' is incremented by w(v;) if m’ includes a state (i, j,/) and
j—i+1<8(v). This makes the cost of m’ same as that of Y. O

An example hypergraph construction for a TD instance on a path of three nodes is given
below.

4.3.1 Example

Consider a TD instance on a path of 3 nodes, shown in Figure 4.1. All nodes have weights as
1, and the thresholds are {6(v{) = 3,0(v2) =2,0(v3) = 3}. We build the hypergraph H, =
(Spu{@},A,) as follows (See Figure 4.3).

Figure 4.1: A TD instance on a path of three nodes.

Clearly, if v3 is set as a seed, the path is fully activated.

S, ={(1,1,1),(2,2,2),(3,3,3),
(1,2,1)(1,2,2),(2,3,2),(2,3,3),
(1,3,1)(1,3,2),(1,3,3), 0}
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We give the arc costs in Table 4.1, and the dual variables set according to Algorithm 7 in
Table 4.2.

4.4 LP formulation for TD on Spiders

Here, we formulate a dynamic program for TD in the case where the input graph is a spider
S[B1, .-, Be] = (V,E) with n nodes, and ¢ < n legs, which are indexed by [¢], where £ is a constant
positive integer. Recall that the leg lengths are denoted by a set of ¢ non-negative integers,
{Bi,....,Br}. A vertex is represented as v; ,, and the subscript indicates that it is the i vertex
from the root in the leg with index a, a € {1,...,£}. The root of the spider is denoted by vy o.

Each leg is represented by the path (V,,E,) for all a € [¢]. The vertex set of each spider leg
is given by V,; := {v1,4,...,vp, o for all legs a € [{]. The edge set of each spider leg is given by
Ey:={(Vja,Vjt1.a) | ] € [Ba— 1]} for all legs a € [¢]. Note that the vertex set is the union of the
root vertex and the vertices of the legs, i.e., V = {Vo,o} UViuVaU...UV,. The edge set of the
spider is given by E = E1U... UE,U{(v0,0,V1,1)---»(v0,0,v1,¢) }. We have weights on the vertices
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: @? o>

Figure 4.3: Example for Figure 4.1.

The yellow states and bold hyperarcs indicate the solution to the TD instance. The seedset is given by the
last activated nodes in the tails of hyperarcs in the solution which have non-zero cost. In this instance, the
seedset is {v3}.
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Table 4.1: Arc Costs for Figure 4.3.
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Table 4.2: Dual Variables for Figure 4.3.
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assigned by the function w : V — R, and a threshold function 6 : V — {2,..,n}. We use the
notation 6(i,a) to represent 6(v;,) for all v;, € V. Let a path, (v 4,...,v; ), be represented by
Pli, j,a].

We map our dynamic programming model on a TD instance on a spider in the hypergraph
paradigm as follows. Let our hypergraph instance be Hy = (S;U{@},A;). We define the prop-
erties of H below.

1. The set of states has a state for all entries in the tuple lookup table, D, used in the dynamic
programming solution of TD in spiders, i.e., we have a state for every entry D|G, i, j] such
that G = (V',E’) is a connected subgraph in S and v; j is a vertex in G. We also have a
global node to represent the optimal solution, o.

Sy ={(G,i,j): G= (V',E') is a connected subgraph in S, v; j € V'} U {0,}.

2. Hyperarcs are in the form (H,t) such that H is the set of subgraphs needed to form
subgraph ¢. If t = (S[by, w.sbj,...,bg),1, j), with i < bj, which corresponds to the spider
S[by, ..., bj,...,bg]in S, H is the set of states that correspond to a smaller spider S'[by, ..., (i—
1),...,b¢] and a path, P[i+ 1,b;,j], ie., (S'[b1,...,(i = 1),...,b¢}, ', ') for some vy € §
and (P[i+ 1,bj, j],i", j), for some 0 < i < i" <b;.

If the last activated vertex in the tail state is at the end of aleg, i.e., if t = (S[bl senbjy byl b, ),
the set H contains one state, corresponding to the spider S'[b1,...,b; —1,...,b/].

If the last activated vertex in the tail state is the root, i.e., if t = (S[by, ..., b(],0,0), the set

H contains at most £ states, each corresponding to a path starting at the first vertex of a leg

inS.ie., H={(P[1,b;,j]: Vj:b; >0}

If we have a tail state which corresponds to a path, (v, ...,v¢ ;) in S, i.e., t = (Pla,c, j|,1, j),
the set H contains states corresponding to smaller paths, (v, j,...,vi—1 ;) and (Vi41 j, -, Ve, j)s
i.e., the states (Pla,l —1,j],11,j) and (P[l+ 1,c, j],l2,j), forsome 0 <a <} <l <l <

c<pB ;. If the last activated vertex, [, in the path is at either end of the path, then the set H

will have just one state, because in this case the last activated vertex does not split the path

into two smaller disjoint sub-paths.

If the tail state is a single vertex in S, i.e., t = (v; j,i, j), then H = {@}, as single node
subgraphs cannot be composed of smaller subgraphs. If = ¢, then the set H corresponds
to states representing the entire spider, S[Bi, ..., B¢, i.e., H = {(S[Bi, ..., Be]. i, j) }, for some
Vij € S.
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Ay ={(H0): H={(S' b1, (1= 1),b0), 1)), (Pli+ by, 1,1, ),
t=(Slb1,orrbjyornsbilyis ), viy €8, 0<i<i’ <bj, 0< by < V€ [K]}
O{(H ) 2 H = (S o1, by = 1o biu )}, £ = (St by bl by, ),
vy €8, 0<by <P Vke [Z]}

U {(H,t) CH={(P[1,b;,j]: ¥j:b; >0}, t = (S[b1,....b],0,0),0 < by < By Vk € [K]}

<a<hi<i<h<c<p; jel]}

(1)t H = {(Pla, = 1, 1., )}, 1 = (Pla,l, 1), 0<a <l <1< By, je (6]}
O{(H ) H = {(PU+ 1, /) b )} £ = (PlLe, .1 J), 0T < b <c < B, je [0
U{(H,0)  H=1{2}, t = (vij,i,)), vij € s}
O{(H,0) - H = {(S[B1,- B} i)} 1 = o, vij €8,

Note that the global state, ¢, has no outgoing arc.

3. We sort the states into buckets corresponding to the number of vertices in the subgraphs
they represent. In each bucket, we can pick any ordering on the states, oy : S; — R such
that it obeys the lexicographic ordering of the state coordinates, with (o) as the largest
value. Formally, if we have two connected subgraphs of S, G = (V E) and G’ = (V',E'),
and v; j € V and vy €V

os(G,i,j) < os(G, i, ])
if
(@ V| < V'], or,

(b) |V|=|V'|andi <7, or,
() [V|=|V'|,i=iand j< .

However, if |V| = [V’

,i=1and j = j/, there are three possible cases.
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(a) G and G’ are paths of the form P[a,¢, j] and P[d’,c’, j], where i is some integer in
[4,¢]N[d,c']. Note that both paths have to be subgraphs in the same leg, as j = j'.
Here, 05(G,i,j) < os(G',i',j)ifa < d.

(b) G is a path, and G isa spider, of the forms P[4,¢, j] and S'[b}, ..., b}] respectively,
where v; j € VNV’ Here, o5(G,i, j) < os(G,7,j) if

i. any of the first j — 1 legs of §’ have non-zero length, i.e., there exists b/, > 0 for
some m < j, of,
ii. bj,=0forallm< jandé—a+1<b;.

(c) G and G’ are spiders, denoted by S[b,..,b,] and S'b},...,b}], where v; ; € VNV,
Here, o5(G, i, j) < os(G',i', j') if there is some m < ¢ such that b, = b/. for all ¢ < m
and by, < b),,.

The buckets will ensure that smaller subgraphs have smaller values, thus ensuring that
subgraphs used to make larger subgraphs will obey the acyclic property.

4. We define the reference subset of a state, s € Sy, as the set of vertices in the subgraph it

represents.
R[S] _ \% lfS = Oy o
v ifs=(G'(V',E'),i,J)
As the head of each arc contains states representing disjoint subgraphs, we have the dis-

jointness property. As the tail state represents a subgraph joining these smaller head sub-
graphs, we get consistency.

5. The cost of a hyperarc represents whether the last activated vertex in the tail subgraph, i.e.,
last coordinate of the tail state, is a seed or not. Arcs incoming to the global state have no
cost.

w(vij) ift=(G(V',E'),i,j)and |V'| < 0(v;;)
cs(H,t) =<0 ifr=(G'(V',E'),i,j)and |V'| > 0(v; )
0 ift = o4

This function ensures that the hyperarcs used to build the solution have a combined cost
equal to the weight of the seeds used in the solution.

We have the following lemmas about the size of H.
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Lemma 4.4.1. H has O(n‘*!) states.

Proof. Let us first consider states corresponding to a subgraph that contains the root node of
the spider, S[By, ..., B¢]. As discussed earlier, there are (kﬁf) unique spiders with k nodes and
at most £ legs. Subgraphs that do not contain the root node are paths. A path, v;4,...,v} 4, is
uniquely defined by its terminal vertices, v;, and v;,. Each pair of terminal vertices has to
belong to the same leg of the spider, S. This gives us at most [312 + .+ [3[2 unique paths. For a
subgraph of size k, there are k different states, as there are k choices for the last activated vertex.

We also have one node to represent the optimal solution, -¢. Finally, we get :

ok 0—2 !
|SS|§Z( /-1 )'k—f—Zﬁiz'ﬁi‘f‘l
i=1

k=1

n+l—-2\ & 3
( 01 >Zk—|—n +1

k=1
(n" " n? 41
(nEJrl)

assuming that £ > 1. The second inequality follows from the fact that Zle Bi=n—1. [

IN

o
o

Lemma 4.4.2. H; has O(n***) hyperarcs.

Proof. Let us consider a hyperarc (H,t). If the tail state corresponds to a subgraph containing a
single node in S, then there is just one choice for the head set - {@}. This gives us n hyperarcs.

If the tail state is o, then are n choices for the head set, one each for every vertex in S set as
the last activated vertex. This gives us an additional n hyperarcs.

Now, let t = (G,i,j), where G = (V',E’) is a connected subgraph in S, and v; ; € V'. If
Vi, j 7 V0,0, the set H contains two (or one) states corresponding to connected subgraphs obtained
by splitting G at v; ;. These subgraphs are unique. The head states can have the last activated
vertices set as any vertex in V/ — {v; ;}. Thus, for each such tail state, there are at most (|V'| —
1)-(|V'| —2) < |V’|? choices for the head set.

If v j = vo,0, the set H contains at most ¢ states corresponding to disjoint legs obtained by
splitting G at the root. These legs are unique. Let G = § [b1,...,by]. The head states can have
the last activated vertices set as any vertex in V' — {v; j}. Specifically, for the k" leg, the last
activated vertex can be any one of by choices. Thus, for each such tail state, there are at most
IT,_, max{1,b;} < |V'|’ choices for the head set. Using the argument in Lemma 4.4.1 to count
tail states, we get :
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1A < Z (kylz) k- k€+ZB3 D(Bi—2)+n+n

) a
< (’” ) Zkf+1+n +2n [} Bi=n—1]
i=1
:0 -1 €+2+n )
assuming ¢ > 1. ]

The construction above gives us the following:

Theorem 4.4.3. Let (S,w, 0) be an instance of TD on a spider, S, and (Hy, ¢;) the corresponding
weighted hypergraph. Then the cost of an optimal solution to our TD instance is equal to the
optimal value of PRIMAL for (Hj, c;).

Proof. The solution to PRIMAL, z*, gives a sequence of hyperarcs, m = (H,t1), (Hz,12)..., (Hp,1p)
in Hy, where H; = {@} and t, = o, and z[H;,#;] = 1 for all i € [p]. Let us see what the tail states
in the hyperarcs in m represent in our TD instance.

For every hyperarc (H,t) € m, we consider the tail state t = (G, i, j). In our TD instance, we
construct a solution by activating node v; ; at time |V’|, as the state represents a subgraph of S,
G = (V',E'), where v; j is activated last. Every arc has a cost, ¢;(H,t). In our TD solution, we
pay a cost of w(v; ;) for activation of v; ; if the number of vertices in subgraph G’, [V'|, is less
than the threshold value of v; ;, 0 (v, j), because that means that v; ; is not connected to enough
active nodes to be activated, and has to be activated as a seed. If |V’| > 6(v; ;) then v; ; can be
activated without being set as a seed, and hence we pay no cost. Thus the cost of our solution is
equal to the cost of m.

Let us take a solution to a TD instance, (w(Y),Y), returned by Algorithm 6. Each solution
is built up of tuples associated with subgraphs in S. Note that all entries in the lookup table,
D, used to build the solution to this algorithm can be mapped to states in Hj, as all entries
have a corresponding state in H. Moreover, these states together form a sequence of hyper-
arcs, m', in Hy, because the entry, D[S[by, ...,by],i, j] for each subgraph (corresponding to a tail
state, (S[by,...,byl,i,j)) in D is calculated using entries of smaller subgraphs, D[S'[by, ..., (i —
1),..b¢],7, j' and D[P[i+1,b}, j],i", j] (corresponding to the head set, {S'[by,..., (i—1),...b¢], 7, j'),
(Pli+ 1,bj,],i",j)} where vy y € ', i <i" < bj and 0 < by < B Vk € [(]), that combine
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to form the segment, S[b1,...,bs|. For every tuple D[S[b, ...,b(],i, ] used to calculate Y, Vi
is added to Y if |S| < 6(v;;), where S = (V,E). We also add the arcs ({@}, (vi},i,j)) and
({(S[B1,-..,Be), 7', j') },05) to complete m’ as a solution to the TD instance, where D[(v; j), i, ]
and D[S[B1, ..., B¢], 7, j] were tuples used to form (w(Y),Y). The cost of m’ is incremented by
w(v; j) if m’ includes a state (i, j,I) and |S| < 6(v; ;). This makes the cost of m’ same as that of
Y. ]
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Chapter 5

Maximization of Diffusion under
Constraints on Seeds

We here consider the maximization version of the Technology Diffusion problem, referred to as
maxTD. In an instance of maxTD, we are given a graph, G = (V, E), a positive integer, k < |V,
and thresholds, 6(v) € {0y, ...,8,} for each node v € V. Each of the thresholds is a positive inte-
ger in the set {2,...,|V|}. For this section, we assume that all vertices have equal weights , i.e.,
w:V — 1. As in the Technology Diffusion problem, we consider dynamic processes in which
each vertex v € V is either active or inactive, and where an inactive vertex v becomes active if, in
the graph induced by it and the active vertices, v lies in a connected component of size at least
0(v). The goal in maxTD is now to find a seedset Y C V of cardinality at most k of initially
active vertices that maximizes the number of active nodes in the graph, i.e., o(Y), at the end of
the diffusion process, where diffusion is the process of activating vertices not in the seedset.

maxTD

INPUT : A simple, undirected graph, G = (V,E), a threshold function,
0:V —{2,....|V|}, and a positive integer, k < |V|.

OUTPUT: A seedset Y C V of cardinality at most k such that if every node in Y is
activated at time step 0, the total number of nodes eventually activated is maximized.
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5.1 Greedy Algorithm for maxTD

As we have discussed in Chapter 2, greedy algorithms have been used quite successfully to give
(approximate) solutions to some diffusion problems in the localized setting. We here show that
the natural greedy algorithm can perform quite badly on instances of maxTD.

Let us consider a natural greedy algorithm, Algorithm 9, for maxTD.

Algorithm 9 Greedy algorithm for maxTD

INPUT: A graph, G = (V,E), a threshold function, 6 : V — {2,...,|V
k<|V]|.

OUTPUT: A subset of nodes, Y C V, such that |Y| <k.

}, and a positive integer,

1. Y —o.

2: Select u € V such that (Y U{u}) is maximized.

3. Y =Y U{u}.

4: If |Y| < k, and there are inactive vertices remaining in G, go to Step 2.

5: return Y

Pseudocode for greedy algorithm for maxTD.

We now report an instance where the greedy algorithm for maxTD performs arbitrarily badly
compared to an optimal algorithm.

2 4 4 5 7 7 3 4 5 6 m+7
@ O @ @ @ @ @ *—@ @ - - - @

mnodes
Figure 5.1: A maxTD instance with k = 2 on a path of m+ 11 nodes. The node labels indicate thresholds.

Consider the maxTD instance in Figure 5.1 with k =2 on a path of m+ 11 nodes. The greedy
algorithm will pick the green node as seed at the first iteration, hence activating the left most
node with threshold 2. Then, it will pick the blue node as the second seed, activating the node
between the two seeds with threshold as 4. No more nodes will be activated.

Note that the optimal solution will pick the two red nodes, both with thresholds 7 as seeds,
and will activate the entire graph. This shows that the performance of the greedy algorithm can
be arbitrarily bad.
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5.2 Dynamic Programming for maxTD on a Path

Let us first study the problem on a graph that is a path. A maxTD instance on a path, (P, 0,k),
where P is a path of the form vy,v,,...,v,, has the following property - if a vertex v; € V' is not
activated by time unit ¢, then vertices in the path segments vy, ...,v;—; and v;;, ..., v, are activated
independently of each other before time ¢, i.e., no vertex in the first segment uses a vertex in the
second segment to obtain its utility, and vice versa. If no such vertex exists, then the path can be
activated completely by a seedset of cardinality at most k before time ¢, and this seedset can be
calculated by Equation 2. This property can be exploited in a dynamic programming formulation.

Let mD[i, j,k,1] :== (A(Y), Y) be a tuple, where 1 < i <[ < j < n, containing (i) a seedset,
Y, where Y has cardinality at most k(an input parameter), that activates the maximum number of
vertices in the segment v;,...,v,...,v;, and (ii) the set of vertices activated by seedset ¥, A(Y),
with the following property: if k is less than the required number of seeds to activate the seg-
ment v;, ..., vy, ..., v, the vertex v; is not activated, else A(Y) contains all vertices in the segment
Vi,...v[,..,vj. Note that with a large enough £, all vertices could be activated.

Furthermore, we define A(mD]i, j,k,l]) := |A(Y)|. We will use mD to refer to a lookup table
for all mDli, j,k,I] tuple values. For segments of length 1, i.e., segments containing just one
node, clearly, i = j = [. This gives us

s {v,-}) if k>0

mDli i k,i] = .
a3, ) otherwise.

For segments of length 2, i.e. edges of the type (v;,v;+1), note that [ can take either i or i + 1 as
its value, as P is a path. Consider the value of mD[i,i+ 1,k,l]. Let us assume without loss of
generality that [ =i . Now, we have either of the four following cases :

1. k=0
Since we’re allowed no seeds, no nodes can be activated. We set mD[i,i+ 1,k,i] = (@ , @) .

2. k>1land 0(v;) =2
This means that v; can be activated by v; ;1. Since we are allowed at least one seed, we set

mDli,i +1,k,i] = ({v,-,viﬂ},{v,-ﬂ}).

3. k=1and 6(v;) >2
This means that v; cannot be activated by v;; ;. Since we are allowed to have one seed, we

set mD[i,i+ 1,k,i] = <{vi+1}7{vi+1}).
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4. k>1and 0(v;) >2
This means that v; cannot be activated by v;; ;. Since we are allowed to have two seeds,

we set mD[i,H— 1,k, i] = ({vi,vi+1}, {Vi,vi+1}> .
Before we define what values mD contains for larger segments, we define some operations.
1. Addition of mD tuple values: This yields a tuple containing the union of sets of activated
vertices in each tuple, and union of the seedsets, i.e., if mD[{’, j',k',l'] = (A(Y N, Y ) and
mDI[i", j" k" I"] = <A(Y”), Y”) , and we wish to calculate mD[i’, j k', I'| +mD[i", j" | k" ,1"],
we do the following computation :
mDI,j' K1)+ mDl", /' K" = (A(Y), ¥') + (A0, ¥")
- (A(Y’)UA(Y”), Y’UY”).
2. ma(i, j,k,D) : This operation checks if a segment v;,...,v; can be activated by at most k
seeds, by looking at the tuple lookup table, D, where D is a lookup table storing the result of
the Path_TD(P,w, 6) method with w(v;) = 1 forall i € [n]. It returns a tuple, ({v;,...,v;},Y),

where Y C {v;,...,v;} is a seedset, that fully activates the segment (v;,...,v;), and |Y| < k.
If no such seedset exists, this operation returns the tuple (&, &).

Now, for segments of size greater than 2, we have either of the two possible cases in a tuple
mDli, j, k1] :

1. The vertex v; is not activated, and the segments left and right to v; are partially activated,

independently of each other, using a total of at most k seeds.

2. No inactive vertex exists, and the segment (v;,...,v;) can be completely activated using at
most k seeds.

Using these insights, we formally define mD as follows. First, let T be the set of k4 2 tuples
defined as

(i, j, k1] = { argmax A(mDI[i,l —1,r,];])+ argmax A(mD[l+1,j,k—rl)]):Vr= 0,...,k}

mDIi,l—1,rl;], mD[l+1,j k—rl],
Lefiy... -1} he{l+1,....j}
U {ma(i,j,k,D)} (5.1)
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Algorithm 10 ma(i, j,k,D)

INPUT: Three positive integers, 1 < i, j, kK < n, and a lookup table, D, which is the result of a
Path TD(P,w, 0) call .
OUTPUT: A tuple containing a positive integer and a subset of vertices in P.

—

<w(Y),Y> = CalculateSeedset((v;, ...,v;),D)
. if |Y| <k then

return ({V,’,...,Vj},Y)

4: end if

5: return (&, 9)

W

Pseudocode for ma(i, j,k,D).

Note that in the first case, the first term vanishes if / = i and the second term vanishes if [ = j.
Now, we define mD|i, j,k,l] as

mD[i,j,k,l] =  argmax A(Y) (5.2)
(A(Y).Y)etli,jik.]]

Algorithm 11 first calls the Path_TD method on the input, then fills in tuples for segments of
length 1 in Steps 3 - 11. Then, Steps 12-32 fill in tuples for larger segments, increasing the size
by one vertex at a time. In Step 12, iterator i fixes the size of the segment. In Step 13, iterator j
fixes the leftmost vertex of the segment (making the rightmost vertex v;, ;). In Step 14, iterator /
fixes the last activated vertex, which has an index in the set {J, ..., j+i}. In Step 15, iterator &’
iterates over the set {0, ....,k} fixing the budget for the cardinality of the seedset. In Steps 16-22,
we calculate the set of tuples, t[j,i+ j,k',I] for the segment (v;,...,v;,...virj). In Step 23, we
set the value of mD[j,i+ j,k',1] as the tuple (A(Y),Y) in t[j,i+ j,k’,I] which has the maximum
A(Y) value.

Lemma 5.2.1. Algorithm 10 takes constant time.

Proof. By Theorem 3.2.2, Step 1 takes ®(1) time. The result follows. O
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Algorithm 11 Path_maxTD(P, 6, k)

INPUT: A maxTD instance, (P, 0,k), with n vertices.
OUTPUT: A lookup table, mD, that stores all mDi, j, k,I] tuple values for 1 <i<[< j<n.

Lw:V—=1
2: D =Path TD(P,w, 0)

3: forall i € [n] do
4:  forallk’ €0..k do

5: if ¥’ =0 then

6: mDli, i,k ,i] = (@,@)

7: else

8: mDIi,i,K,i] = ({vi},{vi})
9: end if

10:  end for

11: end for

12: forallic {2,...,n} do
13:  forall je{l,...,n—i}do

14: forall/ € {j,....i+ j} do
15: for all £’ € {0,...,k} do
16: if / == j then

17:

clji+ K0 ={ argmax A@mD[i+ Li+ j,K, /) }u{ma(i+jK.D) |
mD[l+lal+.]k/~.]/]a
FE[IH1,. i+ ]

18: else if / == i+ j then
19:

ljit+ K ) = { argmax A(mD[j,l—1,5,i7) }U{ma(j,i+j.K,D)}
mD[j,l—1,ri],
€lj,..1—1]
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Algorithm 11 Path_maxTD(P, 6, k) (continued)

20: else
21:
cljitjk, 0] ={  argmax  A@mD[l+ i+ ]) +
mD[l+1,i+jk ,j'],
J e[+, i+ )]
argmax A(mDl[j,l—1,r,i]):Vr
mD[jJ_l-,rvi/L
1,6[1‘71_1]
{ma(j.i+jk.D)}
22: end if
23: mDlj,i+ j,k 1] = argmax  A(Y)
(A(Y).Y)et[jitjk ]
24: end for
25: end for
26:  end for
27: end for

28: return mD

Pseudocode for Path_maxTD(P, 6, k) (Continued).
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Theorem 5.2.2. A minimum cardinality seedset for a maxTD instance on a path can be computed
in O(k-n*) time.

Proof. Consider Algorithm 11. Step 1 assigns the weight of 1 to each vertex. This can be done
in O(n) operations. From Theorem 3.2.1 we have that Step 2 takes O(n’ logn) time.

Filling in tuples for segments of size 1 requires one condition check, and one assignment
operation. There are a total of (k+ 1) - n tuples. Thus, Steps 3-11 take O(k - n) operations.

As in TD on paths, we create (k + 1) - > max-heaps, one each to represent a sub-segment in
the input with an associated seed budget, which is an integer in [0,k]. We store tuples in max-
heaps according to the segment they represent, with keys as the size of the set of active nodes
associated with the tuple. Now, to calculate the set t[j,i+ j,k’,1], we perform the following
computation :

tlj,i+j, k1) = { argmax  A(mD[l+1,i+j,r,j]) +
mD[l+1,i+jk,j],
FE[IH1,. i+ ]
argmax  A(mD[j,l—1,k' —ri]) :Vr=0, ...,k’}
mD[j, -1,k —ri],
i'€lf,e...l—1]

U{ma(j,i+j,k’,D)}

(in Steps 20-22). This requires 2(k’ + 1) max-heap root retrieval operations and (k' + 1) addition
operations, where (k' + 1) is the maximum cardinality of the seedset obtained by combining the
tuples from the first and the second term. Also, mo(j,i+ j,k',D) can be calculated in ©(1)
time. Thus, Steps 20-22 take at most O(k) operations. Steps 16-17 cover the case where [ is the
first vertex in the segment, and Steps 18-19 cover case where [ is the last vertex in the segment.
These have one term less than Steps 20-22 to calculate, and will take at most as much time as
Steps 20 -22. Therefore, Steps 16 - 22 can be computed in O(k) time. Now, we need the tuple in
t(j,i+ j,k',1] with the highest total number of active vertices in the segment v;, ..., vt j. This is
done by
mD[j,i+ j, k' 1] = argmax  A(Y)
(A(Y)Y)et[j,i+]k ]

(Step 23). As t[j,i+ j,k',I] has k' + 2 tuples, calculating the RHS is done in O(k' +2) = O(k)
operations. Insertion into the max-heap takes O(i+ 1) = O(logn) operations. Iterators i, j and [
loop over the set {1,...,n}. Tterator k’ iterates over {0,...,k}. Thus, Steps 16-23 are performed
O(k-n?) times.
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The seedset for the input path is finally calculated via

argmax A(mD[1,n,k,1]).
mD([1,n.k.l],
le[n]

As discussed earlier, this takes @(1) operations. Thus, a maxTD instance on a path can be solved
in O(k-n®(k+logn)) = O(k-n*) time. O

5.2.1 Extension to Spiders

Here, we formulate a dynamic program for maxTD in the case where the input graph is a spider
S[Bi,-..,B¢] = (V,E), with n nodes, and ¢ legs, which are indexed by [¢], where ¢ is a constant
positive integer less than n. As in the previous sections, the leg lengths are denoted by a set of
¢ non-negative integers, {Bi,...., Br}. A vertex is represented as v; 4, and the subscript indicates
that it is the i vertex from the root in the leg with index a, where a € {1,...,£}. The root of the
spider is denoted by v o.

Each leg is represented by the path (V,, E,) for all a € [¢]. The vertex set of each spider leg
is given by V, := {v1 4,...,vg, o} for all legs a € [{]. The edge set of each spider leg is given by
Eqo:={(vVjasVjt+1,a) | J € [Ba— 1]} for all legs a € [¢]. Note that the vertex set is the union of the
root vertex and the vertices of the legs, i.e., V = {vop} UViuVaU...UV,. The edge set of the
spider is given by E = E1 U...UE,U{(v0,0,V1,1)---»(v0,0,v1,¢) }. We have weights on the vertices
assigned by the function w: V — R, and a threshold function 6 : V — {2,..,n}. We use the
notation 6 (i,a) to represent 0 (v; ,) forall v; , € V.

Let mD[S[By, ..., Be], k, i, j] := (A(Y),Y) be a tuple containing (i) a seedset, Y, where Y has
cardinality at most k, that activates the maximum number of vertices in the spider, S[Bi,...., B¢,
and (ii) the set of vertices in S activated by that seedset, A(Y), with the following property : if k
is less than the required number of seeds to activate S, v; ; € S is not activated, else A(Y) contains
all vertices in S. Furthermore, we define A(mD[S[B4,...., B¢, k.1, j]) := |A(Y)|. We will use the
notation mD[S, k, i, j] where the list of leg lengths is clear from context. Also, mD is used to refer
to the lookup table of all mDI[S,k, i, j] tuples.

Also, let there be a path, P = (v; 4, Vit1,4,---,V1.4), Such that vc, is a vertex and ¢ € {i,...,[}.
The tuple, mD[(Via,Vit1,a,--Vi,a),k c,a) = (A(Y'),Y’) , contains (i) the seedset, Y’, that acti-
vates the maximum number of vertices in the leg segment, P, such that |Y| < k , and (ii) the
set of vertices eventually activated by that seedset, A(Y’), with the following property : if k is
less than the required number of seeds to activate P, v., € P is not activated, else A(Y) contains
all vertices in P. Furthermore, we define A(mD|(viga,Vit1.a:---Via),k,c,a]) := |A(Y")|. Again,
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we will use the notation mDI[P, k, c,a] instead of mD[(v;4,Vit1,as---sVi.a),k,c,a] where the path
vertex indices are clear from context. Recall that this tuple can be computed with a Path_-maxTD
method call, with P as input.

We define the following operations.

e Addition of mD tuple values: This yields a tuple containing the union of the sets of active

vertices, and union of the seedsets, i.e., if mD[S' ) k',i’,d']| = <A(Y’), Y’) and mD[S" K" ,i" d"

(A(Y”),Y”), and we wish to calculate mD[S',k',i',a'| + mDI[S" k" ,i" ,a"], we do the fol-
lowing computation :

mDIS K1, d|+mDIS" K", i".d") = (A(Y'),¥") + (A(r"),¥")

- (A(Y’) UA(Y"), Y’UY”).

mSo(S,D, k) : This operation checks if a graph, S(V,E), can be activated by at most k
seeds, by checking the lookup table, D, where D is a lookup table storing the result of the
Spider_TD(S, w, 0) method with w(v; ;) =1 for all v; ; € S. It returns a tuple (V,Y) where
Y CV is a seedset, that fully activates the spider S, and |Y| < k. If no such seedset exists,
this operation returns the tuple (&, &).

Algorithm 12 mSa(S,D, k)

INPUT: A spider graph, S = (V, E), alookup table, D, which is the result of a Spider TD(P,w, )

call, and a positive integer, k .

OUTPUT: A tuple containing a positive integer and a subset of vertices in S.

[ NS

4:

(w(Y ),Y > = CalculateSeedsetSpider(S, D)
. if |Y| <k then

return (V, Y)

end if
: return (9, 9)

Pseudocode for operation mSa.(S, D, k).
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Lemma 5.2.3. The operation mSa(S,D, k) takes constant time.
Proof. By Theorem 3.2.9, Step 1 takes ®(1) time. The result follows. [l

To calculate the seedset of a maxTD instance on a spider, we use the recurrence for maxTD
on paths [Equation 5.2] that we defined previously. Consider spider S[Bi,...., B¢] in Figure 3.6.
We observe two things.

1. If the vertex v; 4 is not activated, then the spider can be seen as split into a smaller spider,
SIBt,vreesBa— (Ba— i+ 1), ey B) = SIB, v (i— 1), ., By, and a leg segment (v 1 g, -, Vg, o)
which are (partially) activated, independently of each other. As the leg segment is a path,
and is activated independently of the all other vertices outside the segment, we can calcu-
late the minimum cardinality seedset to activate the maximum vertices in it with Equation
5.2.

2. If the root is not activated, we can calculate seedsets using Equation 5.2 for each leg, such
that their union maximizes the total number of active vertices in each of the ¢ legs.

Using these insights, we calculate mD tuple values for the connected subgraphs of a spider
in Algorithm 13. Steps 1-2 retrieve D tuple values via a Spider TD(S,w, 6) method call. Step 3
allocates an empty lookup table, mD. Steps 4-12 iterate over all legs (we start the legs at the root
vertex for the purposes of this algorithm) and call the method Path_maxTD(P,, 6,k’) on each leg,
P,, where a € [{] and K’ € 0...k. This method returns a tuple lookup table for each leg, mD,. We
update mD by putting the value of tuple mDy[i, j, k1] in mD|(vi q, ...,vj’a),fc, l,a]. Thus, we can
get seedsets of cardinality at most k’ for all connected sub-segments in each leg from mD. We
store these mD tuple values for each leg segment in max-heaps (Theorem 5.2.2), where we have
a separate max-heap for each k’ € 0...k for every subgraph.

Steps 13-54 solve maxTD on connected subgraphs of S that contain the root vertex, increasing
the size of the subgraphs by one vertex with every increment in the iterator, n’. In Step 14, the
iterator S'[b}, ..., b;] iterates over all spiders with n’ vertices, where the set of these spiders is
obtained by using the Spiders(S,n’) operation. In Step 15, the iterator b’j iterates over the set of

leg lengths of S'[b}, ..., by]. If b; < B, which is the length of the j'" leg of the input spider, SZ we
add one vertex to the j leg of S, using the Join operation in Step 18, creating the spider S. In

Step 19, iterator K’ sets the seedset budget, taking values from {0, ..,k}. In Step 20, iterator v; 4
iterates over all vertices in S.

Now, we need to calculate mD[S,k’,i,a] for all vertices Via € S As in the case of paths
(Theorem 5.2.2), we store mDI[S,k’,i,a] tuple values in a max-heap, where the keys are the
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Algorithm 13 Spider maxTD(S[By, ..., B¢], 0,k)

INPUT: A maxTD instance on a spider, (S[B1, ..., B¢], 0,k), with n vertices.
OUTPUT: A lookup table of tuples, mD.

I:w:V—=1

2: D = Spider_ TD(S,w, 0)
3:mD— O

4: foralla € [{] do

5: P, = (V()’(),Vl’a,\/z’a, “"vﬁmﬂl)
6: forallk’ €0..k do

7 mD, = Path_maxTD(P,, 6,k")

8 for all mD,[i, j, k.| € mD, do R

9: mD[(Vig,...,Vja),k,l,a) = mDy[(Viga,...,Vja),k,1,a
10: end for

11: end for
12: end for

13: for alln’ € [n—1] do
14:  for all §'[b,...,b}] € Spiders(S[Bi, ..., B¢],n’) do

15: for all b'; € {b;,...,b}} do
16: if ', < f3; then
17: bj="b'+1
18: S[b1,....be) = Join(S'[b], ..., bj], b, + 1, )
19: for all &' € [k] do
20: for all v;, € Sdo
21: if i==>5; AND a == j then
2. 18,k i,a] = { argmax A(mD[S’,k’,c,d])} U {mSa(S,D,k')}
mD[S' K .c,d],
Vc.dESl

Pseudocode for Spider_maxTD(S[Bi, ..., B, 0,k).
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Algorithm 13 Spider maxTD(S[B, ..., B¢], 0,k) (continued)

23: else if i == 0 AND a == 0 then

24: P, = (vlvd""’vl;d,d)
FIK] = {{k},....k;} Ky + ...+ k=K, k; >0Vd € [(]}
T[S,k ,i,a] :{ Z argmax A(mD[Fd,k&,c,d]))

delf] mD[ﬁd,k&c,d},
Ve, d€Pq

KK € F[k’]} U {mSa(S‘,D,k’)}

25: elsg 3 3
26: S[by,...,be] = Split(S,i,a)

P:= (V,‘Jrl’a, ...,nga)

T[S,k i,a) = { argmax A(mD[S,k' —r,c,d))
mD[S,k' —r,c,d],
vc‘dEE

+ argmax A(mD|P,r,c,a]):Vre O,...,k’}
mDI[P,r,c,al,
VeaEP

U {mSa(S‘,D,k’)}

27: end if

28: mD[S, K ,i,a]=  argmax A(Y)
(A(Y),Y)et[S,K i,a

29: end for

30: end for

31: end if

32: end for

33:  end for

34: end for

35: return mD

Pseudocode for Spider_maxTD(S[fi, ..., B¢], 0,k) (continued).
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A(mDIS,K,i,a]) values. Every distinct spider is assigned its own set of k+ 1 separate max-heaps,
and it stores mD|[S,k’,i,a] values for all v;, € S and k¥’ € 0...k.

Lemma 5.2.4. We need O(k +n) operations each to compute mD[S, k, i, a) for all Via € S, where
S has n vertices.

Proof. First, we define a set tuples, T[S, k, i,a], which contains (i) all tuples of the form (A(Y),Y),
where Y is the seedset that has cardinality at most k, and A(Y) is the set of vertices eventually
activated in S by Y such that v; , € S is the last activated vertex, or not activated, and (ii) the tuple
returned by a moc(i, j,k,D). As in the case of paths, we can define mDIS, k,i,a] as

mD|[S,k,i,a] =  argmax A(Y).
(A(Y),Y)eT[S k,i,a]

To see what tuples 7[S,k,i,a] contains, we go back to the formation of § in Step 18. There are
three possible cases which occur when a vertex, Vi, is joined to spider S’ to form spider S,

which has n’ vertices.

1. The vertex, v;4, is the same as the newly added vertex, v;, Iz If v; , 1s not activated, we
Jo

obtain the seedset of cardinality kK’ required to activate the maximum number of vertices
in the spider S, by the mD tuple value corresponding the seedset required to activate the
maximum number of nodes in §" (Steps 21-22). The seedset can be found by looking at the
root of the mD tuple max-heap associated to S’ with seedset budget k’. This is a constant
time operation.

If v; , is activated, then we obtain the seedset of cardinality K’ required to activate the spider
S, from the tuple returned by mo(S,D, k). (Steps 21-22). This is shown to be a constant
time operation in Lemma 5.2.3. Thus, this case takes O(1) operations.

2. The vertex, v; 4 is the same as the root. If it is not activated, we can calculate seedsets for
maximizing the total number of active nodes in each of the £ legs of S by using Equation
5.2 on each leg. The seedset required to activate the maximum number of nodes in the
spider § will be the union of the seedsets associated to each of the ¢ legs. We consider all
seedset unions which have cardinality at most X/, and pick the one that maximizes the total
number of active vertices in S. There are (klz_gl_l) = O((K')*=1) such unions possible (we

distribute k" seeds over £ legs). The set F[k'] contains all these distributions.

FIK]:={{k},....k)} K)+ ...+ k, <K, k;>0Vd € [(]}
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To generate F[k'], we need k' - O((K')*~1) = O((k')") operations. Now, we calculate seed-
sets for all such unions. Let Py := (v 4, sV, ;) denote the d™ leg of S, starting from the
the first vertex. Calculating the seedset of cardinality &, that activates the maximum num-

ber of vertices in P, is done by argmax A (mD[Py, kﬁi, ¢,d]). Calculating a seedset for S
mD[Pg.kl).c.d],
ved€Pg
of cardinality at most &’ for the distribution {/,...,k}}, where the d" leg of S is allocated
a seedset budget of k;, is done by computing < argmax A(mD[ﬁd,kél, c,d])). Looking
mD[Py k) cd],
Ved€P4
up a mD tuple value involves looking at the root of the mD tuple max-heap associated to
P, with a seedset budget of k!,. This is a constant time operation. We do ¢ such operations
- one for each leg - for each distribution, {k},...,k;}. There are £ — 1 addition operations.
Hence, for all distributions, we do O((2¢ — 1) - (K)=!) = O((k')*~") operations.

If v; 4 is activated, then we obtain the seedset of cardinality K’ required to activate the spider
S, from the tuple returned by ma(S,D,k’) (Steps 23-24). This is shown to be a constant
time operation in Lemma 5.2.3. Thus, this case takes O((k’)") operations.

3. The vertex v;, is not the root, or the newly added vertex, v; i If v; 4 1s not activated,
: i

the spider S can be seen as split into a smaller spider, S[b1,...,b] and a leg segment
P=(Vitia, ..-;VB,.a)» Which are activated independently of each other. We have already
calculated mD tuple values for S (as it is fewer vertices than S and would have been con-
sidered in a previous iteration of the algorithm), and P (as we calculate mD tuples for all
sub-segments in a leg).

Computing T[S,k’ ,i,a] requires adding all pairs of mD tuple values associated to S and
P such that their seedsets combined have a cardinality of k’. There are k' + 1 such pairs
(allocating a budget of X’ —r to S and r to P for all r € 0...k"). Each seedset computation
is a constant time computation, requiring a max-heap lookup. There are k' + 1 addition
operations Thus for all pairs, we do O(3(k' 4 1)) = O(k) operations.

If v; 4 is activated, then we obtain the seedset of cardinality k" required to activate the spider
S, from the tuple returned by mo (S, D,k’). (Steps 25-26). This is shown to be a constant
time operation in Lemma 5.2.3.

The method call to Split has been shown to have O(r’) run time (Lemma 3.2.5). Thus, this
case takes O(n' + k') operations.

Now that we have obtained t[$, k', i, a], we can compute mD[S, k,i,a) =  argmax  A(Y).
(A(Y),Y)eT[S K ia]
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The set 7[$,k’,i,a] has O((K)‘!) tuples (Case 2), assuming ¢ > 1. Thus, the LHS will require
O((K)=1) comparison operations. A max-heap insertion will take O(logn’) operations. Thus, a
mD tuple can be computed in O(max{(k')*, K +n'} + (K)*~! +logn’) < O(k" +n). O

Theorem 5.2.5. A minimum cardinality seedset for a maxTD instance on a spider with a constant
number of legs can be computed in polynomial time.

Proof. Steps 1 -2 make one call to the Spider_TD method, which takes O(n”z) operations (The-
orem 3.2.8). Steps 3-12 make /- (k+ 1) calls to the Path_maxTD method, which take O(k - n°)
time each, as shown in Theorem 5.2.2. Thus, £- (k+ 1) calls will take O(k*(-n’) = O(k* - n®)
operations. Steps 13-35 compute mD tuples for all connected subgraphs of S that contain the
root. Join operations were shown to be performed in constant time. As discussed above, compu-
tation of each tuple, mD[S, k,i,a] takes O(k’ + n) operations (Lemma 5.2.4). Also, as discussed
earlier, for a given size n’, there are (";ﬁf}z) = O((n")*~1) distinct spiders with ¢ legs. Each of
these spiders have n’ - (k + 1) associated mD tuples. Thus, to compute all tuples, we need 7' (n)
operations :

T(n) =0n )+ 0> n®) + Z o)=Y -n'-(k+1) -0k +n)

n
=0(n""?) + k-0 +n) ¥ ()
= O0(kn" 1 (K" +n)).

The seedset for the input spider is finally calculated via

argmax A(mD|[S,k,i, j]).
mDI[S ki, j],
V,‘L,ES

This is a constant time operation. Therefore, a maxTD instance on a spider can be solved in
O(kn"*1 (k! +n)) time. O
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Chapter 6

Conclusion

We presented an exact polynomial-time dynamic programming algorithm for TD on spider
graphs with a constant number of legs. It also works in the more general weighted setting,
i.e., when each vertex of the spider has an associated non-negative weight, and the objective is to
minimize the total weight of the chosen seedset, rather than its cardinality.

We also gave a linear programming formulation of this problem by showing that our dynamic
programming algorithm fits into the directed hypergraph paradigm given by ( ).

Finally, we studied the influence maximization version of TD, called maxTD, which seeks
a seedset of a fixed size kK maximizing the number of vertices that will eventually activate. Re-
lying once again on dynamic programming, we showed that this problem is also solvable in
polynomial-time on spiders with a constant number of legs.

Several open problems remain. For example, designing a constant factor approximation algo-
rithm for TD and maxTD on all spiders. Another would be designing an O(logn)-approximation
algorithm on general graphs.

A natural generalization of the TD model would be to have the input graph as directed. As
far as we know, there has been no work on a directed version of TD.
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