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Abstract 

Today, for various purposes, vehicle tracking systems are used for determining the 

geographic location of vehicles and transmitting this information to a data center. For detecting 

the location, a GPS is used, and for the transmission mechanism, a satellite or cell tower is 

deployed. Tracking systems are producing a massive data since they monitor moving vehicles 

continuously and report vehicle status. Since the amount of collected data is large and needs a 

storage unit that can handle all the transmitted data, storage becomes more challenging. The cost 

of transmitting, processing, storing, and accessing the data grows as the number of vehicles 

being tracked increases. The amount of data collected by the system depends on the uploading 

frequency. For example, the amount of data will increase as the uploading frequency (seconds) 

decreases and vice versa.  

 This work provides a storage management solution that reduces the size of cloud 

databases, both SQL and NoSQL databases, by eliminating repeated data. One of the causes of 

massive data in the tracking system is the high uploading frequency that causes a huge amount of 

repetitive values. We propose two algorithms for minimizing database storage: The Reducing 

Data Redundancy algorithm and the Data Lifetime algorithm. We implement these two 

algorithms in the cloud, for both SQL and NoSQL databases. For evaluation, a vehicle tracking 

system is developed by using Global Positioning System (GPS) and GSM/GPRS module. Our 

experiments use two different approaches: Static testing for when a vehicle is not in motion 

mode, and dynamic for when it is. The result of the experiments shows the effectiveness of these 

two algorithms in decreasing storage size and increasing process time.  

The system has four parts, which are the tracking unit, cloud database, web application, 

and Android Application. The tracking unit is installed inside a vehicle to detect the vehicle’s 

location, speed, and temperature then uploads this information to a cloud database. The main 

functions of the system are to track a vehicle, transmit the information to the cloud, and send 

notifications to the system administrator and users. The Android application is designed to 

receive notifications and view the vehicle’s information such as the current location and 

temperature. The administrator of the system uses the web application to set constraints for 

users’ vehicles, such as the temperature range and location restriction.  
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Chapter 1  

1 Introduction  
 

The Internet of Things (IoT) was introduced by Kevin Ashton in 1998 by using Radio-Frequency 

Identification (RFID) since then the IoT has rapidly gained widespread attention in academia and 

industry [1]. In 2008, the number of connected devices exceeded the number of connected 

people. Cisco has estimated that by 2020 there will be 50 billion connected devices, which is 

seven times the world population [2]. The Internet of Things (IoT) connects objects like smart 

phones, Internet TVs, sensors, and actuators to the World Wide Web. All these devices are 

linked together to simultaneously generate data and communicate with each other, which results 

in a massive amount of data flow over the network. The major challenge in the IoT is how to 

handle the large amount of data and objects efficiently.  

There are three types of IoT database storage [3 ,4,5]: local, distributed, and centralized. 

Local storage is a storage unit where the data collected from sensors is stored. Distributed 

storage is used when data is stored on more than one node. Centralized storage is used when data 

is collected by a node and then sent to a data center. Local and distributed storage are not 

suitable for IoT applications due to the limited storage capacity and constrained power of the 

sensors [6].   

A vehicle tracking system is an example of IoT. Vehicle tracking systems were first 

implemented for the shipping industry since people want to know where each vehicle is at any 

given time [7]. Vehicle tracking systems are being used and developed in a variety of ways for 

tracking and displaying a vehicle’s location and speed in real-time. For example, there are 

vehicle position tracking systems, vehicle anti-theft tracking systems, fleet management systems, 

and intelligent transportation systems (ITS) [7]. Initially, vehicle tracking systems were 

developed for fleet management and used for passive tracking. In passive tracking, a hardware 

device is installed in a vehicle to track and store information about that vehicle, such as its 

location and speed. When the vehicle returns to a specific location, the hardware device is 

removed and all the stored data are downloaded to a computer for analysis. On the other hand, 

real-time tracking systems require a GSM/GPRS model for transmitting the collected 

information to a database storage regularly. In short, active systems are developed to transmit 

information about the vehicle’s location and other data in real time via cellular or satellite 

networks to a data center [8]. 

In our research paper, we develop a Smart Vehicle System (SVS) using GPS/GSM/GPRS 

technology, a Smartphone application, and a web application. This system will provide better 

service and a more cost-effective solution for users by reducing database storage. The GPS 
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technology is used to provide the location and time information. Serval data sets can be obtained 

from GPS satellites by the GPS receiver, such as the number of satellites received by the GPS, 

speed, and accurate date and time based on Universal Time Coordination. The GSM and GPRS 

are used for wireless data transmission. The main objective of the Smart Vehicle System (SVS) 

is to track a vehicle’s location and temperature, and notify a user if the vehicle moves out of a 

specific location or temperature range. The tracking system is placed inside a vehicle. 

The features of the SVS system are as follows:  

• Detects a vehicle's geographic coordinates using the GPS module 

• Detects inside vehicle temperature using temperature sensor   

• Transmits the vehicle's location and temperature information to a web server after 

a specified time interval using the GSM/GPRS module 

• Uses cloud database to store and manage received vehicle's location and 

temperature information  

 

A Cloud database is flexible and cost effective in providing real-time data to users at any 

given time, with extensive coverage and quality. The concept of cloud computing is that all 

computer resources such as memory, storage, processing capabilities are rented by third party 

providers over the Internet. All the resources are accessed through a web application. The cloud 

consists of the following: the hardware, network, services, storage, and interface [14]. Together, 

they allow the delivery of computing as a service. 

 This work aims to build an affective tracking system and to apply data reduction to the 

database to reduce database storage on the cloud since the system produces so much data that 

needs to be transmitted, processed, and stored. Data reduction is the process of reducing the 

amount of data that needs to be stored in the database [9]. It increases storage efficiency and 

decreases cost. We used two different databases for our experiment: SQL and NoSQL. We 

performed six hours long experiments for the following uploading frequencies 5, 10, 20, 30, 40, 

50, and 60 seconds. Table 1 shows how many records for each uploading frequency are collected 

and uploaded to the cloud database by one device. The need for storage space that can handle 

huge amount of data is a very important aspect in developing the tracking system. The cost of 

storage will increase yearly as the number of records increases and the number of devices 

increases as well.     
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Table 1: Number or Records for Four-hour static 

Uploading Frequency 

(second) 

Number of Records  Total Database Storage (Kb) 

5 1659 107.7 

10 1070 73.22 

20 616 44.34 

30 432 30.11 

40 320 24.68 

50 266 20.48 

60 226 17.92 

1.1 Problem Description  

Thousands of devices are currently connected to the Internet daily, such as those in smart homes 

and buildings. These devices send and receive data on a daily basis to the cloud.  This data is an 

important aspect of the IoT and represent billions of objects. By 2020, an estimated 50 billion 

devices will be connected, as acknowledged in a report by Ericsson [10]. Since these devices 

produce massive amount of data, the storage becomes more challenging. Data storage is an 

essential research topic for the Internet of Things, as it will continue to grow rapidly [11]. The 

cost of processing, accessing, and transforming data are expensive as the database size increases 

[10].  

In recent years, numerous studies have been conducted in several IoT areas. However, 

most of them are focused on the sensor layer, network layer, or hardware layer, but not on sensor 

data management [12]. The cost of cloud storage for the Smart Vehicle System depends on the 

number of tracking devices. For example, tracking one vehicle for an hour with an uploading 

frequency of 30 seconds, needs 90,720KB (90.72 Mb) per year, as shown in Table 2. Let us 

assume there are one million devices. The database size will be 90,720,000 Mb / year. Hence, the 

cost will increase as the data storage increases and the uploading frequency decreases. Moreover, 

exceeding the storage size of the NoSQL database will lead to fragmentation issues, where data 

is stored in different locations on the disk. 

Data compression can be applied to reduce the size of the data stored in the database, but 

based on [13], public cloud providers do not yet offer data compression. To reduce cloud storage, 

we propose two different algorithms that are implemented on the cloud side.   
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Table 2: Database size (30 second - one device) 

Time  Record Size (KB) 

One day 2880 252 

Week  18,144 1,767 

Month 77,760 7,560 

3 months 233,280 22,680 

Year  933,120 90,720 

 

1.2 Solution Strategy and Contribution 

We develop a tracking system to estimate the storage size of a tracking device’s database on the 

cloud and use the system for experiments. The tracking system is comprised of an Arduino 

board, GPRS/GPS Quadband module, and sensors (GPS, speed, temperature). The main function 

of the system is to detect a device location for a period of time and upload the data to the cloud. 

Then these uploaded data are examined to find the main reason for any redundancy in the 

database. We propose two different algorithms. The first algorithm is for data reduction to 

minimize database storage and the other to reduce data redundancy in the database, both of 

which result in faster processing time. 

The two algorithms are called the Data Lifetime Algorithm and Reducing Data Redundancy 

Algorithm. The Data Lifetime Algorithm adds a lifetime for each uploaded record before 

inserting it into the database. The lifetime is determined by the administrator of the system, 

depending on the size of the database and the time the administrator needs the records to be 

stored in the database. The code is implemented and added to the sources code in the PHP file.  

The Reducing Data Redundancy Algorithm is used when two records have the same 

information. For example, if a vehicle is stopped in a location for a period of time, the records 

will be repeated multiple times with, the same values. The algorithm updates the time of 

previous stored records up to the time when the new record is received. Thus, instead of having 

10 records that have the same information such as longitude, latitude and temperature, we have 

one record by just updating the time for each previous stored record.  

In summary, this study makes three contributions:  

• We develop a tracking system, provide a complete description of the system 

components, and explain how the system works.  

• We propose two different algorithms for reducing data storage size and cost. We 

implement these algorithms on the cloud side for the SQL and NOSQL databases. 

• Experiments are performed to show the results of using these two algorithms on 

the databases (SQL and NoSQL).    
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1.3 Organization of Thesis 

The rest of the thesis is organized as follows. In Chapter 2, we present a comprehensive literature 

review of storage solutions of IoT and existing tracking system models. In Chapter 3, the Smart 

Vehicle System (SVS) and its implementation details are explained. In Chapter 4, we explain the 

proposed algorithms in more detail. Furthermore, experiments are performed and the results 

before and after implementing the algorithms are presented in Chapter 4. Concluding remarks are 

provided in Chapter 5.  
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Chapter 2 

2 Literature Review 
 

2.1 Existing Tracking System Models 

Real-time tracking systems for vehicles have been a field of interest for many researchers and 

much work has been done on vehicle tracking systems since 2010. Nowadays, the number of 

anti-theft modules such as steering-wheel-lock equipment and mobile network tracking systems 

are being developed along with client identification and real-time performance monitoring.  

The paper presented by El-Medany and Al-Omary describes a real-time tracking system 

that provides accurate location information of a tracked vehicle with low cost [14].  The system 

is developed using a GM862 cellular quad band module. In addition, a monitoring server and a 

graphical user interface on a website have been developed using Microsoft SQL Server 2003 and 

ASP.net to view the exact location of a vehicle on a map. The system provides users with 

information about their vehicle’s status, such as its speed and mileage. The objective of the paper 

is to develop a low-cost system by using the latest technologies. The GM862 module integrates 

GPS/GPRS/GSM instead of having separate devices. Google Maps is used to show the location 

of vehicles on a Map. A website is developed to view the vehicle’s current location on Google 

map, plus its speed and mileage.    

Hu, Li, and Guang-Hui [15] developed an automobile anti-theft tracking system using a 

GSM/GPS module. The system uses a high-speed single-chip C8051F120. For detecting a stolen 

automobile, a vibration sensor has been used. The system has the following components: a GSM 

module, GPS receiver module, a vibration sensor, wireless remote control, and Micro-Controller 

Unit (MCU). The location of the automobile is obtained using a GPS module. The system keeps 

the owner of the automobile updated through the GSM module. The owner can receive 

information about his vehicle’s location through a mobile phone and control the alarm. In 

addition, the owner of the automobile can control his vehicle by a remote-controlled alarm. All 

the information collected by GPS and GSM module is processed by an MCU. 

The paper presented by Fleischer and Nelson [16] shows the development and deployment 

of a GPS/GSM based Vehicle Tracking and Alert System. This system allows inter-city transport 

companies to track their vehicles in real-time and provides security from armed robbery and 

accidents occurrences. The main functions of the system are to perform real-time tracking of a 

vehicle and show the routes taken on Google map, monitor the vehicle’s speed to make sure the 

driver is not speeding, monitor the fuel level and consumption rate of the vehicle, send alert 

information to the police if there is a highway robbery, keep passengers informed about the next 

stop the vehicle will reach, and finally, notify the owner of the system if there is an accident. The 
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system contains four main modules: the management system, robbery-alert system, onboard 

location display, and accident-alert system. The system was built using the following 

components:  

• Microsoft SQL Server Management Studio 2008 

• SMS Gateway 

• Microsoft Visual Studio 2010 for development the software  

• Google Map API 

• Crystal Report API to allow the programmer to create reports from different data 

sources  

• PMB-648 GPS Module  

• GSM Modem & Microcontroller  

• LCD Screen Display 

• AVR-JTAG-USB Programmer/Emulator. 

• GSM/GPRS 3-BAND MODULE 900/1800/1900Mhz that includes build on the 

ship GSM cellular antenna 

ElShafee, ElMenshawi , and Saeed [17] built a tracking system that uses Twitter as a value 

added service for the traditional tracking system. Each vehicle has an account that users can 

easily follow. This account will have all posts about the vehicle’s location information. The 

location will display in real-time on Google maps. The vehicle sends tweets regularly, with a link 

to a map showing the current location of the vehicle. The system was developed using GPS for 

location information, GSM/GPRS for information transmission, Google map for showing the 

current location of the vehicle, an Arduino microcontroller, plus Twitter, and a web server with a 

database. The system detects the current location of a vehicle, its speed, door status (open 

/closed), and ignition status (on/off). Then the system sends all this information to the tracking 

server through the internet.     

Vigneshwaran, Sumithra, and Janani [18] implemented a tracking system for theft 

prevention of two-wheelers, using a GSM/GPS module and Android technology. The GPS/GSM 

module is used to track the two-wheeler and send messages to the owner. The system gives the 

owner the ability to track, monitor, and stop his/her stolen two-wheelers through an android 

application. The application is used to control the air solenoid, water solenoid and power cable in 

the vehicle’s engine system. The Peltier unit and Thermal Electric Generator (TEG) is connected 

to the exhaust of the two-wheeler to convert heat energy into power. This power will be stored in 

the battery used in the vehicle. The GSM module sends and receives SMS messages to and from 

the owner of the vehicle. The owner can send SMS to the GSM asking about the location, speed, 

water level, movement status, engine level, and geographical limit. Moreover, the owner can turn 

the engine of the vehicle off by sending over SMS. The location of the vehicle is sent to a 

standalone server continuously. The system was built using the GSM Modem SIM900-D, GPS 

module, microcontroller ATmega-16, Thermoelectric Generator for converting heat into 
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electricity, 16 × 2 LCD Display,12V Battery, MAX 232 IC, Solenoid control valve that is used 

for controlling liquid or gas by running or stopping an electrical current through a solenoid, Flow 

control valve that controls the flow or pressure of a fluid, Relay Driver Circuit is used to allow a 

low-power circuit to switch on and off , and finally android application to display the location of 

the vehicle on Google map.  

2.2 Storage Solutions for Massive Databases in IoT 

All the previous tracking systems generate massive data that need to be transmitted, stored, and 

processed. The storage will increase continuously as the number of devices increases. In recent 

years, only a few studies on a massive data management have effectively proposed models and 

methods.  

For supporting massive data management and processing it in IoT, Zhiming, Qi, and 

Hong [12] proposed a Sea-Cloud-based massive heterogeneous sensor Data Management 

(“SeaCloudDM”) framework. The architecture of the framework is divided into four layers: the 

sensor deployment layer, the sea computing layer, the cloud data management layer, and the data 

analysis application layer. The sensor deployment layer has different categories of sensors. Each 

category can be divided into more detailed classes of sensors. In the framework, the sampled 

data are organized based on objects instead of sensors. Objects are divided into static and moving 

objects, depending on their locations change.  

The sea computing layer has a set of nodes that are connected to sensors. The tasks of the 

nodes are to receive, store, and process the raw sampled data from the connected sensors. After 

that, the nodes send the processed sampled data to the cloud data management layer. There are 

two kinds of sampled data: numerical, such as data sampled from temperature and GPS sensors, 

and multimedia, such as data from video and audio devices. For each sensor, the authors have 

defined a state change threshold to compare between the new raw sampling data and the last 

reported key sampled data. If the difference between them is larger than the threshold, then new 

sampled data will be the next key sampling data. Finally, the new key sampled data is sent to the 

cloud data management layer.  

The cloud data management layer does not store any data generated by the sensors; it 

only manages keys sampled data that are generated from the nodes in the sea computing layer. 

The cloud of the framework uses a Relational Data-Base and Key-Value store combined (RDB-

KV) model. The RDB-KV cloud contains a large number of RDB-KV databases, which support 

both SQL queries and keyword searches efficiently. These databases are organized into a tree 

structure in the cloud. Finally, the massive sensor sampled data that is stored in the cloud data 

management layer can be used in data analysis such as statistical analysis, data mining, and 

recommendation. From these analysis, the authors can get information about the objects and 

physical world. This framework is for managing massive sensor data and increasing query 

response times.  
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Tingli, Yang, Ye, Shuo, and Wei [11] have designed a system called IOTMDB, based on 

NOSQL, to solve the storage problem of massive IoT data. The system has four nodes: the 

master node, standby node, data reception node, and slave node. The main functions of the 

master node are to handle all the connections from clients, keep a map between the key range 

and chunks and between chunks and partitions, and estimate if a chunk has reached its maximum 

capacity. The standby node is a duplicate node that stays in sync with the master node; if the 

master node fails, the standby node takes over. The data reception node’s job is to receive data 

from sensors and do some processing. Finally, the slave node will have all the application data. 

Data from sensors are gathered and sent to the IOTMDB system. The system also provides data 

sharing and collaboration. The authors also developed a public service platform called RNS 

based on DNS for allowing data sharing between different IoT applications, data searching, and 

data locating. When any new object is added to the IOTMDB system, the object will be 

registered in the RNS.  

For data storage strategy, the authors designed a preprocessing mechanism for received 

data. After receiving the data from the sensors, the processing method is determined by 

extracting specific information from the raw data and finding out the type of data. Then data 

cleaning is performed to ensure the accuracy of the received data. Finally, to reduce repeated 

data, the authors used a simple method; they set a threshold to a value to determine whether this 

value should be accepted or not. If the difference between the current value and previous 

accepted value is large, then the current value should be accepted; otherwise it should be 

rejected.  

The authors of [19] presented a universal storage architecture for IoT big data in cloud 

environment using clustering analysis. It divides the nodes in cloud storage into several clusters 

depending on the communication cost between different nodes. Each cluster stores data with a 

special model such as a key value model or document model. Clusters that have the strongest 

computing power for providing universal storage and query interface for users are selected. The 

architecture can be divided into two layers: the data analysis layer and data storage layer. 

Data analysis layer: 

After receiving a huge amount of heterogeneous data, the data storage module examines the 

characteristics of the data and decides on a suitable data model to normalize the data. To store 

the data, the normalized data is transmitted to the corresponding cluster in the data storage layer. 

In addition, after receiving a query from a user, the data query module evaluates the size of the 

query, sends the query to the query command, and finally transforms the query command to the 

right cluster for execution.  

 

Data storage layer: 

To store data, the node of the cloud storage center is divided into several clusters. Each cluster 

stores data with one special model, such as spatiotemporal data model for the sensor data in the 

Internet of Things (IoT). When the data center supports n numbers of data models, the cloud 
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nodes is divided into n+1 clusters. The clusters that have the strongest computing power are 

selected for the data analysis layer. This layer’s groups objects based on the information found in 

the data describing the objects and their relations. 

  The authors did their experiment using 12 distributed nodes as cloud nodes. Each node 

has the following features: a 2.8GHz core, 1GB memory and 250GB hard drive. They used three 

different data models: the key value model, extensible record model and structured 

spatiotemporal model. The cloud nodes are divided into four clusters, and three database 

managements are used. The three databases are: Redis for the key-value model, HBase for 

storing the data of extensible record model, and Oracle for structured spatiotemporal model. The 

authors used three different kinds of data for their experiment: the spatiotemporal data is 

collected from digital home labs, and include three groups of data: temperature, humidity, and 

carbon dioxide concentration; the semi-structured data, collected from huge web pages as an 

example of an extensible record model, and finally the log data of a Linux system, which are 

unstructured. In their experiment, they evaluated the performance of the storage architecture in 

terms of data loading and query processing. Moreover, they compared CloST with Redis and 

HBase. These two production systems are widely used to store big data in IoT. 

 For the data loading performance evaluation, the authors used two datasets, one of 10GB 

and the other 20GB. Their experiment shows that the data loading speed of the storage 

architecture is faster than that of the other systems, and it is more suitable for storing massive 

heterogeneous data. In addition, they used spatial query to evaluate the query performance of the 

storage architecture. To define the relation between the query response time and the range size, a 

number of spatial ranges are selected. The results show that the query response time increases as 

the time range increases.  

The authors of [20] have proposed an efficient technique to store data with a row-key 

system on NoSQL database, and developed a smartphone application to validate it. They 

emphasized that NoSQL databases are more suitable for IoT applications because they are 

adequate with disrupted systems, big data, and scalability. NoSQL databases work well with 

huge amounts of data that does not have a complicated relation and structure. They claim that the 

most popular NoSQL databases are MangoDB, HBase, and Cassandra, each of which has its own 

strengths and weaknesses. For instance, many frameworks support MangoDB because of its 

simple JSON style, while HBase performs better on consistency and partitions tolerance, and 

Cassandra focuses on availability and partitions tolerance. The authors preferred to use HBase 

for their system design because of its excellent consistency. Moreover, they developed a 

smartphone application for three reasons: to control appliances remotely, to monitor accumulated 

electricity bills, and to predict the monthly cost of electricity bills. This smartphone application 

uses an efficient technique to store data in HBase database. Then, the author conducted an 

experiment to evaluate the required time for a query from a smartphone or web application to be 

executed. The evaluated results of this experiment were that over 95% of the clients could get 

their information in 0.5 seconds, with many other applications running at the same time. 
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In summary, all the previous researches show that tracking systems are developed for 

several reasons using distinctive designs. For example, in [14] and [15] the hardware, setup, and 

connection differ from those of our system. In [16] and [18] the system uses SMS messages to 

send and receive the vehicle location information.  In addition, the systems use LCDs to give the 

drivers the ability to view their vehicle’s information while driving, and the tracking unit is 

powered using the vehicle’s electricity. In contrast, our system uploads information 

automatically to the web server, and it operates on battery. Furthermore, in [17] the tracking 

system uses Twitter for displaying the vehicle’s location information. However, our system uses 

Android and web application to review the vehicle’s location information.  

In [11], [12], [19], and [20] show different modules for minimizing database’s storage 

using NoSQL database. However, our system uses both SQL and NoSQL as a storage solution, 

and compares them. Additionally, we use real data by developing and testing a complete tracking 

system that uses a cloud as a data storage solution. Most researchers focus on the tracking system 

without providing storage solution for cloud databases. On the other hand, our system combined 

both real-time tracking system and minimizing data storage.  
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CHAPTER 3 

3 Methodology 
 

3.1 Introduction 

In this chapter, we discuss the design of the tracking system and the process that we used to 

complete it. Each of the hardware devices and software components that we used in this system 

is explained in more detail. 

3.2 System Design 

The Smart Vehicle System (SVS) has been developed to continuously track a moving vehicle 

and then report the status of the vehicle to the administrator of the system. It has the following 

components:  

➢ Arduino UNO R3 (ATmega328P)  

➢ GPRS+GPS Quad-band Module Shield (SIM908) 

➢ Temperature Sensor DS18B20 

➢ GPS Sensor 

➢ Smartphone Application  

➢ Web Application  

➢ Web Server 

The SVS is shown in Figure 3-1. The microcontroller ATmega328P, GPS sensor, 

Temperature sensor, and GPRS+GPS Quad-band Module Shield (SIM908) are placed inside a 

vehicle for real-time tracking and detecting the temperature inside the vehicle with respect to 

time. After the GPS receiver receives the location (latitude/longitude) of the vehicle, speed, and 

time from the satellite, the GPRS+GPS Quad-band Module Shield (SIM908) upload all the 

information, including the temperature of the vehicle, to the web server for further analysis.  

The system provides a report about the vehicle’s location, speed and temperature inside the 

vehicle. Furthermore, it sends a notification to users through a smartphone application if their 

vehicle passes the location or temperature range, pre-set though a web application by the 

administrator. The location range is a zone out of which the driver should not passes, such as a 

city’s limits. The temperature range defines the highest and the lowest permitted values. Vehicles 

should remain within these boundaries. 
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System scenario: the administrator of the system has more than one vehicle and a number of 

drivers. He/she registers all vehicles and driver information using the web application. The 

information includes the following:  

Name of the driver, personal phone number, email, vehicle make, plate number, vehicle 

model, user name, and password (for drivers to use when they download the Android application 

to their smartphone). 

The administrator sets for each vehicle a location and temperature range, which the driver is 

not allowed to pass. The driver has to download the Android application to his/her smartphone to 

get notifications. The driver receives notification if any specified ranges are exceeded. 

Furthermore, the administrator receives the same notification by email. The email includes the 

drive’s name, date and time, speed, current location, temperature, and the warning description 

(passes the location or temperature limits). This system gives for the administrator and the driver 

the capacity to monitor the vehicle in real-time. 

 This system is developed for users who own more than one vehicle, such as a car rental 

company or a moving company. The advantage of the system is having a vehicle history in the 

web application which allow users track their vehicles’ status and monitor the driver’s driving 

behavior such as speed. The system tracks a moving vehicle in real-time for 24 hours and 

collects and uploads data every set interval for further analysis. The data includes location 

(longitude, latitude), speed, and temperature.    

 

Figure 3-1: System Overview  
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3.2.1 Arduino UNO R3 (ATmega328P) Microcontroller 

In the Smart Vehicle System (SVS), the Arduino UNO R3 (Figure 3-2) has been used for 

uploading and executing the system’s software program. By using an Arduino board, we connect 

sensors, such as the temperature sensors thorough the board’s pins. The Arduino Uno is a 

microcontroller board based on the ATmega328P. It has 14 digital input/output pins (of which 6 

can be used as PWM outputs), 6 analog inputs, a 16 MHz crystal oscillator, a USB connection, a 

power jack, an in -circuit system programing ICSP header, and a reset button. We can connect 

the board to a computer by using a USB cable, or power it with a AC-to-DC adapter or battery 

[21].  

 

 

Figure 3-2: Arduino UNO R3 

 

The 14 digital IO pins (0 -13) can be used for either input or output, as identified by the 

sketch. A sketch is a program written using Arduino Software (IDE), which is written in the text 

editor and saved with the file extension .ino. The six analog input pins (A0-A5) take analogue 

values, which are the voltage reading from the sensors, and convert these values into numbers 

between 0 and 1023. Finally, the six analogue output pins (3, 5, 6,9,10, and 11) can be 

reprogrammed for analogue output using the sketch [22].   

We have chosen the Arduino UNO R3 board because of the following reasons:  

• Ready to use structure, which makes it easier for fast developments. So it 

minimizes overhead work, such as burner, fuse settings etc. 

• Code examples are a key for Arduino boards. Examples such as measuring DC 

voltage. 

• Availability of already made functions that can be implemented in our software, 

which makes coding much easier and faster. 

• Large community; so if we get stuck somewhere, we can get help anytime.    
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Since the Arduino UNO R3 has a clock speed of 16 MHz, it can execute the task faster 

than other micro-controllers, such as Arduino Fio. In addition, the Arduino UNO R3 board 

supports I2C and In-System Programming (ISP) communication. The Arduino software has a 

wire library for I2C and an ISP library for supporting ISP communication [21]. 

The Arduino UNO R3 features are as follow:  

✓ Microcontroller: ATmega328  

✓ Operating Voltage: 5V  

✓ Input Voltage (recommended): 7-12V  

✓ Input Voltage (limits): 6-20V  

✓ Digital I/O Pins: 14 (of which 6 provide PWM output)  

✓ Analog Input Pins: 6  

✓ PWM Digital I/O Pins: 6 

✓ DC Current per I/O Pin: 20 mA 

✓ DC Current for 3.3V Pin: 50 mA  

✓ Flash Memory: 32 KB (ATmega328P) of which 0.5 KB used by bootloader  

✓ SRAM: 2 KB (ATmega328P) 

✓ EEPROM: 1 KB (ATmega328P)  

✓ Clock Speed: 16 MHz 

The ATmega328P is a low-power CMOS 8-bit microcontroller and it is attached to the 

Arduino UNO R3 board. Figure 3-3 shows the main features of the ATmega328. The CPU is the 

brain of the microcontroller and controls everything that goes into the microcontroller. For 

example, it fetches the program (uploaded sketches) that is stored in the flash memory and then 

executes it [23].  

The ATmega328P provides the following features: 32K bytes of internal flash memory, 1K 

bytes EEPROM, 2K bytes SRAM, 23 general purpose I/O lines, 32 general purpose working 

registers, three flexible Timer/Counters with compare modes, internal and external interrupts, a 

serial programmable called Universal Synchronous/Asynchronous Receiver/Transmitte 

(USART), a byte-oriented 2-wire Serial Interface, an ISP serial port, a 6-channel 10-bit ADC (8 

channels in TQFP and QFN/MLF packages), a programmable Watchdog Timer with internal 

Oscillator, and five software selectable power saving modes [24].  
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Figure 3-3: Block diagram of ATmega328 

3.2.1.1 Power 

The Arduino Uno R3 board is powered by using a USB connection or an external power supply 

such as an AC-to-DC adapter or battery. The recommended input voltage for the board is from 7 

to 12 volts for operation, so the external power supply is needed. If the board gets less than 7V, it 

is not stable and may produce incorrect data. On the other hand, if it gets more than 12V, the 

voltage regulator may overheat and damage the board [25].  

In our system, we have used the battery since the system will be placed in a moving vehicle. 

The battery is plugged into the board through the power jack, and the battery’s voltage is 9V. 

There are four different power pins in the board: 

❖ VIN: used and accessed when the external power sources is used, for example, if 

supplying voltage by using the power jack. 

❖ 5V: the regulated power supply used to power the microcontroller and other components 

that are connected to the board. The board is powered via USB (5V), DC power jack (7 - 

12V), or from the VIN pin of the board (7-12V).  

❖ 3V3: A 3.3-volt supply generated by the on-board regulator. Maximum current draw is 

50 mA. 

❖ GND: the Ground pins. 

3.2.1.2 Programming 

The Arduino UNO R3 can be programmed by using Arduino software called Arduino IDE 

(Integrated Development Environment). The Arduino IDE software is an open source software 

that can be downloaded to a computer. It allows users to create and compile the sketches and 
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then upload the sketches to the Arduino board. Furthermore, the software has its own library, 

called “Wiring”, that makes the input/output operation easier [23].  

The C programming language is used for coding in developing the tracking system. The 

code has two main functions, which are setup () and loop (), as shown in Figure 3-4. The setup () 

function runs only one time, when the board starts up or resets for initializing the setting. The 

loop () function is used for execution of the program and is called continuously.  

The code file is uploaded to the microcontroller by using a USB cable that connects the 

PC to the Arduino board. After uploading the file, the USB is disconnected and the file will be 

saved in the Arduino’s memory. The file runs each time the board is ON or the reset button is 

pressed. The disadvantage of the board is that the board uses only one file at a time. For 

example, each time we change the code, we have to disconnect all sensors from the board, 

connect the USB cable from a computer to the board, and upload the file, which consumes time. 

 
Figure 3-4: Arduino IDE 

3.2.2 GPRS+GPS Quad-band Module Shield (SIM908): 

The GPRS/GPS module is a shield that uses an embedded SIM908 chip as shown in Figure 3-5 

and uses both GPRS and GPS technologies for real time tracking. It has a Quad-band GPRS/GPS 

engine which works with the frequencies of 850 MHz, 900 MHz, 1800 MHz, and 1900 MHz. 

Since this module has low power consumption, an external power supply is needed. The idea 

here is to use the shield to get the GPS coordinates (Longitude and Latitude) and then send these 

values via HTTP to a web server [26].  

The tracking system components, which are the external GPS antenna and external 

GPRS/GSM antenna, are connected to the shield, and then the shield is connected to the Arduino 

board. After connecting the shield to the board, we change the serial communication jumpers and 

Arduino/RPI jumper to the Arduino position to use the board as gateway for the shield. Since we 
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are using external power, that is, the battery, we set a VIN jumper to the left in the RPI position 

and BAT/REG jumper to the left as well, in the REG position. The GPRS/GPS module has a 

SIM card socket where the SIM card is inserted. 

The general features of the GPRS/GPS Quad-band module shield (SIM908) are:  

❖ Quad-band: 850/900/1800/1900 MHz 

❖ GPRS multi-slot class 10 standard 

❖ GPRS mobile station class B standard (class B can manage either packet data or voice at 

one time) 

❖ Meet the GSM phase 2/2 standard  

• Class 4 (2W @ 850/900 MHz)  

• Class 1 (1W @ 1800/1900 MHz) 

❖ Controlled via AT commands (GSM 07.07, 07.05 and SIMCom Enhanced AT 

Commands set) 

❖ SIM application toolkit 

❖ GPRS supply voltage range: 3.2V to 4.8V 

❖ GPS supply voltage range: 3.0V to 4.5V 

❖ Operating temperature: -40 to +85 °C 

❖ Dual analog audio interfaces 

❖ RTC backup 

❖ Serial interface and debug interface for GSM/GPRS 

❖ Debug interface for GPS NMEA output 

❖ Two separate U.FL antenna connectors: one for GSM/GPRS and one for GPS 

❖ Configurable baud rate 

 The SIM908 module shield specification:  

❖ PCB size: 80mm X 70mm X 1.6mm 

❖ Operating level: 5V/3.3V (optional) 

❖ Indicator: PWR, Status, NET 

❖ Communication protocol: UART 

❖ Support PBCCH 

❖ Uses USSD protocol 

❖ Non transparent mode 

❖ PPP-stack  

❖ Included TCP/IP protocol stack for internet data transfer over GPRS 

❖ CID up to 14.4kbps 

❖ GPRS class 10 max 85.6 downlink 
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Figure 3-5: GPRS+GPS Quad-band Module Shield [24] 
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3.2.2.1 The External GPS Antenna 

The GPS (Global Positions System) is actually a constellation of 27 satellites (24 are in 

operation, with three extras in case one fails) for transmitting radio signals to users. The GPS 

antenna’s job is to locate three or four of these satellites, calculate the distance to each of them, 

and use this information to detect their locations.  

We have used an external GPS antenna as shown in Figure 3-6 to detect the location 

(Longitude and Latitude), speed, and time for a moving vehicle. The GPS antenna gives 26dB at 

3V and 28dB at 5V of gain. The antenna is magnetic, so it is easy to use by sticking on top of the 

moving vehicle. The operating frequency is 1575.42 MHz, the voltage range is between 2.7V 

and 5.5V, and the corresponding current range is between 15mA and 25mA. It uses an SMA 

male connector to connect it to one of the U.FL antenna connectors in the GPRS/GPS module 

shield. The GPS antenna has a weak signal. For this reason, it has to be placed outside under a 

clear sky to receive a clear enough microwave signal to communicate with the satellite. The 

general features of the GPS antenna are as follows:  

❖ Frequency: GPS 1575.42 MHz 

❖ Impedance: 50 Ohms 

❖ Polarization: RHCP 

❖ Gain: 26dB at 3V, 28dB at 5V 

❖ VSWR: <1.2:1 

❖ Supply Voltage: 2.7V - 5.5V 

❖ Current: 15mA - 25mA 

❖ Power (max.): 125mW 

❖ Connector: SMA Male 

❖ Size: 41mm x 34mm x 13.7mm 

❖ Operating temperature: -40°Cto +85°C   

 

 

Figure 3-6: GPS antenna 
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3.2.2.2 The External GPRS/GSM Antenna 

GPRS/GSM antenna (Figure 3-7) is used for transmitting and receiving communication signals. 

The antenna operates on the following frequencies 4G/LTE (791-862/1710-2690 MHz), 3G 

(UMTS 2.1 GHz), GSM Quad-band (850-900-1800-1900 MHz) WIFI / BLUETOOTH (2.4 

GHz). Furthermore, the antenna provides a gain of 2.14 dBi and has RPSMA male to connect the 

antenna to a uFL pigtail. The general features of the GPRS/GSM antenna are as follows:  

❖ Frequency: 4G/LTE (791-862/1710-2690 MHz), 3G (UMTS 2.1 GHz), GSM Quad-

band (850-900-1800-1900 MHz) WIFI / BLUETOOTH (2.4 GHz) 

❖ Impedance: 50 Ohms 

❖ Polarization: horizontal 

❖ Gain: 2.14dBi 

❖ VSWR: <2:1 

❖ Power handling: 25W 

❖ Connector: RPSMA Male 

❖ Size: 114mm x 9mm 

❖ Operating temperature: -40°Cto +85°C 

 

 

 

Figure 3-7: GPRS/GSM antenna 

 

 

 

3.2.3 Temperature Sensor DS18B20 

For detecting the temperature inside the vehicle, we have used a temperature board module 001 

called Keyes, as shown in Figure 3-8. The DS18B20 sensor is attached on the temperature board 

with other components such as flashing LED and a resistor. The use of the flashing LED is to 
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determine whether the board is powered correctly, and the resistor is to control the flow of the 

electric current through the circuit [27]. 

 

Figure 3-8: Temperature Sensor 

 

The DS18B20 is an electronic thermometer that has high accuracy. It provides 9-bit to 12-bit 

Celsius measurements. Moreover, it communicates with the Arduino board over a 1-Wire bus 

since the sensor needs one data line for communication with the microcontroller. The DS18B20 

can get power directly from the data line, so an external power supply is not needed. For 

communication with the board, we connected the sensor to the board, as shown in Fig 3-9, by 

using three pins which are ~10, GND, and 5V on the board. The pin ~10 is used for transmitting 

the data to the microcontroller, and GND and 5V to get power supply from the board [28].  The 

general features of the DS18B20 are:   

❖ Temperature range: -5° to 90°C (-23°F to +194°F) 

❖ The Thermometer resolution is programmable from 9 to 12 bit  

❖ Uses 1-Wire interface which requires only one digital pin for communication 

❖ Unique 64-bit ID singed into chip 

❖ Multiple sensors can share one pin 

❖ ±0.5°C Accuracy from -10°C to +85°C 

❖ Temperature-limit alarm system 

❖ Query time is less than 750ms 

❖ Power supply range: 3.0V to 5.5V  
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Figure 3-9: DS18B20 digital temperature sensor connected to Arduino board  

3.2.4 Web Application  

The web application is developed to display and manage all the tracking information to the end 

users as shown in Figure 3-10. The end user is the system Administrator who has installed the 

tracking kit in his/her vehicle and is managing the system. The web application will have a user’s 

information, and the vehicle’s information such as module, year, and brand. In addition, the 

administrator sets the location and temperature ranges for a vehicle through the web application. 

Furthermore, the web application will have a history page that contains all of the past 

information such as temperature and location with date and time.   

The overall design goals of the web application can be summarized as follows: 

• Define and manage all users’ account information and vehicle information by the admin. 

• Define, manage, and view all users’ account information and tracking information. 

• Define and manage location and temperature range for each vehicle. 

• Receive tracking information from each tracking device. 

• Store tracking information received from tracking device to the associated user in the 

database. 

• Display history (locations and temperature) of each vehicle. 

 

The web application is developed using HTML, JavaScript and PHP. JavaScript is used to 

execute all background operations and functions such as login checking and data validation. For 

displaying vehicle locations in Google map, JavaScript embeds Google Map API on the website 

using key and Google maps class provided by Google [29]. PHP is used at the server side to 

validate and store the received tracking data in forms that make it easier to examine and check 

relevant parts of received data.  
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Figure 3-10: Web Application 

The control flow of the web application is shown in Figure 3-11. The web application has 

four main sections: registration, user lists, set alert, and logout. In the registration section, the 

admin adds users’ information such as name, email and password, and vehicle’s information 

such as brand and plate number to the system. Each added user has a tracking device that is 

installed in his vehicle. For that reason, a device id is added to the user’s information. The next 

section is the user list, which has all registered users in the system, with their vehicle information 

and current temperature inside their vehicle. Furthermore, the admin can view users’ information 

and their history such as past temperatures and locations, with data and time. He/she can edit 

users’ information and edit vehicle location ranges, and finally delete users through the user list 

section. Adding alerts for the temperature inside a vehicle is achieved through the set alert 

section. For each vehicle, the admin sets the highest and lowest allowable temperature values for 

inside the vehicle; if the temperature exceeds these values, the admin and user will receive 

warnings. In addition, the admin can delete the temperature’s range for any vehicle in the system. 

The last section is the logout where the Admin logs out of the system.    
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Figure 3-11: Control Flow of Web Application 

3.2.5 Smartphone Application 

We have developed an Android application for assisting users in tracking their vehicle location 

and temperature. Authorized users can receive notifications through the application if their 

vehicle passes the location or temperature range specified by the Administrator. The application 

was developed using Android Studio, which is the certified Integrated Development (IDE) for 

Android applications.  

The application displays the following information, as shown in Figure 3-12 

• The current temperature of the vehicle  

• Temperature range (Low – High) 

• The current location of the vehicle 

• The current address (City – Province – Country)  

• Google Map 

The control flow of the smartphone is shown in Figure 3-13. It has three sections, which are 

home, notification, and logout. After users login to the application using their username and 

password provided by the Administrator, the home section appears. The home section displays 

the current location and temperature of the vehicle. Users can turn the notification to ON or OFF 

through the notification section. Since the vehicle has more than one driver, the driver can turn 

off the nofication when he/she is not driving. 
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         Figure 3-12: Android Application 

 

 

Figure 3-13: Control Flow of Smartphone Application 
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3.2.5.1 Google Maps API  

We use a Google maps API (Application Programming Interface) for Android to display the 

location of the vehicle on an Android application in real-time by using an HTTP request. The 

main function of the Google maps API is to handle access to Google Maps servers, display maps 

on the smartphone application or on the web application, and respond to user actions, such as 

clicks and zooms in/out.  

3.2.6 Web Server  

The web server stores all information received from the tracking system installed in different 

vehicles. The database is available for authorized users and accessible over the Internet. 

Authorized users can track, manage, and view all previous information stored in the database for 

their vehicle. Moreover, user information and vehicle information are stored in the database.   

3.2.7 Database Design 

The database is designed to store all system information, including admin login credentials, user 

information, vehicle information, and tracking data received from the tracking system. In our 

thesis, we have used two different databases - the SQL database and NoSQL database - for 

storing all received data from the tracking unit. For the SQL database, MySQL is used, which is 

relational database that uses tables. For the NoSQL, MongoDB is used, which is non-relational 

database that is based on documents instead of tables.  

3.2.7.1 SQL database:  

SQL database is based on a fixed table structures. A structured query language is used for 

selecting data from the tables. By using the join operation, we can select data from multiple 

tables. SQL databases typically work well in a vertical manner, such as for upgrading a server 

that runs a database. On the other hand, it does not work well in a horizontal manner, such as for 

adding a server to a cluster [30].  

The MySQL database consists of the following tables, as shown in Figure 3-16 below: 

• MyData table:  it has all the location information (longitude, latitude, and speed) 

received from the tracking system including time, temperature, device id, and packet id. 

• tb_vehicle table: it holds vehicle information and temperature ranges for each vehicle. 

• Registration table: all users’ information, account information, and current location of 

the registered vehicles are stored in the registration table. 

• Admin table:  it has admin’s login information.  

We create PHP files to connect to the MySQL database using the server address, database 

username, database password, and database name, as shown in Figure 3-14 below. Every time 
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the GPS tracker sends HTTP requests, the PHP file will capture these requests and store the 

received variables into local variables in the database, as shown in Figure 3-15 below. 

 

Figure 3-14: PHP file – Connection 

 

 
 

Figure 3-15: PHP file 
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Figure 3-16: Database Tables 

3.2.7.2 NoSQL database:  

The term ‘NoSQL’ collectively refers to the database technologies that use non-relational 

databases. By losing some of the ACID transactional properties (atomicity, consistency, isolation 

and durability) of relational databases, NoSQL databases achieve higher availability and 

scalability, which are critical requirements for big data processing. In addition, NoSQL databases 

do not require fixed schema with pre-defined data structures and constraints in the early stages of 

database design. Furthermore, an NoSQL database allows horizontal scaling, by duplicating and 

partitioning data over many nodes, thereby promoting fast read and write operations of massive 

data [31]. 

NoSQL databases have three types of models: key-value stores, document databases, and 

column-oriented databases. In the key-value stores model, data are stored and retrieved by a key. 

This model can hold unstructured and structured data. The document database is based on the 

key-value stores concept but has added complexity. Each document has its own data and a 

unique key for retrieving the document. The column oriented database stores data tables as 

columns rather than rows. This model is more effective with database that require column-

oriented calculations such as aggregation [30].    
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MongoDB is an open source NoSQL database developed by 10gen. In addition, it is a 

document-oriented NoSQL database and written in C++. The MongoDB components are the 

mongod, mongos, replica sets, shard, and config server. The mongod handles all the data 

requests, manages data access, and performs background management operations. The mongos is 

the routing service for MongoDB shard configurations. It processes all the queries from the 

application layer and then determines the location of the requested data in the shared cluster. The 

replica sets is a group of mongod processes that has the same dataset. In cases where the primary 

mongod is unavailable, the replica sets will choose a new primary mongod. The data is stored in 

the shard, and each shard is a replica set to make the data available and consistent. Finally, the 

config server stores the cluster’s metadata, which contain all the mapping between the cluster’s 

dataset and the shards [31]. 

MongoDB stores data as documents in a binary representation called BSON (Binary 

JSON) or BSON objects. Its drivers send and receive data in BSON as shown in Figure 3-17. 

MongoDB clusters data through collections. A collection is a grouping of documents (records) 

that share a similar structure. The collection acts the same as a table in an SQL database, and 

documents act as records inside the table(rows), and field as columns. Each collection can have a 

different structure from one another, unlike in SQL, where each table has to be restrict by a 

schema. This feature will reduce the need to divide data in a document into several different 

tables, as is often done in SQL implementations. [32].  

 

Figure 3-17: MongoDB Architecture 

We created two databases, svs (Smart Tracking System) and svs_dataSaving. Each 

database has its own collection for storing all data received from the tracking unit. We use the 

following commands:   

• use name of database: To create a new database for our experiments.  

• db.name of the collection.stats(): To show the information of the collection, as in Figure 

3-18, such as the name of the database, the size of the collection, and the number of 

documents stored in the collection, etc. .  
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Figure 3-18: Collection.stats() 

• db.name of collcation.find().pretty(): To list all saved documents within a collection as 

shown in Figure 3-19. 

 

Figure 3-19: Collcation.find(). 

• db.name of collcation.remove({}): To delete all documents within a collection 

• db.name of collection.count(): To list the number of documents stored in a collection  



32 
 

we developed a PHP file using MongoClient () class to create and manage connections 

between mongodb and web servers, as shown in Figure 3-20. Then, we created a database and 

collection in which to store all information received from the tracking unit as documents.  

 

 

Figure 3-20: Mongo Connection 

3.3 Communication 

The GPRS/GSM module is initialized by using AT commands to start collecting location data 

from satellites. The GPS is powered ON and put in reset mode, and then the GPS module is 

ready to receive location information from the satellites. Then the GPRS is turned ON by setting 

the APN of the service provider, initialing the HTTP protocol and setting the protocol method 

(Get method) by using the AT command (AT+HTTPACTION).  

Once all the tracking components are connected (GPS and GSM antenna to SIM908 

module, temperature sensor DS18B20 and SIM908 module to the Arduino board), and the baud 

rate is set to 115200bps, the GSM mode is turned ON to register SIM908 to the network by 

sending AT commands (AT+CPIN =1234) to use the PIN number to open the SIM card, as 

shown in Figure 3-21. Then, the microcontroller sends an AT command (AT+CGPSPWR=1) to 

turn the power supply of the GPS ON and send (AT+CGPSRST= 0) to set the GPS mode to 

COLD start mode.  

 After turning the GPS ON and the serial port is available, the GPS starts tracking the 

vehicle’s location and trying to get a stable coordinate of the vehicle. After that, the 

microcontroller sends an AT command (AT+ CGPSINF= 0) to get the current GPS location’s 

information. Then the GPS receiver sends back the coordinate information with other data such 

as the speed of the vehicle, the time when the GPS signal was received, and the number of 

satellites that are involved in the tracking. In addition, the temperature inside the vehicle is 

determined and sent to the database with the other data. Finally, the HTTP (Hypertext Transfer 

Protocol) connection is initialized by using an AT command (AT+ HTTPINIT) to upload the 

data to the database in the web server for further processing. The flowchart of the whole process 

is shown in Figure 3-22, and has the following steps:  
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Step 0: Start of the process. 

Step 1: Initialize baud rate for serial communication at 115200.  

Step 2: Check if the serial port is available. 

Step 3: If “ No” try again until the serial port is available. 

Step 4: Send AT command to check if the communication with the GPRS/GPS module is 

working.  

Step 5: Wait for OK response from the GPRS/GPS module. 

Step 6: If the response from the AT command is not OK, wait for specific time.  

Step 7: After the time is up, send the AT command again. 

Step 8: If the response is OK, then send an AT command to unlock the SIM card.   

Step 9: Send an AT command to turn the GPS ON and acquire signal from satellites. 

Step 10: Check if the GPS is connected to the satellite. 

Step 11: If it is not connected, then send out an AT command to acquire signals every few 

second. 

Step 12: If it is connected, registration to the GPRS/GSM network is performed. 

Step 13: Send AT command to check the GPRS connection. 

Step 14: If it is not connected, then send the command again. 

Step 15: If the GPRS is connected, then request the location and the temperature from the 

sensors  

Step 16: After the signal package has been received, the coordinate, speed, time, and number of 

satellites are extracted from the package. 

Step 17: All these data are uploaded to the web server database for further analysis. 

Step 18: Every few seconds, the location and temperature are requested and uploaded to the web 

server. 

When the data is received, and stored in the database by using the GET and POST 

functions in the PHP script, the server will do some analysis. Then the server determines if the 

current location of the vehicle or the temperature are out of the present ranges. If they are, the 

server sends out warnings and notifies the users through the application in their smartphone. 

These ranges are specified by the administrator through the web application. 

In summary, the GPRS/GPS module, including the GPS and GPRS/GSM antenna, is 

attached to the Arduino UNO R3 microcontroller. The microcontroller sends an AT command to 

the GPRS/GPS module. If the response is OK, it will check the network status for confirmation 

of registration. After that, the microcontroller will check the GPS status and try to get the GPS 

information of the vehicle and request the temperature from the temperature sensor. Finally, this 

information will be sent to the cloud using an HTTP request.    
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Figure 3-21: AT command 
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Figure 3-22: Flowchart of communication process  
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Chapter 4 

4 Experiment and Result   
 

In this chapter, we introduce two algorithms for minimizing database storage in the cloud and 

explain their functions. Furthermore, experiments that we performed are explained and their 

results are discussed. In our experiments, two different tests are completed: static and dynamic. 

Static means when the vehicle is not moving for a period of time, and dynamic is the driving 

mode when the vehicle moves from one location to another. These experiments are performed on 

SQL and NOSQL databases.       

4.1 Proposed Algorithms  

To decrease database storage, we propose two different algorithms. The first is used to reduce 

data redundancy, which occurs when two uploaded records have duplicate values such as for 

longitude, latitude and temperature. The second algorithm is used for un-repetitive data for 

which there are no duplicate values in the stored record. Before new records are uploaded, a 

lifetime, specified by the administrator of the database, is added. Records will then be deleted 

from the database after their specified lifetime is reached. 

 The second algorithm is a suggested feature of our system but was not included in our 

experiment because of the variable times that an administrator might need to store the data. If the 

administrator uses the second algorithm the size of the database will be steady and will not 

increase. The database size will be stable since some of the stored records in the database will be 

deleted after a period of time specified by the administrator. Therefore, the administrator would 

have the ability to determine how much data should be stored for future processing.  

4.1.1 Reducing Data Redundancy Algorithm (RDR) 

After the Smart Vehicle System (SVS) collects the data from the vehicle tracking unit as shown 

in Figure 4-1, the raw data is examined to determine if the data is new or already exists in the 

database. Then, data cleaning is performed to ensure the accuracy of the data by filling in any 

missing data and levelling the noise [33].  The data collected from sensors in the real world is 

usually incomplete or invalid. We fill in the missing values using the average value of the last 

values in the previous records. For example, if the speed is missing, the average speed of 

previous records is calculated and the result is inserted in the open spot. However, if the data 

already exists in the database, a custom process is performed.  

.  

 



37 
 

Th RDR (Reducing Data Redundancy) process: Each uploaded record is examined to 

determine whether it duplicates any information (longitude, latitude, and temperature) in 

previously stored records. If it does, then we update the time where the data was sensed for the 

previously stored record in the database. We develop and implement the code on the server side 

in the cloud. The code is written in PHP language and added to the PHP file as shown in Figure 

4-2 below. The updated time is when the GPS receiver receives the record from the satellite. 

Hence, instead of having 10 records that have the same longitude, latitude, and temperature for a 

period of time, we have only one record. From the updated time and previously stored record’s 

time, the user will know for how long the vehicle was not in motion. Consequently, the need for 

database storage will be reduced since the number of records has decreased.  

 

Figure 4-1: Smart Vehicle System(SVS) Process 

In summary, the main functions of the Reducing Data Redundancy algorithm are:  

• The collected data is cleaned by filling in the missing value and examined by checking 

the new record’s values (longitude, latitude, and temperature).   

• If it has the same values as a previously stored record, the time of the last saved record is 

updated to that of the new record. 

• Then, the new record is discarded. 
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The Pseudo code for Reducing Data Redundancy algorithm is as follows:  

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2: Reducing Data Redundancy Algorithm(RDR) 

Sense location and temperature 

         If current location for the new record is the same as the previous record  

            If current temperature for the new record is the same as the previous 

records 

  Update the time of the last records AND Don’t upload the new data  

   Then, upload the data 

        Then, upload the data  
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4.1.2 Data Lifetime Algorithm  

For unrepeated records, we add a lifetime for each uploaded record before inserting it in the 

database. This time is specified by the administrator of the database. The time depends on how 

long the administrator needs the data to be stored and on the amount of database storage 

available. This algorithm will make the database storage’s size constant. When a record reaches 

its determined lifetime, the record is discarded. This algorithm reduces storage size by removing 

any records that the administrator does not need any more from the database.  Therefore, instead 

of deleting each record manually, our code helps the database administrator to set a time for 

uploaded records to delete themselves. For example, before inserting a received record into the 

database, the administrator can set the lifetime to one month by setting the HOUR variable to 

720 hours. After 720 hours, the record will be discarded.  

DATE_SUB (CURRENT_TIMESTAMP, INTERVAL ".$deletion_hour." HOUR)"; 

 

The code is written in PHP language and added to the PHP file as shown in Figure 4-3 below. In 

summary, the main functions of the Data Lifetime algorithm are: 

• Before inserting a new record into the database, a lifetime is added to the record. 

• When the record reaches its lifetime, the record is discarded.  

 

Figure 4-3: Data Lifetime Algorithm       

4.2 Experiment Setup 

In our experiment, we develop a physical tracking system to detect the location, speed, and 

temperature of a vehicle. The system is used to send collected data to the cloud database for 

further processing. We use Arduino UNO, GPRS/GPS module, GPS antenna, GSM/GPRS 

antenna, temperature sensor, and 9V battery components in our tracking system. These 

components are described in detail in Chapter 3. 

We connect the following components to the Arduino board as shown in Figure 4-4: 
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• A GPRS /GPS module for obtaining GPS coordinates (Longitude and Latitude) 

• A GPS antenna to connect to three or four satellites, calculate the distance to each of 

them and use this information to detect its location 

• A GSM/GPRS antenna for transmitting and receiving communication signals. 

• A Temperature sensor for detecting the temperature inside a vehicle. 

• A 9V battery to power the Arduino board and GPRS /GPS module 

We connect the Arduino board to a laptop, using USB cable to upload sketches to the board. 

These sketches will have different upload frequencies for records, such as 10, 20, 30, or 40 

seconds. The used laptop in this experiment is a ASUS 14" Laptop, which has the following, 

features: a 2.16GHz Intel Pentium quad core processor, a 1TB hard drive, 8GB RAM, and 

Windows 10.   

 

 

Figure 4-4: Tracking System Components Setup 

4.3 Experimental Results for SQL Database 

In our experiment, we did in total 14 hours testing; of this,10 hours were static (no driving), and 

4 hours were dynamic (driving). For the static testing, we performed five different uploading 

frequencies: 10, 20, 30, 40, and 50 seconds. Each of these frequencies was tested twice, before 

and after implementing the Reducing Data Redundancy algorithm (RDR). On the other hand, for 

the dynamic testing we just did two uploading frequencies, 10 and 40, and tested each twice as 

well. We have chosen these frequencies to have two different point of view. When it is low (10 

seconds) and when its high (40 seconds).   
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4.3.1 Static Testing  

The test was executed at a fixed location, representing a vehicle that is not in motion for a period 

of time. We performed 5 hours testing before implementing the Reducing Data Redundancy 

(RDR) algorithm. For each uploading frequency, we did a one-hour test. For example, 

• One hour for 10 seconds 

• One hour for 20 seconds 

• One hour for 30 seconds 

• One hour for 40 seconds 

• One hour for 50 seconds 

The results of the test are shown in Table 3, which shows the number of records uploaded to the 

database and the total storage space they consume for each uploading frequency.   

Table 3: Static Testing – Before Implementation of RDR Algorithm  

Uploading 

Frequency 

in Seconds 

Number of 

Records  

Total 

Storage kB 

10 247 19.15 

20 141 12.18 

30 107 10.55 

40 73 6.35 

50 57 5.22 

 

After that, we applied the Reducing Data Redundancy (RDR) algorithm to the database 

files and performed another 5 hours testing for each uploading frequency. Table 4 shows that 

there is a massive saving in the database storage. The percentage of the storage saving increases 

as the uploading frequency decreases. From Table 3 and 4, we conclude that using the RDR 

algorithm will greatly decrease the number of records since the vehicle is in a fixed location. The 

uploaded records occur because of temperature changes. Each time the temperature changes; the 

record is uploaded; otherwise, the time of the existing record is updated. 

Table 4 : Static Testing – After Implementation RDR Algorithm  

Uploading 

Frequency 

in Seconds 

Number of 

Records  

Total 

Storage kB 

Percentage 

of Storage 

Saving 

10 36 4.2 %78.07 

20 25 3.6 %70.44 

30 16 3.07 %70.90 

40 11 2.67 %57.95 

50 10 2.66 %49.04 
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4.3.2 Results 

After combining the before and after the RDR algorithm implementation results in one graph 

(Figure 4-5), we can conclude that the Reducing Data Redundancy (RDR) algorithm decreases 

database storage size by removing data redundancy. The massive saving in database storage 

occurs at the 10, 20, and 30 second uploading frequencies. The RDR algorithm will be more 

beneficial with these uploading frequencies. As shown in Figure 4-5, the line before 

implementing the RDR algorithm has more fluctuation than the one after applying it, which 

indicates that there are lots of repeated records. If we set the upload frequency to 50 seconds, 

then the proposed algorithm is less effective. Hence, the less the number of uploaded records, the 

less the database size. 

 

 

Figure 4-5: Static Testing Comparison 

4.3.3 Dynamic Testing 

For our real time experiment, we performed dynamic testing where we drove for 4 hours in total. 

Each uploading frequency (10 and 40 seconds) was tested for one hour. These frequencies were 

tested twice, before and after implementing the Reducing Data Redundancy algorithm (RDR). 

Figure 4-6 shows the routes used for our experiment. The first route starts at Sobeys market and 

ends at RIM Park, and the second route starts at RIM Park and ends at Sobeys market. Each 

route was driven twice--before and after implementing the RDR algorithm.  

For 10 seconds (1 hour): 
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We drove from Sobeys market to the University of Waterloo to Conestoga Mall and finally to 

RIM Park. We stopped for 10 minutes at the University of Waterloo, 10 minutes at Conestoga 

Mall, and five minutes at RIM Park. The total minutes for the 10 second uploading frequency 

would be 35 driving mode and 25 static mode. We used the route twice--before and after 

implementing the algorithm.  

For 40 seconds (1 hour): 

We drove from RIM Park to Conestoga Mall to University of Waterloo and finally to Sobeys 

market. We stopped for 10 minutes at the University of Waterloo, 10 minutes at Conestoga Mall, 

and five minutes at Sobeys market. The total minutes for the 40 second uploading frequency 

would be 35 driving and 25 static mode. We used the route twice--before and after implementing 

the algorithm.  

 

Figure 4-6 : Dynamic Test Route 

Table 5 below shows the number of records and total storage for each 10 and 40 seconds? 

before implementing the RDR algorithm. The problem here is with the 10 second uploading 

frequency, since the number of records will be doubled with each added hour, resulting in 

increasing database size. For example, if we drove for four hours, then the number of records 

would be 952 records. This number is for just one device. The database storage will be affected 

by increasing driving hours, the number of devices, and decreasing the uploading frequency.  
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Table 5 : Dynamic Testing – Before Implementing RDR Algorithm  

Uploading 

Frequency 

in Seconds 

Number of 

Records 

Total 

Storage kB 

10 238 13.11 

40 84 6.25 

 

After applying the Reducing Data Redundancy (RDR) algorithm to the database files, we 

did another two hours driving for both the 10 and the 40 uploading frequencies. Table 6 shows a 

massive saving in database storage and the number of records as well. Moreover, the percentage 

of storage saving will increase as the uploading frequency decreases. From Table 5 and 6, we 

conclude that there is a great decrease in the number of records, especially at the 10 seconds 

uploading frequency. The recommended uploading frequency to use is to start from 40 and less 

since the algorithm works well as the number of records increases.  

Table 6: Dynamic Testing – After Implementing RDR Algorithm  

Uploading 

Frequency 

in Seconds 

Number of 

Records  

Total 

Storage kB 

Percentage 

of Storage 

Saving 

10 53 5.63 %57.06 

40 39 4.61 %26.24 
 

4.3.4 Results 

From the previous dynamic experiments, we can conclude that the Reducing Data Redundancy 

algorithm provides a massive saving in database storage with the 10 second uploading frequency, 

as shown in Figure 4-7 below. The algorithm is more effective as the uploading frequency 

decreases. Minimizing storage space will make response times for queries faster. If we have huge 

amounts of data, we will need to upgrade the existing hardware such as the memory and CPU 

capability to speed up the response time. The upgrading means that the cost of the hardware will 

increase as data size increases.   

The dynamic experiment results depend on the following:  

• How often we upload data to the database: 5, 10 ,20, 30, 40, 50, or 60 seconds?  

• The number of stops we make in a day 

• Traffic intensity and traffic lights  

• Road conditions  

• Weather conditions 

All these aspects will affect the dynamic experiment results. For example, each experiment 

should take one hour but depending on the traffic and traffic lights, it may take more than one 
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hour. If the experiment takes less than one hour, we must wait at our final destination until the 

one hour is reached.  For that reason, a route that has less traffic and less traffic lights was 

chosen. The experiment was performed multiple times due to road conditions such as accidents 

or construction work, or weather conditions such as rain or snow. The results of the dynamic 

experiment are closest to the results of real-time tracking.  

 

Figure 4-7: Dynamic Testing Comparison 

4.4 Experimental Results for NOSQL Database 

To determine the size of the NOSQL database, we performed five hours of static testing in total 

before implementing the RDR algorithm, one hour for each of the following frequencies: 10, 20, 

30, 40, 50 seconds.  As shown in Table 7, the size of the database increases as the uploading 

frequency decreases. For each updating document, we have to consider the effect of the new data 

on document growth. If the update operation causes the document to exceed the allocated space 

on the disk, MongoDB relocates that document to a new location on the disk, which affects 

system performance and leads to disk-fragmentation issues. 

 Mongodb has a feature called Capped Collection that allows collection sizes to be capped 

at a certain size limit. The administrator of the tracking system can activate this feature by fixing 

the acceptable size for a collection. Thus, when adding a new document to a collection will cause 

that collection to exceed its pre-determined limits, the oldest document in the collection is 

deleted so that the new document can be added. The capping feature works well for systems that 

have a high rate of insertion, retrieval, and deletion. The problem with capped collections is that 

old documents can be deleted at any time without the administrator’s notice. For example, if the 

collection has a high rate of insertion, it may exceed its fixed size in a month, and if the 
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administrator of the system needs the documents for the last three months, some documents will 

already have been deleted. 

Table 7: NOSQL 5 hours static testing 

Uploading 

Frequency 

in Seconds 

Number of 

Document 

MongoDB 

Total 

Storage kB 

MongoDB 

 

10 279 66.96 

20 133 31.92 

30 109 26.16 

40 79 18.96 

50 61 14.64 

 

4.4.1 Dynamic Testing 

In real time experiment, we drove for 4 hours in total, two hours before implementing the 

Reducing Data Redundancy Algorithm (RDR) and two hours after the implementation for each 

of the uploading frequencies (10 and 40 seconds).  We used the same route as shown in Figure 4-

6 above. The first route starts from Sobeys market and ends at RIM Park and the second route 

starts from RIM Park and ends at Sobeys market. Each route was taken twice-- before and after 

implementing the RDR algorithm. 

For 10 seconds (1 hour): 

We drove from Sobeys market to the University of Waterloo to Conestoga Mall and finally to 

RIM Park. We stopped for 10 minutes at the University of Waterloo, 10 minutes at Conestoga 

Mall, and five minutes at RIM Park. The total minutes for the 10 second uploading frequency 

were 35 in driving mode and 25 in static mode. We used the route twice before and after 

implementing the algorithm.  

For 40 seconds (1 hour): 

We drove from RIM Park to Conestoga Mall to the University of Waterloo and finally to Sobeys 

market. We stopped for 10 minutes at University of Waterloo, 10 minutes at Conestoga Mall, 

and five minutes at Sobeys market. The total minutes for the 40 seconds uploading frequency 

were 35 in driving mode and 25 in static mode. We used the route twice-- before and after 

implementing the algorithm.  

Table 8 below shows the number of documents and total storage for each 10 and 40 

seconds before implementing the RDR algorithm. The problem here is that the size of the 

database will increase as the driving time and number of tracking devices increase and uploading 
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frequency decreases. For example, if the driving time is 6 hours for 10s uploading frequency, the 

number of documents will be 1,284, and the database storage will be 65,946 KB 

Table 8: NOSQL Dynamic Testing before Implementing RDR algorithm 

Uploading 

Frequency 

in Seconds 

Number of 

Documents 

NoSQL 

Total 

Storage kB 

NoSQL 

10 214 51.36 

40 73 17.52 
 

The Reducing Data Redundancy (RDR) algorithm was added to the database files. Then, 

we drove another two hours for each of the uploading frequency 10 and 40 second. Table 9 

below shows that, there is a massive decrease in the database storage and number of documents. 

From Tables 8 and 9, we conclude that there is a great reduction in the number of documents and 

storage size, especially with the10 second uploading frequency. The recommend uploading 

frequency to use is to start from 40s and less, since the RDR algorithm works well with an 

increasing number of documents. 

Table 9:NOSQL Dynamic Testing after Implementing RDR algorithm 

Uploading 

Frequency 

in Seconds 

Number of 

Documents 

NoSQL 

Total 

Storage kB 

NoSQL 

10 51 16.848 

40 36 9.664 

4.4.2 Results 

From the dynamic experiments, we can conclude that the Reducing Data Redundancy algorithm 

provides an enormous saving in database storage with the 10 second uploading frequency, as 

shown in Figure 4-8 below. The RDR algorithm is more effective as the uploading frequency 

decreases. Using the RDR algorithm will solve the relocation problem that led to disk 

fragmentation issues. The relocation problem occurs when a collection exceeds its fixed size. 

Moreover, the cost of accessing, processing, and transforming documents will decrease as the 

size of a collection decreases.  Another advantage is that accessing and retrieving stored 

documents will be faster since all documents are stored on the same location on the disk, instead 

of being stored in a different server for example.    
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Figure 4-8: NOSQL Dynamic Testing Comparison before and after RDR implementation  

4.5 SQL Vs NOSQL 

After performing five hours of static testing for both the SQL and NOSQL databases, we found 

that the NOSQL database consumes more storage space than SQL, as shown in Table 10 below. 

As the uploading frequency decreases, the storage size for both databases increases. For instance, 

for 10 second upload frequency consumes 19.15 kb for SQL database, while NOSQL database 

uses 66.96 kb. Moreover, 50 second upload frequency consumes 5.22 kb in the SQL and 14.64 

kb in the NOSQL databases. In addition, Figure 4-9 shows that the gap between SQL and 

NOSQL database storage gets larger when we use a small uploading frequency value such as 10 

seconds. The higher the frequency rate for both databases, the lower the storage size.   

Table 10: NOSQL and SQL Comparison 

Uploading 

Frequency 

in Seconds 

Number of 

Records  

MySQL 

Number of 

Documents 

MongoDB 

Total 

Storage kB 

MySQL 

Total 

Storage kB 

MongoDB 

 

10 247 279 19.15 66.96 

20 141 133 12.18 31.92 

30 107 109 10.55 26.16 

40 73 79 6.35 18.96 

50 57 61 5.22 14.64 



49 
 

 

Figure 4-9: SQL and NOSQL Storage Size Comparison 

However, the NOSQL database (MongoDB) provides horizontal scalability with low 

hardware costs by adding multiple servers. The data is duplicated among these servers, which 

prevent automatic failover. Furthermore, an order-preserving of sharing makes the query 

execution fast [34]. On the other hand, SQL database (MySQL) is not good with horizontal 

scalability since the performance and process will be slower and more time consuming. SQL 

database works well with scale vertically by using an advanced server with more storage space 

and power (CPU and RAM), which results in a high cost. The time required to load data from 

disk to memory is one of the key parameters since most of data processing starts with this 

operation. SQL has a slower loading time since its data is split into multiple single rows and 

reading these rows takes more time than reading whole objects [35]. 
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Chapter 5 

5 Conclusion  
 

In this thesis, we have developed a complete a vehicle tracking system that is flexible and 

efficient. This system will give users the ability to track their vehicle with low cost for cloud 

database storage. The SVS system provides accurate data in real time and eliminates data 

redundancy in the cloud side for both SQL and NOSQL databases. In chapter 2, we provided a 

literature survey of exiting tracking system model and storage solution for a massive database in 

Internet of Things (IoT). We discussed various methodologies of storage efficiency 

improvement. In addition, we compare our tracking system and modeling process with existing 

works.  

 In chapter 3, we explained the system model of our Smart Vehicle System (SVS), its 

components’ feature, and implementation details. The SVS system is build using Arduino board, 

GPRS/GPS Quad-band module shield, temperature sensor, external GPS antenna, external 

GPRS/GSM antenna, web application, and smartphone application. The system is designed to 

track a vehicle’s location, speed, and temperature. Users can control their vehicle’s location and 

temperature range through the web application where it is not allowed to pass. If their vehicle 

passes these ranges, they will receive notification through the smartphone application. All data 

collected from the system tracker such as location, speed, and temperature are uploaded and 

stored into the cloud database. The database will have all the system information, admin login 

identifications, users’ information, vehicles’ information, and all data received from the tracking 

system.   

Chapter 4 present two algorithms for data reduction that have been implemented and 

validated. First algorithm is used to check each uploaded record before inserting it into the 

database. If it has the same information as the previous stored record, then the time is updated for 

the previous record. The second algorithm is developed to add lifetime to each record before 

inserting it into the database. This lifetime will determine when the record should be discarded 

from the database. The lifetime is controlled by the administrator of the database.  We performed 

an experiment to demonstrate the effectiveness of using these algorithms in reducing database 

storage size for both SQL and NOSQL databases. Two type of experiments have been done 

which are static and dynamic. For the static, we did five uploading frequency which are 10, 20, 

30, 40, 50 second. Each one tested twice before and after algorithm implementation. The 

dynamic experiment is done using two uploading frequencies 10 and 40 second. We drove for 
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one hour for each second twice. For example, two hours for 10 second and two hours for 40 

second to test the algorithm before and after implementation. The result of the experiments 

shows there is a massive decrease in database storage size. The percentage of storage saving 

increase as the uploading frequency decrease.       

Thus, we were able to develop a vehicle tracking system that provide users the ability to 

track their vehicle’s location and temperature with lower cost for data storage. Users can 

download the smartphone application for notification and use web application for controlling the 

system such as setting location and temperature ranges for each vehicle and adding or deleting 

vehicles and users. The system will provide users the exact location and temperature for each 

tracking vehicle with increasing database storage. Minimizing database storage gives the user the 

ability to add more vehicles and users to the system without any consideration about the data 

growth. For example, users will not consider how many records are stored in database for each 

tracking vehicle. In the future, this system may perhaps offer a variety of features for users such 

as monitoring tires pressure, adding alarm motion detector, and much more.    
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All Figures of The Mongodb Collection for The 

Following Uploading Frequencies 10, 20, 30, 40, 50 

Seconds (Static Testing) Used in Chapter 4 
 

 

Figure 1: 10 second 
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Figure 2: 20 second 

 

Figure 3: 30 second 
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Figure 4: 40 second 

 

Figure 5: 50 second 
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All Figures of The Mongodb Collection for The 

Following Uploading Frequencies 10, and 40 Seconds 

(dynamic Testing) Used in Chapter 4 
 

 

Figure 6: 10 second BEFORE implementing RDR 
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Figure 7:10 second AFTER implementing RDR  

 

Figure 8: 40 second BEFORE implementing RDR 
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Figure 9: 40 second AFTER implementing RDR 

 

 

 

 

 

 

 

 

 

 

 

 


