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Abstract 

Purpose 

The purpose of this thesis was to evaluate the influence of lipid deposition on silicone hydrogel 

contact lens materials and to construct an in vitro platform to further explore the effect of lipid 

interaction with contact lenses under physiologically relevant conditions. 

Methods 

In Chapter 3, the location of fluorescently tagged cholesteryl ester deposition was evaluated on four 

silicone hydrogel lens materials after simulated contact lens wear with a vial model for 1 day, 14 days 

and 30 days, using a CLSM technique. 

In Chapter 4, the design and implementation of a blink mechanism on an in vitro eye model was 

outlined. 

In Chapter 5, the design and implementation of a tear film onto an in vitro eye model was outlined. 

In Chapter 6, the non-invasive tear film break-up time of two silicone hydrogels were evaluated after 

simulated contact lens wear with an in vitro eye model. 

In Chapter 7, the limitations and future directions of the in vitro eye model was outlined. 

Results 

Overall, the amount of accumulated cholesteryl ester in silicone hydrogels increased with prolonged 

incubation periods. The level of surface versus bulk cholesteryl ester deposition varied with lens 

material depending upon their surface and bulk properties. 

A blink mechanism and tear film structure were established on the in vitro eye model, allowing 
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physiological simulations of tear volume, tear flow, intermittent air exposure, and mechanical wear.  

Non-invasive tear break-up time of the pre-lens tear film on silicone hydrogels was successfully 

measured for lotrafilcon B, which presented values that were comparable to clinical tear break-up 

times. 

Conclusion 

This thesis reported a complex relationship between lipid deposition on silicone hydrogels and 

detailed the developments of a physiologically relevant in vitro eye model to move towards a better 

understanding of the effect of lipid deposition on contact lens discomfort. 
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Chapter 1 – Introduction 

1.1 Contact Lenses 

 The concept of a contact lens (CL) was first introduced by Leonardo da Vinci, when he altered 

the refractive power of the eye using optical contact with water in 1508.1 However, it was not until 

1888 that a CL was manufactured and fitted in the form of glass scleral lenses.2 Unfortunately, these 

lenses were not widely adopted because they were uncomfortable to wear for extended periods and 

were impermeable to oxygen. Since then, many iterations of CLs have been developed, with the 

intent to continually improve comfort and safety. A major factor driving these changes was the 

development of specialized plastic materials that could be manufactured as CLs, most notably 

polymethylmethacrylate (PMMA) and poly-2-hydroxyethyl methacrylate (pHEMA). Today, CLs 

have become an important medical device with increasing popularity as the need for vision correction 

continues to rise. With an estimated more than 140 million CL wearers worldwide,3 the most 

prescribed lenses today are soft hydrogels, which can be classified into conventional hydrogels and 

silicone hydrogels.4, 5 

1.1.1 Conventional Hydrogels 

 Developed in the early 1960s, the invention of pHEMA polymers revolutionized CL fitting due 

to their superior comfort.2  Unlike its predecessor, rigid lenses made from PMMA, conventional 

hydrogels made from pHEMA were soft and flexible under hydrated conditions.2 In addition, 

conventional hydrogels were hydrophilic, allowing for absorption and retention of high water content 

in the lens.2, 6 Initially, these hydrogel lenses were manufactured by Wichterle using a spin casting 

method.2, 7 It was not until Bausch & Lomb purchased Wichterle’s patent and began mass production 

that soft lenses gained significant popularity.2, 7 
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 Despite its success in the CL market, a shortcoming of hydrogel materials is the lack of oxygen 

delivery to the eye during lens wear, particularly when worn overnight. The amount of oxygen 

received by the eye is primarily dependent on the amount of oxygen dissolved in the water phase that 

hydrates the lens. Oxygen transmissibility through the lens is described by the term Dk/t, where Dk is 

the oxygen permeability of the lens material and t is the lens thickness. Due to the inherent low Dk of 

pHEMA, conventional hydrogels do not provide sufficient oxygen required for extended or overnight 

lens wear.8, 9 Hypoxic exposure of the cornea puts lens wearers at greater risks of complications such 

as neovascularization, infectious keratitis, altered endothelial morphology and reduced corneal 

function.10-12 To address these issues, a new era of CLs were launched into the market. 

1.1.2 Silicone Hydrogels 

 The first attempt at incorporating an oxygen-loving backbone, silicone elastomer, into a CL 

dates back to the 1970s. While silicone elastomers enabled exceptional oxygen transmissibility of the 

lens and significantly reduced the levels of overnight corneal edema,13 the hydrophobic nature of the 

lens material failed to retain the necessary water content for comfort.14 It was not until the 1990s that 

Bausch & Lomb and CIBA Vision launched the first generation of silicone hydrogels, PureVision 

(balafilcon A) and Focus Night & Day (lotrafilcon A). Unlike the silicone elastomeric lenses, silicone 

hydrogels incorporated siloxane monomers that provided enhanced oxygen transmissibility, while 

maintaining the ability to retain a reasonably high water content.15, 16 The wettability of PureVision 

and Focus Night & Day was greatly increased by disguising the hydrophobic domains of silicone 

monomers through surface treatments. PureVision’s hydrophilic silicate surface was created by a 

plasma oxidation process, whereas Focus Night & Day obtained a 25 nm hydrophilic plasma coating 

on both the front and back surfaces of the lens. More than a decade later, a second generation of 

silicone hydrogels were produced, with the introduction of Acuvue Advance (galyfilcon A) and then 
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Acuvue Oasys (senofilcon A) by Johnson & Johnson. These lenses did not require a surface treatment 

process to maintain wettability, but had improved wettability through the incorporation of an internal 

wetting agent, polyvinylpyrollidone. Shortly after, CooperVision released the third generation 

silicone hydrogels, marketed as Biofinity (comfilcon A). By taking advantage of inherently wettable 

materials, no surface treatment or wetting agents were required to maintain hydration within 

Biofinity. More recently, Alcon released Dailies Total1 (delefilcon A), which integrates a silicone 

core with a non-silicone hydrophilic surface to meet both the oxygen and hydration demand of the 

lens. Despite the considerable advancements made to increase the wettability of silicone hydrogels, 

CL discomfort remains an unsolved issue.  

1.2 Tear Film 

 CL discomfort is a complex subject due to the multifactorial influences at play. Particularly, 

one of the key contributing elements is CL deposits. These deposits originate from the tear film, 

which serves to lubricate the anterior surface of the eye, provide nutrients to the cornea and 

conjunctiva, protect the cornea from foreign particles, and maintain an optically smooth surface for 

unhindered vision.17 The tear film is approximately 3-7 µm thick and 3-6.2 µL in volume.18-21 Initially 

proposed by Wolff,22 the tear film is made up of three distinct layers: a superficial lipid layer, a 

middle aqueous layer, and an inner mucin layer. More recent research on the tear film has challenged 

the trilayered structure and instead suggested a bilayered structure, consisting of an aqueous phase 

with increasing mucin concentrations towards the corneal epithelial and a distinct outer lipid phase.20, 

23 Each of these layers play an integral role in maintaining the structural integrity and functionality of 

the tear film. 
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1.2.1 Aqueous Mucin Layer 

 In this section, the bilayered tear film structure will be described. The aqueous mucin layer 

makes up the bulk of the tear film and contains various mucins, electrolytes and proteins bathed in 

water. The electrolytes regulate the pH and osmolarity of tears,24 whereas the mucins and proteins 

play a key role in defending the eye against viral and bacterial infections.24, 25 While most of the 

aqueous component is secreted by the lacrimal gland, mucins are secreted by the goblet cells of the 

conjunctiva. Some of these mucins adhere to the anterior surface of the eye to establish a hydrophilic 

interphase, while others interact with the aqueous phase to generate a continuous tear film structure.26, 

27 

 Amongst the 1500 different tear proteins that have been identified in the aqueous layer, 

lysozyme, lactoferrin, immunoglobulin and albumin are found in the highest concentrations in the tear 

film.28-31 Each protein functions uniquely to prevent microbial infections. Lysozyme (14 kDa) 

functions as an antibacterial agent by cleaving the peptidoglycan of bacterial cells. Lactoferrin (82 

kDa) reduces the susceptibility of bacterial infections by binding to free iron in the tears to effectively 

limiting the necessary iron available for microbial growth.32, 33 Immunoglobulins (450 kDa) passively 

prevent the adhesion of microorganisms and actively induces phagocytosis upon binding to bacteria.34 

Although albumin (66 kDa) in the blood has been extensively studied and associated with various 

functions, the role of albumin in tears remains unclear.35 

1.2.2 Lipid Layer 

 The lipid layer is composed of mostly secretions from the meibomian gland, which are 

modified sebaceous glands arranged in parallel rows within the tarsal plate of the eyelids. On average, 

each eye has approximately 30-40 glands in the upper lid and 20-30 glands in the lower lid.36 Each 

gland ranges from 2-5.5 mm in length and comprises of 10-15 lipid producing acini.36, 37 With the 
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movement and pressure generated from a blink, the lipids within the acini are secreted onto the eye in 

small amounts through the meibomian gland orifices along the lid margin. The secreted lipids spread 

evenly over the aqueous layer to form an approximately 0.1 µm thick lipid layer.38 This thin layer 

prevents evaporation of the aqueous phase, provides an ocular lubricant to enable a smooth blink, and 

acts as a protective barrier against foreign particles.39 

 The lipid layer can be further broken down into an inner polar or amphiphilic phase (30%) and 

an outer nonpolar phase (70%).39 The polar phase primarily consists of lipids such as phospholipids 

and glycolipids.40, 41 These lipids are amphiphilic, which allow the hydrophilic polar head group to 

network with the aqueous layer and the hydrophobic fatty acid tail to interact with the outer nonpolar 

phase that is exposed to the air. The nonpolar phase is composed of cholesteryl esters, wax esters, free 

cholesterol, hydrocarbons and triglycerides.42-44 Although all of the polar and nonpolar lipids play an 

important role in the tear film integrity and function, the lipid of interest in this thesis is cholesteryl 

ester, which is found in an abundant amount on the lipid layer.44 

 Cholesteryl ester is a class of cholesterols with an ester bond attached to hydrocarbon chains of 

various lengths (Figure 1-1).45 Previously, researchers have found that large quantities of hydrophobic 

chains from cholesteryl esters allow for the self-assembly of liquid-crystal-like structures that can be 

modulated by varying interaction with other molecules.45 Hence, the presence of cholesterol is 

believed to be vital in maintaining the structural integrity of the tear film.46  
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Figure 1-1. Chemical structure of cholesteryl oleate (a cholesteryl ester).  

 However, the insertion of a CL onto the eye drastically influences the intricate structure and 

function of the tear film. The structure is split into a pre-lens and post-lens tear film, effectively 

decreasing the pre-lens tear film thickness.47 These changes have a significant impact on the ocular 

surface as well as the CL. Notably, tear film components are known to deposit onto the CL, changing 

the lens property and affecting the comfort experienced by the lens wearer.48-50 

1.3 Contact Lens Deposition 

 Generally, deposits on the CL are seen as unfavourable as they can affect visual acuity, 

promote bacterial adhesion, and cause symptoms of dryness and discomfort.48, 49, 51 The two major 

deposits found on CL materials are proteins and lipids from the tear film. Proteins are known to 

accumulate in large amounts on conventional hydrogels, mainly due to its affinity to the ionic charges 

from the lens polymers.52-59 Therefore, positively charged proteins such as lysozyme and lactoferrin 

have been shown to deposit in high amounts to negatively charged hydrogel materials.58-61 Whereas, a 

lower concentration of negatively charged albumin are found to deposit on the lens.62 In addition to 

the quantity of protein deposits, the conformational state of proteins upon depositing in the lens also 

play a role in affecting CL discomfort and may induce papillary conjunctivitis.63-68 

1.3.1 Lipid Deposition in Conventional Hydrogels 

 Hart et al. were among the first to observe “jelly-bump” deposits, composed mainly of 
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cholesteryl esters and triglycerides, on extended-wear conventional hydrogel lenses.69 A suggested 

mechanism for these deposits was the local depletion of aqueous tear layer over the surface of the CL, 

which created a dry spot for lipid accumulation.69 Due to the insolubility of lipids in aqueous 

solutions, these deposits exhibited resistance to cleaning regimes.69 Moreover, heavy depositors were 

correlated to a decreased tear flow and higher tear lipid levels.69 To better understand this 

phenomenon, Tighe et al. used a light scanning electron microscopy technique to characterize the 

location and morphology of lipid deposits on spoilt conventional lenses.70 The location of these 

deposits were consistent irrespective of patient variability, wear schedule and lens type.70 In addition, 

a three-layered structure was discovered, with the primary basal layer composed of unsaturated lipids, 

and the secondary and tertiary layers composed of mostly cholesterol and cholesteryl esters.70 

Primarily, their studies suggested that the basal layer lipids may play a role in altering the surface of 

the lens and causing reduced biocompatibility.70 

 In addition to surface deposits, lipids were also absorbed into the lens matrix of conventional 

hydrogels.71 The lipid composition of patient worn conventional hydrogels was examined by Rapp et 

al. using various chromatography techniques.72 The analyses revealed the presence of wax esters, 

fatty sterols, fatty alcohols and free fatty acids, as well as the absence of triglycerides, cholesterol, 

and cholesteryl esters.72 In summary, a higher level of polar lipids deposited in conventional 

hydrogels compared to nonpolar lipids.72 Unlike surface deposits, the quantity and quality of lipid 

deposits in the lens matrix were more sensitive to patient variability, wear schedule and lens type.71, 73 

One study showed considerable variation between subjects and an overall reduction in lipid 

accumulation in conventional hydrogel lenses worn for a 1 month compared to 3 months.74 In another 

study, increased lipid deposition was found in lenses containing NVP.75, 76 
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1.3.2 Lipid Deposition in Silicone Hydrogels 

 Although lipids accumulate in both conventional and silicone hydrogels, they deposit 

significantly more on silicone hydrogels due to their inherent hydrophobic silicate components.77-79 

With the increasing popularity of silicone hydrogels, lipid deposition studies are becoming more 

relevant. 

 The first lipid deposition study with silicone hydrogels was conducted by Jones et al. where the 

amount and type of lipids deposited in worn conventional and silicone hydrogels were analyzed.57 

Results showed that lipid deposited substantially more in silicone hydrogels than in conventional 

hydrogels.57 The lipids that deposited in the highest concentrations were oleic acid, oleic acid methyl 

ester, and cholesterol.57 In addition, the amount and type of lipids deposited in silicone hydrogels 

varied depending on lens properties.57 Several other studies further confirmed the results from Jones 

et al., where high levels of lipid deposits were observed in silicone hydrogels.77, 80-83 

 Besides characterizing the amount and type of deposits, researchers also explored other factors 

that may influence lipid deposition, such as changes in lens wettability, difference in cleaning regimes 

and its effect on microbial contamination. A study conducted by Lorentz et al. concluded that initial 

exposure to lipids may improve the wettability of surface treated silicone hydrogels,84 which may 

help to explain that comfort tended to increase with these lenses over the first few hours of wear, as 

lipid deposition increased and wettability improved .85 In terms of cleaning regimes, several groups 

have found significantly less lipid accumulation in silicone hydrogels that were cleaned with OptiFree 

RepleniSH and Aquify.86-88 In terms of microbial interaction, Babaei Omali et al. showed that the 

presence of cholesterol on silicone hydrogels did not play a role in modulating bacterial adhesion on 

the lens surface.89 

 To date, very few studies have directly evaluated the clinical performance of silicone hydrogel 
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lenses in relation to lipid deposition.90-92 A study conducted by Cheung et al showed no correlation 

between the amount of lipid deposits and its effects on visual acuity, corneal integrity, and reported 

comfort levels.90 Later, Zhao et al. showed a weak correlation between the amount of cholesterol 

deposition on silicone hydrogels and adverse effects of CL wear.91 Evidence linking lipid deposition 

with CL comfort is either non-existent or weak, although one study conducted by Subbaraman et al. 

showed that lipid deposition is higher in asymptomatic CL wearers.92  

 Although lipid deposition conducted in vivo offer valuable insights with clinical relevance, data 

interpretation from these studies can become convoluted as a result of intersubject variability, in 

addition to the complex nature of the CL deposits.73, 75 Specifically, in a study conducted by Hart et 

al. evaluating the effect of lifestyle choices on lipid deposition, varying amounts of lipid deposits 

were seen in patients with various systemic diseases and their level of consumption in protein, 

alcohol, and cholesterol.93 The ability to isolate contributing factors involved in CL deposition can 

allow for simpler analysis and a deepened understanding of their effects on CL discomfort. Moving 

forward, additional work is needed to elucidate the effect of lipid deposition on CLs and the ocular 

environment. Specifically, the kinetic and location of lipid deposition can be explored using in vitro 

study designs. 

1.4 Eye Models 

 Aside from in vivo studies, other CL testing methods include the use of animal models,94-97 

mathematical models,98, 99 and in vitro models.60, 64, 100-113 All of these models are important and 

supplement in vivo data in unique ways. However, for the scope of this thesis, the focus is on the use 

of various in vitro models in CL deposition studies. 
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1.4.1 In Vitro Models 

 In vitro models offer the advantage of testing with low cost, high reproducibility, and high-

throughput capabilities. More importantly, in vitro models allow researchers to isolate and study the 

variable of interest from the complex multifactorial ocular environment and to conduct such tests 

ahead of expensive human clinical trials. The majority of in vitro CL studies investigating deposition 

or drug delivery are conducted in vials,60, 64, 100-105 which is a popular testing method due to its 

simplicity and convenience. Generally, vial conditions require incubating lenses in a set volume of 

artificial tear solution (ATS) that is replenished daily to simulate the total amount of daily tear 

exchange on the eye of approximately 2 mL, projected based on previous studies measuring tear flow 

rates.21, 114 However, these conditions differ drastically from on-eye tear conditions, which has a flow 

rate of approximately 1.2 µL/min.21 Exposing CL to large amounts of tear fluid at once will have 

different deposition kinetics compared to exposing the lens to smaller volumes over time. Although 

the use of vial models remains widespread, many researchers in the field have begun to recognize its 

limitations. The eye is a complex system with a structured tear film, regulated tear volume, consistent 

tear flow, intermittent air exposure, and mechanical wear; parameters which all have a drastic impact 

on the kinetics of CL deposition. The vial model is an oversimplification of the eye and lacks 

important physiological parameters, making it challenging to justify whether results from these 

models are clinically relevant. To make up for these shortcomings, researchers have moved towards 

developing more sophisticated eye models for studying lipid deposition on the lens. 

 Ali et al. developed a microfluidic device that simulates physiologically relevant tear volume 

and flow rate to study the drug release kinetics of hydrogels.111 Results from this study suggested a 

more constant and slower drug release rate compared to the vial model. Although this system was 

designed to study drug delivery in CLs, it serves to recognize the importance of mimicking 
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physiological conditions to accurately characterize release kinetics, which can easily be applied to 

deposition studies. 

 To test the effect of air exposure on lipid deposition, Lorentz et al. developed a device called 

the model blink cell (MBC).112 As the name suggests, the model simulates intermittent air exposure 

experienced during the inter-blink period. The MBC consists of six form-fitting Teflon CL holders 

mounted in an ATS containing trough. The CL holders are installed onto pistons that can move up 

and down in the trough to cycle the lenses in and out of ATS (exposed to air) at controlled rates. 

Results from Lorentz’s MBC showed higher levels of lipid deposits in CL with air exposure than 

without, suggesting that lipid deposition kinetics can be impacted by air exposure, which 

demonstrates the importance of mimicking physiological conditions. 

 More recently, Peng et al. developed a different MBC with the main objective of mimicking the 

in vivo fouling mechanism of soft CLs.106 Similar to Lorentz et al.’s MBC, Peng et al.’s MBC also 

consists of a Teflon CL mold that is placed inside an ATS containing chamber. The blink mechanism 

is achieved by withdrawing solution from an exit port, which effectively lowers the ATS volume in 

the chamber and exposes the CL to the air. The uniqueness of Peng et al.’s MBC is the addition of a 

distinct lipid layer over the ATS, which allowed for simulation of a realistic lipid deposition 

mechanism as described by Hart et al.69 Discrete lipid deposits were observed on the surface the CL, 

accompanied by a gradual lipid penetration into the lens matrix. These results were consistent with 

those observed on eye, which suggested a promising outcome for the development of in vitro eye 

models that can replace the need for in vivo testing. 

 To combine the different parameters simulated from the previous models onto one system, 

Phan et al. developed the OcuFlow, an in vitro eye model that allows for the simulation of 

representative tear volume, tear flow, intermittent air exposure and mechanical wear.113 The OcuFlow 
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consists of an eye and eyelid piece that are mounted vertically onto a mechanical system, allowing for 

both a lateral and rotational movement to simulate intermittent air exposure and mechanical wear 

respectively. Tear volume and tear flow is controlled by an external microfluidic pump. Notably, this 

model was the first to allow for the CL to be tested in an upright orientation, which may have a 

drastic effect particularly on deposition studies. Results from lipid deposition studies conducted by 

our group using the OcuFlow showed more deposits on the surfaces in certain lens types, which 

differs from the uniform depositions seen in the vial model.115 This suggests that the additional factors 

simulated by the OcuFlow may play a vital role in determining how lipid interacts with the CL on the 

ocular surface. 

 In summary, lipid deposition studies conducted using more complex in vitro eye models 

provide results that are different from vial studies, but may better mimic in vivo results. The 

development of in vitro eye models provides better validation vehicles for CL testing and expands the 

boundary of future CL technologies. 

  



 

 13 

Chapter 2 – Thesis Rationale 

 Since the introduction of CLs in the 1960s, reducing the discomfort experienced during lens 

wear has been one of the leading research topics in the field of vision science.2, 3 Discomfort 

associated with CL wear is multifactorial, and CL deposition has been identified as one of the factors 

that may contribute to CL comfort.3, 48 Deposition onto the CL is influenced by a multitude of factors, 

including the ocular environment, lens material, wear modality, and cleaning regimen.3, 86-88, 105, 116-120 

Hence, understanding the impact of these deposits on the ocular surface and the lens property will 

provide insights on how to improve comfort. Although, protein deposition was studied extensively in 

the past, recently, more attention has been given to lipid deposition, particularly on silicone 

hydrogels.52, 56, 64, 77, 78, 81-83, 88, 105-107, 109, 121-129 

     It is hypothesized that bulk deposits are sequestered within the lens matrix whereas surface 

deposits may interact with the external environment. For example, lipids deposited on the lens 

surfaces may be more prone to degradation through oxidative processes, which may contribute to 

downstream pathways leading to discomfort.130, 131 Although the composition and amount of lipid 

deposition on the CL has been characterized from both in vivo and in vitro studies,77, 78, 81-83, 88, 105, 121, 

132 the location of deposition is not fully understood.106, 107, 109, 110 This missing link is especially 

critical since clinical studies showed little to no correlation between the amount of lipid deposits and 

discomfort.74, 90, 91, 133 This suggests that rather than the amount of lipid deposits, studies should 

explore the location of lipids deposited in the CL. 

     The first objective of this thesis was to determine the location of lipid deposits on various 

silicone hydrogels using a vial model (Chapter 3). An understanding of surface versus bulk lipid 

deposition on CLs may elucidate possible underlying mechanisms causing discomfort and lead to the 
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development of improved lens materials. 

     The second objective was to develop an in vitro eye model capable of simulating lipid 

deposition on the CL under physiologically relevant conditions (Chapters 4 and 5). The tear film 

structure is disrupted with the insertion of a CL, which impacts how lipids deposit on the lens. In 

addition, researchers are beginning to recognize the influence of intermittent air exposure and 

mechanical wear during blinking on discomfort.112, 117-119  

 The last objective was to validate the simulated physiological conditions by measuring pre-lens 

tear break-up time (Chapter 6).  
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Chapter 3 – Location of Lipid Deposits on Silicone Hydrogels Evaluated 

Using a Vial Model 

3.1 Introduction 

 Upon the insertion of a CL, various tear components readily deposit onto the lens.60, 132, 134-137 

These deposits can alter the lens property and its interaction with the ocular surface,138, 139 which can 

cause CL discomfort and reduced visual acuity.66, 91, 140-142 While protein deposition on CL has been 

extensively investigated in the past,52, 56, 64, 122-129 studies on lipid deposition are becoming more 

prevalent due to the increasing popularity of silicone hydrogels in recent years.77, 78, 81-83, 88, 106, 107, 110, 

121, 132 Although ex vivo studies are considered the gold standard for assessing CL deposition, the 

inherent hidden and uncontrolled variables from human subjects may produce contrasting results 

between different research groups.3, 77, 79, 143 In vitro models allow the researcher to perform 

experiments with targeted lipids and a controlled experimental setup that is otherwise difficult to 

achieve in vivo. In this study, lipid deposition was explored using an in vitro model to simulate CL 

wear by immersing the lens in ATS. 

 Currently, most lipid deposition studies examined the quantity of lipid deposits ex vivo from 

whole lens extracts.77, 78, 81-83, 88, 121, 132 Thus far, limited studies have investigated the location of lipid 

deposits on the lens.106-111 Previous studies have visualized surface and bulk lipid deposition using 

various lipid stains, such as Nile Red and oil red O. However, contrasting results were observed in the 

stain behavior between different studies107, 110 and it is suggested that lipid stains may produce 

inconsistent staining that is not reflective of actual lipid deposits within the lens.106 Results from other 

studies observed higher levels of uniform lipid deposition in silicone hydrogels than hydrogels, which 

may be elucidated due to the continuous hydrophobic silicone microdomains within silicone 
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hydrogels.106, 108 However, the pattern of surface versus bulk distribution of lipids and their effect on 

the CL remains unclear. 

 To study the location of lipid deposition, fluorescently labelled cholesteryl ester (CE-NBD) 

was used as a representative tear lipid.82, 144-147 Structurally, the sterol ring structure of CE was 

preserved, while the functional group was replaced by a similar sized probe with a comparable 

molecular weight (Figure 3-1), to allow for unhindered lipid deposition in the CL. In addition, the 

NBD probe was selected for its high quantum yield, which allows for reliable imaging. 

 

 

Figure 3-1. Chemical structure of CE-NBD. 

 The relative distribution of the lipid at various depths within the CL was mapped using 

confocal laser scanning microscopy (CLSM). What sets CLSM apart from other microscopic 

techniques is the addition of a spatial pinhole, which eliminates electromagnetic waves that are not in 

focus on the confocal plane. The pinhole allows for high resolution imaging at different depths into 

the CL (optical sectioning), through a process known as z-stacking. The purpose of this chapter is to 

explore the deposition pattern of fluorescently tagged nonpolar lipid over time in silicone hydrogel 

materials evaluated using CLSM. 

3.2 Materials and Methods 

3.2.1 Contact Lenses 

 Four monthly replacement silicone hydrogels (lotrafilcon B [Air Optix® Aqua, Alcon, Fort 

NBD Probe Sterol Ring Structure 
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Worth, TX], comfilcon A [Biofinity®, CooperVision, Pleasanton, CA], samfilcon A [Ultra®, Bausch + 

Lomb, Rochester, NY], and senofilcon C [Acuvue® VitaTM, Johnson & Johnson, Jacksonville, FL]) 

were evaluated. All lenses were obtained from the manufacturer in the original packaging and had a 

dioptric power of -3.00 and the lens properties are outlined in Table 3-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 18 

Table 3-1. Properties of silicone hydrogels used in the study. 

 Acuvue® 
VitaTM 

Air Optix® 
Aqua 

Biofinity® Ultra® 

United States Adopted Name 
(USAN) 

senofilcon C lotrafilcon B comfilcon A samfilcon A 

Manufacturer Johnson & 
Johnson 

Alcon CooperVision Bausch + 
Lomb 

Centre Thickness (mm) 
 

0.07 0.08 0.08 0.07 

Water Content (%) 
 

41 33 48 46 

Oxygen Permeability (x10-11) 
 

122 110 128 114 

Oxygen Transmissibility (x10-9) 
  

147 138 160 163 

Surface Treatment 
 

None Plasma 
Coating 

None None 

Wetting Agent PVP Moist agent in 
packaging 

solution (1% 
copolymer 

845) 

None  PVP 

Principal Monomers Not disclosed DMA + TRIS 
+ siloxane 
macromer 

 

NVP, VMA, 
IBM, TAIC, 

M3U, 
FM0411M, 

HOB 

Not disclosed 

DMA, N,N-dimethylacrylamide; EGDMA, ethyleneglycol dimethacrylate; HEMA, hydroxyethyl 
methacrylate; MA, methacrylic acid; mPDMS, monofunctional polydimethylsiloxane; NVP, N-vinyl 
pyrrolidone; TEGDMA, tetraethyleneglycol dimethacrylate; TPVC, tris-(trimethylsiloxysilyl) 
propylvineyl carbamate; TRIS, trimethylsiloxy silane; NVA – N-vinyl amino acid; PBVC, 
poly(dimethysiloxy) di(silylbutanol) bis(vineyl carbamate); PC, phosphorylcholine; PVP, polyvinyl 
pyrrolidone; NVP, N-vinyl pyrrolidone; VMA, N-vinyl-N-methylacetamide; IBM, isobornyl 
methacrylate; TAIC, 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione; M3U, 
bis(methacyloyloxyethyl iminocarboxy ethyloxypropyl)-poly(dimethylsiloxane)-
poly(trifluoropropylmehylsiloxane)-poly(methoxy-poly[ethyleneglycol] propylmethlsiloxane); 
FM0411M, methacryloyloxyethyl iminocarboxyethyloxypropyl-poly(dimethylsiloxy)-
butyldimethylsilane; HOB, 2-hydroxybutyl methacrylate. 
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3.2.2 Artificial Tear Solution 

 The recipe for ATS used in this study has been previously reported with a few modifications. In 

brief, the ATS consists of various physiological tear film components, including a range of proteins, 

lipids and salts (Table 3-2).148  

Table 3-2. Artificial tear solution components. 

Protein Components mg/mL 
Bovine Albumin  0.20 
Bovine Submaxillary Mucin 0.15 
Bovine Lactoferrin 1.80 
Hen Egg Lysozyme 1.90 

 

 
Lipid Components mg/mL 
Cholesterol 0.00275 
Cholesteryl ester NBD 0.00003 
Cholesteryl oleate 0.03669 
Phosphatidylcholine 0.01116 
Phosphatidyethanolamine 0.00592 

 

Salt component mg/mL 
Sodium chloride 5.26 
Potassium chloride 1.19 
Sodium citrate 0.44 
Glucose 0.036 
Urea 0.072 
Calcium chloride 0.07 
Sodium carbonate 1.27 
Potassium hydrogen carbonate 0.30 
Sodium phosphate dibasic 2.41 
Hydrochloric acid 0.94 
ProClin 300 0.20 µL / 1 L 

 

 In addition, 0.1% of fluorescently-tagged cholesteryl ester (Figure 3-1), 5-cholesten-3ß-ol 6-

[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]caproate (810251P, Avanti Polar Lipids, Inc., Alabaster, 

AL), was dissolved in ATS.  

3.2.3 Experimental Outline 

 All lenses (n=4) were removed from the original manufacturer’s packaging and soaked in 2mL 

of 1X phosphate buffer saline (PBS) (EMD-Millipore, Billerica, MA) using a 24 well polystyrene 

plate (Corning®, Corning, NY) to remove residual blister pack solution. After 17 hours of incubation 

in PBS, CLs were blotted on lens paper to remove any excess PBS held on the lens due to surface 

tension. Lenses were then transferred to a fresh 24 well plate containing 2 mL of OptiFree® 
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PureMoist® care solution (Alcon, Fort Worth, TX) to simulate a daily cleaning regime. Plates were 

sealed using Parafilm (Sigma-Aldrich, St.Louis, MO) and incubated at room temperature for 8 hours. 

CLs were then removed from OptiFree® PureMoist® care solution. Subsequently, lenses were 

transferred into a 6 mL vial (Wheaton, Millville, NJ) containing 1mL of ATS for 16 hrs in a 37 °C 

incubator while rotated at 60 rpm to simulate CL wear. Daily CL wear was simulated for 1 day, 14 

days and 30 days by repeating the lens cycling between OptiFree® PureMoist® care solution and ATS 

on each weekday. Over the weekends, lenses remained incubated in ATS without cycling. Control 

CLs were incubated in ATS without CE-NBD. To reduce transfer of excess ATS and care solution, 

all lenses were rinsed in 2 mL of PBS three times after each incubation. After 1 day, 14 days, and 30 

days of daily wear simulation in a vial, lenses were removed from ATS and prepared for imaging. CL 

samples were prepared by punching out a 5 mm disk from the centre of the lens, which was fixed 

onto a microscope slide (Goldline, VWR, Radnor, PA) for imaging using CLSM. 

3.2.4 Confocal Microscopy 

 The CL samples were imaged using a Zeiss LSM 510 Meta, Axiovert 200 confocal microscope 

(ZEISS Inc., Toronto, Canada) from the anterior to posterior surface at three randomly selected 

locations (Figure 3-2.A). To visualize the CE-NBD deposited in the lens, the excitation was set to 488 

nm on an Argon laser and the emission wavelength was set to 505 nm using a long pass filter. The CL 

samples were viewed under a C-Apochromat 40X/1.2 corr objective lens, which magnified the CL 

such that each visible plane was 224.56	µm2. A single laser setting could not be used to capture the 

dynamic range of the fluorescence intensity over four lens types at three incubation time points. To 

accommodate this, the gain setting on the photomultiplier detector was adjusted accordingly for each 

lens and incubation period (Table 3-3). 
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Table 3-3. Gain settings of the photomultiplier detector on the CLSM for different CLs and 

different incubation times. 

Lens 1 day 14 days 30 days 
senofilcon C 850 850 700 
lotrafilcon B 850 850 775 
comfilcon A 800 800 750 
samfilcon A 800 800 725 

 

 The deposition profile at each plane along the depth of the lens was scanned at 2	𝛍m intervals 

using z-stacking (Figure 3-2.A) and were rendered into a cross-sectional image of the CL using ZEN 

Lite software (ZEISS Inc., Germany) (Figure 3-2.B). 

 

 

Figure 3-2. Schematic depiction of CLSM imaging and image processing. *Image not to scale. 

3.2.5 Image Analysis 

 The average relative intensity of fluorescence (RIF) value at each plane of the lens was plotted 

against the depth of the lens using ImageJ software (Bethesda, MS, USA) to graph the corresponding 

deposition profile curve (Figure 3-2.C). To facilitate the averaging of RIF values between lenses, the 

RIF 

     D
epth (µ m

) 

5 mm CL sample 

(B) Cross-Section CLSM 
Image of CL 

(C) CE-NBD 
Deposition Profile 

2	µm 

(A) Pictorial Depiction of 5mm CL 
disk imaged at 3 randomly 
selected locations (       ) 

Anterior Surface of CL 

Posterior Surface of CL 
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number of planes for each lens was normalized to the equal number of steps (n) using an in-house 

program that performed piecewise linear interpolation. The program used the first and last data points 

of the data sequence as the end-points and interpolates n – 1 equally spaced steps between the two 

end points, where ‘n’ is number of steps determined by the user. After the data sequences were 

interpolated to the average depth within each lens type, the RIF values imaged at the three locations 

averaged. The averaged values were then averaged with the four replicates of each lens type. The 

endogenous fluorescence intensity of the negative control CLs was subtracted from the test CLs. 

Negative control lenses were imaged at the same confocal settings as those incubated with CE-NBD. 

To compare the CE-NBD deposition profile between different lens types, the data points were 

interpolated to n = 100 steps and the sequence was normalized to a maximum RIF value of 1 for all 

lens types. To compare the CE-NBD deposition profiles of the same lens overtime (1 day, 14 days 

and 30 days) the data points were interpolated to the average depth of the lens and the sequence was 

normalized to the 30-day maximum RIF of each lens type. In addition, to compare the data between 

the different incubation periods, a scaling factor was calculated to account for the different gain 

settings used to capture the images on day 30 (Table 3-3). The scaling factor was achieved by 

imaging the 14-day CLs at both the 14-day gain setting as well as the 30-day gain setting. The 

deposition profiles at each gain setting was compared by calculating the area under the curve. The 

ratio of the area under the curve for both profiles was defined as the scaling factor applied to the 30-

day deposition profiles. 
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3.3 Results 

 All CLs accumulated CE-NBD over time and the deposition profile varied depending on the 

duration of incubation and the lens type (Figure 3-3.A-D). 

 

Figure 3-3. Averaged CE-NBD fluoresence images of senofilcon C (A), lotrafilcon B (B), 

comfilcon A (C), and samfilcon A (D).  

3.3.1 Relative Deposition Amount - Within Lens Comparison 

 To examine the accumulation of CE-NBD over time, the profiles within each lens type at 

different time points were compared. Generally, a higher RIF value was observed with an increase in 

incubation period. In senofilcon C (Figure 3-4.A), comfilcon A (Figure 3-4.C), and samfilcon A 

(Figure 3-4.D), a progressively increasing RIF value was observed in the deposition profiles over 

time. The increase in RIF value between day 14 and day 30 scaled is higher than between day 1 and 

day 14. For lotrafilcon B, the RIF value was maintained at the same level between day 1 and day 14, 

with a significant increase on day-30 (Figure 3-4.B). 

(A) senofilcon C (B) lotrafilcon B (C) comfilcon A (D) samfilcon A 

1 Day  14 Day 30 Day 1 Day  14 Day 30 Day 1 Day  14 Day 30 Day 1 Day  14 Day 30 Day 



 

 24 

 

 

Figure 3-4. CE-NBD deposition profiles of senofilcon C (A), lotrafilcon B (B), comfilcon A (C), 

samfilcon A (D) lenses plotted at 1 day (        ), 14 days (        ), and 30 days (        ) after 

incubation in OptiFree® PureMoist® care solution and ATS. The 30-day scaled (        ) curves 

were obtained by multiplying the 30-day RIF with a scaling factor of 3.3, 1.9, 1.5, and 2 for 

senofilcon C, lotrafilcon B, comfilcon A, and samfilcon A respectively. The standard deviation 

values are shown as dotted lines (        ) in the corresponding colour. 

3.3.2 Relative Deposition Pattern - Between Lens Comparison 

 Between lens types, the deposition profiles were classified into two distinct patterns, a uniform 

distribution throughout the lens thickness or a surface concentration distribution. After 1 day 

incubation period (Figure 3-5.A), the deposition profile was uniform in senofilcon C and comfilcon A 
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materials, whereas lotrafilcon B and samfilcon A had higher RIF values on the surfaces than the core 

of the lens. In samfilcon A, the RIF value became gradually lower towards the core of the lens. A 

more extreme deposition profile was observed on lotrafilcon B, where distinct fluorescent peaks were 

evident on both surfaces with uniformly lower RIF values between the surfaces. 

 After 14 days incubation period (Figure 3-5.B), senofilcon C and comfilcon A’s  shapes of the 

deposition profiles were consistent with results from day 1, where the deposition pattern of CE-NBD 

was uniform throughout the lens. Although CE-NBD deposition pattern of lotrafilcon B and 

samfilcon A remained surface concentrated, slight differences were observed at day 14 compared to 

day 1. For samfilcon A, high RIF values at the front surface of the lens were observed, which 

gradually decreased towards the core and posterior surface of the lens. For lotrafilcon B, the peaks at 

both surfaces were less pronounced compared to the level of uniform CE-NBD deposition at the 

centre of the lens. 

 After 30 days incubation (Figure 3-5.C), uniform deposition curves suggest that CE-NBD was 

evenly deposited in all lens types, with the exception of samfilcon A. Although the curve suggests a 

more homogeneous distribution pattern than at previous incubation periods, samfilcon A maintained a 

slightly higher RIF value at the front surface after 30 days of incubation.  
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Figure 3-5. Normalized (max of 1) CE-NBD deposition profiles of senofilcon C (        ), 

lotrafilcon B (        ), comfilcon A (        ), and samfilcon A (        ) at 1 day (A), 14 days (B), and 

30 days (C) after incubation in OptiFree® PureMoist® care solution and ATS. The standard 

deviation values are shown as dotted lines (        ) in the corresponding colour. 
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 All CE-NBD deposition profile curves exhibited an apparent asymmetry between the anterior 

and posterior. To determine the relative asymmetry between the two surfaces, the ratio between the 

max value on the posterior and anterior surfaces of the lens is plotted in Figure 3-6 after 1 day and 30 

days of incubation. 

 

Figure 3-6. Max posterior to max anterior surface RIF ratio of senofilcon C, lotrafilcon B, 

comfilcon A, and samfilcon A. 

 The asymmetry phenomenon was most likely due to the attenuation of the fluorescence through 

the lens with increased distance from the photomultiplier detector. This prediction was verified by an 

additional set of experiments, which imaged the lenses in the reverse orientation, from the posterior to 

anterior surface, after 1 day and 30 days of incubation. The reversed CE-NBD deposition profile also 

showed lower RIF values with increased depth into the CLs at the anterior surface (Figure 3-7), 

confirming the previous assumption that the asymmetry seen is due to an artifact of the laser, which 

produces attenuated fluorescence with increased distance away from the photomultiplier detector. 
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Figure 3-7. CE-NBD deposition profile imaged from the posterior to anterior surface of CLs 

from 1 Day and 30 Day incubation periods. 

 The negative control lenses were plotted relative to the test lens in Figure 3-8. With the 

exception of lotrafilcon B (Figure 3-8.B), all negative control lenses accumulated low background 

levels of CE-NBD regardless of incubation period. This background signal may be a result of 

scattering of the laser or endogenous fluorescence of the lens. As a positive control, CLs were 

incubated in free dye at the molar equivalent of CE-NBD for 1 day and imaged at the same confocal 

settings. The signals were below negative control levels, suggesting low concentrations of free dye. 
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Figure 3-8. CE-NBD deposition profile of senofilcon C (A), lotrafilcon B (B), comfilcon A (C), 

and samfilcon A (D) plotted with negative controls. 

3.4 Discussion  

 Regardless of lens type, the amount of CE-NBD deposition increased with time, as suggested 

by an increased RIF value (Figure 3-4). In addition, the increase in CE-NBD deposition between the 

14-day and 30-day period is higher than between the first 14 days. Although a cleaning regime was 

used, lipid deposition continued to increase with time. This progressive increase in the amount of CE-

NBD is suspected to be correlated to changes in the lens material over time, such that the lens 

becomes more susceptible to lipid uptake. Clinically, this progressive increase of lipid deposition in 
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the CL can be addressed by adopting a daily disposable wear modality.149 

 Overall, two different types of CE-NBD deposition patterns were observed in the CLs. CE-

NBD distributed uniformly in senofilcon C and comfilcon A, while the distribution was concentrated 

on the surfaces in lotrafilcon B and samfilcon A. When the deposition pattern was uniform, the 

majority of the CE-NBD was effectively accumulated within the core of lens rather than on the 

surfaces. In comfilcon A, this increased accumulation at the centre of the lens can be explained the 

presence of N-vinyl pyrrolidone (NVP), which enhances lipid deposition by exposing more 

hydrophobic surfaces for the lipid to preferentially interact with.76, 142 Similarly, the high amount of 

lipid deposition in senofilcon C can be explained by the high levels of PVP wetting agent in the lens, 

which may result in an increase in lipid solubility.150 Samfilcon A also incorporates PVP monomers 

and a more gradual increase in lipid accumulation towards the lens centre was seen in this lens type. 

 The lotrafilcon B material exhibited the most unique CE-NBD deposition profile. Unlike the 

other lenses, the RIF value did not increase from day 1 to day 14 (Figure 3-4.B), suggesting that the 

lens material maintained the same level of CE-NBD over the first 14 days of incubation. This can be 

explained by the protective effect of the 25 nm plasma treated surface on lotrafilcon B, which reduces 

the amount of lipid deposition beyond the surfaces.15, 151 This observation may be correlated to the 

comparably lower amount of lipid deposited in lotrafilcon B than other CLs seen in previous 

studies.57, 82, 121 Moreover, distinct fluorescent peaks were observed on the anterior and posterior 

surfaces of lotrafilcon B. However, it is unlikely that the peaks resulted from a high accumulation of 

CE-NBD, since the peaks were also evident in the negative control lenses (Figure 3-8.B). These peaks 

are likely due to the laser interacting with the inherently reflective surface plasma coating of 

lotrafilcon B.15, 151 

 CE-NBD was imaged using CSLM, which is a useful tool that allowed for analysis of 
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deposition at different depths of the CL. However, it is not ideal for data collection that requires the 

accommodation of a wide range of fluorescence intensities. As seen with this study, different gain 

settings and scaling factors were used to encompass both the low RIF at day 1 and high RIF at day 30. 

In addition, the quantum yield of the fluorophore may differ depending on the lens material. For this 

reason, using the RIF values to correlate the relative amount of deposition between different lens 

materials could not be compared. 

3.5 Conclusion 

 CE-NBD deposited in all four lens types tested. Regardless of lens type, the amount of lipid 

deposition increased over time. This accumulation of lipid over time may play a role in perceived 

comfort experienced during CL wear. Practitioners should consider the effect of accumulated CL 

deposition on a patient-specific basis when recommending daily wear modalities. Two silicone 

hydrogels, senofilcon C and comfilcon A, exhibited uniform CE-NBD deposition whereas the other 

two silicone hydrogels, lotrafilcon B and samfilcon A, exhibited more lipid deposition on the 

surfaces. Different deposition profiles of lipid may have varying effects on the ocular surface, such 

that surface deposits on the CL interact more readily with the surrounding tear film, versus a limited 

interaction of lipids sequestered within the bulk of the lens.82, 106, 108 Overall, the accumulation and 

location of CE-NBD deposition varied depending on the lens material. Future work is needed to 

determine whether the effect of surface and bulk lipid deposition on the CL is deleterious. A better 

understanding of how lipids interact with CL may provide new insights on improving lens materials 

to meet the increasing demand for more comfortable CL wear.  

 To simulate CL wear, a simple vial model was used in this study. However, this type of model 

lacks several physiological interactions between the CL and the ocular environment. To study CL 

deposition in a more clinically relevant setting, an in vitro eye model (OcuFlow) was developed at the 
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CCLR. OcuFlow consists of a synthetic eye and eyelid pieces, which are mounted onto a platform 

that can be integrated with any commercial microfluidic system to provide controlled tear flow. In 

addition, movements of the eye and eyelid piece allow for simulated intermittent air exposure and 

friction experienced during blinking. While this model received considerable positive feedback from 

the field, it still lacks several key elements that need to be addressed. Two additional factors that are 

important to better simulate on-eye conditions are the vertical blink mechanism and a layered tear 

film structure. The next two chapters will discuss the advancements made to overcome these two 

challenges in OcuFlow II.  
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Chapter 4 – Designing A Blink Mechanism in an In Vitro Eye Model 

4.1 Introduction 

 As the expanding CL field continues to introduce new advancements and technologies, there is 

also an increase in demand for better testing methods of these new lens materials. Currently, options 

for testing different CL parameters and their interactions with the eye are somewhat limited. For 

example, the majority of in vitro CL studies60, 64, 100-105 are performed using static vial methodology, as 

described in the previous chapter, which greatly exceeds physiological tear amounts of 6.2	µL,21 in 

addition to lacking tear flow and a blink mechanism. To address this, our lab developed the OcuFlow 

I (Figure 4-1),113 which is an in vitro eye model that simulates the human eye and allows for CL 

testing with relevant on-eye parameters. 

 

Figure 4-1. Photograph of the OcuFlow I model 

 The initial iteration of the blink mechanism on the OcuFlow I (Figure 4-1) was designed with 

Eyelid Eye 

CL 
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simplicity in mind, to allow for efficient prototyping. The blink motion was broken down to two 

fundamental movements; a rotational movement of the eye piece and a lateral movement of the eyelid 

piece. However, rather than a rotational and lateral motion, a natural blink or lid saccade is a 

combination of rotational and vertical motion.152 The lack of accurate motions prevented 

representative forces from being applied onto the CL and surrounding tear solutions, which have a 

significant impact on the CL as well as the cornea.153 

 Blinking is a semi-autonomic response that serves to provide lubrication and protection of the 

anterior surface of the eye as well as visual information processing.154 The blink mechanism consists 

of two phases, the opening and closing phase, which involves several muscles around the eye to move 

the eyelid. The opening phase is maintained by the contraction of the levator palpebrae superioris 

muscle and relaxation of the orbicularis oculi.152 Vice versa, the closing phase is driven by the 

contraction of the orbicularis oculi and relaxation of the levator muscle. The OcuFlow II eye model 

was designed with these muscles in mind. This chapter will discuss the development and progressive 

advancements made in introducing a tangential movement to the eyelid in order to simulate a natural 

blink on OcuFlow II. 

4.2 Iteration 1 

 One of the goals of the OcuFlow II project was to create an eye model with a mechanically 

representative blink motion. The design can be broken down into three main components: an eye 

piece, an eyelid piece and a platform to actuate the vertical blink mechanism. The blueprints for each 

component were first created using SolidWorks (Dassault Systèmes SOLIDWORKS Corp., Waltham, 

MA), a computer-aided design software, and then prototyped using 3D printing technologies. 
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4.2.1 Eye Piece 

 Ideally, the eye piece designed would mimic the human eye as much as possible, from its shape 

to its surface properties. The bulk of the eye piece is based on a semi-circular dome shape, 

representing the anterior surface of the eyeball (Figure 4-2). 

 

(A) 

 

(B) 

Figure 4-2. Side view of the synthetic PDMS eye piece (A) and computer model depiction (B). 

 The main portion of the eye piece (to represent the sclera) measures 24 mm in diameter, with 

the smaller dome (to represent the cornea) measuring a 14.5 mm in diameter, reflecting the average 

corneal shape on which a CL base curve would overlie. Along the bottom of the eyeball dome, a 

lower eyelid was designed as a fixed structure positioned 3.5mm below the center of the cornea with 

an outer diameter of 31 mm (Figure 4-2.B). Although the lower lid participates in a human blink, we 

decided its limited movement compared to the upper lid is insignificant152, 155 and was designed as a 

fixed structure. The main functions of the lower eyelid on the model were to provide a cavity for tear 

collection as well as to prevent the CL from sliding off the cornea. In addition, the lower eyelid 

provided an eyelid margin for the upper eyelid to rest upon in order to achieve the closed phase of the 

blink.  

Posterior Surface Anterior Surface 

Sclera 
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 Some important properties considered for the anterior corneal surface included a smooth 

texture, a spherical shape to effectively accommodate the placement of a CL, as well as relative 

inertness to enable testing with different compounds, including proteins, lipids, mucins and drugs 

with differing properties. With these criteria in mind, polydimethylsiloxane (PDMS) (184 Silicone 

Elastomer, Dow Corning, Midland, MI) was initially selected as the material to create the eye pieces. 

PDMS is an inert silicon-based organic polymer and is known for its suitable rheological 

properties,156 which decreases the material’s viscosity when heated and hardens when cooled. Taking 

advantage of this property, the eye pieces can be easily created by pouring heated liquid PDMS into a 

mold, which was then cured upon cooling. The mold was designed with the negative shape of the eye 

piece and the lower lid (Figure 4-3.A). Additive manufacturing was determined to be the main 

method of prototyping for this mold, due its cost effectiveness and rapid turnaround time. The first 

iteration of the mold was 3D printed using a fuse deposition modeling (FDM) method, which feeds 

thermoplastics into a heated nozzle to build models using the molten filaments. The thermoplastic 

material selected was acrylonitrile butadiene styrene (ABS) (University of Waterloo, Waterloo, ON), 

chosen for its ability to withstand high temperatures without deformation, which is a crucial step in 

the PDMS curing process. However, FDM technology is restricted by the size of the printer nozzle, 

which limits its precision and induces ridges on the surface finish of the PDMS mold (Figure 4-3.B). 
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(A) ABS Mold (B) Complimentary PDMS eye piece 

Figure 4-3. ABS mold (A) and its complimentary PDMS eye piece (B). 

 To achieve a smoother finish, an alternative resin-based printing technology, stereo lithography 

(SLA), was used. This method uses a computer guided ultraviolet laser to etch patterns in a pool of 

photosensitive liquid resin to create objects with a smooth surface finish. A polypropylene material, 

RGD450 (Hyphen – Christie Digital System Inc., Waterloo, ON), was used to achieve a glossy finish 

on the eye mold (Figure 4-4A). However, the resulting eyeball pieces were difficult to extract due to 

PDMS adhering onto the mold, causing pieces of the hardened PDMS to be left behind on the mold 

during extraction. Subsequently, a third type of printing technology called selective laser sintering 

(SLS) was used. SLS builds models in a pool of powder resin using laser curing methods similar to 

SLA. DuraForm PA (Hyphen – Christie Digital System Inc., Waterloo, ON) powder was selected to 

create a mold (Figure 4-4.B), which did not produce rough textures as observed from FDM and also 

avoided the glossy surface finish resulting from SLA. The uniform and matte surface finish of the 

mold from SLS allowed for easy extraction of the PDMS pieces (Figure 4-2.A) after curing. To 

ensure consistent depth between the eye pieces, a release channel was designed on the mold cap, 

which allowed excess PDMS to flow out of the mold when the mold cap was placed on (Figure 4-4). 

Although PDMS is the polymer selected for testing, the eye pieces can be created from any material, 

Ridges on PDMS 
Eye Piece 
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ranging from various organic to inorganic polymers using the molds for increased research versatility.  

 
 

(A) Polypropylene Mold (B) DuraForm PA Mold 

Figure 4-4. Eye molds printed from polypropylene (A) and DuraForm PA (B). The mold cap 

served to cover the mold to create a consistent eye piece. 

4.2.2 Eyelid Piece 

 The human eyelid consists of a supporting tarsal plate and the skeletal orbicularis oculi muscle, 

which are lined by conjunctiva internally and skin externally. To mimic the eyelid, the model eyelid 

piece must be flexible, durable, and chemically resistant. The initial method of constructing the eyelid 

pieces followed closely with the 3D manufacturing steps introduced in the previous section using 

molding techniques (Figure 4-5). As the counterpart to the eye piece, the eyelid piece (Figure 4-5.D) 

is composed of a thin curved film section representing the lid and a thick flat region representing the 

lid margin. The film section is 0.5 mm thick with a spherical surface measuring at an offset of 250	µm 

from the outer edge of the eye piece to account for the thickness of the CL. The lid margin, located 

along the bottom edge, has a thickness of 3.75 mm to provide three functions: to allow for contact 

with the lower lid margin, to allow for the application of an upward force by the motor and to allow 

for the implementation of fluid ducts to enable tear flow. 

 

 

Mold Cap 

Release Channel 
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Figure 4-5. Eyelid molds constructed from ABS filaments (A), polypropylene (B), and 

DuraForm PA (C). 

 However, due to the added complexity of being thin and flexible, the resulting PDMS eyelids 

were too fragile and could not withstand repeated testing. Hence, a different resin material, Digital 

Materials (DM) (Hyphen – Christie Digital System Inc., Waterloo, ON) was selected to laser print the 

eyelid shape directly. DM98 is a series of materials composed of assembled voxels that have rubber 

like properties with a range of softness.157 With the thin film structure in mind, DM9855 was chosen 

for the best balance between Shore hardness (stiffness), tear resistance (mechanical durability) and 

tensile strength (flexibility). 

  

Front View Tilted Side View 

Figure 4-6. DM eyelid piece OcuFlow II iteration 1 platform 1. 
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4.2.3 Mechanical Platform & Setup 

 The platform brings integrity to OcuFlow II by providing a mechanism to install the model eye 

in an upright position as well as housing actuating motors. Several iterations of the platform were 

designed and created to optimize its fit and function. Three different design stages will be described 

and explained in a sequential order, starting with platform 1.  

Platform 1 

 Two key features were implemented in Platform 1, a clamp mechanism and a motor stage. The 

clamp mechanism was achieved by designing a spherical indented base (Figure 4-7.B) to hold the 

model eye and an adjustable horizontal plate to clasp the model eye in place using elastic bands 

(Figure 4-7.C). The model eye consisted of an eye piece and eyelid piece attached along the upper 

margin with permanent adhesive (Figure 4-7.A). In addition, the corners of the eyelid pieces were 

connected to the eye piece by an elastic latex (Figure 4-7.A), leaving the lid margin with freedom of 

movement. 

 

 

   

 

 

 

 

 

(A) Model Eye (B) Mechanical Platform (C) Combined System 

Figure 4-7. OcuFlow II iteration 1 platform 1 photograph depicting the clamping mechanism. 

 The second feature was the stage (Figure 4-8), constructed at the top of the platform to provide 

a space for the motor. A compact servo motor (SG90) (RobotShop Inc., Mirabel, QC) was selected 
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and used to automate the blink motion. This type of motor contains a feedback mechanism that 

allowed for precise angular positioning along the motor arm, which was crucial for controlling the 

repeated opening and closing positions of the eyelid accurately. By connecting the motor to the top 

part of the eyelid margin via a monofilament (nylon 275YD) cord (McMaster-Carr, Elmhurst, IL) 

(Figure 4-8), the eyelid piece was pulled open with the tension exerted onto the cord, simulating the 

open phase of a blink through the contraction of the levator muscle on the eye. A cord was used rather 

than a solid rod, because a cord better mimics the mechanism of muscle contraction in the eye. A 

force was only applied when the levator contracts to open the lid, while no force was applied when 

the levator relaxes when the lid closes. During the closing phase, the tension in the cord relaxed as the 

motor rotated in the opposite direction and the eyelid returned to its original position from the natural 

retraction of the two elastic latex, simulating the contraction of the orbicularis oculi. After repeated 

testing, it became clear that the point force applied to the flexible eyelid margin using the nylon cord 

did not provide consistent force along the whole eyelid, resulting in tears at points of repeated 

folding. In addition, a significant amount of frictional force experienced between the eye and eyelid 

piece was not accounted for by the SG90 servo motor and was determined to have inadequate torque 

to sustain repeated movements. 
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Figure 4-8. OcuFlow II iteration 1 platform 1 photograph depicting the motor and the 

associated blink mechanism. 

Platform 2 

 In platform 2, the way in which the eyelid piece interacts with the eye piece was changed, to 

provide a mechanism that allows for even distribution of force applied along the eyelid margin. In 

addition, a different eyelid piece made from polyvinyl alcohol (PVA) (Sigma-Aldrich, St.Louis, MO) 

was introduced to the setup (Figure 4-9.A). PVA enabled the design of an extremely thin, flexible, 

and hydrophilic eyelid piece. Its smooth surface also significantly reduced the frictional forces 

between the DM (eyelid) and PDMS (eyeball) materials observed previously in platform 1. To allow 

for movement of the PVA eyelids, it needed to be secured to a rigid edge on the eyelid piece. Adding 

onto the original platform, a separate eyelid ledge piece was printed out of ABS (University of 

Waterloo, Waterloo, ON) to create a solid eyelid margin (Figure 4-9.B). The new eyelid piece 

consisted of a semi-circular ring that rotates along two pivots over the corneal eye piece. At the centre 

of the eyelid ledge was a loop allowing for easy attachment of the nylon cord stemming from the 

motor. The eyelid ledge was seated over a flat base and could easily slide into the modified base of 

the main platform. The PDMS eye piece was placed behind the eyelid ledge, which was attached to 

Nylon Cord 

Motor 

Motor Stage 
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the PVA eyelid along the margin (Figure 4-9.C). 

        

(A) PVA Eyelid (B) Mechanical Platform (C) Assembled Platform 

Figure 4-9. OcuFlow II iteration 1 platform 2 setup. 

 Platform 2 was designed with the main goal of testing the functionality of the eyelid ledge 

piece, in addition to the interaction between the PVA eyelid with the rest of the platform. The rigid 

eyelid ledge proved to withstand repeated testing and provided more reliable movements. However, 

due to PVA’s nature of deforming when it is not hydrated,158 it was difficult to maintain a consistent 

eyelid shape. This prevented repeatable and controlled observations of the CL and its interaction with 

the platform and hence this design was determined to be inadequate. 

Platform 3 

 The goal of platform 3 (Figure 4-10) was to create a functional unit based on learnings from 

platforms 1 and 2.  
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(A) Opened Phase (B) Closed Phase 

Figure 4-10. OcuFlow II iteration 1 platform 3 photo depicting the opened (A) and closed (B) 

phase of the blink. 

 Firstly, the horizontal plate was modified with a header at the front to better clamp the eyeball 

piece in position. Secondly, a groove was added along the eyelid ledge to allow the attachment of the 

DM eyelid margin, which was modified to fit the groove accordingly. Applying force on the rigid 

eyelid ledge instead of the flexible eyelid allowed the force to be evenly distributed during the 

opening and closing phases of the eyelid. Thirdly, a downward facing hook was implemented at the 

centre of the rigid eyelid ring to provide an anchor for the nylon cord to connect to the motor arm. 

Fourthly, two upward facing hooks at each side of the eyelid ledge were installed to connect to the 

base through two elastic bands, replacing the glued latex bands between the eyelid and eye piece from 

platform 1. The elastic bands served to provide a downward force required during the closing phase 

of the lid, when the nylon cord relaxes. Lastly, a different servo motor (HS-85BB) with stronger 

torque was selected for its ability to withstand repeated testing while maintaining a compact size 
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(Figure 4-11). The electronic component of the OcuFlow II setup consisted of a motor, an Arduino 

board, and a power source. The motor was connected to an Arduino board, which acts as the main 

controller. The speed and position of the motor can be programmed by connecting the Arduino board 

to any computer as the power source.  

 One concern of platform 3 was to ensure proper spacing between the movable components. In 

particular, the horizontal plate must be printed in an interlocked state with the main platform and the 

two pivots on the eyelid ledge must be printed with accurate spacing to allow for a functional axle. To 

prevent obstructed movements and slanting between the movable parts, iterative printing 

methodology was used to achieve optimal spacing between those two crucial mechanisms. 

 

Figure 4-11. OcuFlow II iteration 1 platform 3 electronic component setup. 

 The first two platforms were 3D printed from ABS (University of Waterloo, Waterloo, ON), 

which is cost effective to produce and allows for fast turnaround time. However, the porous natural of 

the material resulted in unwanted absorption of solutions during testing. With this limitation in mind, 

the following two iterations were created using DuraForm PA (Hyphen – Christie Digital System 

Inc., Waterloo, ON), which can be made from a blend of different resins to achieve its waterproof 

property to enhance biocompatibility. 
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Limitations 

 In this setup, we attempted to create a comprehensive blink setup with an eye piece, a pliable 

yet durable eyelid piece, a functional platform, a robust motor and a controller with flexible 

programming capabilities. After testing platform 3, the two limitations that remained were the 

insufficient spacing for the eyelid piece to fold during the opening phase of the blink and the 

inconsistent force provided by the nylon cord and elastic latex. When the eyelid is pulled back to an 

open phase, the eyelid folds against the platform pillar, which can come in contact with the CL placed 

on the eye piece and result in tears after repeated testing. Moreover, the applications of the nylon cord 

and elastic band using to open and close the eyelid introduced inconsistency in the amount of force 

applied to the system. Specifically, the elastic band can change the force applied drastically over use. 

As a proof of concept, these materials were more than sufficient, but for reliable and repeatable 

results, materials with tighter tolerances and long term reliability testing are required. Unfortunately, 

these limitations require fundamental changes to the setup, which required a significant amount of 

redesign. From this design process, we learned that trying to implement too many features at the same 

time is not practical. The inconsistent and tedious nature of the setup required a fresh start to create a 

simpler and more reliable platform. 

4.3 Iteration 2 

 The main goal of iteration 2 was to create an eye model with a vertical blink that also allowed 

for easy and consistent assembly. To achieve this, the OcuFlow II setup along with the eye piece, 

eyelid piece, and platform were redesigned. 

4.3.1 Eye Piece 

 Adopted from iteration 1, the eye pieces in iteration 2 had the same general dome structure with 
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a fixed lower lid. Initially, the lower lids were created out of PDMS using molds. However, PDMS is 

hydrophobic and does not reflect the surface of the human cornea. To explore different options, the 

eye pieces were 3D printed using a white nylon (PA 2200) material (Think2Thing Inc., Toronto, ON), 

which is more hydrophilic, as demonstrated by the greater contact angle of ~72° using the sessile drop 

technique (Figure 4-12). 

 
(A) PDMS (B) Nylon (C) Acetal 

Figure 4-12. Advancing water contact angles of PDMS (A), Teflon (B), and Acetal (C) eye piece 

surfaces measured using sessile drop technique. 

 During testing, the rough unpolished surface of the nylon eye piece proved to be problematic 

and introduced too much spacing and air bubbles between the CL and corneal surface. In addition, the 

white colour of the eye piece was too reflective and prevented subsequent testing using several 

clinical instruments, which are designed and calibrated for the coloured human iris. To overcome 

these limitations, the eyelid pieces were machined out of polyoxymethylene polymer, also known as 

acetal (University of Waterloo, Waterloo, ON), which is more hydrophilic than PDMS (Figure 4-12) 

and is inherently black in colour (Figure 4-13.D). Two holes were drilled along the posterior surface 

of the eye pieces to allow for attachment to the platform (Figure 4-13). Due to its complimented 

structure, the lower eyelid was 3D printed separately using nylon (Think2Thing Inc., Toronto, ON) 

and attached to the eye piece (Figure 4-13.D). 
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(A) Top View (B) Back View (C) Side View 

 
 

 

(D) Assembled View 

Figure 4-13. OcuFlow II iteration 2 eye piece with dimensions (A-C) and with the assembled 

lower eyelid (D). 

4.3.2 Eyelid Piece 

 Instead of a flexible eyelid, a rigid eyelid was designed and 3D printed using nylon (PA 2200) 

(Think2Thing Inc., Toronto, ON). The eyelid piece (Figure 4-14) was composed of a concave eyelid 

component supported by an L-shaped bracket. The rationale behind switching to a rigid eyelid from a 

flexible one was to allow for consistency, increased structural integrity and efficiency in setup. The 

assumption made was that the eyelid served its function as long as the lid margin glides over the eye 

piece and is able to replenish the tear film. 
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(A) Front View (B) Side View (C) Tilted Back View (D) Actual Photo 

Figure 4-14. OcuFlow II iteration 2 eyelid piece. 

4.3.3 Mechanical Platform & Setup 

 The platform in iteration 2 was easy to assemble and consisted of several different metal 

components held together by stainless steel rods (McMaster-Carr, Elmhurst, IL). The nine metal 

pieces (parts A-I) make up the body of the platform and are machined out of aluminum (University of 

Waterloo, Waterloo, ON) for good structural durability (Figure 4-15).  

 

Figure 4-15. Aluminum assembly of OcuFlow II iteration 2. 

 Part A is a flat rectangular base to which other supporting structures are attached to. Parts B to 

E are identical pillars that are secured to part A and act as the support structures. The pillars allow for 

the attachment of parts F and G, which are responsible for affixing the eye and eyelid piece 

respectively. Part F is a rectangular block that is secured between the two back pillars using two steel 

rods on each side. In addition, two steel rods are press-fitted onto the front surface of part F to allow 
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for attachment of the eye piece (Figure 4-16.A). Part G is an L-shaped bracket that allows the 

complimentary eyelid piece to be easily clipped on (Figure 4-16.B). 

 

 

Nylon Eyelid Piece 

 

Aluminum Part G 

 

 

(A) Assembled Eye Piece (B) Assembled Eyelid Piece 

Figure 4-16. OcuFlow II iteration 2 assembled eye piece (A) and eyelid piece (B). 

 The bracket is attached between the two front pillars with one steel rod at each pivot, which 

allows the eyelid to rotate via a motor. The motor is connected to the setup using part H and I (Figure 

4-15). Part H is attached to the base (part A) with two press-fitted steel rods and serves to raise the 

motor so it is leveled with the eyelid piece. To move the eyelid, part I is installed to pivot along the 

motor and is connected to the aluminum bracket using a steel rod. A metal gear motor (100:1 with 64 

CPR encoder, McMaster-Carr, Elmhurst, IL) is used to supply the torque need for to rotate the eyelid 

piece (Figure 4-17). Part H is attached to the base (part A) with two press-fitted steel rods and serves 

to raise the motor so it is leveled with the eyelid piece. The motor is connected to a micro Roboclaw 

controller (Pololu Corporation, Las Vegas, NV), which can supply up to three times the power output 

than an Arduino board when connected to an external DC power supply (Pololu Corporation, Las 

Vegas, NV) (Figure 4-17). 
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Figure 4-17. OcuFlow II iteration 2 setup. 

 By connecting the micro controller to the computer, the motor speed and position can be 

manipulated to account for the highly variable human blink rate, which averages around 14-17 blinks 

per minute159, 160 for an interval of 2-10 seconds. The open position (Figure 4-18.A) is angled at 65° to 

the horizontal and is set as the start position to allow for insertion of a CL. When the motor rotates 

65° downwards, the eyelid comes to a closed position in 0.3 sec (Figure 4-18.B). When the motor 

rotates 65° upward, the eyelid returns to an open position in 0.3 sec and maintains this position for 5.4 

sec before the next blink, to simulate intermittent air exposure of the lens. 

  

(A) Open Position (B) Close Position 

Figure 4-18. Photo of eye and eyelid piece on OcuFlow II iteration 2 depicting the open and 

close position. 
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4.4 Conclusion 

 Traditional eye models lack a blink mechanism, which is an essential component of the ocular 

environment. The development of a novel in vitro eye model, OcuFlow II, with a sophisticated blink 

mechanism was described in this chapter. Developing a novel eye model is a highly iterative process 

that combines vision science and engineering. OcuFlow II evolved through several platforms before a 

functional model was made. The first iteration served as a proof of concept and attempted to mimic 

several aspects of the blink, including a semi-spherical eye, a flexible eyelid and representative 

muscle forces of the blink reflex. However, simulating too many features simultaneously resulted in 

several limitations to the model that require fundamental changes to the setup. Building on learnings 

from iteration one, a second iteration was designed with a much simpler setup to allow for consistent 

and reliable testing results. Iteration 2 also consists of an eye piece, an eyelid piece and a mechanical 

platform. Each component was designed to allow for an easy setup of a vertical blink mechanism 

between the eye and eyelid pieces. The design of iteration 2 is robust and proved to be successful in 

simulating a natural blink. CL can be tested with on-eye parameters by placing the lens onto the 

corneal surface of the eye piece. The mechanic blink allows testing of different lens material with 

more representative results. In addition, the developed blink mechanism allows for tear film 

formation on the corneal surface, which is another crucial component of the ocular environment and 

will be discussed in the next chapter. 
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Chapter 5 – Incorporation of a Tear Film into an In Vitro Eye Model 

5.1 Introduction 

 Currently, the majority of in vitro CL studies are performed by immersing the lens in a vial 

containing 1 to 5mL of ATS,60, 64, 100-105 which greatly exceeds the physiological tear volume of 

6.2	µL.21 In particular, these studies do not account for the impact of a representative tear film on the 

CL. The structure, stability and function of the tear film is greatly influenced by the blink 

mechanism.161 OcuFlow I is an in vitro eye model with a blink mechanism that supports a tear film. 

As mentioned in the previous chapter, the rotational and lateral movements of the eye and eyelid 

piece in OcuFlow I is not reflective of a natural blink motion, which is a rapid downwards-upwards 

movement of the eyelid with a range of duration of approximately 0.1-0.4 sec.152, 162-165 In OcuFlow I, 

the rotational motion of the eye piece against the eyelid piece introduces unnatural mixing of the 

different tear components. The lateral motion of the eyelid piece away from the eye piece breaks the 

surface tension and disrupts the integrity of the tear film. To overcome the limited movements in 

OcuFlow I, a more representative vertical blink was developed in OcuFlow II, to allow for a smooth 

regeneration and stable maintenance of the tear film. Moreover, OcuFlow I was designed with a 

single outlet on the eyelid piece to allow for controlled tear flow of a homogenous ATS.113 However, 

the tear film consists of multiple phases rather than a homogeneous solution.20, 22 Conventionally, the 

tear film consists of three distinct layers: the superficial lipid layer, the middle aqueous layer, and the 

innermost mucin layer. This somewhat simplistic view of the tear film has been challenged and a 

more recent understanding of the tear film is that it more closely resembles a bilayered structure, 

consisting of a distinct outermost lipid phase and a mixed aqueous/mucin phase with decreasing 

mucin concentration away from the cornea.20, 23 To achieve a bilayered tear film structure, the lipid 
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and aqueous components must be secreted separately. The majority of the tear lipids are produced by 

the meibomian glands whereas the aqueous components are secreted from the lacrimal gland.144, 166 A 

specific goal of OcuFlow II was to establish a system that allowed for the development of a bilayered 

tear film structure. 

5.2 Iteration 1 

 In OcuFlow I, ATS was introduced into the system as a homogeneous phase through one outlet 

on the eyelid piece. The goal of OcuFlow II was to implement multiple outlets to allow for the 

delivery of distinctly separate tear components. As discussed in the previous chapter, iteration 1 

evolved through three platforms. The next section will address these platforms with a focus on the 

tear delivery aspect of the design.  

Platform 1 

 In platform 1, the eyelid piece was constructed by curing PDMS in a mold (Figure 5-1.A). Tear 

ducts along the eyelid margin were introduced by placing silicone tubes (VWR, Radnor, PA) into the 

designated opening on the mold (Figure 5-1.A) to simulate the meibomian glands. Upon curing, the 

PDMS eyelid hardened with the silicone tubes attached to both sides of the eyelid margin, where 

small openings were created to allow for delivery of tear solutions onto the eye piece (Figure 5-1.B). 

Silicone tubes, with an inner diameter of 0.063 inch and outer diameter of 0.125 inch, were selected 

for flexibility, durability, and inertness to different chemicals. 
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(A) Eye Molds (B) PDMS Eyelid Piece 

Figure 5-1. Photo of the eyelid molds showing the opening for tubes (A) and PDMS eyelid piece 

with tubing on the eyelid margin (B). 

 However, the varying locations of the tear solution delivering openings resulted in inconsistent 

tear flow along the eyelid margin, where the openings further away from the source of the tear 

solution had significantly lower pressure and less tear flow. As mentioned in the previous chapter, 

PDMS eyelids were too fragile and brittle to withstand repeated testing. Hence, the eyelids were then 

3D printed out of DM for enhanced durability (Figure 5-2). Unfortunately, the limited 3D printing 

technology did not allow ducts to be implemented on the constrained space along the eyelid margin. 

 

Figure 5-2. DM eyelid piece of OcuFlow II iteration 1 platform 1. 

Platform 2 

 In platform 2, an eyelid ledge piece was introduced, as seen in Figure 5-3. The eyelid ledge 

created space for the incorporation of pseudo-tear ducts along the rigid ledge. Rather than 
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incorporating several small openings along the entire eyelid ledge, only two openings were installed 

to avoid inconsistent pressure and flow. Tear flow was introduced to the system by inserting tubes 

into the two entrance openings on the eyelid ledge, which fed into two smaller exit openings at the 

front of the ledge (Figure 5-3.A). In addition to tear flow, a functional eyelid is a crucial component 

for generating a tear film to allow the spread of various tear film components over the ocular surface. 

PVA eyelids were implemented in platform 2 by attaching a thin film to the eyelid ledge. PVA was 

selected for its flexibility and was expected to glide smoothly over the corneal surface to create a tear 

film. However, PVA deforms as it becomes dehydrated and it is difficult to maintain a consistently 

hydrated state throughout the installation process onto the eyelid ledge. 

   
(A)  (B)  (C)  

Figure 5-3. OcuFlow II iteration 1 platform 2 photo depicting the openings on the eyelid ledge 

piece (A) and the drainage outlet from the front view (B) and back view (C) of the mechanical 

platform. 

 Another feature implemented in platform 2 was the drainage outlet located at the bottom of the 

mechanical platform (Figure 5-3.B,C). The drainage outlet sits behind the eye piece and acts as the 

puncta. The drainage channel on the PDMS eye piece was created by temporarily placing a rod 

through the mold cap in place of the drainage channel upon pouring the heated PDMS into the eye 
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mold (Figure 5-4). Upon curing, the removal of the rod created the desired drainage route in the eye 

piece that connects with the drainage outlet on the platform. 

 

Figure 5-4. Eye mold depicting the opening of the drainage channel. 

Platform 3  

 Similar to platform 2, two entrance openings were implemented on each side of the rigid ledge 

on platform 3, which fed centrally and anteriorly into the two exit openings (Figure 5-5.A). A groove 

was added to create spacing for the attachment of a flexible DM eyelid piece (Hyphen – Christie 

Digital System Inc., Waterloo, ON) (Figure 5-5.A). On the eyelid piece, a rectangular opening was 

designed adjacent to the exit openings on the eyelid ledge to allow for tear flow onto the eye piece 

(Figure 5-5.A). The tear duct setup along the eyelid was designed to mimic the meibomian glands for 

lipid secretion. To mimic the secretion of the aqueous phase, an additional outlet was implemented at 

the top of the platform (Figure 5-5.C). Similar to the drainage channel, the corresponding fluid 

channel on the PDMS eye piece can be created during the curing process by placing a rod in the 

respective opening in the mold (Figure 5-5.B). As fresh tear solution replenished the tear film, the old 

tears were collected through the drainage outlet (Figure 5-5.C). 

Mold Cap 

Insert rod here to create drainage channel 
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(A) Eyelid Ledge with Eyelid – Back View 

  

(B) Eye Mold (C) Mechanical Platform – Back View 

Figure 5-5. OcuFlow II iteration 1 platform 3 photo depicting the back view of eyelid ledge 

piece with an attached DM eyelid piece attached (A) and the back view of the mechanical 

platform with all the associated outlets.  

 Unfortunately, the blink mechanism in these platforms did not account for the proper folding of 

the eyelid piece during the upward blink, which resulted in deformation of the eyelid piece after 

repeated testing. As mentioned in the previous chapter, iteration 2 was created to simplify and 

overcome the limitations of iteration 1.  

5.3 Iteration 2 

 The assumption made in designing iteration 2 is that a rigid eye and eyelid piece would provide 

reproducibility and repeatability. Hence, each component of the platform adopted a rigid design. In 

iteration 2, two fluid delivery sources were implemented on the eye and eyelid piece to allow for the 
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separate secretion of the aqueous and lipid phase respectively (Figure 5-6.A). On the eye piece, a 

through hole was designed centrally above the corneal surface (Figure 5-6.B) to simulate the lacrimal 

gland and allowed the delivery of the aqueous phase onto the eye model. On the eyelid piece, an 

opening was designed on the anterior corneal segment (Figure 5-6.C) to simulate the meibomian 

glands and allowed for delivery of the lipid phase onto the eye model. A circular groove was milled 

along the bottom ledge of part G to provide a channel for silicone tubes (Figure 5-6.D). Barbed tubing 

couplers (equal leg 1.6 mm diameter, VWR, Radnor, PA) were used to attach the silicone tubes to the 

outlets to ensure a secure connection that was able to endure the repeated blinking motion (Figure 

5-6.A). 

 

 

(A) Mechanical Platform – Side View 

   

(B) Eye Piece (C) Eyelid Piece (D) Aluminum Part G 

Figure 5-6. OcuFlow II iteration 2 photo depicting the outlet for the aqueous and lipid phase 

(A), the aqueous outlet on the eye piece (B), the lipid outlet on the eyelid piece (C, D). 
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 For a controlled tear flow into the system, the silicone tubes were connected to a programmable 

microfluidic syringe pump (model PHD ULTRATM 4400, Harvard Apparatus, Massachusetts, United 

States) (Figure 5-7). The lipid phase was introduced onto the eyelid piece to assist the formation of a 

superficial layer, whereas the aqueous phase was introduced on the eye piece to allow for a layer 

adjacent to the corneal surface. 

 

Figure 5-7. OcuFlow II iteration 2 setup depicting the microfluidic syringe pump. 

 In addition to tear flow, the blink motion must meet two criteria in order to generate the tear 

film. As the tear solutions gathered along the lower eyelid due to gravity, the upward blink 

replenishes the tear film, as the upper eyelid margin makes contact with the lower eyelid and spreads 

the pooled tear solution over the corneal surface. The first criterion is to allow the upper eyelid 

margin to make contact with the pooled tear solution along the lower eyelid. The second criterion is 

to allow the upper eyelid to glide smoothly over the corneal surface during the upward blink to 

maintain the spread of the tear film. However, it is difficult to follow the curvature of the eye piece, 

which is irregularly shaped, with a rigid eyelid. If the spacing between the eye and eyelid piece is too 

close, the eyelid will interfere with the eye piece and disturb the CL mounted on it. If the spacing is 
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too large, the surface tension of the tear solution will break between the eye and eyelid, resulting in a 

rupture of the tear film. To overcome this, a thin strip of flexible DM98 polymer (Hyphen – Christie 

Digital System Inc., Waterloo, ON) was adhered to the bottom of the upper eyelid piece (Figure 

5-8.A) to create a more lenient eyelid margin, that allowed for a closer contact between the eye and 

eyelid piece without causing interference. This design enabled flexible spacing for the maintenance of 

a stable tear film. It is important that the ocular surface is replenished with fresh tears to remove 

debris and introduce nutrients to the anterior surface of the eye. To meet this demand, the eye is 

constantly secreting tear solution. As the old tears start to collect along the bottom eyelid, excess tears 

are transported to the puncta for drainage. To simulate this, an opening was designed on lower eyelid 

piece to allow for drainage of tear solutions (Figure 5-8.B). 

 
 

                  (A) Eyelid Piece                (B) Eye Piece 

Figure 5-8. Eyelid piece showing the DM eyelid margin (A) and eye piece showing the drainage 

outlet (B). 

5.4 Conclusion 

 In OcuFlow II, a mechanism for tear film generation and replenishment onto the eye piece was 

established through an iterative process. In iteration 1, three platforms were described. In platform 1, 

tear ducts were implemented along the PDMS eyelid margin to simulate the meibomian gland. 

However, tear flow was not well controlled and varying amounts of tear solution were secreted, 

depending on the location of the opening along the eyelid margin. With the introduction of the rigid 
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eyelid ledge piece in the platform 2, two fluid channels were installed from either side of the ledge, 

which helped improve the control of the tear flow. An additional outlet was added to platform 2 on 

the eye piece to allow for separate delivery of the aqueous and lipid phases. Unfortunately, the PVA 

eyelid piece was difficult to handle and could not be reliably implemented into a functional unit. In 

platform 3, a functional eyelid piece was created by modifying the eyelid ledge piece to accommodate 

a SLS printed DM eyelid (Hyphen – Christie Digital System Inc., Waterloo, ON). Unfortunately, a 

stable tear film could not be maintained due to the erratic movement of the eyelid folding against the 

platform pillar, which interfered with the spread of tear solution during an upward blink. To 

overcome the limitations observed in iteration 1, iteration 2 was developed with a simpler setup. In 

iteration 2, the platform consisted of an aluminum assembly held together by stainless steel rods. 

Instead of a flexible eyelid piece, a rigid design was implemented to reduce variability during the 

blink movement. Similar to iteration 1, two sources of outlets were introduced in iteration 2 to allow 

for separate delivery of the aqueous and lipid phase, which were installed on the eye and eyelid piece 

respectively. Tear solution was introduced to the system by connecting the outlets to a microfluidic 

syringe pump via silicone tubes. The uniqueness of OcuFlow II was the implementation of additional 

outlets for separate delivery of the aqueous and lipid phase, which enabled the development of a 

layered tear film structure over the eye model. In addition, the blink mechanism introduced a 

changing ocular environment reflective of on-eye conditions and allowed for more representative 

testing of different CLs under physiologically relevant conditions. The easily modifiable components 

of OcuFlow II made it versatile in accommodating various study requirements. Although the fluid 

intake design was designed to simulate the glands in the human eye, any solution can be infused onto 

the system for a wide range of testing possibilities. Moreover, the eye and eyelid pieces can be 

modified and integrated with an animal cornea or eyelid, permitting more complex in vitro studies. 
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Chapter 6 – In Vitro Tear Break-up Time of Silicone Hydrogels Evaluated 

Using OcuFlow II 

6.1 Introduction 

 The tear film is a vital component of a healthy eye and supplies nutrients, removes foreign 

particles, and acts as a lubricant between the eye and eyelid. The blink mechanism replenishes the 

tear film as the eyelids glide over the anterior surface of the eye. Between each blink, the tear film 

breaks up as the surface dehydrates with air exposure. However, the placement of a CL can disrupt 

the integrity of the tear film, which can cause discomfort and decrease visual acuity.167, 168 With CL 

wear, the tear film is split into a pre-lens tear film, which forms over the front surface of the CL, and 

the post-lens tear film, which forms between the lens and the cornea. Successful CL materials aim to 

preserve the tear film integrity by keeping the lens hydrated and providing a wettable front surface to 

help maintain a physiological tear break-up time (BUT), which is the time it takes for the first 

observable break-up in the tear film. To determine the clinical performance of a CL, it is important to 

assess BUT of the pre-lens tear film, which contributes to the comfort and stable visual acuity of the 

CL wearer.168, 169 

 BUT of the pre-lens tear film can be evaluated using several methods, which can be broadly 

classified into two categories, the invasive and non-invasive techniques.169, 170 The most widely used 

invasive tear BUT technique is the fluorescein break-up test. This test allows the tear film to be 

clearly visualized with the insertion of a fluorescent dye under a highly magnified lens on the slit 

lamp biomicroscope. However, studies have shown that the instillation of fluorescein onto the eye can 

increase the total tear amount and induce reflex tear secretion, which reduces the repeatability and 

accuracy of BUT.171, 172 For more reliable tear BUT results, non-invasive (NIBUT) methods can be 
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employed. 

 Several non-invasive techniques to assess BUT exist, all of which require additional clinical 

instruments. The most common include the Tearscope, keratometer, and corneal topographer.170, 173 

The Tearscope can be used to measure NIBUT, which is inferred from the interference patterns 

reflected off the tear film from a LED light source. However, the interference patterns are quite 

variable174 and  interpretation is subjective.175 The keratometer allows the clinician to assess NIBUT 

by measuring the time elapsed for the reflected mire rings to distort on the patient’s tear film.176, 177 

Similarly, the corneal topographer maps the corneal surface and measures NIBUT by assessing the 

distortion of placido rings reflected onto the patient’s tear film.178, 179 Compared to the keratometry, 

which only allows for the central 3.0-3.5 mm of the cornea to be examined, the advantage of using the 

corneal topographer is the wide field of view extending to the periphery of the corneal surface. This is 

an important aspect to consider when measuring BUT, because the tear break-up is not limited to the 

centre of the cornea but extends across the entire anterior surface of the eye. Hence, corneal 

topography was chosen in this study to measure NIBUT.  

 To simulate the pre-lens tear film, an in vitro eye model (OcuFlow II, described in the previous 

chapter) is used. The use of an eye model offers the advantage of CL testing in vitro with various 

controlled parameters that are otherwise not possible in vivo. The purpose of this chapter is to 

evaluate the pre-lens NIBUT of silicone hydrogels with corneal topography, using OcuFlow II to 

simulate CL wear. 

6.2 Materials and Methods 

6.2.1 Contact Lenses 

 Two commercially available silicone CLs (lotrafilcon B [Air Optix Aqua, Alcon, Fort Worth, 
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TX] and comfilcon A [Biofinity, CooperVision, Pleasanton, CA]) were evaluated. All lenses had a 

dioptric power of -3.00 and the lens properties are outlined in Table 6-1. 

Table 6-1. Properties of silicone hydrogels used in the study. 

 Air Optix AquaTM BiofinityTM 

United States Adopted Name lotrafilcon B comfilcon A 
Manufacturer Alcon CooperVision 
Centre Thickness (mm) 0.08 0.08 
Back Optic Zone Radius (mm) 8.6 8.6 
Diameter (mm) 14.2 14.0 
Water Content (%) 33 48 
Oxygen Permeability (x10-11) 110 128 
Oxygen Transmissibility (x10-9)  138 160 
Surface Treatment Plasma Coating None 

Wetting Agent Moist agent in packaging 
solution (1% copolymer 845) 

None 

Principal Monomers DMA + TRIS + siloxane 
macromer 

NVP, VMA, IBM, TAIC, 
M3U, FM0411M, HOB 

DMA, N,N-dimethylacrylamide; TRIS, trimethylsiloxy silane; NVP, N-vinyl pyrrolidone; VMA, N-
vinyl-N-methylacetamide; IBM, isobornyl methacrylate; TAIC, 1,3,5-triallyl-1,3,5-triazine-
2,4,6(1H,3H,5H)-trione; M3U, bis(methacyloyloxyethyl iminocarboxy ethyloxypropyl)-
poly(dimethylsiloxane)-poly(trifluoropropylmehylsiloxane)-poly(methoxy-poly[ethyleneglycol] 
propylmethlsiloxane); FM0411M, methacryloyloxyethyl iminocarboxyethyloxypropyl-
poly(dimethylsiloxy)-butyldimethylsilane; HOB, 2-hydroxybutyl methacrylate. 

6.2.2 Artificial Tear Solution 

 ATS consists of various physiological tear film components, including a range of salts, 

proteins, and lipids. The recipe for a homogenous ATS has been previously established by our 

group.148 A modified ATS was prepared in two phases separating the protein (Table 6-2) and lipid 

(Table 6-3) phase to allow for independent delivery of the two phases onto the eye model. Both 

phases were dissolved in complex salt solution (CSS) (Table 6-4). The protein phase was dissolved in 

CSS using a magnetic stirring bar. The lipid phase was initially dissolved in hexane ether as a four 

lipid stock consisting of two polar lipids and two nonpolar lipids. The lipid stock was dissolved in 
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CSS using a model 50D Aquasonic water bath (VWR, Radnor, PA) and the hexane ether was purged 

using pressured nitrogen. 

Table 6-2. Protein phase of ATS. 

Protein Components mg/mL 
Bovine Albumin  0.20 
Bovine Submaxillary Mucin 0.15 
Bovine Lactoferrin 1.80 
Hen Egg Lysozyme 1.90 

Table 6-3. Lipid phase of ATS. 

Lipid Components mg/mL 
Cholesterol 0.00275 
Cholesteryl oleate 0.03669 
Phosphatidylcholine 0.01116 
Phosphatidyethanolamine 0.00592 

 

Table 6-4. Concentrated salt solution. 

Salt component mg/mL 
Sodium chloride 5.26 
Potassium chloride 1.19 
Sodium citrate 0.44 
Glucose 0.036 
Urea 0.072 
Calcium chloride 0.07 
Sodium carbonate 1.27 
Potassium hydrogen carbonate 0.30 
Sodium phosphate dibasic 2.41 
Hydrochloric acid 0.94 
ProClin 300 0.20 µl / 1L 

 

6.2.3 Experimental Outline 

 Lenses (n=4) were removed from the blister package and placed onto the corneal eye piece of 

OcuFlow II). The blink rate on OcuFlow II was set to 10 blinks/min and the flow rate of the protein 

and lipid phase were set to 6 µL/min for a total flow rate of 12 µL/min on a programmable 

microfluidic syringe pump (model PHD ULTRATM 4400, Harvard Apparatus, Holliston, MA). 

Readings were taken at 5 min, 30 min and 60 min. 
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Figure 6-1. OcuFlow II mounted behind the corneal topographer for NIBUT measurements. 

6.2.4 Non-invasive Tear Break-up Time 

 The BUT of the pre-lens tear film was measured noninvasively using a corneal topographer 

(Atlas 911, Zeiss Humphrey Systems, Oberkochen, Germany). The topographer assesses the tear film 

by reflecting a set of concentric black and white rings, known as placido rings, onto the corneal 

surface. To determine the pre-lens NIBUT of the CL, OcuFlow II was mounted behind the 

topographer (Figure 6-1) and the corneal surface was centered to the placido rings after the CL was 

placed on. The time taken for the first visible distortion in the placido rings was measured as the 

NIBUT of the pre-lens tear film.180 Distortions in the placido ring is correlated to breaking up of the 

tear film. At 5 min, 30 min and 60 min, the blink mechanism on OcuFlow II was paused for 1 min 

and the video of the BUT recorded. The pre-lens NIBUTs were analyzed and averaged over four 

lenses. Unfortunately, the pre-lens NIBUT could not be evaluated on comfilcon A after 30 min and 

60 min due to a looser fit of the lens on the corneal surface of the ocular pieces of OcuFlow II, 

Lipid Phase 6	µL/min 

 Aqueous Phase 6	µL/min 

OcuFlow II 
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causing the lens to slide off at later time points. Thus, the pre-lens NIBUT for comfilcon A will only 

be reported for the shorter period of time. 

6.2.5 Data Analysis 

 Statistical analysis was performed using Statistica 8 (StatSoft Inc., Tulsa, OK). A comparison 

of NIBUT between the two lens types at 5 min was conducted using a t-test. A repeated measures 

analysis of variance was used to determine the difference between NIBUT of lotrafilcon B at various 

time points. 

6.3 Results 

 Pre-lens NIBUT varied depending on the lens type and time of measurement. For lotrafilcon B, 

the average pre-lens NIBUTs for the pre-lens tear film were 15.5 sec, 31.5 sec, and 18 sec at 5 min, 

30 min and 60 min, respectively (Table 6-5). The average pre-lens NIBUT for comfilon A was only 

obtained at 5 min, which was 11.75 sec (Table 6-6). The NIBUTs for both lenses at 5 min are not 

significantly different (p > 0.05). 

Table 6-5. NIBUT of lotrafilcon B (n=4) at 5 min, 30 min and 60 min of simulated CL wear 

using OcuFlow II. 

Lotrafilcon B 5 min 30 min 60 min 
Lens 1 12 33 17 
Lens 2 17 32 20 
Lens 3 12 35 17 
Lens 4 21 26 18 
Average 15.5 31.5 18 
STD 4.4 3.9 1.4 
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Table 6-6. NIBUT of comfilcon A (n=4) at 5 min simulated CL wear using OcuFlow II. 

Comfilcon A 5 min 
Lens 1 14 
Lens 2 13 
Lens 3 11 
Lens 4 9 
Average 11.75 
STD 2.2 

 

 The BUT was determined as the time immediately after a complete blink to the time that first 

distortion appeared in the placido rings, as exemplified by a lotrafilcon B lens at 17 sec (Figure 

6-2.B). At time 0, the undisrupted placido rings reflected a stable tear film that was spread evenly 

across the surface of lotrafilcon B (Figure 6-2.A). With increased time of air exposure, there is an 

increase in the amount of distortion in the placido rings, which occurs due to the decreased stability of 

the tear film and the presence of a dry spot. The first sign of the tear film breaking up in the CL was 

seen at 17 sec, when the placido rings initially became distorted (Figure 6-2.B) and this time was 

determined to be the NIBUT. After 60 sec, the tear film was breaking up in several locations as 

evidenced by the increased amount of distortions throughout the placido rings (Figure 6-2.C). 

   

(A) (B) (C) 

Figure 6-2. Topography images of a lotrafilcon B lens at 0 sec (A), 17 sec (B), and 60 sec (C) 

after 5 min of simulated CL wear using OcuFlow II. 

0 s 17 s  60 s 
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 At 5 mins of simulated CL wear with the comfilcon A lens, concentric placido rings were 

observed on the pre-lens tear film (Figure 6-3.A). Shortly beyond this time point, the placido rings 

were distorted around the centre as the lens started to shift (Figure 6-3.B). As time increased, the CL 

became more shifted, as evidenced by the significant distortion of the placido rings after 60 min 

(Figure 6-3.C). Comfilcon A did not withstand prolonged simulation of CL wear using OcuFlow II. 

Hence, reliable pre-lens NIBUT measurements were not obtained at 30 and 60 min of simulated CL 

wear using OcuFlow II. 

   
(A) (B) (C) 

Figure 6-3. Topography image of a comfilcon A lens after 5 min (A), 30 min (B), and 60 min(C) 

of simulated CL wear using OcuFlow II. 

6.4 Discussion 

 Two silicone hydrogels were selected for their unique surface properties. Lotrafilcon B consists 

of a modified surface with a hydrophilic plasma coating, which serves to increase oxygen 

transmissibility.15, 151 In contrast, comfilcon A is inherently wettable and does not require surface 

treatment.151, 181 The data reported suggests that the pre-lens tear film on lotrafilcon B was more stable 

than comfilcon A, as reflected by the longer NIBUT of 15.5 sec to 11.75 sec. On both lenses, a 

similar distortion pattern of tear break-up on the pre-lens tear film was observed on OcuFlow II 

compared to on a physiological tear film, which suggest that a similar mechanism of tear break-up is 

in play. The distortion pattern was observed as the contact of concentric placido rings at a point. With 

5 min 30 min 60 min 
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increased time of air exposure, there is an increase in the amount of distortion in the placido rings, 

which occurs due to the decrease in the tear film stability and presence of dry spots. 

 Compared to clinical values (4.73 sec – 7.24 sec) of pre-lens NIBUT on lotrafilcon B,182 the 

values observed on OcuFlow II were higher (12 sec - 33 sec). This can be explained by the tenfold 

increase in the amount of tear flow (12	µL/min) on OcuFlow II as compared to the average 

physiological tear flow of 1.2	µL/min.21 12	µL/min was determined as the minimum tear flow rate to 

achieve a smooth regeneration of the tear film over the surface of the CL on the current OcuFlow II 

platform. Notably, pre-lens NIBUTs from the clinical study182 were measured after an extended 

period of continuous wear for four weeks, whereas, the pre-lens NIBUT measurements in this study 

were all made within the span of an hour exposure to the ATS. The time difference in CL wear may 

also contribute to the higher pre-lens NIBUTs observed on OcuFlow II as a result of less mechanical 

wear on the CL, which may affect the quality of the pre-lens tear film. 

 The first pre-lens NIBUT was taken at 5 min to allow for the steady flow of tear solution to 

rinse out any excess blister pack solution on the lens. The average NIBUT at 5 min was the lowest 

measurement at 15.5 sec, suggesting that the tear flow may have not completely stabilized on the 

OcuFlow II system. At 30 min, the pre-lens NIBUT for lotrafilcon B increased to an average 

measurement of 31.5 sec (p < 0.05). This suggests that the pre-lens tear film was the most stable at 

this time point, where a sufficient time period had passed to allow the tear solution to optimally 

equilibrate with the OcuFlow II model. Surprisingly, at 60 min, the pre-lens NIBUT dropped 

significantly (p < 0.05) to an average measurement of 18 sec. This can be attributed to the much 

accelerated wear and tear of the CL, due to the forces experienced through the mechanical wear of 

OcuFlow II as compared to physiological levels. Further research is needed to determine whether the 

friction and pressure exerted on the CL by the OcuFlow II system is representative of on-eye 
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conditions. 

 On the human cornea, CLs fit the corneal surface differently, depending on its shape 

(curvature, thickness, diameter) and material. Similarly, the different lens materials assessed in this 

study varied in CL fit on the in vitro eye model, which consisted of an eye piece with a fixed 

curvature. The fit and movement of the CL plays an important role in determining the stability of the 

pre-lens tear film. The fitting of lotrafilcon B on the corneal surface of the eye piece was ideal. 

Regrettably, comfilcon A did not fit the eye piece optimally. Initially, the inherent flexibility of the 

comfilcon A material allowed the lens to accommodate the non-ideal fit for a short period of time 

(Figure 6-3.A). As the lens returned to its most stable orientation, the post-lens tear film accumulated 

unevenly underneath the CL (Figure 6-3.B), which further exacerbated the shifting and folding of the 

lens (Figure 6-3.C). As a result of the lens movement, the pre-lens tear film on comfilcon A was not 

stable enough to obtain NIBUT measurements. The improved fit of lotrafilcon B may be due to its 

higher lens modulus of 1.2 MPa, which provided mechanical stability and resistance to deformation 

of the lens. Assorted corneal eye pieces with a range of curvatures can be designed in future iterations 

for proper fitting of different CLs. Furthermore, a control NIBUT value without the CL could not be 

obtained due to the hydrophobic property of the acetal eye piece on OcuFlow II, which did not allow 

the tear film to spread evenly across the corneal surface. Alternative materials with hydrophilic 

properties, such as agar or explanted corneal tissue, can be explored in future iterations of OcuFlow 

II. Detailed limitations and future work of OcuFlow II will be discussed in the next chapter. 

6.5 Conclusion 

 Material properties, such as modulus and surface finish, of the lens play an important role in 

the performance of simulated CL wear. As a result of differences in the material properties of the two 
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silicone hydrogels, the lenses had varying pre-lens NIBUT. A faster pre-lens tear BUT occurred on 

comfilcon A than lotrafilcon B but only initially. In addition, a higher modulus assisted the better fit 

of the lotrafilcon B on the corneal surface of OcuFlow II. Results from this study demonstrates the 

ability of OcuFlow II in providing CL wear simulations that are reflective of the ocular environment. 

Future work will aim to improve reliability and versatility of OcuFlow II to accommodate various 

study objectives related to testing various on-eye parameters. 
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Chapter 7 – Limitations and Future Work of OcuFlow II Platform 2 

 The focus of OcuFlow II was to implement two key features, a blink mechanism and a tear film 

structure, to allow for more advanced CL testing. The vertical blink mechanism was achieved by 

enabling an upward rotational motion of the eyelid actuated by motors and a tear film was 

successfully generated through implementing a controlled tear fluid secretion mechanism that allowed 

for separate delivery of both lipid and aqueous phases. These features provided a consistent setup to 

evaluate CL in vitro, while simulating mechanical wear and physiological tear flow. In particular, a 

tear film over the anterior surface of eye was generated and it was validated through the consistent 

NIBUT seen over the surface of lotrafilcon B (Chapter 6). However, some limitations were revealed 

in the OcuFlow setup when different lens materials were tested. These drawbacks can be broadly 

broken down into two parts, relating to the mechanical setup and the ATS. 

7.1 Mechanical Setup 

7.1.1 Eye piece 

 Currently, the radius of the corneal eye piece is 9 mm, while the cornea has an average radius 

of curvature of 7.8 mm and most CL have a back optic zone radius less than 9 mm. As seen in the 

previous chapter, CLs were sensitive to this discrepancy between the radii, which affected their 

placement over the corneal surface of the acetal eye pieces. As a result, consistent CL testing was not 

possible on lenses that did not fit the curvature of the corneal surface. To address this, future eye 

pieces should be designed to be able to accommodate various base curves. A possible path moving 

forward could be exploring a flexible eyelid material to allow for wide tolerance in fitting CLs with 

different base curves or to design eye pieces with various curvatures. 

 Although acetal has a relatively wettable surface when compared to other materials explored 
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for the eye piece, its ability to spread ATS evenly across the surface is still inadequate compared to 

the corneal tissue of a human eye. In particular, the ATS could not spread across the surface of the 

acetal eye piece in the absence of a CL. A representative corneal surface is crucial in providing a 

foundation for the mixing and exchange of the post-lens tear film, which plays a key role in the 

behavior of tear component uptake from the posterior surface of the CL.183, 184 To achieve this, a more 

hydrophilic corneal surface, synthetic tissue and ex vivo animal cornea could be explored in future 

eye pieces. 

7.1.2 Eyelid Piece 

 The assumption made during the design phase of the eyelid piece in platform 2 is that by 

designing a 240 µm radius offset between the eyelid and eyeball to account for the CL and tear film 

thickness, the eyelid would rotate concentrically about the eye piece along its central axis. Since the 

eye piece consists of two spherical bodies that are off-centred from each other, the lower half of the 

eyelid interfered with the eye piece during blinking. As seen in Figure 7-1.A, the eyelid (blue) would 

collide into the corneal surface at 240 µm radius offset rotating along the same pivoting axis at the 

opened eyelid position. Thus, the eyelid portion below the equator was modified by increasing the 

clearance between the eye and eyelid to prevent the eyelid margin from interfering with the corneal 

surface (Figure 7-1.B). 
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Closed Eyelid Position Opened Eyelid Position 

  

(A) Eyelid and Eye Piece 

  

(B) Modified Eyelid with Eye Piece 

Figure 7-1. Side view profile of the original and modified eyelid design (blue) in the closed (A) 

and opened (B) orientation with respect to the eye piece (grey). 

 As a result of the modifications made on the eyelid, the increased clearance between the eye 

and eyelid piece prevented the necessary capillary action and surface tension required to replenish the 

tear film over the corneal surface. To address this, two workarounds were put in place. As 

implemented in chapter 6, the first adjustment involved increasing the tear volume to fill in the 

clearance gap. The second modification required the attachment of a soft eyelid margin extension 

(Figure 5-8.A) as discussed in chapter 5, which allowed for a closer and more lenient contact with the 

250 µm 
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surface of the eye, without interfering with the CL. In future designs, the shape and placement of the 

eyelid should follow the curvature of the eye consistently, with a tight tolerance to maintain the 

surface tension and pressure necessary for the generation of a stable tear film. 

7.1.3 Platform 

 The platform enables the modeling of a representative eye and eyelid interaction mechanism, as 

well as the capability of delivering the protein and lipid components onto the CL. Although the basic 

function of the platform was achieved, improvements can be made in future iterations to increase the 

versatility of the model. 

Eye and Eyelid Interaction 

 As mentioned previously, the blink motion is achieved by pivoting the eyelid piece upwards 

and downwards about a central axis. However, CLs with different properties may experience different 

pressure on the eye model, which is dictated by the trajectory of the eyelid’s movement. The force 

applied by the eyelid can be measured using piezoresistive sensors or through a CL with internal 

biosensors.185, 186 The static pressure between the eyelid and the ocular surface is estimated to be 8 

mm Hg on human eyes.185 Future iterations should aim to measure this pressure, as excess force 

created by the blink mechanism may induce accelerated wear and tear of the CL and the pressure may 

impact any drug uptake or lipid deposition. In addition, a load variable trajectory design should be 

considered to allow for calibration of pressures of varying CL types and experimental conditions. 

Controlled Tear Flow 

 Currently, the tear flow mechanism relies on delivering tear solution using a microfluidic pump 

through silicone tubes, which have an inner diameter of 0.063 inch. This setup works well with the 

current flow rate and tear volume used for the protein and lipid phase. However, on the human eye, 

lipids are secreted in much smaller volumes through a holocrine process, which releases lipids by 
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rupturing the plasma membrane of holocrine tissues.187, 188 The lipid phase and its delivery mechanism 

should be fine-tuned in future iterations to account for volume and consistency of the lipid phase, 

which plays an important role in establishing a stable layered structure of the tear film.39 Moreover, a 

holocrine mode of secretion can be mimicked using osmotic pumps, which allow for precise delivery 

of small volumes - but highly concentrated doses - of lipids. 

7.2 Artificial Tear Solution 

 Although, a smooth tear film was achieved in the system, as evidenced by the concentric 

placido rings observed while measuring NIBUT of the CL (Chapter 6), it is unclear whether a 

bilayered structure was generated. Making up the bulk of both the protein and lipid phases, the 

aqueous layer was undeniably present. However, the existence of a stable lipid layer is more 

ambiguous. In an attempt to identify the tear lipid layer, lipid and protein solutions (as described in 

Chapter 6) were infused onto the corneal surface of the eye model and visualized using a TearScope. 

Interference fringes were not observed with and without a CL mounted, which suggests the absence 

of a stable lipid layer. This result is not surprising, considering the lipid phase was forcefully 

dissolved in aqueous CSS by sonication. The aqueous phase may disrupt the necessary and intricate 

interaction between different lipids to maintain the structural integrity of the lipid layer.39 In order to 

simulate a representative lipid layer, a new lipid phase with alternative solvent, additional lipids, and 

varying levels of concentration needs to be devised. 

7.3 Future Work 

 The creation of a comprehensive in vitro eye model is an iterative process and requires redesign 

and validation through the progression of each development phase. Future work aims to enhance the 

material, structure, and fit of the eye and eyelid pieces. To increase the versatility of the model, an 
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upgrade to the platform should be considered to allow for controlled blink pressure and a more 

representative mechanism of lipid secretion. In addition, a physiologically relevant formulation 

should be developed for the lipid phase to enable the generation of a stable tear lipid layer. Future 

models can be validated for CL testing through various approaches, such as evaluating BUT, tear film 

quality, lens deposition, and blink pressure. Results from both the in vitro eye model and in vivo 

studies can be compared to deepen our current understanding and elucidate new findings on how CL 

interact with the ocular surface. 
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Chapter 8 – General Discussion 

 This thesis provided insight on how cholesteryl esters interact with various CL materials. 

Although the amount of lipid deposition has been explored by several groups, the location of lipid 

deposition, particularly on silicone hydrogels remains unclear. Hence, an in vitro eye model was 

constructed with the intent to better understand lipid deposition patterns under physiologically 

relevant conditions. The findings on lipid deposition and the development of the in vitro eye model 

are summarized in the following sections. 

 Results from Chapter 3 showed that the location of fluorescently tagged cholesteryl ester 

deposits was highly influenced by the lens property. Lenses containing NVP and PVP showed a 

strong attraction of cholesteryl ester into the lens matrix. Lenses with surface treatments deterred 

cholesteryl ester deposition to the bulk of the lens for the first 14 days and mainly deposited on the 

surfaces. This suggests that surface properties may play a bigger role in reducing lipid deposition than 

bulk polymeric composition. However, regardless of the type of silicone hydrogel tested, the amount 

of lipids deposited increased over time. This finding correlates with the lower overall satisfaction with 

increased wear time seen in a previous clinical study that simultaneously evaluated comfort and lipid 

deposition.74 To avoid the buildup of deposits over time and reduce deposition related complications, 

daily disposable lenses have been shown to be effective at combating discomfort.116, 120, 189 Therefore, 

wear modality is particularly important to consider in patients with lipid related conditions, such as 

meibomian gland dysfunction and evaporative dry eye. However, patients that are less sensitive to the 

accumulation of lipid may choose a wear schedule with less frequency of replacement. Hence, 

practitioners should consider different wear modalities and lens materials to optimize patient comfort. 

 To test the clinical relevance of results found in Chapter 3, an in vitro eye model was 
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developed and described in Chapters 4 and 5. The model was able to achieve a vertical blink motion, 

which simulated deposition patterns on the lens with mechanical wear. Previous evidence suggested 

that wearing a lens with a lower coefficient of friction can improve comfort.119 In addition to the 

physical pressures applied on the eye, it is likely that forces acting on the CL may play a role in lipid 

deposition and indirectly affect comfort. Aside from a representative blink motion, another feature 

implemented into this model was the tear film structure. This was enabled by introducing a tear flow 

system onto the ocular surface with separate delivery inputs for the aqueous and lipid phases. In 

Chapter 6, the blink mechanism and tear film was validated by measuring the pre-lens tear BUT. The 

results demonstrated successful tear films were created, but it was lacking in flexibility to 

accommodate different lens types. 

 The interaction of various tear film components on different CL materials is highly complex. 

The presence of uncontrolled and confounding variables with human subjects do not help to simplify 

the problem. To complement results obtained in vivo, in vitro models allow for isolation of individual 

variables, which helps to pinpoint factors contributing to changes in lens material and its interaction 

with the ocular environment, all of which are factors that may affect CL comfort. However, models 

are designed to mimic rather than to replicate the physiological condition, and it is important to 

understand the advantages and limitations of each system. 

     The in vitro testing method employed should be tailored, depending on the purpose of the 

experiment. A simple vial model serves as a great method for comparing the relative quantity of lipid 

deposition between different CLs, which is sufficient at mirroring results seen in vivo. However, to 

explore a more complex mechanism such as the location of lipid deposits on various lens types, a 

more sophisticated in vitro eye model is required to fully account for the various factors at play. 

Ultimately, the end goal is to understand lipid deposition that is reflective of on eye conditions and 
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obtain clinically relevant results. 

     In conclusion, lipid deposition is greatly impacted by the lens property and a better 

understanding of how lipid deposition affects comfort can be explored by using an in vitro simulation 

of CL wear. Findings from this thesis paved the path for a more reliable CL testing method to keep up 

with the increasing demand for novel materials with enhanced comfort. 
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