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Abstract

The effects of free-stream turbulence intensity on the flow over a NACA 0018 airfoil are
studied experimentally in a wind tunnel facility. A parametric study is performed over a
range of chord Reynolds numbers from 100 000 to 200 000, angles of attack from 0° to 20°,
and free-stream turbulence intensities from 0.09% to 2.03% in order to unravel the effects
of each parameter on suction side laminar separation bubble topology and the resulting
changes in airfoil lift. In order to investigate the effects of free-stream turbulence intensity
on the streamwise and spanwise flow development within a separation bubble, flow field
measurements are made using planar Particle Image Velocimetry for an angle of attack of
4°, chord Reynolds numbers of 80 000 and 125 000, and free-stream turbulence intensities
between 0.10% and 1.94%.

The results show that increasing the level of free-stream turbulence intensity leads to a
reduction in the length of the separation bubble formed over the suction side of the airfoil.
The reduction in bubble length is a result of a downstream shift in mean separation as
well as an upstream shift in mean transition and, consequently, mean reattachment. At
low angles of attack, the reduction in separation bubble length leads to a slight reduction
in airfoil lift, while at pre-stall angles of attack the reduction in separation bubble length
alleviates the loss of suction at the location of the suction peak, thereby increasing lift, and
can delay stall. While the effects of turbulence intensity and chord Reynolds number on
the mean flow are shown to be similar, their effects on transition are shown to be notably
different. The upstream shift in mean transition with increasing turbulence intensity is
shown to be the result of disturbances reaching higher amplitudes earlier upstream as the
level of turbulence intensity is increased, despite increased bubble stability. This result
suggests that the increased initial perturbation amplitude at elevated turbulence intensity
levels is solely responsible for the upstream shift in mean transition. In contrast, the
upstream shift in mean transition with increasing Reynolds number is a result of decreased
bubble stability.

Wavenumber-frequency spectra of velocity fluctuations in the separated shear layer
show that disturbances become more broadband in both time and space with increasing
turbulence intensity. In addition, the results show that as the level of free-stream turbulence
intensity is increased, the spanwise coherence of shear layer rollers decreases at the location
of roll-up, leading to earlier vortex breakdown. At elevated levels of turbulence intensity,
streamwise streaks of low speed fluid are observed, and originate in the boundary layer
upstream of the separation bubble. These streaks form as a result of the onset of bypass
transition, leading to significant changes in bubble dynamics, particularly at the highest
level of turbulence intensity investigated. The results suggest that the transition mechanism
in the separation bubble at the highest level of turbulence intensity investigated is altered.
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Chapter 1

Introduction

Airfoils are important to numerous engineering applications, and can be found in sizes
ranging from the wings of Unmanned Aerial Vehicles and the blades of wind turbines, to
the wings of large commercial aircraft. Further, airfoils operate over a range of speeds
from slow gliders to supersonic military aircraft. This large design space over which airfoils
are employed presents a significant challenge to engineers in terms of required airfoil
performance, thus numerous airfoil designs exist and have been thoroughly characterized
[1, 2]. The important non-dimensional parameter characterizing this broad range of operating
conditions is the Reynolds number based on the airfoil chord length. One of the most
challenging design ranges of chord Reynolds numbers occurs below approximately 700 000
[3], where performance is reduced as compared to that achieved at higher chord Reynolds
numbers [4]. The decrease in airfoil performance is a largely due to laminar boundary layer
separation over the suction side of the airfoil.

At low chord Reynolds numbers, 50 000 . Rec . 700 000 depending on specific airfoil
geometry, the flow over the suction side of the airfoil is prone to laminar separation
downstream of the suction peak in the presence of an adverse pressure gradient [3, 4].
The flow in the separated shear layer then undergoes transition to turbulence and may
reattach to the surface of the airfoil downstream. The region of fluid between the mean
separation and mean reattachment locations, which flows upstream in the mean sense, is
termed the laminar separation bubble and is the focus of this investigation. At higher
chord Reynolds numbers, above approximately 700 000, separation bubbles may still form
but are so small as to be nearly inconsequential to the mean surface pressure distribution
[3]. Maintaining laminar flow over as much of the airfoil surface as possible becomes the
challenge in this flow regime, as laminar boundary layers are characterized by lower skin
friction drag than turbulent boundary layers. At very low chord Reynolds numbers, below
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approximately 50 000, the flow over the suction side of the airfoil is prone to separation
without reattachment, since the transition process in the separated shear layer occurs more
slowly. This leaves the airfoil in a stalled state and, as a result, maintaining attached flow
is of interest in this regime.

One of the first studies of laminar separation bubbles formed over airfoils was performed
by Owen and Klanfer [5], though credit for the term ‘laminar separation bubble’ lies in the
later works of Tani [6], Gaster [7], and Horton [8]. The presence of a separation bubble can
be identified by reverse flow or by a region of nearly constant surface pressure downstream
of the suction peak [6, 7, 9, 10]. Separation bubbles can be classified as either long or short,
depending on their effect on the airfoil’s mean surface pressure distribution [5–7]. Long
bubbles are typically found on thin airfoils and were originally classified as ‘thin airfoil
stall’ [11]. For this type of bubble, the separation point remains relatively close to the
suction peak while the reattachment point gradually shifts downstream with increasing
angle of attack until the bubble bursts [5, 7], resulting in a fully stalled airfoil. Short bubbles
are more typical for thicker airfoils and may form anywhere over the length of the airfoil
depending on the flow conditions [10]. For short bubbles, the size of a laminar separation
bubble generally decreases with increasing angle of attack or Reynolds number, though the
angle of attack effect is greater [9, 10]. At large angles of attack, the bubble eventually bursts
[5, 7] and the airfoil is left in a stalled state. While the accepted time-averaged topology
of the laminar separation bubble has not changed significantly since it was sketched by
Horton [8], our understanding of the unsteadiness of the bubble has improved significantly.

When the flow over the suction side of the airfoil separates, the transition process in
the separated shear layer determines if the flow will reattach downstream. The transition
process begins with the amplification of small amplitude perturbations originating upstream
through the receptivity process [12]. The initial growth of these disturbances is primarily
two-dimensional and nearly exponential, and can be modelled by linear stability theory
[13–15]. As the disturbances continue to grow, non-linear interactions begin to occur, and
the shear layer rolls up into coherent spanwise oriented vortices [16–18]. As these vortices
convect downstream, the enhanced momentum exchange with the free-stream enables mean
flow reattachment [17, 18]. The vortices eventually breakdown to smaller scales downstream
of mean flow reattachment, and a turbulent boundary layer develops [15, 17, 18].

The sensitivity of the transition process in the separated shear layer to the amplitude and
frequency of the initial disturbances has offered an opportunity to utilize active flow control
to improve airfoil performance. A variety of active control techniques have been used to
promote the transition process in the separated shear layer, and include acoustic excitation
[19, 20], plasma actuation [21–24], and synthetic jet actuation [25]. These techniques work
by introducing disturbances into the flow upstream of separation, and are then amplified in
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the separated shear layer. Typically, these disturbances are introduced at the most unstable
frequency of the unperturbed separation bubble, where growth rates are the largest. The
net effect is that transition occurs further upstream and can thus be used to reattach the
flow of a stalled airfoil [26] or to reduce the size of formed separation bubbles [18, 23, 24],
thereby improving overall airfoil performance.

Transition is sensitive to the test section environment, and in particular, to incoming
flow perturbations [27, 28]. As a result, conflicting descriptions of the transition process
in laminar separation bubbles have been reported in the literature. For example, some
investigations report that roll-up of the shear layer is periodic and coherent in the spanwise
direction [18, 29, 30], while others observe little spanwise coherence [31, 32]. Further, Ol
et al. [33] conducted a comparison of mean separation bubble topology measured for
nominally identical experiments performed in three different facilities and reported significant
differences. One of the contributions to the observed changes in both of these examples
is a variation in the level of free-stream turbulence intensity in the research facilities.
Free-stream turbulence intensity is a measure of the amplitude of velocity fluctuations in
the free-stream about the mean value, and is computed as the root-mean-square of the
fluctuations divided by the mean free-stream velocity, typically reported as a percentage
value. Higher free-stream turbulence intensity levels therefore represent higher disturbance
environments, and can have a significant influence on experiments [9, 27, 28, 33].

In the context of wind tunnels and transitional studies, low free-stream turbulence
intensities are on the order of 0.1% [18, 27, 34] and high levels on the order of 1% [31],
whereas in turbomachines, turbulence intensities can be as high as 5% to 10% [35–37].
While some investigations have looked at the effects of free-stream turbulence intensity
on separation bubble topology [9, 34, 38] and airfoil performance [28, 39], its effects on the
transition process in the separated shear layer remain to be fully addressed. In addition,
studies measuring the effects of increased free-stream turbulence intensity on airfoil lift and
formed laminar separation bubbles simultaneously are limited, and thus any relationship
has yet to be fully addressed. Any link between the effects of free-stream turbulence
intensity on separation bubbles and airfoil lift is important to understand for applications
in which airfoils are employed in elevated levels of free-stream turbulence intensity, such as
in downstream wind turbines in a wind farm and turbo-machines.
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1.1 Study Objectives
The goal of this study is to experimentally investigate the effects of free-stream turbulence
intensity on the flow over a NACA 0018 airfoil at low Reynolds numbers. Specifically, the
study aims to shed light on the effects of free-stream turbulence intensity on mean laminar
separation bubble topology, the transition process within the separated shear layer, and
any attendant changes to airfoil lift. Therefore, the main objectives are as follows:

1. Characterize the effects of free-stream turbulence intensity on the mean flow by
(a) describing changes in mean separation bubble topology, and
(b) relating the observed changes to the sectional lift coefficient.

2. Investigate the effects of free-stream turbulence intensity on the transition process by
(a) evaluating the streamwise and spanwise flow development of formed laminar

separation bubbles, and
(b) characterizing disturbance development within the separated shear layer.

4



Chapter 2

Background

Airfoils operating at low Reynolds numbers can be found in several engineering applications,
including small aircraft, such as unmanned aerial vehicles, and small to medium sized wind
turbines [4]. Over the past several decades, significant research efforts have been invested
into better understanding the decrease in airfoil performance at low Reynolds numbers as
compared to that achieved at higher Reynolds numbers [3, 4]. The most significant issue
facing airfoils operating at low Reynolds numbers is laminar boundary layer separation,
particularly over the suction side of the airfoil, leading to the formation of a laminar
separation bubble. Reviewing the current understanding of laminar separation bubbles,
as well as the laminar-to-turbulent transition process in the separated shear layer are the
focuses of this chapter. First, an overview of separation bubbles formed over low Reynolds
number airfoils will be presented. Then, the transition processes in attached boundary
layers and free-shear layers are reviewed in order to draw comparisons with separated shear
layer transition in laminar separation bubbles. Finally, previous investigations of the effects
of free-stream turbulence intensity (FSTI) on the flow over low Reynolds number airfoils as
well as on laminar separation bubbles are considered.

2.1 Laminar Separation Bubbles Formed over an Ai-
rfoil at Low Reynolds Numbers

The low Reynolds number regime for airfoils is typically characterized by chord Reynolds
numbers below approximately 700 000 [3]. Generally speaking, the performance of an
airfoil is decreased in this regime as compared to that at higher Reynolds numbers, and is
attributed to the presence of a suction side Laminar Separation Bubble (LSB) [4]. While
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there are numerous airfoil sections whose characteristics vary greatly for different flow
conditions [1], the LSB is a challenge faced by all airfoils operating in the low Reynolds
number regime. At low speeds, the boundary layer formed over the fore portion of the
airfoil remains laminar, and is thus prone to separation since it carries less momentum
near the wall as compared to a turbulent boundary layer. Downstream of the suction peak,
the flow faces an adverse pressure gradient which may cause the flow to separate [3–5, 11].
The resulting separated shear layer undergoes transition to turbulence, and the enhanced
momentum exchange with the free-stream can result in mean flow reattachment. The region
of fluid between the mean separation and reattachment points is re-circulating in the mean
sense, and has been termed a laminar separation bubble [6–8]. A time-averaged sketch of
an LSB is shown by the shaded grey region in Fig. 2.1.

Figure 2.1: Sketch of a laminar separation bubble, from Kurelek [20]. The shaded grey
region represents the time-averaged bubble topology.

Laminar separation bubbles formed over airfoils have been studied experimentally
[9, 18, 31, 32, 40, 41] as well as numerically [17, 42–45]. Separation bubbles can also be
induced on a flat plate with imposed adverse pressure gradients both experimentally
[7, 46, 47] and numerically [30, 43, 48, 49]. While both geometries yield similarly behaved
LSBs, by studying separation bubbles over a flat plate an experimentalist benefits from
being able to make measurements over a much simpler geometry. Separation bubbles also
form in other geometries, such a backward facing steps and humps [50], but this chapter
will focus on the airfoil and flat plate geometries. Over an airfoil, separation bubbles may
be either short or long depending on their effect on the mean surface pressure distribution
[5, 7, 11]. Long bubbles are typically found on thinner airfoils where the separation point
is near the leading edge, and was thus originally characterized as thin airfoil stall [11].
For this type of bubble, as the angle of attack is increased, the reattachment point shifts
downstream until the bubble ‘bursts’ [5, 7], stalling the airfoil. In the case of short bubbles,
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the bubble typically forms further downstream from the leading edge at low angles of attack
[10]. As the angle of attack is increased, the bubble decreases in length and also shifts
upstream [10, 11]. Beyond the stall angle of the airfoil, the enhanced momentum exchange
in the transitioning separated shear layer can no longer sustain flow reattachment and
the bubble bursts, leaving the airfoil in a fully stalled state. This dependence of mean
flow reattachment on the transition process in the separated shear layer highlights the
importance of transition to the overall flow development of LSBs.

While the accepted time-averaged topology of the separation bubble as shown in Fig. 2.1
has remained essentially unchanged since the early descriptions of Gaster [7] and Horton [8],
significant progress related to the understanding of the unsteady nature of the bubble has
been made in the last two decades [13, 18, 32, 46, 51, 52]. In the initial stages of transition
(see Fig. 2.1), small perturbations which originate upstream through the receptivity process
[12] are amplified in the separated shear layer. The amplification of these perturbations is
initially two-dimensional and nearly exponential, and is well modelled by linear stability
theory [13, 15, 42]. Further downstream in the later stages of transition (see Fig. 2.1), non-
linear interactions begin to occur and the shear layer is observed to roll-up into spanwise
oriented vortices [16, 18, 31] which are shed at the most amplified frequency of the separation
bubble [17, 18, 26]. The enhanced momentum exchange with the free-stream induced by
these vortices enables mean flow reattachment [18].

Spectra of velocity fluctuations in the separated shear layer exhibit strong peaks at
the frequency of vortex shedding [10, 17, 18, 26], but can have additional peaks at low
frequencies which are associated with bubble ‘flapping’ [32, 48, 50, 53, 54], and/or peaks
at the subharmonic of the shedding frequency which are associated with vortex merging
[17, 20, 55]. Bubble flapping is associated with fluctuations within the separation bubble
that are not related to the shedding of shear layer vortices [17], and result in an unsteady
up and down motion of the separated shear layer [31, 48]. This behaviour results in a mean
flow deformation, when viewed from the higher frequency instabilities of the separated shear
layer, and thus alters the stability characteristics of the bubble [43]. By exciting a bubble
experiencing low-frequency oscillations with acoustic waves near the natural frequency of
the bubble, Zaman et al. [56] were able to suppress the low-frequency oscillations. Vortex
merging involves the coalescence of two consecutive vortices shed from the separated shear
layer. Merging results from minor variations in the roll-up process, and more specifically
in the relative strength and/or position of consecutive rollers [55]. In a merging event,
these minor variations result in an upstream vortex convecting downstream faster than the
vortex directly downstream of it. As the upstream vortex approaches the downstream one,
the vortices begin to orbit and eventually coalesce, doubling the streamwise wavelength
[55]. When merging occurs frequently enough, this doubling of the streamwise wavelength
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of the vortices leads to the subharmonic frequency peak noted in experiments [17, 20, 55].
Merging is associated with subharmonic instabilities in the separated shear layer [50] and
also occurs in free-shear layers [57–61]. By acoustically forcing a separation bubble at the
subharmonic frequency of its natural shedding frequency, Kurelek [20] was able to promote
the merging process and observe a significant increase in the number of merging events in
the separated shear layer as compared to when the bubble was left unforced.

As the shear layer rollers convect downstream, a secondary instability is amplified
and results in spanwise undulations in the vortex filaments [17, 18, 32]. The amplitude of
bulges in a vortex filament are amplified as the roller convects downstream, leading to a
re-orientation of spanwise vorticity into the streamwise direction [18]. The arms of the
vortex filament adjacent to a downstream bulge in a vortex filament induce a wall normal
velocity which causes the leading edge of the bulge to lift up into higher velocity fluid in
the upper part of the boundary layer. As a result, the streamwise oriented vorticity is
stretched and the structure begins to resemble Λ-structures observed in attached boundary
layers [62–65]. Further downstream, the vortices break up into smaller scales as the flow
transitions to turbulence, and a turbulent boundary layer develops [18].

The separated shear layer transition process is highly sensitive to the amplitude of the
initial perturbations, and thus to the upstream flow conditions from which disturbances
originate via a receptivity process [12]. This sensitivity has led researchers to explore active
flow control as a means to reduce the size of formed LSBs. Applying acoustic excitation at
a frequency at which the bubble amplifies has been shown to lead to mean reattachment of
the flow for a stalled airfoil [26], as well as to reduce the size of formed separation bubbles
[20]. Further, roll-up of the separated shear layer and the shedding of vortices becomes
more periodic and coherent across the span of the airfoil [20]. Similar findings have also
been reported using plasma actuation to introduce disturbances upstream of separation
bubbles [22–24], as well as in numerical simulations in which periodic disturbances are
introduced upstream of separation [43, 44, 66]. Some flow disturbances however originate
from the research facility itself and have led to difficulties in comparing results obtained
in different facilities using identical experimental conditions. The extent of the challenge
was elucidated by Ol et al. [33] who compared results for nominally identical experimental
conditions performed in three facilities. They noted significant differences in mean bubble
topology and attributed the differences, in part, to different levels of FSTI in the facilities.
The effects of FSTI on separation bubbles was shown further by Olson et al. [34] who
increased the level of FSTI in their facility and saw a downstream shift in the location
of mean separation as well as an upstream shift in mean reattachment. A brief review of
the effects of FSTI on transition is provided in Section 2.2.3, while Section 2.3 reviews the
effects of FSTI on separation bubbles and airfoil lift.

8



2.2 Transition to Turbulence and the Effects of Free-
Stream Turbulence Intensity

Since the early experiments of transition in a pipe conducted by Reynolds [67], researchers
have been studying the laminar-to-turbulent transition process in a number of flows in
an attempt to understand and predict the process. A number of factors are known to
affect transition, including model roughness, acoustic environment, and the free-stream
turbulence intensity [28, 33, 68], with the later being the focus of this thesis. The purpose
of this section is to review the transition process in the separated shear layer of LSBs, as
well as boundary layers and free-shear layers, in order to compare and contrast the flows.
Where available, literature documenting the effects of free-stream turbulence intensity on
each of these transition processes is reviewed.

2.2.1 Boundary Layers

The concept of the boundary layer was put forth by Prandtl [69] in an effort to describe
fluid motion over a surface between the no-slip condition at a wall, and the free-stream
velocity away from the wall. For the flow over a flat plate with zero pressure gradient, a
laminar boundary layer initially forms from the leading edge, with a velocity profile that is
well described by a Blasius profile [70]. At some distance downstream, the boundary layer
profile resembles that of a turbulent profile. Over some range between these locations, the
flow is in a transitional state. This transition from a laminar boundary layer to a turbulent
on is depicted in Fig. 2.2. Transition begins with the amplification of small amplitude
perturbations in the boundary layer that originate from sources such as surface roughness,
acoustic waves in a research facility, or small velocity fluctuations in the free-stream, to
name a few [12, 65]. In low disturbance environments where the initial perturbations
have small amplitudes and are two-dimensional, their growth or decay can be modelled
by superimposing them onto the linearized Navier-Stokes equations describing the mean
boundary layer flow. This treatment is the foundation of linear stability theory which was
mentioned in Section 2.1 in describing the transition process in LSBs. By modelling the
disturbances as waves with a given frequency and wavelength, they will grow or decay
based on solutions to the Orr-Sommerfeld equation, named as such after the stability
calculations of laminar flows by Orr [71] and independently by Sommerfeld [72]. For a
given pair of disturbance wavelength and local Reynolds number, Tollmien [73] solved the
Orr-Sommerfeld equation and developed a neutral stability curve for flat plate boundary
layers. Growth rates of disturbances within this curve were later calculated by Schlichting
[74]. Below a given value of the local Reynolds number, the flow is stable to all disturbance
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wavelengths provided that their amplitude is small. This value of this Reynolds number
is called the indifference Reynolds number, above which the boundary layer will amplify
disturbances with certian wavelengths based on the flow’s stability curve [65].

Figure 2.2: Side view of simplified flat plate boundary layer transition, after Kurelek [20]
and Schlichting and Gersten [65].

Since these disturbances originate from very small amplitude perturbations (i.e., the
velocity time trace (i) in Fig. 2.2), the so-called Tollmien-Schlichting (TS) waves leading
to transition over a flat plate weren’t measured until the experiments of Schubauer and
Skramstad [27] in a wind tunnel with carefully controlled free-stream disturbance levels. In
their study, Schubauer and Skramstad [27] also showed that these waves could be artificially
excited using a vibrating ribbon across the span of the flow, facilitating measurements of
their streamwise development. As the TS waves convect downstream, they are amplified
based on the stability curve [65] (i.e., the velocity time trace (ii) in Fig. 2.2), but also
develop a spanwise unsteadiness, namely peaks in the streamwise velocity fluctuation
amplitudes across the span, as was revealed in early flow visualization work [62, 75]. This
three-dimensionality of the waves was controlled and studied experimentally by Klebanoff
et al. [63], who used an experimental set-up similar to that of Schubauer and Skramstad [27]
but with spacers under the vibrating ribbon in order to induce a fixed spanwise wavelength
in the initial perturbations. Measurements of spanwise velocity fluctuations taken across
the span of the flow revealed distinct pairs of peaks in the fluctuation amplitudes. These
pairs were centered at the spanwise location corresponding to the peaks in the streamwise
velocity fluctuations, such that one peak in the spanwise velocity fluctuations was on either
side of the peak in streamwise velocity fluctuations. These peaks were therefore taken
to be evidence of a longitudinal eddy system [63]. The structures were termed vortex
loops by Hama et al. [75], ‘hairpin’ eddies by Klebanoff et al. [63], and more recently are
often called Λ-structures [64, 76]. The difference in terminology is largely attributed to the
local Reynolds number and the spanwise extent of the vortices [77]. The development of
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disturbances from the two-dimensional TS waves to Λ-structures is depicted in Fig. 2.3.
Primary instability calculations breakdown when the amplitudes of disturbances reach

approximately 1% of the mean free-stream velocity, and can no longer be considered small.
Since the observed Λ structures typically form downstream of where the TS wave amplitude
is above this level, their development must be described by a secondary instability [64, 78].
The solutions to the primary instability of the mean flow are used as the new base flow in a
coordinate system which moves along with the phase speed of the TS waves, and is thus
quasi-steady and periodic [65]. A three-dimensional pertubation is then superimposed onto
this new base flow [65, 78], and the solution then describes motions which are periodic in
both the streamwise and spanwise directions. Based on the phase speed of the disturbance,
the solutions are classified as one of three modes: harmonic, subharmonic, or detuned
modes [78]. For the harmonic mode, the phases, and thus wavelengths, of the streamwise
and spanwise disturbances are the same. For the subharmonic mode, the disturbances are
perfectly out of phase and the streamwise wavelength is twice the spanwise wavelength.
The detuned mode has a phase speed which falls between these two modes [78]. In all cases,
the growth rate of the secondary instability is significantly higher than that of the TS wave,
justifying the quasi-steady assumption of the primary instability flow used in the derivation
of the secondary instability [78, 79]. Numerous terms have been used in the literature to
describe the arrangement of the Λ-structures forming as a result of either the harmonic or
subharmonic oscillations. In short, K-type refers to the aligned Λ-structures observed by
Klebanoff et al. [63] (Fig. 2.3a) that form as a result of fundamental modes, while H-type
refers to staggered Λ-structures (Fig. 2.3b) that form as a result of subharmonic modes and
named after Herbert [64]. Subharmonic modes are more unstable than the fundamental
modes [78, 80], and therefore the staggered Λ-structure will emerge if transition is left to
natural paths and the growth of the TS wave is slow. On the other hand, the fundamental
mode will dominate for larger TS waves as is the case when they are forced [63]. This
distinction is seen in the flow visualizations of Knapp and Roache [81], where the staggered
pattern is observed for natural transition, while the aligned pattern was observed when
acoustic excitation was used. An adverse pressure gradient also increased the occurrence of
the aligned structures, leading the authors to conclude that the aligned structure pattern
was more likely to form for cases where development of the TS waves was faster.

As the three-dimensional structures convect downstream, they are stretched by the large
wall-normal gradient in the mean streamwise flow. Eventually, they begin to break apart
and turbulent spots are observed near the top of the boundary layer (Fig. 2.3), often at the
tips of the Λ-structures [75]. These spots were first observed in water table experiments
by Emmons [83], and appear at random locations across the span of a flow, dependent on
where the Λ-structures form [84]. Once formed, these spots spread in all three directions,
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Figure 2.3: Top view of simplified flat plate boundary layer transition with (a) harmonic
and (b) subharmonic oscillations resulting in the aligned and staggered Λ-structure formati-
ons, respectively. Sketched after Kurelek [20], Schlichting and Gersten [65], and Bertolotti
[82]. 1 Laminar flow; 2 TS waves; 3 three-dimensional waves and Λ-structure formation;
4 vortex breakdown; 5 turbulent spot formation; 6 turbulent flow.

at a rate faster than diffusion [84], until they merge with neighbouring spots and the entire
boundary layer becomes turbulent (i.e., location 6 in Fig. 2.3). In experiments of transition
in boundary layers which are excited by a vibrating ribbon, the formation of Λ-structures,
and hence turbulent spots, beomes more regular as they form at regular spanwise locations
[27, 63, 84]. This makes the spots easier to measure and also typically results in a shorter
transitional length as more spots form than when the boundary layer is left unforced.

The experiments of Schubauer and Skramstad [27] elucidated the sensitivity of transition
to FSTI. In fact, Taylor [85] proposed that free-stream turbulence was responsible for
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transition (albeit by a mechanism which was later disproved) since evidence of TS waves
could not be found until the experiments of Schubauer and Skramstad [27]. At large
levels of FSTI, the typical transition mechanism may be bypassed [12, 86]. Although it is
meant to indicate any change to the natural transition path, the term bypass transition
has become associated with transition under high levels of FSTI, typically above about 1%
[87, 88]. At these levels of turbulence intensity, streamwise streaks have been observed in
boundary layers both numerically [16, 87–91] and experimentally [92–96]. These streaks have
been called Klebanoff modes [88, 97], and are not to be confused with the aforementioned
K-type Λ-structures observed in natural boundary layer transition. The spanwise extent
of the streaks is on the order of the boundary layer thickness, while their streamwise
extent is significantly larger [94]. These streaks do not induce significant spanwise velocity
fluctuations, but bring low speed fluid to the top of the boundary layer and high speed
fluid towards the wall [89, 97], resulting in streamwise velocity fluctuations between 10%
and 20% of the mean free-stream velocity [87, 90, 91, 94]. The mechanism by which FSTI
leads to these streaks is complex [98], and therefore for the purposes of this discussion it is
sufficient to say that streaks are formed at high levels of FSTI.

The progression of streamwise streaks to turbulence is not well described by theory
[12, 97], but Direct Numerical Simulations (DNS) have led to some understanding of their
breakdown [87–89, 95, 97]. In simulations, FSTI must be modelled, and one common method
is that proposed by Jacobs and Durbin [87]. Details will be discussed further in Section 2.3.3
but the method relies on a Fourier expansion of the disturbance velocities at the domain inlet.
In the wall-normal direction, investigators typically model the disturbance quantities with
continuous modes of the Orr-Somerfeld equation [88–90, 99, 100], as they model travelling
wave perturbations that naturally decay towards the wall in the boundary layer, replicating
FSTI in experiments. These modes are a set of complementary solutions to the discrete
modes of the Orr-Sommerfeld equation, and were shown to exist in unbounded flows by
Grosch and Salwen [101]. The reader is referred to the work of Grosch and Salwen [101] for
details of these continuous modes, but the important aspect here is that, in simulations,
FSTI is modelled as a superposition of periodic modes onto the mean flow. The formation
of streaks in simulations has been shown to depend on the local Reynolds number as
well as the wall-normal frequency of the prescribed modes used to model FSTI [88–90].
Interestingly, streaks do not necessarily lead to transition on their own, but, will actually
decay as a result of viscous effects if left unperturbed [89], even in the presence of adverse
pressure gradients [90]. In simulations where FSTI was described by a simple superposition
of two modes at the domain inlet, Zaki and Durbin [89] showed that for transition to occur,
one mode must be low-frequency and the other high-frequency. The lower frequency mode
forms the streaks in the boundary layer as it can penetrate further into the boundary layer,
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while the higher frequency mode remains in the free-stream. The induced velocity from
the streaks causes them to lift up towards the boundary layer edge, where they interact
with the high frequency mode which remains in the free-stream [89]. At this interface,
a secondary instability resembling that of a Kelvin-Helmholtz instability arises, and the
formed vortices grow in amplitude with increasing streamwise distance until they break up
into a turbulent spot [89]. Brandt and Henningson [102] showed that the streaks may also
break down as a result of a sinuous instability, which leads to a streamwise waviness in the
streak. Even when streamwise streaks are present, TS waves may also amplify and interact
with the streaks [88, 93]. In simulations where discrete and continuous Orr-Sommerfeld
modes are prescribed at the domain inlet, generating TS waves and streaks respectively, the
interaction of these two modes has been shown to lead to transition [88, 96]. In this case,
the formed streaks destabilize the TS waves and lead to a secondary instability that locks
onto the streak width, forming similar structures to those observed in natural transition,
i.e., Λ-structures [88].

2.2.2 Free Shear Layers

Free shear layers, or mixing layers, are formed between two parallel streams of fluid which
may be either co-flowing or opposing. In the case of co-flowing streams, free shear layers are
often studied downstream of a splitter plate because of the simplicity of the geometry [103].
In this case, the free shear layer is characterized by the velocity ratio of the two streams,

R = U1 − U2

2U

where U is the average velocity of the two streams. For the limiting cases, when R = 0 the
streams are of equal velocity and there is no shear between them, while for R = 1 only one
stream is present and therefore behaves similarly to a free jet.

Downstream of a splitter plate with 0 < R < 1, the free shear layer is unstable via
an inviscid Kelvin-Helmholtz intstability since the velocity profile contains an inflection
point [57, 103, 104]. Disturbance waves in the shear layer grow with downstream distance
until the shear layer rolls-up into periodic, spanwise oriented vortices [58, 105–107] which
convect downstream at the average velocity of the two streams [103]. The growth rate
of the structures with streamwise distance increases with increasing velocity difference
between the two streams. In the region of roll-up, the spreading rate of the shear layer is
approximately linear with downstream distance [58, 59]. Similarly to boundary layers, linear
stability analysis has proven useful in describing the initial amplification of disturbances in
a free shear layer [57, 108]. In order to perform these stability calculations, a hyperbolic
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tangent velocity profile is often assumed [103, 104, 109, 110]. Through a series of detailed
stability calculations, Monkewitz and Huerre [110] showed that by increasing R from 0 to 1
the maximum spatial growth rate of disturbances in the free shear layer grows by about
20% while the frequency of the most amplified wave decreases by only approximately 5%.

Merging of consecutive vortices is observed downstream of the initial roll-up location [57–
61]. Subsequent merging events continue for large distances downstream [59], resulting in
increasing streamwise spacing between vortices with increasing streamwise distance. Vortex
merging results from the amplification of disturbances at the subharmmonic frequency of the
initial Kelvin-Helmholtz instability [104, 111, 112]. The first merging event typically occurs
at approximately twice the streamwise distance from the splitter plate as the location of
initial roll-up [60, 113]. The dynamics of the merging process depend on the phase difference
between the fundamental and subharmonic modes [61, 103, 114], while the rate at which
the vortices merge increases with increasing vorticity concentration of the rollers as well
as increasing vertical offset of the cores [59, 61]. When the subharmonic mode is in phase
with the fundamental mode, consecutive vortices are displaced upwards and downwards
respectively, resulting in a net vertical displacement between the vortices [61, 104]. The
difference in the mean flow velocities at the locations of the vortex cores then induces a
relative velocity between the vortices. When the vortices approach, they begin to rotate
about each other and eventually coalesce [57, 59, 61, 103]. Even though the vortices are
observed to merge, simulations show that the two vortices maintain their identity [103],
an effect that is smeared out in flow visualizations [115]. The merging process has been
suggested to be associated with increased fluid entrainment [59, 61, 103], however, Hernan
and Jimenez [116] suggest that most entrainment takes place during the initial growth
of the vortices rather than during merging. When the subharmonic mode is perfectly
out of phase from the fundamental mode, consecutive vortices are displaced in the same
direction [61, 104] and thus the merging process is supressed. In this case, a vortex from the
fundamental mode is caught between the nodes of the subharmonic mode and is shredded
away [103, 114]. In both cases of the subharmonic and fundamental modes being perfectly
in or out of phase, the subharmonic mode becomes dominant [57, 59, 60, 117]. Instead of
consecutive rollers merging simultaneously across the entire span of a flow, merging can
occur locally and is termed ‘helical pairing’ [104, 118]. This type of merging occurs when
the subharmonic mode is three-dimensional and thus has a dominant spanwise wavelength
[104]. Although the subharmonic mode is most unstable in a two-dimensional form [104],
if it is three-dimensional the spanwise wavelength leads to the localized merging of the
spanwise oriented vortices [58, 104, 107, 118].

Similarly to boundary layers, as the rollers convect downstream three-dimensional
structures are observed, but are different from the ‘helical pairing’ three-dimensionality.
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Instead of developing from the rollers themselves as in boundary layers, in free-shear layers
streamwise counter-rotating vortices superimposed onto the large scale spanwise rollers are
observed [104, 112, 117, 119, 120]. Following a similar method to the theoretical analysis
of Benney and Lin [121], Pierrehumbert and Widnall [104] numerically investigated the
interaction of a two-dimensional wave superimposed with a three-dimensional wave having
the same streamwise wavelength. They determined that this instability, termed a translative
mode [104, 111], leads to the secondary counter-rotating vortices superimposed onto the
rollers, which are observed in simulations [104, 122] as well as experiments [112, 120, 123, 124].
This instability is most unstable when the spanwise wavelength is equal to two-thirds of
the fundamental wavelength; in good agreement with experimental observations [117, 120].
The three-dimensional waves grow more slowly than the two-dimensional ones [112, 125],
and are thus typically observed downstream of the location of the first vortex merging
events [117, 119]. Corcos and Lin [111] showed that the growth rate of the three-dimensional
instability is relatively constant through the initial shear layer roll-up, however, the formation
of streamwise oriented structures is delayed by vortex merging [112, 113].

Transition to turbulence begins with the appearance of small-scale eddies that lead to
the breakdown of the large spanwise oriented vortices [103]. Flow visualizations conducted
by Konrad [126] suggested that these eddies originated in the cores of the spanwise oriented
vortices, but were later shown by Huang and Ho [113] to originate in the streamwise
oriented vortices. The progression of transition in a free-shear layer is often measured as
the degree of ‘mixedness’ of the shear layer which is a different measure than the amount
of fluid entrained by the shear layer [103, 113]. Different conditions for the begining of the
turbulent regime have been proposed. Bradshaw [127] proposed the location of the peak
in the turbulence level, which typically occurs around the streamwise location of the first
vortex merging event [103]. Jimenez et al. [128] suggested the location at which the roll-off
exponent of the spectra of velocity fluctuations reached −5/3, indicative of a turbulent
flow. This value was shown by Huang and Ho [113] to consistently occur between the
second and third merging locations for varying values of R. Finally, transition has been
suggested to occur where the level of mixing rapidly grows [119, 126], and was shown by Ho
and Huerre [103] to agree well with the third merging location. Since all of these findings
suggest that transition typically occurs downstream of merging, it is speculated that the
merging process is responsible for the production of the small-scale eddies, shifting energy
to the higher frequencies, leading to turbulent breakdown [103, 113]. While the small eddies
form via an inviscid instability and are not Reynolds number dependent [113], in order to
maintain the small scale motion leading to transition, the local Reynolds number must be
3000 < Re < 5000 based on the momentum thickness [103, 126] or 13 000 < Re < 19 000
based on vorticity thickness [113]. Theoretical models of transition are limited, but Lin and
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Corcos [122] relate shear layer mixing to the dynamics of the three-dimensional structures
in the braid region while Huang and Ho [113] relate mixing to the production of small-scale
eddies in the merging process.

The transition process is very sensitive to experimental conditions such as the initial
boundary layer parameters, the acoustics in a research facility, and, of interest to this thesis,
FSTI [103]. The effects of turbulence intensity on free-shear flows were investigated by
Wygnanski et al. [129], who inserted a turbulence generating grid in one of the streams
upstream of the trailing edge of a splitter plate. The authors found that roll-up of the
shear layer persisted with the increase in FSTI, despite previous hypotheses and results
suggesting that free-stream turbulence intensity inhibits two-dimensional roll-up, and rather
leads directly to a three-dimensional flow [118]. Elevated turbulence intensity has been
shown to not significantly alter the mean velocity profile for a given velocity ratio [130],
but does significantly increase shear layer growth [130, 131], especially if the same relative
amount turbulence intensity is added to the higher velocity stream. This finding is intuitive
as the same relative turbulence intensity in the higher velocity stream produces a larger
initial amount of turbulent kinetic energy in the flow as compared to if the turbulence is
added to the lower velocity stream.

2.2.3 Laminar Separation Bubbles

As discussed in Section 2.1, the transition process in the separated shear layer is one of
the key aspects of the laminar separation bubble as it determines whether or not the
flow will reattach to the airfoil surface. The transition process in separated shear layers
shares similarities with free shear layers (Section 2.2.2) and boundary layers (Section 2.2.1)
[50]. At and downstream of separation, the separated shear layer contains an inflection
point, making it inviscidly unstable [65] as in free-shear layers. However, the presence of
the wall increases viscous effects, similar to boundary layer transition [50]. As a result,
flow structures in separated shear layers are similar to those in both boundary layers and
free-shear layers, and growth rates of disturbances are larger than in boundary layers but
smaller than in free-shear layers.

The sketch of an LSB shown in Fig. 2.1 highlights that while the bubble has a well defined
mean topology, it is highly unsteady if observed instantaneously. In the fore portion of the
bubble, disturbances are small and almost undetectable. However, over a relatively short
streamwise distance, fluctuations become large and dominate the flow in the aft portion of
the bubble. This laminar-to-turbulent transition process has been the focus of numerous
experimental [15, 18, 24, 31, 32, 46, 47, 132, 133] and numerical [14, 17, 29, 30, 42, 43, 49, 134]
investigations. More recent studies of the transition process have benefited greatly from
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more powerful experimental techniques and computational capabilities.
The transition process begins with the amplification of small amplitude perurbations

which originate upstream in the laminar boundary layer. These small perturbations are
generated by background conditions in a research facility as a result of the receptivity
process (e.g., Ref. [12]). Provided that the initial disturbances are small, these perturbations
convect into the separated shear layer where their ensuing amplification has been shown to
be primarily two-dimensional [13, 30] and nearly exponential [13, 15, 50, 132], and is well
modeled by linear stability theory [15, 43, 47, 51, 135]. In this region of the separation bubble
(i.e., the intial stages of transition marked in Fig. 2.1), growth rates are generally lower than
those measured in free-shear layers but larger than those in boundary layers [50]. This is a
result of the damping effect on growth rates imposed by the presence of the wall [24, 50].

As the disturbances continue to grow, non-linear interactions occur and different unstable
modes begin to interact [13, 50]. These interactions typically occur when oscillations reach
an amplitude of approximately 1% of the free-stream velocity [50]. Further downstream,
disturbance amplitudes saturate, and the shear layer rolls-up into spanwise oriented vortices
as a result of an instability that resembles that of a Kelvin-Helmholtz instability [13, 29, 134].
Diwan and Ramesh [132] argue that the origin of the perturbations that lead to roll-up is
upstream of the mean separation location, in the laminar boundary layer. They also show
that these perturbations grow rapidly once the inflection point of the velocity profile is
displaced sufficiently far from the the wall, where growth rates are higher [50]. Recently,
using linear stability analysis, Yarusevych and Kotsonis [24] showed that indeed the stability
spectrum is continuous across the separation point, but disturbances propagating from the
attached portion of the boundary layer experience significantly higher growth rates. Shear
layer roll-up occurs in the vicinity of the maximum bubble height [13, 132, 133, 136], and
the formed vortices are then shed at the frequency of the most amplified disturbance in the
separated shear layer [18, 24, 26]. The observed shedding frequency of a given separation
bubble is decreased when controlled disturbances are introduced into the flow, resulting
in a decrease in separation bubble size, as shown by Yarusevych and Kotsonis [24]. By
normalizing the convection speed of the shear layer rollers by the edge velocity at separation
[26], or the shedding frequency by the momentum thickness and edge velocity [29], the
shedding characteristics of the bubble have a small dependence on Reynolds number, though
do not represent true universal scalings of the shedding phenomenon. If the level of reverse
flow within the separation bubble exceeds 15-20% of the mean free-stream velocity, the
separation bubble becomes absolutely unstable [134].

Initially, roll-up of the shear layer is two-dimensional and the structures are coherent
across the span of the flow [16, 18, 44, 133]. Downstream, the structures break-up as a
result of a secondary instability of the shear layer rollers [17, 42]. One of the secondary
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instabilities is elliptic [42], resulting in a spanwise deformation of the shear layer rollers, and
has been observed in several investigations [17, 18, 42, 47, 134]. This spanwise deformation
grows with increasing streamwise distance and has a wavelength that is typically 2-3 times
that of the streamwise wavelength of the shear layer rollers [17, 18, 137]. Using spacers
under an oscillating wire to induce a three-dimensional disturbance, Lang et al. [47] show
that deformations in the spanwise rollers lead to a pair of counter-rotating streamwise
oriented vortices. This deformation in the rollers is also seen in the resuls of Burgmann
and Schröder [31] as a re-orientation of the spanwise vorticity into the streamwise direction.
This re-orientation results in the leading edges of the bulges to be lifted away from the wall.
As a result of the large velocity gradient across the boundary layer, streamwise stretching of
the structures occurs and they begin to resemble the Λ-structures characteristic of boundary
layers [18, 31, 134]. Further stretching of these structures leads to their break-up into smaller
scales. A second type of secondary instability can occur within the braid region between two
consecutive rollers and with a wavelength that is smaller than that of the shear layer rollers
[17, 42]. In this case, the instability generates streamwise vorticity in the braid region which
convects upstream in the near wall region due to large instantaneous reverse flow velocities
[42]. This vorticity is then fed into the upstream forming vortex and the process continues.
As a result, the shear layer roll-up then operates as an oscillator and causes the shear layer
rollers to break-up within a short streamwise distance. This behaviour was oberved in the
simulations of Jones et al. [42], but only when three-dimensional forcing being applied to a
separation bubble was subsequently switched off. Flow development within the separation
bubble has been studied numerically using both two- and three-dimensional simulations
and it is not suprising that investigators have concluded that two-dimensional simulations
are inadequate in describing the breakdown to turbulence, or even mean separation bubble
topology [17, 30, 134].

At moderately increased levels of FSTI (less than approximately 1%), the transition
process in the separated shear layer is promoted, with transition occuring further upstream
[9, 16, 38, 138, 139]. The results from Lamballais et al. [139] show that earlier shear layer
breakdown and mean reattachment is observed for increases in the level of FSTI from 0%
to 0.1% and 1%, but the transition process remains qualitatively similar. Associated with
the earlier breakdown is an increase in the number of smaller scale vortical structures [138].
However, at increased levels of FSTI, the spanwise coherence of shear layer rollers at the
roll-up location is decreased notably [31, 32], as compared to experiments performed in low
disturbance environments [18, 133] or simulations [16]. At high levels of FSTI (greater than
approximately 1-2%), notable streamwise velocity fluctuations are detected upstream of
separation [140]. These fluctuations are indicative of bypass transition and, more specifically,
are evidence of streamwise oriented streaks forming in the laminar boundary layer upstream
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of mean separation [16, 37, 133]. The streaks are similar to those that form in boundary
layers at high levels of FSTI as discussed in Section 2.2.1. These structures then interact
with the separated flow, creating a roll-up process which is three-dimensional [16]. A more
detailed discussion of the effects of FSTI on transition in a separation bubble and the
resulting effects on mean topology is contained in Section 2.3.2.

2.3 Effects of Free-stream Turbulence Intensity on
Airfoil Performance and Separation Bubbles

Investigations of the effects of free-stream turbulence intensity on low Reynolds number
flows over airfoils have generally focused on either the performance of the airfoil, or mean
laminar separation bubble topology. Airfoil performance studies are typically conducted
using relatively large test matrices with force balance measurements and thus neglect flow
measurements, while studies on separation bubbles are generally limited to small parameter
spaces. This section reviews past investigations of the effects of free-stream turbulence
intensity on the lift and drag forces generated by an airfoil, as well as laminar separation
bubbles formed over airfoils and flat plates. Additionally, a brief review of the generation
of free-stream turbulence intensity in both experiments and simulations is provided.

2.3.1 Low Reynolds Number Airfoil Performance

At low Reynolds numbers and turbulence intensities, airfoils can exhibit significant hysteresis
near their stall angle [28, 39, 141]. For increasing angles of attack, the lift produced by the
airfoil increases until the airfoil stalls and a significant decrease in lift is observed. The
angle of attack must then be decreased to well below the stall angle of attack before the
lift recovers to its pre-stall magnitude. As the level of FSTI is increased, the size of this
hysteresis loop can be reduced or eliminated altogether [28, 141, 142]. Further, increases in
the stall angle and maximum lift coefficient are observed as the level of FSTI is increased
[28, 39]. Some investigations at low chord Reynolds numbers have noted an increase in
drag at elevated levels of FSTI [28, 39, 141], while at higher chord Reynolds numbers, where
the baseline separation bubble is smaller [10], there is very little change in drag with
increasing FSTI [141]. Since studies of airfoil performance do not typically make detailed
flow measurements, the observed reduction in airfoil lift hysteresis was hypothesized to be
a result of transition over the airfoil being promoted, and more specifically the separation
bubble size decreasing [28]. This decrease in separation bubble size will be discussed in
detail in Section 2.3.2.
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In addition to the effects of FSTI on airfoil performance, Cao et al. [39] also investigated
the effects of the turbulence integral length scale on the lift and drag of an S1223 airfoil.
For a constant integral length scale, increasing the level of FSTI led to a small decrease in
lift at pre-stall angles of attack, but with a much more gradual (‘softer’) stall behaviour,
consistent with the findings of Yap et al. [141]. The decrease in lift is in agreement with
the results of Mueller et al. [28], but in disagreement with the results of Yap et al. [141]
who noted an increase in lift. The conflicting observations of the effects of free-stream
turbulence intensity on airfoil lift seem to be the result of the different airfoils used by the
researchers. For a constant FSTI, smaller integral length scales tend to result in higher stall
angles, while the larger turbulent scales tend to result in larger lift values at large angles of
attack [39]. For a given free-stream condition, as the chord Reynolds number is increased,
the effects of both turbulence intensity and integral length scale are decreased [39].

Using a combination of oil flow visualizations and force balance measurements, Hoffmann
[142] investigated the effects of Reynolds number and FSTI on the separation bubble formed
over the suction side of a NACA 0015 airfoil, as well as the attending changes in airfoil lift.
At the baseline level of turbulence intensity, a small separation bubble was observed, and
was completely eliminated and replaced by a turbulent boundary layer when the turbulence
intensity was increased from 0.25% to 9%. Despite the change in flow over the airfoil, there
was no notable change in the lift or drag of the airfoil at a given angle of attack, likely
as a result of the small separation bubble that formed at the baseline level of turbulence
intensity. However, Hoffmann [142] did note an increase of 30% in the maximum lift
coefficient, attributed solely to the delayed stall angle of the airfoil at the elevated level of
FSTI. In a study of the effects of FSTI on the flow over a NACA 663-018 airfoil, O’Meara
and Mueller [9] show that at high angles of attack, increasing FSTI results in an increase
in the magnitude of the suction peak, likely increasing lift though the authors did not
report this value. The authors also report a decrease in mean separation bubble length
with increasing FSTI, thereby indicating that the observed changes in airfoil performance
in other studies is likely a result of FSTI influencing the suction side laminar separation
bubble.

2.3.2 Laminar Separation Bubbles

A number of investigations have examined the effects of FSTI on mean laminar separation
bubble topology [9, 33, 34, 53, 138, 143, 144]. While the effects of FSTI on the transition
process in the laminar separation bubble were discussed briefly at the end of Section 2.2.3,
its effects specifically on mean separation bubble topology are reviewed here. Some of the
earliest work on the effects of FSTI on separation bubbles was performed over the corner of

21



blunt flat plates placed parallel with the free-stream [53, 143]. In this configuration, the
flow separates over the corner of the plate, forming a separated shear layer, then transitions
to turbulence and reattaches to the plate downstream. By increasing the level of FSTI,
the transition process in the separated shear layer is promoted, leading to earlier mean
flow reattachment [53, 143] and thus a reduction in the size of the separation bubble. This
finding has been confirmed more recently by Lamballais et al. [138, 139] who simulated the
flow over a blunt flat plate with rounded corners using DNS, as well as by Langari and Yang
[140] who simulated the flow over a blunt nosed flat plate using Large Eddy Simulations
(LES). Lamballais et al. [139] showed that the reduction in separation bubble length is
more significant for larger corner radii of the plate since a larger separation bubble initially
forms at low FSTI, and thus the observed reduction at elevated FSTI is more significant.
The decrease in separation bubble length was shown by Kiya and Sasaki [143] to result in
an increase in the magnitude of the negative mean surface pressure over the corner of the
plate, which the authors attributed to higher acceleration around the corner as a result of
the decreased separation bubble height.

One of the first studies of the effects of FSTI on the separation bubble formed over
an airfoil was performed by O’Meara and Mueller [9]. Using mean surface pressure
measurements, the authors showed that the length of formed separation bubbles was
reduced as the level of FSTI was increased. The magnitude of the suction peak increased
as a result of the decrease in separation bubble length, similar to the results found over the
corner of a blunt flat plate [143]. More recently, planar Particle Image Velocimetry (PIV)
has been used to examine mean separation bubble topology on the suction side of airfoils
[31, 33, 34]. Similar reductions in the length of formed separation bubbles with increasing
FSTI have been observed in these studies. The importance of documenting a facility’s
free-stream conditions was elucidated by Ol et al. [33] who compared experimental results
from three facilities for nominally identical experimental conditions. The authors noted
that the locations of mean separation, transition, and reattachment varied by 15%, 10%,
and 5%, respectively, which they attributed in part to the effects of FSTI which varied by
approximately 0.1% between the facilities. In a study of the effects of increasing FSTI on a
bubble formed in the same facility, Olson et al. [34] showed that the decrease in separation
bubble length was the result of a downstream shift in mean separation as well as an upstream
shift in mean reattachment, a result consistent with the findings of Hain et al. [32]. By
improving the flow conditioning in their facility and reducing the free-stream turbulence
inensity from 1.5% to 1.0%, Burgmann and Schröder [31] observed a significant increase in
the size of the formed separation bubble on the suction side of an airfoil. However, despite
the reduction in FSTI, Burgmann and Schröder [31] observed little spanwise coherence of
the shear layer rollers which are largely two-dimensional in low disturbance environments
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[17, 18, 133]. Instead, they observed three-dimensional ‘c-shaped’ structures at roll-up,
similar to the findings of Hain et al. [32] also in a higher disturbance environment, which
rapidly deformed into structures resembling Λ-structures before breaking down to smaller
scales.

The effects of integral length scale have been studied experimentally for the flow past
the corner of a blunt flat plate [53] as well as over the suction side of an airfoil [144]. The
integral length scale has been found to have a negligible effect on the flow transition location
and thus separation bubble length [53, 144]. However, smaller scales are associated with
increased stagnation point heat transfer [144] while larger scales are associated with larger
surface pressure fluctuations [53], findings which may be important for heat transfer and
unsteady aerodynamics, respectively.

Researchers have also studied the effects of FSTI on separation bubbles induced on
flat plates [37, 38]. Using planar PIV, Simoni et al. [38] showed that the length of formed
separation bubbles decreases with increasing FSTI as a result of an upstream shift in mean
reattachment, with no significant change in the location of mean separation. Using DNS,
McAuliffe and Yaras [16] found that the location of mean separation shifted downstream
slightly while there was a more significant upstream shift in the location of mean reatta-
chment. The relative insensitivity of the mean separation location on flat plates to increases
in FSTI, even in simulations with high spatial resolution, is in qualitative disagreement
with the PIV measurements of Olson et al. [34] over an airfoil, as Olson et al. [34] note a
significant downstream shift in the location of mean separation when FSTI is increased.
This difference is also observed in the LES performed by Lardeau et al. [37] over both a flat
plate and a compressor blade. While no shift in the location of mean separation was noted
for the flat plate with increases to FSTI, a slight downstream shift in the location of mean
separation was observed over the compressor blade. These results indicate that changes in
the location of mean separation in response to changes in bubble size may be dependent on
the flow geometry as well as the level of FSTI. In the work of Simoni et al. [38], a doubling
of the Reynolds number (for constant FSTI) also results in no significant change in the
location of mean separation, which is in contradiction to the well established upstream shift
shown to exist over airfoils for increasing chord Reynolds numbers, e.g., Ref. [10].

At large levels of FSTI (approximately 1%), the topology of the separation bubble is
affected by the condition of the boundary layer upstream of separation, most notably by
streamwise oriented streaks similar to those associated with bypass transition [87, 91, 94], as
discussed at the end of Section 2.2.1. In low Reynolds number airfoil studies, these streaks
have been observed in simulations [16, 37, 133], and are also speculated by Simoni et al. [38]
and Lengani and Simoni [133] to be present in the experiments. At elevated levels of FSTI,
the separation bubble is significantly smaller than that formed at lower turbulence intensity
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levels [37, 38], and the roll-up process of the separated shear layer is highly three-dimensional
[16, 133]. This three-dimensionality is observed as spanwise deformations in Q-critereon
[145, 146] contours presented by Langari and Yang [140]. Lardeau et al. [37] showed, using
LES of a separation bubble induced on a flat plate, that at elevated levels of FSTI a
spanwise variation in the locations of mean separation and reattachment exists as a result of
streamwise streaks formed in the boundary layer upstream of separation. In their study at
high levels of FSTI, Lengani and Simoni [133] found that the separation bubble formed over
an airfoil is eliminated, and POD results from wall-parallel measurements show structures
with large streamwise wavelengths. Simoni et al. [38] investigated a separation bubble
imposed on a flat plate at high levels of FSTI, observing large streamwise wavelengths in
POD modes computed from wall-normal measurements. The authors speculated that this
was a result of streamwise streaks but did not perform wall-parallel measurements to confirm
this assertion. In some experiments at high levels of FSTI, streamwise oriented streaks
are not detected [31, 32]. The observation [16, 37, 133] or absence [31, 32, 138, 140, 144] of
streamwise oriented streaks at elevated levels of FSTI is curious, but the formation of these
streaks is dependent upon the receptivity of the specific flow and is a complex process
[12, 91, 98]. In a study over an airfoil, Butler et al. [144] found that at very high FSTI
(≈ 10%), boundary layer separation was suppressed as the flow transitioned to turbulence
very close to the leading edge of an airfoil.

2.3.3 Generation of Free-stream Turbulence Intensity

Throughout Sections 2.2, 2.3.1, and 2.3.2, the effects of FSTI on experiments and simulations
was discussed and it is therefore worthwhile to briefly discuss how FSTI is typically generated
in both experiments and numerical simulations. Generally speaking, the quality of a research
facility used for transitional studies is based in part on the magnitude of the FSTI in the
test section. Low levels of FSTI are desirable in order to observe ‘natural’ transition. In
order to increase the level of FSTI in experiments, woven wire mesh screens are inserted
upstream of the test-section in an attempt to generate homogeneous and nearly isotropic
turbulence [147–149].

To quantify the free-stream turbulence, it is necessary to measure the magnitude of
velocity fluctuations as well as their spectral content. Further, it is often of interest to
compute a characteristic length scale of the fluctuations, typically the integral length scale.
The root-mean-square of the velocity fluctuations in the streamwise direction divided by
the mean flow velocity is usually used to define FSTI. The integral length scale is typically
computed by employing Taylor’s frozen turbulence theory [85]. Taylor’s theory states that
when the velocity induced by turbulent eddies is small compared to that of the mean
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velocity, one can assume that the fluctuations measured at a single point are the result of a
pattern of consecutive turbulent eddies [85]. Therefore, by integrating the autocorrelation
function of the velocity signal at a given point, the length scale associated with the turbulent
fluctuations, the integral length scale, may be computed. Finally, computing the spectra of
the velocity fluctuations ensures that no dominant frequency is introduced into the flow by
the grids which could have additional forcing effects on the transition process of interest.

In numerical simulations, the velocity fluctuations at the domain inlet are zero to
within numerical round-off errors. Since investigators often try to make comparisons with
experimental data where FSTI is notably higher, some artificial perturbations must be
defined at the computation domain inlet. A method proposed by Jacobs and Durbin [87]
and used by other investigators [91] is to superimpose a series of Fourier modes with random
amplitudes onto the inlet velocity profile. In addition, specific discrete or continuous [101]
modes of the Orr-Sommerfeld equation may be defined at the domain inlet in order to
promote either natural (i.e., TS wave) or bypass [87–90, 95] transition, respectively.
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Chapter 3

Experimental Methodology

The effects of free-stream turbulence intensity on the low Reynolds number flow over an
airfoil were studied experimentally in a wind tunnel facility. A number of measurement
techniques were employed in this investigation in order to investigate the time-averaged
and spatio-temporal flow development over a NACA 0018 airfoil. The airfoil model was
developed within the research group by Gerakopulos [150] and has been used previously
in the studies of Kurelek [20], Boutilier [151], Kirk [152], and Lambert [153]. In all, these
investigations have examined the aerodynamic characteristics of the airfoil, as well as the
transition process within laminar separation bubbles formed over its suction surface. This
study is comprised of two experimental campaigns: 1) a parametric study which aims to
unravel the interdependence of angle of attack, chord Reynolds number, and free-stream
turbulence intensity effects on suction side separation bubble mean topology, separated
shear layer transition characteristics, and airfoil lift by measuring mean and fluctuating
surface pressure distributions; and 2) a more detailed study using planar Particle Image
Velocimetry (PIV) in two configurations to examine the effects of free-stream turbulence
intensity on the spatio-temporal flow development within laminar separation bubbles. For
the parametric study, angles of attack between 0° and 20°, chord Reynolds numbers between
100 000 and 200 000, and free-stream turbulence intensities between 0.09% and 2.03% were
investigated. In the PIV study, a single angle of attack of 4° was investigated for two chord
Reynolds numbers and four free-stream turbulence intensities.

This chapter provides details about the experimental facility, the airfoil model, and the
measurement techniques employed in this investigation.
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3.1 Experimental Setup
All experiments were performed in the closed-loop wind tunnel located in the Fluid Mechanics
Research Laboratory at the University of Waterloo, sketched in Fig. 3.1. Measurements
were made over an aluminum NACA 0018 airfoil model designed by Gerakopulos [150]. The
following subsections provide further details about the wind tunnel facility, experimental
conditions, and the airfoil model.

1

32

5

4

Figure 3.1: Sketch of the closed-loop wind tunnel in the Fluid Mechanics Research
Laboratory. Labelled components are as follows: 1 fan motor, 2 settling chamber, 3
contraction, 4 turbulence generating grid location, and 5 test section. After Kurelek [20].

3.1.1 Wind Tunnel Facility

The closed-loop wind tunnel features a test section that is 0.61 m wide by 0.61 m high
and 2.4 m long. The test section has walls which are constructed from Lexan, offering full
optical access to the installed model. Further, the closed-loop nature of the tunnel allows
for good control of flow seeding, which is critical for the particle-based flow diagnostics
used in this investigation and detailed in Section 3.2.2. Flow in the wind tunnel is driven
by a 6-blade axial fan and conditioned by an aluminum honeycomb structure and a set of
five turbulence reducing screens upstream of a 9:1 contraction leading into the test section.
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The resulting free-stream turbulence intensity is approximately 0.1% over the range of
free-stream velocities studied in this investigation. The flow uniformity in the test section
was assesed by Kurelek [20] for a chord Reynolds number of 125 000 and was found to be
within ±0.4% across both the spanwise and vertical directions. In order to increase the level
of free-stream turbulence intensity, turbulence generating grids were placed just upstream of
the test section, at the location shown in Fig. 3.1. A summary of the geometry of the grids
is provided in Table 3.1, with additional details about the fabrication and installation of
the grids provided in Appendix C. With or without a turbulence generating grid installed,
the free-stream velocity in the test section was set based on the static pressure drop across
the contraction, calibrated against a Pitot-static tube placed in the empty test section at
the streamwise location of the airfoil. Since the grids result in an additional pressure drop
upstream of the test section, the calibration between the static pressure drop across the
contraction and the test section velocity was established for each grid, with the details
provided in Appendix B. In all cases, the associated uncertainty in the free-stream velocity
is less than 2% for all Reynolds numbers investigated.

Table 3.1: Summary of the turbulence generating grid geometry.

Grid geometry
Case d [mm] M [mm] β [%]
i) No screen - - -
ii) Finest screen 0.11 0.67 70
iii) Medium screen 0.26 1.48 68
iv) Coarse screen 0.48 2.19 61
v) Grid 1.72 14.32 77

The free-stream conditions in the test section for all investigated chord Reynolds numbers
were characterized by means of hot-wire anemometry. Measurements were conducted using
a normal Dantec 55P15 probe, operated with a Dantec Streamline Constant Temperature
Anemometry unit. All measurements were made in an empty test section at the location
corresponding to the midspan of the leading edge of the airfoil at zero angle of attack. The
hot-wire probe was calibrated in-situ against a Pitot-static probe placed approximately 3 cm
below it. All hot-wire data acquisitions were performed on the same day as the calibration
so as to maintain an accurate calibration. The voltage supplied to the hot-wire was sampled
at 100 kHz, and low-pass filtered at 50 kHz, for a total of 223 samples using a National
Instruments PCI-4472 data acquisition card. Turbulence intensities were computed as the
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root-mean-square of the velocity fluctuations divided by the mean free-stream velocity.
Integral length scales were computed by first integrating an exponential curve fit to the
auto-correlation function of the fluctuating velocity, then, applying Taylor’s hypothesis [85],
the result was multiplied by the mean free-stream velocity. A summary of all investigated
flow conditions is provided in Table 3.2 with additional details of the hot-wire calibration
procedure and determination of the flow conditions provided in Appendix B.

Table 3.2: Investigated flow conditions.

PIV experiments Parametric study experiments
Rec = 80 000 125 000 100 000 150 000 200 000

Case Tu [%] Λ [mm] Tu Λ Tu Λ Tu Λ Tu Λ
i) 0.11 64.54 0.10 74.93 0.10 74.33 0.10 88.31 0.09 95.51
ii) 0.22 4.13 0.25 2.64 0.24 2.88 0.25 2.47 0.26 1.91
iii) - - - - 0.37 3.30 0.37 2.61 0.35 2.21
iv) 0.50 4.14 0.53 3.24 0.51 3.61 0.54 2.96 0.60 2.69
v) 1.92 6.54 1.94 5.69 1.94 6.03 1.90 5.23 2.03 4.73

A close-up view of the test section arrangement is shown in Fig. 3.2, and shows that the
turbulence generating grids are 0.55 m upstream of the airfoil leading edge. In considering
the downstream distance of the airfoil leading edge from the grids, L, relative to the
characteristic mesh size, M , Batchelor and Townsend [154] suggest that the region of
developing turbulence behind a grid is located within L/M ≤ 20. In their review, Laws
and Livesey [149] suggest that this region extends to L/M = 40 before homogeneous and
near isotropic turbulence is measured. For the present investigation, the airfoil leading
edge is located within 38 . L/M . 820, depending on the grid, and is thus assumed to be
subjected to nearly homogeneous and isotropic free-stream turbulence.

It is also imformative to compute the frequency spectra of the free-stream velocity
fluctuations. Spectra of the velocity fluctuations were computed using Welch’s method [155],
and have a resulting frequency resolution of 0.8 Hz. Spectra for all grids, and the case where
no grid is installed, for the three Reynolds numbers of the parametric study (Table 3.2) and
are shown in Fig. 3.3. The results show that no dominant frequencies are introduced into
the flow by the grids, and that the free-stream turbulence intensity is increased as a result
of an increase in energy over a broad range of frequencies. There are slight peaks around
St ≈ 0.8 which are associated with the fan blade-passage frequency. These fluctuations
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Figure 3.2: Sketch of the test section arrangement. The red circle represents the location
of the free-stream static pressure tap.

persist when the grids are inserted but become progressively less significant as a result of
the increasing velocity fluctuations introduced into the flow by the grids. It should also be
noted that this frequency is about an order of magnitude below the frequencies of interest
in the investigated separation bubbles.

Figure 3.3: Spectra of free-stream velocity fluctuations.
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3.1.2 Airfoil Model

The airfoil model used for all experiments was designed by Gerakopulos [150] and constructed
from aluminum with a NACA 0018 profile. The model has a chord length and span of
0.2 m and 0.6 m, respectively. The model is equipped with ninety-five pressure taps, 0.4 mm
in diameter, as well as an array of twenty-five microphones, embedded under the airfoil
surface and exposed to the flow through taps 0.8 mm in diameter. A sketch of the model
is shown in Fig. 3.4, along with the definitions of the chord based, and surface attached
coordinate systems. The chord based system has the X coordinate aligned along the

Figure 3.4: Airfoil model, after Boutilier and Yarusevych [10]. 1 End plates, 2
streamwise pressure tap rows, 3 surface embedded microphones, 4 spanwise pressure tap
rows.

airfoil chord length, while the surface attached coordinate system has the x coordinate
aligned in the streamwise direction along the airfoil surface and the y coordinate normal
to the airfoil surface. The z coordinate is aligned along the airfoil span and is shared by
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both coordinate systems. Sixty-five of the pressure taps are split between the suction and
pressure sides of the airfoil, in two staggered rows about the midspan plane. The remaining
thirty pressure taps are distributed in three spanwise rows across the suction side of the
airfoil at X/c = 0.15, 0.30, and 0.60. All of the microphones are located on the suction
side of the airfoil with twenty-two placed in staggered streamwise rows around z/c ≈ −0.2.
The remaining three microphones form a spanwise row at X/c = 0.21. For further details
of the model design as well as the internal circuitry for the microphones, the reader is
referred to the work of Gerakopulos [150]. All pressure taps are fed out of the model and
test section via flexible tubing while the microphone signals are carried by coaxial cables.
The angle of attack of the airfoil was set to within 0.16° using a digital protractor. Prior to
experiments, the aerodynamic zero angle of attack was determined by finding the angle
of attack at which the airfoil generates zero lift, i.e., 0° for a symmetric airfoil [1]. Since
measuring a zero quantity is challenging, the linearity of the lift curve of a NACA 0018
airfoil at low angles of attack was exploited. First, the airfoil was set to a zero angle of
attack relative to the test section by eye. Then, lift was computed for small positive and
negative angles of attack relative to this position. A least squares linear regression was
applied to the resulting lift values, and the aerodynamic zero reference was determined. A
lift value was computed at this determined angle of attack in order to verify that the lift
was zero to within the experimental uncertainty.

For the parametric study, the airfoil was fitted with circular end plates having diameters
of 2.25c and a spanwise spacing of 2c (see Fig. 3.4), as per the recommendation of Boutilier
and Yarusevych [156]. The solid blockage ratios were within the range of 7.4% to 12.8%.
In this range of blockage ratios, blockage corrections [157, 158] can be applied below the
stall angle of attack [156], however, the corrections perform poorly in the post-stall regime
and, therefore, for consistency, no blockage corrections were applied to the results of this
investigation.

For the PIV measurements, no end plates were used in order to allow for better optical
access to the measurement plane. In order to minimize end effects, measurements were
performed at the midspan plane of the airfoil. At this location, surface pressure distributions
are approximately two-dimensional at low angles of attack [156]. In these experiments,
performed at an angle of attack of 4°, the estimated solid blockage ratio is 5.9% and no
solid blockage corrections were applied. In order to prevent tonal noise emission [159–161]
which has been shown to develop a feedback loop with the suction side LSB [162], a pressure
side boundary layer trip was applied to the airfoil for the PIV experiments. The trip was
made out of a 10 mm wide strip of randomly distributed roughness elements, approximately
0.5 mm in diameter, placed across the entire span of the airfoil at X/c ≈ 0.3, so as to be
upstream of the pressure side separation point.
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3.2 Measurement Techniques

3.2.1 Surface Pressure Measurements

Mean surface pressure distributions were measured at the midspan plane of the airfoil
using the streamwise rows of pressure taps as depicted in Fig. 3.4. All measurements
were referenced against the mean free-stream static pressure, measured two chord lengths
upstream of the airfoil with a pressure tap in the floor of the test section (see Fig. 3.2).
Flexible tubing from the pressure taps routed the pressures from the taps, through the
model, to two mechanical Scanivalve units mounted outside of the tunnel test section.
Using a LabView program developed by Boutilier [151], the pressure taps were mechanically
multiplexed to two Setra Model 239 pressure transducers allowing for two simultaneous
measurements. For each measurement, when the multiplexer was indexed to the next
measurement location, a settling time of at least 25 s was used to ensure that the pressure
in the tubing had equalized. A total of 104 samples were then recorded at 1 kHz using a
National Instruments USB-6259 data acquisition unit. For all experiments, a transducer
with a full-scale range of ±250 Pa was used to measure the surface pressures on the pressure
side of the airfoil, with an associated uncertainty of less than 3% of the free-stream dynamic
pressure. For the suction side pressure measurements, a transducer with a full-scale range
of ±620 Pa was used for the parametric study, while a transducer with a full-scale range
of ±250 Pa was used for experimental conditions investigated in the PIV campaign. The
larger range was required for the parametric study in order to cover the higher range of
pressures attained at higher angles of attack. The associated uncertainties in the suction
side pressure measurements for the two studies are less than 5% and 3% of the free-stream
dynamic pressure, respectively.

Fluctuating surface pressures were measured using the surface embedded microphones as
shown in Fig. 3.4. These measurements can be used to infer the behaviour of disturbances
in the separated shear layer, following similar methodology employed in previous studies
[136, 159, 163, 164]. Prior to the experiments, the microphone responses were calibrated
over a range of frequencies between 100 Hz and 5000 Hz against a Brüle and Kjær 4192
microphone. Details of the calibration procedure and sample microphone responses are
provided in Appendix D. The signals from the microphones were simultaneously sampled
at 40 kHz, and low-pass filtered at 20 kHz, for a total of 220 samples using two National
Instruments 9220 data acquisition modules held in a National Instruments CompactDAQ
chassis. A custom breadboard unit was used to connect the 25 coaxial cables running from
the microphones into a single 32-pin connector required of the data acquisition modules.
The uncertainty in the root-mean-square of the measured surface pressure fluctuations is
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estimated as the measured noise floor plus 20% of the measurement. Details are provided
in Appendix A following the methodology discussed by Boutilier [151].

3.2.2 Particle Image Velocimetry Measurements

Particle Image Velocimetry (PIV) was employed in order to describe the effects of free-
stream turbulence intensity on the spatio-temporal flow development within the laminar
separation bubble. Both side and top view arrangements, as sketched in Fig. 3.5, were used
in order to assess the streamwise and spanwise flow development, respectively. For the side
view configuration, the laser sheet was placed at the midspan of the airfoil and allowed for
the assessment of the streamwise flow development within the laminar separation bubble.
For the top view configuration, the laser sheet was positioned above the airfoil such that it
passed through the upper portion of the separated shear layer rollers, as informed by the
side view PIV measurements, and therefore allowed for the characterization of the spanwise
flow development. In this way, as reflected in Fig. 3.6, the top view measures the velocity
components in the spanwise and chordwise directions, whereas the side view measures
streamwise and wall-normal components of velocity in the surface attached coordinate
system.

For all PIV measurements, the flow was seeded with a water-glycol based fog produced
with a Rosco Vapour fog machine and having a mean particle diameter of 4 µm. For the side
view, two PIV systems were used: 1) a two-camera, time-resolved system, and 2) a single
camera, non time-resolved system. The time-resolved system was used to characterize the
spatio-temporal flow development, while the low speed system employed a higher-resolution
camera in order to measure higher resolution mean fields. The first system, the high-speed
system, consisted of two 1024 px × 1024 px Photron SA4 cameras, equipped with 200 mm
Nikon lenses. The magnification was adjusted so as to capture the entire separation bubble
with adequate spatial resolution, while maintaining an overlap region between the two
images of approximately 10% in order to stitch the final vector fields together. The flow was
illuminated by a Photonics DM20-527 high repetition rate Nd:YLF laser. For the second
system, the low-speed system, a single 1600 px × 1200 px LaVision Pro-X camera equipped
with a 200 mm Nikon lens was employed. The camera was placed on a 3-axis traverse and
five overlapping 18 mm× 13 mm flow regions were imaged by traversing the camera in the
streamwise direction, over the full extent of the separation bubble. Flow illumination was
provided by an EverGreen 70 Nd:YAG laser. In both configurations, the laser beam was
introduced into the test section downstream of the airfoil and conditioned into a sheet by a
series of optical devices mounted to a breadboard, as depicted in Fig. 3.5a. The breadboard
and optics were confirmed to have no significant effect on the flow development over the
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(b) Top view.

Figure 3.5: PIV arrangements. 1 High-speed cameras, 2 laser, 3 stepper motor stand,
4 PIV field-of-view, 5 laser sheet forming optics.
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(a) Side view. (b) Top view.

Figure 3.6: Sketch of PIV fields-of-view and coordinate systems relevant to the measure-
ments.

airfoil through a comparison of mean surface pressure distributions. The beam was first
turned upstream by a 90° turning mirror, and then conditioned into a sheet approximately
1 mm thick by a spherical lens with a focal length of 1000 mm, a cylindrical lens with a
focal length of −200 mm, and a variable focal length lens from LaVision.

For the top view, the same time-resolved system used in the side view arrangement
was employed, and the two Photron SA4 cameras were equipped with 105 mm focal length
Nikon lenses. Due to the size of the camera bodies, one of the cameras had to be tilted
by approximately 10° so that an overlap region between the two camera images could be
attained. In order to correct for the tilt, a Scheimpflug adapter was affixed to the camera
lens in order to project the plane of the laser sheet onto the camera sensor focal plane. The
laser was introduced directly above the airfoil with all sheet forming optics affixed to the
laser head, as depicted in Fig. 3.5b. The beam was conditioned into a sheet approximately
1 mm thick using a −20 mm focal length cylindrical lens and the same variable focal length
lens from LaVision used in the side view arrangement.

For all PIV measurements, particle images were captured in double-frame mode with the
cameras and laser synchronized using a LaVision timing unit controlled through LaVision’s
DaVis 8 software. The images were processed in DaVis 8 using a multi-pass cross-correlation
algorithm with window deformation. The final window size was 16× 16 pixels, with 75%
overlap. The final vector fields were stitched together using a cosine blending scheme in the
image overlap region. For the side view, the final vector fields were then transformed into
the surface attached coordinate system, as shown in Fig. 3.6a. The methodology used in
determining the uncertainty in the PIV measurements is discussed in Appendix A, and is
estimated to be less than 5% and 6% of the free-stream velocity for instantaneous side and
top view measurements, respectively. A summary of the important side and top view PIV
parameters are provided in Table 3.3 and Table 3.4, respectively.
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Table 3.3: Summary of important side view PIV parameters for the low-speed (LS) and
time-resolved (TR) systems.

LS side-view TR side-view Unit
Parameter Rec = 80 000 125 000 80 000 125 000

Sampling rate 15 3000 3200 Hz
Number of samples 1000 5000

Frame separation 23 14 801
36 µs602

Camera lens focal length 200 200 mm

Magnification factor 0.34 0.661
0.490.492

Combined field of view 0.4× 0.06 0.35× 0.061
0.3× 0.06 c0.30× 0.062

Final window size 16× 16 16× 16 px

Vector pitch 0.05 0.171
0.12 mm0.122

1 Cases i) & ii) in Table 3.2
2 Cases iv) & v) in Table 3.2

Table 3.4: Summary of important top view PIV parameters.

Top view
Parameter Rec = 80 000 125 000 Unit

Sampling rate 1.95 kHz
Number of samples 2500
Frame separation 110 60 µs

Camera lens focal length 105 mm
Magnification factor 0.34

Combined field of view 0.3× 0.6 c
Final window size 16× 16 px

Vector pitch 0.25 mm
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Chapter 4

Low Reynolds Number Flow Over an
Airfoil and the Effects of Turbulence
Intensity

This chapter presents results from an exhaustive data set containing mean surface pressure
distributions, sectional lift coefficients, suction side laminar separation bubble characteristics,
and fluctuating surface pressure measurements. All measurements were made on a NACA
0018 airfoil for angles of attack between 0° and 20°, chord Reynolds numbers between
100 000 and 200 000, and free-stream turbulence intensities between 0.09% and 2.03%. One
of the main objectives of the chapter is to shed light on the interdependence between
angle of attack, chord Reynolds number, and free-stream turbulence intensity on the flow
development over a low Reynolds number airfoil. Mean surface pressure measurements are
used to identify changes in the airfoil sectional lift (Section 4.1) and mean bubble topology
(Sections 4.2 and 4.3), while fluctuating surface pressure measurements are used to infer
changes to the transition process in the separated shear layer (Section 4.4). Due to the
relatively large test matrix, a portion of the results is presented in order to highlight key
trends in the data. A more detailed discussion of the transition process will be presented in
Chapter 5 but the measurements presented in this chapter allow for the identification of
trends in transition process characteristics with varying operating conditions. All results
presented in this chapter are in the chord based coordinate system defined in Fig. 3.4.
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4.1 Airfoil Lift
The effects of free-stream turbulence intensity on the flow over the airfoil are first examined
via the sectional lift coefficient. The sectional lift coefficient is calculated by numerically
integrating the mean surface pressure distribution measured at the airfoil midspan (see
Fig. 3.4). The angle of attack and local surface curvature were both considered in the
calculation. Further, since the furthest downstream pressure tap is at X/c = 0.95, an
additional integration point was added at the airfoil trailing edge (X/c = 1), and assigned
a mean pressure value equal to the average of the taps at X/c = 0.95 on the suction and
pressure sides of the airfoil. All computed values have an associated uncertainty of less than
2% of the free-stream dynamic pressure (details of the calculation method are provided in
Appendix A). The lift coefficients computed for all investigated cases are plotted in Fig. 4.1.

Figure 4.1: Sectional lift coefficients.

The results at the baseline level of Tu are in good agreement with previous investigations
that reported the lift generated by a NACA 0018 airfoil in low disturbance environments
[10, 41, 165]. The data for all Reynolds numbers and Tu levels can generally be divided into
three distinct regions: (i) ‘low angles of attack’, α . 6°, where Cl increases approximately
linearly with increasing angle of attack; (ii) ‘pre-stall angles of attack’, from α ≈ 7° to
stall, where Cl increases with increasing angle of attack, but the slope as compared to lower
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angles of attack is checked, and (iii) ‘post-stall angles of attack’, where Cl recovers with
increasing angle of attack after the large loss in lift at stall.

At low angles of attack (α . 3°), the results at all Reynolds numbers show no significant
variation in Cl with increasing Tu. As the angle of attack is increased further towards the
pre-stall range (i.e., 4° . α . 6°), slightly higher lift is generated at lower Tu levels. The
upper limit of the low angle of attack range, and thus the onset of the pre-stall range, shifts
to higher angles of attack with increaasing Reynolds number, namely, α = 6°, 7°, and 8°
for Rec = 100 000, 150 000, and 200 000, respectively. Below these angles of attack, at a
given Tu level, the rate of increase of Cl with respect to α increases with increasing angle
of attack, similar to the trend reported by Boutilier and Yarusevych [10]. In the pre-stall
angle of attack range, the lift curves show significant variations with increasing Tu level.
As the level of Tu is increased, the local lift slope is increased and, in general, higher lift is
generated at a given angle of attack. This effect becomes checked as either Tu or Rec is
increased. For example, at Rec = 100 000 (Fig. 4.1a), the slope of the lift curve is increased
significantly when Tu is increased from 0.10% to 0.24%, but further increases result in
notably smaller changes, with no significant variation in lift seen for Tu & 0.37%. Similarly,
when Rec is increased to 200 000 (Fig. 4.1c), the slopes of the lift curves are approximately
equal for all levels of Tu investigated, and the relative effect of increasing Tu on the lift
coefficient diminishes.

The results in Fig. 4.1 show that airfoil stall tends to be delayed at higher Tu levels, with
the effect saturating at higher levels of Tu and higher Rec. For example, at Rec = 100 000
(Fig. 4.1a) the airfoil stalls at α = 14° at the baseline level of Tu. The stall angle is
increased to α = 16° at Tu = 0.24% and α = 17° for all further increases in Tu. When
the chord Reynolds number is increased to Rec = 150 000 (Fig. 4.1b), the airfoil stall angle
is increased from α = 16° to 17° by increasing Tu from the baseline level to all elevated
levels of Tu investigated. At Rec = 200 000 (Fig. 4.1c), the effect of Tu on the stall angle
falls within the resolution of the test matrix (i.e., 1°) and the airfoil stalls at α = 16° for
all Tu levels investigated. For Rec ≤ 150 000, the stall of the airfoil is sudden, and there
is a decrease in Cl of approximately 0.5 over a 1° increase in the angle of attack for all
Tu levels investigated. At Rec = 200 000, the behvaiour is similar, except for Tu = 2.03%
where the stall is more gradual, and lift decreases in the range of 16° < α ≤ 18°. This
result is similar to the findings of Cao et al. [39], who reported a more gradual decrease
in the lift of an S1223 airfoil in post-stall conditions at a high Tu level. An analysis of
mean and fluctuating surface pressure distributions for this case indicate that the behaviour
can be attributed to bi-stable oscillations between an attached and stalled state for these
flow conditions. Similar behaviour has also been reported in the investigation of Zaman
et al. [56] who measured low frequency fluctuations over the suction side of an airfoil at an
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elevated level of Tu. At fully stalled angles of attack, Cl increases at a similar rate for all
Tu levels investigated for a given chord Reynolds number.

A summary of the effects of Tu and Rec on the maximum lift coefficients for all flow
conditions is shown in Fig. 4.2. Since Tu varies slightly across the Reynolds numbers, the
legend shows the averaged value for a given turbulence generating grid (or the baseline
condition) across all Reynolds numbers investigated. In general, increases in either Tu

Figure 4.2: Maximum sectional lift coefficients.

or Rec result in an increase in Cl,max . For example, at Rec = 100 000, the maximum lift
coefficient is increased by approximately 17% by increasing Tu from the baseline level to
the highest level investigated. Similarly, at the baseline level of Tu, Cl,max is increased
by approximately 10% and 13% by increasing Rec from 100 000 to 150 000 and 200 000,
respectively. As has been noted above, as either Tu or Rec is increased, the effect of
the other parameter is reduced. For example, at Rec = 200 000, Cl,max is increased by
approximately 1% by increasing Tu from the baseline level to the highest level investigated
as compared to approximately 17% at Rec = 100 000. At all elevated levels of Tu (i.e.,
Tu > 0.10%), Cl,max decreases when Rec is increased from 150 000 to 200 000. This is a
result of the delay in stall with increasing Tu at Rec = 150 000 (Fig. 4.1b), whereas at
Rec = 200 000 there is no discernible effect on the stall angle with increasing Tu (Fig. 4.1c).
The result is higher overall Cl,max values at Rec = 150 000. This result is note-worthy as
is indicates that the generally accepted trend of increasing Cl with increasing Rec for low
Reynolds number airfoil flows [10] can be altered at elevated levels of Tu.
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4.2 Surface Pressure Distributions and Mean Bubble
Topology

To investigate the effects of free-stream turbulence intensity on the laminar separation
bubble formed over the suction side of the airfoil, and explain the observed differences in
Cl with increasing Tu noted in Section 4.1, mean surface pressure distributions over the
suction and pressure sides of the airfoil are presented in Fig. 4.3 for all Reynolds numbers
investigated. The presented angles of attack represent the different regions of angle of
attack identified above, namely low, pre-stall, and post-stall angles of attack. In addition,
an angle of attack in between the low and pre-stall angles is presented and represents
the transition between these two regions. Additional angles of attack are included in
Appendix E. Mean surface pressure distributions are commonly used in identifying the
presence and extent of a laminar separation bubble (LSB), which can be characterized by
a region of nearly constant surface pressure downstream of the suction peak [6, 7, 9, 10].
The results show that below the stall angle of attack (Figs. 4.3a–i), separation bubbles
can be identified in the range of 0.1 . X/c . 0.7, except for at low angles of attack and
the highest Tu level investigated. Beyond stall, the surface pressure distributions show
that the magnitude of the suction peak is greatly diminished as compared to the pre-stall
angles (e.g., compare Figs. 4.3g and 4.3j) and the surface pressure is nearly constant over
the majority of the suction surface (Figs. 4.3j–l). Throughout Fig. 4.3, marginal differences
in the pressure side CP distributions are observed for all angles of attack and Reynolds
numbers investigated, and thus the discussion will focus on the suction side results.

For cases where a separation bubble can be identified on the suction side of the airfoil,
the beginning of the region of nearly constant surface pressure corresponds to the location
of mean flow separation, XS. The subsequent region of rapid pressure recovery indicates
the aft portion of the separation bubble, with the beginning of this region marking the
approximate location of mean transition, XT , and the end roughly corresponding to the
location of mean flow reattachment, XR [9]. These locations are estimated using a method
discussed by Boutilier and Yarusevych [10], which is illustrated graphically in Fig. 4.4 for
two representative cases. The method involves approximating the mean surface pressure
distribution around the pressure plateau with four lines, shown as the dashed lines in
Fig. 4.4. The three intercepts of these lines serve to estimate the locations of mean
separation, transition, and reattachment, as shown by the filled diamond markers in Fig. 4.4.
These locations were determined for all cases for which a separation bubble could be
identified and the results are summarized in Fig. 4.5, while the variation in separation
bubble length is shown in Fig. 4.6.

At low angles of attack (α . 4°), the mean separation location rapidly advances upstream

42



Figure 4.3: Mean surface pressure distributions. Error bars shown in inset plots.

43



Figure 4.3 (cont.): Mean surface pressure distributions. Error bars shown in inset plots.
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(a) α = 4°, Rec = 100 000 (b) α = 13°, Rec = 200 000

Figure 4.4: Sketch of the method used to determine the locations of mean separation,
transition, and reattachment for (a) a relatively large, and (b) a relatively small separation
bubble. For both surface pressure distributions Tu = 0.10%.

as the angle of attack is increased (Fig. 4.5), but the overall length of the bubble remains
relatively constant in this range of angles of attack (Fig. 4.6). Increasing the level of
Tu leads to a decrease in the overall separation bubble length (Fig. 4.6), which can be
attributed primarily to the earlier onset of mean transition and, consequently, earlier mean
reattachment (Fig. 4.5). This is reflected in the upstream advancement of the rapid pressure
recovery region in the aft portion of the separation bubble, as seen in the inset plots in
Figs. 4.3a–c. For Rec ≥ 150 000 and the highest Tu level investigated, separation appears to
be suppressed on the suction side of the airfoil, with no evidence of a separation bubble in
Figs. 4.3b–c. The net reduction in separation bubble length with increasing Tu is particularly
significant at lower Reynolds numbers (Fig. 4.6a). For example, at Rec = 100 000 and
α = 6°, `b is reduced by approximately 13% and 40% by increasing Tu from the baseline
level to 0.24% and 1.94%, respectively. This observed reduction in separation bubble length
with increasing Tu level is similar to that noted by Olson et al. [34] for an SD7003 airfoil at
20 000 ≤ Rec ≤ 40 000 and comparable angles of attack. In their investigation, for a chord
Reynolds number of 25 000 and an angle of attack of 6°, an increase in Tu from 0.3% to
0.9% resulted in a 35% reduction in the suction side separation bubble length. Olson et al.
[34] found that this reduction was the result of a small downstream shift in the location
of mean separation and a larger upstream shift in the location of mean reattachment by
using estimates from Molecular Tagging Velocimetry measurements. The upstream shift in
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Figure 4.5: Summary of mean separation bubble topology. Filled circles represent mean
separation and reattachment locations while diamond markers represent mean transition.
The width of the diamond markers is approximately equal to the uncertainty in each of
the locations. Plots at equal angles of attack are offset slightly in the vertical direction for
clarity.

mean reattachment is consistent with the results of this investigation (Fig. 4.5), however,
the observed changes in mean separation fall within the experimental uncertainty of the
present investigation and therefore cannot be quantified. The results in Figs. 4.5 and 4.6
show that the effect of Tu on the size and position of the separation bubble become less
pronounced as the Reynolds number is increased, consistent with the results presented in
Fig. 4.1. For example, at Rec = 200 000 and α = 6°, the length of the separation bubble is
decreased by 27% by increasing Tu from the baseline level to the highest level investigated,
as compared to a 40% reduction at Rec = 100 000 for the same angle of attack and increase
in Tu. At low angles of attack, the separation bubble forms over the aft portion of the
airfoil (Fig. 4.5), far downstream of the suction peak (Figs. 4.3a–c). Thus, when the level
of Tu is increased and the separation bubble length is decreased, there is no appreciable
effect on the magnitude of the suction peak (Figs. 4.3a–c). However, the reduction in local
suction associated with the pressure plateau leads to a slight reduction in lift for increasing
Tu levels, as seen in Fig. 4.1 at low angles of attack.

As the angle of attack is increased above α ≈ 4°, the separation bubble on the suction
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Figure 4.6: Variation of mean separation bubble length.

side of the airfoil continues to move upstream (Fig. 4.5), but at a reduced rate as compared
to that at the low angles of attack, consistent with the trend reported by Boutilier and
Yarusevych [10]. At the same time, the length of the bubble decreases rapidly (Fig. 4.6)
due to the rapid upstream advancement of the mean transition and reattachment locations
Fig. 4.5. As a result of the upstream motion of the bubble, it begins to form closer to
the suction peak and starts to affect its magnitude, as can be seen in Figs. 4.3d–f and
Figs. 4.3g–i for α = 8° and 13°, respectively. For increasing Tu levels, earlier transition
occurs (Fig. 4.5) and reduces the size of the separation bubble (Fig. 4.6), thereby reducing
the adverse effect of the bubble on the magnitude of the suction peak (Figs. 4.3d–i). With
the bubble forming near the suction peak, the curvature of the streamlines around the
leading edge of the airfoil is reduced, thereby reducing flow acceleration and increasing
mean surface pressure. When the bubble size is reduced, streamline curvature is increased,
thereby increasing flow acceleration around the leading edge and decreasing mean surface
pressure (i.e., increasing the magnitude of the suction peak). At Rec = 100 000 and α = 8°
(Fig. 4.3d), the magnitude of the suction peak is increased by approximately 6% when the
level of Tu is increased from 0.10% to 1.94%. This effect becomes stronger as the angle of
attack is increased further and the bubble continues to move upstream towards the location
of the suction peak (Fig. 4.5). For example, at Rec = 100 000 and α = 13° (Fig. 4.3g),
the magnitude of the suction peak is increases by approximately 22% by increasing Tu
from 0.10% to 1.94% as compared to 6% at α = 8° for the same increase in Tu. As a
consequence, increasing Tu leads to an overall increase in Cl at pre-stall angles of attack
(Fig. 4.1a). A similar increase in the magnitude of the suction peak with increasing Tu
is also seen in the results of O’Meara and Mueller [9] for pre-stall angles of attack and
comparable experimental conditions. The relative effect of increasing Tu on the magnitude
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of the suction peak is reduced as Rec is increased, due to the smaller bubble that initially
forms at the baseline Tu level at higher Reynolds numbers. At Rec = 200 000 and α = 13°,
increasing Tu from the baseline level to the highest level investigated results in an increase
of about 1% in the magnitude of the suction peak as compared to 22% at Rec = 100 000.
As a consequence, there is a diminishing influence of Tu on Cl for a given pre-stall angle of
attack as Rec is increased (Fig. 4.1).

As the angle of attack is increased through the pre-stall angles of attack (i.e., from
α ≈ 7° to the stall angle), the rate of upstream shift in the separation bubble location is
decreased significantly (Fig. 4.5) and the rate of decrease in the bubble size diminishes
(Fig. 4.6). At lower Reynolds numbers or Tu levels, the decrease in the size of the separation
bubble with increasing angle of attack is checked, and, in some cases, an increase in the
bubble length is observed prior to stall. This effect is most pronounced at the baseline Tu
level for Rec = 100 000 and angles of attack above 10° (Fig. 4.5a), where the separation
bubble lengthens by approximately 23% before the airfoil stalls (Fig. 4.6). For these flow
conditions and angles of attack, the chordwise distance between the mean separation and
transition locations remains approximately constant (Fig. 4.5a), while the distance between
mean transition and reattachment increases with increasing angle of attack. A similar
trend has been noted in previous experiments over an airfoil [9], and is a precursor to
bubble bursting and stall [7]. When either the free-stream turbulence intensity or Reynolds
number are increased, this effect is suppressed (Fig. 4.6). Further, consistent with the
discussion presented thus far, as either parameter is increased the bubble length decreases,
and the relative effect of the other parameter diminishes. Beyond stall, the effects of Tu
on the surface pressure distributions are confined to the first 15% of the chord length on
the suction side of the airfoil, in the immediate vicinity of the suction peak (Figs. 4.3j–l).
However, the changes in the surface pressure distributions with increasing Tu do not result
in appreciable changes in lift at post-stall angles of attack (Fig. 4.1), with the exception of
the stall behaviour at Rec = 200 000 for the highest Tu level investigated, as discussed in
Section 4.1.

The relation between the effects of free-stream turbulence intensity on mean separation
bubble characteristics and the resulting changes in airfoil lift can be summarized as follows.
First, for all cases examined, increasing the Tu level leads to a reduction in the length of
the suction-side separation bubble (Fig. 4.6), which is largely the result of an upstream
shift in the locations of mean transition and, consequently, reattachment (Fig. 4.5). This
effect becomes checked as the chord Reynolds number is increased. At small angles of
attack, relatively long bubbles form over the aft portion of the airfoil suction side, relatively
far downstream from the suction peak. When Tu is increased, the decrease in separation
bubble length has no appreciable affect on the suction peak but leads to a reduction in
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local suction at the location of the separation bubble, thereby slightly decreasing lift at low
angles of attack (Fig. 4.1). At larger angles of attack where the separation bubble forms
further upstream, there is a notable decrease in maximum suction due to the presence of
the separation bubble. As the level of Tu is increased and the bubble shrinks, the adverse
influence on the suction peak is reduced and lift increases. Hence, for large pre-stall angles
of attack where the bubble forms near the suction peak, smaller bubbles formed at high
levels of Tu lead to higher lift coefficients, whereas at low angles of attack, larger bubbles
forming at low levels of Tu lead to higher lift coefficients due to the larger pressure plateau.
At moderate angles of attack, there is a balance between these competing effects, with the
main determining factors being the relative size of the separation bubble and its proximity
to the suction peak.

4.3 Reynolds Number Effects
Previous discussions showed that the effects of free-stream turbulence intensity on airfoil lift
(Section 4.1) and mean bubble topology (Section 4.2) are reduced as the chord Reynolds
number is increased. This section provides a quantitative characterization of the effect of
Reynolds number on airfoil lift and the underlying changes to the mean separation bubble
characteristics at different levels of free-stream turbulence intensity. Results are presented
for the baseline case and two elevated Tu levels (cases i), ii), and v) in Table 3.2). Since
the actual measured free-stream turbulence intensity varies slightly with Rec for a given
condition, the averaged levels of Tu across the investigated Reynolds numbers are used to
refer to the data corresponding to a given screen configuration, namely, Tu ≈ 0.10%, 0.25%,
and 1.96% for cases i), ii), and v), respectively. Fig. 4.7 highlights the effect of Reynolds
number on the sectional lift coefficient. At low angles of attack and a given level of Tu,
increasing the chord Reynolds number results in a decrease in the sectional lift coefficient.
At higher angles of attack and the baseline Tu level, increasing the Reynolds number leads
to an increase in lift, similar to the trend reported by Boutilier and Yarusevych [10] in a
low disturbance environment. However, this effect diminishes at higher levels of Tu. By
comparing Figs. 4.1 and 4.7, it can be seen that for a given angle of attack similar changes
in lift are produced by increasing either the Reynolds number or the level of Tu and holding
the other constant.

Similarly to the discussion provided in Section 4.2, the effects of increasing Reynolds
number on lift can be linked to changes in separation bubble characteristics on the suction
side of the airfoil. Surface pressure distributions for the same angles of attack presented
in Fig. 4.3 are shown in Fig. 4.8, while mean bubble topology and separation bubble
lengths are summarized in Figs. 4.9 and 4.10, respectively. At the baseline Tu level, the
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Figure 4.7: Effect of Reynolds number on sectional lift coefficients.

separation bubble shifts upstream slightly (Fig. 4.9a), and decreases in length (Fig. 4.10a)
with increasing chord Reynolds number. The latter is largely the result of an upstream shift
in the location of mean transition, and as a result mean reattachment (Fig. 4.9a), consistent
with the results of previous investigations in low disturbance environments [10, 41]. This
upstream shift can also be observed as the upstream shift of the aft portion of the separation
bubble shown in the inset plots of Figs. 4.8a and 4.8d. As the level of free-stream turbulence
intensity is increased, similar decreases in separation bubble length with increasing Rec
are observed (Figs. 4.10b–c), also as a result of upstream shifts in the locations of mean
transition and reattachment (Figs. 4.9b–c), but the changes are notably smaller than at
the baseline Tu level. This decreasing influence of Rec on the separation bubble and thus
mean surface pressure distributions at elevated levels of Tu is similar to the opposite case
(i.e., decreasing influence of Tu at higher Rec) discussed in Section 4.2.

The mean surface pressure distributions show that at low angles of attack (Figs. 4.8a–c),
the formed separation bubble has no measureable influence on the suction peak magnitude
and thus when Rec is increased, the magnitude of the suction peak remains constant. The
decrease in local suction produced by this change then leads to the lower levels of lift
at higher Reynolds numbers noted in Fig. 4.7. However, for pre-stall angles of attack
(Figs. 4.8g–i), the bubble forms near the suction peak (Fig. 4.9) and thus the magnitude
of the suction peak is adversely affected by its presence. As Rec is increased and the
bubble size deceases, the impact of the bubble is reduced and there is a net increase in
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Figure 4.8: Effect of Reynolds number on mean surface pressure distributions. Error bars
shown in inset plots.
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Figure 4.8 (cont.): Effect of Reynolds number on mean surface pressure distributions.
Error bars shown in inset plots.
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Figure 4.9: Effect of Reynolds number on mean separation bubble topology. Filled circles
represent mean separation and reattachment locations. Diamond markers represent mean
transition and whose widths are approximately equal to the uncertainty of each location.
Plots at equal angles of attack are offset slightly in the vertical direction for clarity.

lift (Fig. 4.7). At an intermediate angle of attack of α = 8° (Figs. 4.8d–f), both effects are
present, particularly for Tu ≈ 0.10%, and as a result there is a transition from decreased
to increased lift with increasing Rec in the range of 6° . α . 10°. Both of these effects
become notably less significant at higher levels of free-stream turbulence intensity. From
a comparison of Figs. 4.3 and 4.8, it is clear that increases in either Tu or Rec result in
similar changes to the mean surface pressure distributions. Moreover, the influence of
either parameter on the mean flow is reduced as the other is increased since both affect
the length of the separation bubble. In their investigation, O’Meara and Mueller [9] noted
the similarity of the effects of these two parameters on mean surface pressure distributions
which led them to describe the effect of increased Tu as being similar to an ‘effective’
Reynolds number increase. While the results of this investigation support this concept, it
will be shown in Section 4.4 that the underlying physics which lead to the observed changes
in mean bubble topology and sectional lift differ significantly depending on whether one
increases Tu or Rec.
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Figure 4.10: Effect of Reynolds number on mean separation bubble length.

4.4 Separated Shear Layer Transition
The results presented in Section 4.2 showed that the observed changes in mean bubble
topology at elevated Tu levels are related to an upstream shift in the location of mean
transition (e.g., Fig. 4.5). An analysis of the flutuating surface pressure measurements is
thus performed in order to characterize the development of shear layer disturbances, similar
to the methodology used in previous studies examining transition [136, 159, 163, 164]. A
more detailed discussion of the effects of Tu on the flow development within a laminar
separation bubble will be provided in Chapter 5, but the goal of this section is to highlight
the effects of free-stream turbulence intensity, angle of attack, and chord Reynolds number
on the separated shear layer transition characteristics.

Streamwise distributions of the root-mean-square (rms) of fluctuating surface pressures
over the suction side of the airfoil at Rec = 100 000 are shown in Fig. 4.11 for two levels of Tu
and several angles of attack. The results show that, following separation, there is a region of
amplification of the surface pressure fluctuations, followed by an apparent decrease in their
amplitude. The initial increase in the amplitude of the pressure fluctuations is reflective of
the amplification of velocity and pressure fluctuations in the separated shear layer [136],
while the subsequent decrease occurs downstream of mean reattachment in the developing
turbulent boundary layer and is largely due to the increasing distance from the fluctuations
to the microphones [136]. Indicated locations of mean transition, as determined from the
mean surface pressure distributions (i.e., Fig. 4.5), correspond well with the streamwise
location where significant amplification of surface pressure fluctuations is observed, with the
peak pressure fluctuations, p′max , typically occurring just downstream of mean transition.
The upstream shift in the streamwise location of p′max with increasing angle of attack is
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(a) Tu = 0.10%

(b) Tu = 0.24%

Figure 4.11: Distributions of the root-mean-square of fluctuating surface pressures at
Rec = 100 000. Thick lines and labels, coloured according to the legend, indicate the mean
transition locations as determined from mean surface pressure distributions.

therefore linked to the upstream shift in the locations of mean transition. Comparing the
results for the two levels of Tu presented in Fig. 4.11 shows that the pressure fluctuations
follow very similar behaviour at elevated Tu levels, indicating that a comparison of the rms
of fluctuating surface pressure distributions can provide insight into the effects of Tu on
the transition process.

Streamwise distributions of the rms of fluctuating surface pressures over the suction
side of the airfoil for increasing levels of Tu are presented in Fig. 4.12 for α = 4° and 8°,
representative of low and pre-stall angles of attack, respectively. As was shown in Fig. 4.11,
the surface pressure fluctuations in Fig. 4.12 generally attain maximum amplitudes just
downstream of the mean transition location, and the location of mean transition follows the
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Figure 4.12: Distributions of the root-mean-square of fluctuating surface pressures. Thick
lines, coloured according to the legend, indicate mean transition locations as determined
from the mean surface pressure distributions.
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upstream shift in the location of p′max with increasing Tu. On the average, the upstream
shift is also accompanied by a decrease in p′max , ascribed primarily to the reduction in
the magnitude of vertical velocity fluctuations in the separated shear layer, as shown by
Yarusevych and Kotsonis [24] to be a result of the increased influence of the wall. At low
angles of attack (Figs. 4.12a–c), the results show little-to-no amplification of the pressure
fluctuations in the range of 0.35 . X/c . 0.40 for the highest Tu level investigated. In
fact, from the surface pressure distributions (Fig. 4.3), a bubble can only be detected for
Rec = 100 000 (Fig. 4.12a). This finding then suggests that, for Rec = 100 000 and the
highest Tu level investigated, the bubble is so small in the wall normal direction that it
does not significantly influence the mean surface pressure distribution and the influence
of the wall strongly inhibits wall-normal velocity fluctuations. At the higher Reynolds
numbers, the results suggest that separation is suppressed (Fig. 4.5) and the transition
process is likely altered such that it is not associated with strong wall-normal fluctuations
(Figs. 4.12b and 4.12c). In agreement with earlier observations, the effect of Tu on the
fluctuating surface pressure distributions decreases with increasing Rec for both angles of
attack shown in Fig. 4.12. Comparing the results, it can be seen that both the upstream
shift and decrease in magnitude of p′max with increasing Tu are decreased at higher Rec as
both parameters shift transition upstream and decrease the size of the separation bubble
(Figs. 4.6 and 4.10).

The streamwise distributions of the rms of fluctuating surface pressures can also be
used to estimate spatial amplification factors of the separated shear layer disturbances as
σp′ = (∆ ln(p′/q0))/(∆X/c) [10, 136]. The maxima of these spatial amplification factors are
presented in Fig. 4.13 for each Reynolds number and all Tu levels investigated. For a given
Reynolds number and Tu level, maximum amplification factors increase with increasing
angle of attack, explaining the associated decrease in separation bubble length (Fig. 4.6),
and is consistent with the results of Boutilier and Yarusevych [10] in a low disturbance
environment. In contrast, for a given Reynolds number and angle of attack, the maximum
spatial amplification rate decreases with increasing Tu level, implying that the bubble
becomes more stable with increasing Tu. This is similar to the findings of Dovgal et al.
[50], who showed using analytical velocity profiles that the stability of separated shear
layers increases with decreasing distance to a wall. Decreased growth rates have also been
observed in separation bubbles with imposed mean flow deformations both experimentally
[24] and numerically [43]. The implication in the present investigation is that since the
bubble becomes more stable with increasing Tu, the upstream shift in the location of mean
transition with increasing Tu (Fig. 4.5) is solely the result of larger amplitudes of the initial
perturbations at elevated Tu levels.

The discussion in Section 4.3 showed that the effects of increasing chord Reynolds
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Figure 4.13: Maximum spatial amplification factors. Representative error bars are shown
for the baseline level of Tu.

number on mean surface pressure distributions and separation bubble topology are similar
to those of increasing Tu. Therefore, the effects of chord Reynolds number on the streamwise
distribution of the rms of fluctuating surface pressures are presented in Fig. 4.14 for the
same three levels of Tu discussed in Section 4.3 (i.e., Tu ≈ 0.10%, 0.25%, and 1.96%).
The results show that as the Reynolds number is increased, p′max shifts upstream and is
followed by the location of mean transition as determined from the mean surface pressure
distributions. The result is similar to the effects of increasing Tu presented in Fig. 4.12.
Further, in general, as the chord Reynolds number is increased the magnitude of p′max
is decreased with increasing Reynolds number, a result of the smaller separation bubble
(Fig. 4.10) having a damping effect on the velocity fluctuations [24]. The decreasing effect
of Rec on the separation bubble at higher Tu levels is evident by comparing Figs. 4.14d–f
where the same increase in Reynolds number has a diminishing effect on both the upstream
shift and magnitude of p′max as the Tu level is increased, showing further similarities between
these two parameters on separation bubbles.

The effects of Rec on maximum spatial amplification rates are shown in Fig. 4.15
for Tu ≈ 0.10%, 0.25%, and 1.96%. Here, for a given angle of attack and Tu level,
σp′,max increases with increasing Rec, a trend that has also been observed by Boutilier
and Yarusevych [10] in a low disturbance environment. This result is different than that
for increasing Tu levels (Fig. 4.6) where σp′,max was shown to decrease with increasing
Tu. Although the effects of increasing Rec and Tu have been shown thus far to be very
similar, this result highlights a key difference. While increasing either parameter at a given
angle of attack leads to a reduction in separation bubble length through the upstream
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Figure 4.14: Distributions of the root-mean-square of fluctuating surface pressures. Thick
lines, coloured according to the legend, indicate mean transition locations as determined
from the mean surface pressure distributions.
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Figure 4.15: Maximum spatial amplification factors. Representative error bars are shown
for a single angle of attack.

advancement of mean transition, increasing Rec achieves this by decreasing flow stability
(i.e.„ increasing amplification rates) while increasing Tu leads to a more stable bubble (i.e.„
decreased amplification rates) and achieves the upstream shift in mean transition through
an increase in the initial amplitude of perturbations supplied to the separated shear layer.
Therefore, although there is an ‘effective’ analogy between the two parameters with respect
to their influence on mean surface pressure distributions and separation bubble length [9],
the underlying separated shear layer transition characteristics differ significantly.

It is instructive to consider the effects of increasing Tu and Rec on the frequency content
of the separated shear layer disturbances. Spectra of the fluctuating surface pressure
measurements were computed using Welch’s method [155], with a resulting frequency
resolution of 2.4 Hz. Example spectra for all Tu levels investigated and for several streamwise
measurement locations are shown in Fig. 4.16 for α = 4° and 8° for Rec = 100 000 and
Rec = 150 000. All frequencies have been non-dimensionalized into a chord based Strouhal
number. In general, the spectra show that downstream of the approximate location of
mean separation, disturbances are amplified within a band of unstable frequencies, ∆St,
centered on some central frequency, St0. Downstream of mean transition, the energy content
is re-distributed to a broader range of frequencies, and the spectra downstream of mean
reattachment resemble those typical of a turbulent flow. As the level of Tu is increased, the
detectable band of unstable frequencies broadens. This is a result of the more significant
energy content present over a broader range of relevant frequencies in the free-stream at
the higher Tu levels (Fig. 3.3), which leads to earlier detectable amplitudes of fluctuations
over a broader range of frequencies in the separated shear layer. That is to say, no new
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(a) α = 4°

(b) α = 8°

Figure 4.16: Spectra of fluctuating surface pressures at Rec = 100 000. All spectra are
normalized by the total energy and stepped by an order of magnitude proportional to
their chordwise position. Red and blue spectra indicate the approximate locations of mean
separation and reattachment for each case, respectively.
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(c) α = 4°

(d) α = 8°

Figure 4.16 (cont.): Spectra of fluctuating surface pressures at Rec = 150 000. All spectra
are normalized by the total energy and stepped by an order of magnitude proportional to
their chordwise position. Red and blue spectra indicate the approximate locations of mean
separation and reattachment for each case, respectively.
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frequencies are introduced into the flow by the turbulence generating grids, but, due to
their higher initial amplitudes more frequencies grow to a detectable level in the separated
shear layer at the elevated levels of Tu.

The central disturbance frequencies, St0, were estimated for several of the cases investi-
gated in order to identify trends in the most unstable frequency of the separation bubble
with increasing Tu. Even for cases where a separation bubble could not be identified (i.e.,
Rec ≥ 150 000 and the highest level of Tu investigated) a distinct band of amplified fre-
quencies could still be identified and thus the central disturbance frequencies were recorded.
The results are summarized in Fig. 4.17. For a given Tu level, the central disturbance

Figure 4.17: Central disturbance frequencies.

frequency increases with increases in either angle of attack or chord Reynolds number,
consistent with the investigation of Boutilier and Yarusevych [10]. At low angles of attack
(α ≤ 4°), the central disturbance frequency does not change significantly for Tu . 0.60%
despite the large changes in mean bubble topology (Fig. 4.6), consistent with a lower
effect of mean flow deformation on the frequency of the most amplified perutrbations as
compared to the effect on growth rates as reported byYarusevych and Kotsonis [24] and
Marxen and Rist [43]. At pre-stall angles of attack, St0 initially decreases when Tu is
increased above the baseline level, but then increases at the higher Tu levels investigated.
These variations in the frequency of the most amplified disturbance increase with increasing
angle of attack. The initial decrease in St0 with increasing Tu is in line with the expected
moderate decrease with decreasing bubble size, as shown by Yarusevych and Kotsonis [24]
and Marxen and Rist [43] using linear stability calculations. However, the following increase
in the frequency of the most amplified disturbance for higher Tu levels (Tu & 0.50%) does
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not conform to the trend expected from linear stability considerations [24, 43], which hints
at possible changes in the nature of the transition process. In a simulation of separation
bubbles induced on a flat plate by an adverse pressure gradient at similarly high free-stream
turbulence intensities, McAuliffe and Yaras [16] observed streamwise oriented streaks in the
boundary layer upstream of the separation bubble. These streaks significantly altered the
bubble development downstream as well as the separated shear layer transition process, as
compared to the lower Tu level case they investigated. Similar streamwise oriented streaks
have also been observed in boundary layer transition over flat plates subjected to high
levels of free-stream turbulence intensity both experimentally [92, 94, 95] and numerically
[87–90]. Evidence of these streamwise streaks is indeed observed at the highest level of Tu
investigated here, and will be shown in the following chapter.
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Chapter 5

Free-stream Turbulence Intensity
Effects on Separation Bubble Flow
Development

The objective of this chapter is to examine the effects of free-stream turbulence intensity
on the spatio-temporal flow development within a laminar separation bubble. While the
previous chapter presented trends in transition characteristics with increasing Reynolds
number, angle of attack, and free-stream turbulence intensity, the present chapter presents
a more detailed description of the transition process in a separation bubble formed over
the suction side of the same NACA 0018 airfoil model. Particle Image Velocimetry
(PIV) is employed in two configurations in order to assess the streamwise and spanwise
flow development for an angle of attack of 4°, chord Reynolds numbers of 80 000 and
125 000, and free-stream turbulence intensities between 0.10% and 1.94%. Mean surface
pressure distributions and time-averaged PIV fields are used to assess changes in mean
bubble topology (Section 5.1), while time-resolved PIV measurements are used to describe
separation bubble dynamics in the streamwise (Section 5.2) and spanwise (Section 5.3)
directions.

5.1 Mean Bubble Topology
Although the effects of free-stream turbulence intensity on mean bubble topology were
discussed in Chapter 4, it is worthwhile to compare mean bubble topology as measured
using Particle Image Velocimetry (PIV) to that as determined from mean surface pressure
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distributions. PIV offers a direct measurement of the separation bubble, while estimates
from mean surface pressure distributions are an indirect method, though both methods
have their own associated challenges and uncertainties. Mean surface pressure distributions
for both Reynolds numbers and all levels of Tu investigated are shown in Fig. 5.1. It should
be noted that these pressure distributions have been transformed into the surface attached
coordinate system (see Fig. 3.6a) in order to be readily compared to the following PIV
results. As discussed in the previous chapter, the presence of a separation bubble on the

(a) Rec = 80 000 (b) Rec = 125 000

Figure 5.1: Mean surface pressure distributions for α = 4°. Data points corresponding to
the location of the pressure side boundary layer trip have been removed.

suction side is characterized by a pressure plateau downstream of the suction peak, with
bubbles identifiable in the range of 0.3 . x/c . 0.7 for both Reynolds numbers presented
in Fig. 5.1. Following the same method used in the previous chapter (i.e., Fig. 4.4), the
locations of mean separation, transition, and reattachment were determined for all cases
investigated and are summarized in Table 5.1. For Rec = 125 000 and the highest level
of Tu investigated, a separation bubble could not be identified from the surface pressure
distributions. Since the level of Tu varies slightly across the investigated chord Reynolds
numbers, the averaged value for a given turbulence generating grid is used to compare
the results. The results for a given chord Reynolds number show that while there is no
significant influence of Tu on the mean separation location, both the mean transition and
reattachment locations shift upstream with increasing Tu, resulting in shorter separation
bubble lengths, consistent with the results presented in the previous chapter. Further,
comparing the results for a given level of turbulence intensity, the bubble shifts upstream
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Table 5.1: Summary of mean bubble topology as determined from mean surface pressure
distributions.

Rec = 80 000 Rec = 125 000
Tu [%] xS/c

1 xT/c
1 xR/c

1 `/c2 xS/c
1 xT/c

1 xR/c
1 `/c2

≈ 0.11 0.32 0.57 0.64 0.32 0.31 0.54 0.62 0.31
≈ 0.24 0.32 0.50 0.60 0.28 0.31 0.47 0.57 0.26
≈ 0.52 0.32 0.47 0.59 0.27 0.31 0.46 0.54 0.23
≈ 1.93 0.30 0.42 0.55 0.25 - - - -

1 Uncertainty is ±0.02
2 Uncertainty is ±0.03

slightly and decreases in length with increasing chord Reynolds number, consistent with
the previous chapter and previous investigations [10]. Since the investigated angle of attack
is relatively low and the bubble forms over the aft portion of the airfoil, the decrease in
separation bubble length with increasing Tu has no notable effect on the magnitude of the
suction peak (Fig. 5.1).

In order to determine mean bubble topology from the PIV measurements, contours of
mean streamwise velocity, as measured with the low-speed system, are presented in Fig. 5.2
for both Reynolds numbers and all turbulence intensity cases investigated. The vector fields
have been transformed into the surface attached coordinate system as defined in Fig. 3.6a.
At the baseline Tu level and both chord Reynolds numbers investigated, the results show a
relatively large, elongated region of reverse flow adjacent to the airfoil surface, identifying
the presence of a separation bubble. The thick black line traces the contour of zero mean
velocity, outlining the time-averaged structure of the separation bubble. The upstream and
downstream intersections of this line with the airfoil surface represent the locations of mean
separation and reattachment, as shown by the square and diamond markers, respectively. At
Rec = 80 000 (Fig. 5.2a), as the level of Tu is increased the length of the separation bubble
is decreased, resulting from a downstream shift in the location of mean separation and an
upstream shift in mean reattachment. At the highest level of Tu investigated, a reverse flow
region can no longer be resolved. However, the topology of the mean streamwise velocity
contours is similar to that presented at the lower Tu levels, and thus suggests that a small
separation bubble is still present. For all elevated levels of Tu at Rec = 125 000 (Fig. 5.2b),
a reverse flow region indicative of a separation bubble cannot be resolved. However, for
these cases the topology of the velocity contours again suggest that a small separation
bubble may still be present, and is supported by the estimation of a separation bubble

67



Figure 5.2: Contours of mean streamwise velocity for all levels of Tu investigated.

for Tu = 0.25% and 0.53% using the mean surface pressure distributions (Fig. 5.1b). A
discussion of integral boundary layer parameters later in this section will provide further
evidence of a separation bubble for the cases where a reverse flow region is not resolved.

Determining the location of mean transition from PIV measurements is not as clear
as determining the locations of mean separation and reattachment, as there have been
a couple of methods proposed in the literature. Some investigators cite the location of
mean transition to be the streamwise location at which the Reynolds stress reaches 0.001U2

0
[31–33], while others use the location at which velocity fluctuation growth deviates from an
exponential trend [47]. An additional definition, which is utilized in the present investigation,
is to cite the location of mean transition as the streamwise location at which the boundary
layer displacement thickness reaches a maximum [15]. This location is shown by the
triangular markers in Fig. 5.2 for cases where a reverse flow region is identified, though it
can also be determined for cases for which a reverse flow region is not identified, and will
be discussed later. Similarly to the results presented in the previous chapter, and those
in Table 5.1 based on estimates from mean surface pressure distributions, the location of
mean transition shifts upstream with increasing Tu (Fig. 5.2a), leading to the upstream
shift in mean reattachment. A summary of mean bubble topology as determined from the

68



PIV measurements is provided in Table 5.2. The results show that for cases where a reverse
flow region is not identified in the mean fields (Fig. 5.2), the location of mean transition
continues to shift upstream with increasing Tu, highlighting its importance to the flow over
the suction side of the airfoil.

Table 5.2: Summary of mean bubble topology as determined from the low-speed PIV
measurements.

Tu [%] xS/c xT/c xR/c `/c

Rec = 80 000

0.11 0.33± 0.09 0.55± 0.01 0.62± 0.01 0.31± 0.1
0.22 0.38± 0.09 0.49± 0.01 0.53± 0.02 0.15± 0.1
0.50 0.42± 0.1 0.48± 0.01 0.51± 0.02 0.09± 0.1
1.92 - 0.41± 0.01 - -

Rec = 125 000

0.10 0.31± 0.07 0.50± 0.01 0.55± 0.01 0.24± 0.07
0.25 - 0.44± 0.01 - -
0.53 - 0.40± 0.01 - -
1.94 - 0.35± 0.01 - -

A comparison of mean bubble topology as determined from estimates using mean surface
pressure distributions as well as PIV measurements is shown in Fig. 5.3 for Rec = 80 000.
Since a separation bubble is only resolved at the baseline Tu level at Rec = 125 000
using the PIV measurements, the present discussion is focused solely on the results for
Rec = 80 000. The results in Fig. 5.3a show that at the baseline Tu level, the estimates of
mean bubble topology as determined from the mean surface pressure distributions and PIV
measurements are in good agreement, resulting in similar estimates of separation bubble
length (Fig. 5.3b). As the level of Tu is increased, the agreement of mean bubble topology as
determined from each measurement technique deteriorates. For example, when the level of
free-stream turbulence intensity is increased from the baseline level to Tu = 0.50%, the PIV
measurements show a downstream shift of 0.09c in the location mean separation, whereas
the estimates of mean separation from the surface pressure distributions show no measurable
effect on the location of mean separation. Both methods predict an upstream shift in the
location of mean reattachment for the same increase in Tu, but the PIV measurements
estimate an upstream shift of 0.11c, while the surface pressure measurements estimate
an upstream shift of 0.05c. In all, the agreement of mean separation and reattachment
locations is within 6% of the estimated bubble length (0.02c) at the baseline Tu level,
whereas at Tu = 0.50% differences of up to the bubble length (i.e., the length predicted by
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(a) Mean separation bubble topology (b) Mean separation bubble length

Figure 5.3: Summary of mean bubble topology. Open symbols correspond to results
obtained from PIV measurements while filled symbols correspond to results from the mean
surface pressure distributions.

the PIV measurements) are observed.
The relatively smaller changes in mean separation and reattachment determined using

estimates based on the surface pressure distributions as compared to the PIV measurements
result in notable larger estimates of bubble length, as shown in Fig. 5.3b. These differences
are to be expected as the uncertainty in each of the estimation methods of bubble topology
increases as the level of Tu is increased and the bubble size decreases. On the other
hand, the locations of mean transition as determined using each method remain in good
agreement for all levels of Tu investigated. This is a result of the well defined location of
mean transition in the mean surface pressure distributions (Fig. 5.1) and that the estimate
from the PIV measurements is based on an integral boundary layer parameter, namely the
streamwise location of the maximum displacement thickness.

As the level of Tu is increased, the separation bubble size decreases, as shown by
both methods in Fig. 5.3b. This decrease in bubble size poses two significant challenges
in estimating mean separation bubble topology using either PIV measurements or mean
surface pressure distributions. First, the decrease in bubble size with the fixed spatial
resolutions of the two methods (velocity vectors in the PIV measurements and the number
of pressure taps for the pressure based estimates) means that fewer measurements will
be within the separation bubble, thus increasing uncertainty in determining mean bubble
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topology. Second, the decrease in bubble size is accompanied by a decreased effect on the
mean surface pressure distribution (Fig. 5.1), as well as lower reverse flow velocities within
the separation bubble, and thus measurement uncertainty has an increasing effect on the
determination of mean bubble topology as the bubble length decreases. The uncertainty in
the surface pressure based estimates is particularly affected by the decrease in the effect of
the bubble on the mean surface pressure distribution. Since the method of determining mean
bubble topology relies on finding the intersections of the lines used to estimate the pressure
distribution around the location of the pressure plateau, as the bubble size decreases with
increasing Tu and the slopes of the lines become more similar, their intersection locations
become less defined. In fact, it is this issue which prevents a bubble from being detected at
the highest Tu level for Rec = 125 000 (Fig. 5.1b). The uncertainty in the PIV estimate
of separation is relatively large since the reverse flow velocities near separation are small,
and thus the estimate of the zero velocity contour is significantly impacted by the PIV
uncertainty. Additionally, the wall-normal resolution of the measurements results in fewer
vectors falling within the separation bubble, thus posing a challenge in estimating the zero
velocity contour. Both of these issues are discussed by Olson et al. [34], who attempt to
determine the mean separation location of a separation bubble formed over an airfoil using
molecular tagging velocimetry. At reattachment, both issues are still present but the reverse
flow velocities are generally much greater and the bubble thicker, so the uncertainty in the
estimate of mean reattachment is smaller as compared to that of mean separation.

A comparison of mean bubble topology using the two methods discussed here is also
shown by Kurelek and Yarusevych [166]. In their investigation, acoustic excitation was used
to excite a separation bubble formed over the same airfoil used in the present investigation,
resulting in a decrease in separation bubble size. The authors noted that the decrease
in bubble size was a result of a downstream shift in mean separation and an upstream
shift in mean reattachment, similar to the results presented here. Similarly to the present
results, Kurelek and Yarusevych [166] noted that these shifts were much more significant
when estimated using the zero velocity contour line measured using PIV as compared
to that estimated from mean surface pressure distributions. In fact, no change in the
separation location could be detected in their investigation with the mean surface pressure
distributions, despite a downstream shift in mean separation of about 0.03c measured with
the PIV estimates. This is similar to the downstream shift in mean separation measured
here using PIV at Rec = 80 000 when Tu is increased from 0.11% to 0.22% (Table 5.2) with
no change noted in the estimates from the mean surface pressure distributions (Table 5.1).
Since the PIV results provide a direct measurement of mean bubble topology and are
related to the results which will be presented throughout the remainder of this chapter, the
estimates of the mean bubble topology from the PIV measurements will be used herein.
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In the discussion of Fig. 5.2, it was suggested that a bubble forms for the highest level
of Tu at Rec = 80 000, and for Tu ≥ 0.25% at Rec = 125 000, despite no reverse flow region
being resolved in the PIV measurements. To provide some quantitative evidence of the
formation of a separation bubble, an analysis of integral boundary layer parameters is
performed, with the displacement thickness, δ∗, momentum thickness, θ, and shape factor,
H, shown in Fig. 5.4, for both chord Reynolds numbers investigated. At the baseline Tu

Figure 5.4: Boundary layer parameters. Dashed lines indicate uncertainty bounds for the
baseline Tu level.

level for both Reynolds numbers investigated, the displacement thickness increases within
0.29 . x/c . 0.55 (i.e., the fore portion of the separation bubble as shown in Fig. 5.2a),
reaches a peak, and subsequently decreases. The initial increase is the result of the increasing
wall-normal extent of the separated region, while the subsequent decrease occurs due to
the redirection of the mean flow towards the wall as a result of the laminar-to-turbulent
transition process in the separated shear layer. The streamwise location of the peaks in
the displacement thickness, previously used in identifying the locations of mean transition
(Fig. 5.2), are shown by the arrowheads.
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The streamwise locaion of the peak in δ∗ coincides with the streamwise location at which
the momentum thickness begins to grow more rapidly, and thus with the peak in shape
factor which is the ratio of the two parameters (i.e., H = δ∗/θ). The rapid increase in the
momentum thickness indicates a rapid rise in skin friction in the aft portion and downstream
of the separation bubble, and is evidenced by the large wall-normal gradients in mean
streamwise velocity downstream of the separation bubble location (Fig. 5.2). As the level
of free-stream turbulence intensity is increased, the streamwise location of the peak in the
displacement thickness and shape factor shifts upstream, and decreases in magnitude. The
upstream shift was seen previously as the peaks in δ∗ were used to determine the locations
of mean transition (Fig. 5.2), while the decrease in the magnitude of these variables is the
result of the decreased vertical vertical extent of the separation bubble with increasing
Tu (Fig. 5.2). For all cases examined, the shape factor at the most upstream location is
approximately H = 3, similar to the value of 2.59 expected for a laminar flat-plate boundary
layer [65], implying that the flow upstream of separation is in a laminar state. As the flow
undergoes transition to turbulence, a turbulent boundary layer develops and is evidenced
by the asymptotic levelling of the shape factor towards a value of 1.6 for all cases examined,
similar to the range of 1.3-1.4 expected for a turbulent flat-plate boundary layer [65].

The similarity of the trends across all Tu levels at Rec = 80 000 suggests that a separation
bubble does form over the suction side of the airfoil for Tu = 1.92%. At Rec = 125 000, the
conclusion for the highest level of Tu investigated is less clear. While there is a discernible
peak in the displacement thickness, it is much less distinct than at the lower levels of Tu or
even at the highest level of Tu for the lower Reynolds number investigated. Further, the
momentum thickness increases at an elevated rate (as compared to the other Tu levels)
from the most upstream location of the PIV measurements, which results in no discernible
peak in the shape factor, as the shape factor decreases within the entire measurement region
for this flow condition. The conclusion then is that transition certainly occurs for these flow
conditions, as indicated by the shape factor transitioning between values expected for a
laminar and turbulent boundary layer, and that a small separation bubble is likely forming.
However, the formed separation bubble is so small as to be almost inconsequential to the
mean surface pressure distribution (Fig. 5.1b), and the results in Sections 5.2 and 5.3 will
show that the dynamics of the transition process have been altered significantly for these
flow conditions.

It is of interest to note that the streamwise location of mean transition at Rec = 80 000
seems to exhibit an exponential relation with Tu, as can be seen from the semi-log plot
in Fig. 5.3a. Further, for the PIV results, similar relations also seem to hold for the
locations of mean separation and reattachment, a finding which has also been oberved
in earlier studies [24, 44]. By applying controlled disturbances to a laminar separation
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bubble, Yarusevych and Kotsonis [24] and Marxen and Henningson [44] showed that the
resulting mean bubble deformation tended to follow an exponential relation with increasing
amplitude of disturbances. However, if such relations were to hold for the mean separation
and reattachment locations in the present investigation, and hence the separation bubble
length, the PIV results show that no separation bubble would form for Tu & 1%. At the same
time, the discussion of the boundary layer parameters put forth clear evidence of a separation
bubble forming for Rec = 80 000 and Tu = 1.92%. If applied to the locations of mean
separation and reattachment as determined from the mean surface pressure distributions,
the relations suggest the formation of separation bubbles at unreasonably large levels of
Tu, likely a result of the method not being sensitive enough to changes in the relatively
small separation bubbles at the higher Tu levels (Fig. 5.3a). These observations suggest
that, while the exponential dependence of mean transition on Tu seems to hold over the
entire range of Tu investigated here, such a trend does not hold for the separation and/or
reattachment locations at higher levels of free-stream turbulence intensity. It is speculated
from the results presented in Fig. 5.3a that the actual downstream shift in the location of
mean separation with increasing Tu should be smaller than that which is determined from
the PIV measurements.

Reviewing relevant work in the literature seems to support this speculation. In other
experimental studies performed over an airfoil, a downstream shift in the location of mean
separation is observed with increasing Tu [31, 33, 34] but the shift is generally much less
significant than shown here. Specifically, using molecular tagging velocimetry with a
higher resolution in determining the location of mean separation, Olson et al. [34] note a
downstream shift in the location of mean separation of 3% of the chord for a 0.6% increase
in Tu as compared to a downstream shift of approximately 9% of the chord length observed
in the present investigation when Tu is increased from 0.11% to 0.50%. Interestingly, in
both numerical [16] and experimental [37, 38] studies of separation bubbles formed over
a flat plate and subjected to increasing levels of Tu, little-to-no variation in the location
of mean separation is observed. This result is highlighted in the work of Lardeau et al.
[37] who simulated a separation bubble both on a flat plate with an imposed adverse
pressure gradient as well as a compressor blade and subjected both to elevated levels of
Tu. The authors only noted a downstream shift in mean separation over the compressor
blade whereas the location of mean separation over the flat plate remained constant with
the increase in Tu. The indication here is that the downstream shift in the location of
mean separation with increasing Tu may have some dependence on the global pressure
distribution around the airfoil which is eliminated in flat plate studies.
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5.2 Streamwise Flow Development
The results presented in the previous section supported the findings of the previous chapter,
showing that the reduction in separation bubble length with increasing Tu is largely due
to an upstream shift in the location of mean transition, which leads to an upstream shift
in mean reattachment. The current section examines the streamwise flow development
within the separation bubble, with the aim of describing the effects of increasing Tu on
separation bubble flow dynamics, as well as the transition process within the separated
shear layer. Results will be presented from both the low-speed and high-speed PIV systems
in the surface attached coordinate system defined in Fig. 3.6a.

The effects of Tu on the flow development within a laminar separation bubble are first
examined via time-averaged statistics of the velocity fluctuations as measured with the
low-speed PIV system, shown in Fig. 5.5. At the baseline Tu level and both Reynolds
numbers investigated, the contours of u′ show three distinct peaks (Figs. 5.5a and 5.5b),
consistent with previous investigations of transition over an airfoil at low Reynolds numbers
in a low disturbance environment [15]. The location of the middle peak agrees well with
the wall-normal location of the displacement thickness, which is also approximately the
wall-normal location of the core of the separated shear layer. The outer peak agrees well
with the boundary layer thickness, while the inner peak remains within the height of
the separation bubble, consistent with the discussion presented by Dovgal et al. [50]. In
contrast, the contours of v′ exhibit only a single peak near the wall-normal location of the
displacement thickness, which is associated with the shear layer roll-up vortices [18, 31].
The same topology persists in both the u′ and v′ contours when the level of Tu is increased
to the first two elevated levels investigated (i.e., Tu ≤ 0.50%) at Rec = 80 000, and for the
first elevated Tu level (i.e., Tu = 0.25%) for Rec = 125 000.

At the highest level of Tu investigated, the topology of the u′ contours in Fig. 5.5 is
altered significantly for both Reynolds numbers investigated. For these flow conditions,
there are significant velocity fluctuations at the most upstream location of the PIV field-of-
view. The implication is that there are significant velocity fluctuations in the streamwise
direction present in the boundary layer upstream of the PIV field-of-view, and therefore
upstream of the location at which a separation bubble likely forms for these flow conditions.
These contours are similar to the contours of uu presented by McAuliffe and Yaras [16] who
modeled a separation bubble induced on a flat plate at levels of Tu comparable to the highest
level investigated here. The authors linked the large fluctuations to streamwise oriented
streaks originating in the boundary layer upstream of the separation bubble. The formation
of these streaks will be discussed again later in this section as well as in Section 5.3.

For a given Reynolds number, the results in Fig. 5.5 show that both u′ and v′ generally

75



Figure 5.5: Contours of the root-mean-square of (a),(b) streamwise and (c),(d) wall-normal
velocity fluctuations. Dashed lines indicate the boundary layer displacement thickness while
the dotted and dotted-dashed lines indicate the momentum thickness and boundary layer
thickness, respectively.
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Figure 5.5 (cont.): Contours of Reynolds shear stress.

reach higher amplitudes earlier upstream with increasing Tu. This is best seen by locating
the upstream extent of the green coloured contour (i.e., the fourth contour level representing
0.12 ≤ u′/U0 ≤ 0.15) as this location is generally reflective of the location of mean flow
transition (cf. Fig. 5.4). By comparing these locations with increasing Tu, it can be seen
that this contour level shifts upstream, thus the larger velocity fluctuations attained earlier
upstream ultimately lead to the upstream shift in the location of mean transition (Fig. 5.4).
For both Reynolds numbers, the maximum amplitude attained in v′ generally decreases as
the level of Tu is increased (Figs. 5.5c and 5.5d). This is consistent with the findings of
Yarusevych and Kotsonis [24] who attribute decreased wall-normal velocity fluctuations in
smaller separation bubbles to the increasing influence of the wall. This result is also in good
agreement with the decrease in p′max with increasing Tu observed in the previous chapter.

Contours of the Reynolds stress are shown in Figs. 5.5e and 5.5f. Since the wall-normal
gradient in U is positive (Fig. 5.2), the contours of negative Reynolds stress give a measure
of the transport of streamwise momentum towards the surface of the airfoil. That is to
say, since ∂U/∂y > 0, a fluid element at a given point with a negative v′ fluctuation will be
associated with a positive u′ fluctuation as it is moving to a region of lower U . Similarly,
if that fluid element has a positive v′ fluctuation, it will be associated with a negative u′
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fluctuation as it is moving to a region of higher U . In both cases, when time-averaged,
u′v′ < 0 and this quantity represents high-momentum fluid being transported towards
the wall (or low-momentum fluid away from the wall). At Rec = 80 000 and the baseline
Tu level, the contours of Reynolds stress show significant amplitudes beginning around
the location of mean transition (xT/c = 0.55) and attaining maximum amplitudes just
downstream of mean reattachment (xR/c = 0.62). Similar results have been reported
in previous investigations [31], and the location of the onset of significant growth of the
Reynolds stress as well as the location of the maxima correspond well with the locations
of shear layer roll-up and breakdown, respectively. In addition, it is the transport of high
momentum fluid towards the airfoil surface induced by the shear layer rollers that has
been shown to lead to mean flow reattachment [18]. As the level of Tu is increased, the
streamwise location of the onset of the increase in the amplitude of the Reynolds stress
shifts upstream, consistent with the locations of mean transition (Fig. 5.2).

At Rec = 125 000, a similar behaviour of the Reynolds stress amplitudes is observed
(Fig. 5.5f), with generally lower maximum amplitudes observed at the higher chord Reynolds
number for a given level of Tu. As the maximum wall-normal velocity fluctuation amplitudes
decrease with increasing either Tu or Rec (Figs. 5.5c and 5.5d), so do the maximum
amplitudes of the Reynolds stress (Figs. 5.5e and 5.5f). At Rec = 125 000 and Tu =
1.94%, the contours of Reynolds stress show very small amplitudes across most of the
PIV measurement field-of-view, thus indicating that there is very little transport of high
streamwise momentum towards the wall. These contours however support the assertion
discussed above that a very small separation bubble forms as there is a transport of higher
momentum fluid towards the wall, but the small amplitudes suggest that the bubble is very
small.

It is of interest to note that, at the baseline Tu level and the lower chord Reynolds
number investigated, the contours of u′ (Fig. 5.5a) show the presence of small-amplitude
fluctuations in the fore portion of the separation bubble which are not seen in v′. Similar
results have been noted by previous investigators and are attributed to bubble ‘flapping’
[30, 32, 48, 133], which is an unsteady up-and-down motion of the separated shear layer.
Since the wall-normal gradient in U is large, the small up-and-down motion of the shear
layer results in significant temporal variations in U at a given wall-normal location. It is
this temporal variation that produces the elevated levels of u′ in the fore portion of the
separation bubble (Fig. 5.5a). The up-and-down motion is characterized by frequencies
significantly lower than those of the dominant disturbances in the separated shear layer, and
are also significantly less energetic than the shear layer rollers [30, 133]. This was made clear
by Lengani and Simoni [133] who showed that a flow reconstuction using the first two modes
of a Proper Orthogonal Decomposition (POD) could not account for the observed bubble
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flapping, as the first two modes described the shear layer rollers and thus the flapping must
be described by a lower energy mode. When either Tu or Rec are increased, bubble flapping
appears to be suppressed (Figs. 5.5a and 5.5b), supporting previous reports that flapping is
confined primarily to low Reynolds number flows with very low disturbance environments
[32, 50, 133]. In low disturbance environments, flapping may also be suppressed via artificial
forcing of the boundary layer upstream of separation with small amplitude disturbances
[47].

To quantify the amplification of disturbances in the separated shear layer, the values
of u′ and v′ along the boundary layer displacement thickness, i.e., the dashed black line
in Figs. 5.5a–d, are plotted in Fig. 5.6 for both Reynolds numbers and all levels of Tu
investigated. The results show that there is significant amplification of both velocity
components within the separation bubble, followed by the saturation of their growth
downstream of the mean transition location (denoted by the arrow heads in Fig. 5.6). In
general, larger amplitudes of fluctuations are detected earlier upstream as Tu is increased,
leading to the upstream shift in mean transition. The saturation level of velocity fluctuations
in the wall-normal direction decreases with increasing Tu (Figs. 5.6b and 5.6d), a result
which is observed in Figs. 5.5c and 5.5d and consistent with the findings of Yarusevych
and Kotsonis [24]. On the other hand, the streamwise fluctuations do not exhibit the same
behaviour, and saturate at similar amplitudes for all levels of Tu investiated for a given
Reynolds number. These findings are consistent with those of Simoni et al. [38] who note
a decrease in the saturation amplitude of wall-normal velocity fluctuations in separation
bubbles induced on a flat plate with increasing Tu level, while the saturation amplitude of
the streamwise fluctuations remains relatively constant.

Spatial amplification factors can be computed from the velocity fluctuations, similar
to those calculated using p′ in the previous chapter. Here, spatial amplification factors
are computed using both the streamwise and wall-normal velocity fluctuations as σu′ =
(∆ ln(u′/U0))/(∆x/c) and σv′ = (∆ ln(v′/U0))/(∆x/c), respectively. In general, the most
significant amplification of velocity fluctuations occurs just upstream of mean transition,
as shown by the data points used to compute the maximum of these amplification factors
in Fig. 5.6. The results are summarized in Table 5.3 for all cases investigated. For
a given Reynolds number, maximum spatial amplification factors of both components
of velocity generally decrease with increasing Tu, in good agreement with the spatial
amplification factors presented in the previous chapter based on fluctuating surface pressure
measurements (Fig. 4.13). As was discussed earlier, this result indicates that the sole reason
for the upstream shift in the location of mean transition with increasing Tu is due to the
larger initial amplitudes of perturbations present at the elevated Tu levels. The observed
increase in bubble stability with decreasing bubble size is consistent with the findings of
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Figure 5.6: Root-mean-square of (a),(c) streamwise and (b),(d) wall-normal velocity
fluctuations along the boundary layer displacement thickness. Arrow heads, coloured
according to the legend, indicate the locations of mean transition. Dashed black lines
represent the uncertainty interval for the baseline turbulence intensity case. Dotted dashed
lines and makers in (b),(d) represent the data points used to compute the maximum of
sigma.
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Yarusevych and Kotsonis [24], who used plasma actuators to excite a separation bubble and
observed a decrease of approximately 40% in the maximum disturbance growth rate when
the separation bubble length was approximately halved. This compares favourably with the
decrease in σv′,max of approximately 30% in the present study at Rec = 80 000 when Tu is
increased from 0.11% to 0.50% and the bubble length is approximately halved (Fig. 5.3b).
In an experimental investigation of separation bubbles induced on a flat plate, Simoni et al.
[38] found that increasing levels of Tu had little-to-no influence on the spatial growth rate
of v′. While this finding is in contrast to the observed decrease in the present investigation,
the authors make the same conclusion made here that the upstream shift in mean transition
must be solely the result of the larger initial amplitude of disturbances at elevated Tu levels.
Simoni et al. [38] suggest that the spatial amplification rate is only significantly affected
when the displacement thickness at separation is altered, for which Tu has no effect in their
investigation. This result uncovers a dfference between the present investigation and those
performed over a flat plate with an imposed adverse presure gradient, as the displacement
thickness in the fore portion of the separation bubble does indeed change with increasing Tu
(Fig. 5.4). As discussed at the end of the last section, flat plate studies appear to ‘fix’ the
separation location which limits the effects of Tu on the upstream portion of the separation
bubble, whereas in the present investigation a downstream shift in the location of mean
separation is observed with increasing Tu (Fig. 5.2). Therefore, the mean deformation of
the fore portion of the separation bubble leads to a decrease in the spatial amplifcation
factors for a given Reynolds number, consistent with previous investigations [23, 43], which
is not observed in the flat plate study of Simoni et al. [38] where the fore portion of the

Table 5.3: Summary of wall-normal velocity fluctuation characteristics. Uncertainty
intervals for each parameter are summarized in Appendix A.

Reynolds number Tu [%] σu′,max σv′,max σp′,max St0 ∆St Uc/Ue|s λx

80 000

0.11 20.6 28.1 26.6 11.2 8.1 0.46 0.057
0.22 17.8 18.7 22.8 11.2 12.4 0.46 0.056
0.50 19.2 18.9 10.5 11.2 16.2 0.49 0.060
1.92 7.4 16.6 9.7 12 17.3 0.56 0.065

125 000

0.10 26.1 22.8 36.1 15.5 10.3 0.44 0.039
0.25 20.5 20.9 27.1 14.5 12.7 0.48 0.046
0.53 20.4 20.1 17.6 14.5 16.4 0.49 0.047
1.94 10.7 17.9 12 16.21 20.41 0.55 0.047

1 Estimated from fluctuating surface pressure measurements
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bubble is unaffected by increasing Tu.
The results in Table 5.3 show that by increasing the chord Reynolds numbers, larger

spatial amplification rates are generally measured for a given level of Tu, implying a
decrease in bubble stability with increasing Reynolds number, consistent with previous
investigations [10, 38]. However, at the baseline Tu level, the spatial amplification rate of the
wall-normal velocity fluctuations actually decreases with the increase in Reynolds number.
By comparing Fig. 5.6b with Fig. 5.6d, it can be seen that at the lower chord Reynolds
number the wall-normal velocity fluctuations attain notably higher maximum amplitudes.
This is expected behaviour as the bubble size is larger [24], but it is speculated that since the
spatial resolution of the PIV measurements is limited, the amplification factor at the baseline
level of Tu for Rec = 80 000 may be skewed to a higher value. The amplification factors
computed from the streamwise velocity fluctuations do in fact increase with increasing
Reynolds number for all Tu levels investigated, in line with previous investigations [15, 38].

Further support for the increase in spatial amplification rates with increasing chord
Reynolds number is provided by analyzing distributions of the fluctuating surface pressure
measurements. Distributions of p′ for the baseline level of Tu are shown for both Reynolds
numbers in Fig. 5.7. Here, it is clear that the location of p′max shifts upstream with the
increase in Rec, and in turn results in an upstream shift of mean transition, as expected.
More importantly for this discussion, σp′,max increases from 26.6 to 36.1 with the increase
in Rec, though the estimates are based on two points and the corresponding uncertainty is
relatively high. A summary of σp′,max for all investigated Tu levels is shown in Table 5.3, and
the value increases with increasing Rec for all levels of Tu investigated, while it decreases
with increasing Tu for a given Reynolds number. Therefore, in combination with the other
two spatial amplification factors presented, it is clear that bubble stability indeed increases
with increasing Tu but decreases with increasing Rec for all flow conditions investigated.

By employing the time-resolved PIV system, insight into the dynamics within the
separation bubble with increasing Tu levels may be gained. In order to ensure the same
separation bubble was being studied after the PIV systems were changed, the mean fields
as measured with both systems were compared and show good agreement to within the
experimental uncertainty. Spectra of the wall-normal velocity fluctuations, sampled along
the displacement thickness, are presented in Fig. 5.8 using a non-dimensional frequency,
St, based on the airfoil chord length. Spectra for all Tu levels and both Reynolds numbers
investigated are normalized by a common reference value in order to easily compare the
distributions of energy. Since the magnification factor was varied between the different
Tu levels for Rec = 80 000, the PIV fields-of-view differ slightly and as such, for regions
where no measurements were taken, hatching is used so that the results may be presented
over the same extent of the streamwise coordinate. At the baseline Tu level for both chord
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Figure 5.7: Streamwise distribution of the root-mean-square of fluctuating surface pressu-
res at the baseline level of Tu.

Reynolds numbers, the spectra reveal streamwise amplification of disturbances within a
band of unstable Strouhal numbers, ∆St, centered on some central Strouhal number, St0.
Downstream of the location of mean transition, the energy content within the amplified
band of frequencies is redistributed over a wider range of frequencies, indicating the later
stages of transition where the shear layer rollers begin to breakup. The results show a similar
trend when the Tu level is increased. A summary of ∆St and St0 is provided is Table 5.3 for
all cases investigated. At Rec = 125 000 and the highest Tu level investigated, the spectral
energy is spread over such a broad range that no central frequency nor unstable band
can be identified from the PIV results (Fig. 5.8b). However, an analysis of spectra of the
fluctuating surface pressures revealed clearer results, as the most significant amplification
occured just upstream of the PIV field-of-view (at approximately x/c = 0.28) and these
values are summarized in Table 5.3. A comparison of the spectra computed using the
fluctuating surface pressures and wall-normal velocites was conducted for the other flow
conditions investigated and the results were in good agreement.

At Rec = 80 000, the central Strouhal number does not change appreciably with
increasing Tu, however, the width of the detectable band of frequencies increases with
increasing Tu. This increase in ∆St is attributed to the increase in energy over a broader
range of frequnecies in the free-stream with increasing Tu (Fig. 3.3), leading to velocity
fluctuations reaching detectable levels earlier upstream in the separated shear layer. This
was also observed over a much larger range of flow conditions in the previous chapter using
fluctuating surface pressure measurements. The relatively small changes in the separation
bubble central frequency, despite significant mean bubble deformation, is consistent with the
results of Yarusevych and Kotsonis [24] who induced a mean bubble deformation by exciting
a separation bubble with controlled disturbances. Small changes to the central disturbance
frequnecy of a separation bubble despite significant mean changes due to increasing Tu levels
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Figure 5.8: Spectra of wall-normal velocity fluctuations along the boundary layer displa-
cement thickness. The dashed line corresponds to the central disturbance Strouhal number
while the dotted-dashed lines indicate the unstable band of Strouhal numbers.

have also been reported previously in experiments [31, 38]. For Tu ≤ 0.50% and Rec = 80 000
there is no change in the shedding frequnecy of the bubble while at Rec = 125 000 there
is a slight decrease for increases in Tu up to Tu = 0.53%, though the change is within
the experimental uncertainty (±1.5). For both Reynolds numbers and the highest Tu
level investigated, there is an increase in the central disturbance frequency, within the
experimental uncertainty. This increase is consistent with the results presented in the
previous chapter, and the investigation of Simoni et al. [38] who studied a bubble formed
over a flat plate with an imposed adverse pressure gradient and subject to increasing Tu.

Spatial information from the time-resolved PIV measurements may be used to compute a
two-dimensional wavenumber-frequency spectrum from the wall-normal velocity fluctuations.
These spectra are computed along the boundary layer displacement thickness (i.e., the same
locations used to compute the frequency spectra in Fig. 5.8) and are presented in Fig. 5.9
for both Reynolds numbers and all Tu levels investigated. All spectra shown in Fig. 5.9
have been normalized by their maximum values. At the baseline Tu level, the results show
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Figure 5.9: Wavenumber-frequency spectra computed along the boundary layer displace-
ment thickness.

that the spectral energy is concentrated around a relatively narrow convective ridge [167],
highlighted by the solid red line. When the level of Tu is increased, the results in Fig. 5.9
show that energy is distributed over a broader range of wavenumbers and frequencies. It
should be noted that, at the higher chord Reynolds number and elevated Tu levels, there is
a second convective ridge at negative wavenumbers which is attributed to aliasing from the
PIV velocity signal.

By rearranging the wave equation, the average convective velocity of disturbances in
the separated shear layer can be calculated from the convective ridge in Fig. 5.9 using
Uc = 2πf/kx. Since the convective ridge is linear between frequency and wavenumber,
this velocity represents an average for all disturbance frequencies in the separated shear
layer. The computed convective velocities are normalized by the boundary layer edge
velocity at separation, and are summarized in Table 5.3. The edge veloicty is estimated
as Ue = U0 ·

√
1− CP |S where CP |S is the mean surface pressure at the location of mean

separation, as determined from the mean surface pressure distirbutions (Table 5.1). For
Rec = 125 000 and the highest level of Tu investigated where separation could not be
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detected, the mean separation location at the baseline Tu level was used in order to find
CP |S. The results at the baseline Tu level are in good agreement with the expected range
of convective velocities previously reported over an airfoil in a low disturbance environment
[26]. The computed convective velocities (Table 5.3) show that the average convective
speed of separated shear layer disturbances increases with increasing Tu. This increase in
Uc with increasing Tu is in agreement with the results of Simoni et al. [38], and reflects the
increase of the average separated shear layer velocity due to the decrease in the height of
the separation bubble (Fig. 5.2) and in turn a reduction in the reverse flow velocities near
the wall.

In addition to average convective speeds, streamwise wavelengths of the shear layer
rollers can also be estimated from the two-dimensional wavenumber-frequnecy spectra
presented in Fig. 5.9. For each investigated case, the wavenumber at the frequency of the
most amplified disturbance (determined from Fig. 5.8) is identified as the intersection with
the convective ridge, shown by the red line. Then, the streamwise wavelength was computed
using the equation λx = 2π/kx, with the results summarized in Table 5.3. The results
for Rec = 125 000 and the baseline level of Tu are in good agreement with the findings of
Kurelek et al. [18] for the same airfoil and flow conditions. The results show that as the
level of Tu is increased, the average wavelength of the shear layer rollers increases. For
both Reynolds numbers, increasing the level of Tu from the baseline level to the highest
level investigated results in an increase in the wavelength of the rollers of approximately
20%. In an investigation of the effects of Tu on separation bubbles formed over a flat plate,
Simoni et al. [38] characterize the streamwise wavelength of the shear layer rollers using
POD and note an increase in the streamwise wavelength of approximately 10% for a similar
increase in Tu. The notably smaller influence of Tu on λx in their study suggests that
bubble dynamics are different over a flat plate versus those observed here for an airfoil. In
the present investigation, since the central disturbance frequency of the bubble does not
change significantly with increasing Tu (Fig. 5.8), and the average convection speed of the
disturbances increases (Table 5.3), the result is an increase in the average wavelength of
disturbances (Table 5.3) in the separated shear layer. For all levels of Tu, increasing the
chord Reynolds number leads to a decrease in the average wavelength of disturbances, which
is related to the observed increase in the central disturbance frequency with increasing
chord Reynolds number (Table 5.3), an increase which has also been noted in previous
investigations [10].

The dynamics within the laminar separation bubble are illustrated using consecutive
snapshots of instantaneous spanwise vorticity in Figs. 5.10 and 5.11 for Rec = 80 000 and
125 000, respectively, for each Tu level investigated. Hatching is used for the elevated Tu
levels at Rec = 80 000 since the magnification factors were different, thus allowing for the
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results to be presented on the same streamwise scale. To aid in the identification of vortical
structures, namely the shear layer rollers, contours of the λ2 criterion [146] are shown for
all Tu levels investigated. The λ2 criterion defines vortex cores by finding pressure minima
that are the result of fluid rotation. More specifically, vortices may be identified within
regions where the second eigenvalue of the tensor defined by the sum of the rate-of-rotation
and rate-of-strain tensors is negative. These contours show that at Rec = 80 000 and the
baseline Tu level (Fig. 5.10a), a distinct shear layer roller can be seen at x/c ≈ 0.56 with
another roller forming just upstream at x/c ≈ 0.52. A third roller is undergoing breakup
downstream of x/c = 0.60. Based on the presented series of snapshots, it can be seen
that roll-up of the structures tends to occur upstream of mean transition (xT/c = 0.55),
while the breakdown of these structures generally occurs downstream of mean reattachment
(xR/c = 0.62), agreeing well with previous investigations of separation bubbles [18, 31]. As
the level of Tu is increased, the shear layer roll-up location shifts upstream, closely agreeing
with the location of mean transition in all cases. In addition, the size and coherence of the
rollers generally decreases with increasing Tu, which agrees with the increasing distribution
of energy of associated velocity fluctuations over broader time and length scales (Fig. 5.9).
In comparing the streamwise development of the structures, it can be seen that, at elevated
Tu levels, the shear layer rollers appear to lose their coherence sooner after initial roll-up,
a finding which will be explored further in Section 5.3. The thick black lines in Fig. 5.10
trace the approximate centres of the shear layer rollers between consecutive snapshots to
aid in tracking the structures from frame to frame. The spacing of the lines is therefore
representative of the streamwise wavelength of the shear layer rollers while their slope is
proportional to their convective velocity. By comparing the slopes of the dashed lines for
each of the Tu levels investigated, it can be seen that the slopes generally increase slightly
with increasing Tu, indicating an increase in the mean convection speed which is consistent
with the results summarized in Table 5.3.

At the higher chord Reynolds number investigated, roll-up of the separated shear
layer follows a similar progression as compared to that discussed for Rec = 80 000, with
consecutive snapshots shown for all Tu levels in Fig. 5.11. At the baseline Tu level
(Fig. 5.11a), the shear layer rolls-up at approximately x/c = 0.44, which is upstream of the
location of mean transition (xT/c = 0.50). In comparing this result to that at the lower Rec
investigated (Fig. 5.10a), it is observed that roll-up occurs further upstream, consistent with
the upstream shift in the location of mean transition with the increase in chord Reynolds
number (Table 5.2). However, the structures are notably smaller and form much closer
to the airfoil surface, a result of the smaller separation bubble size at the higher chord
Reynolds number (Fig. 5.2). Similarly to the results at the lower Reynolds number, as
the level of Tu is increased, the roll-up location shifts upstream with the location of mean
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Figure 5.10: Contours of instantaneous spanwise vorticity for Rec = 80 000. Consecutive
snapshots are separated by 0.33 ms. Thin black lines represent contours of the λ2 criterion
[146] while thick dashed lines trace the approximate centres of vortices.
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Figure 5.11: Contours of instantaneous spanwise vorticity for Rec = 125 000. Consecutive
snapshots are separated by 0.28 ms. Thin black lines represent contours of the λ2 criterion
[146] while thick dashed lines trace the approximate centres of vortices.
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transition, the size of the rollers generally decreases, and the their coherence decreases. At
the highest Tu level investigated, structures that resemble shear layer rollers are present,
suggesting that the flow does indeed separate and shear layer roll-up occurs, supporting the
discussion in Section 5.1 based on the boundary layer parameters that a separation bubble
does form for this flow condition, despite no reverse flow region being resolved (Fig. 5.2).
However, these structures are relatively small and have notably less coherence than the
lower Tu levels, suggesting that the dynamics of the transition process are altered. Since the
PIV field-of-view for this Reynolds number covers a more significant downstream distance
from mean reattachment for Tu & 0.25% (based on mean surface pressure distribution
estimates) than at the lower Reynolds number, the break-up of the shear layer rollers to
smaller scales is more clear and it can be seen that there are no large scale structures in
the downstream portion of the PIV field-of-view for any of the elevated Tu cases.

In order to gain further insight into structures within the flow, a Proper Orthogonal
Decomposition (POD) was applied to the fluctuating velocity fields as measured by the
high-speed PIV system. This type of analysis was introduced to the fluids community by
Lumley [168] and has since been used extensively in analyzing turbulent and transitional
flows (e.g., Refs. [23, 38, 133, 169–171]). The methodology of POD is outlined in detail by
Berkooz et al. [169] but, the method used in this investigation is based on the snapshot
method as discussed by Sirovich [172]. This method involves first building a velocity matrix
in which rows contain the fluctuating velocities of both components of velocity measured
by the PIV, and each column represents a snapshot in the time sequence of measurements.
Then, eigenvectors, and corresponding eigenvalues, are computed for the autocovariance
matrix of this velocity matrix. The resulting eigenvalues represent the relative energy
content of the modes, while the modes themselves are computed as the products of each
eigenvector with the original velocity matrix, divided by the norm of the resulting quantity.
The resulting POD modes are typically sorted in descending eigenvalue order such that
the most important (in terms of energy) modes can be easily identified. Since the POD
is computed on the velocity fluctuations, the relative energies are representative of the
turbulent kinetic energy (with the note that the third component of velocity is not included
here). The time coefficients of a given POD mode may be computed as the product of
the mode itself with each instantaneous velocity snapshot. Therefore, if time-resolved
data is used, temporal information about a given mode can be determined. Typically, the
quantity of interest in the temporal sense is the frequency content of the mode fluctuations
as this can be used to relate the modes to observed structures in the flow. The results
from the POD of the fluctuating velocity fields as measured by the high-speed PIV system
are shown in Figs. 5.12–14 for Rec = 80 000 and all Tu levels investigated. Figure 5.12
shows the relative and cumulative modal energies while the first six spatial modes in both
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the streamwise and wall-normal directions are shown in Fig. 5.13. Finally, spectra of the
temporal coefficients for the first six modes are shown in Fig. 5.14.
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Figure 5.12: (a) relative and (b) cumulative POD eigenvalues from the POD computed
on the side view data for Rec = 80 000.

For the baseline level of Tu, the results in Fig. 5.12a show that the first two POD modes
contain a similar amount of relative energy, while an inspection of the spatial distributions
of the first two POD modes (Fig. 5.13a), reveals that the modes have a similar topology,
but have a phase shift of approximately π/2 for both ψu and ψv. This similarity of the
relative energy content and observed phase shift in the spatial distributions of the first
two modes signifies mode pairing, which has been observed in previous studies involving
convective amplification of periodic disturbances [23, 52, 133]. Spectral content of the
temporal coefficients for these two modes (Fig. 5.14a) shows that they are associated with
a frequency near that of the most amplified disturbance frequency that was detected in
the separated shear layer velocity fluctuations. Therefore, these two modes represent the
velocity fluctuations that are associated with the convection of the shear layer rollers shed
from the aft portion of the separation bubble (Fig. 5.10a). The spatial distributions of
energy for these two modes also show that the energy is concentrated in the aft portion
of the PIV field-of-view, where the shear layer rollers are observed (Fig. 5.10a), with a
characteristic wavelength similar to that identified from the wavenumber-frequnecy spectra
(Table 5.3). The remaining four modes (ψ3 to ψ6) presented in Fig. 5.13a do not show
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similar relative energy contents (Fig. 5.12a), but the spatial distributions of the modes
and frequency content of the temporal coefficients suggest that the energy contained in
these modes is also associated with the development of shear layer rollers. The spectra
of the temporal coefficients for ψ(3) and ψ(4) (Fig. 5.14a) show additional peaks near the
subharmonic of the most amplified frequency in the bubble, suggesting that the mode is
also linked to subharmonic amplification of the fundamental frequency. This may be related
to vortex paring [55], which was confirmed to occur occasionally in the aft portion of the
bubble.

The POD results for Tu = 0.22% and 0.50% show some similarities and differences
with the baseline Tu level. In general, inspecting spectra of the temporal coefficients in
Fig. 5.14 shows that the dominant energy content of the most energetic modes shifts to
lower frequencies as Tu increases. Although characterized by frequencies lower than the
fundamental frequency, for these Tu levels the first two POD modes remain paired, as
shown by the spatial distributions presented in Figs. 5.13b and 5.13c. The results are most
clear in the distributions of the wall-normal POD modes and thus will be the focus of
this discussion. For both of these elevated Tu levels (0.22% and 0.50%), spectra of the
temporal coefficients (Figs. 5.14b and 5.14c) for the first two POD modes show that there
is a concentration of energy near the subharmonic of the central disturbance frequency,
which is reflected in the increased characteristic length scale in the corresponding spatial
modes in Figs. 5.13b and 5.13c. On the other hand, spectra of the temporal coefficients
for the third and fourth modes contain significant energy near the central disturbance
frequency of the bubble (Figs. 5.14b and 5.14c), and the spatial modes are characterized
by smaller characteristic wavelengths (Figs. 5.13b and 5.13c) than the first and second
modes. Comparing the spatial distributions of the first and second modes to the third
and fourth modes for Tu = 0.22% and 0.50% (Figs. 5.13b–c), it can be seen that the third
and fourth modes contain more significant energy further upstream, consistent with the
observed roll-up locations (Fig. 5.10), thus leading to the detected velocity fluctuations
at the bubble shedding frequency in these modes. The present results therefore indicate
that as the level of turbulence intensity is increased, the energy of the velocity fluctuations
at the fundamental frequency of the shear layer rollers become less significant, however,
are still present and show the most upstream amplification in the separated shear layer
(Fig. 5.8). Additionally, the most energetic modes are still clearly associated with the
shedding phenomenon of the bubble, but are characterized by lower frequencies.

On the average, as the level of Tu is increased, the relative energy content of the first
two modes decreases (Fig. 5.12a), together accounting for approximately 30% of the energy
at the baseline Tu level, and decreasing to approximately 17% at the highest Tu level
investigated. Close inspection of the relative energy content also shows that the difference
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Figure 5.13: Contours of the streamwise and wall-normal components of the first six
POD eigenfunctions for the side view data at Rec = 80 000. All distributions have been
normalized by the maximum absolute value.
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Figure 5.13 (cont.)
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in energy of the first and second modes increases. At Tu = 1.92%, the energy content of
the second mode becomes more closely aligned with that of the third mode. This result
can be confirmed by the spatial distributions of the POD modes, where the first two modes
indeed remain paired for Tu = 0.22% and 0.50% (Figs. 5.13b and 5.13c). However, at
Tu = 1.92% the first mode is clearly unpaired from the second POD mode, as seen in both
the streamwise and wall-normal components (Fig. 5.13d). Instead, the second and third
modes become paired. The decrease in the combined relative energy content of the mode
pair associated with shedding is consistent with the decrease in coherence of the shear
layer rollers with increasing Tu (Figs. 5.10 and 5.11). Therefore, an increasing number
of modes is required in order to describe the velocity fluctuations in the flow. In other
words, for a given number of modes, less of the total fluctuating energy is represented as
the level of Tu is increased. For example, the relative energy content contained within
the first twenty modes (Fig. 5.12b)) is approximately 75%, 74%, 71%, and 63% in order
of increasing turbulence intensity, thus highlighting the distribution of energy to a larger
number of modes with increasing Tu.

The spatial distribution of energy associated with the first mode at Tu = 1.92% shows
that the energy is distributed over a large area in the PIV field-of-view. The distribtuion of
energy in this mode is qualitatively similar to the first POD mode presented by Lengani
and Simoni [133] as well as Simoni et al. [38], who investigated the effects of Tu on the flow
over a compressor blade and flat plate, respectively, at similar levels of Tu investigated
here. Both of these investigations suggested that the topology of this mode was due to the
presence of streamwise streaks in the flow, though they were not shown explicitly. The
spectrum of the first temporal coefficient contains no significant peaks and is dominated
by low frequencies (Fig. 5.14d), which is to be expected based on the relatively large
characteristic wavelength in the corresponding spatial mode (Fig. 5.13d). In their POD
analysis at high Tu levels, Simoni et al. [38] also note that the first POD mode has a large
characteristic wavelength and a temporal coefficient dominated by low frequencies. The
presence of streaks will be explored further in Section 5.3.

Though pairing of the higher modes becomes less clear in terms of relative energy
contents (Fig. 5.12a), the spatial distributions indicate that ψ(2) and ψ(3) are indeed paired,
as well as ψ(4) and ψ(5) (ψ(6) is also paired with ψ(7) which is not shown here). An analysis of
the frequency content of the corresponding temporal coefficients (Fig. 5.14d) also supports
this observation as these pairs contain similar spectral content. The second and third
modes show significant peaks near the subharmonic frequency, while the sixth (and seventh)
mode shows a significant peak at the central disturbance frequency. In comparing the
spatial distributions of these modes, it can be seen that the characteristic wavelength of
the POD modes decreases with increasing mode numbers, where the wavelength of the
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Figure 5.14: Frequency spectra of the time coefficients for the first six POD modes for
each Tu level investigated at Rec = 80 000. Spectra for each mode are normalized by the
total energy in the signal. The central disturbance frequency and its subharmonic were
determined from wall-normal velocity fluctuations and are summarized in Table 5.3.
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energy contained within the sixth mode is on the order of the wavelength of the dominant
streamwise wavelength (Table 5.3). In agreement with the results for Tu = 0.22% and
0.50%, the implication here is that the velocity fluctuations associated with the fundamental
frequency of the shear layer rollers become less important in terms of the total fluctuating
energy. However, instead of all higher modes still being associated with the shear layer
rollers, the first mode is now clearly unrelated to these structures.

The results of the POD on the fluctuating velocity fields at the higher chord Reynolds
number investigated are presented in Figs. 5.15–17. In general, the results follow similar
trends with increasing Tu as compared to those at the lower chord Reynolds number,
but the increase in Reynolds number has further shifted the dominant frequencies of the
most energetic modes to lower values. For the lowest three Tu levels investigated (i.e.,
Tu ≤ 0.53%), inspection of the relative modal energies (Fig. 5.15a) and spatial distributions
(Figs. 5.16a–c) suggest that the first six modes form three modal pairs (i.e., ψ(1) and ψ(2),
ψ(3) and ψ(4), and ψ(5) and ψ(6)), all of which are associated with the shedding phenomenon.
However, spectra of the temporal coefficients show that energy associated with the first
two modes is associated with frequencies near the subharmonic of the most amplified
disturbances for all Tu levels (Figs. 5.17a–c.

The frequency of the dominant energy contained in the modes increases with increasing
mode number (Figs. 5.17a–c), and the modes which fluctuate near the most amplified
frequency for Rec = 125 000, are the fifth and sixth modes for Tu = 0.10% and the sixth
and seventh modes for Tu = 0.25% and 0.53%. The spatial distributions of these modes
are characterized by wavelengths that are in good agreement with those estimated form the
wavenumber-frequency spectra results summarized in Table 5.3. Similarly to the results
presented at Rec = 80 000, the shift of the modes describing the separated shear layer
roller fluctuations to higher mode numbers with increasing Tu indicates that the energy
associated with these fluctuations decreases with increasing Tu, though the shedding is still
represented in the more energetic modes.

At the highest Tu level investigated, the first two modes are unpaired (Fig. 5.16d), and
the first set of paired modes involves the third and fourth modes. At Tu = 1.94%, the
first POD mode contains significantly more energy than the first mode at Tu = 0.25% and
0.53%, however, the following modes contain less energy than the corresponding modes at
Tu = 0.25% and 0.53% and thus the cumulative energy of the modes at Tu = 1.94% falls
below that of the lower two Tu levels by the third POD mode. The large relative energy
content in the first mode is associated with a large characteristic wavelength (Fig. 5.16d),
dominated by low frequencies (Fig. 5.17d), as was observed for the highest Tu level at
Rec = 80 000. The large relative energy content of this mode suggests that these structures
are notably stronger at this chord Reynolds number, and thus dominate the flow development.
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Figure 5.15: (a) relative and (b) cumulative POD eigenvalues from the POD computed
on the side view data for Rec = 125 000.

At this level of Tu, the spatial distributions of the POD modes, frequency content of their
temporal coefficients, and characteristic wavelengths do not match those expected of the
separated shear layer rollers (Table 5.3) until the tenth and eleventh modes, further showing
that the energy of velocity fluctuations associated with the shear layer rollers decreases
with increasing Tu.

The cumulative modal energies across the first twenty modes at Rec = 125 000 are 74%,
61%, 57%, and 49% in order of increasing Tu level. In general, less cumulative energy is
recovered for a given number of POD modes at the same Tu level for Rec = 125 000 as
compared to 80 000. The decrease in cumulative energy over a given number of modes shows
that the energy is distributed over a wider range of modes, consistent with the observed
decrease in coherence of the shear layer rollers at a given level of Tu (Figs. 5.10 and 5.11).
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Figure 5.16: Contours of the streamwise and wall-normal components of the first six
POD eigenfunctions for the side view data at Rec = 125 000. All distributions have been
normalized by the maximum absolute value.
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Figure 5.16 (cont.)
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(c) Tu = 0.53%

   
 

 

 

 

 

(d) Tu = 1.94%

Figure 5.17: Frequency spectra of the time coefficients for the first six POD modes for
each Tu level investigated at Rec = 125 000. Spectra for each mode are normalized by the
total energy in the signal. The central disturbance frequency and its subharmonic were
determined from wall-normal velocity fluctuations and are summarized in Table 5.3.
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5.3 Spanwise Flow Development
Spanwise flow development over the suction side of the airfoil was characterized using
time-resolved PIV measurements in the top view configuration, as depicted schematically
in Fig. 3.5b, with the field-of-view and coordinate system shown in Fig. 3.6b. For all
measurements, the laser sheet was placed above the surface of the airfoil such that it cut
through the top halves of the shear layer rollers, as informed by the flow measurements
in the xy plane (i.e., using the results presented in Figs. 5.10 and 5.11). The streamwise
location of the field-of-view was set to capture the roll-up location of the shear layer rollers
and their development downstream. In this configuration, the exact location of the laser
sheet from the surface of the airfoil is difficult to measure along the streamwise extent
of the measurement region, and as such it is not trivial to transform the results into the
surface attached coordinate system used in Sections 5.1 and 5.2. Since the laser sheet was
relatively closely aligned with the chord of the airfoil for all cases investigated, results in
this section are presented in the chord attached coordinate system (Fig. 3.6b), with the
spanwise axis matching that of the surface attached coordinate system. This section will
focus on the instantaneous results to describe the bubble dynamics, but, for completeness,
time-averaged quantities are presented in Appendix E.

In order to investigate the spanwise flow development over the suction side of the airfoil,
representative sequences of instantaneous chordwise velocity are presented in Fig. 5.18 and
Fig. 5.19 for Rec = 80 000 and Rec = 125 000, respectively, for all Tu levels investigated.
Since the laser sheet was positioned to pass through the upper halves of the shear layer
rollers, the rollers can be identified as bands of elevated chordwise velocity. The locations
of mean transtion were determined from the locations of maximum displacement thickness
(Table 5.2) and then transformed into the chord based coordinate system location. At the
baseline Tu level (Fig. 5.18a), a nearly two-dimensional roller can be identified in the first
snapshot at approximately X/c = 0.55, just downstream of the location of mean transition.
In addition, the early formation of a roller can be observed upstream at approximately
X/c = 0.50. Downstream of mean transition, the rollers develop spanwise deformations, as
has been observed in previous experiments [18, 31], and numerical simulations [17, 42]. These
spanwise deformations grow with increasing streamwise distance, leading to a reorientation
of the spanwise vorticity into the streamwise direction, and the eventual breakdown of the
shear layer rollers [18]. The breakdown of a roller can be observed by tracking the chordwise
progression of the roller located at approximately X/c = 0.60 in the first frame of Fig. 5.18a.
As this structure convects downstream, the spanwise unsteadiness grows in amplitude and
in the last frame the filament is beginning to break-up and has lost significant coherence
at z/c ≈ 0.10. The chordwise location of this break-up (X/c ≈ 0.65) agrees well with
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Figure 5.18: Contours of instantaneous chordwise velocity for Rec = 80 000. Consecutive
snapshots are separated by 0.51 ms. Dashed black lines mark the locations of mean transition
as determined from the displacement thickness.

the observed loss of coherence of the structures downstream of mean reattachment in the
snapshots of instantaneous spanwise vorticity (Fig. 5.10a).

As the level of Tu is increased to 0.22% and 0.50%, the shear layer rollers are observed
to form further upstream, in agreement with the upstream shift in mean transition. More
notably, the rollers are characterized by more significant spanwise deformations at the
location of roll-up, similar to the structures observed in the experiments of Burgmann and
Schröder [31]. They performed PIV measurements of a laminar separation bubble formed
over an airfoil in a water tunnel characterized by a free-stream turbulence intensity of

103



Figure 5.18 (cont.)

approximately 1%, thus suggesting that the elevated Tu level is responsible for the increased
undulations at roll-up. This decrease in spanwise coherence is also similar to the results
of Kurelek [20], who observed a notable decrease in the spanwise coherence of shear layer
rollers when subjected to broadband acoustic excitation. This form of excitation can be
seen as analogous to the increase in free-stream turbulence intensity in this investigation,
as the increase here is a result of an increase of energy over a broad range of frequencies
(Fig. 3.3). The sequence of instantaneous chordwise velocity snapshots at Tu = 0.50%
(Fig. 5.18c) shows that roll-up occurs just upstream of X/c = 0.45, around the location
of mean transition. Just downstream of the roll-up location, the rollers have significant
spanwise undulations that were not yet present at the baseline Tu level and a similar
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downstream distance from the location of roll-up (Fig. 5.18a). In tracking the chordwise
progression of the roller located at X/c ≈ 0.53 in the first frame at Tu = 0.50% (Fig. 5.18c),
it can be seen that the structure begins to break-up in the second frame at X/c ≈ 0.54 and
z/c ≈ −0.10. By the last frame in Fig. 5.18c, this structure has almost completely broken
down and is characterized by a lower velocity than the rest of the structure at this spanwise
location (z/c = −0.10). Therefore, the chordwise length between roll-up (X/c ≈ 0.45) and
break-up (X/c ≈ 0.55) over which the roller persisted at Tu = 0.50% is approximately 10%
of the chord length. This is in comparison to approximately 15% of the chord length that
the rollers persist at the baseline Tu level (from X/c ≈ 0.50 to X/c ≈ 0.65). Therefore, the
results show that the chordwise extent over which the rollers exist decreases as the level of
Tu is increased, confirming the observed results in Fig. 5.10. The decrease in the chordwise
extent over which the rollers persist can be attributed to an increase in the amplitude of
the spanwise undulations of the shear layer rollers at the location of roll-up for elevated
levels of Tu. These undulations then amplify rapidly, leading to breakdown and shorter
overall bubbles (Fig. 5.2).

At the highest level of Tu investigated (Fig. 5.18d), the signature of the shear layer rollers
is still present, however, these structures are highly deformed in the spanwise direction and
are interacting with streamwise oriented streaks of lower velocity fluid. One streak can be
observed in the first frame of Fig. 5.18d at z/c ≈ −0.10. On average, the chordwise velocity
of fluid within the streamwise streaks is approximately 0.2U0 less than the velocity within
the upper halves of the shear layer rollers (within the measurement plane). Similar streaks
have been previously observed and studied in flat plate boundary layers subjected to high
levels of free-stream turbulence intensity [87, 91, 94]. The presence of these streaks results
in the increase in u′ upstream of the separation bubble in the time-averaged statistics
presented in Fig. 5.5a. Further, it is the presence of these streaks which lead to the change
in the topology of the first POD mode at this level of Tu in the side view POD results
(Figs. 5.13d and 5.16d). Additionally, it is likely that the presence of similar streaks lead to
the similar side view POD mode presented by Simoni et al. [38] at a similar level of Tu,
for which the authors did not perform top-view measurements to confirm their presence.
Careful inspection of the results at Tu = 0.50% shows the presence of these streaks (also
at z/c ≈ −0.10), however they are much weaker and therefore do not have a significant
influence on the flow development.

The results at the highest Tu level investigated show qualitative agreement with the
numerical results of McAuliffe and Yaras [16], who simulated a separation bubble induced
on a flat plate and subjected to elevated Tu levels. The authors noted that the shear layer
still rolled up via an instability similar to that observed at a low level of Tu, but was
significantly impacted by three-dimensionality that was induced by streamwise oriented
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streaks originating upstream of the bubble. The influnece of the streaks on the shear layer
roll-up in the present investigation can be observed qualitatively in the presented sequence
of spanwise vorticity (Fig. 5.10d). The results, and analysis of a larger sequence, show
that the periodicity and coherence of the roll-up and shedding of the rollers is decreased as
compared to the lower Tu levels investigated. The appearance of streaks at this Tu level
suggests that the boundary layer forming over the fore portion of the suction side of the
airfoil is beginning to transition via a bypass mode [91]. Similarly, at Tu = 0.50%, there is
evidence of the onset of bypass transition in the boundary layer upstream producing the
streaks, though they do not grow enough to significantly impact the formed separation
bubble. Therefore, as evidenced in the POD modes of the streamwise velocity fluctuations
(Fig. 5.13d), the conclusion for the flow development at Tu = 1.92% is that the transition
mechanism of the separation bubble formed over the suction side of the airfoil is altered
from that observed at the lower Tu levels. In particular, the appearance of the streamwise
streaks results in a strongly three-dimensional flow in the fore portion of the bubble, thus
breaking the assumption of initially two-dimensional disturbances amplified in the separated
shear layer during the early stages of the transition process [15, 42].

Sequences of instantaneous chordwise velocity at the higher chord Reynolds number
investigated are presented in Fig. 5.19 for all Tu levels investigated. In general, the results
with increasing Tu are similar to those presented at the lower chord Reynolds number
(Fig. 5.18). At the baseline Tu level (Fig. 5.19a), a nearly two-dimensional roller can be
identified at X/c ≈ 0.50. It should be noted that due to the smaller separation bubble
size at this Reynolds number, it was difficult to capture the shear layer rollers at the
roll-up location of X/c ≈ 0.42 (Fig. 5.11a). Therefore, the laser sheet was positioned so
as to capture them further downstream where the structures are larger and thus easier to
measure. In general however, the rollers form further upstream than at the baseline Tu level
at Rec = 80 000, consistent with the upstream shift in mean transition (Table 5.2). At the
baseline Tu level, the rollers begin to break-up at approximately X/c = 0.60, upstream of
the observed breakup location of approximately X/c = 0.65 at Rec = 80 000. The upstream
shift in the chordwise location of breakup is consistent with the upstream shift in mean
reattachment with increasing Reynolds number (Table 5.2), as well as the upstream shift in
the observed break-up in the sequences of instantaneous contours of spanwise vorticity (i.e.,
compare Figs. 5.10a and 5.11a). At the higher chord Reynolds number, break-up of the
rollers occurs more rapidly, with the rollers persisting for approximately 10% of the chord
length (from approximately X/c = 0.50 to X/c = 0.60) as compared to approximately 15%
at Rec = 80 000. This decrease in the chordwise extent of the structures is consistent with
the shorter separation bubble lengths (Table 5.2), and arises from the increased deformations
across the span of the flow at the higher Reynolds number (compare Figs. 5.18a and 5.19a).
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Figure 5.19: Contours of instantaneous chordwise velocity for Rec = 125 000. Consecutive
snapshots are separated by 0.51 ms. Dashed black lines mark the locations of mean transition
as determined from the displacement thickness.

For increasing levels of Tu at Rec = 125 000, the shear layer rollers become increasingly
deformed at roll-up and also more difficult to identify, consistent with the results at
Rec = 80 000 (Fig. 5.18). At the highest Tu level, the flow is dominated by several
streamwise oriented streaks, and identification of the shear layer rollers becomes challenging.
The dominance of the streaks at the highest level of Tu is similar to that observed at the
lower Reynolds number, but here appear larger and lead to the highly energetic first mode
of the side view POD characterized by a large streamwise wavelength (Fig. 5.13d).

The results in Figs. 5.18 and 5.19 show that, for all cases investigated, shear layer rollers
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Figure 5.19 (cont.)

are identifiable but their spanwise coherence is significantly affected by both Tu and Rec.
In order to compare the spanwise coherence of these structures, coherence length estimates
across the span of the PIV measurements are computed for all streamwise locations, as per
the method discussed by Kurelek [20]. Specifically, spanwise correlation coefficients of the
chordwise velocity signals are computed along the span at a givent streamwise location. An
exponential fit is then applied to these correlation coefficients, and is integrated from zero
to infinity to yield an estimation of the spanwise coherence length at that given streamwise
location. The results for all streamwise locations and all cases investigated are presented in
Fig. 5.20. It should be noted that the resolution of the PIV vectors in this configuration is
equivalent to `z/c ≈ 10−3, and thus the results in Fig. 5.20 below approximately `z/c ≈ 10−2
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become increasingly affected by the sparse data. In addition, as discussed by Kurelek
[20], upstream of the mean transition location, velocity fluctuations are characterized by
relatively low amplitudes (Fig. 5.6), and thus the correlations are significantly affected
by measurement uncertainty. Therefore, the coherence length estimates upstream of the
location of mean transition are shown by dashed lines in Fig. 5.20. The flow condition of
Rec = 125 000 and Tu = 0.10% is the same as that studied by Kurelek [20], and the results
computed here are in good agreement with his reported results.

     
 

 

 

 

(a) Rec = 80 000

     
 

 

 

 

(b) Rec = 125 000

Figure 5.20: Spanwise coherence lengths. Dotted lines correspond to the locations of
mean transition.

At Rec = 80 000 (Fig. 5.20a), the results show that, at the baseline Tu level, the
maximum coherence length is on the order of the airfoil chord length, consistent with
the strong coherence observed at roll-up in Fig. 5.18a. For this Reynolds number, the
maximum estimated coherence length decreases by an order of magnitude when the level of
Tu is increased from the baseline level to Tu = 0.22%. Notably smaller reductions in the
maximum of the coherence length estimates are observed for the increases in Tu to 0.50%
and 1.92%. The maximum coherence length estimates for all Tu levels and both chord
Reynolds numbers investigated are summarized in Table 5.4. The results for the higher
Reynolds number show a similar trend to the lower Reynolds number, with a decrease in
the maximum coherence length of approximately an order of magnitude for increasing Tu
from 0.10% to 0.25%. The decrease in coherence length maximum can be attributed to the
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increase in the spanwise deformations of the shear layer rollers at the location of roll-up,
as observed in Figs. 5.18 and 5.19. The results in Fig. 5.20 also show that the streamwise
location of the maximum coherence length shifts upstream, following the location of mean
transition and, therefore, that of the shear layer roll-up location. Comparing the results for
a given Tu level, it is observed that the maximum coherence length decreases with increasing
Reynolds number for all Tu levels investigated. The observed decrease in spanwise coherence
is consistent with the increase in initial spanwise deformations at the higher Reynolds
numbers, as observed by comparing the contours of instantaneous streamwise velocity at
the two Reynolds numbers for a given level of Tu (Figs. 5.18 and 5.19).

In order to compute a spanwise wavelength of the dominant spanwise deformations of
the rollers, a methodology discussed by Michelis et al. [137] was followed. Due to the limited
spanwise extent of the PIV field-of-view, this method makes use of a wavelet analysis, using
a Morlet wavelet at the base function. For all cases, the chordwise velocity signal at the
chordwise location of mean transition was taken to be the signal on which the spatial wavelet
analysis was performed. Then, for each snapshot in the PIV sequence, the wavelength
corresponding to the maximum wavelet coefficient returned by the wavelet analysis was
recorded. The average of these wavelengths was computed and taken to be the dominant
wavelength of the spanwise deformations, with the results summarized in Table 5.4. The
result for the baseline Tu level at Rec = 80 000 is in good quantitative agreement with
observations in the consecutive snapshots of instantaneous chordwise velocity presented
in Fig. 5.18a. For example, in the second frame, the roller at X/c ≈ 0.62 has a spanwise
wavelength of approximately 0.15 which is in good agreement with the estimate of 0.125
from the wavelet analysis (Table 5.4). At Tu = 0.22%, the wavelength of the spanwise
deformations is notably smaller than at the baseline Tu level (compare Figs. 5.18a and 5.18b),
and is reflected by the decrease in the estimated wavelength from the wavelet analysis.
As the level of Tu is increased further, comparing the wavelet results to the contours of
instantaneous chordwise velocity becomes more challenging. In considering the ratio of
the spanwise wavelength to the streamwise wavelength (λz/λx), the results at Rec = 80 000
generally fall within the range of 1.8 . λz/λx . 2.2, which is in reasonable agreement
with previous investigations of separation bubbles [18, 44, 137]. The results at the higher
chord Reynolds number are in good agreement at the baseline Tu level, but are difficult to
compare to the contours of instantaneous velocity for all elevated Tu levels. However, for all
Tu levels, the ratio of the spanwise wavelength of the rollers to the streamwise wavelength
remains in reasonable agreement with the range expected from previous investigations of
separation bubbles [18, 44, 137].

Similarly to the streamwise flow development analysis in Section 5.2, a POD can be
performed on the fluctuating velocity fields as measured using the top view PIV system.
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This type of analysis aids in providing a description of the flow structures associated with
the most significant amount of fluctuating velocity energy. For all Tu levels investigated
at Rec = 80 000, relative and cumulative modal energies are shown in Fig. 5.21, while the
spatial distributions of a select number of the eigenfunctions are shown in Fig. 5.22, with
spectra of the temporal coefficients for the first six modes shown in Fig. 5.23. Here, the
first six modes are made up of three sets of paired modes (i.e., ψ(1) and ψ(2), ψ(3) and ψ(4),
and ψ(5) and ψ(6)), and, therefore, for conciseness only the spatial distributions of the first,
third, and fifth modes are presented in Fig. 5.22.

At the baseline Tu level, the first two POD modes are paired, evidenced by the
similar energy content (Fig. 5.21a) and the similarity of the spatial distributions of the
eigenfunctions, which have a π/2 phase shift (the second mode is not shown here). The
spatial distributions of these modes show good qualitative agreement with the shear
layer rollers visualized in the consecutive snapshots of instantaneous chordwise velocity
(Fig. 5.18a), and spectra of the temporal coefficients for these two modes show a peak at the
central disturbance frequency of the separation bubble. These findings therefore indicate
that these two modes describe the convection of the shear layer rollers. Modes 3 and 4,
as well as 5 and 6, also form modal pairs and contain significant energy near the central
frequency of the separation bubble, as well as at the subharmonic frequency (Fig. 5.23a).
The streamwise wavelength of the energy within the spatial distribution of the third mode
(ψ(3)) increases with increasing X (Fig. 5.22a). At the most upstream location of the energy
within the mode, the wavelength is on the order of the shear layer rollers (i.e., similar to
the characteristic wavelength in mode 1). Downstream, the wavelength increases and is
approximately twice the initial wavelength at the most downstream portion of the PIV

Table 5.4: Summary of transition characteristics. Uncertainty intervals are summarized
in Appendix A.

Reynolds number Tu [%] l/c|max λz/c λz/λx

80 000

0.11 1.419± 6% 0.125 2.19
0.22 0.033± 6% 0.100 1.79
0.50 0.032± 6% 0.105 1.75
1.92 0.021± 6% 0.134 2.06

125 000

0.10 0.278± 6% 0.124 3.18
0.25 0.014± 6% 0.144 3.13
0.53 0.013± 6% 0.144 3.06
1.94 0.008± 6% 0.060 1.28
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Figure 5.21: (a) relative and (b) cumulative modal energy of the top view POD eigenvalues
for Rec = 80 000.

field-of-view. Therefore, this result suggests that the third and fourth POD modes describe
merging of the shear layer rollers, since the merging events typically occur in the aft portion
or downstream of the bubble, where the wavelength of the energy is doubled.

As the level of free-stream turbulence intensity is increased to Tu = 0.25% and 0.53%,
similar pairing within the first six POD modes is observed, as indicated in Fig. 5.21a
and confirmed by a comparison of the spatial distributions of the modes. In general, the
spatial distributions of these first six modes (Figs. 5.22b and 5.22c) reflect the increase
in spanwise non-uniformity observed in the shear layers rollers at the location of roll-up
in the consecutive snapshots of instantaneous chordwise velocity (Fig. 5.18). For both
Tu levels, spectra of the temporal coefficients for the first six modes are characterized by
a relatively broad peak near the central disturbance frequency of the separation bubble,
with no discernible peaks at the subharmonic frequency, suggesting that vortex merging
contributes much less of the fluctuating energy at these Tu levels.

Consistent with the side view POD results, the cumulative energy distributions of the
POD modes from the top view show that the fluctuating energy becomes distributed over a
greater number of modes as the level of Tu is increased (Fig. 5.21b). At Tu = 0.11%, the
first twenty modes capture approximately 64% of the fluctuating velocity energy. As the
level of Tu is increased, the relative energy content of the first twenty modes is decreased
to 32% for Tu = 0.22% and 0.50%, and to 16% for Tu = 1.92%. In addition, the relative
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energy content of the first two modes, the paired modes associated with the shear layer
rollers, decreases significantly with increasing Tu (Fig. 5.21a). This result is also consistent
with the side view POD results (Fig. 5.12a), where the energy associated with the shear
layer rollers is contained in progressively higher mode numbers with increasing Tu.

At the highest Tu level investigated, a significant change in the spatial distributions of
the first two POD modes is observed (Fig. 5.22d). For this Tu level, the first two modes
are paired, unlike the side view results where the first POD mode was unpaired, but now
represent the streamwise streaks which were observed in Fig. 5.18d. This change in topology
of the first two POD modes highlights the change in bubble dynamics at the highest Tu
level. The spatial distributions of ψ1 and ψ2 are characterized by elongated chordwise
distributions of energy in both the uX and w components. Additionally, spectra of the
temporal coefficients for these two modes are dominated by low frequency activity with
no distinct peaks observed at any frequency (Fig. 5.23d). Therefore, it can be concluded
that the first two modes represent the streamwise oriented streaks (Fig. 5.18d) which are
associated with a large characteristic streamwise wavelength. If cut in a streamwise plane,
representing the side view PIV measurements, these modes would yield a mode topology
similar to that of ψ1 in Fig. 5.13d. Therefore, the results presented here suggest that the
similar side view POD mode presented by Simoni et al. [38] at a high level of Tu does likely
represent streaks, though the authors did not show this explicitly. At this Tu level, spectra
of the temporal coefficients for ψ(3), ψ(4), and ψ(5) show peaks near the central disturbance
frequency of the bubble, indicating that they are representative of the shear layer rollers.
The spatial distributions for ψ(3) and ψ(5) at this elevated Tu level (Fig. 5.22d) highlight
the drastic reduction in the spanwise coherence of the shear layer rollers, as was observed
in Fig. 5.18d.

A POD analysis was also performed for the higher chord Reynolds number, but is not
presented here for the sake of brevity. Very similar trends are observed in the data with
increasing Tu, but the modes become less clear at the higher Tu levels, and specifically
at the highest Tu level investigated. The modes are however included in Appendix E for
completeness.
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Figure 5.22: Contours of the streamwise and wall-normal components of the spatial POD
modes at Rec = 80 000.
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Figure 5.22 (cont.)
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(a) Tu = 0.11%

   
 

 

 

 

 

(b) Tu = 0.22%

   
 

 

 

 

 

(c) Tu = 0.50%

   
 

 

 

 

 

(d) Tu = 1.92%

Figure 5.23: Frequency spectra of time coefficients corresponding to the first six POD
modes at Rec = 80 000. Spectrum for each mode are normalized by the total energy within
the signal. The central disturbance frequency and its subharmonic were determined from
wall-normal velocity fluctuations and are summarized in Table 5.3.
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Chapter 6

Conclusions

The effects of free-stream turbulence intensity on the flow over a NACA 0018 airfoil were
studied experimentally in a wind tunnel facility. Chapter 4 presented results from a
parametric study performed for chord Reynolds numbers from 100 000 to 200 000, angles of
attack from 0° to 20°, and free-stream turbulence intensities from 0.09% to 2.03% using
mean and fluctuating surface pressure measurements. The results revealed the effects of
each parameter on suction side laminar separation bubble topology and separated shear
layer transition characteristics, as well as the attendant changes in airfoil lift. In Chapter 5,
results from flow field measurements made using Particle Image Velocimetry (PIV) were
presented in order to assess the spatio-temporal flow development in both the streamwise
and spanwise directions within a laminar separation bubble. Measurements were made for
an angle of attack of 4°, Reynolds numbers of 80 000 and 125 000, and free-stream turbulence
intensities ranging from 0.10% to 1.94% in order to distinguish between Reynolds number
and turbulence intensity effects.

6.1 Low Reynolds Number Flow Over an Airfoil and
the Effects of Turbulence Intensity

Results from the parametric study show that increasing the level of free-stream turbulence
intensity leads to a reduction in separation bubble length, largely due to an upstream
shift in mean transition and, consequently, mean reattachment. At low angles of attack,
the reduction in separation bubble length leads to a slight reduction in airfoil lift due to
the reduction in local suction over the airfoil. However, at pre-stall angles of attack, the
reduction in separation bubble length alleviates the loss of suction at the location of the
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suction peak, thereby increasing lift, and can delay stall. The main factors in determining
airfoil lift are the length of the separation bubble and its location on the surface of the
airfoil in relation to the suction peak. At higher chord Reynolds numbers, the effects of
increasing free-stream turbulence intensity are reduced, as increases in either parameter
have similar effects on mean bubble topology. While the effects of these two parameters on
mean bubble topology and airfoil lift are similar, the underlying effects on the separated
shear layer transition process differ substantially.

An analysis of fluctuating surface pressure measurements shows that at elevated levels
of free-stream turbulence intensity, disturbances reach maximum values earlier upstream,
leading to the upstream shift in the location of mean transition. The results also show that
spatial amplification rates are decreased at higher turbulence intensity levels, attributed to
the decreased bubble size. Despite the increased stability, mean transition shifts upstream,
which is therefore solely a result of the larger initial amplitude of perturbations at the
elevated levels of free-stream turbulence intensity. In contrast, the decrease in mean bubble
size resulting from increased chord Reynolds numbers is due to an increase in spatial
amplification rates, i.e., due to a less stable bubble. This difference is a key in differentiating
the effects of increased turbulence intensity from those of increased chord Reynolds number
on formed separation bubbles.

Frequency spectra of the fluctuating surface pressures show that, as the level of free-
stream turbulence intensity is increased, the band of detectable amplified frequencies in the
separated shear layer broadens. This broadening is the result of a higher energy content
over a broader range of frequencies in the free-stream at the higher levels turbulence
intensity, leading to earlier detectable levels of perturbations in the separated shear layer
over a broader range. An initial decrease in the most amplified disturbance frequency is
observed for increasing the free-stream turbulence intensity to moderate levels (Tu ≤ 0.50%),
in agreement with flow stability considerations reported in previous studies on laminar
separation bubbles. At the higher turbulence intensity levels investigated, an increase in the
most unstable frequency of the bubble is observed, in addition to an apparent suppression
of separation at lower angles of attack. The combination of these results suggest that
the transition process over the suction side of the airfoil is altered at elevated levels of
free-stream turbulence intensity, which is shown to be due to bypass transition taking place
in the boundary layer upstream of separation by detailed PIV measurements.
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6.2 Free-stream Turbulence Intensity Effects on Sepa-
ration Bubble Flow Development

Flow field measurements with PIV are compared to mean surface pressure distributions
for Rec = 80 000 in order to compare estimations of mean bubble topology using the
two methods. The results show that estimations of mean separation, transition, and
reattachment using both methods are within ±0.02c (6% of the predicted separation bubble
length) at the baseline level of free-stream turbulence intensity. When the level of turbulence
intensity is increased to 0.50% and the length of the separation bubble decreases, both
methods are impacted by increasing measurement uncertainty, and the agreement of the
mean separation and reattachment locations falls to be within ±0.09c. This uncertainty
corresponds to about the length of the bubble estimated with the PIV measurements, or
about half of that estimated with the mean surface pressure measurements. The estimation
of mean transition remains within ±0.02c. Therefore, while it is difficult to quantify which
method gives a more accurate representation of the bubble topology with increasing Tu,
both methods estimate a decrease in separation bubble length, as well as an accurate
estimation of mean transition.

Velocity fluctuations along the boundary layer displacement thickness reveal that larger
velocity fluctuation amplitudes are detected earlier upstream as the level of turbulence
intensity or Reynolds number are increased. This leads to the upstream shift in mean
transition, as was discussed in Section 6.1 based on fluctuating surface pressure measu-
rements. In addition, significant streamwise velocity fluctuations are detected upstream
of the separation bubble at the highest level of turbulence intensity investigated. Spatial
amplification rates computed using velocity fluctuation amplitudes decrease with increasing
turbulence intensity and increase with increasing Reynolds number, consistent with the
conclusions drawn using fluctuating surface pressure measurements (Section 6.1). Therefore,
the upstream shift in mean transition with increasing turbulence intensity is a result of
larger initial amplitudes of perturbations at the elevated turbulence intensity levels, while it
is associated with decreased bubble stability at higher Reynolds numbers. Two-dimensional
wavenumber-frequency spectra of the velocity fluctuations along the boundary layer displa-
cement thickness show that the energy associated with the velocity fluctuations becomes
more broadband in both time and space with increasing turbulence intensity, extending
the conclusion of disturbances becoming more broadband in time discussed in Section 6.1.
Average streamwise wavelengths and convective velocities of disturbances increase with
increasing free-stream turbulence intensity, with the latter ascribed to the increase in the
average separated shear layer velocity as the bubble size is reduced. As a result, the funda-
mental disturbance frequency of the separation bubble is relatively constant for moderate
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increases in the free-stream turbulence intensity, despite significant changes in mean bubble
topology. The dominant streamwise wavelength of disturbances and central disturbance
frequency both increase with increasing chord Reynolds number.

Roll-up of the separated shear layer becomes less coherent across the span of the airfoil as
the level of free-stream turbulence intensity is increased, showing similarities with previous
investigations performed in elevated disturbance environments. As the rollers convect
downstream, the spanwise deformations are amplified and ultimately lead to the breakdown
of the structures. This breakdown occurs sooner at elevated levels of turbulence intensity due
to the initial deformation of the structures at roll-up. Increasing the chord Reynolds number
also increases the initial amplitude of the spanwise undulations, leading to sooner vortex
breakdown. Average wavelengths of the spanwise deformations are found to be in good
agreement with previous investigations of separation bubbles for all turbulence intensity
levels investigated. At elevated levels of turbulence intensity streamwise streaks of low speed
fluid are observed, originating in the boundary layer upstream of the separation bubble,
with the streaks most notable at the highest level of turbulence intensity investigated.

A Proper Orthogonal Decomposition (POD) performed on the fluctuating velocity fields
measured in both the side and top view PIV configurations shows that, as the level of
turbulence intensity is increased, the energy of the velocity fluctuations is spread over
a larger number of modes, consistent with the observed decrease in shear layer roller
coherence. At the baseline turbulence intensity level, the two most energetic modes in
both PIV configurations are paired, and are shown to represent the velocity fluctuations
associated with the shear layer rollers. As the level of turbulence intensity is increased, the
modes associated with the shear layer rollers shift to higher mode numbers, indicating that
they represent less fluctuating velocity energy. At the highest turbulence intensity level
investigated, the most energetic mode in the side view POD is characterized by a large
wavelength, dominated by low frequencies in the spectra of the POD temporal coefficient.
In the top view POD, the first two modes at the highest level of turbulence intensity
investigated are paired and represent the streamwise streaks. Increasing the Reynolds
number does not significantly change the topology of the POD modes, but does lead to a
shift in the modes describing the shear layer rollers to higher mode numbers.

At the highest turbulence intensity level investigated, the sum of the side and top
view results show that while a separation bubble does still form, the dynamics are altered
significantly from those observed at lower turbulence intensity levels. Notably, streamwise
streaks form upstream of the separation bubble, as a result of bypass transition in the
boundary layer, and lead to significant streamwise velocity fluctuations upstream of the
separation bubble, and alter the flow dynamics within the bubble itself, and ultimately
leading to changes in the transition characteristics of the separated shear layer.
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Chapter 7

Recommendations

From the conclusions of the present investigation, the following recommendations for
continued work are made:

1. The results in this thesis clearly demonstrate that the effects of free-stream turbulence
intensity must be considered in engineering designs employing low Reynolds number
airfoils. Specifically, the lift was shown to decrease at low angles of attack and increase
at pre-stall angles of attack with increasing free-stream turbulence intensity, a finding
which must be considered by designers. In addition, the transition process in the
separated shear layer is affected by increasing free-stream turbulence intensity, and
thus care should be taken in simulations to properly model expected free-stream
turbulence intensities.

2. Employing a form of a controllable turbulence generating grid could offer the possibility
of studying transient effects of free-stream turbulence intensity on separation bubbles
and the attendant changes in airfoil performance, thus being representative of gusts
and atmospheric turbulence. Coupled with force balance measurements enabling
time-resolved force measurements, this experimental configuration would give the
investigator the ability to measure performance over a range of free-stream and
operating conditions.

3. Determining the level of free-stream turbulence intensity at which laminar separation
is suppressed would also be of practical interest. At this high level of free-stream
turbulence intensity, the flow would be turbulent beginning near the leading edge of
the airfoil and would therefore be comparable to flow at high Reynolds numbers.

4. The focus of this investigation was on the effects of free-stream turbulence intensity
on separation bubbles, and thus the effects of the length scale of the turbulence for a
given level of intensity should be investigated. While some previous investigations
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have considered this problem and suggest that the effects of the turbulent length
scale are less significant than those of the intensity [39, 53], it would be worthwhile to
revisit the problem with more powerful measurements techniques such as PIV.

5. A stability analysis of the mean fields measured in the present investigation should be
completed and compared to other investigations which induce a mean flow deformation
via controlled disturbances. This analysis will enable a comprehensive comparison of
stability characteristics of separation bubbles subjected to different forms of forcing.
Specifically, comparisons to other forms of broadband forcing would be insightful.

6. Due to the increasing three-dimensionality of the flow with increasing free-stream
turbulence intensity, further insight into separation bubble dynamics at elevated
levels of free-stream turbulence intensity would benefit greatly from three-dimensional
measurements or simulations. The planar measurements of the current investigation
are insightful but measurements with tomographic PIV for example would enable a
more complete characterization of the separation bubble flow development.

7. Clear evidence of streamwise streaks forming at the higher levels of free-stream
turbulence intensity was observed, with these streaks originating upstream of the
separation bubble. Boundary layer measurements over the fore portion of the airfoil
could provide quantification of these streaks, but would also provide insight into
fluctuations present in the boundary layer at all other levels of free-stream turbulence
intensity investigated. These measurements could be made via hot-wire anemometry
and would give some insight into the receptivity process at the airfoil leading edge,
as well as how the perturbations develop within the boundary layer upstream of the
separation bubble.

8. Performing a similar experimental campaign as the PIV investigation here, but over
a different airfoil geometry would be of benefit. A good candidate airfoil should have
a notably different pressure distribution over the suction side, resulting in different
separation bubble dynamics. This will help to shed light on the effect of the pressure
gradient on separation bubble dynamics, and the influence of free-stream turbulence
intensity.
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Appendix A

Experimental Uncertainty

As with any experimental investigation, it is important to quantify the uncertainty in
reported values. The goal of this Appendix is to outline the methods used to compute
the uncertainties of measured and derived quantities presented throughout this thesis.
Throughout this Appendix, the variable ∆uε will be used to denote the uncertainty in
a quantity ε, reported over a 95% confidence interval. Further, uncertainties in a given
measurement are computed using a root-sum-square approach [173, 174]:

∆uε =
√√√√ n∑
i=1

(∆uεi)2 (A.1)

Not all quantities can be directly measured and therefore must be calculated from other
measured quantities. For derived quantities such as these, uncertainties are propagated
through the deriving equation based on the following:

∆uε =

√√√√ n∑
i=1

(
∂εi
∂i

∆uεi
)2

(A.2)

where the subscript i refers to variables in the equation for ε and represent the individual
error sources. In some cases of derived quantities, the equation for the desired quantity may
be too complex to apply Eq. A.2 and thus, a propagation of error method can be employed.
For this method, the uncertainty in the measured variables is applied for both the high
and low estimates, the derived quantity re-computed, and the results used to determine an
uncertainty range of the derived quantity. A summary of all experimental uncertainties is
provided in Table A.1, with details of the calculations provided in the following sections.
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Table A.1: Summary of experimental uncertainties.

Quantity Reynolds number Uncertainty Applies to

CP |suction

100 000 ±0.05
Figs. 4.3, 4.8, and 5.180 000, 150 000 ±0.03

125 000, 200 000 ±0.02

CP |pressure

80 000 ±0.03
Figs. 4.3, 4.8, and 5.1100 000, 125 000 ±0.02

150 000, 200 000 ±0.01

Cl
100 000 ±0.02 Figs. 4.1, 4.2, and 4.7150 000, 200 000 ±0.01

`b/c All 0.03 Figs. 4.6 and 4.10
l/c|max All ±6%[20] Table 5.4
λx All ±0.024 Table 5.3 and Fig. 5.9

p′ All ±
√

0.012 + 0.2p′2 Figs. 4.11, 4.12, and 4.14
Fig. 5.7

Uc All ±13% Table 5.3
XS/c, XT/c, XR/c All ±0.02 Figs. 4.5 and 4.9

xS/c from U All ±0.1
Figs. 5.2 and 5.3

Table 5.2
xT/c from U All ±0.01
xR/c from U All ±0.02

St0, ∆St 80 000 ±2.4 Figs. 4.16, 4.17, and 5.8
125 000 ±1.5 Table 5.2 and Fig. 5.9

U/U0 All 0.05 Fig. 5.2
u′/U0, v′/U0 All 0.03 Fig. 5.5
UX/U0 All 0.06 Figs. 5.18 and 5.19

σp′,max All ±6 Figs. 4.13 and 4.15
Table 5.3

σu′,max , σv′,max
80 000 ±4.5 Table 5.3125 000 ±8.1

q0 All ±0.65 Pa
Tu All ±0.07%

U0, Rec
80 000 ±2%

100 000, 125 000 ±1%
150 000, 200 000 ±0.5%

α All ±0.16°
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A.1 Experimental Conditions
The mean free-stream velocity is determined based on the contraction pressure drop as
outlined in Appendix B. The free-stream velocity uncertainty has contributions from the
calibration between the contraction pressure drop and free-stream dynamic pressure, as
well as Bernoulli’s principle used to calculate the free-stream velocity from the free-stream
dynamic pressure. First, the uncertainty from the contraction pressure drop measurement
is propagated through the determined calibration relation of the form q0 = A ·∆Pc + B,
where A and B are the constants determined in the calibration (see Appendix B). This is
done using Eq. A.2:

∆uq0 =
√

∂q0

∂∆Pc
·∆u∆Pc

The resulting uncertainty is added to the root-mean-square error of the calibration fit
using the root-sum-squared method to yield a final uncertainty in the the free-stream
dynamic pressure of less than ±0.65 Pa. This uncertainty is then propagated through
Bernoulli’s equation to determine the uncertainty in the free-stream velocity. Error in
calculating the density of air was assumed to be negligible as the ambient temperature
and pressure in the laboratory were monitored regularly with devices having relatively
high precision. In addition, all free-stream velocities investigated were well below the
level at which compressibility effects become important. The resulting uncertainty in the
free-stream velocity is less than ±2% for all chord Reynolds numbers investigated. Similarly,
if there is negligible error in calculating the kinematic viscosity of air, the chord Reynolds
number has the same uncertainty as that of the free-stream velocity.

The angle of attack of the airfoil is set using a digital protractor affixed to the axis
of rotation of the airfoil with an associated accuracy of ±0.1°. To find the aerodynamic
zero, the airfoil is first set to zero angle of attack by eye, then, sectional lift coefficients are
computed for positive and negative angles of attack within the linear regime of the airfoil
lift curve, as shown in Fig. A.1. Based on this method, an additional error in the airfoil
angle of attack is introduced based on the goodness of fit of the linear regression. For this
investigation, the root-mean-squared error of the linear fit is 0.13° which when combined
with the resolution error yields an uncertainty in the airfoil angle of attack of ±0.16°.

The free-stream turbulence intensity was characterized by means of normal hot-wire
anemometry in the empty test section. For normal hot-wire measurements, the uncertainty
in U0 and u′ in flows where the turbulence intensity is below approximately 30% is less than
about 5% [175]. Further, since the measurements are taken away from any walls and the
probe holder is directly behind the wire, rectification errors and influences from the probe
itself are negligible [175, 176]. Therefore, in this investigation where mean flow speeds are
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Figure A.1: Plot of method used to determine the aerodynamic zero of the airfoil. The
free-stream conditions were such that Rec = 100 000 and Tu = 0.10%.

relatively high and turbulence intensities are relatively low, combining these uncertainties
using Eq. A.2 yields an uncertainty in Tu of approximately ±0.07%.

A.2 Surface Pressure Measurements
The two types of surface pressure measurements made in this investigation were mean and
fluctuating surface pressure measurements. The sectional lift coefficient and mean bubble
topology are also derived from the mean surface pressure distributions, while spatial growth
rates and disturbance frequencies are determined from the fluctuating surface pressure
measurements. The calibration curves for all pressure transducers were provided by Kurelek
[20]. In order to account for the sensitivity of the pressure transducers to temperature as
well as the difference in experiment and calibration temperatures, a zero pressure offset was
applied before every measurement.

As summarized in Table A.1, the uncertainty in the pressure coefficient depends on the
chord Reynolds number, as the uncertainty magnitude is fixed based on the full-scale range
of the pressure transducer and thus becomes a decreasing percentage of the free-stream
dynamic pressure. The pressure coefficient is derived from the mean surface pressure
measurements and is also influenced by uncertainty in the mean free-stream velocity. As
discussed previously, uncertainties in the air density are assumed to be negligible, and
the following equation therefore shows the derivation of the uncertainty in the pressure
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coefficient:

∆uCP
=

√√√√(∂CP
∂U0

·∆uU0

)2

+
(
∂CP
∂∆P ·∆u∆P

)2

For the parametric study, a transducer with a full scale range of 1250 Pa and accuracy of
±1.7 Pa was used for the suction side pressure measurements, yielding an uncertainty in
the pressure coefficient of less than ±5%. All pressure side measurements, and the suction
side measurements in the PIV study, were conducted with a transducer having a full scale
range and accuracy of 500 Pa and ±0.7 Pa, respectively, resulting in a pressure coefficient
uncertainty of less than ±3%.

To compute the sectional lift coefficient from the mean surface pressure distributions, a
numerical integration scheme was employed. Here, the uncertainty in each surface pressure
measurement acts on its integration window. As such, the uncertainty in the lift values was
taken to be the root-sum-square of the uncertainties over each of the integration windows
along the chord length of the airfoil:

∆uCl
=
√√√√ n∑
i=1

[(
∆uCP,suction · (∆x/c)

)2

suction
+
(
∆uCP,pressure · (∆x/c)

)2

pressure

]

The resulting uncertainty in the sectional lift coefficient is estimated to be less than ±0.02
per unit span.

Mean bubble topology is estimated from the surface pressure distributions by finding
the intersections of the lines fit to the suction side pressure distribution (see Fig. 4.4).
Therefore, the associated uncertainty is proportional to the local pressure tap spacing and
has a minimum value of half of the local pressure tap spacing. This value varies along the
chord length and increases toward the aft portion of the airfoil. However, since the change
in slope is small near separation, particularly for low angles of attack (see Fig. 4.4), a more
conservative estimate of separation would be to within the spacing of two pressure taps,
or ±0.02c. On average, transition and reattachment can be estimated more precisely, to
within one tap spacing, and since this occurs over the aft portion of the airfoil where the
spacing is greater, is also approximately equal to ±0.02c. The separation bubble length
is derived from the locations of mean separation and reattachment and therefore has an
uncertainty less than ±0.03c.

The uncertainty in the root-mean-square of the fluctuating surface pressure measurements
has an error associated with the calibration of the microphones as well as the noise floor of the
measurements. The noise floor has contributions from ambient noise in the laboratory, fan
noise, other acoustics present in the wind tunnel, and electrical noise in the data acquisition

144



system. Therefore, the actual noise floor was taken to be the lowest measurement of p′ across
all of the microphones for a given flow condition and was, on the average, approximately
±0.01q0. It is of interest to note that the noise floor in the facility of this investigation
is about half of that estimated by Boutilier [151] in the open-return wind tunnel also
located in the Fluid Mechanics Research Laboratory at the University of Waterloo. The
uncertainty arising from the calibration comes from assuming a linear microphone response
to varying input amplitudes, as well as an equal response across all frequencies. Boutilier
[151] estimates that the total uncertainty as a result of these two sources is approximately
20% of the root-mean-square measurement. Combining these two sources of error yields a
total uncertainty in p′/q0 of less than ±

√
0.012 + (0.2p′/q0)2.

Spatial amplification rates estimated from the fluctuating surface pressure measurements
have an uncertainty that is dominated by the estimation of the exponential growth region.
The uncertainty in the estimated spatial amplification rates is a result of the limited
spatial resolution of the microphones, leading to an uncertainty in the streamwise distance
over which the growth occurs, as well as the relatively large uncertainty in the root-
mean-square pressure measurements, resulting in an uncertainty in the amplitude of the
disturbance growth. In most cases, maximum spatial amplification rates are computed over
the streamwise distance of three microphone locations (≈ 0.05c). The expected uncertainty
in the streamwise extent of disturbance amplification is related to the spacing between
microphone locations and is estimated to be ±0.01c. Growth of disturbances typically
begins from the noise floor of the microphone measurements and saturates in the range
of 0.2 . p′/q0 . 0.4. The difference between these two values is used in the calculation
of the amplification factor, and has an uncertainty approximately equal to that of the
measurement at the end of the amplification region. Combining these two effects using
Eq. A.2, the uncertainty in the maximum amplification rate of disturbances is estimated to
be approximately ±6.

The frequency content of the fluctuating surface pressure measurements is used to
determine both the unstable band of frequencies as well as the central disturbance frequency
of the separated shear layer disturbances. While the calculation of the frequencies yields a
resolution of 2.4 Hz, the uncertainty in St0 and ∆St is much larger. The unstable frequency
band is determined by identifying the beginning and end of the range of amplified frequencies.
The lower limit of the unstable band is taken to be the frequency at which there is an
increase in the energy content of disturbances in the separated shear layer, while the end is
determined as the approximate location at which the energy content of the disturbances
returns to the same energy level as at the beginning of the unstable range. The central
disturbance frequency is computed as the arithmetic mean of these two values. This process
is best shown schematically, and is presented for an example spectrum in Fig. A.2. The
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Figure A.2: Sketch of the method used to determine the unstable frequency band. The
energy spectrum is taken for Rec = 100 000, α = 8°, and Tu = 0.10%. Dashed lines mark
the beginning and end of the unstable frequency band while the solid line marks the central
disturbance frequency. Shaded grey regions denote the uncertainty limits.

uncertainty in the frequency at beginning and end of the unstable range was found by
shifting the location to higher and lower frequencies, and assessing whether it was still
an accurate representation of beginning or end of the unstable band. By applying this
technique to several spectra for different free-stream conditions, it was determined that, on
average, the uncertainty in the frequency at the beginning of the unstable range is ±40 Hz
(St ≈ 1.1 in Fig. A.2) and ±60 Hz (St ≈ 1.6 in Fig. A.2) at the end of the unstable range.
These are shown by the shaded dark grey regions in Fig. A.2. The uncertainty in the central
disturbance frequency (and unstable band width) is taken to be the root-sum-square of
these values, ±72 Hz (St ≈ 2), shown by the shaded light grey region in Fig. A.2.
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A.3 PIV Measurements
Uncertainty in PIV measurements can be difficult to quantify due to the large number of
factors that can influence the final velocity fields. In this investigation, estimates of the
random error in PIV measurements were computed using the particle disparity method
[177] built into DaVis 8. For the cases examined, the largest uncertainty in the side view
measurements occurred in the separated shear layer and near the wall as a result of the large
velocity gradients. Similarly, for the top view measurements, uncertainty increased with
chordwise distance as the shear layer rollers grew and the flow transitioned to turbulence.
On the average, the uncertainty in the mean streamwise velocity was found to be less
than 5% of the mean free-stream velocity everywhere. As such, this value was used as an
estimate for the uncertainty over the entire velocity field in order to determine uncertainties
in derived quantities.

Uncertainty in mean bubble dimensions and location was assessed by applying the
uncertainty in mean velocity to the mean fields and then propagating it to the estimated
parameters. In other words, 5% of the free-stream velocity was added and subtracted from
the mean fields and the topology was assessed for each case. In such a manner, the most
extreme locations of the mean bubble topology would be obtained.

Similarly to the method in determining the effects of uncertainty on mean bubble
topology, the effect of PIV uncertainty on integral boundary layer parameters was assessed
by adding and subtracting the uncertainty from the field before computing the parameters.
In this way, upper and lower bounds on the parameters could be determined.

For the root-mean-square quantities of the fluctuating velocities as measured by the low
speed PIV system, the uncertainty was assessed by computing the standard deviation of the
uncertainty fields as determined in the DaVis 8 software. Typical uncertainties along the
displacement thickness were 0.005U0, and thus this value was assigned to the rms values
sampled along the displacement thickness.

Following the uncertainty of the root-mean-square velocity fields, the uncertainties in
σu′,max and σv′,max were assessed by adding and subtracting the uncertainty in the root-
mean-square value along the location at which the value was measured in order to find
uncertainty bounds on the quantity.

Spectra of the wall-normal velocity fluctuations were computed using Welch’s method
[155], where the window size was selected such that the same frequency resolution as the
fluctuating surface pressure spectra was retained. Then, following the methodology in
Fig. A.2 similar uncertainty values in St0 and ∆St were obtained for all cases investigated.

To determine the average convective velocities of disturbances, as well as the streamwise
wavelength of the most amplified disturbances, two-dimensional wavenumber-frequency
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spectra were computed for the wall-normal velocity fluctuations along the boundary layer
displacement thickness. Welch’s method [155] was used to compute the spectra in both time
and space, with window sizes of 210 and 28, respectively, and using a 50% window overlap.
The resulting resolutions in frequency and wavenumber are ±2.4 Hz and ±0.15 mm-1,
respectively. The uncertainty in the wavenumber results in an uncertainty in the streamwise
wavelength (λx/c) of ±1.2× 10−4. The wavenumber uncertainty along the convective ridge
is ±0.005 mm-1, corresponding to the values used in computing the convective velocity of
disturbances. The resulting uncertainty in convective velocity would then be less than 0.4%
of the mean free-stream velocity. However, the root-mean-square error of the fit used to
find the convective ridge is approximately 0.11 mm-1 and therefore has a greater impact on
the convective velocity estimates, resulting in a final uncertainty estimate of the convective
velocity of less than 13% of the free-stream velocity.
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Appendix B

Wind Tunnel Characterization

B.1 Free-stream Velocity Calibration
Prior to experiments, the velocity in the empty test section was calibrated against the
contraction pressure drop for all conditions investigated (i.e., for each of the turbulence
generating grids). Details of the turbulence generating grid geometry are provided in
Appendix C. Under ideal conditions (i.e., no losses) the dynamic pressure in the test section
can be related to the contraction pressure drop using Bernoulli’s equation and conservation
of mass. For a streamline between the inlet and exit of the contraction, we can write:

Pi + 0.5ρU2
i = Pe + 0.5ρU2

e

and conservation of mass gives,
ρUiAi = ρUeAe

where the subscripts i and e represent the inlet and exit of the contraction, respectively, and
A represents the cross-sectional area. The geometry of the contraction gives Ai/Ae = 9. An
expression for the test section dynamic pressure as a function of the contraction pressure
drop can then be written as:

q0 = 1.012(Pi − Pe) = 1.012∆Pc

This relation indicates that the relationship between the contraction pressure drop and
free-stream dynamic pressure is linear. For ideal conditions (i.e., no losses), this relation
would hold but the true relationship must be determined experimentally and is subject to
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losses in the contraction. Therefore, the general form of the calibration is represented by:

q0 = A ·∆Pc −B (B.1)

where A and B must be determined experimentally, and B represents losses.
For each free-stream condition, the calibration was conducted in an empty test section

using 1 m/s intervals between 7 m/s and 16 m/s, spanning the Reynolds number range of
this investigation. For each calibration point, the static pressure drop across the contraction
as well as the dynamic pressure, measured at the location of the midspan of the leading
edge of the airfoil, were measured using two Setra Model 239 pressure transducers having
full scales ranges of ±250 Pa. The signals were simultaneously sampled at 1 kHz for 10 s
using a National Instruments USB-6259 data acquisition unit. The values were averaged
and converted into pressures based on the transducer calibrations, and are presented in
Fig. B.1 for each of the flow conditions investigated.

B.2 Flow Conditions
Once the free-stream calibration relations were determined, the flow conditions at each of
the investigated chord Reynolds numbers were characterized. This was done by means of
hot-wire anemometry in the empty test section. A normal Dantec 55P11 probe, connected to
a Dantec Streamline Constant Temperature Anemometry system, was placed at the location
corresponding to the midspan of the airfoil leading edge. The hot-wire was calibrated
in-situ against a reference Pitot-static tube placed approximately 3 cm below it. The mean
free-stream velocity was determined from the mean dynamic pressure measured using a
Setra Model 239 pressure transducer having a full-scale range of ±250 Pa. A total of 104

samples were recorded at a rate of 1 kHz and averaged. Hot-wire signals were sampled
using a National Instruments PCI-4472 data acquisition card at a rate of 100 kHz for a
total of 223 samples. Calibration points were spaced in 1 m/s intervals between the lowest
and highest free-stream velocities in this investigation. A fourth-order polynomial was then
fit to the data using a least-squares approach, with the results shown in Fig. B.2.

For each flow condition, the integral length scale of the turbulence was computed from
the hot-wire measurements. First, the auto-correlation function of the free-stream velocity
fluctuations was computed with an example result shown in Fig. B.3. The integral length
scale can be computed from this auto-correlation function by integrating the result, and
then multiplying it by the mean free-stream velocity, assuming Taylor’s hypothesis is valid
[85]. However, since the function fluctuates around zero, an exponential curve fit is applied
to the result and integrated instead in order to yield a more converged result [178].

150



(a) No screen (b) Fine screen

(c) Medium screen (d) Coarse screen

(e) Grid

Figure B.1: Free-stream dynamic pressure as a function of contraction pressure drop for
each flow condition investigated. Equations for the linear fits are of the form of Eq. B.1.
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Figure B.2: Hot-wire calibration.

Figure B.3: Auto-correlation of u for the no screen condition at Rec = 100 000.
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Appendix C

Turbulence Generating Grids

In order to increase the level of free-stream turbulence intensity in the test-section, turbulence
generating grids were placed just upstream of the test section inlet, as shown in Fig. 3.2.
Close-up photographs of the grids used in this study are shown in Fig. C.1. The grids were
designed so as to fit in between the flanges which connect the outlet of the contraction to
the inlet of the test section, as depicted in Fig. 3.1. The largest grid was a square array
of rectangular elements which could be inserted directly between the two flanges. The
smaller three grids however were made from woven wire mesh screens, and thus required a
structure in order to hold them in place. Simple square steel frames were designed to hold
the woven wire meshes in tension so that they could be inserted between the two flanges.
The frames were designed to have an inner dimension equal to that of the inside dimension
of the test section, and an outer dimension small enough to fit inside the bolts used to hold
the test section and contraction flanges together. In this manner there would be no step or
gap at the inside edge of the test section, and the same bolts could be used to tighten the
flanges together, effectively sandwiching the frames in place. The frames were constructed
by Rob Kraemer in the University of Waterloo’s Engineering Machine Shop and a simple
shop drawing is included on the following page. For the larger two woven wire screens, a
pair of these frames were used and spot welded together with the screen held in tension
between them. For the smallest screen, it was discovered that the spot welding would melt
the wires. Therefore, for this screen, the frames were glued together while the screen was
held in tension between them. Characterization of the turbulence generated by the grids
when installed upstream of the test section is discussed in Appendix B.
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(a) Fine screen. (b) Medium screen.

(c) Coarse screen. (d) Square array of rectangular elements.

Figure C.1: Close-up photographs of the turbulence generating grids. Dimensions are
summarized in Table 3.1.
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Appendix D

Airfoil Microphone Re-Calibration

Since the microphones were installed and calibrated in the year 2011 when instrumented by
Gerakopulos [150], the sensitivities of the microphones were assumed to have drifted slightly.
Therefore, prior to experiments, the microphone responses were re-calibrated against a
Brüle and Kjær 4192 reference microphone. The airfoil was placed in a large room away
from any reflective surfaces, while the reference microphone was placed approximately 1 cm
above the port of the microphone being calibrated. The calibration procedure involved
playing tones through a loudspeaker in 1/3 octave bands between 100 Hz and 5000 Hz, and
measuring the Sound Pressure Level (SPL) recorded by both the reference microphone and
surface embedded microphone. For each tested frequency, a sound pressure level between
90 dB and 95 dB as measured by the reference microphone was targeted such that it was
significantly above the background noise floor. A summary of the calibration test points is
provided in Table D.1.

Table D.1: Summary of microphone calibration test matrix.

Calibration point 1 2 3 4 5 6
1/3 octave band centre [Hz] 100 125 160 200 250 315

7 8 9 10 11 12
400 500 630 800 1000 1250
13 14 15 16 17 18
1600 2000 2500 3150 4000 5000

At each tested frequency, the microphone sensitivity was computed based on the reference
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microphone measurement and its known sensitivity. Then, the sensitivity value assigned to a
given microphone was computed as the average sensitivity across all tested frequencies. The
obtained sensitivities are provided in Table D.2, along with the values that were originally
computed by Gerakopulos [150]. The results show that, on the average, the sensitivity of
the microphones has decreased by approximately 9% of their original values.

The relative frequency response of the microphones was also evaluated by first normali-
zing the measurement at each frequency by the reference microphone measurement. Then,
the response at all frequencies was normalized by the response at a frequency of 250 Hz.
An example of this normalization is provided in Fig. D.1 and shows that the response of
the microphone is relatively flat across the investigated frequencies.

Figure D.1: Relative dB response for microphone number 1 (X/c = 0.73). The reference
frequency is 250 Hz.
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Table D.2: Summary of the microphone re-calibration.

Sensitivity [mV/Pa]
Microphone Chordwise location (X/c) Gerakopulos [150] Current % change

1 0.73 191.3 185.9 -2.8
2 0.66 187.1 172.2 -7.9
3 0.6 205.5 181.2 -11.8
4 0.56 193.9 177.8 -8.3
5 0.51 189.6 155.5 -18
6 0.47 197.7 181.6 -8.2
7 0.43 167.9 141.6 -15.7
8 0.41 167.3 167.8 0.3
9 0.39 193.6 203.7 5.2
10 0.36 173.4 187.7 8.3
11 0.34 159.5 150.4 -5.7
12 0.32 179.3 163.7 -8.7
13 0.3 197.5 180.5 -8.6
14 0.28 199.9 185.1 -7.4
15 0.26 150.0 130.6 -12.9
16 0.24 166.2 86.4 -48
17 0.21 193.8 182.4 -5.9
18 0.21 192.3 176.8 -8.1
19 0.21 209.9 184.7 -12
20 0.21 158.3 158.5 0.1
21 0.19 181.6 188.2 3.6
22 0.17 173.8 165.2 -5
23 0.15 156.7 147.2 -6.1
24 0.13 189.6 177.7 -6.3
25 0.08 184.2 137.0 -25.6
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Appendix E

Supplementary Results

This Appendix presents results which support the discussions presented throughout this
thesis but were omitted from the previous chapters for conciseness. The results are presented
here for completeness of the data sets presented.

E.1 Mean Surface Pressure Distributions
In Chapter 4, mean surface pressure distributions were shown for four angles of attack in
order to highlight trends in the effects of Tu on mean separation bubble topology. However,
data were collected in 1° angle of attack increments between 0° and 20°, and thus a large
portion of the data was not shown. Here, in Fig. E.1, six additional angles of attack are
shown. The selected angles of attack were chosen to fit in the gaps left by the angles
of attack presented in Chapter 4. The data show the same trends that were discussed
throughout Chapter 4 and therefore no further discussion is required. All mean bubble
topology from these distributions was extracted and presented in Figs. 4.5, 4.6, 4.9, and 4.10.

E.2 PIV Top View Mean Fields
While the main purpose of the top view PIV configuration was to examine the dynamics of
the spanwise flow development, it is informative to assess the time-averaged statistics. For
both chord Reynolds numbers and all Tu levels investigated, contours of mean chordwise
and spanwise velocity are presented in Fig. E.2, while contours of the root-mean-square
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Figure E.1: Mean surface pressure distributions.
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Figure E.1 (cont.): Mean surface pressure distributions.
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Figure E.1 (cont.): Mean surface pressure distributions.
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of the chordwise and spanwise velocity fluctuations are presented in Fig. E.3. It should
be noted that, in general, all presented results fall within the random error of the PIV
measurements (±0.05U0) and thus the following discussion is limited.

Figure E.2: Contours of mean chordwise velocity.

At the baseline level of Tu for both chord Reynolds numbers, the results show relatively
spanwise uniform contours of chordwise velocity, with the exception of two low-speed regions
at Rec = 125 000. However, at the higher levels of Tu, there are notable spanwise variations
in the mean chordwise velocities, with variations up to 0.05U0 observed across the span of
the measurement region. The non-uniformity across the span is more evident in the contour
plots of u′X and w′ presented in Fig. E.3, where a notable variation across the span of the
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Figure E.2 (cont.): Contours of mean spanwise velocity.

PIV measurements is observed. This spanwise variation in the time-averaged quantities
indicates that there is a prefered spanwise wavelength of the flow, and is consistent with the
variation in mean reattachment location across the span of a separation bubble observed by
Michelis et al. [137]. In ideal conditions, the deformation and breakdown of the shear layer
rollers should occur at random spanwise locations in time, thus leading to time-averaged
quantities that are uniform across the span of the airfoil. However, in experiments, the
spanwise instability of the structures may lock onto some perturbation in the facility which
may arise from model imperfections, non-uniformity in the flow, etc. Further, measurement
uncertainty makes this uniformity difficult to accurately represent.

At the elevated Tu levels, the spanwise non-uniformity is also present (Fig. E.3) and has
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Figure E.3: Contours of the root-mean-square of the chordwise velocity fluctuations.

an increasing influence on the mean fields as Tu is increased (Fig. E.2). The non-uniformity
in the mean fields is particularly evident for Rec = 125 000, where the laser sheet was
placed slightly lower in the boundary layer as compared to the cases at Rec = 80 000. The
laser sheet being place slightly lower in the boundary layer also results in lower measured
velocities relative to the free-stream velocity.
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Figure E.3 (cont.): Contours of the root-mean-square of the spanwise velocity fluctuati-
ons.

E.3 Top View POD Results
The discussion of the top view POD results in Chapter 5 was limited to the lower Reynolds
number for conciseness. The results for the higher chord Reynolds number, Rec = 125 000,
are presented in Fig. E.4.
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Figure E.4: Contours of the streamwise and wall-normal components of the spatial POD
modes at Rec = 125 000.
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Figure E.4 (cont.)
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