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Abstract

An energy theoretic approach to augment the existing noise model is proposed by
including the cryogenic (down to 77K) behaviour of the noise spikes due to the regeneration
process (when loop gain → 1) of a relaxation oscillator. This noise model is useful in
many time domain applications, e.g., design of Σ∆ Time-to-Digital Converter (TDC) at
cryogenic temperature for quantum computing [1] with relaxation oscillator. The loop gain
can be lowered towards 1 to increase the oversampling frequency, and subsequently reduce
the quantization noise. The presented noise model tackles the noise spike problem from
regeneration when gmR→ 1.

Three methods are used to obtain the noise model. The first method, a first attempt,
is to identify the potential energy of the macroscopic behaviour of the Schmitt trigger (an
integrated component of relaxation oscillators) with the underlying assumption that the
system can be represented by one degree of freedom. Investigation on the dynamics of the
Schmitt trigger shows a metastable state (maximum energy) and two stable states (mini-
mum energy) which is due to the cross-coupled topology of the circuit. The limitation of
this method is that it ignores the internal degrees of freedom i.e the thermodynamic aspects
appearing as temperature varies (decreases to cryogenic temperature). This limitation is
then addressed in the second method by accounting for the different configurations in which
these internal degrees of freedom manifest, resulting in the distribution of energy among
the different configurations. The concept of free energy is introduced and from the free
energy, the noise model obtained is now in function of temperature. As temperature drops
further, quantum aspects start to arise. A third method is introduced as the temperature
of the oscillator decreases and addresses the manifestation of quantum mechanical effect
(at low temperature limit) with the assumption that the system is represented by one de-
gree of freedom (macroscopic behavior), but with internal degrees of freedom represented
by the immersion of the system in a heat bath with many degrees of freedom. The model
for this method agrees with the second method when gmR→ 1 at high temperature limit,
thus giving us the confidence for the counterpart noise model at low temperature limit,
where the quantum mechanical effects show up.

The experimental results of relaxation oscillators, designed and fabricated in 130nm
CMOS technology, show two regions with different slopes: at higher temperature, the
phase noise is consistent with the noise model prediction where the phase noise (from
thermal noise) is proportional to

√
T ; at lower temperature, the phase noise becomes

relatively constant and the trend agrees rather well with noise model (quantum noise)
at low temperature limit. By changing the regeneration time of the relaxation oscillator
(doubling W

L
of transistors), there is a shift of the crossover temperature of the two regions,
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which is as predicted by the noise model. Finally, a 1-bit Σ∆ TDC is designed, and
fabricated, using the relaxation oscillator, and the measured functional operation of the
TDC agrees with simulations.
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Chapter 1

Introduction

The relaxation oscillator is widely used as a low-power on-chip reference clock generator
in biomedical applications [3] [4], including body area network receivers [5], and time-to-
digital converter [6]. The rising interest in portable devices demands low power and low cost
circuit implementations. For health monitoring applications such as pacemaker, an inter-
mittent power system [7] that operates between active mode and sleep mode could reduce
the power consumption significantly. The wake-up function of such system is inevitable
and can be implemented by using oscillators such as crystal oscillators, LC oscillators, ring
oscillators and relaxation oscillators. Crystal oscillators are bulky and cannot be imple-
mented for on-chip system. LC oscillators demand large area on chip because of the large
on-chip inductor. Ring oscillators can have noise arising from cycle to cycle correlation
from across delay cell stages. Since relaxation oscillators have low power consumption and
have small size, they are favored for such applications. However, with regeneration, relax-
ation oscillators are more susceptible to noise spikes. The focus of this thesis is to present
a phase noise model for the source (emitter)-coupled pair relaxation oscillator. The past
works of phase noise model on oscillators include the first order analysis of linear oscilla-
tory system [8] and threshold crossing [9]. However, these noise models do not apply to
oscillator with noise spikes, which becomes more prominent as the loop gain gmR (gov-
erning regeneration) of the positive feedback loop is lowered towards 1, thus limiting the
frequency of the oscillator [10]. For relaxation oscillators in applications such as Σ∆ TDC,
this limits the oversampling frequency, and subsequently increases the quantization noise.
On the other hand, a relaxation oscillator with gmR→ 1 suffers from the noise spike prob-
lem [11] [12] caused by the positive feedback of the regeneration process. The presented
noise model, like [11], tackles the noise spike problem. Yet, instead of using a nonlin-
ear dynamic approach, an energy theoretic approach [13] is applied. This more physics
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oriented approach extends the predictive power of the model to wide range of operating
temperature and has potential applicability to TDC design for quantum computing [1].

A relaxation oscillator can be constructed with Schmitt trigger and timing components
(R, C) [14]. The dynamics of the relaxation process consists of the fast time scale, which
is governed by the dynamic of the Schmitt trigger, and the slow time scale, which is
governed by the charging/discharging of the capacitor. Since the noise spikes occurs during
the fast dynamic of the system, i.e., the regenerative process of the Schmitt trigger, the
current fluctuation of the Schmitt trigger during metastability is crucial in determining the
fluctuation of the relaxation oscillator. A first attempt on analyzing this metastability is
given in [11]. [11] interprets the potential from the point of view of the gradient of vector
field, which is more of a nonlinear dynamic system approach [12]. In this work, a noise
model of the relaxation oscillator is obtained with energy theoretic approach

This thesis is constructed as following: in Chapter 2, the potential of the gradient of vec-
tor field is now rederived using physics from first principles. This is first by identifying the
potential energy of the macroscopic behavior of the system with the underlying assumption
that the system can be represented with one degree of freedom (the coordinate of the whole
system; in this case, the coordinate is the current). The limitation of this method is that
it ignores the internal degree of freedom, or namely, the ensemble’s individual coordinates
(the charges distribution over energy levels in phase space/eigenenergies).

This limitation is further addressed in Chapter 3 by accounting for the different config-
urations in which these internal degrees of freedom manifest, resulting in the distribution
of energy among the different configurations, and thus energy becomes free energy(with
the entropy in the free energy reflecting the different configurations). The fluctuation is
then carried out by standard thermodynamic procedure from free energy. From the free
energy, the noise model for the Schmitt trigger can be ontained and it is consistent to the
noise model presented in [11].

As temperature decreases, the manifestation of quantum mechanical effect is taken into
account. Calculation of energy levels in phase space becomes calculation of eigenenergies,
which is difficult. Meanwhile, the free energy gives the complete thermodynamic informa-
tion (e.g. heat capacity) of the system, of which only the fluctuation is of our interest.
Noting the above, and for simplification, in Chapter 4, the system is represented by one
degree of freedom (macroscopic behavior), but the internal degree of freedom is ’decoupled’
and is represented by the ’immersion’ of the system in a a heat bath with many degree
of freedom, manifesting in the dissipation (microscopic) of the system. This can be done
by essentially a Langevin approach, which incorporates quantum effect in the heat bath
with many degree of freedom. Meanwhile, the classical fluctuation solution of the Langevin
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approach [15] yields a solution that agrees with the full blown free energy approach, justi-
fying this Langevin approach. The result shows consistency with the noise model provided
by [11] and obtained in Chapter 2 at high temperature limit regime. In addition, it also
provides perspective into low temperature limit regime of the relaxation oscillator. The
above is summarized in table 1.1 in Chapter 1.2.

The relaxation oscillators are designed with 130nm CMOS technology. In Section 5, the
experimental phase noise data of the relaxation oscillators are presented. The experimental
results show two regions with different temperature trend: at higher temperature, the phase
noise is proportional to

√
T as predicted by the noise model. At lower temperature, the

phase noise becomes relatively constant and is consistent with quantum mechanical model.

This noise spike model is applicable in the application of relaxation oscillator in TDC.
By having gmR → 1, the oscillator noise spikes up but the oscillator frequency also in-
creases, resulting in oversampled frequency of Σ∆ TDC [6], using such a relaxation oscil-
lator, increases, hence the oversampling ratio increases. Hence, the quantization noise is
lowered. In Section 6, the functional operation of the TDC is discussed.

1.1 Types of Relaxation Oscillators

A relaxation oscillator is an astable circuit with regenerative switching. It switches contin-
uously between the two unstable states by charging and discharging the timing capacitor.
The frequency of the output waveform is proportional to the value of the timing capac-
itor. Because of its regenerative switching, it produces fast changing output in response
to slow-changing input, which gives a square-wave output waveform. Depending on the
configurations of the relaxation oscillator, it can be classified in three groups:

1. RC relaxation oscillator that use resistive charge and discharge path for the timing
capacitor

2. Constant-current relaxation oscillator that use current sources to charge and dis-
charge the timing capacitor

3. Emitter-coupled/source-coupled multivibrators with timing capacitor across the emit-
ter/source of the differential gain stage
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1.1.1 RC Relaxation Oscillator

A conventional RC relaxation oscillator is shown in Figure 1.1. Typically, it consist of
three main functions:

1. It has timing components R, C. R1 is responsible for the charging of C1 and R2 is
responsible for the discharging of C1.

2. It consists of a Schmitt trigger (i.e. a comparator with hysteresis).

3. It has a grounding switch, S1, which is part of the feedback from the output. The
switch is usually implemented using a MOS or BJT transistor.

Figure 1.1: RC Relaxation Oscillator [2]

Schmitt trigger is a regenerative circuit with upper switching threshold, VB and lower
switching threshold, VA. When the input voltage of Schmitt trigger, Vo1 > VB, it triggers
the regenerative process and the output is switched to the positive state, L+. On the other
hand, when Vo1 < VA, the output settles to the negative state, L−.

The operation of an RC relaxation oscillator works as following: Initially, the switch, S1

is open and C1 is charging through the resistor, R1. Vo1 is increasing and when it crosses
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the upper switching threshold, VB of the Schmitt trigger, regeneration is triggered and
the output switches to the positive state, L+. This, in turn, closes the switch, S1, which
provides a discharging path for the capacitor. Vo1 decreases and crosses the lower switching
threshold, VA. This prompts the output to switch immediately to the negative state, L−.
The switch, S1 is open. The operation repeats itself and the output switches between the
positive state, L+ and the negative state, L− continuously.

Schmitt trigger is critical to the operation of the relaxation oscillator. This is because
the frequency of the relaxation oscillator depends on the stability and accuracy of the
upper/lower threshold voltage of the Schmitt trigger. A commonly used Schmitt trigger
for high-performance relaxation oscillator is the dual-comparator type Schmitt trigger.
This circuit consists of the biasing resistors, comparators and SR flip-flop.

1.1.2 Constant-Current Relaxation Oscillator

A constant-current relaxation oscillator as shown in Figure 1.2 consists of timing capacitor,
C1, the current source, I1, I2, and Schmitt trigger. The operation of the relaxation oscillator
is similar to an R-C relaxation oscillator, but instead of using resistors for charging and
discharging the capacitor, current sources are used.

The current source, I1 is always on while the current source, I2 is off. When the output
of the relaxation oscillator is at the negative state, L−, the timing capacitor, C1 is charged
and VO1 increases with slope I1

C1
. When the output of the relaxation oscillator is at the

positive state, L+, C1 is discharged since I2 is designed to be larger than I1. Thus, VO1

decreases with slope I2−I1
C1

.

1.1.3 Emitter/Source-coupled multivibrator

An emitter/source-coupled multivibrator has symmetrical charge and discharge paths for
the timing capacitor, C. An example of a source-coupled multivibrator is shown as Figure
1.3. The circuit comprises of two matching resistors, two transistors, M1 and M2 which
are biased with the matched current sources and is coupled through timing capacitor, C.
For symmetrical operation, M1 and M2 have matched design parameters.

The operation of the source-coupled relaxation oscillator is as follows. At metastable
state, M1 and M2 are in saturation, and the voltage across the capacitor, VC = 0. When
VC > 0, the current flowing through M1 is less than the current flowing through M2. This,
in turn, causes the drain voltage of M2 to decrease while the drain voltage of M1 increases.
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Figure 1.2: Constant-Current Relaxation Oscillator [2]

The voltage across the capacitor, VC is charged up. When the gate-to-source voltage of M1

is less than the threshold voltage, Vt, i.e. Vgs1 < Vt, M1 is off and the differential output
(Vd1−Vd2) is at the positive state, L+. The voltage across the capacitor, VC will discharge
to a point where M1 conducts and M2 turns off. Then, the differential output is at the
negative state, L−. The operation repeats and the circuit changes state continuously.

1.2 Review on the Previous Noise Models of Relax-

ation Oscillator

The noise problem tackled for the various noise models are summarized in Table 1.1. The
noise spike does not manifest in [9], [16], [8] since the gmR of the relaxation oscillator is
designed to be larger, but not close to 1. Hence, the noise models are incomplete for condi-
tion with design parameter gmR→ 1, which is the main interest of this thesis. [12] includes
the noise spike in the calculation, but identifies a singularity condition when the ε → 0,
where the ε accounts as gross simplification of the parasitic capacitors in the circuit. [11]
attempts to explain the jump phenomenon as the phase change of the thermodynamic
systems such as Van de Waal (vdw) gas and Ising model. The nonlinear dynamic of the
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Figure 1.3: Circuit Diagram of Source-coupled Relaxation Oscillator

circuit is performed, with the energy from the gradient of vector field mapped to the free
energy of the thermodynamic systems. Following [11], three methods are presented in this
thesis. Method 1 identifies the potential energy (with one metastable state and two stable
states) of a Schmitt trigger a product of the symmetrical cross-coupled topology of the
circuit. This relates the potential energy of the circuit with the circuit design parameters.
It is shown that the metastable state gives maximum potential energy and the two stable
states give minimum potential energy. Method 2 is proposed by accounting the internal
degree of freedom of the system, and thus gives the temperature dependency in the noise
model. Method 3 accounts for the possible manifestation of quantum noise effect when the
temperature is lowered. The Langevin equation is simplified for a small region around the
metastable state, where the fluctuation is maximized.

A brief background of [11]’s work is presented here. Given the circuit in Figure 1.3, the
noise spikes, as shown in Figure 1.4, occur at the time of switching during the regeneration
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Noise problems to be tackled Works
Noise models with the absence of noise
spikes caused by the regeneration proper-
ties of relaxation oscillator

[9], [16] , [8]

Noise model with noise spikes singularity
observed

[12]

Noise model at room temperature with
noise spikes included

[11] (Method 1 ): the nonlinear dynamics of
relaxation oscillator is investigated, with en-
ergy from the gradient of vector field mapped
to the free energy of thermodynamic systems.
In chapter 2, the potential energy is identi-
fied using energetic theoretic approach

Noise model with noise spikes
present(cryogenic behavior I)

Chapter 3 in this work (Method 2 ):Instead
of mapping, the free energy of relaxation os-
cillator is directly calculated. Noise model is
derived from the free energy.

Noise model with noise spikes
present(cryogenic behavior II)

Chapter 4 in this work (Method 3 ): Noise
model is derived from the Langevin equation
of relaxation oscillator

Table 1.1: A comparison of the noise problems to be solved by the noise models among
different works

process. This noise spike phenomenon is compared by [11] with the phase changes of
thermodynamic systems such as Van der Waal gas (the transition from liquid to gas)
or Ising model (magnetization of ferromagnet). Noting the mathematical resemblance
between the pressure-volume trajectory of the vdw gas and the voltage-current trajectory of
the relaxation oscillator, the fluctuation model of the vdw gas is mapped to the fluctuation
model of the relaxation oscillator.

The trajectory of the vdw gas can be represented by the differential equations:

dp

dτ
= v (1.1)

εg
dv

dτ
= 4τ − p− 6τv − 3

2
v3 (1.2)

where εg is from the fast dynamics of the gas [12] ,p is the reduced pressure and v is the
reduced volume of the vdw gas, τ is the reduced temperature. These variables are defined
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Figure 1.4: Noise spikes occurs at the metastable state of the relaxation oscillator. The
simulation code is presented in Appendix A.1

as:

p :=
P − Pc
Pc

v :=
V − Vc
Vc

τ :=
T − Tc
Tc

,

where Pc is critical pressure, Vc is critical volume, and Tc is critical temperature of the vdw
gas. The density fluctuation of the vdw gas is calculated using Gibbs-Duhem equation [11]
to be:

〈(δρ)2〉 1
2

ρ
∝ 1√

kTc
kT
− 1

, (1.3)

where ρ is the density of the gas and 〈(δρ)2〉 is the variance of the density of the gas. It is
shown in eq.(1.3) that when the temperature, T is near to the critical temperature, TC , the
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Figure 1.5: Ground Capacitor Relaxation Oscillator Model

density fluctuation spikes up. This phenomenon is compared to the output noise spikes of
relaxation oscillator during the switching.

For the ground-capacitor relaxation oscillator topology as shown in Figure 1.5, the
voltage-current trajectory can be described as below:

dV

dt
=

I

C
(1.4)

ε
di

dt
= −gmV

I0

+
√

2(1− gmR)i+
1

8
i3. (1.5)

V is the voltage across the capacitor, C. ε comes from the parasitic effect of the transistors,
such that ε = RCgs

gm
and i is the normalized current, id1−id2

I0
The volume, v characterizes

the fluctuation of the vdw gas. In the context of relaxation oscillator, the current, i is
used to characterized the fluctuation. The differential equations of vdw gas, eq.(1.1), (1.2)
is then mapped to the differential equations of the relaxation oscillator, eq.(1.4), (1.5).
The mapping of variables between vdw gas and relaxation oscillator can be summarized

10



as shown:

p(pressure) ↔ V (voltage)

v(volume) ↔ i(current)

τ(temperature) ↔ t(time).

To map the current fluctuation of relaxation oscillator to the density fluctuation of the
vdw gas, the noise contribution of the relaxation oscillator is identified. The power spectral
density of current thermal noise (contributed by the resistors) is given as

psd of ′i′ =
4kT

R
+

4kT

R
(1.6)

where k is the Boltzmann constant and T is the absolute temperature of the resistor. Eq
(1.6) is calculated for one sided BW. To map it to the vdw gas, a two sided BW of eq
(1.6) is used by dividing it by two. Then the mapping of the thermal noise contribution is
shown as below:

kT ↔ 4kT

R
.

Then, the interaction mechanism of both vdw gas and relaxation oscillator is compared.
The part that is responsible for the interaction energy of vdw gas is kTC in eq (1.3). To
map it to the relaxation oscillator, the interaction energy of the charges particle is found
to be qg2

mRVpeak where Vpeak is the voltage change in V, the voltage across capacitor. The
mapping of the interaction energy between the vdw gas and relaxation oscillator is shown
as

kTc ↔ qg2
mRVpeak.

By identifying the corresponding mapping between vdw gas and relaxation oscillator, eq
(1.3) can be mapped to relaxation oscillator with current fluctuation〈

(δi)2

∆f

〉 1
2

i
∝ 1√

eVpeak
4kT

(Rgm)2 − 1
. (1.7)
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1.3 Review of Previous Model on Potential Energy

of Schmitt Trigger (In Ground Capacitor Based

Relaxation Oscillator)

Figure 1.5 shows the application of a Schmitt trigger in the design of a relaxation oscilla-
tor [11]. The Schmitt trigger governs the regeneration process in the switching of states for
a relaxation oscillator. For simplification, R1 = R2 = R, kn1 = kn2 = kn. Previously, [11]
ignores Cgs2 and encapsulates the parasitic effects of Cgs1 as ε = RCgs1

gm
in (1.8). During the

regeneration process Schmitt trigger is approximated by a first order differential equation
in normalized current, ∆ := 2id1−I0

I0
1 as shown in (1.8):

d∆

dt
=

√
2

ε

(
(1− gmR)∆ +

1

8
∆3

)
. (1.8)

Then, [11] assumes (1.8) describes a first order system with a potential function [17], such
that

d∆

dt
=

dE

d∆
.

By substituting (1.9) into (1.8), and integrating with respect to ∆, a first order ODE in
E, with ∆, rather t, as variable is obtained:

E(∆) =

√
2

ε

(
1

2
(1− gmR)∆2 +

1

32
∆4

)
. (1.9)

[11] identifies dE
d∆

as a gradient vector field, i.e., the vector field (RHS of eq.(1.8)) that
guides the equation of motion, is the gradient of a scalar valued function representing the
potential field, E. However, [11] does not elaborate on any further physical meaning on the
potential field.

1In [11], the normalized current is denoted as z

12



Chapter 2

Identification of the Potential Energy
of the Schmitt Trigger

The Schmitt trigger is an important component in many electronic circuits such as astable
multivibrators/relaxation oscillator, monostable multivibrators, comparators, sense ampli-
fier/flip flop/cross coupled inverter pair [14][18][19][20][21][22]. When applying bistable
circuit to systems where metastability is of consideration, as for example, being sense am-
plifier in memory, being cross coupled inverter pair for entropy source in True Random
Number Generator (TRNG), it turns out basing the analysis on energy, rather than volt-
age and current of the circuit, is more fruitful. [14] illustrates qualitatively the bistable
system such as Schmitt trigger to a physical analog as ball rolling from top to bottom of
a hill as shown in Figure 2.1. The system exhibits metastability when the ball is resting
at the top i.e. highest potential energy. A small disturbance on the ball causes the ball
to roll down the hill and settles at the stable states, the lowest potential energy. A first
attempt on analyzing this metastability is given in [11]. [11] interprets the potential from
the point of view of the gradient vector field. This is more a nonlinear dynamic system
approach [12]. The potential energy is given a physical meaning as electrostatic energy,
analogous to potential energy of the ball on top of a hill. This is used to show that, the
metastability condition, corresponding to the highest potential energy, through regenera-
tion, will have the system’s energy lowered to the minimum energy, and settle to a stable
condition. Note, the application of variational principle, or minimizing of energy has also
been recently applied in the circuit community for other applications [13].
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Figure 2.1: Potential Energy, E vs Distance, x. It illustrates the particle (round ball)
always move “downhill” and settles to a position with the least potential energy along its
trajectory

2.1 The Dynamic Equations of Schmitt Trigger

The physical interpretation of ’E’ is performed by analysing the macroscopic behaviour of
the Schmitt trigger. Method 1 from Table 1.1 is implemented in this chapter by assuming
that the system can be represented by one degree of freedom (i.e. the coordinate is the
normalized current). The Schmitt trigger has both Cgs1 and Cgs2 included, as shown in
Figure 1.5. The design parameters of the circuit are set to be R1 = R2 = R, kn1 = kn2 = kn
and λ=1.

The circuit is now described by two (rather than one) coupled first order differential
equations, with both Cgs1 and Cgs2 included, which is not done in [11]. By applying KCL
at the drain nodes of both M1 and M2, (2.1), (2.2) and (2.3) are obtained:

iCgs1 = iR2 − id2 (2.1)

iCgs2 = iR1 − id1 (2.2)

I0 = iR1 + iR2. (2.3)

Next applying KVL around the loop of resistors, R1, R2, and transistors, M1, M2, it gives:

iR2 − iR1 =
vgs2 − vgs1

R
. (2.4)
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By symmetrizing around the common mode signal, I0
2

, iR1 and iR2 are obtained:

iR1 =
I0

2
− vgs2 − vgs1

2R
(2.5a)

iR2 =
I0

2
+
vgs2 − vgs1

2R
. (2.5b)

The capacitor current,iCgs1 and iCgs2, are related to voltage, vgs1, vgs2 respectively as shown
below:

iCgs1 = Cgs1
dvgs1
dt

(2.6a)

iCgs2 = Cgs2
dvgs2
dt

. (2.6b)

Transistor device equations using long channel approximation (ie. square law) give

vgs1 =

√
2id1

kn
+ vt (2.7a)

vgs2 =

√
2id2

kn
+ vt. (2.7b)

The current flowing through the transistors, id1 and id2 can be related to the capacitor
voltage, vgs1 and vgs2 :

did1

dt
=

√
2knid1

dvgs1
dt

(2.8a)

did2

dt
=

√
2knid2

dvgs2
dt

. (2.8b)

By substituting (2.5)-(2.8) into (2.1) and (2.2), two coupled differential equations are ob-
tained as shown in (2.9a) and (2.9b):

Cgs1
did1

dt
=

√
2knid1

(
I0

2
+

1

2R

(√
2id2

kn
−
√

2id1

kn

)
− id2

)
(2.9a)

Cgs2
did2

dt
=

√
2knid2

(
I0

2
− 1

2R

(√
2id2

kn
−
√

2id1

kn

)
− id1

)
. (2.9b)

Then, the phase portrait of an example of bistable system described in (2.9) is plotted

in Figure 2.2. It shows that the Schmitt trigger has 1 metastable state at
{
id1
I0
, id2
I0

}
=

15



Figure 2.2: Phase Portrait of (2.9a), (2.9b) using Normalized Currents, id2
I0

vs id1
I0

{0.5, 0.5} and 2 stable states at
{
id1
I0
, id2
I0

}
= {0, 1} and

{
id1
I0
, id2
I0

}
= {1, 0}. At the

metastable state, id1 = id2 = I0
2

. With some disturbance (noise) to the system, the system
will settle to the stable states. Hence it behaves like a 2 level system. It is also shown that
the dynamics of the system is symmetrical at id1 = id2.

Figure 2.3 shows the phase curve of the system going down from either side of the
metastable state. As shown in Figure 2.3, the system trajectory either moves toward the

stable state, ,
{
id1
I0
, id2
I0

}
= {0, 1} or moves toward the stable state,

{
id1
I0
, id2
I0

}
= {1, 0}. The

time evolution of the normalized currents, id1
I0
, id2
I0

for the case of Figure 2.3a is shown in
Figure 2.4.

2.2 The Potential Energy of Schmitt Trigger

To obtain the potential energy, the development of the dynamics is pushed even further.
The co-ordinates are transformed, such that in this transformed co-ordinate system, the
resulting ODE has a similar form as that of some familiar physical system (such as forced
spring/pendulum), which:
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Figure 2.3: Phase curve of normalized Currents, id2
I0

vs id1
I0

(a) Red line is the trajectory of
the Schmitt Trigger when the system dynamic moves from metastable state to stable state
1, (b) Red line is the trajectory of the Schmitt Trigger when the system dynamic moves
from metastable state to state 2.

a) Behaves as a 2 level system

b) have well known expression for potential energy.

By comparing the ODE describing the bistable Schmitt trigger in this transformed co-
ordinate to that of the physical system, proper mapping can be established, which can be
carried over to the energy expression.

To obtain the ODE in transformed co-ordinate, (2.9b) is subtracted from (2.9a), and
(2.10) is obtained. Then by setting Cgs1 = Cgs2 = Cgs and replacing both

√
2knid1 and

√
2knid2 by the same term

√
2kn

I0
2

=
√

2knI0=gm
1 and it gives:

Cgs
gm

d(id1 − id2)

dt
=

1

R

(√
2id2

kn
−
√

2id1

kn

)
+ id1 − id2. (2.10)

The normalized differential mode signal (common mode signal already given as I0
2

before

1This is the transconductance of the transistors at metastable state, when the current flowing through
the transistor is equal, I0

2 . It is assumed that the change of transconductance is negligible near the
metastable state.
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Figure 2.4: Time evolution of Current, id1
I0

& id2
I0

vs time, t

(2.5)), ∆ = id1−id2
I0

is substituted into (2.10) to yield (2.11):

Cgs
gm

d∆

dt
=

−1

Rgm

(√
1 + ∆−

√
1−∆

)
+ ∆. (2.11)

(2.11) By using Taylor expansion at =0,
√

1 + ∆−
√

1−∆ = ∆ + 1
8
∆3. Then, (2.11) can

be approximated to

RCgs
d∆

dt
= (Rgm − 1)∆− 1

8
∆3. (2.12)

Now lets turn to familiar physical system, “ball on the hill”/spring/pendulum (2 level
mechanical system). For a damped spring system (where viscous damping force much
stronger than the inertia term), having a nonlinear force, F (x) = k1x + k2x

3 , the system
is described as[17]:

αẋ = k1x+ k2x
3. (2.13)

α is friction coefficient, k1, k2 are the stiffness coefficients, while x is position. Comparing
(2.12), (2.13), both have similar forms. However the spring system has familiar formula
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for the potential energy, given as the integral on the right hand side (RHS) of (2.13):

E =

∫
k1x+ k2x

3dx

=
1

2
k1x

2 +
1

4
k2x

4 + Constspring. (2.14)

Therefore, it is then led to integrate the RHS of (2.12), and interpret the result as the
‘potential energy’ of the Schmitt trigger, with the provision of 1) scaling of Cgs and 2) in
I0
gm

in the variable:

E = − 1

Cgs

(
Rgm − 1

2

(
∆.I0

gm
Cgs

)2

− 1

32

(
∆.I0

gm
Cgs

)4
)

+ Const. (2.15)

E has unit of Joule. Moreover the potential energy of (2.15) is an even function, with 1
maximum, and sandwiched between two minima, another characteristic of a 2 level system.

Figure 2.5: Inverted Pendulum System as 2 Level System

To visualize this better, instead of spring system, an inverted pendulum as shown in
Figure 2.5 (with weight at the top, resting on a rod) is used for illustration. It is at the
metastable state, with maximum energy, and any perturbation push it to the stable state.
Again the potential energy versus position is like (2.15). We now normalize (2.15) by
having I0

gm
= 1 and Cgs = 1. This gives

Enormalized = −Rgm − 1

2
∆2 +

1

32
∆4 + Const. (2.16)

Now, the interpretation of (2.16) is interpreted using this energy perspective. Here, ∆,
identified earlier as the normalized differential current (see (2.11)), is now viewed as as a
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Figure 2.6: Potential Energy, Enormalized vs ∆ for parameter R=5kΩ, Const=0. The
dashed line is with the parameter gmR=1.2, and the solid line is with the parameter
gmR=1.22

transformed coordinate [23] of the voltage and vgs1, vgs2 i.e. ∆ is an algebraic function of
vgs1, vgs2, such that ∆(vgs1, vgs2) = id1−id2

I0
= gm

I0
(vgs1 − vgs2). By substituting ∆(vgs1, vgs2)

into (2.11), this gives the first term of (2.11) to be proportional to 1
2
Cgs(vgs1 − vgs2)2, the

differential electrostatic potential energy of transistor M1 and M2.

Now, first on the RHS of (2.11), the square root operates on this ∆, which reflects the
nonlinearity of square law in the long channel I-V characteristic of M1 and M2. Secondly,
the “+∆” and “−∆” terms inside the square root on the RHS of (2.11) reflects the coupling
interaction across M1 and M2. These translate, upon Taylor expansion, into the linear
and cubic term i.e. ∆, ∆3 terms in (2.12), and subsequently, upon integration into the
potential energy E, as ∆2, ∆4 terms in (2.16). In summary, E in (2.16) is rooted in Vgs1,
Vgs2, (the coordinate in electrostatic potential energy), just like E in (2.14) is rooted in
x, the co-ordinate in mechanical potential energy of the spring system. The definition of
Const is the sum potential energy of the parasitic capacitors (in transformed co-ordinate)
at the metastable state. (2.16) is then normalized 2 by setting Const to 0 and so that
E = 0 at metastable state. Figure 2.6 shows that the potential energy of the Schmitt

2This is like the potential energy of a test charge q for a given charge, Q: when q is far away(∞ distance)
from Q, the potential energy is zero and is at its maximum. When the charge q closes in, the electrostatic
attraction causes the potential energy to be negative
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trigger is maximum (E=0) at metastable state. When the bistable system reach its stable
states, the potential energy is at its minimum (E<0). δE = Emeta−Estable is the difference
between the potential energy of the metastable state, Emeta and the potential energy at
stable states. Estable. This can be derived by differentiating (2.16) with respect to ∆ and

setting it to 0, i.e., dE
d∆

= 0. Then, the resulting ∆
(

∆| dE
d∆

=0

)
is substituted back into

(2.16), giving expression for both Emeta and Estable. This gives δE to be

δE =
1

2
(gmR− 1)2. (2.17)

It shows that when gmR→ 1 , E goes to zero and the system behaves less and less like a
2 level system, and hence will not work as an effective Schmitt trigger. This is evident in
Figure 2.6, when is lowered from 1.22 (solid line) to 1.2 (dash line), E is smaller.

The limitation of using the potential energy as an energetic theoretic method is that
the internal degree of freedom of the system is neglected. The individual co-ordinate,
i.e. the energy levels which the individual charges occupied has not been taken into full
consideration. In the next chapter, all degree of freedom is included by considering the
configurations in which these degree of freedom are distributed over energy levels. In
essence the potential energy of the system is refined and generalized to the free energy of
the system, which manifests in its dependency on temperature.
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Chapter 3

The Free Energy Derivation of
Schmitt Trigger

To include the internal degree of freedom for the system, method 2 of Table 1.1 is imple-
mented by first looking into the microscopic picture of the system, is analysed. We start
from obtaining the Hamiltonian and partition function of the system, and obtain the free
energy from the partition function. Then, the statistical fluctuation of the system near
the metastable state can be obtained from the free energy of the system. Schmitt trigger
in Figure 1.5 is constructed to be source-coupled pair transistors with tail current. The
internal mechanism of the pair transistors can be pictorially depicted as shown in Figure
3.1.

The circuit has a symmetrical construction of transistor M1 and transistor M2. Ther-
modynamically, the charges on the top plates of the two parasitic capacitors of M1 (M2),
Cgs1 (Cgs2) are represented as two ensembles in thermal equilibrium with one another, with
the resistors acting as the heat reservoir, or heat bath. The charges of the both ensembles
are charges stored in the parasitic capacitors (Cgs1, Cgs2). The number of charges for en-
sembles 1(2) is denoted as N1(N2). The positive charges at the top plates of the parasitic
capacitors is proportional to the number of electrons in the channel formed between the
drain and source of the MOSFETs. In Figure 3.1, the positive charges are represented
by filled plus and striped plus, while the electrons in the channel are represented by filled
circles and striped circles.

The current flowing through the channel in M1 is proportional to the number of elec-
trons in the channel, i.e., i1 = WQIvd where QI is the total charges per area and vd is
the drift velocity of the electrons in the channel. Since i1 + i2 = I0, the total number of
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Figure 3.1: The ensemble of the system consist of charges on the parasitic capacitors(filled
plus and striped plus).

charges in both channels is constant. I0 defines the system size. It is assumed that the new
electrons entering the channel are identical to the electrons flowing out from the channel
to the source of the transistor.

Having a net negative charges in the channel between drain and source of the transistor
causes the same net positive charge to collect on the gate of the transistor. Since the
electrons in the channel of both transistors are conserved, the total charges on top of both
parasitic capacitors top plate is conserved. The total number of charges is

N = N1 +N2. (3.1)

where N1 is the number of charges on the top plate of Cgs1 and N2 is the number of charges
on the top plate of Cgs2.

In general the ensemble of a thermodynamic system is the mental collections of many
copies of the same bulk system, with the macroscopic constraints defined through the
parameters N and T , but existing in all different possible microstates/configurations. The
total charge of the system is conserved since the tail current is assumed to be constant.
Specifically for our thermodynamic system, the Schmitt trigger, the interaction energy
is identified to be the change of energy of adding an electron in the channel of M1 and
removing a charge from the channel of M2.
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3.1 The Quantitative Description of Schmitt Trigger

Interaction Energy, J with Macroscopic Trans-

port Parameters Identified

To calculate the interaction energy, which is due to transfer of charge between M1, M2,
let us start by considering the change of charges in transistor M1 and M2, involved in this
transfer. From simple capacitor consideration i.e. Q=CV, the charges of transistor M1 are

Q1 = Cox(WL)(Vds2)

= Cox(WL)(Vgs1). (3.2)

where Cox is oxide capacitance per unit area and W, L are width and length of transistor
M1, and Vds2 is the voltage experienced by the charge. Because of the cross-coupling
topology between the transistors M1 and M2, the drain-to-source voltage of transistor M2

equals to the gate-to-source voltage of transistor M2, i.e., Vds2 = Vgs1. Let us assume, with
regeneration, M1(2) regenerate, i.e., the charge is pumped in/out with δQ1(2), the resulting
change in voltage δVgs1(gs2) is:

δVgs1 =
1

Cox(WL)
δQ1 (3.3)

δVgs2 =
1

Cox(WL)
δQ2. (3.4)

With the tail current source feeding into both M1, M2, at any time interval, removal of
charge from one transistor, is balanced by addition of equal amount of charge in the other
transistor1. So, the change of charges in transistor M1 is balanced by the opposite change
of charges in transistor M2 such that

δQ1 − δQ2 = 0. (3.5)

Charges, of the drain currents id1, id2 that travel through the transistors, experience po-
tential Vds1(2), which due to cross coupling equal to Vgs2(1). With the change of charge in
M1, the resulting change in energy is

δVds1δQ1. (3.6)

1 this is assuming a) itail = id1 + id2 + icgs1 + icgs2 ≈ id1 + id2 (neglecting icgs1, icgs2 which equal

Cgs1
dvgs1
dt , Cgs2

dvgs2

dt as id1,id2 changes slowly at beginning of regeneration, Cgs1
dvgs1
dt , Cgs2

dvgs2
dt ≈ 0.

Then id1 = −id2 or δQ1 = −δQ2, with the presumption that the δQ1, δQ2, happens slowly, so that it is
consistent with Cgs1

dvgs1
dt , Cgs2

dvgs2

dt ≈ 0.
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The symmetric construction of the Schmitt trigger circuit allows δVds1 to be related to δQ2

as shown below:

δVds1 = − (gmR)2 δVgs2

= − (gmR)2 δQ2

CoxWL
. (3.7)

By substituting eq (3.7) to eq (3.6), the change in energy is

−(gmR)2 δQ2δQ1

Cox(WL)
. (3.8)

Note in the Schmitt trigger circuit this change in energy, is coupled between the charges
of the 2 parasitic capacitors. The charges are

1. not physically transferred; rather one is delivered from ground via the current source,
while the an equal amount is removed to ground by the same current source

2. the charge was original provided through the resistor, or heat reservoir.

In the special case when δQ1 = e and δQ2 = −e, this change of energy in the interaction
operation, is interpreted as the interaction energy, J . For introduction of a negative charge
in transistor M1 and removal of a negative charge in transistor M2, the change of energy
is given as

δE = −(gmR)2 (+e)(−e)
Cox(WL)

=
(gmR)2 e2

Cox(WL)
. (3.9)

Now, the term e
CoxWL

in (3.9) is identified to be the the electric potential experienced by
the charge going through the virtual transfer for this specific case. It is then generalized
to Vpeak, where Vpeak = Vgs1 − Vgs2 and so the interaction energy is

J = (gmR)2 eVpeak. (3.10)

Hence, the macroscopic transport parameter gm, R, used to described J, have been identi-
fied.
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3.2 The Hamiltonian (Semi-Microscopic) and Inter-

action Potential J of Schmitt Trigger

We adopt a semi-microscopic approach whereby the Hamiltonian of the system is simpli-
fied to illustrate only the essential features of this J potential interaction energy (between
capacitor/cross-coupled pair part of the system, henceforth denoted as H), which encap-
sulates the microscopic behavior. Meanwhile, the transport behavior, derived from the
Hamiltonian (of the transistor and resistor component of the system) is encapsulated in
the macroscopic transport parameters, such as gm, R. We will next go into microscopic
details of Hamiltonian, which depends on the microscopic details of J .

With the considerations above, the Hamiltonian is given as below such that qi is the
occupancy of electrons at energy level i and qj is the occupancy of electrons at next energy
level, j:

H(q) = −E
N∑
i

qi −
1

2

∑
〈ij〉

Jqiqj. (3.11)

with q is the configurations of the system such that q = {q1, q2, ..., qi, qj, ...qN} and E 2

is the magnitude of electric field subjected to the individual charges. The notation 〈ij〉
indicates the adjacent/neighboring pairs of the energy levels. qi = 1 when an electron
occupies energy level i; qi = 0 when an electron occupies energy level i. The two terms can
crudely viewed as follows: first term as ’self’ energy and second term as ’potential’ energy
due to interaction of the ’neighboring’ charge, neighboring being looked as one charge,
begetting another via the cross coupled pair action.

Now, we will discuss about the three essential features of this J interaction energy
model.

3.2.1 Feature A: The Energy Levels Representation of Micro-
scopic Interaction Energy Model

It is identified that the interaction energy, J comes from the cross-coupled topology of the
circuit.

To describe the origin of J microscopically, lets look at the case of a standalone semi-
conductor capacitor. The electrons on top plate of the capacitors are distributed over the

2E is approximated to be zero in the subsequent derivation of free energy
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energy levels described by the Fermi Dirac statistic, centered around the Fermi energy, Ef ,
situating around the conduction band energy, Ec. There is no interaction energy between
the different electrons occupying the different energy levels. Next, let’s visualize this capac-
itor as capacitor Cgs of a standalone transistor, denoted as M1, and the situation remains
the same, i.e., there is no interaction energy between the electrons. Then, lets look at the
situation where M1 is cross-coupled with another transistor, denoted as M2. If we start
to put an extra electron to Cgs of M1, where it will sit at one of the vacant energy levels
(it should be noted, these are still eigenenergies, but corresponds now to Hamiltonian of
the coupled system;) . The cross coupling will result in an extra extra electron, in another
vacant energy levels, via the coupling/interaction energy, J .

The virtual transfer of an electron can be depicted in following simple example: first,
an electron (lets denote it as e1) travels through the transistor, M1, through the resistor,
R. It is then dumped on the top plate of the parasitic capacitor, Cgs2 and occupy an energy
level in the band structure. An equal and opposite charge is deposited on the bottom plate
of Cgs2. Since the bottom plate of Cgs1 and Cgs2 are connected, the top plate of Cgs1 loses
an electron. Since the tail current is constant, a new electron, e2 is deposited on the top
plate of Cgs2. For simplicity, let us assume this occupies the next higher energy level (with
thermal energy, this needs not be the case, and in general this occurs with the Fermi Dirac
probability). The removal of an electron on the top plate of Cgs1 is compensated by the
addition of a new electron on the top plate of Cgs2, the electron is virtually transferred from
transistor M1 to transistor M2. As illustrated above, the interaction energy accompanying
the transfer virtual of electrons is independent of the physical location or placement of the
charges (the charges are spread throughout the top plate of the capacitor in an arbitrary
fashion; a particular charge needs not be spatially identified with specific site on the top
plate, unlike spin in Ising model, where each spin is situated on a specific site 3). Therefore,
whereas, in Ising model, interaction energy is dependent on the distance (spatial) between
sites), here, rather, the coupling, or interaction energy, between 2 charges (occupying two
energy levels) is dependent on the distance (energy difference) between the 2 energy levels
occupied . This is because different energy levels occupied result in different capacitor
voltage, or Vpeak in (3.10), (proportional to energy level), which in turn bias the transistor
differently, resulting in different coupling strength of the cross coupling transistor pair.

3 On the other hand, like Ising model, where one and only one spin occupies per site, here, assuming no
degeneracy, one and only one electron occupies an energy level. It should be noted there are fewer electrons
(these are excess electrons, due to charge on capacitor, and for our case is on the order a hundreds to
thousands) than energy levels (correspond to energy levels in the conduction band of a doped silicon, the
top plate of the capacitor)
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3.2.2 Feature B: The Interaction Energy, J of the Nearest Neigh-
bour

Using the J discussed above, for interaction potential among the electron ensembles on the
capacitor in cross-coupled (Schmitt Trigger) system, we can describe the Hamiltonian of
this ensemble. As discussed in the introduction, Table 1.1, in this section, we are content
just to discuss the classical Hamiltonian (like Ising), and derive the resulting fluctuation,
which of course is just valid in the classical, or high temperature regime. The Interaction
energy, J , we discussed previously, rooted in a potential that is dependent on distance
between energy level, is taken as a scalar, and therefore, the Hamiltonian is treated as a
scalar valued function 4.

As an example, the coupling between the transistors, M1 and M2 is the strongest
at metastable states, when both the transistors are on. When the system is at stable
states, one of the transistors is off and there is no coupling between the transistors. The
strength of coupling between the transistors depends on the resultant voltage biasing of
the cross-coupled transistors. This is different from the interaction energy between spins of
Ising model where the coupling between two spins is inversely proportional to the distance
between the spins. The magnitude of interaction energy between the spins is distance
dependent with only the nearest neighbour couplings of the spins being considered in
the Hamiltonian for a simple Ising model. For Schmitt trigger, on the other hand, the
coupling between the both transistors is voltage-biasing dependent. The voltage bias of
the transistors depends on the average potential of a single charge. For example, on the
top plate of parasitic capacitor, if an electron occupies the energy level, i and another
electron occupy the energy level, k where the energy differences between i and k is large,
the average potential of each electron decreases substantially.

For illustration, a simple example is shown in Figure 3.2. Starting from M1, Cgs1, let us
look at the ensemble of electrons, shown as ++. The occupancy of energy level is shown
(again for simplicity, at T=0, where the lowest levels are occupied). Starting with the two
lowest levels i.e. i=1,2. This set up the capacitor voltage, VCgs1 and bias M1. Through
cross coupling via M2 this will put more electrons on M1. The next such electron (q3) is on
i=3, as shown because if we add electron, due to Pauli exclusion principle, it will occupy
i=3. The resulting change in voltage is as given by (3.8) and the coupling strength J , as
given by (3.10) will, if we consider only the nearest neighbor (like Ising model), lead to

4 Strictly speaking, the energy levels i.e. energy eigenvalues stem from quantum mechanical treatment,
while this chapter is on classical development. Thus, we are simply using the energy levels as an analog
of the Ising lattice sites. In essence, we treat both of them as classical variables. There will be some
discussion in Chapter 4 when we do quantum development.
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Hamiltonian H in (3.11).

In the Ising model, the potential is smaller as the site index difference which the spins
occupy increases. Similarly, here as the difference in energy levels which the electrons
occupy increases, the potential decreases. The interaction energy, J ∝ Vpeak ∝

∑
i
Ei
qi

is proportional to the sum of the occupied energy levels, and dominated by the highest
occupied energy level. When q3 is added to the top plate of the capacitor, the interaction
energy is dominated by q3 and q2, since q2 occupies the higher energy level than q1. For
Ising model, the interaction energy between two spins is inversely proportional to the site
index difference (i.e. the site index difference is larger, then interaction energy is weaker).
Similarly, for our case, the electron that occupies the highest energy level (q2 instead of
q1) has the strongest interaction energy with the coming electron (q3). The difference in
energy levels is equivalent to the difference in site index of Ising model. Electrons with
adjacent energy levels dominate the interaction energy, just like the spin in neighbouring
site has strongest interaction energy.

Figure 3.2: Microscopic example of interaction energy model

3.2.3 Feature C: The Configurations (Many Degree of Freedom
Arising from Temperature) of the Ensemble

Next, the ensembles, unlike in Chapter 2 which gives one degree of representation for the
entire ensemble, resulting in a potential E, now is going to possess many degrees of freedom,
one for each configuration. As an example, using 1-dim representation, with an ensemble of
N charges, the configuration is designated as q = {q1, q2, ..., qi, qj, ...qN} distributed over the
energy levels E1, E2,...,Ei, Ej,...EN . We define qi to be the occupancy of charge in energy
level i and qj to be the occupancy of charge in the next higher energy level, j. These charges
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are all going to be occupying starting from Ec, which equals Ef (assuming at regeneration,
capacitor has no energy storage, ie. no offset of 1

2
CV 2 from Ec or Ef ). So, the first charge

occupies the ground state, Ef , and the next charge, by Pauli exclusion principle (assume
no degeneracy),occupies the next higher energy level. An example for the configurations of
ensemble with N=6 and N1 = 3 is shown in Figure 3.3. For this example, both transistors
are on, and both have the same number of charges. Thus, they are biased at the same
voltage. The Schmitt trigger is at metastable state. At temperature, T = 0, the charges
occupy the lowest energy levels possible and there is only one possible configuration. At
temperature, T > 0, there are many possible configurations with different energy level
occupancy of the charges. The three configurations at M1 shown in Figure 3.3 are as
following: configuration 1: q = {1, 0, 0, 0, 1, 1, 0}; configuration 2: q = {0, 0, 1, 1, 1, 0, 0};
and configuration 3: q = {0, 1, 0, 1, 0, 1, 0}. These configuration corresponds to N1 = 3.

Figure 3.3: At temperature T = 0, the charges occupy the lowest energy levels possible.
At temperature T > 0, the occupancy of charges over the energy levels give various config-
urations of ensemble. Example of various ensemble configuration at metastable state with
total number of charges,N=6 and N1=3. The charges are distributed across the energy
levels, Ei, with i indicates the energy level in the band structure of capacitor.

Next we go to the H given in (3.11) for each configurations. Configurations 1, 2, 3
have different Hamiltonian, and so when exponentiated, it refers to different probabilities
(Boltzmann probability). For example (assuming J=1) configuration 1 energy is q5 × q6

because there are 2 consecutive 1’s and so J between 2 of them. q1 is neglected because,
as noted, the interaction energy between charges of non-adjacent energy level is not taken
into account when summing −Jqiqj. We treat these energy, which is not adjacent, will
result in the bias voltage of the transistor away from the metastable state (or regeneration
point). The further away from the metastable state, the coupling of two transistors is
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Figure 3.4: Example of ensemble configuration at stable state with total number of
charges,N=6 and N1=6

weaker, and thus the interaction energy of two charges with non-adjacent energy levels is
neglected. Thus, configuration 1 has energy -1J. Meanwhile, configuration 2 is q3× q4× q5

because there are 3 consecutive 1s. Hence, the energy is -2J. In summary, configuration 1
and 2 have different energy, and so when weighed by β and taking exponential, it refers to
different probabilities. Another example for the configurations of ensemble with N=6 and
N1 = 6 is shown in Figure 3.4. With N1 = 6, transistor M1 is on and transistor M2 is off.
Here, the Schmitt trigger is at stable state.

Next, lets define ∆ = N1−N2

N
as a normalized order parameter. configurations with N1

corresponds to a certain value of ∆. Using the example of Figure 3.3, the configurations
at metastable state corresponds to ∆ = 0. The partition function, for a given ∆ is as
following:

Z̃(∆) =
∑
v

Λ(∆−∆v)e
−βEv . (3.12)

where Λ(∆ − ∆v) is 1 when ∆ = ∆v and 0 otherwise. The partition function, Z =∑
∆ Z̃(∆) and Z̃(∆)

Z is the probability for observing the system with order parameter ∆.

For example, referring to Figure 3.3, for T > 0, Z̃(∆ = 0) = e3βJ + e2βJ + ..., with e3βJ is
the internal energy for configuration 1 of metastable state and e2βJ is the internal energy
for configuration 2 of metastable state. Another example for the configurations of ensemble
with N=6 and ∆ = 6 is shown in Figure 3.4. With ∆ = 6, transistor M1 is on and transistor
M2 is off. Then, the Schmitt trigger is at stable state. Z̃(∆ = 1) = e5βJ + ..., with e5βJ is
the internal energy for stable state at T > 0.

The number of configurations for metastable state is larger than the configurations for
stable state. Referring to the example in Figure 3.3, the numbers of possible configuration
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for metastable state (T > 0) are 7!
3!×4!

, while the number of possible configuration for stable

state (T > 0) are 7!
6!1!

. The entropy, S = kln(Ω), with k is the Boltzmann constant and Ω
is the number of configurations. So, The entropy is maximized at metastable state, since
metastable state has the most number of configurations.

The total internal energy of the system is given [15] as

U =

∑
v Eve

−βEv∑
v e
−βEv

. (3.13)

Using Figure 3.3 as an example, at metastable state (T > 0), the number of electron
pair with adjacent energy levels (such that qiqj = 1) is one ( configuration 2) or two
(configuration 1) because the total charges in M1 is 3. From equation, U(∆ = 0) =
−JeJβ−2Je2Jβ

eJβ+e2Jβ
. Similarly, at stable state (T > 0), the number of adjacent occupied energy

levels pair is either four or five. So, U(∆ = 1) = −4Je4Jβ−5Je5Jβ

e4Jβ+e5Jβ
. This gives −2J < U(∆ =

0) < −J and −5J < U(∆ = 1) < −4J . To illustrate that, lets give a numerical example
with J = 1 and β = 1. In this case, U(∆ = 0) is -1.73, and U(∆ = 0) = −4.73. The total
internal energy at stable states is always lower than the total internal energy at metastable
state because the stable state has higher number of electron pair with adjacent energy
levels. The free energy is given as U − TS. The metastable state has more free energy
than the stable states given that U(∆ = 0)− TS(∆ = 0) > U(∆ = 1)− TS(∆ = 1)

3.3 The Free Energy of Schmitt Trigger

The existence of many configurations (many degree of freedom) at a finite temperature can
physically be traced back to scattering that occurs to electrons in the ensemble when the
electrons travels through the resistors during the virtual transfer. To capture quantitatively
all these configurations, one resorts to the partition function to describe the system. As we
want to center the metastable state at ∆ = 0, the following transformation is performed:

ci = 2qi − 1 (3.14)

where ci = ±1 and qi = 1, 0. The partition function with no external electric field, E , now
a function of temperature, is given as the sum of all configurations of the system weighed
with β = 1

kBT
as shown below:

Z(N, T ) =
∑
c1

. . . .
∑
cN

e−β[−
1
2

∑
〈ij〉 Jijcicj]. (3.15)
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Here N, as defined before, is the number of charge in the ensemble, T is the tempera-
ture. The partition function is difficult to solve.Thus, mean-field approximation is used
to simplify the equation. In chapter 2, ∆ is defined to be the normalized current, id1−id2

I0
.

Assume that all electrons have the same drift velocity, ∆ = N1−N2

N
where N1 is the number

of electrons at transistor M1, N2 is the number of electrons at transistor M2 and N is the
total number of electrons in M1 and M2. Then, we can denote N1 to be the sum of the
occupied energy levels of transistor M1, and N2 to be the sum of unoccupied energy levels
of the transistor M1. Thus, the parameter ∆ can alternatively be defined as

∆ =
1

N

N∑
i=1

ci. (3.16)

Then, ci can be written as

ci = ci −∆ + ∆. (3.17)

Using the identity eq (3.17), qi is substituted into the Hamiltonian with

cicj = (ci −∆ + ∆)(cj −∆ + ∆)

= (ci −∆)(cj −∆) + ∆(ci + cj)−∆2. (3.18)

Under mean field approximation [24] the term (ci −∆)(cj −∆) is neglected. The Hamil-
tonian can be approximated as

1

2

∑
〈ij〉

Jijcicj ≈−
1

2
NJ∆2 + J∆

∑
i

ci. (3.19)

with J defined such as
∑
〈ij〉 J = NJ . N is the total number of charges on both the top

plate of parasitic capacitors (Cgs1 and Cgs2).

The partition function becomes

Z = e−
βNJ∆2

2 (2 cosh (βJ∆))N (3.20)

Then, the free energy G(N, E , T ) can be found as

G = − 1

β
lnZ(N, T )

=
1

2
J∆2 − 1

β
ln (2 cosh βJ∆) . (3.21)
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To approximate the free energy, G at metastable state (∆ = 0), we Taylor expand the

second term of (3.21) such that ln(2 cosh βJ∆)|∆=0 ' ln(2) + (βJ∆)2

2
− (βJ∆)4

12
+ . . . ., then

the result is

kT

2

[(
1− (gmR)2 eVpeak

kT

)
∆2 +

∆4

6
+ Const

]
. (3.22)

Figure 3.5: Free Energy vs ∆ (Solid line: gmReVpeak < kT , Dashed line: gmReVpeak = kT ,
DashDotted line=gmReVpeak > kT )

Figure 3.5 indicates that the plot shows metastability when (gmR)2ReVpeak < kT .
When the temperature decreases, the energy difference between metastable state and stable
states, decreases until a point where the metastability of the system vanishes. For the case
of (gmR)2ReVpeak < kT where the metastability of the system exists, the energy difference,
is found to be

3

2

(
1− (gmR)2ReVpeak

kT

)2

. (3.23)

When (gmR)2 eVpeak < kT , the free energy obtained is an even function, with two minimum
points. This characteristic is similar to the potential energy obtained in section 2.2. How-
ever in section 3.3, it is made explicit that it comes from the circuit topology of the cross
coupled pairwith the tail current source that we obtain the terms ∆2 and ∆4 in the end.
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Using KCL on the cross couple pair gives us
√

1 + ∆−
√

1−∆ term that will be simplified
to terms ∆2 and ∆4 by Taylor series approximations at ∆ = 0 (metastable state). The
potential energy calculated in section 2.2 is compared with the potential energy of a ball
rolling down the hill. The particles in the system are identified as a single entity that abide
with the minimum energy principle. In this chapter, we introduce the randomness of the
particles where the system has many energy configurations characterized by the thermal
distribution. Summing up the energy of all configurations give us the free energy, in term
of temperature. Both approaches show that the electronic bistable system has 2 stable
states on either side of a metastable states.

3.4 The Normalized Current Fluctuation of Bistable

Circuit

From the free energy of the system, the fluctuation of the normalized current, ∆ is deter-
mined and is given by partial derivative of partition function with respect to the conjugate
variable 5 as shown below:

β2N(∆2 −∆
2
) = βN

∂∆̄

∂E

=
∂2

∂E2
(lnZ). (3.24)

The root-mean square fluctuation in normalized current, σ∆ is defined as the square devi-
ation of the normalized current, ∆ from its mean value as shown below:

σ∆ =

√
∆2 −∆

2
. (3.25)

By substituting (3.24) into (3.25), σ∆ can be represented as

σ∆ =

√
∂∆̄

∂βE
. (3.26)

From (3.22), ∆ can be determined by requiring that it minimizes the free energy, that
is, by setting ∂G

∂∆
= 0.

∂G

∂∆
= J∆− J tanh(βJ∆) (3.27)

= 0.

5The conjugate variables are ∆ and E . Note that E → 0 doesn’t mean that ∂ln(Z)
∂E → 0
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Then, a nonlinear equation for normalized current, ∆ is obtained as shown below

∆ = tanh(βJ∆). (3.28)

Since tanh(x) ≈ x− x3

3
+ ..., (3.28) can be approximated to be

∆ ≈ βJ∆− 1

3
(βJ)3∆3. (3.29)

When kT > J , the only solution is ∆ = 0. The system is in disorder state and the mean
of the normalized current is equal to zero. When kT < J , spontaneous symmetry breaking
[24] occurs. There are two non-trivial solutions where the system spontaneously picks one
of the stable states. Solving the cubic equation of (3.29), the non-trivial solution gives

∆ ≈ ±

√
3

(
1− 1

βJ

)
. (3.30)

By taking partial derivative of (3.28) with respect to βE , the following expression is ob-
tained:

∂∆

∂βE
= Sech(βJ∆ + βE)

(
1 + J

∂∆

∂E

)
= (1− Tanh2(βJ∆ + βE))

(
1 + Jβ

∂∆

∂βE

)
. (3.31)

Then, by substituting (3.28) into (3.31),

∂∆

∂βE
=

1−∆2

1− βJ(1−∆2)
. (3.32)

By substituting (3.30) into (3.32), ∂∆
∂βE can now be expressed in term of βJ ,

∂∆

∂βE
=

1− 3
(

1− 1
βJ

)
1− βJ

(
1− 3

(
1− 1

βJ

)) . (3.33)

For βJ → 1 and the interaction energy, J = (gmR)2eVpeak as derived in (3.10),

∂∆

∂βE
≈

5

2(βJ − 1)

=
5

2
(

(gmR)2eVpeak
kT

− 1
) . (3.34)
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The root-mean square fluctuation in normalized current is thus,

σ∆ ∝ 1√
(gmR)2eVpeak

kT
− 1

. (3.35)

The equation (3.35) is the fluctuation model for a bistable circuit, such as Schmitt
trigger. A relaxation oscillator consists of Schmitt trigger and timing elements such as
capacitor and resistor. Referring to the Appendix B, the relaxation process has a fast time
scale, governed by the dynamic of the Schmitt trigger, and a slow time scale, dictated by
the timing capacitor. As the noise spikes occurs during the regeneration process of the fast
time scale, we can approximate the fluctuation of the Schmitt trigger to be the same as
the fluctuation of the relaxation oscillator.

Thus, in summary, the expression for root-mean square fluctuation in normalized cur-
rent obtained in (3.35) is consistent with the fluctuation expression in [11]. Both the
fluctuation models are obtained with the assumption that the system is in thermal equilib-
rium. The fluctuation model in [11] compares the equation of states between the vdw gas
and the relaxation oscillator and maps the corresponding variables to find the fluctuation
of current for the relaxation oscillator. However, the equation of states, like vdw gas, works
with the average pressure, volume and density will miss the microscopic aspect of physic.
By investigating the microscopic physics of the circuit, we are able to obtain the thermo-
dynamic quantities such as the free energy of the system, and obtain fluctuation from first
principle in physics. However, when the temperature goes down enough, the underlying
physics in the above free energy derivation, i.e. classical, may become invalid as quantum
noise might manifest. This is not taken account in the derivation of the fluctuation model
in this section. Because of the difficulty of finding eigenenergy in an interaction system,
(eigenfunction is needed in the generalization of the free energy calculation method to
quantum case), such as the present relaxation oscillator, finding free energy is also diffi-
cult, as stated in table 2. Therefore, an alternative, namely, method 3 is next presented,
as shown in Table 1.1 .
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Chapter 4

Derivation of Fluctuation Including
Quantum Noise (Energy-Time
Uncertainty) in Relaxation Oscillator
Using Langevin Equation

4.1 Introduction

Following table 1.1, the Langevin approach is attempted in this chapter. This approach
is good for system which can be simply represented by 1 degree of freedom (macroscopic
behavior), but this time the microscopic/internal degree of freedom is ’decoupled’ and
assumed to be represented by ’immersion’ in a heat bath with many degree of freedom.
Compared to Method 2 presented in Chapter 3, instead of starting from the statistical
representation of the system at thermal equilibrium, i.e. its free energy (and only the
bistable part), and then obtain statistical properties of the system, such as the average and
fluctuation of the normalized current, Method 3 presented in this chapter first starts from
equation of motion of the statistical representation i.e. ρ(t) or density matrix. From ρ(t)
throughout the period/cycle, it then obtain the time properties, such as the average and
fluctuation. Finally it equates the time property to the statistics properties, such as average
and fluctuation of current, by employing the ergodic theorem. In Langevin approach,
instead of looking at equation of motion of ρ(t) directly, the statistical representation
is split into two parts: i) deterministic part ii) noise source. Hence one needs to find
i) the equation of motion of deterministic part ii) find the time average of the system
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by integrating the noise part contribution along this equation of motion throughout the
cycle/period. Thus equation of motion of the deterministic part of the system, namely,
relaxation oscillator, and also throughout the whole cycle, needs to be obtained. It should
be noted that, comparing to Method 2, now we look at not just the bistable circuit at the
regeneration point, but also the whole relaxation oscillator, and through the rest of the
cycle. Hence we would separate the whole cycle into a regeneration (fast) phase and a
charging/discharging (slow) phase. The full explanation of the connection between two-
phase model and relaxation oscillator is given in Appendix B.

4.2 Derivation of Energy Dissipated in Relaxation Os-

cillator at Metastable State

Following Appendix B, the noise is dominated by the fast phase of the oscillation period
of relaxation oscillator. The deterministic equation of motion for fast phase is developed
as below.

To find the equation of motion describing the system in the fast phase of oscillation,
the circuit topology as shown in Figure 1.3 is analysed. The voltage across the capacitor,
VC defines the regeneration voltage. For simplicity, the voltage across capacitor, VC is set
to be zero. Next we linearize the circuit since we are interested only at the small region
around the metastable state, when the fluctuation is the biggest. By using Kirchhoff’s
Voltage Law (KVL) around the loop of transistor M1, M2, an expression is obtained:

(i1 − icgs1)R + vgs2 − (i2 − icgs2)R− vgs1 = 0. (4.1)

where i1(2) is the small-signal current flowing through the resistor, R; vgs1(gs2) is the small
signal gate-to-source voltage of the transistor M1(2) and icgs1 and icgs2 are the displacement
current. The gate-to-source voltage can be expressed in terms of current, such that vgs1 =
1
gm
i1 and vgs2 = 1

gm
i2 where gm is the transconductance of transistor M1 and M2. Then,

(4.1) can be expressed as

icgs1 − icgs2
gm

= (i1 − i2)

(
R− 1

gm

)
. (4.2)

Next, the displacement current, icgs1 = Cgs
gm

di1
dt

and icgs2 = Cgs
gm

di2
dt

. By substituting the

displacement currents into (4.2),

RCgs
d(i1 − i2)

dt
= (i1 − i2)(gmR− 1). (4.3)
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Since i1 + i2 = 0, two differential equations can be obtained from (4.3):

di1
dt

=
1

2
(i1 − i2)

gmR− 1

RCgs
(4.4)

di2
dt

= −1

2
(i1 − i2)

gmR− 1

RCgs
. (4.5)

By substituting (4.4) and (4.5) into (4.3), the second order differential equation of i1, the
current flowing through transistor, M1 is obtained as below:

d2
1i

dt2
=

1

2

gmR− 1

RCgs

di1
dt

+
1

4

(gmR− 1)2

(RCgs)2
i1. (4.6)

The small-signal voltage across the resistor vR = −i1R,

d2vR
dt2

=
1

2

gmR− 1

RCgs

dvR
dt

+
1

4

(gmR− 1)2

(RCgs)2
vR (4.7)

To present (4.7) in a more elegant way, the damping coeficient, γ and the angular
frequency, w0 for the relaxation oscillator circuit are defined as

γ =
gmR− 1

RCgs
(4.8)

w2
0 =

(gmR− 1)2

(RCgs)2
. (4.9)

By substituting (4.8) and (4.9) into (4.7), the simplified 2nd order differential equation is :

d2vR
dt2

=
1

2
γ
dvR
dt

+
1

4
w2

0vR. (4.10)

The solution for (4.10) gives voltage across the resistor. The energy δE dissipated due to
current noise, In(t) across the resistor is given by integrating the power, which in turn is
given by the product of voltage vR and noise current, In.

δE = −
∫ T0

0

vR(t)In(t)dt.

〈δE2〉 =

∫ T0

0

dt

∫ T0

0

〈vR(t)vR(t′)In(t)In(t′)〉dt′

≈
∫ 2Tf

0

dt

∫ 2Tf

0

vR(t)vR(t′)α(t− t′)dt′

(4.11)
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with 〈In(t)In(t′)〉 ≡ α(t− t′). By integrating the dissipated power over the period of stable
oscillation, it gives a time-averaging of the system in thermal equilibrium.1. The power
dissipated in the period T0 can be approximated to be the power dissipated during the
time scale of the fast dynamic, Tf since the noise spike is generated during the fast time
scale 2.The Fourier transform of eq (4.11) gives

〈δE2〉 =
1

2π

∫ ∞
−∞

dω|vR(w)|2α(w). (4.12)

As In(t) corresponds to colored Gaussian noise,

〈In(t)In(t′)〉 ≡ α(t− t′)

α(w) =

∫ ∞
−∞

exp(−iωt)α(t)dω

=
~w
R

coth

(
β~w

2

)
(4.13)

with β =
1

kT
.

By applying Fourier transform to the solution of 2nd order differential equation, (4.10) and
finding the magnitude square of the voltage in term of angular frequency, w is

|vR(w)|2 = C2
1

1

γ2 + (w − w0)2 . (4.14)

where C1 is the initial voltage of the relaxation oscillator at metastable state where C1 =
Vpeak. By substituting (4.13) and (4.14) into (4.12), the energy fluctuation is

〈δE2〉 =
1

2π

∫ ∞
−∞

dωV 2
peak

1

γ2 + (w − w0)2 ×
~w
R

coth

(
β~w

2

)
. (4.15)

In high temperature regime, β →0. Then, it can be approximated such that coth
(
β~w

2

)
≈

1From fluctuation dissipation theorem, this is interpreted as the fluctuation of the system
2The noise during the slow dynamic is kT

C and is relatively smaller. Thus, the power dissipated V × In
during slow phase, Ts is negligible. so integral of the power includes only the equation of motion of the
fast phase.
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2
β~w . The ~w got cancelled with the ~w in hw

R
in the integrand above.

〈δE2〉 =
1

2π

∫ ∞
−∞

dωV 2
peak

1

γ2 + (w − w0)2 ×
~w
R

(
2

β~w

)
=

V 2
peak

βRπ

∫ ∞
−∞

1

γ2 + (w − w0)2

=
V 2
peakkT

R

(
1

γ

)
=

V 2
peakkT

R

(
RCgs

Rgm − 1

)
. (4.16)

In low temperature, β →∞, coth
(
β~w

2

)
→ 1.

〈δE2〉 =
1

2π

∫ ∞
−∞

dωV 2
peak

1

γ2 + (w − w0)2
× ~w

R

=
~V 2

peak

2πR

[
−w0

γ
tan−1

(
w0 − w
γ

)
+

1

2
log
[
γ2 + (w0 − w)2

]]wP∞
w=−∞

. (4.17)

The second term of (4.17) is approximated to be negligible since that,

1

2
log
[
γ2 + (w0 − w)2

]wP∞
w=−∞ =

1

2
log

[
γ2 + (w0 − a)2

(γ)2 + (w0 + a)2

]
a→∞

≈ 1

2
log(1)

≈ 0.

As the second term of (4.17) is negligible,

〈δE2〉 =
~V 2

peak

2πR

[
−w0

γ
tan−1

(
w0 − w
γ

)]wP∞
w=−∞

=
~ω0V

2
peak

2R

(
RCgs

Rgm − 1

)
. (4.18)

The expression of fluctuation in energy of the system is obtained. Next, we attempt to
acquire the fluctuation of current from (4.18). In thermodynamic system, the fluctuation
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of energy is given such that [15] 3

〈δE2〉 = kT 2Cv + kT

(
∂U

∂N

)
T,V

(
∂U

∂µ

)
T,V

. (4.19)

where µ is the chemical potential, N is the number of particles (charges), U is the internal
energy and Cv is the specific heat in volume. During the phase change, the second term
of (4.19) dominates [15], and the fluctuation of energy can be expressed as

〈δE2〉 ≈ kT

(
∂U

∂N

)
T,V

(
∂U

∂µ

)
T,V

≈
(
∂U

∂N

)2

T,V

〈δN2〉.(
∂U

∂N

)
T,V

= µ− T
(
∂µ

∂T

)
N,V

. (4.20)

The chemical potential of the semiconductor devices is the Fermi level energy. Since the
Fermi level energy doesn’t change significantly within temperature of interest (77K to
273K), the second term of eq (4.19) is negligible. Substituting eq (4.20) to eq (4.19) gives

〈δE2〉 = µ2〈δN2〉. (4.21)

For our system (relaxation oscillator) specifically, the potential energy needed to add a
charge on the top plate of capacitor is eVpeak. Thus, µ=eVpeak.

〈δN2〉
1
2 =

1

eVpeak
〈δE2〉

1
2 . (4.22)

3Note that the following equation is, strictly speaking, developed under thermal equilibrium. Again,
using the ergodic theorem, δE2 is now interpreted ass statistical variance (obtained from time variance),
and so is interpreted as the variance at thermal equilibrium.
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4.3 Noise Fluctuation of Relaxation Oscillator at Clas-

sical Temperature Regime

When the temperature is high, β →0, by substituting (4.22) into (4.15), the fluctuation in
term of normalized current can be calculated as

〈δN2〉
1
2 =

1

eVpeak

(
Vpeak

√
kT ×RCgs

R(Rgm − 1)

)
.

〈δI2〉
1
2 ∝

√
kT

R(Rgm − 1)
.

〈δI2〉 1
2

I0

∝ 1√
gmeVpeak

√
kT

R(Rgm − 1)

∝

√
kT

eVpeak

(
1

gmR(gmR− 1)

)
. (4.23)

The fluctuation of the normalized current obtained in (4.23) is not very different than (1.7)
obtained from variable mapping with vdw gas[11], and (3.35) from section 3.4. Comparing
(4.23) with (1.7)[11], it is found that when gmR→ 1, (4.23), (1.7) and (3.35) are consistent.
The difference of (4.23) and (1.7) is due to the fact that (1.7) is derived at metastable
point only, while (4.23) is derived by taking account the trajectory of the neighbourhood
of metastable point.In summary, comparison of present method with method 1, 2 tends to
agree at high temperature or classical regime. This gives confidence to the present method,
in particular when we generalize to low temperature or quantum regime.

4.4 Noise Fluctuation of Relaxation Oscillator at Low

Temperature Regime

While (4.23) captures both the effects of thermal noise and the dynamic of the circuit, this
fluctuation model is not complete because it is counter-intuitive to have the fluctuation
goes to 0 when temperature, T → 0. Thus, at low temperature, we substitute (4.22) into
(4.18) and we have:

〈δI2〉 1
2

I0

∝

√
~ω0

eVpeak

(
1

gmR(gmR− 1)

)
. (4.24)
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In this case, when temperature is low enough, ~w0 dominates the noise source as shown in
(4.24).

However, in the calculation of (4.24), the trajectory (with the corresponding equation
of state) is assumed (in going from (4.15) to (4.16)) to stay much longer than around the
metastable point (on the time scale of 1

w0
). The resulting calculation of fluctuation becomes

less accurate, as the actual trajectory (bounded by the regeneration time, treg) is less and
less.

Essentially fluctuation is dictated by the time the circuit stays in metastable state
(around the metastable point). This time, as Treg decreases, is going to becomes less and
less predicted by 1

w0
. Therefore, (4.24) has to be refined, such that the effective ~w0 is

replaced. This becomes

~w0 = ~× 2π

treg
. (4.25)

treg in general depends on the overdrive voltage, current available and Cgs.To be more
accurate it is obtained from the simulation. In the next section, we will discuss the micro-
scopic aspect of this quantum fluctuation and shows its dependency on treg.

4.5 Explanation of Effective hw Qualitative Behaviour

(microscopic) and How It Fits into kT fluctuation

(microscopic)

The last section explains macroscopically (Langevin equation with one degree of freedom)
the temperature behaviour. A microscopic discussion (with many degree of freedom), on
the quantum aspect, is presented in this section. The background on quantum mechanics
and density matrix is reviewed in Appendix F, following the treatment in [25]. We will do
a qualitative description using an example.

4.5.1 hw Part(Arising from Time Evolution of State Ket of Pure
State): 1 Single Electron Description

The ensemble is described by a Hamiltonian and the ensemble distribution. At t < 0,
one of the transistor is on and the other transistor is off. The system is described by
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Hamiltonian Hstable. At t=0, both the transistors are on and the system is described by
Hmetastable. Therefore, the eigenvalues and eigenkets change during the transition between
transistors (M1/M2) on/off state to transistors (M1/M2) on/on state. At 0 < t < treg,
Hmetastable remains constant and |a′〉 is the eigenstates.4.

We further assume that the ensemble distribution is at non-equilibrium, but remain
constant during 0 < t < treg. It only has significant change when t > treg, when eventually
it settles to equilibrium, before one of the transistor turns off.

Let us start with the example of one electron, q1 of the ensemble (lets say on top plate of
capacitor Cgs of M1, having state |α〉. It is given as the superposition of energy eigenstates,
so that |α〉 =

∑
ca′|a′〉. At t=0, |α, t = 0〉 =

∑
ca′(0)|a′〉. At some time later at t, the

time evolution of state ket is |α, t〉 =
∑
ca′(t)|a′〉. Thus,

|α, t〉 = exp

(
−iEa′t

~

)
|α, t = 0〉 (4.26)

=
∑
|a′〉〈a′|α〉exp

(
−iEa′t

~

)
. (4.27)

i.e. ca′(t) = ca′(0)exp
(
−iEa′ t

~

)
. An example of this is shown in Figure 4.1(a), where t=0,

c1(0) = 0.71, c2(0) = 0.55, c3(0) = 0.32, c4(0) = 0.32...It then oscillates via e
−iEa′ t

~ to
t = ~

4E1
. i corresponds to energy eigenstate, Ei and weighting ci. Next, we calculate the

correlation, where in the special case, the initial ket |α〉 is an eigenket of Hmetastable, then
this becomes

C(t) = 〈a′|a′, t0; t〉 (4.28)

= exp

(
−iEa′t

~

)
. (4.29)

With a continuum of eigenvalues this becomes, ca′ → g(E)|E=E0 and:

C(t) = exp

(
−iE0t

~

)∫
dEg| (E) |2ρ(E)exp

(
−i(E − E0)t

~

)
(4.30)

with ρ(E) characterizes the density of energy eigenstates. Then, |g(E)|2ρ(E) peaked
around E0 with width ∆E When t is large, the integrand of (4.30) over the many terms of

4Even though there is superposition of states, one can use the most probable energy to build our
interaction energy(0.71=c1 in Figure 4.1) to build our J model, as long as J is shown to depend on
’distance’ (or equivalently one can use a weighed energy to calculate Vpeak). Also, Pauli exclusion principle
still works. Here quantum state, instead of eigenenergy, is a state that corresponds to a superposition.
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oscillating time dependence of different frequencies cancel out and there is no contribution
to C(t). However, when t is small, these oscillating terms don’t cancel out. The character-
istic time, t at which the correlation amplitude start appreciably cancel out the oscillating
term is

t =
~

∆E
. (4.31)

This is describing the nature in which the state ket of q1 starts to lose it character (less
correlated) from the initial ket, as discussed above.

Meanwhile, looking at the expectation value of some observable B, when taken with
respect to the basis of a superposition of energy eigenstates, then

〈B〉 =
∑∑

ca′ ∗ ca”〈a′|B|a”〉exp
(
−i(Ea” − Ea′)t

~

)
. (4.32)

with ∆E = Ea” −Ea′(=effective ~w0). 〈B〉 oscillates with effective angular frequency, w0.
Next, take B to be the momentum operator of q1, p. The fluctuation would allows us to
measure fluctuation of the current density j since [26]:

j = tr(ρ̂(1)(t)ĵ(x)) (4.33)

=

∫
dα

∫
dβρ1

αβ(t)jβα(x) (4.34)

where

jβα(x) =
ie~
2M

Ψβ ∗ (x)D̆Ψα(x). (4.35)

Here ρ1
αβ is the 1st order deviation, Ψβ(x) is the wavefuction in x representation for Hamil-

tonian having eigenstates indexed by variable α, β for electron wavefunction |α〉. Then
jβα(x) are the matrix elements of the current density. In the present situation, where there

is no magnetic field, the operator D̆ =, is defined as O the gradient or i
~p, with p is the

momentum operator. Then 〈p〉 oscillates with effective angular frequency w0. Then, take

a look at fluctuation [27] of p: ∆p = 〈(p−〈p〉)2〉 1
2 = (〈p2〉−〈p〉2)

1
2 . Now since 〈p〉 oscillates

with w0, 〈p2〉 also oscillates and therefore ∆p oscillates. Pictorially from Figure 4.1, the
components with higher eigenvalue oscillates more rapidly, and the contribution of these
terms of higher frequencies to the correlation amplitude becomes less and less as time pro-
gresses. Then, the spread ∆E becomes narrower as shown in Figure 4.1 as t increases. In
our case, t is simply treg, and with ∆E = ~w = 2π~

treg
and this generates the fluctuation of

i, ∆i, we have equation (4.25).
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Figure 4.1: The time evolution of an electron , q1 (in pure state).

4.5.2 hw Part(Arising from Time Evolution of Ensemble of Mixed
State); Ensemble Evolution into Thermal Equilibrium and
the kT part.

Looking at t=0, as shown in Figure 4.2(a), the trace of the density matrix of q1 is 1, so
each electron describes a pure state. Since the probability amplitudes, c’s are different,
the density matrix are different and thus the ensemble is a mixed ensemble. Referring to
F.1, the weight of each of them is wi (w1 = w2). As stated above, since the ensemble is at
non-equilibrium, this weighting is not corresponding to Boltzmann distribution. Lets us
assume w1 = w2 = 0.5, and it remains constant during 0 < t < treg. The time evolution
of the state ket |α1〉, |α2〉, is just like the case with one electron in Figure 4.1. Figure 4.2
shows the two kets dependency with time.

It should be noted that in general wi changes with time. Given time, t longer than
tf , it later settles (via phonon scattering) into thermal equilibrium, and the ensemble of
electrons settle into Fermi-Dirac distribution. For example, referring to Figure 3.3, when
T > 0, the occupancy of electrons varies and this is characterized by the Fermi-Dirac
distribution, with q1 and q2 being two of these electrons. The fluctuation is now kT in
nature.

In summary, looking at the two temperature regime: at higher temperature regime,
the treg is relatively larger than the scattering mean free time of the phonon 5 in the
lattices of resistors. The overall noise is dominated by the thermal noise resulting from the

5The mean free path of electrons in n-type silicon is in the magnitude of 10−12 at room temperature
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phonon scattering. When the temperature is lowered, the thermal agitation of the phonon
is reduced and the mean free time is larger. It should be noted that treg is in the order of
magnitude 10−13 from simulation shown in Appendix D and the mean free time is in the
order of magnitude of 10−12 at room temperature. At some point, the regeneration time is
smaller than the mean free time, and energy-time uncertainty relation contributes to the
fluctuation of the system.

Figure 4.2: The time evolution of an ensemble with two electrons with w1 = w2 = 0.5.
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Chapter 5

Experiment Results

Figure 5.1: Schematic of Relaxation Oscillator.

Figure 1.3 is implemented in Cadence with 130nm CMOS technology and the schematic
is shown in Figure 5.1. T9, T10, T11 are the transistors of the current mirror. The tran-
sistors T9, T10 and T11 are biased in saturation. The drain of transistor T9 is connected
to a external potentiometer so that the current, I0 in Figure 1.3 can be externally biased.
T0 and T1 are the transistors for the cross coupled pair of the relaxation oscillator. The
drain nodes of both transistors T0 and T1 are connected to resistors. T6, T7, T12, T14
are the output buffer of the relaxation oscillator. It consists of two inverters connected in
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series. The switching threshold of the buffer is designed to be 0.6V. Four cases are imple-
mented with different design parameters and are shown in Table 5.1. The chip layout is
shown in Figure 5.2. The fabricated chip includes four relaxation oscillators with different
design parameters and a Time-Digital Converter (TDC) which will be further elaborated
in chapter 6.

RO1 RO2
Current Mirror Ibias(uA) 100 100

Transistors: T9, T10, T11 Wn(µm) 7 7
Ln(µm) 0.13 0.13

Transistors: T0, T1 Wn(µm) 0.7 1.4
Ln(µm) 0.13 0.13

Resistors: OPppc0, OPppc1 R(kΩ) 5 5
Capacitor: CM0 C(pF ) 2 2

Table 5.1: Design Parameters of Relaxation Oscillators

Figure 5.2: Fabricated Chip Microphotograph

A breakout PCB board is designed for the testing of the chips. A 10 kΩ potentiometer
is chosen as the component used to bias the current, I0 in the range from 80µA to 120µA. A
shunt is placed between the potentiometer and the pin of the chip (connected to the drain
of the current mirror), so that the current can be externally measured. A 1µF capacitor
parallel with a 0.1µF capacitor is connected from VDD to ground to minimize the voltage
ripples from the power supply. The output of the relaxation oscillators is connected to the
SMA connectors. The schematic of the PCB breakout board is implemented using Eagle
and is shown in Figure 5.3. The board layout is shown in Figure 5.4.
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Figure 5.3: PCB Board Schematic

5.1 Functional Performance of Relaxation Oscillators

First, the functional simulation and measurement are performed. For supply voltage, VDD
set to 1.2V and the bias current set to 100µA, the simulation performance of the relaxation
oscillator, RO1 is shown in 5.5. The voltage net names of the signal are referenced to the
the net names given in the schematic of relaxation oscillator shown in Figure 5.1. The
functional measurement of RO1, with nominal VDD=1.2V and current, I0 biased at 100µA,
is shown in Figure 5.6.

The comparison between the oscillation frequencies of the relaxation oscillators (ob-
tained from simulation and measurement) are shown in Table 5.2.

Relaxation Oscillators Simulation Frequency (MHz) Measurement Frequency (MHz)
RO1 48.65 41.11
RO2 33.41 27.0

Table 5.2: Oscillation Frequency of Relaxation Oscillators
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Figure 5.4: PCB Board Layout

5.2 The Phase Noise Measurements of Relaxation Os-

cillators

Next, the current fluctuation of the relaxation oscillator is measured when the temperature

varies. The noise amplitude, 〈δI2〉
1
2

I0
∝ 〈δV 2〉

1
2

V
and V is the VDD. The time jitter value is a

reflection of noise spike, 〈δI2〉 1
2 such that 1,

〈δI2〉
1
2 ∝ δt (5.1)

Therefore, phase noise at a fixed frequency is used as a metric of measurement to rep-
resent the time jitter, and thus, the noise spike. The devices under test are the relaxation
oscillators, RO1 and RO2 with design parameters shown in Table 5.1. At room tempera-
ture, the measured oscillation frequency for RO1 (chip 1) and RO2 is shown in 5.2. The
measured oscillation frequency for RO1 (chip 2) is 40.68MHz.

The setup of cryogenic experiment is shown in Appendix C. The controlled ambience
temperature of the relaxation oscillators approximately ranges from 77K to 300K. For every
temperature step, the phase noise of the relaxation oscillators are captured using Keysight
N9010B EXA Signal Analyzer. To improve the accuracy of the measurement, the signal
tracking feature of the Signal Analyzer is enabled to alleviate the effect of carrier frequency

1Time jitter is given as rms noise voltage divided by the slew rate of the timing waveform at triggering
point. As the noise voltage increases, the time jitter increases as the slew rate stays relatively constant as
shown in Appendix E.
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Figure 5.5: Functional Simulation Performance of Relaxation Oscillator, RO1

drift of the RO1. The phase noise of relaxation oscillators at the offset frequency 1MHz is
used to indicate the degree of current fluctuation of the relaxation oscillators.

The phase noise log plots of RO1 (both chip 1 and chip 2) are obtained from the
experiment. The offset frequency decade table for the phase noise of RO1 (chip 1) is
shown in Figure 5.8. Trace 1 shows the raw trace and trace 2 displays the smoothed trace
which averages a number of adjacent trace points from the raw trace. For consistency, the
phase noise value is taken from trace 1. It is shown that the phase noise of RO1 (chip 1)
with offset frequency 1MHz at temperature 77K is -82.81 dBc/Hz. Figure 5.9 shows the
phase noise of RO1 at temperature 276.62K. The phase noise of RO1 with offset frequency
1MHz at temperature 276.62K is -79.51dBc/Hz.

The phase noise of RO1 (chip 1 and chip 2) with offset frequency 1MHz are summarized
in Table 5.3 and Table 5.4 respectively.

It is shown from the Figure 5.10 that the phase noise of RO1 (chip 1) has two regions:
In Region 1, the experiment data is proportional to

√
T (in term of power, it is proportional

to kT) as predicted by the phase noise model at high temperature limit, equation (4.23).
In Region 2, the phase noise deviates from the

√
T proportionality and becomes relatively

constant. This trend agrees rather well with (4.24). The crossover temperature, T, depends
on the value of effective quantum noise ~w0, is approximately 120K.

With the same design parameters, the phase noise of RO1 (chip 1 and chip 2) is shown
in Figure 5.11. The noise difference is due to process variation as both oscillates in slightly
different frequencies. (Because of the process variation, RO1 chip 1 oscillates at 41.11MHz
and RO2 chip 2 oscillates at 40.68MHz in room temperature)
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Figure 5.6: Functional Measurement Performance of Relaxation Oscillator, RO1

From simulation, the regeneration time, treg of RO1 is obtained to be 0.42ps for regen-
eration threshold voltage of 100mV around the metastable point as shown in Appendix D.
From equation (4.24), this gives an effective ~w0 and equating this to kT of equation (4.23),
this gives the crossover temperature of 114K. This rather agrees with the experiment result
where crossover temperature of 120K is obtained.

The aspect ratio of the transistor, W
L

of RO2 is twice the W
L

of RO1. Therefore, the
gate-to-source capacitance, Cgs of RO2 is twice the Cgs of RO1. The RO2 extrapolated
curve2 in Figure 5.12. RO2 exhibits the two regions too as shown in Figure 5.10. As Cgs
doubles, the overdrive voltage decreases by

√
2. Given that treg = CgsVov

ic
(ic is the current

flowing through the capacitance, it is assumed to be constant), the regeneration time is

2gmR of RO2 is biased at 1.56. Theoretically, gmR of RO2 can be set to 1.1 with I0 reduced by
half. However, this would cause the output dc voltage of relaxation oscillator to increase. The relaxation
oscillator is followed by a buffer circuit with switching threshold voltage of 0.6V. By increasing the output
dc voltage of relaxation oscillator, the output signal after the buffer stops to oscillate. Because of this,
extrapolation of RO2 curve at gmR = 1.1 is presented
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Figure 5.7: Functional Measurement Performance of Relaxation Oscillator, RO2

increased by
√

2. So,the effective w0 is reduced by
√

2 and therefore, crossover temperature
is reduced by

√
2. By the crude estimation, the crossover temperature for RO2 is 80.6K.

The measured crossover temperature for RO2 is around 100K.
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Figure 5.8: Phase Noise Measurement of RO1 at 77K

Figure 5.9: Phase Noise Measurement of RO1 at 276.62K
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Temperature (K) RO1 (chip 1) Experimental Phase Noise (dBc/Hz)
77.00 -83.99
81.00 -83.38
106.71 -83.02
113.17 -83.12
120.00 -83.40
121.22 -83.76
143.53 -81.89
153.89 -82.53
158.34 -81.68
174.00 -81.74
178.82 -81.14
202.04 -80.61
228.3 -80.37
262.74 -79.76
276.62 -79.51

Table 5.3: Experiment Results of RO1 (chip 1)

Temperature (K) RO1 (chip 1) Experimental Phase Noise (dBc/Hz)
77.66 -84.04
82.00 -84.16
88.00 -83.94
106.98 -84.44
116.00 -84.61
126.78 -83.99
144.28 -83.57
166.76 -83.04
184.00 -82.32
209.00 -81.95
224.00 -81.65
248.00 -81.29
265.22 -80.35
271.00 -79.85

Table 5.4: Experiment Results of RO1 (chip 2)
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Figure 5.10: Comparison between experiment data of relaxation oscillator, RO1 with the
phase noise model at high temperature limit. RO1 is biased at gmR = 1.1. The model
curves of RO1 is the fitting curves of equation (4.23). In Region 1, the experiment data
agrees well with the trend of fitting curves of phase noise model at high temperature limit.
In Region 2, the experiment data agrees well with the trend of phase noise model at low
temperature, equation and it is relatively constant.
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Figure 5.11: Comparison between experiment data of relaxation oscillators, RO1 (chip 1
and chip 2)

Temperature (K) RO2 Experimental Phase Noise (dBc/Hz)
77.00 -95.27
85.00 -95.02
108.09 -95.30
123.60 -94.62
132.00 -93.75
141.22 -93.36
161.54 -92.48
191.50 -92.19
215.23 -91.36
225.06 -91.5
261.20 -90.54
274.33 -90.62

Table 5.5: Experiment Results of RO2

60



Figure 5.12: The experiment data of relaxation oscillators, RO2
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Chapter 6

Application of Relaxation Oscillator
in Time to Digital Converter

In this chapter, an example of application for relaxation oscillator is presented.The re-
laxation oscillator can be implemented in the first order noise-shaping Time-to-digital
converter (TDC) circuit. TDC has been gaining popularity as an alternative of Analog-
to-digital converter (ADC) in low power technologies. In particular, the representation of
signal in time domain has the advantages from the continuous scaling of CMOS technol-
ogy. Scaling in deep sub-micron regime gives the advantage of fast switching speed, and
this improves the temporal resolution. In contrary, the amplitude resolution does not have
a good scaling behavior with technology. This is because, in the voltage domain, VDD is
lowered from technology scaling, resulting the voltage swing of the signal in voltage domain
representation is reduced. Since the noise doesn’t scale, the signal to noise ratio (SNR) is
reduced from the smaller voltage swing. Given the advantages of TDC with scaling, the
discussion of an error-feedback structure TDC, with relaxation oscillator for clock genera-
tion of sampling signal, is given. In this case, the present noise model (with noise spikes
included) becomes important in predicting and minimizing the noise for low power TDC.

The goal of the design is to obtain the required resolution for TDC with low power
budget. There is a design trade off among resolution, signal-to-noise ratio (SNR) and
power for TDC. In Σ∆ TDCs, the raw resolution (the minimum quantization step; in this
case, the period of the relaxation oscillator, TOSC) can be improved with oversampling and
noise shaping.The noise free effective resolution for a first order noise shaping TDC is

Teff =
πTd

6×OSR 3
2

. (6.1)
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with Td is the raw resolution and OSR is the oversampling ratio. OSR is defined to be

OSR =
fs
2f0

. (6.2)

where fsis the sampling frequency, and f0 is the signal bandwidth. By including the noise
from the circuit, the achievable resolution will be worse. The finest achievable resolution
is practically limited by the jitter noise of the relaxation oscillator. Thus, understanding
the nature of noise of relaxation oscillator becomes important.

With the increase of OSR, the resolution becomes smaller. Since the quantization
noise power is proportional to resolution of TDC, the quantization noise power is reduced.
Subsequently, the SNR of the TDC is improved. To increase the OSR, the sampling
frequency (the oscillation frequency of relaxation oscillator) of the TDC can be maximized.
This can be done by having the design parameters of relaxation oscillator, gmR→ 1 while
the power consumption of the relaxation oscillator remains the same (bias current remains
the same). The trade-off for the increase of sampling frequency is the manifestation of noise
spike due to regeneration. The noise model presented becomes important for the design
strategy to obtain the optimal SNR, where the total noise of both quantization noise and
the regeneration noise spike is minimal.

Referencing to [6], the TDC is designed and fabricated using 130nm CMOS technology
in Cadence. The block diagram of the TDC is shown in Figure 6.1.

Figure 6.1: The Block Diagram of relaxation oscillator based TDC [6]

The schematic of the TDC is shown in Figure G.1. The design parameters of the
TDC is given in Appendix G. This TDC consists of SR-flip flop and comparator-type
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Figure 6.2: The schematic of relaxation oscillator based TDC [6]

RC relaxation oscillator. The schematic of the comparator is shown in Figure G.2. This
threshold detection comparator consists of four stages, with the first three stages consume
120µA and the last stage consumes 240µA. The single-ended output signals (Vinp and Vinn)
from the relaxation oscillator are compared with the external reference voltage, Vref with
two comparators, I0 and I3. The outputs of the comparators are connected to a SR flip-
flop. The design parameters of the comparator is summarized in Table G.2. The schematic
of the SR flip-flop is shown in Figure G.3. The design parameters of the SR flip-flop is
shown in Table G.3.

The TDC is based on the error-feedback structure. The operation of the TDC is as
following: First, the input signal, tin is sampled using the reference clock, tref . The sampled
output is fed to an external counter which is the quantizer of the TDC circuit. When
the input signal, tin is low, the oscillation at the output signal stops. The quantization
error is stored on the capacitor in the relaxation oscillator as residue voltage. The stored
quantization error is then added to the next cycle of tin when the oscillation starts again.
Since the quantization error is fed back to the input, a first order noise shaping is obtained.
The simulation of the TDC with a square wave signal input, as shown in Figure 6.3, shows
the residue voltage (quantization error) of the capacitor is stored and transferred to the
next cycle of oscillation. The sampling frequency from the simulation is 54.98MHz. From
the simulation, the power consumption for the entire TDC is approximately 2.06mW 1.

The measured functional operation of the fabricated TDC is presented in this work.

1The power consumption of the comparators can further be optimized by enabling the comparator only
when its connected capacitor is being charged [6]
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From Figure 6.4, the sampling frequency from the measurement is 48.4MHz. The output
waveform of TDC operation with 5kHz square wave input is shown in Figure 6.4. The
measurement has the same waveform as the simulation.

Figure 6.3: Simulation waveform for TDC with Tin=10Tref . Referring to the block diagram,
Figure 6.1, qe=0
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Figure 6.4: Measured functional waveform for TDC with Tin=10Tref . Referring to the
block diagram, Figure 6.1, qe=0
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Chapter 7

Conclusions

The noise spike model of relaxation oscillator with design parameter loop gain → 1 is
investigated as temperature varies (cryogenic range down to 77K), for possible application
in Time-to-Digital Converter (TDC) design in quantum computing. In Chapter 2, Method
1 is performed with the underlying assumption that the system can be represented by
one degree of freedom. The physical interpretation of the potential energy is given to
be of the electrostatic potential differential energy between the gate-to-source capacitors
in transistors, Cgs1 and Cgs2. The system consists of the electrons on the top plates of
Cgs1 and Cgs2, whereas these electrons travel through the resistors and experience the
interaction energy from the cross-coupled topology of the transistors. It is shown that
the metastable state has the highest potential energy, and through regeneration, will have
the energy lowered to the lowest potential energy and settle to a stable state. It is found
that the potential energy with this nature is due to the symmetrical cross-coupling of the
electronic circuit, thus relating the potential energy with the design parameters of the
electronic circuit. The limitation of Method 1 is that it ignores the many internal degree
of freedom (i.e. the charges distribution over energy levels in phase space/eigenenergies),
which is important as temperature changes.

This limitation is overcome in Chapter 3 by investigating the different configuration in
which these internal degrees of freedom manifest (Method 2 ). The free energy obtained
shows the dependency of temperature in the equation. From the free energy, the noise
model is obtained and it is consistent with the existing noise model in [11], but with more
insights on the thermodynamic quantities. However, when the temperature goes down
enough, Method 2 (i.e. classical) becomes invalid as the quantum noise might manifest.

An alternative, Method 3, is presented in Chapter 4. The system is represented by one
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degree of freedom but with the internal degree of freedom decoupled and assumed to be
represented by the immersion of the system in a heat bath with many degrees of freedom.
The manifestation of the quantum noise, ~w0 is obtained in the phase noise model in the
low temperature limit, with w0 characterizes the regeneration time of relaxation oscillator.

The experimental results, presented in Chapter 5 show the phase noise of the relaxation
oscillator has two regions: at higher temperature, the phase noise is consistent with the
noise model where the phase is proportional to

√
T ; at lower temperature, the phase noise

becomes relatively constant. The crossover temperature between these both regions is
investigated. With the design parameter of the relaxation oscillator varies, the crossover
temperature shifts as predicted by the noise model.

In Chapter 6, the measured functional operation of the fabricated 1-bit Σ∆ TDC and
it operates at 48.4MHz, agreeing with simulation. The phase noise model can be applied
in such application.

The key contributions of this thesis can be summarized as below:

1. Provide noise model for both high-temperature limit (thermal noise) and low tem-
perature limit (quantum noise) of relaxation oscillator in cryogenic range (77K to
273K)

2. Noise model is verified by experiment results. Two temperature trends is observed
as predicted by the noise model.
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Appendix A

Simulation Syntax

A.1 Eldo Simulation Codes for Noise Spikes in Relax-

ation Oscillator

.lib ’/home/yc2ng/Documents/ECE444/Simulation/rf018.eldo’ TT

.subckt multi_vib D1 G1

M1 D1 G1 S1 B1 nch w=0.65u l=0.13u

M2 G1 D1 S2 B2 nch w=0.65u l=0.13u

R1 D1 SUPPLY 5k

R2 G1 SUPPLY 5k

I1 S1 0 110e-6

I2 S2 0 110e-6

C1 S1 S2 1p

V1 SUPPLY 0 1.2V

VB1 B1 0 0

VB2 B2 0 0

.ends multi_vib

X1 OUT1 OUT2 multi_vib

.NOISETRAN FMIN=10000 FMAX=500MEG NBRUN=10 MRUN
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.tran 2p 500n

.plot tran V(OUT1) V(OUT2)

.op

.ic v(OUT1) 0.9v

.ic v(OUT2) 1.1v

.extract tran gm(X1.M1)

.extract tran cgs(X1.M1)

.extract tran cgd(X1.M1)

.plot tsst v(OUT1, OUT2)

.end

A.2 Mathematica Codes for Bistable Circuit

The Mathematica codes for the phase portrait of normalized current as shown in Figure
2.2:

vt=0.4; I0=1;R=0.9; kn=2;

splot=StreamPlot[{\[Sqrt](2*kn*x)*(I0/2+1/(2*R)*(\[Sqrt](2*y/kn)-

\[Sqrt](2*x/kn))-y),\[Sqrt](2*kn*x)*(I0/2-1/(2*R)*(\[Sqrt](2*y/kn)-

\[Sqrt](2*x/kn))-x)},{x,0,1},{y,0,1},StreamColorFunction->"Rainbow"];

Show[splot, Frame->True, FrameLabel->{"Subscript[i, d1]/Subscript[I, 0], A",

"Subscript[i, d2]/Subscript[I, 0], A"}, BaseStyle->{FontSize-> 14}]

The Mathematica codes for the time evolution of the normalized current as shown in
Figure 2.4:

sol=NDSolve[{x’[t]==\[Sqrt](2*x[t]*kn)*(I0/2+1/(2*R)*(\[Sqrt](2*y[t]/kn)-

\[Sqrt](2*x[t]/kn))-y[t]),y’[t]==\[Sqrt](2*y[t]*kn)*(I0/2-1/(2*R)*

(\[Sqrt](2*y[t]/kn)-\[Sqrt](2*x[t]/kn))-x[t]),x[0]==0.5, y[0]==0.51},

{x,y},{t,50}];

Plot[Evaluate[{x[t],y[t]}/.sol],{t,0, 50},PlotRange->All,AxesOrigin->{0, -0.1},

AxesLabel->{"Time(s)", "Current (A)"}, PlotStyle->{Dashed, Thick},

PlotLabels->{"Subscript[i, d1]/Subscript[I, 0]",

"Subscript[i, d2]/Subscript[I, 0]"}]
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The Mathematica codes for the Phase curve of normalized current as shown in Figure
2.3:

sol=NDSolve[{x’[t]==\[Sqrt](2*x[t]*kn)*(I0/2+1/(2*R)*(\[Sqrt](2*y[t]/kn)-

\[Sqrt](2*x[t]/kn))-y[t]),y’[t]==\[Sqrt](2*y[t]*kn)*(I0/2-1/(2*R)*

(\[Sqrt](2*y[t]/kn)-\[Sqrt](2*x[t]/kn))-x[t]),x[0]==0.5, y[0]==0.51},

{x,y},{t,50}];

ParametricPlot[Evaluate[{(x[t]),y[t]}/.sol],{t,0,50},PlotRange->{0,1},

Frame->True,FrameLabel->{"Subscript[i, d1]/Subscript[I, 0], A",

"Subscript[i, d2]/Subscript[I, 0], A"}, BaseStyle->{FontSize-> 14},

PlotStyle->{Red, Thickness[0.02]}, GridLines->Automatic
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Appendix B

Fast Dynamic and Slow Dynamic of
Relaxation Process

The whole cycle of oscillation of relaxation oscillator can be separated into a regenera-
tion (fast) phase, and a charging/discharging (slow) phase. An attempt to connect the
modelling the relaxation oscillator as a bistable circuit/charging-discharging timing capac-
itor C combination, to modelling of the relaxation oscillator as a circuit having time scale
separation (slow-fast dynamics), was given below.

The circuit 1.5 with parasitic capacitance Cgs1 and Cgs2 explicitly shown and the as-
sociated equation describing the circuit is shown in [11]. The connection of the circuit
dynamics with time scale separation model is shown in Table B.1

Two time scale model Bistable circuit/charging-discharging capac-
itor combination model

dx
dt

= y dV
dt

= I0
C
z

εdy
dt

= −x+ y − y3 gmε
dz
dt

= 2(gmR− 1)z − 1
4
z3 − V gm

I0

Table B.1: Comparison of two time scale model and bistable circuit/charging-discharging
capacitor combination model. The correspondence of two models is established

The two time-scale model exhibits two distinct phases: one during which energy is
stored up slowly (slow time scale) and another in which the energy is discharged nearly
instantaneously (fast time scale). During the slow time scale, x ≈ y−y3, dy

dt
≈ 0. However,

for all other points in the xy plane, dy
dt

tends to become large without limit as 1
ε
→∞ and

this is responsible for the fast time scale of the system.
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On the left hand column of Table B.1 are the differential equations for the time scale
separation model. On the right hand column of Table B.1 are the differential equations
for the bistable circuit/charging-discharging capacitor combination model. Thus they have
similar forms, which establish the connection.

It should be noted crudely speaking, in the bistable circuit/charging-discharging tim-
ing capacitor combination model, can identify the two time scale (slow-fast) dynamics as
follows: timing capacitor C typically is much larger than parasitic capacitor. Thus, ε, as-
sociated with parasitic capacitor, tends to determine the fast dynamics, with C, the timing
capacitor, determining the slow dynamics

The noise is dominated by regeneration/fast phase, as shown in [11]that the phase
noise is peaked up during the regeneration; meanwhile phase noise during the charg-
ing/discharging is small, i.e. like kT

C
.
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Appendix C

Cryogenic Experiment Setup

Figure C.1: Experiment Setup
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Figure C.2: A photograph of the temperature sensor
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Appendix D

The Regeneration Time Simulation
of Relaxation Oscillator

Figure D.1: The regeneration time of relaxation oscillator within 97mV overdrive voltage
from the metastable voltage

The left graph of Figure D.1 shows that the voltage at metastable state is 0.44874V at
time 3.66616ns. At this time, both the transistors are on. After approximately 0.4ps (as
shown in the right graph of Figure D.1), the voltage drops by 97mV, and is approximately
the overdrive voltage of the transistors. At this time, one of the transistor is turned off.
So, the regeneration time is 4× 10−13s.
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Appendix E

The Slew Rate Simulation of
Relaxation Oscillator with
Temperature Variation

Figure E.1 shows the change of slew rate in a function of temperature. The timing jitter is
related to the noise amplitude such that tj = N

SR
with N is the noise amplitude, tj is the

time jitter and SR is the slew rate. The slew rate does not change much with temperature,
thus the noise amplitude variation with temperature follows the same trend as jitter/phase
noise variation. Specifically, the change in slope remains.

Figure E.1: The slew rate simulation of the relaxation oscillator with temperature drift.
The temperature data points are obtained from the experiment temperature points of RO1
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Appendix F

Background on Density Matrix as a
Generalization of the Configuration
Probability at Thermal Equilibrium
to Include Quantum Mechanical
Fluctuation

As with any microscopic description of many degree of freedom (internal degree of freedom)
we start with the ensemble concept (see chapter 3). Remember classically to describe
such ensemble, we use configuration/state and partition function to characterize it. In
the generalization to quantum mechanics, the configuration state v becomes the quantum
state, v, with the accompanying Boltzmann factor e−βEv and partition function

∑
eβEv .

The quantum mechanical description uses the density matrix, whose diagonal element is
just the Boltzmann factor (quantum), normalized by the partition function (quantum). In
general, ensemble is a mixed ensemble with density operator given as

ρ =
∑
i

wi|α(i)〉〈α(i)|. (F.1)

and making a measurement on a mixed ensemble with observable, O, the ensemble average
of can be denoted as

[O] =
∑
i

wi〈α(i)|O|α(i)〉. (F.2)
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with 〈α(i)|OI |α(i)〉 the quantum mechanical expectation value of O taken with respect to
state |α(i)〉. Here, |α(i)〉 is the state ket of a pure ensemble i, and wi is the fractional
population of the pure ensemble i. The concept of probabilities manifests twice, with the
first in |〈a′|α(i)〉|2 as the quantum mechanical probability for state |α(i)〉 to be found in OI

eigenstate |a′〉; and the second in wi as the probability factor for finding in the ensemble
of a quantum-mechanical state characterized by |αi〉.

As time evolves, with t < treg, wi does not change much, but the quantum fluctuation

from time evolution (or superposition can change: e−
Et
~ ) manifests. The changes in [O]

is dictated by e−
Et
~ . After t = treg, wi starts to change, and the change in e−

Et
~ starts to

cancel out, so the changes in [O] is dictated by wi. There is, however, not a whole lot of

change, since by then wi settle to ρkk = exp(−βEk)∑N
l exp(−βEl)

,where ρkk is the diagonal element of

the density matrix. It stands for the fractional population for an energy eigenstate with
energy eigenvalue Ek. The ensemble average of observable OI can be written as

[O] = tr(ρO). (F.3)
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Appendix G

Design Parameter of Fabricated
Time-to-Digital Converter

Transistor: T14 Wn/Ln(µm
µm

) 7/0.12

Transistors: T13, T15, T16 Wn/Ln(µm
µm

) 3.5/0.12

Resistor: Oprrp0 R(kΩ) 5
Transistors: T0, T1, T3, T5, T6 Wn/Ln(µm

µm
) 6.67/0.12

Transistors: T2, T4, T7 Wn/Ln(µm
µm

) 13.33/0.12

Capacitor: CM0 C(fF ) 639.5
Comparators: I0, I3 - -

SR-Flip flop: I4 - -

Table G.1: Design Parameters of TDC as shown in Figure G.1

Transistor: T18 Wn/Ln(µm
µm

) 7/0.12

Transistors: T14,T15, T16, T17 Wn/Ln(µm
µm

) 14/0.12

Resistor: Oprrp12 R(kΩ) 6
Transistors: T0, T1, T7, T6, T8, T9, T11, T10 Wn/Ln(µm

µm
) 1.4/0.12

Resistor: OPrrp0, Oprrp1, Oprrp7, OPrrp6, Oprrp8, Oprrp9 R(kΩ) 8
Transistors: T2, T3, T12, T13 Wn/Ln(µm

µm
) 7/0.12

Table G.2: Design Parameters of Comparator shown in Figure G.2
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Figure G.1: The schematic of TDC

Transistors: T0, T1, T6, T7 Wn/Ln(µm
µm

) 2/0.12

Transistors: T2, T3, T4, T5 Wn/Ln(µm
µm

) 0.3/0.12

Table G.3: Design Parameters of SRFF as shown in Figure G.3
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Figure G.2: The schematic of comparator
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Figure G.3: The schematic of SR-flip flop
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