Fourier Transform Spectroscopy of Selected Transient Species

by

Gang Li

A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Chemistry

Waterloo, Ontario, Canada, 2003

©Gang Li, 2003

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Acknowledgements

First of all, I would like to express my thanks to Dr. Peter F. Bernath, my Ph.D. Supervisor, Professor of Chemistry and Physics of the University of Waterloo, for his providing me with the opportunity and financial support to work in his Laboratory, and for guiding me to walk around in the beautiful spectroscopic world. His encouragement, patience and tolerance are indispensable to my successful completion of the Ph.D. studies and research. One thing that my eight-year old son Tony still does not understand is why Dr. Bernath teaches me and also pays me. He believes that I definitely should pay Dr. Bernath for what I have learned.

I also would like to express my thanks to the members of my Ph.D. Supervisory Committee, Dr. Robert J. Le Roy, Dr. John W. Hepburn and Dr. Frederick R. W. McCourt of the University of Waterloo and Dr. John D. Goddard of the University of Guelph for their active support during various stages of my graduate studies. Dr. Le Roy served as much more than a member of the Supervisory Committee. Apart from his valuable advice and many ready answers to my questions, I really feel lucky to have Dr. Le Roy around because his group develops software tools. Dr. Le Roy's DSParFit has been one of the major tools I have used in the research. Complementing the roles of Dr. Bernath, Dr. Le Roy, and the Committee in my Ph.D. education, Dr. Tsuyoshi Hirao, a Post Doctoral Fellow working in the Laboratory during most of my Ph.D. studies, served as a ready "handbook" of both theories and experiments.

I would also express my thanks to the graduating Ph.D. students from the Bernath Laboratory when I just started my Ph.D. studies, Dr. Pina Colarusso, Dr. Keqing Zhang, Dr. Zulfikar Morbi and Dr. Chunfeng Zhao, for their practical advice; and Treana Parekunnel and the new friends working in the Laboratory: Sean McLeod, Dr. Chris Boone, Ray Nassar, Keith Tereszchuk, Iouli Gordon, Andrew Janca, Dr. Dominique Appadoo, Alireza Shayesteh, Dr. Kaley Walker, and other friends.

Last, but never the least, many thanks go to Wei Yang, a long time friend of mine, Bujin Guo, and Charlie Shu Zhang, and their families for their sincere support in various aspects during my early life at Waterloo.

In the final version of my thesis, I would re-express my thanks to my Supervisor and my Supervisory Committee, and thank Dr. Kentarou Kawaguchi of Okayama University, Dr. James D. D. Martin, Dr. Kam Tong Leung, and Dr. Mark D. Pritzker of the University of Waterloo, for their wonderful questions and comments durng my Oral Defense. Definitely, no fellow graduate students should forget to express our thanks to Cathy Van Esch, the Graduate Secretary.

Abstract

The procedures and results of experimental and/or theoretical studies of four transient molecules, GeO, WO, BeH, and MgH are reported in the thesis. Two of them, GeO and WO, are diatomic molecules composed of heavy atoms, and the other two are diatomic molecules with hydrogen as one of their component atoms.

The GeO species was generated using a high temperature furnace. The rovibrational spectrum of five isotopomers were detected in emission using a Bruker IFS 120 HR Fourier transform spectrometer. Combined-isotopomer Dunham-type molecular constants have been derived for GeO using the DSParFit computer program. Analysis shows that the Born-Oppenheimer approximation is valid, as expected, for a molecule composed of heavy atoms.

The WO molecule was generated using a microwave discharge cell, and the spectra of electronic transitions of various systems were detected in emission using both the Bruker IFS 120 HR Fourier transform spectrometer at Waterloo and the McMath Pierce One-Meter Fourier transform spectrometer at the National Solar Observatory in Arizona. The ground electronic state has been confirmed to be $X^3\Sigma^-$ based on the analysis of seven 0-0 bands.

BeH and MgH are typical molecules with small reduced masses, and the effects of Born-Oppenheimer breakdown were expected. Both of these molecules have rotational perturbations in their excited electronic states. A "new" method of data processing was used, i.e., treatment of the electronic data as if they were from fluorescence series. Thus the harmful influence of the perturbed upper electronic states on the ground electronic state molecular constants is eliminated. By using the DSParFit computer program, accurate sets of combined-isotopomer Dunham-type molecular constants have been derived for the ground electronic states of the two molecules, and Born-Oppenheimer breakdown correction terms have been obtained.

Chapter 1 introduces the concepts of ro-vibrational and electronic emission spectroscopy, the principles of Fourier transform spectroscopy, the experimental means for generating transient species, and the spectroscopic models.

Chapter 2 presents the experiments and analysis for the ro-vibrational studies of the GeO isotopomers.

Chapter 3 describes the results of experiments and rotational analysis of the electronic systems of the WO molecule.

Chapter 4 presents the method of treatment and derivation of accurate molecular constants for the ground electronic state of the BeH isotopomers.

Chapter 5 presents, in a similar manner to that of Chapter 4, the derivation of molecular constants for the ground electronic state of the MgH isotopomers.

For my son, my wife and my parents

Table of Contents

Ta	able (of Contents	vi
Li	st of	Tables	x
\mathbf{Li}	st of	Illustrations	xii
1	Intr	coduction	1
	1.1	Fourier Transform Emission Spectroscopy	2
		1.1.1 Rotational, Vibrational and Electronic Spectroscopy	2
		1.1.2 Emission Spectroscopy	3
		1.1.3 Fourier Transform Spectroscopy	5
	1.2	Generation of Transient Species	18
		1.2.1 High Temperature Cell	18
		1.2.2 Microwave Discharge Cell	21
		1.2.3 Other Excitation Methods	23
	1.3	Spectroscopic Data Processing	24
		1.3.1 Spectroscopic Models and Software	24
		1.3.2 Spectroscopic Data Analysis	29
	1.4	Conclusion	35
Bi	ibliog	graphy	36
2	Fou	rier Transform Spectroscopy of GeO	40
	2.1	Background	41
	2.2	Fourier Transform Infrared Experiment	42
		2.2.1 Experimental Setup	42
		2.2.2 Experimental Procedures	43
	2.3	Measurement and Assignment of Spectral Lines	45
	2.4	Combined-Isotopomer Dunham-Type Analysis	48
	2.5	Conclusion	51

Bibliography

3	Fourier Transform Spectrscopy of WO			55
	3.1	Background		
		3.1.1	Summary	57
		3.1.2	Contributions in Chronological Order	59
		3.1.3	Techniques Used and Results	61
	3.2	Exper	iments	64
		3.2.1	Initial Experiments on WO	65
		3.2.2	D(0,0) Band and Optimizing Experimental Conditions	66
		3.2.3	Detection and Advantages of High Resolution Spectra	68
	3.3	etical Basis	70	
		3.3.1	Molecular Orbitals, Hund's Cases and Term Symbols	70
		3.3.2	Properties of Emission Spectra and Λ -Doubling $\ldots \ldots \ldots$	72
	3.4	Analy	sis of WO Spectra	74
		3.4.1	$D(0,0)$ Band \ldots	74
		3.4.2	D'(0,0) Band	77
		3.4.3	F(0,0) Band	78
		3.4.4	Results of Analysis	81
	3.5	Concl	usion	85
р:	hlia	monher		20
BI	BHOE	grapny		89
4	Acc	urate	Molecular Constants of BeH	91
	4.1	Backg	round	93
		4.1.1	Experimental Studies of BeH Isotopomers	93
		4.1.2	Theoretical Basis	94
	4.2	Spectr	coscopic Data Sources of BeH Isotopomers	98
		4.2.1	Electronic Spectroscopy with a Spectrograph	98
		4.2.2	Fourier Transform Spectroscopic Data	99
		4.2.3	Summary of Spectroscopic Data Set	99
	4.3	Treatr	nent of Electronic Transition Data	102
		4.3.1	Quantum Number Conversion	102
		4.3.2	Converting Vibrational Bands to "Fluorescence Series"	102
	4.4	Comb	ined Isotopomer Dunham-Type Analysis	104
		4.4.1	Light Molecules and the Born-Oppenheimer Approximation .	104
		4.4.2	Combined-Isotopomer Dunham-Type Analysis	104
		4.4.3	Molecular Constants of BeH Isotopomers	106

52

	4.5	Discussions and Conclusions		
		4.5.1 "Fluorescence Series" Method of Data Treatment	109	
		4.5.2 Combined-Isotopomer Fitting	109	
		4.5.3 Empirical Rules for Molecular Constant Optimization	109	
B	ibliog	graphy 1	114	
5	Acc	curate Molecular Constants of MgH	117	
	5.1	Background	118	
	5.2	Spectroscopic Data Sources of MgH and MgD	119	
		5.2.1 Electronic Spectroscopy	120	
		5.2.2 Fourier Transform Spectroscopy	120	
		5.2.3 Infrared Diode Laser Spectroscopy	120	
		5.2.4 Far Infrared and Millimetre Wave Spectroscopy	121	
		5.2.5 Data Set of the Major and Minor Isotopomers	121	
	5.3	Treatment of Data of Electronic Transitions	122	
	5.4	Combined Isotopomer Dunham-Type Analysis	124	
	5.5	Discussions and Conclusions	127	
		5.5.1 Results for the MgH Molecule	127	
		5.5.2 Comparison of the Results of BeH, MgH, and GeO	127	
B	ibliog	graphy 1	135	
A	PPE	NDIX 1	138	
\mathbf{A}	Fou	rier Transform Infrared Data for GeO	139	
	A.1	Fourier Transform Infrared Data for ⁷⁰ GeO	140	
	A.2	Fourier Transform Infrared Data for ⁷² GeO	159	
	A.3	Fourier Transform Infrared Data for ⁷³ GeO	181	
	A.4	Fourier Transform Infrared Data for ⁷⁴ GeO	196	
	A.5	Fourier Transform Infrared Data for ⁷⁶ GeO	218	
в	Fou	rier Transform Electronic Data for WO	234	
	B.1	Electronic Data for WO with Respect to $X0^+$	235	
	B.2	Electronic Data for WO with Respect to X1	256	
\mathbf{C}	Ene	ergy Origins of BeH Molecule	265	
	C.1	Energy Origins of BeH Isotopomer	266	
	C.2	Energy Origins of BeD Isotopomer	281	

	C.3	Energy Origins of BeT Isotopomer	296
D	Ene	rgy Origins of MgH Molecule	300
	D.1	Energy Origins of ²⁴ MgH Isotopomer	301
	D.2	Energy Origins of ²⁵ MgH Isotopomer	306
	D.3	Energy Origins of ²⁶ MgH Isotopomer	308
	D.4	Energy Origins of ²⁴ MgD Isotopomer	310
	D.5	Energy Origins of ²⁵ MgD Isotopomer	314
	D.6	Energy Origins of ²⁶ MgD Isotopomer	316

List of Tables

1.1	Beamsplitters	8
1.2	Detectors and Working Temperatures	11
1.3	Detectors and Range of Working Wavenumber	11
1.4	Coefficients of Norton-Beer Function	14
1.5	Materials and Properties of Cells	20
1.6	End Window Materials	20
2.1	Overview of GeO Data Used in Analysis	47
2.2	Molecular Constants for the $X^{1}\Sigma^{+}$ State GeO	50
3.1	Molecular Constants of the $D(0,0)$ Band \ldots	76
3.2	Molecular Constants of the $D'(0,0)$ Band $\ldots \ldots \ldots \ldots \ldots \ldots$	78
3.3	Molecular Constants of the $F(0,0)$ Band of ¹⁸⁶ WO	82
3.4	Molecular Constants of the $F(0,0)$ Band of ¹⁸⁴ WO	83
3.5	Molecular Constants of the $F(0,0)$ Band of ¹⁸² WO	83
3.6	Rotational Constants for Lower Electronic States	84
3.7	Molecular Constants of ¹⁸⁴ WO Bands	87
4.1	Vibrational Bands of the $A^2\Pi - X^2\Sigma^+$ System of BeH $\ldots \ldots \ldots$	98
4.2	Vibrational Bands of the $C^2\Sigma^+ - X^2\Sigma^+$ System of BeH	99
4.3	Vibrational Bands of the $A^2\Pi - X^2\Sigma^+$ System of BeD $\ldots \ldots \ldots$	100
4.4	Vibrational Bands of the $C^2\Sigma^+ - X^2\Sigma^+$ System of BeD	101
4.5	Vibrational Bands of the $A^2\Pi - X^2\Sigma^+$ System of BeT $\ldots \ldots \ldots$	101
4.6	The RMSR Values for BeH, BeD and BeT	107
4.7	Molecular Constants for BeH, BeD and BeT	108
5.1	Available Spectroscopic Data for MgH and MgD	129
5.2	MgH and MgD Data Used in Global Fitting	130
5.3	The Global Fitting Data Set	131
5.4	Dunham Constants for ${}^{24}MgH$, ${}^{25}MgH$ and ${}^{26}MgH$	132

Dunham Constants for ${}^{24}MgD$, ${}^{25}MgD$ and ${}^{26}MgD$	133
Comparison of the Results of BeH and MgH	134
Fourier Transform Infrared Data for $^{70}{\rm GeO}$	140
Fourier Transform Infrared Data for 72 GeO	159
Fourier Transform Infrared Data for ⁷³ GeO	181
Fourier Transform Infrared Data for $^{74}{\rm GeO}$	196
Fourier Transform Infrared Data for ⁷⁶ GeO	218
Electronic Data of ¹⁸⁴ WO Relative to $X0^+$ (v=0)	235
Electronic Data of ^{184}WO Relative to X1 (v=0) $\ldots \ldots \ldots \ldots$.	256
Energy Origins of "Fluorescence Series" of BeH Isotopomer	266
Energy Origins of "Fluorescence Series" of BeD Isotopomer	281
Energy Origins of "Fluorescence Series" of BeT Isotopomer	296
Energy Origins of "Fluorescence Series" of $^{24}\mathrm{MgH}$ Isotopomer $~\ldots~.$	301
Energy Origins of "Fluorescence Series" of $^{25}\mathrm{MgH}$ Isotopomer $~$	306
Energy Origins of "Fluorescence Series" of $^{26}\mathrm{MgH}$ Isotopomer $~$	308
Energy Origins of "Fluorescence Series" of $^{24}\mathrm{MgD}$ Isotopomer $~$	310
Energy Origins of "Fluorescence Series" of $^{25}\mathrm{MgD}$ Isotopomer $~$	314
Energy Origins of "Fluorescence Series" of ²⁶ MgD Isotopomer	316
	Dunham Constants for 24 MgD, 25 MgD and 26 MgDComparison of the Results of BeH and MgHComparison of the Results of BeH and MgHFourier Transform Infrared Data for 70 GeOFourier Transform Infrared Data for 72 GeOFourier Transform Infrared Data for 73 GeOFourier Transform Infrared Data for 74 GeOFourier Transform Infrared Data for 74 GeOFourier Transform Infrared Data for 76 GeOElectronic Data of 184 WO Relative to X0+ (v=0)Electronic Data of 184 WO Relative to X1 (v=0)Energy Origins of "Fluorescence Series" of BeH IsotopomerEnergy Origins of "Fluorescence Series" of BeD IsotopomerEnergy Origins of "Fluorescence Series" of 24 MgH IsotopomerEnergy Origins of "Fluorescence Series" of 26 MgH IsotopomerEnergy Origins of "Fluorescence Series" of 24 MgD IsotopomerEnergy Origins of "Fluorescence Series" of 24 MgD IsotopomerEnergy Origins of "Fluorescence Series" of 26 MgH IsotopomerEnergy Origins of "Fluorescence Series" of 26 MgH IsotopomerEnergy Origins of "Fluorescence Series" of 26 MgD IsotopomerEnergy Origins of "Fluorescence Ser

List of Illustrations

1.1	Bruker IFS 120 HR Fourier Transform Spectrometer	7
1.2	Schematic Illustration of Michelson Interferometer	8
1.3	High Temperature Cell and High Temperature Furnace	18
1.4	Illustration of Microwave Discharge Cell	22
2.1	Experimental Setup for FT-IR Study of GeO	43
2.2	High Temperature FT-IR Spectra of Ground State GeO	44
2.3	Expanded View of a Portion of the FT-IR Spectra of GeO	46
3.1	Microwave Discharge Cell for Generation of WO	64
3.2	Hund's Cases (a) and (c) Vector Coupling Diagrams.	72
3.3	D(0,0) Band with Band Head Located at 20799.87(1) cm ⁻¹	75
3.4	D(0,0) Band with Noise and Interference Removed	75
3.5	Fortrat Parabola for the $D(0,0)$ Band	76
3.6	D'(0,0) Band with Band Head at 21227.48 cm ⁻¹ .	77
3.7	D'(0,0) Band with Noise and Interference Removed	79
3.8	Fortrat Parabola of $D'(0,0)$ Band	79
3.9	F(0,0) Band with Band Head Located at 23405.90 cm ⁻¹	80
3.10	F(0,0) Band with Noise and Interference Removed	80
3.11	A portion of the $F(0,0)$ Band of WO	82
3.12	Energy Level Diagram for WO	88
4.1	Vector Coupling Diagram for Hund's Case (b)	94
4.2	Rotational Energy Level Diagram of $A^2\Pi - X^2\Sigma^+$ Transition	96
4.3	Qualitative Potential Curves of the Electronic States of BeH	97
5.1	Qualitative Potential Curves for the Electronic States of MgH	119
5.2	Data of ²⁴ MgH Transitions Used in the Global Fitting	131

Chapter 1 Introduction

The energy levels of a molecule are quantized as governed by the Schrödinger equation in quantum chemistry, whereas molecular spectroscopy involves the detection and interpretation of transitions between the energy levels. The real test of any quantum mechanical theory lies in the ability to reproduce observed experimental data.

This Chapter presents the theoretical and experimental foundations for the spectroscopic studies and theoretical analysis of transient chemical species. Section 1.1 presents the principles of rotational, vibrational and electronic spectroscopy, and the techniques of emission spectroscopy and Fourier transform spectroscopy. Section 1.2 summarizes the experimental techniques used for the generation and detection of the chemical species in a laboratory environment, i.e., the high temperature cells and discharge plasma cells. Section 1.3 presents an overview of the theoretical models and software tools used in the processing of the spectroscopic data of diatomic molecules. This Chapter is concluded by pointing out the importance of both theoretical and experimental foundations in successful spectroscopic research.

1.1 Fourier Transform Emission Spectroscopy

Molecular spectroscopy may be defined as the study of the interaction of electromagnetic waves and molecules. The rotational, vibrational, and electronic energies in a molecule are all quantized. It is the undulating interconnected electric and magnetic fields interacting with molecules that give rise to spectra. Although the dual electric-magnetic character of electromagnetic radiation is of great importance, it is the oscillating electric field which is more often involved than the magnetic field in interaction with molecules.

1.1.1 Rotational, Vibrational and Electronic Spectroscopy

Generally, the vibrational transitions of a molecule are in the infrared (IR) region¹ of electromagnetic radiation, which is between the visible and the microwave, or 10–13,000 cm⁻¹ (0.75 μ m–1.0 mm).

The pure rotational transitions generally occur in the microwave or millimetre wave region, while the electronic transitions occur in the visible or ultraviolet region of the electromagnetic spectrum.

1.1.1.1 Rotational and Vibrational Spectroscopy

For gas phase molecules, rotational transitions accompanying the vibrational transitions are usually observed in high resolution spectroscopic experiments using a high resolution spectroscopic instrument, such as a Fourier transform spectrometer (FTS). By analysis of the observed ro-vibrational spectra, relevant physical information about the molecules can be extracted from the line positions, line widths, and line intensities[1]. From the line positions, it is possible to determine the energy level pattern of the molecules. Also, more direct physical information, such as the force constants, bond lengths and moments of inertia, may be calculated from the systematic trends in line positions.

The vibrational transitions are detected in the infrared region of the electromagnetic spectrum. The relative intensity depends on the square of the transition dipole moment. The strength of vibrational transitions is usually about two orders of magnitude weaker than those of the pure rotation and electronic transitions, in consideration of the fact that the strength of the vibrational transitions depends on the change of the electric dipole; the strength of the pure rotational transitions depends on the magnitude of the permanent dipole; and in electronic transitions, the electronic state

¹Near-IR, 4,000–13,000 cm⁻¹ (0.75–2.5 μ m), the overtone region; Mid-IR, 400–4,000 cm⁻¹ (2.5–25 μ m), the fundamental region; Far-IR, 10–400 cm⁻¹ (25 μ m–1 mm).

changes, so the dipole change is also large. Also, the rates of emission are much smaller for vibrational transitions than for electronic transitions. Nevertheless the rates of infrared emission are adequate to provide an acceptable signal to noise ratio (S/N), even for transient molecules [2, 3]. The advantages of the Fourier transform spectrometers as listed in Section 1.1.3.4 make such systems a successful tool in the infrared experiments.

1.1.1.2 Diode Laser Spectrometer vs. Fourier Transform Spectrometer

There are two kinds of instruments that are widely used in high resolution infrared spectroscopy: diode laser spectrometers and Fourier transform spectrometers.

The laser source of a diode laser spectrometer provides both the high intensity necessary for high sensitivity, and the narrow linewidth needed for high resolution. There are two reasons that limit the applications of a diode laser spectrometer. One is that its tunable range is narrow, and the other is that it has no inherent means of calibration.

Fourier transform emission spectroscopy for the study of high temperature transient species has been much explored in Bernath's lab [2]. Emission spectra of high temperature molecules yield increased sensitivity over absorption spectra and cover a wider spectral region than those of a diode laser spectrometer.

1.1.1.3 Electronic Spectroscopy

Electronic transitions generally occur in the visible or ultraviolet range of the electromagnetic spectrum. The spectroscopic data for electronic transitions give information about energy levels of the electronic states involved, in addition to information on the related vibrational and rotational energy levels of the electronic states[4].

Whereas the advantages of Fourier transform spectrometers are in infrared experiments, as listed in Section 1.1.1.1 and Section 1.1.3.4, they can also be used for the detection of electronic transitions of gas phase molecules at high resolution. However, the hardware configuration needs to be made suitable for the frequency range by changing beamsplitters, detectors, filters, windows, etc. It may also be necessary to change the method for generating the species of interest.

1.1.2 Emission Spectroscopy

The electronic emission spectra of gas phase molecules provide more information about the molecules than do the absorption spectra. The molecules are normally found in the lowest few vibrational levels of the ground electronic state, based on the Boltzmann distribution. Most absorption spectra show only the 0-0, 1-0, 2-0, 3-0, ... progression series. However, emission transitions may come from many vibrational levels of the excited electronic state involved into many excited vibrational levels of the ground electronic state.

For a molecule with many isotopomers, emission spectra can be much more complicated. Using an absorption spectrum as a guide for the assignment of the emission spectra can be very helpful.

Similarly, the infrared rovibrational emission spectra provide more information about the molecule than the absorption counterpart. Many different bands may be observed.

Although emission spectroscopy is common in the visible and ultraviolet region, the technique has been neglected in the infrared and far infrared regions until recently [2]. In addition, infrared emission spectroscopy has the following properties, compared with infrared absorption spectroscopy [2].

(1) Sensitivity

Emission spectroscopy is more sensitive than absorption spectroscopy, because emission spectra can have zero background. For an absorption spectrum, the noise arises mainly from shot-noise² from the background continuum. In emission spectra, the background continuum is absent. Although the emission signal is relatively low, the signal-to-noise ratio is improved [2].

Since transient molecules³ and radical species⁴ have low concentrations because of their great reactivity, it is advantageous to use emission spectroscopy to study them. For transient molecules, emission spectroscopy is a technique that improves the performance of the spectrometer experimental system [2].

The improvement in sensitivity obtained by working in emission rather than in absorption with high temperature molecules, ions, and free radicals is typically a factor of 10 in the mid-infrared region. At the same time, the instrument of choice is the high resolution Fourier transform spectrometer [2] considering the advantages of the FTS as described in Section 1.1.3.4.

 $^{^{2}}$ The shot-noise is due to the fluctuating nature of radiation, which is composed of photons arriving randomly in time.

³Transient species refers to a short-lived reaction intermediate. It can be defined only in relation to a time scale fixed by the experimental conditions and the limitations of the technique employed in the detection of the intermediate. A successful experimental method produces sufficient concentration of the transient species for spectroscopic observation.

⁴An atom or group of atoms that is highly chemically reactive because it has at least one unpaired electron.

The rate of spontaneous emission between two states is determined by the *Einstein A factor*. Although emission spectroscopy is not as favorable in the infrared region as in the visible, infrared experiments are possible, and a number of high temperature molecules have been recorded in emission in the near infrared [2].

(2) Temperature

Emission spectroscopy requires that the sample be at a different temperature (higher or lower) than the spectrometer [2, 3, 5].

In emission spectroscopy, a sample is generally heated to a temperature greater than the temperature of the detector. It is possible to obtain emission spectra of a sample by either heating or cooling it with respect to the detector [5]. Higher temperatures are more favorable, since the emitted power increases strongly with temperature.

In an emission experiment, the radiation detected is essentially a relative flux of radiation as a result of the temperature difference between the sample and the detector. A large temperature difference is desirable, since it will increase the flux of radiation and hence the signal to noise ratio of the emission spectra.

(3) Blackbody Radiation

Infrared emission spectroscopy is plagued by thermal blackbody emission from the spectrometer itself, as well as from the high temperature cell or discharge cell used to excite the sample [2]. For infrared emission spectroscopy, in addition to the potential interference from the infrared emission from the support material, it is also possible to observe undesired stray light emitting from the walls of the spectrometer or from any of the spectrometer optical components. This stray light can also interfere with the infrared emission measurement, causing a base line distortion in the emission spectra [5].

The blackbody radiation is a continuum that provides nothing but noise. It cannot be avoided, but its effects can be minimized by limiting the field of view with a cold aperture, by preventing the spectrometer from looking directly at hot objects, and by limiting the spectral range of the detectors with cold filters.

1.1.3 Fourier Transform Spectroscopy

The majority of the experiments reported in this thesis have been carried out using the Bruker IFS 120 HR Fourier transform spectrometer. The Bruker spectrometer offers high resolution and excellent sensitivity. Its modular construction allows the system to be easily configured for specialized applications. The specially designed permanently aligned interferometer provides high sensitivity and stability. The computercontrolled selection of optical components makes the experimental setup and spectral range change fast and easy. The spectrometer has a resolution of better than 0.002 cm^{-1} , and a spectral range from 5 cm^{-1} in the far-IR to above 50,000 cm^{-1} in the UV (with wavelength from 200 nm to 2 mm). The high vacuum optics bench can be evacuated to less than 0.02 Torr for distortion-free baselines. The instrument is equipped with two liquid helium cooled bolometers, liquid nitrogen cooled MCT and InSb detectors, a Si diode detector, a DTGS detector, and other detectors.

1.1.3.1 Working Principle

The schematic illustration of the optics of the Bruker IFS 120 HR high resolution Fourier transform spectrometer (FTS) is shown in Fig. 1.1. The core part of the Fourier transform spectrometer is a Michelson interferometer, as shown in Fig. 1.2. The Michelson interferometer is a device that divides a beam of radiation into two paths, and then recombines the two beams after a path difference has been introduced. A condition is thereby created under which interference between the beams can occur. The *interferogram*, i.e., the intensity variation of the beam as a function of optical path difference (also called optical retardation), emerging from the interferometer can be measured by using a detector. The principle of a high resolution Fourier transform spectrometer, and its signal flow and signal processing steps are as follows [6, 7, 8, 9, 10, 11].

(1) Emission Source

An experimental emission source can be thought of as a source of radiation with a characteristic intensity distribution as a function of frequency (wavenumber). In the spectroscopic experiments, the emission source is the cell containing transient molecules that are emitting electromagnetic radiation. The transient species are excited using various means, such as high temperature furnace, microwave discharge, radio frequency discharge, DC or AC electric discharges, or a combination of the methods mentioned above. When the chemical species makes transitions from the excited states to lower states, the emission of radiation occurs.

(2) Interferogram

The Michelson interferometer optics (fixed mirror, moving mirror, beamsplitter, etc.) as shown in Fig. 1.2 generates an optical path difference for the input

Figure 1.2: A Schematic Illustration of the Michelson Interferometer

 Table 1.1: Beamsplitters

Beamsplitter	Range (cm^{-1})
Mylar film	0-1,000
KBr	350 - 6,000
KCl	750 - 6,000
CaF_2	1,000-7,000
Quartz	4,000 - 30,000

signal, and produces interferograms as measured with the detectors. The materials and the working frequency range of the beamsplitters⁵ for the spectroscopic experiments are shown in Table 1.1.

The Michelson interferometer in the FTS converts the source emission (intensity vs. frequency) into an interferogram (intensity vs. optical path difference). The interferometer divides the radiation, introduces an optical path difference, and generates the interferogram. The spectral information in the source is preserved in the interferogram.

 $^{^{5}}$ In fact, the materials listed here are the beam splitter substrates. The beam splitters need to have coatings on the substrates. For example, Ge/KBr represents a germanium coating on a KBr substrate.

The interferograms are different for different type of sources. The relations between the interferograms and different types of sources, e.g., monochromatic sources, polychromatic sources, and continuous sources, obey different mathematical rules.

• Monochromatic Source

$$I(x) = S(\overline{\nu})\cos(2\pi\overline{\nu}x) \tag{1.1}$$

where

x - the optical path difference;

 $\overline{\nu}$ - the wavenumber of the monochromatic source;

 $S(\overline{\nu})$ - the intensity of the emission source at wavenumber $\overline{\nu}$.

The interferogram of a helium-neon laser is a monochromatic example.

• Polychromatic Source

$$I(x) = \sum_{i} S(\overline{\nu_i}) \cos(2\pi \overline{\nu_i} x)$$
(1.2)

where

x - the optical path difference;

 $\overline{\nu_i}$ - the wavenumbers of the polychromatic source;

 $S(\overline{\nu_i})$ - the intensity of the emission source at wavenumber $\overline{\nu_i}$.

In high resolution spectroscopy, gas phase emission sources are polychromatic because the emission line positions are resolved.

• Continuous Source (Continuum)

$$I(x) = \int_{-\infty}^{+\infty} S(\overline{\nu}) \cos(2\pi\overline{\nu}x) d\overline{\nu}$$
(1.3)

where

x - the optical path difference;

 $\overline{\nu}$ - the wavenumber of the continuous source;

 $S(\overline{\nu})$ - the intensity of the emission source at the wavenumber $\overline{\nu}$.

For example, emission from a hot radiating solid object, or emission sources as in low resolution spectroscopy, for which the transitions are not resolved.

The effect of measuring the signal over a limited retardation (optical path difference) is to cause the spectra to have a finite resolution. The maximum retardation of the interferogram determines the maximum resolution. Approximately, $\Delta \overline{\nu} = (\Delta_{max})^{-1}$, where $\Delta \overline{\nu}$ is the resolution. Δ_{max} is the maximum retardation.

(3) Spectrum

The spectrum is recovered using Fourier transform software (including apodization, phase correction, zero filling, etc.). The interferogram is a cosine Fourier transform of the source spectrum. The final spectrum output from the Fourier transform spectrometer is the inverse cosine Fourier transform of the interferogram.

1.1.3.2 Detectors

The detectors used in Fourier transform spectrometers can be classified as *thermal* detectors or photon detectors according to their working principles [12].

(1) Thermal Detector

Thermal detectors exhibit a change in some measurable electrical property that accompanies a change in temperature of the sensitive element, caused by absorption of radiation by the sensitive element. For example, the silicon bolometer, and the DTGS (deuterated triglycine sulfate) detector.

(2) Photon Detector

Photon detectors are also called *quantum detectors*. This category of detectors is based on the creation of charge carriers (electron-hole pairs) in a semiconductor material due to absorbed electromagnetic radiation, followed by subsequent collection and amplification of the charges created. Photon detectors are more sensitive, and have fast response times. They usually operate below or at liquid nitrogen temperatures. Photon detectors include MCT (mercury cadmium telluride), InSb (indium antimonide), Si:B (boron doped silicon), and Si diode detectors.

Most infrared detectors are to be cooled either with liquid helium and/or liquid nitrogen. One reason for cooling the detector to such low temperatures is to minimize the blackbody radiation emitted from its surroundings. Blackbody radiation interferes with the signal obtained by the detector and is a major factor for a low signal-to-noise ratio. The working temperatures and ranges of working frequencies of the detectors are shown in Table 1.2 and Table 1.3.

Working temperature	Detector
Room temperature	Si photo diode, DTGS, PMT
Liquid nitrogen (77 K)	MCT, InSb
Liquid helium (4 K)	Si bolometer, Si:B

 Table 1.2: Detectors and Working Temperatures

Table 1.3: Detectors and Range of Working Wavenumber

Detector	Working Wavenumber Range (cm^{-1})
Si Bolometer	0–400
Si:B Detector	350 - 2,000
MCT	800-2,400
InSb	1,850-6,000
Si photo diode	$9,000 - 45,000 \ (220 - 1,100 \ { m nm})$
PMT	13,000-25,000 (visible region)

According to their positions in the Bruker 120 IFS HR high resolution Fourier transform spectrometer, the detectors are also classified as *internal detectors* or *external detectors*.

(1) Internal Detectors

The MCT, InSb and Si photo diode detectors are built-in detectors for the spectrometer. The MCT and InSb detectors must be cooled with liquid nitrogen, while the Si photodiode operates at room temperature.

(2) External Detectors

In low wavenumber experiments, the external detector pack needs to be used. The Si:B detector and the Si bolometer are in the same detector package. Liquid helium cooling is necessary for them to operate properly. The outer part of the detector assembly needs to be cooled with liquid nitrogen, and the inner part with liquid helium.

1.1.3.3 Further Discussions

The interferogram and the spectrum are a Fourier transform pair. For a monochromatic line, the interferogram is a cosine function; for two monochromatic lines, the interferogram shows a beat pattern; for a Lorentzian shaped single line, it is a sinusoidal interferogram with an exponentially damped envelope; and for a broad band spectrum of a polychromatic source, the result is a general interferogram [6], which is characterized by its high centerburst and two decaying side wings. When the emission source has a broader range, the interferogram wings decay faster, because more frequency components in the source give more chance of cancellation. In any case, the interferogram is the cosine Fourier transform of the source function.

The computer software in the Fourier transform spectrometer converts the interferogram into a spectrum. The Fourier transform conversion also includes such necessary mathematical manipulations as apodization, phase correction, zero filling, etc.

(1) Interferogram Sampling

The sampling of the interferogram is triggered by the zero crossings of the interferogram (interference fringes) of the built-in helium-neon laser in the Fourier transform spectrometer.

An FTS can be configured to collect either double-sided or single-sided interferograms [13]. This means both low-resolution measurements, with their improved signal-to-noise ratios, and high-resolution measurements are readily accommodated. Every point on an interferogram contains information about all frequencies present in the spectrum. Because this frequency information is dependent on the distance that the mirror has moved from the interferogram centerburst (the point of zero path difference), sampling on either side of the centerburst provides the same frequency information. At lower resolutions, collecting equal amounts of data before and after the centerburst, i.e., a doublesided data collection, samples each frequency element twice and thus yields a superior signal-to-noise ratio. The signal-to-noise ratio of a double-sided data collection is equal to $\sqrt{2}$ times that of a single-sided data collection, because the number of measurements is doubled. Also, less time is required to collect one double-sided interferogram than is required to collect two single-sided interferograms.

High-resolution measurements require more retardation, that is, greater mirror travel. But mechanical restrictions allow only a relatively small portion of the interferogram to be sampled before the interferogram centerburst. To circumvent this limitation, a single-sided interferogram can be collected to achieve the desired resolution.

(2) Filtering

It could be inferred that the higher the frequency of the components present in the interferogram signal, the higher the sampling rate should be. If the sampling rate is not high enough to sample the signal correctly then a phenomenon called *aliasing* occurs. Aliasing is the replication of the original spectrum with respect to the folding wavenumber, and the Nyquist frequency (wavenumber) is the folding wavenumber. The only solution to the aliasing problem is to ensure that the sampling rate is high enough to avoid any spectral overlap, or to use an anti-aliasing filter.

The filtering solution is more practical. Because only a certain wavenumber range of the spectrum is to be detected, it is better to filter the interferogram to fulfill the *Nyquist sampling theorem*. The filtering eliminates the aliasing (the frequency folding). Without filtering, its mirror image would apear on the wavenumber axis. Wavenumber components higher than half of the sampling frequency need to be filtered out either electronically or optically to ensure that the spectrum is recovered correctly.

(3) Apodization

The process of apodization is the removal of the sidelobes of the lines in a spectrum by multiplying the interferogram with a suitable function prior to the Fourier transformation. A suitable function must cause the intensity of the interferogram to fall smoothly to zero at both ends [14].

Because it is impossible to collect an interferogram to infinite optical path difference, i.e., the interferogram has to be truncated, so some error arises in the resulting spectrum. This is equivalent to multiplying the ideal interferogram by a boxcar function, so the spectrum recovered is broadened with sidelobes. A practical interferogram always has a finite retardation. The product of an ideal interferogram (collected to infinite optical path difference) and a boxcar function is equivalent to the convolution of the true spectrum with a sinc function (with sidelobes). Apodization functions are used to correct the spectral line shape, i.e., to suppress the sidelobes. The apodization is realized by multiplying the interferogram by a decaying function, i.e., the apodization function [15].

When the interferogram is multiplied by an apodization function, the transform of the interferogram, i.e., the spectrum, is technically free from sidelobes. The apodization function not only controls the instrument line shape caused by the trucation of the interferogram, but also smooths out the amplitude of high spatial frequencies in the interferogram. Any function that has a value of unity at zero path difference and decreases with increasing retardation will serve as an apodization function.

	C_0	C_1	C_2	C_3	C_4
Weak	0.384093	-0.087577	0.703484	0	0
Medium	0.152442	-0.136176	0.983734	0	0
Strong	0.045335	0	0.554883	0	0.399782

Table 1.4: Coefficients of Norton-Beer Function

The drawback of using the apodization function is the worsening of the spectral resolution, because the extremes of the interferogram wings are reduced by the apodization function. Therefore, it is necessary to make a compromise between the reduction in spectral distortion (the sidelobes) and the worsening of the resolution [12].

The specific function depends on the experiment being performed. If either high resolution or good quantitative accuracy is required, a function such as the Norton-Beer weak function shown in Eqn. (1.4) can be used. Strong apodization can be applied for spectra containing both weak and intense lines, especially when their width is of the same order as the instrument resolution [6]. The coefficients of the Norton-Beer function listed in Table 1.4 are the empirical parameters for

$$A(x) = \sum_{i=0}^{4} C_i [1 - (x/L)^2]^i$$
(1.4)

where

L - the range of the optical path difference of the interferogram;

 C_i - the coefficients as shown in Table 1.4.

(4) Phase Correction

The non-zero phase phenomenon comes from the fact that the input of the sampled interferogram to the Fourier transform software is not a mirror image about zero retardation (zero optical path difference). It comes from the mismatching of sampling point and zero retardation, and optical properties, such as the change of the beamsplitter refractive index with wavenumber, etc. The filtering process can also bring about phase errors. In other words, the phase error is caused by optical, electrical or sampling effects, e.g., phase lag caused by electronic filters to remove high frequency noise; even when the interferogram is symmetrical about zero optical path difference, the first data point could actually be sampled before the zero retardation point.

The result of the Fourier transform of an arbitrary function is a complex function, which has both a real and an imaginary part. The symmetric component of the interferogram contributes to the real cosine part; and the asymmetric components of the interferogram brings about the imaginary sine part. In Fourier transform spectroscopy, an ideal interferometer produces a symmetric interferogram about the zero path difference, and only the cosine part is present in the transformed result. However, the imperfection of a real world interferometer always brings about a non-zero imaginary part in the transformed results, which means that the real component is distorted [15]. It is therefore necessary to correct the data for such phase distortion.

The phase angle can be computed from a region of the interferogram measured symmetrically on either side of the zero retardation point, or the *centerburst*. The short double-sided portion of the interferogram can be used to calculate the phase spectrum, by means of the *Mertz algorithm* [12].

(5) Zero Filling

Zero filling is a technique used to bring extra data points to the sampled interferogram data. According to the *Nyquist theorem*, the spectral information can be entirely recovered as long as the sampling frequency is at least double the highest frequency component in the interferogram. Such a sampling frequency is called the *Nyquist frequency*. Therefore, it is not necessary to sample too many data points from the interferogram. It is necessary to have sufficient data points to achieve the desired resolution and smooth spectral line shape. However, acquiring more data points takes more time.

The requirement for more data points can be realized by addition of a block of zero data points to the acquired data and then Fourier transformation of the data with this block of zeros included [16]. This process is called *zero filling*. Usually, data are sampled in blocks of 2^N points.

Another advantage of zero filling is that the extra data points help to smooth out the spectral line shape [15]. Using extra zeros in the interferogram helps to interpolate the spectra. Usually a factor of 8 (8 times extra zeros) is used for zero filling.

For a signal with a frequency that aways lies half way between the sampling

points, the picket-fence effect⁶ occurs. The zero filling and interpolation techniques solve this problem.

(6) Fourier Transfrom

This is the final and major step in the realization of the spectrum recovery. The fast Fourier transform algorithms available make this step easier.

The quality of the detected spectrum is affected by many factors, such as the intensity of the signal source, the efficiency of the beam splitter (reflectance and transmittance) and other optics, and performance of the electronics (detectors, amplifiers), etc.

1.1.3.4 Advantages of Fourier Transform Spectrometers

Compared with dispersive spectrometers using slits or dispersive elements, a Fourier transform spectrometer (FTS) has some unique advantages.

(1) Throughput Advantage (Jacquinot Advantage)

The circular aperture of an FTS has a larger area than that of a slit. The beam splitter is used instead of a dispersive element (e.g., a diffraction grating). Therefore, the signal intensity is high, and more energy gets to the detector than is possible with a dispersive spectrometer. This additional energy on the detector increases the spectrum's potential signal-to-noise ratio.

(2) Multiplex Advantage (Fellget Advantage)

Signals of all frequencies enter the FTS and arrive at the detector at the same time and with the same signal-to-noise ratio. The measurement is faster. The time saved can be used to do more scans to reduce the detector-limited noise (The signal to noise ratio is increased by a factor of \sqrt{N} after taking N measurements).

An FTS does not separate light into individual frequencies before measurement. This means each point in the interferogram contains information from each wavelength in the input light. In other words, if 1,000 data points along the interferogram are collected, each wavelength in the input light is sampled

⁶This effect is produced by the inability of the discrete Fourier transform (DFT) to observe the spectrum as a continuous function, since computation of the spectrum is limited to integer multiples of the fundamental frequency. Observation of the spectrum with the DFT is analogous to looking at it through a sort of "picket-fence", since we can observe the exact behavior only at discrete points. The major peak of a particular component could lie between two of the discrete transform lines, and the peak of this component might not be detected without some addition processing.

1,000 times. By contrast, a dispersive spectrophotometer that measures 1,000 individual points across a spectrum samples each wavelength only once.

The throughput advantage and the multiplex advantage allow high resolving power⁷[6]. Together the throughput and multiplex advantages allow an FTS to obtain a high-quality infrared spectrum in a fraction of the time needed to get the same spectrum on a dispersive instrument.

(3) Precision Advantage (Connes Advantage)

The zero crossings of interference fringes of the internal helium-neon laser are used to control the scanner movement and the signal sampling. Therefore, the FTS has a built-in wavenumber calibration standard of high precision. In reality, however, if the reference laser is even slightly misaligned, a small wavenumber shift will be introduced. Calibration of FTS spectra against other standards of higher accuracy is necessary.

(4) Computation and Software Advantage

The high resolution spectrum is obtained through powerful signal processing techniques, such as apodization, phase correction, zero filling, and Fourier transformation.

In addition, the FTS has the advantage of spectral resolution. To increase the resolution of a dispersive spectrometer, the slit through which light must pass needs to be narrowed, thereby decreasing energy throughput. As the resolution increases, the advantage of an FTS over a dispersive instrument increases [13]. Also, the resolution is constant for the whole spectral range for a FTS.

¹⁷

⁷The optical resolving power is defined as $\lambda/\Delta\lambda_{min}$ for a signal of a certain wavelength.

1.2 Generation of Transient Species

Transient chemical species exist only under special experimental conditions. In the experiments reported in this thesis, a high temperature cell or microwave discharge cell with low internal gas pressure is used for the generation of such species. Generally, the high temperature furnace is used to obtain rovibrationally excited species, and the microwave plasma cell is used to generate electronically excited species. The high temperature cell can also be used together with other excitation methods, e.g., DC or AC discharge electrodes, to generate electronically excited species. In all cases, vacuum pumping is necessary to bring the pressure of the gas mixture to a suitably low value in order to provide a condition for the reaction to occur in order for transient species to form, and at the same time to prevent interfering species from building up in the cell. Normally the background pressure inside the cells is kept at around 10^{-2} to 10^{-3} Torr, and the working pressure in the cells is about 1 Torr.

1.2.1 High Temperature Cell

1.2.1.1 Configuration

The experimental setup of the high temperature cell used for the generation and excitation of transient chemical species is shown in Fig. 1.3.

Figure 1.3: High Temperature Cell and High Temperature Furnace

At elevated temperatures (usually 800-1,500 °C), the solid chemicals in the cell begin to vaporize. There is in the cell a mixture of the vapour of the solid chemicals (usually in powder form), reaction gases and a buffer gas. Argon is usually used as the buffer gas in the high temperature cell in experiments involving the observation

of ro-vibrational spectra. The collisions of the heavy argon atoms with the sample gases provide them with thermal excitation energy. The presence and bombardment of the argon atoms also helps to prevent the formation of deposits in the water cooled ends of the cell. Argon should be used to protect the tubes, valves, and windows, especially for FTS experiments using corrosive gases or highly depositing substances. For experiments involving low vapor pressure substances, argon may not be necessary because there will be little deposit. Helium is an alternative buffer gas, and neither argon nor helium participate in reactions.

Water cooling is used to bring down the temperature of the end windows to protect them from harm due to the high temperature in the middle part of the cell. Generally, for infrared spectroscopic experiments, KRS-5 (thallium bromoiodide) windows are used; KRS-5 can not endure temperatures greater than 300 °C, as shown in Table 1.6.

Nitrogen gas is used to purge the cell-spectrometer interface to remove the influence of interfering species (H₂O, CO₂, etc.) in the air. Nitrogen contributes no interference to the infrared spectrum[3].

There is an interesting anecdote about the high temperature furnace experiments. When the mullite cell was heated up without chemicals in it, a very good diatomic molecular spectrum appeared at about 850 °C. It was identified as the SiO molecule, which came from the mullite cell itself! A literature search showed that the Fourier transform infrared spectrum of SiO was published by researchers from the same Laboratory [17] a few years before and was discovered in a similar manner.

1.2.1.2 Cells and Windows

There are three types of commonly used tube cells for experiments using the high temperature furnace, i.e., alumina, mullite, and quartz.

Alumina or aluminum oxide (Al_2O_3) is one of the most refractory ceramic oxides. It has a melting point of 2,015 °C. Alumina is a hard, zero porosity ceramic material for high temperature applications. Its vacuum properties are excellent, with low outgassing and high temperature stability. An alumina ceramic cell is more expensive than a mullite cell. Because alumina is less resistant to thermal shock, a longer time must be allowed for its heating up and cooling down, e.g., 60 minutes for every 500 °C.

Mullite is a good, low-cost refractory material, with a nominal composition of $3Al_2O_3.2SiO_2$. Mullite has a melting point of 1,800 °C. It has good thermal shock and stress resistance, and good thermal strength. Mullite has a low coefficient of thermal expansion, and it is resistant to many corrosive environments. A mullite cell is less expensive than an alumina cell. It is suitable for lower working temperatures.

Material	Melting Point °C	Working Temperature °C
Alumina	2,015	< 1,500
Mullite	1,800	< 1,300
Quartz	$1,\!610$	< 1,000

Table 1.5: Materials and Properties of Cells

Table 1.6: End Window Materials

Material	Transmission Range ($\rm cm^{-1}$)	Melting Point (°C)
KRS-5	$250-16{,}000~(0.6-40~\mu{ m m})$	414.5
CaF_2	$1,000-76,000~(0.13-10~\mu{ m m})$	1,360
Crystal Quartz	$3,\!000-25,\!000~(0.4-3~\mu{ m m})$	1,467

Because mullite is more resistant to thermal shock, it takes less time to heat it up or to let it cool down.

Quartz is pure crystalline silicon dioxide SiO_2 .⁸ Quartz melts at approximately 1,610 °C. The temperature properties of the three tube cells are summarized in Table 1.5.

There are three types of commonly used end windows for the cells, KRS-5, calcium fluoride, and quartz. KRS-5 (thallium bromoiodide) is used as infrared windows where transmission in the 0.6 - 40 μ m range is desired. The melting point of KRS-5 is 414 °C, and it is only slightly soluble in water, but can be dissolved in alcohol, nitric acid, and aqua regia. KRS-5 is considered toxic, and hence protective gloves are needed when handling it.

Calcium fluoride (CaF₂) is used for optical windows in the 0.15 - 9 μ m range. The polished surfaces are stable and will last several years under normal conditions. Due to its low refractive index, calcium fluoride can be used without anti-reflection coating. It has a melting temperature of 1,350-1,402 °C.

The three types of commonly used windows [18] are listed in Table 1.6.

1.2.1.3 Working Principle

At relatively low temperatures, chemical substances exist in the solid state. Heating through its melting point, sufficient energy is delivered to the system to overcome the potentials binding the molecules in the lattice, and the system passes into the liquid

⁸The impure variety of silicon dioxide SiO_2 is the more commonly known glass.

state. Further addition of heat increases the thermal motion of the molecules in the liquid, and the more energetic ones escape into the vapour phase.

For most of the chemical substances used in the spectroscopic experiments carried out by the author, sufficient sublimation occurs at a temperature lower than the boiling point, and sufficient vapour pressure is obtained below the melting point.

The collision of the gas phase molecules or atoms among themselves or with buffer gases, e.g., argon, excites them, and reaction can take place. This may result in the formation of the new unstable transient species.

The high temperature cell not only heats up the reagents to make the reaction occur, but also acts as a source of blackbody radiation to excite the new species. The radiation from the high temperature cell raises the newly formed species to excited vibrational or rotational states. As in any gas mixture, the collisions among the molecules or atoms promote energy exchange to contribute to the reaction and excitation. Emission spectra are observed when the spontaneous transitions to lower ro-vibrational energy levels occur.

When a high temperature cell is operated in combination with other more energetic excitation means such as DC, AC, or RF discharges, more energy is brought to the species and electronic emission spectra may be observed.

1.2.2 Microwave Discharge Cell

1.2.2.1 Configuration

The configuration of the microwave discharge cell for the generation of transient chemical species is shown in Fig. 1.4. The solid chemicals usually in the powder form are placed in the quartz cell. The microwave head is mounted across the cell. An electric heating tape can also be wound around the portion of the cell that carries the chemicals when heating is necessary. The reaction gases and buffer gas are let in from one end and the vacuum pump is connected to the other end. The spectroscopic radiation from the plasma in the cell is collected with a lens and sent to the FTS.

The main advantage of the microwave-cell is that the cell can be operated with electrodes external to the discharge tube. However, the build-up of deposits inside the cell does change the power coupling into the discharge cell[3].

1.2.2.2 Working Principle

At room temperature or at an elevated temperature for some of the solid chemicals, sublimation occurs and sufficient vapour pressure is obtained below the melting point.

Figure 1.4: Illustration of Microwave Discharge Cell

Having enough vapour pressure is an important factor for a successful spectroscopic experiment.

The gas phase mixture in the microwave discharge cell is composed of a buffer gas (e.g., usually helium, because argon has too many atomic lines from its electronic transitions), reaction gases, and vapour from the solid chemical powder. A plasma in the gaseous mixture is maintained in the microwave discharge cell after the discharge is started.

The plasma state is considered to be the "fourth state of matter". By definition, a plasma is assumed to be electrically neutral and to consist of an equal density of positive ions and negative electrons [19]. It is characterised by a collection of charged particles (ions and electrons) of low density[20, 21]. Microwave energy is transferred to the gas mixture by electrons colliding with gas neutrals and other particles, e.g., ions [21].

The plasma consists of an equal number of mobile light electrons and heavy static ions. Because the difference in mass and hence in mobility between the electrons and ions is large, it is assumed that the ions provide a static charged medium, and that only the electrons are mobile. If the electrons were completely free to move in the medium without any hindrance, there would be no transfer of energy from the electrons to the surrounding heavy ions and gas molecules. The plasma would be "loss-less". However, there are actually elastic and inelastic collisions between the electrons and the other particles in the plasma, and this causes the electrons to lose some energy [19].

The very high frequencies of microwave radiation involved[3] mean that when microwave fields are applied across a reaction gas mixture, electrons move only short distances before the direction of the field changes. Microwave techniques have made it possible to study interactions between electrons, atoms, and ions without the disturbance of electrode phenomena [22].

The energy transferred to the gas phase reactants in the quartz cell may make the reaction take place. Also, the new species may be formed and pumped to excited states by the the kinetic energy of electrons making it possible for emission spectra to be observed.

1.2.3 Other Excitation Methods

The formation of plasmas using electrical discharges [3] is also commonly used in experiments of electronic emission spectroscopy. Electrical pumping of a gas phase reactant mixture to its excited states is achieved by allowing a current (either CW, RF or pulsed) to pass through the gas mixture [23, 24, 25].

It is the electrons that are responsible for the phenomena occurring in a gas discharge. They acquire energy from the applied electric field and lose or exchange energy through three processes: (1) inelastic collisions with the atoms or molecules of the gas mixture, which raises the atoms or molecules to their excited states, or ionizes them, (2) elastic collisions with atoms or molecules, and (3) electron-electron collisions.

1.3 Spectroscopic Data Processing

The goal of spectroscopic experiments and analyses is to determine numerical values for one or more quantities for the molecule under study, i.e., the set of molecular constants, by measuring and analyzing the spectra of a molecule. Other properties of the molecule can be derived from the molecular constants thus obtained. The molecular constants can not be measured directly. The raw spectroscopic data must be analyzed mathematically or numerically in order to derive the molecular constants. This involves the data reduction process. Because of the experimental errors inherent in any experiment, it is necessary to process the spectroscopic data statistically, which makes the data processing more complicated.

The theory of molecular spectroscopy [4, 26, 27] provides the equations or mathematical models, which are mostly expressed as differences of energy levels, for the processing of the spectroscopic data. The general models work equally well for microwave (pure rotational) data, infrared (ro-vibrational) data and electronic transition data (rotational and vibrational transitions between energy levels of different electronic states). The number of microwave data is usually small, with only information on lower vibrational levels and lower rotational levels (usually one or two vibrational levels of the ground electronic state), but they are usually of the highest accuracy. FT-IR data give us information about a few vibrational levels of the ground electronic state with a continuous coverage of a large frequency range, and with medium accuracy. Electronic transition data from spectrographs give us information about ro-vibrational levels of the electronic states concerned, but with lower accuracy. FTS electronic data have higher accuracy than those from spectrographs. Other sources of spectroscopic data include infrared data from infrared diode laser experiments, which usually have an accuracy comparable to the FTS data, but the number of lines is usually small.

If available, microwave, infrared, and electronic data from different sources should be used together with the newly measured set of experimental data in the overall fitting to derive the most reliable set of molecular constants.

1.3.1 Spectroscopic Models and Software

For diatomic molecules, there are several models that can be used to analyze spectroscopic data. The ro-vibrational energy levels for the simplest electronic state, the ${}^{1}\Sigma$ state, may be described by band constants, i.e., G_{v} , B_{v} , D_{v} , \cdots , etc., generalized Dunham expansions, near-dissociation expansions, or the individual term values T(v, J, p), i.e., as a function of vibrational and rotational quantum numbers and par-
ity, for each isotopomer. For more complicated electronic states, other terms need to be added to the equations, such as the Λ -doubling constants, etc.

The band constant model and the Dunham constant model are most commonly used. Under the Born-Oppenheimer approximation, both models are derived from the eigenvalues of the Schrödinger equation with a particular form of the potential energy assumed. In a diatomic molecule, the potential energy depends on the distance between the two atoms. In order to solve the Schrödinger equation for the vibrating rotor model to predict the vibration-rotation spectra of diatomic molecules, and to derive the eigenvalues or energies, several empirical forms of V(r) have been proposed [26]. The different forms of potentials give different models for the energy expression. Using the Morse potential, the Schrödinger equation can be solved analytically, the energy levels are expressed as the band constants⁹ [26]. Using the Dunham potential, which is a Taylor series expansion about the equilibrium distance r_e , with the first-order semiclassic WKB theory¹⁰ and with some changes in notation, the energy levels can be expressed in the Dunham constants [26].

For the spectroscopic data measured in the experiments reported in this thesis, two software tools have been used. The LSQFIT-D¹¹ is a PC-based small and flexible software tool. It does least-squares fits of the data and can be used for both bandconstant fits and Dunham-constant fits. Also, LSQFIT-D can be used to generate and predict line positions using either band constants or Dunham molecular constants. It is very useful in an initial check of the experimental spectroscopic data to make sure that the quantum number assignments are correct and that the lines picked belong to the same branch or series.

DSParFit [28] is a powerful Unix-based comprehensive software tool that performs least-squares fits of diatomic molecular data consisting of microwave, infrared, or electronic vibrational bands, fluorescence series, etc. DSParFit represents the levels of each electronic state by any of the four models of molecular constants mentioned above, or some combination of them. In addition, by using generalized Dunham expansions, not only can a set of mass-reduced Dunham constants for all the isotopomers be obtained from the least-squares fit, but also the Born-Oppenheimer breakdown correction terms, if any, can be determined. This is very useful in checking the validity of the Born-Oppenheimer approximation for a specific diatomic molecule.

 $^{^{9}}$ In fact, there are only contributions from the vibrational term value, one anharmonicity term, the rotational constant term, one centrifugal distortion term, and one vibration-rotation term.

 $^{^{10}\}mathrm{Sometimes}$ the WKB approximation is also referred to as the JWKB approximation.

¹¹Bernath Laboratory, Dept. of Chemistry, University of Waterloo.

1.3.1.1 Band Constant Model

For a ${}^{1}\Sigma$ electronic state of a diatomic molecule, the energy of a ro-vibrational level modelled in terms of band constants $G(v), B_v, D_v, H_v, L_v$, etc., is given by Eqn. (1.5).

$$E(v, J) = G(v) + F_v(J)$$

= $G(v) + B_v J(J+1) - D_v [J(J+1)]^2 + H_v [J(J+1)]^3$
+ $L_v [J(J+1)]^4 + \cdots$ (1.5)
= $\sum_m K_m(v) [J(J+1)]^m$,

in which G(v) represents the vibrational term values, $F_v(J)$ gives the rotational energy levels for a given vibrational level, while v and J are the usual vibrational and rotational quantum numbers. The constants B_v, D_v, H_v, L_v , etc., are all dependent on the vibrational levels, i.e., they have different values for different vibrational levels, which represents implicitly the vibration-rotation interactions.

Eqn. (1.5) is the band-constant equation for ro-vibrational levels of the ground electronic state. For general ro-vibrational levels of electronic states, G(v) is replaced by $T_e + G(v)$, where T_e is the electronic term value of the electronic state under study.

After fitting the measured and other available spectroscopic data, including microwave, infrared (vibrational-rotational) and electronic data using the proper program, the constants for the appropriate ro-vibrational levels are determined. The number of available (valid) constants is determined by the number and type of data available.

1.3.1.2 Dunham Constant Model

With the Dunham potential expression, by using the JWKB first order semiclassical quantization condition [26], the eigenvalues of the Schrödinger equation can be expressed in terms of Dunham constants [26], i.e., the energy levels are given by Eqn. (1.6),

$$E(v,J) = \sum_{l,m} Y_{lm} (v+1/2)^l [J(J+1)]^m$$
(1.6)

where Y_{lm} are the Dunham constants, and v and J are the usual vibrational and rotational quantum numbers.

The Dunham constants Y_{lm} have their correspondences with the band constant counterparts. For data sets with more vibrational levels, more Y_{lm} with different lvalues can be obtained, and for data sets with high J values, more Y_{lm} with different m values can be obtained.

1.3.1.3 Combined-Isotopomer Dunham-Type Analysis and Born-Oppenheimer Breakdown Correction

The regular Dunham constants for different isotopomers of the same molecular species are different, because the reduced masses are different. In general, the isotopomer dependence of the Dunham constants is $Y_{lm} \propto \mu^{-(l+2m)/2}$, where μ is the reduced mass of the isotopomer. Defining a set of mass-reduced constants as $U_{lm} = \mu^{(l+2m)/2} Y_{lm}$, the spectroscopic data from different isotopomers of the same molecule may be fit together using Eqn. (1.7),

$$E(v,J) = \sum_{l,m} \mu^{-(l+2m)/2} U_{lm} (v+1/2)^l [J(J+1)]^m$$
(1.7)

The mass-reduced Dunham constant model, Eqn. (1.7), allows us to combine the Dunham constants of different isotopic forms of a molecule, which makes the set of molecular constants more compact. From the mass-reduced Dunham constants, the ones for the individual isotopomers can be easily calculated by using the mass-scaling factors. There are two approximations for the mass scaling to be valid, i.e., different isotopomers experience exactly the same effective internuclear potential energy function, and the first order JWKB approximation or Bohr-Sommerfeld quantization condition is exact [29, 26].

For molecules composed of two heavy atoms such as GeO and SiO, the Born-Oppenheimer approximation may be valid so that Eqn. (1.7) may work. However, for a diatomic molecule composed of at least one light atom, such as MgH and BeH, the Born-Oppenheimer approximation may break down. Therefore, some small correction terms must be added to Eqn. (1.7), otherwise the data for different isotopomers will not "come together" in the global fitting [17].

With the Born-Oppenheimer breakdown correction terms included, Eqn. (1.7) becomes Eqn. (1.8) [30].

$$E(v, J) = \sum_{l,m} \mu^{-(l/2+m)} U_{lm} \left\{ 1 + \frac{m_e}{M_A} \Delta_{lm}^A + \frac{m_e}{M_B} \Delta_{lm}^B \right\}$$
(1.8)

$$\times (v + 1/2)^l [J(J+1)]^m$$

where

 U_{lm} - the mass-reduced Dunham constants;

 Δ_{lm} - the empirical Ross-Eng-Kildal parameters that correct for breakdown in the Born-Oppenheimer approximation on the centers of the atom A and B [31, 32, 33]; μ - the reduced mass;

 M_A and M_B - the masses of the two atoms;

 m_e - the electron mass.

Eqn. (1.8) is based on the assumption that the principal effect of the nonadiabatic corrections to the Born-Oppenheimer approximation is the replacement of the nuclear reduced mass in the effective radial Schrödinger equation by the atomic reduced mass, and the first order adiabatic correction terms depend separately on the inverse masses of the two component atoms M_A and M_B [31].

Le Roy [29] listed nine disadvantages of Eqn. (1.8), such as the unobvious meaning of U_{lm} because of the various units and magnitudes, the parameters Δ_{lm}^A and Δ_{lm}^B alone do not indicate the magnitude of the corrections, other drawbacks of the multiplicative parameters, and especially, the parameters $\Delta_{l,m}^A$ and $\Delta_{l,m}^B$ depend on the available number of data of minor isotopomers, etc. In consideration of the difficulties to be encountered when using Eqn. (1.8), Le Roy proposed a revised formulation that is based on two key requirements. The first is that the atomic mass-dependent correction terms should be additive, rather than multiplicative, and the second is that the properties of a selected dominant isotopomer should be used as the reference point for the corrections.

In Le Roy's formulation, the observed transitions for isotopomer- α of species A-B formed from atoms of mass M_A^{α} and M_B^{α} are expressed as differences between level energies written as

$$E^{\alpha}(v,J) = \sum_{l,m} \left\{ Y^{1}_{l,m} + \frac{\Delta M^{\alpha}_{A}}{M^{\alpha}_{A}} \,\delta^{A}_{l,m} + \frac{\Delta M^{\alpha}_{B}}{M^{\alpha}_{B}} \,\delta^{B}_{l,m} \right\}$$

$$\times \left(\frac{\mu_{1}}{\mu_{\alpha}} \right)^{m+l/2} (v+1/2)^{l} \left[J(J+1) \right]^{m}$$
(1.9)

or in a detailed form,

$$E^{\alpha}(v,J) = \sum_{(l,m)\neq(0,0)} Y_{l,m}^{1} \left(\frac{\mu_{1}}{\mu_{\alpha}}\right)^{m+l/2} (v+1/2)^{l} [J(J+1)]^{m}$$
(1.10)

$$+ \sum_{(l,m)\geq(0,0)} \left\{ \frac{\Delta M_A^{\alpha}}{M_A^{\alpha}} \,\delta_{l,m}^A + \frac{\Delta M_B^{\alpha}}{M_B^{\alpha}} \,\delta_{l,m}^B \right\}$$
$$\times \left(\frac{\mu_1}{\mu_{\alpha}}\right)^{m+l/2} (v+1/2)^l \left[J(J+1)\right]^m$$

where $\Delta M^{\alpha}_{A,B} = M^{\alpha}_{A,B} - M^{1}_{A,B}$ and $\delta^{A}_{l,m}$ and $\delta^{A}_{l,m}$ and $\delta^{B}_{l,m}$ are the Born-Oppenheimer and JWKB breakdown correction terms due to atoms A and B respectively in the diatomic molecule A-B, μ_{1} and μ_{α} are the reduced masses of the dominant isotopomer and of isotopomers- α .

The condition $\alpha = 1$ identifies a selected reference species, in general chosen to be the most abundant isotopomer. This expression is equivalent to the familiar Ross-Eng-Kildal-Bunker-Watson[31, 34, 33] expansion, except that the Born-Oppenheimer and JWKB breakdown terms are included as additive rather than multiplicative corrections, and the reference species (isotopomer $\alpha = 1$) is a real physical molecule.

The conventional Dunham constants for other ($\alpha \neq 1$) isotopomers are then generated as

$$Y_{l,m}^{\alpha} = \left\{ Y_{l,m}^{1} + \frac{\Delta M_{A}^{\alpha}}{M_{A}^{\alpha}} \,\delta_{l,m}^{A} + \frac{\Delta M_{B}^{\alpha}}{M_{B}^{\alpha}} \,\delta_{l,m}^{B} \right\} \left(\frac{\mu_{1}}{\mu_{\alpha}}\right)^{m+l/2} \tag{1.11}$$

Other advantages of this expansion are discussed elsewhere[29]. In addition, all the equations are coded in DSParFit [28, 35] and readily available for application. When the Born-Oppenheimer breakdown constants become important, it is necessary to include $\delta_{l,m}^A$ and $\delta_{l,m}^B$ in the combined global fitting of the isotopomers.

1.3.2 Spectroscopic Data Analysis

Generally, the spectroscopic study of a molecular species in the laboratory involves such steps as generating the species of interest chemically or physically, recording the spectra, measuring the line positions (frequencies or wavenumbers) of the spectra, assigning proper quantum numbers to the lines, and fitting the line positions to some equations or mathematical models to derive the molecular constants.

Mathematical models, spectroscopic data and their uncertainties, and other statistical concepts are very important for the analysis of the data. Extensive experience and judgement are necessary in the optimization of the fitted molecular constants.

The mathematical models are generally expressed as polynomials with the vibrational and rotational quantum numbers as independent variables. Therefore, spectroscopic data reduction usually involves multi-parameter least-squares fitting to determine the molecular constants.

1.3.2.1 Uncertainty or Errors in the Data

All experimental measurements have an inherent uncertainty or error [36, 37, 38, 39]. The reliability of data can be expressed using a few concepts. Accuracy is the agreement of the experimental measurement with the true value, accepted value, or predicted value of the quantity; precision is the agreement of the measurements with one another; and uncertainty is a measure of the confidence in the value of an observable, usually described in probablistic terms.

In spectroscopic data reduction, *uncertainty* often refers to the absolute error in a measurement. It is related to the resolution and signal to noise ratio of the spectra. And the term *error* refers to the difference between the observable and the predicted value, i.e., the absolute error.

The line position uncertainty σ_n is estimated using an empirical formula [26], as shown in Eqn. (1.12),

$$\sigma_n = \frac{FWHM}{S/N} \tag{1.12}$$

where FWHM is the full width of a spectral line at its half maximum, and S/N is the signal to noise ratio of the spectrum.

The spectroscopic data from the Bruker IFS 120 HR Fourier transform spectrometer has typically a 0.002 cm^{-1} accuracy (or uncertainty). A typical uncertainty for microwave data is 0.000001 cm^{-1} , and 0.05 cm^{-1} is typical for old electronic data recorded using a spectrograph. Usually, it is necessary to calibrate the experimental data to a standard, and to calibrate data from different sources to the same wavenumber scale. Even though Fourier transform spectrometers use the interference fringes of a built-in He-Ne laser to control the sampling of the interferogram and movement of the scanner, the possible misalignment of the laser optics causes slight wavenumber shifts, so the FTS experimental data still need to be calibrated against suitable standards. The spectroscopic data from the Bruker IFS 120 HR FTS reported in the chapters to follow are calibrated either to the standard CO lines or to argon atomic lines, or other standards.

1.3.2.2 Dimensionless Standard Error, Variance, and Confidence Limit

In the process of the derivation of the molecular constants, one common way of representing the quality of a model fit to an experimental data set, and the ability of a given set of parameters to reproduce those data accurately is the *dimensionless* standard error $\overline{\sigma}_f$, or DSE for short [28, 35], defined as

$$\overline{\sigma}_{f} = \left\{ \frac{1}{N-M} \sum_{i=1}^{N} \left[\frac{y_{calc}(i) - y_{obs}(i)}{u(i)} \right]^{2} \right\}^{1/2}$$
(1.13)

In this expression, each of the N experimental data $y_{obs}(i)$ has an uncertainty of u(i), $y_{calc}(i)$ is the predicted value from the respective spectroscopic model, and M is the number of parameters in the mathematical model. The weighting with u(i) allows data with very different magnitudes and very different absolute uncertainties (such as microwave data and FTS electronic data) to be combined and treated in an appropriately balanced manner. The quantity $\overline{\sigma}_f$ is the square root of the conventional reduced chi-squared (χ^2) formula, or formula of chi-squared per degree of freedom¹²[39, 40].

Another similar concept often used in analysis of spectroscopic data is the *final* variance as defined in Eqn. (1.14).

$$var = \frac{1}{N - M} \sum_{i=1}^{N} \left[\frac{y_{obs}(i) - y_{calc}(i)}{u(i)} \right]^2$$
(1.14)

The variance is the standard deviation squared, which is equivalent to $\overline{\sigma}_f^2$ here.

If the experimental uncertainties are estimated correctly, a value of $\overline{\sigma}_f \sim 1$ means that on average, the predictions of the model differ from the input data by less than the associated experimental uncertainties. Normally a fit with $\overline{\sigma}_f \sim 1$ is acceptable, for example, $\overline{\sigma}_f \sim 1.200$ indicates a good fit. Generally, sets of spectroscopic data from measurements of similar spectrometers under similar experimental conditions should have similar values for the uncertainties.

The quality of the fitting of an individual datum is represented by the root mean square residual (RMSR) of the average dimensionless residuals [28] shown as Eqn. (1.15),

$$RMSR = \left\{\frac{N-M}{N}\right\}^{1/2} \overline{\sigma}_f \tag{1.15}$$

Other related important concepts are the *confidence limit* and *confidence level*. The confidence limit is an interval, and the confidence level is a percentage for the estimated value to fall within the interval. They are the quantities indicating the reliability of the derived molecular constants.

¹²The *chi-squared* formula is commonly used in testing the agreement between two sets of data quantitatively, usually the observed and the predicated values. For good agreement, the *chi-squared* formula has a result of about N - M, and the *reduced chi-squared* formula gives a result of about 1.0.

1.3.2.3 Residuals, Bad Data Points, Fitting Needs

It is possible to spoil the final results by entering a few numbers incorrectly, or by failing to recognize bad data points or outliers, "Garbage in, garbage out" as said by Taylor [39]. Examination of the fitting residuals can reveal the presence of bad data points.

The dimensionless residual of a spectroscopic datum is defined as

$$r(i) = \frac{y_{obs}(i) - y_{calc}(i)}{u(i)}$$
(1.16)

where $y_{obs}(i)$ are the measured values; $y_{calc}(i)$ are the predicated values, and u(i) are the uncertainty of the measured data $y_{obs}(i)$. Normally a good set of data should have residuals with absolute values less than 2.0, i.e., $y_{obs}(i)$ and $y_{calc}(i)$ differ by twice the u(i) at the most¹³.

Extensive experience and good judgement are necessary in the optimizing process of the derivation of molecular constants. Residuals of the data in the fitting file often provide very useful information.

If the residuals of some isolated data are all very large, say, r(i) > 10, then they may be bad data points coming from a wrong measurement or a typographic error. If the assignment is correct, such data should be removed from the data set by giving them very large uncertainty values, for example, 100 times the regular uncertainty values. It is necessary to remove the few data with the largest residuals first, then redo the fitting and repeat the data removal process until all the residuals have acceptable values.

If a group of data at high J all show large residuals and the assignment is correct, then more molecular parameters, e.g., more centrifugal distortion constants in the band constant model, are needed in the fitting.

1.3.2.4 Optimization of Molecular Constants

Normally if the quantum numbers (mostly rotational quantum numbers in vibration bands) are assigned correctly for the measured spectroscopic data, with the bad data points removed, when a proper set of molecular constants is used in the data fitting, the DSE or the variance should be close to 1.0.

It is necessary to check the validity of the individual molecular constants, starting

¹³If the distribution of the random noise is assumed to be Gaussian, the experimental data should be allowed to have a larger residual, such as 3, corresponding to 3σ . In practice, there are also other interferences in the measured line positions, such as blending of lines. Therefore, it is safe to have a data set with stricter requirement of residuals, such as 2.

from the most significant ones (vibrational term values, rotational constants, lower order centrifugal distortion constants, etc., in that order). If a resulting constant has a larger uncertainty than its value, then this constant and the ones of higher order are generally invalid, and some or all of the higher order constants should be removed. The removal of higher order constants should start from the highest order ones and fitting is repeated until a valid set of molecular constants are obtained. The final DSE should not change much, generally less than 0.1 during this optimization process, otherwise something else may be wrong.

Take, for example, the ro-vibrational levels in the ground electronic state. The vibrational spacings decrease gradually with the increase of the vibrational quantum number v, because of the anharmonicity, and the vibration-rotation interaction. The spacings between rotational levels of a vibrational level also decrease gradually with the increase of the rotational quantum number J. Therefore, for a good fitting result, the band constants should have a regular pattern, i.e., from lower order to higher order molecular constants, the results should be in decreasing order of magnitudes and have reasonable sign patterns. For some special cases, a higher order constant may be larger than a lower order one. Sometimes this is acceptable in consideration of the fact that the constants are the coefficients of a polynomial representing the molecular energy levels.

If looking across the vibrational levels, the band constants for different vibrational levels, such as the rotational constants B, centrifugal distortion constants D, etc., for the vibrational levels should change gradually in a regular pattern with the increase of v.

The physical meanings of Dunham constants are not as straight forward as those of the band constants. However, Dunham constants have correspondences with band constants. They can be mapped to their corresponding band constants in order to find the physically meaningful patterns of magnitudes and signs.

1.3.2.5 Rounding and Reporting of Molecular Parameters

All the molecular parameters from the least-squares fit have uncertainties that come from the propagation of the uncertainties of the raw spectroscopic data through the spectroscopic models. The uncertainties of the parameters are the confidence limits of the related confidence level (e.g., 95 % confidence level).

There are several ways of rounding the fitted parameters with respect to their uncertainties [29, 41]. The simplest and most common approach is to round off all parameters at the first, second, or third digit of their uncertainties. Le Roy [41] pointed out that because of correlations between the parameters, spectral line frequencies (wavenumbers) generated from the resulting constants might differ from the observed spectroscopic data by orders of magnitude more than the residual discrepancies associated with the original fit. It is obvious that it is not a good choice to perform the parameter rounding in this way.

An alternative method to the uncertainty-based method for the parameter rounding is to round off the parameters at the first significant digit of the parameter sensitivity $S(P_j)$. The total parameter sensitivities yielded by a proper least-squares fitting have two sources, i) the actual sensitivity of the predicated data $y_{calc}(i)$ to the value of the given parameter P_j , i.e., $\partial y_{calc}(i)/\partial P_j$, and ii) the interparameter correlation, i.e., the change in the value of one parameter is compensated for by a correlated change in one or more other parameters. The sensitivities are typically 2 to 5 orders of magnitude smaller than the associated overall parameter uncertainties, and clearly provide a more selective and systematic basis to perform rounding. The drawback of this method is that it is still necessary to report a large number of significant digits [41].

The best way available is to use the algorithm of sequential rounding and refitting [41]. The essential idea is to round off first the parameter with the largest relative uncertainty to the first significant digit of its *uncertainty* $U(P_j)$, and repeat the fitting to the remaining parameters while holding the rounded value(s) fixed, allowing the inter-parameter correlation to compensate for the effect of the parameter rounding. This process is repeated until there is only one free parameter left. Rounding of this final parameter should use the first digit of the *sensitivity*, rather than the *uncertainty*.¹⁴ This approach can lead to significant reduction in the number of significant digits which must be reported, with essentially no loss in the quality of the representation of the original data set. The algorithm of sequential rounding and refitting has been implemented in the software package DSParFit [28, 35], and can be invoked using a switch in the control file input.

¹⁴In fact, when there is only one parameter left, there is no large difference between the uncertainty and the sensitivity.

1.4 Conclusion

Understanding the principles behind the experimental apparatus is crucial for experimental success. Because the outcomes of experiments are affected by many factors, it is necessary to have a thorough understanding of the experimental system for trouble shooting and improvement during the experimental process.

Experiments are an important step in the spectroscopic study of transient molecular species. However, the analysis and processing of the spectroscopic data are also important. The latter process requires more background knowledge, and is generally even more time consuming, and involves significant mathematical and computational efforts.

After the spectra of a chemical species have been recorded successfully, data measurement and data analysis become the next important step. Only with thorough understanding of the spectroscopic models and various statistical concepts and with good judgment, can the researcher arrive at the most reliable set of molecular constants or parameters.

Bibliography

- M. Mueller. Fundamentals of Quantum Chemistry: Molecular Spectroscopy and Modern Electronic Structure Computations. Kluwer Academic/Plemum Publishers, New York, 2001.
- [2] P. F. Bernath. Infrared Fourier Transform Emission Spectroscopy. Chemical Society Review, 25:111–115, 1996.
- [3] P. F. Bernath. Infrared Emission Spectroscopy. Annu. Rep. Prog. Chem., Sect. C, 96:177–225, 2000.
- [4] S. Svanberg. Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications. Springer, New York, 2001.
- [5] F. M. Mirabella. Modern Techniques in Applied Molecular Spectroscopy. John Wiley & Sons, Inc., New York, 1998.
- [6] P. R. Griffiths and J. A. De Haseth. Fourier Transform Infrared Spectrometry. Wiley, New York, 1986.
- [7] H.A. Willis. Laboratory Methods in Vibrational Spectroscopy, chapter 6, pages 121–143. Wiley Chichester, 1988.
- [8] A. P. Thorne. *Spectrophysics*. Chapman and Hall, London, 2nd edition, 1988.
- [9] J. W. Brault. Fourier Transform Spectroscopy. National Solar Observatory, Tucson, Arizona 85726.
- [10] B. P. Lathi. Communication Systems. John Wiley & Sons, Inc., New York, 1968.
- [11] S. P. Davis, M. C. Abrams, and J. W. Brault. Fourier Transform Spectrometry. Academic Press, New York, 2001.
- [12] A. A. Christy, Y. Ozaki, and V. G. Gregoriou. Modern Fourier Transform Infared Spectroscopy. In D. Barceló, editor, *Comprehensive Analytical Chemistry*, volume XXXV, Amsterdam, 2001. Elsevier.

- [13] H. N. Hsieh. FTIR Instrumentation. http://web.njit.edu/ hsieh/ene669/FTIR.html, 2002.
- [14] B. Stuart. Modern Infared Spectroscopy. In D. J. Ando, editor, Analytical Chemistry by Open Learning, Chichester, 1996. John Wiley & Sons.
- S. F. Johnston. Fourier Transform Infrared: A Constantly Evolving Technology. Ellis Horwood, New York, 1991.
- [16] P. R. Griffiths. Transform Techniques in Chemistry. Plenum Press, New York, 1978.
- [17] J. M. Campbell, D. Klapstein, M. Dulick, and P. F. Bernath. Infrared absorption and emission spectra of SiO. *The Astrophysical Journal. Supplement Series*, 101:237–254, 1995.
- [18] K. Matthews. Optics: A simple guide. Technical report, Crystran Ltd., 2001. http://www.crystran.co.uk/optics.htm.
- [19] A. J. Baden Fuller. An Introduction to Microwave Theory and Techniques. Pergamon Press, New York, 2nd edition, 1979.
- [20] G. V. Marr. Plasma Spectroscopy. Elsevier Publishing Company, New York, 1968.
- [21] M. Capitelli and C. Gorse. Plasma Technology: Fundamentals and Applications. Plenum Press, New York, 1992.
- [22] A. D. MacDonald. Microwave Breakdown in Gases. John Wiley & Sons, Inc., New York, 1966.
- [23] A. von Engel. Electric Plasmas : Their Nature and Uses. Taylor & Francis, London, 1983.
- [24] O. Svelto. *Principles of Lasers*. Plenum Press, New York, 4th edition, 1998.
- [25] A. M. Howatson. An Introduction to Gas Discharges. Pergamon Press, New York, 1965.
- [26] P. F. Bernath. Spectra of Atoms and Molecules. Oxford University Press, New York, 1995.

- [27] P. F. Bernath. Electronic Spectroscopy of Diatomic Molecules. In Stephen Wilson, editor, Handbook of Molecular Physics and Quantum Chemistry, volume 3 of Molecules in the Physicochemical Environment: Spectroscopy, Dynamics, and Bulk Properties, chapter 16. John Wiley & Sons, Ltd, 2002.
- [28] R. J. Le Roy. DSParFit 2.0: A Computer Program for Fitting Multi-Isotopomer Diatomic Molecule Spectra. Dept. of Chemistry, University of Waterloo, Waterloo, Ont. N2L 3G1, Canada, 2001.
- [29] R. J. Le Roy. Improved parameterization for combined isotopomer analysis of diatomic spectra and its application to HF and DF. *Journal of Molecular Spec*troscopy, 194(2):189–196, 1999.
- [30] J. M. Campbell, D. Klapstein, M. Dulick, and P. F. Bernath. Infrared absorption and emission spectra of SiO. *The Astrophysical Journal Supplementary Series*, 101:237–254, 1995.
- [31] A. H. M. Ross, R. S. Eng, and H. Kildal. Heterodyne measurements of ¹²C¹⁸O, ¹³C¹⁶O, and ¹³C¹⁸O laser frequencies: Mass dependence of Dunham coefficients. *Optics Communications*, 12:433–438, 1974.
- [32] J. K. G. Watson. The isotope dependence of the equilibrium rotational constants in ¹Σ states of diatomic molecules. *Journal of Molecular Spectroscopy*, 45:99–113, 1973.
- [33] J. K. G. Watson. The isotope dependence of diatomic Dunham coefficients. Journal of Molecular Spectroscopy, 80:411–421, 1980.
- [34] P. R. Bunker. The nuclear mass dependence of the Dunham coefficients and the breakdown of the Born-Oppenheimer approximation. *Journal of Molecular Spectroscopy*, 68:367–371, 1977.
- [35] R. J. Le Roy. Computer Programs Distributed by Robert J. Le Roy. Technical report, Dept. of Chemistry, University of Waterloo, 2003. http://scienide.uwaterloo.ca/~leroy/.
- [36] J. R. Barrante. Applied Mathematics for Physical Chemistry. Prentice Hall, Upper Saddle River, N.J., 1998.
- [37] R. G. Mortimer. Mathematics for Physical Chemistry. Macmillan, New York, 1981.

- [38] H. W. Salzberg. Physical Chemistry Laboratory: Principles and Experiments. Macmillan, New York, 1978.
- [39] J. R. Taylor. An Introduction to Error Analysis : The Study of Uncertainties in Physical Measurements. Mill Valley, California, 1982.
- [40] G. M. Clarke and D. Cooke. A Basic Course in Statistics. Arnold, New York, 4th edition, 1998.
- [41] R. J. Le Roy. Uncertainty, sensitivity, convergence, and rounding in performing and reporting least-squares fits. *Journal of Molecular Spectroscopy*, 191(2):223– 231, 1998.

Chapter 2

Fourier Transform Infrared Emission Spectroscopy of GeO

The infrared spectra of the isotopomers of germanium monoxide have been generated using the high temperature furnace and detected using the Bruker IFS 120 HR high resolution Fourier transform spectrometer. Combined-isotopomer analysis has been carried out using the computer program DSParFit for the newly measured spectral lines plus data available from the literature.

In this Chapter, Section 2.1 summarizes the previous work done by other researchers on the GeO molecule using other techniques, and points out the importance of the Fourier transform infrared technique and the method of the combinedisotopomer analysis in the study of GeO. Section 2.2 presents the principle of the experimental setup and details of the experimental procedures. Section 2.3 describes the details of the spectral line measurement and assignment process and the software tools used. Section 2.4 presents the results of the combined-isotopomer analysis of the newly measured FT-IR lines of the GeO species together with data available from the literature. This is the application of the theory of combined-isotopomer Dunham-type analysis described in Chapter 1. Section 2.5 concludes this Chapter with a summary of the findings such as the advantages of the experimental and analytical procedures, and the results of spectral analysis of the GeO species. The line positions of the infrared transitions of the GeO species are tabulated in Appendix A.

It should be pointed out that the current Chapter is part of a co-authored publication [1] in which the name E. G. Lee was used instead of the current name, Gang Li, of the author.

2.1 Background

As one of the important oxides of group IVa elements, germanium monoxide (GeO) has been studied extensively, both theoretically[2, 3, 4, 5] and in a variety of experiments, including microwave spectroscopy[6, 7], chemiluminescence studies of low-lying electronic states [8, 9, 10], photoelectron spectroscopy[11], electronic absorption [12, 13, 14] and emission [15] spectroscopy, and in matrix isolation [16, 17] and gas phase infrared spectroscopy[18].

Summaries of early spectroscopic work were reported by Capelle and Brom[10], Huber and Herzberg[19] and Żyrnicki[15]. However, the only existing results in the infrared region consist of matrix isolation measurements[16, 17] which give approximate vibrational spacings, and a set of accurate gas phase diode laser measurements involving levels v = 0-6 [18]. While the latter are of very high quality, they consist of only a modest number of lines spanning a limited range of vibrational and rotational energies.

Fourier transform infrared emission spectroscopy is a useful means of studying the vibration-rotation spectra of unstable species such as GeO[20]. The high sensitivity and continuous coverage of a wide wavenumber range are major factors in making this technique useful[20, 21].

The GeO species reported in this Chapter was generated using the high temperature cell described in Section 1.2.1. The high resolution infrared spectra were recorded in emission using the Bruker IFS 120 HR Fourier transform spectrometer. The newly measured FT-IR spectroscopic data for all five isotopomers are combined with earlier microwave[6, 7] and diode laser measurements[18], and treated simultaneously in a Dunham-type analysis with isotopomer mass scaling which allows for the presence of atomic mass dependent Born-Oppenheimer breakdown terms.

2.2 Fourier Transform Infrared Experiment

This section presents the details of the experimental setup and the experimental procedures for the Fourier transform infrared investigation of the GeO molecule.

The high temperature infrared spectra of the GeO species were detected without great difficulty. Germanium has a melting point of 938.3 °C and a boiling point of 2,820 °C [22]. It is expected that at around the highest working temperature of the high temperature cell (1,500 °C), there is enough vapor pressure in the cell to make the expected reactions possible. The GeO molecule was one of three possible chemical species to be detected in the experiment. The other two were GeH_x (x = 1, 2).

Usually, it takes a few days to prepare for an infrared spectroscopic experiment in which the high temperature furnace cell is used. The preparation typically includes pre-pumping and pre-cooling of the Si:B detector, and transferring liquid helium and liquid nitrogen, setting up of the detectors, beamsplitter, filters, etc., for the Fourier transform spectrometer; and the evacuation of the high temperature cell with the chemical powder to be used to remove water vapor and residual air, etc. The heating up of the alumina ceramic cell from room temperature to 1,500 °C, its maximum working temperature, takes a few hours. In order to make effective use of resources, two routes for the experiments were planned. The first was to detect GeH_x (x = 1, 2) species, and the second was to detect GeO.

With the germanium powder in the cell, after overnight vacuum pumping, the heating up of the high temperature cell was started. Beginning at 500 °C, hydrogen gas was let into the cell every 50 °C or 100 °C as the temperature was increased. Up to 1,500 °C, the maximum working temperature of the cell, there appeared no evidence for the GeH_x species. At about 1,500 °C, oxygen gas was let into the high temperature cell, and an intense infrared spectrum of GeO was recorded.

2.2.1 Experimental Setup

The high resolution infrared emission spectra of GeO were obtained in emission with the experimental setup shown in Fig. 2.1. The main components of the system are a Bruker IFS 120 HR high resolution Fourier transform spectrometer, a commercial CM Rapid Temp furnace, a 1.2 meter long alumina ceramic tube cell with watercooled end windows, gas lines, a vacuum pump, and pressure gauges. This is a typical application of the high temperature cell described in Section 1.2.1 in the generation of transient chemical species. In order to obtain the most intense signal possible, appropriate cell windows, beamsplitter, and detector must be chosen for the wavenumber region in question. The infrared spectra of the germanium oxide molecule are expected to appear in the range of 500 - 1500 cm⁻¹ [18]. Therefore, a KRS-5 (thallium bromoiodide) end window (working wavenumber range 250-16,000 cm⁻¹), a KBr beamsplitter (working wavenumber range 350-6,000 cm⁻¹) and a liquid helium cooled boron-doped Si (Si:B) detector (working wavenumber range 350-2,000 cm⁻¹) were used.

Figure 2.1: Experimental Setup for Fourier Transform Infrared Study of GeO

2.2.2 Experimental Procedures

Five grams of germanium powder (Aldrich) containing the five naturally occurring stable isotopes was placed in the cell. With the cell sealed, overnight pumping was carried out at a temperature of about 200° C to remove impurities (especially water vapour) from the cell. Germanium has a melting point of 934.3° C. The concentraton of the GeO species in the cell is expected to increase, and intense emission is expected to occur above this temperature. More ro-vibrational transitions are expected at higher temperatures. With the furnace at its maximum working temperature of 1,500° C, 18 torr of argon buffer gas and 2 torr of oxygen gas were let into the cell. The valves connected to the cell from the input and output gas lines were kept nearly closed (but not closed) to maintain a high concentration of GeO molecules, while minimizing the concentration of interfering species.

In order to obtain a survey spectrum in a relatively short time (a few minutes), the spectrometer was first set to a resolution of 0.05 cm^{-1} and 10 scans were co-added. A high intensity spectrum consisting of clear P and R branches with sets of evenly spaced lines in the region 800 - 1,100 cm⁻¹ appeared, and was identified as being due to GeO by comparisons with the line positions reported in the diode laser experiment of Thompson *et al.*[18]. A higher resolution spectrum was then recorded by setting the spectrometer resolution to 0.006 cm⁻¹ and increasing the number of scans to 30. It

Figure 2.2: High Temperature Fourier Transform Infrared Spectra of Ground State GeO. The absorption lines are due to H_2O and GeH_4 . The baseline of the spectrum is not flat because of the underlying continuum.

took about an hour to complete the recording and the Fourier transform computation. Another spectrum was recorded in the same way and the two were added together to reduce the noise and obtain the final spectrum, which is shown in Fig. 2.2.

Theoretically, for random noise, the signal to noise ratio increases as the square root of the number of measurements co-added, i.e., there is a \sqrt{N} trend. However, in reality, the experimental conditions may change at least slightly from one scan of the moving mirror to another, such as the detector coolant liquid helium escaping with time, the concentrations of the GeO molecule and interference species in the cell may not be constant, and the performance of the whole experimental system may fluctuate. Therefore, the spectra were not taken as a large chunk for a large number of co-additions. Instead, 30 scans were co-added for each spectral recording, and then the two of such a spectrum was added together. If one of the spectra had a problem, the other could be still be useful.

2.3 Measurement and Assignment of Spectral Lines

The five naturally occurring stable isotopes of germanium have abundances 35.9% of ⁷⁴Ge, 27.7% of ⁷²Ge, 21.2% of ⁷⁰Ge, 7.7% of ⁷³Ge, and 7.4% of ⁷⁶Ge respectively¹[23] Although there are three naturally occurring oxygen isotopes, ¹⁶O is overwhelmingly dominant (99.8% abundance)[23], and is the only one observed here. Therefore, only five isotopomers of the GeO species were observed in this work.

The ro-vibrational line positions in the spectrum were measured using J. Brault's computer program PC/DECOMP². The program PC/DECOMP determines the center of a spectral line by fitting its profile to a Voigt line shape function, which is a convolution of Gaussian and Lorentzian functions[24].

A Loomis-Wood program³ and a plot of the spectrum were used to help in the identification of the lines belonging to a given band. The plot was made using ATLAS, a function of the PC/DECOMP software. The spectra of GeO are plotted in a well dispersed manner so that the spectral lines belonging to the same vibrational band are easily identified by the feature of even spacings between the lines. The approximate numerical line positions can be read from the plot, which is helpful for the initial identification and grouping of data points using the Loomis-Wood program.

The Loomis-Wood program plots the line positions that appear to belong to the same band in a regular curve pattern. The intensities of the spectral lines are represented with different colors. When some of the data that belong to the same band are picked, the program updates the curve pattern and makes the identification of other lines of the same band easier. After one whole series of spectral lines have been picked, the spectral data can be saved in an ASCII file. The Loomis-Wood program also assigns a serial number for each line picked. The numbers are usually not the correct rotational quantum numbers for the lines. However, they do help in making rotational quantum number assignments. The numbering is made according to the even spacings of the lines. For spectral lines with even spacing, the serial numbers are continuous; for any missing line in the series, the numbering integer also jumps by one.

The diode laser data[18] served as a guide for identifying and assigning the major bands of the five isotopomers. Hot bands were identified and assigned using predictions made from the molecular constants derived from the least squares fitting of the

¹The 2nd edition (1993) of the handbook "Quantities Units and Symbols in Physical Chemistry" [23] has a wrong mass for ⁷²Ge, which should be 71.<u>992</u>0789 instead of 71.<u>922</u>0789. This error was discovered when DSParFit was used to fit the data of all five isotopomers together. The data for ⁷²GeO appeared incompatible with the rest.

²J. Brault, program PC/DECOMP, version 2.60 (1993)

³C.N. Jarman, program Loomis-Wood, version 2.0 (1993)

fundamental bands and any hot bands already identified for each isotopomer.

The PC-based program LSQFIT-D⁴ was used to fit the assigned data of each isotopomer to band constants to check the correctness of the quantum number assignments. The predictions of the weaker bands were also generated by using the LSQFIT-D program with fixed values of the molecular constants derived so far. The spreadsheet tool MS-Excel was used very often in the matching of the rotational quantum numbers and the spectroscopic data for the input file for LSQFIT-D.

A total of 1,228 P and R lines were assigned in the first seven $\Delta v = -1$ sequence bands of the ⁷⁴GeO isotopomer, 1,223 lines in the 1–0 to 8–7 bands of ⁷²GeO, 1,029 in the 1–0 to 7–6 bands of ⁷⁰GeO, 789 lines in the 1–0 to 6–5 bands of ⁷³GeO, and 848 lines in the 1–0 to 6–5 bands of ⁷⁶GeO. Some spectral lines were obscured by absorption due to residual impurities, such as water vapour and GeH₄, in the high temperature cell, and many other lines are blended; this is illustrated by the segment of the GeO spectrum shown in Fig. 2.3. For the unblended FT-IR data used in the present analysis, the line position uncertainties were estimated to be ca. 0.002 cm⁻¹.

Figure 2.3: Expanded View of a Portion of the Fourier Transform Infrared Spectra of GeO

After all the measurable spectral lines of the bands of the GeO spectrum were picked and assigned, the line positions were calibrated using the diode laser data [18].

⁴Bernath's Group, Dept. of Chemistry, University of Waterloo.

Isotopomer	FT-IR Data			Diode Laser Data			Microwave Data		
(Abundance)	v_{max}	J_{max}	$^{\#}$ lines	v_{max}	J_{max}	$^{\#}$ lines	v_{max}	J_{max}	$^{\#}$ lines
70 Ge 16 O(21.2%)	7	100	1029	5	82	19	1	1	2
$^{72}\text{Ge}^{16}\text{O}(27.7\%)$	8	103	1223	6	80	27	1	1	2
$^{73}\text{Ge}^{16}\text{O}(7.7\%)$	6	90	789	4	80	15	0	1	1
74 Ge 16 O(35.9%)	8	110	1228	6	79	25	2	1	5
$^{76}\text{Ge}^{16}\text{O}(7.4\%)$	7	91	848	5	78	12	1	1	2

Table 2.1: Overview of the $\text{GeO}(X^{1}\Sigma^{+})$ Data Used in the Combined-Isotopomer Analysis.

Data from the diode laser experiments of Thompson *et al.*[18] (with an average uncertainty 0.00055 cm⁻¹) were taken as the calibration standard. Some 90 matching ro-vibrational transitions from the measured FT-IR spectrum and the diode laser experiment were fitted to the expression $\nu_{DL}(i) = A \times \nu_{FT}(i) + B$, where $\nu_{DL}(i)$ are the diode laser data and $\nu_{FT}(i)$ the measured FT-IR transition frequencies, to determine the calibration factor A = 1.000001869. The intercept B in the linear equation was not determined, and only the slope A is meaningful in the formula above. Up to now the data processing has been done only for individual isotopomers. After calibration, the individual data files of the isotopomers were combined into one large single file, in accordance with the required channel-4 format [25] of the program DSPartFit [26], and the combined-isotopomer analysis was carried out.

An overview of the extent and range of the three types of data used in the analysis reported in this Chapter is given in Table 2.1.

2.4 Combined-Isotopomer Dunham-Type Analysis

In the program DSPartFit [25, 26, 27], following Section 1.3.2.2, the quality of fit of the spectral line positions to a spectroscopic model is indicated by the value of the dimensionless standard error $\overline{\sigma}_f$,

$$\overline{\sigma}_{f} = \left\{ \frac{1}{N-M} \sum_{i=1}^{N} \left[\frac{y_{calc}(i) - y_{obs}(i)}{u(i)} \right]^{2} \right\}^{1/2}, \qquad (2.1)$$

in which each of the N experimental data $y_{obs}(i)$ has an uncertainty u(i), and $y_{calc}(i)$ is the value of datum-*i* predicted by the *M*-parameter model being fitted. All parameter uncertainties quoted here are 95% confidence limit uncertainties.

The first stage of the combined-isotopomer Dunham-type analysis consists of fitting to separate band constants and then Dunham expansions for each of the five individual isotopomers. Generally, the band-constant fit has fewer constraints (i.e., larger degree of freedom of parameter selection) than the Dunham-constant fit because it usually results in more constants than the Dunham fit. In other words, a data set with a good band-constant fit may not have a good Dunham-constant fit, and a data set with a good Dunham-constant fit mostly has a good band-constant fit. The combined-isotopomer Dunham-type fit has the most constraints, because all the isotopomers are to be fit together. Also, in a band-constant fit, the energies of different vibrational levels are treated separately, whereas in a Dunham-constant fit, the energies of different vibrational levels are fit together. Therefore, it is a good practice to start with the band-constant fit for a data set. After making sure that the data sets behave properly in a band-constant fit, a Dunham-constant fit can be started. The combined-isotopomer Dunham-type fit is the final step of the data analysis.

In all cases of the individual isotopomer fits, the residual discrepancies were comparable to the experimental uncertainties ($\overline{\sigma}_f \sim 1$), and the internal consistency of the fits showed that there were no mis-assignments or anomalies in these data sets. However, the total number of independent Dunham parameters required to represent the data for the five isotopomers ($5 \times 11 = 55$) was rather large. In order to simplify the representation of these data sets and to search for physically interesting information about Born-Oppenheimer breakdown effects, all of the 5,117 FT-IR lines, the 98 diode laser measurements[18], and the 12 microwave data[6, 7] for the five isotopomers were simultaneously fit to a combined-isotopomer Dunham-type expression for the energy levels. Following Section 1.3.1.3, observed transitions for isotopomer- α of the species GeO formed from atoms of mass M_{Ge}^{α} and M_O (the atomic mass of ¹⁶O) are expressed as differences between energy levels written as

$$E^{\alpha}(v,J) = \sum_{\substack{(l,m)\neq(0,0)}} Y^{1}_{l,m} \left(\frac{\mu_{1}}{\mu_{\alpha}}\right)^{m+l/2} (v+1/2)^{l} [J(J+1)]^{m}$$
(2.2)
+
$$\sum_{\substack{(l,m)\geq(0,0)}} \left\{ \frac{\Delta M^{\alpha}_{Ge}}{M^{\alpha}_{Ge}} \, \delta^{Ge}_{l,m} \right\} \left(\frac{\mu_{1}}{\mu_{\alpha}}\right)^{m+l/2} (v+1/2)^{l} [J(J+1)]^{m}$$

where $\Delta M_{Ge}^{\alpha} = M_{Ge}^{\alpha} - M_{Ge}^{1}$, and $\alpha = 1$ identifies the selected reference species, the most abundant isotopomer ⁷⁴Ge¹⁶O (35.9%).

The conventional Dunham constants for other ($\alpha \neq 1$) isotopomers are then generated as

$$Y_{l,m}^{\alpha} = \left\{ Y_{l,m}^{1} + \frac{\Delta M_{Ge}^{\alpha}}{M_{Ge}^{\alpha}} \,\delta_{l,m}^{Ge} \right\} \left(\frac{\mu_{1}}{\mu_{\alpha}}\right)^{m+l/2} \tag{2.3}$$

The complete data set was fit to Eqn. (2.2) using the program DSParFit [25, 27, 26], which simplifies the resulting parameters by applying the sequential rounding and refitting procedure described in Section 1.3. This yielded the molecular constants given in the first column of Table 2.2. A search for significant Born-Oppenheimer breakdown effects showed that their inclusion could at best reduce the dimensionless standard error $\overline{\sigma}_f$ by only ca. 1%, and the resulting parameter value(s) had large relative uncertainties (e.g., $\delta_{1,0}^{\text{Ge}} = -8.(\pm 2.) \times 10^{-3}$). The final fits reported below were therefore performed without including such correction terms. In this case Eqn. (2.3) collapses to the simple first-order semiclassical relationship $Y_{l,m}^{\alpha} = Y_{l,m}^1(\mu_1/\mu_{\alpha})^{m+l/2}$ used to determine the molecular constants for the "minority" isotopomers reported below.

For the user's convenience, those constants for the minority isotopomers, rounded at the first digit of the parameter sensitivity[28], are shown in the last four columns of Table 2.2. The results in the last row of this table show that the rounded constants generated from the ⁷⁴Ge¹⁶O parameters determined from the combined-isotopomer analysis reproduce the input data for the individual minority isotopomers with no significant loss of precision.

A list of all the FT-IR lines measured in this experiment (after the calibration) and their residuals from the fitting using DSParFit are given as Tables A.1 to A.5 in Appendix A.

$\frac{1.3}{16}$	7858 14919 5173 00991	8342152 66705 112482 000889	36 06098		862 0 017
tants and Eqn($\frac{5}{3}e^{16}O$ 76 C	59269 984.1 181019 -4.4 181019 -4.6 1005 -0.0	18687989 0.4 39565 -30.5 312661 0.0 0000905 -0.0	33 –46.6 06208 –0.0	-6.5	805 0 2667
m^{74} Ge 16 O Cons 2 Ge 16 O 73 (8.92877 987.(4.492242 -4.4 4.6845 4.(0.0101 -0.0	$\begin{array}{rrrr} 0.4880993 & 0.4 \\ 1.01179 & -30.8 \\ 0.012725 & 0.0 \\ 0.0000911 & -0.0 \end{array}$	7.567 -47.5 0.06247 -0.0	7.1 -7.1	1252 0 0 733
Generated frc 70 Ge 16 O 7	991.49568 98 -4.515593 - 4.7211 -0.0102 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-48.063 -4 -0.06328 -	-7.2	1050 0 2.280
All-Isotopomer Fit ⁷⁴ Ge ¹⁶ O	$\begin{array}{c} 986.49295(33)\\ -4.47014(15)\\ 4.65(3)\\ -0.010(2) \end{array}$	$\begin{array}{c} 0.4856978 \left(4 \right) \\ -30.7832 \left(9 \right) \\ 0.0126 \left(2 \right) \\ -0.00009 \left(2 \right) \end{array}$	-47.10(2) -0.0617(7)	-7.(1)	5227 11 0.006
Constant	$egin{array}{c} Y_{1,0} \ Y_{2,0} \ 10^3 \ Y_{3,0} \ 10^3 \ Y_{4,0} \end{array}$	$egin{array}{c} Y_{0,1} \ 10^4 \ Y_{1,1} \ 10^4 \ Y_{2,1} \ 10^4 \ Y_{3,1} \end{array}$	$\frac{10^8}{10^8} \frac{Y_{0,2}}{Y_{1,2}}$	10^{14} $Y_{0,3}$	No. of Data No. Parameters

Table 2.2: Parameters for $X^{1}\Sigma^{+}$ state GeO obtained by fitting all FT-IR, diode laser and microwave data to Eqn. (2.2); The numbers ir

2.5 Conclusion

The high temperature cell method is effective for the generation of high temperature species, such as GeO with precursors whose melting points are below 1,500°C (the maximum working temperature of the furnace). Thermal radiation from the high temperature cell not only sublimates or melts the solid chemicals to create the vapour pressure necessary to facilitate the reaction, but also promotes the newly generated species to excited ro-vibrational states. It is a very effective means for generating transient species for experimental studies using infrared emission spectroscopy. Very often, several hot bands can be detected in the ro-vibrational spectra generated this way.

Combined-isotopomer Dunham-type analysis produces many fewer molecular constants used to describe the isotopomers than does representing the isotopomers individually. In addition, the global fitting of data for all the isotopomers allows the exploration of the Born-Oppenheimer breakdown effect. As expected, for the GeO species as an example of a diatomic molecule composed of two heavy atoms, such breakdown effect is, at best, marginally observable.

Bibliography

- E. G. Lee (Gang Li), J. Y. Seto, T. Hirao, P. F. Bernath, and R. J. LeRoy. FTIR Emission Spectra, Molecular Constants and Potential Curve of Ground State GeO. *Journal of Molecular Spectroscopy*, 194:197–202, 1999.
- [2] V. Kellő and A. J. Sadlej. Quasirelativistic studies of molecular electric properties: Dipole moments of the group IVa oxides and sulfides. *Journal of Chemical Physics*, 98(2):1345–1351, 1993.
- [3] J. Leszczynski and J. S. Kwiatkowski. Molecular structures and vibrational IR spectra of GeX and XGeY species (X, Y = O, S, Se) by *ab initio* Hartree-Fock and Post-Hartree-Fock study. *Journal of Chemical Physics*, 97:12189–12192, 1993.
- [4] Z. Barandiarán and L. Seijo. Quasirelativistic *ab initio* model potential calculations on the group IV hydrides (XH₂, XH₄; X=Si, Ge, Sn, Pb) and oxides (XO; X = Ge, Sn, Pb). Journal of Chemical Physics, 101(5):4049–4054, 1994.
- [5] F. L. Sefyani, J. Schamps, and D. Duflot. Theoretical study of the radiative properties of the $A^{1}\Pi X^{1}\Sigma^{+}$ system of the GeO molecule. Journal of Quantitative Spectroscopy and Radiative Transfer, 54(6):1027–1034, 1995.
- [6] T. Tőrring. Das mikrowellenrotationsspektrum des GeO. Zeitschrift fur Naturforschung, A21:287–289, 1966.
- [7] R. Honerjäger and R. Tischer. g_J Faktor der Molekeln GeO und SiS und Anisotropie ihrer Magnetisierbarkeit. Zeitschrift fur Naturforschung, A28:1374– 1375, 1973.
- [8] G. H. Leroy, E. Wilson, and S. G. Hadley. Reaction of atomic silicon and germanium with nitrous oxide to produce electronically excited silicon monoxide and germanium monoxide. *Chemical Physics Letters*, 27(3):439–441, 1974.

- [9] G. Hager, R. Harris, and S. G. Hadley. The $a^{3}\Sigma^{+} X^{1}\Sigma^{+}$ and $b^{3}\Pi X^{1}\Sigma^{+}$ band system, of SiO and the $a^{3}\Sigma^{+} - X^{1}\Sigma^{+}$ band system of GeO observed in chemiluminescence. *Journal of Chemical Physics*, 63(7):2810–2820, 1975.
- [10] G. A. Capelle and J. M. Brom, Jr. Reactions of germanium vapor with oxidizers: Photon yields and a new GeO band system. *Journal of Chemical Physics*, 63(12):5168–5176, 1975.
- [11] E. A. Colbourn, J. M. Dyke, A Fackerell, A. Morris, and I. R. Trickle. Vacuum ultraviolet photoelectron spectrum of the GeO (X¹Σ⁺) molecule. Journal of the Chemical Society: Faraday Transactions II, 74:2278–2285, 1978.
- [12] A. Lagerquist and I. Renhorn. The low-lying electronic states of GeO. Physica Scripta, 25:241–256, 1982.
- [13] O Appelbald, S. Fredin, and A. Lagerquist. On the $E^1\Sigma^+ X^1\Sigma^+$ system of GeO in the vacuum ultraviolet region. *Physica Scripta*, 25:933–938, 1982.
- [14] O. Appelbald, S. Fredin, A. Lagerqvist, and F. Alberti. The spectra of ⁷⁴Ge¹⁶O and ⁷⁴Ge¹⁸O in the vacuum ultraviolet region. *Physica Scripta*, 28:160–170, 1982.
- [15] W. Żyrnicki. High resolution studies of the $A^1\Pi X^1\Sigma^+$ band system of GeO. Journal of Molecular Spectroscopy, 89:557–560, 1981.
- [16] J. S. Ogden and M. J. Ricks. Matrix isolation studies of group IV oxides. II. Infrared spectra and structures of GeO, Ge₂O₂, Ge₃O₃ and Ge₄O₄. Journal of Chemical Physics, 78:352–357, 1970.
- [17] A. Bos, J. S. Ogden, and L. Orgee. Matrix isolation infrared study of the reaction between germanium vapor and molecular oxygen. The characterization and mechanism of formation of molecular germanium dioxide and ozone. *Journal of Physical Chemistry*, 78(17):1763–1769, 1974.
- [18] G. A. Thompson, A. G. Maki, and A. Weber. The infrared spectra of GeO. Journal of Molecular Spectroscopy, 116:136–142, 1986.
- [19] K. P. Huber and G. Herzberg. Constants of Diatomic Molecules. Molecular Spectra and Molecular Structure IV. Van Nostrand Reinhold Company, Toronto, 1979.
- [20] P. F. Bernath. Infrared Fourier transform emission spectroscopy. Chemical Society Reviews, 25:111–115, 1996.

- [21] P. F. Bernath. Infrared Emission Spectroscopy. Annu. Rep. Prog. Chem., Sect. C, 96:177–225, 2000.
- [22] Mark Winter. WebElement Printable Table. Technical report, The of Sheffield **WebElements** UK. University and Ltd. 2003.http://www.webelements.com/webelements/elements/text/Ge/heat.html.
- [23] I. Mills, T. Cvitaš, K. Homann, N. Kallay, and K. Kuchitsu. Quantities, Units and Symbols in Physical Chemistry. Boston, International Union of Pure and Applied Chemistry, 2nd edition, 1993.
- [24] P. F. Bernath. Spectra of Atoms and Molecules. Oxford University Press, New York, 1995.
- [25] R. J. Le Roy. Computer Programs Distributed by Robert J. Le Roy. Technical report, Dept. of Chemistry, University of Waterloo, 2003. http://scienide.uwaterloo.ca/~leroy/.
- [26] R. J. Le Roy. DspartFit 2.0: A Computer Program for Fitting Multi-Isotopomer Diatomic Molecule Spectra. Dept. of Chemistry, University of Waterloo, Waterloo, Ont. N2L 3G1, Canada, April 2001.
- [27] R. J. Le Roy. Improved parameterization for combined isotopomer analysis of diatomic spectra and its application to HF and DF. *Journal of Molecular Spec*troscopy, 194(2):189–196, 1999.
- [28] R. J. Le Roy. Uncertainty, sensitivity, convergence, and rounding in performing and reporting least-squares fits. *Journal of Molecular Spectroscopy*, 191(2):223– 231, 1998.

Chapter 3

Fourier Transform Emission Spectroscopy of WO

Considering the importance of tungsten and its compounds as high temperature materials, the number of publications of spectroscopic studies of tungsten monoxide is relatively small. One reason might be due to the complicated spectroscopy of the WO molecule, because the partially filled *d*-electron shell usually leads to a complicated electronic structure with a large number of low-lying energy states. Another reason might be the difficulty in generating the species in a laboratory environment because of the high melting points of precursors. In the limited number of papers discussing the ground electronic state of WO, very different conclusions were given. WO was suggested to have a ${}^{3}\Sigma^{-}$ ground state from an absorption spectroscopic study in gen papers [1], and from an absorption spectroscopic study in gas phase [2]. However, a later *ab initio* calculation [3] predicted the ground state to be ${}^{5}\Pi$.

In the spectroscopic investigations reported in this Chapter, the electronic spectra of tungsten monoxide were detected in emission using two high resolution Fourier transform spectrometers. The WO species was generated in the gas phase using microwave discharge cells, and the spectra were generated using vaporized WCl₆ and helium buffer gas without added O₂. In addition to new and high accuracy spectroscopic information (line positions, and molecular constants for the bands) obtained for this molecule, analysis of the bands of several systems confirms that the ground electronic state of tungsten monoxide is ${}^{3}\Sigma^{-}$.

In this Chapter, Section 3.1 summarizes the historical background of the spectroscopic studies of the tungsten monoxide molecule. Section 3.2 describes the details of the experimental procedures and the observations from the experiments, while Section 3.3 presents the theoretical basis for the spectroscopic analysis, and Section 3.4 describes the details of the analysis of the electronic emission spectra of tungsten monoxide. Finally, Section 3.5 concludes this Chapter by identifying and discussing the nature of the ground electronic state of the tungsten monoxide molecule.

The current Chapter is part of a co-authored publication [4].

3.1 Background

The results of the high resolution Fourier transform spectroscopy of the gas phase WO species reported in this Chapter provide more experimental information about this molecule. The results of the rotational analysis of the gas phase spectra are helpful in the clarification of some confusion about the ground electronic state of WO. In the experimental study of the WO species reported in this Chapter, the first spectrum of tungsten monoxide was detected in emission using a Bruker IFS 120 high resolution Fourier transform spectrometer at Waterloo, and another spectrum was recorded using the one-meter Fourier transform spectrometer of the US National Solar Observatory.¹ The rotational analysis reported in this Chapter is based on the latter spectra, which were recorded in the range of 9,000 - 34,500 cm⁻¹, and detected with a spectral resolution of 0.03 cm⁻¹. It took 1 hour 20 minutes to complete the recording. Results of the rotational analysis of the bands of various electronic systems show that the ground electronic state is ${}^{3}\Sigma^{-}$, which confirmed the low temperature matrix studies[1] and the earlier gas phase studies [2]. The prediction for the ground electronic state, ${}^{5}\Pi$, made by the *ab initio* calculations [3] is incorrect.

This Section summarizes the literature on previous investigations of the WO molecule in terms of contributions to the understanding of the spectroscopic properties of the molecule, the techniques used in the investigations, and the results.

3.1.1 Summary

The early low-resolution gas phase spectrum of WO was detected in emission in the 1950s using a DC discharge between pure tungsten electrodes [5], in which several bands of two electronic systems were detected in the near infrared, visible, and ultraviolet regions. Two years later, four new systems in the infrared region were reported [6]. Limited by the techniques available then (low-dispersion spectrographs), only band heads of transitions between low vibrational levels of the electronic states were reported in these two early papers [5, 6], and only tentative vibrational analyses were made to derive the Deslandres tables.

The ground electronic state of WO was first identified to be of ${}^{3}\Sigma^{-}$ symmetry in the 1960s when the electronic absorption spectra of W¹⁶O and W¹⁸O trapped in low temperature matrices of neon and argon were obtained [1]. Numerous strong absorptions clearly due to WO were observed in the visible region. The bands were assigned to seven distinct electronic transitions of WO. Some of them due to the systems previously observed in the gas phase [5, 6]. The W¹⁸O spectrum appeared to be rather

¹US National Solar Observatory, Kitt Peak, Tucson, Arizona, USA. http://www.nso.edu.

regular, so its vibrational structure could be analyzed, but many perturbations were observed in the W¹⁶O spectrum. The vibrational levels of the excited states of W¹⁶O appeared to interact strongly. Based on comparison with the neighboring oxides in the periodic table, the value $\Delta G''_{1/2} = 1054.9 \text{ cm}^{-1}$ of the gas spectra [5, 6] was confirmed by the matrix spectra, and the ground state configuration of WO was proposed to be a $\sigma^2 \delta^2$ configuration, yielding a ${}^{3}\Sigma^{-}$ ground electronic state. As pointed out by Weltner and McLeod [1], results of rotational analyses of gas phase spectra of WO were needed to determine whether these predictions were correct.

The infrared absorption of the diatomic WO in matrices was re-examined in the early 1980s using krypton and argon matrices [7]. The sputtering technique was used to produce the species instead of vaporization of the solid oxide or by passing oxygen into a heated tungsten cell [1]. The results for W¹⁶O were in accordance with previous measurements and the W¹⁸O peak observed provided firm support for the assignments. Vibrational constants (ω_e and $\omega_e x_e$) of W¹⁶O in both argon and krypton matrices were derived from the measured frequencies of W¹⁶O and W¹⁸O [7].

The breakthrough in the gas phase studies of WO (only the ${}^{186}W{}^{16}O$ isotopomer actually) was made in the early 1980s [2], when the first rotational analysis was made. The WO molecule was generated in the gas phase by photolysis of W(CO)₆ in the presence of oxygen, and numerous bands attributed to ten separate systems were recorded in absorption. The wavenumbers of the lines of the WO spectrum with natural isotopic abundance were recorded with an accuracy of 0.1 cm⁻¹. Another spectrum was recorded with tungsten hexacarbonyl 97% enriched with ${}^{186}W$ and 73% enriched with ${}^{18}O$ to facilitate band identification (from the ratio of W¹⁶O and W¹⁸O band intensities, and isotopic vibrational frequency shifts), with an accuracy of better than 0.5 cm⁻¹.

In the gas phase spectra, the symbols, using letters from A to G, used by Weltner et al. [1] were retained to designate the band systems. Among the sixty bands of W¹⁶O observed, only the D-X (8 bands) and H-X (5 bands) systems are easily distinguishable. The bands with $v'' \geq 1$ are very weak. Only fourteen rather strong and well-developed bands assigned to the D-X, E-X, F-X, H-X, etc., were selected for the rotational analysis. The results of the analysis confirmed the identification of several WO bands suggested on the basis of the vibrational structure analysis [1, 7], and have shown that the transitions investigated have the same lower electronic state. Based on the analysis of the possible electron configuration, it was suggested that the WO molecule probably has a ${}^{3}\Sigma^{-}$ ground state with the configuration of $\cdots \delta^{2}\sigma^{2}$ with a coupling characteristic of the angular momenta close to Hund's case (c), and the transitions considered are associated with the $X_{1}0^{+}$ state, one of the spin components of the ${}^{3}\Sigma^{-}$ state. The splitting of the $X_{1}0^{+}$ and $X_{2}1$ components was identified as being about 71 cm⁻¹, a number that seemed unreasonably low for a heavy molecule like WO [2]. The transitions to the second component $X_{2}1$ state of the ${}^{3}\Sigma^{-}$ state, were not observed in the matrix spectra [1, 7]. Based on the observation of many similar electronic states in a narrow energy range, all with nearly equal rotational and vibrational constants, the assumption of a Hund's case (c) coupling for the WO molecule was confirmed. The perturbations in the vibrational and rotational structure also indicate the presence of a great number of interacting states as is common for Hund's case (c). Unfortunately most of the observed perturbations could not be analyzed due to the amount of overlap between different bands [2].

In a computational study of the low-lying electronic states of WO in the mid-1980s [3], the ground electronic state of WO was identified as ⁵II. In the investigation of the bonding nature of the first, second, and third row transition metal oxides, CrO, MoO, and WO, the differences in the bonding and the ordering of the lowlying states when moving down the column from CrO, through MoO to WO were considered. The low-lying states, ⁵II, ⁵ Σ^+ , ⁷II, and ⁷ Σ^+ were investigated for each of CrO, MoO and WO. Both self-consistent field (SCF), and multiconfiguration selfconsistent field (MCSCF) calculations were performed. It was concluded that for all three systems, the ground state is ⁵II, but the ordering of the higher states is different for WO than for CrO and MoO: ⁵ Σ^+ is the second excited state in CrO and MoO, while it is the fourth excited state in WO [3].

3.1.2 Contributions in Chronological Order

The key contributions to the studies of WO are summarized in chronological order as follows.

- 1. 1952, Gatterer *et al.* [5]. The emission spectrum was generated by using arc discharge between tungsten electrodes; a few bandheads of two electronic systems were recognized.
- 2. 1954, Vittalachar *et al.* [6]. A few bandheads of four more electronic systems were reported.
- 3. 1965, Weltner *et al.* [1]. By using low temperature argon and neon matrices, vibrational bands of seven electronic transitions were detected in absorption, the ground electronic state was identified as ${}^{3}\Sigma^{-}$.
- 4. 1979, Efremov *et al.* [8]. By using intracavity laser spectroscopic technique, and a flash photolysis cell with $W(CO)_6$ placed in the cavity of a Nd³⁺-glass

laser, an absorption band was detected at 12911 cm⁻¹; although details were not given, it was concluded that for this molecule, Hund's case (c) is valid and the ground state is of the 0⁺ type (a component of the ${}^{3}\Sigma^{-}$ state).

- 5. 1981, Green *et al.* [7]. Vibrational constants were determined from infrared spectra of matrix-isolated WO species.
- 6. 1981, Samoilova *et al.* [2]. An absorption spectrum of gaseous ¹⁸⁶W¹⁶O was recorded in the near UV region, and a rotational analysis was performed; the ground electronic state was identified as ${}^{3}\Sigma^{-}$.
- 7. 1985, Nelin and Bauschlicher [3]. This is an *ab initio* investigation of the lowlying electronic states; the ground electronic state was identified as ${}^{5}\Pi$.
- 8. 1997, Kuzyakov *et al.* [9]. The *A*-*X* and *B*-*X* transitions were detected by using the laser intracavity spectroscopic technique; the bands were rotationally analyzed.
- 9. 1998, Kraus *et al.* [10]. By using a conventional laser vaporization source and cavity ring-down technique, the quartets associated with the four major isotopes of tungsten were observed; strong interstate perturbations between vibrational levels of different electronic states, also reported in the matrix experiments [1], were also observed in the gas phase molecules generated this way.
- 10. 1998, Bare *et al.* [11]. Laser-ablated tungsten atoms were reacted with dioxygen, and the products were isolated in solid argon matrices; the infrared spectrum of WO were recorded using a Fourier transform spectrometer.
- 11. 1998, Lorenz *et al.* [12]. The fluorecence spectra and vibrational relaxation behaviour of WO in solid neon were studied; the solid neon matrices containing WO molecule were generated by laser vaporization tungsten in the presence of a small amount of oxygen; both the oxygen and the tungsten isotopic structures were resolved; the fluorescence spectra were reported as a complementary contribution to the absorption studies.
- 12. 1999, Lorenz *et al.* [13]. Matrix samples were prepared through reactions of tungsten atoms from laser vaporization of solid tungsten with trace oxygen in the neon carrier gas; the infrared and visible absorption spectra were recorded using a Fourier transform spectrometer; Both the oxygen and tungsten isotopic structures were observed.
3.1.3 Techniques Used and Results

Previous investigations of the WO molecule can also be classified according to the techniques used, as follows.

3.1.3.1 Gas phase electronic emission and absorption spectroscopy

In 1952, Gatterer *et al.* [5] reported the earliest gas phase electronic emission spectra detected, obtained by employing an electric discharge between tungsten electrodes, and employing a low-dispersion spectrograph. In 1954, Vittalachar *et al.* [6] reported a few bandheads of four additional electronic systems. Only bandheads were identified, so that the rotational structure could not be analyzed. Gas phase visible emission studies in the 1950s yielded a vibrational frequency ($\Delta G_{1/2}$) of about 1055 cm⁻¹ for the lower state, presumably the ground state. The electronic systems have 0-0 bands located at 20799.9, 22417.8[5] and 12911.0, 14160.8, 16073.3, and 21226.9 cm⁻¹ [6].

In 1981, Samoilova *et al.* [2] reported gas phase electronic absorption spectrum of WO. The spectrum was obtained by flash photolysis of a mixture of $W(CO)_6$ vapor with either ${}^{16}O_2$ or a mixture of ${}^{16}O_2$ with argon. Many transition bands, assigned to 10 systems, were recorded. An analysis of the rotational structure of 14 bands of ${}^{186}W^{16}O$ was carried out. Molecular constants were obtained for the ground state $X0^+$.

3.1.3.2 Spectroscopy in solid matrices

The WO molecule was also studied using the techniques of electronic absorption, vibrational relaxation and fluorescence, and laser-induced fluorescence in low temperature neon, argon, and/or krypton matrices.

In 1965, Weltner *et al.* [1] reported electronic absorption spectra of WO in lowtemperature neon and argon matrices. The bands observed in the argon matrices were similar to those observed in the neon matrices, but with broader, and shifted, bands. The W¹⁸O spectrum has a regular vibrational structure. In the W¹⁶O spectrum, the structure is regular only in one single progression assigned to the D-X transition. The upper states of the remaining transitions perturb one another. Strong perturbations were observed arising from interactions among the A, B, and C states. The highlying E and F states were also observed to interact. Some bands of the A to Gelectronic systems were detected in the ultraviolet and visible. Two infrared bands appeared at 1047 and 1064 cm⁻¹ in neon and 1050 and 1062 cm⁻¹ in argon. The infrared absorption bands were not observed, but seven visible bands were observed and assigned the ${}^{1}\Sigma^{-}$ symmetry² for the ground electronic state.

In 1981, Green *et al.* [7] investigated WO infrared spectra in krypton and argon matrices. The vibrational constants ω_e and $\omega_e x_e$ of W¹⁶O, in both argon and krypton matrices were derived from the measured frequencies of W¹⁶O and W¹⁸O. The constants are $\omega_e = 1055.98 \pm 1.0$, $\omega_e x_e = 2.93 \pm 0.5$ cm⁻¹ for ¹⁸⁴W¹⁶O/Kr, and $\omega_e = 1057.51 \pm 1.0$, $\omega_e x_e = 3.33 \pm 0.5$ cm⁻¹ for ¹⁸⁴W¹⁶O/Ar.

In 1998, Bare *et al.* [11] carried out an argon matrix-isolated spectroscopic investigation of the oxides formed by direct reaction of dioxygen and laser-ablated tungsten atoms. Infrared bands of WO were observed at 1054.5 and 1051.1 cm⁻¹ for W¹⁶O and at 999.3 and 996.2 cm⁻¹ for W¹⁸O. The argon matrix bands observed are in excellent agreement (0.2 cm^{-1} difference) with the sputtering matrix work [7] and the gas-phase WO ground state fundamental value of 1053.7 cm⁻¹ [5]. The argon matrix sites cause blue and red-shifts of the WO fundamental by only 0.7 and 2.6 cm⁻¹, respectively, from the gas-phase values.

Also in 1998, Lorenz *et al.* [12] reported vibrational relaxation and fluorescence spectra of WO in solid neon. The WO spectra were examined with absorption and fluorescence techniques. Extensive vibrationally unrelaxed emission from several electronic states was observed, and quite intense ground state vibrational fluorescence was detected in the spectral range 500 - 30,000 cm⁻¹, with a typical resolution of 0.5 cm⁻¹ for visible and 0.06 cm⁻¹ for infrared. Fluorescence series from the A, B, D, and Estates were observed. The visible bands of WO exhibit interstate interactions as observed by Weltner [1], so that only the W¹⁸O spectrum can be reasonably fitted (to give $\omega_e = 1064.65$ cm⁻¹, $\omega_e x_e = 4.046$ cm⁻¹).

In 1999, Lorenz *et al.* [13] reported laser-induced fluorescence in a solid neon matrix. Absorption and fluorescence spectra of WO were investigated in the spectral range from the infrared to the ultraviolet. Several new states were identified in the near infrared range. Infrared absorption of the diatomic WO was clearly observed, even though it could not be clearly identified in the previous matrix investigation [1]. The measured neon matrix frequencies of 1056.98 and 1001.77 cm⁻¹ for ¹⁸⁶W¹⁶O and ¹⁸⁶W¹⁸O, respectively, are in excellent agreement with the values deduced from the electronic absorption data [2], *viz.*, 1056.7 and 1002.1 cm⁻¹, respectively. In the visible region, the spectral data overlapped those of the matrix [1] and the gas phase data [2]. The observations are essentially in agreement. As numerous very low-lying electronic states are expected for WO, transitions in the near infrared region below 12000 cm⁻¹ were also studied. A most prominent group of five vibrational progressions, clearly

²The symmetry of the ground state WO should be ${}^{3}\Sigma^{-}$. The ${}^{1}\Sigma^{-}$ symmetry here could be a typographic error in the original paper.

due to WO, appears close to 7500 cm^{-1} . Two additional pairs of transitions appear at higher energies.

Fluorescence spectra of WO, studied in the range 12,000 to 25,000 cm⁻¹, provide valuable information complementary to absorption studies. Various transitions from the A, B, C, D and E states to the X state were observed. The ground state molecular constants are $\omega_e = 1064.469 \text{ cm}^{-1}$ and $\omega_e x_e = 3.9982 \text{ cm}^{-1}$. Emission from low-lying electronic states in the infrared, and extensive ground state vibrational emission, in addition to fluorescence from several visible electronic states, were observed, due to the usually slow relaxation of WO,

3.1.3.3 Intracavity laser and cavity ringdown laser spectroscopy

In 1997, Efremov *et al.*[8] investigated WO spectra using the intracavity laser technique. High sensitivity absorption spectra were recorded in the spectral range 9,398-9,466 cm⁻¹, with 0.05 cm⁻¹ accuracy, by using WO 97%-enriched ¹⁸⁶W. Spectra were reported most likely the 1-4 band of a system, with the 0-0 band located at 12,911 cm⁻¹ [6].

Also in 1997, Kuzyyakov *et al.* [9] applied the intracavity laser technique to study the WO molecule. Electronic absorption spectra in the range 12,500 - 18,181 cm⁻¹ (550-800 nm) were recorded. Analysis of the 0-0 and 1-0 bands of the A-X and B-X systems was carried out for the first time. There have not been analyzed in the gas phase spectra [2]. The rotational constants for the A and B states were presented.

In 1998, Kraus *et al.* [10] used the cavity ringdown laser technique to record a series of bands in the region of 21,000-24,000 cm⁻¹. Only the 0-0 band of the F-X system was reported. It was observed that the P branch shows quartets caused by the four major isotopes of tungsten. Because the vibrational frequency ω_e for the ground electronic state is larger than that of the F state, the zero point energy of the ground state will also be larger, so one would expect the heavier isotopic species to be shifted to the blue. However, the observations showed the opposite, with the lines of the heavier isotopic species being red-shifted.

3.2 Experiments

The microwave discharge cell shown in Fig. 3.1, and discussed in Section 1.2.2, was used in the experiments to generate the WO species. The WO spectra were first detected using the Bruker IFS 120 high resolution Fourier transform spectrometer at Waterloo. The WO spectra used in the final analysis were detected by using the McMath-Pierce one-meter Fourier transform spectrometer of the National Solar Observatory³ at Kitt Peak, Arizona, USA.

Figure 3.1: Microwave Discharge Cell for the Generation of WO

The original goal of the experiments was to detect the electronic transitions of WCl using WCl₆ as the precursor in a microwave discharge cell, with helium gas as the buffer. After some WCl₆ powder was placed in the quartz cell, pumping was performed for an hour or so to remove air trapped in the cell and the sample powder. Then about 3 Torr of helium buffer gas was let into the cell and the microwave discharge was started. The Bruker spectrometer was set to 0.5 cm⁻¹ resolution in order to detect a survey spectrum in the range 19,000 - 21,000 cm⁻¹, the region of possible WCl spectra. A spectrum with clear band heads was obvious, even though the helium and tungsten atomic lines were more intense. The spectrum was not due to WCl, but something else.

What was it? Experience suggested that the spectrum might be due to a nitride or oxide because of nitrogen and oxygen impurities in the cell, even though efforts were

³http://nsokp.nso.edu/mp/fts/

taken to make the cell and tubing air-tight (with a leakage of ca. 1-2 mTorr/s). A literature search was carried out for WN and WO. Surprisingly, the Fourier transform spectrum of WN [14] was detected when researchers were trying to detect WO! The current spectrum detected was due precisely to WO. Where did the oxygen come from? The air? Air was tested in the experiment, but even a tiny amount of air extinguished the spectrum. A tiny amount of pure oxygen also killed the spectral signal. The source of the oxygen in the generated WO species is suspected to be water vapor absorbed onto the WCl₆ powder from the air. The powder changes color very quickly from dark brown to deep dark brown immediately upon its exposure to air while being transferred from the sample bottle into the cell. Limited by laboratory conditions, systematic experiments to discover the source of oxygen were not carried out. Without added oxygen, the spectral signal of WO is quite good. With some air or oxygen added into the cell, the spectrum disappears.

The following sub-sections present the details of the experiments at the University of Waterloo.

3.2.1 Initial Experiments on WO

After the spectrum was identified as that of WO, a series of systematic experiments were carried out.

The Bruker IFS 120 high resolution Fourier transform spectrometer at the University of Waterloo was used in the initial experiments. A quartz microwave discharge cell, as shown in Fig. 3.1, with a heating tape wrapped around the part of the tube holding the sample was used for the generation of the expected WO species.

The heating tape was powered with a Staco Energy Products's Type 3PN2210 variable voltage transformer. The temperature of the tape was controlled by adjusting the output voltage of the variable transformer, which can be changed between 0-110% of the 120 VAC input. The maximum output voltage brings the heating tape to about 300-400 °C. Settings between 0-110% give the temperatures between room temperature and the maximum temperature.

With some WCl_6 powder (enough to last for some time in the experiment, but not too, much so as not to cover more than half the cell cross-section) in the cell, and after pumping for about two hours to remove gas phase interferences, 3 Torr of helium buffer gas was let into the cell, and the microwave discharge was started. With the heating tape power off, a diatomic spectrum was detected. Checking the frequencies against reference showed that the initial spectrum was the WO spectrum. Then, a systematic set of experiments were carried out to investigate the WO species.

The preparation of each experiment took from several hours to a few days. Espe-

cially, once the WCl_6 sample was consumed, another experimental cycle needed to be started, including the introduction of a fresh sample to the cell, pumping the cell for several hours to remove gas phase impurities, etc. Due to the length of time needed in the preparation and detection of the WO spectra, the experiments were carried out in several individual parts, with different experimental goals, such as testing for the best experimental conditions and detection of different regions of the spectra, and so forth.

3.2.2 Detection of the D(0,0) Band and Optimizing the Experimental Conditions

The experimental system was set up for the detection of the D(0,0) band at 20,800 cm⁻¹. A quartz beamsplitter as seen in Table 1.1 and a PMT detector (effective for the visible region) as seen in Table 1.3 were employed for this experiment.

3.2.2.1 Pressure of helium buffer

With some fresh WCl₆ powder in the microwave discharge cell, and after pumping for 4-5 hours to remove the residual gaseous impurities, at a background cell pressure of 0.068 Torr, 3 Torr of helium buffer was let into the discharge cell. At a resolution of 0.1 cm⁻¹, the microwave discharge successfully generated the WO species, and the D(0,0) band of WO, located at 20,800 cm⁻¹, was detected. Once the D(0,0) band was detected, the experimental conditions were optimized to improve the spectral intensity and the signal-to-noise ratio.

With more helium added to bring the cell pressure to 10 Torr, the signal intensity of the spectrum was seen to increase to a value above that obtained using 3 Torr of helium. The pressure readings of the cell were the total pressures in the microwave discharge cell, including the vapor pressure from the WCl₆ and the pressure of the helium buffer gas. However, the vapor pressure of WCl₆ contributes only a small portion of the total pressure. Because of the light mass of the helium atoms, the linewidth of the spectrum detected did not change much because the pressure broadening by the helium gas is small. With further increase in the amount of helium, the intensity of the spectrum was seen to drop. The best condition was therefore to use 10 Torr helium as the buffer gas.

3.2.2.2 Roles of oxygen, cell temperature, and other conditions

Three more sets of experiments have been performed. The first set probed the use of small amounts of O_2 with different buffer gases, e.g., 3 Torr of argon or 10 Torr

of helium were tested separately. The second set was to explore the role of O_2 and temperature in the generation of the WO species; in this set of experiments, a pressure of 10 Torr of helium was used with a combination of heating voltages, with or without O_2 . The third set of experiments tested other experimental conditions.

In the first set of experiments, which was conducted with a background pressure of 0.05 Torr, obtained after a fresh WCl₆ sample had been placed in the cell and the background pumping had been completed, a small amount of O_2 was added. The spectral intensity decreased drastically when even as little as 0.02 Torr of O_2 was added, and the signal to noise ratio became much worse. It was concluded that the addition of O_2 gas did not help in the detection of the WO spectrum generated using WCl₆. After the O_2 input had been terminated, the signal intensity remained low, even when the sample was heated up to 30% of the maximum heating voltage.

In the second set of experiments, fresh samples of WCl_6 was used. With the cell pressure maintained at 10 Torr using the helium buffer gas, with or without O_2 , the results from different heating temperatures were compared. Heating conditions of 10%, 40%, 60% and 80% of the maximum value were tested.

The last set of experiments included keeping both the upstream and downstream valves of the cell nearly closed, while maintaining the cell pressure at about 10 Torr, with helium as the buffer gas. This was to build up the concentration of the WO species in the cell, while at the same time removing interfering species. Also, in order to investigate the conditions that would provide the best signal-to-noise ratio, a sample of WCl₆ was left in the open air in the fume hood for 8 hours. The results were not obviously better. However, the used sample from the experiments was put in a sealed vial for about 2 weeks during the Christmas Holidays in 1999. After the Holidays, this used sample in the sealed vial was used in the experiments, and a good spectrum was detected.

3.2.2.3 Optimized conditions

The following conclusions were made:

1) The WO spectrum can be detected by using WCl₆ powder in a microwave discharge cell with helium or argon buffer gas. However the use of argon buffer gas generates more atomic lines than does the helium buffer gas. 2) The best WO spectrum was recorded when the discharge plasma showed a bright yellowish color: any experimental conditions that generated such a color gave a good spectrum of WO. 3) The intensity of the WO spectrum generated using helium was better than that using argon: the best spectrum was achieved using 10 Torr of helium. 4) When even a small amount of O_2 was added, as little as 0.02 Torr, the intensity of the WO

spectrum decreased drastically. 5) Heating the sample did not help in the generation of the WO species.

3.2.3 Detection and Advantages of High Resolution Spectra

The spectra of WO species were detected segment by segment from 13,900 to 26,000 $\rm cm^{-1}$ in 6 parts. The best experimental conditions, as described in Section 3.2.2, were used.

The bandhead positions helped to identify the molecule. A good way to do coaddition using the Bruker 120 IFS high resolution spectrometer is to set the number of co-additions to a larger number. The spectrometer can be stopped at any number of co-additions when the operator decides that the number of co-additions have been enough.

The experiments were repeated using the McMath-Pierce one-meter Fourier transform spectrometer of the National Solar Observatory at Kitt Peak, Tucson, Arizona. The WO spectra employed in the final analysis are those detected at Kitt Peak, which have a resolution of 0.03 cm^{-1} and cover the range $9,000 - 34,500 \text{ cm}^{-1}$ in two parts.

The McMath-Pierce one-meter spectrometer⁴ has a folded Michelson interferometer housed in a vacuum vessel. It is the instrument of choice when very highly accurate line positions, broad spectral coverage, a stable instrumental profile, etc., are required. It has the following features:

- 1. maximum path difference of 1 meter;
- 2. minimum resolution element of $0.005 \text{ cm}^{-1.5}$
- 3. spectral range of 550 cm⁻¹ to 45,000 cm⁻¹ (2,200 Å to 18 μ m);
- 4. typical wavenumber accuracy of 10^{-3} to 10^{-4} cm⁻¹.

The WO spectra reported in this Chapter have the following advantages over those published previously.

- 1. Gas phase molecules: higher resolution than previous spectra for rotational analysis.
- 2. High accuracy: easy spectroscopic calibration using helium atomic lines.

⁴http://nsokp.nso.edu/mp/fts/

⁵The resolution of a Fourier transform spectrometer is determined by the maximum optical path difference. For the McMath-Pierce one-meter Spectrometer, the maximum optical path difference is 1 meter, so the resolution should not be so high. However, the specially designed optical folding mechanisms in the system help to achieve the high resolution.

- 3. Emission spectra: more information about the molecule and better signal-tonoise ratio.
- 4. Wide spectral coverage: made available by using different detectors and beam splitters.
- 5. High resolution: splittings due to the tungsten isotopes (¹⁸²W, ¹⁸³W, ¹⁸⁴W, and ¹⁸⁶W) are resolved for some bands.

3.3 Theoretical Basis

This section presents the theoretical basis for the analysis of the spectra of WO, such as the molecular orbitals and angular momenta, the coupling cases of angular momenta and the term symbols, the properties of Λ -doubling of the states, and the emission spectra.

3.3.1 Molecular Orbitals, Hund's Cases and Term Symbols

3.3.1.1 Molecular Orbitals and Angular Momentum

Molecular orbitals can be formed as linear combinations of atomic orbitals. However, the quantum numbers of the electrons in a diatomic molecule are not the same as those in the atoms [15, 16]. There are four quantum numbers for an electron in an atom, i.e., the principal quantum number n, the angular quantum number l, the magnetic quantum number m_l and the spin quantum number m_s . In a diatomic molecule, the electrons experience the Coulomb electric field of both the nuclei, which has a rotational symmetry with respect to the internuclear axis (molecular axis). Therefore, the angular quantum number l is no longer a good quantum number. The projection of the angular momentum l along the molecular axis is $l_z = m_l \hbar$, where $m_l = l, l-1, \dots - l$. The energy of these states are the same for l_z along +z and -z directions, and the quantum number is the same as that of the magnetic quantum number. The double degeneracy can be lifted by perturbations, e.g., molecular rotation. For this reason, a new quantization condition is introduced, $\lambda = |m_l|$, where $m_l = l, l - 1, \dots, -l$. The orbital wavefunctions of electronic states with $\lambda = 0, 1, 2, \dots$ are called $\sigma, \pi, \delta, \dots$, corresponding to the $s, p, d \dots$ electronic orbitals in an atom.

The orbital and spin motions of the electrons create magnetic moment, which interact with one another and contribute to the coupling between the motions of the electrons. The orbital angular momenta of all electrons in the molecule are coupled to give a resultant \mathbf{L} , and all the electron spin momenta in the molecule are coupled to give a resultant \mathbf{S} .

3.3.1.2 Hund's Cases and Term Symbols

If there is no highly charged nucleus in the molecule, the spin-orbit coupling between \mathbf{L} and \mathbf{S} is weak and the internuclear electrostatic field uncouples them. The orbital angular momentum \mathbf{L} and spin \mathbf{S} are coupled to the internuclear axis individually. In this case, the total electronic orbital angular momentum \mathbf{L} is strongly coupled to the internuclear electrostatic field. Its magnitude of \mathbf{L} is thus not defined; only the axial

component $\Lambda \hbar$, i.e., the projection of **L** along the intermolecular axis is defined, where $\Lambda = 0, 1, 2, \cdots$. The projection quantum number Λ is a good quantum number, while L is not. In a molecule, there is a two-fold degeneracy in the axial projection of the angular momentum L_z , i.e., the electronic states with $\Lambda > 0$ are doubly degenerate.

The coupling of the total electronic spin angular momentum \mathbf{S} to the internuclear axis is not due to the internal electrostatic field, but is caused by the magnetic field generated from the orbital motion of the electrons. The projection of \mathbf{S} on the molecular axis is $\Sigma\hbar$, where $\Sigma = S, S - 1, \dots, -S$. The magnitude of the total electronic spin angular mpmentum S is a good quantum number. The multiplicity 2S + 1 represents the number of spin components. The spin-orbit interaction splits the components of a multiplet. The splittings between adjacent spin components are constant for Hund's case (a), but not for Hund's case (c).

The electronic states of a diatomic molecule are represented by term symbols ${}^{2S+1}\Lambda$, with 2S + 1 representing the term multiplicity. The symbols are Σ for $\Lambda = 0$, Π for $\Lambda = 1$, Δ for $\Lambda = 2$, Φ for $\Lambda = 3$, etc. The spin components are represented by ${}^{2S+1}\Lambda_{\Omega}$, where $\Omega = |\Lambda + \Sigma|$, and Σ is the projection of the total electronic spin **S** along the molecular axis as shown in Fig. 3.2 [15, 16]. Notice that for a diatomic molecule, only the internuclear axial components are important. The axial projection of the total angular momentum is the sum of the axial projection of the electronic spin $\Sigma\hbar$.

For a Σ state, there is no orbital angular momentum, and therefore, no internal magnetic field to couple **S** to the internuclear axis. For this reason, when spin-spin coupling is neglected, the quantum number Σ is not defined. The Σ state, whatever its multiplicity, has only one spin component. This is no longer true when spin-spin coupling is included.

In heteronuclear diatomic molecules such as WO, the quantum numbers Λ , S and Ω are not quite sufficient. The symmetry properties of the electronic wavefunction Ψ_e need also to be specified. The symmetry property concerns the symmetry of Ψ_e with respect to reflection across any σ_v plane containing the internuclear axis: if Ψ_e is symmetric to (unchanged by) the reflection, the state is labelled '+', while if it is antisymmetric to (changed in sign by) the reflection, the state is labelled by '-'.

Like all assumed coupling of angular momenta, as shown in Fig. 3.2, Hund's case (a) represents a commonly used approximation when the vectors \mathbf{L} and \mathbf{S} are strongly coupled to the intermolecular axis and weakly coupled together. Another extreme coupling approximation is Hund's case (c). In Hund's case (c), the spin-orbit coupling is so large that the coupling between the vectors \mathbf{L} and \mathbf{S} can not uncoupled by the axial electrostatic field. In this case, Ω is a good quantum number and Λ is

no longer a good quantum number. However, the Σ , Π , Δ , \cdots labels for the electronic states of Hund's case (a) are retained for Hund's case (c). Hund's case (c) is to be found in molecules with at least one highly charged nucleus.

Figure 3.2: (I) Hund's Case (a) and (II) Hund's Case (c) Coupling of the Total Electronic Orbital and Spin Angular Momenta in Diatomic Molecules.

For the WO molecule, which contains the highly charged W nucleus, the spin-orbit coupling between \mathbf{L} and \mathbf{S} is strong, and the result is Hund's case (c) rather than the usual Hund's case (a).

3.3.2 Properties of Emission Spectra and Λ -Doubling

In contrast to the selection rules for pure rotational spectra (molecules possessing a permanent electric dipole moment) and ro-vibrational spectra (a change of electric dipole moment during vibration), electronic spectra are possible for all molecules since changes in the electron distribution in a molecule are always accompanied by an electric dipole change. For this reason, a great many spectral lines are to be expected in an electronic transition [17], especially, when rotational fine structure is observed in high resolution spectroscopy.

Electronic emission spectra are more complicated than electronic absorption spectra, because in absorption the majority of the molecules are usually in the ground vibrational state and the result is mainly the v'' = 0 progression. In electronic emission spectra, the numbers of v' and v'' levels involved can be large, so there can be many bands from various combinations of v' and v''. Because the molecules in the upper state may not be in thermal equilibrium, and hence not in a Boltzmann distribution, the intensity pattern may be irregular. In addition to the roles of the the electric dipole selection rule, which is $\Delta J = J' - J'' = 0, \pm 1$ (except for J' = J'' = 0), and the parity selection rule, which requires that the initial and the final states for the transition have different total parities, in determining the rotational fine structure, the spectral lines in a vibrational progression are not all observed to be of the same intensity.

Some of the bands of the WO spectra are found to have Λ -type doubling (or Ω -doubling) patterns because of the Λ -doubling of energy in one or both of the vibrational levels of the two electronic states involved. Λ -type doubling arises because all states with $\Lambda > 0$ are doubly degenerate: this can be thought of classically as being caused by the same energy being associated with clockwise or counter-clockwise motion of the electrons about the internuclear axis. The degeneracy may be split due to the interaction between the orbital motions and the overall rotation of the molecule [15, 16].

The lines of each band with Λ -doubling for $\Omega = 1$ are fit to the energy level expression shown in Eqn. (3.1).

$$E_v = T_v + F_v(J)$$

= $T_v + B_v J(J+1) - D_v [J(J+1)]^2 + H_v [J(J+1)]^3 + \cdots$
 $\pm 1/2 \{q_v J(J+1) + q_{Dv} [J(J+1)]^2 + q_{Hv} [J(J+1)]^3 + \cdots \}$ (3.1)

in which the q's are Λ -doubling constants, and + and – correspond to e and f parities, respectively.

The energy levels without Λ -type doubling are fit to Eqn. (3.2), the usual band constant model.

$$E_v = T_v + F_v(J)$$

= $T_v + B_v J(J+1) - D_v [J(J+1)]^2 + H_v [J(J+1)]^3 + \cdots$ (3.2)

The spectra and other information on some of the WO bands are shown in Fig. 3.3 to Fig. 3.10. These bands are plotted with the line positions and intensities measured using PC/GENCOMP.⁶ Therefore, there is no random baseline noise in the figures. However, there are still spectral lines from other sources (tungsten and helium atomic lines, or lines from other bands) in these plots of the "raw" spectra. The most intense helium atomic lines have been removed.

 $^{^6\}mathrm{PC}/\mathrm{GENCOMP}$ is a spectral line measurement program similar to PC/DECOMP, but able to handle spectra with a larger spectral range.

3.4 Analysis of WO Spectra

The analysis of the WO spectra starts from the 0-0 bands of the seven electronic transitions, i.e., A-X, B-X, C-X, C'-X, D-X, D'-X and F-X, because the 0-0 bands are usually of higher intensity. The electronic absorption spectra reported by Samoilova *et al.* [2] were used as references because the absorption spectra give mainly 0-0 bands. Only the details of the analysis of the 0-0 bands and other bands of the D-X, D'-X, and F-X transitions are reported in this Chapter, as bands of the other electronic systems were analyzed by a colleague.⁷ The work reported in this Chapter is a part of a co-authored publication [4]. The final conclusions drawn from both the results of analyses made in this Chapter and the results of analyses by other colleagues are reported herein.

Because results of detailed rotational analyses of high resolution spectra of the WO molecule were not available prior to the co-authored work [4], the symmetries of the excited electronic states are unknown, and even the symmetry of the ground electronic state was unclear [1, 3, 2, 8]. The bands are labeled with vibrational quantum numbers corresponding to the upper to lower states. They could be either vibrational transitions between spin components of electronic states or between different electronic states. Because of the intrinsic complexity of the spectra, and because of the low-lying states with high multiplicities possible for WO (typical of transition metal-containing molecules with an open *d*-shells), further experiments and analyses need to be combined with theoretical results from *ab initio* calculations in order to identify the symmetries of the excited electronic states.

3.4.1 D(0,0) **Band**

No isotopic splittings have been observed in the D(0,0) band detected here. As shown in Fig. 3.3, the D(0,0) band is red-degraded and has an R head. In the D(v'=0)-X(v''=0) transition, the Q branch is composed of stronger lines; and the P and Rlines overlap after the returning R branch passes the band origin. The existence of an R head shows that B' < B'', i.e., the upper electronic state has a longer effective bond length.

The result of fitting the identified frequencies of the line positions of the P, Q, and R branches to energy levels expressed via Eqns. (3.1) and (3.2) leads to the set of constants given in Table 3.1. The rotational constants $B'' = 0.415266(35) \text{ cm}^{-1}$ and $B' = 0.388629(34) \text{ cm}^{-1}$ have been obtained⁸ for the X(v'' = 0) and the D(v' = 0)

⁷Dr. Ram S. Ram, Dept. of Chemistry, University of Arizona, Tucson AZ 85721, USA.

⁸A better set of molecular constants could be obtained by using the Unix-based software DSParFit

Figure 3.3: The D(0,0) band, with a band head located at 20799.87 cm⁻¹. The Q branch is composed of stronger lines, and the P and R lines overlap after the returning R branch passes through the band origin.

Figure 3.4: The D(0,0) band with noise and interference removed.

		$(cm^{-}$	1)
	Molecular	Constant	Uncertainty
Upp	er State		
T'	2.0793866	59D + 04	1.5D - 03
B'	3.88629	D - 01	3.4D - 05
D'	1.739	D - 07	6.5D - 09
q'	-2.807	D - 04	1.0D - 06
Low	er State		
T''	0.0	$D \! + \! 00$	
B''	4.15265	D - 01	3.5D - 05
D''	1.853	D - 07	6.8D - 09

Table 3.1: Molecular Constants of the D(0,0) Band

Final Variance = 1.136

levels, respectively.

The spectrum containing only spectral lines from the D(0,0) band is shown in Fig. 3.4. Some lines have been removed for reasons such as blending with helium atomic lines or other strong interference.

The Fortrat parabola for the D(0,0) band is shown in Fig. 3.5.

Figure 3.5: The Fortrat parabola of the D(0,0) band. The y-coordinate is m, and the x-coordinate is *wavenumber*.

with sequential rounding and refitting. However, the PC program LSQFIT-D is convenient in the initial data analysis and the results are adequate at this level of analysis. The contents of the tables of the molecular parameters and the uncertainties are the raw outputs of the computer program.

The D(0,0) band was also observed in the neon matrix [1] at 20797 cm⁻¹ and in the gas phase absorption spectrum [2] at 20799.8 cm⁻¹. In the fluorescence spectrum in solid neon [12], a fairly strong progression from v' = 0 of the D state at 20789.3 cm⁻¹ was also observed. The above literature results are in good agreement with the band head wavenumber 20799.87 cm⁻¹ obtained in this work.

It may be concluded from the fitting results given in Table 3.1 that the upper state, i.e., the D state, has Λ -doubling of the energy levels, and that the lower state does not have Λ -doubling.

3.4.2 D'(0,0) Band

Fig. 3.6 shows the "raw" spectrum of the D'(0,0) band of the WO spectra, with a band head located at 21,227.48 cm⁻¹. In the D'(v' = 0)-X(v'' = 0) transition, no isotopic splittings have been observed. There are a pair of P branches and a pair of R branches in the spectrum of the D'(0,0) band.

Figure 3.6: The D'(0,0) band, with a band head at 21227.48 cm⁻¹. The doublings are obvious for the P branch. The assignment for the R branch is not shown.

The doublings of the P branch and R branch are due to Λ -doubling in the electronic states associated with the transitions. The fit of the line positions to energy levels as expressed in Eqn. (3.1) leads to the molecular constants given in Table 3.2. The rotational constants for the lower and upper states are $B'' = 0.415984(28) \text{ cm}^{-1}$ and $B' = 0.384684(27) \text{ cm}^{-1}$, respectively. The spectral lines of the D'(0,0) band,

		$(cm^{-}$	1)
	Molecular	Constant	Uncertainty
Uppe	er State		
T'	2.1222290)4D + 04	1.4D - 03
B'	3.84684	D - 01	2.7D - 05
D'	1.751	D - 07	9.6D - 09
q'	1.690	D - 03	8.9D - 05
q'_D	-3.33	D - 07	7.7D - 08
q'_H	7.6	D - 11	2.2D - 11
Lowe	er State		
T''	0.0	$D \! + \! 00$	
B''	4.15984	D - 01	2.8D - 05
D''	1.28	D - 07	1.0D - 08
q''	3.59	D - 04	8.8D - 05
q_D''	-3.64	D - 07	7.9D - 08
$q_H^{\overline{\prime\prime}}$	8.3	D - 11	2.4D - 11

Table 3.2: Molecular Constants of the D'(0,0) Band

Final Variance = 0.947

with noise and interference removed, are shown in Fig. 3.7. The Fortrat parabola of the D'(0,0) transition is shown in Fig. 3.8. The D'(0,0) band head was observed at 21227.7 cm⁻¹ in the gas phase absorption spectrum [2], but the wavenumbers of the line positions of the D'(0,0) band were not reported.

It may be concluded from the fitting results given in Table 3.2 that both the upper state, i.e. the D' state, and the lower state have Λ -doubling of the energy levels.

3.4.3 F(0,0) Band

In the F(0,0) band shown in Fig. 3.9, the band head is located at about 23,405.90 cm⁻¹. The spectrum shows clear isotopic splittings in the P branch. Some bands of the WO spectra display quartets caused by the four major isotopes of tungsten, i.e., 26.3% ¹⁸²W (181.948202(3)), 14.28% ¹⁸³W (182.950220(3)), 30.7% ¹⁸⁴W (183.950928(3)), and 28.6% ¹⁸⁶W (185.954357(4)) [18]. While other 0-0 bands of the electronic transitions of WO are not observed, because the isotopic shifts in both the lower and upper electronic states are the same, so they cancel with respect to the spectra observed, the perturbations in the electronic state F make the F(0,0) isotopic splittings observable.

In the F(0,0) band, only the spectra of the three major isotopomers, i.e., ¹⁸²WO, ¹⁸⁴WO and ¹⁸⁶WO can be reliably measured and identified. They are referred to as

Figure 3.7: The D'(0,0) band, with noise and interference removed.

Figure 3.8: The Fortrat parabolae of the D'(0,0) band. The y-coordinate is m, and the x-coordinate is *wavenumber*.

Figure 3.9: The F(0,0) band, with band head located at 23405.90 cm⁻¹. Isotopic splittings are observed.

Figure 3.10: The F(0,0) band of WO spectra, with noise and interference removed. Isotopic splittings are observed in both the P and R branches.

Series I, II, and III for ¹⁸⁶WO, ¹⁸⁴WO, and ¹⁸²WO, respectively. The fitting results are shown in Tables (3.3) to (3.5).

For Series I (¹⁸⁶WO, 28.6%), $B'' = 0.415068(10) \text{ cm}^{-1}$, $B' = 0.383233(95) \text{ cm}^{-1}$. For Series II (¹⁸⁴WO, 30.7%), $B'' = 0.415544(26) \text{ cm}^{-1}$, $B' = 0.383837(24) \text{ cm}^{-1}$. For Series III (¹⁸²WO, 26.3%), $B'' = 0.415795(54) \text{ cm}^{-1}$, $B' = 0.384094(47) \text{ cm}^{-1}$.

It may therefore be concluded from the fitting results given in Table 3.3 that neither the upper state, i.e. the F state nor the lower state have Λ -doubling.

The upper energy levels of the E and F systems appear to be perturbing each other in neon matrices [1]. In a spectroscopic study using the cavity ringdown laser technique [10], the 0-0 band of the F-X system was also reported, and it was observed that the P branch shows isotopomer quartets caused by the four major isotopes of tungsten. Because the vibrational frequency ω_e for the ground electronic state is larger than that of the F state, the zero-point energy of the ground state will also be larger, and one would expect the heavier isotopic species to be shifted to the blue. However, the observations show the opposite, with the lines of the heavier isotopic species red-shifted [10].

As shown in Fig. 3.11, isotopic splittings are observed for the rovibrational transitions in the F(0,0) band of the WO spectra. The red-shift pattern of the lines of heavier isotopomers can be identified from the groups of lines with arrows, although the intensities are somewhat contaminated by spectral lines from other sources. From low wavenumber to high wavenumber, i.e., from the left to the right, the isotopomers are ¹⁸⁶WO, ¹⁸⁴WO, ¹⁸³WO, and ¹⁸²WO, which can be identified from their relative intensity corresponding to the natural abundances, i.e., 28.6% ¹⁸⁶W, 30.7% ¹⁸⁴W, 14.28% ¹⁸³W, and 26.3% ¹⁸²W. The observations of the red-shift properties of the heavier isotopomers in this work are consistent with observations of the F(0,0) band of WO from the cavity absorption technique [10].

3.4.4 Results of Analysis

Analyses of the 0-0 bands and some other bands of the A-X, B-X, C-X, C'-X systems and the new $\Omega = 1$ system, i.e., the B'-X system, and the $[11.0]0^+$ -X system have been performed by a colleague.⁹. The rotational constants for the two spin components of the lower electronic state were found to be $B'' = 0.4155285(73) \text{ cm}^{-1}$ and B'' = $0.416247(19) \text{ cm}^{-1}$, respectively. The results of all the analyses from this Chapter, i.e., the F-X, D'-X, and D-X systems, and those of Dr. Ram are summarized in Table 3.6 for the lower states. Only the molecular constants of the major isotopomer,

⁹Dr. Ram S. Ram, Dept. of Chemistry, University of Arizona, Tucson, AZ 85721, USA.

Figure 3.11: A portion of the F(0,0) Band of the WO spectrum. Isotopic splittings are observed for the transitions. The red-shift pattern of the lines of the heavier isotopomers can be identified from the groups with arrows, although the intensities are somewhat contaminated by lines from other sources.

		$(\mathrm{cm}^{-}$	$^{1})$
	Molecula	r Constant	Uncertainty
Upp	er State		
E'	2.3400890	0D + 04	3.5D - 03
B'	3.83233	D - 01	9.5D - 05
D'	2.02	D - 07	5.5D - 08
Low	er State		
E''	0.0	D + 00	
B''	4.1507	D - 01	1.0D - 04
D''	3.16	$D{-}07$	6.1D - 08

Table 3.3: Molecular Constants of Series I (¹⁸⁶WO) of the F(0,0) Band

Final Variance = 0.879

		$(cm^{-}$	$^{1})$
	Molecular	Constant	Uncertainty
Uppe	er State		
E'	2.3401097	70D + 04	1.7D - 03
B'	3.83837	D - 01	2.4D - 05
D'	3.36	D - 07	1.5D - 08
Lowe	er State		
$E^{\prime\prime}$	0.0	$D \! + \! 00$	
B''	4.15544	D - 01	2.6D - 05
D''	2.56	D - 07	1.8D - 08
H''	-1.17	D - 11	2.6D - 12

Table 3.4: Molecular Constants of Series II ($^{184}\mathrm{WO})$ of the F(0,0) Band

Final Variance = 0.357

Table 3.5: Molecular Constants of Series III ($^{182}\mathrm{WO})$ for the F(0,0) Band

		$(cm^{-}$	1)
	Molecula	r Constant	Uncertainty
Upp	er State		
E'	2.3401311	0D + 04	5.1D - 03
B'	3.84093	D - 01	4.7D - 05
D'	2.48	$D{-}07$	2.8D - 08
Low	er State		
E''	0.0	D + 00	
B''	4.15795	D - 01	5.4D - 05
D''	1.85	D - 07	3.7D - 08

Final Variance = 0.943

		$({\rm cm}^{-1})$
Bands	B'' for Group I	B'' for Group II
$F(^{184}WO)$	0.415544(26)	
D'	•	0.415984(28)
D	0.415266(35)	
C'		0.416247(19)
$C, B, A, [11.0]0^+$	0.4155285(73)	•
Average	0.4154462	0.416116

Table 3.6: Rotational Constants for the Lower Electronic States (cm^{-1})

i.e., ¹⁸⁴WO, are considered for the bands with isotopic splittings, such as the F(0,0) band. In Table 3.6, the $[11.0]0^+$ state is a new upper state identified with $\Omega = 0^+$ symmetry.

For some electronic systems, additional bands other than the 0-0 band have been analyzed. The result of a global analysis of the C(0,0), C(0,1), C(0,2), C(1,2), C(1,3) bands, D(0,0), D(0,1), D(1,0) bands, F(0,0) band, D'(0,0) band, and the new B'(0,0) band, etc., is shown in Table 3.7 at Page 87.

3.5 Conclusion

Based on the results of rotational analyses of the strong bands out of the total of ca. 35 analyzable bands of various electronic systems, two groups of transitions with different lower states can be identified. The energy diagram for the states is shown in Fig. 3.12. The first group consists of seven transitions, six of which have a common lower state. None of these lines show any doubling, and the common lower state behaves like a ${}^{1}\Sigma^{+}$ or an $\Omega = 0^{+}$ state. This state is labeled as the $X0^{+}$ state. The transitions with this common lower state have their origins near 10965 cm⁻¹ ([11.0]0⁺- $X0^{+}$), 17165 cm⁻¹ ($A1-X0^{+}$), 17241 cm⁻¹ ($B1-X0^{+}$), 19182 cm⁻¹ ($C1-X0^{+}$), 20793 cm⁻¹ ($D1-X0^{+}$) and 23401 cm⁻¹ ($F0^{+}-X0^{+}$). These transitions were also observed in the relaxed laser-induced fluorescence measurements of Lorenz *et al.* [12, 13] and in the matrix isolation absorption experiment of Weltner *et al.* [1] (except for the transition at 10965 cm⁻¹), and in the gas phase absorption spectra [2]. These facts suggest that the common lower state for these transitions is a spin component of the ground state of WO.

The other group, including three states, C'1, D'1, and a new 0^+ state, i.e., $B'0^+$, contains transitions connected to an $\Omega = 1$ lower state. The 0-0 bands of all three states show significant A-doubling in the lower electronic state, or more precisely, Ω -doubling for Hund's case (c). The 0-0 bands of these transitions have their origins near 19440 cm⁻¹, 19783 cm⁻¹ (C'1-X1), and 21222 cm⁻¹ (D'1-X1). None of these transitions were observed in the laser-induced fluorescence experiments of Lorenz etal. [12, 13], or in the matrix isolated absorption experiment of Weltner et al. [1]. In the gas phase electronic absorption spectra of Samoilova et al. [2], details of such a state were not reported. The transition with a 0-0 band near 19440 $\rm cm^{-1}$ has been observed for the first time, and the upper state has been labelled as the $B'0^+$ state in Table 3.7. Because none of the bands in the second group were observed in the matrix absorption experiment [1], and the observed D'-X bands with X1 as the lower state are very weak in the gas absorption spectra [2], it appears that the lower state is well above the $\Omega = 0^+$ ground state, because in the absorption spectra, the majority of the transitions occur from the lowest energy level of the ground state. The rotational constants of the lowest $\Omega = 0^+$ and $\Omega = 1$ states are similar in magnitude as shown in Table 3.6, which suggests that they are the spin components of the same Hund's case (a) state identified as an $X^3\Sigma^-$ state.

The two lowest states have been assigned as the $\Omega = 0^+$ and $\Omega = 1$ spin components of the $X^3\Sigma^-$ ground electronic state of WO, with the $\Omega = 0^+$ spin component being lower in energy. The rotational constants are $B_0''(\Omega = 0^+) = 0.4154462 \text{ cm}^{-1}$, and $B_0''(\Omega = 1) = 0.416116 \text{ cm}^{-1}$, respectively, as shown in Table 3.6. The spin-splitting between the two spin components of $X^3\Sigma^-$ could be determined if some transitions from the excited states of the first group ($F0^+$, D1, C1, B1, and A1, etc.) to the lower state (X1) are detected, or transitions from the upper states of the second group (D'1, C'1, and $B'0^+$) to the lower state of the first group ($X0^+$) are detected in the future. At the same time, the spin splitting can also be estimated by using the Λ -doubling constant q and the rotational constant [4].

The spectroscopic data and their residuals from a global fit related to work in this Chapter are listed in Appendix B. The molecular constants of the bands analyzed in this work are reported in Table 3.7.

It is worthwhile pointing out that *ab initio* calculations [4] performed by a colleague¹⁰ have also confirmed that the ground state of WO is $X^3\Sigma^-$. These calculations were performed on the low-lying electronic states of the WO molecule in the triplet, quintet, and septet manifolds in order to decide the ground state symmetry, because the singlet energies are known to be much higher in energy. The program MOLPRO was used for these *ab initio* calculations [4]. The molecular orbitals used in these calculations were first optimized by state-averaged full-valence complete active space self-consistent field (CASSCF) calculations. Then the calculations were performed at the contracted multireference configuration interaction (CMCRI) level of theory with explicit correlation of all valence electrons.

At the levels of the CASSCF calculations, the ${}^{3}\Sigma^{-}$ state is predicted to be the lowest triplet arising from the valence electron configuration $1\sigma^{2}2\sigma^{2}1\pi^{4}3\sigma^{2}1\delta^{2}$: a similar CASSCF investigation of the quintet manifold reveals a single low-lying state of ${}^{5}\Pi$ symmetry arising from the configuration $1\sigma^{2}2\sigma^{2}1\pi^{4}3\sigma^{1}1\delta^{2}2\pi^{1}$. The ${}^{15}\Pi$ state is located 11,500 cm⁻¹ above the lowest ${}^{3}\Sigma^{-}$ state. The conclusion of the preliminary CASSCF investigations is that the ground state of WO should have the ${}^{3}\Sigma^{-}$ symmetry, and the ${}^{5}\Pi$ symmetry as predicted in the previous *ab initio* work [3], in which the authors did not consider the possible triplet ground electronic state in their calculations¹¹. The CASSCF results have been confirmed by more extensive CMRCI calculations.

¹⁰Jacky Liévin, Université Libre de Bruxelles, Laboratoire de Chimie Physique Moléculaire, Brussels, Belgium.

¹¹Private communication.

(cm^{-1})
Bands
184 WO
of
Constants
Molecular
3.7:
Table

STATE	T_v	B_{v}	$\mathrm{D_v}(imes 10^7)$	$H_v(\times 10^{12})$	$q_v(\times 10^5)$	$q_{\rm Dv}(\times 10^8)$	$q_{\rm Hv}(\times 10^{11})$
Relative 1	to $X0^+(v = 0)$						
$F0^+(v=0)$	23401.1058(26)	0.383829(13)	3.146(49)				
D1 (v = 1)	21772.9803(32)	0.388364(20)	7.49(15)	77.4(33)	-283.32(22)	94.9(23)	15.24(56)
D1 $(v = 0)$	20793.8722(23)	0.388926(16)	2.674(88)	5.2(15)	-20.718(49)	-0.74(35)	0.154(62)
C1 (v = 1)	20109.7050(18)	0.388349(16)	11.45(12)	-8.3(41)	131.54(65)	172.18(14)	2.49(70)
C1 $(v = 0)$	19182.46113(91)	0.391446(15)	2.587(91)	-1.77(21)	-8.77(48)	-6.30(78)	3.89(31)
$X0^{+} (v = 3)$	3148.5487(21)	0.409494(17)	2.77(11)	3.4(25)			
$X0^{+}$ (v = 2)	2107.0882(15)	0.411534(16)	2.91(16)	7.5(24)			
${ m X0^+}~({ m v}=1)$	1057.5680(21)	0.413555(16)	2.819(92)	4.7(16)			
$X0^+$ (v = 0)	0.0	0.415581(15)	2.893(87)	6.6(15)			
Relative	to X1 $(v = 0)$						
D'1 (v = 0)	21222.2990(17)	0.384843(23)	1.97(15)	-26.9(30)	-117.93(51)	-0.84(26)	
$B'0^+$	19439.6206(16)	0.385424(23)	1.94(15)	-25.3(28)			
X1 (v = 1)	1059.9266(18)	0.414161(24)	1.73(15)	-27.0(30)	17.65(15)	-0.896(68)	
X1 $(v = 0)$	0.0	0.416163(23)	1.62(15)	-27.8(28)	17.65(15)	-0.896(68)	

Figure 3.12: The Energy Level Diagram for WO (cm⁻¹×10³). The constant *a* is the spin splitting between the two spin components of the ground state $X^{3}\Sigma^{-}$.

Bibliography

- W. Weltner Jr. and D. McLeod, Jr. Spectroscopy of tungsten oxide molecules in neon and argon matrices at 4 K and 20 K. *Journal of Molecular Spectroscopy*, 17:276–299, 1965.
- [2] A. N. Samoilova, Yu. M. Efremov, and L. V. Gurvich. Electronic spectrum of the ¹⁸⁶W¹⁶O molecule. *Journal of Molecular Spectroscopy*, 86:1–15, 1981.
- [3] C. J. Nelin and C. W. Bauschlicher, Jr. On the low-lying states of WO: A comparison with CrO and MoO. *Chemical Physics Letters*, 118(2):221–225, 1985.
- [4] R. S. Ram, J. Liévin, G. Li, T. Hirao, and P. F. Bernath. The $X^3\Sigma^-$ ground state of WO. *Chemical Physics Letters*, 343:437–445, 2001.
- [5] A. Gatterer and S. G. Krishnamurty. Two band systems of tungsten oxide. *Nature*, 4300:543–543, 1952.
- [6] V. Vittalachar and S. G. Krishnamurty. Band spectrum of tungsten oxide. Current Science (India), 23:357–358, 1954.
- [7] D. W. Green and K. M. Ervin. Infrared spectra of matrix-isolated tungsten oxides. Journal of Molecular Spectroscopy, 89:145–158, 1981.
- [8] Yu. M Efremov, L. V. Gurvich, A. N. Savchenko, and E. A. Sviridenkov. The electronic spectra following flash photolysis of metal hexacarbonyls observed by an intracavity Nd³⁺-glass laser spectroscopic technique. *Chemical Physics Letters*, 1:179–182, 1979.
- [9] Yu. Ya. Kuzyakov, E. N. Moskvitina, and E. N. Filippova. Intracavity electronic absorption spectra of MoO and WO molecules in the visible region. *Spectroscopy Letters*, 30(6):1057–1066, 1997.
- [10] D. Kraus, R. J. Saykally, and V. E. Bondybey. Cavity ringdown laser absorption spectra of tungsten oxide. *Chemical Physics Letters*, 295:285–288, 1998.

- [11] W. D. Bare, P. F. Souter, and L. Andrews. Reactions of laser-ablated molybdenum and tungsten atoms with dioxygen. Resolved infrared spectra of natural molybdenum and tungsten isotopic oxides in argon matrices. *Journal of Chemical Physics*, 102:8279–8286, 1998.
- [12] M. Lorenz, J. Agreiter, N. Caspary, and V. E. Bondybey. Relaxation and vibrational fluorescence of WO in solid neon. *Chemical Physics Letters*, 291:291–299, 1998.
- [13] M. Lorenz and V. E. Bondybey. Isotopically resolved spectra of tungsten oxides in solid neon. *Chemical Physics*, 241:127–138, 1999.
- [14] R. S. Ram and P. F. Bernath. High resolution Fourier transform emission spectroscopy of the A⁴Π - X⁴Σ⁻ system of WN. J. Opt. Soc. Am. B., 11:225–230, 1994.
- [15] J. M. Hollas. Modern Spectroscopy. John Wiley & Sons, New York, 3rd edition, 1996.
- [16] J. M. Hollas. *High Resolution Spectroscopy*. John Wiley & Sons, New York, 2nd edition, 1998.
- [17] C. N. Banwell. Fundamentals of Molecular Spectroscopy. McGraw-Hill Book Company (UK) Limited, London, 3rd edition, 1983.
- [18] I. Mills, T. Cvitaš, K. Homann, N. Kallay, and K. Kuchitsu. Quantities, Units and Symbols in Physical Chemistry. Blackwell Scientific Publications, International Union of Pure and Applied Chemistry, 1988.

Chapter 4

Accurate Molecular Constants for the Ground Electronic State of BeH

The BeH molecule is one of the molecules with the lightest mass and simplest structure. With only four electrons, it has been used extensively as a test case for new approaches to theoretical calculations. As with other species, *ab initio* calculations progress hand-in-hand with experimental studies. However, there are many fewer experimental publications than theoretical papers $[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]^1$ in the case of BeH.

Because of strong rotational perturbations between the excited electronic states of $A^2\Pi$ and $C^2\Sigma^+$ [13, 14, 15],² molecular constants of the $A^2\Pi$, $C^2\Sigma^+$ and $X^2\Sigma^+$ states derived using conventional methods are not very accurate because many data have to be deweighted. This Chapter reports an accurate set of molecular constants for the ground electronic state $X^2\Sigma^+$ obtained by using a special spectroscopic data treatment method, i.e., treating the data of electronic transitions as if they were from "fluorescence series". With this procedure, the resulting molecular constants are accurate because all experimental data with correct assignments are used in the fitting, whereas in the conventional way, the perturbed data have to be rejected.

For a light molecule like BeH, the combined-isotopomer analysis also provides Born-Oppenheimer breakdown correction terms, which are expected to be large because of the small masses of the constituent atoms of the molecule.

Section 4.1 introduces the available experimental studies on the BeH isotopomers from the literature and private correspondence, and the theoretical basis for the

¹Just to cite a few.

²The energy levels are so close that perturbations occur.

derivation of accurate molecular constants. Section 4.2 summarizes the data sources of electronic transitions for the BeH isotopomers, BeH, BeD, and BeT, available for the theoretical analysis, i.e., the old electronic data obtained using spectrographs, and modern electronic data from Fourier transform spectrometers. Section 4.3 describes the method of treatment of the data for the electronic transitions. Section 4.4 presents the details of combined-isotopomer Dunham-type analysis, as applied to the data for the BeH isotopomers. Section 4.5 closes the Chapter with discussions and conclusions.

4.1 Background

The spectroscopic data published in the literature, together with the techniques used in the experiments, are summarized in this Section. The theoretical basis for the theoretical analysis to be carried out is also presented.

4.1.1 Experimental Studies of BeH Isotopomers

Before the systematic experimental studies of the three isotopomers BeH, BeD and BeT by Colin *et al.* [13, 16, 17, 18] in the 1970s and 1980s, only a limited amount of experimental data for BeH and BeD was published by early researchers in the late 1920s and early 1930s. An electronic band system due to the transition of the first excited state to the ground electronic state $A^2\Pi - X^2\Sigma^+$ was observed in emission and analysed for the BeH isotopomer [19, 20, 21]. Similarly, data from the $A^2\Pi - X^2\Sigma^+$ transitions were obtained for the deuterated molecule [22]. In addition, some data for the $B^2\Pi - X^2\Sigma^+$ band system were observed in emission for BeH [23]. The spectra mentioned above were generated using a DC arc between beryllium electrodes in a hydrogen or deuterium atmosphere, and recorded using grating spectrographs and photographic plates.

By using a King furnace³ containing metallic beryllium heated to 1,800° C in an atmosphere of hydrogen gas, Colin *et al.* [16] obtained high resolution⁴ $A^2\Pi - X^2\Sigma^+$ absorption bands of BeH and BeD, and improved vibrational and rotational constants were derived. Some bands of the $A^2\Pi - X^2\Sigma^+$ transition of BeT were also obtained in emission from a sealed beryllium hollow cathode continuous discharge, and analysed [17].

By using an apparatus similar to that used in the earlier $A^2\Pi - X^2\Sigma^+$ experiment [16], Colin *et al.* [18] obtained the absorption spectra of BeH and BeD in the ultraviolet. A number of new band systems were detected and rotationally analysed, e.g., bands of the $B'^2\Pi - X^2\Sigma^+$, $E^2\Sigma^+ - X^2\Sigma^+$, $F^2\Sigma^+ - X^2\Sigma^+$, and $G^2\Pi - X^2\Sigma^+$ transitions.

In addition, Colin *et al.* [13] observed the $C^2\Sigma^+ - X^2\Sigma^+$ transition of BeH and BeD in a beryllium hollow cathode discharge similar to that used for observing BeT in hydrogen or deuterium gas mixed with argon [17].

Rotational perturbations between the $C^2\Sigma^+$ and $A^2\Pi$ states were observed [13]. Some new bands of the $A^2\Pi - X^2\Sigma^+$ system were also observed simultaneously. These

³A King furnace is a graphite tube furnace.

⁴Using a 10 meter vacuum grating spectrograph and photographic plates with a reciprocal dispersion (Å of wavelength for each mm of photographic plate) of 0.3 to 1.5 Å/mm, and an absolute error of ± 0.05 cm⁻¹.

unpublished data on the $A^2\Pi - X^2\Sigma^+$ transition proved very useful in the linking of all the ground state vibrational levels[14] in the data analysis of this Chapter.

In late 1990s, Fourier transform emission spectra of $A^2\Pi - X^2\Sigma^+$ transitions of BeH [14] and BeD [15] were reported. The BeH spectrum was generated using a beryllium hollow cathode discharge lamp, and detected in the 18,000 - 22,500 cm⁻¹ spectral region at an instrumental resolution of 0.1 cm⁻¹ with an absolute accuracy of ±0.003 cm⁻¹. A higher resolution spectrum was not recorded because of the large Doppler broadening of the BeH lines. A combined study of cool and hot spectra was carried out [14]. The cool spectrum provides better resolved lines, and the hot spectrum extends the assignments to higher N values. The Fourier transform emission spectra of BeD were generated and recorded in a similar way.

4.1.2 Theoretical Basis

Figure 4.1: Vector Coupling Diagram for Hund's Case (b). **R** - overall rotational angular momentum; $\Lambda\hbar$ - the axial component of the electronic orbital angular momentum; **N** - the resultant of adding **R** and $\Lambda\hbar$; **J** - the total angular momentum, due to the coupling of **N** and **S**.

The coupling of the total orbital angular momentum and spin to the intermolecular axis for the electronic states of a diatomic molecule can assume one of the Hund's cases or lie between two Hund's cases, according to the number of electrons in the component atoms. Hund's case (b) generally applies to Σ states ($\Lambda = 0$) with $S \neq 0$, provided that spin-spin coupling is not large [24]. The **S** vector cannot be coupled to the intermolecular axis by itself. It needs to have the magnetic field associated with the orbiting electrons to couple to the axis. For Σ states ($\Lambda = 0$), there is no axial component of the orbital angular momentum, and hence no magnetic field and no coupling [24]. For $\Lambda \neq 0$, the **S** vector is coupled to the intermolecular axis by the magnetic field due to the orbiting electrons. However, for light molecules with few electrons, such as BeH and MgH, the coupling of the vector **S** to the intermolecular axis may be very weak [24]. For both the ${}^{2}\Sigma^{+}$ and ${}^{2}\Pi$ states of the BeH molecule, Hund's case (b), as shown in Fig. 4.1, is an appropriate approximation.

Fig. 4.1 shows the resulting vector diagram for $\Lambda \neq 0$. The resultant of **R** and $\Lambda \hbar$ is **N**, and the coupling of **N** and **S** produces the total angular momentum of **J** [24]. For Hund's case (b), *L* is not a good quantum number, but Λ , *S*, *N* and *J* are all good quantum numbers. The values that *J* can take are determined by *N* and *S*, and are given by [24].

$$J = N + S, N + S - 1, \cdots, |N - S|$$
(4.1)

where J can have integer or half-odd-integer values.

For the doublet electronic states $A^2\Pi$ and $X^2\Sigma^+$ of the BeH isotopomers, S = 1/2. Thus, the possible values for J are J = N + 1/2 and J = N - 1/2. Each rotational level has (2S + 1) components when $N \ge S$, the result of spin-rotation interaction, and for the BeH molecule, (2S + 1) = 2.

In a ${}^{2}\Sigma$ state, the rotational term values $F_{1}(N)$ and $F_{2}(N)$ corresponding to the *J* having values N + 1/2 and N - 1/2, respectively, are given by [24]

$$F_{1}(N) = B_{v}N(N+1) + \frac{1}{2}\gamma N$$

$$F_{2}(N) = B_{v}N(N+1) - \frac{1}{2}\gamma(N+1)$$
(4.2)

where γ is the spin-rotation coupling constant, which is usually very small. The coupling of spin **S** with the nuclear end-over-end rotation **R** (spin-rotation coupling) may contain small contributions due to direct magnetic coupling, and also to coupling through the orbital motion of the electrons [24].

In the $A^2\Pi - X^2\Sigma^+$ transition of the BeH molecule, the rotational fine structure of the spectra is determined by the properties of the $A^2\Pi$ and $X^2\Sigma^+$ states. Fig. 4.2 shows the rotational energy level diagram of the $A^2\Pi - X^2\Sigma^+$ transition [25]. The upper state is the $A^2\Pi$ state; the lower state is the $X^2\Sigma^+$ state. In the $X^2\Sigma^+$ state, there are two spin components, corresponding to J'' = N'' + 1/2 and J'' = N'' - 1/2. In the $A^2\Pi$ state, there are also two spin components corresponding to J' = N' + 1/2and J' = N' - 1/2. However, because $\Lambda \neq 0$ for the Π state, there are Λ -type

Figure 4.2: Rotational Energy Level Diagram of an $A^2\Pi - X^2\Sigma^+$ Transition.

doublings in each of the spin components. The spin splittings are observed because of the spin-rotation interaction, but the Λ -type doublings are observed also because of the end-over-end molecular rotation.

For the $X^2\Sigma^+$ ground electronic state of the BeH molecule, the approximate energy level formula is $F_1(e) = F_2(f) = BN(N+1)$, with N = J - 1/2 for the *e* levels and N = J + 1/2 for the *f* levels, when the spin splitting in Eqn. (4.2) is neglected (i.e., without consideration of spin-rotation interaction). Although the energy levels $F_1(N)$ and $F_2(N)$ corresponding to the two *J* values for each *N* are degenerate in the nonrotating molecule, inclusion of the spin-rotation interaction term splits the levels by the amount $\gamma(N + 1/2)$ [24, 25], as shown in Eqn. (4.2). For the $X^2\Sigma^+$ ground state of BeH, the spin splitting is very small⁵, so that the spin splitting between the two spin components can be neglected: in this case, the $X^2\Sigma^+$ ground electronic state can be treated as an $X^1\Sigma^+$ state.

Because the number of electrons in the BeH molecule is small, the spin-orbit coupling constant A is nearly zero, so that Hund's case (b) coupling applies to the $A^2\Pi$ electronic state. The rotational energy levels for a Hund's case(b) ${}^2\Pi$ state have a fourfold degeneracy⁶ for each N, i.e., F_{1e} , F_{1f} , F_{2e} , F_{2f} . The F_1 and F_2 labels are defined so that N = J - 1/2 for F_1 levels and N = J + 1/2 for F_2 levels.

In a $\Pi - \Sigma$ transition, the lines of the Q branch are stronger than those of the P and R branches, and terminate on rotational levels of the opposite parity (e - f) or

⁵This is obvious in consideration of the fact that, the spin-rotation couplings are rarely observed directly even in very high resolution spectroscopy, e.g., the far infrared and millimeter wave spectroscopy of MgH as described in Chapter 5.

⁶In general, the rotational energy levels for Hund's case (b) ${}^{2S+1}\Lambda$ states are given by BN(N+1)and there are 2(2S+1) degenerate levels for $\Lambda \neq 0$, i.e., Λ -type doubling, and 2S+1 degenerate levels for $\Lambda = 0$ [25]
(f - e); the P and R branch lines terminate on rotational levels of the same parity (e - e or f - f)[25].

Figure 4.3: Qualitative Potential Curves of the Electronic States of BeH

4.2 Spectroscopic Data Sources of BeH Isotopomers

The data used in this Chapter are those detected in or after the 1970s. The spectrographic data published before the 1970s were all improved by more recent experiments. Because the data sets from the $B^2\Pi - X^2\Sigma^+$, $B'^2\Pi - X^2\Sigma^+$, $G^2\Pi - X^2\Sigma^+$, $E^2\Sigma^+ - X^2\Sigma^+$, and $F^2\Sigma^+ - X^2\Sigma^+$ transitions are very small, only data from the $A^2\Pi - X^2\Sigma^+$ bands and $C^2\Sigma^+ - X^2\Sigma^+$ bands for the BeH isotopomers are considered.

					v'			
		0	1	2	3	4	5	6
	0	$\mathbf{X}^{a,b}$						
	1	\mathbf{X}^{c}	$\mathbf{X}^{a,b}$					
	2		\mathbf{X}^{c}	$\mathbf{X}^{a,b}$				
	3			\mathbf{X}^{c}	$\mathbf{X}^{a,b}$			
v''	4				\mathbf{X}^{c}	$\mathbf{X}^{a,b}$		
	5					\mathbf{X}^{c}	$\mathbf{X}^{a,b}$	
	6						\mathbf{X}^c	\mathbf{X}^{b}
	7							\mathbf{X}^{c}

Table 4.1: Vibrational Bands of the $A^2\Pi - X^2\Sigma^+$ System of BeH

Note: X - transition observed. Source: a - Old electronic data, Horne and Colin [16].

b - Fourier transform data, Bernath et al. [14].

c - Unpublished data, Colin et al. [13, 14].

4.2.1 Electronic Spectroscopy with a Spectrograph

The high resolution BeH and BeD absorption spectra obtained by Colin *et al.* [16] contain $A^2\Pi - X^2\Sigma^+$ bands of the $\Delta v = 0$ sequence, i.e., the 0-0, 1-1, 2-2, 3-3, 4-4 and 5-5 bands for BeH, as shown in Table 4.1, and the 0-0, 1-1, and 2-2 bands for BeD, as shown in Table 4.3. The 0-0, 1-1, 2-2 and 3-3 bands of the $A^2\Pi - X^2\Sigma^+$ transition of BeT, as shown in Table 4.5, were obtained in emission from a sealed beryllium hollow cathode discharge [17].

Colin *et al.* [13] also observed the $C^2\Sigma^+ - X^2\Sigma^+$ transitions of BeH and BeD in a beryllium arc in hydrogen or deuterium gas mixed with argon. The electronic data of the 0-6, 0-7, 0-8, 0-9, 1-9, 1-10, and 2-9 bands of the $C^2\Sigma^+ - X^2\Sigma^+$ system of BeH, and the 0-8, 0-9, 0-10, 0-11, and 0-12 bands of the $C^2\Sigma^+ - X^2\Sigma^+$ system of BeD are available, as shown in Tables 4.2 and 4.4.

		0	1	2	$\frac{v'}{3}$	4	5	6
	6	X ^a						
	7	Х						
v''	8	Х						
	9	Х	Х	Х				
	10		Х					
Not	Note: X - transition observed.							
		a - Incorrect identification [14].						
Sou	rce:	All o	lata	in th	is ta	ble a	are	
		old e	electr	onic	data	ì		

from Colin *et al.* [13].

Table 4.2: Vibrational Bands of the $C^2\Sigma^+ - X^2\Sigma^+$ System of BeH

4.2.2 Fourier Transform Spectroscopic Data

The data of Fourier transform spectra of the 0-0, 1-1, 2-2, 3-3, 4-4, 5-5, and 6-6 bands of the $A^2\Pi - X^2\Sigma^+$ transition of BeH, i.e., the $\Delta v = 0$ sequence, was detected at an instrumental resolution of 0.1 cm⁻¹, with an absolute accuracy of ± 0.003 cm⁻¹ [14]. The Fourier transform BeD spectra of the 0-0, 1-1, 2-2, 3-3, 4-4, 5-5, and 6-6 vibrational bands of the $A^2\Pi - X^2\Sigma^+$ transition [15] were generated and recorded in a similar manner, and the $\Delta v = 0$ sequence of the $A^2\Pi - X^2\Sigma^+$ system was reported for BeD [15]. The Fourier transform data shown in Tables 4.1 and 4.3 are of higher accuracy than the spectrographic data.

4.2.3 Summary of Spectroscopic Data Set

4.2.3.1 BeH Data

The bands available from the $A^2\Pi - X^2\Sigma^+$ and $C^2\Sigma^+ - X^2\Sigma^+$ transitions for BeH are shown in Tables 4.1 and 4.2, respectively. The BeH spectroscopic data for the $A^2\Pi - X^2\Sigma^+$ and $C^2\Sigma^+ - X^2\Sigma^+$ bands published by Colin *et al.* [16] are for low vibrational levels (v'' = 0.5) and high vibrational levels (v'' = 7.10) only, the v''= 6 band was not identified correctly. If the levels were all linked together and

					v'			
		0	1	2	3	4	5	6
	0	$\mathbf{X}^{a,b}$						
	1	\mathbf{X}^{c}	$\mathbf{X}^{a,b}$					
	2		\mathbf{X}^{c}	$\mathbf{X}^{a,b}$				
v''	3			\mathbf{X}^{c}	\mathbf{X}^{b}			
	4				\mathbf{X}^{c}	\mathbf{X}^{b}		
	5					\mathbf{X}^{c}	\mathbf{X}^{b}	
	6						\mathbf{X}^{c}	\mathbf{X}^{b}

Table 4.5. Vibrational Danus of the A $\Pi = A \ \Delta^2$ System of Del	Table 4.3:	Vibrational	Bands -	of the	$A^2\Pi -$	$X^2\Sigma^+$	System	of BeD
--	------------	-------------	---------	--------	------------	---------------	--------	--------

Note: X - transition observed.

Source: a - Old electronic data, Horne and Colin [16].

b - Fourier transform data,Bernath *et al.* [15].c - Unpublished old electronic data,

Colin *et al.* [13, 15].

the v'' = 6 gap were filled, then the experimental data would be more useful [14], and a global fitting could be carried out. An attempt was made, using a Fourier transform spectrometer and hollow cathode discharge, to fill the v'' = 6 gap, but it was unsuccessful [14]. The Fourier transform data detected have longer diagonal sequences, i.e., from 0-0 to 6-6 [14]. In order to fill the v'' = 6 gap, the unpublished $A^2\Pi - X^2\Sigma^+$ data of Colin *et al.* from the same arc spectra used for the $C^2\Sigma^+ - X^2\Sigma^+$ analysis [13] were employed, and the 0-1 to 6-7 bands of the $\Delta v = -1$ sequence were identified [14]. Thus the v'' = 0-10 levels in the $X^2\Sigma^+$ state and v' = 0-6 levels in the $A^2\Pi$ state are linked together on the same energy scale [14].

4.2.3.2 BeD Data

The $A^2\Pi - X^2\Sigma^+$ and $C^2\Sigma^+ - X^2\Sigma^+$ electronic data for BeD are shown in Tables 4.3 and 4.4. The 0-0, 1-1, and 2-2 bands of the $A^2\Pi - X^2\Sigma^+$ system are available from spectrographic data [16]. The Fourier transform experiment detected the $\Delta v = 0$ sequence from 0-0 to 6-6 [15], extended from the 2-2 band of the spectrograph data to the 6-6 band. As in the treatment of the BeH isotopomer, the unpublished data of the $\Delta v = -1$ sequence from 0-1 to 5-6 of the $A^2\Pi - X^2\Sigma^+$ system detected in the spectrograph experiment for the $C^2\Sigma^+ - X^2\Sigma^+$ transition [13, 15] were used to link together the data set from v'' = 0 to v'' = 6 levels. However, there are not enough

					v'			
		0	1	2	3	4	5	6
	8	Х						
	9	Х						
v''	10	Х						
	11	Х						
	12	Х						

Table 4.4: Vibrational Bands of the $C^2\Sigma^+ - X^2\Sigma^+$ System of BeD

Note: X - transition observed. Source: All data in this table are old electronic data from Greef and Colin [13].

spectroscopic data for BeD to bridge directly the gap between v'' = 6 and v'' = 8.

4.2.3.3 BeT Data

The 0-0, 1-1, 2-2 and 3-3 bands of the $A^2\Pi - X^2\Sigma^+$ electronic transition for BeT are shown in Table 4.5. The four bands of the $A^2\Pi - X^2\Sigma^+$ transition of BeT were detected using a spectrograph and obtained in emission from a sealed beryllium hollow cathode [17]. Some of the BeT data have an accuracy of 0.07 cm⁻¹, and some have an accuracy of 0.02 cm⁻¹.

Table 4.5: Vibrational Bands of the $A^2\Pi - X^2\Sigma^+$ System of BeT

				v'			
	0	1	2	3	4	5	6
0	Х						
1		Х					
2			Х				
3				Х			

Note: X - transition observed. Source: All data in this table are old electronic data from Greef and Colin [17].

4.3 Treatment of Electronic Transition Data

The new method of treatment of electronic data involves two steps. The first is to convert the rotational quantum numbers from N to J. The second is to convert the vibrational bands into "fluorescence series".

4.3.1 Quantum Number Conversion

In order to use the singlet data processing program DSParFit [26, 27, 28], the doublet spectroscopic data for the BeH isotopomers need to be converted into the singlet format. The $X^2\Sigma^+$ ground electronic state of BeH can be considered to be equivalent to an $X^1\Sigma^+$, as the spin splitting is so small that it can be neglected ($\gamma \approx 0$).

For the $X^2\Sigma^+$ ground electronic state, the rotational quantum number used in energy level expressions is N, as in Eqn. (4.2). For a ground state $X^1\Sigma^+$, the rotational quantum number used in the energy level expressions is J, as in Eqns. (1.5) to (1.10). As discussed in Section 4.1.2, the relationship between the two quantum numbers is $J = N \pm 1/2$, in which J = N + 1/2 for the e parity (or p = +1), and J = N - 1/2 for the f parity or (p = -1). Because N is integer and J is half-odd integer, the quantum numbers J are all rounded up to the next integer in computer programs:⁷ the practical rule for the conversion of quantum numbers here is J = Nfor an f parity (p = -1) level, and J = N + 1 for an e parity (p = +1) level.

For the treatment of the doublet spectroscopic data pairs, another way is to average the doublet data of spin splitting pairs, and then convert the rotational quantum number N to J in a manner similar to that used for the $X^2\Sigma^+$ state. However, the term values for each (v', J', p') will be "artificial" because of averaging out the two spin components. The method used in this Chapter is to convert the rotational quantum number from N to J, but to retain the original doublet data format so that the original data are kept along with the corresponding parity p'. Consequently, the term values of the "fluorescence series" are those with the doublet splittings, i.e., the true (v', J', p') term values.

4.3.2 Converting Vibrational Bands to "Fluorescence Series"

The "fluorescence series" method of treating the data from electronic bands with perturbations in the upper states provides an accurate set of molecular constants for the ground electronic state.

 $^{^7\}mathrm{Computer}$ programs such as LSQFIT-D and DSParFit use integer quantum numbers instead of half-odd-integers.

Spectroscopic data for the bands of electronic transitions are re-organized in such a way that all rovibronic transitions originating from each unique set of v', J' and p'are grouped together. The groups of such data, or the pseudo "fluorescence series" allow calculations similar to combination differences to be made for the ground electronic state. The perturbations in the upper electronic states can do no harm to the molecular constants obtained in this way for the ground electronic state. At the same time, the fitting also generates a term value for each group with a unique set of v', J'and p', which can be further explored for rotational deperturbation analysis for the perturbed electronic states.

Sometimes there is only one datum in a group formed this way. Combination differences can not be formed for such a group. In the analysis reported in this Chapter, such a "group" is deleted from the data file to increase the computational efficiency.

4.4 Combined Isotopomer Dunham-Type Analysis

Combined-isotopomer Dunham-type analysis is especially advantageous in the study of the isotopomers of such a light molecule as BeH. This method not only reduces the number of parameters required to represent the molecule, but also provides the Born-Oppenheimer breakdown correction terms that are important for light molecules.

4.4.1 Light Molecules and the Born-Oppenheimer Approximation

The refined analysis of the spectra of the isotopomers of light molecules provides measurable quantities which represent the degree of validity of the Born-Oppenheimer approximation. The Born-Oppenheimer approximation assumes that the motion of the electrons in the molecule occurs in the electrostatic field of fixed nuclei of infinite mass. A consequence of this approximation is the invariance of the pure electronic energy of a given state to isotopic substitution. Within this approximation, the potential energy curve of each electronic state of a molecule is therefore the same for all isotopic species.

For light hydrides, it is possible by using high resolution spectra to determine the different values of the electronic term values T_e of a given state for different isotopomers. Electronic isotopic shifts ΔT_e are a direct consequence of the breakdown of the Born-Oppenheimer approximation.

4.4.2 Combined-Isotopomer Dunham-Type Analysis

In all of the fits reported herein, the observed transition energies were weighted by the inverse square of their uncertainties, and the quality of fit is indicated by the value of the dimensionless standard error (DSE)

$$\overline{\sigma}_{f} = \left\{ \frac{1}{N-M} \sum_{i=1}^{N} \left[\frac{y_{calc}(i) - y_{obs}(i)}{u(i)} \right]^{2} \right\}^{1/2}$$
(4.3)

in which each of the N experimental data $y_{obs}(i)$ has an uncertainty of u(i), and $y_{calc}(i)$ is the value of datum-*i* predicted by the *M*-parameter model being fit. All parameter uncertainties quoted here are 95% confidence-limit uncertainties.

In order to obtained an accurate set of parameters for the $X^2\Sigma^+$ ground electronic state and to explore the Born-Oppenheimer breakdown terms, the data set of electronic transitions measured with a spectrograph [16, 17, 13], and Fourier transform electronic spectroscopic data [14, 15] are reorganised as "fluorescence" series following Section 4.3.

In the conventional way of describing molecules, each isotopomer needs an individual set of molecular constants. The combined-isotopomer fitting uses one set of parameters to describe all of the isotopomers, which greatly reduces the number of parameters required.

In order to simplify the representation of these data sets and to search for physically interesting information about Born-Oppenheimer breakdown effects, all of the line positions of the transitions of the old electronic spectra (detected using techniques of spectrograph and electric arc) and Fourier transform spectra of the three isotopomers (BeH, BeD, and BeT) were fit simultaneously to a combined-isotopomer Dunham-type expression for the energy levels. Following Section 1.3.1.3, observed transitions for isotopomer– α of species BeH formed from atoms of mass M_{Be} and M_H^{α} (i.e., hydrogen, deuterium, or tritium) were expressed as differences between energy levels written as

$$E^{\alpha}(v,J) = \sum_{(l,m)\neq(0,0)} Y_{l,m}^{1} \left(\frac{\mu_{1}}{\mu_{\alpha}}\right)^{m+l/2} (v+1/2)^{l} [J(J+1)]^{m}$$
(4.4)
+
$$\sum_{(l,m)\geq(0,0)} \left\{ \frac{\Delta M_{H}^{\alpha}}{M_{H}^{\alpha}} \, \delta_{l,m}^{H} \right\}$$

×
$$\left(\frac{\mu_{1}}{\mu_{\alpha}}\right)^{m+l/2} (v+1/2)^{l} [J(J+1)]^{m}$$

in which

$$\Delta M_H^\alpha = M_H^\alpha - M_H^1.$$

The condition $\alpha = 1$ for M_H^{α} , i.e., M_H^1 identifies the selected reference species, the most abundant isotopomer, BeH. The conventional Dunham constants for other ($\alpha \neq 1$) isotopomers are then generated from

$$Y_{l,m}^{\alpha} = \left\{ Y_{l,m}^{1} + \frac{\Delta M_{H}^{\alpha}}{M_{H}^{\alpha}} \,\delta_{l,m}^{H} \right\} \left(\frac{\mu_{1}}{\mu_{\alpha}}\right)^{m+l/2} \tag{4.5}$$

The transition bands of spectroscopic data used in the analysis are summarized in Tables 4.1 to 4.5. A total of 5,012 spectroscopic data (transitions) were fit to Eqn. (4.4) using the program "DSParFit" [26, 27, 29] with a final dimensionless standard error $\overline{\sigma}_f = 1.209$. The program DSParFit simplifies the resulting parameters by applying a sequential rounding and refitting procedure [30]. This yields the molecular constants given in the first column of Table 4.7. The numbers in parentheses are the 95% confidence limit uncertainties in the last significant digits shown.

A search for significant Born-Oppenheimer breakdown effects showed that their inclusion could reduce the dimensionless standard error $\overline{\sigma}_f$ drastically. In other words, the data can not be fit to the equation without inclusion of the Born-Oppenheimer breakdown correction terms for the hydrogen atom. The δ_{lm} constants for the hydrogen atom are also included in Table 4.7.

For the user's convenience, the constants for the minority isotopomers, rounded at the first digit of the parameter sensitivity, are shown in the last two columns of Table 4.7. The results in the last row of this table show that the rounded constants generated from the BeH parameters determined from the combined-isotopomer analysis reproduce the input data for the individual minority isotopomers with no significant loss of precision.

The total root mean square residual (RMSR) values of the isotopomers in Table 4.7 are calculated using Eqn. (4.6).

$$RMSR = \left\{ \frac{1}{\sum n_i} \sum n_i (RMSR)_i \right\}^{1/2}$$
(4.6)

where n_i is the number of data in "fluorescence series" i; $(RMSR)_i$ is the root mean square residual of each of the data in fluorescence series i. The summation is performed with respect to the total number of fluorescence series.

4.4.3 Molecular Constants of BeH Isotopomers

The global fitting of 5,012 electronic transition data gives a dimensionless standard error $\overline{\sigma}_f = 1.209$. The parameters are listed in Table 4.7. The twenty-nine $Y_{l,m}$ s for the major isotopomer BeH and nine Born-Oppenheimer breakdown correction terms, the $\delta_{l,m}$ are the result of the global fitting. The $Y_{l,m}$ for the minor isotopomers BeD and BeT have been calculated from the $Y_{l,m}$ of the major isotopomer BeH, together with the $\delta_{l,m}$. The *RMSR* values in Table 4.7 are the root-meam-square residuals for each individual isotopomer obtained from the global fitting of all the isotopomers.

Following Eqn. (4.6), the output data of the "channel-6" output (the summary of the statistics of each "fluorescence series") of the DSParFit [27, 28] program have been processed using MS-Excel. The RMSR values have been calculated for each of the individual isotopomers, and the steps and intermediate results are listed in Table 4.6.

The energy origins of the fluorescence series, as organized from the electronic transitions of the isotopomers, are listed in Appendix C, and can be used in deperturbation analysis of the excited electronic states.

	BeH	BeD	BeT	Total
Σn_i	2317	2276	419	5012
$\Sigma n_i (RMSR_i)^2$	2611.186	1738.431	272.994	4622.611
$(RMSR)^2 = \Sigma n_i (RMSR)^2 / \Sigma n_i$	1.127	0.7638	0.6515	0.9223
RMSR	1.062	0.874	0.807	0.9604

Table 4.6: The RMSR Values for BeH, BeD and BeT

	All-Isotopomer Fit	Generated from B	eH Constants and Eqn. (4.5)
Constant	BeH	BeD	BeT
$Y_{1,0}$	2059.5861(2800)	1528.8165533	1305.0006677
$Y_{2.0}^{-,\circ}$	-34.5362(2900)	-19.0449475	-13.8805992
$Y_{3,0}^{-,\circ}$	-1.87725(14000)	-0.76508271	-0.47529306
$Y_{4,0}$	0.55554(3600)	0.1684399359	0.089387386
$10^3 Y_{5,0}$	-96.9750(49)	-21.81835253	-9.8823656
$10^3 Y_{6,0}$	7.831(330)	1.307410064	0.505427163
$10^3 Y_{7,0}$	-0.269(9)	-0.0333257025	-0.0109959779
$Y_{0,1}$	10.321514(590)	5.68920292	4.14585733
$Y_{1,1}$	-0.312125(1100)	-0.127739739	-0.0794661381
$10^3 Y_{2,1}$	-0.9696(8700)	-0.2745932	-0.142297
$10^3 Y_{3,1}$	2.2126(3400)	0.49781167	0.225477929
$10^6 Y_{4,1}$	-976.7(650)	-163.063135	-63.0380168
$10^6 Y_{5,1}$	130.16(590)	16.1251801	5.32058174
$10^6 Y_{6,1}$	-6.39(20)	-0.58743568	-0.165433197
$10^3 Y_{0,2}$	-1.039769(1500)	-0.316233905	-0.167990658
$10^6 Y_{1,2}$	36.087(2000)	8.149545	3.695814
$10^6 Y_{2,2}$	-14.108(840)	-2.3553749	-0.9105563
$10^6 Y_{3,2}$	1.36(20)	0.16848682	0.055593048
$10^9 Y_{4,2}$	200.5(270)	18.432059	5.1908225
$10^9 Y_{5,2}^{-,-}$	$-32.6(14)^{-1}$	-2.2238705	-0.53453929
$10^9 Y_{0,3}$	107.883(1700)	18.114837	7.0162564
$10^9 Y_{1,3}$	-22.94(220)	-2.8419763	-0.93772392
$10^9 Y_{2,3}$	10.233(540)	0.94072447	0.26492612
$10^9 Y_{3,3}$	-1.364(34)	-0.09304783	-0.022365386
10^{12} Y _{0.4}	-13.58(91)	-1.24841574	-0.35157791
10^{12} $Y_{1,4}^{0,1}$	5.27(110)	0.359503	0.08641172
10^{12} $Y_{2,4}^{1,1}$	-1.81(15)	-0.09162266	-0.018796666
10^{15} Y _{0.5}	0.80(17)	0.0404962	0.008307919
$10^{15} Y_{1,5}$	-0.63(18)	-0.0236645	-0.00414365
δμιο	1 3575(1300)		
$\delta_{H,1,0}$	-0.102(37)		
$10^3 \delta_{H,2,0}$	9.6(24)		
$10^{3} \delta_{H,3,0}$	21.0(24)		
$10^{3} \delta_{H,0,1}$	-1.008(280)		
$10^{3} \delta_{H,1,1}$	0.128(31)		
$10^{6} \delta_{H,2,1}$	-6.44(100)		
$10^{6} \delta_{H,0,2}$	0.97(99)		
$10^9 \delta_{H,0,3}$	1.24(47)		
	5010	0076	410
# of Parameters	$\frac{3012}{20 \pm 0}$	2270 0	419
# of Term Value	, 43 + 3 , 765	0 819	0 937
π of renavative $RMSR$	1.062	0.874	0.807

Table 4.7: Dunham constants and Born-Oppenheimer breakdown correction terms from a total of 5,012 Data: $\overline{\sigma}_f = 1.209 \ (95\% \text{ confidence limit uncertainties})$ for $X^2\Sigma^+$ state of BeH and parameter values calculated for BeD and BeT

4.5 Discussions and Conclusions

4.5.1 "Fluorescence Series" Method of Data Treatment

A high resolution spectroscopic investigation of a molecule leads to an improved quality of spectroscopic data, and hence improved electronic, vibrational and rotational constants for the electronic states involved. However, the perturbations between the $A^2\Pi$ and $C^2\Sigma^+$ electronic states of the BeH molecule prevent one from arriving at an accurate result using conventional methods of data analysis. The pseudo "fluorescence series" method of data treatment completely eliminates the harmful influence of perturbations in the upper states $A^2\Pi$ and $C^2\Sigma^+$ on the molecular constants of the $X^2\Sigma^+$ ground electronic state of the BeH molecule.

4.5.2 Combined-Isotopomer Fitting

The combined-isotopomer analysis takes into account the data of all isotopomers simultaneously. Not only is the number of resulting parameters much smaller, i.e., instead of a set of parameters for each isotopomer, all the isotopomers can be represented with the parameters of the major isotopomer and the Born-Oppenheimer breakdown correction terms, but also the Born-Oppenheimer breakdown effect can be investigated simultaneously.

Generally speaking, the major isotopomer has the largest data set and covers a larger range of rotational and vibrational levels, and the minor isotopomers have smaller data sets. In the case of the minor isotopomers BeD and BeT, the data are either not completely connected or not connected at all with respect to rotational and vibrational levels. Using the combined-isotopomer analysis program DSParFit [27], only a completely connected data set for the major isotopomer is required. The parameters for the minor isotopomers can be generated using Eqn. (4.5), as long as data set of a modest size is available for each of the minor isotopomers for the derivation of the Born-Oppenheimer breakdown correction terms.

4.5.3 Empirical Rules for Molecular Constant Optimization

The data set for each isotopomer should individually fit properly before the combined isotopomer fitting is carried out. For the major isotopomer BeH, because the data set is connected in terms of both the vibrational levels and the rotational levels, both the band-constant fitting and the more restrictive Dunham-constant fitting can be performed. For the unconnected data sets of the minor isotopomers BeD and BeT, an individual Dunham fitting is not possible. In such cases, band-constant fitting for the isolated bands should be done before the combined isotopomer global fitting. The individual isotopomer fitting is an effective way to find measurements or assignments errors in the spectroscopic data at an early stage.

4.5.3.1 Data fitting and troubleshooting

To find errors in the process of data fitting, it is a good practice to start with a small group of data with some common properties and to increase the size of the data set gradually. For example, start with a group of data for low vibrational levels, and add in data for higher vibrational levels gradually; or alternatively, start with a group of data with low J values and bring in more data by increasing the maximum J gradually. The DSParFit program [27] has a convenient way of specifying such data groups by controlling the maximum v and maximum J values. Using the method of gradually increasing the data set as described above, not only measurement, assignment, or other errors in the data set can be found, but bugs in the computer program (if any) can also be located.

For a data-fitting result, if the residuals of a few isolated data are large, then remove (deweight) these data; if the residuals of a series of data show a systematic trend or a pattern, e.g., the residuals increase or decrease with J systematically, then the number of parameters used for the fitting needs to be adjusted, such as by adding or deleting a higher-order centrifugal constant.

The fitting of the BeH isotopomer started with the $A^2\Pi - X^2\Sigma^+$ data set. After making sure that there was no problems with the $A^2\Pi - X^2\Sigma^+$ data set, the $C^2\Sigma^+ - X^2\Sigma^+$ data set was added in.

4.5.3.2 Data fitting steps

A good way of spectroscopic data fitting is to start with the band constants E, B, D, H, ..., because the band constants are restricted to only individual vibrational levels of the upper and lower electronic states involved. The number of resulting band constants is often larger than that of the corresponding Dunham constants, so a band-constant fit is more relaxed than that of the Dunham-constant fit. A data set that has a good band-constant fit may not have a good Dunham-constant fit; a data set with a good Dunham-constant fit most often has a good band-constant fit.

After obtaining a successful band-constant fit, Dunham-constant fitting can be carried out for the particular isotopomer. The data set needs to be connected properly with respect to both the v and the J quantum numbers to make the Dunham-constant fit successful.

The last step is to carry out the global combined-isotopomer fitting. The global fitting starts with the optimization of the Dunham constants of the major isotopomer (the one with the highest equivalent vibrational quantum number and completely connected data set, and usually with the largest data set), e.g., the BeH isotopomer in this Chapter. Then, the second largest data set is included in the fitting, in this case, the data of the BeD isotopomer. When the two isotopomers are made to fit together, in principle, the Y_{lm} need to be fixed and only the δ_{lm} s are varied to get the best fit. Then the next largest isotopomer is brought in, e.g., the BeT isotopomer here. The δ_{lm} may need to be adjusted slightly, but the Y_{lm} s should be kept more or less the same (they may not be exactly the same in the end, because of the overall optimization process for the parameters).

In this Chapter, the "fluorescence series" converted from the 0-0, 1-1, and 2-2 bands of the BeT isotopomer were fit to band constants for the ground electronic state before the data set was combined with those of the BeH and BeD isotopomers for the global fitting. Because the three BeT bands are not connected with respect to the vibrational levels, a single isotopomer Dunham-constant fit cannot be performed.

4.5.3.3 Criteria for optimizing molecular constants

In a diatomic molecule, both the vibrational and rotational energy levels of an electronic state have regular patterns. Therefore, a set of physically meaningful molecular constants used to describe the rovibrational levels should follow the "rule of patterns". The corresponding values for the band constants G_v , B_v , D_v , and H_v etc., of the vibrational levels of the ground electronic state, should have a similar pattern of plus or minus signs. The vibrational term values G_v and rotational constants B_v represent, respectively, the vibrational term values of the energy levels, and the equivalent bond lengths of the vibrational levels. The pattern of the values of G_v , from G_0 to G_1 , to $G_2 \cdots, G_n$, etc., the absolute values should increase gradually, but the differences between G_{n+1} and G_n should decrease monotonically. The absolute values for the rotational constants B_v and the centrifugal distortion constants, D_v , for the ground electronic state should also change smoothly. Higher order constants, e.g., H or L, may not follow the pattern but the lower level ones definitely should follow a regular pattern to be physically meaningful.

This "rule of patterns" also applies to Dunham constants because they have their equivalent counterparts in the band constants. The physical meanings of the Dunham constants are not as straightforward as those of the band constants. Sometimes it is necessary to map them to their corresponding band constants. For example, for m =0, Y_{lm} represent the vibrational term values; for a given value of l, Y_{lm} represent the rotational levels of the vibrational level, etc.

The optimizing criteria are generally: 1) the uncertainty of a parameter should not be larger than the parameter itself, otherwise the highest order constant should be removed; if the uncertainty of the highest order constant is larger than the highest order constant itself, remove the highest order constant; 2) generally, a higher order constant should be smaller than the lower order ones, e.g., $D_v > H_v > L_v$. 3) the vibrational term values G_v for an electronic state should change monotonically with the increase of the vibrational quantum number v. 4) the rotational constants B_v , which are related to the bond length of the molecule, should change monotonically with the vibrational energy levels in an electronic state. 5) according to definition, the rotational constants B_v have positive values, and the centrifugal constants D_v have a negative sign.

Whether a set of molecular parameters is optimal or not depends on the ability of the set of parameters to reproduce the experimental data. The qualitative criterion is whether the set of parameters is physically meaningful, and the quantitative criterion is the dimensionless standard error (DSE) as described in Section 1.3.2.2. The DSE is based on the reduced *chi*-squared test formula, which is an effective statistical tool in comparing two sets of data, and in this case, the predicated values made using the set of molecular parameters, and the experimental data. A DSE value of $\overline{\sigma}_f \sim 1$ indicates that the molecular parameters reproduce the experimental data very well. For two set of molecular parameters, if one gives $\overline{\sigma} = 1.001$, and the other one gives $\overline{\sigma} = 1.003$, the two set of parameters should be considered statistically equivalent, and both sets of parameters can be considered as the best sets, as long as the parameters are also physically meaningful, such as following the "rule of patterns". Although the set of molecular parameters are not unique in the sense of statistics, all the best sets of molecular parameters for the same vibrational or electronic state of the same molecule should be physically or statistically equivalent. Because the molecular parameters, especially the lower order ones, have clear physical meanings. For example, the vibrational terms values represent the vibrational frequencies; the rotational constants represent the bond lengths, etc.

4.5.3.4 Uncertainty and higher order vs. lower order constants

For a lower order constant, e.g., G_v , B_v , or D_v , the uncertainty needs to be much smaller than the constant itself; for the highest order molecular constant, the uncertainty needs to be smaller than the constant itself, and at the same time needs to be close in absolute value to the constant itself, but not too small. If the uncertainty of the highest order parameter is too small (e.g., one or two orders of magnitude smaller) compared with the parameter, then another higher order parameter may be necessary in the fitting.

Generally, a higher order molecular constant should be smaller than a lower order molecular constant, e.g., in the band constants, G_v , B_v , D_v , H_v , etc., H_v should be smaller than D_v .

Bibliography

- C. Henriet and G. Verhaegen. Accurate calculation of the excited states of the molecule BeH. *Physica Scripta*, 33:299–309, 1985.
- [2] F. B. C. Machado, O. Roberto-Neto, and F. R. Ornellas. On the assignment of transitions involving some ²Π Rydberg states of the BeH molecule. *Chemical Physics Letters*, 284:293–299, 1998.
- [3] F. B. C. Machado, O. Roberto-Neto, and F. R. Ornellas. Radiative transition probabilities and lifetimes for the band systems A²Π-X²Σ⁺ and C²Σ⁺-X²Σ⁺ of the BeH molecule. *Chemical Physics Letters*, 305:156–162, 1999.
- [4] J. Guan, M. E. Casida, and D. R. Salahub. Time-dependent density-functional theory investigation of excitation spectra of open-shell molecules. *Journal of Molecular Structure*, 527:229–244, 2000.
- [5] H. Meisner and J. Paldus. Direct iterative solution of the generalized Bloch equation. II. A general formalism for many-electron systems. III Application of H₂ cluster models. IV. Application to H₂, LiH, BeH, and CH₂. *Journal of Chemical Physics*, 113:2594–2611, 2612–2621, 2622–2637, 2000.
- [6] P. G. Szalay and J. Gauss. Spin-restricted open-shell coupled-cluster theory for excited states. *Journal of Chemical Physics*, 112:4027–4036, 2000.
- [7] I. D. Petsalakis, D. Papadopoulos, G. Theodorakopoulos, and R. J. Buenker. Theoretical calculations on the linewidths of rovibrational levels of the 3d Rydberg states of BeH and BeD. *Journal of Physics B: Atomic, Molecular and Optical Physics*, 32:3225–3237, 2000.
- [8] M. C. Bacchus-Montabonel. A theoretical treatment of the LiH and BeH formation through radiative association. *Journal of Molecular Structure: THEOCHEM*, 463:91–97, 1999.

- [9] P. L. Fast, M. L. Sanchez, J. C. Corchado, and D. G. Truhlar. The Gaussian-2 method with proper dissociation, improved accuracy, and less cost. *Journal of Chemical Physics*, 110:11679–11681, 1999.
- [10] S. Hirata and M. Head-Gordon. Time-dependent density functional theory for radicals: An improved description of excited states with substantial double excitation character. *Chemical Physics Letters*, 302:375–382, 1999.
- [11] T. Nakajima and H. Nakatsuji. Second-order perturbative approximation to the SAC/SAC-CI method. *Chemical Physics Letters*, 300:1–8, 1999.
- [12] T. Nakajima and H. Nakatsuji. The energy gradient method for the ground, excited, ionized, and electron attached states calculated by SAC (symmetryadapted cluster) /SAC-CI (configuration interaction) method. *Chemical Physics*, 242:177–193, 1999.
- [13] R. Colin, C. Dreze, and M. Steinhauer. Rotational analysis and deperturbation of the C²Σ⁺-X²Σ⁺ band systems of BeH and BeD. Canadian Journal of Physics, 61(4):641–655, 1983.
- [14] C. Focsa, S. Firth, P. F. Bernath, and R. Colin. Fourier transform emission spectroscopy of the A²Π-X²Σ⁺ system of BeH. Journal of Chemical Physics, 109(14):5795-5802, Oct. 1998.
- [15] C. Focsa, P. F. Bernath, R. Mitzner, and R. Colin. Fourier transform emission spectroscopy of the A²Π-X²Σ⁺ system of BeD. Journal of Molecular Spectroscopy, 192:348–358, 1998.
- [16] R. Horne and R. Colin. The $A^2\Pi X^2\Sigma^+$ band system of BeH and BeD in absorption. Bull. Soc. Chim. Belges, 81:93–107, 1972.
- [17] D. De Greef and R. Colin. The electronic isotope shift in the $A^2\Pi X^2\Sigma^+$ bands of BeH, BeD and BeT. Journal of Molecular Spectroscopy, 53:455–465, 1974.
- [18] R. Colin and D. De Greef. The absorption spectrum of the BeH and BeD molecules in the vacuum ultraviolet. *Canadian Journal of Physics*, 53(19):2142– 2169, 1975.
- [19] W. W. Watson. Beryllium hydride band spectra. Physical Review, 32:600–606, 1928.
- [20] W. W. Watson and A. E. Parker. Evidence of a Be isotope of mass 8 and fine structure measurements in the BeH bands. *Physical Review*, 32:167–175, 1931.

- [21] E. Olsson. Zeitschrift fur Physik, 73:732, 1932.
- [22] P. G. Koontz. Beryllium deuteride spectra. *Physical Review*, 48:707–713, 1935.
- [23] W. W. Watson and R. F. Humphreys. Ultraviolet spectra of BeH and BeH⁺. *Physical Review*, 52:318–322, 1937.
- [24] J. M. Hollas. *High Resolution Spectroscopy*. John Wiley & Sons, New York, 2nd edition, 1998.
- [25] P. F. Bernath. Spectra of Atoms and Molecules. Oxford University Press, New York, 1995.
- [26] R. J. Le Roy. DSParFit and DSPotFit: General purpose parameter and potential fitting programs for diatomic data analysis. In *International Symposium on Molecular Spectroscopy 56th Meeting*, Columbus, Ohio 43210 USA, Jun. 2001. The Ohio State University.
- [27] R. J. Le Roy. Computer programs distributed by Robert J. Le Roy. Technical report, University of Waterloo, 2001. http://leroy.uwaterloo.ca.
- [28] R. J. Le Roy. DSParFit 2.0: A Computer Program for Fitting Multi-Isotopomer Diatomic Molecule Spectra. Dept. of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, Apr. 2001.
- [29] R. J. Le Roy. Improved parameterisation for combined isotopomer analysis of diatomic spectra and its application to HF and DF. *Journal of Molecular Spec*troscopy, 194:189–196, 1999.
- [30] R. J. Le Roy. Uncertainty, sensitivity, convergence, and rounding in performing and reporting least-squares fits. *Journal of Molecular Spectroscopy*, 191:223–231, 1998.

Chapter 5

Accurate Molecular Constants for the Ground Electronic State of MgH

An accurate set of molecular constants for the $X^2\Sigma^+$ ground electronic state of the MgH and MgD isotopomers are derived from spectroscopic data available from new laboratory experiments of a colleague¹ and data from the literature.

The result of combined-isotopomer Dunham-type analysis provides not only a compact set of molecular constants for the isotopomers, but also Born-Oppenheimer Approximation breakdown correction terms.

In this Chapter, Section 5.1 introduces the background and method of analysis for the MgH molecule. Section 5.2 summarizes the sources of spectroscopic data used in the global analysis, including data sources from various experiments. Section 5.3 describes the details of steps taken in the spectroscopic data analysis, and Section 5.4 presents the theoretical basis for the combined-isotopomer Dunham-type global analysis. As the last part, Section 5.5 closes this Chapter by presenting the conclusions drawn about the MgH molecule and the method of analysis. The resulting energy origins from the global fitting of the "fluorescence series" as organized from the electronic transitions of the MgH isotopomers are listed in Appendix D.

¹Dr. Ram S. Ram, Dept. of Chemistry, University of Arizona, Tucson AZ 85721, USA.

5.1 Background

Because of their importance in astrophysics and their interest in chemical physics, MgH and MgD have been studied for over more than a century. The $A^2\Pi - X^2\Sigma^+$ green system was observed in solar disk and sunspot spectra long ago. A comprehensive summary of results of earlier research up to the 1970s can be found in Huber and Herzberg [1]. After the 1970s, the studies of MgH and MgD regained new momentum both experimentally and theoretically. More advanced experiments and theoretical calculations have contributed much to the understanding of the properties of MgH and MgD, and their isotopomers due to magnesium.

A unique approach discussed earlier in this thesis has been employed for the data reduction, i.e., treating the perturbed data of electronic transitions as if they were from fluorescence series. Therefore, all data available for the transitions can be used in the global analysis, whereas about 30-40% of the total amount of data would have been rejected had the conventional data fitting method been used, because of perturbations in the excited electronic states. The conventional method performs fitting of the rotationally-resolved electronic transitions to ro-vibrational energy expressions of the upper and lower electronic states as represented by either band constants or Dunham constants.

A more accurate set of molecular parameters for the ground electronic state of the MgH isotopomers can be obtained through the application of a better method of data processing in the comprehensive analysis. In addition, the combined-isotopomer global fitting of the MgH data allows investigation of Born-Oppenheimer breakdown effect in the MgH molecule, another typical molecule containing the light hydrogen atom, similar to BeH in the last Chapter.

In this Chapter, all high resolution spectroscopic data of electronic transitions of MgH and MgD have been re-arranged and treated as "fluorescence series" into the ro-vibrational levels of the ground electronic state. The resulting data set consists of a total of 4700 transitions for a total of six isotopomers of MgH and MgD.

5.2 Spectroscopic Data Sources of MgH and MgD

Numerous spectroscopic data are available for MgH and MgD and their isotopomers. The data have been collected by using different methods in many laboratories, including electronic spectroscopy (spectrograph and an electric arc source) [2, 3, 4, 5, 6, 7, 8, 9], Fourier transform spectroscopy [10, 11], infrared diode laser spectroscopy [12], far infrared [13, 14], and millimeter wave spectroscopy [15], and so forth. Data have also been collected from extraterrestrial sources, i.e., the sunspot umbral spectra [11]. In parallel with the experimental studies, some theoretical calculations have been done [16, 17, 18, 19, 20, 21, 22].

The minor isotopes of magnesium, ²⁵Mg and ²⁶Mg, each has a natural abundance about one-eighth that of ²⁴Mg, i.e., ²⁴Mg :²⁵Mg :²⁶Mg = 78.7% : 10.1% : 11.2%. The intensities of spectral lines from the minor isotopomers are hence weaker than those of the ²⁴Mg-containing isotopomers, and as a result, the minor isotopomers are expected to have smaller data sets.

The $B' {}^{2}\Sigma^{+}$ electronic state has a larger equilibrium bond length than that does the $X^{2}\Sigma^{+}$ state, as shown in Fig. 5.1 [4]. Therefore, diagonal Franck-Condon factors are small, and transitions between ro-vibrational levels in the $B' {}^{2}\Sigma^{+}$ and $X^{2}\Sigma^{+}$ electronic states happen only for small v' to larger v'' or vice versa. Because certain ro-vibrational energy levels of the $B'^{2}\Sigma^{+}$ state cross the ro-vibrational energy levels of the $A^{2}\Pi$ state, as is also shown in Fig. 5.1, numerous rotational perturbations occur between the two electronic states.

Figure 5.1: Qualitative Potential Curves for the Electronic States of MgH

The spectroscopic data of the MgH isotopomers available from various sources

are summarized in Table 5.1. The data of the $C^2\Pi - X^2\Sigma^+$ transitions in Table 5.1, i.e., the $C^2\Pi - X^2\Sigma^+$ 0-0 and 1-1 bands [3] of ²⁴MgH, and the $C^2\Pi - X^2\Sigma^+$ 0-0, 1-0 and 1-1 bands [3] of ²⁴MgD are not included in the global analysis of this Chapter, because there are only a few data from these transitions, and they are all low resolution electronic data. The spectroscopic data of the isotopomers used in the global analysis are shown in Table 5.2 at Page 130.

5.2.1 Electronic Spectroscopy

Modern investigation of the electronic transitions of the MgH molecule started in the 1970s. Between 1970 and 1980, Balfour and co-workers [2, 3, 4, 5, 6, 7, 8, 9] used an electric arc to generate the MgH and MgD species and a spectrograph to record the electronic spectra, including the $A^2\Pi - X^2\Sigma^+$ system of ^{24}MgH , ^{25}MgH , ^{26}MgH [2], the $A^2\Pi - X^2\Sigma^+$ system of MgD [5], the $B' \,^2\Sigma^+ - X^2\Sigma^+$ transition of MgH [4, 6], the $B' \,^2\Sigma^+ - X^2\Sigma^+$ system of MgD [6], and the $C^2\Pi - X^2\Sigma^+$ transitions of MgH and MgD[3].

5.2.2 Fourier Transform Spectroscopy

Fourier transform spectroscopy offers a higher resolution and accuracy for spectral measurements of gas phase molecules. The Fourier transform electronic spectra of MgH were generated using a hollow cathode lamp with a magnesium rod and hydrogen gas[10]. Both the $A^2\Pi - X^2\Sigma^+$ system and the $B' \,^2\Sigma^+ - X^2\Sigma^+$ system of MgH were reported: the $A^2\Pi - X^2\Sigma^+$ system [10] was reported in 1985, while the $B' \,^2\Sigma^+ - X^2\Sigma^+$ system was reported only recently[23].

5.2.3 Infrared Diode Laser Spectroscopy

In 1988, Lemoine *et al.* [12] reported the v = 1-0, and 2-1 transition bands of the $X^2\Sigma^+$ ground electronic state of ²⁴MgH and ²⁴MgD, detected using infrared diode laser spectroscopy. Other spectroscopic data of ²⁵MgH, ²⁶MgH, ²⁵MgD, and ²⁶MgD were also available [24]. In the experiments, the tunable infrared diode laser radiation was first passed through a mode selection monochromator and was then divided to provide (i) a beam making a single pass of the absorption and reference gas cells, and (ii) a beam for synchronous relative calibration before the detection with a HgCdTe detector. The absolute accuracy of the line positions from the infrared diode laser spectroscopy [12, 24] is typically better than ± 0.002 cm⁻¹.

5.2.4 Far Infrared and Millimetre Wave Spectroscopy

The far infrared and millimeter wave spectroscopic data are of the highest resolution in the data set of the MgH molecule used in the global analysis in this Chapter, and some of the spin component doublets, due to spin splittings of the ground electronic state, were detected in these experiments. The corresponding doublet data pairs are averaged to produce the values for the global fitting because the ground state spin splittings were not resolved in most of the lines in the full data set. When only one line is available in the pair, it is dropped. The doublet spectroscopic data due to spin splittings are processed as singlets in the analysis here, i.e., the data used in the global fittings are $P(J) = [P_1(N) + P_2(N)]/2$, and $R(J) = [R_1(N) + R_2(N)]/2$.

The defined nine digit speed of light $c = 299,792,458 \ m/s[25]$ is used to convert the spectroscopic data from the far infrared and millimetre wave spectroscopy in MHz units to cm⁻¹ in order to obtain unit consistency.

5.2.5 Data Set of the Major and Minor Isotopomers

The ²⁴MgH isotopomer is the major isotopomer of the MgH molecule. The vibrational bands of the ²⁴MgH data set are summarized in Fig. 5.2 at Page 131.

The ²⁴MgH data set includes new high resolution Fourier transform spectra of the 0-3, 0-4, 1-3, 1-4 and 1-5 bands of the $B' \, {}^{2}\Sigma^{+} - X^{2}\Sigma^{+}$ transition[23], together with spectral lines from high resolution Fourier transform spectra from a sunspot coupling the $B' \, {}^{2}\Sigma^{+}$ state levels v' = 0, 1 to the $X^{2}\Sigma^{+}$ state levels v''= 3-8, and older lower resolution $B' \, {}^{2}\Sigma^{+} - X^{2}\Sigma^{+}$ electronic bands involving the v'' = 0-9 levels of the $X^{2}\Sigma^{+}$ state, v' = 0-10 levels of the $B' \, {}^{2}\Sigma^{+}$ state, infrared data of 2-1 and 1-0 rovibrational transitions of the ground electronic state, and some millimeter wave data. The above data set yields a high accuracy description of the ground electronic state for the v'' = 0-2 and v'' = 3-9 levels. The v'' = 2-3 transition gap in the high resolution data was bridged using data from the high resolution Fourier transform data of the 1-2 and 1-3 bands of the $A^{2}\Pi - X^{2}\Sigma^{+}$ system.

The data sets of minor isotopomers have a smaller number of transitions than does that of the major isotopomer ^{24}MgH , as shown in Tables 5.1 and 5.2.

5.3 Treatment of Data of Electronic Transitions

As defined in Section 1.3, the conventional data processing approach would fit spectroscopic data to either

- a) the band constants G_v , B_v , D_v , H_v , etc., for each vibrational level of the upper and lower electronic states, or
- b) the Dunham expansion $\{Y_{lm}\}$ constants for each electronic state.

However, extensive perturbations in the excited electronic states of the MgH molecule make the fitting poor because (most of) the perturbed data cannot be used in the fit. In the case of the MgH and MgD isotopomers, the $B' {}^{2}\Sigma^{+}$ state and the $A^{2}\Pi$ state perturb each other to such an extent that even after 30-40% of the data from high resolution electronic spectroscopy have been rejected, the fit is still poor. The molecular constants derived using the conventional approach cannot be accurate, because only a small portion of the available data are used in the fitting. In order to arrive at an accurate set of molecular parameters, a different method needs to be adopted for the data processing.

As with the treatment of the BeH isotopomers described in the last Chapter, the approach adopted in this Chapter is to rearrange the data to treat rovibronic transitions from each distinct level (v', J', p') of the upper electronic state(s) as "fluorescence series" into the ro-vibrational levels of the ground electronic state. This completely decouples the determination of the ro-vibrational energy levels of the $X^2\Sigma^+$ ground electronic state from the perturbed ro-vibrational energies of the $A^2\Pi$ and $B'\,^2\Sigma^+$ excited electronic states. This approach is very similar to forming ground state combination differences using all data for electronic transitions. For rotational combination differences, the resulting data for the ground electronic state are like pseudo pure rotational data, but with the rotational quantum number change $\Delta J =$ ± 2 instead of the usual $\Delta J = \pm 1$ for pure rotational transitions. In addition, the term values ("fluorescence origins") calculated for the ro-vibrational levels of the upper electronic state can be used for a perturbation analysis.

Before the combined-isotopomer global fitting was performed, the individual isotopomers were fit separately. After the band constants were fit for each isotopomer and the quantum number assignments were checked, separate Dunham-constant fits were performed for the two major isotopomers ²⁴MgH and ²⁴MgD, i.e., both types of fits were performed on ²⁴MgH and ²⁴MgD because their data sets are large and the energy levels are all connected. For the minor isotopomers (i.e., ²⁵MgH, ²⁶MgH, ²⁵MgD and ²⁶MgD), only band-constant fits are possible for the vibrational levels, and the band-constant fittings were used to check the quantum number assignments. After separately fitting each isotopomer, the combined isotopomer fitting was performed. The Dunham constants for the isotopomer with the largest v'' (²⁴MgH, $v''_{max} = 9$) representing the lower electronic state were kept more or less fixed, and only Born-Oppenheimer breakdown correction terms were added and adjusted in the global fit to get the best fit (determined constants, meaningful pattern, and reasonable $\overline{\sigma}_f$). According to Eqn.(1.7), $E(v, J) = \sum_{l,m} \mu^{-(l+2m)/2} U_{lm}(v+1/2)^l [J(J+1)]^m$, the vibrational term values with a first-order approximation, i.e., for l = 1, and m = 0, are $E(v) = \mu^{-1/2} U_{lm}(v+1/2)$.

For the isotopomers ²⁴MgH and ²⁴MgD, which have the largest data sets, to have equivalent maximium vibrational energies, the ratio of the maximium vibrational quantum numbers should be inversely proportional to the square root of the ratio of their reduced masses. We have $v_{2max} = (v_{1max} + 1/2)(\mu_2/\mu_1)^{1/2} - 1/2 \doteq (9 + 1/2)(2)^{1/2} - 1/2 \doteq 13$. Therefore, the ²⁴MgD ($v''_{max} = 13$) isotopomer has an equivalent v''_{max} to that of ²⁴MgH as far as the ratio of their reduced masses is concerned. The ²⁴MgH isotopomer is used as the reference isotopomer in the combined isotopomer global fitting because it has a larger data set. The spectral data of ²⁴MgH transitions used in the global fits are indicated in Fig. 5.2.

5.4 Combined Isotopomer Dunham-Type Analysis

In the conventional way of describing molecules, each isotopomer needs a separate set of molecular constants. The combined-isotopomer fitting uses one set of parameters to describe all the isotopomers, which greatly reduces the number of parameters required.

As described in Section 1.3.2.2, the observed transition energies were weighted by the inverse squares of their uncertainties, and the quality of fit is indicated by the value of dimensionless standard error

$$\overline{\sigma}_{f} = \left\{ \frac{1}{N-M} \sum_{i=1}^{N} \left[\frac{y_{calc}(i) - y_{obs}(i)}{u(i)} \right]^{2} \right\}^{1/2},$$
(5.1)

in which each of the N experimental data $y_{obs}(i)$ has an uncertainty of u(i), and $y_{calc}(i)$ is the value of datum-*i* predicted by the *M*-parameter model being fitted. All parameter uncertainties quoted here are 95% confidence limit uncertainties.

In order to simplify the representation of these data sets and to search for physically interesting information about Born-Oppenheimer breakdown effects, all of the lines for the transitions of the old electronic spectra (generated using electric arc and recorded using a spectrograph) [2, 3, 4, 5, 6, 7, 8, 9], Fourier transform spectra² [10, 11], new sunspot spectra,³ infrared diode laser [12], far infrared [13, 14], and millimeter wave spectra [15] for the six isotopomers of ²⁴MgH, ²⁴MgD, ²⁵MgH, ²⁵MgD, ²⁶MgH, ²⁶MgD were simultaneously fit to a combined-isotopomer Dunham-type expression for the energy levels. Following Section 1.3.1.3, the observed transitions for isotopomer– α of the MgH species formed from atoms of mass M_{Mg}^{α} (i.e., masses of ²⁴Mg, ²⁵Mg, or ²⁶Mg) and M_{H}^{α} (i.e., masses of H or D) were expressed as differences between energy levels written as

$$E^{\alpha}(v,J) = \sum_{(l,m)\neq(0,0)} Y_{l,m}^{1} \left(\frac{\mu_{1}}{\mu_{\alpha}}\right)^{m+l/2} (v+1/2)^{l} [J(J+1)]^{m}$$
(5.2)
+
$$\sum_{(l,m)\geq(0,0)} \left\{ \frac{\Delta M_{Mg}^{\alpha}}{M_{Mg}^{\alpha}} \,\delta_{l,m}^{Mg} + \frac{\Delta M_{H}^{\alpha}}{M_{H}^{\alpha}} \,\delta_{l,m}^{H} \right\}$$

×
$$\left(\frac{\mu_{1}}{\mu_{\alpha}}\right)^{m+l/2} (v+1/2)^{l} [J(J+1)]^{m},$$

²McMath-Pierce One-Meter Fourier transform spectrometer of the National Solar Observatory, at Kitt Peak, Arizona, USA. http://nsokp.nso.edu/mp/fts/

³Detected using the same Fourier transform spectrometer at Kitt Peak.

with

$$\Delta M^{\alpha}_{Mq,H} = M^{\alpha}_{Mq,H} - M^{1}_{24Mq,H}$$

and

$$\Delta M^{\alpha}_{Mg,D} = M^{\alpha}_{Mg,D} - M^{1}_{24Mg,H}$$

The condition $\alpha = 1$ for $M_{Mg,H}^{\alpha}$ identifies a selected reference species, in this case, the most abundant isotopomer, ²⁴MgH. The conventional Dunham constants for other ($\alpha \neq 1$) isotopomers are then generated as

$$Y_{l,m}^{\alpha} = \left\{ Y_{l,m}^{1} + \frac{\Delta M_{Mg}^{\alpha}}{M_{Mg}^{\alpha}} \,\delta_{l,m}^{Mg} + \frac{\Delta M_{H}^{\alpha}}{M_{H}^{\alpha}} \,\delta_{l,m}^{H} \right\} \left(\frac{\mu_{1}}{\mu_{\alpha}}\right)^{m+l/2}.$$
 (5.3)

The data set used in the global fitting includes FTS, infrared, millimeter wave and old electronic data, as shown in Table 5.3. A total of 4,700 data were fit to Eqn. (5.2) using program "DSParFit" [26, 27, 28] with a final $\overline{\sigma}_f = 1.205$. The program simplifies the resulting parameters by applying the sequential rounding and refitting procedure [29]. This yields the molecular constants given in the first column of Table 5.4. The numbers in parentheses are the 95% confidence limit uncertainties in the last significant digits shown.

A search for significant Born-Oppenheimer breakdown effects showed that their inclusion could reduce the dimensionless standard error $\overline{\sigma}_f$ drastically. The δ_{lm} for the hydrogen atom is also included in Table 5.4. No statistically significant Born-Oppenheimer breakdown constants δ_{lm} for the magnesium atom could be determined.

For the user's convenience, those constants for the minority isotopomers, rounded at the first digit of the parameter sensitivity[29], are shown in the last two columns of Tables 5.4 and 5.5. The results in the last row of this table show that the rounded constants generated from the ²⁴MgH parameters determined from the combinedisotopomer analysis reproduce the input data for the individual minority isotopomers with no significant loss of precision.

The root mean square residual (RMSR) values of the isotopomers are calculated using Eqn.(5.4).

$$RMSR = \left\{\frac{1}{\sum n_i} \sum n_i (RMSR)_i\right\}^{1/2}$$
(5.4)

where n_i is the number of data in "fluorescence series" organized from electronic transitions or ro-vibrational transitions detected using infrared or millimeter wave

spectroscopy, and the index of the data group i; $(RMSR)_i$ is the root mean square residual of each of the data in the "fluorescence series" or transitions (infrared, millimeter wave) i. The summation is performed with respect to the total number of "fluorescence series" and the infrared and millimeter wave transitions.

5.5 Discussions and Conclusions

5.5.1 "Fluorescence Series" Method and Combined-Isotopomer Fitting

A fit of the data set for all six isotopomers of the MgH molecule to the empirical Dunham-type expansions, which include hydrogenic Born-Oppenheimer breakdown correction terms, requires 38 Dunham expansion parameters and 6 Born-Oppenheimer breakdown correction terms, plus the 713 "fluorescence series" origins. The combined-isotopomer fitting greatly reduces the number of parameters required to describe the MgH molecule. The parameter fit computer program used for the analyses is DSParFit[26, 27, 28].

The "fluorescence series" method of treatment of perturbed electronic spectroscopic data is very effective in decoupling the treatment of the ground electronic state from the perturbations in the excited electronic states. All the data of the electronic transitions with perturbations can be used in the global fitting. Therefore, the parameters obtained for the ground electronic state are more accurate than those derived using conventional methods. The perturbation analysis of the excited electronic states can then be carried out using the "fluorescence origins" calculated from the global fitting.

For molecules that contain a light atom like the hydrogen isotopes in the MgH molecule, the Born-Oppenheimer breakdown correction terms for the light atom are so important that they cannot be ignored, and only by including the δ_{lm} in the global analysis can a successful fit be obtained. The Born-Oppenheimer breakdown correction terms for the heavier magnesium atom cannot be determined.

5.5.2 Comparison of the Results of BeH, MgH, and GeO: Born-Oppenheimer Approximation Breakdown Correction Terms

As shown in Table 5.6, it is obvious that the Born-Oppenheimer breakdown correction terms due to the hydrogen isotopes in the MgH molecule and the BeH molecule are comparable in magnitude. The corresponding terms have the same pattern of signs, so the net effect of changes of the potential functions and high order semiclassical corrections with respect to the vibrational and rotational quantum numbers have similar trends. However, the absolute values of corresponding correction terms for the hydrogen isotopes in the BeH molecule are always larger than those in the MgH molecule. This may be resulted from the increased importance of high order semiclassical corrections with decreased reduced masses.

Both beryllium and magnesium belong to Group IIa in the periodic table, and both BeH and MgH have $X^2\Sigma^+$ ground electronic states. The bonding in the BeH and MgH molecules should be similar, so the potential curves should also be similar.

The starting point in the theory of the Born-Oppenheimer separation is the "clamped nuclei" approximation, based on the fact that the masses of the nuclei and electrons in a diatomic molecule are very different. The size of Born-Oppenheimer breakdown correction terms depend on the masses of the atoms. The correction terms due to the magnesium isotopes cannot be determined because the magnesium isotopes are relatively heavy, so the Born-Oppenheimer approximation is more accurate for such an atom. The lighter beryllium atom has only one stable isotope, so the correction terms associated with beryllium cannot be derived.

In addition, it should be pointed out that there are two contributing factors in the Born-Oppenheimer approximation breakdown correction terms derived through the combined-isotopomer Dunham model as given in Eqn. (1.10). One is the real Born-Oppenheimer breakdown correction part, and the other is the breakdown of the semiclassical JWKB quantization condition used to derive the Dunham formula. Both parts are related to the masses of the component atoms of the diatomic molecule. The DSParFit software cannot determine the two parts separately. However, from the results of the global combined-isotopomer Dunham-type analysis, it can be concluded that the effect due to the overall importance of these terms increases as the masses of the component atoms decrease: light atoms such as the hydrogen isotopes have larger correction terms, while heavy atoms such as the magnesium isotopes and the germanium isotopes have terms which are at best determinable.

Technique	Transition Bands	Accuracy
		$({\rm cm}^{-1})$
Electronic	^{24}MgH	
Spectroscopy	$A^{2}\Pi - X^{2}\Sigma^{+}, 0 - 0[2, 3, 7], 0 - 1 [2, 7]$	0.05
	0-2, 1-0, 1-1, 1-2, 1-3, 2-1, 2-2, 2-3, 2-4, 3-2,	
	3-5 [7]	
	$B'^{2}\Sigma^{+} - X^{2}\Sigma^{+}$, 37 bands (v'=0-10,	
	v''=4-6)[6]	
	13 new bands $(v''=5-9)$ [8]	
	$C^2\Pi - X^2\Sigma^+, 0.0, 1.1 [3]$	
	24 MgD	
	$A^2\Pi - X^2\Sigma^+$, 0-0[3], 15 bands [5]	
	$B'^{2}\Sigma^{+} - X^{2}\Sigma^{+}$, 16 bands $(v'=0-2,4-6)[6]$	
	18 new bands $(v''=7-13)$ [8]	
	$C^{2}\Pi - X^{2}\Sigma^{+}, 0.0, 1.0, 1.1 [3]$	
	25 MgH	
	$A^2\Pi - X^2\Sigma^+, 0.0, 0.1 [2]$	
	26 MgH	
	$A^2\Pi - X^2\Sigma^+, 0.0, 0.1$ [2]	
Fourier	24 MgH	
Transform	$A^2\Pi - X^2\Sigma^+, 0-0, 0-1 [10]$	0.001
Spectroscopy	$B'^{2}\Sigma^{+} - X^{2}\Sigma^{+}, 0-3, 0-4, 1-3, 1-4, 1-5$ [23]	0.002
Sunspot Umbra	24 MgH	
	$B'^{2}\Sigma^{+} - X^{2}\Sigma^{+}, 0-3, 0-4, 0-5, 0-6, 0-7, 1-3,$	0.002
	1-4, 1-7, 1-8 [11]	
IR Diode Laser	24 MgH, 24 MgD $X^{2}\Sigma^{+}$, v =1-0, 2-1 [12]	± 0.002
	25 MgH v =1-0, 2-1[24]	
	25 MgD $v=2-1$ [24]	
	26 MgH 26 MgD v =1-0 [24]	
Far Infrared	${}^{24}\mathbf{MgH} \ X^{2}\Sigma^{+} \ \Delta F = \Delta J = 0, \ \Delta F = \Delta J = 1$	1 MHz
	N = 3-2, 2-1, 1-0 [13, 14]	
Millimeter	24 MgH, 24 MgD, 26 MgH $X^{2}\Sigma^{+}$ $v=0,1$ [15]	$\pm 50 \text{ kHz}$
Wave		

Table 5.1: Available Spectroscopic Data for MgH and MgD

Technique	Transition Bands	Accuracy
		(cm^{-1})
Electronic	24 MgH	
Spectroscopy	$A^{2}\Pi - X^{2}\Sigma^{+}, 0 - 0[2, 3, 7], 0 - 1[2, 7]$	0.05
1 10	0-2, 1-0, 1-1, 1-2, 1-3, 2-1, 2-2, 2-3, 2-4, 3-2,	
	3-5 [7]	
	$B'^{2}\Sigma^{+} - X^{2}\Sigma^{+}$, 37 bands (v'=0-10,	
	v''=4-6)[6]	
	13 new bands $(v''=5-9)$ [8]	
	24 MgD	
	$A^2\Pi - X^2\Sigma^+$, 0-0[3], 15 bands [5]	
	$B'^{2}\Sigma^{+} - X^{2}\Sigma^{+}$, 16 bands $(v'=0-2,4-6)[6]$	
	18 new bands $(v''=7-13)$ [8]	
	$^{25}\mathrm{MgH}$	
	$A^2\Pi - X^2\Sigma^+, 0.0, 0.1$ [2]	
	26 MgH	
	$A^2\Pi - X^2\Sigma^+, 0.0, 0.1$ [2]	
Fourier	24 MgH	
Transform	$A^2\Pi - X^2\Sigma^+, 0.0, 0.1 [10]$	0.001
Spectroscopy	$B'^{2}\Sigma^{+} - X^{2}\Sigma^{+}, 0-3, 0-4, 1-3, 1-4, 1-5$ [23]	0.002
Sunspot Umbra	24 MgH	
	$B'^{2}\Sigma^{+} - X^{2}\Sigma^{+}, 0-3, 0-4, 0-5, 0-6, 0-7, 1-3,$	0.002
	1-4, 1-7, 1-8 [11]	
IR Diode Laser	24 MgH, 24 MgD $X^{2}\Sigma^{+}$, v =1-0, 2-1 [12]	± 0.002
	25 MgH v=1-0, 2-1[24]	
	25 MgD $v=2-1$ [24]	
	26 MgH, 26 MgD v =1-0 [24]	
Far Infrared	²⁴ MgH $X^2\Sigma^+ \Delta F = \Delta J = 0, \ \Delta F = \Delta J = 1$	1 MHz
	N = 3-2, 2-1, 1-0 [13, 14]	
Millimeter	24 MgH, 24 MgD, 26 MgH $X^{2}\Sigma^{+}$ $v=0,1$ [15]	$\pm 50 \text{ kHz}$
Wave		

Table 5.2: MgH and MgD Data Used in Global Fitting

Figure 5.2: Data of ²⁴MgH Transitions Used in the Global Fitting

Isot.	No. of Series	No. of Fluo.Trans.	No. of MW Trans.	No. of IR Trans.
^{24}MgH	265	1963	7	67
^{25}MgH	58	274	0	7
^{26}MgH	58	354	5	1
^{24}MgD	207	1388	7	42
^{25}MgD	63	289	0	2
^{26}MgD	62	289	0	5
Total	713	4557	19	124

Table 5.3: The Global Fitting Data Set

Migi	i and those carear	accu for Might and		
		All-Isotopomer Fit	Generated from ²	⁴⁴ MgH Const. and Eqn. (5.3)
	Constant	^{24}MgH	^{25}MgH	^{26}MgH
	$Y_{1,0}$	1492.7427(410)	1491.5366904	1490.4270313
	$Y_{2,0}^{-,\circ}$	-29.78286(5000)	-29.7347554	-29.69052829
	$Y_{3,0}^{2,0}$	-0.3682(280)	-0.3673083	-0.36648911
103	$V_{1,0}$	18(8)	17.041001	17 888567
10	14,0 V	10.(0)	17.941901	11.000007
10^{-3}	$Y_{5,0}$	-14.4653(13000)	-14.4069607	-14.3534486
10^{3}	$Y_{6.0}$	1.514(110)	1.50667571	1.49996267
10^{6}	$Y_{7,0}$	-98.26(340)	-97.705645	-97.197948
	V	5 826488(160)	5 817077186	5 80842404
	$V_{V}^{I_{0,1}}$	0.170207(000)	0.017077160	0.170071500
102	$Y_{1,1}$	-0.179807(600)	-0.179371540	-0.178971502
10^{3}	$Y_{2,1}$	-0.7(8)	-0.6977406	-0.6956665
10^{3}	$Y_{3,1}$	1.66(49)	1.65330513	1.64716422
10^{3}	$Y_{4 1}$	-1.72633(18000)	-1.717978514	-1.710324013
10^{6}	$V_{r,1}^{1,1}$	558.4(370)	555 249665	552 364485
106	$V_{1,0}$	00.22166(450000)	80 6401746	80 1080447
10	¹ 6,1	-90.22100(430000)	-09.0401740	-09.1000447
100	$Y_{7,1}$	7.1075(2900)	7.05598638	7.00888173
10^{9}	$Y_{8,1}$	-225.(8)	-223.188785	-221.533875
10^{6}	$Y_{0,2}$	$-363\ 5(6)$	-362,32671	$-361\ 24968$
106	$V_{0,2}$	31.33(100)	31 203644	31 087744
106	$V_{1,2}$	31.33(130)	20.0402555	22 6040244
10°	Y _{2,2}	-33.(2)	-32.8403555	-32.0940344
10°	$Y_{3,2}$	12.4208(10000)	12.35072535	12.28654871
10^{6}	$Y_{4,2}$	-1.46(31)	-1.45059019	-1.44197907
10^{9}	Y_{52}	-160.(50)	-158.840355	-157.779962
10^{9}	$V_{c,2}^{0,2}$	44 4006(46000)	44 0431821	43 7166087
109	$V_{0,2}$	2.475(160)	9 4520021	9 49200224
10	17,2	-2.475(100)	-2.40509514	-2.43309234
10^{9}	$Y_{0,3}$	21.6(23)	21.49551	21.39973
10^{9}	$Y_{1,3}$	-32.9(24)	-32.714387	-32.544398
10^{9}	$Y_{2,3}^{-,-}$	39.58(210)	39.3249039	39.09146
10^{9}	$V_{2,2}$	-1760912(65000)	-17/481/4929	-173647892
109	V	2.089(97)	9.06204707	2 04106086
10°	14,3	2.988(87)	2.90594707	2.94190980
10^{12}	$Y_{5,3}$	-173.2(43)	-171.666963	-170.26731
10^{12}	$Y_{0.4}$	12.(6)	11.92266	11.85188
10^{12}	$V_{1,4}^{0,1}$	-94(22)	-9.331871	-9269573
10^{12}	V_{-}	3(1)	2 0758505	2 053785
1015	12,4 V	-5.(1)	-2.9700000	-2.900700
1010	Y _{3,4}	2685.6(3200)	2001.8291	2640.1264
10^{15}	$Y_{4,4}$	-321.(21)	-317.9017	-315.07517
10^{15}	$Y_{0.5}$	-13.1(45)	-12.994547	-12.898194
10^{15}	$V_{1,5}$	10.349(2400)	10 257398	10 173767
1015	V	2.90(21)	2 2678060	0.0477205
10-*	I 2,5	-2.29(31)	-2.2078909	-2.2477323
	$\delta_{H:1,0}$	0.98(1)		
10^{3}	$\delta_{H:20}$	-59.(6)		
10^{-5}	δμ.2.0	7 14(54)		
103	$\sim_{H;3,0}$ $\delta_{}$	7.40(6)		
103	0H;0,1	(.40(0))		
100	$o_{H;1,1}$	-0.01(7)		
10^{3}	$\delta_{H;2,1}$	0.097(7)		
No	of Data	2037	281	360
No.	of Parameters	38 + 6	0	0
No.	of Term Values	270	$\tilde{59}$	$\tilde{59}$
RMS	SR	1.338	0.764	1.123

Table 5.4: Dunham Constants for ²⁴MgH, ²⁵MgH and ²⁶MgH (from a total of 4,700 Data, $\overline{\sigma}_f = 1.205$, 95% confidence limit uncertainties) for $X^2\Sigma^+$ state ²⁴MgH and those calculated for ²⁵MgH and ²⁶MgH
		Generated from	n ²⁴ MgH Constants	and Eqn. (5.3)
	Constant	^{24}MgD	25MgD	^{26}MgD
	$Y_{1,0}$	1077.334903	1075.66215	1074.121933
	$Y_{2,0}$	-15.5182492	-15.470097	-15.4258261
9	$Y_{3,0}$	-0.13693854	-0.13630167	-0.13571701
10^{3}	$Y_{4,0}$	4.8771476	4.8469275	4.8192262
10^{3}	$Y_{5,0}$	-2.82777065	-2.80588566	-2.78585467
10^{3}	$Y_{6,0}$	0.213533472	0.211551887	0.209740882
10^{6}	$Y_{7,0}$	-9.998623	-9.8904555	-9.7917468
	$Y_{0.1}$	3.03479278	3.025376	3.01671826
	$Y_{1,1}^{*,-}$	-0.067641328	-0.067326742	-0.067037945
10^{3}	$Y_{2,1}$	-0.1765357	-0.1754419	-0.1744392
10^{3}	$Y_{3.1}$	0.32450757	0.3219961	0.3196974
10^{3}	$Y_{4,1}$	-0.243480342	-0.241220852	-0.239155863
10^{6}	$Y_{5.1}^{-,-}$	56.8209961	56.206293	55.6453434
10^{6}	$Y_{61}^{0,1}$	-6.62365334	-6.54182394	-6.46726167
10^{6}	$Y_{71}^{0,1}$	0.376467073	0.371238844	0.366482035
10^{9}	$Y_{8.1}^{1,1}$	-8.5983673	-8.4657915	-8.3453497
10^{6}	$Y_{0,2}$	-98.491285	-97.881008	-97.321597
10^{6}	$Y_{1,0}$	6 1245916	6 0771915	6.0338069
10^{6}	$V_{2,2}$	-4.65429628	-4.61110454	-457163085
10^{10}	$V_{2,2}$	1.26390084	1.01110404 1.250227650	1.97750145
10^{10}	$V_{4,0}$	-0.107186388	-0.105862195	-0.104655601
10^{10}	$V_{5,2}$	-8 4748128	-8.3571178	-8 2500353
10^{9}	$V_{0,2}$	1 60676749	1 67060542	1.64683704
10^{9}	$V_{7,0}$	-0.068238902	-0.067082425	-0.066033365
109	17,2 V	2.046449	2.010170	0.0000000000
10^{-1}	$Y_{0,3}$	5.040448 2.2477087	3.010170 2.2115017	2.99204
10° 10^{9}	$Y_{1,3}$	-0.0477907	-3.3113814	-3.2780312
10° 10^{9}	1 _{2,3}	2.90077090	2.8098800	2.83717033
10° 10^{9}	Y _{3,3}	-0.932712407	-0.919759518	-0.90797413
10° 1012	$Y_{4,3}$	0.1141803181	0.1124237100	0.1108202447
10	¥ 5,3	-4.7733443	-4.0944140	-4.0210010
10^{12}	$Y_{0,4}$	0.880984	0.8701002	0.860183
10^{12}	$Y_{1,4}$	-0.4978952	-0.4909807	-0.4846896
10^{12}	$Y_{2,4}$	-0.1146449	-0.11287722	-0.11127133
10^{15}	$Y_{3,4}$	74.045412	72.79053	71.652204
10^{15}	$Y_{4,4}$	-6.3853573	-6.2673953	-6.1605496
10^{15}	$Y_{0.5}$	-0.5006161	-0.4928972	-0.4858848
10^{15}	$Y_{1.5}^{1.5}$	0.28533511	0.2804994	0.27611285
10^{15}	$Y_{2,5}^{1,7}$	-0.04555286	-0.04471133	-0.04394909
No. a	of Data	1437	291	294
No. α	of Parameters	0	0	0
NO. C RMS	57 1 erm Values 5R	$\frac{202}{1.120}$	63 1.000	$ \begin{array}{c} 60\\ 1.252 \end{array} $

Table 5.5: Dunham Constants for $^{24}{\rm MgD},\,^{25}{\rm MgD}$ and $^{26}{\rm MgD}$ (Calculated from those of $X\,^2\Sigma^+$ State $^{24}{\rm MgH}$ and the Born-Oppenheimer Breakdown Correction Terms)

Table 5.6: Comparison of Born-Oppenheimer Breakdown Correction Terms for MgH and BeH

Born-Oppenheimer Breakdown Correction Terms	MgH	BeH
$\begin{array}{cccc} \delta_{H;1,0} & \\ \delta_{H;2,0} \\ 10^3 & \delta_{H;3,0} \\ 10^3 & \delta_{H;0,1} \\ 10^3 & \delta_{H;1,1} \\ 10^3 & \delta_{H;2,1} \\ 10^6 & \delta_{H;0,2} \\ 10^6 & \delta_{H;1,2} \\ 10^9 & \delta_{H;0,3} \end{array}$	$\begin{array}{c} 0.98(1) \\ -0.059(6) \\ 7.14(54) \\ 7.40(6) \\ -0.61(7) \\ 0.097(7) \\ 0.0 \\ 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} 1.3575(1300)\\ -0.102(37)\\ 9.6(24)\\ 21.091(680)\\ -1.008(280)\\ 0.128(31)\\ -6.44(100)\\ 0.27(22)\\ 1.24(47)\end{array}$

Bibliography

- K.P. Huber and G. Herzberg. Constants of Diatomic Molecules, Molecular Spectra and Molecular Structure IV. Van Nostrand Reinhold Company, Toronto, 1979.
- [2] W. J. Balfour. The $A^2\Pi X^2\Sigma^+$ Systems of ²⁴MgH, ²⁵MgH and ²⁶MgH. The Astrophysical Journal, 162:1031–1035, 1970.
- W. J. Balfour. The electronic spectrum of magnesium hydride and magnesium deuteride. Journal of Physics B: Atomic and Molecular Physics, 3:1749–1756, 1970.
- [4] W. J. Balfour and H. M. Cartwright. Low-lying electronic states of magnesium hydride. *Chemical Physics Letters*, 32(1):82–85, 1975.
- [5] W. J. Balfour and H. M. Cartwright. The ground state and $A^2\Pi$ excited state of magnesium deuteride. *Canadian Journal of Physics*, 53:1477–1482, 1975.
- [6] W. J. Balfour and H. M. Cartwright. The B' ²Σ⁺ X²Σ⁺ systems of MgH and MgD. Canadian Journal of Physics, 54:1898–1904, 1976.
- [7] W. J. Balfour and H. M. Cartwright. The A²Π X²Σ⁺ system and dissociation energy of magnesium hydride. Astronomy and Astrophysics, Supplement Series, 26:389–397, 1976.
- [8] W. J. Balfour and B. Lindgren. High-resolution emission spectra of MgH and MgD in the 600-850 nm wavelength region. *Canadian Journal of Physics*, 56:767– 779, 1978.
- W. J. Balfour. MgH and MgD in the 230-235 nm region. Journal of Molecular Spectroscopy, 79:507–511, 1980.
- [10] P. F. Bernath, J. H. Black, and J. W. Brault. The spectrum of magnesium hydride. *The Astrophysical Journal*, 298:375–381, 1985.

- [11] L. Wallace, K. Hinkle, G. Li, and P. F. Bernath. The MgH $B'^{2}\Sigma^{+} X^{2}\Sigma^{+}$ transition: A new tool for studying magnesium isotopes abundances. *The Astrophysical Journal*, 524:454–461, 1999.
- [12] B. Lemoine, C. Demuynck, J. L. Destombes, and P. B. Davies. Infrared diode laser spectra of MgH and MgD (X²Σ⁺). Journal of Chemical Physics, 89(2):673– 677, 1988.
- [13] K. R. Leopold, L. R. Zink, D. A. Evenson, K. M. Jennings, and M. Mizushima. The far infrared spectrum of magnesium hydride. *Journal of Chemical Physics*, 84(3):1935–1937, 1986.
- [14] L. R. Zink, D. A. Jennings, K. M. Evenson, and K. R. Leopold. Laboratory measurements for the astrophysical identification of MgH. *The Astrophysical Journal*, 359:L65–L66, 1990.
- [15] L. M. Ziurys, W. L. Barclay, Jr., and M. A. Anderson. The millimeter-wave spectrum of the MgH and MgH radicals. *The Astrophysical Journal*, 402:L21– L24, 1993.
- [16] A. C. H. Chan and Ernest R. Davidson. Theoretical study of the MgH molecule. Journal of Chemical Physics, 52(8):4108–4121, 1970.
- [17] M.L. Sink, A. D. Bandrauk, W. H. Henneker, H. Lefebvre-Brion, and G. Raseev. Theoretical study of the low-lying electronic states of MgH. *Chemical Physics Letters*, 39(3):505–510, 1976.
- [18] R. P. Saxon, K. Kirby, and B. Liu. Ab initio configuration interaction study of the low-lying electronic states of MgH. *Journal of Chemical Physics*, 69(12):5301– 5309, 1978.
- [19] M. L. Sink and A. D. Bandrauk. A theoretical study of the $B' {}^{2}\Sigma^{+} X^{2}\Sigma^{+}$ band system in MgH and MgD. *Canadian Journal of Physics*, 57:1178–1184, 1979.
- [20] B. M. Tripathi and V. P. Gaur. Partition functions and dissociation constants for MgH. Journal of Quantitative Spectroscopy and Radiactive Transfer, 22:407–409, 1979.
- [21] D. L. Cooper. Spin splitting in the $X^2\Sigma^+$ state of MgH. Journal of Chemical Physics, 76(7):3692–3693, 1982.

- [22] F. Jenc and B.A. Brandt. The ground state reduced potential curves (RPC) of the metal hydrides CuH and MgH. Spectrochimica Acta, 41A(10):1211–1214, 1985.
- [23] G. Li, J. Y. Seto, P. F. Bernath, and R. J. Le Roy. Accurate molecular constants, potential curve and Born-Oppenheimer breakdown correction functions for X²Σ⁺ MgH and MgD. In *International Symposium on Molecular Spectroscopy 56th Meeting*, Columbus, Ohio 43210 USA, June 2001. The Ohio State University.
- [24] B. Lemoine, C. Demuynck, J. L. Destombes, and P. B. Davies. Infrared laser spectra of ²⁵MgH, ²⁶MgH, ²⁵MgD and ²⁶MgD. *Private Communication*, 2000.
- [25] P. F. Bernath. Spectra of Atoms and Molecules. Oxford University Press, New York, 1995.
- [26] R. J. Le Roy. Improved parameterisation for combined isotopomer analysis of diatomic spectra and its application to HF and DF. *Journal of Molecular Spec*troscopy, 194:189–196, 1999.
- [27] R. J. Le Roy. DSParFit and DSPotFit: General purpose parameter and potential fitting programs for diatomic data analysis. In *International Symposium on Molecular Spectroscopy 56th Meeting*, Columbus, Ohio 43210 USA, June 2001. The Ohio State University.
- [28] R. J. Le Roy. Computer programs distributed by Robert J. Le Roy. Technical report, University of Waterloo, 2001. http://leroy.uwaterloo.ca.
- [29] R. J. Le Roy. Uncertainty, sensitivity, convergence, and rounding in performing and reporting least-squares fits. *Journal of Molecular Spectroscopy*, 191:223–231, 1998.

APPENDIX

Appendix A

Fourier Transform Infrared Data for GeO

The Fourier transform infrared spectroscopic data of the five isotopomers of the ground state GeO are listed in Appendix A

The 1-0 to 7-6 bands of the 70 GeO data are listed in Table A.1. The 1-0 to 8-7 bands of the 72 GeO data are listed in Table A.2. The 1-0 to 6-5 bands of the 73 GeO data are listed in Table A.3. The 1-0 to 8-7 bands of the 74 GeO data are listed in Table A.4. The 1-0 to 7-6 bands of the 76 GeO data are listed in Table A.5.

A.1 Fourier Transform Infrared Data for ⁷⁰GeO

J'	<i>J''</i>	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc		
		$1,048$ $^{70}{ m Ge}$	eO infrared	transitions i	n 7 bands		
The 1-0 Band, 200 data, $J''_{min} = 0$, $J''_{max} = 100$							
Unc.	$A_{vae} =$	2.0D-03, Un	$c{Max} = 5.0$	D-03			
(Err/	Unc.)	$A_{vqe} = 8.3$ D-0	3, RMSR =	= 0.55			
00	00	957 15974	0.200.02	0 00929	1 1577		
98 07	99	001.10014	0.20D-02	-0.00252	-1.1077		
97	90 07	860 22441	0.20D-02	-0.00105	-0.82422		
90 95	97 96	861 75100	0.20D-02 0.20D-02	-0.00034	-0.17002		
95 94	95 95	863 27013	0.20D-02	0.00188	0.41001		
93	94	864 78535	0.20D-02	0.00002 0.00124	0.6204		
92	93	866.297	0.20D-02	0.0	0.00091		
91	92	867.79935	0.20D-02	0.00283	1.41629		
90	91	869.29976	0.20D-02	0.00236	1.18137		
89	90	870.79839	0.20D-02	-0.00157	-0.78405		
88	89	872.28304	0.20D-02	0.00321	1.60485		
87	88	873.76897	0.20D-02	0.00144	0.71786		
86	87	875.25175	0.20D-02	-0.00246	-1.23017		
85	86	876.72457	0.20 D - 02	-0.0017	-0.84955		
84	85	878.19104	0.20 D - 02	0.00011	0.0546		
83	84	879.65364	0.20 D - 02	0.00047	0.23697		
82	83	881.11145	0.20 D - 02	0.00031	0.15741		
81	82	882.56529	0.20 D - 02	-0.00122	-0.60933		
80	81	884.01122	0.20 D - 02	-0.00019	-0.09352		
79	80	885.45262	0.20 D - 02	0.00002	0.00963		
78	79	886.8891	0.20 D - 02	-0.00021	-0.10515		
77	78	888.31982	$0.20 \text{D}{-}02$	-0.00007	-0.03311		
76	77	889.74491	0.20D-02	0.00032	0.16055		
75	76	891.16938	0.20D-02	-0.00406	-2.02955		
74	75	892.57939	0.20D-02	0.0006	0.30144		
73	74	893.98864	0.20D-02	0.00061	0.30313		
72	73	895.39279	0.20D-02	0.00028	0.14034		
71	72	896.79252	0.20D-02	-0.00105	-0.52727		
70 60	(1 70	898.18447	0.20D-02	-0.00007	-0.03498		
69 68	70 60	899.07182	0.20D-02	0.00005	0.0269		
00 67	09 69	900.95405	0.20D-02	-0.00015	-0.07095		
66	00 67	902.33031	0.20D-02	-0.0001	-0.03179		
65	66	905.70224	0.20D-02	-0.00081	0.40293		
64	65	905.00054	0.20D-02	0.00042	0.20922		
63 63	64	900.42098	0.20D-02 0.20D-02	-0.00001	-0.00550		
62	63	909.13019	0.20D-02	0.000000	0.11252		
61	62	910 4743	0.20D-02	-0.00028	-0 24025		
60	61	911 81307	0.20D-02	-0.00040	-0.70138		
59	60	913 14368	0.20D-02	0.00011	0 13878		
58	59	914.47126	0.20D-02	-0.0006	-0.30008		
$50 \\ 57$	58	915.7918	0.20D-02	-0.00003	-0.01344		
56	57	917.107	0.20D-02	0.00029	0.14338		
55	56 - 56	918.41707	0.20D-02	0.00013	0.06504		
50	55	919.72134	0.20D-02	0.00014	0.07107		
53^{-1}	54	921.0202	0.20D-02	-0.00007	-0.03384		
52	53	922.31334	0.20D-02	-0.0002	-0.10013		
51	52	923.60069	0.20D-02	-0.00019	-0.09321		

Table A.1: Fourier Transform Infrared Data for 70 GeO (cm⁻¹)

Table		rounci mana			
J'	$J^{\prime\prime}$	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
50	51	924.87978	$0.20 \text{D}{-}02$	0.00241	1.20651
49	50	926.15801	0.20 D - 02	0.0002	0.0986
48	49	927.42851	0.20D-02	0.00003	0.01265
47	48	928.6937	0.20 D - 02	-0.00052	-0.26172
46	47	929.95206	$0.20 \text{D}{-}02$	0.00004	0.01994
45	46	931.20457	0.20 D - 02	0.00073	0.3673
44	45	932.45303	0.20 D - 02	-0.00025	-0.1252
43	44	933.69481	$0.20 \text{D}{-}02$	-0.00029	-0.14292
42	43	934.93044	0.20D-02	0.00007	0.03364
41	42	936.15855	0.20D-02	0.00218	1.089
40	41	937.3853	0.20D-02	-0.00012	-0.06231
39	40	938.60397	0.20D-02	-0.00013	-0.06573
38	39	939.81687	0.20D-02	-0.00015	-0.07683
37	38	941.02433	0.20D-02	-0.00055	-0.27608
36	37	942.22518	0.20D-02	-0.00016	-0.07892
35	36	943.42132	0.20D-02	-0.00088	-0.44096
34	35	944.61028	0.20D-02	-0.00026	-0.12761
33	34	945.79431	0.20D-02	-0.00056	-0.27945
32	33	946.96908	0.20D-02	0.00254	1.268
31	32	948.1426	0.20D-02	0.00101	0.5042
30	31	949.30937	$0.20 \text{D}{-}02$	0.00035	0.1736
29	30	950.47045	$0.20 \text{D}{-}02$	-0.00051	-0.25429
28	29	951.6243	$0.20 \text{D}{-}02$	-0.00005	-0.02512
27	28	952.77301	$0.20 \text{D}{-}02$	-0.00037	-0.18436
26	27	953.91562	0.20D-02	-0.00052	-0.25769
25	26	955.05198	$0.20 \text{D}{-}02$	-0.00035	-0.17556
24	25	956.18281	$0.20 \text{D}{-}02$	-0.0006	-0.29863
23	24	957.30723	0.20 D - 02	-0.0004	-0.20247
22	23	958.42564	$0.20 \text{D}{-}02$	-0.00018	-0.08768
21	22	959.53838	0.20D-02	-0.00026	-0.12988
20	21	960.64522	0.20D-02	-0.00043	-0.21461
19	20	961.74581	0.20D-02	-0.00037	-0.1826
18	19	962.83995	0.20D-02	0.00013	0.06562
17	18	963.92937	0.20D-02	-0.00068	-0.34066
16	17	965.01244	0.20D-02	-0.00118	-0.592
15	16	966.088	0.20D-02	-0.00022	-0.10909
14	15	967.15821	0.20D-02	0.00002	0.01242
13	14	968.22306	0.20D-02	-0.00045	-0.22314
12	13	969.28082	0.20D-02	0.00009	0.04358
11	12	970.33329	0.20D-02	-0.00019	-0.09306
10	11	971.37885	0.20D-02	0.00035	0.17616
9	10	972.41912	0.20D-02	0.00005	0.02565
8	9	973.45351	0.20D-02	-0.0005	-0.25038
7	8	974.48073	0.20D-02	-0.00003	-0.01254
6	1	975.50227	0.20D-02	-0.00002	-0.01159
5	6	976.51587	0.20D-02	0.00176	0.88175
4	5	977.52699	0.20D-02	-0.00016	-0.07824
3	4	978.53001	0.20D-02	-0.00016	-0.0823
2	3	979.52345	0.20D-02	0.00321	1.60387
1	2	980.51561	0.20D-02	0.00165	0.82444
U 1	1	981.00389	0.20D-02	-0.00225	-1.12020
1	U 1	983.44944	0.20D-02	0.00225	1.12029
2	1	984.41159 085 27494	0.50D-02	0.00574	1.14841
3_⊿	2	985.37484	0.20D-02	0.00186	0.93230
4	చ ₄	980.33072	0.20D-02	-0.00092	-0.40147
5	4	981.27687	0.20D-02	-0.00026	-0.13130
6	5	988.21917	0.20D-02	-0.00207	-1.03307
1	6	989.1487	0.20D-02	0.00259	1.29202

Table A.1, Fourier Transform Infrared Data for 70 GeO (cm⁻¹) (*Cont'd*)

	~~~				
J'	$J^{\prime\prime}$	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
8	7	990.0791	$0.20 \text{D}{-}02$	0.00004	0.01981
9	8	991.00405	0.20D-02	-0.00339	-1.69726
10	9	991.91639	0.20D-02	-0.00057	-0.28446
11	10	992.82652	0.20D-02	-0.00189	-0.94264
12	11	993.72781	0.20D-02	-0.00075	-0.37267
13	12	994.62479	0.20D-02	-0.00168	-0.8404
14	13	995.51275	0.20D-02	0.00001	0.00334
15	14	996.39643	0.20D-02	-0.00043	-0.21743
16	15	997.27292	0.20D-02	-0.00011	-0.0535
17	16	998.14352	0.20D-02	-0.00031	-0.15581
18	17	999.00575	0.20D-02	0.0014	0.69974
19	18	999.86507	0.20D-02	-0.00044	-0.21///
20	19	1000.71589	0.20D-02	-0.00024	-0.11911
21	20	1001.56036	0.20D-02	-0.00017	-0.0857
22	21	1002.39858	0.20D-02	-0.00035	-0.17264
23	22	1003.22855	0.20D-02	0.00124	0.01813
24	23	1004.05444	0.20D-02	0.00037	0.18017
25 96	24	1004.87303	0.20D-02	0.00028	0.14101
20	20	1005.08/18	0.20D-02	-0.00191	-0.95432
21	20	1000.49023 1007.28026	0.20D-02	0.00045	0.2252
28	21	1007.28920	0.20D-02	0.00027	0.13239
29 20	20	1008.08201	0.20D-02	-0.00021	-0.10715
00 91	29	1000.00700	0.20D-02	-0.00030	-0.18101
01 20	3U 91	1009.04085	0.20D-02	-0.00020	-0.12901
ე∠ ეე	01 20	1010.41964 1011.18461	0.20D-02	-0.0008	-0.39707
აა 94	ე∠ ეე	1011.10401	0.20D-02	0.00028	0.14149
04 95	აა 94	1011.94302 1012.60674	0.20D-02	0.00029	0.14343
30 36	34 35	1012.09074 1012.44177	0.20D-02	-0.00007	-0.0559
$\frac{30}{37}$	36	1013.44177 1014.18991	0.20D-02	0.00031	0.40440
30 20	30	1014.10221 1014.01479	0.20D-02	-0.00039	0.17302
30	38	1014.91472 1015.64011	0.20D-02 0.20D-02	-0.00035	0.17302
40	30	1016 35030	0.20D-02 0.20D-02	-0.00012	-0.00761
40	40	1010.000000000000000000000000000000000	0.20D-02 0.20D-02	-0.00002	0.12058
42	40	1017.07150 1017.77742	0.20D-02	0.00024 0.00007	0.03746
43	42	1017.77742 1018 47701	0.20D-02	-0.00057	-0 28359
44	43	1019 16922	0.20D-02	-0.00058	-0.28768
45	44	1019.10022 1019.85359	0.20D-02	0.00048	0.23856
46	45	1019.00000 1020.53115	0.20D-02	0.00016	0.77898
47	46	1020.00110 1021 2045	0.20D-02	0.00100	0.02694
48	47	1021.86949	0.20D-02	0.0001	0.05228
49	48	1022.52793	0.20D-02	-0.00011	-0.05666
$50^{-0}$	49	1023.17905	0.20D-02	0.00016	0.07895
51	$50^{-0}$	1023.82343	0.20D-02	0.00032	0.16241
52	51	1024.46159	0.20D-02	-0.00014	-0.07146
53	52	1025.09228	0.20D-02	0.0	0.00065
54	53	1025.71634	0.20D-02	-0.00011	-0.0575
55	54	1026.33201	0.20D-02	0.00127	0.6329
56	55	1026.94304	0.20D-02	0.00038	0.19061
57	56	1027.54684	0.20D-02	-0.00019	-0.0956
58	57	1028.14437	0.20 D-02	-0.00142	-0.71248
59	58	1028.73183	0.20 D-02	0.00047	0.23471
60	59	1029.31439	0.20 D-02	0.00031	0.15422
61	60	1029.88998	0.20 D-02	0.00016	0.07976
62	61	1030.45513	0.20 D - 02	0.00346	1.73006
63	62	1031.02031	0.20 D - 02	-0.00026	-0.13118
64	63	1031.57417	0.20 D - 02	0.00033	0.16475
65	64	1032.12174	0.20 D - 02	0.00019	0.09654

Table A.1, Fourier Transform Infrared Data for  70 GeO (cm⁻¹) (*Cont'd*)

1001	· · · · · ,	rounci man		eu Data ioi	
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
66	65	1032.66104	0.20D-02	0.0013	0.64786
67	66	1033.19539	0.20D-02	0.0003	0.15239
68	67	1033.72211	0.20D-02	-0.00011	-0.05621
69	68	1034.24176	0.20D-02	-0.00053	-0.26429
70	69	1034.75332	0.20D-02	0.00006	0.0318
71	70	1035.25722	0.20D-02	0.00123	0.6157
72	71	1035.75642	0.20D-02	-0.00002	-0.00898
73	$72^{-1}$	1036.24766	0.20D-02	-0.00043	-0.21362
74	$73^{-73}$	1036.72857	0.20D-02	0.00236	1.18039
75	74	1037 20811	0.20D-02	-0.00063	-0 31336
76	75	1037 67635	0.20D-02	0.00053	0 26423
77	76	1038 139	0.20D-02	0.0001	0.05073
78	77	1038 59523	0.20D-02	-0.00109	-0 5448
79	78	1039.04306	0.20D-02	-0.00108	-0 53879
80	79	1039 48285	0.20D-02	-0.00100	-0 11769
81	80	1039.40200 1039.91472	0.20D-02	0.00024	0.65202
82	81	1040 34245	0.20D-02	-0.00025	-0.1256
83	82	1040.34243	0.20D-02 0.20D-02	0.00020	0.49694
84	83	1040.70013 1041.17374	0.20D-02	-0.00099	-0.47133
85	84	1041.17574	0.20D-02 0.20D-02	0.00034	0.15308
86	85	1041.97088	0.20D-02 0.20D-02	-0.00051	-0.29084
87	86	1042 36515	0.20D-02	-0.000000	-0.23084
88	87	1042.50519 1042.74528	0.20D-02	0.0013	0.64776
89	88	1042.14020 1043.12271	0.20D-02	-0.0019	-0.48729
90	89	1043 48965	0.20D-02 0.20D-02	-0.00001	-0.1468
91	90	1043 84952	0.20D-02	0.0005	0.25166
02	91	1044 20305	0.20D-02	0.0000	0.03703
93	92	$1044\ 54797$	0.20D-02	0.00088	0.43824
94	93	1044 88859	0.20D-02	-0.00141	-0 70731
95	94	1045 21835	0.20D-02	-0.00025	-0 12572
96	95	104554067	0.20D-02	0.00023	0.4669
97	96	1045 85817	0.20D-02	-0.00048	-0.24206
98	97	$1046\ 16377$	0.20D-02	0.00010 0.00253	1 26677
99	98	1046 47029	0.20D-02	-0.00281	-1 40425
100	99	1046 76139	0.20D-02	-0.00201	-0 10577
101	100	1047.04421	0.20D-02	0.00318	1.58954
	100	10111011_1	0.202 02	0.00010	1.00001
The	2-1 Bε	and, $195 \text{ data}$ ,	$J^{"}_{min} = 0$	$J''_{max} = 9$	98
Unc.	Avge =	= 2.0 D - 03, Un	$c{Max} = 3.0$	D-03	
(Err)	/Unc.)	$_{Avge} = 1.7 \text{D-}($	$01, \mathrm{RMSR} =$	= 0.55	
96	97	851 86528	0 20D-02	0.00111	0 55425
95	96	853 38411	0.20D-02	0.00111 0.00152	0.76191
94	95	854 90023	0.20D-02	-0.00102	-0 26675
93	94	856 4091	0.20D-02	-0.00055	-0 27698
92	93	857 91355	0.20D-02	-0.00137	-0.68394
91	92	859 41074	0.20D-02	-0.00014	-0.06783
90	91	860 90386	0.20D-02	-0.00008	-0.03883
89	90	862 39333	0.20D-02	-0.00161	-0.80715
88	89	863 87341	0.20D-02	0.00098	0 49201
87	88	865.35272	0.20D-02	-0.0009	-0.45149
86	87	866 82627	0.20D-02	-0.00232	-1 15799
85	86	868.29106	0.20D-02	-0.00026	-0.12758
84	85	869.7524	0.20D-02	-0.00003	-0.0156
83	84	871.20956	0.20D-02	-0.00094	-0.47218
82	83	872.66071	0.20D-02	-0.00117	-0.58259
81	82	874.10624	0.20D-02	-0.00109	-0.54708
80	81	875.54621	0.20D-02	-0.00079	-0.3959
$\overline{79}$	80	876.98177	0.20D-02	-0.00144	-0.71928

Table A.1, Fourier Transform Infrared Data for  70 GeO (cm⁻¹) (*Cont'd*)

Table	, <b>11.1</b>	iounci inanc	sionin minar	cu Data ioi	
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
78	79	878.40927	0.20D-02	0.00062	0.30756
77	78	879.83402	0.20 D - 02	0.00005	0.02425
76	77	881.25386	0.20 D - 02	-0.00098	-0.4894
75	76	882.66588	0.20 D - 02	0.00041	0.20636
74	75	884.07528	0.20 D - 02	-0.00098	-0.48878
73	74	885.47699	0.20 D - 02	-0.00008	-0.04015
72	73	886.8754	0.20 D - 02	-0.00132	-0.65796
71	72	888.26587	0.20 D - 02	-0.00005	-0.02254
70	71	889.65237	0.20 D - 02	-0.00025	-0.12419
69	70	891.03273	0.20 D - 02	0.00024	0.12183
68	69	892.40888	0.20 D - 02	-0.00053	-0.2649
67	68	893.77852	0.20 D - 02	-0.00027	-0.13463
66	67	895.14397	0.20 D - 02	-0.00131	-0.65264
65	66	896.50143	0.20 D - 02	0.00016	0.08063
64	65	897.85537	0.20 D - 02	-0.00037	-0.18504
63	64	899.20266	0.20 D - 02	0.00023	0.11495
62	63	900.5432	0.20 D - 02	0.00205	1.02526
61	62	901.8828	0.20 D - 02	-0.00072	-0.35948
60	61	903.21392	0.20 D - 02	-0.00057	-0.28461
59	60	904.53913	0.20 D - 02	-0.00007	-0.0355
58	59	905.85934	0.20 D - 02	-0.00014	-0.07247
57	58	907.17402	0.20 D - 02	-0.00026	-0.13101
56	57	908.48302	0.20 D - 02	-0.0003	-0.15143
55	56	909.78608	0.20 D - 02	-0.00001	-0.00409
54	55	911.08414	0.20 D - 02	-0.00033	-0.16442
53	54	912.37582	0.20 D - 02	0.00011	0.05717
52	53	913.66186	0.20 D - 02	0.00055	0.27528
51	52	914.9462	0.20D-02	-0.00296	-1.48052
50	51	916.21838	0.20D-02	0.00003	0.01437
49	50	917.48794	0.20D-02	-0.00003	-0.01549
48	49	918.74916	0.20D-02	0.00258	1.28953
47	48	920.00998	0.20D-02	-0.00011	-0.05612
46	47	921.26214	0.20D-02	0.00015	0.07722
45	46	922.50934	0.20D-02	-0.00033	-0.166
44	45	923.75006	0.20D-02	-0.00005	-0.02014
43	44	924.98553	0.20D-02	-0.00027	-0.13372
42	43	926.21744	0.20D-02	-0.00267	-1.3342
41	42	927.43900	0.20D-02	-0.00054	-0.20800
40	41	928.00773	0.20D-02	-0.00121	-0.00078
39 20	40 20	929.00929	0.20D-02	-0.00037	-0.28281
30 37	39	931.07007	0.20D-02	-0.00093	-0.40474
36	30 37	932.21311	0.20D-02	-0.00001	0.14012
30 35	36	933.47084	0.20D-02	-0.00028	0.1806
30 34	35	934.03993	0.20D-02 0.20D-02	-0.00038	-0.10508
33	34	937 02047	0.20D-02 0.20D-02	-0.00021	-0.2348
30	33	038 101/0	0.20D-02 0.20D-02	-0.00047	-0.02158
31	32	939 35749	0.20D-02	-0.00004	-0.22138
30	31	940 51841	0.20D-02	-0.00167	-0.83617
29	30	941.67098	0.20D-02	-0.00043	-0.21515
$\frac{10}{28}$	29	942.81851	0.20D-02	-0.00005	-0.02425
$\frac{-0}{27}$	$\frac{-5}{28}$	943.96053	0.20D-02	-0.00007	-0.03415
$\frac{-}{26}$	$\overline{27}$	945.09755	0.20D-02	-0.001	-0.50033
$\overline{25}$	$\frac{-}{26}$	946.22731	0.20D-02	-0.00062	-0.30842
$\overline{24}$	$\frac{-5}{25}$	947.35144	0.20D-02	-0.00055	-0.27402
$2\overline{3}$	24	948.46971	0.20D-02	-0.00058	-0.28771
22	$23^{-}$	949.58211	0.20D-02	-0.0007	-0.3501
21	22	950 68808	0 20D-02	-0.00036	-0 18177

Table A.1, Fourier Transform Infrared Data for  70 GeO (cm⁻¹) (*Cont'd*)

Table	, <b>11.1</b> ,	round mana	sorm minar		
J'	$J^{\prime\prime}$	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
20	21	951.7878	0.20 D - 02	0.00022	0.11159
19	20	952.88263	0.20 D - 02	-0.0003	-0.15057
18	19	953.97059	0.20D-02	0.00003	0.01604
17	18	955.05198	0.20 D - 02	0.00091	0.45586
16	17	956.12857	0.20 D - 02	0.00057	0.28321
15	16	957.19953	0.20 D - 02	-0.00021	-0.10258
14	15	958.26445	0.20 D - 02	-0.00099	-0.49716
13	14	959.32106	0.20D-02	0.00046	0.2288
12	13	960.3737	0.20D-02	-0.0002	-0.10033
11	12	961.41979	0.20 D - 02	-0.00039	-0.19532
10	11	962.45968	0.20D-02	-0.00049	-0.24677
9	10	963.49234	0.20D-02	0.00052	0.25952
8	9	964.52073	0.20 D - 02	-0.00032	-0.16205
7	8	965.54437	0.20 D - 02	-0.00255	-1.27724
6	7	966.5564	0.20D-02	0.00069	0.34323
5	6	967.56656	0.20 D - 02	-0.00037	-0.18637
4	5	968.57054	0.20 D - 02	-0.00142	-0.71177
3	4	969.56523	0.20 D - 02	0.00063	0.31633
2	3	970.55649	0.20 D - 02	-0.00008	-0.0379
1	2	971.54044	0.20 D - 02	0.00033	0.16487
1	0	974.45474	0.20 D - 02	0.00171	0.85716
2	1	975.41633	0.20 D - 02	-0.00047	-0.23493
3	2	976.36996	0.20 D - 02	-0.00096	-0.47901
4	3	977.31668	0.20 D - 02	-0.0008	-0.40083
5	4	978.25852	0.20 D - 02	-0.00206	-1.03121
6	5	979.19132	0.20 D - 02	-0.00058	-0.2909
7	6	980.11906	0.20 D - 02	-0.00035	-0.1758
8	7	981.04105	0.20 D - 02	-0.00069	-0.34677
9	8	981.95615	0.20 D - 02	-0.00047	-0.23456
10	9	982.86642	0.20 D - 02	-0.00177	-0.88507
11	10	983.76802	0.20 D - 02	-0.00076	-0.37915
12	11	984.66425	0.20 D - 02	-0.00075	-0.37262
13	12	985.55426	0.20 D - 02	-0.00089	-0.44644
14	13	986.4373	0.20D-02	-0.00046	-0.23141
15	14	987.31372	0.20D-02	0.00019	0.0965
16	15	988.18408	0.20D-02	0.00048	0.24149
17	16	989.04967	0.20D-02	-0.00088	-0.4424
18	17	989.90799	0.20D-02	-0.00142	-0.71107
19	18	990.75678	0.20D-02	0.00112	0.55955
20	19	991.60312	0.20D-02	-0.00035	-0.17646
21	20	992.43948	0.20D-02	0.00168	0.83995
22	21	993.27359	0.20D-02	-0.00051	-0.25709
23	22	994.1006	0.20D-02	-0.00212	-1.05865
24	23	994.91754	0.20D-02	-0.00016	-0.08059
25	24	995.73141	0.20D-02	-0.00166	-0.82892
26	25	996.536	0.20D-02	-0.00041	-0.20462
27	26	997.33477	0.20D-02	0.00011	0.05632
28	27	998.12821	0.30D-02	-0.00058	-0.19472
29	28	998.91408	0.20D-02	-0.00029	-0.14584
30	29	999.69369	0.20D-02	-0.00032	-0.1609
31	30	1000.46656	0.20D-02	-0.00021	-0.10344
32	31	1001.23303	0.20D-02	-0.0003	-0.14909
33	32	1001.99367	0.20D-02	-0.00118	-0.58967
34	33	1002.74543	0.20D-02	0.00019	0.09477
35	34	1003.49285	0.20D-02	-0.00074	-0.36783
36	35	1004.23264	0.20D-02	-0.0007	-0.34752
37	36	1004.9648	0.20D-02	0.00031	0.15412
38	37	1005.69036	0.20D-02	0.00123	0.61553

Table A.1, Fourier Transform Infrared Data for  70 GeO (cm⁻¹) (*Cont'd*)

Table	, <b>m</b> . <b>r</b> ,	Found mana	sionin minar	cu Data Ioi	$\operatorname{Uco}\left(\operatorname{cm}^{\circ}\right)\left(\operatorname{cont}^{\circ}u\right)$
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
39	38	1006.4115	0.20D-02	-0.00012	-0.05839
40	39	1007.12508	0.20 D - 02	-0.00061	-0.30423
41	40	1007.83092	0.20 D - 02	-0.00008	-0.03859
42	41	1008.52775	0.20 D - 02	0.00274	1.36842
43	42	1009.22356	0.20 D - 02	-0.00016	-0.07983
44	43	1009.90978	0.20 D - 02	-0.00023	-0.11496
45	44	1010.58854	0.20 D - 02	0.0004	0.19788
46	45	1011.26345	0.20 D - 02	-0.00191	-0.95294
47	46	1011.9276	0.20 D - 02	-0.00024	-0.11858
48	47	1012.58643	0.20 D - 02	-0.00005	-0.02571
49	48	1013.23495	0.20 D - 02	0.00363	1.81551
50	49	1013.88447	0.20 D - 02	-0.00051	-0.25662
51	50	1014.52296	0.20 D - 02	-0.00046	-0.22828
52	51	1015.15466	0.20 D - 02	-0.00047	-0.23567
53	52	1015.78031	0.20 D - 02	-0.0013	-0.64999
54	53	1016.39746	$0.20 \text{D}{-}02$	-0.00051	-0.25298
55	54	1017.00843	0.20 D - 02	-0.00042	-0.20984
56	55	1017.6122	0.20 D - 02	-0.00003	-0.01732
57	56	1018.2106	0.20 D - 02	-0.00119	-0.59666
58	57	1018.80114	$0.20 \text{D}{-}02$	-0.00142	-0.70912
59	58	1019.38333	0.20 D - 02	-0.00023	-0.11595
60	59	1019.9587	0.20 D - 02	0.00083	0.41657
61	60	1020.53115	0.20 D - 02	-0.00216	-1.07784
62	61	1021.09179	0.20 D - 02	-0.00031	-0.15547
63	62	1021.64667	0.20D-02	0.0003	0.15239
64	63	1022.19558	0.20D-02	-0.00011	-0.05558
65	64	1022.73748	$0.20 \text{D}{-}02$	-0.00053	-0.26569
66	65	1023.27123	0.20D-02	0.00017	0.08573
67	66	1023.79918	0.20D-02	-0.00037	-0.18266
68	67	1024.31758	0.20D-02	0.0016	0.7978
69 70	68	1024.83278	0.20D-02	-0.0003	-0.14923
70	69 70	1025.33903	0.20D-02	-0.00033	-0.16514
71	70	1025.83994	0.20D-02	-0.00211	-1.05629
72	71	1026.33201	0.20D-02	-0.00216	-1.07906
73	72	1026.81624	0.20D-02	-0.00148	-0.73985
74	73	1027.29288	0.20D-02	-0.00034	-0.17006
75 70	74	1027.76427	0.20D-02	-0.00109	-0.54609
(0 77	() 70	1028.22759	0.20D-02	-0.00093	-0.40438
((	(b 77	1028.0841	0.20D-02	-0.00112	-0.50134
78 70	((	1029.13280	0.20D-02	-0.00075	-0.37292
19	78 70	1029.07000	0.20D-02	-0.00159	-0.79037
00 91	79 80	1030.00890	0.20D-02	-0.00010	-0.07823
01 00	0U 01	1030.4370	0.20D-02	-0.00140	-0.73942
04 83	01 80	1030.83790	0.20D-02	-0.00135	-0.07037
81 81	02 83	1031.20799 1031.67183	0.20D-02	0.00100	0.82932
04 85	81 81	1031.07103 1032.07400	0.20D-02	0.0030	0.07328
86	85	1032.07409	0.20D-02	-0.00013	0.15420
87	86	1032.40348	0.20D-02	0.00031	0.62832
88	87	1032.00000	0.20D-02	-0.00120	0.04211
80	88	1033 598	0.20D-02 0.20D-02	-0.00100	-1 48906
90	89	1033 05600	0.20D-02 0.20D-02	-0.000230	-0.00288
90 91	90	1034 31964	0.20D-02 0.20D-02	-0.00104	-0 52191
91	91	1034 66127	0.20D-02 0.20D-02	-0.00104	-1 21224
92 93	92	1034 99797	0.20D-02	0.00242 0.00075	0 37505
94	<u>92</u> 93	1035 33047	0.20D-02	0.00073	0.36737
95	94	$1035\ 65764$	0.20D-02	-0.00134	-0.67139
96	95	1035 97485	0.20D-02	-0.00088	-0 44235

Table A.1, Fourier Transform Infrared Data for  70 GeO (cm⁻¹) (*Cont'd*)

Table A.1, Fourier Transform Infrared Data for  70 GeO (cm⁻¹) (*Cont'd*)

J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
97	96	1036.28548	0.20D-02	-0.00128	-0.63814
98	97	1036 58908	0.20D-02	-0.00208	-1 03939
90	98	1036 87851	0.20D-02 0.20D-02	0.00200	1 91626
55	00	1000.01001	5.2010-02	0.00000	1.01020
The '	2_9 P.	nd 171 data	$I^{,*}$ . — 9	<i>I</i> " — 0	1
Ine a	л-⊿ Da	10, 171  uata, 171  uata, 200 02 11.	$J_{min} = 2$	$J_{max} = 9$	1
(Frr	Avge = Unc	-2.0D-03, 010	0.Max = 0.0	D-05 - 0.52	
(EII)	Unc.)	Avge = -4.4D	05, 100510	- 0.52	
90	91	852.5322	0.20 D - 02	0.00016	0.08108
89	90	854.01105	0.20 D - 02	0.00251	1.25738
88	89	855.49074	0.20 D - 02	-0.00123	-0.61577
87	88	856.96135	0.20 D - 02	-0.00116	-0.57854
86	87	858.42535	0.20 D - 02	0.00026	0.12891
85	86	859.88686	0.20 D - 02	-0.00111	-0.55369
84	85	861.34099	0.20 D - 02	-0.00039	-0.19659
83	84	862.79044	0.20 D - 02	-0.0003	-0.15006
82	83	864.23278	0.20 D - 02	0.0016	0.8008
81	82	865.67362	0.20 D - 02	-0.00033	-0.16441
80	81	867.10693	0.20 D - 02	-0.00006	-0.03088
79	80	868.53515	0.20 D - 02	-0.00005	-0.02387
78	79	869.95948	0.20 D - 02	-0.00149	-0.74365
77	78	871.37445	0.20 D - 02	0.00106	0.52956
76	77	872.78882	0.20 D - 02	-0.00117	-0.58456
75	76	874.1945	0.20 D - 02	-0.00009	-0.04634
74	75	875.59708	0.20 D - 02	-0.0013	-0.65096
73	74	876.99186	0.20 D - 02	-0.00013	-0.06377
72	73	878.38221	0.20 D - 02	0.00006	0.02994
71	72	879.76765	0.20 D - 02	-0.00027	-0.13513
70	71	881.14897	0.20 D - 02	-0.00191	-0.9543
69	70	882.5219	0.20 D - 02	-0.00062	-0.30783
68	69	883.89015	0.20 D - 02	-0.0001	-0.05113
67	68	885.25495	0.20 D - 02	-0.00161	-0.80444
66	67	886.61066	0.20 D - 02	0.0005	0.25182
65	66	887.96388	0.20 D - 02	-0.0004	-0.19759
64	65	889.31138	0.20 D - 02	-0.00108	-0.53806
63	64	890.6523	0.20 D - 02	-0.00069	-0.34494
62	63	891.98985	0.20 D-02	-0.00245	-1.22359
61	62	893.31963	0.20 D - 02	-0.00198	-0.98936
60	61	894.64282	0.20 D - 02	-0.00047	-0.23263
59	60	895.96011	0.20 D - 02	0.00139	0.69629
58	59	897.2737	0.20 D - 02	0.00139	0.69691
57	58 - 58	898.58383	0.20D-02	-0.00073	-0.36609
56	57	899.88648	0.20D-02	-0.00097	-0.48307
55	56	901.18249	0.20D-02	-0.00016	-0.07945
54	55	902.47368	0.20D-02	-0.00013	-0.06566
53	54	903.75918	0.20D-02	-0.00004	-0.02209
52	53	905.04044	0.20D-02	-0.00135	-0.67417
51	52	906.31287	0.20D-02	0.00054	0.26769
50	51	907.58209	0.20D-02	-0.00001	-0.00693
49	50	908.84373	0.20D-02	0.00134	0.67156
48	49	910.10202	0.20D-02	0.00038	0.18765
47	48	911.35471	0.20D-02	-0.00068	-0.33903
46	47	912.60102	0.20D-02	-0.00104	-0.51897
45	46	913.84055	0.20D-02	-0.00034	-0.16768
44	45	915.07506	0.20D-02	-0.00033	-0.16553
43	44	916.30423	0.20D-02	-0.00072	-0.35804
42	43	917.52692	0.20D-02	-0.00036	-0.18069
41	42	918.7437	0.20D-02	0.00016	0.08109
40	41	919.95614	0.20D-02	-0.00075	-0.37329

Table	, <b>m</b> . <b>r</b> ,	rounci mana	sonn mnai	cu Data Ior	
J'	$J^{\prime\prime}$	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
39	40	921.16132	0.20D-02	-0.00017	-0.08423
38	39	922.36164	0.20D-02	-0.00051	-0.25733
37	38	923.555	0.20 D - 02	0.00031	0.15699
36	37	924.74361	0.20D-02	0.00008	0.03817
35	36	925.92665	0.20D-02	-0.00041	-0.20437
34	35	927.10267	0.20D-02	0.0003	0.14895
33	34	928.27402	0.20D-02	-0.00016	-0.08242
32	33	929.43914	0.20D-02	-0.00024	-0.11911
31	32	930.59928	0.20D-02	-0.0012	-0.60164
30	31	931.75044	0.20D-02	0.00094	0.46951
29	30	932.89864	0.20D-02	0.00016	0.07865
28	29	934.04121	0.20D-02	-0.00088	-0.43967
27	28	935.17599	0.20D-02	-0.00004	-0.0211
26	27	936.30588	0.20D-02	-0.00023	-0.11625
25	26	937.42992	0.20D-02	-0.0005	-0.25063
24	25	938.54766	0.20D-02	-0.00041	-0.20483
23	24	939.65896	0.20D-02	0.00018	0.09045
22	23	940.76451	0.20D-02	0.00055	0.27463
21	22	941.86511	0.20 D - 02	-0.00011	-0.05284
20	21	942.95887	0.20D-02	0.00009	0.04731
19	20	944.04761	0.20D-02	-0.00068	-0.34047
18	19	945.12907	0.20 D - 02	-0.00017	-0.08685
17	18	946.20509	0.20D-02	-0.00026	-0.12753
16	17	947.27436	0.20D-02	0.00038	0.19193
15	16	948.33623	0.20 D - 02	0.00238	1.19087
14	15	949.39655	0.20 D - 02	-0.00012	-0.06148
13	14	950.44858	0.20 D - 02	-0.00039	-0.19574
12	13	951.49262	0.20 D - 02	0.00124	0.62245
11	12	952.53404	0.20 D - 02	-0.00059	-0.29269
10	11	953.56755	0.20 D - 02	-0.0006	-0.30177
9	10	954.59487	0.20 D - 02	-0.00054	-0.27054
8	9	955.61312	0.20 D - 02	0.00248	1.24029
7	8	956.63018	0.20 D - 02	0.00055	0.275
6	7	957.64046	0.20 D - 02	-0.00074	-0.37214
5	6	958.64265	0.20 D - 02	-0.0001	-0.05186
3	4	960.62938	0.20 D - 02	0.00033	0.16304
2	3	961.61299	0.20 D - 02	0.00101	0.5061
1	2	962.5893	0.20 D - 02	0.0028	1.39862
3	2	967.38695	0.20 D - 02	0.00221	1.10511
4	3	968.33131	0.20 D - 02	-0.0015	-0.75239
6	5	970.18998	0.20 D - 02	0.00226	1.12839
7	6	971.11477	$0.20 \text{D}{-}02$	-0.00076	-0.38
8	7	972.03014	0.20 D - 02	-0.00068	-0.34203
9	8	972.93856	0.20 D - 02	0.00001	0.00644
10	9	973.8404	0.20 D - 02	0.00095	0.47456
11	10	974.73686	$0.20 \text{D}{-}02$	0.00091	0.45647
12	11	975.62686	$0.20 \text{D}{-}02$	0.00097	0.48633
13	12	976.51187	0.20 D - 02	-0.00034	-0.17182
14	13	977.3886	0.20D-02	0.00022	0.11123
15	14	978.25852	$0.20 \text{D}{-}02$	0.0012	0.59947
16	15	979.12441	0.20D-02	-0.00021	-0.10288
17	16	979.98292	0.20D-02	-0.00065	-0.3268
18	17	980.83105	0.20D-02	0.00284	1.42179
19	18	981.67989	0.20D-02	-0.00082	-0.40802
20	19	982.51821	0.20D-02	-0.0004	-0.20212
21	20	983.3504	0.20D-02	-0.00034	-0.17157
22	21	984.1745	0.20D-02	0.00133	0.6628
- 23	22	984.99463	0.2010-02	0.00047	0.23491

Table A.1, Fourier Transform Infrared Data for  70 GeO (cm⁻¹) (*Cont'd*)

	, ,	01		G 1 01	
J'	$J^{\prime\prime}$	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
24	23	985.80869	0.20 D-02	-0.00082	-0.41109
25	24	986.61609	0.20 D - 02	-0.00197	-0.98623
26	25	987.41429	0.20 D - 02	-0.00044	-0.22151
27	26	988.20812	0.20 D - 02	-0.0011	-0.5479
28	27	988.99354	0.20 D - 02	0.00011	0.05364
29	28	989.77316	0.20 D - 02	0.00054	0.272
30	29	990.54765	0.20D-02	-0.00047	-0.23374
31	30	991.3138	0.20D-02	0.00027	0.1353
32	31	992.07405	0.20D-02	0.00031	0.15319
33	32	992 82652	0.20D-02	0.00152	0 75883
34	33	993 57465	0.20D-02	0.00102	0.21616
35	34	00/ 31582	0.20D-02 0.20D-02	-0.00040	-0 16586
36	34 35	005.04023	0.20D-02	0.000000	0.00674
50 27	00 26	990.04920 005 7762	0.20D-02	0.00001	0.01770
21	00 97	995.1105	0.20D-02	0.00004	0.01779
- 30 20	31 20	990.49704	0.20D-02	-0.00029	-0.14309
39	- 00 - 20	997.21105	0.20D-02	-0.00055	-0.27591
40	39	997.91818	0.20D-02	-0.00066	-0.32886
41	40	998.61757	0.20D-02	0.00027	0.13529
42	41	999.30972	0.20D-02	0.00171	0.85744
43	42	999.99884	0.20D-02	-0.00055	-0.27356
44	43	1000.67807	0.20D-02	0.00033	0.16632
45	44	1001.34976	0.20D-02	0.00199	0.99527
46	45	1002.01788	0.20 D - 02	0.00045	0.22315
47	46	1002.67914	0.20 D - 02	-0.00102	-0.51171
48	47	1003.33138	0.20 D - 02	-0.00027	-0.13548
49	48	1003.97751	0.20 D - 02	-0.00021	-0.10434
50	49	1004.61804	0.20 D - 02	-0.00138	-0.68998
51	50	1005.2488	0.20 D - 02	0.00038	0.19241
52	51	1005.87557	0.20 D - 02	-0.00071	-0.35389
53	52	1006.49023	0.20 D - 02	0.00345	1.72491
54	53	1007.1055	0.20 D - 02	0.00013	0.06258
55	54	1007.71111	0.20 D - 02	-0.00042	-0.21211
56	55	1008.30877	0.20D-02	0.00008	0.03911
57	56	1008.89866	0.20D-02	0.00145	0.72597
58	57	1009.486	0.20D-02	-0.00156	-0.77828
59	58	1010.06215	0.20D-02	-0.00031	-0.15492
60	59	1010 63291	0.20D-02	-0.00062	-0.31022
61	60	1010.00201 1011.19512	0.20D-02	0.00066	0.32953
62	61	1011.15012 1011.751/1	$0.20D_{-}02$	0.00000	0.44303
63	62	10112 30061	0.20D-02 0.20D-02	0.000000	0.60897
64	62	1012.00001	0.20D-02	0.00122 0.0015	0.75105
65	64	1012.04200	0.20D-02	0.0015	0.75105
66	65	1013.30040 1013.00054	0.20D-02	-0.00039	0.57672
67	00 66	1013.90934	0.20D-02	-0.00113	0.20024
60	67	1014.43040 1014.04410	0.20D-02	-0.00002	-0.30924
00 60	60	1014.94419	0.20D-02	0.00009	0.04401
09	08 C0	1015.45110	0.20D-02	0.00047	0.23007
70	69 70	1015.94799	0.50D-02	0.00392	0.78495
(1	70	1016.44425	0.20D-02	0.00086	0.42974
72	71	1016.93253	0.20D-02	-0.00133	-0.00202
73	72	1017.4128	0.20D-02	-0.00261	-1.30011
74	73	1017.88198	0.20D-02	0.00007	0.03335
75	74	1018.34745	0.20D-02	-0.00068	-0.34164
76	75	1018.80114	0.20D-02	0.0032	1.59799
77	76	1019.25528	0.20D-02	-0.00054	-0.26921
78	77	1019.69807	0.20 D - 02	-0.00009	-0.04468
79	78	1020.13618	$0.20 \text{D}{-}02$	-0.00216	-1.07988
80	79	1020.56236	0.20 D - 02	0.0005	0.24923
81	80	1020.98341	0.20 D - 02	0.00107	0.53517

Table A.1, Fourier Transform Infrared Data for  70 GeO (cm⁻¹) (*Cont'd*)

Table A.1, Fourier Transform Infrared Data for  70 GeO (cm⁻¹) (*Cont'd*)

J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
82	81	1021.40021	0.20D-02	-0.00134	-0.66805
83	82	1021.80482	0.20D-02	0.00121	0.60309
85	84	1022.59802	0.20D-02	0.00054	0.26787
86	85	1022.98369	0.20D-02	0.00022	0.10798
			0.202 02	0.000	
The	4-3 Ba	nd 157 data	I'' = 3	<i>I</i> " = 8	4
Unc	1 0 Da	2 1D-03 Un	$c_{Max} = 5.0$	$D_{-03} = 0$	1
(Err)	Avge – (Unc )	4.12  00,  01	02 BMSB :	= 0.66	
(111)	0110.)	Avge = 0.0D	02, 100010	- 0.00	
83	84	854.39926	0.20 D - 02	-0.00079	-0.39444
82	83	855.83701	0.20 D - 02	-0.00099	-0.49538
81	82	857.26924	0.20 D - 02	-0.00099	-0.49427
80	81	858.69448	0.20 D - 02	0.00068	0.33852
79	80	860.11465	0.20 D - 02	0.00209	1.04278
78	79	861.53024	0.20 D - 02	0.00272	1.35829
77	78	862.94776	0.20 D - 02	-0.00394	-1.97028
76	77	864.34831	0.20 D - 02	0.00101	0.50674
75	76	865.74646	0.20 D - 02	0.00298	1.48916
74	75	867.14584	0.20 D - 02	-0.00168	-0.83836
73	74	868.53515	0.20 D - 02	-0.00166	-0.83111
72	73	869.91835	0.20 D - 02	-0.00094	-0.46941
71	72	871.29593	0.20 D - 02	-0.00003	-0.01352
70	71	872.66943	0.20 D - 02	-0.00047	-0.23384
69	70	874.03592	0.20 D - 02	0.00066	0.32935
68	69	875.39956	0.20 D - 02	-0.00081	-0.40423
67	68	876.75514	0.20 D - 02	0.00031	0.15499
66	67	878.1073	0.20 D - 02	-0.00063	-0.31323
65	66	879.45378	0.20 D - 02	-0.00137	-0.68428
64	65	880.79366	0.20 D - 02	-0.001	-0.49852
63	64	882.12747	0.20 D - 02	-0.00007	-0.0363
62	63	883.4577	0.20 D - 02	-0.00109	-0.54298
61	62	884.77952	0.20 D - 02	0.00078	0.39113
60	61	886.09879	0.20 D - 02	-0.00033	-0.16447
59	60	887.41197	0.20 D - 02	-0.00091	-0.45509
58	59	888.71875	0.20 D - 02	-0.00065	-0.32606
57	58	890.0168	0.20 D - 02	0.00276	1.38216
56	57	891.31537	0.20 D - 02	0.00009	0.04413
55	56	892.60228	0.20 D - 02	0.00347	1.73454
55	56	892.60228	0.20 D - 02	0.00347	1.73454
54	55	893.89104	0.20 D - 02	-0.0006	-0.30206
53	54	895.17009	0.20 D - 02	-0.00058	-0.29109
52	53	896.44353	0.20 D - 02	-0.00057	-0.28293
51	52	897.71119	0.20 D - 02	-0.00042	-0.2081
50	51	898.97364	0.20 D - 02	-0.0007	-0.35199
49	50	900.23069	0.20 D - 02	-0.00125	-0.62498
48	49	901.48294	0.20 D - 02	-0.00267	-1.33264
47	48	902.72598	0.20 D - 02	-0.00054	-0.2703
46	47	903.96565	0.20 D - 02	-0.00075	-0.37349
45	46	905.19902	0.20 D - 02	-0.00036	-0.17766
44	45	906.42698	0.20 D - 02	-0.00027	-0.13329
43	44	907.64952	0.20D-02	-0.00047	-0.23587
42	43	908.86537	0.20 D-02	0.00027	0.13414
41	42	910.07612	0.20 D - 02	0.00036	0.18127
40	41	911.2799	0.20D-02	0.00167	0.83494
39	40	912.48129	0.20D-02	-0.00039	-0.19526
38	39	913.67366	0.20D-02	0.00078	0.39005
37	38	914.86184	0.20D-02	0.00035	0.17547
36	$3\overline{7}$	916.04374	0.20D-02	0.0004	0.2004
35	36	917.22119	0.20D-02	-0.00091	-0.45567

Table	, <b>11.1</b> , .	rounci mana	norm minar	cu Data ioi	
J'	$J^{\prime\prime}$	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
34	$\overline{35}$	918.39037	0.20D-02	0.00023	0.11672
33	34	919.55476	0.20 D - 02	0.00032	0.16207
32	33	920.71471	0.20 D - 02	-0.00099	-0.49528
31	32	921.86583	0.20 D - 02	0.00067	0.33417
30	31	923.01331	0.20 D - 02	0.00011	0.05491
29	30	924.15408	0.20 D - 02	0.00037	0.18632
28	29	925.29051	0.20 D - 02	-0.00091	-0.45724
27	28	926.41918	0.20 D - 02	-0.00034	-0.17125
26	27	927.54101	0.20 D - 02	0.00116	0.57865
25	26	928.65773	0.20 D - 02	0.00185	0.92686
24	25	929.77141	0.20 D - 02	-0.00035	-0.17718
23	24	930.876	0.20 D - 02	0.00058	0.29082
22	23	931.97598	0.20 D - 02	0.00017	0.0853
21	22	933.06876	0.20 D - 02	0.00099	0.49567
20	21	934.15594	0.20 D - 02	0.00144	0.72125
19	20	935.23976	0.20 D - 02	-0.00075	-0.37365
18	19	936.31686	0.20 D - 02	-0.00222	-1.10958
17	18	937.38512	0.20D-02	-0.00086	-0.43223
16	17	938.44851	0.20D-02	-0.00066	-0.33229
15	16	939.5059	0.20D-02	-0.00049	-0.24535
14	15	940.55834	0.20D-02	-0.00142	-0.7122
13	14	941.60157	0.20D-02	0.00079	0.39652
12	13	942.64025	0.20D-02	0.00149	0.74518
11	12	943.67672	0.20D-02	-0.00168	-0.84196
10	11	944.70358	0.20D-02	-0.00133	-0.66563
9	10	945.72475	0.20D-02	-0.0014	-0.70157
8	9	946.73994	0.20D-02	-0.00161	-0.80541
7	8	947.74882	0.20D-02	-0.00164	-0.81787
6	7	948.74662	0.20D-02	0.00328	1.6402
5	6	949.74642	0.20D-02	0.00006	0.02813
4	5	950.73744	0.20D-02	-0.00056	-0.27979
3	4	951.72015	0.20D-02	0.00096	0.48058
2	3	952.70058	0.20D-02	-0.00142	-0.71142
8	7	963.04588	0.20D-02	0.00029	0.14608
9 10	8	903.94781	0.20D-02	0.00129	0.04270
10	9 10	904.84051 065 72667	0.20D-02	-0.00083	-0.41302
11	10	900.73007 066 61701	0.20D-02	-0.00074	-0.30891
12 19	11 10	900.01/81	0.20D-02	0.002	1.00100
13 14	12	907.49019	0.20D-02	0.00113	0.00004 0.99901
14 15	13 14	900.30707	0.20D-02	0.00078	0.30001
10 16	14 15	909.20204 970 00139	0.20D-02	0.00034	0.10024
10 17	10 16	970.09192	0.20D-02	-0.00010 -0.00010	-0 34237
18	17	071 78872	0.20D-02	0.00008	0.04207
10	18	972 62021	0.20D-02 0.20D-02	-0 00130	-0 69388
20	10	973 46216	0.20D-02 0.20D-02	-0.00135	-0.82986
20 91	19 20	974 98619	0.20D-02 0.20D-02	0.00100	0.24116
$\frac{21}{22}$	$\frac{20}{21}$	975 1020	0.20D-02 0.20D-02	0.00040	1 6731
$\frac{22}{23}$	22	975 92107	0.20D-02 0.20D-02	-0.00168	-0 8399
$\frac{23}{24}$	23	976 72581	0.20D-02	0.00100	0 11614
$\frac{24}{25}$	$\frac{20}{24}$	977.52699	0.20D-02	-0.00082	-0.40977
$\frac{20}{26}$	25	978.31962	0.20D-02	0.00015	0.07638
$\frac{23}{27}$	$\frac{20}{26}$	979.10825	0.20D-02	-0.00141	-0.70636
$\frac{21}{28}$	$\frac{20}{27}$	979.88738	0.20D-02	-0.00003	-0.01409
$\frac{20}{29}$	$\frac{21}{28}$	980.66278	0.20D-02	-0.00148	-0.73779
$\frac{10}{30}$	$\frac{10}{29}$	981.42918	0.20D-02	-0.0005	-0.24843
31	$\frac{10}{30}$	982.19038	0.20D-02	-0.00089	-0.44709
$\frac{31}{32}$	31	982.94487	0.20D-02	-0.00119	-0.59482

Table A.1, Fourier Transform Infrared Data for  70 GeO (cm⁻¹) (*Cont'd*)

J'	$J^{\prime\prime}$	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
33	32	983.68992	0.20 D - 02	0.00134	0.67234
34	33	984.43483	0.20 D - 02	-0.0026	-1.30167
35	34	985.16469	0.20 D-02	0.00186	0.93208
36	35	985.89518	0.20 D - 02	-0.00094	-0.47243
37	36	986.61436	0.20 D - 02	0.0009	0.4486
38	37	987.33028	0.20 D - 02	-0.00066	-0.3308
39	38	988.0376	0.20D-02	-0.00031	-0.1568
40	39	988.73897	0.20D-02	-0.00071	-0.35549
41	40	989.43562	0.20D-02	-0.0031	-1.54806
42	41	990.12065	0.20D-02	-0.00058	-0.29047
43	42	990 79981	0.20D-02	0.00107	0.53599
44	43	991 47108	0.50D-02	0.00387	0 77409
45	44	992 14212	0.20D-02	0.00014	0.07112
46	45	002 80304	0.20D-02 0.20D-02	-0.00113	-0 56251
40	40	003 45604	0.20D-02 0.20D 02	-0.00115	0 18101
41	40	995.45094	0.20D-02	-0.00030	-0.10191 1 47186
40	41	994.1000	0.20D-02	0.00294 0.0011	0.55946
49	40	994.74401	0.20D-02	-0.0011	-0.35240
50	49	995.37714	0.20D-02	-0.00009	-0.04004
51	50	996.003	0.20D-02	0.00056	0.27994
52	51	996.62272	0.20D-02	0.00051	0.25418
53	52	997.23667	0.20D-02	-0.00063	-0.31445
54	53	997.84321	0.20D-02	-0.00121	-0.60727
55	54	998.4417	0.20D-02	-0.00064	-0.32044
56	55	999.03174	0.20 D - 02	0.00149	0.74475
57	56	999.61697	0.20 D - 02	0.00152	0.76204
58	57	1000.19745	0.20 D - 02	-0.00061	-0.30464
59	58	1000.76893	0.20 D-02	-0.00067	-0.33692
60	59	1001.33538	0.20 D - 02	-0.00265	-1.32593
61	60	1001.89155	0.20D-02	-0.00131	-0.65347
62	61	1002.44266	0.20 D - 02	-0.00187	-0.93484
63	62	1002.98456	0.20D-02	-0.0002	-0.10186
64	63	1003.52132	0.20D-02	-0.00038	-0.19085
65	64	1004.0525	0.20D-02	-0.002	-0.99815
66	65	1004.57407	0.20D-02	-0.00102	-0.51009
67	66	1005.08776	0.20D-02	0.0008	0.40197
68	67	1005.59733	0.20D-02	-0.0003	-0.14782
69	68	1006 09725	0.20D-02	0.0012	0.59816
70	69	1006 58682	0.20D-02	0.0012 0.00597	1 19361
71	70	1007.08	0.000 02 0.20D-02	0.00005	0.02342
72	71	1007.55933	$0.20D_{-}02$	0.00008	0.43991
72	72	1007.00000	0.20D-02 0.20D 02	0.000000	0.1070
73	72	1008.05500 1008.50102	0.20D-02	-0.0004	0.00643
75	73	1008.00102	0.20D-02	-0.00131	0.72701
76	74	1008.93033 1000.41147	0.20D-02	0.00140 0.00181	0.00624
70	10 76	1009.41147	0.20D-02	-0.00181	-0.90034
70	70	1009.00002	0.20D-02	0.00003	1.06595
18	( (	1010.294	0.20D-02	-0.00253	-1.20385
(9	(8 70	1010.72219	0.20D-02	-0.00059	-0.29454
80	79	1011.1474	0.20D-02	-0.00287	-1.43264
81	80	1011.55925	0.20D-02	0.00101	0.50336
82	81	1011.96814	0.20D-02	0.00061	0.30747
The	5-4 Ba	nd, 133 data,	$J''_{min} = 0$	$J''_{max} = 7$	2
Unc.	Avge =	= 2.6D-03, Une	$c_{Max} = 1.0$	D-02	
(Err/	/Unc.)	Avge = -1.4D-	01, RMSR =	= 0.87	
<i>C</i> 1	60	976 961 4C	0 500 02	0.00025	1 66017
01 60	02	010.20140	0.30D-02	0.00835	1.00917
50	01	811.38301	0.20D-02	-0.00100	-0.82920
59	6U	818.88773	0.20D-02	-0.00026	-U.1280
58	59	880.18091	0.50D-02	0.00708	1.415/5

						~	_		
Table A.1.	Fourier	Transform	Infrared	Data f	for 70	⁰ GeO (	$(cm^{-1})$	) (	(Cont'd)

Table	· · · · · , .	iounci mane	sonn minar	cu Data loi	
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
57	58	881.47968	0.50D-02	0.00325	0.64974
56	57	882.77381	0.20D-02	-0.00152	-0.7591
55	56	884.05762	0.20D-02	-0.00155	-0.77641
54	55	885.33428	0.20D-02	-0.00004	-0.01798
53	54	886.61066	0.20D-02	-0.00384	-1.91924
52	53	887.87492	0.20D-02	-0.00115	-0.57558
51	52	889 13813	0.20D-02	-0.00305	-1 52252
50	51	890 38743	0.20D-02	0.00333	0.66583
49	50	891 64038	0.20D-02	0.00041	0 20519
48	49	892 88565	0.20D-02	-0.0005	-0.25106
47	48	894 12521	0.20D-02	-0.00138	-0.68968
46	47	895 35854	0.20D-02 0.20D-02	-0.00100	-0.85612
45	46	896 58345	0.20D-02	0.00069	0.34412
40	45	897 80374	0.20D-02 0.20D-02	0.00000	0.09557
44	40	800 02038	0.20D-02	0.00199	0.55557
40	44	000 23060	0.20D-02 0.20D-02	0.00125	0.53021
42	49	900.23003	0.20D-02 0.20D-02	-0.00100	-0.95765
40	41	002 63451	0.20D-02	0.00132	0.15377
30	41	002.03451	0.20D-02	0.00031 0.00121	0.10377
38	30	905.8205	0.20D-02	0.00121 0.00324	1 62217
37	38	905.01158 006.10755	0.20D-02	0.00324 0.00130	0.60685
36	37	900.19799 007 37974	0.20D-02	-0.00139	0.51872
35	36	008 53072	0.20D-02	-0.00104 0.00171	0.856
34	35	900.00912	0.20D-02	0.00171	0.50818
24 22	30 34	909.70030	0.20D-02	-0.00102	1 17601
20	22	012 00823	0.20D-02	-0.00233	1 48774
32 31	30 30	912.00823 013 16263	0.30D-02	0.00744	0.28007
30	32 31	915.10205 014 20638	0.20D-02	-0.00030	1 2/37/
20	30	914.29058	0.30D-02 0.20D-02	0.00022	0.29201
29	20	016 56445	0.20D-02	0.00053 0.00157	0.23201
$\frac{20}{27}$	29	01768816	0.20D-02	0.00157	0.77458
21	$\frac{20}{27}$	018 80500	0.20D-02	0.00075	0.05650
20 25	21	010 01539	0.20D-02	0.00161	0.80302
20	20 25	021 0202	0.20D-02	0.00101	0.02286
$\frac{24}{23}$	20 24	921.0202 022.1213	0.20D-02	0.00185	0.92280
20 22	24	922.1215 023 21457	0.20D-02	-0.00008	0.05424
22	20 00	925.21457	0.20D-02	-0.00011	1.97007
21	22 91	924.300000 025.38510	0.30D-02	-0.00035	1 08702
10	21	920.00019	0.20D-02	-0.00218	-1.00792
19	10	920.40040 02752605	0.20D-02	-0.00010	0.78650
17	19	921.52005 028 50044	0.20D-02	0.00157	0.24520
16	17	928.59044 929 64874	0.20D-02 0.20D-02	-0.00043	-0 26596
15	16	030 7024	0.20D-02 0.20D-02	-0.00095	-0.20330
14	15	031 74503	0.20D-02 0.20D-02	-0.00235	-0.18501
19	10	032 78322	0.20D-02 0.20D-02	0.00057	0.20305
10	13	033 81108	0.20D-02 0.50D-02	0.000000	1.16447
12	10	034 84305	0.30D-02 0.20D-02	-0.00004	_0 01008
10	11	935 86432	0.20D-02	-0.00004	0.25476
0	10	936 87965	0.20D-02	0.00001	-0.00032
8	9	937 88833	0.20D-02	0.00	0.01405
7	8	938 89213	0.20D-02	-0.00119	-0 59287
6	7	939 88977	0.20D-02	-0.00236	-1 18181
5	6	940 87932	0.20D-02	-0.00161	-0 80348
4	5	941.86815	0.50D-02	-0.00629	-1.25747
3	4	942.83973	0.20D-02	0.00011	0.05678
$\frac{3}{2}$	3	943.81132	0.20D-02	0.00032	0.16222
1	2	944.76588	0.10D-01	0.01138	1.13836
Ō	1	945 73668	0.20D-02	-0.00001	-0.00523

Table A 1	Fourier Trans	form Infrared	d Data for	70 GeO	$(cm^{-1})$	(Cont'd)

Table	11.1,	rounci mane	norm minar	cu Data loi	
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
1	0	947.64242	0.50D-02	-0.00559	-1.11894
2	1	948.57436	0.20D-02	0.00319	1.59592
3	2	949.51143	0.20D-02	0.0006	0.29938
5	4	951.36285	0.20D-02	-0.00065	-0.32663
6	5	952.28048	0.20D-02	-0.00263	-1.31271
$\tilde{7}$	6	953.18946	0.20D-02	-0.00224	-1.12199
8	$\tilde{7}$	954.09474	0.50D-02	-0.00447	-0.89413
ğ	8	954 9868	0.20D-02	0.0002	0 10142
10	ğ	955.87859	0.20D-02	-0.00118	-0.58758
11	10	956 76375	0.20D-02	-0.00228	-1 13829
12	11	957 64046	0.20D-02	-0.00128	-0 64151
13	12	958 51005	0.20D-02	0.00046	0 23178
14	13	959 37353	0.20D-02	0.00194	0.97076
15	14	960 23381	0.20D-02	0.00023	0 11448
17	16	961 93423	0.20D-02	-0.00227	-1 13255
18	17	962.76936	0.20D-02	0.00193	0.9649
19	18	963.60331	0.20D-02	0.00087	0.43331
20	19	964 43122	0.20D-02	-0.00061	-0.30317
$\frac{20}{21}$	20	965 25102	0.20D-02	-0.00043	-0 21558
$\frac{-1}{22}$	21	966 06403	0.20D-02	0.00007	0.0352
23	$\frac{21}{22}$	966 86927	0.20D-02	0.00185	0 92314
$\frac{20}{24}$	23	967 67004	0.20D-02	0.00159	0 79726
$\frac{21}{25}$	24	968 46542	0.20D-02	0.00022	0 11158
$\frac{-6}{26}$	25	969 25497	0.20D-02	-0.00184	-0.91986
$\frac{20}{27}$	$\frac{20}{26}$	970.03579	0.20D-02	-0.00171	-0.85316
$\frac{-1}{28}$	$\frac{-0}{27}$	970.80869	0.20D-02	-0.0002	-0.09924
$\frac{-0}{29}$	$\frac{21}{28}$	971 57829	0.20D-02	-0.00194	-0.96923
$\frac{-0}{30}$	$\frac{-0}{29}$	972 33868	0.20D-02	-0.00105	-0.52406
31	$\frac{-0}{30}$	973.09324	0.20D-02	-0.00091	-0.45481
32	31	973.8404	0.20D-02	0.00003	0.01746
33	32	974.58402	0.20D-02	-0.00209	-1.0433
34	33	975.31734	0.20D-02	-0.00053	-0.26317
$35^{-1}$	34	976.04525	0.20D-02	-0.00019	-0.09316
36	35	976.76437	0.20D-02	0.00231	1.15555
37	36	977.47865	0.20D-02	0.00298	1.49195
38	37	978,1903	0.20D-02	-0.00038	-0.1901
39	38	978.89074	0.20D-02	0.00079	0.3933
40	39	979.58055	0.50D-02	0.00589	1.17841
41	40	980.27476	0.20D-02	-0.00011	-0.05306
$42^{$	41	980.95587	0.20D-02	0.00028	0.13993
43	$42^{$	981.63094	0.20D-02	-0.00002	-0.01117
44	43	982.30008	0.20D-02	-0.00112	-0.56244
45	44	982.96037	0.20D-02	-0.00014	-0.0701
46	45	983.61499	0.20D-02	-0.00025	-0.12537
47	46	984.26689	0.20D-02	-0.00442	-2.20933
48	47	984.90599	0.20D-02	-0.00258	-1.28821
49	48	985.55431	0.10D-01	-0.01676	-1.67564
50	49	986.16643	0.20D-02	-0.00155	-0.77549
51	50	986.78561	0.20D-02	-0.00023	-0.11635
52	51	987.39931	0.20D-02	-0.00026	-0.13193
53	52	988.00669	0.20 D - 02	-0.00084	-0.41854
54	53	988.60541	0.20D-02	0.00039	0.19267
55	54	989.20638	$0.50 \text{D}{-}02$	-0.00752	-1.50384
56	55	989.78844	0.20D-02	-0.0034	-1.70161
57	56	990.36394	0.20 D - 02	0.00037	0.18538
58	57	990.93819	0.20D-02	-0.00152	-0.75991
59	58	991.50864	$0.50 \text{D}{-}02$	-0.00654	-1.30749
60	59	992 06177	0 20D-02	-0.00117	-0 58743

Table A.1, Fourier Transform Infrared Data for  70 GeO (cm⁻¹) (*Cont'd*)

10010	, <u>, , , , , , , , , , , , , , , , , , </u>	Fourier fram	norm minar	ca Bata ioi	
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
61	60	992.61261	0.20D-02	-0.00046	-0.23226
62	61	993.1491	$0.50 \text{D}{-}02$	0.00762	1.52418
63	62	993.69155	$0.50 \text{D}{-}02$	0.00277	0.55374
64	63	994.2254	0.20 D - 02	-0.00047	-0.23688
65	64	994.74481	$0.50 \text{D}{-}02$	0.00372	0.74417
66	65	995.26983	0.20 D - 02	-0.00471	-2.35508
67	66	995.77665	0.20 D - 02	-0.00197	-0.98472
68	67	996.28048	0.20 D - 02	-0.00328	-1.6399
69	68	996.76826	$0.50 \text{D}{-}02$	0.00441	0.88118
70	69	997.25785	$0.50 \text{D}{-}02$	0.00322	0.64302
71	70	997.7422	0.20 D - 02	0.00018	0.09244
72	71	998.21585	0.20 D - 02	0.00077	0.38623
73	72	998.68972	$0.50 \text{D}{-}02$	-0.00597	-1.19499
The 6 Unc. (Err/	3-5  Ba $_{4vge} =$ (Unc.)	nd, 109 data, 3.2D-03, Un Avge = -5.4D-	$J''_{min} = 9$ c. $_{Max} = 1.0$ 01, RMSR	$J_{max}^{"} = 7$ DD-02 = 1.17	0
69	70	857 15509	0.50D-02	-0.00791	-1 58197
68	69	858.49556	0.50D-02	0.00062	0.12375
67	68	859.83916	0.50D-02	0.00057	0.11487
66	67	861.1779	0.20D-02	-0.00008	-0.0419
65	66	862.51063	0.20D-02	-0.00021	-0.1032
64	65	863.8382	0.20D-02	-0.00065	-0.32709
62	63	866.47685	0.20D-02	-0.00155	-0.77409
61	62	867.77881	0.50D-02	0.00709	1.4188
60	61	869.09053	0.20D-02	0.00045	0.22401
59	60	870.38981	0.20D-02	0.00071	0.35647
58	59	871.69559	$0.50 \text{D}{-}02$	-0.01108	-2.21637
57	EO	979 07606	0.900.09	0.00919	1 56265

Table A.1, Fourier Transform Infrared Data for  70 GeO (cm⁻¹) (*Cont'd*)

		5				
69	70	857.15509	$0.50 \text{D}{-}02$	-0.00791	-1.58197	
68	69	858.49556	$0.50 \text{D}{-}02$	0.00062	0.12375	
67	68	859.83916	$0.50 \text{D}{-}02$	0.00057	0.11487	
66	67	861.1779	0.20D-02	-0.00008	-0.0419	
65	66	862.51063	0.20D-02	-0.00021	-0.1032	
64	65	863.8382	0.20D-02	-0.00065	-0.32709	
62	63	866.47685	0.20D-02	-0.00155	-0.77409	
61	62	867.77881	$0.50 \text{D}{-}02$	0.00709	1.4188	
60	61	869.09053	0.20 D - 02	0.00045	0.22401	
59	60	870.38981	0.20D-02	0.00071	0.35647	
58	59	871.69559	$0.50 \text{D}{-}02$	-0.01108	-2.21637	
57	58	872.97606	0.20D-02	-0.00313	-1.56365	
56	57	874.25797	0.20D-02	-0.00218	-1.0921	
55	56	875.53464	0.20D-02	-0.00157	-0.7867	
54	55	876.80926	0.20D-02	-0.00452	-2.25787	
53	54	878.0704	0.20D-02	0.00042	0.20899	
52	53	879.34416	0.10D-01	-0.01288	-1.28833	
51	52	880.58492	0.20D-02	0.0012	0.5999	
50	51	881.83242	$0.50 \text{D}{-}02$	0.0029	0.57924	
49	50	883.07791	0.20D-02	0.00095	0.47745	
48	49	884.31428	$0.50 \text{D}{-}02$	0.00248	0.49504	
47	48	885.55041	0.20D-02	-0.00142	-0.712	
46	47	886.78024	0.20D-02	-0.00471	-2.35678	
45	46	887.99874	0.20 D - 02	-0.00236	-1.18226	
44	45	889.21472	0.20 D - 02	-0.0032	-1.59885	
43	44	890.42233	0.20 D - 02	-0.00137	-0.68716	
42	43	891.62193	$0.50 \text{D}{-}02$	0.00274	0.54896	
41	42	892.82237	0.20 D - 02	0.00028	0.13925	
40	41	894.01842	0.20 D - 02	-0.00354	-1.77204	
39	40	895.20291	0.20 D - 02	-0.00156	-0.78205	
38	39	896.38245	0.20 D - 02	-0.00039	-0.19628	
37	38	897.55601	0.20 D - 02	0.00097	0.48471	
36	37	898.7261	0.20 D - 02	0.00001	0.00539	
35	36	899.88648	$0.50 \text{D}{-}02$	0.00296	0.59209	
34	35	901.06276	0.10D-01	-0.0158	-1.58027	
33	34	902.20194	0.20 D - 02	-0.00328	-1.63987	
31	32	904.48412	0.20 D - 02	0.00041	0.20489	
30	31	905.61787	0.20 D - 02	0.00081	0.40705	
29	30	906.75245	$0.50 \text{D}{-}02$	-0.00548	-1.09602	
28	29	907.87381	0.20 D - 02	-0.00442	-2.21205	
27	28	908.98175	0.50 D - 02	0.00415	0.8302	

Table	e A.1, .	Fourier Trans	siorm Imirar	ed Data for	GeO (cm ⁻¹ ) (Cont ⁻ a)
J'	$J^{\prime\prime}$	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
26	27	910.1002	0.20 D - 02	-0.00369	-1.84303
25	26	911.20608	0.20 D - 02	-0.00487	-2.4332
24	25	912.30064	0.20 D - 02	-0.00064	-0.32073
23	24	913.38829	$0.50 \text{D}{-}02$	0.00455	0.90954
22	23	914.47126	$0.50 \text{D}{-}02$	0.00847	1.69394
21	22	915.5597	0.20 D - 02	0.00096	0.48158
20	21	916.63681	0.20 D - 02	-0.00118	-0.5915
19	20	917.70638	0.20 D - 02	-0.00176	-0.8801
18	19	918.76862	0.20 D - 02	-0.00101	-0.50488
17	18	919.82559	0.20 D - 02	-0.00099	-0.49652
16	17	920.87321	0.20D-02	0.00236	1.17935
15	16	921.90365	0.10D-01	0.01686	1.6864
14	15	922.9597	0.20D-02	-0.00028	-0.13927
13	14	923.99784	0.50 D - 02	-0.00555	-1.11005
11	12	926.04093	0.20D-02	-0.00112	-0.55852
10	9	946.941	0.20D-02	-0.00472	-2.36036
11	10	947.81851	0.20D-02	-0.00435	-2.17479
12	11	948.68199	0.50D-02	0.0037	0.74019
14	13	950.41128	0.20D-02	-0.00162	-0.80875
16	15	952.10962	0.20D-02	-0.00154	-0.77038
17	16	952.94216	$0.50 \text{D}{-}02$	0.00552	1.10375
18	17	953.79051	$0.50 \text{D}{-}02$	-0.00965	-1.93072
19	18	954.60624	0.20D-02	0.00136	0.68014
20	19	955.42831	0.20D-02	-0.0004	-0.20066
21	20	956.24441	0.20D-02	-0.00266	-1.33025
22	21	957.04759	0.20D-02	0.00153	0.76542
24	23	958.64293	0.20D-02	0.00148	0.73855
25	24	959.43217	0.20D-02	0.00013	0.06404
26	25	960.21587	0.20D-02	-0.0022	-1.09916
27	26	960.99367	$0.50 \text{D}{-}02$	-0.00514	-1.02886
28	27	961.75532	0.20D-02	0.00151	0.75414
29	28	962.51985	0.20D-02	-0.00127	-0.63637
32	31	964.77309	$0.50 \text{D}{-}02$	-0.00871	-1.74168
33	32	965.50273	0.20D-02	-0.00293	-1.46733
34	33	966.22785	0.20D-02	0.00075	0.37739
35	34	966.95349	0.20D-02	-0.00271	-1.35601
36	35	967.67004	0.20D-02	-0.00373	-1.86371
37	36	968.37966	0.20D-02	-0.00446	-2.23172
38	37	969.07821	0.20D-02	-0.00079	-0.39619
39	38	969.77067	0.50D-02	0.00229	0.4587
40	39	970.4682	0.50D-02	-0.00638	-1.2756
41	40	971.14394	0.20D-02	0.00005	0.02541
42	41	971.81949	0.20D-02	-0.00005	-0.02611
43	42	972.48851	0.20D-02	-0.00035	-0.17481
44	43	973.15368	0.20D-02	-0.00353	-1.76675
45	44	973.80786	0.20D-02	-0.00248	-1.23815
46	45	974.45344	0.20D-02	0.00042	0.20977
47	46	975.10185	0.50D-02	-0.00629	-1.25763
48	47	975.72917	$0.50 \text{D}{-}02$	0.00131	0.26164
49	48	976.36996	$0.50 \text{D}{-}02$	-0.01136	-2.27279
50	49	976.97956	0.20 D - 02	0.00035	0.1765
51	50	977.59264	$0.50 \text{D}{-}02$	0.00176	0.35136
52	51	978.20383	0.20D-02	-0.00179	-0.89265
53	52	978.80582	0.20D-02	-0.00298	-1.48776
54	53	979.40399	0.50D-02	-0.00721	-1.44129
55	54	979.98292	$0.50 \text{D}{-}02$	0.00093	0.18587
56	55	980.56613	0.20D-02	-0.0021	-1.05031
57	56	981.13602	$0.50 \text{D}{-}02$	0.00129	0.25824

Table A.1.	Fourier	Transform	Infrared	Data	for	70 GeO	$(cm^{-1})$	(Cont'd)

J'	$J^{\prime\prime}$	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
58	57	981.69782	0.50D-02	0.00586	1.1724
59	58	982 26341	0.20D-02	-0.00027	-0 13528
60	50	082 81610	0.20D 02 0.20D 02	0.00054	0.26065
00 61	09 60	902.01019 002.2000	0.20D-02	-0.00034	-0.20303
01	00	983.3080	0.50D-02	-0.00739	-1.47733
62	61	983.89828	0.50D-02	0.00153	0.30694
63	62	984.43483	0.20D-02	-0.00339	-1.694
65	64	985.49039	0.10D-01	-0.01667	-1.66661
66	65	985.99743	0.10D-01	-0.01308	-1.30768
67	66	986.49725	0.50 D - 02	-0.00929	-1.85849
68	67	986 98876	0 20D-02	-0.00424	-2 11779
00	01	000.00010	0.202 02	0.00121	2.11110
m1 =		1 0 4 1 4	71) 1.4	T" 0	1
The 7	-6 Bar	id, 64 data, .	$J''_{min} = 14$	$J''_{max} = 0$	4
Unc.	Avge =	4.3D-03, Une	$c{Max} = 1.0$	D-02	
(Err/	$\operatorname{Unc.})_A$	$A_{vge} = -6.7 D$ -	$01, \mathrm{RMSR}$	= 1.43	
F 4		-	0 500 00	0.0111	0.00044
54	55	808.31278	0.50D-02	-0.0111	-2.22044
53	54	869.56968	0.50D-02	-0.0084	-1.68036
52	53	870.8196	0.20 D - 02	-0.00434	-2.17056
51	52	872.06499	0.20 D - 02	-0.00137	-0.68545
50	51	873.30476	$0.50 \text{D}{-}02$	0.00159	0.31757
49	50	874.5494	0.20D-02	-0.00597	-2.98289
18	10	875 77044	$0.10D_{-}01$	0.00444	0.44372
40	40	876 00921	0.10D-01	0.00444	0.9226
41	40	070.99201	0.10D-01	0.00034	0.0000
45	40	879.43937	0.20D-02	-0.00422	-2.11104
44	45	880.64407	0.20D-02	-0.0002	-0.10157
43	44	881.84795	0.20 D - 02	-0.00108	-0.54067
42	43	883.04819	0.20 D - 02	-0.00404	-2.01934
41	42	884.2273	0.10D-01	0.0084	0.84037
40	41	885.43233	0.50D-02	-0.01082	-2.16307
$37^{-0}$	38	888 94532	0 20D-02	-0.00092	-0.46028
36	37	800 10005	0.50D 02	0.00002	1 23601
25	26	801 96622	0.30D-02	0.00010	1.10252
	30 97	091.20000	0.20D-02	-0.00225	-1.12000
34	35	892.42443	0.50D-02	-0.00922	-1.84328
33	34	893.55886	0.50D-02	0.00167	0.33303
32	33	894.69762	0.50 D - 02	0.00239	0.47733
31	32	895.8385	0.20 D - 02	-0.00485	-2.42657
30	31	896.96376	0.20 D - 02	-0.00232	-1.15769
29	30	898.08636	0.20D-02	-0.00299	-1.49564
28	29	899 203	0 20D-02	-0.00358	-1 79102
$\frac{20}{26}$	$\frac{1}{27}$	901 42545	0.50D-02	-0.0116	-2 32061
25	26	002 50580	0.50D 02	0.0110	1 26487
20	20	902.00009	0.50D-02	0.00052	0.9669
24	20	905.00752	0.10D-01	-0.00207	-0.2008
23	24	904.70538	0.10D-01	-0.01422	-1.42216
22	23	905.7714	0.20D-02	0.00032	0.16128
21	22	906.84806	0.20 D - 02	-0.00173	-0.86348
20	21	907.91932	0.20 D - 02	-0.00433	-2.16571
17	18	911.08414	0.20 D - 02	0.00088	0.44103
16	17	912.13894	0.50D-02	-0.00925	-1.84914
15	16	913 16578	0.50D-02	0.00257	0 51497
14	15	014 20227	0.00D 02	0.0013	0.64886
15	14	049 20107	0.20D-02	-0.0015	1 50296
10	14	942.30197	0.10D-01	0.01000	1.00020
10	15	943.15924	0.20D-02	-0.00238	-1.1905
19	18	945.6372	0.20D-02	0.00076	0.37812
22	21	948.06382	0.20 D - 02	-0.00275	-1.37496
23	22	948.85433	0.20 D - 02	0.00151	0.75295
24	23	949.63823	$0.50 \text{D}{-}02$	0.00588	1.17647
27	26	951.96791	0.50 D-02	0.00199	0.39709
29	$\frac{1}{28}$	953 49016	0 20D-02	-0.00242	-1 20836
32	31	955 71664	0.20D-02	-0.00136	-0.6789
04	01	20011004	0.200-02	0.00100	0.0100

Table A.1, Fourier Transform Infrared Data for  70 GeO (cm⁻¹) (*Cont'd*)

J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
33	32	956.44586	0.20D-02	-0.00125	-0.62409
35	34	957.8904	$0.50 \text{D}{-}02$	-0.00697	-1.39435
37	36	959.30603	$0.50 \text{D}{-}02$	-0.01032	-2.06474
40	39	961.3509	0.10D-01	0.01326	1.32597
42	41	962.71561	0.20 D - 02	-0.00595	-2.9734
45	44	964.67519	$0.50 \text{D}{-}02$	0.00229	0.45881
48	47	966.58099	$0.50 \text{D}{-}02$	0.00351	0.70145
49	48	967.19794	0.10D-01	0.00865	0.86521
51	50	968.42881	$0.50 \text{D}{-}02$	0.00154	0.30754
52	51	969.03542	0.20 D - 02	-0.00344	-1.71817
53	52	969.62523	$0.50 \text{D}{-}02$	0.00155	0.309
55	54	970.7967	0.20 D - 02	-0.00093	-0.46307
56	55	971.37875	$0.50 \text{D}{-}02$	-0.00878	-1.75675
57	56	971.94856	$0.50 \text{D}{-}02$	-0.01131	-2.26121
58	57	972.48828	0.10D-01	0.00935	0.93543
60	59	973.6047	0.20 D - 02	-0.00708	-3.53866
61	60	974.13744	0.20 D - 02	-0.00023	-0.11729
62	61	974.66794	$0.50 \text{D}{-}02$	0.00189	0.37806
64	63	975.7224	$0.50 \text{D}{-}02$	-0.00824	-1.64881
65	64	976.22523	$0.50 \text{D}{-}02$	0.0006	0.12024

Table A.1, Fourier Transform Infrared Data for  70 GeO (cm⁻¹) (*Cont'd*)

### A.2 Fourier Transform Infrared Data for ⁷²GeO

	10010 1								
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc				
	1,250 ⁷² GeO infrared transitions in 8 bands								
The	1-0 Bai	nd 204 data	J, $T$ , $T$	J'' = 1	03				
Unc	A =	20D-03 Un	$c_{min} = 20$	$D_{-03} = 1$	00				
(Err	$/Unc.)_{4}$	2.02  0.00, 0.10	02.  RMSR	= 0.49					
	100	050 01004		0.00051	0.05515				
99	100	853.81934	0.20D-02	0.00051	0.25717				
98	99	855.35207	0.20D-02	0.00008	0.04095				
97	98 07	850.88059	0.20D-02	-0.00127	-0.03504				
90	97	000.40190	0.20D-02	-0.00039	-0.29281				
95	90 05	009.91724 961 42010	0.20D-02	0.00099	0.49444				
94 02	95	862.03572	0.20D-02	-0.00218	-1.00900				
95 02	94 03	864 44001	0.20D-02	0.00010	1 07876				
92 01	95 02	865 03255	0.20D-02 0.20D-02	-0.00210 0.00147	0.7348				
90	91	$867\ 42425$	0.20D-02	0.00147 0.00073	0.36711				
89	90	868 91212	0.20D-02	-0.00138	-0 69195				
88	89	870 38981	0.20D-02	0.00100	0 73247				
87	88	871.86724	0.20D-02	-0.00067	-0.33473				
86	87	873.33775	0.20D-02	-0.00113	-0.56379				
85	86	874.80187	0.20D-02	-0.00044	-0.21978				
84	85	876.26146	0.20D-02	-0.0005	-0.24791				
83	84	877.71478	0.20D-02	0.00044	0.22166				
82	83	879.16427	0.20D-02	-0.00007	-0.0363				
81	82	880.60811	0.20D-02	-0.00022	-0.11187				
80	81	882.04654	0.20D-02	-0.00028	-0.14023				
79	80	883.47961	0.20 D - 02	-0.00029	-0.14668				
78	79	884.90699	0.20 D - 02	0.00006	0.02865				
77	78	886.32989	0.20 D - 02	-0.00044	-0.2194				
76	77	887.7468	0.20 D - 02	-0.0003	-0.15113				
75	76	889.15841	0.20D-02	-0.00022	-0.11166				
74	75	890.56571	0.20D-02	-0.0012	-0.60129				
73	74	891.96544	0.20D-02	0.00002	0.00983				
72	73	893.36089	0.20D-02	0.00012	0.06145				
(1 70	(2 71	894.75096	0.20D-02	0.00021	0.10332				
70 60	71	090.13000 007 E1EGA	0.20D-02	-0.00017	-0.0848				
09 68	70 60	808 88006	0.20D-02	-0.0004	-0.19814				
67	68	900 25767	0.20D-02	-0.00008	-0.04148				
66	67	901 62047	0.20D-02	0.00013	0.063				
65	66	902 97849	0.20D-02	-0.00016	-0 17883				
64	65	904.32962	0.20D-02	0.00058	0.28785				
63	64	905.67648	0.20D-02	0.0003	0.14771				
62	63	907.01624	0.20D-02	0.00163	0.81547				
61	62	908.35438	0.20D-02	-0.00093	-0.46417				
60	61	909.68338	0.20D-02	0.00014	0.06849				
59	60	911.00797	0.20D-02	0.00009	0.04316				
58	59	912.32643	0.20D-02	0.00064	0.31957				
57	58	913.64037	0.20D-02	0.00015	0.07732				
56	57	914.94616	0.20D-02	0.00226	1.13117				
55	56	916.24969	0.20 D - 02	0.00106	0.53071				
54	55	917.54736	0.20 D-02	0.00014	0.07069				
53	54	918.83907	0.20 D-02	-0.0004	-0.19926				
52	53	920.12402	0.20 D - 02	0.00021	0.1055				

Table A.2: Fourier Transform Infrared Data for  72 GeO (cm⁻¹)

Table	- 11.2,	rounci mana		cu Data Ioi	
J'	$J^{\prime\prime}$	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
51	52	921.40398	0.20 D - 02	0.0002	0.09963
50	51	922.67854	0.20 D - 02	-0.00003	-0.01724
49	50	923.94682	0.20 D - 02	0.00039	0.19454
48	49	925.21255	0.20D-02	-0.00229	-1.14536
47	48	926.46678	0.20 D - 02	0.00088	0.43759
46	47	927.71914	0.20 D - 02	0.00025	0.12311
45	46	928.9655	0.20 D - 02	-0.00005	-0.02424
44	45	930.20555	0.20 D - 02	0.00027	0.13509
43	44	931.44046	0.20 D - 02	0.00003	0.0158
42	43	932.66963	0.20 D - 02	-0.00018	-0.08756
41	42	933.89271	0.20D-02	0.0	-0.00036
40	41	935.11039	0.20 D - 02	-0.00017	-0.08312
39	40	936.32161	0.20D-02	0.00039	0.19379
38	39	937.52856	0.20D-02	-0.00054	-0.27002
37	38	938.72824	0.20D-02	0.00004	0.01991
36	37	939.92295	0.20D-02	-0.00017	-0.08676
35	36	941.11134	0.20D-02	0.00014	0.06946
34	35	942.29456	0.20D-02	-0.00017	-0.08688
33	34	943.47146	0.20D-02	0.00003	0.01375
32	33	944.64273	0.20D-02	0.00005	0.02588
31	32	945.80801	0.20D-02	0.00023	0.11403
30	31	946.96908	0.20D-02	-0.00122	-0.61229
29	30	948.12124	0.20D-02	0.00038	0.19148
28	29	949.27041	0.20D-02	-0.00088	-0.44025
$\overline{27}$	$\overline{28}$	950.41075	0.20D-02	0.00082	0.4121
26	27	951.54431	0.20D-02	0.00342	1.70798
$25^{-5}$	$\frac{-1}{26}$	952.67737	0.20D-02	0.00061	0.30681
$\frac{1}{24}$	$\overline{25}$	953.80239	0.20D-02	-0.00005	-0.02683
$\frac{1}{23}$	$\overline{24}$	954.92094	0.20D-02	-0.00017	-0.08346
22	23	956.03358	0.20D-02	-0.00029	-0.14375
21	22	957.13981	0.20D-02	0.00005	0.02683
$\frac{1}{20}$	$\overline{21}$	958.24061	0.20D-02	-0.00012	-0.06223
19	20	959.33576	0.20D-02	-0.00061	-0.30659
18	19	960.42367	0.20D-02	0.00018	0.08828
17	18	961.50629	0.20D-02	0.00026	0.1317
16	17	962.58348	0.20D-02	-0.00021	-0.1068
15	16	963.65463	0.20D-02	-0.00066	-0.32787
14	15	964.71917	0.20D-02	-0.0005	-0.25209
13	14	965.77706	0.20D-02	0.00028	0.13998
12	13	966.83027	0.20D-02	-0.0003	-0.15238
11	12	967.87695	0.20D-02	-0.00041	-0.20472
10	11	968.91725	0.20D-02	-0.0002	-0.09762
9	10	969.95154	0.20D-02	-0.00004	-0.02177
8	9	970.97898	0.20D-02	0.00087	0.43716
7	8	971.9997	0.20D-02	0.00243	1.21361
6	7	973.01865	0.20D-02	-0.00037	-0.18312
5	6	974.02599	0.20D-02	0.00233	1.16631
4	5	975.03504	0.20D-02	-0.00281	-1.40371
3	4	976.03008	0.20D-02	-0.00008	-0.03897
2	3	977.02164	0.20D-02	-0.00001	-0.00508
1	2	978.00652	0.20 D - 02	0.00056	0.2823
0	1	978.98752	0.20D-02	-0.00116	-0.57757
1	0	980.92455	0.20D-02	0.00181	0.90313
2	1	981.88698	0.20D-02	0.00007	0.03726
3	2	982.8414	0.20 D - 02	0.00012	0.06128
4	3	983.79196	0.20 D - 02	-0.0022	-1.10055
5	4	984.7315	0.20 D - 02	0.00025	0.12604
6	5	985.66556	0.20 D-02	0.00193	0.96534

Table A.2, Fourier Transform Infrared Data for  72 GeO (cm⁻¹) (*Cont'd*)

	<u></u> ,	01			
J'	$J^{\prime\prime}$	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
7	6	986.5981	0.20 D - 02	-0.00114	-0.56845
8	7	987.52122	0.20 D - 02	-0.00105	-0.52616
9	8	988.43593	0.20 D - 02	0.00114	0.57156
10	9	989.34915	0.20 D - 02	-0.00147	-0.73614
11	10	990.25098	0.20 D - 02	0.00099	0.49497
12	11	991.15033	0.20 D - 02	-0.00039	-0.19592
13	12	992.04182	0.20 D - 02	-0.00025	-0.12456
14	13	992.92721	0.20D-02	-0.00034	-0.17185
15	14	993.80467	0.20D-02	0.00112	0.56147
16	15	994.67845	0.20D-02	-0.0001	-0.05051
17	16	995.54454	0.20D-02	-0.00002	-0.00853
18	17	996.40473	0.20D-02	-0.00043	-0.21349
19	18	997.25778	0.20D-02	-0.0001	-0.05123
$\frac{1}{20}$	19	998.10396	0.20D-02	0.00068	0.34239
$\frac{-3}{21}$	20	998 9453	0.20D-02	-0.00013	-0.06345
$\frac{-1}{22}$	$\frac{1}{21}$	99977952	0.20D-02	-0.00026	-0 12972
23	22	1000 60685	0.20D-02	0.000020	0.02284
$\frac{20}{24}$	23	1001 42816	0.20D-02	-0.00009	-0.04705
$\frac{21}{25}$	$\frac{20}{24}$	1002 24312	0.20D-02	-0.00036	-0 1795
$\frac{20}{26}$	25	1002.21012	0.20D-02	0.00057	0.28358
$\frac{20}{27}$	$\frac{20}{26}$	1003.0504 1003.85276	0.20D-02	-0.00007	-0.03771
$\frac{21}{28}$	$\frac{20}{27}$	1003.03270 1004.64786	0.20D-02	0.00008	0.0097
20	21	1004.04700	0.20D-02 0.20D-02	0.00002	1 84588
30	20	1006.40200	0.20D-02 0.20D-02	0.00000	0.03389
31	30	1006.21002	0.20D-02 0.20D-02	-0.00007	-0.01122
32	31	1000.3343 1007.76334	0.20D-02 0.20D-02	-0.00002	-0.01122
22	30	1007.70554	0.20D-02	-0.00003	0.00164
34 34	33	1000.02770	0.20D-02 0.20D-02	-0.00198 0.00327	1 63662
34	30 34	1010 03004	0.20D-02 0.20D-02	-0.000027	-0.00311
36	25	1010.03034 1010.77345	0.20D-02	-0.00001	0.07018
$\frac{30}{37}$	36	1010.77545 1011.50025	0.20D-02	0.00010	0.07918
38	30 37	1011.00933	0.20D-02	0.00031	0.15046
30	38	1012.24002	0.20D-02	-0.00093	0.01462
	30	1012.90104 1012.67778	0.20D-02	0.00003	0.01402 0.10741
40	39 40	1013.07778	0.20D-02	0.00021 0.00017	0.10741
41	40	1014.36729 1015.00007	0.20D-02	0.00017 0.00017	0.08715
42	41	1015.09007	0.20D-02	0.00017	0.0073
43	42	1016 47550	0.20D-02	0.0024 0.00013	0.06400
44	40	1010.47559 1017 15794	0.20D-02	0.00015	0.00409 0.97419
40	44	1017.10704 1017.00411	0.20D-02	0.000000	0.27412
40	40	1017.00411	0.20D-02	0.00022	0.11031
41	40	1010.00074 1010.16022	0.20D-02	-0.00021	-0.10393
40	41	1019.10922 1010.99147	0.20D-02	-0.00323	-1.01308
49 50	40	1019.02147	0.20D-02	0.00021	0.10445
50	49 50	1020.47042 1021.11076	0.20D-02	0.00017	0.08455
51 E0	00 E 1	1021.11070 1021.74904	0.20D-02	0.00195	0.97491
02 E 2	51	1021.74604	0.20D-02	-0.00001	-0.0035
00 54	02 52	1022.37033	0.20D-02	0.00001	0.00298
04 55	00 E4	1022.99793	0.20D-02	0.00029	0.14372
00 E <i>c</i>	04 55	1023.01281	0.20D-02	0.00020	0.12000 0.19791
00 57	00 5 <i>0</i>	1024.22008	0.20D-02	0.00037	0.15994
97 E9	00 E7	1024.82189	0.20D-02	0.00031	0.10204
08 50	01 F0	1020.41037	0.20D-02	0.00008	0.04090
59 60	08 50	1020.00376	0.20D-02	0.00000	0.02990
0U 61	59 60	1020.58402	0.20D-02	0.00027	0.13405
01 69	0U 61	1027.15755	0.20D-02	0.0003	0.14834
02 62	01 60	1027.72537	0.20D-02	-0.00089	-0.44319
03 64	02 62	1020.28441	0.20D-02	-0.00023	-0.11710
04	0.5	1020 00002	<u>u zuli-UZ</u>		17 17.11 1.1

Table A.2, Fourier Transform Infrared Data for  72 GeO (cm⁻¹) (*Cont'd*)

<u> </u>	Tourier frame	sorm minar	cu Data IOI	$\frac{1}{1}$
J''	$\overline{Obs}$	Unc	Calc-Obs	(Calc-Obs)/Unc
64	1029.38408	0.20D-02	-0.00137	-0.68644
65	1029.92126	0.20D-02	0.00026	0.12878
66	1030.45569	0.20 D - 02	-0.00234	-1.16944
67	1030.9784	0.20 D - 02	-0.00022	-0.11237
68	1031.49624	0.20 D - 02	-0.00025	-0.12629
69	1032.00677	0.20 D - 02	0.00001	0.00251
70	1032.51066	0.20D-02	-0.00013	-0.06727
71	1033.00747	0.20D-02	-0.00024	-0.12194
72	1033.49678	0.20D-02	0.00008	0.04219
73	1033.97983	0.20D-02	-0.0004	-0.20121
74	1034.45545	0.20D-02	-0.00055	-0.27298
$75^{-1}$	1034.92263	0.20D-02	0.00065	0.32455
76	1035.38387	0.20D-02	0.00067	0.33551
77	1035.83903	0.20D-02	-0.00034	-0.17146
78	1036.28548	0.20D-02	0.0002	0.10227
$79^{-10}$	1036.72801	0.20D-02	-0.00248	-1.23969
80	1037.15767	0.20D-02	0.00054	0.27178
81	$1037\ 58497$	0.20D-02	-0.00125	-0.62572
82	1038 00127	0.20D-02	0.00076	0.38188
83	1038 41373	0.20D-02	-0.00058	-0 29183
84	1038 81841	0.20D-02	-0.00137	-0.68328
85	$1039\ 21403$	0.20D-02	-0.00032	-0 15841
86	$1039\ 60442$	0.20D-02	-0.00128	-0 63967
87	1039 98584	0.20D-02	-0.000120	-0 26303
88	1039.36079 1040.36079	0.20D-02	-0.00055	-0.28444
89	1040.7287	0.20D-02	-0.00084	-0 42139
90	1041 08769	0.20D-02	0.0005	0.25012
91	1041.00705	0.20D-02	-0.00162	-0.81088
92	104178743	0.20D-02	-0.000102	-0 25193
93	1042 12685	0.20D-02	-0.00155	-0 77402
94	104245453	0.20D-02	0.0018	0.9018
95	1042 78051	0.20D-02	-0.0005	-0 252
96	1043 09597	0.20D-02	0.00034	0 16853
97	1043 40539	0.20D-02	-0.00017	-0.08266
98	104370679	0.20D-02	-0.000017	-0.02315
99	1044 00164	0.20D-02	-0.00079	-0.39351
100	1044 28591	0.20D-02	0.00163	0.81368
101	104456719	0.20D-02	-0.00100	-0.2022
102	1044 83971	0.20D-02	-0.00113	-0.56374
102	1045 1042	0.20D-02	-0.00128	-0 64157
2-1  Ba Avge = /Unc.)	and, 191 data, = 2.0D-03, Un Avge = -8.9D-	$J''_{min} = 1$ c. $_{Max} = 2.0$ 02, RMSR	$J''_{max} = 9$ D-03 = 0.48	07
95	853.10021	0.20D-02	-0.00001	-0.00329
94	854.6005	0.20D-02	-0.00047	-0.2363
93	856 09433	0.20D-02	0.00034	0 16787
92	857 58444	0.20D-02	-0.00032	-0 1609
91	859.06983	0.20D-02	-0.00145	-0.72276
90	860.54812	0.20D-02	-0.00069	-0.34285
89	862.02301	0.20D-02	-0.00174	-0.87127
88	863.48977	0.20D-02	0.0001	0.05172
$\tilde{87}$	864,95332	0.20D-02	-0.00007	-0.03393
86	866.41102	0.20D-02	0.00035	0.17656
85	867.8651	0.20D-02	-0.00086	-0.43198
84	869.31134	0.20D-02	0.00049	0.24527
83	870.75215	0.20D-02	0.00201	1.00314
82	872.19118	0.20D-02	0.0	0.00143
	$\begin{array}{c} J'' \\ \hline J'' \\ \hline 64 \\ 65 \\ 66 \\ 67 \\ 68 \\ 69 \\ 70 \\ 71 \\ 72 \\ 73 \\ 74 \\ 75 \\ 76 \\ 77 \\ 78 \\ 79 \\ 80 \\ 81 \\ 82 \\ 83 \\ 84 \\ 85 \\ 86 \\ 87 \\ 88 \\ 89 \\ 90 \\ 91 \\ 92 \\ 93 \\ 94 \\ 95 \\ 96 \\ 97 \\ 98 \\ 99 \\ 100 \\ 101 \\ 102 \\ 103 \\ 2-1 \\ Ba \\ Avge = \\ /Unc.) \\ 95 \\ 94 \\ 93 \\ 92 \\ 91 \\ 90 \\ 89 \\ 88 \\ 87 \\ 86 \\ 85 \\ 84 \\ 83 \\ 82 \\ \end{array}$	J"Obs641029.38408651029.92126661030.45569671030.9784681031.49624691032.00677701032.51066711033.00747721033.49678731033.97983741034.45545751034.92263761035.38387771035.83903781036.28548791036.72801801037.15767811037.58497821038.00127831038.41373841038.81841851039.21403861039.60442871039.98584881040.36079891041.7287901041.08769911041.44284921041.78743931042.12685941042.45453951042.78051961043.09597971043.40539981043.70679991044.001641001044.285911011044.567191021044.839711031045.10422-1Band, 19194856.0943392857.5844491859.0698390860.5481289862.0230188863.4897787864.9533286866.4110285867.865184869.3113483870.752	J"         Obs         Unc           64         1029.38408         0.20D-02           65         1029.92126         0.20D-02           66         1030.45569         0.20D-02           67         1030.9784         0.20D-02           68         1031.49624         0.20D-02           69         1032.00677         0.20D-02           70         1032.51066         0.20D-02           71         1033.00747         0.20D-02           72         1033.49678         0.20D-02           73         1033.97983         0.20D-02           74         1034.45545         0.20D-02           75         1034.92263         0.20D-02           76         1035.83903         0.20D-02           78         1036.28548         0.20D-02           80         1037.15767         0.20D-02           81         1037.58497         0.20D-02           82         1038.0127         0.20D-02           83         1038.41373         0.20D-02           84         1039.98584         0.20D-02           85         1039.21403         0.20D-02           86         1040.7287         0.20D-02	J''         Obs         Unc         Calc-Obs           64         1029.38408         0.20D-02         -0.00137           65         1029.92126         0.20D-02         -0.0023           66         1030.45569         0.20D-02         -0.00022           68         1031.49624         0.20D-02         -0.00025           69         1032.00677         0.20D-02         -0.00024           70         1032.51066         0.20D-02         -0.0004           71         1033.49678         0.20D-02         -0.0004           74         1034.45545         0.20D-02         -0.0004           74         1034.45545         0.20D-02         -0.0004           74         1035.38387         0.20D-02         -0.0004           74         1035.83903         0.20D-02         -0.0005           75         1034.9263         0.20D-02         -0.00024           80         1037.15767         0.20D-02         -0.00024           81         1037.58497         0.20D-02         -0.00125           82         1038.0127         0.20D-02         -0.00053           84         1039.9854         0.20D-02         -0.00053           85 <t< td=""></t<>

Table A.2, Fourier Transform Infrared Data for  72 GeO (cm⁻¹) (*Cont'd*)

- 1000			TT TT		
J'	$J^{\prime\prime}$	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
80	81	873.62415	0.20 D-02	-0.00124	-0.62004
79	80	875.05179	0.20 D - 02	-0.00245	-1.22648
78	79	876.46979	0.20 D-02	0.00064	0.32197
77	78	877.88533	0.20 D - 02	0.00087	0.435
76	77	879.29643	0.20 D - 02	0.00019	0.0975
75	76	880.7015	0.20 D - 02	0.00021	0.10419
74	75	882.1023	0.20 D - 02	-0.00088	-0.44015
73	74	883.49764	0.20 D - 02	-0.00188	-0.9408
72	73	884.8844	0.20 D - 02	0.00031	0.15715
71	72	886.26859	$0.20 \text{D}{-}02$	-0.0003	-0.15167
70	71	887.646	0.20 D - 02	0.00045	0.22251
69	70	889.01915	0.20 D - 02	0.00004	0.01947
68	69	890.38732	0.20 D - 02	-0.00081	-0.40602
67	68	891.74832	0.20 D - 02	0.00008	0.04068
66	67	893.10485	0.20 D - 02	-0.00001	-0.00559
65	66	894.45593	0.20 D - 02	-0.00011	-0.05517
64	65	895.80145	0.20 D - 02	-0.00012	-0.05832
63	64	897.14212	$0.20 \text{D}{-}02$	-0.00074	-0.3704
62	63	898.47629	0.20 D - 02	-0.00036	-0.18154
61	62	899.80492	$0.20 \text{D}{-}02$	0.00006	0.02781
60	61	901.1285	0.20 D - 02	0.00001	0.00739
59	60	902.44719	$0.20 \text{D}{-}02$	-0.00065	-0.3231
58	59	903.75918	0.20 D - 02	-0.00015	-0.07393
57	58	905.06654	0.20 D - 02	-0.00056	-0.28053
56	57	906.36761	0.20 D - 02	-0.00024	-0.11812
55	56	907.66273	0.20 D - 02	0.00049	0.24291
54	55	908.9541	0.20 D - 02	-0.00063	-0.31278
53	54	910.23837	0.20 D - 02	-0.00022	-0.11053
52	53	911.5176	0.20 D - 02	-0.00037	-0.1857
51	52	912.79064	0.20 D - 02	0.00007	0.03636
50	51	914.05854	0.20 D - 02	0.00003	0.01528
49	50	915.32079	0.20 D - 02	0.00001	0.00574
48	49	916.57835	0.20 D - 02	-0.00096	-0.47774
47	48	917.82768	0.20 D - 02	0.00067	0.33455
46	47	919.07283	0.20 D - 02	0.0008	0.40219
45	46	920.31335	0.20 D - 02	-0.0001	-0.05028
44	45	921.54716	$0.20 \text{D}{-}02$	0.00002	0.01185
43	44	922.77516	0.20 D - 02	0.00027	0.1331
42	43	923.99784	$0.20 \text{D}{-}02$	0.00014	0.06813
41	42	925.21255	$0.20 \text{D}{-}02$	0.00225	1.1264
40	41	926.42393	$0.20 \text{D}{-}02$	0.00198	0.98754
39	40	927.63146	0.20 D - 02	-0.00019	-0.09383
38	39	928.83114	0.20 D - 02	-0.00024	-0.11826
37	38	930.02499	$0.20 \text{D}{-}02$	-0.00022	-0.11109
36	37	931.21023	0.20 D - 02	0.00263	1.31717
35	36	932.39531	0.20 D - 02	-0.00013	-0.06393
34	35	933.57181	$0.20 \text{D}{-}02$	-0.0001	-0.04986
33	34	934.7424	0.20D-02	0.00005	0.0239
32	33	935.90773	0.20D-02	-0.00037	-0.18312
31	32	937.06699	0.20D-02	-0.00053	-0.26641
30	31	938.21976	0.20D-02	-0.00004	-0.02141
29	30	939.36732	0.20D-02	-0.00018	-0.08873
28	29	940.51081	0.20D-02	-0.00211	-1.05377
27	28	941.64416	0.20D-02	0.00024	0.11791
26	27	942.77484	0.20D-02	-0.00063	-0.31421
25	26	943.90056	0.20 D - 02	-0.00242	-1.21066
24	25	945.01496	0.20 D - 02	0.00122	0.60803
23	24	946.12837	0.20 D - 02	-0.00008	-0.03868

Table A 2 Fourie	er Transform	Infrared D	ata for 72 Ge	$O(cm^{-1})$ (	Cont'd

Table	e A.Z,	Fourier Trans	siorin inirar	ed Data for	GeO (cm ⁻² ) (Cont ⁻ a)
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
22	23	947.2347	0.20 D - 02	-0.00021	-0.10635
21	22	948.33623	0.20 D - 02	-0.00148	-0.74046
20	21	949.4291	0.20 D - 02	-0.00003	-0.01669
19	20	950.51792	0.20 D - 02	-0.00048	-0.24051
18	19	951.60187	0.20 D - 02	-0.00204	-1.01752
17	18	952.67737	0.20 D - 02	-0.00112	-0.55838
16	17	953.7466	0.20 D - 02	0.00008	0.04148
15	16	954.81102	0.20 D - 02	0.00009	0.04633
14	15	955.86959	0.20 D - 02	-0.00005	-0.0244
13	14	956.9213	0.20 D - 02	0.00064	0.31868
12	13	957.96861	0.20 D - 02	-0.00031	-0.15499
11	12	959.00946	0.20 D - 02	-0.00084	-0.42114
10	11	960.04467	0.20 D - 02	-0.00179	-0.8953
9	10	961.0701	0.20 D - 02	0.00098	0.49185
8	9	962.09318	0.20 D - 02	0.00002	0.00966
7	8	963.10904	0.20 D - 02	0.00018	0.09247
6	7	964.11922	0.20 D - 02	-0.00007	-0.03537
5	6	965.12204	0.20 D - 02	0.00092	0.46046
4	5	966.12045	0.20 D - 02	0.00021	0.10429
3	4	967.11238	0.20 D - 02	-0.00017	-0.0845
2	3	968.10052	0.20D-02	-0.0029	-1.45172
1	2	969.07821	0.20D-02	-0.00135	-0.67295
2	1	972.93166	0.20 D - 02	0.00039	0.19726
3	2	973.87956	0.20D-02	0.00078	0.38998
4	3	974.82411	0.20D-02	-0.00171	-0.85565
5	4	975.76139	0.20 D - 02	-0.00317	-1.58549
6	5	976.68849	0.20 D - 02	-0.00069	-0.34519
7	6	977.61229	0.20 D - 02	-0.00118	-0.59061
8	7	978.53001	0.20 D - 02	-0.00186	-0.93244
9	8	979.43901	0.20 D - 02	-0.00011	-0.05649
10	9	980.34316	0.20D-02	0.00019	0.09644
11	10	981.24194	0.20D-02	-0.00044	-0.21939
12	11	982.13358	0.20 D - 02	-0.00024	-0.11988
13	12	983.0197	0.20D-02	-0.00086	-0.4308
14	13	983.89828	0.20 D - 02	-0.00029	-0.14291
15	14	984.77183	0.20 D - 02	-0.00103	-0.51709
16	15	985.63752	0.20 D - 02	-0.00029	-0.14423
17	16	986.49725	0.20 D - 02	0.00004	0.01993
18	17	987.35092	0.20 D - 02	0.00005	0.0245
19	18	988.19802	0.20 D - 02	0.00022	0.10866
20	19	989.03918	$0.20 \text{D}{-}02$	-0.00009	-0.04355
21	20	989.87448	0.20 D - 02	-0.00096	-0.47795
22	21	990.69834	0.20 D - 02	0.00318	1.58961
23	22	991.52298	0.20D-02	0.00009	0.04316
24	23	992.33832	0.20 D - 02	-0.00017	-0.08311
25	24	993.14711	0.20 D - 02	-0.00033	-0.16515
26	25	993.94828	0.20D-02	0.00063	0.31613
27	26	994.74481	0.20D-02	-0.00026	-0.13021
28	27	995.53353	0.20D-02	0.00015	0.07497
29	28	996.31623	0.20D-02	0.00006	0.03061
30	29	997.09245	0.20D-02	-0.00008	-0.03917
31	30	997.86199	0.20 D - 02	-0.00007	-0.03528
32	31	998.62277	0.20D-02	0.00213	1.06627
33	32	999.38143	0.20D-02	-0.00011	-0.0555
34	33	1000.13127	$0.20 \text{D}{-}02$	-0.00011	-0.05647
35	34	1000.8742	0.20 D - 02	0.0002	0.10187
36	35	1001.61098	0.20 D - 02	0.00007	0.03444
37	36	1002.34102	0.20 D - 02	0.00006	0.02972

Table A 2	Fourier	Transform	Infrared	Data	for	72 GeO	$(cm^{-1})$	(Cont'd)

rabie		rouner fram	ioim minar	eu Bata ioi	
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
38	37	1003.06466	0.20 D - 02	-0.00017	-0.0838
39	38	1003.78115	0.20 D - 02	0.00011	0.05385
40	39	1004.49013	0.20 D - 02	0.00124	0.62115
41	40	1005.19516	0.20 D - 02	-0.00034	-0.16844
42	41	1005.89201	0.20 D - 02	-0.00041	-0.20497
43	42	1006.58167	0.20 D - 02	0.00002	0.01
44	43	1007.26516	0.20 D - 02	-0.00008	-0.04008
45	44	1007.94152	0.20 D - 02	0.00024	0.11969
46	45	1008.6118	0.20 D - 02	-0.00007	-0.03724
47	46	1009.27838	0.20D-02	-0.00343	-1.71699
48	47	1009.93137	0.20 D - 02	0.00005	0.02386
49	48	1010.58254	0.20 D - 02	-0.00141	-0.7048
50	49	1011.22471	0.20 D - 02	-0.00064	-0.3196
51	50	1011.86053	0.20 D - 02	-0.0003	-0.15165
52	51	1012.48959	0.20 D - 02	0.0	-0.00209
53	52	1013.1121	0.20 D - 02	0.00003	0.01744
54	53	1013.72775	0.20 D - 02	0.00012	0.06178
55	54	1014.33645	0.20 D - 02	0.00032	0.15927
56	55	1014.94006	0.20 D - 02	-0.00124	-0.62124
57	56	1015.53417	0.20 D - 02	-0.00016	-0.08096
58	57	1016.12258	0.20 D - 02	-0.00025	-0.12605
59	58	1016.70373	0.20 D - 02	0.00003	0.01728
60	59	1017.27825	0.20 D - 02	0.00006	0.02783
61	60	1017.8475	0.20 D - 02	-0.00156	-0.78062
62	61	1018.40673	0.20 D - 02	-0.00008	-0.03929
63	62	1018.9607	0.20 D - 02	-0.00027	-0.13441
64	63	1019.50721	0.20 D - 02	0.00006	0.02777
65	64	1020.04853	0.20 D - 02	-0.00138	-0.68899
66	65	1020.57968	0.20 D - 02	0.00038	0.18905
67	66	1021.10597	0.20 D - 02	0.00001	0.00561
68	67	1021.62401	0.20 D - 02	0.0009	0.44942
69	68	1022.13756	0.20 D - 02	-0.00073	-0.3658
70	69	1022.64211	0.20 D - 02	-0.00038	-0.19137
71	70	1023.13972	0.20 D - 02	-0.00013	-0.06357
72	71	1023.63092	0.20 D - 02	-0.00051	-0.25373
73	72	1024.11431	0.20 D - 02	-0.00014	-0.06816
74	73	1024.59124	0.20D-02	-0.00037	-0.18322
75	74	1025.06046	0.20D-02	0.00002	0.00978
76	75	1025.5227	0.20D-02	0.00029	0.14446
77	76	1025.97788	0.20D-02	0.00051	0.25447
78	77	1026.42683	0.20D-02	-0.00016	-0.08106
79	78	1026.86778	0.20D-02	0.00003	0.01549
80	79	1027.30257	0.20D-02	-0.00076	-0.38178
81	80	1027.72537	0.20D-02	0.00327	1.63574
82	81	1028.14786	0.20D-02	0.00044	0.22163
83	82	1028.55992	0.20D-02	0.00086	0.42999
84	83	1028.96593	0.20D-02	0.00013	0.06338
85	84	1029.36298	0.20D-02	0.00114	0.57085
80	80	1029.75538	0.20D-02	-0.00042	-0.20902
81	80 07	1030.1392	0.20D-02	-0.00063	-0.31/21
80	01 00	1030.3134	0.20D-02	-0.00047	-0.20010 1 16101
89	80	1030.88034	0.20D-02	-0.00232	-1.10191
90	89	1031.24495 1021.00100	0.20D-02	0.00088	0.43902
91	90 01	1031.00100	0.20D-02	-0.00071	-0.30409
92 02	91	1031.94855 1029.9977	0.20D-02	-0.00098	-0.48900 0.11197
93	92 02	1032.2877	0.20D-02	-0.00022	-0.11127
94 05	93 04	1032.02120	0.20D-02	-0.00121	-0.00320 0.45611
201	24	1007 9407		-0.00091	

Table A.2, Fourier Transform Infrared Data for  72 GeO (cm⁻¹) (*Cont'd*)

Table A.2, Fourier Transform Infrared Data for  72 GeO (cm⁻¹) (*Cont'd*)

.1′		Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
06	05	1033 2637	0.200-02	-0.00053	-0 26581
90	90 96	1033 57374	0.20D-02 0.20D-02	-0.00005	-0.02993
91	90 07	1033 87445	0.20D-02 0.20D-02	0.00000	1 18096
30	51	1000.01440	0.2010-02	0.00200	1.10000
The	292-	nd 100 data	$I^{n}$ . $-0$	<i>I</i> " _ 0	6
The a	л-∠ Da	10, 190  data, 190  data, 190  data	$J_{min} = 0$	$, J_{max} = 9$	0
(Err)	Avge = (Unc)	-2.0D-03, 010	$0{Max} = 0.0$	– 0.50	
(EII)	Unc.)	Avge = -0.4D-	02, 100510	= 0.55	
94	95	844.79842	0.20 D - 02	-0.00128	-0.63944
93	94	846.29119	0.20 D - 02	-0.00095	-0.47351
92	93	847.77777	0.20 D - 02	0.00041	0.20273
91	92	849.26061	0.20 D - 02	0.00033	0.16412
90	91	850.73894	0.20 D - 02	-0.00044	-0.21942
89	90	852.21134	$0.20 \text{D}{-}02$	-0.00048	-0.23816
88	89	853.67742	0.20 D - 02	0.00061	0.30286
87	88	855.14018	$0.20 \text{D}{-}02$	-0.00022	-0.11163
86	87	856.59547	0.20D-02	0.00119	0.5933
85	86	858.04949	0.20D-02	-0.00138	-0.68757
84	85	859.49606	0.20D-02	-0.00173	-0.86442
83	84	860.93511	0.20D-02	0.00017	0.08257
82	83	862.37005	0.20D-02	0.0009	0.44821
81	82	863.80156	0.20D-02	-0.00023	-0.11263
80	81	865.22667	0.20D-02	-0.00023	-0.11528
79	80	866.64581	0.20D-02	0.00042	0.21014
78	79	868.0608	0.20D-02	-0.00009	-0.04656
77	$\frac{78}{2}$	869.46924	0.20D-02	0.00063	0.31438
76	77	870.87406	0.20D-02	-0.00037	-0.18733
75	76	872.27326	0.20D-02	-0.0011	-0.55181
74	75	873.66574	0.20D-02	-0.00047	-0.23433
73	74	875.05179	0.20D-02	0.00124	0.61985
72	73	876.43568	0.20D-02	-0.00028	-0.1395
71	72	877.81298	0.20D-02	-0.0006	-0.29758
70 C0	(1	879.18579	0.20D-02	-0.00182	-0.90974
69 69	70 60	880.54997	0.20D-02	0.00019	0.09385
68 67	69 C9	881.91104	0.20D-02	-0.00012	-0.00216
01 66	68 67	883.20020	0.20D-02	-0.00002	-0.00790
00 65	01	884.01000	0.20D-02	0.00007	0.03013
00	00 65	880.90045 887 20002	0.20D-02	0.00015 0.00027	0.07478
04 63	64	001.29995 888 63449	0.20D-02	-0.00037	-0.10719
62	62	880.05442	0.20D-02	-0.00130	-0.06013
02 61	62	801 28383	0.20D-02	-0.00014	0.10513
60	61	892 60228	0.20D-02	-0.00021	-0.81783
59	60	803 01277	0.20D-02 0.20D-02	-0.00104	-0.30769
58	59	895 21801	0.20D-02	0.00002	0.06487
57	58	896 52057	0.20D-02	-0.00197	-0 98539
56	57	897 81244	0.20D-02	0.00101	0.53115
55	56	899 10419	0.20D-02	-0.00134	-0 67085
54	55	900 38798	0.20D-02	-0.00131	-0 67674
53	54	901 66532	0.20D-02	-0.00048	-0 24187
52	53	902.93765	0.20D-02	-0.0002	-0.10161
51	52	904.2048	0.20D-02	-0.00034	-0.17131
50	51	905.46597	0.20D-02	-0.00011	-0.05631
49	50	906.72107	0.20D-02	0.00057	0.28292
48	49	907.97216	0.20D-02	-0.00037	-0.1839
47	48	909.21538	0.20D-02	0.00092	0.45778
46	47	910.45536	0.20D-02	-0.00021	-0.10743
45	46	911.68844	0.20D-02	-0.00011	-0.05493
44	45	912.91618	0.20D-02	-0.00033	-0.16514

τ/	τ//		TT T		$\frac{(C + O)}{(C + O)}$
$J^{*}$	$J^{\sim}$	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
43	44	914.13709	0.20D-02	0.00058	0.29153
42	43	915.35435	0.20D-02	-0.00055	-0.27535
41	42	916.56445	0.20D-02	-0.00023	-0.1162
40	41	917.76865	0.20 D-02	0.00028	0.1386
39	40	918.96832	0.20 D - 02	-0.00042	-0.21146
38	39	920.16172	0.20 D - 02	-0.00059	-0.29686
37	38	921.34855	0.20 D - 02	0.00005	0.02704
36	37	922.53054	0.20 D - 02	-0.00022	-0.11028
35	36	923.70636	0.20 D - 02	-0.00009	-0.04427
34	35	924.87977	0.20D-02	-0.00334	-1.67042
33	34	926.0419	0.20D-02	-0.00111	-0.5542
32	33	927.19915	0.20D-02	0.0002	0.09895
31	32	928.35243	0.20D-02	-0.00033	-0.16657
30	31	929,49934	0.20D-02	-0.00033	-0.16615
29	30	930.63978	0.20D-02	0.0003	0.1496
$\frac{-0}{28}$	29	931.77585	0.20D-02	-0.00055	-0.27474
$\frac{20}{27}$	$\frac{-6}{28}$	932 90321	0.20D-02	0.00145	0.72526
26	$\frac{20}{27}$	934 02971	0.20D-02	-0.00115	-0 77592
$\frac{20}{25}$	26	934.02571 935.14677	0.20D-02 0.20D-02	-0.00100	-0.50382
$\frac{20}{24}$	$\frac{20}{25}$	036 25756	0.20D-02 0.20D 02	0.00101	0.04308
24	20	930.23730	0.20D-02	-0.00009	0.00311
∠ə 22	24 22	937.30309	0.20D-02	0.00019	0.09511
22	∠ə 99	930.40203	0.20D-02	0.00055	0.06150
21	22	959.55701	0.20D-02	0.00012	0.00139
20	21	940.0447	0.20D-02	0.00045	0.22085
19	20	941.72740	0.20D-02	-0.00023	-0.11291
18	19	942.80148	0.20D-02	0.00185	0.92669
17	18	943.87387	0.20D-02	-0.0004	-0.19995
16	17	944.93735	0.20D-02	0.00028	0.14158
15	16	945.9962	0.20D-02	-0.00041	-0.20433
14	15	947.0481	0.20D-02	-0.00016	-0.07824
13	14	948.09266	0.20D-02	0.00142	0.70913
12	13	949.13384	0.20D-02	0.00034	0.17227
11	12	950.16758	0.20D-02	0.00068	0.34044
10	11	951.19536	0.20D-02	0.00092	0.45809
9	10	952.21924	0.20D-02	-0.00101	-0.50545
8	9	953.23426	0.20D-02	-0.00015	-0.07586
7	8	954.24413	0.20 D - 02	-0.00023	-0.11379
6	7	955.24878	0.20 D - 02	-0.00117	-0.5849
5	6	956.24627	0.20 D - 02	-0.00107	-0.53483
4	5	957.23431	0.20 D - 02	0.00236	1.18065
3	4	958.22194	0.20 D - 02	0.00007	0.03594
2	3	959.20757	$0.50 \text{D}{-}02$	-0.00636	-1.2719
1	2	960.17076	$0.50 \text{D}{-}02$	0.0035	0.69919
1	0	963.04771	$0.50 \text{D}{-}02$	0.00866	1.7317
3	2	964.94476	0.20 D - 02	0.00203	1.01696
4	3	965.8824	0.20 D - 02	0.00029	0.14471
5	4	966.81008	0.20 D - 02	0.00226	1.13064
6	5	967.73512	0.20 D - 02	0.00063	0.31407
7	6	968.66194	$0.50 \text{D}{-}02$	-0.00904	-1.80832
8	7	969.56523	0.20D-02	-0.00145	-0.72477
9	8	970.4682	0.20D-02	0.00018	0.09138
10	9	971.36765	0.20D-02	-0.00095	-0.47314
11	10	972.25828	0.20D-02	0.00043	0.2159
12	11	973.14529	0.20D-02	-0.00088	-0.44239
13	12	974.02596	0.20D-02	-0.00219	-1.09378
14	13	974.89718	0.20D-02	-0.00038	-0.18906
$15^{-1}$	14	975.76139	0.20D-02	0.00209	1.04589
$16^{-5}$	$15^{-1}$	976.62442	0.20D-02	-0.00061	-0.30477

	Table A.2.	, Fourier	Transform	Infrared	Data for	72 GeO	$(cm^{-1})$	(Cont'd)	)
--	------------	-----------	-----------	----------	----------	-------------	-------------	----------	---

Table	11.2,	rounci man	norm minar	cu Data ioi	
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
17	16	977.47863	0.20D-02	-0.00087	-0.43688
18	17	978.32437	0.20D-02	0.00095	0.47368
19	18	979.16645	0.20D-02	0.00003	0.01607
$\frac{1}{20}$	19	980 00091	0 20D-02	0.00033	0 16445
21	20	980 83105	0.20D-02	-0.00147	-0 73716
22	20	981 65186	0.20D-02	-0.00038	-0 18954
23	21	982 46559	0.20D-02	0.00036	0.68135
20	22	083 27444	0.20D-02 0.20D-02	0.00150	0.75961
25	$\frac{20}{24}$	984 07772	0.20D-02 0.20D-02	0.00102	0.38933
26	24 25	08/ 87/61	0.20D-02 0.20D-02	-0.00015	-0.02542
$\frac{20}{97}$	20	085 66556	0.20D-02	-0.000000	0.71557
$\frac{21}{28}$	$\frac{20}{27}$	985.00550	0.20D-02 0.20D-02	-0.00143	-0.01204
20	21	$087\ 22372$	0.20D-02 0.20D-02	0.00002	0.01204
30	20	087 0038	0.20D-02 0.20D-02	-0.00004	-0.00775
31	20	987.9950	0.20D-02 0.20D-02	0.00002	0.04111
32	31	989 51429	0.20D-02	-0.00008	-0.0402
33	32	990 26433	0.20D-02	0.00025	0.12735
34	33	001 0040	0.20D-02	0.00025	0.6071
34 35	34	001 74533	0.30D-02 0.20D-02	0.00343 0.00027	0.13503
36	34 35	002 47648	0.20D-02	0.00021	0.13178
30	36	003 2001	0.20D-02	-0.00020	0.06621
38	$\frac{30}{37}$	003 01761	0.20D-02 0.20D-02	0.00013	0.00021
30	38	993.51701	0.20D-02	0.00001 0.00357	0.71308
40	30	005 33200	0.30D-02	0.00007	0.26086
40	40	996 02976	0.20D-02	-0.00052	0.07629
41	40	996 7209	0.20D-02 0.20D-02	-0.00013	-0 10689
42	42	990.1209	0.20D-02 0.20D-02	-0.00021 0.00172	0.85856
40	42	008 08230	0.20D-02 0.20D-02	-0.00172	-0 1035
45	40	998 75206	0.20D-02	0.00021	0.40588
46		000 /1730	0.20D-02 0.20D-02	-0.00055	-0.27/3/
40	46	1000 07/33	0.20D-02 0.20D-02	-0.000005	-0.12525
48	40	1000.07400	0.20D-02 0.20D-02	-0.00025	-0.12929
49	48	1000.12002	0.20D-02	-0.00092	-0.45913
50	40	1001.00020 1002.01146	0.20D-02	-0.00032	-1 23556
51	40 50	1002.01140 1002.63615	0.30D-02 0.20D-02	-0.00018	-0.33888
52	51	1002.05010 1003.25927	0.20D-02	-0.00000	-0.19523
53	52	1003.20521	0.20D-02	-0.000000	-1 1641
54	53	1005.0110	0.20D-02 0.50D-02	-0.00200	-0.94865
55	54	1004.40555	0.50D-02 0.50D-02	-0.00474	-1.8/181
56	55	1005.68718	0.00D-02	-0.00321	-1 44291
57	56	1006.00710	0.20D-02	0.000203	0.01648
58	57	1006.27661	0.20D-02	-0.00075	-0.37252
59	58	1000.03001 1007 4309	0.20D-02	0.00013	0.26387
60	59	1008.00071	0.20D-02	-0.00067	-0.33555
61	60	1008.56201	0.20D-02	-0.00001	-0.13201
62	61	1009 11705	0.20D-02	-0.0005	-0 25175
63	62	1009 66488	0.20D-02	-0.00047	-0 23599
64	63	1010 20548	0.20D-02	-0.00015	-0.07598
65	64	1010 73931	0.20D-02	-0.00002	-0.008
66	65	1011.26355	0.20D-02	0.00274	1.37171
67	66	1011.78711	0.20D-02	-0.0008	-0.39815
68	67	1012.30061	0.20D-02	-0.00127	-0.63385
69	68	1012.8056	0.20D-02	-0.00023	-0.11669
70	69	1013.30503	0.20D-02	-0.00066	-0.32798
71	70	1013.79641	0.20D-02	-0.00005	-0.02402
72	71	1014.28106	0.20D-02	0.00024	0.11886
73	72	1014.75979	0.20D-02	-0.00061	-0.30567
74	73	1015 2307	0.20D-02	-0.00071	-0.35346
Table	; п.2,	Fourier frame	sorm minar	eu Data IOI	Geo (cm) (com u)
-------------------	---------------	--------------------------	----------------------	----------------	------------------
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
75	74	1015.69422	0.20D-02	-0.00049	-0.24684
76	75	1016.15088	0.20 D - 02	-0.00051	-0.2567
77	76	1016.60032	0.20D-02	-0.00042	-0.20938
78	77	1017.04377	0.20D-02	-0.00145	-0.72627
79	78	1017.47685	0.20D-02	0.00075	0.37623
80	79	1017.90066	0.50D-02	0.00508	1.0169
81	80	1018 3272	0.20D-02	-0.00047	-0 23566
82	81	1018 74045	0.20D-02	0.00009	0.04663
83	82	1010.11010 1019 14847	0.20D-02	-0.00129	-0 64734
84	83	1019.14047 1019.54672	0.20D-02 0.20D-02	-0.00125	-0.04194
85 85	84	1019.04072 1010.03877	0.20D-02	-0.0001	0.04073
00 96	04 95	1019.93011	0.20D-02	0.00008	1 19062
00	00	1020.3201 1020.70277	0.20D-02	-0.00224	-1.12003
81	80	1020.70377	0.20D-02	-0.00214	-1.00904
88	87	1021.06924	0.20D-02	0.00292	1.45952
89	88	1021.43586	0.20D-02	-0.00043	-0.21742
90	89	1021.79347	0.20D-02	-0.00205	-1.02587
91	90	1022.13756	0.20D-02	0.00257	1.28318
92	91	1022.48335	0.20 D-02	-0.00182	-0.90779
93	92	1022.81663	0.20 D - 02	-0.001	-0.49981
94	93	1023.13972	0.20 D - 02	0.00268	1.3411
95	94	1023.46393	0.20 D - 02	-0.0021	-1.04761
96	95	1023.77048	0.20 D - 02	0.00344	1.7185
97	96	1024.07709	0.20D-02	0.00154	0.77188
The /	1_3 Ba	und 173 data	$I^{"}$ 1	<i>I</i> " – 0	0
Unc	-0 Da	- 2 2D 03 Un	$5_{min} - 1$	5 max - 5	0
(Frr/	$\frac{1}{1}$	-2.2D-05, 010	Max = 5.0	-0.65	
$(\mathbf{E}\Pi)$	One.)	Avge = -0.8D-	02, minon	= 0.05	
89	90	843.90148	0.20D-02	-0.00067	-0.33415
88	89	845.3598	0.20D-02	0.0015	0.74853
87	88	846.81507	0.20D-02	0.0015	0.74882
86	87	848.26659	0.20D-02	0.00003	0.0165
85	86	849.71125	0.20D-02	0.00018	0.09138
84	85	851 14944	0.20D-02	0.00156	0 77828
83	84	852 58497	0.20D-02	0.00133	0.16702
82	83	854 01516	0.20D-02 0.20D 02	0.00033	0.40262
81	82	855 43850	0.20D-02	-0.00031	0.23577
80	02 01	000.40009 056 05607	0.20D-02	-0.00047	0.16226
80 70	80	000.00027	0.20D-02	0.00032	0.10220
79 79	80	808.2093	0.20D-02	0.00047	0.23033
(8	79	859.0792	0.20D-02	-0.00155	-0.77370
	18	861.07892	0.20D-02	0.00128	0.64165
76	77	862.47559	0.20D-02	0.00183	0.91746
75	76	863.87119	0.20D-02	-0.00188	-0.94162
74	75	865.25479	0.20D-02	0.00106	0.52917
73	74	866.63737	0.20 D - 02	-0.00035	-0.17536
72	73	868.01302	0.20 D - 02	-0.0002	-0.10056
71	72	869.38102	0.20 D - 02	0.00222	1.10836
70	71	870.75171	0.20 D - 02	-0.00344	-1.71882
69	70	872.1075	0.20 D - 02	0.0004	0.19755
68	69	873.46387	0.20 D - 02	-0.00177	-0.88271
67	68	874.81236	0.20D-02	-0.00147	-0.73494
66	67	876.15407	0.20D-02	0.00018	0.09059
65	66	877.49214	0.20D-02	0.00002	0.00859
64	65	878.82647	0.20D-02	-0.00186	-0.93125
63	64	880.15197	0.20D-02	-0.00038	-0.18922
62	63	881 473	0.20D-02	0.00011	0 05437
61	62	882 780	0.20D-02 0.20D-02	0.00011	0.06426
60	61	884 10000	0.20D-02	0.00013	0.21008
50	60 01	885 40494	0.20D-02	-0.00044	-0.21990
-09	00	000.40424	0.20D-02	0.00042	0.21145

Table A 2 Equation Transform Infrared Data for $72$ CoO (am ⁻¹ ) (Con-	
Table A Z FOULIER FLAUSIOFIL INTATED DATA OF $\mathbf{G}_{\mathbf{F}}\mathbf{O}$ (in $1 + \mathbf{G}\mathbf{O}\mathbf{D}$	d

Table	, <b>m</b> . <b>2</b> ,	rounci mana	sonn mnai	cu Data Ioi	
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
58	59	886.7055	0.20D-02	-0.00133	-0.66689
57	58	887.99874	0.20D-02	-0.00061	-0.30533
56	57	889.28681	0.20 D - 02	-0.00026	-0.12913
55	56	890.5667	0.20 D-02	0.00272	1.36131
54	55	891.84772	0.20D-02	-0.00098	-0.48937
53	54	893.11884	0.20D-02	-0.00036	-0.18147
52	53	894.38516	0.20D-02	-0.00053	-0.26547
51	52	895.64559	0.20D-02	-0.0004	-0.20169
50	51	896.90018	0.20D-02	-0.00003	-0.01545
49	50	898.14858	0.20D-02	0.00091	0.4528
48	49	899.39356	0.20D-02	-0.00036	-0.18238
$47^{-0}$	48	900.63154	0.20D-02	-0.00027	-0.13628
46	47	901.86327	0.20D-02	0.00043	0.21564
$45^{-5}$	46	903.09195	0.20D-02	-0.00148	-0.74203
44	45	904.31144	0.20D-02	0.00012	0.06029
43	44	905.52666	0.20D-02	0.00031	0.15724
$42^{-3}$	43	906.73821	0.20D-02	-0.00151	-0.75673
41	42	907 94024	0.20D-02	0.00049	0 24306
40	41	909.13891	0.20D-02	0.00012	0.06106
39	40	910 33155	0.20D-02	0.00006	0.03192
38	39	911 5176	0.20D-02	0.00086	0 43013
37	38	912 69938	0.20D-02	0.00019	0.09524
36	37	913.87545	0.20D-02	-0.00054	-0.26822
35	36	915 04407	0.20D-02	0.00001	0.20922
34	35	916 20797	0.20D-02 0.20D-02	0.00042	0.15723
33	34	917 36623	0.20D-02	0.00001	0.03017
30	33	018 51812	0.20D-02 0.20D-02	0.00000	0.10265
31	30	910.51012 919.66578	0.20D-02 0.20D-02	-0.00033	-0.44093
30	32	919.00578	0.20D-02 0.20D-02	0.00088	0.21001
20	30	021 04061	0.20D-02	0.00044	0.21301
23	20	023 0688	0.20D-02	0.00041	0.15227
$\frac{20}{27}$	$\frac{29}{28}$	925.0088	0.20D-02 0.20D-02	-0.0003	-0.24047
21	$\frac{20}{27}$	924.19202	0.20D-02	-0.00048	0.18682
20 25	21	925.50908	0.20D-02	-0.00037	1 60234
20	$\frac{20}{25}$	920.42596 02752605	0.20D-02	0.000006	0.02752
24	$\frac{20}{24}$	028 62614	0.20D-02	0.00064	0.31801
20	24 93	928.02014	0.20D-02	-0.00004	0.01571
22 21	20 99	929.11900	0.20D-02	0.00003	0.528
21	22	021 88852	0.20D-02	0.00100	0.02164
10	21	032 05060	0.20D-02	-0.00004	0.01646
19	10	952.95969	0.50D-02	0.00400	0.80433
10	19	934.02904	0.30D-02	0.00447 0.00210	0.89433
16	17	935.10010	0.20D-02	-0.00219	1 34660
15	16	930.10800 037.20823	0.20D-02	-0.00203	0.24002
14	15	038 25585	0.20D-02	0.00048	1 10307
14	10	030.20000	0.20D-02	-0.00221	0.24502
10	14	939.29304	0.20D-02	0.00049 0.00217	1 08606
12	10	940.32930 0.41.3548	0.20D-02	-0.00217	-1.08000
10	12	049.27714	0.20D-02	0.00041	0.20433
10	11 10	942.37714 0/3 20122	0.20D-02	0.00010	0.01199
9 Q	0	949.99109 944 40907	0.20D-02	0.00007	0.45072
0 7	9	045 40640	0.20D-02	0.00029	0.140
( 6	0 7	940.40049	0.20D-02	-0.00030	-0.20002
0	( C	940.40384 047 20517	0.20D-02	-0.00043	-0.21/0/ 0.105/2
Э 4	0 5	941.39311 048 97009	0.20D-02	-0.00039	-0.19042
4	0 1	940.37903 055 10409	0.20D-02	0.00101	0.00444
<u>ک</u>	1	900.10498	0.20D-02	-0.00020	-0.13110
4 5	3 1	900.97037	0.30D-02	-0.005	-1.00050 0.40801
<i>i</i> )	4	301.09200	0.2017-07	0.001	0.42001

Table A.2, Fourier Transform Infrared Data for  72 GeO (cm⁻¹) (*Cont'd*)

10010		01			
J'	$J^{\prime\prime}$	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
6	5	958.81255	0.20 D - 02	-0.00145	-0.72334
7	6	959.7235	0.20 D - 02	-0.0014	-0.70069
8	7	960.62713	0.20D-02	-0.00029	-0.14484
ğ	8	961 52626	0.20D-02	-0.00096	-0 48156
10	ő	062 41860	0.20D 02	0.00000	0.61168
10	10	062.41009	0.20D-02	-0.00122	0.12005
11	10	905.50558	0.20D-02	-0.00024	-0.12095
12	11	964.18508	0.20D-02	-0.00218	-1.09029
13	12	965.05633	0.20D-02	-0.00019	-0.09541
14	13	965.9248	0.20D-02	-0.00174	-0.87222
15	14	966.78498	0.20 D - 02	-0.00136	-0.68154
16	15	967.63756	0.20 D - 02	0.00026	0.13077
17	16	968.48582	0.20 D - 02	-0.00016	-0.08115
18	17	969.32806	0.20D-02	-0.00095	-0.47316
19	18	970 16239	0 20D-02	-0.00021	-0 10608
20	10	070 08821	$0.20D_{-}02$	0.00021	1 31/11
20	20	071 81547	0.20D 02 0.20D 02	0.00200	1 18830
21	20	079 69021	0.20D-02	-0.00238	-1.10039
22	21	972.02931	0.20D-02	-0.0004	-0.19952
23	22	973.43772	0.20D-02	0.00057	0.28476
24	23	974.24205	0.20D-02	-0.00083	-0.41635
25	24	975.03504	0.20D-02	0.00264	1.32121
26	25	975.82716	0.20 D - 02	0.00051	0.25643
27	26	976.61171	0.20 D - 02	-0.00052	-0.26159
28	27	977.3886	0.20 D - 02	-0.00041	-0.20375
29	28	978.15851	0.20 D - 02	0.00018	0.08891
30	29	978.92254	0.20 D - 02	0.00012	0.06053
31	30	979.67968	0.20D-02	0.00042	0.21007
32	31	980 43357	0 20D-02	-0.00258	-1 28844
33	32	081 17628	$0.20D_{-}02$	-0.000200	-0.47597
34	22	081 01351	0.20D-02 0.20D 02	0.00035	0.20354
04 95	 	901.91331	0.20D-02	-0.00041	0.16914
- 3-0 - 9-0	04 97	962.04401	0.20D-02	-0.00052	-0.10214
30	30	983.3080	0.20D-02	0.00027	0.13720
37	30	984.08236	0.50D-02	0.0045	0.89944
38	37	984.80187	0.20D-02	-0.00365	-1.8242
39	38	985.50353	0.20D-02	-0.00057	-0.28708
40	39	986.20119	0.20 D - 02	-0.00014	-0.07114
41	40	986.89302	0.20 D - 02	-0.00053	-0.26743
42	41	987.57705	0.20 D - 02	0.00022	0.10798
43	42	988.26028	$0.50 \text{D}{-}02$	-0.00492	-0.98439
44	43	988.92665	0.20D-02	0.00011	0.0547
45	44	989.59201	0.20D-02	-0.00055	-0.27618
46	$45^{$	990 25098	0 20D-02	-0.00154	-0 76973
47	46	990 90146	0.20D-02	-0.00076	-0.38196
/8	10	001 54524	$0.20D_{-}02$	-0.00013	-0.01404
40	41	00017807	0.20D-02	-0.000003	0.00116
49 50	40	992.17097	0.30D-02	0.00401	0.00110
50	49	992.01020	0.20D-02	-0.00229	-1.14720
51	50	993.43817	0.20D-02	0.00004	0.01939
52	51	994.05613	0.20D-02	-0.00049	-0.2434
53	52	994.66745	0.20D-02	-0.00117	-0.5867
54	53	995.27009	0.20 D-02	0.00001	0.00324
55	54	995.86678	0.20 D - 02	0.00031	0.15533
56	55	996.4549	0.20 D - 02	0.00235	1.17335
57	56	997.04189	0.20D-02	-0.00134	-0.6689
58	57	997.61747	0.20D-02	-0.00048	-0.23758
59	58	998,18613	0.20D-02	0.00044	0.22101
60	59	998.75206	0.20D-02	-0.00281	-1.40431
61	60	999 30972	0.50D-02	-0.00469	-0.93788
62	61	000 85121	0.000-02	0.00409	1 20352
63	62	1000 39657	0.20D-02 0.20D-02	-0.00233	-0.36603

Table A.2, Fourier Transform Infrared Data for  72 GeO (cm⁻¹) (*Cont'd*)

J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
64	63	1000.92981	0.20D-02	0.00103	0.5157
65	64	1001.45902	0.20D-02	-0.00013	-0.06271
66	65	1001.98131	0.20D-02	-0.00133	-0.66254
67	66	1002.49326	0.20D-02	0.00084	0.41993
68	67	1003.00086	0.20D-02	0.00037	0.18341
69	68	1003.50122	0.20D-02	0.00014	0.07159
70	69	1003.9952	0.20D-02	-0.00072	-0.36134
71	70	1004.47779	0.20D-02	0.00277	1.38731
72	71	1004.96463	$0.50 \text{D}{-}02$	-0.00502	-1.00332
73	72	1005.43286	0.20 D - 02	-0.00125	-0.62451
74	73	1005.89194	$0.50 \text{D}{-}02$	0.0046	0.92093
75	74	1006.35501	0.20 D - 02	-0.00061	-0.30413
76	75	1006.8053	0.20 D - 02	-0.00013	-0.06526
77	76	1007.24625	0.20 D - 02	0.00259	1.29256
78	77	1007.68369	0.20 D - 02	0.0017	0.84844
79	78	1008.11393	0.20 D - 02	0.00088	0.44
80	79	1008.52774	$0.50 \text{D}{-}02$	0.00936	1.87253
81	80	1008.95289	0.20 D - 02	-0.00066	-0.32901
82	81	1009.35977	$0.20 \text{D}{-}02$	0.00043	0.21308
83	82	1009.76108	$0.20 \text{D}{-}02$	-0.0001	-0.04984
84	83	1010.15327	0.20D-02	0.0013	0.6513
85	84	1010.54142	0.20D-02	-0.00046	-0.22998
86	85	1010.92053	0.20D-02	-0.0004	-0.19962
87	86	1011.28285	0.50D-02	0.00922	1.84396
88	87	1011.64996	0.50D-02	0.00681	1.36104
89	88	1012.01552	0.20D-02	-0.00132	-0.65752
Unc./ (Err/	Avge = Unc.	2.3D-03, Une Avge = -8.0D-	$c{Max} = 8.0$ 02, RMSR	D-03 = 0.81	
76	77	854.1089	0.20 D - 02	-0.00127	-0.63511
75	76	855.49074	$0.20 \text{D}{-}02$	0.0022	1.09772
74	75	856.8724	0.20 D - 02	0.0005	0.24828
73	74	858.24858	$0.20 \text{D}{-}02$	-0.00108	-0.53866
72	73	859.61749	0.20D-02	-0.00074	-0.36833
71	72	860.98021	0.20D-02	0.00041	0.20393
70	71	862.33855	0.20D-02	0.00055	0.27293
69	70	863.6922	0.20D-02	-0.00002	-0.01165
68 67	69 C9	865.03746	0.20D-02	0.0024	1.19986
01	68 67	800.38297	0.20D-02	-0.00086	-0.42771
00 65	01 66	860.05246	0.20D-02	-0.00104	-0.70975
64	65	$870\ 37255$	0.20D-02	-0.00313	-1.30040
62	64	871.60550	0.20D-02	0.00272 0.00116	0.57065
62	63 63	873 01108	0.20D-02 0.20D-02	-0.00110	-0 11315
61	62	874 3215	0.20D-02 0.20D-02	-0.00023	-0.11188
60	61	875 62777	0.20D-02	-0.00022	-1 22692
59	60	876 92356	0.20D-02	0.00245	0 14134
58	59	878 2188	0.20D-02	-0.00194	-0 97233
57	58	879.5044	0.20D-02	-0.00006	-0.02832
56	57	880.78494	0.20D-02	0.00137	0.68301
55 - 55	56	882.06304	0.20D-02	-0.00033	-0.1637
54	55	883.33493	0.20D-02	-0.00137	-0.68375
53	54	884.59827	0.20D-02	0.00057	0.28738
52	53	885.85747	0.20D-02	0.00109	0.54437
51	52	887.10778	$0.50 \text{D}{-}02$	0.00489	0.97875
50	51	888.36161	0.20 D - 02	-0.00042	-0.21051
49	50	889.60483	0.20D-02	-0.00074	-0.36825

Table A.2, Fourier Transform Infrared Data for  72 GeO (cm⁻¹) (*Cont'd*)

1401					
J'	$J^{\prime\prime}$	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
48	49	890.84154	0.20 D - 02	-0.00015	-0.07665
47	48	892.07353	0.20 D-02	-0.00049	-0.24616
46	47	893.29839	0.20D-02	0.00066	0.32782
45	46	894.52006	0.20D-02	-0.00066	-0.33015
44	45	895.73285	0.20D-02	0.00124	0.61958
43	44	896.94293	0.20D-02	0.00018	0.09145
42	43	898.1486	0.20D-02	-0.00216	-1.07985
41	42	899.34399	0.20D-02	0.00008	0.04012
40	41	900.53654	0.20D-02	-0.00055	-0.27398
39	40	901.72205	0.20D-02	0.00015	0.07733
38	39	902.90231	0.20D-02	0.00037	0.1836
37	38	904.07829	0.20D-02	-0.00088	-0.44064
30	37	905.24565	0.20D-02	0.00074	0.36912
35	36	906.40996	0.20D-02	-0.00036	-0.17758
34	35	907.5673	0.20D-02	-0.00024	-0.1212
33	34	908.71877	0.20D-02	-0.00005	-0.02732
32	33	909.86335	0.20D-02	0.00123	0.61365
31	32	911.00797	0.20D-02	-0.00334	-1.6689
30	31	912.13964	0.20D-02	-0.00077	-0.38538
29	30	913.20371	0.20D-02	0.00358	1.78803
28	29	914.38930	0.20D-02	0.0005	0.24701
21	28 97	915.500	0.20D-02	0.00057	0.28002
20	21	910.01804 017.70021	0.20D-02	-0.00001	-0.30008
20 94	20 25	917.72231	0.20D-02	0.00011	0.004
24 92	20	910.02420 010.01522	0.20D-02	-0.00275	-1.37237
∠ə 99	24 92	919.91052 001 00015	0.20D-02	-0.0000	-0.30100
22	20 01	921.00210	0.30D-02	-0.00014	-0.02782
20	21	923.13001	0.20D-02	0.00004 0.00382	0.01774
19	20 10	924.22400 025 20051	0.20D-02	0.00382 0.0014	0.60067
17	19	925.29051	0.20D-02	0.0014 0.00124	0.62153
16	17	920.34820 027 30063	0.20D-02 0.20D-02	0.00124 0.00149	0.74644
15	16	927.33303 928.44617	0.20D-02	0.00145	0.29881
14	15	920.44011	0.20D-02	-0.00048	-0.24192
13	14	$930\ 52267$	0.20D-02	-0.00263	-1 31644
12	13	931 54898	0.20D-02	-0.00133	-0 66543
11	12	$932\ 57248$	0.20D-02	-0.00325	-1 62445
10	11	933.58944	0.50D-02	-0.00467	-0.93368
9	10	934.59229	0.20D-02	0.00198	0.98972
8	9	935.59953	0.20D-02	-0.00184	-0.91847
7	8	936.59558	0.20D-02	-0.00054	-0.26939
6	7	937.58463	0.20D-02	0.00167	0.83633
5	6	938.57524	0.20D-02	-0.00377	-1.88712
4	5	939.55728	$0.50 \text{D}{-}02$	-0.00675	-1.35052
3	4	940.52442	0.20D-02	-0.00096	-0.47901
2	3	941.49355	0.20D-02	-0.00329	-1.64393
1	2	942.4461	$0.50 \text{D}{-}02$	0.00482	0.96369
0	1	943.4069	0.20D-02	-0.00148	-0.7403
2	1	946.23414	0.20D-02	-0.00225	-1.12719
3	2	947.16516	0.20 D-02	-0.00351	-1.75474
4	3	948.08634	0.20 D - 02	-0.00114	-0.56875
5	4	949.00222	0.20 D-02	0.00031	0.15511
7	6	950.81883	0.20 D - 02	-0.00035	-0.17686
8	7	951.7152	0.20 D - 02	0.00186	0.93074
9	8	952.60809	0.20 D - 02	0.00129	0.64304
10	9	953.49316	0.20 D - 02	0.00225	1.12414
11	10	954.37711	0.20 D - 02	-0.00196	-0.98169
12	11	955.24878	0.20 D - 02	-0.00019	-0.09537

Table A.2.	Fourier	Transform	Infrared	Data for	r ⁷² GeO	$(cm^{-1})$	(Cont'd)

1/	, 		IT IIIIII		
J	$J^{\prime\prime}$	Ubs	Unc	Calc-Obs	(Calc-Obs)/Unc
13	12	956.11874	0.20 D - 02	-0.00304	-1.51764
14	13	956.97516	0.20 D - 02	0.00133	0.66562
16	15	958.67869	0.20 D - 02	0.00034	0.1703
17	16	959.52128	0.20 D - 02	-0.00052	-0.25994
18	17	960.35747	0.20D-02	-0.00136	-0.67815
19	18	961 1848	0 20D-02	0.00029	0 14483
20	10	962 0079	$0.20D_{-}02$	-0.00024	-0 12182
20	20	062.0013	0.20D-02	0.00024	0.65005
21	20	902.02201	0.20D-02	0.0013	0.00090
22	21	905.0555	0.20D-02	0.00004	0.02223
23	22	964.43449	0.20D-02	0.00235	1.1701
24	23	965.23504	0.20D-02	-0.00135	-0.67335
25	24	966.02623	0.20D-02	-0.00213	-1.06705
26	25	966.81008	0.20 D - 02	-0.00206	-1.03093
27	26	967.58527	0.20 D - 02	0.00019	0.0941
28	27	968.35577	0.20 D - 02	0.00063	0.31699
29	28	969.12201	0.20 D - 02	-0.00117	-0.58311
30	29	969.87917	0.20 D - 02	-0.0004	-0.20223
31	30	970.62956	0.20D-02	0.0006	0.29865
$3\overline{2}$	31	971.37866	0.20D-02	-0.00364	-1.82144
33	32	972 11336	0.20D-02	-0.00005	-0.02351
34	22	072 84451	0.20D 02	0.00000	0.26640
25	34	072.54401	0.20D-02	0.00000	0.00745
00 96	04 95	913.31	0.20D-02	0.00019	1 91946
30 97	30	974.28015	0.20D-02	0.00205	1.01040
37	30	974.99858	0.20D-02	0.00214	1.06838
38	37	975.70604	0.20D-02	0.00002	0.01127
39	38	976.40379	0.20D-02	0.00099	0.49606
40	39	977.09801	0.20D-02	-0.00114	-0.56833
41	40	977.78442	0.20 D - 02	-0.00212	-1.05795
42	41	978.46427	0.20 D - 02	-0.0032	-1.59882
43	42	979.12828	$0.50 \text{D}{-}02$	0.00489	0.97715
44	43	979.79935	0.20 D - 02	-0.00078	-0.38884
45	44	980.45602	0.20 D - 02	0.00126	0.62983
46	45	981.10945	0.20D-02	-0.00017	-0.08711
47	46	981.75414	0.20D-02	0.00041	0.20416
48	47	982 39524	0.20D-02	-0.00214	-1 07247
49	48	983 02917	0.20D-02	-0.00429	-0.85725
50	40	083 6522	0.00D - 02 0.20D 02	0.00429	1 1/301
51	49 50	985.0522	0.20D-02	-0.00229	0.62804
51	50	904.20009	0.20D-02	0.00128	1.00574
52	51	984.87401	0.30D-02	0.00000	1.00374
53	52	985.48523	0.20D-02	-0.00092	-0.45891
54	53	986.08348	0.80D-02	-0.0013	-0.16299
55	54	986.67325	0.20D-02	-0.00003	-0.01598
56	55	987.26226	0.50D-02	-0.00482	-0.96488
57	56	987.83294	0.20 D - 02	0.00186	0.92818
58	57	988.40755	0.20 D - 02	-0.00225	-1.12599
59	58	988.96961	0.20 D - 02	-0.00068	-0.34102
60	59	989.52442	0.20 D - 02	0.00125	0.62694
61	60	990.07919	0.20D-02	-0.00367	-1.83343
62	61	990.61723	0.20D-02	0.00123	0.61671
63	62	991.15033	0.50D-02	0.00415	0.83043
64	63	991.68337	0.20D-02	0.0002	0.09839
65	64	992 2063	0.20D-02	-0.0006	-0 29757
66	65	002.2005 002.72054	0.20D-02	0.0000	0 17681
60	67	994.12004 002 79706	0.20D-02	0.00033	1 19164
00	01	990.12190 004.00506	0.20D-02	0.00230	1.10104
09	08	994.22000	0.20D-02	-0.00051	-0.2002
70	69	994.71132	0.20D-02	0.00044	0.22248
71	70	995.19229	0.20D-02	-0.00033	-0.16566
72	71	$995\ 66278$	0.20D-02	0.00234	1 1687

	Table A.2.	Fourier	Transform	Infrared	Data for	72 GeO	$(cm^{-1})$	((	Cont'd	)
--	------------	---------	-----------	----------	----------	-------------	-------------	----	--------	---

Table	e A.2,	rourier Irans	siorin Infrar	ed Data for	$- \text{GeO}(\text{cm}^{-1})(\text{Con})$	$u^{\alpha}$
J'	$J^{\prime\prime}$	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc	
73	72	996.12736	0.50D-02	0.00387	0.77369	
74	73	996.58932	0.20D-02	0.00096	0.47961	
75	74	997.04189	0.20D-02	0.00037	0.18338	
76	75	997.48519	0.20D-02	0.00196	0.97927	
77	76	997 91802	0.50D-02	0.00693	1 38633	
78	77	998 35805	0.20D-02	-0.00242	-1 20831	
79	78	998 78092	0.20D-02	-0.00173	-0.86457	
80	70	000 10486	0.20D-02	0.00075	0.37564	
81	80	999 60596	0.20D-02 0.20D-02	-0.00108	-0 53911	
01	00	555.00050	0.20D-02	-0.00100	-0.00011	
The 6	6-5 Ba	nd, 147 data,	J" _{min} = 0	$J''_{max} = 7$	4	
Unc. _/	Avge =	2.3D-03, Un = 8.2D	$c_{Max} = 5.0$	)D-03		
(EII)	Unc.)	Avge = 8.5D-0	)2, rivisr =	= 0.92		
72	73	851.24782	0.20 D-02	-0.00087	-0.435	
71	72	852.60234	0.20 D-02	0.00193	0.96688	
70	71	853.95601	0.20 D - 02	0.00022	0.10823	
69	70	855.2993	0.20 D - 02	0.00348	1.73873	
68	69	856.63807	$0.50 \text{D}{-}02$	0.00586	1.17128	
67	68	857.97638	0.20D-02	0.00328	1.64128	
66	67	859.30783	0.20D-02	0.00216	1.07773	
65	66	860.6342	0.20D-02	0.00066	0.33214	
64	65	861 95492	0.20D-02	-0.00062	-0.31074	
63	64	863 27013	0.20D-02	-0.00185	-0.9262	
62	63	864 57579	0.20D 02 0.20D-02	0.00100	0.50536	
61	62	865 87086	0.20D-02	0.00101	0.00000	
60	61	805.87980 867 17619	0.20D-02	-0.00002	-0.0113	
50	01 CO	007.17010	0.20D-02	0.00121	0.00344	
59	60 50	868.46875	0.20D-02	0.00069	0.34419	
58	59	869.7524	0.20D-02	0.00359	1.7957	
57	58	871.0385	0.20D-02	-0.00148	-0.74243	
56	57	872.31107	0.20D-02	0.00144	0.7195	
55	56	873.58252	0.20D-02	-0.00006	-0.02899	
54	55	874.84843	0.20 D - 02	-0.00156	-0.77822	
53	54	876.10332	0.20 D - 02	0.00239	1.1965	
52	53	877.35726	0.20 D - 02	0.00172	0.85967	
51	52	878.60571	0.20D-02	0.00095	0.47601	
50	51	879.84699	0.20D-02	0.00176	0.88008	
49	50	881.08487	0.20D-02	0.00037	0.18647	
48	49	882.31657	0.20D-02	-0.00046	-0.23022	
$\overline{47}$	48	883.54356	0.20D-02	-0.00221	-1.10541	
46	47	884 76037	0.20D-02	0.00058	0 29049	
45	46	885 97388	0.20D-02	0.00000	0.51704	
<u>то</u> ДД	45	887 18900	0.20D-02 0.20D-02	0.00103	0.10887	
49 19	44	888 28/17	0.20D-02	0.00022	0.83044	
40 40	44	000.30411	0.20D-02	0.00100	0.00044	
42 41	43	009.00093	0.30D-02	-0.00410	-0.00144	
41	42	890.7716	0.20D-02	0.00242	1.21120	
40	41	891.96544	0.50D-02	-0.00586	-1.17221	
39	40	893.14009	0.20D-02	-0.00068	-0.33926	
38	39	894.31582	0.20D-02	-0.0023	-1.15051	
37	38	895.47903	0.20 D - 02	0.00286	1.43032	
36	37	896.6429	0.20 D - 02	0.00163	0.81264	
35	36	897.80374	0.20 D - 02	-0.00235	-1.174	
34	35	898.95051	0.20D-02	0.00198	0.98997	
33	34	900.09743	0.20D-02	0.00038	0.18894	
32	33	901.23792	0.20D-02	-0.00058	-0.2925	
31	32	902 3715	0.20D-02	-0.00000	-0 21491	
30	3 <u>7</u> 31	002.0110	0.200-02	0.00040	0 18117	
00 90	30	004 61601	0.20D-02	0.00030	0.10117	
29 २०	ას ეი	904.01081 005 74006	0.50D-02	0.00420 0.00264	0.00209 0.79721	
Δð	<i>2</i> 9	900.74090	0.00D-02	-0.00304	-0.12131	

Table	A.2,	Fourier Tra	ansform Infra	red Data for	$^{72}\text{GeO}$	$(\mathrm{cm}^{-1})$ (Cont'd)
τ/	τ//	Oha	Une	Cala Oha	(Cala	Oha)/Una

				C 1 01	
J'	$J^{\prime\prime}$	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
27	28	906.84803	0.20 D-02	-0.0003	-0.14989
26	27	907.9483	0.20 D - 02	0.00399	1.99484
25	26	909.04937	0.20D-02	0.0016	0.8004
24	25	910.14389	0.20D-02	-0.00012	-0.05886
23	$\frac{-3}{24}$	911 22732	0.20D-02	0.00336	1 68158
20	24	012 31426	0.20D 02 0.20D 02	0.00000	1 27801
22	20	012.01420	0.20D-02	-0.00230	0.7450
21	22	913.30029	0.20D-02	-0.00149	-0.7459
20	21	914.45519	0.20D-02	0.00078	0.39001
19	20	915.51755	0.20D-02	0.00166	0.82822
18	19	916.5726	0.20D-02	0.0039	1.94812
17	18	917.62617	0.20 D - 02	0.00166	0.82917
16	17	918.67265	0.20 D - 02	0.00055	0.27563
15	16	919.71119	0.20 D - 02	0.00139	0.69699
14	15	920.75298	$0.50 \text{D}{-}02$	-0.007	-1.401
13	14	921.77171	0.20D-02	0.00165	0.82664
12	13	922.79411	0.20D-02	0.00063	0.31369
11	12	923 81162	0.20D-02	-0.00152	-0 76198
10	11	024 81661	$0.20D_{-}02$	0.00192	1 30805
10	10	025 80242	0.20D-02	0.0028	0.27018
9	10	920.02040	0.20D-02	-0.00070	-0.37910
0 7	9	920.0101	0.20D-02	0.00178	0.00001
	8	927.81193	0.20D-02	-0.00092	-0.46028
6	7	928.79577	0.20D-02	0.0003	0.15037
5	6	929.77141	0.20D-02	0.00362	1.80922
4	5	930.74876	0.20 D-02	-0.00088	-0.4395
3	4	931.7155	0.20 D - 02	-0.00088	-0.44139
2	3	932.67845	0.20 D - 02	-0.00322	-1.61223
1	2	933.62235	$0.50 \text{D}{-}02$	0.00734	1.46892
0	1	934.57214	0.50 D - 02	0.00588	1.17656
1	0	936.4571	0.20D-02	-0.00094	-0.46957
2	1	937.38512	0.20D-02	0.00084	0.41881
3	2	938 31618	0.50D-02	-0.00662	-1 32447
4	3	939 2246	0.00D-02	0.00002	1 17966
5	4	$040\ 12276$	0.20D-02 0.50D 02	0.00230 0.00437	0.87491
6	-1 E	0.41 0.02671	0.50D-02	0.00437	1 97995
0 7	0 6	941.03071 041.04527	0.30D-02	0.00030	1.27220
(	0	941.94037	0.20D-02	-0.0030	-1.80081
8	1	942.83917	0.50D-02	-0.00496	-0.99184
9	8	943.72026	0.20D-02	0.00013	0.06348
10	9	944.59966	0.20D-02	0.00064	0.31754
11	10	945.47599	0.20 D - 02	-0.00209	-1.04316
12	11	946.3448	0.20 D - 02	-0.00359	-1.7945
13	12	947.20556	0.20 D - 02	-0.00335	-1.67731
14	13	948.05262	$0.50 \text{D}{-}02$	0.00426	0.85102
15	14	948.90414	0.20D-02	0.00107	0.53421
16	15	949.74642	0.20D-02	0.00078	0.39183
17	16	950 58238	0.20D-02	0.00045	0 22458
18	17	951 41286	0.20D-02	-0.00078	-0 38852
10	18	052 23560	0.20D 02 0.20D 02	0.00070	0.36827
20	10	952.25509	0.20D-02	-0.00074	0.1404
20 91	19	999.09119	0.20D-02	0.0003	0.1434 0 90059
21	20	905.80092	0.20D-02	0.00038	0.20000
22	21	954.66485	0.20D-02	0.0003	0.14831
23	22	955.45891	0.20D-02	0.00347	1.73282
24	23	956.25424	0.20D-02	-0.00109	-0.54398
25	24	957.03796	$0.20 \text{D}{-}02$	-0.00049	-0.24296
26	25	957.81492	0.20 D - 02	0.00041	0.20493
27	26	958.58608	0.20 D - 02	0.00063	0.31378
28	27	959.34883	0.20 D - 02	0.00277	1.38259
29	28	960.11159	0.20D-02	-0.00161	-0.80461
31	30	961 6112	0.50D-02	-0.00399	-0 79839

Table A.2, Fourier Transform Infrared Data for  72 GeO (cm⁻¹) (*Cont'd*)

1/	<u></u>	Oha	Uno	Cala Oha	$\frac{(Cala Oba)}{(Uaba)}$
J	J	Obs	Unc	Calc-Obs	(Calc-Obs)/ Unc
32	31	962.34508	0.20D-02	0.00094	0.46789
33	32	963.07811	0.20D-02	0.00016	0.08178
34	33	963.80351	0.20D-02	0.00046	0.22975
35	34	964.52073	0.20 D - 02	0.00236	1.18066
36	35	965.23504	0.20 D - 02	0.00059	0.2936
37	36	965.94111	0.20 D - 02	0.00046	0.23247
38	37	966.64131	0.20 D - 02	-0.00041	-0.20376
39	38	967.33422	0.20 D - 02	-0.00061	-0.30614
40	39	968.02229	0.20 D - 02	-0.00261	-1.30575
41	40	968.69964	0.20D-02	-0.00054	-0.26864
42	41	969.37217	0.20D-02	-0.0003	-0.15089
43	42	970.03579	0.20D-02	0.00217	1.08645
44	43	970.69721	0.20D-02	0.00016	0.08225
45	44	971.35069	0.20D-02	-0.00059	-0.29465
46	45	971 99957	0.20D-02	-0.00346	-1 73025
47	46	972 62891	0.50D-02	0.00649	1 29772
48	47	973 26807	0.00D-02	-0.00011	-0.05719
40	48	073 80533	0.20D-02	0.00011	0.78084
49 50	40	975.89555	0.20D-02	-0.00130	0.18978
51	49 50	974.01019 075 19469	0.20D-02	-0.00037	0.24588
51	50	975.12402	0.20D-02	0.00049	0.24300
02 52	01 E0	975.72917	0.20D-02	0.00143	0.72012
03 54	52 52	970.32779	0.20D-02	0.00154	0.77013
54	53	976.91902	0.20D-02	0.00223	1.11342
55	54	977.50584	0.20D-02	0.0005	0.24755
56	55	978.08211	0.20D-02	0.00248	1.24138
57	56	978.65239	0.50D-02	0.00362	0.72343
58	57	979.22131	0.20D-02	-0.00074	-0.372
59	58	979.77845	0.20 D - 02	-0.00019	-0.09654
60	59	980.32968	0.20 D - 02	-0.00061	-0.30633
61	60	980.87333	0.20 D - 02	-0.00035	-0.17261
62	61	981.40992	0.20 D - 02	0.00008	0.03832
63	62	981.94165	0.20 D - 02	-0.00155	-0.77466
64	63	982.46559	0.20 D - 02	-0.00233	-1.16296
65	64	982.98163	0.20 D - 02	-0.00215	-1.07283
66	65	983.48722	0.20 D - 02	0.00153	0.76451
67	66	983.99304	0.20 D - 02	-0.00199	-0.99735
68	67	984.4822	0.50 D - 02	0.00416	0.83216
69	68	984.97823	0.20D-02	-0.00355	-1.77365
70	69	985.45691	0.20D-02	-0.00091	-0.45578
71	70	985,9319	0.20D-02	-0.0016	-0.80235
72	71	986 39891	0.20D-02	-0.00135	-0 6747
73	72	986 86163	0.20D-02	-0.00385	-1 92413
74	73	987 31372	0.20D-02	-0.00276	-1 3821
75	74	087 76035	0.20D-02 0.20D 02	0.00210	1 6400
10	74	981.10035	0.20D-02	-0.0033	-1.0499
τu	7 C D	1 100 1 4	7. 1	1 7)	20
Ine	7-6 Ba	nd, 123 data,	$J^{\prime\prime}_{min} = 1$	$1, J^{n}_{max} =$	80
Unc.	Avge =	3.9D-03, Un	$c_{Max} = 1.0$	D-02	
(Err)	/Unc.)	Avge = 2.2D-0	01, RMSR =	= 1.06	
79	80	833 30323	0.50D-02	-0.00525	-1 05031
78	70	834 6806	0.50D-02 0.50D-02	-0.003/0	-0 69852
77	78	836 06047	0.50D-02	-0.00049	-0 10711
76	77	837 /2562	0.000-02	0.000034	1 08202
70	11 76	001.40000	0.10D-01	0.01000	1.00232
10	70	000.012	0.00D-02	0.00000	1.33023
(4	() 74	840.18713	0.20D-02	-0.00102	-0.81010
(3	(4	841.944/4	0.20D-02	0.00228	1.1422
(2	(3	842.90578	0.20D-02	-0.00259	-1.29272
71	72	844.25953	0.50D-02	-0.00554	-1.10804
70	71	845.60212	0.20D-02	-0.00271	-1.35526

Table A.2, Fourier Transform Infrared Data for  72 GeO (cm⁻¹) (*Cont'd*)

				a l al	
J'	$J^{\prime\prime}$	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
69	70	846.95026	$0.10 \text{D}{-}01$	-0.01082	-1.0817
68	69	848.27454	0.20 D - 02	-0.00045	-0.22513
67	68	849.59731	$0.50 \text{D}{-}02$	0.00601	1.20183
66	67	850.92386	0.20 D - 02	0.00327	1.6353
65	66	852.24213	0.20 D - 02	0.00338	1.69178
64	65	853.54093	0.10D-01	0.01754	1.75372
63	64	854.85883	$0.50 \text{D}{-}02$	0.00713	1.4262
62	63	856.17068	0.20 D - 02	-0.00269	-1.34288
61	62	857.46389	0.20 D - 02	0.00067	0.33317
60	61	858.75843	0.20 D - 02	-0.00279	-1.39673
59	60	860.04062	0.20 D - 02	0.00061	0.30707
58	59	861.32119	0.20 D - 02	0.00013	0.06423
57	58	862.59741	0.20 D - 02	-0.00152	-0.76062
56	57	863.87119	$0.50 \text{D}{-}02$	-0.00626	-1.25114
55	56	865.12795	0.20D-02	0.0005	0.25224
54	55	866.38297	0.20 D - 02	0.00345	1.72414
52	53	868.88443	0.20D-02	0.00123	0.61714
51	52	870.13212	$0.50 \text{D}{-}02$	-0.00519	-1.03706
50	51	871.36086	0.20D-02	0.00175	0.87291
49	50	872.59898	$0.50 \text{D}{-}02$	-0.0063	-1.26065
48	49	873.81685	0.20D-02	0.00029	0.1433
47	48	875.03819	0.20D-02	-0.00221	-1.10265
46	47	876.24205	$0.50 \text{D}{-}02$	0.00714	1.42799
45	46	877.45558	0.20 D - 02	0.00117	0.58581
44	45	878.65994	0.20 D - 02	-0.00128	-0.64055
43	44	879.85511	0.20 D - 02	-0.00021	-0.10459
42	43	881.04389	0.20 D - 02	0.00159	0.79318
41	42	882.22487	$0.50 \text{D}{-}02$	0.00548	1.09696
40	41	883.40584	0.20 D - 02	0.0037	1.84756
39	40	884.57835	$0.50 \text{D}{-}02$	0.00466	0.93127
38	39	885.74141	$0.50 \text{D}{-}02$	0.00936	1.87154
37	38	886.91174	0.20 D-02	0.00105	0.52397
36	37	888.05864	$0.50 \text{D}{-}02$	0.01043	2.08524
35	36	889.21472	$0.50 \text{D}{-}02$	0.00487	0.97432
34	35	890.364	0.20 D-02	0.00035	0.17647
33	34	891.50326	0.20 D - 02	0.00009	0.04469
32	33	892.63686	0.20 D - 02	-0.00031	-0.15511
31	32	893.76639	0.20 D-02	-0.00244	-1.21845
29	30	896.00369	0.20 D - 02	-0.00237	-1.18287
28	29	897.11812	$0.50 \text{D}{-}02$	-0.00684	-1.36802
27	28	898.21049	$0.50 \text{D}{-}02$	0.00489	0.97884
26	27	899.31187	$0.50 \text{D}{-}02$	0.00177	0.35321
25	26	900.39472	0.10D-01	0.0113	1.13043
24	25	901.48294	0.10D-01	0.0096	0.95976
23	24	902.58659	$0.10 \text{D}{-}01$	-0.01341	-1.34149
22	23	903.64291	0.20 D - 02	0.005	2.49773
21	22	904.71606	0.20 D - 02	0.00067	0.33377
20	21	905.77647	$0.20 \text{D}{-}02$	0.00316	1.58006
19	20	906.84803	0.10D-01	-0.01143	-1.1428
17	18	908.93631	$0.50 \text{D}{-}02$	-0.00359	-0.71822
16	17	909.97485	$0.50 \text{D}{-}02$	-0.00302	-0.60372
15	16	911.00797	0.50D-02	-0.003	-0.60038
14	15	912.03087	0.20D-02	0.00125	0.62397
13	14	913.06165	0.50D-02	-0.00837	-1.67409
12	13	914.06343	0.50D-02	0.00499	0.99831
11	12	915.075	0.20D-02	0.00254	1.27135
10	11	916.08738	0.50D-02	-0.00675	-1.34968
12	11	937.45793	0.20D-02	0.0026	1.30045

Table A.2, Fourier Transform Infrared Data for  72 GeO (cm⁻¹) (*Cont'd*)

		Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
13	12	938 31627	0.20D-02	-0.00086	-0 43138
14	12	939 15349	0.20D-02	0.01048	2 09662
15	14	030 00881	0.50D-02	0.01040	1 47735
17	16	941 66491	0.50D-02	0.00669	1 33812
18	17	942 49235	0.00D-02 0.20D-02	0.00000000000000000000000000000000000	1 20361
10	18	943 31252	0.20D-02 0.20D-02	-0.00241	-0.49271
20	19	944 11939	0.20D-02	0.00055	1 26538
20	20	944 92905	0.20D-02	-0.00200	-0.62717
$\frac{21}{22}$	20	945.72406	0.00D-02	-0.00014	-0.28861
23	22	946 50365	0.10D-01	0.01097	1 09749
$\frac{20}{24}$	23	947 29921	0.10D 01	0.00012	0.05926
$\frac{21}{25}$	$\frac{20}{24}$	948 09348	0.20D-02	-0.0159	-1 58983
$\frac{-6}{26}$	$\frac{1}{25}$	948 85047	0.20D-02	-0.0011	-0 54859
$\frac{20}{27}$	$\frac{-6}{26}$	949 61416	0.50D-02	0.00053	0 10594
30	$\frac{-0}{29}$	951 8749	0.50D-02	-0.00321	-0 64285
31	30	952.60351	0.50D-02	0.00748	1.49531
32	31	953.34277	0.20D-02	0.00098	0.49158
33	32	954 06998	0.20D-02	-0.00001	-0.00312
35	34	955.50295	0.20D-02	-0.00021	-0.10557
36	35	956.2093	0.20D-02	-0.00005	-0.02548
37	36	956.91092	0.20D-02	-0.00175	-0.87748
38	37	957.60137	0.20D-02	0.0011	0.55233
39	38	958.28807	0.20D-02	0.0011	0.54794
40	39	958.96837	0.20D-02	0.00086	0.42818
42	41	960.30948	0.20D-02	-0.00007	-0.03657
43	42	960.96896	0.20D-02	0.00055	0.27626
44	43	961.62102	0.20D-02	0.00191	0.95437
$45^{$	44	962.27032	0.20D-02	-0.00067	-0.33326
46	45	962.91127	0.20D-02	-0.0016	-0.7978
47	46	963.54411	0.20D-02	-0.00113	-0.56538
48	47	964.17014	0.20D-02	-0.00058	-0.29208
49	48	964.77031	0.10D-01	0.01908	1.90817
50	49	965.40625	$0.50 \text{D}{-}02$	-0.00378	-0.75505
51	50	966.00678	0.20D-02	0.00202	1.01119
52	51	966.61974	0.10D-01	-0.0114	-1.13975
53	52	967.19919	0.20D-02	0.0019	0.95134
55	54	968.37107	$0.50 \text{D}{-}02$	-0.0049	-0.97929
56	55	968.93794	0.20D-02	0.00054	0.26978
57	56	969.49893	0.50D-02	0.00502	1.00317
58	57	970.06274	0.20D-02	-0.00018	-0.08988
59	58	970.61335	0.20D-02	0.00096	0.47999
60	59	971.15567	0.20D-02	0.00352	1.76142
61	60	971.69168	$0.50 \text{D}{-}02$	0.0055	1.09924
62	61	972.2283	0.20D-02	-0.00004	-0.02124
63	62	972.75199	0.20D-02	0.00043	0.21714
64	63	973.26807	0.20D-02	0.00159	0.79701
65	64	973.77775	0.20D-02	0.00221	1.10698
66	65	974.28613	0.20 D - 02	-0.00282	-1.40914
67	66	974.78119	$0.50 \text{D}{-}02$	-0.0015	-0.2991
68	67	975.25427	0.10D-01	0.01483	1.48299
69	68	975.76139	$0.10 \text{D}{-}01$	-0.00988	-0.98751
70	69	976.21338	0.10D-01	0.01355	1.35473
71	70	976.68849	$0.50 \text{D}{-}02$	0.00684	1.36881
72	71	977.15066	$0.50 \text{D}{-}02$	0.00604	1.20851
73	72	977.61229	0.20 D - 02	-0.00126	-0.62996
The	07D-	nd 19 data	7," 05	<i>I</i> ", <i>C</i>	6
Ine t	o-i Ba		$y_{min} = 25$	$J_{max} = 6$	U
Onc.	Avge =	- 4.4D-03, UN	$0{Max} = 1.0$	D-02	

Table A.2, Fourier Transform Infrared Data for  72 GeO (cm⁻¹) (*Cont'd*)

Table A.2, Fourier	Transform	Infrared I	Data for	72 GeO (	$(cm^{-1})$	) (	(Cont'd)
--------------------	-----------	------------	----------	---------------	-------------	-----	----------

	<i>T</i> .2, 1				$\frac{\operatorname{GeO}\left(\operatorname{Cm}^{-}\right)\left(\operatorname{COnt}^{-}u\right)}{\left(\operatorname{COnt}^{-}u\right)}$
J'		Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
$(\mathrm{Err}/$	$(Unc.)_A$	Avge = 7.9D-(	$02, \mathrm{RMSR} =$	= 1.18	
65	66	843.88489	0.20 D-02	-0.00283	-1.41516
64	65	845.18345	$0.50 \text{D}{-}02$	0.00507	1.01486
63	64	846.47882	0.10D-01	0.01072	1.07242
61	62	849.07615	0.20 D - 02	-0.00093	-0.46625
57	58	854.17027	0.10D-01	0.01048	1.04782
56	57	855.45757	0.10D-01	-0.01421	-1.42139
54	55	857.94972	0.20 D-02	0.00225	1.12516
53	54	859.20233	$0.50 \text{D}{-}02$	-0.00437	-0.87301
51	52	861.67326	0.20 D - 02	-0.00002	-0.01241
50	51	862.90444	0.20 D - 02	-0.00194	-0.97037
46	47	867.77821	0.10D-01	-0.0147	-1.47046
43	44	871.34625	0.20 D-02	0.00385	1.92253
42	43	872.52878	$0.50 \text{D}{-}02$	0.00551	1.10268
41	42	873.71956	$0.50 \text{D}{-}02$	-0.00675	-1.35009
40	41	874.88514	0.20 D - 02	0.0005	0.25124
39	40	876.03616	0.10D-01	0.0166	1.66013
38	39	877.21484	0.20 D - 02	-0.00068	-0.33754
37	38	878.37216	0.20 D-02	-0.00232	-1.15881
36	37	879.52633	$0.50 \text{D}{-}02$	-0.00655	-1.30944
35	36	880.66531	0.20 D - 02	-0.00132	-0.6625
34	35	881.79966	0.20 D - 02	0.00276	1.37906
33	34	882.93683	0.20 D - 02	-0.00175	-0.87448
31	32	885.19022	$0.50 \text{D}{-}02$	-0.00717	-1.43359
28	29	888.5109	0.20 D-02	0.00057	0.28277
27	28	889.60529	0.20 D-02	0.00398	1.99237
26	25	939.91449	$0.50 \text{D}{-}02$	-0.00458	-0.91566
29	28	942.16161	$0.50 \text{D}{-}02$	0.00662	1.3231
30	29	942.8941	0.10D-01	0.0139	1.39003
31	30	943.65233	0.10D-01	-0.01107	-1.1073
35	34	946.50538	0.20 D - 02	0.00349	1.7456
36	35	947.20233	$0.50 \text{D}{-}02$	0.00703	1.40527
41	40	950.6092	0.20 D - 02	0.00349	1.74565
43	42	951.92691	0.20 D-02	0.00064	0.31872
46	45	953.85458	$0.50 \text{D}{-}02$	-0.00485	-0.96941
47	46	954.47647	0.20 D - 02	0.00058	0.29149
49	48	955.69289	0.10D-01	0.01863	1.86263
50	49	956.30795	0.10D-01	0.01068	1.0675
52	51	957.51371	0.20 D - 02	-0.00117	-0.58261
54	53	958.67913	0.20 D - 02	0.00019	0.09435
55	54	959.25572	0.20 D-02	-0.00322	-1.61249
58	57	960.93267	0.20 D - 02	-0.00163	-0.81415
59	58	961.47891	0.20 D - 02	-0.00206	-1.03079

## A.3 Fourier Transform Infrared Data for ⁷³GeO

J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
		804 ⁷³ G	eO infrared	transitions	in 6 bands
The	e 1-0 E	Band, 103 dat	a, $J"_{min} =$	$1, J"_{max} =$	90
Unc	Avge	= 2.1 D - 03, U	$\operatorname{Inc.}_{Max} = 5$	6.0D-03	
(Eri	r/Unc	$.)_{Avge} = 1.2 \Gamma$	$-01, \mathrm{RMSR}$	$\mu = 0.70$	
83	84	876.78206	0.20D-02	-0.00122	-0.60778
82	83	878.22436	0.20D-02	0.0013	0.64808
81	82	879.65737	$0.50 \text{D}{-}02$	0.00782	1.56426
80	81	881.09926	0.20D-02	0.00019	0.0948
79	80	882.52705	0.20D-02	0.00135	0.67538
78	79	883.94708	$0.50 \text{D}{-}02$	0.00496	0.99286
77	78	885.36483	$0.50 \text{D}{-}02$	0.00554	1.108
76	77	886.7779	$0.50 \text{D}{-}02$	0.00548	1.09547
75	76	888.18924	0.20 D - 02	0.0018	0.8981
74	75	889.59415	0.20 D - 02	-0.0008	-0.40199
73	74	890.99128	0.20 D - 02	-0.00097	-0.48684
72	73	892.38166	$0.20 \text{D}{-}02$	0.00023	0.11345
71	72	893.76639	0.20D-02	0.0017	0.84868
70	71	895.14802	0.50D-02	0.00088	0.17541
69	70	896.52057	0.20D-02	0.00375	1.87284
68	69 69	897.89389	0.20D-02	0.00042	0.21137
67 CC	68 67	899.25974	0.20D-02	-0.00085	-0.42605
66 CF	67	900.61789	0.20D-02	0.00014	0.07024
00 64	00 65	901.96974	0.20D-02	0.002	1.0001
04 62	00 64	903.31833	0.20D-02	0.00144	0.71823
00 62	04 63	904.00207	0.20D-02	-0.0001	-0.05005
02 61	03 62	905.99971 007 33207	0.20D-02	0.00037	0.16527
60	61	907.55207	0.20D-02 0.20D-02	0.00010	0.5/329
50	60	000 07/85	0.20D-02 0.20D-02	0.00103 0.00421	2 1030
58	59	911 2954	0.20D-02	-0.00421	-0 51888
57	58	912 60102	0.20D-02	0.00101	1 56477
56	57	913 90908	0.20D-02	-0.00069	-0.34556
55	56	915.20661	0.20D-02	0.00047	0.23495
54	55	916.49943	0.20D-02	0.00078	0.39092
$53^{-1}$	54	917.78723	0.20D-02	0.00055	0.27706
52	53	919.07283	0.20D-02	-0.00306	-1.53197
51	52	920.34581	0.20D-02	0.00035	0.17352
50	51	921.61628	0.20D-02	0.00067	0.33319
49	50	922.88241	0.20D-02	-0.00029	-0.14329
48	49	924.14225	0.20 D - 02	-0.00056	-0.28122
47	48	925.39454	0.20 D - 02	0.00107	0.53396
46	47	926.64288	0.20 D - 02	0.001	0.50199
45	46	927.8875	0.20 D - 02	-0.001	-0.49754
44	45	929.12257	0.20D-02	0.0009	0.44999
43	44	930.35535	0.20D-02	-0.0006	-0.30078
42	43	931.57982	0.20D-02	0.00052	0.25976
41	42	932.8007	0.20D-02	-0.00047	-0.23377
40	41	934.0156	0.20D-02	-0.00117	-0.58676
39	40	935.22418	0.20D-02	-0.00129	-0.64457
38	39	936.42479	0.20D-02	0.00083	0.41729
37	38	937.62317	0.20D-02	-0.00055	-0.27647
36	37	938.81383	0.20D-02	0.00003	0.01365

Table A.3: Fourier Transform Infrared Data for  73 GeO (cm⁻¹)

1'	T''	Obs	Unc	Cale Obs	$\frac{(Calc Obs)/Unc}{(Calc Obs)}$
<u>J</u>	J 20	000			(Calc-Obs)/ Olic
35	30	939.99881	0.20D-02	0.00053	0.2672
34	35	941.179	0.20D-02	0.00005	0.02384
33	34	942.353	0.20D-02	-0.00003	-0.01692
32	33	943.52058	0.20 D - 02	0.00051	0.25453
31	32	944.68288	0.20 D - 02	0.00054	0.26762
30	31	945.84162	0.20 D - 02	-0.00171	-0.85303
29	30	946.99084	0.20 D - 02	-0.00026	-0.12786
28	29	948.13501	0.20D-02	0.00041	0.20257
$\overline{27}$	$\frac{1}{28}$	949 27041	0.50D-02	0.00399	0 79715
26	$\frac{-0}{27}$	950 41075	0.20D-02	-0.00322	-1 61245
25	26	051 53782	0.20D - 02 0.20D 02	0.00305	1 52304
20	20	052 65624	0.20D-02	-0.00303	0.05207
24 99	20	052.00024 052.76949	0.20D-02	-0.0001	1 56964
20	24	955.70646	0.20D-02	0.00313	1.00204
22	23	954.8791	0.20D-02	0.00207	1.0347
21	22	955.98441	0.20D-02	0.00042	0.20862
20	21	957.08364	0.20D-02	-0.00109	-0.54621
19	20	958.17465	0.20D-02	-0.00032	-0.16023
18	19	959.2586	0.20 D - 02	0.00156	0.78091
17	18	960.34073	0.20 D - 02	-0.0007	-0.34821
16	17	961.41964	$0.50 \text{D}{-}02$	-0.0057	-1.13929
15	16	962.48023	0.20 D - 02	0.00163	0.81533
14	15	963.54206	0.20 D - 02	0.00172	0.86188
13	14	964.5997	0.20D-02	0.0	0.00089
$12^{-3}$	13	965 64967	0.20D-02	-0.00007	-0 03331
11	12	966 69266	0.20D-02	0.00083	0 41379
10	11	967 73156	$0.20D_{-}02$	-0.00024	-0 11851
10	10	068 76164	0.20D-02	-0.00024	0.73428
9	10	908.70104	0.20D-02	0.00147	0.10420
07	9	909.78981	0.20D-02	-0.00098	-0.40040
	8	970.80809	0.20D-02	-0.0002	-0.10242
6	1	971.82171	0.20D-02	0.00035	0.17683
5	6	972.82665	0.20D-02	0.00289	1.44365
4	5	973.83311	0.20D-02	-0.00221	-1.10261
3	4	974.82411	0.20D-02	0.00204	1.02247
2	3	975.81698	0.20 D - 02	-0.0017	-0.85189
0	1	977.77438	0.20 D - 02	0.00072	0.35869
2	1	980.67103	0.20 D - 02	-0.00246	-1.23246
3	2	981.62272	0.20 D - 02	-0.00204	-1.0221
4	3	982.56728	0.20 D - 02	-0.00069	-0.34595
5	4	983.50611	0.20 D - 02	0.00016	0.08033
6	5	984.43912	0.20D-02	0.0006	0.30107
7	6	985 36843	0 20D-02	-0.0015	-0 74956
8	7	986 28818	0.20D-02	-0.00029	-0 1472
ğ	8	987 20307	0.20D-02	-0.00049	-0 24264
10	0	088 11945	0.20D - 02 0.20D 02	0.00145	0.72663
11	10	980.11240 080.01257	0.20D-02	-0.00145	0.97507
11	10	989.01207	0.20D-02	0.00055	0.47675
12	11	989.90799	0.20D-02	0.00095	0.47073
13	12	990.79981	0.20D-02	-0.00135	-0.07748
14	13	991.68337	0.20D-02	-0.00173	-0.80334
15	14	992.55837	0.20D-02	0.00014	0.06843
16	15	993.42604	0.20D-02	0.00297	1.48698
17	16	994.29235	0.20D-02	0.00081	0.4065
18	17	995.15058	0.20 D - 02	0.00036	0.18118
19	18	996.0025	0.20 D - 02	-0.00016	-0.0798
20	19	996.8499	0.20 D - 02	-0.00255	-1.27727
21	20	997.68555	0.20 D - 02	0.0004	0.19794
22	21	998.51807	0.20D-02	0.00007	0.03502
23	22	999.34413	0.20D-02	-0.00023	-0.11697
24	23	1000 16224	0.20D-02	0.00097	0 48635

Table A.3, Fourier Transform Infrared Data for  73 GeO (cm⁻¹) (*Cont'd*)

J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
25	24	1000.9756	0.20D-02	0.00048	0.23852
26	25	1001.78214	0.20D-02	0.00034	0.16955
27	26	1002.58202	0.20D-02	0.00039	0.19257
28	27	1003.37513	0.20D-02	0.00073	0.36268
29	28	1004.16271	0.20D-02	0.00009	0.04297
30	29	1004.94407	0.20D-02	-0.00084	-0.42146
31	30	1005.7166	0.20D-02	0.00053	0.26748
32	31	1006.48661	0.20D-02	-0.0021	-1.05016
33	32	1007.24625	0.20D-02	-0.00091	-0.45629
34	33	1008.00071	0.20D-02	-0.0011	-0.55086
35	34	1008.74653	0.20D-02	0.00079	0.39467
36	35	1009.486	0.20D-02	0.00244	1.21885
37	36	1010.2234	0.20 D - 02	-0.00044	-0.21829
38	37	1010.95087	0.20 D - 02	0.00001	0.00678
39	38	1011.67297	0.20 D - 02	-0.00078	-0.39243
40	39	1012.3869	0.20 D - 02	-0.00004	-0.02092
41	40	1013.09539	0.20 D - 02	-0.0005	-0.25018
42	41	1013.79641	0.20 D - 02	-0.00013	-0.06672
43	42	1014.49112	0.20 D - 02	-0.00013	-0.06556
44	43	1015.17984	0.20 D - 02	-0.00082	-0.40823
45	44	1015.85927	0.20 D - 02	0.0011	0.54873
46	45	1016.53543	0.20 D - 02	-0.00042	-0.2097
47	46	1017.20289	0.20 D - 02	0.00005	0.0249
48	47	1017.86457	0.20 D - 02	-0.00043	-0.21352
49	48	1018.51905	0.20 D - 02	-0.00044	-0.22152
50	49	1019.16922	0.20 D - 02	-0.00289	-1.44419
51	50	1019.80374	0.20 D - 02	0.00354	1.77189
52	51	1020.4419	0.20 D - 02	-0.00044	-0.21938
53	52	1021.06923	0.20D-02	-0.00038	-0.18911
54	53	1021.68973	0.20D-02	-0.00029	-0.1439
55	54	1022.3025	0.20D-02	0.00072	0.36112
56	55	1022.90962	0.20D-02	0.00056	0.27932
57	56	1023.50873	0.20D-02	0.00157	0.78456
58	57	1024.10348	0.20D-02	0.00009	0.0457
59	58	1024.69014	0.20D-02	-0.00015	-0.07343
60	59	1025.26839	0.20D-02	0.00114	0.57101
61 C0	60 C1	1025.83994	0.20D-02	0.00225	1.12285
62 62	01 60	1026.4092	0.20D-02	-0.00126	-0.6291
03 C4	62 62	1026.96698	0.20D-02	-0.00019	-0.09604
04 65	03 64	1027.01804	0.20D-02	0.00007	0.33384
60 66	04 65	1028.00155	0.20D-02	0.00233	1.17000
67	66	1020.00101	0.20D-02	-0.00007	-0.0338
68	67	1029.15280	0.20D-02	-0.00004	-0.01778
60	68	1029.03094 1030.17305	0.20D-02	-0.00001	0.05476
$\frac{09}{70}$	60	1030.17555	0.20D-02	0.00011	0.11699
70	$\frac{09}{70}$	1030.00445 1031.1857	0.20D-02	-0.00023	0.80704
72	70	1031.1007	0.20D-02	0.00102	1 45098
73	72	$1032\ 17115$	0.20D-02	0.0023 0.00132	0.6616
74	$73^{-2}$	1032 655	0.20D-02	-0.00051	-0 25649
75	74	1033.12861	0.20D-02	0.00083	0.41541
76	75	1033.598	0.20D-02	-0.00068	-0.33902
77	76	1034.0583	0.20D-02	-0.00018	-0.09108
78	77	1034.51319	0.20D-02	-0.00137	-0.68713
$\overline{79}$	78	1034.9579	0.20D-02	0.0005	0.25201
80	79	1035.39558	0.20D-02	0.00229	1.14398
81	80	1035.83015	0.20D-02	0.00006	0.02792
82	81	1036.25544	0.20D-02	-0.00006	-0.02753

Table A.3, Fourier Transform Infrared Data for  73 GeO (cm⁻¹) (*Cont'd*)

		o, _ o ouo o			
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
83	82	1036.67544	0.20D-02	-0.00204	-1.01875
84	83	1037.08334	0.20D-02	0.00091	0.45336
85	84	1037.48872	0.20D-02	-0.00082	-0.40858
86	85	1037 88448	0.20D-02	-0.00012	-0.06049
87	86	1038 27281	$0.20D_{-}02$	0.00012	0.39621
88	87	1030.27201 1038.65517	0.20D-02	0.00015	0.22561
80 80	00	1020.02017	0.20D-02	0.00045	0.22501
09	00	1039.03044	0.20D-02	-0.00004	-0.01974
90	89	1039.39498	0.20D-02	0.00295	1.4/422
91	90	1039.75449	0.20D-02	0.0037	1.85155
The	2-1 I	Band, 163 dat	a, $J''_{min} =$	$0, J''_{max} =$	= 82
Unc	Avge	= 2.0D-03, U	$\operatorname{Inc.}_{Max} = 1$	.0D-02	
(Err	:/Unc	$(L)_{Avge} = 1.4D$	<b>-</b> 01, RMSR	L = 0.75	
01	00	071 06007	0.900.09	0.00008	0.02751
01	04	071.20007	0.20D-02	-0.00008	-0.05751
80	81	872.69661	0.20D-02	-0.00019	-0.09369
79	80	874.11886	0.20D-02	-0.0001	-0.05037
78	79	875.53464	0.20D-02	0.00116	0.58218
77	78	876.94676	0.20 D - 02	0.00077	0.38386
76	77	878.35355	0.20 D - 02	0.00038	0.18945
75	76	879.75498	0.20 D - 02	0.00002	0.0087
74	75	881.14867	0.20D-02	0.00206	1.0315
73	74	882.54323	0.20D-02	-0.00212	-1.06239
72	73	883.92478	0.20D-02	0.00133	0.66681
71	72	885.30547	0.20D-02	0.00028	0.13895
$\frac{1}{70}$	71	886 67821	0 20D-02	0.0018	0.89869
69	70	888 04966	0.20D-02	-0.0008	-0.39913
68	60	880 /1205	$0.20D_{-}02$	-0.00064	-0.31971
67	68	800 7716	0.20D-02	0.00126	0.62822
66	00 67	890.7710	0.20D-02	-0.00120	-0.02632
00 65	01	092.12001 002.4702	0.20D-02	-0.00005	-0.02327
05	00	893.4703	0.20D-02	-0.00017	-0.0857
64	65	894.81105	0.20D-02	0.0008	0.40009
63	64	896.14844	0.20D-02	-0.00033	-0.16317
62	63	897.4786	0.20D-02	0.00032	0.15925
61	62	898.80403	0.20 D - 02	0.0002	0.10208
60	61	900.12461	0.20 D - 02	-0.00055	-0.2749
59	60	901.43807	0.20 D - 02	0.00032	0.15792
58	59	902.74669	0.20 D - 02	0.00052	0.26035
57	58	904.05106	0.20 D - 02	-0.00056	-0.27801
56	57	905.3486	0.20D-02	-0.00033	-0.16735
55	56	906.64032	0.20D-02	0.00016	0.08196
54	55	907.92669	0.20D-02	0.00047	0.2346
$53^{-1}$	54	909.20962	0.20D-02	-0.00136	-0.67973
52	53	910 48341	0.20D-02	0.00038	0 18863
51	52	011 75376	$0.20D_{-}02$	-0.00003	-0.01565
50	51	013 01565	0.20D-02 0.20D 02	-0.00003	1.91714
40	50	913.01000 014.97697	0.20D-02	0.00245	0.22656
49	50	914.27037	0.20D-02	0.00045	0.22050
49	50	914.27637	0.20D-02	0.00045	0.22656
48	49	915.53053	0.20D-02	-0.00059	-0.29265
47	48	916.777	0.20D-02	0.00044	0.21907
46	47	918.02041	0.20D-02	-0.00111	-0.55355
45	46	919.25324	0.20 D - 02	0.00227	1.13406
44	45	920.48589	0.20 D - 02	0.00016	0.08153
43	44	921.71172	0.20 D - 02	-0.00079	-0.39651
42	43	922.93065	0.20 D - 02	-0.00052	-0.26046
41	42	924.14225	0.20D-02	0.00138	0.68934
40	41	925.35003	0.20D-02	0.00139	0.69738
39	40	926.5535	0.20D-02	0.00001	0.00337
38	39	927.7504	0.20D-02	-0.00054	-0.26822

Table A.3, Fourier Transform Infrared Data for ⁷³GeO (cm⁻¹) (*Cont'd*)

J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
37	38	928.9409	0.20D-02	-0.00041	-0.2027
36	37	930.12549	0.20D-02	-0.00012	-0.06055
35	36	931.30249	0.20D-02	0.002	0.9978
34	35	932.47737	0.20D-02	0.00046	0.2319
33	34	933.64555	0.20D-02	-0.00015	-0.07368
32	33	934.8068	0.20D-02	0.00039	0.1956
31	32	935.9637	0.20D-02	-0.00053	-0.26568
30	31	937.11299	0.20D-02	0.00034	0.17193
29	30	938.25585	0.20D-02	0.00183	0.91306
28	29	939.39646	0.20D-02	-0.00027	-0.13284
27	28	940.52972	0.20D-02	-0.00086	-0.43123
26	27	941.65943	0.20 D - 02	-0.00377	-1.88268
25	26	942.77486	0.20 D - 02	0.00174	0.87249
24	25	943.89563	0.20 D - 02	-0.00396	-1.9814
23	24	945.00527	$0.50 \text{D}{-}02$	-0.00442	-0.88392
22	23	946.10179	0.20 D - 02	0.00233	1.16677
21	22	947.20556	0.20 D - 02	-0.00407	-2.03717
20	21	948.29336	0.20 D - 02	-0.00043	-0.21725
19	20	949.3793	0.20 D - 02	-0.00087	-0.43392
18	19	950.45222	$0.50 \text{D}{-}02$	0.00578	1.15689
17	18	951.53596	0.20 D - 02	-0.00435	-2.17435
16	17	952.60351	0.20 D - 02	-0.00426	-2.12922
15	16	953.66232	0.20 D - 02	-0.00141	-0.70296
14	15	954.71894	0.20 D - 02	-0.00235	-1.17613
13	14	955.76627	0.20 D - 02	0.0	0.00073
12	13	956.81039	0.20 D - 02	-0.00046	-0.22807
10	11	958.87863	0.20 D - 02	0.00055	0.27521
9	10	959.90589	0.20D-02	-0.00115	-0.57403
8	9	960.92737	0.20D-02	-0.00311	-1.55625
7	8	961.93671	0.20D-02	0.00099	0.49287
5	6	963.94781	0.20D-02	-0.00148	-0.74236
4	5	964.945	0.20D-02	-0.00351	-1.75304
3	4	965.93687	0.50D-02	-0.00631	-1.20190
2	3	966.91819	0.50D-02	-0.0047	-0.93949
1	2 1	907.88832	0.20D-02	0.00197	0.98495
1	1	908.87180	0.10D-01	-0.01092	-1.09192
1	1	970.78778	0.20D-02	-0.00402	-2.01119
2	1	971.73938	0.20D-02	-0.00507	-1.0340
ა 5		972.07080	0.30D-02	0.005 0.00121	1.00041
5 6	4 5	974.00000	0.20D-02	0.00131 0.00072	0.03032
7	5 6	975.40175	0.30D-02	0.00072 0.00027	0.14501 0.13611
8	7	970.40979 077 31899	0.20D-02	-0.00027	0.06350
Q Q	8	977.91622	0.20D-02 0.20D-02	0.00013	0.26787
10	0 0	970.22051 979.12854	0.20D-02 0.20D-02	0.00054 0.00065	0.32599
11	10	980 0257	0.20D-02 0.20D-02	-0.00051	-0.25282
12	11	980 91448	0.20D-02	0.00001	0.21071
$13^{-12}$	$12^{-11}$	981.79922	0.20D-02	-0.00091	-0.4543
14	13	982.67437	0.20D-02	0.00102	0.51146
$15^{-1}$	14	983.54551	0.20D-02	0.00063	0.31714
$16^{-0}$	$15^{-1}$	984.40962	0.20D-02	0.00093	0.4669
17	16	985.27073	0.20D-02	-0.00212	-1.05999
18	17	986.12065	0.20D-02	-0.00035	-0.1744
19	18	986.96548	0.20D-02	0.00014	0.0679
20	19	987.80651	0.20D-02	-0.00196	-0.97903
21	20	988.63698	0.20D-02	0.0001	0.04901
22	21	989.46441	0.20D-02	-0.00122	-0.60877
23	22	990 28363	0.20D-02	-0.00075	-0 3733

Table A.3, Fourier Transform Infrared Data for  73 GeO (cm⁻¹) (*Cont'd*)

τ/	τ//	Oha	Une	Cala Oha	$\frac{(Calc Obc)}{(Uac}$
J	J	ODS	Unc	Calc-Obs	(Calc-Obs)/Unc
24	23	991.09767	0.20D-02	-0.00153	-0.76547
25	24	991.90229	0.20 D - 02	0.00066	0.32891
26	25	992.70343	0.20 D - 02	-0.00012	-0.06106
27	26	993.49698	0.20 D - 02	0.00021	0.10375
28	27	994.28446	0.20D-02	0.00012	0.06235
29	28	995.06483	0.20D-02	0.00066	0.32888
30	29	995 84011	0.20D-02	-0.00023	-0 11253
21	20	006 60741	0.20D 02	0.00025	0.1771
20	31	007 27165	0.20D-02	0.00055	1 26807
02 99	21	000 10722	0.20D-02	-0.00234	1,60002
აა ე_/	ა <u>კ</u>	998.12733	0.20D-02	-0.0034	-1.09902
34	33	998.8724	0.20D-02	-0.00021	-0.10671
35	34	999.61697	0.20D-02	-0.00309	-1.54709
36	35	1000.34935	0.20D-02	-0.00036	-0.18129
37	36	1001.07771	0.20D-02	-0.0002	-0.09977
38	37	1001.79946	0.20 D - 02	-0.00003	-0.01388
39	38	1002.51484	0.20 D - 02	-0.0001	-0.05009
40	39	1003.22247	0.20 D - 02	0.00096	0.48158
41	40	1003.92576	0.20 D - 02	-0.00028	-0.14037
42	41	1004.61804	0.20D-02	0.00284	1.41754
43	42	1005.30971	0.20D-02	-0.0001	-0.04971
44	43	1005 99438	0.20D-02	-0.00271	-1 35365
45	44	1006 66622	0.20D-02	0.00083	0 41466
46	15	1007 33539	$0.20D_{-}02$	0.00034	0.16869
40	40	1007.00000	0.20D-02	0.00034	1 50664
41	40	1008.00071	0.20D-02	-0.00301	-1.00004
40	41	1008.05259	0.20D-02	0.00033	0.27712
49	40	1009.50115	0.20D-02	0.00052	0.13000
50	49	1009.94352	0.20D-02	-0.00029	-0.14294
51	50	1010.58017	0.20D-02	-0.00193	-0.96343
52	51	1011.20529	0.50D-02	0.00119	0.23832
53	52	1011.82872	0.20D-02	-0.00078	-0.39136
54	53	1012.44221	0.20 D - 02	0.00039	0.19396
55	54	1013.05067	0.20 D - 02	-0.00022	-0.10935
56	55	1013.65148	0.20 D - 02	0.0	0.00206
57	56	1014.24549	0.20 D - 02	0.00021	0.10305
58	57	1014.83243	0.20 D - 02	0.00062	0.31195
59	58	1015.41288	0.20D-02	0.00068	0.33761
60	59	1015.98842	0.20D-02	-0.00123	-0.61614
61	60	1016.55544	0.20D-02	-0.0015	-0.7505
62	61	1017 11337	0.20D-02	0.00043	0 21334
63	62	1017 66669	0.20D-02	0.00006	0.0292
64	63	1018 2106	$0.20D_{-}02$	0.00000	1 09084
65	64	1018.2100 1018.75187	0.20D-02	0.00210	0.00707
66	65	1010.70107	0.20D-02	0.00001	0.30165
67	66	1019.20343	0.20D-02	0.0000	
01	00	1019.00037	0.20D-02	0.00289	1.44554
08	07	1020.3201	0.20D-02	0.00139	0.0959
69	68	1020.83849	0.20D-02	0.00026	0.12807
70	69	1021.34483	0.20D-02	-0.00182	-0.91141
71	70	1021.84103	0.20D-02	-0.00077	-0.38381
72	71	1022.33059	0.20D-02	-0.00009	-0.04542
73	72	1022.81663	0.20 D - 02	-0.00293	-1.46254
74	73	1023.28884	0.20 D - 02	0.00103	0.51355
75	74	1023.75889	0.20 D - 02	0.00008	0.04202
76	75	1024.22068	0.20 D - 02	0.00033	0.16557
77	76	1024.67622	0.20D-02	-0.00025	-0.12665
78	77	1025.12457	0.20D-02	-0.00073	-0.36597
79	78	1025.56412	0.20D-02	0.00047	0.23627
80	79	1026.0038	0.50D-02	-0.00557	-1.11452
81	80	1026.42655	0.20D-02	-0.00182	-0.90954

Table A.3, Fourier Transform Infrared Data for  73 GeO (cm⁻¹) (*Cont'd*)

Table A.3, Fourier Transform Infrared Data for  73 GeO (cm⁻¹) (*Cont'd*)

J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
82	81	1026.84397	0.20D-02	0.00012	0.05917
83	82	1027.25745	0.20D-02	-0.00116	-0.58105
			0.202 02	0.000	
The	3-2-21	Rand 148 dat	a <i>I</i> " . —	0 1" –	78
Une	5 0-2 1	-250.02 I	$a, j_{min} =$	$0, J_{max} = 0$	10
(E-	$\cdot Avge$	= 2.5D-05, C	Max = 0	0.0D-03	
(En	r/ Und	(Avge = 4.5L)	0-02, r.m.sr.	J = 0.79	
77	78	868.54862	0.50 D - 02	0.00287	0.57328
76	77	869.95443	0.20D-02	-0.00312	-1.55772
75	76	871 34674	0.20D-02	-0.00093	-0.46697
74	75	872 73685	0.20D-02	-0.00189	-0 94474
73	74	874 11886	$0.20D_{-}02$	_0.00109	-0.04625
79	73	875 40740	0.20D 02 0.20D 02	0.00005	0.13179
72	79	876 86837	0.20D-02	-0.00020	0.06863
71	72	870.80837 878 94009	0.20D-02	0.00194	1 01099
70 60	71	070.24003 970.60091	0.20D-02	-0.00202	-1.01038
09	70 60	879.00021	0.20D-02	0.00011	0.00092
00	09	000.90710	0.20D-02	0.00000	0.05259
07	68	882.30872	0.20D-02	0.00003	0.01373
66	67	883.65459	0.20D-02	0.00024	0.11969
65	66	884.99455	0.20D-02	0.00093	0.46496
64	65	886.32989	0.20D-02	0.00081	0.40443
63	64	887.66151	0.20 D - 02	-0.00105	-0.52731
62	63	888.98624	0.20 D - 02	-0.00149	-0.74549
61	62	890.30394	0.20 D - 02	-0.00037	-0.1854
60	61	891.62133	$0.50 \text{D}{-}02$	-0.00441	-0.88291
59	60	892.92427	0.20 D - 02	0.00049	0.24353
58	59	894.2266	0.20 D - 02	0.00049	0.24677
57	58	895.52584	0.20D-02	-0.00193	-0.96289
56	57	896.815	0.20D-02	0.00022	0.10924
55	56	898.1031	0.20D-02	-0.00212	-1.06221
54	55	899.38227	0.20D-02	-0.00108	-0.5424
53	54	900 65599	0.20D-02	-0.00015	-0.07682
52	53	901 92425	0.20D-02	0.00068	0.33925
51	52	903 1903	0.20D-02	-0.00187	-0 93452
50	51	004 4468	0.20D 02 0.20D 02	0.00101	0.22844
40	50	005 60828	0.20D-02	-0.00040	0.122044
49	40	905.09626	0.20D-02	0.00037	0.1071
40	49	900.94472	0.20D-02	0.00004	0.32100
41	40	908.18084	0.20D-02	-0.0004	-0.19995
40	41	909.42278	0.20D-02	-0.0009	-0.44823
45	40	910.64789	0.20D-02	0.00379	1.89648
44	45	911.87649	0.20D-02	-0.00066	-0.3312
43	44	913.09473	0.20D-02	-0.00041	-0.20668
42	43	914.30586	0.20D-02	0.00126	0.62971
41	42	915.51755	0.50D-02	-0.00332	-0.66301
40	41	916.71678	0.20 D - 02	-0.00113	-0.56371
39	40	917.91063	0.20 D - 02	0.00074	0.37064
38	39	919.10151	0.20 D - 02	-0.00015	-0.07478
37	38	920.28252	0.20 D - 02	0.0031	1.54954
36	37	921.46242	0.20 D - 02	0.00172	0.85817
35	36	922.63899	0.20 D - 02	-0.00209	-1.04433
34	35	923.80475	0.20D-02	-0.00084	-0.4184
33	34	924.96626	0.20D-02	-0.00112	-0.55951
32	33	926.12091	0.20D-02	-0.00033	-0.16306
31	32	927.26704	0.20D-02	0.00319	1.59539
30	31	928 4127	0.20D-02	0.00138	0 69045
29	30	929 55176	0.20D-02	0.00034	0 1716
$\frac{23}{28}$	20	930 68/16	0.20D-02 0.20D-02	0.00004	0.06836
$\frac{20}{97}$	29 98	031 81050	0.20D-02	0.00014	0.03017
⊿1 26	$\frac{20}{97}$	035 05805	0.20D-02	0.00000	1 1117
20	<i>4</i>	552.52030	0.200-02	0.00444	T · T T T I

1'	<i>I''</i>	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
J 01	J 96	024 04191			
20	20	954.04121	0.50D-02	0.00459	1 20050
24	20	935.14707	0.50D-02	0.0009	1.38038
23	24	936.25756	0.20D-02	-0.0001	-0.05131
22	23	937.35538	0.20D-02	-0.00093	-0.46648
21	22	938.44851	0.20D-02	-0.00298	-1.48969
20	21	939.53388	0.20D-02	-0.00317	-1.58639
19	20	940.60992	0.20 D - 02	0.00003	0.01284
18	19	941.68785	$0.50 \text{D}{-}02$	-0.00461	-0.92103
17	18	942.75187	0.20 D - 02	-0.00128	-0.63817
16	17	943.81103	0.20 D - 02	0.00095	0.47547
15	16	944.86756	0.20 D - 02	-0.00015	-0.07724
14	15	945.91771	0.20 D - 02	-0.00087	-0.43681
13	14	946.96934	0.50 D - 02	-0.00907	-1.81358
12	13	947.99788	0.20D-02	-0.00018	-0.08915
11	$12^{-3}$	949.02989	0.20D-02	-0.00078	-0.38805
10	11	950 05678	0.20D-02	-0.00227	-1 13633
9	10	951 07366	0.20D-02	0.00019	0.0955
8	10	052 08568	0.20D 02 0.20D 02	0.00013	0.73181
7	9 8	952.08508	0.20D-02	0.00140	0.1/188
6	7	953.09409	0.20D-02	0.00028	0.14100
5	í G	904.09474	0.20D-02	0.00079	0.07085
O ⊿	0	955.08807	0.20D-02	0.00194	0.97085
4	Ð	950.07738	0.20D-02	0.00221	1.10331
3	4	957.06692	0.50D-02	-0.00447	-0.89307
2	3	958.03132	0.50D-02	0.00788	1.57668
1	2	959.00926	0.20D-02	0.00056	0.28096
0	1	959.97481	0.20D-02	-0.00051	-0.25562
1	0	961.87657	$0.50 \text{D}{-}02$	0.00822	1.64441
2	1	962.82344	0.50 D - 02	0.00734	1.46711
3	2	963.76477	0.50 D - 02	0.0058	1.16037
4	3	964.70478	0.20 D - 02	-0.00061	-0.30526
5	4	965.63016	0.20 D - 02	0.0014	0.69843
6	5	966.5564	$0.50 \text{D}{-}02$	-0.00367	-0.73346
7	6	967.47129	$0.50 \text{D}{-}02$	-0.00362	-0.72491
8	7	968.37966	$0.50 \text{D}{-}02$	-0.00331	-0.6613
9	8	969.28082	0.20 D - 02	-0.00203	-1.01726
10	9	970.17376	0.20D-02	0.00119	0.59487
11	10	971.06147	0.20D-02	0.00336	1.68245
12	11	971.94854	0.20D-02	-0.0001	-0.05042
13	12	972.82665	0.20D-02	-0.00092	-0.45942
14	13	973 69669	0.20D-02	0.00002	0.0096
15	14	974 56075	0.20D-02	0.00061	0.30579
16	15	975 41633	0.20D-02	0.00335	1 67348
17	16	976 27003	$0.20D_{-}02$	0.00161	0.8067
18	17	$077\ 11691$	0.20D-02	0.00101	0.52468
10	18	$077\ 05133$	0.20D-02 0.50D 02	0.00105	1 03263
20	10	079 7979	0.30D-02	0.00010	1.05205
20 91	19	910.1012	0.20D-02	0.00214	1.0710
⊿1 20	20 91	919.01412	0.20D-02	0.00108	0.00079 1 19790
22 02	41 00	900.43337	0.20D-02	0.00227	1.13/39 1 5066
23	22	981.24194	0.50D-02	0.00753	
24	23	982.05679	0.20D-02	-0.00011	-0.05484
25	24	982.8548	0.20D-02	0.00264	1.31761
26	25	983.6522	0.20D-02	-0.00046	-0.23204
27	26	984.43483	0.50D-02	0.00474	0.94808
28	27	985.22195	0.20D-02	-0.00102	-0.51153
29	28	985.99743	0.20 D - 02	-0.00164	-0.81809
30	29	986.75868	$0.50 \text{D}{-}02$	0.00548	1.09582
31	30	987.52122	$0.50 \text{D}{-}02$	0.0048	0.96015
32	31	988 28097	0.20D-02	0.00038	0 1886

Table A.3, Fourier Transform Infrared Data for  73 GeO (cm⁻¹) (*Cont'd*)

J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
33	32	989.03429	0.50D-02	-0.00415	-0.83073
34	33	989.77316	0.20D-02	-0.00078	-0.39181
35	34	990.50928	0.20D-02	-0.00122	-0.61237
36	35	991.23911	0.20D-02	-0.00195	-0.9744
37	36	991.95975	0.20D-02	-0.00007	-0.03399
38	37	992.67496	0.20D-02	0.00066	0.32797
39	38	993.38533	0.20D-02	-0.0004	-0.19956
40	39	994.08711	0.20D-02	0.00051	0.2574
41	40	994.78387	0.20D-02	-0.00018	-0.09217
42	41	995.47338	0.20D-02	-0.00028	-0.13928
43	42	996.15055	$0.50 \text{D}{-}02$	0.00531	1.06201
44	43	996.83211	0.20D-02	-0.00016	-0.08028
45	44	997.50223	0.20D-02	-0.00087	-0.43621
46	45	998.1678	0.20D-02	-0.00372	-1.85892
47	46	998.81974	0.20D-02	0.00035	0.17562
48	47	999.46903	0.20D-02	0.00035	0.17629
49	48	1000.11185	0.20D-02	0.00009	0.04711
50	49	1000.74782	0.20D-02	-0.00006	-0.02812
51	50	1001.36923	$0.50 \text{D}{-}02$	0.0076	1.5196
52	51	1001.99367	$0.50 \text{D}{-}02$	0.00546	1.09134
53	52	1002.61493	0.20D-02	-0.00028	-0.14168
54	53	1003.22855	$0.50 \text{D}{-}02$	-0.00516	-1.03289
55	54	1003.82527	0.20D-02	0.00004	0.0206
56	55	1004.42197	0.20D-02	-0.00155	-0.77437
57	56	1005.00838	0.20 D - 02	0.00032	0.16171
58	57	1005.59733	$0.50 \text{D}{-}02$	-0.00718	-1.43693
59	58	1006.16456	0.20 D - 02	0.00017	0.08688
60	59	1006.73176	0.20 D - 02	0.0007	0.34911
61	60	1007.29216	0.20 D - 02	0.00115	0.57269
62	61	1007.84883	0.20 D - 02	-0.00157	-0.78358
63	62	1008.39399	0.20 D - 02	0.00034	0.16909
64	63	1008.93619	0.20 D - 02	-0.00172	-0.86052
65	64	1009.46705	0.20 D - 02	0.00063	0.31637
66	65	1009.99332	0.20 D - 02	0.00064	0.31853
67	66	1010.51359	0.20 D - 02	-0.00031	-0.1553
68	67	1011.02594	0.20 D - 02	-0.0003	-0.15137
69	68	1011.52934	0.20 D - 02	0.00168	0.83907
70	69	1012.03058	0.20D-02	-0.00117	-0.58476
The	e 4-3 1	Band, 141 dat	a. "I" min =	5. J"man =	: 83
Unc		$= 3.4 \text{D} \cdot 03. \text{U}$	$m_{nc.Max} = 1$	.0D-02	
(Eri	r/Uno	$(z.)_{Avge} = 3.3\Gamma$	0-01, RMSR	L = 1.06	
82	83	853 13672	0.50D-02	-0.0004	-0.0792
81	82	854 57155	0.10D-01	-0.01552	-1.55198
80	81	855,97963	0.50D-02	-0.00917	-1.83446
79	80	857.37801	0.50D-02	0.0016	0.31919
78	79	858,79526	0.10D-01	-0.01179	-1.17855
77	78	860.18272	0.20D-02	-0.00069	-0.34338
$\frac{1}{76}$	$\frac{10}{77}$	861.57572	0.20D-02	-0.00044	-0.21924
75	$76^{-1}$	862.96441	0.20D-02	-0.0012	-0.6005
74	75	864.34831	0.20D-02	-0.00249	-1.24737
73	74	865.72546	0.20D-02	-0.00239	-1.19504
$72^{-10}$	73	867.09709	0.20D-02	-0.00212	-1.05882
71	72	868.46875	0.50D-02	-0.00724	-1.44756
$\overline{70}$	71	869.82574	0.20D-02	-0.00305	-1.52545
69	70	871.17539	0.50D-02	0.00308	0.61649
68	69	872.52876	0.20D-02	0.0001	0.05083
67	68	873.87543	0.20D-02	-0.00158	-0.79179

Table A.3, Fourier Transform Infrared Data for  73 GeO (cm⁻¹) (*Cont'd*)

		-)			
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
66	67	875.21363	0.20D-02	-0.0002	-0.10194
65	66	876 54614	0 20D-02	0.00143	0 71512
64	65	877 87685	0.20D-02	-0.00057	-0 28584
63	64	870 10651	0.20D 02 0.20D 02	0.00303	1 51/81
60	62	079.19001 990 E1E9E	0.20D-02	0.00303	0.75194
02	03	880.51585	0.20D-02	0.0015	0.75184
61	62	881.83242	0.20D-02	-0.00273	-1.36499
60	61	883.13709	0.20D-02	-0.00054	-0.27108
59	60	884.43893	0.20 D - 02	-0.00101	-0.50662
58	59	885.74149	0.50 D - 02	-0.00769	-1.53879
57	58	887.02503	0.20 D - 02	-0.00087	-0.43743
56	57	888.30833	0.20 D - 02	0.00066	0.33167
55	56	889.58693	0.20D-02	0.00137	0.68501
54	55	890.86272	0.20D-02	-0.00066	-0.32774
53	54	892 12301	0 50D-02	0.00728	1 45524
52	53	893 38432	0.50D-02	0.00861	1 72288
51	52	894 64282	0.50D-02	0.00719	1 43767
50	51	805 00222	0.30D-02	0.00719	0.2612
40	51	090.90222	0.20D-02	-0.00072	1 05615
49	30	097.14212	0.30D-02	0.00528	1.00010
48	49	898.38535	0.20D-02	0.00234	1.1089
47	48	899.62281	0.20D-02	-0.00045	-0.22614
46	47	900.85286	0.20D-02	-0.00146	-0.73011
45	46	902.07463	0.20 D - 02	0.00018	0.0916
44	45	903.28836	0.20 D - 02	0.00421	2.10364
43	44	904.50406	0.20D-02	0.0006	0.30052
42	43	905.71083	0.20 D - 02	0.00025	0.12688
41	42	906.91502	$0.50 \text{D}{-}02$	-0.00319	-0.63705
40	41	908.09488	0.10D-01	0.012	1.20031
39	40	909 29915	0.50D-02	-0.00292	-0.58445
38	39	910 48341	0.50D-02	-0.00355	-0 71036
37	38	011 65781	$0.00D_{-}02$	-0.00005	-0.02332
26	27	012 02000	0.20D-02	-0.00000	0.0199
25	26	912.02990	0.20D-02	-0.00004	-0.0108
	30	915.99555	0.20D-02	0.00085	0.4172
34	30	915.1034	0.50D-02	-0.00037	-1.2/428
33	34	916.30423	0.50D-02	0.00769	1.53876
32	33	917.46478	0.50D-02	-0.00374	-0.74813
31	32	918.59669	0.50 D - 02	0.00768	1.53681
30	31	919.73953	0.20 D - 02	0.00237	1.18357
29	30	920.87321	0.20 D - 02	0.0004	0.19878
28	29	921.99907	0.20 D - 02	0.00042	0.21215
27	28	923.1048	0.10D-01	0.01476	1.47564
26	27	924.22453	$0.50 \text{D}{-}02$	0.00923	1.84656
25	26	925.33525	$0.50 \text{D}{-}02$	0.00686	1.37252
24	25	926.443	0.20D-02	0.00159	0.79729
$\frac{-}{23}$	$24^{-5}$	$927\ 54101$	0 20D-02	0.00019	0.09386
22	23	928 62614	0.50D-02	0.00578	1 15622
21	20	020.02011	$0.50D_{-}02$	-0.00233	-0.46529
21	22	020 70514	0.30D-02	0.00233	0.2460
20	21	930.79314	0.20D-02	0.00049	0.2409
19	20	931.0072	0.20D-02	0.00141	1 22001
10	19	997.97980 055 00002	0.00D-02	0.00009	1.00001
10	18	933.99285	0.20D-02	0.00391	1.90077
10	10	935.05065	0.20D-02	0.00125	0.02023
15	16	936.0966	0.20D-02	0.00448	2.23782
14	15	937.14561	0.20D-02	-0.00134	-0.66999
13	14	938.18237	0.20 D - 02	-0.0009	-0.44792
12	13	939.2124	0.20 D - 02	0.00029	0.14354
11	12	940.23918	0.20 D - 02	-0.0013	-0.65127
10	11	941.26083	$0.50 \text{D}{-}02$	-0.00379	-0.75719
9	10	942.26933	0.20D-02	0.00085	0.42281

Table A.3, Fourier Transform Infrared Data for  73 GeO (cm⁻¹) (*Cont'd*)

J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
8	9	943.27807	0.20D-02	-0.00081	-0.40455
7	8	944.27541	0.20D-02	0.00288	1.43934
6	7	945.27097	0.20D-02	0.00229	1.14375
5	6	946.26211	0.20D-02	0.00003	0.01307
4	5	947.23473	0.50 D-02	0.01019	2.03868
6	5	957.64381	0.50D-02	0.0065	1.30025
7	6	958.56069	$0.50 \text{D}{-}02$	-0.00158	-0.3156
8	7	959.44466	0.10D-01	0.01701	1.70127
9	8	960.35709	0.20D-02	0.00089	0.44593
10	9	961.24885	0.20D-02	-0.00081	-0.40606
11	10	962.12594	$0.50 \text{D}{-}02$	0.00587	1.17386
12	11	963.01212	$0.50 \text{D}{-}02$	-0.00283	-0.56513
13	12	963.87998	0.20 D - 02	0.0005	0.25083
14	13	964.73774	$0.50 \text{D}{-}02$	0.00762	1.5239
15	14	965.60088	0.20 D - 02	0.00304	1.51812
16	15	966.45382	0.20 D - 02	0.00233	1.16512
17	16	967.29839	0.20 D - 02	0.00364	1.81993
18	17	968.14174	0.20 D - 02	-0.00019	-0.09329
19	18	968.97418	0.20 D - 02	0.00053	0.26467
20	19	969.80236	0.20 D - 02	-0.00087	-0.43715
21	20	970.62077	0.20 D - 02	0.0011	0.55049
22	21	971.43558	0.20 D - 02	0.00028	0.14169
23	22	972.24268	0.20 D - 02	0.00075	0.37556
24	23	973.03462	$0.50 \text{D}{-}02$	0.00995	1.99049
25	24	973.8404	0.20 D - 02	-0.00112	-0.56223
26	25	974.62949	$0.50 \text{D}{-}02$	-0.00196	-0.39227
27	26	975.40833	0.20 D - 02	0.00099	0.49502
28	27	976.18273	0.20 D - 02	0.00191	0.95384
29	28	976.95318	0.20 D - 02	0.0003	0.14996
30	29	977.71329	0.20 D - 02	0.00252	1.2624
31	30	978.46523	0.50D-02	0.00641	1.28209
32	31	979.22131	0.20D-02	-0.00037	-0.18258
33	32	979.96035	0.20D-02	0.00337	1.6832
34	33	980.69924	0.20D-02	0.0007	0.35144
35	34	981.42918	0.20D-02	0.00043	0.21621
30	35	982.15299	0.20D-02	-0.00027	-0.13341
37	30	982.86711	0.20D-02	0.00213	1.06648
38	31	983.58006	0.20D-02	-0.00089	-0.44501
39	38	984.27862	0.20D-02	0.00387	1.93606
40	39	984.97823	0.20D-02	0.00097	0.48308
41 49	40	980.00000 086 25175	0.20D-02	0.00371	1.80081
42 42	41	980.33173	0.20D-02	0.00090	0.47944
43	42	907.03004	0.20D-02	-0.00055	-0.27440
44 45	40	901.09919	0.20D-02	-0.00017	-0.06595
40	44	988.30387	0.50D-02	-0.00281	-0.50245
$\frac{40}{47}$	40	969.01207	0.30D-02	0.00724 0.00147	0.72228
41	40	989.00839	0.20D-02 0.20D-02	0.00147	1 91086
40	48	990.94924	0.20D-02	0.00056	0.28036
50	49	991 59572	0.20D 02	-0.01605	-1 60484
51	50	992 20851	0.10D 01 0.50D-02	-0.00572	-1 14356
$52^{-1}$	51	992.81497	0.20D-02	0.00419	2.09505
$53^{-1}$	$5\overline{2}$	993.42604	0.20D-02	0.0027	1.35162
54	$53^{-1}$	994.03138	0.20D-02	0.00016	0.07963
55	54	994.62479	0.20D-02	0.00275	1.37289
56	55	995.21782	0.20D-02	-0.0011	-0.54966
57	56	995.79795	0.20D-02	0.00113	0.56582
58	57	996.3729	0.20D-02	0.00171	0.85306

Table A.3, Fourier Transform Infrared Data for  73 GeO (cm⁻¹) (*Cont'd*)

	10 110	s, 10 anor 11 a		area Bata R		
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)	$/\mathrm{Unc}$
59	58	996.94807	$0.50 \text{D}{-}02$	-0.00479	-0.95763	
60	59	997.50223	0.20D-02	0.00287	1.43329	
61	60	998.05644	0.20D-02	0.00361	1.80384	
62	61	998 61459	0.50D-02	-0.00649	-1 29741	
62	62	000 12201	0.30D-02	0.01025	-1.23141 1 02400	
05	02	999.13691	0.10D-01	0.01055	1.03499	
64	63	999.6922	0.50D-02	-0.00869	-1.7388	
65	64	1000.19745	0.10D-01	0.01338	1.33792	
66	65	1000.71589	0.10 D-01	0.01533	1.53263	
67	66	1001.23303	0.10D-01	0.01163	1.16251	
The	5_4 1	Rand 85 data	$I^{,,}$ . — 1	1 <i>I</i> " –	- 71	
Une	0-41	-22002	$, 5_{min} = 1$	1, 5 max = 00.02	- 11	
(E	Avge	= 3.3D-03, 0	$M_{ax} = 1$	0D-02		
(Eri	r/Und	(Avge = 1.0L)	-01, RMSR	J = 0.96		
70	71	861 43212	0.50D-02	0.00167	0.33472	
60	70	860 79009	0.50D-02	0.00107	1.00402	
09	70 60	002.10900	0.30D-02	-0.00002	-1.20402	
68	69	864.12518	0.20D-02	0.00176	0.87887	
67	68	865.46822	0.20D-02	-0.00279	-1.39672	
66	67	866.80129	0.20 D - 02	-0.00279	-1.39694	
65	66	868.12934	0.20 D - 02	-0.00319	-1.59722	
64	65	869.44954	0.20D-02	-0.00118	-0.58779	
63	64	870 76813	0.20D-02	-0.00298	-1 48893	
60	63	872 07573	0.20D 02	0.00250	0.27412	
61	60	012.01010	0.20D-02	0.00075	0.07410	
01	02	075.50049	0.20D-02	0.00185	0.92005	
60	61	874.6838	0.20D-02	-0.00107	-0.53357	
59	60	875.97591	0.20D-02	0.00174	0.87012	
58	59	877.26828	0.20 D - 02	-0.00122	-0.60827	
57	58	878.54649	$0.50 \text{D}{-}02$	0.00448	0.89638	
56	57	879.82414	0.50 D-02	0.00522	1.04499	
55	56	881 10041	0.20D-02	0.00183	0.91592	
54	55	882 36861	0.20D 02	0.00106	0.01002	
54	55	002.00001	0.20D-02	0.00030	0.40105	
55	54	003.03020	0.50D-02	-0.0039	-0.77904	
5Z	53 50	884.8844	0.50D-02	0.00318	0.03589	
51	52	886.13689	0.20D-02	0.00136	0.67758	
50	51	887.37628	0.50 D - 02	0.00704	1.40828	
49	50	888.62159	0.20 D - 02	0.00122	0.60865	
48	49	889.85609	0.20D-02	0.0006	0.30107	
47	48	891.08451	0.20D-02	0.00047	0.23259	
46	47	892 30607	0 20D-02	0.00156	0.77782	
15	46	803 51105	0.20D 02 0.10D-01	0.00100	1 26927	
40	45	804 72604	0.10D-01	0.01203	0.01910	
44	40	094.75004	0.20D-02	-0.00002	-0.01219	
43	44	895.95027	0.50D-02	-0.00854	-1.70727	
42	43	897.14188	0.20D-02	-0.00008	-0.0421	
41	42	898.33316	0.50 D - 02	0.00301	0.60228	
40	41	899.52396	0.20 D - 02	0.0009	0.44978	
39	40	900.7056	0.20 D - 02	0.00225	1.12468	
38	39	901.8828	0.20D-02	0.00234	1.16998	
37	38	903 06418	0.50D-02	-0.00748	-1 4959	
36	37	004 22104	0.00D 02	0.000110	0.205	
24	37 95	904.22194 006 E269E	0.20D-02	0.00039	0.295	
<u>ა</u> 4	30	900.03080	0.20D-02	0.0001	0.00120	
33	34	907.68803	0.20D-02	-0.0025	-1.24822	
29	30	912.22214	0.20 D - 02	-0.00018	-0.08933	
28	29	913.34125	0.20 D - 02	0.00031	0.15459	
27	28	914.45519	0.20 D - 02	0.00013	0.06368	
26	27	915.5597	0.50 D-02	0.00353	0.70697	
$\frac{-5}{25}$	$\frac{-}{26}$	916.66496	0.20D-02	0.00034	0.17036	
20	25	017 76865	0.500.02	-0.00714	_1 /9796	
24 01	⊿⊍ ეე	001 0000	0.50D-02	0.00114	-1.44740 1.07909	
21 00	44 01	921.0202	0.00D-02	-0.00330	-1.07293	
20	21	922.08589	0.20D-02	0.00159	0.79321	

Table A.3, Fourier Transform Infrared Data for ⁷³GeO (cm⁻¹) (*Cont'd*)

						)
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc	
19	20	923.15881	$0.50 \text{D}{-}02$	-0.0046	-0.92015	
17	18	925.26724	0.20 D - 02	0.00262	1.3078	
16	17	926.31293	0.50D-02	0.00583	1.16534	
12	11	954 08981	0.50D-02	0.00742	1 4849	
12	19	054.05674	0.50D - 02 0.50D 02	0.00742	1 11608	
10	14	954.95074	0.50D-02	0.00000	1.11000	
10	10	957.51542	0.50D-02	0.00029	1.20019	
17	16	958.35984	0.20D-02	-0.00033	-0.16672	
18	17	959.18574	0.50 D - 02	0.00721	1.44211	
21	20	961.65491	0.20 D - 02	0.00015	0.07745	
22	21	962.45968	0.20 D - 02	0.0033	1.65239	
25	24	964.84651	0.20 D - 02	0.00172	0.86239	
26	25	965.63016	0.20D-02	0.00028	0.14113	
$27^{-5}$	$\frac{1}{26}$	966 40473	0.20D-02	0.00147	0 73611	
21	$\frac{20}{97}$	067 17607	0.20D 02	0.00111	0.20365	
20	21	907.17007	0.20D-02	-0.00059	-0.29303	
29	20	907.95072	0.20D-02	0.00150	0.70007	
30	29	968.69964	0.50D-02	-0.00505	-1.01047	
31	30	969.43421	0.10D-01	0.01018	1.01785	
32	31	970.18998	0.20 D - 02	-0.00231	-1.15387	
33	32	970.92331	0.20 D - 02	0.00112	0.55854	
34	33	971.65483	0.20 D - 02	-0.00018	-0.08944	
35	34	972.38571	0.50 D-02	-0.0074	-1.47956	
36	35	973 09324	0.20D-02	0.00217	1 08427	
37	36	073 80682	0.20D 02	0.00211	0.44507	
- 01 - 90	00 97	975.00082 074 E1220	0.20D-02	-0.00089	0.44557	
30 20	37 20	974.01000	0.30D-02	-0.00502	-0.70427	
39	38	975.22007	0.10D-01	-0.01288	-1.28810	
40	39	975.89823	0.20D-02	-0.00032	-0.16234	
41	40	976.58231	0.20D-02	-0.0003	-0.15133	
42	41	977.25498	$0.50 \text{D}{-}02$	0.00448	0.89644	
43	42	977.92618	0.20 D - 02	0.00409	2.044	
44	43	978.5919	0.20 D - 02	0.00251	1.25622	
45	44	979.25589	0.50 D-02	-0.00401	-0.80128	
47	46	980 54631	0 20D-02	0.00045	0 22356	
48	47	981 17628	0.50D-02	0.00786	1 57103	
40	18	081 80160	0.00D 02 0.10D 01	0.00100	1.91011	
49	40 51	901.00109	0.10D-01	0.0131	0.00714	
52 50	51	983.0003	0.20D-02	0.00001	0.00714	
53	52	984.26689	0.50D-02	0.00307	0.61393	
54	53	984.86888	0.20D-02	-0.00206	-1.02915	
55	54	985.45691	0.20 D - 02	-0.00002	-0.01095	
56	55	986.0435	0.20 D - 02	-0.00335	-1.67673	
57	56	986.61436	$0.50 \text{D}{-}02$	0.00222	0.44494	
The	6-5 F	Rand 70 data	I" $ 2$	01 <i>I</i> " –	- 80	
Unc	0-01	-250.02 I	5, 5 min = 2	$_{0}^{1}, _{0}^{2}, _{max}^{2} =$	- 80	
	Avge	= 5.5D-05, C	Max = 1	1.0D-02		
(Er)	r/Unc	Avge = 4.0L	D-03, RMSR	= 1.05		
79	80	840 75384	0 50D-02	-0.00811	-1 62222	
78	70	842 13018	0.000 02	0.00011	1 35703	
77	70	042.10510 942 51654	0.20D-02	0.00528	1.07619	
76	77	043.31034	0.00D-02	0.00338	1.07010	
10	((	844.90672	0.20D-02	-0.00465	-2.32574	
75	76	846.27909	0.20D-02	-0.00218	-1.09167	
74	75	847.64241	$0.50 \text{D}{-}02$	0.00401	0.80299	
71	72	851.72324	0.20 D - 02	-0.00027	-0.13731	
70	71	853.06816	$0.50 \text{D}{-}02$	0.00294	0.58783	
65	66	859.73067	0.20D-02	0.00032	0.16089	
64	65	861 03993	0.50D-02	8800.0	1 36063	
63	64	869 2664	0.500-02	0.0000	1 87993	
00	04	002.0004	0.00D - 02	-0.00930	-1.01220	
02	03	803.00328	0.20D-02	-0.00138	-0.09083	
61	62	864.95787	0.50D-02	0.00344	0.68818	
60	61	866.25692	0.20D-02	-0.00167	-0.83701	

Table A.3, Fourier Transform Infrared Data for  73 GeO (cm⁻¹) (*Cont'd*)

				<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	
J'	$J^{\prime\prime}$	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
59	60	867.55099	$0.50 \text{D}{-}02$	-0.00729	-1.45742
58	59	868.82497	$0.50 \text{D}{-}02$	0.0017	0.34021
57	58	870.10482	0.20D-02	-0.00067	-0.33512
56	57	871.3767	0.20D-02	-0.00059	-0.29582
55	56	872 64454	0.20D-02	-0.00199	-0.99691
54	55	873 89467	0.20D-02	0.00100	1 75653
52	54	875 15784	0.00D-02	0.00010	0.40341
55	54	070.10704	0.20D-02	0.00099	0.49341
0Z	03 50	870.40745	0.20D-02	0.00119	0.59412
51	52	877.65403	0.20D-02	-0.00114	-0.57197
50	51	878.88935	0.20D-02	0.00221	1.10477
49	50	880.12895	0.50 D - 02	-0.00429	-0.85843
48	49	881.35637	$0.50 \text{D}{-}02$	-0.00422	-0.84392
47	48	882.5688	$0.50 \text{D}{-}02$	0.00524	1.04728
46	47	883.78678	0.20D-02	0.00352	1.76247
45	46	884.99562	0.50 D-02	0.00533	1.06505
44	$45^{-5}$	886 20655	0 20D-02	-0.00059	-0.29666
/1	12	880 70180	$0.20D_{0.00}$	-0.00487	-0.97/32
40	41	800.06508	0.30D-02	0.00330	1 60271
40	41 20	090.90090	0.20D-02	0.00339	0.77069
30	39	095.51049	0.20D-02	-0.00134	-0.11002
30	31	895.64501	0.50D-02	-0.00334	-0.66762
35	36	896.79629	0.20D-02	-0.00085	-0.42314
34	35	897.94114	0.20D-02	0.00232	1.15886
33	34	899.08434	0.20 D - 02	0.00137	0.68643
32	33	900.22204	0.20 D - 02	0.00016	0.07917
31	32	901.35399	0.20 D - 02	-0.00109	-0.54344
30	31	902.47423	0.20 D - 02	0.0036	1.7981
29	30	903.59857	0.20D-02	-0.00163	-0.81672
26	27	906.92371	0.50 D-02	-0.00436	-0.87175
$\overline{25}$	$\frac{-1}{26}$	908.02313	0.50D-02	-0.00799	-1.5979
$\frac{-3}{24}$	$\frac{-6}{25}$	909 10669	0.20D-02	-0.00162	-0.80906
24 91	20	012 33450	0.20D-02 0.50D-02	0.00102	1 00540
21	22	012.00409 012.40870	0.50D-02	0.00303	0 55678
20	21 91	913.40079	0.30D-02	-0.00278	-0.0010
22	21	955.51029	0.20D-02	0.00009	0.34203
24	23	955.10216	0.20D-02	-0.00069	-0.34312
26	25	956.65757	0.20D-02	0.00267	1.33639
27	26	957.4283	0.20D-02	0.00165	0.82647
29	28	958.94945	0.20 D - 02	0.00052	0.25752
30	29	959.70008	0.20 D - 02	0.00016	0.08166
32	31	961.18445	$0.50 \text{D}{-}02$	-0.00316	-0.63106
33	32	961.92023	$0.50 \text{D}{-}02$	-0.0082	-1.6392
37	36	964.76696	0.20D-02	0.00254	1.27102
38	37	965.46384	0.20D-02	0.0036	1.7984
40	39	966 83276	0 10D-01	0.01075	1 07534
42	41	968 19657	0.10D-01	-0.00347	-0 6949
42	49	068 85018	0.00D-02	0.00126	0.62761
45	44	070 16253	0.20D-02	0.00120	1 01277
40	44	970.10200	0.00D-02	0.00307	1.01377
40	40	970.80932	0.20D-02	0.0051	1.04908
47	40	971.45027	0.20D-02	0.00029	0.14297
48	47	972.09576	0.10D-01	-0.01378	-1.3/830
50	49	973.33084	0.50D-02	-0.00619	-1.23798
52	51	974.53786	0.20D-02	0.00249	1.24637
53	52	975.12507	0.10 D - 01	0.01299	1.29892
54	53	975.72436	$0.50 \text{D}{-}02$	0.00463	0.92519
55	54	976.31622	0.20 D - 02	-0.0031	-1.54964
56	55	976.88704	$0.50 \text{D}{-}02$	0.00342	0.68424
57	56	977.46237	0.20D-02	-0.00139	-0.6975
58	57	978.02495	0.20D-02	-0.00029	-0.14506
60	59	979.12774	0.50D-02	0.00375	0.75056

Table A.3, Fourier Transform Infrared Data for  73 GeO (cm⁻¹) (*Cont'd*)

		)			
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
62	61	980.20462	$0.50 \text{D}{-}02$	0.00624	1.24816
63	62	980.74322	0.20 D - 02	-0.00301	-1.50285
64	63	981.26371	0.20 D - 02	-0.00105	-0.52292
65	64	981.77487	$0.50 \text{D}{-}02$	0.00333	0.66559
66	65	982.28787	0.20 D - 02	-0.00106	-0.52849
67	66	982.78475	$0.50 \text{D}{-}02$	0.00373	0.7454
71	70	984.72764	0.20 D - 02	-0.00217	-1.08521

Table A.3, Fourier Transform Infrared Data for  73 GeO (cm⁻¹) (*Cont'd*)

## A.4 Fourier Transform Infrared Data for ⁷⁴GeO

J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
		$1,253$ 74 Ge	O infrared	transitions i	n 8 bands
Tho	1_0 Ro	nd 208 data	$I^{"}$ . $-0$	I" — 1	10
Unc	1-0 Da	200  uata,	$J_{min} = 0$	$, J_{max} - 1$	10
(Err	Avge = /Unc	2.01-05, 010	$0{Max} = 0.0$ 02 RMSR -	= 0.40	
(111)		Avge = 1.1D-0		- UF10	
100	101	850.58618	0.20 D - 02	-0.00060	-0.29931
99	100	852.11427	0.20 D - 02	-0.00008	-0.03924
98	99	853.63719	0.20 D - 02	0.00054	0.26817
97	98	855.15701	0.20 D - 02	-0.00085	-0.42723
96	97	856.66844	0.20 D - 02	0.00104	0.51961
95	96	858.17773	0.20 D - 02	-0.00004	-0.02142
94	95	859.68284	0.20 D - 02	-0.00206	-1.03037
93	94	861.17728	0.20 D - 02	0.00145	0.72268
92	93	862.67274	0.20 D - 02	-0.00121	-0.60734
91	92	864.16019	0.20D-02	-0.00101	-0.50551
90	91	865.64133	0.20 D - 02	0.00033	0.1631
89	90	867.11925	0.20D-02	-0.00029	-0.14656
88	89	868.5913	0.20 D - 02	-0.00023	-0.11468
87	88	870.05908	0.20 D - 02	-0.00108	-0.54126
86	87	871.52062	0.20 D - 02	-0.00091	-0.45649
85	86	872.97606	0.20 D - 02	0.00014	0.06961
84	85	874.42643	0.20 D - 02	0.00103	0.51688
83	84	875.8735	0.20 D - 02	0.0	0.0002
82	83	877.3165	0.20 D - 02	-0.00222	-1.11055
81	82	878.74949	0.20 D - 02	0.00031	0.1545
80	81	880.18091	0.20 D - 02	-0.00085	-0.42479
79	80	881.6057	0.20 D - 02	-0.00067	-0.3335
78	79	883.02479	0.20 D - 02	-0.00007	-0.03689
77	78	884.43893	0.20 D - 02	0.00017	0.08501
76	77	885.84823	0.20 D - 02	-0.00005	-0.02302
75	76	887.25142	0.20 D - 02	0.00052	0.25881
74	75	888.65018	0.20 D - 02	0.00018	0.09044
73	74	890.04317	0.20 D - 02	0.00027	0.13664
72	73	891.4312	0.20 D - 02	-0.00002	-0.00777
71	72	892.81313	0.20D-02	0.00042	0.21204
70	71	894.19053	0.20D-02	0.00002	0.01092
69	70	895.56083	0.20D-02	0.00134	0.66858
68	69	896.92806	0.20D-02	0.00034	0.16986
67	68	898.28889	0.20D-02	0.00033	0.16463
66	67	899.64404	0.20D-02	0.00059	0.2926
65	66	900.99387	0.20D-02	0.00074	0.36852
64	65	902.33904	0.20D-02	0.00012	0.06225
63	64	903.67785	0.20D-02	0.00042	0.20854
62	63	905.01158	0.20D-02	0.00033	0.16713
61	62	906.34	0.20D-02	0.0001	0.04784
60	61	907.66273	0.20D-02	0.00008	0.04032
59	60	908.97996	0.20D-02	0.00007	0.03438
58	59	910.29142	0.20D-02	0.00033	0.1648
57	58	911.59749	0.20D-02	0.00047	0.23622
56	57	912.8983	0.20D-02	0.00037	0.18347
55	56	914.19351	0.20D-02	0.00032	0.16123
54	55	915.4838	0.20D-02	-0.00034	-0.17079
53	54	916.76803	0.20 D - 02	-0.0005	-0.24787

Ta	able A.4:	Fourier	Transform	Infrared	Data	for	74 GeO	$(cm^{-1})$

Table	· <b>· · · ·</b> · ·	i ourier franc	sonn mnar	cu Data loi	
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
52	53	918.04554	0.20D-02	0.00052	0.25969
51	52	919.31866	0.20 D - 02	0.00034	0.17159
50	51	920.58601	0.20 D - 02	0.00036	0.17754
49	50	921.84763	0.20 D - 02	0.0005	0.25226
48	49	923.1035	0.20 D - 02	0.00081	0.40535
47	48	924.35442	0.20 D - 02	0.00044	0.22156
46	47	925.59951	0.20 D - 02	0.00028	0.14054
45	46	926.83862	0.20 D - 02	0.00046	0.23188
44	45	928.07238	0.20 D - 02	0.00035	0.17536
43	44	929.3004	0.20 D - 02	0.00033	0.16556
42	43	930.52267	0.20 D - 02	0.00038	0.19218
41	42	931.74012	0.20 D - 02	-0.00042	-0.21023
40	41	932.95091	0.20 D - 02	-0.00025	-0.12699
39	40	934.15594	0.20 D - 02	-0.00002	-0.00844
38	39	935.35559	0.20 D - 02	-0.00012	-0.06004
37	38	936.54993	0.20 D - 02	-0.00063	-0.31709
36	37	937.7366	0.20 D - 02	0.00079	0.39497
35	36	938.9196	0.20 D - 02	0.00014	0.07075
34	35	940.09599	0.20 D - 02	0.00036	0.17983
33	34	941.26696	0.20 D - 02	0.00022	0.11181
32	33	942.43195	0.20 D - 02	0.00029	0.14626
31	32	943.59138	0.20 D - 02	0.00014	0.06776
30	31	944.74483	0.20 D - 02	0.00017	0.08592
29	30	945.89271	0.20 D - 02	-0.00004	-0.01978
28	29	947.03425	0.20 D - 02	0.00027	0.1353
27	28	948.17065	0.20 D - 02	-0.00011	-0.05434
26	27	949.30257	0.20 D - 02	-0.00185	-0.92416
25	26	950.42332	0.20 D - 02	0.00174	0.87038
24	25	951.54447	0.20 D - 02	-0.00094	-0.47119
23	24	952.65624	0.20 D - 02	-0.00012	-0.05936
22	23	953.76372	0.20 D - 02	-0.00089	-0.4446
21	22	954.86452	0.20 D - 02	-0.00087	-0.43737
19	20	957.04738	0.20 D - 02	0.00017	0.08733
18	19	958.13051	0.20 D - 02	0.00011	0.05382
17	18	959.20757	0.20 D - 02	0.00017	0.08566
16	17	960.27892	0.20 D - 02	-0.00001	-0.00259
15	16	961.34418	0.20 D - 02	-0.00004	-0.02146
14	15	962.40413	0.20 D - 02	-0.00075	-0.37659
13	14	963.45645	0.20 D - 02	0.00018	0.09152
12	13	964.50326	0.20 D - 02	0.00063	0.31732
11	12	965.5444	0.20D-02	0.00075	0.37529
10	11	966.5805	0.20D-02	-0.0001	-0.05018
9	10	967.60985	0.20D-02	-0.00024	-0.11972
8	9	968.63279	0.20D-02	-0.00001	-0.00381
7	8	969.64921	0.20D-02	0.00069	0.34691
6	7	970.66128	0.20D-02	-0.00032	-0.15816
5	6	971.6643	0.20D-02	0.00166	0.83042
4	5	972.66528	0.20D-02	-0.00042	-0.20806
3	4	973.65825	0.20D-02	-0.00058	-0.28916
2	3	974.64537	0.20D-02	-0.001	-0.49840
1	2	975.62686	0.20D-02	-0.0019	-0.95105
1	0	978.53001	0.20D-02	-0.00011	-0.05002
2	1	979.48571	0.20D-02	0.00019	0.09377
3	2	980.43376	0.20D-02	0.00196	0.11070
4	3	981.3790	0.20D-02	-0.00024	-0.11878
5	4	982.31656	0.20D-02	0.00026	0.12755
6 7	5 C	985.24999	0.20D-02	-0.00194	-0.97044
(	n	904 1(40	0 2012-02	-0.00144	-0.(10/0

Table A.4, Fourier Transform Infrared Data for  74 GeO (cm⁻¹) (*Cont'd*)

	)				
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
8	7	985.09176	0.20D-02	0.00009	0.04325
9	8	986.00372	0.20D-02	0.00067	0.33344
10	9	986.91084	0.20D-02	-0.00017	-0.08344
11	10	987 80974	0.20D-02	0.00096	0 48188
12	11	088 7043	$0.20D_{-}02$	0.00000	0.07366
12	12	080 50201	0.20D-02 0.20D-02	-0.00013	-0.05379
10	12	909.09201 000 47281	0.20D-02	-0.00011	0.19367
14	10	990.47201	0.20D-02	0.00025	0.12307
10	14	991.5478	0.20D-02	0.0001	0.00039
10	10	992.21004	0.20D-02	-0.00022	-0.10947
17	16	993.07494	0.20D-02	0.00368	1.83828
18	17	993.93461	0.20D-02	-0.00015	-0.07705
19	18	994.78387	0.20D-02	0.00007	0.03374
20	19	995.62731	0.20D-02	-0.00026	-0.13024
21	20	996.46304	0.20 D - 02	0.00074	0.37024
22	21	997.2941	0.20 D - 02	0.00002	0.00943
23	22	998.11736	0.20 D - 02	0.0007	0.35139
24	23	998.93554	0.20 D - 02	0.00004	0.0204
25	24	999.74765	0.20 D - 02	-0.00098	-0.48944
26	25	1000.55135	0.20 D - 02	-0.00003	-0.01398
27	26	1001.34976	0.20 D - 02	-0.00024	-0.11932
28	27	1002.14121	0.20D-02	0.00005	0.02443
29	28	1002.92619	0.20D-02	0.00033	0.16589
$\frac{-0}{30}$	$\frac{1}{29}$	1003.70559	0.20D-02	-0.00028	-0.14132
31	30	1004 47777	0.20D-02	-0.00018	-0.09209
32	31	1005 24416	0.20D-02	-0.00010	-0 40331
33	32	1006.00199	0.20D-02	0.00061	0.3051
34 24	22	1000.00133 1006.75637	0.20D-02	0.00001	0.52875
25	24	1000.75037 1007.50120	0.20D-02	-0.00100	0.0052
00 26	04 25	1007.30129	0.20D-02	0.00019 0.00157	0.0952
30 97	30 96	1008.24200	0.20D-02	-0.00157	-0.10440
31	30	1008.97399	0.20D-02	0.00015	0.07578
38	31	1009.70036	0.20D-02	0.00024	0.12103
39	38	1010.41984	0.20D-02	0.00063	0.31482
40	39	1011.1334	0.20D-02	0.00033	0.16568
41	40	1011.84002	0.20D-02	0.00036	0.17864
42	41	1012.54021	0.20D-02	0.00018	0.09223
43	42	1013.23495	0.20D-02	-0.00118	-0.59006
44	43	1013.9198	0.20 D - 02	0.0007	0.35179
45	44	1014.60024	0.20 D - 02	0.00032	0.16128
46	45	1015.27363	0.20 D - 02	0.00031	0.15688
47	46	1015.94057	0.20 D - 02	0.00007	0.03357
48	47	1016.60032	0.20 D - 02	0.00031	0.15483
49	48	1017.25368	0.20 D - 02	0.00023	0.11461
50	49	1017.90066	0.20 D - 02	-0.0002	-0.09813
51	50	1018.53972	0.20 D - 02	0.00056	0.28005
52	51	1019.16922	$0.50 \text{D}{-}02$	0.00414	0.82763
53	52	1019.79902	0.20D-02	0.00064	0.32239
54	53	1020.41904	0.20D-02	0.00016	0.0789
$55^{-1}$	54	1021.03173	0.20D-02	0.00022	0.10751
56	55	1021.63925	0.20D-02	-0.00136	-0.67787
57	56	1022 23664	0 20D-02	0.00039	0 19614
58	57	1022.82933	0.20D-02	0.000000	0.00943
50	58	1022.02355	0.200-02 0.200-02	0.00115	0 57537
60 60	50	1023.41308	0.20D-02	0.00110	0.02283
61	09 60	1020.33042	0.20D-02	0.00000	0.02200
60	00 61	1024.0001	0.20D-02	0.00014	0.07000
02 69	01 60	1025.12951	0.20D-02	0.00000	0.0227
05	02	1020.08803	0.20D-02	0.00010	0.0720
04 65	03	1020.23897	0.20D-02	0.00033	0.10479
05	64	1020.78423	0.2012-02	-0.00072	-0.55(55

Table A.4, Fourier Transform Infrared Data for ⁷⁴ GeO (	$cm^{-1}$	(Cont'd)
--------------------------------------------------------------------	-----------	----------

Tabl	с <b>п.</b> ч,	Found frame	sorm minar	cu Data 101		) (Cont u)
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)	/Unc
66	65	1027.32113	0.20D-02	-0.00032	-0.16033	
67	66	1027.85073	0.20D-02	0.00044	0.22019	
68	$\tilde{67}$	1028 37438	0.20D-02	0.00021	0 10281	
69	68	1028 89044	0.20D-02	0.0006	0.30133	
70	60	1020.03044	0.20D-02	0.0000	0.50155 0.67540	
70	70	1029.40100	0.20D-02	-0.00133	-0.07549	
11	70	1029.90277	0.20D-02	0.00027	0.15012	
72	71	1030.39874	0.20D-02	-0.00019	-0.09509	
73	72	1030.88632	0.20D-02	0.00073	0.36464	
74	73	1031.3687	0.20D-02	-0.00017	-0.08595	
75	74	1031.843	0.20 D - 02	-0.00003	-0.01315	
76	75	1032.31035	0.20 D - 02	0.00002	0.01227	
77	76	1032.77052	0.20 D - 02	0.0002	0.09801	
78	77	1033.22384	0.20 D - 02	0.00015	0.07329	
79	78	1033.66984	0.20D-02	0.00033	0.16679	
80	79	1034 10891	0.20D-02	0.00035	0 17718	
81	80	1034.10051 1034.54153	0.20D-02 0.20D-02	-0.00033	-0 1/18/	
01 00	00 01	1024.04105	0.20D-02	-0.00028	-0.14104	
04	01	1034.90460	0.20D-02	0.00120	0.02000	
83	82	1035.38387	0.20D-02	-0.00004	-0.01804	
84	83	1035.79322	0.20D-02	0.0012	0.60159	
85	84	1036.19837	0.20D-02	-0.00053	-0.26361	
86	85	1036.59233	0.20 D - 02	0.00176	0.88049	
87	86	1036.98387	0.20 D - 02	-0.00072	-0.35851	
88	87	1037.36471	0.20 D - 02	0.00031	0.15351	
89	88	1037.73885	0.20 D - 02	0.00082	0.41014	
90	89	1038.10744	0.20D-02	-0.00034	-0.16953	
91	90	1038 46647	0.20D-02	0.00082	0.41207	
02	01	1038 81807	$0.20D_{-}02$	0.00002 0.00127	0.63402	
02	02	1030.01057	0.20D-02	0.00127	0.03402	
95	92	1039.10304	0.20D-02	0.00008	0.04030	
94	95	1039.000	0.20D-02	-0.00007	-0.33034	
95	94	1039.83657	0.20D-02	-0.00112	-0.56156	
96	95	1040.16068	0.20D-02	-0.00142	-0.70777	
97	96	1040.47589	0.20D-02	-0.00011	-0.05595	
98	97	1040.78637	0.20 D - 02	-0.00142	-0.71208	
99	98	1041.08769	0.20 D - 02	-0.0009	-0.44867	
100	99	1041.38016	0.20 D - 02	0.00112	0.55877	
101	100	1041.66815	0.20 D - 02	0.00025	0.12272	
102	101	1041.94786	0.20D-02	0.00028	0.13764	
103	102	1042.22304	0.20D-02	-0.00256	-1.27899	
105	104	104274528	0.20D-02	-0.00233	-1 16617	
106	104	1042.14020	0.20D 02 0.20D 02	0.00200	0.03084	
100	100	1042.99512 1042.99750	0.20D-02	-0.00008	-0.05304	
107	100	1043.23739	0.20D-02	-0.0019	-0.95155	
100	107	1045.47100	0.20D-02	-0.00018	-0.09125	
109	108	1043.69804	0.20D-02	0.00056	0.27783	
111	110	1044.12973	0.20D-02	0.00184	0.91896	
The	2-1 Ba	and, 202 data,	$J''_{min} = 1$	$, J''_{max} = 1$	.08	
Unc.	Avae =	= 2.0D-03, Un	$c{Max} = 2.0$	D-03		
(Err)	/Unc.)	$A_{vae} = 1.1 D-0$	)2. RMSR =	= 0.39		
/	- /		,			
94	95	851.38955	0.20 D - 02	0.00081	0.40429	
93	94	852.88123	0.20 D - 02	0.0004	0.19919	
92	93	854.3684	0.20 D - 02	-0.00063	-0.31585	
91	92	855.84957	0.20D-02	-0.00082	-0.41091	
90	91	857.325	0.20D-02	-0.00043	-0.21603	
89	90	858,79466	0.20D-02	0.00057	0.2836	
88	89	860 26003	0 20D-02	0.00067	0.33298	
87	88	861 7104	0.200-02	0.00007	0.55255	
86	90 97	862 17696	0.20D-02	0.00107	0.1009	
00 07	01	003.17020	0.20D-02	-0.00021	-0.10400	
<b>8</b> 0	80	004.02008	0.20D-02	-0.00015	-0.07084	

Table A.4, Fourier Transform Infrared Data for  74 GeO (cm⁻¹) (*Cont'd*)

Table	, <b>11.1</b> ,	rounci mane	norm minur	cu Data loi	
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
84	85	866.07053	0.20D-02	0.00004	0.02023
83	84	867.50899	0.20D-02	0.00099	0.49641
82	83	868.94315	0.20D-02	0.001	0.50158
81	82	870 37355	0 20D-02	-0.00047	-0 23435
80	81	871 79717	0.20D-02	-0.00043	-0 21661
79	80	873 2137	0.20D-02	0.00010 0.00142	0 70974
78	79	874 62813	0.20D-02	0.000112	0.04444
77	78	876 03628	0.20D-02 0.20D-02	-0.00005	-0 12255
76	77	877 43832	0.20D-02 0.20D-02	0.00020	0.10856
75	76	878 83601	0.20D-02 0.20D-02	-0.00022	-0 14242
74	75	880 22785	0.20D-02 0.20D 02	0.00028	0.12565
73	74	881 61368	0.20D-02 0.20D-02	-0.00025	0.22360
72	73	882 00521	0.20D-02 0.20D-02	0.00040	0.0504
71	72	884 37104	0.20D-02 0.20D-02	0.0001	0.04032
70	71	885 74141	0.20D-02 0.20D 02	0.0001	0.10027
69	70	887 10778	0.20D-02 0.20D-02	-0.0002	-0 54203
68	60	888 46651	0.20D-02 0.20D-02	-0.00100	-0.05769
67	68	880 82046	0.20D-02 0.20D 02	-0.00012	0.11707
66	67	801 16038	0.20D-02 0.20D-02	0.00024 0.00022	0.11083
66	67	801 16038	0.20D-02 0.20D 02	0.00022	0.10983
65	66	802 51304	0.20D-02	0.00022	0.10303
64	65	803 85115	0.20D-02 0.20D-02	-0.00004	-0.01389
63	64	805 18306	0.20D-02 0.20D-02	-0.00003	-0.11/03
62	63	806 51103	0.20D-02	-0.00023	0.06575
61	62	807 83243	0.20D-02 0.20D-02	-0.00013	0.08345
60	61	800 1/8/8	0.20D-02 0.20D-02	0.00017	0.17939
50	60	000 45049	0.20D-02 0.20D 02	0.00034 0.00015	0.07566
59 58	50	900.45942 001 76404	0.20D-02	0.00015	0.07300
57	58	901.10434	0.20D-02 0.20D-02	0.0001	0.20475
56	57	004 35877	0.20D-02 0.20D 02	0.00041	0.020415
55	56	904.55811 905.6476	0.20D-02	0.00000	0.02662
50 54	55	905.0470	0.20D-02 0.20D-02	-0.00003	0.21504
53	54	908 20834	0.20D-02 0.20D-02	0.00045	0.01942
52	52	908.20834 000.478	0.20D-02	0.00004 0.00246	1 22120
51	52	010 74683	0.20D-02 0.20D 02	0.00240 0.00015	0.07534
50	51	012 00823	0.20D-02 0.20D 02	0.00013	0.1537
40	50	912.00825 013.26371	0.20D-02	-0.00031	0.21125
49	70 70	919.20971 914 51995	0.20D-02 0.20D-02	0.00042	0.04747
40	49	914.01290 015 757	0.20D-02	0.00009	0.00708
41	40	016 00568	0.20D-02	0.00019	0.02210
40	46	018 22887	0.20D-02	0.00004 0.00023	0.11744
40	40 45	910.22007	0.20D-02 0.20D-02	0.00023	0.03778
44	40	919.40002 920.67742	0.20D-02 0.20D-02	0.00008	0.04256
40	44	021 80362	0.20D-02 0.20D-02	-0.00003	-0.08358
42	40	923 1035	0.20D-02 0.20D-02	-0.00017 0.00024	0.11905
40	42	920.1000 924 30812	0.20D-02 0.20D-02	0.00024 0.00021	0.10513
30	40	924.50012 925 50701	0.20D-02 0.20D-02	0.00021 0.00022	0.10913
38	30	925.50701	0.20D-02 0.20D-02	0.00022 0.0002	0.10918
37	38	920.10022 927.88751	0.20D-02 0.20D-02	0.0002	0.1005
36	37	929.06941	0.20D-02 0.20D-02	0.00035 0.00025	0.12400
35	36	930 94548	0.20D-02 0.20D-02	0.00020	0.09784
34	35	031 /1615	0.20D-02 0.20D-02	-0.0002	-0 10393
33	34	032 57002	0.20D-02 0.20D-02	0.00021	0.25988
30	33	033 73016	0.20D-02 0.20D-02	0.00002	0.01886
31	30	934 80078	0.20D-02 0.20D-02	0.00004	0.68762
30	31	936 038/17	0.20D-02 0.20D-02	0.00138	0.42563
20	30	937 18075	0.20D-02 0.20D-02	-0.00005	-0.03247
$\frac{23}{28}$	29	938 31627	0.20D-02 0.20D-02	-0.00003	-0.01717

				C 1 Ol	
J'	$J^{\prime\prime}$	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
27	28	939.44576	0.20 D-02	0.00021	0.10606
26	27	940.56977	0.20 D - 02	0.00009	0.04676
25	26	941.68785	0.20D-02	0.00006	0.02946
24	25	942.80148	0.20D-02	-0.00138	-0.69133
23	$\frac{-3}{24}$	943 90559	0.20D-02	0.00083	0 41392
20	24	045.00803	0.20D 02 0.20D 02	0.000005	0.58025
22 91	20	046 10179	0.20D-02	-0.00110	0.17042
21	22	940.10176	0.20D-02	-0.00030	-0.17945
20	21	947.18973	0.20D-02	0.00034	0.17097
19	20	948.27507	0.20D-02	-0.00226	-1.12961
18	19	949.35001	0.20D-02	-0.00038	-0.19169
17	18	950.41954	0.20 D - 02	0.00098	0.4892
16	17	951.48662	0.20 D - 02	-0.00116	-0.58248
15	16	952.54313	0.20 D - 02	0.00131	0.65274
14	15	953.5971	0.20 D - 02	0.00035	0.17431
13	14	954.64428	0.20D-02	0.0002	0.10171
12	13	955.68553	0.20D-02	0.00001	0.0043
11	12	956 72038	0.20D-02	0.0002	0 1016
10	11	957 75005	0.20D 02	0.0002	0.21702
10	10	058 77255	0.20D-02	0.00043	0.02787
9	10	956.11255	0.20D-02	0.00008	0.05787
0 7	9	959.78974	0.20D-02	-0.00014	-0.00934
	8	960.80029	0.20D-02	0.00025	0.12577
6	7	961.80572	0.20D-02	-0.0003	-0.15242
5	6	962.80439	0.20D-02	-0.00017	-0.08451
4	5	963.79749	0.20 D-02	-0.00054	-0.27107
3	4	964.78354	0.20 D - 02	0.00004	0.02217
2	3	965.76382	0.20 D - 02	0.0003	0.14968
1	2	966.73777	0.20 D - 02	0.00078	0.39076
0	1	967.70864	0.20D-02	-0.00179	-0.89523
2	1	970.5751	0.20D-02	-0.00021	-0.10723
3	2	971.51902	0.20D-02	-0.00044	-0.21815
4	3	972 45527	0.20D-02	0.00082	0 41057
5	4	973 38669	0.20D-02	0.00002 0.00072	0.35811
6	5	074 21261	0.20D-02	0.00012	0.04612
7	0 6	974.31201 075 99190	0.20D-02	-0.00009	0.06012
(	0 7	970.20129	0.20D-02	0.00012	0.00213
0	(	970.14423	0.20D-02	-0.00015	-0.07280
9	8	977.05059	0.20D-02	-0.00006	-0.03182
10	9	977.95133	0.20D-02	-0.00062	-0.31047
11	10	978.84417	0.20D-02	0.00046	0.23044
12	11	979.73227	0.20 D - 02	0.00001	0.00522
13	12	980.61344	0.20 D - 02	0.00021	0.10302
14	13	981.48887	0.20D-02	-0.00015	-0.07683
15	14	982.35728	0.20 D - 02	0.00021	0.10486
16	15	983.21996	0.20D-02	-0.00003	-0.01269
17	16	984.07772	0.20D-02	-0.00167	-0.83526
18	17	984 92654	0.20D-02	-0.00072	-0.35866
19	18	985 76931	0.20D-02	-0.00007	-0.03367
20	10	086 60753	0.20D 02 0.20D 02	0.00107	0.61611
20	20	980.00795	0.20D-02	-0.00123	0.08174
⊿⊥ 00	40 91	901.40110 000 0c00	0.20D-02	0.00010	-0.00174
22	21 00	900.2003	0.20D-02	0.00098	0.40001
23	22	989.07908	0.20D-02	0.00009	0.04392
24	23	989.89033	0.20D-02	0.00032	0.15859
25	24	990.69826	0.20D-02	-0.00256	-1.27833
26	25	991.49466	0.20 D - 02	-0.00034	-0.16769
27	26	992.28566	0.20 D - 02	0.00084	0.41965
28	27	993.07422	0.20 D - 02	-0.00199	-0.99719
29	28	993.8514	0.20D-02	0.00007	0.03596
30	29	994.62479	0.20D-02	-0.00055	-0.27688
31	30	995 39028	0.20D-02	0.00023	0 11349

Table A.4, Fourier Transform Infrared Data for  74 GeO (cm⁻¹) (*Cont'd*)

10010	· · · · · ,	rouner man	iorim minut	ea Bata lei	
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
32	31	996.15055	0.20D-02	-0.00028	-0.13889
33	32	996.90339	0.20D-02	0.00013	0.06507
34	33	997.65027	0.20D-02	-0.00003	-0.01554
35	34	998.39034	0.20D-02	0.00009	0.04334
36	35	999.12368	0.20D-02	0.00037	0.18577
37	36	999.85131	0.20D-02	-0.0002	-0.09914
38	37	1000 57133	0.20D-02	0.00027	0 13261
39	38	1001 28539	0.20D-02	0.00021	0.0502
40	30	1001.20000	0.20D-02 0.20D-02	0.0001	0.25202
41	40	1002.60326	$0.20D_{-}02$	0.0003	0.10307
42	40	1002.03520 1003.38778	0.20D-02 0.20D 02	0.00021 0.00025	0.10307
42	42	1003.38778	0.20D-02 0.20D-02	-0.00029	-0.04303
40	42	1004.07504 1004.75568	0.20D-02	-0.00003	0.0222
44	40	1004.75508	0.20D-02	0.00000	0.0233
40	44	1005.45000	0.20D-02	-0.00022	-0.11002
40	40	1000.09720	0.20D-02	0.00003	0.01410
41	40	1000.70007	0.20D-02	0.00100	0.00117
48	41	1007.41103	0.20D-02	0.00040	0.23032
49	48	1008.05954	0.20D-02	-0.0001	-0.04993
50	49	1008.69992	0.20D-02	0.00016	0.07938
51	50	1009.33398	0.20D-02	-0.00001	-0.00282
52	51	1009.96123	0.20D-02	-0.00011	-0.05311
53	52	1010.58254	0.20D-02	-0.00102	-0.51157
54	53	1011.19512	0.20D-02	0.00002	0.01022
55	54	1011.80186	0.20D-02	0.00012	0.06115
56	55	1012.40241	0.20D-02	-0.00038	-0.18988
57	56	1012.99505	0.20D-02	0.00022	0.11101
58	57	1013.58191	0.20 D - 02	-0.00021	-0.10731
59	58	1014.16234	0.20 D - 02	-0.00105	-0.52596
60	59	1014.73383	0.20 D - 02	0.00022	0.1084
61	60	1015.30015	0.20 D-02	-0.00021	-0.10437
62	61	1015.85927	0.20 D-02	-0.0003	-0.15094
63	62	1016.41115	0.20 D-02	-0.00003	-0.01747
64	63	1016.95667	0.20 D - 02	-0.0003	-0.15015
65	64	1017.49473	0.20 D-02	-0.00001	-0.00516
66	65	1018.02618	0.20 D-02	-0.00003	-0.0137
67	66	1018.55004	0.20 D - 02	0.00062	0.30803
68	67	1019.06844	0.20 D - 02	-0.00021	-0.10619
69	68	1019.57874	0.20 D - 02	0.00009	0.04741
70	69	1020.08287	0.20 D - 02	-0.00039	-0.19739
71	70	1020.57969	0.20 D - 02	-0.00055	-0.27634
72	71	1021.06923	0.20 D - 02	-0.00042	-0.21169
73	72	1021.55188	0.20 D - 02	-0.00041	-0.2042
74	73	1022.02681	0.20 D - 02	0.00031	0.15486
75	74	1022.49568	0.20D-02	0.00006	0.02921
76	75	1022.95729	0.20D-02	0.00003	0.01256
77	76	1023.41368	0.20 D - 02	-0.00184	-0.92138
78	77	1023.85882	0.20D-02	0.00047	0.23607
79	78	1024.30034	0.20D-02	-0.00067	-0.33589
80	79	1024.73356	0.20D-02	-0.0006	-0.2996
81	80	1025.15929	0.20D-02	-0.00015	-0.07589
82	81	1025.579	0.20D-02	-0.0008	-0.40111
83	82	1025.99088	0.20D-02	-0.00075	-0.3766
84	83	1026.39517	0.20D-02	-0.00026	-0.12823
85	84	1026.79337	0.20D-02	-0.00083	-0.41338
86	$\overline{85}$	1027.18284	0.20D-02	0.00016	0.08208
87	86	1027.56538	0.20D-02	0.0009	0.45175
88	87	1027.94251	0.20D-02	-0.00014	-0.07027
89	88	1028.31194	0.20D-02	-0.00069	-0.3464

Table A.4, Fourier Transform Infrared Data for  74 GeO (cm⁻¹) (*Cont'd*)

-						
	J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
	90	89	1028.67451	0.20D-02	-0.00161	-0.80254
	91	90	1029.02701	0.20D-02	0.00032	0.16036
	93	92	1029.71478	0.20D-02	-0.00035	-0.17496
	94	93	1030.04669	0.20D-02	0.0004	0.1999
	95	94	1030 37219	0.200-02	0.0001	0.132
	96	05	1030.68644	0.20D-02 0.20D-02	0.00020	2 04084
	07	06	1031 00051	0.20D-02	0.00400	0 38305
	91	90 07	1021.00001	0.20D-02	0.00077	0.30393
	98	97	1031.30320 1031.60106	0.20D-02	0.00145	0.12001
	100	98	1031.00100	0.20D-02	-0.00025	-0.12000
	100	99	1031.88806	0.20D-02	0.00149	0.7473
	101	100	1032.17115	0.20D-02	-0.00021	-0.10514
	102	101	1032.44479	0.20D-02	0.00016	0.0791
	103	102	1032.70997	0.20 D - 02	0.0016	0.79945
	104	103	1032.97094	0.20 D - 02	-0.00015	-0.07663
	105	104	1033.22384	0.20 D - 02	-0.00125	-0.62472
	106	105	1033.46752	0.20D-02	-0.00055	-0.27738
	107	106	1033.70461	0.20 D - 02	-0.00071	-0.35523
	108	107	1033.92926	0.20D-02	0.00412	2.05966
	109	108	1034.15523	0.20D-02	0.00016	0.08018
	100	100	1001.100=0	0.202 02	0.00010	0.00010
	The	2 9 D -	nd 104 data	<i>T</i> ?? 1	7.7 1	00
	Ine,	3-2 Ба	nd, 194 data,	$J^{n}_{min} \equiv 1$	$J_{max}^{-} = 1$	00
	Unc.	Avge =	2.0D-03, Uno	$c_{Max} = 5.0$	D-03	
	(Err/	Unc.)	Avge = 5.9D-0	02, RMSR =	= 0.52	
	99	100	835 62536	0.20D-02	0.00135	0 67491
	98	00	837 13364	$0.20D_{-}02$	0.00100	1 50722
	90	99 08	838 63049	0.20D-02	0.00319 0.00247	1.03722
	91	90 07	030.03942	0.20D-02	0.00247 0.00104	0 51769
	90	97	040.14207	0.20D-02	-0.00104	-0.31703
	95	96	841.63827	0.20D-02	-0.00159	-0.79493
	94	95	843.1265	0.20D-02	-0.00008	-0.03891
	93	94	844.60813	0.20D-02	0.0029	1.45035
	92	93	846.08671	0.20D-02	0.0038	1.8978
	90	91	849.03307	0.20 D - 02	0.00095	0.47672
	89	90	850.4974	0.20 D - 02	0.00064	0.31798
	88	89	851.95631	0.20 D - 02	0.00056	0.28205
	87	88	853.41165	0.20 D - 02	-0.00111	-0.55624
	86	87	854.85894	0.20 D - 02	0.00006	0.02798
	85	86	856.30198	0.20D-02	0.00027	0.13459
	84	85	857.74028	0.20D-02	0.00001	0.00348
	83	84	859 17137	0.20D-02	0.0000174	0.8695
	82	83	860 60013	0.20D-02	0.00171	0.27751
	81	82	862 02207	0.20D-02	0.00000	0.022/101
	80	02 91	862.02291	0.20D-02	0.00004 0.00077	0.02245
	70	80	005.45552 064 05915	0.20D-02	0.00077	0.1004
	79	00 70	004.00210	0.20D-02	-0.00025	-0.12284
	(8 77	79 70	806.2572	0.20D-02	0.00123	0.01072
	((	(8 77	867.66005	0.20D-02	-0.00038	-0.18755
	76	77	869.05346	0.20D-02	0.00216	1.07928
	75	76	870.44752	0.20D-02	-0.00126	-0.62802
	74	75	871.83213	0.20 D - 02	-0.00055	-0.27461
	73	74	873.2137	0.20 D - 02	-0.00213	-1.06566
	72	73	874.58628	0.20 D - 02	-0.00006	-0.03143
	71	72	875.9549	0.20 D - 02	0.00063	0.31291
	70	71	877.3165	0.20D-02	0.00296	1.48222
	69	70	878.678	0.20D-02	0.00003	0.01623
	68	69	880.03104	0.20D-02	0.00018	0.08967
	67	68	881.37938	0.20D-02	-0.00036	-0.17756
	66	67	882 72101	0.20D-02	-0.00049	-0 24575
	65	66	884 05769	0.2010-02	0.00049	0.38987
	64	65	885 30017	0.20D-02	-0.00078	-0 10593
	04	00	000.03011	0.4010-04	-0.00041	-0.10030

Table A.4, Fourier Transform Infrared Data for  74 GeO (cm⁻¹) (*Cont'd*)

10010	, <b>11.1</b> ,	iouner man	norm minar	eu Data ioi	
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
63	64	886.7135	0.20D-02	0.00259	1.29659
62	63	888.03671	0.20 D-02	0.00006	0.03225
61	62	889.35228	0.20 D-02	-0.00028	-0.13932
60	61	890.66164	0.20 D-02	0.00012	0.06172
59	60	891.96544	0.20D-02	0.00062	0.31002
58	59	893.26525	0.20D-02	-0.00039	-0.19461
57	58	894.55801	0.20D-02	0.00016	0.07751
56	57	895.8465	0.20D-02	-0.00054	-0.26891
55	56	897.12844	0.20D-02	-0.00019	-0.09415
54	55	898.40507	0.20D-02	-0.00007	-0.03352
53	54	899.67602	0.20D-02	0.0002	0.09769
52	53	900.94181	0.20D-02	0.00007	0.03417
51	52	902.20194	0.20D-02	0.00005	0.02565
50	51	903.4564	0.20D-02	0.00012	0.06172
49	50	904.70524	0.20D-02	0.00023	0.11714
48	49	905.94892	0.20D-02	-0.00009	-0.04347
47	48	907.18661	0.20D-02	-0.00001	-0.00544
46	47	908.419	0.20D-02	-0.00026	-0.12912
$\overline{45}$	46	909.64549	0.20D-02	-0.00023	-0.11485
44	$45^{-5}$	910.86578	0.20D-02	0.00036	0.18199
43	44	912.08094	0.20D-02	0.00044	0.22105
$42^{-3}$	$\overline{43}$	913.29094	0.20D-02	0.00003	0.01702
41	42	914.49482	0.20D-02	0.00007	0.0344
40	41	915.69323	0.20D-02	-0.0001	-0.05207
39	40	916.88588	0.20D-02	-0.00021	-0.10289
38	39	918.07211	0.20D-02	0.00042	0.21165
37	38	919.25324	0.20D-02	0.00043	0.2161
36	37	920 4291	0.20D-02	-0.00001	-0.00496
35	36	921.59841	0.20D-02	0.00037	0.18307
34	35	922.76286	0.20D-02	-0.00014	-0.07019
33	34	923 92134	0.20D-02	-0.00042	-0.21026
32	33	925 0731	0.20D-02	0.00012	0 12246
31	32	926 21871	0.20D-02	0.00021 0.00129	0.64261
30	31	927 36127	0.20D-02	-0.00041	-0 20534
29	30	928 49594	0.20D-02	0.0	-0.00187
$\frac{20}{28}$	29	929 62466	0.20D-02	0.00054	0 26765
$\frac{20}{27}$	$\frac{20}{28}$	930 74876	0.20D-02	-0.00012	-0.06229
26	$\frac{20}{27}$	931 86739	0.20D-02	-0.00012	-0 57218
25	26	932 9777	0.20D-02	0.00032	0 15757
$\frac{20}{24}$	25	934 08378	0.20D-02	0.00002	0.08136
23	$\frac{10}{24}$	935 18405	0.20D-02	-0.00005	-0.02625
$\frac{20}{22}$	23	936.27791	0.20D-02	0.00027	0.1343
$\frac{22}{21}$	$\frac{10}{22}$	937.36619	0.20D-02	0.00028	0.14243
$\frac{21}{20}$	21	938 44851	0.20D-02	0.00020	0 1826
19	$\frac{21}{20}$	939.52519	0.20D-02	0.00019	0.09437
18	19	940 59631	0.20D-02	-0.00036	-0.17783
17	18	941 66056	0.20D-02	0.00004	0.02047
16	17	942 7194	0.20D-02	-0.00009	-0.04622
15	16	943 77286	0.20D-02	-0.0008	-0 39856
14	15	944 81886	0.20D-02	0.00001	0.00295
13	14	945 8598	0.20D-02	-0.00011	-0.0572
12	13	946 89387	0.20D-02	0.00065	0 32537
11	19	947 92249	0.20D-02 0.20D-02	0.00000	0 43502
10	11	948 9465	0.20D-02 0.20D-02	-0.00031	-0 15371
9	10	949 96285	0.20D-02	0.00017	0.08353
8	9	950 97385	0.20D-02	-0.00005	-0.02387
7	8	951 97862	0.20D-02	-0.00007	-0.03645
6	7	952.97803	0.20D-02	-0.00079	-0.39493

Table A.4, Fourier Transform Infrared Data for  74 GeO (cm⁻¹) (*Cont'd*)
10010		rouner fram	ionin minai	ea Bata iei	
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
5	6	953.97059	0.20D-02	-0.00072	-0.35987
4	5	954.95674	0.20 D - 02	-0.00031	-0.15686
3	4	955.93465	0.20 D - 02	0.00226	1.12842
2	3	956.91083	0.20D-02	0.00045	0.22529
2	1	961.68923	0.20D-02	0.00208	1.04143
4	3	963.56144	0.20D-02	-0.00119	-0.59592
5	4	964.48684	0.20D-02	-0.0014	-0.69987
6	$\overline{5}$	965.40625	0.20D-02	-0.00182	-0.90829
7	6	966.31933	0.20D-02	-0.0021	-1.05189
8	7	967.22431	0.20D-02	-0.00052	-0.2614
ğ	8	968 12334	0.20D-02	0.00077	0.38744
10	ğ	969.01868	0.20D-02	-0.00048	-0.24108
11	10	969.90636	0.20D-02	-0.00034	-0.16774
12	11	970.78771	0.20D-02	-0.00013	-0.06321
13	12	971 66432	0.20D-02	-0.00145	-0 72333
14	13	972.53131	0.20D-02	0.00055	0.2761
15	14	973.39485	0.20D-02	-0.0003	-0.15061
16	15	974 25103	0.20D-02	-0.00011	-0.05428
17	16	975.10185	0.20D-02	-0.00088	-0.44071
18	17	975 9448	0.20D-02	-0.00012	-0.06065
19	18	976 78159	0.20D-02	0.00012	0.23
20	19	977.61229	0.20D-02	0.00076	0.38046
$\frac{-3}{21}$	20	978.4378	0.20D-02	-0.00012	-0.06003
$\frac{-1}{22}$	$\frac{-}{21}$	979 25589	0.20D-02	0.00004	0.01764
23	$\frac{-1}{22}$	980.06711	0.20D-02	0.00067	0.33264
$\frac{-3}{24}$	23	980.87333	0.20D-02	-0.00011	-0.05589
$\frac{1}{25}$	$\frac{-0}{24}$	981.67228	0.20D-02	-0.00004	-0.01879
$\frac{-3}{26}$	$\frac{-1}{25}$	982.46559	0.20D-02	-0.00074	-0.37194
$\frac{20}{27}$	$\frac{-0}{26}$	983.24999	0.20D-02	0.00101	0.5038
$\frac{-1}{28}$	$\frac{-3}{27}$	984 02936	0.20D-02	0.00134	0.6676
$\frac{-0}{29}$	$\frac{-1}{28}$	984 80622	0.20D-02	-0.00229	-1 14653
$\frac{-0}{30}$	$\frac{-0}{29}$	985.57078	0.20D-02	-0.0001	-0.04938
31	$\frac{-0}{30}$	986.33072	0.20D-02	0.00023	0.11309
32	31	987.08447	0.20D-02	0.00020	0 11991
33	32	987.83094	0.20D-02	0.00103	0.51528
34	33	988.57267	0.20D-02	0.00003	0.01326
35	34	989 30806	0.20D-02	-0.00117	-0.58718
36	35	990.03397	0.20D-02	0.00056	0.27806
37	36	990.75678	0.20D-02	-0.00117	-0.58693
38	37	991 47108	0.20D-02	-0.00097	-0 4832
39	38	992.17892	0.20D-02	-0.00088	-0.44162
40	39	992.87945	0.20D-02	-0.00008	-0.03822
41	40	993.57465	0.20D-02	-0.00056	-0.27899
$42^{$	41	994.26235	0.20D-02	-0.00016	-0.07992
43	42	994.9437	0.20D-02	-0.00004	-0.02197
44	43	995.61863	0.20D-02	-0.00015	-0.07624
45	44	996 28658	0.20D-02	0.00006	0.03129
46	45	996.94783	0.20D-02	0.00031	0.15465
47	46	997.60347	0.20D-02	-0.00051	-0.25726
48	47	998.2512	0.20D-02	-0.00011	-0.05547
49	48	998.89285	0.20D-02	-0.00034	-0.17105
50	49	999.52581	0.20D-02	0.0014	0.69995
51	50	1000.15699	0.20D-02	-0.00181	-0.90341
$5\overline{2}$	51	1000.77552	0.20D-02	0.0009	0.44762
$53^{-1}$	$5\overline{2}$	1001.3906	0.20D-02	0.00029	0.14647
54	53	1001.994	0.50D-02	0.00461	0.92122
55	54	1002 59973	0.20D-02	-0.00019	-0.09422
56	55	1002.00010	0.20D-02	-0.00019	-0.04648

Table A.4, Fourier Transform Infrared Data for  74 GeO (cm⁻¹) (*Cont'd*)

Table	· 11.4,	Found mans	sorm minar	cu Data 101	$\operatorname{Uco}\left(\operatorname{cm}\right)\left(\operatorname{Com}u\right)$
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
57	56	1003.78115	0.20D-02	-0.00011	-0.05486
58	57	1004.36126	0.20D-02	0.00031	0.15453
59	58	1004 93534	0 20D-02	-0.00007	-0.03447
60	59	1005 50246	0.20D-02	-0.00033	-0 16301
61	60	1005.50240	0.20D-02	0.000000	0.00276
60	61	1000.00214	0.20D-02	0.00001	0.00270
02	01	1000.01010	0.20D-02	0.00014	0.07107
63	62	1007.16167	0.20D-02	-0.0001	-0.05246
64	63	1007.70123	0.20D-02	-0.00028	-0.14081
65	64	1008.23579	0.20D-02	-0.00236	-1.17959
66	65	1008.75905	0.20 D - 02	-0.00004	-0.01999
67	66	1009.27838	0.20 D - 02	-0.00073	-0.36323
68	67	1009.78903	0.20 D - 02	0.00033	0.16447
69	68	1010.294	0.20D-02	0.00011	0.05688
70	69	1010.79217	0.20D-02	-0.00026	-0.13224
71	70	1011 28273	0.20D-02	-0.00001	-0.00415
72	71	1011.20210	0.20D-02 0.20D-02	-0.00001	-0.26509
72	71	1011.10100	0.20D-02	-0.00000	1 67965
13	12	1012.24002	0.20D-02	0.00330	1.07803
(4	13	1012.71189	0.20D-02	0.0013	0.05081
75	74	1013.17651	0.20D-02	-0.00053	-0.2649
76	75	1013.63246	0.20D-02	-0.00073	-0.36428
77	76	1014.08047	0.20 D - 02	-0.00004	-0.01964
78	77	1014.52296	0.20 D - 02	-0.00088	-0.44178
79	78	1014.95667	0.20 D - 02	-0.00003	-0.01703
80	79	1015.38403	0.20 D - 02	0.00008	0.03827
81	80	1015.80494	0.20D-02	-0.00046	-0.23222
82	81	1016 21817	0 20D-02	-0.00044	-0 21934
83	82	1016 6245	0.20D-02	-0.00064	-0 32046
84	82	1010.0240 1017.02917	0.20D 02 0.20D 02	0.00068	0.33854
04 95	00 04	1017.02217	0.20D-02	0.00008	0.03004
00	04	1017.4120	0.20D-02	0.00188	0.9413
80	85	1017.79848	0.20D-02	0.00087	0.43691
87	86	1018.17778	0.20D-02	-0.00093	-0.46702
88	87	1018.54981	0.20D-02	-0.00266	-1.33139
89	88	1018.91037	0.20D-02	-0.00012	-0.06214
90	89	1019.26719	0.20 D - 02	-0.00105	-0.52668
91	90	1019.61293	0.20 D - 02	0.00186	0.92905
92	91	1019.95875	0.20 D - 02	-0.00255	-1.27591
93	92	1020.28943	0.20 D - 02	0.00092	0.461
94	93	1020.61669	0.20D-02	0.00055	0.2738
95	94	1020 93478	0 20D-02	0.00206	1 03152
96	95	1020.00110 1021.24715	0.20D-02	0.00200	1 00167
07	06	1021.24710	0.20D 02 0.20D 02	0.002	1 13876
91	90 08	1021.00100 1022.100100	0.20D-02	0.00228	0.02828
99 100	90	1022.13733	0.30D-02	0.00404	0.92828
100	99	1022.42318	0.20D-02	0.00202	1.00752
The 4	l-3 Ba	and, $165 \text{ data}$ ,	$J''_{min} = 1$	$, J''_{max} = 8$	37
Unc.₄	Avge =	= 2.1D-03, Une	$c_{Max} = 5.0$	D-03	
(Err/	Unc.)	$A_{vae} = -7.9 D_{-}$	03, RMSR :	= 0.56	
`	~ <b>-</b>		0.000.00	0.001	
86	87	846.56679	0.20D-02	0.0015	0.75105
85	86	848.0044	0.20D-02	0.00055	0.27349
84	85	849.43614	0.20 D - 02	0.00026	0.13118
83	84	850.86263	0.20 D - 02	0.0	-0.00105
82	83	852.28345	0.20 D - 02	0.00017	0.08673
81	82	853.69864	0.20D-02	0.00075	0.37425
80	81	855.10898	0.20D-02	0.00091	0.45646
79	80	856.51623	0.20D-02	-0.00109	-0.54685
78	79	857 91443	0.20D-02	0.000100	0.33915
77	78	850 20782	0.2010-02	0.00000	0.0803
11 76	10	860 6007E	0.20D-02	0.00190	0.9095
10	11	000.09970	0.20D-02	-0.00034	-0.2110

Table A.4, Fourier Transform Infrared Data for  74 GeO (cm⁻¹) (*Cont'd*)

	,	roarror frame	iorm minut	ou Baca ioi	
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
75	76	862.08321	0.20D-02	0.00009	0.04628
74	75	863.46169	0.20D-02	0.0004	0.19775
73	74	864.83543	0.20D-02	0.00013	0.06261
72	73	866.20492	0.20D-02	-0.00124	-0.61928
71	72	867.56751	0.20D-02	-0.00105	-0.52324
70	71	868 92495	0.20D-02	-0.00106	-0 52936
69	70	870 27818	0.20D-02	-0.00100	-1 10793
68	60	871 62255	0.20D - 02 0.20D 02	0.000222	0.05070
67	68	872.06400	0.20D-02 0.20D 02	0.0001	0.06832
66	67	874 20010	0.20D-02	-0.00014	0.16556
00 65	66	074.30019 975 69777	0.20D-02	-0.00033	-0.10000
00	00	010.02111 976 0FF1F	0.20D-02	0.0020	1.29000
04	00	870.93313	0.20D-02	0.0003	0.14907
63	64	878.27464	0.20D-02	0.00046	0.23161
62	63	879.58822	0.20D-02	0.0011	0.54948
61	62	880.89768	0.20D-02	0.00042	0.20792
60	61	882.20215	0.20D-02	-0.00075	-0.37323
59	60	883.49764	0.20 D-02	0.0016	0.80065
58	59	884.79131	0.20 D - 02	0.00029	0.14438
57	58	886.07869	0.20 D - 02	-0.00021	-0.10738
56	57	887.36016	0.20 D-02	-0.00032	-0.1599
55	56	888.63442	0.20 D - 02	0.00127	0.63649
54	55	889.90609	0.20D-02	-0.00007	-0.03344
53	54	891.16938	0.20 D - 02	0.00145	0.7249
52	53	892.43019	0.20D-02	-0.00011	-0.05372
51	52	893.68377	0.20D-02	0.00001	0.00529
50	51	894.93353	0.20D-02	-0.00162	-0.8083
49	50	896.17275	0.20D-02	0.00172	0.86013
48	49	897 41123	0.20D-02	0.00022	0 11017
47	48	898 64271	0.20D-02	0.00011	0.0566
46	47	899 86877	0.20D-02	-0.00011	-0.09099
45	46	001 08888	0.20D - 02 0.20D 02	0.00015	0.07201
40	45	002 30212	0.20D-02 0.20D-02	-0.00013 0.00114	0.57036
44	40	902.50212 003.51226	0.20D-02	0.00114 0.00012	0.06147
40	44	903.31220	0.20D-02	-0.00012	-0.00147
42	40	904.71000 005.01251	0.20D-02	-0.0007	-0.34675
41	42	905.91551	0.20D-02	-0.00038	-0.29191
40	41	907.10445	0.20D-02	0.00038	0.10002
39	40	908.29097	0.20D-02	0.00007	0.03253
38	39	909.47175	0.20D-02	-0.0002	-0.10062
37	38	910.64789	0.20D-02	-0.00153	-0.76625
36	37	911.81307	0.20D-02	0.00238	1.19024
35	36	912.97874	0.20D-02	0.00009	0.04341
34	35	914.13709	0.20D-02	-0.00063	-0.31711
33	34	915.28804	0.20 D-02	0.0003	0.14816
32	33	916.43596	0.20 D - 02	-0.0015	-0.75115
31	32	917.57476	0.20 D - 02	0.00005	0.02449
30	31	918.70889	0.20 D - 02	0.0005	0.24955
29	30	919.83751	0.20 D-02	0.00066	0.32869
28	29	920.96166	0.20 D - 02	-0.00052	-0.25861
27	28	922.07921	0.20 D - 02	-0.00091	-0.45284
26	27	923.18953	0.20 D-02	0.00012	0.06058
25	26	924.29558	0.20D-02	-0.00043	-0.21393
24	25	925.39454	0.20D-02	0.00027	0.13317
23	24	926.48903	0.20D-02	-0.00043	-0.21356
22	$\overline{23}$	927.57785	0.20D-02	-0.00132	-0.65968
$\frac{1}{21}$	$\frac{-0}{22}$	928.65773	0.20D-02	0.00086	0.42925
$\frac{1}{20}$	21	929.73445	0.20D-02	0.0003	0.1478
19	$\frac{-1}{20}$	930.8057	0.20D-02	-0.0007	-0.34961
18	$\frac{-0}{19}$	931.86739	0.20D-02	0.00195	0.97649

Table A.4, Fourier Transform Infrared Data for  74 GeO (cm⁻¹) (*Cont'd*)

-	10010		round mans	iorim minur		
-	J'	J''	$\overline{\mathrm{Obs}}$	Unc	Calc-Obs	(Calc-Obs)/Unc
-	17	18	932.92893	0.20D-02	-0.00117	-0.58439
	16	17	933.98084	0.20D-02	-0.00059	-0.2929
	15	16	935.02636	0.20D-02	0.00043	0.21545
	14	15	936.06769	0.20D-02	-0.00032	-0.15985
	$1\overline{3}$	14	937.10146	0.20D-02	0.00052	0.26058
	12	$1\overline{3}$	938.13031	0.20D-02	0.0003	0.15111
	11	12	939.15349	0.20D-02	-0.00023	-0.11373
	$10^{-}$	11	940.1699	0.20D-02	0.0	0.0004
	9	$10^{-1}$	941.179	0.20D-02	0.00153	0.76291
	8	9	942.18583	0.20D-02	-0.0007	-0.35176
	$\tilde{\overline{7}}$	8	943.18369	0.20D-02	0.0	0.00069
	6	$\tilde{7}$	944.17474	0.20D-02	0.00147	0.73468
	5	6	945.16113	0.20D-02	0.00155	0.77464
	4	5	946.14064	0.20D-02	0.00243	1.21488
	3	4	947.11942	0.20D-02	-0.00204	-1.02029
	$\overline{2}$	1	952.83397	0.20D-02	0.00095	0.4747
	3	2	953.7636	0.20D-02	0.00275	1.3735
	4	3	954.69253	0.20D-02	-0.00093	-0.46341
	5	4	955.61312	0.20D-02	-0.00243	-1.21679
	6	5	956.5248	0.20D-02	-0.00123	-0.61734
	7	6	957.42757	0.20D-02	0.00267	1.33422
	8	7	958.33051	0.20D-02	0.00018	0.09214
	9	8	959.22768	0.20D-02	-0.00276	-1.37931
	10	9	960.11159	0.20D-02	0.00132	0.65918
	11	10	960.99367	0.20 D - 02	0.00098	0.49176
	12	11	961.87169	0.20D-02	-0.00156	-0.78224
	13	12	962.73959	0.20D-02	-0.00027	-0.13369
	14	13	963.60331	0.20 D - 02	-0.00108	-0.53826
	15	14	964.45752	0.20 D - 02	0.00133	0.66322
	16	15	965.30425	$0.50 \text{D}{-}02$	0.0049	0.97998
	17	16	966.15272	0.20 D - 02	0.00042	0.21118
	18	17	966.99499	$0.50 \text{D}{-}02$	-0.0042	-0.83959
	19	18	967.82204	0.20 D-02	0.00006	0.02868
	20	19	968.64843	0.20 D-02	-0.00138	-0.6916
	21	20	969.46583	0.20 D-02	-0.0002	-0.10071
	22	21	970.27911	0.20 D - 02	-0.00128	-0.63947
	23	22	971.08398	0.20 D - 02	-0.00033	-0.16379
	24	23	971.8824	0.20 D - 02	0.00066	0.33063
	25	24	972.67606	$0.20 \text{D}{-}02$	0.0	-0.00223
	26	25	973.46216	0.20 D - 02	0.00046	0.23182
	27	26	974.24205	0.20D-02	0.0007	0.35189
	28	27	975.0159	0.20 D - 02	0.00053	0.26715
	29	28	975.78325	0.20D-02	0.0004	0.20166
	30	29	976.5437	0.20D-02	0.00071	0.35446
	31	30	977.29922	0.20 D-02	-0.00055	-0.27526
	32	31	978.04693	0.20 D-02	-0.0005	-0.24847
	33	32	978.78974	0.20D-02	-0.00205	-1.0261
	34	33	979.52345	0.20D-02	-0.00103	-0.51402
	35	34	980.25051	0.20D-02	0.00011	0.05671
	36	35	980.97266	0.20D-02	-0.00038	-0.18976
	37	36	981.68868	0.20D-02	-0.0013	-0.64949
	38	37	982.39524	0.20D-02	0.00068	0.34166
	39	38	983.09619	0.20D-02	0.00169	0.84266
	40	39	983.79196	0.20D-02	0.00128	0.63751
	41	40	984.4822	0.20D-02	-0.00021	-0.10476
	42	41	985.16469	0.20D-02	-0.00056	-0.28017
	43	42	985.83955	0.20D-02	0.00009	0.04532
	44	43	986.50841	0.20D-02	0.0001	0.0506

Table A.4, Fourier Transform Infrared Data for  74 GeO (cm⁻¹) (*Cont'd*)

J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
45	44	987.16981	0.20D-02	0.00092	0.45974
46	45	987 83079	0.50D-02	-0.0045	-0.89936
47	46	988 47498	0.00D-02	0.00019	0.09525
/8	10	989 11706	$0.20D_{-}02$	0.00010	0.14956
40	41	989.11700	0.20D-02	0.0003	0.14950
49	40	909.75290	0.20D-02	-0.00011	-0.03040
50	49	990.30107	0.20D-02	-0.00003	-0.02399
51	50	991.00489	0.20D-02	-0.00122	-0.00900
52	51	991.61942	0.20D-02	-0.00044	-0.2177
53	52	992.22815	0.20D-02	-0.0006	-0.30111
54	53	992.82663	0.20D-02	0.00273	1.3647
55	54	993.42604	0.20D-02	-0.00165	-0.82642
56	55	994.01253	0.20D-02	0.0001	0.04939
57	56	994.59616	0.20 D - 02	-0.00209	-1.04399
58	57	995.16924	0.20 D - 02	-0.00054	-0.2677
59	58	995.73474	0.20 D - 02	0.00177	0.88715
60	59	996.29783	0.20 D - 02	-0.00034	-0.17069
61	60	996.8499	0.20 D - 02	0.00172	0.85772
62	61	997.40306	$0.50 \text{D}{-}02$	-0.00418	-0.83554
63	62	997.93852	0.20D-02	0.00077	0.3834
64	63	998.47287	0.20D-02	-0.00007	-0.03671
65	64	998,99944	0.20D-02	-0.00003	-0.01537
66	65	999 52035	0.20D-02	-0.00124	-0.61882
67	66	1000 03269	0.20D-02	-0.0008	-0.39821
68	67	1000.00200	$0.20D_{-}02$	-0.0022	-1 09987
60 60	68	1000.000334 1001.0374	0.20D-02 0.20D-02	-0.0022	-0.38
70	60	1001.0074	0.20D-02	0.00070	0.10084
70	70	1001.0200 1002.01146	0.20D-02	-0.00022	-0.10984
71	70	1002.01140 1002.40226	0.20D-02	0.00209	1.04455
( Z 79	(1 70	1002.49320	0.20D-02	-0.00173	-0.80309
13	12	1002.90348	0.20D-02	-0.00096	-0.48025
(4 70	13	1003.42849	0.20D-02	-0.00199	-0.9961
76	75	1004.3353	0.20D-02	-0.00192	-0.95837
77	76	1004.77646	0.20D-02	-0.0002	-0.10191
78	77	1005.21192	0.20D-02	0.00015	0.07452
79	78	1005.64108	0.20D-02	-0.00027	-0.1354
80	79	1006.06218	0.20D-02	0.00028	0.14248
81	80	1006.47524	0.20 D - 02	0.00178	0.89081
82	81	1006.88416	0.20 D - 02	0.00031	0.15373
83	82	1007.28661	0.20 D - 02	-0.00182	-0.91012
The 5	5-4 Ba	and, $171 \text{ data}$ ,	$J^{"}_{min} = 0$	$J''_{max} = 9$	95
Unc.	Avge =	= 2.4 D - 03, Un	$c_{Max} = 5.0$	D-03	
(Err/	Unc.)	Avge = -1.6D-	02, RMSR	= 0.76	
76	77	852 36007	0 201 02	0.00002	0.01007
70	76	052.50907	0.20D-02	-0.00002	-0.01007
73	70	000.7470 955 1171	0.20D-02	-0.00007	-0.33330
74	75	000.1171	0.20D-02	0.00179	0.69559
13	74	800.4840	0.20D-02	0.00134	0.00733
72	73	857.8400	0.20D-02	0.00085	0.42574
71	72	859.2007	0.20D-02	0.00304	1.51976
70	71	860.55497	0.20D-02	-0.0003	-0.15069
69	70	861.90076	0.20D-02	-0.00052	-0.26072
68	69	863.24133	0.20 D - 02	-0.00089	-0.44561
67	68	864.57579	$0.20 \text{D}{-}02$	-0.00052	-0.26061
66	67	865.905	0.20 D - 02	-0.0003	-0.15095
65	66	867.22713	0.20 D - 02	0.0016	0.79817
64	65	868.54879	0.20 D - 02	-0.00145	-0.7236
63	64	869.85919	0.20 D - 02	0.00136	0.67853
62	63	871.16829	0.20 D - 02	0.00002	0.00934
61	62	872.47127	0.20D-02	-0.00064	-0.32147

Table A.4.	Fourier	Transform	Infrared	Data fo	or 74 GeO	$(cm^{-1})$	(Cont'd)

10010	· · · · · · ,	rouner mane	norm minar	ed Data ioi	
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
60	61	873.76897	0.20D-02	-0.00148	-0.73925
59	60	875.05245	$0.50 \text{D}{-}02$	0.00645	1.29033
58	59	876.34831	0.20 D - 02	-0.00348	-1.74156
57	58	877.62498	0.20D-02	0.00029	0.14328
56	57	878.90159	0.20D-02	-0.00138	-0.68995
55	56	880.17083	0.20 D-02	-0.00117	-0.58651
54	55	881.43504	0.20D-02	-0.00146	-0.7318
53	54	882.69263	0.20D-02	-0.00066	-0.33104
52	53	883.94708	0.20 D - 02	-0.00226	-1.12966
51	52	885.19256	0.20 D-02	-0.00044	-0.21788
50	51	886.43402	0.20 D - 02	-0.00014	-0.0711
49	50	887.67071	0.20 D-02	-0.00066	-0.32969
48	49	888.90022	0.20 D-02	0.00042	0.21109
47	48	890.12591	0.20 D - 02	-0.00027	-0.13411
46	47	891.34529	0.20 D - 02	-0.00024	-0.12075
45	46	892.5579	0.20 D - 02	0.00093	0.46586
44	45	893.76639	0.20 D-02	0.0006	0.30038
43	44	894.96928	0.20 D-02	0.00023	0.11735
42	43	896.1636	0.20 D-02	0.00279	1.39648
41	42	897.35837	0.20 D-02	-0.00075	-0.37272
40	41	898.54301	0.20 D-02	0.00017	0.08445
39	40	899.72287	0.20 D - 02	0.00019	0.09253
38	39	900.89691	0.20 D - 02	0.00033	0.16613
37	38	902.06558	0.20 D-02	0.00016	0.07982
36	37	903.22803	0.20 D - 02	0.00049	0.24322
35	36	904.38543	$0.20 \text{D}{-}02$	0.00014	0.07082
34	35	905.53675	0.20 D - 02	0.00014	0.07227
33	34	906.68246	0.20 D - 02	0.00001	0.00703
32	33	907.82161	0.20 D - 02	0.0007	0.34975
31	32	908.9541	0.20 D - 02	0.00227	1.13494
30	31	910.08202	0.20 D - 02	0.00263	1.31712
29	30	911.20608	0.20 D - 02	0.00107	0.53583
28	29	912.32643	0.20 D-02	-0.00257	-1.2844
27	28	913.43623	0.20D-02	-0.00148	-0.73907
26	27	914.53921	0.20 D - 02	0.00061	0.30635
25	26	915.63833	0.20 D - 02	0.00073	0.36641
24	25	916.73203	0.20D-02	0.00043	0.21551
23	24	917.82016	0.20D-02	-0.00014	-0.07176
22	23	918.90229	0.20 D-02	-0.00059	-0.29597
21	22	919.97664	0.20 D-02	0.00086	0.43236
20	21	921.04678	0.20D-02	0.00065	0.3227
19	20	922.11198	0.20D-02	-0.00053	-0.26548
18	19	923.16829	0.20D-02	0.00128	0.64228
17	18	924.22453	0.20D-02	-0.00276	-1.37958
16	17	925.26724	0.20D-02	0.0008	0.39844
15	16	926.309	0.20D-02	-0.00064	-0.31932
14	15	927.34305	0.20D-02	-0.00032	-0.15834
13	14	928.3698	0.20D-02	0.00135	0.67576
12	13	929.39177	0.20D-02	0.00181	0.9074
11	12	930.40869	0.50D-02	0.00134	0.26839
10	11	931.41615	0.50D-02	0.00433	0.86636
9	10	932.42413	0.20D-02	0.00079	0.39655
8	9	933.42333	0.20D-02	0.00001	0.00733
7	8	934.41532	0.20D-02	0.00043	0.21267
6	7	935.40145	0.20D-02	0.00064	0.32184
5	6	936.38209	0.20D-02	0.0003	0.14931
4	5	937.36427	0.50D-02	-0.00765	-1.53025
3	4	938.32075	0.50D-02	0.00402	0.80456

Table A.4, Fourier Transform Infrared Data for  74 GeO (cm⁻¹) (*Cont'd*)

	τ//	01	TT		
$J^{r}$	$J^{\prime\prime}$	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
2	3	939.29365	$0.50 \text{D}{-}02$	-0.0068	-1.36011
1	2	940.24131	0.20 D - 02	0.00151	0.75367
0	1	941.19765	0.50D-02	-0.00497	-0.99496
1	Ō	043 07042	0.000 02	0.0036	1 79766
2	0	044 02664	0.20D-02	0.0050	1.17096
ა 	2	944.95004	0.50D-02	-0.00585	-1.17020
4	3	945.84816	0.50D-02	0.00177	0.35313
5	4	946.76064	0.20D-02	0.00224	1.12209
6	5	947.67081	0.20 D - 02	-0.00116	-0.57858
7	6	948.56857	0.20 D - 02	0.00165	0.82508
8	7	949.46521	0.20 D - 02	-0.00064	-0.31762
9	8	950.35569	0.20D-02	-0.00298	-1.48751
10	ğ	951 23349	0.20D-02	0.00112	0.55969
11	10	952 10538	0.50D-02	0.00488	0.97531
10	10	052.10000	0.30D-02	0.00400	0.80744
12	11	952.97605	0.20D-02	0.00101	0.00744
13	12	953.84453	0.20D-02	-0.00177	-0.88301
14	13	954.69957	0.20D-02	0.00003	0.01435
15	14	955.54905	0.20 D - 02	0.0011	0.55053
17	16	957.23431	0.20 D - 02	-0.002	-1.00066
18	17	958.06315	0.20 D - 02	0.00075	0.3754
19	18	958.88911	0.20D-02	0.00004	0.02138
20	19	959 70631	0 20D-02	0.00174	0.87156
21	20	960 52068	0.20D-02	-0.00008	-0.03996
21	20	061 331/3	0.20D 02	0.00000	0.0336
22	21	901.00140	0.30D-02	-0.00407	-0.9550
23	22	902.12594	0.20D-02	0.0000	0.29854
24	23	962.91745	0.20D-02	0.00246	1.23184
25	24	963.70763	0.20D-02	-0.00075	-0.37499
26	25	964.48684	0.20D-02	0.00058	0.29222
27	26	965.2607	0.20 D - 02	0.00084	0.4175
28	27	966.02623	0.20 D - 02	0.00298	1.49005
29	28	966.78521	0.50 D - 02	0.00521	1.04156
30	29	967.54479	0.20D-02	0.00037	0.18317
31	30	968 29434	0.20D-02	-0.00093	-0.46308
32	31	960.29191	$0.20D_{-}02$	-0.00031	-0 15578
02 22	20	060 77067	0.20D-02	-0.00031	0.11595
ეე იკ	ე∠ ეე	909.11001	0.20D-02	-0.00023	-0.11363
34	33	970.49952	0.20D-02	-0.00034	-0.10923
35	34	971.22068	0.20D-02	0.00073	0.36316
36	35	971.93678	0.20D-02	0.0003	0.15032
37	36	972.64693	0.20 D - 02	-0.00073	-0.36376
38	37	973.34912	0.20 D - 02	-0.00036	-0.17996
39	38	974.04508	0.20 D - 02	-0.00034	-0.16933
40	39	974.73686	0.20D-02	-0.00273	-1.36284
41	40	975.41633	0.20D-02	0.0006	0.29854
$42^{$	41	976 09396	0.20D-02	-0.00085	-0 42628
12	11	$076\ 76437$	0.20D 02	0.00000	0.84820
40	42	077 49417	0.20D-02	-0.0017	0.71155
44	40	977.42417	0.20D-02	0.00142	0.11100
40	44	978.08211	0.20D-02	-0.00025	-0.12283
46	45	978.72992	0.20D-02	0.00155	0.77746
47	46	979.37395	0.20D-02	0.00046	0.23144
48	47	980.00914	0.20 D - 02	0.00153	0.76303
49	48	980.63993	0.20 D - 02	0.00029	0.14615
50	49	981.26199	0.20 D - 02	0.00108	0.53972
51	50	981.87938	0.20D-02	-0.00017	-0.08729
52	51	982.48885	0.20D-02	-0.00025	-0.12606
53	52	983 09485	0 20D-02	-0.00361	-1 80262
54	53	983 68002	0.20D-02 0.20D-02	-0 00270	-1 39312
55	54	084 07860	0.20D-02	0.00213	1 18368
00 EC	04 57	904.21002 004.00010	0.20D-02	-0.00237	-1.10300
50	00 50	984.80019	0.20D-02	-0.0016	-0.80044
57	56	985.43373	0.20D-02	0.0004	0.20048

Table A.4, Fourier Transform Infrared Data for  74 GeO (cm⁻¹) (*Cont'd*)

J'	$J^{\prime\prime}$	Obs	Unc	Calc-Obs	(Calc-Obs)/Un	с
58	57	986.00372	0.20 D - 02	-0.00085	-0.42703	
59	58	986.56539	0.20 D - 02	-0.00061	-0.30423	
60	59	987.12011	0.20 D - 02	-0.00024	-0.12218	
61	60	987.66791	0.20 D - 02	0.00021	0.1029	
62	61	988.20917	0.20D-02	0.00033	0.16477	
63	62	988.74113	0.20D-02	0.00288	1.44235	
64	63	989.27382	0.20D-02	-0.00217	-1.08558	
65	64	989.78844	$0.50 \text{D}{-}02$	0.00395	0.78987	
66	65	990.30937	0.20D-02	-0.00315	-1.57304	
67	66	990.81312	0.20D-02	0.00002	0.01008	
68	67	991.3138	0.20D-02	-0.00067	-0.33729	
69	68	991.80678	0.20D-02	-0.00061	-0.3063	
70	69	992.28682	0.50 D - 02	0.00543	1.0867	
71	70	992.77328	0.20D-02	-0.0019	-0.94942	
72	71	993.2433	0.20D-02	0.00022	0.10893	
$73^{-1}$	72	993.7076	0.20D-02	0.00106	0.53056	
74	$73^{-1}$	994.16642	0.20D-02	0.00038	0.18908	
75	74	994 62482	0.50D-02	-0.0069	-1 3807	
76	75	995.06483	0.20D-02	-0.00283	-1 41321	
77	76	995 49996	0.20D-02	-0.00091	-0.45666	
78	77	995 93048	0.20D-02	-0.00145	-0 72343	
79	78	996 35225	0.20D-02	-0.00140	-0.14986	
80	79	996 76773	0.20D-02	0.00006	0.14500 0.02771	
81	80	997 17692	0.20D-02 0.20D-02	-0.00030	-0 10703	
82	81	007 58520	0.20D-02 0.50D-02	-0.00033	-0.13703	
83	82	997.989 <u>2</u> 9 007 07349	0.30D-02 0.20D-02	-0.00713	-0.3601/	
84	82	008 35872	0.20D-02	-0.00074	0.67078	
85 85	84	998.55812	0.20D-02	0.00134	1 71619	
86	85	998.74710	0.40D-02	-0.00080	-1.71012	
87	86	999.11020	0.20D-02	-0.00108	0.50220	
01	80 97	999.40040	0.20D-02	-0.00118	-0.39239	
00 80	01	999.03790	0.20D-02	0.00002	0.00752	
00	80	1000.18857 1000.54014	0.20D-02	0.00095	1.9610	
90	00	1000.04014	0.50D-02	-0.00031	-1.2019	
91	90	1000.8742	0.30D-02	-0.00328	-0.050 1 4272	
92 03	91	1001.1979 1001.59759	0.20D-02	0.00287	1.4373	
93	92	1001.02702	0.50D-02	-0.00414	-0.02011	
94 05	95	1001.03070	0.50D-02	0.00794	1.00071	
90 06	94 05	1002.14133 1002.44266	0.50D-02	0.00340	1.09236	
90	90	1002.44200	0.50D-02	0.00491	0.9825	
The	S E Do	nd 140 data	7" 2	<i>T</i> "	20	
Une	л-р ра	110, 140 uata,	$J_{min} = 5$	$J_{max} = 0$	50	
(Frr/	Avge = (IInc)	-2.0D-05, 010	$C_{Max} = 5.0$	D-05 - 0.02		
	one.)	Avge = 1.5D-(	$j_1, i_1, j_2 = j_1$	- 0.32		
66	67	857.53843	0.20 D - 02	-0.00275	-1.37329	
65	66	858.85186	0.20 D - 02	0.0014	0.70129	
64	65	860.16844	$0.50 \text{D}{-}02$	-0.00301	-0.6029	
63	64	861.46926	0.20 D-02	0.00291	1.45586	
62	63	862.77273	0.20 D - 02	0.00076	0.3803	
60	61	865.35484	$0.50 \text{D}{-}02$	0.00497	0.99483	
59	60	866.64581	0.20 D - 02	-0.00102	-0.51123	
58	59	867.92563	0.20 D - 02	-0.00134	-0.66923	
57	58	869.198	0.20 D - 02	0.00032	0.15761	
56	57	870.46367	0.20 D - 02	0.00319	1.59403	
55	56	871.72889	0.20 D - 02	0.001	0.49972	
54	55	872.98522	0.20 D-02	0.00219	1.09441	
53	54	874.24094	0.20 D-02	-0.00153	-0.76732	
52	53	875.48494	0.20 D - 02	0.00094	0.4693	
51	52	876.72457	0.20 D-02	0.00223	1.11388	

Table A.4, Fourier Transform Infrared Data for  74 GeO (cm⁻¹) (*Cont'd*)

Table	11.1,	rounce man	norm minar	ed Data for	
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
50	51	877.9637	0.20D-02	-0.00154	-0.76892
49	50	879.19402	0.20D-02	-0.00206	-1.02945
48	49	880.41868	0.20D-02	-0.00249	-1.24306
47	48	881.6352	0.20D-02	-0.00037	-0.18512
46	47	882.8494	0.20D-02	-0.00153	-0.76594
45	46	884.05762	0.20D-02	-0.00232	-1.161
44	45	885.25495	0.20D-02	0.00216	1.07943
43	44	886.45457	0.20D-02	-0.00127	-0.63514
42	43	887.646	0.20D-02	-0.00216	-1.08
41	42	888.82387	$0.50 \text{D}{-}02$	0.00486	0.97176
40	41	890.01093	0.20D-02	-0.00297	-1.48736
39	40	891.17475	$0.50 \text{D}{-}02$	0.00677	1.35374
38	39	892.349	0.20D-02	0.00039	0.19406
37	38	893.51135	0.20D-02	0.00021	0.10639
36	37	894.66562	0.20D-02	0.00241	1.20594
35	36	895.81815	0.20D-02	0.00063	0.31718
34	35	896.96294	0.20D-02	0.00088	0.43976
33	34	898.1031	0.20D-02	0.00001	0.00314
32	33	899.238	0.20D-02	-0.00136	-0.67805
31	32	900.36379	0.20D-02	0.00063	0.3157
30	31	901.48294	0.20D-02	0.00349	1.74389
29	30	902.60276	0.20D-02	-0.0001	-0.04893
28	29	903.70952	0.20D-02	0.00357	1.7868
27	28	904.81803	0.20D-02	-0.00031	-0.15451
26	27	905.91351	0.20D-02	0.00302	1.51174
25	26	907.01	0.20D-02	-0.00047	-0.23504
24	25	908.0947	0.20D-02	0.00198	0.98972
23	24	909.17711	0.20 D - 02	0.00087	0.43548
22	23	910.25018	0.20 D - 02	0.00324	1.62165
21	22	911.32717	$0.50 \text{D}{-}02$	-0.00417	-0.83488
19	20	913.4438	0.20D-02	0.0007	0.34781
18	19	914.49482	0.20D-02	0.00157	0.78553
17	18	915.54313	0.20D-02	-0.00076	-0.37896
16	17	916.57752	$0.50 \text{D}{-}02$	0.00491	0.98147
15	16	917.61437	0.20 D - 02	0.00219	1.093
14	15	918.64633	0.20D-02	-0.0016	-0.80165
13	14	919.66578	0.20D-02	0.00116	0.5791
12	13	920.67744	$0.50 \text{D}{-}02$	0.00574	1.14793
11	12	921.69566	0.20 D - 02	-0.00222	-1.11026
10	11	922.69776	0.20 D - 02	-0.00005	-0.02668
9	10	923.69774	0.20 D - 02	-0.00176	-0.88006
8	9	924.68682	0.20 D - 02	0.00141	0.70404
7	8	925.67289	0.20 D - 02	0.00156	0.77988
6	7	926.65315	0.20 D - 02	0.00148	0.74193
5	6	927.63146	0.20 D - 02	-0.00269	-1.3455
4	5	928.59443	0.20 D - 02	0.00242	1.21195
3	4	929.55221	$0.50 \text{D}{-}02$	0.00665	1.32944
2	3	930.51008	$0.50 \text{D}{-}02$	0.0047	0.93952
4	3	937.03117	0.20 D - 02	0.00379	1.89264
5	4	937.94635	$0.50 \text{D}{-}02$	-0.00455	-0.90938
6	5	938.83959	0.20 D-02	0.00288	1.4377
7	6	939.7274	$0.50 \text{D}{-}02$	0.00954	1.90817
8	7	940.63244	$0.50 \text{D}{-}02$	-0.00724	-1.44846
9	8	941.50982	0.20D-02	-0.00259	-1.2927
10	9	942.37721	$0.50 \text{D}{-}02$	0.00583	1.16602
11	10	943.25184	$0.20 \text{D}{-}02$	0.00076	0.38129
12	11	944.11828	0.20D-02	-0.00237	-1.18481
13	12	$944 \ 97085$	0 20D-02	0.00211	1 05611

100011.1.1.10010111110001011110000000101 00000000	Table A.4	. Fourier	Transform	Infrared	Data for	74 GeO	$(cm^{-1})$	(Cont'd)
---------------------------------------------------	-----------	-----------	-----------	----------	----------	-------------	-------------	----------

-1				~ · · · ·	
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
14	13	945.82617	0.20 D - 02	-0.00244	-1.22188
15	14	946.66806	0.20D-02	0.00014	0.07047
16	15	947.49955	0.50 D - 02	0.00682	1.36494
17	16	948 33623	0 20D-02	0.00201	1 00299
18	17	040 16401	$0.20D_{-}02$	-0.00201	-0 56852
10	18	040 08254	0.20D-02	-0.00114	0.97701
19	10	949.90304	0.20D-02	-0.00030	-0.27791
20	19	950.79695	0.20D-02	-0.00111	-0.55008
21	20	951.60187	0.20D-02	0.00046	0.23114
22	21	952.40137	0.20D-02	0.00109	0.54288
23	22	953.19537	0.20 D - 02	0.00083	0.41329
24	23	953.98797	$0.50 \text{D}{-}02$	-0.00443	-0.8854
25	24	954.7636	0.20 D - 02	0.00088	0.44167
26	25	955.53905	0.20D-02	-0.00003	-0.01717
27	26	956.30722	0.20D-02	-0.00011	-0.05582
$\frac{-1}{28}$	$27^{-3}$	957 06795	0.20D-02	0.00081	0.40472
20	$\frac{-1}{28}$	957 81805	0.50D-02	0.00591	1 18146
20	20	058 57342	0.00D 02	0.000001	0.36502
00 91	29	950.57542	0.20D-02	-0.00073	-0.30302
31	3U 91	909.01410	0.20D-02	0.00082	0.4078
32	31	960.05091	0.20D-02	-0.0002	-0.09878
33	32	960.77535	0.50D-02	0.00464	0.92768
34	33	961.50377	0.20D-02	-0.00103	-0.5141
35	34	962.21809	0.20D-02	0.00088	0.44024
36	35	962.92561	0.20 D - 02	0.00305	1.52637
37	36	963.6335	0.20 D - 02	-0.00169	-0.84674
38	37	964.32969	0.20 D - 02	-0.0013	-0.65008
39	38	965.01238	$0.50 \text{D}{-}02$	0.00602	1.20415
40	39	965.69947	0.20D-02	0.00236	1.1786
41	40	966.3774	0.20D-02	0.00127	0.63361
$42^{-1}$	41	967.04892	0.20D-02	-0.00003	-0.01557
43	42	967 70727	0.50D-02	0.00522	1 04399
10	12	068 37107	0.00D 02	0.00022	0.80583
44	40	060 01868	0.20D-02 0.20D 02	0.00101	0.55108
40	44	060 66204	0.20D-02	0.0011	0.00100
40	40	909.00594	0.20D-02	-0.00049	-0.24341
47	40	970.30240	0.20D-02	-0.00201	-1.00030
48	41	970.92826	0.20D-02	0.0025	1.25219
49	48	971.55454	0.20D-02	-0.00014	-0.07082
50	49	972.17079	0.20D-02	0.00053	0.26343
51	50	972.78103	0.20 D - 02	0.00049	0.24396
52	51	973.38669	0.20 D - 02	-0.0017	-0.85044
53	52	973.98242	0.20 D - 02	-0.0007	-0.35078
54	53	974.56938	0.20D-02	0.00231	1.15677
55	54	975.15589	0.20D-02	-0.00099	-0.49392
56	55	975.72917	0.20D-02	0.00216	1.08107
57	56	976 30119	0 20D-02	-0.00022	-0 10952
58	57	976 86361	0.20D-02	0.00021	0 10321
50	58	977 49417	0.20D 02 0.50D-02	-0.00/21	-0.86674
60	50	$077\ 0792$	0.00D 02	-0.00400	1 63502
61	09 60	911.9123	0.20D-02	-0.00321	-1.05092
60	00 61	910.91004	0.00D-02	-0.00740	-1.49207
02	01	979.04323	0.20D-02	0.00103	0.01417
63	62	979.5748	0.20D-02	0.00071	0.35593
65	64	980.61345	0.20D-02	-0.00132	-0.05815
66	65	981.12031	0.20D-02	-0.00021	-0.10638
67	66	981.6236	0.20 D - 02	-0.00245	-1.22713
68	67	982.11	$0.50 \text{D}{-}02$	0.00528	1.05538
69	68	982.60361	0.20 D - 02	-0.00115	-0.57594
70	69	983.08895	$0.50 \text{D}{-}02$	-0.00626	-1.25263
71	70	983.55216	0.50 D-02	0.00379	0.75812
72	71	$984\ 02945$	0 50D-02	-0.00721	-1 44263

Table A.4, Fourier Transform Infrared Data for  74 GeO (cm⁻¹) (*Cont'd*)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		<i>I''</i>	Obs	Unc	Calc-Obs	$\frac{(Calc-Obs)}{(Unc)}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72	70	004 40016	0.200.02	0.00062	0.21256
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	12	964.46210	0.20D-02	-0.00005	-0.31330
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(4	13	984.9325	0.20D-02	0.00133	0.60312
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	() 70	(4	985.37752	0.20D-02	0.00158	0.79206
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76	75	985.81491	0.20D-02	0.00244	1.22205
78       77       98.6.67302 $0.20D-02$ $-0.0003$ $-0.1503$ 79       78       987.50149 $0.20D-02$ $-0.00166$ $-0.82966$ 80       79       987.50149 $0.20D-02$ $0.00203$ $1.01522$ The 7-6 Band, 118 data, $J''_{min} = 10$ , $J''_{max} = 70$ Unc. $Avge = 3.4D-03$ , Unc. $Max = 1.0D-02$ (Err/Unc.) $Avge = 1.5D-02$ , RMSR = $0.99$ 69       70       845.22894 $0.20D-02$ $-0.00052$ $-0.26119$ 68       69       846.55471 $0.20D-02$ $-0.00171$ $0.85598$ 65       66       850.50011 $0.20D-02$ $0.00198$ $0.99233$ 63       64       653.180746 $0.20D-02$ $0.00033$ $0.44614$ 59       850.52936 $0.20D-02$ $0.00033$ $0.44614$ 59       60       852.5354 $0.20D-02$ $0.00042$ $0.20945$ 57       58       860.79636 $0.20D-02$ $0.00056$ $0.27835$ 54       55       864.56675 $0.20D-02$ $0.00056$ $0.27835$ 54       55	77	76	986.2501	0.20D-02	-0.00154	-0.76829
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	78	77	986.67302	0.20D-02	-0.0003	-0.1503
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	79	78	987.08444	$0.50 \text{D}{-}02$	0.00537	1.07387
81       80       987.90072       0.20D-02       0.00203       1.01522         The 7-6 Band, 118 data, $J^{*}_{min} = 10$ , $J^{*}_{max} = 70$ Unc. $A_{vege} = 3.4D-03$ , Unc. $M_{ax} = 1.0D-02$ (Err/Unc.) $A_{vege} = 1.5D-02$ , RMSR = 0.99         69       70       845.22894       0.20D-02       -0.00201       -1.00691         68       69       846.55471       0.20D-02       -0.00171       0.85598         65       66       850.50011       0.20D-02       0.00171       0.85598         64       65       851.80746       0.20D-02       0.00198       0.99233         63       64       853.10882       0.20D-02       0.00033       0.467         62       63       854.40187       0.20D-02       0.00038       0.44614         59       60       858.25354       0.20D-02       0.00042       0.20945         57       58       860.79636       0.20D-02       0.00044       1.4698         60       61       850.52936       0.20D-02       0.00042       0.20945         57       58       860.79636       0.20D-02       0.00044       0.27812         53       54       856.1515       0.20D-02       0.00023       0.1613	80	79	987.50149	0.20 D - 02	-0.00166	-0.82966
The 7-6 Band, 118 data, $J'_{min} = 10$ , $J'_{max} = 70$ Unc. _{Avge} = 3.4D-03, Unc. _{Max} = 1.0D-02 (Err/Unc.) _{Avge} = 1.5D-02, RMSR = 0.99 69 70 845.22894 0.20D-02 -0.00201 -1.00691 68 69 846.55471 0.20D-02 0.00171 0.85598 65 66 850.50011 0.20D-02 0.00361 1.80687 64 65 851.80746 0.20D-02 0.00198 0.99233 63 64 853.10882 0.20D-02 0.00033 0.467 62 63 854.40187 0.20D-02 0.00033 0.4468 60 61 856.97901 0.20D-02 0.00033 0.44614 59 60 858.25354 0.20D-02 0.00034 1.56775 58 59 859.52936 0.20D-02 0.00044 0.51869 56 57 862.0699 0.50D-02 0.00056 0.27835 54 55 864.56675 0.20D-02 0.00056 0.27835 54 55 864.56675 0.20D-02 0.00056 0.27835 54 55 864.56675 0.20D-02 0.00074 -1.49198 55 56 863.31561 0.20D-02 0.00076 0.27835 54 55 864.56675 0.20D-02 0.00076 0.14156 54 84 9 871.95753 0.20D-02 0.000178 0.58845 50 51 869.51381 0.50D-02 0.00032 0.1603 47 48 873.16994 0.20D-02 0.00032 0.1603 47 48 873.16994 0.20D-02 0.00019 0.09624 46 47 874.3753 0.20D-02 0.00019 0.1603 47 48 873.16994 0.20D-02 0.00019 0.1603 47 48 873.16994 0.20D-02 0.00019 0.1603 47 48 873.16994 0.20D-02 0.00019 0.1603 47 48 873.16959 0.20D-02 0.00119 0.59659 40 41 881.49733 0.20D-02 0.00126 0.62947 43 349.98486 0.20D-02 0.00029 0.14504 37 38 884.98486 0.20D-02 0.00029 0.14504 37 38 884.98486 0.20D-02 0.00029 0.14504 37 38 884.98486 0.20D-02 0.00029 0.14524 37 38 884.98486 0.20D-02 0.00029 0.14524 37 38 884.98486 0.20D-02 0.00025 0.12337 32 33 890.67129 0.50D-02	81	80	987.90072	0.20 D - 02	0.00203	1.01522
The 7-6 Band, 118 data, $J^{*}_{min} = 10$ , $J^{*}_{max} = 70$ Unc. $_{Avge} = 3.4D-03$ , Unc. $_{Max} = 1.0D-02$ (Err/Unc.) $_{Avge} = 1.5D-02$ , RMSR = 0.99 69 70 845.22894 0.20D-02 -0.00201 -1.00691 68 69 846.55471 0.20D-02 -0.00171 0.85598 65 66 850.50011 0.20D-02 0.00171 0.85598 65 66 850.50011 0.20D-02 0.000361 1.80687 64 65 851.80746 0.20D-02 0.00038 0.467 62 63 854.40187 0.20D-02 0.00038 0.467 61 62 855.69381 0.20D-02 0.00039 -0.44614 59 60 858.25354 0.20D-02 0.00039 -0.44614 59 60 858.25354 0.20D-02 0.00042 0.20945 57 58 860.79636 0.20D-02 0.00041 1.56775 58 59 859.52936 0.20D-02 0.00042 0.20945 57 58 861.79636 0.20D-02 0.00042 0.20945 55 56 863.31561 0.20D-02 0.00056 0.27835 54 55 864.56675 0.20D-02 0.00056 0.27835 54 55 864.56675 0.20D-02 0.00023 -1.11586 52 53 867.05264 0.20D-02 0.00078 0.48845 50 51 869.51381 0.50D-02 0.00074 0.54841 49 50 870.74027 0.20D-02 0.000178 0.88845 50 51 869.51381 0.50D-02 0.00019 0.14156 48 49 871.95753 0.20D-02 0.00019 0.14603 47 48 873.16994 0.20D-02 0.00019 0.09624 46 47 874.3753 0.20D-02 0.00019 0.9624 46 47 874.3753 0.20D-02 0.00019 0.9624 47 48 873.16994 0.20D-02 0.00019 0.14506 38 39 883.82483 0.20D-02 0.00019 0.4524 47 48 873.16994 0.20D-02 0.00019 0.4524 47 48 873.16994 0.20D-02 0.00025 0.12337 39 40 882.66588 0.20D-02 0.00025 0.12337 39 40 882.65884 0.20D-02 0.00025 0.12337 39 40 882.65884 0.20D-02 0.00025 0.12337 39 40 882.65884 0.20D-02 0.00025 0.12337 30 31 892.91735 0.20D-02 0.00025 0.12337 32 33 890.67129 0.50D-02 0.00025 0.12337 32 33 89						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	The 7	7-6 Ba	nd, 118 data,	$J''_{min} = 1$	$0, J''_{max} =$	70
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Unc.	$1_{max} =$	3.4D-03. Un	$c{Max} = 1.0$	D-02	
$ \begin{array}{c} (4) & (7) & (845.228) 4 & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2$	(Err/	Unc.)	$A_{was} = 1.5 D - 0$	22. RMSR =	= 0.99	
6970 $845.22894$ $0.20D-02$ $-0.00052$ $-1.00691$ 6869 $846.55471$ $0.20D-02$ $-0.00152$ $-0.26119$ 6667 $849.19089$ $0.20D-02$ $0.00171$ $0.85598$ 6566 $850.50011$ $0.20D-02$ $0.00093$ $0.467$ 6263 $854.40187$ $0.20D-02$ $0.00033$ $0.14808$ 6061 $856.97901$ $0.20D-02$ $0.00039$ $0.44614$ 5960 $858.25354$ $0.20D-02$ $0.00042$ $0.20945$ 5758 $860.79636$ $0.20D-02$ $0.00042$ $0.20945$ 5758 $860.79636$ $0.20D-02$ $0.00056$ $0.27835$ 5455 $663.31561$ $0.20D-02$ $0.00056$ $0.27835$ 5455 $864.56675$ $0.20D-02$ $0.00036$ $0.18103$ 5152 $867.05264$ $0.20D-02$ $0.00036$ $0.18103$ 5152 $868.5877$ $0.20D-02$ $0.00036$ $0.18103$ 5152 $868.5877$ $0.20D-02$ $0.00028$ $-0.14156$ 4849 $871.95753$ $0.20D-02$ $0.00028$ $-0.14156$ 4445 $876.76775$ $0.50D-02$ $0.00014$ $0.19894$ 4445 $876.76775$ $0.20D-02$ $0.00014$ $0.19894$ 4546 $875.57752$ $0.20D-02$ $0.00014$ $0.19894$ 4647 $874.3753$ $0.20D-02$ $0.00014$ $0.19894$ 4748<	(/	0 0 - ) ]	10ge -10 - 0	,_,	0.00	
68 $69$ $846.55471$ $0.20D-02$ $-0.00522$ $-0.26119$ $66$ $67$ $849.19089$ $0.20D-02$ $0.00171$ $0.85598$ $65$ $66$ $850.50011$ $0.20D-02$ $0.000361$ $1.80687$ $64$ $65$ $851.80746$ $0.20D-02$ $0.00093$ $0.4467$ $62$ $63$ $854.40187$ $0.20D-02$ $0.000278$ $1.39069$ $61$ $62$ $855.69381$ $0.20D-02$ $0.0003$ $0.14808$ $60$ $61$ $856.97901$ $0.20D-02$ $0.000344$ $1.56775$ $58$ $59$ $859.52936$ $0.20D-02$ $0.00144$ $0.51869$ $56$ $57$ $862.06699$ $0.50D-02$ $-0.00266$ $0.27835$ $54$ $55$ $56$ $863.31561$ $0.20D-02$ $0.00056$ $0.27812$ $53$ $54$ $865.81515$ $0.20D-02$ $0.00056$ $0.27812$ $53$ $54$ $865.81515$ $0.20D-02$ $0.000746$ $0.48845$ $50$ $51$ $869.51381$ $0.50D-02$ $0.00178$ $0.88845$ $50$ $51$ $869.51381$ $0.20D-02$ $0.000178$ $0.88845$ $50$ $51$ $869.51381$ $0.20D-02$ $0.000190$ $0.9624$ $46$ $47$ $874.3753$ $0.20D-02$ $0.000192$ $0.14156$ $47$ $48$ $873.16994$ $0.20D-02$ $0.000192$ $0.14256$ $48$ $49$ $871.97752$ $0.20D-02$ $0.000265$ $1.32347$ $44$ $876.677575$ <td>69</td> <td>70</td> <td>845.22894</td> <td>0.20 D - 02</td> <td>-0.00201</td> <td>-1.00691</td>	69	70	845.22894	0.20 D - 02	-0.00201	-1.00691
66 $67$ $849.19089$ $0.20D-02$ $0.001711$ $0.85598$ $64$ $65$ $851.80746$ $0.20D-02$ $0.00198$ $0.99233$ $63$ $64$ $853.10822$ $0.20D-02$ $0.00093$ $0.467$ $62$ $63$ $854.40187$ $0.20D-02$ $0.000278$ $1.39069$ $61$ $62$ $855.69381$ $0.20D-02$ $0.00033$ $0.14808$ $60$ $61$ $856.97901$ $0.20D-02$ $0.00042$ $0.20945$ $57$ $858.25354$ $0.20D-02$ $0.00144$ $0.51869$ $56$ $57$ $862.66699$ $0.5D-02$ $-0.00746$ $-1.49198$ $55$ $56$ $863.31561$ $0.20D-02$ $0.00056$ $0.27835$ $54$ $55$ $864.56675$ $0.20D-02$ $0.00056$ $0.27812$ $53$ $54$ $856.81515$ $0.20D-02$ $0.00023$ $-1.11586$ $52$ $53$ $867.05264$ $0.20D-02$ $0.00274$ $0.54841$ $49$ $50$ $870.74027$ $0.20D-02$ $0.000178$ $0.88845$ $50$ $51$ $869.51381$ $0.50D-02$ $0.000274$ $0.54841$ $49$ $50$ $877.5752$ $0.20D-02$ $0.00018$ $0.14156$ $46$ $47$ $874.3753$ $0.20D-02$ $0.00018$ $0.92916$ $44$ $45$ $876.77752$ $0.20D-02$ $0.00044$ $0.19894$ $44$ $45$ $876.77752$ $0.20D-02$ $0.00126$ $1.32347$ $42$ $48$ $871.497933$ $0.20D-02$ <td>68</td> <td>69</td> <td>846.55471</td> <td>0.20 D - 02</td> <td>-0.00052</td> <td>-0.26119</td>	68	69	846.55471	0.20 D - 02	-0.00052	-0.26119
65 $66$ $850.50011$ $0.20D-02$ $0.00361$ $1.80687$ $64$ $65$ $851.80746$ $0.20D-02$ $0.00093$ $0.467$ $62$ $63$ $854.40187$ $0.20D-02$ $0.00028$ $1.39069$ $61$ $62$ $855.69381$ $0.20D-02$ $0.00033$ $0.14808$ $60$ $61$ $856.97901$ $0.20D-02$ $0.000489$ $-0.44614$ $59$ $60$ $858.25354$ $0.20D-02$ $0.00042$ $0.20945$ $57$ $58$ $860.79636$ $0.20D-02$ $0.00144$ $0.51869$ $56$ $57$ $862.06699$ $0.50D-02$ $-0.00746$ $-1.49198$ $55$ $56$ $863.31561$ $0.20D-02$ $-0.00223$ $-1.11586$ $54$ $55$ $864.56675$ $0.20D-02$ $-0.00223$ $-1.11586$ $52$ $53$ $867.05264$ $0.20D-02$ $-0.00223$ $-1.11586$ $50$ $51$ $869.51381$ $0.50D-02$ $-0.00224$ $-0.44156$ $50$ $817.4027$ $0.20D-02$ $-0.00028$ $-0.14156$ $48$ $49$ $871.95753$ $0.20D-02$ $0.00019$ $0.9624$ $46$ $47$ $874.3753$ $0.20D-02$ $0.000192$ $0.60564$ $44$ $45$ $876.76775$ $0.50D-02$ $0.00164$ $0.1894$ $44$ $45$ $876.76775$ $0.50D-02$ $0.00192$ $0.92216$ $44$ $45$ $876.76775$ $0.50D-02$ $0.00126$ $1.32347$ $42$ $48$ $879.14559$ $0.20D-$	66	67	849.19089	0.20 D - 02	0.00171	0.85598
64 $65$ $851.80746$ $0.20D-02$ $0.00198$ $0.99233$ $63$ $64$ $853.10882$ $0.20D-02$ $0.00033$ $0.467$ $62$ $63$ $854.40187$ $0.20D-02$ $0.0003$ $0.14808$ $60$ $61$ $856.97901$ $0.20D-02$ $0.0003$ $0.14808$ $60$ $61$ $856.97901$ $0.20D-02$ $0.00042$ $0.20945$ $57$ $58$ $860.79636$ $0.20D-02$ $0.00144$ $0.51869$ $56$ $57$ $862.06699$ $0.50D-02$ $-0.00746$ $-1.49198$ $55$ $56$ $863.31561$ $0.20D-02$ $0.00056$ $0.27835$ $54$ $55$ $864.56675$ $0.20D-02$ $0.00056$ $0.27812$ $53$ $54$ $865.81515$ $0.20D-02$ $0.00056$ $0.27812$ $53$ $56$ $863.31561$ $0.20D-02$ $0.00036$ $0.18103$ $51$ $52$ $864.56675$ $0.20D-02$ $0.000274$ $0.54841$ $49$ $50$ $870.74027$ $0.20D-02$ $0.00028$ $-0.14156$ $48$ $49$ $871.95753$ $0.20D-02$ $0.00028$ $-0.14156$ $48$ $49$ $871.95753$ $0.20D-02$ $0.00018$ $0.9624$ $46$ $47$ $873.6059$ $0.20D-02$ $0.00044$ $0.19894$ $44$ $45$ $876.76775$ $0.50D-02$ $0.00046$ $1.12797$ $43$ $44$ $873.4658$ $0.20D-02$ $0.000265$ $1.32347$ $42$ $4803.2483$ $0.20D-02$ <t< td=""><td>65</td><td>66</td><td>850.50011</td><td>0.20 D - 02</td><td>0.00361</td><td>1.80687</td></t<>	65	66	850.50011	0.20 D - 02	0.00361	1.80687
6364 $853.10882$ $0.20D-02$ $0.00093$ $0.467$ 6263 $854.40187$ $0.20D-02$ $0.0003$ $0.14808$ 6061 $856.97901$ $0.20D-02$ $0.0003$ $0.144614$ 5960 $858.25354$ $0.20D-02$ $0.00042$ $0.20945$ 575859 $859.52936$ $0.20D-02$ $0.00144$ $0.51869$ 5657862.06699 $0.50D-02$ $0.00056$ $0.27835$ 5455864.56675 $0.20D-02$ $0.00056$ $0.27835$ 5455864.56675 $0.20D-02$ $0.00056$ $0.27835$ 5455864.56675 $0.20D-02$ $0.00036$ $0.18103$ 5152862.81515 $0.20D-02$ $0.00036$ $0.18103$ 5152867.05264 $0.20D-02$ $0.00074$ $0.54841$ 4950 $870.74027$ $0.20D-02$ $0.000178$ $0.88845$ 5051869.51381 $0.50D-02$ $0.00012$ $0.1603$ 4748 $873.16994$ $0.20D-02$ $0.000152$ $0.76095$ 4546 $875.57752$ $0.20D-02$ $0.00044$ $0.19894$ 4445 $876.76775$ $0.50D-02$ $0.00025$ $1.32347$ 4243 $879.14559$ $0.20D-02$ $0.00119$ $0.59659$ 4041 $881.49793$ $0.20D-02$ $0.00126$ $0.14506$ 3839 $883.82744$ $0.20D-02$ $0.00029$ $0.14506$ 3940 <t< td=""><td>64</td><td>65</td><td>851.80746</td><td>0.20D-02</td><td>0.00198</td><td>0.99233</td></t<>	64	65	851.80746	0.20D-02	0.00198	0.99233
62 $63$ $854.40187$ $0.20D-02$ $0.00278$ $1.39069$ $61$ $62$ $855.69381$ $0.20D-02$ $0.0003$ $0.14808$ $60$ $61$ $856.97901$ $0.20D-02$ $-0.00089$ $-0.44614$ $59$ $60$ $858.25354$ $0.20D-02$ $0.00314$ $1.56775$ $58$ $59$ $859.52936$ $0.20D-02$ $0.00042$ $0.20945$ $57$ $58$ $860.79636$ $0.20D-02$ $0.00044$ $0.20945$ $56$ $57$ $862.06699$ $0.50D-02$ $-0.00746$ $-1.49198$ $55$ $56$ $863.31561$ $0.20D-02$ $0.00056$ $0.27835$ $54$ $55$ $864.56675$ $0.20D-02$ $-0.00223$ $-1.11586$ $52$ $53$ $867.05264$ $0.20D-02$ $0.00074$ $0.88845$ $50$ $51$ $869.51381$ $0.50D-02$ $0.00074$ $0.88845$ $50$ $51$ $869.51381$ $0.50D-02$ $0.00028$ $-0.14156$ $48$ $873.16994$ $0.20D-02$ $0.00012$ $0.76095$ $45$ $46$ $875.57752$ $0.20D-02$ $0.00044$ $1.12797$ $43$ $477.96059$ $0.20D-02$ $0.000265$ $1.32347$ $42$ $43$ $879.14559$ $0.20D-02$ $0.000265$ $1.32347$ $42$ $43$ $879.14559$ $0.20D-02$ $0.000265$ $1.32347$ $44$ $457.66775$ $0.20D-02$ $0.000265$ $1.32347$ $42$ $43$ $879.14559$ $0.20D-02$ $0.00029$ <td>63</td> <td>64</td> <td>853.10882</td> <td>0.20D-02</td> <td>0.00093</td> <td>0.467</td>	63	64	853.10882	0.20D-02	0.00093	0.467
61 $62$ $855.69381$ $0.20D-02$ $0.0003$ $0.14808$ $60$ $61$ $856.97901$ $0.20D-02$ $0.00089$ $-0.44614$ $59$ $60$ $858.25354$ $0.20D-02$ $0.00042$ $0.20945$ $57$ $58$ $860.79636$ $0.20D-02$ $0.00144$ $0.51869$ $57$ $58$ $860.79636$ $0.20D-02$ $0.00056$ $0.27835$ $54$ $55$ $56$ $863.31561$ $0.20D-02$ $0.00056$ $0.27835$ $54$ $55$ $864.56675$ $0.20D-02$ $0.00036$ $0.18103$ $51$ $52$ $865.81515$ $0.20D-02$ $0.00023$ $-1.11586$ $52$ $53$ $867.5264$ $0.20D-02$ $0.00023$ $-1.11586$ $52$ $53$ $867.5264$ $0.20D-02$ $0.00023$ $0.18103$ $51$ $52$ $868.28577$ $0.20D-02$ $0.000274$ $0.54841$ $49$ $50$ $870.74027$ $0.20D-02$ $0.00028$ $-0.14156$ $48$ $871.95753$ $0.20D-02$ $0.00019$ $0.09624$ $46$ $47$ $874.3753$ $0.20D-02$ $0.00044$ $0.19894$ $44$ $45$ $876.67775$ $0.50D-02$ $0.00044$ $0.19894$ $44$ $45$ $876.67775$ $0.20D-02$ $0.00044$ $0.19894$ $44$ $45$ $876.67775$ $0.20D-02$ $0.00044$ $0.19894$ $44$ $45$ $876.67775$ $0.20D-02$ $0.000265$ $1.32347$ $42$ $48$ $871.4559$ $0$	62	63	854.40187	0.20D-02	0.00278	1.39069
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	61	62	855 69381	0.20D-02	0.0003	0 14808
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60	61	856 97901	0.20D 02 0.20D-02	-0.00089	-0.44614
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	60	858 25354	0.20D-02	-0.00003	1 56775
35 $353.5230$ $0.20D-02$ $0.00042$ $0.20343$ $57$ $58$ $860.79636$ $0.20D-02$ $0.00104$ $0.51869$ $56$ $57$ $862.06699$ $0.50D-02$ $-0.00746$ $-1.49198$ $55$ $56$ $863.31561$ $0.20D-02$ $0.00056$ $0.27835$ $54$ $55$ $864.56675$ $0.20D-02$ $0.00026$ $0.27812$ $53$ $54$ $865.81515$ $0.20D-02$ $-0.00223$ $-1.11586$ $52$ $53$ $867.05264$ $0.20D-02$ $-0.00234$ $-1.4156$ $50$ $51$ $869.51381$ $0.50D-02$ $-0.00224$ $-0.54841$ $49$ $50$ $870.74027$ $0.20D-02$ $-0.00228$ $-0.14156$ $48$ $49$ $871.95753$ $0.20D-02$ $0.00032$ $0.1603$ $47$ $48$ $873.16994$ $0.20D-02$ $0.00019$ $0.9624$ $46$ $47$ $874.3753$ $0.20D-02$ $0.00044$ $0.19894$ $44$ $45$ $876.76775$ $0.50D-02$ $0.00265$ $1.32347$ $43$ $44$ $877.96059$ $0.20D-02$ $0.00186$ $0.92916$ $41$ $42$ $880.32483$ $0.20D-02$ $0.00126$ $-0.62947$ $39$ $40$ $882.66588$ $0.20D-02$ $0.00126$ $-0.62947$ $36$ $37$ $884.1672$ $0.20D-02$ $0.00225$ $-1.2246$ $35$ $36$ $887.26674$ $0.10D-01$ $0.0115$ $1.1499$ $34$ $35$ $884.1672$ $0.20D-02$ <td>59</td> <td>50</td> <td>850.20004 850.50026</td> <td>0.20D-02</td> <td>0.00314</td> <td>0.20045</td>	59	50	850.20004 850.50026	0.20D-02	0.00314	0.20045
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	59	009.02900	0.20D-02	0.00042	0.20945
36 $37$ $862.06099$ $0.50D-02$ $-0.00746$ $-1.49198$ $55$ $56$ $863.31561$ $0.20D-02$ $0.00056$ $0.27835$ $54$ $55$ $864.56675$ $0.20D-02$ $0.00026$ $0.27812$ $53$ $54$ $865.81515$ $0.20D-02$ $0.00236$ $-1.11586$ $52$ $53$ $867.05264$ $0.20D-02$ $0.00036$ $0.18103$ $51$ $52$ $868.28577$ $0.20D-02$ $0.00274$ $0.54841$ $49$ $50$ $870.74027$ $0.20D-02$ $0.00032$ $0.1603$ $47$ $48$ $871.95753$ $0.20D-02$ $0.00032$ $0.1603$ $47$ $48$ $873.16994$ $0.20D-02$ $0.000152$ $0.76095$ $45$ $46$ $875.57752$ $0.20D-02$ $0.0004$ $0.19894$ $44$ $45$ $876.76775$ $0.50D-02$ $0.00265$ $1.32347$ $42$ $43$ $879.14559$ $0.20D-02$ $0.00119$ $0.59659$ $40$ $41$ $881.49793$ $0.20D-02$ $0.00029$ $0.14526$ $41$ $42$ $880.32483$ $0.20D-02$ $0.00029$ $0.14524$ $37$ $38$ $884.98486$ $0.20D-02$ $0.00029$ $0.14524$ $37$ $38$ $884.98486$ $0.20D-02$ $0.00029$ $0.14524$ $37$ $38$ $884.98486$ $0.20D-02$ $0.00025$ $0.12337$ $38$ $89.9473$ $0.20D-02$ $0.00025$ $0.12337$ $33$ $39$ $891.79763$ $0.20D-02$ <t< td=""><td>07 50</td><td>08 57</td><td>800.79030</td><td>0.20D-02</td><td>0.00104</td><td>0.51809</td></t<>	07 50	08 57	800.79030	0.20D-02	0.00104	0.51809
55 $56$ $863.31561$ $0.20D-02$ $0.00056$ $0.27835$ $54$ $55$ $864.56675$ $0.20D-02$ $-0.00223$ $-1.11586$ $52$ $53$ $867.05264$ $0.20D-02$ $0.00036$ $0.18103$ $51$ $52$ $868.28577$ $0.20D-02$ $0.00274$ $0.54841$ $49$ $50$ $870.74027$ $0.20D-02$ $0.000274$ $0.54841$ $49$ $50$ $870.74027$ $0.20D-02$ $0.00032$ $-0.14156$ $48$ $49$ $871.95753$ $0.20D-02$ $0.00019$ $0.09624$ $46$ $47$ $874.3753$ $0.20D-02$ $0.0004$ $0.19894$ $44$ $45$ $876.76775$ $0.20D-02$ $0.0004$ $0.19894$ $44$ $45$ $876.76775$ $0.20D-02$ $0.00265$ $1.32347$ $42$ $43$ $879.14559$ $0.20D-02$ $0.00166$ $0.92916$ $41$ $42$ $880.32483$ $0.20D-02$ $0.00119$ $0.59659$ $40$ $41$ $881.49793$ $0.20D-02$ $0.00029$ $0.14506$ $38$ $39$ $883.82744$ $0.20D-02$ $0.00029$ $0.14524$ $37$ $38$ $884.98486$ $0.20D-02$ $0.00025$ $0.12732$ $33$ $40$ $882.6674$ $0.10D-01$ $0.0115$ $1.1499$ $34$ $35$ $888.41672$ $0.20D-02$ $0.00025$ $0.12732$ $33$ $39$ $89.67129$ $0.20D-02$ $0.00025$ $0.12732$ $33$ $39$ $89.54973$ $0.20D-$	50	57	862.06699	0.50D-02	-0.00746	-1.49198
54 $55$ $864.56675$ $0.20D-02$ $0.00056$ $0.27812$ $53$ $54$ $865.81515$ $0.20D-02$ $-0.00223$ $-1.11586$ $52$ $53$ $867.05264$ $0.20D-02$ $0.00036$ $0.18103$ $51$ $52$ $868.28577$ $0.20D-02$ $0.00274$ $0.54841$ $49$ $50$ $870.74027$ $0.20D-02$ $0.00274$ $0.54841$ $49$ $50$ $870.74027$ $0.20D-02$ $0.00032$ $-0.14156$ $48$ $49$ $871.95753$ $0.20D-02$ $0.00019$ $0.09624$ $46$ $47$ $874.3753$ $0.20D-02$ $0.0004$ $0.19894$ $44$ $45$ $876.76775$ $0.50D-02$ $0.0004$ $0.19894$ $44$ $45$ $876.76775$ $0.50D-02$ $0.00265$ $1.32347$ $43$ $48$ $877.96059$ $0.20D-02$ $0.00166$ $0.92916$ $41$ $48$ $879.14559$ $0.20D-02$ $0.00119$ $0.59659$ $40$ $41$ $881.49793$ $0.20D-02$ $0.00126$ $-0.62947$ $36$ $37$ $886.13623$ $0.20D-02$ $-0.00245$ $-1.2246$ $35$ $36$ $887.26674$ $0.10D-01$ $0.0115$ $1.1499$ $34$ $35$ $888.41672$ $0.20D-02$ $0.00025$ $0.12732$ $33$ $490.67129$ $0.50D-02$ $0.00025$ $0.12732$ $33$ $390.67129$ $0.50D-02$ $0.00025$ $0.12732$ $33$ $890.67129$ $0.50D-02$ $0.00025$ $0.12$	55	56	863.31561	0.20D-02	0.00056	0.27835
53 $54$ $865.81515$ $0.20D-02$ $-0.00223$ $-1.11586$ $52$ $53$ $867.05264$ $0.20D-02$ $0.00036$ $0.18103$ $51$ $52$ $868.28577$ $0.20D-02$ $0.00178$ $0.88845$ $50$ $51$ $869.51381$ $0.50D-02$ $0.00274$ $0.54841$ $49$ $50$ $870.74027$ $0.20D-02$ $0.00028$ $-0.14156$ $48$ $49$ $871.95753$ $0.20D-02$ $0.00019$ $0.09624$ $46$ $47$ $874.3753$ $0.20D-02$ $0.000152$ $0.76095$ $45$ $46$ $875.57752$ $0.20D-02$ $0.0004$ $0.19894$ $44$ $45$ $876.76775$ $0.50D-02$ $0.00265$ $1.32347$ $42$ $43$ $879.14559$ $0.20D-02$ $0.00166$ $0.92916$ $41$ $42$ $880.32483$ $0.20D-02$ $0.00119$ $0.59659$ $40$ $41$ $881.49793$ $0.20D-02$ $0.00029$ $0.14506$ $38$ $39$ $883.82744$ $0.20D-02$ $0.00029$ $0.14524$ $37$ $38$ $884.98486$ $0.20D-02$ $0.00025$ $-1.2246$ $35$ $36$ $87.26674$ $0.10D-01$ $0.0115$ $1.1499$ $34$ $35$ $888.41672$ $0.20D-02$ $0.00025$ $0.12337$ $33$ $34$ $889.54973$ $0.20D-02$ $0.00025$ $0.12337$ $32$ $33$ $890.67129$ $0.50D-02$ $0.00025$ $0.12337$ $33$ $34$ $895.91735$ $0.2$	54	55	864.56675	0.20D-02	0.00056	0.27812
52 $53$ $867.05264$ $0.20D-02$ $0.00036$ $0.18103$ $51$ $52$ $868.28577$ $0.20D-02$ $0.00178$ $0.88845$ $50$ $51$ $869.51381$ $0.50D-02$ $0.00274$ $0.54841$ $49$ $50$ $870.74027$ $0.20D-02$ $0.00028$ $-0.14156$ $48$ $49$ $871.95753$ $0.20D-02$ $0.00032$ $0.1603$ $47$ $48$ $873.16994$ $0.20D-02$ $0.00019$ $0.09624$ $46$ $47$ $874.3753$ $0.20D-02$ $0.0004$ $0.19894$ $44$ $45$ $876.767752$ $0.20D-02$ $0.00265$ $1.32347$ $43$ $44$ $877.96059$ $0.20D-02$ $0.00166$ $0.92916$ $41$ $42$ $880.32483$ $0.20D-02$ $0.00119$ $0.59659$ $40$ $41$ $881.49793$ $0.20D-02$ $0.00029$ $0.14524$ $37$ $38$ $884.98486$ $0.20D-02$ $0.00025$ $-1.2246$ $35$ $36$ $87.26674$ $0.10D-01$ $0.0115$ $1.12932$ $33$ $34$ $889.54973$ $0.20D-02$ $0.00025$ $0.12732$ $33$ $34$ $889.54973$ $0.20D-02$ $0.00025$ $0.12337$ $32$ $33$ $890.67129$ $0.50D-02$ $0.00025$ $0.12337$ $33$ $34$ $89.54973$ $0.20D-02$ $0.00025$ $0.12337$ $33$ $34$ $89.54973$ $0.20D-02$ $0.00025$ $0.12337$ $33$ $34$ $89.54973$ $0.20D-02$	53	54	865.81515	0.20 D - 02	-0.00223	-1.11586
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52	53	867.05264	0.20 D - 02	0.00036	0.18103
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51	52	868.28577	0.20 D - 02	0.00178	0.88845
49 $50$ $870.74027$ $0.20D-02$ $-0.00028$ $-0.14156$ $48$ $49$ $871.95753$ $0.20D-02$ $0.00032$ $0.1603$ $47$ $48$ $873.16994$ $0.20D-02$ $0.00019$ $0.09624$ $46$ $47$ $874.3753$ $0.20D-02$ $0.00152$ $0.76095$ $45$ $46$ $875.57752$ $0.20D-02$ $0.0004$ $0.19894$ $44$ $45$ $876.76775$ $0.50D-02$ $0.00265$ $1.32347$ $43$ $44$ $877.96059$ $0.20D-02$ $0.00186$ $0.92916$ $41$ $42$ $880.32483$ $0.20D-02$ $0.00119$ $0.59659$ $40$ $41$ $881.49793$ $0.20D-02$ $0.00129$ $0.14506$ $38$ $39$ $883.82744$ $0.20D-02$ $0.00029$ $0.14506$ $38$ $39$ $883.82744$ $0.20D-02$ $-0.00245$ $-1.2246$ $37$ $38$ $884.98486$ $0.20D-02$ $-0.00245$ $-1.2246$ $35$ $36$ $887.26674$ $0.10D-01$ $0.0115$ $1.1499$ $34$ $35$ $888.41672$ $0.20D-02$ $0.00025$ $0.12337$ $32$ $33$ $890.67129$ $0.50D-02$ $-0.00287$ $-1.43336$ $29$ $30$ $894.02538$ $0.20D-02$ $-0.00287$ $-1.43336$ $29$ $30$ $894.02538$ $0.20D-02$ $-0.00287$ $-1.43336$ $29$ $30$ $894.02538$ $0.20D-02$ $-0.00287$ $-1.43336$ $29$ $30$ $894.02538$	50	51	869.51381	$0.50 \text{D}{-}02$	0.00274	0.54841
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49	50	870.74027	0.20 D - 02	-0.00028	-0.14156
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48	49	871.95753	0.20D-02	0.00032	0.1603
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47	48	873.16994	0.20D-02	0.00019	0.09624
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46	47	874.3753	0.20D-02	0.00152	0.76095
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45	46	875.57752	0.20D-02	0.0004	0.19894
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44	45	876.76775	0.50D-02	0.00564	1.12797
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43	44	877 96059	0.20D-02	0.00265	1 32347
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42	43	879 14559	0.20D-02	0.00186	0 92916
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/1	42	880 32483	0.20D 02 0.20D-02	0.00100	0.59659
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	-12 /1	881 /0703	0.20D-02 0.20D-02	0.00115	0.50037
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	40	882 66588	0.20D-02	0.001	0.14506
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09 20	20	882.00588 882.00588	0.20D-02	0.00029	0.14500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 27	39 20	003.02144	0.20D-02	0.00029	0.14524
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	30 27	004.90400	0.20D-02	-0.00120	-0.02947
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	37	880.13023	0.20D-02	-0.00245	-1.2240
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	36	887.26674	0.10D-01	0.0115	1.1499
33       34       889.54973       0.20D-02       0.00025       0.12337         32       33       890.67129       0.50D-02       0.00594       1.18891         31       32       891.79763       0.20D-02       0.00112       0.55853         30       31       892.91735       0.20D-02       -0.00287       -1.43336         29       30       894.02538       0.20D-02       -0.0094       -0.46882         28       29       895.12559       0.20D-02       0.00302       1.51156         27       28       896.21847       0.50D-02       0.00852       1.70496	34	35	888.41672	0.20D-02	0.00025	0.12732
32       33       890.67129       0.50D-02       0.00594       1.18891         31       32       891.79763       0.20D-02       0.00112       0.55853         30       31       892.91735       0.20D-02       -0.00287       -1.43336         29       30       894.02538       0.20D-02       -0.0094       -0.46882         28       29       895.12559       0.20D-02       0.00302       1.51156         27       28       896.21847       0.50D-02       0.00852       1.70496	33	34	889.54973	0.20D-02	0.00025	0.12337
31       32       891.79763       0.20D-02       0.00112       0.55853         30       31       892.91735       0.20D-02       -0.00287       -1.43336         29       30       894.02538       0.20D-02       -0.00094       -0.46882         28       29       895.12559       0.20D-02       0.00302       1.51156         27       28       896.21847       0.50D-02       0.00852       1.70496	32	33	890.67129	$0.50 \text{D}{-}02$	0.00594	1.18891
30       31       892.91735       0.20D-02       -0.00287       -1.43336         29       30       894.02538       0.20D-02       -0.00094       -0.46882         28       29       895.12559       0.20D-02       0.00302       1.51156         27       28       896.21847       0.50D-02       0.00852       1.70496	31	32	891.79763	0.20 D - 02	0.00112	0.55853
29       30       894.02538       0.20D-02       -0.00094       -0.46882         28       29       895.12559       0.20D-02       0.00302       1.51156         27       28       896.21847       0.50D-02       0.00852       1.70496	30	31	892.91735	0.20 D - 02	-0.00287	-1.43336
28         29         895.12559         0.20D-02         0.00302         1.51156           27         28         896.21847         0.50D-02         0.00852         1.70496	29	30	894.02538	0.20D-02	-0.00094	-0.46882
27 28 896.21847 0.50D-02 0.00852 1.70496	28	29	895.12559	0.20D-02	0.00302	1.51156
	$2\overline{7}$	$\overline{28}$	896.21847	0.50D-02	0.00852	1.70496
25 26 898.40507 0.20D-02 0.00123 0.61315	25	26	898.40507	0.20D-02	0.00123	0.61315
24 25 899.48599 0.20D-02 0.00121 0.60711	$\frac{-0}{24}$	$\frac{-0}{25}$	899.48599	0.20D-02	0.00121	0.60711
23 24 900.57554 0.10D-01 -0.01327 -1.32713	$\frac{1}{23}$	$\frac{-9}{24}$	900.57554	0.10D-01	-0.01327	-1.32713

Table A.4, Fourier Transform Infrared Data for  74 GeO (cm⁻¹) (*Cont'd*)

10010	,	round man	iorini ininiai	ea Bata iei	
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
22	23	901.62966	0.20D-02	0.00183	0.91453
21	22	902.69377	0.20D-02	0.00106	0.53191
20	21	903.75918	0.50D-02	-0.00688	-1.37559
19	$20^{-1}$	904 81687	0 10D-01	-0.01299	-1 29873
18	19	905 85934	0.10D-01	-0.00978	-0.97754
17	18	906 89476	0.10D-01	-0.00541	-1 08269
16	17	907 92669	0.50D-02	-0.00349	-0.69848
15	16	908 95/1	0.00D-02 0.20D-02	-0.00345	-1 49178
14	15	000.0041	0.20D-02 0.20D-02	-0.00250	-0.87903
13	14	010 00118	0.20D-02 0.20D-02	-0.00110	-1.03354
10	19	012 00823	0.20D-02 0.50D 02	0.00207	1 81937
12	19	912.00025	0.30D-02 0.10D-01	-0.00300	-1.23036
10	11	013 00404	0.10D-01 0.50D 02	-0.01233	1 28131
10	10	$024 \ 41522$	0.50D-02	0.00041 0.00614	1.20131
11	10	934.41332	0.30D-02	0.00014	0.71056
14	11	935.20013	0.20D-02	-0.00144	-0.71950
14	10	930.97310	0.20D-02	0.00117	0.00729
10	14	937.8123	0.20D-02	0.00040	0.23222
10	10	938.04104	0.20D-02	0.00524 0.01825	1.01079
10	10	939.40244	0.10D-01	0.01820	1.82929
18	10	940.30721	0.10D-01	-0.01703	-1.70333
19	18	941.10187	0.20D-02	0.00140	0.12912
20	19	941.90955	0.20D-02	0.00059	0.29430
21	20	942.70085	0.50D-02	0.00974	1.94850
22	21	943.52099	0.10D-01	-0.01631	-1.03101
23	22	944.29280	0.20D-02	-0.00046	-0.23079
24	23	945.0733	0.20D-02	0.00042	0.2083
25	24	945.8598	0.10D-01	-0.01117	-1.11075
20	25 96	940.0213	0.50D-02	-0.00417	-0.83309
21	20 07	947.37820	0.20D-02	0.00095	0.47342
28	21	948.13462	0.20D-02	0.00023	0.11472
29	28	948.88174	0.20D-02	0.0023	1.14930
00 91	29	949.0200	0.20D-02	0.00117	0.00042
31	3U 91	950.30038	0.20D-02	-0.00335	-1.0/414
32	31	951.09222	0.20D-02	0.00058	0.29079
33 94	32	951.81903	0.20D-02	-0.00296	-1.47709
34	33	952.53357	0.20D-02	-0.00073	-0.36563
35	34	953.2403	0.20D-02	0.00278	1.3911
30	35	953.9449	0.20D-02	0.00189	0.94648
37	30	954.64428	0.20D-02	-0.00032	-0.16049
38	37	955.33405	0.20D-02	0.00053	0.26422
39	38	956.03252	0.10D-01	-0.0139	-1.39008
40	39	956.70011	0.50D-02	-0.00403	
41	40	957.372	0.50D-02	-0.00505	-1.01005
42	41	958.03132	0.20D-02	-0.00011	-0.05531
43	42	958.67876	0.50D-02	0.0101	2.01906
44	43	959.33546	0.50D-02	0.00441	0.88246
45	44	959.9844	0.20D-02	-0.00015	-0.07584
46	45	960.62727	0.50D-02	-0.00529	-1.05776
47	40	961.25216	0.20D-02	0.00088	0.43942
48	47	961.8765	0.20D-02	0.00092	0.4596
49	48	962.49788	0.20D-02	-0.00277	-1.38507
50 F1	49	963.10904	0.20D-02	-0.00294	-1.4(050)
51	50	963.70763	0.20D-02	0.00274	1.37193
52	51	964.3069	0.20D-02	0.00102	0.00020
53	52	964.90358	0.50D-02	-0.00485	-0.90930
54 FF	53 E 4	905.47763	0.50D-02	0.00516	1.03201
55 56	54 FF	900.05863	0.20D-02	0.00147	U. (3493 1 74599
- 20	- 55	900.02/13	0.2012-02	0.00549	1.(4082

Table A 4	Fourier	Transform	Infrared	Data	for	74 GeO	$(cm^{-1})$	(	Cont'd	

	; A.4,	rouner mans			Geo (cm ) ( <i>Cont a</i> )
J'	$J^{\prime\prime}$	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
57	56	967.19406	0.20 D - 02	0.0003	0.14787
58	57	967.7451	0.50 D - 02	0.00619	1.23802
59	58	968.30239	0.20 D - 02	-0.00098	-0.48893
60	59	968.84416	0.20 D - 02	0.00055	0.27486
61	60	969.37839	0.20 D - 02	0.00278	1.39017
62	61	969.90831	0.20 D - 02	0.00247	1.23582
63	62	970.43235	0.20 D - 02	0.00118	0.59065
64	63	970.94424	$0.50 \text{D}{-}02$	0.00517	1.03333
65	64	971.45321	0.50 D - 02	0.0052	1.0391
66	65	971.94847	0.10D-01	0.01203	1.20251
67	66	972.45575	0.20 D - 02	-0.00008	-0.03836
68	67	972.93987	$0.50 \text{D}{-}02$	0.00406	0.81147
69	68	973.42577	0.20 D - 02	-0.00053	-0.26261
70	69	973.9	0.20D-02	-0.00039	-0.19346
71	70	974.36761	0.20D-02	-0.00059	-0.29517
<b>TP1</b>		1 00 1			
The 8	8-7 Ba	nd, 30 data, .	$J''_{min} = 23$	$J''_{max} = 5$	59
Unc.	Avge =	= 2.5 D - 03, Un	$c_{Max} = 5.0$	D-03	
(Err/	Unc.)	Avge = 7.1 D-(	$01, \mathrm{RMSR} =$	= 1.06	
58	59	851 15587	0.50D-02	0.00517	1 03312
56	57	853 6774	0.00D-02 0.20D-02	0.00011	0.30628
54	55	856 17149	0.20D-02 0.20D 02	0.00001	0.70734
40	50	862 31667	0.20D-02 0.50D 02	0.00133	0.19134
49	40	862 5220	0.30D-02	-0.0028	-0.55555 1 54997
40	49	864 72022	0.20D-02	0.0031 0.00212	1.05750
47	40	004.12922	0.20D-02	0.00212 0.00761	1.00709
40	40	007.11003 970.67204	0.30D-02	0.00701	1.02101
42	45	070.07304	0.20D-02	0.00390	1.90124
40	41	010.01400	0.20D-02	0.00127	0.03403
39 20	40	014.11020	0.20D-02	0.0055	1.75169
38	39	813.33231	0.20D-02	-0.00032	-0.13819
37	38	8/0.4/404	0.50D-02	0.00699	1.3977
35	36	878.76332	0.20D-02	0.00036	0.17966
34	35	879.89646	0.20D-02	-0.00033	-0.16321
33	34	881.0202	0.20D-02	0.00267	1.33457
31	32	883.25563	0.20D-02	0.00346	1.73017
28	29	886.56639	0.20D-02	0.0038	1.9015
27	28	887.66207	0.20D-02	0.00025	0.12309
25	26	889.82047	0.50D-02	0.00866	1.73294
22	23	893.03549	0.20D-02	0.00015	0.07375
28	27	939.22642	0.20D-02	0.00083	0.41352
30	29	940.70535	0.20 D - 02	0.0018	0.90172
31	30	941.43727	$0.20 \text{D}{-}02$	0.00014	0.06932
32	31	942.16157	0.20 D - 02	-0.00039	-0.19374
33	32	942.87741	0.20 D - 02	0.00105	0.52666
37	36	945.68347	0.20 D - 02	-0.00104	-0.52199
41	40	948.37905	0.20 D - 02	0.00248	1.24053
42	41	949.03916	0.20D-02	0.00067	0.33729
45	44	950.973	0.20D-02	0.00203	1.0139
55	54	956.99305	0.20D-02	-0.00147	-0.73504

## A.5 Fourier Transform Infrared Data for ⁷⁶GeO

J'	<i>J</i> ″	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc				
	860 76 GeO infrared transitions in 7 bands								
$Th\epsilon$	e 1-0 E	Band, 179 dat	a, $J^{"}_{min} =$	2, $J''_{max} =$	91				
Unc	C. Avae	= 2.1D-03, U	$\operatorname{Inc.}_{Max} = 5$	5.0D-03					
(Eri	r/Unc	$.)_{Avge} = 7.0\Gamma$	0-02, RMSR	L = 0.72					
80	00	865 41518	0.200 02	0.00040	0 24363				
88	90 80	866 87862	0.20D-02	-0.00049	0.10881				
87	88	868 33578	0.20D-02	0.00022	1 01992				
86	87	869 78901	0.20D-02	0.00264 0.00263	1 31465				
85	86	871.23843	0.20D-02	0.00184	0.91795				
84	85	872.68725	0.20D-02	-0.00355	-1.77527				
83	84	874.11886	0.20D-02	0.00307	1.53493				
82	83	875.5557	0.20D-02	-0.00074	-0.37153				
81	82	876.98177	0.20D-02	0.00098	0.49028				
80	81	878.40921	0.20D-02	-0.0039	-1.94969				
79	80	879.82419	0.20D-02	-0.00156	-0.78163				
78	79	881.23453	0.20D-02	0.00017	0.08446				
77	78	882.64315	0.20 D - 02	-0.00165	-0.82662				
76	77	884.04343	0.20 D - 02	-0.00041	-0.20488				
75	76	885.4402	0.20 D - 02	-0.00094	-0.47048				
74	75	886.83116	0.20 D - 02	-0.00095	-0.47354				
73	74	888.21638	0.20 D - 02	-0.00053	-0.26419				
72	73	889.59415	0.20 D - 02	0.00202	1.01249				
71	72	890.97056	0.20D-02	0.00062	0.31127				
70	71	892.33995	0.20D-02	0.00089	0.44705				
69	70	893.70676	0.20D-02	-0.0016	-0.80026				
68	69 69	895.06449	0.20D-02	-0.00037	-0.18591				
67 CC	68 67	896.41744	0.20D-02	0.00028	0.14004				
00 65	01	897.700	0.20D-02	-0.00007	-0.03203				
00 64	00 65	899.10435	0.50D-02	0.00441	0.88237				
04 63	00 64	900.44755	0.20D-02	-0.00110	-0.37949				
00 69	04 63	901.77604	0.20D-02	0.00018	0.09090				
61	03 62	903.10421	0.20D-02	0.00001	0.00631				
60	61	904.42001	0.20D-02 0.20D-02	-0.00001 0.00077	0 38563				
59	60	907 05157	0.20D-02	0.00046	0.22761				
58	59	908 35438	0.20D-02	0.00010 0.00247	1 2345				
57	$58 \\ 58$	909.65634	0.20D-02	-0.00014	-0.06895				
56	57	910.94872	0.20D-02	0.00135	0.67699				
55	56	912.23847	0.20D-02	-0.00002	-0.00781				
54	55	913.5215	0.20D-02	-0.00016	-0.07864				
53	54	914.79839	0.20D-02	0.00032	0.15928				
52	53	916.06923	0.20D-02	0.00132	0.66073				
51	52	917.33576	0.20D-02	0.0011	0.55038				
50	51	918.59669	$0.20 \text{D}{-}02$	0.00095	0.47302				
49	50	919.85167	0.20 D-02	0.00118	0.58843				
48	49	921.09978	0.20 D-02	0.00271	1.35629				
47	48	922.34648	0.20 D - 02	0.00008	0.04129				
46	47	923.58517	0.20D-02	-0.00011	-0.05677				
45	46	924.81661	0.20D-02	0.00133	0.66679				
44	45	926.0419	0.20D-02	0.00332	1.66167				
43	44	927.26704	0.20D-02	-0.00015	-0.07743				
42	43	928.48175	0.20 D - 02	0.00118	0.58923				

Table A.5: Fourier Transform Infrared Data for  ${\rm ^{76}GeO}~({\rm cm^{-1}})$ 

1'	<i>T''</i>	Oba	Una	Cale Obs	(Cala Obs)/Ung
<u>J</u>	J				(Calc-Obs)/ Olic
41	42	929.69253	0.20D-02	0.00079	0.39625
40	41	930.89769	0.20 D - 02	0.00038	0.1884
39	40	932.09768	0.20 D - 02	-0.00053	-0.26473
38	39	933.28972	0.20 D - 02	0.00084	0.42162
37	38	934.47692	0.20D-02	0.00138	0.69205
36	37	935.65942	0.20D-02	0.00092	0.46125
35	36	936 83637	0 20D-02	0.00031	0 15384
34	35	938 00696	$0.20D_{-}02$	0.00034	0 16948
22	34	030 17215	0.20D-02 0.20D-02	0.00004	0.0278
00 20	04 99	040 22056	0.20D-02	0.00000	0.0278
02 01	<u>ა</u> ე	940.32930	0.20D-02	0.00101	0.90343
31	32	941.48463	0.20D-02	0.00015	0.07606
30	31	942.63169	0.20D-02	0.00075	0.37519
29	30	943.77286	0.20D-02	0.00147	0.73554
28	29	944.91019	0.20 D - 02	0.00026	0.13166
27	28	946.04161	0.20 D - 02	-0.00083	-0.41684
26	27	947.16501	0.20 D - 02	0.00029	0.14462
25	26	948.28506	0.20 D - 02	-0.00105	-0.52437
24	25	949.39655	0.20D-02	0.00035	0.17578
$\frac{-}{23}$	$\overline{24}$	950.50465	0.20D-02	-0.00068	-0.34038
$\frac{-3}{22}$	23	951 60187	0.20D-02	0.00331	1 65678
21	20	952 70089	0.20D 02 0.20D-02	-0.00035	-0 17329
21	22 91	952.70089	0.20D-02	-0.00035	0.22502
20	21	955.79051	0.20D-02	-0.00047	-0.23393
19	20	954.87828	0.50D-02	-0.00462	-0.92408
18	19	955.95077	0.20D-02	0.00063	0.31404
17	18	957.02306	0.20D-02	0.00017	0.08578
16	17	958.08711	0.20D-02	0.00205	1.02303
15	16	959.14942	0.20 D - 02	-0.00026	-0.12964
14	15	960.2038	0.20 D - 02	-0.00057	-0.28281
13	14	961.24995	0.20 D - 02	0.00143	0.71307
12	13	962.29481	0.20 D - 02	-0.00125	-0.62745
11	12	963.3289	0.20 D - 02	0.00087	0.43501
10	11	964.36121	0.20 D - 02	-0.0012	-0.59996
9	10	965.38461	0.20D-02	-0.00035	-0.17294
8	9	966.40473	0.20D-02	-0.0022	-1.09945
7	8	967 41569	0 20D-02	-0.00091	-0 45503
6	7	968 424	0.20D-02	-0.00299	-1 49524
5	6	969 42072	$0.20D_{-}02$	0.00200	0.24444
4	5	$070 \ 41367$	0.20D-02	0.00045 0.0017	0.84833
4 9	4	071 40522	0.20D-02	0.0017	0.094033
3	4	971.40000	0.20D-02	-0.00165	-0.92407
2 1	3	972.38571	0.20D-02	-0.00019	-0.09329
1	2	973.36256	0.20D-02	-0.00107	-0.53497
3	2	978.14838	0.20D-02	0.00144	0.71902
4	3	979.09204	0.20D-02	-0.00294	-1.46993
5	4	980.0257	0.20 D - 02	-0.00347	-1.73565
6	5	980.95073	0.20 D - 02	-0.00154	-0.76868
7	6	981.87107	0.20 D - 02	-0.00108	-0.53973
8	7	982.78612	0.20 D - 02	-0.00153	-0.76443
9	8	983.68992	0.20 D - 02	0.00307	1.53653
10	9	984.59611	0.20D-02	-0.00093	-0.4625
11	10	985.49039	0.20D-02	0.00077	0.38279
$12^{-}$	11	986.38196	0.20D-02	-0.00107	-0.53322
13	12	987 26236	0.20D-02	0.00204	1 01867
14	13	988 14122	$0.20D_{-}02$	0.00042	0 20785
15	1/	989 01957	0.20D-02	0.00042	0.01853
16	14 15	080 87449	0.20D-02	0.00004	1 /1008
17	16	000 7945	0.20D-02	0.00202	0.60174
10 10	17	990.7940 001 50601	0.20D-02	0.0012	0.00174
1ð 10	10	991.08001	0.20D-02	0.0018	0.09776
1.9	10	994.40004	0.2017-02	0.00006	U.U.4 (4)

Table A.5, Fourier Transform Infrared Data for  76 GeO (cm⁻¹) (*Cont'd*)

1/	T//		II	Cala Oha	$\frac{(C_{1})}{(C_{2})}$
<u>J'</u>	$J^{\circ}$	Ubs	Unc	Calc-Obs	(Calc-Obs)/Unc
20	19	993.27359	0.20D-02	-0.00052	-0.25995
21	20	994.10135	0.50D-02	0.00485	0.9699
22	21	994.93367	0.20D-02	-0.00069	-0.34414
23	22	995.75391	0.20D-02	-0.0005	-0.25247
24	23	996.5674	0.20 D - 02	0.00006	0.02908
25	24	997.37164	0.20 D - 02	0.00349	1.74467
26	25	998.17663	0.20 D - 02	-0.00021	-0.1065
27	26	998.97156	0.20 D - 02	-0.00027	-0.13521
28	27	999.76115	0.20 D - 02	-0.0014	-0.70229
29	28	1000.53994	0.20 D - 02	0.00183	0.9165
30	29	1001.31971	0.20 D - 02	-0.00235	-1.17451
31	30	1002.08591	0.20 D - 02	0.00059	0.29314
32	31	1002.84851	0.20 D - 02	0.00066	0.32961
33	32	1003.60502	0.20 D - 02	0.00036	0.17806
34	33	1004.35641	0.20 D - 02	-0.00132	-0.66139
35	34	1005.0974	0.20 D - 02	0.0009	0.44942
36	35	1005.83511	0.20D-02	-0.00011	-0.05439
37	36	1006.56467	0.20D-02	0.00051	0.25578
38	37	1007.28926	0.20D-02	-0.00043	-0.21644
39	38	1008.00087	0.50 D - 02	0.00506	1.01162
40	39	1008.71568	0.20D-02	0.0008	0.40083
41	40	1009.42031	0.20D-02	0.00014	0.0725
42	41	1010.11714	0.20D-02	0.00071	0.35412
43	42	1010.80877	0.20D-02	-0.00012	-0.06072
44	43	1011.49258	0.20D-02	0.00026	0.13202
45	44	1012.17065	0.20D-02	-0.00023	-0.11409
46	45	1012.84286	0.20D-02	-0.00149	-0.74402
47	46	1013 50543	0.20D-02	0.00025	0 12577
48	47	1014.16182	0.20D-02	0.00153	0.7643
49	48	1014.81355	0.20D-02	0.00079	0.3951
50	49	1015.45574	0.20D-02	0.00292	1.45817
51	$50^{-10}$	1016.09633	0.20D-02	-0.00005	-0.02299
52	51	1016.72739	0.20D-02	-0.00018	-0.08939
$53^{-}$	$5\overline{2}$	1017.35134	0.20D-02	0.00009	0.04297
54	$\overline{53}$	1017.96774	0.20D-02	0.00118	0.58755
55	54	1018.57898	0.20D-02	0.00069	0.34433
56	55	1019 1843	0.20D-02	-0.00063	-0.31325
57	56	1019 78079	0.20D-02	0.00014	0.06877
58	57	1020 37074	0.20D-02	0.00066	0.32932
59	58	1020.95431	0.20D-02	0.00077	0.38735
60	59	1020.00101 102153182	0.20D-02	0.00015	0.07677
61	60	1022.10246	0.20D-02	-0.00041	-0 2035
62	61	1022.66387	0.20D-02	0.00144	0 72044
63	62	1023 2235	0.20D-02	-0.00177	-0.88251
64	63	1023.2200 1023.77048	0.20D-02	0.00083	0 41654
65	64	1020.11040 1024 31797	0.20D-02	-0.00394	-0 78742
66	65	1024.01707 1024.85017	0.00D-02	-0.00004	-0.13888
67	66	1024.00011 1025.37825	0.20D-02 0.20D-02	0.00020	0.3044
68	67	1025 89985	0.20D-02	0.00001	0.54013
60	68	1026.00000	0.20D-02 0.20D-02	0.00100	1 31716
70	69	1026.41540	0.20D-02	-0.00205	-1 17067
70	$\frac{03}{70}$	1020.32008	0.20D-02 0.20D-02	-0.00234 0.00132	0.66046
79	70	1027.42455	0.20D-02	-0.00152	-0.85064
14 72	79	1021.32112	0.20D-02	-0.0017	-0.14015
7/	73	1028 800///	0.20D-02 0.20D-02	-0.00028	-1 28429
75	7/	1020.05044	0.20D-02 0.20D-02	-0.00257	-0.82425
76	75	1029.30230	0.20D-02 0.20D-02	0.00103	1 05374
77	76	1030 2868	0.20D-02 0.20D-02	0.00211 0.00047	0 23344

Table A.5, Fourier Transform Infrared Data for  76 GeO (cm⁻¹) (*Cont'd*)

J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
78	77	1030.73861	0.20D-02	0.0011	0.54912
79	78	$1031\ 1857$	0.20D-02	-0.00058	-0 29146
80	79	1031 62315	0.20D-02	0.00033	0 16593
81	80	1032.05385	0.20D-02	0.00094	0.47002
82	81	$1032\ 47986$	0.20D-02	-0.00083	-0 41545
83	82	1032 89449	0.20D-02	0.0017	0.84873
84	83	1033 30368	0.20D-02	0.00257	1 28525
85	84	1033 70606	0.20D-02	0.00201	0.62933
86	85	$1034\ 10892$	0.00D-02	-0.00388	-1 93837
87	86	1034 49474	0.20D-02	-0.00099	-0 49565
88	87	1034 8781	0.20D-02	-0.00279	-1 39585
89	88	$1035\ 25014$	0.20D-02	-0.00043	-0 21482
90	89	1035.20011 1035.61942	0.20D-02	-0.00247	-1 2339
91	90	1035 97786	0.20D-02	-0.00086	-0.42896
92	91	1036 33118	0.20D-02	-0.00000	-0.66237
52	51	1000.00110	0.200-02	-0.00102	-0.00201
The	2-1 F	Rand 166 dat	a . <i>I</i> " =	0	83
Unc	. <u> </u>	$= 2.1 \text{D} \cdot 03. \text{U}$	$m_{nc.Max} = 5$	5.0D-03	
(Eri	/Unc	$(.)_{Avae} = 1.4\Gamma$	0-01, RMSR	L = 0.79	
01	, 	000 04075		0.00017	0.09704
81	82	808.04375	0.20D-02	0.00017	0.08704
80	81	870.05908	0.20D-02	0.00087	0.4328
79	80	871.46985	0.20D-02	0.00087	0.4346
(8 77	79	872.87624	0.20D-02	0.0	0.00244
	78	874.27804	0.20D-02	-0.00153	-0.76385
76	77	875.67068	0.20D-02	0.00084	0.42061
() 74	10	877.06001	0.20D-02	0.00123	0.01572
(4 79	75 74	878.44507	0.20D-02	0.0006	0.30133
73	74	879.82418	0.20D-02	0.00062	0.31232
72	73	881.19712	0.20D-02	0.00152	0.75856
(1	(2 71	882.50529	0.20D-02	0.00185	0.92494
70	71	883.93261	0.20D-02	-0.0023	-1.14878
69 C9	70 C0	885.28805	0.20D-02	0.00009	0.04734
68 67	69	886.64171	0.20D-02	-0.00107	-0.5369
67	68	887.98817	0.20D-02	-0.00041	-0.20668
66	67	889.3272	0.20D-02	0.00231	1.15285
05	66	890.66315	0.20D-02	0.00272	1.3015
64	65	891.99501	0.20D-02	0.00185	0.92409
63	64 62	893.32556	0.20D-02	-0.00313	-1.50457
62	63	894.64317	0.20D-02	-0.00058	-0.28967
61 CO	62 c1	895.96008	0.20D-02	-0.00275	-1.37636
60 50	61 C0	897.26739	0.20D-02	-0.00075	-0.37494
59	60 50	898.56993	0.20D-02	0.00057	0.28447
28 57	59	899.80877	0.20D-02	0.00013	0.00000
57	58	901.1607	0.20D-02	0.00114	0.5712
00 FF	07 56	902.44719	0.20D-02	0.00213	1.00312
55 F 4	50 55	903.73123	0.20D-02	0.00006	0.03209
54 52	00 F 4	905.0110	0.20D-02	-0.00382	-1.91215
03 E0	04 52	900.27810	0.20D-02	0.0000	0.30022
0Z E 1	03 E0	907.04388	0.20D-02	0.00034	0.10000
E0 91	0Z E 1	908.80338	0.20D-02	0.00077	0.30333
00 40	51 51	910.05811	0.20D-02	0.00043	0.21404
49	00 40	911.30097	0.20D-02	0.00041	0.2000
4ð 47	49	912.00007	0.20D-02	0.0	0.00127
41 10	48 17	913.78707	0.20D-02	0.00071	0.30748
40 45	41	910.0203	0.20D-02	0.00022	0.10037
40 44	40 15	910.24909 017 16170	0.20D-02	-0.00203 0.00299	-1.01000
44 12	40 44	911.40418 018 68061	0.20D-02	0.00322	1 3611
40	44	910.00001	0.20D-02	0.00272	1.0011

Table A.5, Fourier Transform Infrared Data for  $^{76}{\rm GeO}~({\rm cm}^{-1})~(Cont'd)$ 

J'	.J″	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
42	43	919 89258	0.20D-02	0.00046	0 22764
41	42	921.09981	0.20D-02	-0.00271	-1.35262
40	41	922 29526	0.20D-02	0.00271	0 13487
39	40	923 48719	0.20D-02	0.00112	0.55989
38	39	924 67599	0.20D-02	-0.00058	-0 28795
37	38	925 85585	0.20D-02	0.00099	0.49601
36	37	927.03285	0.20D-02	-0.00027	-0 13359
35	36	928 20197	0.20D-02	0.00021	0.3279
34	35	929.36712	0.20D-02	-0.00015	-0.07489
33	34	$930\ 52267$	0.20D-02	0.00292	1 45774
32	33	931 68038	0.20D-02	-0.00191	-0.95471
31	32	932.82479	0.20D-02	0.00082	0.41248
30	31	933.9667	0.20D-02	0.00032	0.15884
29	30	935 10016	0.20D-02	0.00249	1 24406
$\frac{-0}{28}$	29	936.23283	0.20D-02	-0.00032	-0.16231
$\frac{-0}{27}$	$\frac{-3}{28}$	937.35737	0.20D-02	-0.00079	-0.39569
$\frac{-1}{26}$	$\overline{27}$	938.47302	0.20D-02	0.00184	0.91853
$\frac{-6}{25}$	$\frac{-1}{26}$	939.58691	0.20D-02	0.00043	0.21491
$\frac{20}{24}$	$\frac{1}{25}$	940.69393	0.20D-02	0.00007	0.03302
23	$\frac{-3}{24}$	941.79462	0.20D-02	0.0002	0.10249
$\frac{-6}{22}$	$\frac{-1}{23}$	942.88972	0.20D-02	0.0001	0.04776
${21}$	$\frac{-3}{22}$	943.97852	0.20D-02	0.00044	0.2185
20	${21}$	945.06079	0.20D-02	0.00146	0.72918
$\frac{-0}{19}$	$\frac{-1}{20}$	946.14064	0.20D-02	-0.00098	-0.49064
18	$19^{-0}$	947.2044	0.50D-02	0.00679	1.35743
17	18	948.27507	0.20D-02	0.00175	0.87631
16	17	949.33602	0.20D-02	0.00053	0.26713
15	16	950.38909	0.20D-02	0.00129	0.64551
14	$15^{-10}$	951.43797	0.20D-02	0.0003	0.15103
13	14	952.47958	0.20D-02	0.00065	0.32307
12	13	953.51611	0.20D-02	0.00012	0.06123
11	12	954.54468	0.20D-02	0.0016	0.79994
10	11	955.56916	0.20D-02	0.00121	0.60361
9	10	956.58717	0.20D-02	0.00129	0.64683
8	9	957.60137	0.20D-02	-0.0008	-0.40099
7	8	958.60549	0.20D-02	0.00118	0.58964
6	7	959.6058	0.20D-02	0.00096	0.47808
5	6	960.60553	$0.50 \text{D}{-}02$	-0.0047	-0.94047
4	5	961.59099	0.20D-02	-0.00214	-1.06867
3	4	962.56841	0.20D-02	0.00242	1.21
2	3	963.54397	0.20D-02	0.00278	1.38919
1	2	964.51726	0.20D-02	-0.00066	-0.33158
0	1	965.47929	0.20D-02	0.00107	0.53704
1	0	967.38692	0.20D-02	0.0027	1.35009
2	1	968.33113	0.20 D - 02	0.00395	1.97323
3	2	969.2808	$0.50 \text{D}{-}02$	-0.00639	-1.27867
4	3	970.20713	0.20 D - 02	0.00047	0.23475
5	4	971.13035	0.20 D - 02	0.0043	2.15185
6	5	972.05329	0.20 D - 02	0.00225	1.12391
7	6	972.97048	0.20 D - 02	-0.00023	-0.11461
8	7	973.87956	0.20 D - 02	-0.00078	-0.38943
9	8	974.78119	0.20 D - 02	-0.00007	-0.03622
10	9	975.67692	0.20 D - 02	0.00033	0.16439
11	10	976.56681	0.20 D - 02	0.00036	0.18163
12	11	977.45142	0.20 D - 02	-0.00056	-0.28016
13	12	978.32437	0.20 D - 02	0.00394	1.96838
14	13	979.19338	$0.50 \text{D}{-}02$	0.00612	1.2246
15	14	980.06711	0.20D-02	-0.00267	-1 33654

Table A.5, Fourier Transform Infrared Data for  76 GeO (cm⁻¹) (*Cont'd*)

1/	T''	Oba	Una	Cala Oba	(Cala Obs)/Una
<u>J</u>	J 15	000.00455			(Calc-Obs)/ Olic
10	15	980.92455	0.20D-02	-0.00145	-0.72644
17	16	981.77517	0.20D-02	0.0003	0.15106
18	17	982.62211	0.20D-02	-0.00055	-0.27477
19	18	983.45903	0.20D-02	0.0023	1.15032
20	19	984.2945	0.20 D - 02	0.00028	0.14063
21	20	985.12247	0.20 D - 02	-0.00057	-0.28471
22	21	985.94268	0.20 D - 02	0.0	-0.00137
23	22	986.75868	0.20D-02	-0.00158	-0.79016
24	23	987.56525	0.20D-02	-0.00008	-0.04193
25	24	988.36587	0.20D-02	0.00098	0.48764
26	25	989.15943	0.20D-02	0.00271	1.35273
$\frac{1}{27}$	$\overline{26}$	989.95179	0.20D-02	-0.00077	-0.38255
$\frac{-1}{28}$	$\frac{1}{27}$	990 7345	0.20D-02	-0.001	-0 49897
$\frac{-0}{29}$	28	991 50864	0.20D-02	0.00092	0.45768
30	20	992 28055	0.20D-02 0.20D-02	-0.00138	-0.68851
31	30	992.20000	0.20D-02 0.20D-02	0.00100	0.05171
20	30 21	$003\ 70711$	0.20D-02	0.0001	0.07744
04 99	20	995.79711	0.20D-02	0.00195	0.97744
ეე იკ	ე∠ ეე	994.00011	0.20D-02	-0.0008	-0.40218
34 25	აა ექ	990.29218	0.20D-02	0.00088	0.44199
30	34	990.02970	0.20D-02	0.00057	0.28408
36	35	996.76032	0.20D-02	0.00077	0.38325
37	36	997.48488	0.20D-02	0.00045	0.22352
38	37	998.20183	0.20D-02	0.00122	0.60909
39	38	998.91408	0.20D-02	0.00014	0.06896
40	39	999.61697	0.20D-02	0.00186	0.9323
41	40	1000.31636	0.20 D - 02	0.00053	0.26295
42	41	1001.00839	0.20 D - 02	-0.00003	-0.01448
43	42	1001.69242	0.20 D - 02	0.00083	0.41374
44	43	1002.37126	0.20 D - 02	0.00027	0.13664
45	44	1003.04186	0.20 D - 02	0.00136	0.67778
46	45	1003.70559	0.20 D - 02	0.00267	1.33719
47	46	1004.36364	0.20 D - 02	0.00304	1.5184
48	47	1005.018	0.20D-02	0.00044	0.22043
49	48	1005.66286	0.20D-02	0.00068	0.34178
50	49	1006.30146	0.20D-02	0.00051	0.25747
51	50	1006.93188	0.20D-02	0.00184	0.92097
52	51	1007.55933	0.20D-02	-0.00056	-0.27871
$53^{-}$	$5\overline{2}$	1008.17715	0.20D-02	-0.00004	-0.0176
54	$53^{-}$	1008 78945	0.20D-02	-0.00071	-0.35675
55	54	1009 39287	0.20D-02	0.00076	0 38232
56	55	1009.99201	0.20D-02	-0.00154	-0 77045
57	56	1009.55552 1010.58254	0.20D-02 0.20D-02	0.00104	0.31330
58	57	1010.00204 1011.16785	0.20D-02	0.00005	0.03033
50	58	1011.10705 1011.74666	0.20D-02	-0.00000	0.51941
- 59 60	50	1011.74000	0.20D-02	-0.00104	-0.51641
00 61	09	1012.31339 1019.99171	0.20D-02	0.00126	0.03001
01	60 C1	1012.88171	0.20D-02	-0.0008	-0.4017
62	61	1013.44177	0.20D-02	-0.00344	-1.72102
63	62	1013.98888	0.20D-02	0.00005	0.02473
64	63	1014.53207	0.20D-02	0.00061	0.30444
65	64	1015.07047	0.20D-02	-0.0009	-0.44804
66	65	1015.59913	0.20D-02	0.00047	0.23618
67	66	1016.12258	0.20 D - 02	0.00017	0.08593
68	67	1016.63874	0.20 D - 02	0.00027	0.13507
69	68	1017.15009	0.20 D - 02	-0.00173	-0.86258
70	69	1017.6505	0.20 D - 02	0.0003	0.15183
71	70	1018.14916	0.20 D - 02	-0.00285	-1.4229
72	71	1018.63543	0.20 D - 02	-0.00055	-0.27296
73	72	1019.11888	0.20D-02	-0.00237	-1.18455

Table A.5, Fourier Transform Infrared Data for  76 GeO (cm⁻¹) (*Cont'd*)

100	10 110	, i o anior 11a			
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
74	73	1019.59102	0.20D-02	0.00014	0.07113
75	74	1020 06054	0 20D-02	-0.0017	-0.85165
76	75	1020.00001 1020.51954	0.20D-02	-0.00002	-0.01012
77	76	1020.01904 1020.07205	0.20D-02	0.00002	0.125
70	70	1020.97290	0.20D-02	0.00023	0.125
18	((	1021.41892	0.20D-02	0.00094	0.47245
79	18	1021.86263	0.20D-02	-0.00313	-1.56403
80	79	1022.29187	0.20D-02	0.00023	0.11431
81	80	1022.71661	0.20 D - 02	0.00103	0.51668
82	81	1023.13987	0.20 D - 02	-0.00375	-1.87418
83	82	1023.54477	0.20 D - 02	0.00275	1.37591
84	83	1023.95551	0.20D-02	-0.00368	-1.83934
Tho	201	Rand 199 dat	o <i>I</i> " –	<u>е</u> т" —	95
The II.	50-21	2  and, 122  uat	$a, J_{min} -$	OD O2	. 69
	Avge	= 2.0D-05, U	Max = 0	0.0D-05	
(Eri	r/Unc	(Avge = 2.4L)	0-01, RMSR	J = 0.91	
84	85	856 0685	0.20D-02	0.00336	1 67838
89	83	858 01350	0.20D-02	0.00000	1.64863
02	00	000.91009	0.20D-02	0.0033	0.10766
81	82	800.33133	0.20D-02	0.00026	0.12700
79	80	863.13983	0.20D-02	0.00548	2.73817
77	78	865.93255	0.20D-02	0.00552	2.75941
75	76	868.70915	0.20 D - 02	0.00062	0.31041
74	75	870.08801	0.20 D - 02	-0.0003	-0.14888
73	74	871.46286	0.20 D - 02	-0.00251	-1.25488
72	73	872.82644	0.20D-02	0.00124	0.62232
71	72	874 18846	0.20D-02	0.00124	0.62246
$\overline{70}$	71	875 54621	$0.20D_{-}02$	0.00121	0.10049
60	71	876 80516	0.20D-02	0.0002 0.00261	1 20610
09	60	070.09010	0.20D-02	0.00201	1.97041
00	09	010.24003	0.20D-02	0.00370	1.07941
67	68	879.58441	0.20D-02	0.00004	0.01996
66	67	880.92049	0.20D-02	-0.00073	-0.36733
65	66	882.24901	0.20D-02	0.00066	0.33236
64	65	883.57166	0.20 D - 02	0.00255	1.27384
63	64	884.89071	0.20 D - 02	0.00263	1.31691
62	63	886.20695	0.20 D - 02	0.00013	0.06641
61	62	887.51442	0.20D-02	0.00097	0.48705
60	61	888.82387	0.50D-02	-0.00559	-1.11851
59	60	890 11849	0 20D-02	-0.00277	-1 38387
58	50	801 /0863	$0.20D_{-}02$	_0.000	-0.45092
57	58	802 60540	0.20D-02 0.20D 02	0.0003	0.61268
56	57	802.03543 802.07591	0.20D-02	-0.00120	0.06062
50	57	095.97521 005.95066	0.20D-02	0.00012	0.00003
55	50	895.25000	0.20D-02	0.00020	0.12877
54	55	896.52057	0.20D-02	0.00045	0.22648
53	54	897.78537	0.20D-02	0.00025	0.12351
52	53	899.04537	0.20 D - 02	-0.00067	-0.33535
51	52	900.30035	0.20 D - 02	-0.00209	-1.04545
50	51	901.54581	0.20 D - 02	0.00048	0.23801
49	50	902.79134	0.20 D - 02	-0.00256	-1.28027
48	49	904.02743	0.20D-02	-0.00172	-0.86058
$4\overline{7}$	48	905.25578	0.20D-02	0.00129	0.64678
46	$\overline{47}$	906 48181	0.20D-02	0.00105	0.52653
44		008 01680	0.20D-02	0.00100	0.30605
44 49	40 44	900.91009	0.20D-02	0.00079	0.39090
43	44	910.12011	0.20D-02	0.00057	0.20100
42	43	911.32837	0.20D-02	0.0017	0.84825
41	42	912.5261	0.20D-02	0.00173	0.86531
40	41	913.71847	0.20D-02	0.00148	0.73784
39	40	914.90513	0.20 D - 02	0.00128	0.64047
38	39	916.08738	0.20 D - 02	-0.00016	-0.08206
37	38	917.26259	0.20D-02	-0.00024	-0.12014

Table A.5, Fourier Transform Infrared Data for  76 GeO (cm⁻¹) (*Cont'd*)

		,			
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
36	37	918.4329	0.20D-02	-0.00109	-0.54409
35	36	919 59514	0 20D-02	0.00043	0 21564
34	35	920 75307	0.20D-02	0.00016	0.27872
21	20	024 10262	0.20D 02	0.00090	0.42036
31	32	924.19202 027 57795	0.20D-02	0.00030	0.42930
28	29	921.01180	0.20D-02	0.00375	1.8/020
27	28	928.69947	0.20D-02	-0.00003	-0.01307
26	27	929.81171	0.20D-02	-0.00022	-0.11225
25	26	930.91962	0.20 D - 02	-0.00189	-0.9467
23	24	933.11284	0.20 D - 02	-0.00008	-0.03812
22	23	934.20084	0.20 D - 02	0.00071	0.35401
21	22	935.28013	0.20 D - 02	0.00435	2.17408
20	21	936.35921	0.20D-02	0.00234	1.17158
19	20	937.42992	0.20D-02	0.00284	1.42114
17	18	939 55701	0 20D-02	0.00054	0 26943
16	17	940 60992	0.20D-02	0.00117	0.58713
15	16	941 65965	0.20D-02 0.20D-02	_0.00117	-0.46011
14	15	042 70246	0.20D-02	-0.00092	0.60200
14	10	942.70340	0.30D-02	-0.00302	-0.00309
13	14	945.75855	0.20D-02	-0.00212	-1.00132
11	12	945.79333	0.50D-02	-0.00337	-0.67339
10	11	946.80875	0.20D-02	-0.00087	-0.43303
9	10	947.81851	0.20 D - 02	0.00132	0.65933
8	9	948.82638	0.20 D - 02	-0.00059	-0.29691
7	8	949.82578	0.20 D - 02	-0.00002	-0.01227
11	10	967.67004	0.20 D - 02	0.00042	0.20776
12	11	968.54841	0.20 D - 02	-0.00032	-0.15793
13	12	969.42072	0.20D-02	-0.00122	-0.61106
14	13	970.28155	0.20D-02	0.00311	1.55259
15	14	971 14346	0.20D-02	0.0001	0.05242
16	15	071 00/01	0.20D-02 0.20D-02	0.0001	1 00262
17	16	072 84451	0.20D-02	0.00215	0.08247
10	10	972.04401	0.20D-02	-0.00190	-0.96247
10	10	975.08298	0.20D-02	-0.00038	-0.10071
19	18	974.51319	0.20D-02	0.00317	1.38321
20	19	975.34235	0.20D-02	0.00145	0.72256
21	20	976.16477	0.20D-02	0.00014	0.06854
22	21	976.97759	0.20D-02	0.0021	1.05031
23	22	977.78442	0.20 D - 02	0.00369	1.84719
24	23	978.5919	0.20 D - 02	-0.00172	-0.86166
25	24	979.3838	0.20 D - 02	0.00207	1.03296
27	26	980.95587	0.20 D - 02	0.00221	1.10443
28	27	981.7327	0.20D-02	0.00188	0.93958
29	28	982.50323	0.20D-02	0.00144	0.71997
30	29	983.26814	0.20D-02	0.00018	0.08971
31	30	984 02795	0.20D-02	-0.00242	-1 21204
32	31	984 77183	0.50D-02	0.00212 0.00445	0.88954
22	30	085 522	0.00D 02 0.20D 02	0.00440	0.71848
34	22	086 25578	0.20D-02	0.00144	1 20511
04 95	00 94	980.20018	0.20D-02	0.00239	0 55272
30 96	34 25	900.90090	0.20D-02	0.00111	0.01246
30	30	987.71454	0.20D-02	-0.00003	-0.01340
37	36	988.43593	0.20D-02	-0.00311	-1.55746
38	37	989.1487	0.50D-02	-0.00411	-0.82162
39	38	989.84971	0.20 D - 02	0.00012	0.06077
40	39	990.54765	0.20 D - 02	0.00087	0.4361
41	40	991.23911	0.20 D - 02	0.00154	0.77101
42	41	991.9168	$0.50 \text{D}{-}02$	0.00941	1.88182
43	42	992.60524	0.20D-02	-0.00005	-0.0242
44	43	993.27359	$0.50 \text{D}{-}02$	0.00398	0.79553
45	44	993,94833	0.50D-02	-0.00499	-0.99896
46	45	994.60173	0.20D-02	0.00075	0.37621

Table A.5, Fourier Transform Infrared Data for  76 GeO (cm⁻¹) (*Cont'd*)

		o, = = ===== =====			
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
47	46	995.25371	0.20D-02	0.00129	0.64364
48	47	995 90075	0 20D-02	0.00012	0.05892
49	48	996 536	0.50D-02	0.00408	0.81641
50	51	008 41720	0.00D - 02	0.00400	0.10337
52	51	990.41729	0.20D-02	0.00039	0.19337
53	52	999.03174	0.20D-02	-0.00159	-0.79729
54	53	999.63678	0.20D-02	-0.00088	-0.44118
55	54	1000.23417	0.20D-02	0.00075	0.37582
56	55	1000.82776	0.20 D - 02	-0.00056	-0.27822
57	56	1001.41292	0.20 D - 02	-0.00019	-0.09319
58	57	1001.99367	0.20D-02	-0.00217	-1.08568
59	58	1002.56356	0.20D-02	-0.00007	-0.03677
60	59	1003 12863	0.20D-02	0.00006	0.03245
62	61	1004 23/03	$0.20D_{-}02$	0.00464	0.02210
62	62	1004.20400	0.00D - 02	0.00404	1 00001
64	62	1004.11905	0.20D-02	0.0038	0.17479
04	03	1005.5217	0.20D-02	-0.00055	-0.17475
65	64	1005.85314	0.20D-02	-0.00072	-0.36065
66	65	1006.37641	0.20D-02	0.00021	0.107
67	66	1006.89281	0.20D-02	0.00114	0.57208
69	68	1007.90801	0.20 D - 02	-0.00007	-0.03518
70	69	1008.40657	0.20 D - 02	-0.002	-0.99986
71	70	1008.89907	$0.50 \text{D}{-}02$	-0.00478	-0.95673
The	4-31	Rand 143 dat	а <i>Г</i> ". —	0 1" –	- 77
Unc		-21D02	$a, 5_{min} - 1$	0, 5 max = 0	- 11
	Avge	= 3.1D-03, U	Max = 1	.0D-02	
(Er)	r/Und	(Avge = 3.7L)	0-01, RMSR	= 1.05	
76	77	859.00721	0.50D-02	0.00071	0.14116
75	76	860 37447	0.50D-02	0.01017	2 03353
74	75	861 75100	0.00D 02	0.01011	2.00000
79	73	801.75133 862 19907	0.20D-02	0.00409	2.040
70	74	003.12207	0.50D-02	0.00017	0.03073
(2	13	804.4833	0.50D-02	-0.00019	-0.03803
71	72	865.83475	0.20D-02	0.00391	1.95389
70	71	867.18762	0.20D-02	0.00127	0.63472
69	70	868.53463	0.50 D - 02	-0.00084	-0.16756
68	69	869.87306	$0.50 \text{D}{-}02$	0.00031	0.06113
67	68	871.19883	$0.50 \text{D}{-}02$	0.00875	1.74988
66	67	872.5285	$0.50 \text{D}{-}02$	0.00793	1.58662
65	66	873.85173	0.50 D - 02	0.00819	1.63728
64	65	875 18026	0 50D-02	-0.00223	-0 44624
63	64	876 49057	0.00D-02	0.00017	0.08497
62	63	877 80015	0.20D 02	0.00011	0.4201
61	60	870 10120	0.30D-02	-0.0021	0.6715
60	61	879.10129	0.20D-02	-0.00134	-0.0715
50	01	000.09499	0.20D-02	0.00144	0.72095
59	60	881.69029	0.50D-02	-0.00282	-0.56323
58	59	882.9732	0.20D-02	-0.00013	-0.06382
57	58	884.25525	0.20D-02	-0.00203	-1.01651
56	57	885.52765	0.20 D - 02	0.00026	0.12864
55	56	886.79812	0.20 D - 02	-0.00101	-0.5037
54	55	888.05864	0.20D-02	0.00219	1.09625
53	54	889.31797	0.20D-02	0.00109	0.54328
52	53	890.56571	0.50D-02	0.00606	1.21281
51	52	801 81012	0.000 02 0.200-02	-0.00014	-0.06767
50	52	803 05605	0.20D-02	0.00014	0.02154
10	E0 01	099.09009	0.00D-02	0.00401	0.54104
49	00	094.29009	0.20D-02	0.0002	0.1013
48	49	895.52584	0.20D-02	0.00154	0.76939
47	48	896.75316	0.20D-02	-0.00074	-0.37218
46	47	897.97086	0.20D-02	0.00101	0.5063
45	46	899.18551	0.20 D - 02	0.00024	0.11951
44	45	900.39472	0.20 D - 02	-0.00069	-0.34281

Table A.5, Fourier Transform Infrared Data for  76 GeO (cm⁻¹) (*Cont'd*)

J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
43	44	901.5981	0.20D-02	-0.00137	-0.68608
42	43	902.79134	0.20D-02	0.00246	1.22947
41	42	903.98536	0.20D-02	-0.00011	-0.05655
40	41	905.16857	0.20D-02	0.00249	1.24548
39	40	906.35032	0.20D-02	0.00091	0.45532
38	$\overline{39}$	907.5257	0.20D-02	0.00006	0.02754
37	38	908.69333	0.20D-02	0.00127	0.63686
36	37	909.85478	0.20D-02	0.003	1.49781
35	36	911.00797	0.50D-02	0.00729	1.45802
34	35	912.16561	0.20D-02	0.00144	0.71827
33	34	913.3136	0.20D-02	-0.00047	-0.23301
32	33	914.45519	0.20D-02	-0.0017	-0.8491
31	32	915.58708	0.20D-02	0.00104	0.51956
30	31	916.71678	0.20D-02	0.00023	0.11257
29	30	917.84058	0.20D-02	-0.00043	-0.21548
28	29	918.95518	0.20D-02	0.00234	1.17
27	28	920.06984	0.20D-02	-0.00072	-0.36143
26	27	921.17357	0.20D-02	0.00136	0.67981
25	26	922.27481	0.20D-02	0.00014	0.06833
24	25	923.36803	0.20D-02	0.00114	0.56859
23	24	924.45541	0.20D-02	0.00215	1.07524
22	23	925.53851	0.20D-02	0.00162	0.80777
21	22	926.61555	0.20D-02	0.0013	0.65072
20	21	927.68856	0.20D-02	-0.00083	-0.41638
19	20	928.75628	$0.50 \text{D}{-}02$	-0.00353	-0.7056
18	19	929.81171	0.20D-02	0.00018	0.09235
17	18	930.87051	$0.50 \text{D}{-}02$	-0.00536	-1.07112
16	17	931.91486	0.20D-02	-0.00234	-1.16988
15	16	932.95059	0.20 D - 02	0.00339	1.69547
14	15	933.98084	$0.50 \text{D}{-}02$	0.0087	1.73914
13	14	935.02636	$0.50 \text{D}{-}02$	-0.00721	-1.44133
12	13	936.03847	0.20 D - 02	0.00436	2.18146
11	12	937.06699	$0.50 \text{D}{-}02$	-0.00643	-1.28533
10	11	938.07364	0.20 D - 02	-0.00131	-0.65324
9	10	939.07855	0.20 D - 02	-0.00041	-0.20379
8	9	940.08154	$0.50 \text{D}{-}02$	-0.00358	-0.71624
7	8	941.06254	$0.50 \text{D}{-}02$	0.00924	1.84833
6	7	942.04755	0.10D-01	0.01205	1.20497
5	6	943.03853	0.20 D - 02	0.00287	1.43603
4	5	944.0179	0.20 D - 02	-0.00072	-0.36137
3	4	944.97156	0.10D-01	0.01536	1.53645
2	3	945.95308	0.20 D - 02	-0.00247	-1.23396
1	2	946.89387	0.10D-01	0.01437	1.43693
1	0	949.74642	0.20 D - 02	-0.00177	-0.88259
3	2	951.60165	0.20 D - 02	0.00343	1.71648
4	3	952.53357	$0.50 \text{D}{-}02$	-0.00746	-1.49193
5	4	953.43621	$0.50 \text{D}{-}02$	0.00479	0.95769
7	6	955.24878	0.20D-02	0.00354	1.77046
9	8	957.03796	0.20D-02	0.00098	0.48984
10	9	957.9239	0.20D-02	-0.00094	-0.46981
11	10	958.80157	0.20D-02	-0.0008	-0.39822
12	11	959.67426	0.20D-02	-0.00189	-0.94613
13	12	960.5377	0.20D-02	0.00004	0.02073
14	13	961.39181	0.50D-02	0.00505	1.01066
15	14	962.2515	0.20D-02	-0.00177	-0.88412
16	15	963.096	0.20D-02	0.00034	0.16771
17	16	963.92937	0.50D-02	0.00729	1.45855
18	17	964.77309	0.20D-02	-0.00239	-1.19387

Table A.5, Fourier Transform Infrared Data for  76 GeO (cm⁻¹) (*Cont'd*)

J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
19	18	965.60088	0.20D-02	-0.00244	-1.21873
20	19	966.41843	0.20D-02	0.00145	0.72596
$\overline{21}$	20	967.22385	0.10D-01	0.01114	1.11389
22	21	968.04283	0.20D-02	0.00093	0.46588
23	22	968.84605	0.20D-02	0.00014	0.06957
$\overline{24}$	$\frac{-}{23}$	969.64921	0.50D-02	-0.00695	-1.39013
25	24	970.43286	0.20D-02	-0.0009	-0.44957
$\frac{1}{26}$	$25^{$	971.21935	0.50D-02	-0.00406	-0.81163
$\frac{1}{27}$	$\frac{1}{26}$	971.99957	0.50D-02	-0.00735	-1.46984
28	27	972.76333	0.20D-02	-0.00058	-0.29196
29	28	973.5265	0.20D-02	0.00036	0.17798
$\frac{-0}{30}$	$\frac{1}{29}$	974.28613	0.20D-02	-0.00159	-0.79563
31	30	975.03504	0.20D-02	0.00074	0.37135
$32^{-1}$	31	975.78325	0.20D-02	-0.00267	-1.33694
33	32	976 51587	0.20D-02	0.00201	1 52363
34	33	977 25151	0.20D-02	-0.00074	-0.36782
35	34	977 97351	0.20D-02	0.00264	1 31787
36	35	078 6037	0.20D-02 0.20D-02	0.00204	0.65971
$\frac{30}{37}$	36	979 40399	0.20D-02	0.00132	1 69689
38	$\frac{30}{37}$	080 11810	0.20D-02 0.50D-02	-0.00305	-0.00262
30	38	080 81367	0.30D-02	-0.00430	0.56653
40	30	081 50380	0.20D-02	-0.00113	0.50055
40	39 40	082 10038	0.20D-02	0.00141 0.00114	0.57017
41	40	982.19038	0.20D-02	0.00114 0.00405	0.07017
42	41 49	902.00711	0.30D-02	0.00405 0.00120	0.60999
43	42	903.34331	0.20D-02	-0.00129	-0.0455
44	45	984.21048	0.20D-02	0.00021	0.10273
45	44	984.80888	0.20D-02	0.00107	0.83377
40	45	985.522	0.20D-02	0.00179	0.89659
47	40	986.16643	0.50D-02	0.00398	0.79608
48	47	986.8105	0.20D-02	-0.00011	
49	48	987.43715	0.50D-02	0.00657	1.31434
50	49	988.07047	0.20D-02	-0.00009	-0.04414
51	50	988.69024	0.20D-02	0.00013	0.06264
52	51	989.30806	0.50D-02	-0.0044	-0.87992
53	52	989.90799	0.20D-02	0.00226	1.13245
54	53	990.50928	0.20D-02	0.00086	0.4283
55	54	991.09767	0.50D-02	0.00562	1.12472
56	55	991.68337	0.50D-02	0.00634	1.26873
57	56	992.2542	0.10D-01	0.01518	1.51847
58	57	992.83902	0.20D-02	0.00328	1.64223
59	58	993.40928	0.20D-02	-0.00084	-0.41962
61	60	994.51989	0.20D-02	0.00045	0.22718
62	61	995.06483	0.20D-02	0.00126	0.62861
63	62	995.60715	0.50D-02	-0.00214	-0.42845
64	63	996.13522	0.20D-02	0.00187	0.93684
65	64	996.65982	0.20D-02	0.00251	1.25637
66	65	997.17381	$0.50 \text{D}{-}02$	0.0069	1.38054
67	66	997.68658	0.20 D - 02	0.00564	2.82053
68	67	998.18613	$0.50 \text{D}{-}02$	0.01073	2.14514
69	68	998.68972	0.20 D - 02	0.00486	2.43205
70	69	999.18091	0.20 D - 02	0.00449	2.24691
71	70	999.66953	$0.20 \text{D}{-}02$	-0.00023	-0.11366
The	e 5-4 F	Band, 126 dat	a. "I"	8	77
Unc		= 3.3D-03. U	$\operatorname{Inc.}_{Max} = 1$	.0D-02	• •
(Er	r/Unc	$A_{vae} = 3.31$	0-01, RMSR	= 1.34	
-	, 	0F0 51015		0.00000	0.20100
(0 75	11 76	800.71917	0.10D-01	-0.00382	-0.38190 0.01949
10	10	002.00103	0.00D-02	0.00400	0.31240

Table A.5, Fourier Transform Infrared Data for  76 GeO (cm⁻¹) (*Cont'd*)

		,			
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
74	75	853.44679	0.50 D - 02	0.00378	0.75641
73	74	854 79606	0 50D-02	0.0142	2 83999
72	73	856 16098	0.00D-02	0.00368	1 83768
71	72	857 51031	0.20D 02 0.20D 02	0.00300	1 71006
71	74	007.01001	0.20D-02	0.00344 0.00072	0.14956
10	(1	808.80082	0.50D-02	0.00072	0.14330
69	10	860.19642	0.50D-02	-0.00043	-0.0852
68	69	861.53024	0.50D-02	-0.00112	-0.22471
67	68	862.85131	0.20D-02	0.00558	2.79235
66	67	864.18072	0.50 D - 02	-0.00139	-0.27832
65	66	865.49624	0.20 D - 02	0.00015	0.07362
64	65	866.80793	0.20 D - 02	0.00014	0.07031
63	64	868.11316	0.20D-02	0.00121	0.60415
62	63	869.41608	0.20D-02	-0.00081	-0.4051
61	62	870 71225	0 20D-02	-0.00148	-0 73774
60	61	872 00073	0.20D-02	0.00012	0.06112
59	60	873 28389	0.20D-02	0.00012	0.80619
58	50	874 55806	0.20D 02 0.50D 02	0.00101	1 33001
50	59	074.00000 075 00754	0.30D-02	0.00005	0.47405
57	00 57	070.00704	0.20D-02	0.00095	0.47400
50	57	877.10798	0.50D-02	-0.00119	-0.23748
55	56	878.37007	0.20D-02	-0.00044	-0.22122
54	55	879.62785	0.20D-02	-0.00087	-0.43373
53	54	880.87881	0.20 D - 02	0.00005	0.0234
52	53	882.12747	0.20 D - 02	-0.00225	-1.125
51	52	883.37739	0.10D-01	-0.01132	-1.13185
50	51	884.59823	0.20 D - 02	0.00317	1.58533
49	50	885.82147	$0.50 \text{D}{-}02$	0.00974	1.94739
48	49	887.05161	0.20D-02	0.00385	1.9249
47	48	888.27501	0.20D-02	-0.00085	-0.42572
46	47	889 48701	0.20D-02	0.00028	0 14136
45	46	890 69615	0.20D-02	-0.0013	-0 64928
44	45	801.0016	0.20D 02 0.50D 02	-0.0010	0.05316
44	40	891.9010 802 10485	0.30D-02	-0.00477	-0.90010
40	44	093.10403	0.10D-01	-0.01104	-1.10390
42	45	094.20402	0.20D-02	-0.00004	-0.02034
41	42	895.47015	0.20D-02	-0.00102	-0.50987
40	41	896.6429	0.50D-02	0.00576	1.1525
39	40	897.81391	0.50D-02	0.00864	1.72707
38	39	898.97364	0.10D-01	0.01714	1.71381
36	37	901.30785	0.20 D - 02	0.0024	1.20024
35	36	902.45974	0.20 D - 02	0.00174	0.86923
34	35	903.6028	$0.50 \text{D}{-}02$	0.0042	0.84069
33	34	904.7463	0.20 D - 02	0.00052	0.26222
31	32	907.00843	0.20D-02	0.00089	0.44587
30	31	908.12934	0.20D-02	0.00263	1.31316
29	30	909.25065	0.20D-02	-0.00179	-0.89313
$\frac{-8}{28}$	29	910 36329	0.20D-02	-0.00329	-1 64342
20	$\frac{20}{28}$	011 46480	$0.20D_{-}02$	0.00029	0.2410
26	$\frac{20}{27}$	012 56706	0.20D 02 0.20D 02	0.00040	1 04260
20	21	912.50700 012.66186	0.20D-02	-0.00209	1 54255
20	20	913.00180	0.20D-02	-0.00309	-1.04200
24 00	∠ə 24	914.74084	0.20D-02	-0.00007	-0.03323
23	24	910.8308	0.20D-02	-0.00184	-0.92007
20	21	919.04058	0.20D-02	-0.00004	-0.01702
19	20	920.0982	0.20D-02	0.00117	0.58594
18	19	921.16131	0.50D-02	-0.00898	-1.79562
17	18	922.2027	$0.50 \text{D}{-}02$	-0.00329	-0.65729
16	17	923.24463	$0.50 \text{D}{-}02$	-0.00401	-0.80277
15	16	924.27621	0.20 D - 02	-0.0003	-0.15082
14	15	925.30968	$0.50 \text{D}{-}02$	-0.00439	-0.87812
13	14	926.32967	0.20D-02	-0.00092	-0.46096

Table A.5, Fourier Transform Infrared Data for  76 GeO (cm⁻¹) (*Cont'd*)

1'	1″	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
10	12	007 2422	0.200.02	0.00207	1 5267
12	10	921.0402	0.20D-02	0.00507	1.00004
11	12	928.35243	0.50D-02	0.00543	1.08084
10	11	929.36661	0.50D-02	-0.00312	-0.6241
9	10	930.36426	0.20D-02	-0.00111	-0.55592
8	9	931.35424	0.20D-02	0.00259	1.29448
7	8	932.34438	0.20 D - 02	0.00014	0.07046
11	10	949.96285	$0.50 \text{D}{-}02$	-0.00495	-0.99033
12	11	950.82948	$0.50 \text{D}{-}02$	-0.00603	-1.20572
13	12	951.68852	$0.50 \text{D}{-}02$	-0.00574	-1.14833
14	13	952.54313	0.50 D - 02	-0.00726	-1.45246
15	14	953.38068	0.20D-02	0.00203	1.01402
17	16	955.05908	0.20D-02	-0.00148	-0.74215
18	17	955 88601	0.20D-02	-0.00038	-0.19
19	18	956 71032	0.20D-02	-0.00296	-1 48045
20	10	$057\ 52265$	0.20D - 02 0.20D 02	0.00230	0.06583
20	20	951.52205	0.20D-02	0.00013 0.00317	1 58301
21	20	950.52672	0.20D-02	0.00317	0.54071
22	21	939.13370	0.20D-02	-0.0011	-0.34971
23	22	959.93083	0.20D-02	0.00026	0.13188
24	23	960.72114	0.20D-02	0.00004	0.02197
25	24	961.5039	0.20D-02	0.001	0.49979
26	25	962.27024	0.10D-01	0.012	1.19988
27	26	963.04638	0.50 D - 02	0.00681	1.36205
29	28	964.57028	0.50 D - 02	0.0056	1.1205
30	29	965.32071	$0.50 \text{D}{-}02$	0.00689	1.37799
31	30	966.07357	0.20 D - 02	-0.00068	-0.33864
32	31	966.81033	0.20 D - 02	0.0014	0.69949
33	32	967.54458	0.20 D - 02	-0.00047	-0.23644
34	33	968.27136	0.20 D - 02	-0.00134	-0.67244
35	34	968.99211	0.20D-02	-0.00267	-1.33428
36	35	969 70051	0 20D-02	0.00186	0.93202
37	36	970 41309	0.50D-02	-0.00429	-0.85773
38	37	971 11216	0.00D-02	-0.00344	-1 71933
30	38	071 80201	0.20D - 02 0.20D 02	0.00044	0.40380
40	30	971.00291 072 48851	0.20D-02	-0.00031	0.21605
40	39 40	972.40001	0.20D-02	0.00043 0.00227	1 62461
41	40	975.10590	0.20D-02	0.00327	0.52020
42	41	973.8403	0.50D-02	0.00205	0.55029
43	42	974.51319	0.20D-02	-0.00309	-1.54053
44	43	975.17448	0.50D-02	-0.00383	-0.76522
45	44	975.82716	0.20D-02	-0.00255	-1.27488
46	45	976.47505	0.20D-02	-0.0031	-1.54799
47	46	977.11572	0.50 D - 02	-0.00304	-0.60735
48	47	977.74949	0.20 D - 02	-0.00272	-1.36206
49	48	978.37861	0.50 D - 02	-0.00441	-0.88201
50	49	978.99506	0.20 D - 02	-0.00009	-0.04328
51	50	979.61472	$0.50 \text{D}{-}02$	-0.00565	-1.12917
52	51	980.21344	0.20 D - 02	0.00305	1.52511
53	52	980.81367	0.20D-02	0.00354	1.76972
54	53	981.40992	0.20 D - 02	0.0013	0.64979
55	54	981.99786	0.20D-02	0.00066	0.32937
56	55	982,58083	0.20D-02	-0.00176	-0.87762
57	56	983.15714	0.50D-02	-0.00425	-0.85094
58	57	983 71601	0.20D-02	0.00393	1 96413
50	58	984 97744	0.20D-02 0.20D-02	0.00000	1 39078
61	60	085 27/2/	0.20D-02	0.00270	2 70/0/
60	61	005.01404 085 00007	0.200-02	0.000009	2.13434 9 45911
62	01 69	909.90001	0.00D-02	0.01220	2.40211 2.00694
05	02	900.44722	0.20D-02	0.00019	0.09024 1 41095
04	03	980.96548	0.10D-01	0.01418	1.41835
nb	p4	987 48791	0.5010-02	0.01117	4 25425

Table A.5, Fourier Transform Infrared Data for  76 GeO (cm⁻¹) (*Cont'd*)

Tab	ne A.o	, rouner ma	IISIOFIII IIIII	ared Data I	Di GeO (chi	) (Con
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/U	nc
66	65	988.00669	0.20D-02	0.00494	2.47158	
67	66	988.50492	$0.50 \text{D}{-}02$	0.0124	2.47946	
68	67	989.01183	0.20D-02	0.00429	2.14551	
69	68	989.50176	0.20D-02	0.00627	3.13608	
71	70	990.46203	0.20D-02	0.0091	4.5484	
$\overline{72}$	71	990.93793	0.20D-02	0.00436	2.17773	
$\overline{73}$	$72^{-1}$	991.39951	0.20D-02	0.00699	3,49593	
74	73	991 86102	0.50D-02	0.00274	0 54867	
	10	001.00102	0.002 02	0.00211	0.01001	
The	65 E	and 71 data	<i>I</i> " . — 1		- 67	
Une	, 0-0 Г , ,	$-44D_03$	$[n_{c}, \sigma_{min} = 1]$	0, 5 max = 0	- 01	
(Fri	··Avge r/Unc	-4.4D-05, C	Max = 1	-1.17		
	1/0110	Avge = 1.2L	-01, 100510	-1.11		
66	67	855.84957	$0.50 \text{D}{-}02$	-0.00138	-0.27586	
65	66	857.15874	$0.50 \text{D}{-}02$	0.0001	0.01932	
61	62	862.33855	$0.50 \text{D}{-}02$	0.00908	1.81517	
55	56	869.96023	$0.50 \text{D}{-}02$	0.00802	1.60415	
54	55	871.20956	$0.50 \text{D}{-}02$	0.00969	1.93822	
53	54	872.46945	$0.50 \text{D}{-}02$	-0.00468	-0.93679	
51	52	874.93414	$0.50 \text{D}{-}02$	0.00517	1.03348	
50	51	876.16753	0.20D-02	0.00077	0.3863	
49	50	877.38961	0.20D-02	0.00216	1.08014	
48	49	878.60571	0.50 D - 02	0.00399	0.7979	
47	48	879.82945	0.50D-02	-0.00737	-1.47404	
46	47	881.02671	0.20D-02	0.0022	1.1003	
45	46	882.22831	0.20D-02	0.00185	0.92552	
44	$\overline{45}$	883.43217	0.50D-02	-0.00634	-1.26786	
43	44	884.61611	0.20D-02	-0.0002	-0.10061	
40	41	888.15611	0.20D-02	-0.00361	-1.80669	
39	40	889.31797	0.20D-02	0.00213	1.06578	
37	$\overline{38}$	891.64038	0.20D-02	-0.002	-1.00242	
35	36	893.93781	0.20D-02	-0.00384	-1.91883	
34	$35^{\circ}$	895.06947	0.50D-02	0.00377	0.75482	
33	34	896.21847	0.10D-01	-0.01164	-1.16431	
31	32	898.45909	0.20D-02	-0.00226	-1.12884	
28	$\frac{3}{29}$	901.80096	0.10D-01	-0.01212	-1.21226	
$\frac{-0}{27}$	$\frac{-3}{28}$	902.90231	0.10D-01	-0.01432	-1.4321	
$\frac{-1}{26}$	$27^{-5}$	903.98536	0.50D-02	-0.00399	-0.79888	
$\frac{-}{22}$	$\frac{-1}{23}$	908.29097	0.50D-02	0.00594	1.18891	
${19}$	$\frac{1}{20}$	911.47558	0.50D-02	-0.00318	-0.63667	
18	19	912.5261	0.50D-02	-0.00691	-1.38194	
16	17	914.59374	0.20D-02	0.00139	0.69301	
15	16	915.62754	0.20D-02	-0.00328	-1.64196	
13	14	917.6643	0.20D-02	0.0005	0.24759	
12	13	918.67265	0.50D-02	0.00352	0.70442	
11	12	919.68092	0.20D-02	0.00069	0.34456	
10	11	920.67742	0.50D-02	0.00368	0.73505	
9	10	921.67462	0.20D-02	0.0	-0.00041	
17	16	946 20509	0.20D-02	0.00002	$0.00011 \\ 0.01212$	
19	18	947.83452	0.10D-01	0.00833	0.83265	
20	19	948 65274	0.20D-02	-0.00048	-0.23772	
$\frac{-5}{21}$	20	949.46059	0.50D-02	-0.00522	-1.04428	
$\frac{1}{25}$	$\frac{10}{24}$	952.60351	0.20D-02	0.00091	0.45581	
$\frac{20}{26}$	$\frac{2}{25}$	953 37981	0.20D-02	-0.00403	-2 01456	
31	30	957 13981	0.20D-02	-0.00322	-1 6075	
33	32	958.59787	0.20D-02	-0.00197	-0.9844	
34	33	959.32158	0.50D-02	-0.00572	-1.1438	
37	36	961 44219	0.50D-02	-0.00535	-1.07078	
$\frac{38}{38}$	37	962.12645	0.50D-02	0.00436	0.87269	
	~ •			<b>.</b>		

Table A.5, Fourier Transform Infrared Data for  76 GeO (cm⁻¹) (*Cont'd*)

J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
39	38	962.82251	0.50D-02	-0.00424	-0.84889
40	39	963.49547	0.50D-02	0.00371	0.74209
41	40	964.18508	0.10D-01	-0.01153	-1.15337
42	41	964.83921	0.20D-02	0.00214	1.07065
43	42	965 50053	0.20D-02	0.00211 0.00205	1 02667
44	43	966.15328	0.50D-02	0.00396	0.79211
45	44	966.81001	0.50D-02	-0.00472	-0.94385
46	45	$967\ 4439$	0.20D-02	0.00283	1 41619
47	46	968 0809	0.20D-02	0.00200	0.32653
48	47	968 69964	0.10D-01	0.0101	1 01009
49	48	969 32806	0.50D-02	0.0101 0.00322	0.64476
50	49	969.94595	0.20D-02	0.00022	0 10995
51	50	970 55676	0.20D-02	-0.00237	-1 18656
52	51	971 14394	0.20D 02	0.01199	1 19929
54	53	972 33776	0.10D-01 0.20D-02	0.00115	0 57652
55	54	972 91656	0.20D-02	0.00110 0.00377	1 8865
56	55	973 50377	0.20D-02	-0.00875	-0.87467
58	57	974 62466	0.10D-01 0.20D-02	-0.00019	-0.24677
59	58	975 16985	0.20D-02	-0.00043 0.00874	1 74897
60	50	975.72074	0.30D-02 0.20D-02	0.0055	2 75943
61	60	976 97057	0.20D-02 0.50D-02	-0.00347	-0.60317
62	61	976 78521	0.30D-02 0.10D-01	0.01596	1 59605
63	62	077 31705	0.10D-01 0.50D 02	0.01000	2 27222
64	62	977.31703	0.30D-02	0.01130	2.27233
65	64	977.04001	0.20D-02	0.00222	1.10703
05	04	370.34031	0.10D-01	0.01009	1.00391
The	76 F	Pand 11 data	<i>I</i> " . — ·	D1 T" —	58
Une	; 1-0 L	-220.02	$J, J_{min} = 2$	$^{21}, J_{max} = 00002$	00
(Fr	··Avge r/Una	- 5.5D-05, C	$D_{01} D_{01} $	2 - 156	
	1/0110	Avge = -0.01	D-01, minist	1 - 1.50	
57	58	859.08204	0.20 D - 02	0.00498	2.48998
56	57	860.33158	$0.50 \text{D}{-}02$	0.01102	2.20495
55	56	861.59581	$0.50 \text{D}{-}02$	-0.00308	-0.61591
54	55	862.83288	0.20 D - 02	0.00451	2.2532
53	54	864.07722	0.20 D - 02	-0.00066	-0.32902
52	53	865.30411	$0.50 \text{D}{-}02$	0.00615	1.22935
51	52	866.53224	$0.50 \text{D}{-}02$	0.0062	1.24003
49	50	868.97529	0.20 D - 02	0.00297	1.485
47	48	871.39695	0.20 D - 02	-0.00099	-0.49664
44	45	874.97583	$0.50 \text{D}{-}02$	0.00498	0.99614
43	44	876.16792	0.20 D - 02	-0.00332	-1.66016
41	42	878.52396	$0.50 \text{D}{-}02$	-0.00858	-1.71697
40	41	879.68457	0.20 D - 02	-0.00223	-1.11489
39	40	880.84871	0.20 D - 02	-0.00502	-2.51214
38	39	882.01444	0.10D-01	-0.01506	-1.5059
37	38	883.15013	0.20D-02	-0.0007	-0.35232
34	35	886.57749	0.50 D - 02	-0.01194	-2.38707
32	33	888.81905	0.20D-02	-0.00454	-2.26764
28	29	893.25644	0.50D-02	-0.01267	-2.53437
23	24	898.6585	0.50D-02	-0.00783	-1.56681
22	23	899.72284	0.50D-02	-0.00819	-1.63891
$21^{-}$	22	900.78521	0.50D-02	-0.01241	-2.482
$\frac{1}{22}$	$\frac{-}{21}$	941.39059	0.50D-02	0.0054	1.08012
${23}$	$\frac{-1}{22}$	942,18474	0.20D-02	-0.0043	-2.14924
$\frac{-5}{24}$	${23}$	942.95884	0.20D-02	-0.00029	-0.14632
$\frac{1}{25}$	$\frac{10}{24}$	943.73506	0.20D-02	-0.00476	-2.38166
$\frac{10}{28}$	$\frac{1}{27}$	946 0026	0.50D-02	0.0047	0.93958
20	28	946 76226	0.50D-02	-0.00476	-1 75124
$\frac{20}{30}$	$\frac{20}{29}$	947.49661	0.20D-02	-0.00332	-1.65773

Table A.5, Fourier Transform Infrared Data for  ${
m ^{76}GeO}~({\rm cm^{-1}})~(Cont'd)$ 

		,			
J'	J''	Obs	Unc	Calc-Obs	(Calc-Obs)/Unc
32	31	948.95687	0.20D-02	-0.00329	-1.6432
33	32	949.67854	0.20 D - 02	-0.00448	-2.24081
34	33	950.39009	0.20 D - 02	-0.00201	-1.00462
35	34	951.09213	$0.50 \text{D}{-}02$	0.00349	0.69783
39	38	953.86134	0.20 D - 02	-0.00055	-0.27255
40	39	954.5375	0.20 D - 02	-0.00171	-0.85745
41	40	955.20727	0.20 D - 02	-0.00303	-1.51509
43	42	956.52341	0.20 D - 02	-0.00196	-0.98215
48	47	959.69944	0.20 D - 02	-0.00036	-0.18035
50	49	960.92475	0.20 D - 02	-0.00101	-0.50599
51	50	961.52508	0.20 D - 02	0.00099	0.49516
56	55	964.43572	0.20 D - 02	0.00161	0.80295

Table A.5, Fourier Transform Infrared Data for  ${
m ^{76}GeO}~({\rm cm^{-1}})~(Cont'd)$ 

## Appendix B

## Fourier Transform Electronic Data for WO

The spectroscopic data of WO relative to  $X0^+$  are listed in Table B.1. The spectroscopic data of WO relative to X1 are listed in Table B.2.

## B.1 Electronic Data for WO with Respect to $X0^+$

J'	J''	Obs	Obs-Calc	Unc	(Obs-Calc)/Unc
C(0	,0) B	and, R Branch	(p' = e, p'' =	= e)	
6	5	19186 43573	0.00337	0.003	11
7	6	19186.92407	-0.00081	0.003	-0.3
8	7	19187.37061	0.00162	0.003	0.5
10	9	19188.11498	0.00301	0.003	1.0
12	11	19188.66592	0.00469	0.003	1.6
13	12	19188.85978	-0.00342	0.003	-1.1
14	13	19189.01656	-0.00016	0.003	-0.1
15	14	19189.12908	0.0073	0.003	2.4
16	15	19189.17369	-0.00468	0.003	-1.6
19	18	19189.05358	-0.00364	0.003	-1.2
20	19	19188.91765	-0.00219	0.003	-0.7
21	20	19188.73566	0.00172	0.003	0.6
22	21	19188.48886	-0.01064	90.003	0.0
23	22	19188.23116	0.01464	90.003	0.0
24	23	19187.88571	0.00073	0.003	0.2
25	24	19187.49987	-0.00501	0.003	-1.7
26	25	19187.07612	-0.00006	0.003	0.0
27	26	19186.59656	-0.00232	0.003	-0.8
28	27	19186.06903	-0.00393	0.003	-1.3
29	28	19185.49739	-0.00101	0.003	-0.3
30	29	19184.8716	-0.00359	0.003	-1.2
31	30	19184.20295	-0.00034	0.003	-0.1
32	31	19183.48882	0.00614	0.003	2.0
33	32	19182.71812	0.00477	0.003	1.6
34	33	19181.89169	-0.00358	0.003	-1.2
35	34	19181.03005	0.00165	0.003	0.5
36	35	19180.12172	0.009	0.003	3.0
37	36	19179.15129	0.00309	0.005	0.6
38	37	19178.13322	-0.00158	0.003	-0.5
39	38	19177.07287	0.00039	0.003	0.1
40	39	19175.9658	0.00459	0.003	1.5
41	40	19174.79507	-0.00587	0.003	-2.0
42	41	19173.59395	0.00232	0.003	0.8
43	42	19172.34544	0.0122	90.003	0.0
44	43	19171.04176	0.01606	90.003	0.0
45	44	19169.6666	-0.00238	0.003	-0.8
47	46	19166.8141	0.00638	0.003	2.1
48	47	19165.29914	-0.00393	0.003	-1.3
49	48	19163.74622	-0.00276	0.003	-0.9
50	49	19162.13918	-0.00619	0.003	-2.1
51	50	19160.48489	-0.0073	0.003	-2.4
53	52	19157.03872	0.00199	0.003	0.7
55	54	19153.38025	-0.00166	0.003	-0.6
56	55	19151.48318	0.00368	0.003	1.2
57	56	19149.5285	0.00154	0.003	0.5
58	57	19147.52607	0.0019	0.003	0.6
C(0	,0) B	and, P Branch	(p' = e, p'' =	= e)	
1	2	19180.73613	-0.01433	0.003	-4.8
2	3	19179.80766	-0.01494	0.003	-5.0
3	4	19178.83738	-0.00903	0.003	-3.0

Table B.1: Electronic Data of  $^{184}\mathrm{WO}$  Relative to X0^+ (v=0)

		,			( )
J'	J''	Obs	Obs-Calc	Unc	(Obs-Calc)/Unc
4	5	19177.81506	-0.00684	0.003	-2.3
7	8	19174.46204	0.00361	0.003	1.2
8	9	19173.23679	-0.00388	0.003	-1.3
9	10	19171.98469	0.01009	90.003	0.0
10	11	19170.66419	0.00394	0.003	1.3
11	12	19169.29045	-0.00716	0.003	-2.4
12	13	19167.89021	0.00352	0.003	1.2
13	14	19166.42384	-0.00366	0.003	-1.2
14	15	19164.91868	-0.00136	0.003	-0.5
15	16	19163.36557	0.00125	0.003	0.4
16	17	19161.76344	0.0031	0.003	1.0
17	18	19160.07826	-0.02984	90.003	0.0
18	19	19158.3975	-0.0101	90.003	0.0
19	20	19156.65725	-0.00161	0.003	-0.5
20	21	19154.8631	0.00123	0.003	0.4
21	22	19153.01805	0.00142	0.005	0.3
22	23	19151.12444	0.00131	0.003	0.4
23	24	19149.18016	-0.00123	0.003	-0.4
24	25	19147.19604	0.00464	0.003	1.5
25	26	19145.15593	0.00278	0.003	0.9
28	29	19138.74797	-0.00086	0.003	-0.3
29	30	19136.51675	-0.00076	0.003	-0.3
30	31	19134.24474	0.00684	0.003	2.3
31	32	19131.9125	0.00252	0.003	0.8
32	33	19129.53497	0.00122	0.003	0.4
33	34	19127.11017	0.00098	0.003	0.3
34	35	19124.63388	-0.00239	0.003	-0.8
35	36	19122.11215	-0.00284	0.003	-0.9
36	37	19119.5442	-0.00112	0.003	-0.4
37	38	19116.92739	0.00015	0.003	0.1
38	39	19114.26149	0.00078	0.003	0.3
39	40	19111.5475	0.00179	0.003	0.6
40	41	19108.77884	-0.00337	0.003	-1.1
41	42	19105.97035	0.00018	0.003	0.1
42	43	19103.10883	-0.00072	0.003	-0.2
43	44	19100.20271	0.0024	0.003	0.8
44	45	19097.24521	0.0028	0.003	0.9
45	46	19094.23591	0.00012	0.003	0.0
46	47	19091.17719	-0.00322	0.003	-1.1
47	48	19088.07939	0.00319	0.003	1.1
C(0	,0) E	and, Q Branch	$\mathbf{n} (p' = \mathbf{f}, p'')$	= e)	
1	1	19182 43258	0.01963	90.003	0.0
2	2	19182 32401	0.01303 0.00742	0.003	2.5
1	2 1	10181 08734	0.00142	0.003	$2.0 \\ 2.7$
5	5	10181 75365	0.000	0.003	5.1
7	7	10181 11664	0.01318	0.003	15
8	8	10180 73613	0.0044	0.003	2.1
9	0	10180.20784	0.00322	0.003	15
10	10	19179 80766	-0.0044	0.003	-1 4
11	11	10170 98/06	0.00419	0.003	0.0
19	19	10178 7057	0.00201	0.003	0.5
12	12 12	10178 08006	0.00150	0.003	0.0
10 17	10 17	10177 /00090	0.00200 _0.00201	0.003	-0.7
14 15	14 15	10176 69339	0.00221	0.003	-0.1
10 16	10 16	10175 00741	0.00103	0.003	1.6
10 17	10 17	19175 00269	-0.00470	0.003	-1.0
19 19	19 19	1017/ 99719	-0.00033	0.003	-0.1
10	10	13114.44110	-0.00040	0.000	-0.4

Table B.1, Electronic Data of ¹⁸⁴WO Relative to X0⁺ (*Cont'd*)

J'	J''	Obs	Obs-Calc	Unc	(Obs-Calc)/Unc
19	19	19173.31542	0.00217	0.003	0.7
20	20	19172.34544	-0.00532	0.003	-1.8
21	21	19171.3403	0.00012	0.005	0.0
22	22	19170.28106	-0.00042	0.003	-0.1
23	23	19169.17317	-0.00147	0.003	-0.5
24	24	19168.02076	0.00114	0.003	0.4
25	25	19166.8141	-0.0023	0.003	-0.8
26	26	19165.56561	0.00069	0.003	0.2
27	27	19164.26485	-0.00029	0.003	-0.1
28	28	19162.9146	-0.00238	0.003	-0.8
29	29	19161.51835	-0.00203	0.003	-0.7
30	30	19160.07826	0.00301	0.003	1.0
31	31	19158.57808	-0.00342	0.003	-1.1
32	32	19157.03872	-0.00028	0.003	-0.1
33	33	19155.44681	-0.00084	0.003	-0.3
34	34	19153.80635	-0.00094	0.003	-0.3
35	35	19152.11946	0.00169	0.003	0.6
36	36	19150.37842	-0.0005	0.003	-0.2
37	37	19148.59215	0.0016	0.003	0.5
38	38	19146.75217	-0.00027	0.003	-0.1
39	39	19144.86225	-0.00211	0.003	-0.7
40	40	19142.92561	-0.00045	0.003	-0.2
42	42	19138.89977	0.0021	0.003	0.7
43	43	19136.80336	-0.00359	0.003	-1.2
45	45	19132.46155	-0.00912	90.003	0.0
46	46	19130.21753	-0.0068	90.003	0.0
47	47	19127.91675	-0.00851	90.003	0.0
48	48	19125.56819	-0.00481	90.003	0.0
49	49	19123.16067	-0.00637	90.003	0.0
C(0	, 1) B	and, R Branch	(p' = e, p'')	= e)	
24	้าว	18131 /33/5	0.00016	0.005	0.0
$\frac{24}{25}$	20	18131.43343	0.00010	0.005	0.0
$\frac{20}{26}$	$\frac{24}{25}$	18130 82647	-0.00094	0.005	-0.2
$\frac{20}{27}$	20 26	18130.82047	0.00412 0.00425	0.005	0.8
21	$\frac{20}{97}$	18130.44517	-0.00425	0.005	-0.8
20	21	18130.03219	-0.00089	0.005	-0.2
29	20	18129.00787	-0.01303	90.005	0.0
30 21	29 30	18129.00024	-0.00508	0.005	-1.0
20	00 91	18120.00007	-0.00388	0.005	-1.2
32 22	20	10127.9270	0.00809	0.005	1.7
24	32 22	18126 50662	0.0002	0.005	1.2
95 95	00 94	18120.09002	0.00295	0.005	0.0
30 36	04 25	18125.00995	-0.00398	0.005	-0.8
$\frac{30}{37}$	36	18120.09040	0.00103	0.005	0.2
37 20	30 27	10124.20000	-0.01018	90.005	0.0
20 20	37 20	10120.40204	-0.00324	0.005	-0.0
39	00 20	10122.4707	-0.02013	90.005	0.0
40	39 40	10121.04009	0.00072 0.00227	0.005	0.1
41	40	10120.04000	0.00237	0.005	0.0
42 49	41 49	10119.49814 18118 40745	-0.00194	0.005	-0.4
40 44	42 49	10110.40740	-0.00373 0.01995	0.000	-0.7
44 45	43	10116 10115	0.01225	0.005	2.0
40 40	44 45	10110.10110	0.00298	0.005	U.U 1 0
40	40	10114.80///	-0.0002	0.005	-1.2 1.0
41	40	10110.00010	0.0094	0.005	1.9
48 40	41	18112.29313	0.00318	0.005	0.0
49 E0	4ð	10110.93210	0.00214	0.005	0.4
00	49	18109.53841	0.01300	90.005	0.0

Table B.1, Electronic Data of  $^{184}\mathrm{WO}$  Relative to X0^+ (Cont'd)

		)			()
J'	J''	Obs	Obs-Calc	Unc	(Obs-Calc)/Unc
51	50	18108.09194	0.01787	90.005	0.0
53	52	18105.02986	-0.0064	0.005	-1.3
54	53	18103.45186	0.00286	0.005	0.6
55	54	18101.81991	0.00384	0.005	0.8
56	55	18100.14492	0.0075	0.005	1.5
57	56	18098.39823	-0.01472	0.005	-2.9
58	57	18096.64111	-0.00149	0.005	-0.3
59	58	18094.81075	-0.01553	0.005	-3.1
60	59	18092.95907	-0.00483	0.005	-1.0
61	60	18091.0547	-0.00068	0.005	-0.1
62	61	18089.09904	-0.00158	0.005	-0.3
63	62	18087.0884	-0.01113	0.005	-2.2
64	63	18085.06133	0.00933	0.005	1.9
69	68	18074.12695	0.01303	90.005	0.0
70	69	18071.82767	0.04229	90.005	0.0
71	70	18069.44556	0.036	90.005	0.0
72	71	18067.0287	0.04237	90.005	0.0
73	72	18064.55675	0.04121	90.005	0.0
74	73	18062.01735	0.02032	90.005	0.0
75	74	18059.46125	0.0306	90.005	0.0
76	75	18056.83251	0.01627	90.005	0.0
C(0	,1) B	and, P Branch	(p' = e, p''	= e)	
4	5	18120.32157	0.00693	90.005	0.0
$\overline{5}$	6	18119.28037	0.01427	90.005	0.0
6	7	18118.15061	-0.02268	0.005	-4.5
$\tilde{7}$	8	18117.03825	0.00202	0.005	0.4
8	9	18115.84247	-0.01243	0.005	-2.5
9	10	18114.63351	0.00418	0.005	0.8
10	11	18113.35838	-0.00112	0.005	-0.2
11	12	18112.05593	0.01049	90.005	0.0
12	13	18110.68599	-0.00114	0.005	-0.2
13	14	18109.28819	0.0036	0.005	0.7
14	15	18107.83542	-0.00239	0.005	-0.5
15	16	18106.35426	0.00745	0.005	1.5
16	17	18104.81374	0.00217	0.005	0.4
17	18	18103.22846	-0.00365	0.005	-0.7
18	19	18101.60515	-0.00328	0.005	-0.7
19	20	18099.93861	-0.00191	0.005	-0.4
20	21	18098.23309	0.00471	0.005	0.9
21	22	18096.47324	0.00122	0.005	0.2
22	23	18094.67384	0.0024	0.005	0.5
23	24	18092.82948	0.00286	0.005	0.6
24	25	18090.93478	-0.00279	0.005	-0.6
25	26	18088.99908	-0.00521	0.005	-1.0
26	27	18087.02705	0.00029	0.005	0.1
27	28	18084.97803	-0.02696	90.005	0.0
28	29	18082.94002	0.00106	0.005	0.2
29	30	18080.8239	-0.00478	0.005	-1.0
30	31	18078.68206	0.00794	0.005	1.6
31	32	18076.46291	-0.01237	0.005	-2.5
32	33	18074.22866	-0.00349	0.005	-0.7
33	34	18071.94306	-0.00165	0.005	-0.3
34	35	18069.60444	-0.00851	0.005	-1.7
35	36	18067.23978	0.00293	0.005	0.6
36	37	18064.81668	0.00028	0.005	0.1
37	38	18062.33776	-0.01382	0.005	-2.8
38	39	18059.84169	-0.00068	0.005	-0.1

Table B.1, Electronic Data of  $^{184}\mathrm{WO}$  Relative to X0^+  $(\mathit{Cont'd})$ 

		,			( ( )
J'	J''	Obs	Obs-Calc	Unc	(Obs-Calc)/Unc
39	40	18057.30572	0.01699	0.005	3.4
40	41	18054.68754	-0.00312	0.005	-0.6
41	42	18052.05182	0.00371	0.005	0.7
42	43	18049.35947	-0.0016	0.005	-0.3
43	44	18046.6275	-0.00201	0.005	-0.4
44	45	18043.85492	0.00154	0.005	0.3
45	46	18041.02868	-0.00397	0.005	-0.8
46	47	18038.16528	-0.00201	0.005	-0.4
47	48	18035.26124	0.00399	0.005	0.8
48	49	18032.30366	0.00117	0.005	0.2
49	50	18029.30465	0.00168	0.005	0.3
50	51	18026.26657	0.00794	0.005	1.6
51	52	18023.17562	0.00619	0.005	1.2
52	53	18020.02773	-0.00758	0.005	-1.5
53	54	18016.86489	0.00869	0.005	1.7
54	55	18013.62767	-0.00439	0.005	-0.9
55	56	18010.35267	-0.01014	0.005	-2.0
56	57	18007.04761	-0.00078	0.005	-0.2
57	58	18003.69006	0.00135	0.005	0.3
58	59	18000.28656	0.00284	0.005	0.6
59	60	17996.84228	0.00896	0.005	1.8
60	61	17993.35323	0.01579	0.005	3.2
C(0	,1) B	and, Q Branch	p' = f, p'' =	= e)	
4	4	18124.47747	0.02564	90.005	0.0
5	5	18124.25388	0.02268	90.005	0.0
6	6	18123.98124	0.01477	90.005	0.0
7	7	18123.66899	0.01135	90.005	0.0
8	8	18123.30977	0.00507	0.005	1.0
9	9	18122.91349	0.00581	0.005	1.2
10	10	18122.4767	0.01012	0.005	2.0
11	11	18121.98337	0.00197	0.005	0.4
12	12	18121.45497	0.00281	0.005	0.6
13	13	18120.8802	0.00134	0.005	0.3
14	14	18120.26073	-0.00078	0.005	-0.2
15	15	18119.60225	0.00213	0.005	0.4
16	16	18118.89441	-0.00026	0.005	-0.1
17	17	18118.15061	0.00542	0.005	1.1
18	18	18117.35251	0.00086	0.005	0.2
19	19	18116.51408	0.00001	0.005	0.0
20	20	18115.03408	0.00166	0.005	0.3
21	21	18114.7070	0.0009	0.005	0.2
22	22	18113.73740	0.00058	0.005	0.1
20 94	20 94	10112.71941	-0.00303	0.005	-0.7
24 25	24 25	10111.00502	-0.00155	0.005	-0.5
20	20	10110.00270	0.00010	0.005	0.0
$\frac{20}{27}$	$\frac{20}{97}$	10109.41007	-0.00249	0.005	-0.0
⊿1 28	⊿1 28	18106.02001	-0.00100	0.003	-0.0
20 20	20 20	18105 7081	-0.00109	0.003	-0.2
29 30	29 30	18104 38602	-0.00241	0.005	-0.1
31	31	18103 01254	-0.00518	0.005	-1.0
32	32	18101 60515	0.00010	0.005	0.2
33	33	18100 14492	-0.00112	0.005	-0.2
34	34	18098 64185	-0.00096	0.005	-0.2
35	35	18097 09246	-0.00199	0.005	-0.4
36	36	18095.50086	0.00008	0.005	0.0
37	37	18093.86444	0.00281	0.005	0.6

Table B.1, Electronic Data of  $^{184}\mathrm{WO}$  Relative to X0^+  $(\mathit{Cont'd})$ 

			)			()	
-	J'	J''	Obs	Obs-Calc	Unc	(Obs-Calc)/Unc	
-	38	38	18092.17654	-0.00024	0.005	0.0	
	39	39	18090.44836	0.00234	0.005	0.5	
	40	40	18088.67088	0.00179	0.005	0.4	
	41	41	18086.84445	-0.00127	0.005	-0.3	
	42	42	18084.97803	0.00241	0.005	0.5	
	43	43	18083.05676	-0.00171	0.005	-0.3	
	44	44	18081.09411	0.00017	90.005	0.0	
	45	45	18079.06807	-0.01357	90.005	0.0	
	46	46	18077.01089	-0.0103	90.005	0.0	
	47	47	18074.9024	-0.00974	90.005	0.0	
	48	48	18072.74058	-0.01347	90.005	0.0	
	49	49	18070.51936	-0.02705	90.005	0.0	
	50	50	18068.25594	-0.03276	90.005	0.0	
	51	51	18065.94968	-0.03068	90.005	0.0	
	52	52	18063.55561	-0.06518	90.005	0.0	
	53	$53^{-1}$	18061.12832	-0.08102	90.005	0.0	
	54	54	18058.64409	-0.10125	90.005	0.0	
	55	55	18056 09932	-0.12875	90.005	0.0	
	56	56	18053 49455	-0.16221	90.005	0.0	
	57	57	18050 82671	-0.2039	90.005	0.0	
	58	58	18048 12254	-0.2000	90.005	0.0	
	50	50	18045 20207	-0.22021	90.005	0.0	
	60	60	18049.29251	-0.31731 0.30373	90.005	0.0	
	61	61	18030 4888	-0.33373	90.005	0.0	
	62	62	18036 4783	0.56711	90.005	0.0	
	62	62	18030.4785	0.67002	90.005	0.0	
	64	64	18030.39031	-0.07992	90.005	0.0	
	04 65	04 65	18030.23380	-0.19100	90.005	0.0	
	00 66	00 66	10020.99000	-0.93077	90.005	0.0	
	00 67	00 67	10023.00413	-1.0848	90.005	0.0	
	07	07	16020.26555	-1.20304	90.005	0.0	
	C(0,	2) B	and, R Branch	(p' = e, p'')	= e)		
	91	20	17083 34850	0.00206	0.003	1.0	
	$\frac{21}{22}$	20 91	17083 28867	0.00290 0.00748	0.003	2.5	
	22	$\frac{21}{22}$	17083.17831	0.00748	0.003	2.5	
	20	22	17083 02736	0.00201	0.003	1.9	
	$\frac{24}{25}$	20	17082 83166	-0.00333	0.003	-1.2	
	20	$\frac{24}{95}$	17082.85100	-0.01340 0.01678	0.003	-4.5	
	20 97	20	17082.00202	-0.01078	90.003	0.0	
	21	20	17082.00490	-0.01704	90.003	0.0	
	20 20	21	17082.00122	-0.04338	90.003	0.0	
	29 20	∠0 20	17081 94076	0.00242	90.009	0.0	
	ี่ 21	29 20	17080 800	0.04100	90.003	0.0	
	ე <u>1</u> ეე	ეე ე1	17080 49419	0.01988	90.003	0.0	
	ა∠ ეე	ა1 ეი	17070.00470	0.014/1	90.003	0.0	
	<b>うう</b> う₄	32 22	17070.25510	0.005/1	90.003	0.0	
	34 25	პპ ე₄	17079 756512	0.00700	0.003	2.4	
	30 96	34 25	17079 10090	0.0002	0.003	0.0	
	30 97	30 20	17077 45554	-0.01/48	90.003	0.0	
	31 20	30 97	17076 71204	0.00492	0.003	1.0	
	38 20	31 20	17075 00041	-0.02353	90.003	0.0	
	39	38 20	17075 1022	0.00075	0.003	0.2	
	40	39	17075.1832	-0.00265	0.003	-0.9	
	41	40	17074.34291	-0.00619	0.003	-2.1	
	42	41	17073.48209	0.01074	90.003	0.0	
	C(0,2) Band, P Branch $(p' = e, p'' = e)$						
	к, ́	ĥ	17060 8977	0.00212	0.003	1.0	
	6	7	17068.76484	-0.0015	0.003	-0.5	
	~	•			0.000		

Table B.1, Electronic Data of  $^{184}\mathrm{WO}$  Relative to X0^+  $(\mathit{Cont'd})$
		,			()
J'	J''	Obs	Obs-Calc	Unc	(Obs-Calc)/Unc
7	8	17067.66325	0.00162	0.003	0.5
8	9	17066.51333	-0.00338	0.003	-1.1
9	10	17065.31736	-0.01423	0.003	-4.7
10	11	17064.10294	-0.00334	0.003	-1.1
11	12	17062.82665	-0.01412	90.003	0.0
12	13	17061.54215	0.00706	0.003	2.4
13	14	17060.19706	0.00784	0.003	2.6
14	15	17058.81422	0.01103	90.003	0.0
15	16	17057.4005	0.02352	90.003	0.0
16	17	17055.90702	-0.00359	0.003	-1.2
17	18	17054.39495	-0.00913	0.003	-3.0
18	19	17052.84792	-0.00948	0.003	-3.2
19	20	17051.27773	0.00718	0.003	2.4
20	21	17049.03902	-0.00454	0.003	-1.5
22	20 94	17040.20100 17044.5027	-0.01802	90.003	0.0
23 24	24 25	17044.0007	-0.01794	90.003	0.0
$\frac{24}{25}$	20 26	17042.70900	-0.02447 0.02204	90.003	0.0
$\frac{20}{26}$	$\frac{20}{27}$	17040.0033 17030.00153	-0.02294	90.003	0.0
$\frac{20}{27}$	21 28	17039.00133 17037 19779	-0.03070	90.003	0.0
$\frac{21}{28}$	$\frac{20}{20}$	17035 17519	-0.00244	90.003	0.0
20	30	17033 20829	0.01494	90.003	0.0
30	31	17030.20020 17031.15361	-0.01103	90.003	0.0
31	32	17029 09478	-0.00092	0.003	-0.3
33	34	17024.84352	0.00641	0.003	2.1
34	35	17022.64265	-0.00476	0.003	-1.6
$3\overline{5}$	36	17020.40188	-0.01554	90.003	0.0
36	37	17018.14793	0.00084	0.003	0.3
37	38	17015.83628	-0.00014	0.003	0.0
38	39	17013.48774	0.00239	0.003	0.8
39	40	17011.07252	-0.02135	90.003	0.0
40	41	17008.67512	0.01319	90.003	0.0
41	42	17006.18672	-0.00277	0.003	-0.9
42	43	17003.67036	-0.00614	0.003	-2.0
43	44	17001.12599	0.00307	0.003	1.0
C(0	2) B	and O Branch	(n' = f n'')	= e)	
0 (0	, _) _	17075 00007	(p  1, p	0,000	4.0
2	2	17075.23837	-0.0143	0.003	-4.8
3	3	17075.12785	-0.00457	0.003	-1.5
4	4	17074.97811	0.00602	0.003	2.0
5	0 6	17074.77909	0.00001	0.003	2.1
7	7	17074.0001	0.00189	0.003	0.0
8	8	17073 03/17	0.00133	0.003	0.4
9	9	17073 58105	0.00404 0.01156	0.003	3.0
10	10	17073.00105 17073.17745	0.01150	0.003	2.9
11	11	17072 72681	-0.00137	0.003	-0.5
12	12	17072.72001 17072.25491	0.00741	0.003	2.5
13	13	17071 73262	0.0058	0.003	19
14	14	17071.16174	-0.00441	0.003	-1.5
15	15	17070.56645	0.00096	0.003	0.3
$17^{-5}$	$17^{-5}$	17069.23761	-0.00662	0.003	-2.2
18	18	17068.52057	-0.00306	0.003	-1.0
19	19	17067.75353	-0.00951	90.003	0.0
20	20	17066.96336	0.0009	0.003	0.3
21	21	17066.11623	-0.00564	0.003	-1.9
22	22	17065.22885	-0.01241	90.003	0.0
23	23	17064.31198	-0.00862	90.003	0.0

Table B.1, Electronic Data of  $^{184}\mathrm{WO}$  Relative to X0⁺ (Cont'd)

1/	τ//	Oha	Oba Cala	Unc	(Obs. Cala) /Ups
J	J	UDS	Obs-Calc	Une	(Obs-Calc)/Onc
24	24	17063.34601	-0.01386	90.003	0.0
25	25	17062.34266	-0.01636	90.003	0.0
26	26	17061.28491	-0.0331	90.003	0.0
27	27	17060.19706	-0.03972	90.003	0.0
29	29	17057.99621	0.04281	90.003	0.0
30	30	17056.77658	0.02549	90.003	0.0
31	31	17055.52256	0.01432	90.003	0.0
32	32	17054 23169	0.00696	90.003	0.0
33	33	17052 90521	0.000000	90.003	0.0
24	24	17052.50521	0.00410	0.003	1.9
04 95	04 95	17051.00074	0.00352	0.003	1.2
30 90	30	17030.12830	-0.00055	0.005	-0.1
30	30	17048.08054	0.0052	0.003	1.7
37	37	17047.19483	0.00251	0.003	0.8
38	38	17045.66189	0.00027	0.003	0.1
39	39	17044.09165	0.00264	0.003	0.9
40	40	17042.47083	-0.00339	0.003	-1.1
41	41	17040.81916	0.00217	0.003	0.7
42	42	17039.11518	-0.00181	0.003	-0.6
43	43	17037.37056	-0.00334	90.003	0.0
44	44	17035.58393	-0.00343	90.003	0.0
45	$45^{-1}$	17033.75162	-0.00534	90.003	0.0
46	$\frac{1}{46}$	17031 88303	0.00073	90.003	0.0
10	10	17020 0/37/	-0.01018	90.003	0.0
48	48	17023.34314	0.01910	00.003	0.0
40	40	17027.90011	-0.03223	90.003	0.0
49	49	17020.97410	-0.01367	90.003	0.0
50 F 1	00 E 1	17023.90008	-0.02030	90.003	0.0
51	51	17021.77649	-0.05146	90.003	0.0
52	52	17019.62427	-0.05269	90.003	0.0
53	53	17017.39854	-0.07924	90.003	0.0
54	54	17015.14148	-0.08822	90.003	0.0
55	55	17012.8295	-0.10244	90.003	0.0
56	56	17010.43642	-0.14729	90.003	0.0
57	57	17008.01107	-0.17307	90.003	0.0
58	58	17005.50639	-0.22593	90.003	0.0
59	59	17002.96381	-0.26349	90.003	0.0
60	60	17000.35876	-0.30931	90.003	0.0
C(1	,2) B	and, R Branch	(p' = e, p'')	= e)	
È	· /	10000 00505		,	0.0
5	4	18006.06595	0.00973	90.003	0.0
6	5	18006.6087	-0.00016	0.003	-0.1
7	6	18007.12231	0.0059	0.003	2.0
8	$\overline{7}$	18007.58419	0.00533	0.003	1.8
9	8	18007.97378	-0.02242	90.003	0.0
10	9	18008.38049	0.01206	90.003	0.0
11	10	18008.69258	-0.00296	0.003	-1.0
12	11	18008.96128	-0.01626	90.003	0.0
13	12	18009.21042	-0.00398	0.003	-1.3
14	13	18009.40471	-0.00142	0.003	-0.5
15	14	18009.55219	-0.00053	0.003	-0.2
16	15	18009.65808	0.00391	0.003	1.3
$19^{-0}$	18	18009.70693	0.01935	90.003	0.0
20	19	18009 60797	-0.00042	0.003	-0.1
20	20	18009 47153	-0.0125	00 003	0.0
21 99	20 91	18000 307/0	-0.0120	0.003	_2 3
22 92	21 99	18000 08797	0.00033	0.003	-2.5
20 94	44 99	10003.00121	-0.01240 0.01744	00.000 00.000	0.0
24 25	⊿ə 94	10000.02200	-0.01744	90.000	0.0
20 90	24 05	10000.01/0	-0.01/19	90.003	0.0
20	$_{20}$	18008.10887	-0.01548	90.003	0.0

Table B.1, Electronic Data of  184 WO Relative to X0⁺ (*Cont'd*)

			)			()
j	Ι′	J''	Obs	Obs-Calc	Unc	(Obs-Calc)/Unc
2	7	26	18007.76461	-0.02418	90.003	0.0
2	9	28	18006.92012	0.05814	90.003	0.0
3	0	29	18006.36443	0.03373	90.003	0.0
3	1	30	18005.77511	0.02094	90.003	0.0
3	2	31	18005.14362	0.01125	90.003	0.0
3	3	32	18004.47511	0.00983	0.003	3.3
3	4	33	18003.76754	0.01464	0.003	4.9
3	5	34	18002.99671	0.00151	0.003	0.5
3	6	35	18002.1909	-0.00128	0.003	-0.4
3	7	36	18001.34161	-0.0022	0.003	-0.7
3	8	37	18000.45568	0.00561	0.003	1.9
3	9	38	17999.51272	0.00176	0.003	0.6
4	0	39	17998.52839	0.00195	0.003	0.6
4	1	40	17997.5213	0.0248	90.003	0.0
4	2	41	17996.43017	0.00907	0.003	3.0
4	3	42	17995.3017	0.00147	0.003	0.5
4	4	43	17994.13395	0.0001	0.003	0.0
4	5	44	17992.90555	-0.01639	90.003	0.0
4	6	45	17991.66983	0.00536	0.003	1.8
4	7	46	17990.35067	-0.01073	0.003	-3.6
4	8	47	17989.01202	-0.00067	0.003	-0.2
4	9	48	17987.61124	-0.00708	0.003	-2.4
5	0	49	17986.16412	-0.01411	0.003	-4.7
5	1	50	17984.71712	0.02474	90.003	0.0
5	2	51	17983.15916	-0.00157	0.003	-0.5
5	3	52	17981.58418	0.00094	0.003	0.3
5	4	53	17979.95555	-0.00429	0.003	-1.4
5	5	54	17978.28876	-0.00173	0.003	-0.6
5	6	55	17976.56291	-0.01222	90.003	0.0
5	7	56	17974.81125	-0.00244	0.003	-0.8
5	8	57	17973.02015	0.01403	0.003	4.7
5	9	58	17971.15144	-0.0009	0.003	-0.3
C	C(1,	2) E	and, P Branch	(p' = e, p'')	= e)	
	7	8	17994.75244	-0.01894	90.003	0.0
	8	9	17993.59836	0.01023	90.003	0.0
	9	10	17992.36131	0.00141	0.003	0.5
1	0	11	17991.09064	0.00395	0.003	1.3
1	1	12	17989.77527	0.00676	0.003	2.3
1	2	13	17988.40617	0.00081	0.003	0.3
1	3	14	17986.99789	0.00063	0.003	0.2
1	4	15	17985.54399	-0.00021	0.003	-0.1
1	5	16	17984.04724	0.00104	0.003	0.3
1	6	17	17982.51516	0.01189	90.003	0.0
1	7	18	17980.9049	-0.01051	0.003	-3.5
1	8	19	17979.26381	-0.01881	90.003	0.0
1	9	20	17977.60265	-0.00228	0.003	-0.8
2	0	21	17975.87627	-0.00605	0.003	-2.0
2	1	22	17974.11261	-0.00219	0.003	-0.7
2	2	23	17972.29503	-0.00736	0.003	-2.5
2	3	24	17970.43589	-0.0092	90.003	0.0
2	4	25	17968.52909	-0.0138	90.003	0.0
2	C C	26	17966.57161	-0.0242	90.003	0.0
2	0	21	17060 50175	-0.03987	90.003	0.0
2	ð	29 20	17059 20005	0.0305	90.003	0.0
2	9	პ∪ ვ1	17908.38020 17056 1096	0.02102	90.003	0.0
ა ე	1	31 30	17052 07219	0.01140 0.00242	00.003 90.003	0.0
· · ·		.14	11200.21010	11.11/24.	20.000	11.11

Table B.1, Electronic Data of  $^{184}\mathrm{WO}$  Relative to X0^+  $(\mathit{Cont'd})$ 

		,			()
J'	J''	Obs	Obs-Calc	Unc	(Obs-Calc)/Unc
32	33	17951.71405	0.00457	0.003	1.5
33	34	17949.40841	0.00509	0.003	1.7
34	35	17947.05598	0.00373	0.003	1.2
35	36	17944.65309	-0.0032	0.003	-1.1
36	37	17942.21732	0.00192	0.003	0.6
37	38	17939.72929	-0.00031	0.003	-0.1
38	39	17937.19641	-0.00245	0.003	-0.8
39	40	17934.62289	-0.00028	0.003	-0.1
40	41	17932.00366	0.00114	0.003	0.4
41	42	17929.3382	0.00132	0.003	0.4
42	43	17926.6242	-0.00205	0.003	-0.7
43	44	17923.87329	0.0027	0.003	0.9
44	45	17921.06711	-0.00278	0.003	-0.9
45	46	17918.22566	0.00154	0.003	0.5
46	47	17915.33637	0.00313	0.003	1.0
47	48	17912.39835	0.00111	0.003	0.4
48	49	17909.40998	-0.00609	0.003	-2.0
49	50	17906.38285	-0.00685	0.003	-2.3
50	51	17903.32078	0.00269	0.003	0.9
51	52	17900.20495	0.00376	0.003	1.3
C(1	,2) B	and, Q Branch	(p' = f, p'' =	= e)	
2	2	18002.48492	0.0112	0.003	3.7
3	3	18002.34545	0.01497	0.003	5.0
4	4	18002.14303	0.00373	0.003	1.2
5	5	18001.91052	0.01051	0.003	3.5
6	6	18001.61321	0.00079	0.003	0.3
7	7	18001.285	0.00874	0.003	2.9
8	8	18000.86789	-0.02336	90.003	0.0
9	9	18000.45568	-0.00139	0.003	-0.5
10	10	17999.97139	-0.00194	0.003	-0.6
11	11	17999.43058	-0.00905	0.003	-3.0
12	12	17998.84682	-0.00868	0.003	-2.9
13	13	17998.21178	-0.00867	0.003	-2.9
14	14	17997.5213	-0.01262	0.003	-4.2
15	15	17996.78608	-0.00927	0.003	-3.1
16	16	17995.99408	-0.01001	0.003	-3.3
17	17	17995.15453	-0.00494	0.003	-1.6
18	18	17994.25704	-0.00375	0.003	-1.2
19	19	17993.30381	-0.00346	0.003	-1.2
20	20	17992.29505	-0.00306	0.003	-1.0
21	21	17991.23331	0.00085	0.003	0.3
22	22	17990.11455	0.00513	0.003	1.7
23	23	17988.93092	0.00286	0.003	1.0
24	24	17987.68957	0.00219	0.003	0.7
25	25	17986.38889	0.00254	90.003	0.0
26	26	17985.01808	-0.0058	90.003	0.0
27	27	17983.57381	-0.02504	90.003	0.0
29	29	17980.60872	0.05238	90.003	0.0
30	30	17978.96103	0.02468	90.003	0.0
31 20	31 20	17075 40000	0.01446	90.003	U.U 1 9
32 22	32 22	17072 66505	0.00375	0.003	1.3
<b></b> づづ っ₄	<b></b> づづ っ⊿	17071 75769	0.00057	0.003	0.2
54 25	34 วะ	17060 79499	-0.00894	0.003	-ə.U 9 4
30 96	30 90	17067 72762	-0.01024	0.003	-0.4 2.0
30 27	30 37	17065 69977	-0.00971	0.003	-3.2 1 7
२ १	२ १२	17063 44079	0.00018	0.003	1.1 6.4
00	00	11300.44010	0.01940	0.000	0.4

Table B.1, Electronic Data of  $^{184}\mathrm{WO}$  Relative to X0⁺ (Cont'd)

j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j<	/۲	т//	01	Oh = O I	TT	(Oha O - 1 -) / T
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	J	J	UDS	Obs-Calc	Unc	(UDS-Calc)/Unc
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39	39	17961.19701	0.05762	90.003	0.0
41       41       17956.48935       0.16172       90.003       0.0         42       42       17951.5009       0.32772       90.003       0.0         C(1,3)       Band, R       Branch (p' = e, p'' = e)       0.003       0.3         22       21       16968.6299       -0.00546       0.003       -0.3         23       22       16968.50089       -0.00243       0.003       -0.8         25       24       16968.29164       -0.00243       0.003       -0.8         26       16967.75499       0.00005       0.003       0.0         28       27       16967.42072       -0.00286       0.003       -1.0         29       28       16967.03448       -0.01653       90.003       0.1         30       29       16966.62814       -0.00286       0.003       -1.1         23       31       16965.68235       -0.00135       0.003       -0.5         33       32       16965.1487       0.0028       0.003       1.1         34       38       16963.28657       -0.00178       0.003       0.6         37       16961.84286       0.00337       0.03       1.6         38	40	40	17958.87159	0.09621	90.003	0.0
42       42       17954.02878       0.23455       90.003       0.0         C(1,3)       Band, R       Branch ( $p' = e, p'' = e$ )       22       21       16968.679485       0.00096       0.003       0.3         23       22       16968.66299       -0.00546       0.003       -0.8         24       23       16968.50089       -0.00966       0.003       -0.8         24       23       16968.29164       -0.00243       0.003       -0.8         25       24       16968.29164       -0.00243       0.003       0.0         27       26       16967.42072       -0.00286       0.003       1.0         29       28       16967.42072       -0.00286       0.003       1.1         29       28       16967.42072       -0.0038       0.003       1.1         30       16966.2814       -0.00038       0.003       1.1         33       21       16965.1487       0.0028       0.003       1.0         36       35       16963.28657       -0.00178       0.003       0.6         37       36       16962.29055       0.0033       0.0       3.1         40       39       16960.23233	41	41	17956.48935	0.16172	90.003	0.0
43       43       17951.5009 $0.32772$ $90.003$ $0.0$ $C(1, 3)$ Band, R       Branch $(p' = e, p'' = e)$ 22       21       16968.6299 $-0.00546$ $0.003$ $0.3$ 23       22       16968.6089 $-0.00096$ $0.003$ $-0.3$ 24       23       16968.29164 $-0.00243$ $0.003$ $-0.3$ 25       24       16966.2914 $-0.00906$ $0.003$ $-0.003$ 27       26       16967.74299 $-0.00050$ $0.003$ $-1.0$ 29       28       16967.03448 $-0.01653$ $90.003$ $0.0$ 30       29       16966.62814 $-0.00907$ $0.003$ $-1.2$ 33       32       16965.1487 $0.0028$ $0.003$ $-1.2$ 33       32       16965.46831 $-0.0178$ $0.003$ $-0.6$ 37       36       16963.28657 $-0.00178$ $0.003$ $0.6$ 42       16957.50657 $0.00337$ $0.003$ $0.6$ 42       16955.44901 $-0.01751$ $90.003$ $0.$	42	42	17954.02878	0.23455	90.003	0.0
C(1, 3) Band, R Branch $(p' = e, p'' = e)$ 22         21         16968.79485         0.00096         0.003         0.3           23         22         16968.66299         -0.00966         0.003         -0.3           24         23         16968.50089         -0.00966         0.003         -0.3           25         24         16968.20262         -0.01548         90.003         0.0           25         27         16967.42072         -0.00286         0.003         -1.0           29         28         16967.03448         -0.01653         90.003         0.0           30         29         16966.68235         -0.00358         0.003         -1.2           33         16965.1487         0.00286         0.003         0.1           34         33         16964.56831         -0.00175         0.003         -0.5           35         34         16963.28657         -0.00178         0.003         0.3           36         16962.59055         0.00477         0.003         1.6           37         36         16962.59057         0.0033         0.3           40         39         16960.023233         0.0018         0.003	43	43	17951.5009	0.32772	90.003	0.0
$\begin{array}{c} 21 & 21 & 16968.79485 & 0.00096 & 0.003 & 0.3 \\ 23 & 22 & 16968.6299 & -0.00546 & 0.003 & -1.8 \\ 24 & 23 & 16968.50089 & -0.00096 & 0.003 & -0.8 \\ 25 & 24 & 16968.29164 & -0.00243 & 0.003 & -0.8 \\ 26 & 25 & 16968.02962 & -0.01548 & 90.003 & 0.0 \\ 27 & 26 & 16967.42072 & -0.00286 & 0.003 & -1.0 \\ 29 & 28 & 16967.42072 & -0.00286 & 0.003 & -1.1 \\ 29 & 28 & 16967.03448 & -0.01653 & 90.003 & 0.0 \\ 30 & 29 & 16966.62814 & -0.00907 & 0.003 & -3.0 \\ 31 & 30 & 16966.18961 & 0.00742 & 0.003 & 2.5 \\ 32 & 31 & 16965.68235 & -0.00358 & 0.003 & -1.2 \\ 33 & 32 & 16965.1487 & 0.00028 & 0.003 & 0.1 \\ 34 & 33 & 16964.56831 & -0.00135 & 0.003 & -0.5 \\ 35 & 34 & 16963.9526 & 0.00296 & 0.003 & 1.1 \\ 36 & 35 & 16963.28657 & -0.00178 & 0.003 & -0.6 \\ 37 & 36 & 16962.59055 & 0.00477 & 0.003 & 1.6 \\ 38 & 37 & 16961.84286 & 0.00187 & 0.003 & 0.6 \\ 42 & 41 & 16958.44475 & -0.00881 & 0.003 & -2.9 \\ 43 & 42 & 16957.50657 & 0.00337 & 0.003 & 1.1 \\ 44 & 43 & 16956.49401 & -0.01751 & 90.003 & 0.0 \\ 45 & 44 & 16955.47966 & 0.00266 & 0.003 & -1.3 \\ 47 & 46 & 16954.40041 & -0.00378 & 0.003 & -1.4 \\ 51 & 50 & 16948.41954 & 0.00266 & 0.003 & -1.3 \\ 47 & 46 & 16952.13281 & 0.00126 & 0.003 & 0.4 \\ 49 & 81 & 16950.93784 & 0.00461 & 0.003 & 1.5 \\ 50 & 49 & 16949.6893 & -0.00428 & 0.003 & -1.4 \\ 51 & 50 & 16948.41954 & 0.00696 & 0.003 & -3.2 \\ 54 & 53 & 16944.32191 & 0.00031 & 0.003 & 0.1 \\ 55 & 54 & 16945.73782 & 0.01122 & 0.005 & 2.2 \\ 54 & 53 & 16944.32191 & 0.00031 & 0.003 & 0.1 \\ 55 & 54 & 16945.73789 & 0.00212 & 0.003 & -7 \\ 78 & 16957.63879 & 0.00417 & 0.003 & 1.4 \\ 4 & 5 & 16956.65002 & -0.00177 & 0.003 & 0.0 \\ 7 & 8 & 16957.63879 & 0.00212 & 0.003 & -2.6 \\ 6 & 7 & 16954.58397 & 0.00121 & 0.003 & 0.7 \\ 56 & 55 & 16941.37814 & -0.00184 & 0.003 & -3.2 \\ 57 & 56 & 16939.84442 & -0.01421 & 90.003 & 0.0 \\ 7 & 8 & 16957.63879 & 0.00212 & 0.003 & -0.6 \\ 5 & 6 & 16955.6395 & 0.00592 & 0.003 & 2.0 \\ 6 & 7 & 16954.58397 & 0.00177 & 0.003 & 1.4 \\ 4 & 5 & 16956.45002 & -0.00417 & 0.003 & 1.5 \\ 15 & 16 & 16943.13774 & -0.00189 & 0.003 & -0.6 \\ 16 & $	C(1	3) B	and P Branch	(n' - 0, n'')	- 0)	
22       21       16968.79485       0.00096       0.003       0.3         23       22       16968.5089       -0.00096       0.003       -0.3         24       23       16968.5089       -0.00096       0.003       -0.3         25       24       16968.29164       -0.00243       0.003       -0.3         25       16967.75499       0.00005       0.003       0.0         27       26       16967.75499       0.00028       0.003       1.0         28       16967.03448       -0.01653       90.003       0.0         30       199       16966.62814       -0.00358       0.003       -1.2         33       16964.56831       -0.00135       0.003       0.1         34       33       16964.56831       -0.00178       0.003       0.6         37       36       16962.29055       0.00477       0.003       0.6         38       37       16961.84286       0.0003       0.7       41       40       16955.44475       -0.00381       0.003       0.7         41       40       16955.26790       0.0031       0.03       1.1       44       43       16956.44401       -0.0037       0.	0(1	, э) п	and, a Dranch	(p = e, p	= e)	
23       22       16968.66299       -0.00946       0.003       -1.8         24       23       16968.50089       -0.00946       0.003       -0.3         25       24       16968.29164       -0.00243       0.003       -0.0         26       25       16967.75499       0.00005       0.003       0.0         28       27       16967.75499       0.00286       0.003       -1.0         29       28       16967.03448       -0.01653       90.003       0.0         30       16966.68214       -0.00907       0.003       -3.0         31       30       16966.54837       -0.00135       0.003       -1.1         33       21       16965.4827       -0.00178       0.003       -0.6         35       34       16961.82865       -0.00296       0.003       1.0         36       35       16962.59055       0.00477       0.003       1.6         38       37       16961.84286       0.0003       0.7       41       40       16959.36448       0.003       0.7         41       16955.47996       0.0144       0.003       0.5       44       16955.657       0.00337       0.003       1.	22	21	16968.79485	0.00096	0.003	0.3
24       23       16968.50089       -0.0096       0.003       -0.3         25       24       16968.29164       -0.00243       0.003       -0.8         26       25       16966.75499       0.0005       0.003       0.0         27       26       16967.75499       0.0005       0.003       0.0         28       16967.42072       -0.00286       0.003       -1.0         29       28       16967.42072       -0.0038       0.003       -0.0         30       19       16966.62814       -0.00907       0.003       -1.2         33       32       16965.4875       -0.00135       0.003       -0.5         35       34       16963.9526       0.00296       0.003       1.0         36       35       16963.28657       -0.00178       0.003       0.6         37       16961.84286       0.0093       0.03       0.7         41       40       16955.9055       0.00477       0.003       0.6         42       16957.50657       0.00337       0.003       1.1         44       43       16955.47996       0.00144       0.003       -5.         46       16953.28588	23	22	16968.66299	-0.00546	0.003	-1.8
25       24       16968.29164       -0.00243       0.003       -0.8         26       25       16967.75499       0.00005       0.003       0.0         28       27       16967.42072       -0.00286       0.003       -1.0         29       28       16967.03448       -0.01653       90.003       0.0         30       29       16966.62814       -0.00742       0.003       2.5         32       31       16965.68235       -0.0028       0.003       0.1         34       33       16965.48631       -0.00135       0.003       -0.5         35       34       16961.84286       0.0033       0.0       3.6         36       16962.59055       0.00477       0.003       1.6         38       37       16961.84286       0.00187       0.003       0.7         41       40       16955.47996       0.00147       0.003       0.1         44       16955.47996       0.00144       0.003       0.5         45       41       16955.47996       0.003       1.1         44       43       16954.4001       -0.01751       90.003       1.3         47       16954.40411	24	23	16968.50089	-0.00096	0.003	-0.3
26       25       16968.02962       -0.01548       90.003       0.0         27       26       16967.75499       0.00005       0.003       0.0         28       27       16967.42072       -0.00286       0.003       -1.0         29       28       16967.03448       -0.01553       90.003       0.0         30       29       16966.62814       -0.00977       0.003       -3.0         31       30       16966.58235       -0.00358       0.003       -1.2         33       32       16965.1487       0.0028       0.003       -0.5         35       34       16963.9526       0.00296       0.003       1.0         36       1506963.28657       -0.00178       0.003       0.6         37       36       16962.59055       0.00477       0.003       0.6         42       41       16955.4649401       -0.01751       90.003       0.7         41       40       16953.2858       -0.00266       0.003       -1.3         47       46       16953.2858       -0.00378       0.003       -1.3         47       46       16953.28584       -0.00428       0.003       -1.4	25	24	16968.29164	-0.00243	0.003	-0.8
27       26       16967.42072       -0.00286       0.003       0.0         29       28       16967.03448       -0.01653       90.003       0.0         30       29       16966.62814       -0.00907       0.003       -3.0         31       30       16965.68235       -0.00358       0.003       -1.2         33       32       16965.1487       0.0028       0.003       0.1         34       31       16964.56831       -0.00178       0.003       -0.5         35       34       16963.28657       -0.00178       0.003       0.3         36       16962.59055       0.00477       0.003       0.3         37       36       16960.23233       0.00187       0.003       0.7         41       40       16959.36448       0.00187       0.003       0.2         42       16957.5057       -0.00378       0.003       -1.1         44       43       16956.44475       -0.00378       0.003       -1.3         47       46       16953.28588       -0.00266       0.003       -1.3         47       46       16950.373782       0.01122       0.003       -1.4         50 <td>26</td> <td>25</td> <td>16968.02962</td> <td>-0.01548</td> <td>90.003</td> <td>0.0</td>	26	25	16968.02962	-0.01548	90.003	0.0
28       27       16967.03448       -0.01653       90.003       0.0         30       29       16966.62814       -0.00907       0.003       2.5         32       31       16966.18961       0.00742       0.003       2.5         32       31       16965.1487       0.00028       0.003       0.1         34       33       16965.68235       -0.00358       0.003       -0.5         35       34       16963.9526       0.00296       0.003       1.0         36       35       16963.28657       -0.00178       0.003       0.6         38       37       16961.84286       0.0093       0.03       0.7         41       40       16959.36448       0.00187       0.003       0.6         42       41       16958.44475       -0.00881       0.003       -2.9         43       42       16957.50657       0.00378       0.003       1.1         44       43       16950.93784       0.0026       0.003       -1.3         47       16952.13281       0.00126       0.003       0.1         50       49       16950.93784       0.0026       0.003       2.3 <td< td=""><td>27</td><td>26</td><td>16967.75499</td><td>0.00005</td><td>0.003</td><td>0.0</td></td<>	27	26	16967.75499	0.00005	0.003	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	27	16967.42072	-0.00286	0.003	-1.0
30 29 16966.62814 -0.00907 0.003 -3.0 31 30 16966.18961 0.00742 0.003 2.5 32 31 16965.68235 -0.00358 0.003 -1.2 33 32 16965.1487 0.00028 0.003 0.1 34 33 16964.56831 -0.00135 0.003 -0.5 35 34 16963.9526 0.00296 0.003 1.0 36 35 16963.28657 -0.00178 0.003 0.6 37 36 16962.59055 0.00477 0.003 1.6 38 37 16961.84286 0.0093 0.003 0.7 41 40 16959.36448 0.00187 0.003 0.7 41 40 16959.36448 0.00187 0.003 0.7 41 40 16959.36448 0.00187 0.003 1.1 44 43 16956.49401 -0.01751 90.003 0.0 45 44 16955.47996 0.00144 0.003 0.5 46 45 16954.40041 -0.00378 0.003 -1.3 47 46 16953.28588 -0.00266 0.003 -0.9 48 47 16952.13281 0.00126 0.003 0.4 49 48 16950.93784 0.00461 0.003 1.5 50 49 16949.6893 -0.00428 0.003 -1.4 51 50 16948.41954 0.00126 0.003 0.1 45 44 16955.47996 0.001142 0.003 0.5 46 45 16954.40041 -0.00278 0.003 -1.4 51 50 16948.41954 0.00461 0.003 1.5 50 49 16949.6893 -0.00428 0.003 -1.4 51 50 16948.41954 0.00266 0.003 0.4 49 48 16950.93784 0.00461 0.003 1.5 50 49 16949.6893 -0.00428 0.003 -1.4 51 50 16948.41954 0.00296 0.003 2.3 53 52 16945.73782 0.01122 0.005 2.2 54 53 16944.32191 0.00031 0.003 0.1 55 54 16942.87739 0.00212 0.003 0.7 56 55 16941.37814 -0.00488 0.003 -3.2 57 56 16939.84442 -0.01421 90.003 0.0 C(1,3) Band, P Branch ( $p' = e, p'' = e$ ) 3 4 16957.63879 0.00417 0.003 1.4 4 5 16956.65002 -0.00177 0.003 -0.6 5 6 16955.63355 0.00592 0.003 2.0 6 7 16954.58389 0.02057 90.003 0.0 7 8 16953.45937 0.00168 0.003 0.2 7 12 13 16947.31544 -0.0026 0.003 2.7 12 13 16947.31544 -0.0026 0.003 2.0 6 7 16954.58389 0.02057 90.003 2.0 6 7 16954.58389 0.02057 90.003 2.0 7 18 16943.13774 -0.00189 0.003 2.7 12 13 16947.31544 -0.0026 0.003 2.7 12 13 16945.959311 -0.00212 0.003 -0.7 19 20 16935.93411 -0.00	29	28	16967.03448	-0.01653	90.003	0.0
31 30 16966.18961 0.00742 0.003 2.5 32 31 16965.68235 -0.00358 0.003 -1.2 33 32 16965.1487 0.00028 0.003 0.1 34 33 16964.56831 -0.00135 0.003 -0.5 35 34 16963.9526 0.00296 0.003 1.0 36 35 16963.28657 -0.00178 0.003 -0.6 37 36 16962.59055 0.00477 0.003 1.6 38 37 16961.84286 0.00993 0.003 0.3 40 39 16960.23233 0.00198 0.003 0.7 41 40 16959.36448 0.00187 0.003 0.6 42 41 16958.44475 -0.00881 0.003 -2.9 43 42 16957.50657 0.00377 0.003 1.1 44 43 16956.49401 -0.01751 90.003 0.0 45 44 16955.47996 0.00144 0.003 0.5 46 45 16954.40041 -0.00788 0.003 -1.3 47 46 16953.28588 -0.00266 0.003 0.4 49 48 16950.93784 0.00461 0.003 1.5 50 49 16940.6893 -0.00428 0.003 -1.4 51 50 16948.41954 0.00120 0.003 0.1 55 54 16942.87739 0.00212 0.003 0.1 55 54 16942.87739 0.00212 0.003 0.7 56 55 16941.37814 -0.00488 0.003 -3.2 57 56 16939.84442 -0.01421 90.003 0.7 56 55 16941.37814 -0.0048 0.003 -3.2 57 56 16939.84442 -0.01421 90.003 0.7 56 55 16941.37814 -0.00488 0.003 -3.2 57 56 16939.84442 -0.01421 90.003 0.7 78 16955.63395 0.00592 0.003 2.0 6 7 16954.58389 0.02057 90.003 0.0 7 8 16955.63395 0.00592 0.003 2.7 12 13 16947.31544 -0.0048 0.003 1.5 15 16 16955.63395 0.00592 0.003 2.7 12 13 16947.31544 -0.0026 0.003 2.7 13 14 16945.96902 0.00445 0.003 2.8 18 19 16938.59341 -0.00212 0.0	30	29	16966.62814	-0.00907	0.003	-3.0
32 31 16965.68235 -0.00358 0.003 -1.2 33 32 16965.1487 0.00028 0.003 0.1 34 33 16964.56831 -0.00135 0.003 -0.5 35 34 16963.28657 -0.00178 0.003 -0.6 37 36 16962.59055 0.00477 0.003 1.6 38 37 16961.84286 0.00093 0.003 0.3 40 39 16960.23233 0.00198 0.003 0.7 41 40 16959.36448 0.00187 0.003 0.6 42 41 16958.44475 -0.00881 0.003 -2.9 43 42 16957.50657 0.00337 0.003 1.1 44 43 16956.49401 -0.01751 90.003 0.5 46 45 16954.40041 -0.0078 0.003 -1.3 47 46 16953.28588 -0.00266 0.003 -1.3 47 46 16953.28588 -0.00266 0.003 -1.3 47 46 16953.28588 -0.00266 0.003 -1.4 50 49 16949.6893 -0.00428 0.003 -1.4 51 50 16948.41954 0.00696 0.003 -1.4 51 50 16948.41954 0.00696 0.003 -2.9 53 52 16945.73782 0.01122 0.005 2.2 54 53 16944.32191 0.00031 0.003 0.1 55 54 16942.87739 0.00212 0.003 0.7 56 55 16941.37814 -0.00417 0.003 1.4 4 5 14956.65002 -0.00177 0.003 -0.6 55 6 16939.84442 -0.01421 90.003 0.0 C(1,3) Band, P Branch ( $p' = e, p'' = e$ ) 3 4 16957.63879 0.00417 0.003 1.4 4 5 16956.65002 -0.00177 0.003 -0.6 5 6 16955.63395 0.00592 0.003 2.0 6 7 16954.58389 0.02057 90.003 0.0 7 8 16953.45937 0.00168 0.003 0.7 5 6 51 16941.3174 -0.00481 0.003 1.3 9 10 16951.13174 -0.00181 0.003 2.7 12 13 16947.31544 -0.0026 0.003 2.0 6 7 16954.58399 0.02057 90.003 0.0 7 8 16953.45937 0.00148 0.003 2.7 12 13 16947.31544 -0.0026 0.003 2.7 12 13 16947.31544 -0.0026 0.003 2.7 12 13 16947.31544 -0.0026 0.003 0.7 7 8 16953.45937 0.00148 0.003 2.7 12 13 16947.31544 -0.0026 0.003 -0.1 13 14 16945.96902 0.00445 0.003 1.5 15 16 16 16933.13774 -0.00189 0.003 -0.6 16 17 16941.67178 0.00597 0.003 2.0 17 18 16940.15963 0.00851 0.003 2.8 18 19 16938.59341 -0.00212 0.003 -0.7 19 20 16935.93464 -0.004433 0.003 -1.5 50 20 11 6035.93646 -0.00443 0.003 -1.5 50	31	$\frac{-0}{30}$	16966.18961	0.00742	0.003	2.5
33       32       19965.1487       0.00028       0.003       0.1         34       33       16964.56831       -0.00135       0.003       -0.5         35       34       16963.9526       0.00296       0.003       1.0         36       35       16962.59055       0.00477       0.003       1.6         37       36       16962.59055       0.00477       0.003       0.3         40       39       16960.23233       0.00198       0.003       0.7         41       40       16959.36448       0.00187       0.003       0.6         42       41       16956.49401       -0.01751       90.003       0.0         45       44       16955.750657       0.00378       0.003       -1.3         47       46       16952.42041       -0.00378       0.003       -0.4         48       16952.13281       0.00126       0.003       0.4         49       48       16952.973784       0.00461       0.003       1.5         50       49       16949.6893       -0.00428       0.003       -1.4         51       50       16945.73782       0.01122       0.003       0.7	32	31	16965.68235	-0.00358	0.003	-1.2
34       33       16964.56831       -0.00135       0.003       -0.5         35       34       16963.9526       0.00296       0.003       1.0         36       35       16963.28657       -0.00178       0.003       -0.6         37       36       16962.59055       0.00477       0.003       0.3         40       39       16960.23233       0.00198       0.003       0.7         41       40       16959.36448       0.00187       0.003       0.6         42       41       16955.47966       0.00337       0.003       0.0         43       42       16957.50657       0.00337       0.003       0.5         46       45       16954.40041       -0.00751       90.003       0.4         49       48       16955.32858       -0.00266       0.003       -1.3         47       46       16953.28588       -0.00266       0.003       1.5         50       49       16949.6893       -0.00428       0.003       1.4         51       50       16944.31954       0.00696       0.003       2.2         54       53       16942.87739       0.00212       0.003       0.7     <	33	32	16965.1487	0.00028	0.003	0.1
35       34       16963.9526       0.00296       0.003       1.0         36       35       16963.28657       -0.00178       0.003       -0.6         37       36       16962.59055       0.00477       0.003       1.6         38       37       16961.84286       0.0093       0.003       0.3         40       39       16960.23233       0.00198       0.003       0.7         41       40       16955.9648       0.0037       0.003       0.6         42       41       16955.44475       -0.00881       0.003       -0.7         43       42       16957.50657       0.00337       0.003       0.5         44       16955.47996       0.00144       0.003       0.5         46       45       16954.40041       -0.00378       0.003       -1.3         47       46       16953.28588       -0.00266       0.003       -1.4         50       16948.41954       0.00461       0.003       1.5         50       49       16950.73782       0.01122       0.003       2.3         53       52       16944.32191       0.0031       0.003       -7         54	34	33	16964 56831	-0.00135	0.003	-0.5
36       35       16963.28657       -0.00178       0.003       -0.6         37       36       16962.29055       0.00477       0.003       -0.6         38       37       16961.84286       0.00093       0.003       0.3         40       39       16960.23233       0.00198       0.003       0.7         41       40       16959.36448       0.00187       0.003       0.6         42       41       16958.44475       -0.00881       0.003       -2.9         43       42       16957.50657       0.00337       0.003       1.1         44       43       16956.49401       -0.01751       90.003       0.0         45       44       16953.28588       -0.00266       0.003       -1.3         47       46       16953.28588       -0.00266       0.003       1.4         50       49       16940.6893       -0.00428       0.003       -1.4         51       50       16948.41954       0.00696       0.003       2.3         53       52       16945.73782       0.01122       0.003       0.7         56       55       16941.37814       -0.00948       0.003       -3.2	35	34	16963 9526	0.00195	0.003	1.0
50 50 50 50 50 50 50 50 50 50 50 50 50 5	36	34 35	16963.9920 16963.98657	-0.00230	0.003	-0.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	36	16062 50055	-0.00173	0.003	16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	$\frac{30}{37}$	16061 84286	0.00411	0.003	1.0
40       35       10900.23235       0.00136       0.003       0.6         41       40       16959.36448       0.00187       0.003       0.6         42       41       16958.44475       -0.00881       0.003       -2.9         43       42       16957.50657       0.00337       0.003       0.0         45       44       16955.47996       0.00144       0.003       0.5         46       45       16954.40041       -0.00378       0.003       -1.3         47       46       16953.28588       -0.00266       0.003       -0.9         48       47       16952.13281       0.00461       0.003       1.5         50       49       16949.6893       -0.00428       0.003       -1.4         51       50       16948.41954       0.00696       0.003       2.2         54       53       16944.32191       0.0031       0.003       0.1         55       54       16942.87739       0.00212       0.003       0.0         C(1,3)       Band, P       Branch (p' = e, p'' = e)       3       4       16957.63879       0.00417       0.003       1.4         4       5       16956.	40	30	16060 22222	0.00093	0.003	0.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	39 40	16050 26449	0.00198	0.003	0.7
42       41       10938.44473       -0.00881       0.003       -2.9         43       42       16957.50657       0.00337       0.003       1.1         44       43       16956.49401       -0.01751       90.003       0.0         45       44       16955.47996       0.00144       0.003       0.5         46       45       16954.40041       -0.00378       0.003       -1.3         47       46       16952.13281       0.00126       0.003       0.4         49       48       16950.93784       0.00461       0.003       1.5         50       49       16949.6893       -0.00428       0.003       -1.4         51       50       16948.41954       0.00696       0.003       2.3         53       52       16945.73782       0.01122       0.003       0.7         56       55       16941.37814       -0.00948       0.003       -3.2         57       56       16939.84442       -0.01421       90.003       0.0         C(1,3)       Band, P       Branch (p' = e, p'' = e)       3       4       16957.63879       0.00417       0.003       1.4         4       5       1	41	40	10909.00440	0.00107	0.003	0.0
43       42 $10597.50037$ $0.00337$ $0.003$ $1.1$ 44       43 $16956.49401$ $-0.01751$ $90.003$ $0.0$ 45       44 $16955.47996$ $0.00144$ $0.003$ $-1.3$ 47       46 $16953.28588$ $-0.00266$ $0.003$ $-0.9$ 48       47 $16952.13281$ $0.00126$ $0.003$ $0.4$ 49       48 $16950.93784$ $0.00461$ $0.003$ $-1.4$ 51       50 $16949.6893$ $-0.00428$ $0.003$ $-1.4$ 51 $50$ $16948.41954$ $0.00696$ $0.003$ $2.3$ 53 $52$ $16945.73782$ $0.01122$ $0.003$ $0.1$ 55 $54$ $16942.87739$ $0.00212$ $0.003$ $0.7$ 56 $55$ $16941.37814$ $-0.00948$ $0.003$ $-3.2$ 57 $56$ $16939.84442$ $-0.01421$ $90.003$ $0.0$ $C(1,3)$ Band, P       Branch ( $p' = e, p'' = e$ ) $3$ $4$ $16957.63879$	42	41	10908.44470	-0.00881	0.003	-2.9
44       4.5 $10936.49401$ $-0.01731$ $90.003$ $0.0$ 45       44 $16955.47996$ $0.00144$ $0.003$ $0.5$ 46       45 $16954.40041$ $-0.00378$ $0.003$ $-1.3$ 47       46 $16952.13281$ $0.00126$ $0.003$ $0.4$ 49 $48$ $16950.93784$ $0.00461$ $0.003$ $0.4$ 49 $48$ $16950.93784$ $0.00428$ $0.003$ $-1.4$ 51 $50$ $49$ $16949.6893$ $-0.00428$ $0.003$ $-1.4$ 51 $50$ $16948.41954$ $0.00696$ $0.003$ $2.3$ $53$ $52$ $16945.73782$ $0.01122$ $0.003$ $0.1$ $55$ $54$ $16942.87739$ $0.00212$ $0.003$ $0.7$ $56$ $55$ $16941.37814$ $-0.00948$ $0.003$ $-3.2$ $57$ $56$ $16955.63395$ $0.00592$ $0.003$ $2.0$ $6$ $7$ $16954.58389$ $0.20257$ $90.003$ $0.06$ <td>45</td> <td>42</td> <td>16056 40401</td> <td>0.00337 0.01751</td> <td>0.003</td> <td>1.1</td>	45	42	16056 40401	0.00337 0.01751	0.003	1.1
45 44 16955.47996 0.00144 0.003 0.3 46 45 16954.40041 -0.00378 0.003 -1.3 47 46 16953.28588 -0.00266 0.003 -0.9 48 47 16952.13281 0.00126 0.003 0.4 49 48 16950.93784 0.00461 0.003 1.5 50 49 16949.6893 -0.00428 0.003 -1.4 51 50 16948.41954 0.00696 0.003 2.3 53 52 16945.73782 0.01122 0.005 2.2 54 53 16944.32191 0.00031 0.003 0.1 55 54 16942.87739 0.00212 0.003 0.7 56 55 16941.37814 -0.00948 0.003 -3.2 57 56 16939.84442 -0.01421 90.003 0.0 C(1,3) Band, P Branch ( $p' = e, p'' = e$ ) 3 4 16957.63879 0.00417 0.003 1.4 4 5 16956.65002 -0.00177 0.003 -0.6 5 6 16955.63395 0.00592 0.003 2.0 6 7 16954.58389 0.02057 90.003 0.0 7 8 16953.45937 0.00168 0.003 0.6 8 9 16952.31512 0.004 0.003 1.3 9 10 16951.13174 0.0081 0.003 2.7 12 13 16947.31544 -0.00026 0.003 -0.1 13 14 16945.96902 0.00445 0.003 1.5 15 16 16943.13774 -0.00189 0.003 -0.6 16 17 16941.67178 0.00597 0.003 2.0 17 18 16940.15963 0.00851 0.003 2.8 18 19 16938.59341 -0.00212 0.003 -0.7 19 20 16936.99464 -0.00443 0.003 -1.5 20 21 16935.36463 0.00291 0.003 1.0	44	43	10950.49401	-0.01751	90.003	0.0
40       45 $16954.40041$ $-0.00378$ $0.003$ $-1.3$ 47       46 $16953.28588$ $-0.00266$ $0.003$ $-0.9$ 48       47 $16952.13281$ $0.00126$ $0.003$ $0.4$ 49       48 $16950.93784$ $0.00461$ $0.003$ $1.5$ 50       49 $16949.6893$ $-0.00428$ $0.003$ $2.3$ 53       52 $16945.73782$ $0.01122$ $0.003$ $0.1$ 55       54 $16944.32191$ $0.00031$ $0.003$ $0.7$ 56       55 $16941.37814$ $-0.00948$ $0.003$ $-3.2$ 57       56 $16939.84442$ $-0.01421$ $90.003$ $0.0$ C(1,3)       Band, P       Branch $p' = e, p'' = e$ $p'' = e, p'' = e$ 3       4 $16957.63879$ $0.00417$ $0.003$ $1.4$ 4       5 $16955.63395$ $0.00592$ $0.003$ $2.0$ 6       7 $16954.58389$ $0.2057$ $90.003$ $0.6$ 8       9	45	44	16955.47996	0.00144	0.003	0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	45	10954.40041	-0.00378	0.003	-1.3
48       47       10932.13281       0.00126       0.003       0.4         49       48       16950.93784       0.00461       0.003       1.5         50       49       16949.6893       -0.00428       0.003       -1.4         51       50       16948.41954       0.00696       0.003       2.3         53       52       16945.73782       0.01122       0.005       2.2         54       53       16944.32191       0.00031       0.003       0.7         56       55       16941.37814       -0.00948       0.003       -3.2         57       56       16939.84442       -0.01421       90.003       0.0 $C(1,3)$ Band, P Branch ( $p' = e, p'' = e$ )       3       4       16957.63879       0.00417       0.003       1.4         4       5       16956.65002       -0.00177       0.003       2.0         6       7       16954.58389       0.02057       90.003       0.0         7       8       16952.31512       0.004       0.003       1.3         9       10       16951.13174       0.0026       0.003       1.5         15       16       16943.13774       <	41	40	16953.28588	-0.00266	0.003	-0.9
494816950.93784 $0.00461$ $0.003$ $1.5$ 504916949.6893 $-0.00428$ $0.003$ $-1.4$ 515016948.41954 $0.00696$ $0.003$ $2.3$ 535216945.73782 $0.01122$ $0.005$ $2.2$ 545316944.32191 $0.00031$ $0.003$ $0.1$ 555416942.87739 $0.00212$ $0.003$ $0.7$ 565516941.37814 $-0.00948$ $0.003$ $-3.2$ 575616939.84442 $-0.01421$ $90.003$ $0.0$ $C(1,3)$ Band, PBranch $(p' = e, p'' = e)$ 3416957.63879 $0.00417$ $0.003$ $1.4$ 4516956.65002 $-0.00177$ $0.003$ $-0.6$ 5616955.63395 $0.00592$ $0.003$ $2.0$ 6716954.58389 $0.02057$ $90.003$ $0.6$ 8916952.31512 $0.004$ $0.003$ $1.3$ 91016951.13174 $0.0026$ $0.003$ $-0.1$ 131416945.96902 $0.00445$ $0.003$ $1.5$ 151616943.13774 $-0.00189$ $0.003$ $-0.6$ 161716941.67178 $0.00851$ $0.003$ $2.8$ 181916938.59341 $-0.00212$ $0.003$ $-0.7$ 192016936.99464 $-0.00443$ $0.003$ $-1.5$ 202116935.36463 $0.00291$ $0$	48	41	16952.13281	0.00126	0.003	0.4
50 49 16949.0893 -0.00428 0.003 -1.4 51 50 16948.41954 0.00696 0.003 2.3 53 52 16945.73782 0.01122 0.005 2.2 54 53 16944.32191 0.00031 0.003 0.1 55 54 16942.87739 0.00212 0.003 0.7 56 55 16941.37814 -0.00948 0.003 -3.2 57 56 16939.84442 -0.01421 90.003 0.0 C(1,3) Band, P Branch $(p' = e, p'' = e)3 4 16957.63879 0.00417 0.003 1.44 5 16956.65002 -0.00177 0.003 -0.65 6 16955.63395 0.00592 0.003 2.06 7 16954.58389 0.02057 90.003 0.07 8 16953.45937 0.00168 0.003 0.68 9 16952.31512 0.004 0.003 1.39 10 16951.13174 0.0081 0.003 2.712 13 16947.31544 -0.0026 0.003 -0.113 14 16945.96902 0.00445 0.003 1.515 16 16943.13774 -0.00189 0.003 -0.616 17 16941.67178 0.00597 0.003 2.017 18 16940.15963 0.00851 0.003 2.818 19 16938.59341 -0.00212 0.003 -0.719 20 16936.99464 -0.00443 0.003 -1.520 21 16935.94643 0.00291 0.003 1.0$	49	48	16950.93784	0.00461	0.003	1.5
51 50 16948.41954 0.00696 0.003 2.3 53 52 16945.73782 0.01122 0.005 2.2 54 53 16944.32191 0.00031 0.003 0.1 55 54 16942.87739 0.00212 0.003 0.7 56 55 16941.37814 -0.00948 0.003 -3.2 57 56 16939.84442 -0.01421 90.003 0.0 C(1,3) Band, P Branch $(p' = e, p'' = e)3 4 16957.63879 0.00417 0.003 1.44 5 16956.65002 -0.00177 0.003 -0.65 6 16955.63395 0.00592 0.003 2.06 7 16954.58389 0.02057 90.003 0.07 8 16953.45937 0.00168 0.003 0.68 9 16952.31512 0.004 0.003 1.39 10 16951.13174 0.0081 0.003 2.712 13 16947.31544 -0.0026 0.003 -0.113 14 16945.96902 0.00445 0.003 1.515 16 16943.13774 -0.00189 0.003 -0.616 17 16941.67178 0.00597 0.003 2.017 18 16940.15963 0.00851 0.003 2.818 19 16938.59341 -0.00212 0.003 -0.719 20 16936.99464 -0.00443 0.003 -1.520 21 16935.36463 0.00291 0.003 1.5$	50	49	16949.6893	-0.00428	0.003	-1.4
53       52       16945.73782 $0.01122$ $0.005$ $2.2$ 54       53       16944.32191 $0.00031$ $0.003$ $0.1$ 55       54       16942.87739 $0.00212$ $0.003$ $0.7$ 56       55       16941.37814 $-0.00948$ $0.003$ $-3.2$ 57       56       16939.84442 $-0.01421$ $90.003$ $0.0$ $C(1,3)$ Band, P Branch ( $p' = e, p'' = e$ ) $3$ $4$ 16957.63879 $0.00417$ $0.003$ $1.4$ $4$ $5$ 16956.65002 $-0.00177$ $0.003$ $-0.6$ $5$ $6$ 16955.63395 $0.00592$ $0.003$ $2.0$ $6$ $7$ 16954.58389 $0.02057$ $90.003$ $0.0$ $7$ $8$ 16952.31512 $0.004$ $0.003$ $1.3$ $9$ $10$ 16951.13174 $0.0026$ $0.003$ $-0.1$ $13$ $14$ 16945.96902 $0.00445$ $0.003$ $-0.6$ $15$ $16$ $16943.13774$ $-0.00189$ $0.003$ <td>51</td> <td>50</td> <td>16948.41954</td> <td>0.00696</td> <td>0.003</td> <td>2.3</td>	51	50	16948.41954	0.00696	0.003	2.3
54       53       16944.32191       0.00031       0.003       0.1         55       54       16942.87739       0.00212       0.003       0.7         56       55       16941.37814       -0.00948       0.003       -3.2         57       56       16939.84442       -0.01421       90.003       0.0 $C(1,3)$ Band, P       Branch ( $p' = e, p'' = e$ )       3       4       16957.63879       0.00417       0.003       1.4         4       5       16956.65002       -0.00177       0.003       -0.6         5       6       16955.63395       0.00592       0.003       2.0         6       7       16954.58389       0.02057       90.003       0.6         8       9       16952.31512       0.004       0.003       1.3         9       10       16951.13174       0.0081       0.003       2.7         12       13       16947.31544       -0.00026       0.003       -0.1         13       14       16945.96902       0.00445       0.003       1.5         15       16       16943.13774       -0.00189       0.003       2.0         17       18       16940.15	53	52	16945.73782	0.01122	0.005	2.2
55       54       16942.87739 $0.00212$ $0.003$ $0.7$ 56       55       16941.37814 $-0.00948$ $0.003$ $-3.2$ 57       56       16939.84442 $-0.01421$ $90.003$ $0.0$ $C(1,3)$ Band, P       Branch $p' = e, p'' = e$ $p'' = e$ 3       4       16957.63879 $0.00417$ $0.003$ $1.4$ 4       5       16956.65002 $-0.00177$ $0.003$ $-0.6$ 5       6       16955.63395 $0.00592$ $0.003$ $2.0$ 6       7       16954.58389 $0.02057$ $90.003$ $0.0$ 7       8       16953.45937 $0.00168$ $0.003$ $0.6$ 8       9       16952.31512 $0.004$ $0.003$ $1.3$ 9       10       16951.13174 $0.0026$ $0.003$ $-0.1$ 13       14       16945.96902 $0.00445$ $0.003$ $-0.6$ 15       16       16943.13774 $-0.00189$ $0.003$ $-0.6$ 16       17       16940.15963 <t< td=""><td>54</td><td>53</td><td>16944.32191</td><td>0.00031</td><td>0.003</td><td>0.1</td></t<>	54	53	16944.32191	0.00031	0.003	0.1
56       55       16941.37814       -0.00948       0.003       -3.2         57       56       16939.84442       -0.01421       90.003       0.0 $C(1,3)$ Band, P Branch ( $p' = e, p'' = e$ )       3       4       16957.63879       0.00417       0.003       1.4         4       5       16956.65002       -0.00177       0.003       -0.6         5       6       16955.63395       0.00592       0.003       2.0         6       7       16954.58389       0.02057       90.003       0.0         7       8       16953.45937       0.00168       0.003       0.6         8       9       16951.13174       0.0081       0.003       2.7         12       13       16947.31544       -0.00266       0.003       -0.1         13       14       16945.96902       0.00445       0.003       1.5         15       16       16943.13774       -0.00189       0.003       -0.6         16       17       16941.67178       0.00597       0.003       2.0         17       18       16940.15963       0.00851       0.003       2.8         18       19       16938.59341       -0.00212<	55	54	16942.87739	0.00212	0.003	0.7
57 56 16939.84442 -0.01421 90.003 0.0 C(1,3) Band, P Branch $(p' = e, p'' = e)3 4 16957.63879 0.00417 0.003 1.44 5 16956.65002 -0.00177 0.003 -0.65 6 16955.63395 0.00592 0.003 2.06 7 16954.58389 0.02057 90.003 0.07 8 16953.45937 0.00168 0.003 0.68 9 16952.31512 0.004 0.003 1.39 10 16951.13174 0.0081 0.003 2.712 13 16947.31544 -0.00026 0.003 -0.113 14 16945.96902 0.00445 0.003 1.515 16 16943.13774 -0.00189 0.003 -0.616 17 16941.67178 0.00597 0.003 2.017 18 16940.15963 0.00851 0.003 2.818 19 16938.59341 -0.00212 0.003 -0.719 20 16936.99464 -0.00443 0.003 -1.520 21 16935.36463 0.00291 0.003 1.0$	56	55	16941.37814	-0.00948	0.003	-3.2
$\begin{array}{c} C(1,3) \text{ Band, P Branch } (p'=e, p''=e) \\ \hline 3 & 4 & 16957.63879 & 0.00417 & 0.003 & 1.4 \\ 4 & 5 & 16956.65002 & -0.00177 & 0.003 & -0.6 \\ \hline 5 & 6 & 16955.63395 & 0.00592 & 0.003 & 2.0 \\ \hline 6 & 7 & 16954.58389 & 0.02057 & 90.003 & 0.0 \\ \hline 7 & 8 & 16953.45937 & 0.00168 & 0.003 & 0.6 \\ \hline 8 & 9 & 16952.31512 & 0.004 & 0.003 & 1.3 \\ \hline 9 & 10 & 16951.13174 & 0.0081 & 0.003 & 2.7 \\ \hline 12 & 13 & 16947.31544 & -0.0026 & 0.003 & -0.1 \\ \hline 13 & 14 & 16945.96902 & 0.00445 & 0.003 & 1.5 \\ \hline 15 & 16 & 16943.13774 & -0.00189 & 0.003 & -0.6 \\ \hline 16 & 17 & 16941.67178 & 0.00597 & 0.003 & 2.0 \\ \hline 17 & 18 & 16940.15963 & 0.00851 & 0.003 & 2.8 \\ \hline 18 & 19 & 16938.59341 & -0.00212 & 0.003 & -0.7 \\ \hline 19 & 20 & 16936.99464 & -0.00443 & 0.003 & -1.5 \\ \hline 20 & 21 & 16935.36463 & 0.00291 & 0.003 & 1.0 \\ \end{array}$	57	56	16939.84442	-0.01421	90.003	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1	,3) B	and, P Branch	$(p'={\rm e},p''$	= e)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	4	16957.63879	0.00417	0.003	1.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	5	16956.65002	-0.00177	0.003	-0.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	6	16955.63395	0.00592	0.003	2.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	7	16954.58389	0.02057	90.003	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	8	16953.45937	0.00168	0.003	0.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	9	16952.31512	0.004	0.003	1.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ğ	10	16951.13174	0.0081	0.003	2.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	13	16947.31544	-0.00026	0.003	-0.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$13^{-2}$	14	16945,96902	0.00445	0.003	1.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	16	$16943\ 13774$	-0.00189	0.000	-0.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	17	16941 67178	0.00105	0.003	2.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	18	16940 15963	0.00851	0.003	2.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	10	16038 502/1	_0 000019	0.003	-0.7
20 21 16935 36463 0.00291 0.003 1.0	10	20	16036 00/6/	-0.00212	0.003	-1.5
	19 20	$\frac{20}{91}$	16935 36462	0.00445	0.003	1.0

Table B.1, Electronic Data of  $^{184}\mathrm{WO}$  Relative to X0^+  $(\mathit{Cont'd})$ 

		,			()
J	J''	Obs	Obs-Calc	Unc	(Obs-Calc)/Unc
2	1 22	16933.68716	0.00365	0.003	1.2
22	2 23	16931.97684	0.01242	90.003	0.0
2	3 24	16930.19311	-0.01136	90.003	0.0
$2^{4}$	4 25	16928.39991	-0.00373	0.003	-1.2
2	5 26	16926.55988	-0.00208	0.003	-0.7
20	6 27	16924.67171	-0.00771	0.003	-2.6
2'	7 28	16922.7535	-0.00252	0.003	-0.8
23	8 29	16920.79427	0.00251	0.003	0.8
2	9 30	16918.7852	-0.00145	0.003	-0.5
- 30	0 31	16916.74259	0.00189	0.003	0.6
3	1 32	16914.64647	-0.00742	0.003	-2.5
3	2 33	16912.5222	-0.00404	0.003	-1.3
3	3 34	16910.35382	-0.00393	0.003	-1.3
34	4 35	16908.14477	-0.00365	0.003	-1.2
3	5 36	16905.90194	0.00368	0.003	1.2
30	5 37	16903.60515	-0.00211	0.003	-0.7
3	( <u>38</u>	16901.26585	-0.00958	0.003	-3.2
	8 39	16898.90335	0.00058	0.003	0.2
3	9 40	10890.48180	-0.00742	0.005	-1.5
40	$   \begin{array}{ccc}         0 & 41 \\         1 & 49   \end{array} $	16894.03033	0.00135	0.003	0.5
4.	1 42	16891.04491	0.00505 0.00107	0.003	1.7
4.	2 43	16886 42057	0.00197	0.003	0.7
4.	5 44 4 45	16882 81005	0.0024 0.01024	0.003	0.8
44	4 40 5 46	16881 1483	0.01034 0.00206	0.003	0.4 1.0
4	5 40	10001.1405	-0.00290	0.005	-1.0
C	F(1,3) E	Band, Q Branch	$\mathbf{n} \ (p' = \mathbf{f}, \ p''$	= e)	
-	2 2	16961.03325	0.00778	0.003	2.6
	$\frac{-}{3}$ $\frac{-}{3}$	16960.89788	0.00341	0.003	1.1
4	4 4	16960.71522	-0.00438	0.003	-1.5
ļ	5 - 5	16960.50171	0.001	0.003	0.3
(	6 6	16960.23233	-0.00524	0.003	-1.7
,	77	16959.92975	-0.00021	0.003	-0.1
8	8 8	16959.57167	-0.0059	0.003	-2.0
9	99	16959.17422	-0.00584	0.003	-1.9
10	0 10	16958.72557	-0.0115	0.003	-3.8
1	1 11	16958.23794	-0.01023	0.003	-3.4
1:	2 12	16957.71015	-0.00276	0.003	-0.9
1	3 13	16957.11785	-0.01294	0.003	-4.3
$1^{4}$	4 14	16956.49401	-0.00723	0.003	-2.4
1	5 15	16955.81065	-0.01305	0.003	-4.3
10	6 16	16955.09084	-0.00667	0.003	-2.2
1'	7 17	16954.31877	-0.00325	0.003	-1.1
18	8 18	16953.51007	0.01358	0.003	4.5
19	9 19	16952.62682	0.00665	0.003	2.2
20	0 20	16951.69368	0.00143	0.003	0.5
2	1 21	16950.71247	0.0006	0.003	0.2
22	2 22	16949.6893	0.01117	0.003	3.7
23	5 23	16948.60534	0.01525	0.003	0.1 2.0
24	4 24 5 95	16947.45624	0.00948	0.003	3.2
25	0 25	16940.20102	0.01392	0.005	2.8 4.0
20	0 20 7 97	10945.004/2	0.01468	0.003	4.9 6.2
2	1 21 2 90	16049 20649	0.01904 0.00727	0.003	0.3 2.5
20	0 20 0 20	10942.00048	0.00737	0.003	2.0 1.9
23	9 29 0 90	10940.00027	0.00042 0.00201	0.003	1.0
رو بې	U 3U 1 21	10939.30038 16037 70716	-0.00201	0.003	0.7 _1 7
- 3'	2 32	16936 16916	-0.00319	0.003	-2.1
	- 04	10000010010	0.00040	0.000	

Table B.1, Electronic Data of  $^{184}\mathrm{WO}$  Relative to X0⁺ (Cont'd)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$			,			()
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	J'	J''	Obs	Obs-Calc	Unc	(Obs-Calc)/Unc
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	33	16934.47204	-0.0101	0.003	-3.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	34	16932.70953	-0.01153	0.003	-3.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	35	16930.87574	-0.0149	0.003	-5.0
37       37       16927.01158 $-0.00386$ $0.003$ $-1.3$ 38       38       16924.98347 $0.01612$ $0.003$ $0.0$ 40       40       16920.73498 $0.09349$ $90.003$ $0.0$ 41       41       16918.51601 $0.15591$ $90.003$ $0.0$ 42       42       16916.23124 $0.23404$ $90.003$ $0.0$ 44       44       16911.49656 $0.47753$ $90.003$ $0.0$ 44       44       16911.49656 $0.47753$ $90.003$ $0.0$ 57       58       20657.43025 $-0.04172$ $0.01$ $-3.8$ 57       58       20657.43025 $-0.04153$ $0.01$ $-4.6$ 54       52       20668.85791 $-0.04963$ $0.01$ $-1.8$ 55       52       20676.24854 $-0.01811$ $0.01$ $-1.4$ 9       50       20688.89861 $-0.01118$ $0.01$ $-1.4$ 49       20690.34788 $-0.00758$ $0.01$ $-0.4$ 46       2070.037181 $0.01136$ <td>36</td> <td>36</td> <td>16928.97988</td> <td>-0.00943</td> <td>0.003</td> <td>-3.1</td>	36	36	16928.97988	-0.00943	0.003	-3.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	37	16927.01158	-0.00386	0.003	-1.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	38	16924.98347	0.01612	0.003	5.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39	39	16922.89522	0.05192	90.003	0.0
41       41       16918.51601       0.15591       90.003       0.0         42       42       16916.23124       0.23404       90.003       0.0         43       43       16911.89669       0.33884       90.003       0.0         44       44       16911.49656       0.47753       90.003       0.0 $\overline{D}(0,0)$ Band, P       Branch (p' = e, p'' = e)       5       5       5       20657.43025       -0.04172       0.01       -4.2         56       57       20661.2674       -0.04925       10.01       0.0       5.5         54       55       20667.259561       -0.01811       0.01       -1.8         52       53       20676.24854       -0.01851       0.01       -1.9         51       52       2067.94788       -0.00366       0.01       -1.4         49       50       20688.89861       -0.01118       0.01       -0.4         47       48       20690.373616       -0.00428       0.01       -0.4         47       48       20690.373616       0.01       1.2       44       45       2070.360321       0.0186       0.01       1.6         41       42       20	40	40	16920.73498	0.09349	90.003	0.0
42       42       16916.23124       0.23404       90.003       0.0         43       43       16913.88969       0.33884       90.003       0.0         44       44       16911.49656       0.47753       90.003       0.0         70(0,0)       Band, P       Branch (p' = e, p'' = e)       58       59       20653.51688       -0.0376       0.01       -3.8         57       58       20657.43025       -0.04172       0.01       -4.2         56       57       20661.2674       -0.06925       10.01       0.0         55       52       20665.10236       -0.04615       0.01       -4.6         54       55       20666.85791       -0.01851       0.01       -1.8         52       53       2067.24854       -0.01396       0.01       -1.4         49       50       20686.89861       -0.01118       0.01       -0.4         46       47       20697.06878       -0.0758       0.01       -0.8         45       46       2070.37181       0.01247       0.01       1.2         44       45       20712.97925       0.01779       0.01       1.8         45       2073.06321	41	41	16918.51601	0.15591	90.003	0.0
43       43       16913.88969       0.33884       90.003       0.0         44       44       16911.49656       0.47753       90.003       0.0 $D(0,0)$ Band, P Branch ( $p' = e, p'' = e$ )       58       59       20653.51688       -0.0376       0.01       -3.8         57       58       20657.43025       -0.04172       0.01       -4.2         56       57       20661.2674       -0.04925       10.01       0.0         55       52       20667.259561       -0.01811       0.01       -4.6         54       55       20672.59561       -0.01811       0.01       -1.8         52       53       20676.24854       -0.01816       0.01       -1.4         49       50       20688.8961       -0.01118       0.01       -1.1         48       90690.3788       -0.00369       0.01       -0.4         47       48       20697.0878       -0.01386       0.01       1.2         44       42       20708.6021       0.01386       0.01       1.4         43       44       20709.90624       0.01581       0.01       1.7         37       38       20724.73436       0.01779 <td< td=""><td>42</td><td>42</td><td>16916.23124</td><td>0.23404</td><td>90.003</td><td>0.0</td></td<>	42	42	16916.23124	0.23404	90.003	0.0
44       44       16911.49656       0.47753       90.003       0.0 $D(0, 0)$ Band, P Branch $(p' = e, p'' = e)$ 58       59       20653.51688       -0.0376       0.01       -3.8         57       58       20657.43025       -0.04172       0.01       -4.2         56       57       20661.2674       -0.06925       10.01       0.0         55       56       20665.10236       -0.04615       0.01       -4.6         54       52       20676.24854       -0.01851       0.01       -1.8         52       53       20676.24854       -0.01366       0.01       -1.4         49       50       20686.89861       -0.01118       0.01       -1.1         48       49       20690.34788       -0.00369       0.01       -0.4         47       48       20693.73616       -0.00428       0.01       1.2         44       45       20708.6021       0.01386       0.01       1.4         43       42       20709.6024       0.01581       0.01       1.6         44       45       20709.90624       0.0179       0.01       1.8         40       1       20712.97925 <td>43</td> <td>43</td> <td>16913.88969</td> <td>0.33884</td> <td>90.003</td> <td>0.0</td>	43	43	16913.88969	0.33884	90.003	0.0
$ \begin{array}{c} \hline D(0,0) \ \text{Band}, \ P \ \text{Branch} \ (p' = e, \ p'' = e) \\ \hline 58 \ 59 \ 20653.51688 \ -0.0376 \ 0.01 \ -3.8 \\ 57 \ 58 \ 20657.43025 \ -0.04172 \ 0.01 \ -4.2 \\ 56 \ 57 \ 20661.2674 \ -0.06925 \ 10.01 \ 0.0 \\ 55 \ 56 \ 20665.10236 \ -0.04615 \ 0.01 \ -4.6 \\ 54 \ 55 \ 20668.85791 \ -0.04963 \ 0.01 \ -5.0 \\ 53 \ 54 \ 20672.59561 \ -0.01811 \ 0.01 \ -1.8 \\ 52 \ 53 \ 20676.24854 \ -0.01851 \ 0.01 \ -1.9 \\ 51 \ 52 \ 20679.87122 \ 0.0037 \ 0.01 \ 0.4 \\ 50 \ 51 \ 20683.40114 \ -0.01396 \ 0.01 \ -1.4 \\ 49 \ 50 \ 20686.89861 \ -0.01118 \ 0.01 \ -1.1 \\ 48 \ 49 \ 20690.34788 \ -0.00369 \ 0.01 \ -0.4 \\ 47 \ 48 \ 20693.73616 \ -0.00428 \ 0.01 \ -0.4 \\ 46 \ 47 \ 20697.06878 \ -0.00758 \ 0.01 \ -0.8 \\ 45 \ 46 \ 20700.37181 \ 0.01247 \ 0.01 \ 1.2 \\ 44 \ 45 \ 20703.60321 \ 0.01386 \ 0.01 \ 1.4 \\ 43 \ 44 \ 20706.78408 \ 0.01769 \ 0.01 \ 1.8 \\ 42 \ 43 \ 207012.97925 \ 0.01779 \ 0.01 \ 1.8 \\ 40 \ 41 \ 20712.97925 \ 0.01779 \ 0.01 \ 1.8 \\ 40 \ 41 \ 20712.97925 \ 0.01779 \ 0.01 \ 1.8 \\ 40 \ 41 \ 20712.97925 \ 0.01779 \ 0.01 \ 1.8 \\ 40 \ 41 \ 20712.97925 \ 0.01745 \ 0.01 \ 1.7 \\ 37 \ 38 \ 20724.7346 \ 0.01921 \ 0.01 \ 1.7 \\ 35 \ 36 \ 20732.98932 \ 0.01628 \ 0.01 \ 1.6 \\ 33 \ 34 \ 20735.63522 \ 0.0158 \ 0.01 \ 1.6 \\ 32 \ 33 \ 20732.8969 \ 0.01616 \ 0.01 \ 1.6 \\ 32 \ 33 \ 20732.8969 \ 0.01616 \ 0.01 \ 1.6 \\ 32 \ 33 \ 20732.8969 \ 0.01616 \ 0.01 \ 1.6 \\ 32 \ 33 \ 20732.8969 \ 0.01616 \ 0.01 \ 1.6 \\ 32 \ 33 \ 20732.8969 \ 0.01628 \ 0.01 \ 1.6 \\ 32 \ 33 \ 20732.29832 \ 0.01628 \ 0.01 \ 1.6 \\ 32 \ 33 \ 20732.29832 \ 0.01628 \ 0.01 \ 0.6 \\ 34 \ 35 \ 20732.9832 \ 0.01628 \ 0.01 \ 0.6 \\ 34 \ 35 \ 20732.9832 \ 0.01628 \ 0.01 \ 0.6 \\ 34 \ 35 \ 20732.9844 \ 0.00355 \ 0.01 \ 0.6 \\ 34 \ 35 \ 20752.63522 \ 0.0158 \ 0.01 \ 0.6 \\ 34 \ 35 \ 20752.63522 \ 0.0158 \ 0.01 \ 0.6 \\ 34 \ 35 \ 20752.63522 \ 0.0158 \ 0.01 \ 0.6 \\ 34 \ 35 \ 20752.63522 \ 0.0158 \ 0.01 \ 0.6 \\ 34 \ 35 \ 20752.63522 \ 0.0158 \ 0.01 \ 0.6 \\ 34 \ 35 \ 20752.63522 \ 0.0158 \ 0.01 \ 0.6 \\ 34 \ 35 \ 20752.63522 \ 0.0158 \ 0.01 \ 0.6 \\ 34 \ 35 \ 20752.63522 \ 0.0158 \ 0.01 \ 0.6 $	44	44	16911.49656	0.47753	90.003	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		a) <b>T</b>			,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D(0	(,0) E	Band, P Branch	p' = e, p'' =	: e)	
57       58 $20657.43025$ $0.04172$ $0.01$ $-4.2$ 56       57 $20661.2674$ $-0.06925$ $10.01$ $0.0$ 55 $56$ $20665.10236$ $-0.04615$ $0.01$ $-4.6$ 54       55 $20668.85791$ $-0.04963$ $0.01$ $-1.8$ 52       53 $20676.24854$ $-0.01851$ $0.01$ $-1.8$ 52 $20678.87122$ $0.0037$ $0.01$ $0.4$ 50       51 $20683.40114$ $-0.01396$ $0.01$ $-1.1$ 48       49 $20690.34788$ $-0.00369$ $0.01$ $-0.4$ 47       48 $20697.06878$ $-0.00758$ $0.01$ $-0.4$ 46       47 $20697.06878$ $-0.00758$ $0.01$ $1.8$ 45       46 $20703.60321$ $0.01386$ $0.01$ $1.8$ 44 $20712.97925$ $0.0179$ $0.01$ $1.8$ 42 $320724.73436$ $0.01221$ $0.01$ $1.9$ 36       37 $20727.53807$ $0.01718$ </td <td>58</td> <td>59</td> <td>20653.51688</td> <td>-0.0376</td> <td>0.01</td> <td>-3.8</td>	58	59	20653.51688	-0.0376	0.01	-3.8
56       57       2061.2674 $-0.06925$ $10.01$ $0.01$ 55       56       20665.10236 $-0.04963$ $0.01$ $-5.0$ 53       54       20672.59561 $-0.01811$ $0.01$ $-1.8$ 52       53       20676.24854 $-0.01851$ $0.01$ $-1.9$ 51       52       20670.87122 $0.0037$ $0.01$ $0.4$ 49       50       20686.89861 $-0.01118$ $0.01$ $-1.4$ 49       50       20686.89861 $-0.00758$ $0.01$ $-0.4$ 47       48       20690.34788 $-0.00758$ $0.01$ $-0.4$ 46       47       20697.06878 $-0.00758$ $0.01$ $-0.8$ 45       46       20700.37181 $0.01247$ $0.01$ $1.8$ 42       207012.67925 $0.01779$ $0.1$ $1.8$ 42       320721.87377 $0.01745$ $0.01$ $1.7$ 37       2820724.73436 $0.01921$ $0.01$ $1.8$ 38       39       20721.87377 $0.01745$ $0.01$	57	58	20657 43025	-0.04172	0.01	-4.2
35 $36$ $20651.10236$ $-0.04615$ $0.01$ $-4.6$ $54$ $55$ $20668.85791$ $-0.04963$ $0.01$ $-5.0$ $53$ $54$ $20672.59561$ $-0.01811$ $0.01$ $-1.8$ $52$ $53$ $20676.24854$ $-0.01851$ $0.01$ $-1.9$ $51$ $52$ $20679.87122$ $0.0037$ $0.01$ $0.4$ $50$ $51$ $20683.40114$ $-0.01396$ $0.01$ $-1.4$ $49$ $50$ $20686.89861$ $-0.001118$ $0.01$ $-1.4$ $49$ $20690.34788$ $-0.00758$ $0.01$ $-0.4$ $46$ $47$ $20697.06878$ $-0.0758$ $0.01$ $-0.8$ $45$ $46$ $20700.37181$ $0.01247$ $0.01$ $1.2$ $44$ $45$ $20703.60321$ $0.01386$ $0.01$ $1.6$ $41$ $42$ $20712.97925$ $0.01779$ $0.01$ $1.8$ $42$ $43$ $20709.90624$ $0.01581$ $0.01$ $1.6$ $41$ $42$ $20712.97925$ $0.01745$ $0.01$ $1.7$ $37$ $38$ $20724.73436$ $0.01921$ $0.01$ $1.9$ $36$ $37$ $20727.53807$ $0.01628$ $0.01$ $1.6$ $33$ $34$ $20735.63522$ $0.01628$ $0.01$ $1.6$ $33$ $320738.22711$ $0.01628$ $0.01$ $0.3$ $39$ $20745.67667$ $0.03352$ $0.01$ $0.4$ $29$ $20748.05531$ $0.00165$ $0.01$ $0.2$ <td>56</td> <td>57</td> <td>20661 2674</td> <td>-0.06925</td> <td>10.01</td> <td>0.0</td>	56	57	20661 2674	-0.06925	10.01	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55	56	20665 10236	-0.04615	0.01	-4.6
33 $54$ $20672.59561$ $-0.01811$ $0.01$ $-1.8$ $52$ $53$ $20676.24854$ $-0.01851$ $0.01$ $-1.9$ $51$ $52$ $20679.87122$ $0.0037$ $0.01$ $0.4$ $50$ $51$ $20683.40114$ $-0.01396$ $0.01$ $-1.4$ $49$ $50$ $20686.89861$ $-0.01118$ $0.01$ $-1.1$ $44$ $49$ $20690.34788$ $-0.00369$ $0.01$ $-0.4$ $47$ $48$ $20693.73616$ $-0.00428$ $0.01$ $-0.4$ $46$ $47$ $20697.06878$ $-0.00758$ $0.01$ $-0.8$ $45$ $46$ $20700.37181$ $0.01247$ $0.01$ $1.2$ $44$ $45$ $20703.60321$ $0.01386$ $0.01$ $1.4$ $43$ $42$ $20707.99878$ $0.01841$ $0.01$ $1.8$ $42$ $43$ $20707.99787$ $0.01745$ $0.01$ $1.7$ $37$ $38$ $20724.73436$ $0.01921$ $0.01$ $1.7$ $37$ $38$ $20724.73436$ $0.01921$ $0.01$ $1.6$ $34$ $35$ $20732.98932$ $0.01628$ $0.01$ $1.6$ $33$ $34$ $20735.63522$ $0.0158$ $0.01$ $1.6$ $33$ $32$ $20745.67667$ $0.0345$ $0.01$ $0.3$ $39$ $20744.67577$ $0.01308$ $0.01$ $1.3$ $30$ $31$ $20745.67667$ $0.0345$ $0.01$ $0.5$ $27$ $28$ $20750.3844$ $0.00352$	54	55	20668 85791	-0.04963	0.01	-5.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53	54	20672 59561	-0.01811	0.01	-1.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52	53	20676 24854	-0.01851	0.01	-1.0
50 $51$ $20683.40114$ $-0.01396$ $0.01$ $-1.4$ $49$ $50$ $20686.89861$ $-0.01118$ $0.01$ $-1.1$ $48$ $49$ $20690.34788$ $-0.00369$ $0.01$ $-0.4$ $47$ $48$ $20693.73616$ $-0.00428$ $0.01$ $-0.4$ $46$ $47$ $20697.06878$ $-0.00758$ $0.01$ $-0.4$ $46$ $47$ $20697.06878$ $-0.00758$ $0.01$ $-0.8$ $45$ $46$ $20700.37181$ $0.01247$ $0.01$ $1.2$ $44$ $45$ $20703.60321$ $0.01386$ $0.01$ $1.4$ $43$ $44$ $20706.78408$ $0.01769$ $0.01$ $1.8$ $42$ $43$ $20709.90624$ $0.01581$ $0.01$ $1.6$ $41$ $4220712.97925$ $0.01779$ $0.01$ $1.8$ $40$ $41$ $20715.99787$ $0.01841$ $0.01$ $1.8$ $38$ $39$ $20721.87377$ $0.01745$ $0.01$ $1.7$ $37$ $38$ $20724.73436$ $0.01921$ $0.01$ $1.9$ $36$ $37$ $20727.53807$ $0.01628$ $0.01$ $1.6$ $34$ $35$ $20732.98932$ $0.01628$ $0.01$ $1.6$ $33$ $20738.22711$ $0.01447$ $0.01$ $1.4$ $31$ $32$ $20740.76577$ $0.01308$ $0.01$ $1.3$ $30$ $31$ $20743.24729$ $0.00774$ $0.01$ $0.8$ $29$ $30$ $20745.67667$ $0.00345$ <td< td=""><td>51</td><td>52</td><td>20679 87122</td><td>0.01001</td><td>0.01</td><td>0.4</td></td<>	51	52	20679 87122	0.01001	0.01	0.4
30 $51$ $20636.48961$ $-0.01118$ $0.01$ $1.1$ $49$ $50$ $20686.89861$ $-0.001369$ $0.01$ $-0.4$ $47$ $48$ $20693.73616$ $-0.00428$ $0.01$ $-0.4$ $46$ $47$ $20697.06878$ $-0.00758$ $0.01$ $-0.8$ $45$ $46$ $20700.37181$ $0.01247$ $0.01$ $1.2$ $44$ $45$ $20703.60321$ $0.01386$ $0.01$ $1.4$ $43$ $44$ $20706.78408$ $0.01769$ $0.01$ $1.8$ $42$ $43$ $20709.90624$ $0.01581$ $0.01$ $1.6$ $41$ $42$ $20712.97925$ $0.01779$ $0.01$ $1.8$ $40$ $41$ $20715.99787$ $0.01841$ $0.01$ $1.7$ $37$ $38$ $20721.87377$ $0.01745$ $0.01$ $1.7$ $37$ $38$ $20727.53807$ $0.01718$ $0.01$ $1.6$ $34$ $35$ $20732.98932$ $0.01628$ $0.01$ $1.6$ $33$ $34$ $20735.63522$ $0.0158$ $0.01$ $1.6$ $32$ $33$ $20734.24729$ $0.00774$ $0.01$ $0.8$ $29$ $20748.0531$ $0.00165$ $0.01$ $0.3$ $28$ $20750.3844$ $0.00352$ $0.01$ $0.4$ $26$ $20757.04511$ $0.00275$ $0.01$ $0.4$ $27$ $20767.08344$ $0.00365$ $0.01$ $0.4$ $28$ $20768.93206$ $0.00433$ $0.01$ $0.4$ $29$	50	51	20683 40114	-0.01396	0.01	-1 4
484920690.34788 $-0.00369$ $0.01$ $-0.4$ 474820693.73616 $-0.00428$ $0.01$ $-0.4$ 464720697.06878 $-0.00758$ $0.01$ $-0.4$ 464720697.06878 $-0.00758$ $0.01$ $-0.8$ 454620700.37181 $0.01247$ $0.01$ $1.2$ 444520703.60321 $0.01386$ $0.01$ $1.4$ 434420706.78408 $0.01581$ $0.01$ $1.6$ 414220712.97925 $0.01779$ $0.01$ $1.8$ 404120715.99787 $0.01841$ $0.01$ $1.8$ 383920721.87377 $0.01745$ $0.01$ $1.7$ 373820724.73436 $0.01921$ $0.01$ $1.9$ 363720727.53807 $0.01718$ $0.01$ $1.6$ 343520730.28969 $0.01628$ $0.01$ $1.6$ 333420735.63522 $0.0158$ $0.01$ $1.6$ 333420740.76577 $0.01308$ $0.01$ $1.3$ 303120743.24729 $0.00774$ $0.01$ $0.8$ 2920748.05531 $0.00165$ $0.01$ $0.3$ 282920750.3844 $0.00352$ $0.01$ $0.6$ 242520757.04511 $0.00216$ $0.01$ $0.4$ 262720763.28810 $0.00275$ $0.01$ $0.4$ 27282076.18352 $0.004$ $0.01$ $0$	49	50	20686 89861	-0.01118	0.01	_1.1
47 $48$ $20693.73616$ $0.000428$ $0.01$ $0.4$ $46$ $47$ $20697.06878$ $-0.00758$ $0.01$ $-0.8$ $45$ $46$ $20700.37181$ $0.01247$ $0.01$ $1.2$ $44$ $45$ $20703.60321$ $0.01386$ $0.01$ $1.4$ $43$ $44$ $20706.78408$ $0.01769$ $0.01$ $1.8$ $42$ $43$ $20709.90624$ $0.01581$ $0.01$ $1.6$ $41$ $42$ $20712.97925$ $0.01779$ $0.01$ $1.8$ $40$ $41$ $20715.99787$ $0.01841$ $0.01$ $1.8$ $38$ $39$ $20721.87377$ $0.01745$ $0.01$ $1.7$ $37$ $38$ $20724.73436$ $0.01921$ $0.01$ $1.6$ $34$ $35$ $20730.28969$ $0.01616$ $0.01$ $1.6$ $34$ $35$ $20732.98932$ $0.01628$ $0.01$ $1.6$ $33$ $34$ $20735.63522$ $0.0158$ $0.01$ $1.6$ $32$ $33$ $20743.24729$ $0.00774$ $0.01$ $0.8$ $29$ $30$ $20743.24729$ $0.00774$ $0.01$ $0.8$ $29$ $20748.05531$ $0.00165$ $0.01$ $0.2$ $27$ $28$ $20750.3844$ $0.00352$ $0.01$ $0.4$ $26$ $27$ $20752.65966$ $0.00482$ $0.01$ $0.4$ $26$ $27$ $20751.04511$ $0.00216$ $0.01$ $0.4$ $22$ $20761.22154$ $0.00365$ $0.01$ <	49	49	20600.05001	-0.01110	0.01	-0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47	48	20693 73616	-0.00428	0.01	-0.4
454620070.37181 $0.01247$ $0.01$ $1.2$ 444520703.60321 $0.01386$ $0.01$ $1.4$ 434420706.78408 $0.01769$ $0.01$ $1.8$ 424320709.90624 $0.01581$ $0.01$ $1.6$ 414220712.97925 $0.01779$ $0.01$ $1.8$ 404120715.99787 $0.01841$ $0.01$ $1.8$ 404120715.99787 $0.01745$ $0.01$ $1.7$ 373820724.73436 $0.01921$ $0.01$ $1.9$ 363720727.53807 $0.01718$ $0.01$ $1.7$ 353620730.28969 $0.01628$ $0.01$ $1.6$ 343520732.98932 $0.01628$ $0.01$ $1.6$ 333420735.63522 $0.0158$ $0.01$ $1.4$ 313220740.76577 $0.01308$ $0.01$ $1.3$ 303120743.24729 $0.00774$ $0.01$ $0.8$ 293020745.67667 $0.00345$ $0.01$ $0.2$ 272820750.3844 $0.00352$ $0.01$ $0.4$ 262720752.65966 $0.00482$ $0.01$ $0.4$ 2620757.04511 $0.00216$ $0.01$ $0.4$ 272320761.22154 $0.00365$ $0.01$ $0.4$ 2820759.1606 $0.00333$ $0.01$ $0.4$ 292020767.08344 $0.00313$ $0.01$ $0.4$	46	47	20095.15010	-0.00420	0.01	-0.4
131010101.11444520703.603210.013860.011.4434420706.784080.017690.011.8424320709.906240.015810.011.6414220712.979250.017790.011.8404120715.997870.018410.011.8383920721.873770.017450.011.7373820727.538070.017180.011.6343520730.289690.016160.011.6343520732.989320.016280.011.6333420735.635220.01580.011.4313220740.765770.013080.011.3303120743.247290.007740.010.8293020745.676670.003450.010.2272820750.38440.003520.010.4262720752.659660.004820.010.5252620754.881080.005550.010.4222320761.221540.003650.010.32420759.183520.0040.010.4212220763.228120.002750.010.3202120765.183520.0040.010.4212220767.083440.003130.010.3202120767.83240.00365	45	46	20700 37181	0.00100	0.01	12
111320706.784080.017690.011.8434420706.784080.017690.011.6414220712.979250.017790.011.8404120715.997870.018410.011.8383920721.873770.017450.011.7373820727.538070.017180.011.7363720727.538070.016160.011.6343520732.989320.016280.011.6333420735.635220.01580.011.6333420740.765770.013080.011.3303120743.247290.007740.010.8293020745.676670.003450.010.3282920750.38440.005550.010.4262720752.659660.004820.010.5252620754.881080.005550.010.4222320761.221540.003650.010.4222320761.221540.003650.010.4212220763.28120.002750.010.3202120765.183520.040.010.4212220763.28120.002750.010.32420759.16060.003330.010.42520775.083440.03130.010.3262120767.9321 <td>44</td> <td>45</td> <td>20703 60321</td> <td>0.01211</td> <td>0.01</td> <td>1.2</td>	44	45	20703 60321	0.01211	0.01	1.2
424320700.10403 $0.01103$ $0.01$ $1.6$ 414220712.97925 $0.01779$ $0.01$ $1.8$ 404120715.99787 $0.01841$ $0.01$ $1.8$ 383920721.87377 $0.01745$ $0.01$ $1.7$ 373820724.73436 $0.01921$ $0.01$ $1.9$ 363720727.53807 $0.01718$ $0.01$ $1.7$ 353620730.28969 $0.01616$ $0.01$ $1.6$ 343520732.98932 $0.01628$ $0.01$ $1.6$ 333420735.63522 $0.0158$ $0.01$ $1.6$ 323320740.76577 $0.01308$ $0.01$ $1.3$ 303120743.24729 $0.00774$ $0.01$ $0.8$ 293020745.67667 $0.00345$ $0.01$ $0.3$ 282920748.05531 $0.00165$ $0.01$ $0.2$ 272820750.3844 $0.00352$ $0.01$ $0.4$ 262720752.65966 $0.00482$ $0.01$ $0.4$ 242520757.04511 $0.00216$ $0.01$ $0.4$ 212220763.22812 $0.00275$ $0.01$ $0.4$ 212220765.18352 $0.004$ $0.01$ $0.4$ 212220767.08344 $0.0313$ $0.01$ $0.4$ 2220767.08344 $0.00313$ $0.01$ $0.4$ 2320776.893206 $0.00433$ $0.01$ $0.4$ <	43	40	20706.78408	0.01560	0.01	1.4
41 $42$ $20703.3024$ $0.010779$ $0.01$ $1.8$ $40$ $41$ $20712.97925$ $0.01779$ $0.01$ $1.8$ $38$ $39$ $20721.87377$ $0.01745$ $0.01$ $1.7$ $37$ $38$ $20724.73436$ $0.01921$ $0.01$ $1.9$ $36$ $37$ $20727.53807$ $0.01718$ $0.01$ $1.7$ $35$ $36$ $20730.28969$ $0.01616$ $0.01$ $1.6$ $34$ $35$ $20732.98932$ $0.01628$ $0.01$ $1.6$ $33$ $34$ $20735.63522$ $0.0158$ $0.01$ $1.6$ $32$ $33$ $20738.22711$ $0.01447$ $0.01$ $1.4$ $31$ $32$ $20740.76577$ $0.01308$ $0.01$ $1.3$ $30$ $31$ $20743.24729$ $0.00774$ $0.01$ $0.8$ $29$ $30$ $20745.67667$ $0.00345$ $0.01$ $0.3$ $28$ $29$ $20748.05531$ $0.00165$ $0.01$ $0.2$ $27$ $28$ $20750.3844$ $0.00352$ $0.01$ $0.4$ $26$ $27$ $20752.65966$ $0.00482$ $0.01$ $0.4$ $24$ $20759.1606$ $0.00353$ $0.01$ $0.4$ $22$ $20761.22154$ $0.00365$ $0.01$ $0.4$ $22$ $20763.22812$ $0.00275$ $0.01$ $0.3$ $24$ $20759.1606$ $0.00433$ $0.01$ $0.4$ $21$ $22$ $20767.08344$ $0.0313$ $0.01$ $0.4$ $21$ </td <td>$\frac{43}{42}$</td> <td>43</td> <td>20700.10400</td> <td>0.01703</td> <td>0.01</td> <td>1.6</td>	$\frac{43}{42}$	43	20700.10400	0.01703	0.01	1.6
41 $42$ $20112.91529$ $0.01175$ $0.011$ $1.6$ $40$ $41$ $20715.99787$ $0.01841$ $0.01$ $1.8$ $38$ $39$ $20721.87377$ $0.01745$ $0.01$ $1.7$ $37$ $38$ $20724.73436$ $0.01921$ $0.01$ $1.9$ $36$ $37$ $20727.53807$ $0.01718$ $0.01$ $1.7$ $35$ $36$ $20730.28969$ $0.01616$ $0.01$ $1.6$ $34$ $35$ $20732.98932$ $0.01628$ $0.01$ $1.6$ $33$ $34$ $20735.63522$ $0.0158$ $0.01$ $1.6$ $32$ $33$ $20738.22711$ $0.01447$ $0.01$ $1.4$ $31$ $32$ $20740.76577$ $0.01308$ $0.01$ $1.3$ $30$ $31$ $20743.24729$ $0.00774$ $0.01$ $0.8$ $29$ $30$ $20745.67667$ $0.00345$ $0.01$ $0.3$ $28$ $29$ $20748.05531$ $0.00165$ $0.01$ $0.2$ $27$ $28$ $20750.3844$ $0.00352$ $0.01$ $0.4$ $26$ $27$ $20752.65966$ $0.00482$ $0.01$ $0.6$ $24$ $25$ $20757.04511$ $0.00216$ $0.01$ $0.2$ $23$ $24$ $20763.22812$ $0.00275$ $0.01$ $0.3$ $20$ $21$ $20765.18352$ $0.004$ $0.01$ $0.4$ $21$ $22$ $20767.08344$ $0.00313$ $0.01$ $0.4$ $22$ $20767.08344$ $0.00313$ $0.$	- <u>-</u> 2 /1	42	20703.30024	0.01001	0.01	1.0
40 $41$ $20110.5701$ $0.01745$ $0.01$ $1.7$ $38$ $39$ $20721.87377$ $0.01745$ $0.01$ $1.7$ $37$ $38$ $20724.73436$ $0.01921$ $0.01$ $1.9$ $36$ $37$ $20727.53807$ $0.01718$ $0.01$ $1.7$ $35$ $36$ $20730.28969$ $0.01616$ $0.01$ $1.6$ $34$ $35$ $20732.98932$ $0.01628$ $0.01$ $1.6$ $33$ $34$ $20735.63522$ $0.0158$ $0.01$ $1.6$ $32$ $33$ $20738.22711$ $0.01447$ $0.01$ $1.4$ $31$ $32$ $20740.76577$ $0.01308$ $0.01$ $1.3$ $30$ $31$ $20743.24729$ $0.00774$ $0.01$ $0.8$ $29$ $30$ $20745.67667$ $0.00345$ $0.01$ $0.3$ $28$ $29$ $20748.05531$ $0.00165$ $0.01$ $0.2$ $27$ $28$ $20750.3844$ $0.00352$ $0.01$ $0.4$ $26$ $27$ $20752.65966$ $0.00482$ $0.01$ $0.5$ $25$ $26$ $20754.88108$ $0.00555$ $0.01$ $0.6$ $24$ $25$ $20757.04511$ $0.00216$ $0.01$ $0.4$ $22$ $23$ $20761.22154$ $0.00365$ $0.01$ $0.4$ $22$ $20763.22812$ $0.00275$ $0.01$ $0.3$ $20$ $21$ $20767.08344$ $0.00313$ $0.01$ $0.4$ $21$ $22$ $20767.08344$ $0.00313$ $0.$	40	42	20712.37323	0.01775	0.01	1.0
36 $35$ $20724.73436$ $0.01921$ $0.01$ $1.1$ $37$ $38$ $20724.73436$ $0.01921$ $0.01$ $1.9$ $36$ $37$ $20727.53807$ $0.01718$ $0.01$ $1.7$ $35$ $36$ $20730.28969$ $0.01616$ $0.01$ $1.6$ $34$ $35$ $20732.98932$ $0.01628$ $0.01$ $1.6$ $33$ $34$ $20735.63522$ $0.0158$ $0.01$ $1.6$ $32$ $33$ $20738.22711$ $0.01447$ $0.01$ $1.4$ $31$ $32$ $20740.76577$ $0.01308$ $0.01$ $1.3$ $30$ $31$ $20743.24729$ $0.00774$ $0.01$ $0.8$ $29$ $30$ $20745.67667$ $0.00345$ $0.01$ $0.3$ $28$ $29$ $20748.05531$ $0.00165$ $0.01$ $0.2$ $27$ $28$ $20750.3844$ $0.00352$ $0.01$ $0.4$ $26$ $27$ $20752.65966$ $0.00482$ $0.01$ $0.5$ $25$ $26$ $20757.04511$ $0.00216$ $0.01$ $0.2$ $23$ $24$ $20759.1606$ $0.00353$ $0.01$ $0.4$ $21$ $22$ $20763.22812$ $0.00275$ $0.01$ $0.3$ $20$ $21$ $20765.18352$ $0.004$ $0.01$ $0.4$ $19$ $20$ $20767.08344$ $0.00313$ $0.01$ $0.4$ $19$ $20$ $20767.0321$ $-0.01857$ $0.01$ $-1.9$ $16$ $17$ $20772.48209$ $0.01967$	38	30	20710.33707	0.01041 0.01745	0.01	1.0
$31^{\circ}$ $36^{\circ}$ $20727.53807$ $0.01718$ $0.01$ $1.7$ $35^{\circ}$ $36^{\circ}$ $20730.28969$ $0.01616$ $0.01$ $1.6$ $34^{\circ}$ $35^{\circ}$ $20732.98932$ $0.01628$ $0.01$ $1.6$ $33^{\circ}$ $34^{\circ}$ $20735.63522$ $0.0158$ $0.01$ $1.6$ $32^{\circ}$ $33^{\circ}$ $20738.22711$ $0.01447$ $0.01$ $1.4$ $31^{\circ}$ $32^{\circ}$ $20740.76577$ $0.01308$ $0.01$ $1.3$ $30^{\circ}$ $31^{\circ}$ $20743.24729$ $0.00774$ $0.01$ $0.8$ $29^{\circ}$ $30^{\circ}$ $20745.67667$ $0.00345$ $0.01$ $0.3$ $28^{\circ}$ $29^{\circ}750.3844$ $0.00352$ $0.01$ $0.4$ $26^{\circ}$ $27^{\circ}20752.65966$ $0.00482$ $0.01$ $0.5$ $25^{\circ}$ $26^{\circ}2757.04511$ $0.00216$ $0.01$ $0.2$ $23^{\circ}$ $24^{\circ}20759.1606$ $0.00353$ $0.01$ $0.4$ $22^{\circ}$ $20763.22812$ $0.00275$ $0.01$ $0.3$ $20^{\circ}$ $21^{\circ}20767.08344$ $0.00313$ $0.01$ $0.4$ $19^{\circ}$ $20767.08344$ $0.00313$ $0.01$ $0.4$ $19^{\circ}$ $20776.08344$ $0.00433$ $0.01$ $0.4$ $17^{\circ}$ $8^{\circ}20770.70321$ $-0.01857$ $0.01$ $0.4$ $17^{\circ}$ $8^{\circ}20776.78991$ $0.00644$ $0.01$ $0.6$	37	38	20721.07577	0.01745	0.01	1.7
35 $36$ $20730.289699$ $0.01616$ $0.01$ $1.6$ $34$ $35$ $20732.98932$ $0.01628$ $0.01$ $1.6$ $33$ $34$ $20735.63522$ $0.0158$ $0.01$ $1.6$ $32$ $33$ $20738.22711$ $0.01447$ $0.01$ $1.4$ $31$ $32$ $20740.76577$ $0.01308$ $0.01$ $1.3$ $30$ $31$ $20743.24729$ $0.00774$ $0.01$ $0.8$ $29$ $30$ $20745.67667$ $0.00345$ $0.01$ $0.3$ $28$ $29$ $20748.05531$ $0.00165$ $0.01$ $0.2$ $27$ $28$ $20750.3844$ $0.00352$ $0.01$ $0.4$ $26$ $27$ $20752.65966$ $0.00482$ $0.01$ $0.5$ $25$ $26$ $20754.88108$ $0.00555$ $0.01$ $0.6$ $24$ $25$ $20757.04511$ $0.00216$ $0.01$ $0.4$ $22$ $23$ $20761.22154$ $0.00365$ $0.01$ $0.4$ $21$ $22$ $20767.08344$ $0.00313$ $0.01$ $0.4$ $21$ $22$ $20767.08344$ $0.00313$ $0.01$ $0.4$ $19$ $20$ $20767.08344$ $0.00433$ $0.01$ $0.4$ $17$ $18$ $20770.70321$ $-0.01857$ $0.01$ $-1.9$ $16$ $17$ $20775.78991$ $0.00644$ $0.01$ $0.5$ $14$ $15$ $20775.78991$ $0.00644$ $0.01$ $0.5$	36	37	20724.13430	0.01521 0.01718	0.01	1.5
36 $36$ $20732.98932$ $0.01616$ $0.01$ $1.6$ $34$ $35$ $20732.98932$ $0.01628$ $0.01$ $1.6$ $33$ $34$ $20735.63522$ $0.0158$ $0.01$ $1.6$ $32$ $33$ $20738.22711$ $0.01447$ $0.01$ $1.4$ $31$ $32$ $20740.76577$ $0.01308$ $0.01$ $1.3$ $30$ $31$ $20743.24729$ $0.00774$ $0.01$ $0.8$ $29$ $30$ $20745.67667$ $0.00345$ $0.01$ $0.3$ $28$ $29$ $20748.05531$ $0.00165$ $0.01$ $0.2$ $27$ $28$ $20750.3844$ $0.00352$ $0.01$ $0.4$ $26$ $27$ $20752.65966$ $0.00482$ $0.01$ $0.5$ $25$ $26$ $20754.88108$ $0.00555$ $0.01$ $0.6$ $24$ $25$ $20757.04511$ $0.00216$ $0.01$ $0.2$ $23$ $24$ $20759.1606$ $0.00353$ $0.01$ $0.4$ $21$ $22$ $20763.22812$ $0.00275$ $0.01$ $0.3$ $20$ $21$ $20767.08344$ $0.00313$ $0.01$ $0.4$ $19$ $20$ $20767.08344$ $0.00433$ $0.01$ $0.4$ $17$ $18$ $20770.70321$ $-0.01857$ $0.01$ $-1.9$ $16$ $17$ $20775.78991$ $0.00644$ $0.01$ $0.5$ $14$ $15$ $20775.78991$ $0.00644$ $0.01$ $0.6$	35	36	20721.00001	0.01710	0.01	1.6
33 $34$ $20735.63522$ $0.0120$ $0.01$ $1.6$ $32$ $33$ $20738.22711$ $0.01447$ $0.01$ $1.4$ $31$ $32$ $20740.76577$ $0.01308$ $0.01$ $1.3$ $30$ $31$ $20743.24729$ $0.00774$ $0.01$ $0.8$ $29$ $30$ $20745.67667$ $0.00345$ $0.01$ $0.3$ $28$ $29$ $20748.05531$ $0.00165$ $0.01$ $0.2$ $27$ $28$ $20750.3844$ $0.00352$ $0.01$ $0.4$ $26$ $27$ $20752.65966$ $0.00482$ $0.01$ $0.5$ $25$ $26$ $20754.88108$ $0.00555$ $0.01$ $0.6$ $24$ $25$ $20757.04511$ $0.00216$ $0.01$ $0.2$ $23$ $24$ $20759.1606$ $0.00353$ $0.01$ $0.4$ $22$ $23$ $20761.22154$ $0.00275$ $0.01$ $0.3$ $20$ $21$ $20765.18352$ $0.004$ $0.01$ $0.4$ $19$ $20$ $20767.08344$ $0.00313$ $0.01$ $0.3$ $18$ $19$ $20768.93206$ $0.00433$ $0.01$ $0.4$ $17$ $18$ $20770.70321$ $-0.01857$ $0.01$ $-1.9$ $16$ $17$ $20775.78991$ $0.00644$ $0.01$ $0.5$	$\frac{30}{34}$	35	20732 98932	0.01610	0.01	1.0
33342013.03322 $0.0136$ $0.01$ $1.0$ 323320738.22711 $0.01447$ $0.01$ $1.4$ 313220740.76577 $0.01308$ $0.01$ $1.3$ 303120743.24729 $0.00774$ $0.01$ $0.8$ 293020745.67667 $0.00345$ $0.01$ $0.3$ 282920748.05531 $0.00165$ $0.01$ $0.2$ 272820750.3844 $0.00352$ $0.01$ $0.4$ 262720752.65966 $0.00482$ $0.01$ $0.5$ 252620754.88108 $0.00555$ $0.01$ $0.6$ 242520757.04511 $0.00216$ $0.01$ $0.2$ 232420759.1606 $0.00353$ $0.01$ $0.4$ 212220763.22812 $0.00275$ $0.01$ $0.3$ 202120767.08344 $0.00313$ $0.01$ $0.4$ 192020767.0321 $-0.01857$ $0.01$ $-1.9$ 161720772.48209 $0.01967$ $0.01$ $0.5$ 141520775.7891 $0.00644$ $0.01$ $0.5$	22	34	20132.30332	0.01020	0.01	1.0
32 $33$ $20730.22111$ $0.01441$ $0.01$ $1.4$ $31$ $32$ $20740.76577$ $0.01308$ $0.01$ $1.3$ $30$ $31$ $20743.24729$ $0.00774$ $0.01$ $0.8$ $29$ $30$ $20745.67667$ $0.00345$ $0.01$ $0.3$ $28$ $29$ $20748.05531$ $0.00165$ $0.01$ $0.2$ $27$ $28$ $20750.3844$ $0.00352$ $0.01$ $0.4$ $26$ $27$ $20752.65966$ $0.00482$ $0.01$ $0.5$ $25$ $26$ $20754.88108$ $0.00555$ $0.01$ $0.6$ $24$ $25$ $20757.04511$ $0.00216$ $0.01$ $0.2$ $23$ $24$ $20759.1606$ $0.00353$ $0.01$ $0.4$ $22$ $23$ $20761.22154$ $0.00365$ $0.01$ $0.4$ $21$ $22$ $20763.22812$ $0.00275$ $0.01$ $0.3$ $20$ $21$ $20767.08344$ $0.00313$ $0.01$ $0.4$ $19$ $20$ $20767.08344$ $0.00433$ $0.01$ $0.4$ $17$ $18$ $20770.70321$ $-0.01857$ $0.01$ $-1.9$ $16$ $17$ $20772.48209$ $0.01967$ $0.01$ $0.5$ $14$ $15$ $20775.78991$ $0.00644$ $0.01$ $0.6$	32	22	20739.03522	0.0100 0.01447	0.01	1.0
31 $32$ $20743.24729$ $0.00774$ $0.01$ $0.8$ $30$ $31$ $20743.24729$ $0.00774$ $0.01$ $0.8$ $29$ $30$ $20745.67667$ $0.00345$ $0.01$ $0.3$ $28$ $29$ $20748.05531$ $0.00165$ $0.01$ $0.2$ $27$ $28$ $20750.3844$ $0.00352$ $0.01$ $0.4$ $26$ $27$ $20752.65966$ $0.00482$ $0.01$ $0.5$ $25$ $26$ $20754.88108$ $0.00555$ $0.01$ $0.6$ $24$ $25$ $20757.04511$ $0.00216$ $0.01$ $0.2$ $23$ $24$ $20759.1606$ $0.00353$ $0.01$ $0.4$ $22$ $23$ $20761.22154$ $0.00365$ $0.01$ $0.4$ $21$ $22$ $20765.18352$ $0.004$ $0.01$ $0.4$ $21$ $22$ $20767.08344$ $0.00313$ $0.01$ $0.3$ $20$ $21$ $20767.08344$ $0.00313$ $0.01$ $0.4$ $17$ $18$ $20770.70321$ $-0.01857$ $0.01$ $-1.9$ $16$ $17$ $20775.78991$ $0.00644$ $0.01$ $0.5$ $14$ $15$ $20775.78991$ $0.00644$ $0.01$ $0.6$	31	30	20730.22711	0.01447	0.01	1 3
30 $20745.67667$ $0.00345$ $0.01$ $0.3$ $29$ $30$ $20745.67667$ $0.00345$ $0.01$ $0.3$ $28$ $29$ $20748.05531$ $0.00165$ $0.01$ $0.2$ $27$ $28$ $20750.3844$ $0.00352$ $0.01$ $0.4$ $26$ $27$ $20752.65966$ $0.00482$ $0.01$ $0.5$ $25$ $26$ $20754.88108$ $0.00555$ $0.01$ $0.6$ $24$ $25$ $20757.04511$ $0.00216$ $0.01$ $0.2$ $23$ $24$ $20759.1606$ $0.00353$ $0.01$ $0.4$ $22$ $23$ $20761.22154$ $0.00365$ $0.01$ $0.4$ $21$ $22$ $20763.22812$ $0.00275$ $0.01$ $0.3$ $20$ $21$ $20767.08344$ $0.00313$ $0.01$ $0.4$ $19$ $20$ $20767.08344$ $0.00313$ $0.01$ $0.4$ $17$ $18$ $20770.70321$ $-0.01857$ $0.01$ $-1.9$ $16$ $17$ $20772.48209$ $0.01967$ $0.01$ $0.5$ $14$ $15$ $20775.78991$ $0.00644$ $0.01$ $0.6$	30	31	20743.24729	0.01000 0.00774	0.01	0.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	30	20745 67667	0.00345	0.01	0.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{23}{28}$	29	20745.07007	0.00345 0.00165	0.01	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{20}{27}$	$\frac{20}{28}$	20740.00001	0.00100	0.01	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{21}{26}$	$\frac{20}{27}$	20752 65966	0.00392	0.01	0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{20}{25}$	26	20752.00500	0.00402	0.01	0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{20}{24}$	$\frac{20}{25}$	20757 04511	0.00000	0.01	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24 23	$\frac{20}{24}$	20759 1606	0.00210	0.01	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20 99	24 92	20103.1000	0.00303	0.01	0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{22}{91}$	29 22	20763 22812	0.00305 0.00275	0.01	0.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{21}{20}$	22 21	20105.22012	0.00215	0.01	0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20 10	21	20105.10552	0.004	0.01	0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19 18	20 10	20101.00344	0.00313	0.01	0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	18	20100.35200	-0.01857	0.01	_1 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	17	20110.10321	0.01007	0.01	2.0
14 15 20775,78991 0.00644 0.01 0.6	15	16	20774 15452	0.01307	0.01	0.5
	14	15	20775 78991	0.00644	0.01	0.6

Table B.1, Electronic Data of  $^{184}\mathrm{WO}$  Relative to X0^+  $(\mathit{Cont'd})$ 

		,			( )
J'	J''	Obs	Obs-Calc	Unc	(Obs-Calc)/Unc
13	14	20777.37358	0.00972	0.01	1.0
12	13	20778.89815	0.00736	0.01	0.7
10	11	20781.78609	0.00182	0.01	0.2
9	10	20783.1619	0.01111	0.01	1.1
8	9	20784.47537	0.01155	0.01	1.2
7	8	20785.69348	-0.02986	0.01	-3.0
6	7	20786.90027	-0.02909	10.01	0.0
5	6	20788.05432	-0.02752	10.01	0.0
4	5	20789.1584	-0.0224	10.01	0.0
3	4	20790.20761	-0.0186	10.01	0.0
2	3	20791.25575	0.03768	10.01	0.0
1	2	20792.1878	0.03143	10.01	0.0
D(0	),0) E	Band, R Branch	p' = e, p'' =	= e)	
1	0	20794.66262	0.01277	0.01	1.3
2	1	20795 41334	0.0395	10.01	0.0
3	2	20796 06231	0.01807	0.01	1.8
4	3	20796.67951	0.01847	0.01	1.8
5	4	20797.23602	0.01179	0.01	1.2
ő	5	20797 7366	0.00278	0.01	0.3
7	6	20798 19486	0.00210 0.00507	0.01	0.5
8	7	20798 60737	0.00501 0.01522	0.01	15
ğ	8	20798 93336	-0.00752	0.01	-0.8
10	ğ	20799 22007	-0.01592	0.01	-1.6
11	10	20799 46803	-0.00944	0.01	-0.9
12	11	20799 66382	-0.00151	0.01	-0.2
12	12	20799.81579	0.00101	0.01	1.6
14	13	20799 87192	-0.00823	0.01	-0.8
15	14	20799 87192	-0.0352	0.01	-3.5
16	15	20799 87192	-0.00853	0.01	-0.9
17	16	20799 80027	0.00011	0.01	0.0
18	17	20799 66382	-0.00241	0.01	-0.2
19	18	20799 46803	-0.01064	0.01	-1.1
20	19	20799.22007	-0.01742	0.01	-17
$\frac{20}{21}$	$\frac{10}{20}$	20798 93336	-0.00932	0.01	-0.9
$\frac{-1}{22}$	21	20798 60737	0.00002 0.01312	0.01	13
23	22	20798 19486	0.00266	0.01	0.3
$\frac{20}{24}$	23	20797 7366	0.00007	0.01	0.0
25	$\frac{20}{24}$	20797 23602	0.00876	0.01	0.9
$\frac{-6}{26}$	25	20796 67951	0.01514	0.01	1.5
$\frac{-0}{28}$	$\frac{20}{27}$	20795.41334	0.03555	10.01	0.0
$\frac{-0}{29}$	$\frac{-1}{28}$	20794.66262	0.00851	0.01	0.9
$\frac{-0}{30}$	$\frac{-0}{29}$	20793.88988	0.01304	0.01	1.3
31	$\frac{-0}{30}$	20793.06297	0.01697	10.01	0.0
$3\overline{2}$	31	20792.18708	0.02551	10.01	0.0
33	32	20791.25575	0.03216	10.01	0.0
34	33	20790.20761	-0.02443	10.01	0.0
35	34	20789.23271	0.04577	10.01	0.0
36	35	20788 05432	-0.03398	10.01	0.0
37	36	20786 90027	-0.03585	10.01	0.0
38	37	20785.69348	-0.03693	10.01	0.0
39	38	20784 47537	0.00418	0.01	0.4
40	39	20783 1619	0.00344	0.01	0.3
41	40	20781 80608	0.01385	0.01	1.4
42	41	20780 36034	-0.01217	0.01	-1 2
43	42	20778 89815	-0.00117	0.01	-0.1
44	43	20777 37358	0.00093	0.01	0.1
45	44	20775.78991	-0.00262	0.01	-0.3

Table B.1, Electronic Data of  $^{184}\mathrm{WO}$  Relative to X0⁺ (Cont'd)

		)			( )
J'	J''	Obs	Obs-Calc	Unc	(Obs-Calc)/Unc
46	45	20774.15453	-0.00443	0.01	-0.4
47	46	20772.48609	0.01413	0.01	1.4
49	48	20768.93206	-0.00562	0.01	-0.6
50	49	20767.08344	-0.007	0.01	-0.7
51	50	20765.18352	-0.00628	0.01	-0.6
52	51	20763.22812	-0.00767	0.01	-0.8
53	52	20761.22154	-0.00687	0.01	-0.7
54	53	20759.1606	-0.00708	0.01	-0.7
55	54	20757.04511	-0.00849	0.01	-0.8
56	55	20754.88108	-0.00512	0.01	-0.5
57	56	20752.65966	-0.00581	0.01	-0.6
58	57	20750.3844	-0.00704	0.01	-0.7
59	58	20748.05531	-0.0088	0.01	-0.9
60	59	20745.67667	-0.00684	0.01	-0.7
61	60	20743.24729	-0.00234	0.01	-0.2
62	61	20740.76577	0.00328	0.01	0.3
63	62	20738.22711	0.005	0.01	0.5
64	63	20735.63522	0.00673	0.01	0.7
65	64	20732.98932	0.00767	0.01	0.8
66	65	20730.28969	0.00809	0.01	0.8
67	66	20727.53807	0.00973	0.01	1.0
68	67	20724.7344	0.0125	0.01	1.2
69	68	20721.87367	0.01139	0.01	1.1
70	69	20718.96469	0.0152	0.01	1.5
71	70	20715.99787	0.01433	0.01	1.4
72	71	20712.97925	0.01481	0.01	1.5
73	72	20709.90624	0.01403	0.01	1.4
74	73	20706.78408	0.01724	0.01	1.7
75	74	20703.60321	0.01486	0.01	1.5
76	75	20700.37181	0.01506	0.01	1.5
77	76	20697.06878	-0.00327	0.01	-0.3
78	77	20693.73616	0.00191	0.01	0.2
79	78	20690.34788	0.00453	0.01	0.5
80	79	20686.89861	-0.00077	0.01	-0.1
81	80	20683.40114	-0.00118	0.01	-0.1
82	81	20679.87122	0.01903	0.01	1.9
83	82	20676.24854	-0.00046	0.01	0.0
84	83	20672.59561	0.00287	0.01	0.3
85	84	20668.85791	-0.0255	0.01	-2.6
86	85	20665.10236	-0.01867	0.01	-1.9
87	86	20661.2674	-0.03819	10.01	0.0
88	87	20657.43025	-0.00685	0.01	-0.7
89	88	20653.51688	0.00134	0.01	0.1
D(0	,0) E	Band, Q Branch	(p' = f, p'' =	e)	
68	68	20669.79582	0.00787	0.01	0.8
67	67	20673.34902	-0.03202	10.01	0.0
66	66	20676.88277	-0.03838	10.01	0.0
65	65	20680.36333	-0.045	10.01	0.0
64	64	20683.80527	-0.03732	10.01	0.0
63	$\tilde{63}$	20687.20542	-0.01857	10.01	0.0
61	61	20693.79776	-0.0305	10.01	0.0
60	60	20697.06881	0.01762	10.01	0.0
$\overline{59}$	59	20700.21429	-0.00705	0.01	-0.7
$\overline{58}$	$\overline{58}$	20703.33587	-0.00286	0.01	-0.3
57	57	20706.39618	-0.00721	0.01	-0.7
56	$\overline{56}$	20709.40854	-0.00677	0.01	-0.7
55	55	20712.37025	-0.00428	0.01	-0.4

Table B.1, Electronic Data of ¹⁸⁴WO Relative to X0⁺ (*Cont'd*)

J'	J''	Obs	Obs-Calc	Unc	(Obs-Calc)/Unc
54	54	20715.27749	-0.00355	0.01	-0.4
53	53	20718.13466	-0.0002	0.01	0.0
52	52	20720.93858	0.00259	0.01	0.3
51	51	20723.68156	-0.00288	0.01	-0.3
50	50	20726.38306	0.00284	0.01	0.3
49	49	20729.02562	0.0023	0.01	0.2
48	48	20731.6172	0.00344	0.01	0.3
47	47	20734.15557	0.00405	0.01	0.4
46	46	20736.64116	0.00456	0.01	0.5
45	45	20739.07395	0.00493	0.01	0.5
44	44	20741.45293	0.00418	0.01	0.4
43	43	20743.78039	0.00458	0.01	0.5
42	42	20746.05453	0.00435	0.01	0.4
41	41	20748.27623	0.00438	0.01	0.4
40	40	20750.44671	0.00589	0.01	0.6
39	39	20752.56196	0.00487	0.01	0.5
38	38	20754.62387	0.00322	0.01	0.3
37	37	20756.63467	0.00319	0.01	0.3
36	36	20758.59229	0.00272	0.01	0.3
35	35	20760.49748	0.00255	0.01	0.3
34	34	20762.34879	0.00126	0.01	0.1
33	33	20764.1473	-0.00007	0.01	0.0
32	32	20765.89416	-0.00027	0.01	0.0
31	31	20767.58878	0.00007	0.01	0.0
30	30	20769.22818	-0.00201	0.01	-0.2
29	29	20770.83187	0.013	0.01	1.3
28	28	20772.32793	-0.0268	0.01	-2.7
27	27	20773.83416	-0.00359	0.01	-0.4
26	26	20775.26274	-0.0052	0.01	-0.5
25	25	20776.64019	-0.00508	0.01	-0.5
24	24	20777.96342	-0.00632	0.01	-0.6
23	23	20779.23309	-0.00824	0.01	-0.8
21	21	20781.58843	-0.0374	10.01	0.0
20	20	20782.68779	-0.05093	10.01	0.0
19	19	20783.76165	-0.03705	10.01	0.0
18	18	20784.81301	0.00727	0.01	0.7
17	17	20785.761	0.00115	0.01	0.1
16	10	20786.67531	0.01431	0.01	1.4
15	15	20787.49186	-0.01734	0.01	-1.7
14	14	20788.28814	-0.01029	0.01	-1.0
13	13	20789.02307	-0.02301	0.01	-2.4
12	12	20789.72100	-0.01429	0.01	-1.4
11	11	20790.33124	-0.02099	0.01	-2.1
10	10	20790.95555	-0.02198	0.01	-2.2
9	9	20791.40313	-0.02205	0.01	-2.3
0 7	07	20791.93696	-0.00407	0.01	-0.4
6	6	20192.31108	-0.01022	0.01	-1.0
5	5	20792.74090	-0.01130	0.01	-1.2
	1	20795.00297	-0.01576	0.01	-1.4
4	4	20135.52044	-0.01040	0.01	-1.0
D(0	),1) E	Band, R Branch	(p' = e, p'')	= e)	
69	68	19673.86546	0.02945	0.05	0.6
67	66	19678.98426	0.04338	0.05	0.9
64	63	19686.17348	-0.06153	0.05	-1.2
63	62	19688.49039	-0.0789	0.05	-1.6
61	60	19692.98991	-0.10193	0.05	-2.0
60	59	19695.20452	-0.07549	0.05	-1.5

Table B.1, Electronic Data of  $^{184}\mathrm{WO}$  Relative to X0^+ (Cont'd)

Tał	ole B.	1, Electronic D	Pata of $^{184}W$	O Relative	to $X0^+$	(Cont'd)
J'	J''	Obs	Obs-Calc	Unc	(Obs-	Calc)/Unc
59	58	19697.36315	-0.05622	0.05	-1.1	
58	57	19699.48805	-0.02182	0.05	-0.4	
57	56	19701.54452	-0.00694	0.05	-0.1	
56	55	19703.5211	-0.02301	0.05	-0.5	
55	54	19705.50785	0.02008	0.05	0.4	
54 52	53	19707.3816	-0.00079	0.05	0.0	
53	52	19709.23209	0.00415	0.05	0.1	
02 51	51	19/11.08018	0.05579	0.05	1.1	
50		19712.03019	0.0040 0.12074	0.05	1.5	
30 40	49	19714.09000	0.12074 0.02857	0.05	2.4	
$\frac{49}{47}$	40	19710.1473	-0.16871	0.05 0.05	-3.4	
41	40	19/19.1001	-0.10071	0.05	-0.4	
D(0	), 1) E	Band, P Branch	(p' = e, p'')	= e)	0.0	
14 16	15 17	19/18./1433	0.01309	0.05	0.3	
10	10	19715.51958	0.00592	0.05	0.1	
11	18	19713.80002	0.01073 0.00550	0.05	0.2	
19	20	19710.33038	-0.00559	0.05	-0.1	
$\frac{21}{22}$	22 22	19708.33879	1.07002 0.00577	10.05	0.2	
22 22	23 24	19704.70042	-0.00377	0.05	-0.1	
$\frac{23}{24}$	$\frac{24}{25}$	19702.81344	-0.00878	0.05 0.05	-0.2	
$\frac{24}{25}$	$\frac{20}{26}$	19698 72687	0.00070	0.05	0.0	
$\frac{20}{26}$	$\frac{20}{27}$	19696 62002	0.0002 0.00507	0.05	0.0	
$\frac{20}{27}$	$\frac{2}{28}$	19694.46303	0.00904	0.05	$0.1 \\ 0.2$	
$\frac{-1}{28}$	$\frac{-0}{29}$	19692.25376	0.00997	0.05	0.2	
$29^{-5}$	$\frac{-}{30}$	19690.02021	0.03583	0.05	0.7	
30	31	19687.69813	0.02235	0.05	0.4	
31	32	19685.33392	0.01593	0.05	0.3	
32	33	19682.91678	0.00574	0.05	0.1	
33	34	19680.47054	0.0156	0.05	0.3	
34	35	19677.96515	0.01543	0.05	0.3	
35	36	19675.40315	0.00776	0.05	0.2	
D(0	),1) E	Band, Q Branch	p' = f, p''	= e)		
49	49	19676.39885	-0.00385	0.005	-0.8	
48	48	19678.79401	-0.00079	0.005	-0.2	
47	47	19681.13809	-0.0003	0.005	-0.1	
45	45	19685.68776	0.00777	0.005	1.6	
44	44	19687.87871	0.00076	0.005	0.2	
43	43	19690.02021	-0.00712	0.005	-1.4	
42	42	19692.12828	0.00016	0.005	0.0	
41	41	19694.19001	0.00971	0.005	1.9	
40	40	19696.1846	0.00075	0.005	0.2	
39	39	19098.13281	-0.00594	0.005	-1.2	
38 27	38 27	19700.04729	0.0023	0.005	0.5	
२८ २८	36 36	19701.91078	0.00822 0.00434	0.005	1.0	
30 35	30 35	19705.70709	-0.00434	0.005	-0.9	
00 24	30 24	19707 18589	0.00049	0.005	-1.5 0.6	
34 32	33	19708 83363	-0.00277	0.005	_2 1	
30 30	39 39	19710 /5988	-0.01213	0.000	-2.4 _1 /	
30	30	19713 54688	0.00552	0.005	11	
20	29	19715 01079	0.00002 0.00172	0.005	03	
$\frac{23}{28}$	$\frac{23}{28}$	19716 43838	0.01054	0.005	2.1	
$\frac{10}{27}$	$\frac{10}{27}$	19717.83093	0.03306	10.005	0.0	
D(1	,0) E	Band, Q Branch	$\frac{1}{p'=f, p''}$	= e)	-	

J'	J''	Obs	Obs-Calc	Unc	(Obs-Calc)/Une	с
54	54	21691.9005	-0.06123	10.01	0.0	
53	53	21694.90002	-0.0317	0.01	-3.2	
52	52	21697.84662	-0.00753	0.01	-0.8	
51	51	21700.73299	0.00541	0.01	0.5	
50	50	21703.56642	0.01572	0.01	1.6	
49	49	21706.33965	0.01735	0.01	1.7	
48	48	21709.06029	0.01898	0.01	1.9	
47	47	21711.72439	0.01764	0.01	1.8	
46	46	21714.33639	0.01866	0.01	1.9	
45	45	21716.87896	0.00546	0.01	0.5	
44	44	21719.37633	0.00298	0.01	0.3	
43	43	21721.81266	-0.00404	0.01	-0.4	
42	42	21724.19241	-0.01061	0.01	-1.1	
41	41	21/20.51153	-0.02035	0.01	-2.0	
$\frac{40}{27}$	$\frac{40}{27}$	21/28./8081	-0.0221	0.01	-2.2	
31 26	37 26	21/30.24380	-0.02252	0.01	-2.3 2.7	
35	30 35	21737.2008	-0.03090	0.01	-3.7	
34	34	21739.20420	-0.01810	0.01	-1.0	
33	33	21741.10012	-0.01424	0.01	-0.4	
32	32	21744 87158	0.00410	0.01	0.5	
31	31	21746.62844	0.01813	0.01	1.8	
30	30	21748.32853	0.03251	0.01	3.3	
29	29	21749.97199	0.04847	0.01	4.8	
28	28	21751.55518	0.06218	10.01	0.0	
27	27	21753.08171	0.07703	10.01	0.0	
26	26	21754.56193	0.10312	10.01	0.0	
25	25	21755.97746	0.12183	10.01	0.0	
24	24	21757.33766	0.14222	10.01	0.0	
23	23	21758.64131	0.16281	10.01	0.0	
22	22	21759.88739	0.18228	10.01	0.0	
21	21	21761.07877	0.2032	10.01	0.0	
20	20	21762.21048	0.22028	10.01	0.0	
19	19	21763.28853	0.23924	10.01	0.0	
18	18	21764.3103	0.25714	10.01	0.0	
17	17	21765.27424	0.27214	10.01	0.0	
10	10	21/00.181/5	0.28533	10.01	0.0	
10 D(1	19	21707.0313	0.29488	10.01	0.0	
D(1	L, U) E	Sand, P Branch	(p = e, p)	= e)		
39	40	21695.12829	-0.02094	0.01	-2.1	
38	39	21698.20284	-0.00561	0.01	-0.6	
37	38	21701.18515	-0.02537	0.01	-2.5	
33 20	34 22	21/12.04000	-0.00234	0.01	-0.2	
ა2 21	აა აი	21710.0002	-0.01002	0.01	-1.1	
30	32 31	21710.02472	0.00097	0.01	0.1 0.2	
20	30	21720.02404 21723 17365	-0.00133	0.01	-0.2	
$\frac{29}{28}$	20	21725.17505	-0.00208	0.01	0.2	
$\frac{20}{26}$	$\frac{23}{97}$	21720.00507	0.00000	0.01	0.0	
$\frac{20}{25}$	$\frac{21}{26}$	21732 80804	0.00209 0.02548	0.01	2.5	
$\frac{23}{23}$	$\frac{10}{24}$	21737.2668	0.0211	0.01	2.1	
$\frac{1}{22}$	$\overline{23}$	21739.39897	0.00729	0.01	0.7	
$\frac{-}{21}$	$\frac{-3}{22}$	21741.46629	-0.01429	0.01	-1.4	
20	21	21743.52365	0.01125	0.01	1.1	
19	20	21745.49184	0.0047	0.01	0.5	
18	19	21747.40598	0.0012	0.01	0.1	

Table B.1, Electronic Data of ¹⁸⁴WO Relative to  $X0^+$  (*Cont'd*)

		)			()
J'	J''	Obs	Obs-Calc	Unc	(Obs-Calc)/Unc
17	18	21749.27164	0.00632	0.01	0.6
16	17	21751.09258	0.02383	0.01	2.4
15	16	21752.7929	-0.02217	0.01	-2.2
14	15	21754.48138	-0.02287	0.01	-2.3
13	14	21756.13054	-0.00576	0.01	-0.6
12	13	21757.69327	-0.01793	0.01	-1.8
11	12	21759.21545	-0.01349	0.01	-1.3
10	11	21760.68201	-0.00751	0.01	-0.8
9	10	21762.08556	-0.00736	0.01	-0.7
8	9	21763.42937	-0.00977	0.01	-1.0
7	8	21764.72624	-0.00192	0.01	-0.2
6	$\overline{7}$	21765.9535	-0.00648	0.01	-0.6
5	6	21767.13865	0.00406	0.01	0.4
3	4	21769.31368	0.00155	0.01	0.2
2	3	21770.30839	-0.00667	0.01	-0.7
1	2	21771.26071	-0.00002	0.01	0.0
D/1	0) T			``	
D(1	(,0) E	and, R Branch	p' = e, p'' =	= e)	
1	0	21773.75403	-0.00018	0.01	0.0
2	1	21774.47349	0.00266	0.01	0.3
3	2	21775.1337	0.00353	0.01	0.4
4	3	21775.73639	0.00417	0.01	0.4
5	4	21776.28348	0.0065	0.01	0.6
6	5	21776.77151	0.00706	0.01	0.7
7	6	21777.19954	0.00493	0.01	0.5
9	8	21777.87487	-0.00814	0.01	-0.8
10	9	21778.1382	-0.00304	0.01	-0.3
11	10	21778.35491	0.01276	0.01	1.3
12	11	21778.48797	0.00223	0.01	0.2
13	12	21778.58336	0.01136	0.01	1.1
21	20	21777.19954	0.00165	0.01	0.2
22	21	21776.77151	0.00347	0.01	0.3
23	22	21776.28348	0.00265	0.01	0.3
24	23	21775.73639	0.00015	0.01	0.0
25	24	21775.1337	-0.00058	0.01	-0.1
26	25	21774.47349	-0.00143	0.01	-0.1
27	26	21773.75403	-0.00415	0.01	-0.4
28	27	21772.97829	-0.00574	0.01	-0.6
30	29	21771.26071	-0.00277	0.01	-0.3
31	30	21770.30839	-0.00866	0.01	-0.9
34	33	21767.13865	0.00563	0.01	0.6
35	34	21765.9535	-0.0032	0.01	-0.3
36	35	21764.72624	0.00338	0.01	0.3
37	36	21763.42937	-0.00211	0.01	-0.2
38	37	21762.08556	0.00302	0.01	0.3
39	38	21760.68201	0.00601	0.01	0.6
40	39	21759.21545	0.0036	0.01	0.4
41	40	21757.69327	0.00323	0.01	0.3
42	41	21756.13054	0.01999	0.01	2.0
43	42	21754.48138	0.00804	0.01	0.8
44	43	21752.7929	0.01454	0.01	1.5
45	44	21751.02382	-0.00177	0.01	-0.2
46	45	21749.2072	-0.00776	0.01	-0.8
$47^{-5}$	46	21747.3388	-0.00763	0.01	-0.8
48	$47^{-2}$	21745.41387	-0.00609	0.01	-0.6
49	$\frac{-}{48}$	21743.44175	0.00628	0.01	0.6
52	51	21737.14749	0.01415	0.01	1.4
54	53	21732.62654	-0.0141	0.01	-1.4

Table B.1, Electronic Data of  $^{184}\mathrm{WO}$  Relative to X0^+  $(\mathit{Cont'd})$ 

		,			( )
J'	J''	Obs	Obs-Calc	Unc	(Obs-Calc)/Unc
56	55	21727.91622	0.00205	0.01	0.2
57	56	21725.47625	0.0132	0.091	0.1
F(0)	0) B	and D Branch	(n' - 0, n'')	- o)	
I'(0	, 0) D	banu, i Dranch	(p = e, p	— e)	
32	33	23340.15486	0.00389	0.005	0.8
31	32	23343.01871	0.00323	0.005	0.6
30	31	23345.81518	-0.00101	0.005	-0.2
29	30	23348.55681	0.00368	0.005	0.7
28	29	23351.21465	-0.01169	10.005	0.0
27	28	23353.84196	0.00611	0.005	1.2
26	27	23356.3804	-0.00129	0.005	-0.3
25	26	23358.86339	-0.0005	0.005	-0.1
24	25	23361.28677	0.00431	0.005	0.9
23	24	23303.04239	0.00495	0.005	1.0
22	23	23303.93703	0.00819	0.005	1.0
21	22	23308.13973	0.00300	0.005	0.0
20	21	23370.32241	0.00145	0.005	0.3
19	20 10	23372.42077	-0.00098	0.005	-0.2
10	19	23374.43909	0.00008	0.005	0.1
16	10	23370.43298	0.00023	0.005	0.0
15	16	23378.34300	0.00205 0.00276	0.005	0.4
10	15	23381 07155	-0.0015	0.005	-0.3
13	14	23383 69285	-0.0015	0.005	-0.0
11	12	23386 93774	-0.00001	0.005	-0.9
10	11	23388 46957	-0.00189	0.005	-0.4
9	10	23389 9331	-0.0043	0.005	-0.9
	0) D	and D Dranch	(n' - 0, n'')	- 0)	0.0
F(0	, 0) Б	ballu, n Dralich	(p = e, p)	= e)	
10	9	23405.90259	-0.0206	10.005	0.0
11	10	23406.05816	0.00289	0.005	0.6
12	11	23406.12182	-0.00192	0.005	-0.4
13	12	23406.12182	-0.00674	0.005	-1.3
14	13	23406.05816	-0.01157	0.005	-2.3
15	14	23405.94902	0.00179	0.005	0.4
16	15	23405.74193	-0.01911	10.005	0.0
17	16	23405.50995	-0.00118	0.005	-0.2
18	17	23405.20021	0.00271	0.005	0.5
19	18	23404.8174	-0.00272	0.005	-0.5
20	19	23404.37941	0.00040	0.005	0.1
21 22	20 91	23403.87310	0.00117	0.005	0.2
22 23	21	23403.30009	0.00148	0.005	0.3
23 24	22	23402.07348	0.00091	0.005	0.2
$\frac{24}{25}$	20	23401.97998	-0.000394	0.005	0.0
$\frac{20}{26}$	24 25	23401.21548	0.0041	0.005	0.0
$\frac{20}{27}$	$\frac{20}{26}$	23309 50533	0.0041 0.00247	0.005	0.5
$\frac{21}{28}$	$\frac{20}{27}$	2339854728	-0.00319	0.005	-0.6
$\frac{20}{29}$	$\frac{-1}{28}$	23397.53451	0.00049	0.005	0.1
$\frac{-0}{30}$	$\frac{-0}{29}$	23396.45224	-0.00124	0.005	-0.2
31	$\frac{-0}{30}$	23395.30801	-0.00078	0.005	-0.2
32	31	23394.10034	0.00044	0.005	0.1
33	32	23392.83055	0.00377	0.005	0.8
35	34	23390.08584	-0.00174	0.005	-0.3
36	35	23388.61502	-0.00637	0.005	-1.3
37	36	23387.08151	-0.00923	0.005	-1.8
38	37	23385.50954	0.014	10.005	0.0
39	38	23383.83248	-0.00325	0.005	-0.6

Table B.1, Electronic Data of  $^{184}\mathrm{WO}$  Relative to X0^+  $(\mathit{Cont'd})$ 

		,			()
J'	J''	Obs	Obs-Calc	Unc	(Obs-Calc)/Unc
41	40	23380.31118	-0.0108	0.005	-2.2
42	41	23378.4593	-0.00857	0.005	-1.7
43	42	23376.54314	-0.0057	0.005	-1.1
44	43	23374.5653	0.00052	0.005	0.1
45	44	23372.51831	0.00271	0.005	0.5
46	45	23370.40608	0.00488	0.005	1.0
47	46	23368.23312	0.01165	0.005	2.3

Table B.1, Electronic Data of  $^{184}\mathrm{WO}$  Relative to  $\mathrm{X0^{+}}$  (Cont'd)

## B.2 Electronic Data for WO with Respect to X1

J'	J''	Obs	Obs-Calc	Unc	(Obs-Calc)/Unc
D'(	(0,0) ]	Band, P Branch	h (p' = f, p''	= f)	
41	42	21132.17801	0.00932	0.005	1.9
40	41	21135.63723	0.00372	0.005	0.7
39	40	21139.03669	0.00292	0.005	0.6
38	39	21142.35947	-0.00999	0.005	-2.0
37	38	21145.62905	-0.01155	10.005	0.0
36	37	21148.8383	-0.00889	0.005	-1.8
35	36	21151.97944	-0.00982	0.005	-2.0
34	35	21155.07209	0.00527	0.005	1.1
33	34	21158.07646	-0.00342	0.005	-0.7
32	33	21161.02802	-0.00044	0.005	-0.1
31	32	21163.90946	-0.00312	0.005	-0.6
30	31	21166.74172	0.00946	0.005	1.9
29	30	21169.50028	0.01277	10.005	0.0
28	29	21172.1765	-0.00187	0.005	-0.4
$27^{-5}$	$\frac{-3}{28}$	21174.81752	0.01268	10.005	0.0
$\frac{-1}{26}$	$\frac{1}{27}$	21177.37316	0.00621	0.005	1.2
$\overline{25}$	$\frac{-1}{26}$	21179.86529	0.00057	0.005	0.1
$24^{-5}$	$\overline{25}$	21182.3049	0.00672	0.005	1.3
$23^{$	$\frac{1}{24}$	21184.66643	-0.00091	0.005	-0.2
$\frac{1}{22}$	$23^{-1}$	21186.97285	0.00061	0.005	0.1
${21}$	$\frac{-3}{22}$	21189.21824	0.00536	0.005	1.1
20	$\frac{-}{21}$	21191.38881	-0.00048	0.005	-0.1
$\frac{-0}{19}$	$\frac{1}{20}$	21193 50085	-0.00065	0.005	-0.1
18	19	21195.50000 21195.54523	-0.00429	0.000	-0.9
17	18	21197.53018	-0.0032	0.005	-0.6
16	17	21199.4487	-0.0044	0.000	-0.9
15	16	21201 30628	-0.00241	0.005	-0.5
14	15	21201.00020	-0.00268	0.005	-0.5
13	14	21203.00119	-0.00059	0.005	-0.1
12	13	21201.02090	-0.00262	0.005	-0.5
11	12	21200.40025	-0.00202	0.005	-0.7
10	11	21200.00091	0.01248	10.005	0.0
0	10	21203.00791	0.01240 0.00735	0.005	1.5
8	9	21211.10401	-0.01323	10.005	1.0
7	8	21212.45005 21213.85412	0.00701	0.005	14
6	7	21215.00412 21215.12067	-0.00569	0.005	_1.1
5	6	21216.12001	-0.00000	10.005	0.0
D'(	(0, 0)	Band, R Brancl	p' = f, p''	= f	0.0
97	26	21220 5210	-0.02247	10 005	0.0
⊿1 28	$\frac{20}{27}$	21220.0219 21210 56074	-0.02247	0.005	_9.9
20	21	21219.00974 21218 53742	-0.01085	10.005	-2.2
29 30	20 20	21210.00742	-0.01403 0.02837	10.005 10.005	0.0
00 21	29 20	21217.43099	-0.02637 0.01792	10.005 10.005	0.0
ა1 ვი	ี่ อ∪ อ1	21210.20409 21215 06962	-0.01723	10.005	0.0
ა∠ ეე	ა1 ეი	21210.00003 21219 70000	-0.01096	0.000	-2.2
აა ე⊿	ა2 ეე	21213.19008 21213.42465	-0.0020	0.005	-U.J 1 9
34 25	<b>うう</b> 24	21212.43403	-0.00033	0.005	-1.0
30 90	34 25	21211.02735 21200.54512	0.00288	0.005	0.0
30 97	30 90	21209.54512	0.00204	0.005	0.4
37	30	21208.0006	0.00383	0.005	0.8
38 20	37	21206.38976	0.00427	0.005	0.9
- 39	- 38	21204.(1410	0.00497	0.005	1.0

Table B.2: Electronic Data of  $^{184}\mathrm{WO}$  Relative to X1 (v=0)

J'	.1″	Obs	Obs-Calc	Unc	(Obs-Calc)/Unc
40	30	21202 97351	0.0057	0.005	11
41	40	21202.57551	0.00688	0.005	1.1
42	41	21199 29369	0.0041	0.000	0.8
43	$\frac{11}{42}$	21197 35306	0.00041	0.005	0.0
44	43	21195 35159	0.00118	0.000	0.2
45	44	21100.00100 21193 27761	-0.0052	0.000	-1.0
46	45	21190.21101 21191 14342	-0.00638	0.000	-1.3
47	46	21188.95165	0.00032	0.005	0.1
49	48	21184.35874	0.00098	0.005	0.2
50	49	21181.96361	0.00106	0.005	0.2
51	$50^{-10}$	21179.51122	0.00957	0.005	1.9
52	51	21176.9735	-0.00149	0.005	-0.3
$53^{-}$	52	21174.37251	-0.01003	0.005	-2.0
D'(	0.0)1	Band. P Brancl	p' = e, p''	(=e)	
41	42	21134 51977	-0.00556	0.005	-11
40	41	21137 87882	0.00055	0.005	0.1
39	40	21101.01002	0.00000000000000000000000000000000000	0.005	17
38	39	21144 55416	0.00012 0.15659	10.005	0.0
37	38	21147 56358	-0.0005	0.005	-0.1
36	37	21150 66131	-0.00726	0.005	-1.5
35	36	21150.00101 21153 71607	0.00120 0.00495	0.005	1.0
34	35	21156 69663	0.00485	0.005	1.0
33	34	21159 60946	-0.00115	0.005	-0.2
32	33	21162.00540 21162.47513	0.00746	0.005	1.5
31	32	21165 2645	0.00140	0.005	0.3
30	31	21167 9994	0.00143 0.00274	0.005	0.5
29	30	21107.5554 21170.66747	-0.00274	0.005	-0.2
$\frac{20}{28}$	29	21173 27585	-0.00325	0.005	-0.7
$\frac{20}{27}$	$\frac{29}{28}$	21175 82431	-0.00326	0.005	-0.7
$\frac{21}{26}$	$\frac{20}{27}$	21178 3042	-0.00000	0.005	-2.2
$\frac{20}{25}$	26	21110.0012	-0.00759	0.005	-1.5
$\frac{20}{24}$	$\frac{20}{25}$	21183 10435	-0.00103	0.005	-0.2
24	$\frac{20}{24}$	21105.10455	0.00123	0.005	-0.2
$\frac{20}{22}$	24 23	21185.41140	0.00291	0.005	0.0
22	20	21107.0040	0.00440	0.005	0.9
$\frac{21}{20}$	22 91	21109.02930	-0.00095	0.005	-0.2
10	$\frac{21}{20}$	21191.94514	-0.000	0.005	-1.2
18	10	21194.00299	-0.00404	0.005	-0.5
17	18	21190.00020	0.00200	0.005	-0.5
16	17	21197.94101 21199.81337	0.00415 0.00215	0.005	0.0
15	16	21100.01007 21201.62247	-0.00104	0.005	-0.2
14	15	21201.02241	0.00104	0.005	0.2
13	14	21205.06311	-0.00118	0.005	-0.2
$12^{10}$	13	21206.69907	0.00628	0.000	1.3
11	12	21208.25579	-0.00425	0.005	-0.9
10	11	21200.20019	-0.00457	0.005	-0.9
9	10	21211 23055	0.001972	10.005	0.0
8	9	21211.20000	0.01912	0.005	1.6
7	8	21213 8671	-0.04957	10,005	0.0
6	7	21215 18744	0.00971	0.005	1.9
5	6	21216 37345	-0.00411	0.005	-0.8
4	5	21217 52071	0.00456	0.005	0.9
3	4	21218 60584	0.01234	0.005	2.5
2	3	21219 62946	0.01986	10 005	0.0
1	$\frac{3}{2}$	21220.5853	0.02085	10.005	0.0
	-				

Table B.2, Electronic Data of  $^{184}\mathrm{WO}$  Relative to X1  $(\mathit{Cont'd})$ 

Tab	ole B.	2, Electronic D	eata of $^{184}W$	O Relativ	we to X1 ( $Cont'd$ )
J'	J''	Obs	Obs-Calc	Unc	(Obs-Calc)/Unc
2	1	91993 77549	0.00422	0.005	0.8
3	2	21225.77542	0.00422 0.02927	10.005	0.0
4	$\frac{2}{3}$	21224.44050	0.02521 0.01673	10.005 10.005	0.0
$\overline{5}$	4	21225.51722	-0.01553	10.005	0.0
Ğ	5	21225.96807	-0.02925	10.005	0.0
7	6	21226.34291	-0.05764	10.005	0.0
8	7	21226.78198	0.03955	10.005	0.0
9	8	21226.92233	-0.10064	10.005	0.0
10	9	21227.2647	0.02257	10.005	0.0
11	10	21227.26503	-0.13488	10.005	0.0
14	13	21227.47662	-0.02817	10.005	0.0
15	14	21227.42014	0.00326	0.005	0.7
16	15	21227.26503	-0.00247	0.005	-0.5
17	16	21227.07833	0.02168	10.005	0.0
18	17	21226.77546	-0.00883	0.005	-1.8
19	18	21226.42945	-0.02097	10.005	0.0
20	19	21220.05271	-0.0023	0.005	-0.5
21 22	20	21220.09204	-0.0057	10.005	-1.1
22 24	21 22	21220.0902	0.0107 0.00533	10.005	0.0
$\frac{24}{25}$	23 24	21223.03224 21223 1402	-0.00555	0.005 0.005	-1.1
$\frac{20}{26}$	$\frac{24}{25}$	21225.1452	-0.00495	0.005	-1.0
$\frac{20}{27}$	$\frac{20}{26}$	21222.55242	0.00550	0.005 0.005	1.2
$\frac{21}{28}$	$\frac{20}{27}$	21221.0000 21220.67213	-0.00163	0.005	-0.3
$\frac{20}{29}$	$\frac{-1}{28}$	21219.71222	-0.01129	0.005	-2.3
$\frac{-0}{30}$	$\frac{-0}{29}$	21218.71036	-0.00111	0.005	-0.2
31	$\overline{30}$	21217.64033	0.0027	0.005	0.5
32	31	21216.50725	0.00529	0.005	1.1
33	32	21215.306	0.00159	0.005	0.3
34	33	21214.04796	0.00299	0.005	0.6
35	34	21212.72377	0.00017	0.005	0.0
36	35	21211.33515	-0.00512	0.005	-1.0
37	36	21209.90341	0.00848	0.005	1.7
38	37	21208.39317	0.00562	0.005	1.1
39	38	21206.82148	0.00339	0.005	0.7
40	39	21205.16921	-0.0173	10.005	0.0
41	40	21203.4958	0.00302	0.005	0.6
42	41	21201.74194	0.0051	0.005	1.0
43	42	21199.9173	-0.00135	0.005	-0.3
44 45	45	21198.0577	-0.00040	0.005	-0.1
40	44	21190.09201 21104.00183	-0.00272	0.005	-0.3
$\frac{40}{47}$	40	21194.09105	-0.00173	0.005 0.005	-1.0
48	47	21132.01710	-0.00024	0.005	-0.9
49	48	21187 72097	0.00100 0.02148	10.005	0.0
Ne	$w(0^+)$	0) Band B Br	anch (n' - n)	p = n'' - p	0.0
15	14	19444 68988	-0.01898	(2, p) = 0	0.0
16	15	19444.54223	-0.01204	0.005	-2.4
17	16	19444.3395	0.001204	0.005	0.3
18	$17^{10}$	19444.04681	-0.0128	0.005	-2.6
19	18	19443.71722	-0.00227	0.005	-0.5
20	19	19443.31572	-0.00177	0.005	-0.4
21	20	19442.85396	0.00039	0.005	0.1
22	21	19442.34854	0.02082	10.005	0.0
23	22	19441.74759	0.00769	0.005	1.5
24	23	19441.08551	-0.00459	0.005	-0.9

	-	)			()
J'	J''	Obs	Obs-Calc	Unc	(Obs-Calc)/Unc
25	24	19440.38626	0.00798	0.005	1.6
40	39	19422.16801	-0.07175	10.005	0.0
41	40	19420.45263	-0.07917	10.005	0.0
42	41	19418.68789	-0.07346	10.005	0.0
43	42	19416.84589	-0.08248	10.005	0.0
44	43	19414.97736	-0.05549	10.005	0.0
45	44	19413 00928	-0.06547	10.000	0.0
46	45	19411 00036	-0.05371	10.005	0.0
40 //7	46	10/08 0031/	-0.06764	10.005	0.0
18	40	10406 78856	0.03620	10.005	0.0
40	41	10404 57548	-0.03029	10.005	0.0
49 50	40	19404.07040	-0.0408	10.005	0.0
50	49 E1	19402.31120	-0.03377	10.005	0.0
02 E 2	51	19397.07000	-0.038	10.005	0.0
53	52	19395.15145	-0.00381	0.005	-0.8
54	53	19392.62042	-0.01285	0.005	-2.6
55	54	19390.04085	-0.00773	0.005	-1.5
56	55	19387.4045	0.00332	0.005	0.7
57	56	19384.7029	0.01183	10.005	0.0
58	57	19381.90211	-0.01616	10.005	0.0
59	58	19379.11206	0.0293	10.005	0.0
60	59	19376.23276	0.04818	10.005	0.0
61	60	19373.27823	0.0545	10.005	0.0
3.7	(0+		1 ( ]	// >>	
Nev	$v(0^+)$	,0) Band, P Bi	$\operatorname{ranch}(p) =$	e, p'' = e	
7	8	19431.25959	0.02383	0.005	4.8
8	ğ	19429 91092	0.00052	0.005	0.1
ğ	10	19428 53067	0.00726	0.005	1.5
10	11	19427.05503	-0.01978	90.005	0.0
11	19	10/25 55228	0.01010	90.005	0.0
19	12	10424.00521	-0.01229	90.005	0.0
12	10	19424.00001	0.01201	0.005	2.0
13	14	19422.54025	-0.01294	0.005	-2.0
14	10	19420.0000	-0.00775	10.005	-1.0
10	10	19418.91042	0.00321	10.005	0.0
10	17	19417.10596	0.01722	0.005	3.4
17	18	19415.21535	0.00675	0.005	1.4
18	19	19413.27759	0.01082	0.005	2.2
19	20	19411.25981	-0.00346	0.005	-0.7
20	21	19409.19121	-0.00685	0.005	-1.4
21	22	19407.06266	-0.0085	0.005	-1.7
22	23	19404.88182	-0.00073	0.005	-0.1
23	24	19402.64031	0.00809	0.005	1.6
24	25	19400.31484	-0.00532	0.005	-1.1
25	26	19397.95695	0.01058	10.005	0.0
26	27	19395.50027	-0.01058	0.005	-2.1
30	31	19385.13203	-0.01921	10.005	0.0
31	32	19382.40614	-0.0008	0.005	-0.2
32	33	19379.61189	0.01101	10.005	0.0
33	34	19376.75337	0.02031	10.005	0.0
34	35	19373.82758	0.02411	10.005	0.0
35	36	19370 81179	-0.00034	10.005	0.0
36	37	19367 80193	0.0429	90.005	0.0
37	38	19364 65553	0.01134	10,005	0.0
38	30	19361 50890	0.01104	90.005	0.0
30	<i>4</i> 0	10358 95571	0.04009	10.005	0.0
10 10	40 /1	1035/ 0526	0.02042	10.000	0.0
40 71	41	19004.9000 10251 EEEEC	0.02434 0.01107	10.005	0.0
41 49	42 49	19001.00000	-0.01197	0.005	-2.4
42	43	19348.1433	0.00118	0.000	0.2
43	44	19344.67003	0.01033	10.005	0.0

Table B.2, Electronic Data of  $^{184}\mathrm{WO}$  Relative to X1  $(\mathit{Cont'd})$ 

		)			
J'	J''	Obs	Obs-Calc	Unc	(Obs-Calc)/Unc
44	45	19341.10392	-0.0084	0.005	-1.7
45	46	19337.51256	0.00857	0.005	1.7
46	47	19333.84275	0.00868	0.005	1.7
47	48	19330.10374	0.00114	0.005	0.2
48	49	19326.32588	0.01627	10.005	0.0
49	50	19322 46624	0.01109	0.005	2.2
50	51	19318 55054	0.01129	10,005	0.0
51	52	$19314\ 56311$	0.001120	0.005	0.0
52	53	19310 53087	0.00751	0.005	1.5
53	54	10306 /3258	0.00101	0.005	1.9
54	55	19302 2603	-0.00206	0.005	-0.4
55	56	19208.03644	-0.00200	0.005	-0.7
56	57	19290.00044 10203 75562	-0.00007	0.005	-0.1
57	58	19239.19502	-0.00110	10.005	0.0
01	00	15205.0501	-0.01010	10.000	0.0
Ne	$w(0^+,$	0) Band, Q Bi	$\operatorname{ranch}(p' =$	e, $p'' = f$ )	
0	Ì,	10400 44004	0.00070	0.005	0 7
2	2	19439.44034	0.00373	0.005	0.7
3	3	19439.24802	-0.00458	0.005	-0.9
4	4	19439.01049	0.00324	0.005	0.6
5	5	19438.68087	-0.01969	10.005	0.0
6	6	19438.33044	-0.00208	0.005	-0.4
7	7	19437.90162	-0.00152	0.005	-0.3
8	8	19437.41107	-0.00134	0.005	-0.3
9	9	19436.88523	0.02491	10.005	0.0
10	10	19436.24419	-0.00268	0.005	-0.5
11	11	19435.56611	-0.00595	0.005	-1.2
12	12	19434.83648	0.00059	0.005	0.1
13	13	19434.05016	0.01182	0.005	2.4
14	14	19433.16954	-0.00986	0.005	-2.0
15	15	19432.24247	-0.01662	10.005	0.0
16	16	19431.25959	-0.01778	10.005	0.0
17	17	19430.22684	-0.00742	0.005	-1.5
18	18	19429.13063	0.00089	0.005	0.2
19	19	19427.9545	-0.00929	0.005	-1.9
20	20	19426.73776	0.00134	0.005	0.3
21	21	19425.45961	0.01199	0.005	2.4
22	22	19424.09078	-0.00659	0.005	-1.3
23	23	19422.68398	-0.00168	0.005	-0.3
24	24	19421.21396	0.00148	0.005	0.3
25	25	19419.67706	-0.00077	0.005	-0.2
26	26	19418.07911	-0.00257	0.005	-0.5
27	27	19416.42054	-0.0035	0.005	-0.7
28	28	19414.70698	0.0021	0.005	0.4
29	29	19412.92121	-0.00298	0.005	-0.6
30	30	19411.07321	-0.00876	0.005	-1.8
31	31	19409.19121	0.01302	0.005	2.6
32	32	19407.21109	-0.00175	0.005	-0.4
33	33	19405.18678	0.00087	0.005	0.2
34	34	19403.11466	0.01727	10.005	0.0
35	35	19400.94785	0.00059	0.005	0.1
36	36	19398.7334	-0.0021	0.005	-0.4
38	38	19394.12695	-0.00009	0.005	0.0
39	39	19391.73064	0.00033	0.005	0.1
40	40	19389.28019	0.0083	0.005	1.7
41	41	19386.74554	-0.00622	0.005	-1.2
42	42	19384.16855	-0.00135	0.005	-0.3
43	43	19381.52826	0.00195	0.005	0.4
44	44	19378.82311	0.00215	0.005	0.4

Table B.2, Electronic Data of  $^{184}\mathrm{WO}$  Relative to X1 (Cont'd)

J'	J''	Obs	Obs-Calc	Unc	(Obs-Calc)/Unc	
46	46	19373.22617	0.00127	0.005	0.3	
47	47	19370.31772	-0.01644	10.005	0.0	
48	48	19367.38492	0.00333	0.005	0.7	
49	49	19364.37662	0.00945	0.005	1.9	
50	50	19361.31433	0.02346	10.005	0.0	
51	51	19358.18195	0.02926	10.005	0.0	
52	52	19354.9536	0.001	0.005	0.2	
53	53	19351.70231	0.01173	0.005	2.3	
54	54	19348.35817	-0.00844	0.005	-1.7	
55	55	19344.98335	0.00267	0.005	0.5	
56	56	19341.52184	-0.01091	0.005	-2.2	
57	57	19338.00437	-0.01845	10.005	0.0	
58	58	19334.44139	-0.00947	0.005	-1.9	
59	59	19330.81144	-0.00541	0.005	-1.1	
60	60	19327.12191	0.00114	0.005	0.2	
61	61	19323.37163	0.00902	0.005	1.8	
62	62	19319.54108	-0.00125	0.005	-0.2	
63	63	19315.65526	-0.00466	0.005	-0.9	
64	64	19311.71687	0.00151	0.005	0.3	
65	65	19307.70652	-0.00211	0.005	-0.4	
66	66	19303.64016	0.00046	0.005	0.1	
67	67	19299.50681	-0.00175	0.005	-0.4	
68	68	19295.32008	0.00489	0.005	1.0	
69	69	19291.06367	0.0041	0.005	0.8	
70	70	19286.73923	-0.00244	0.005	-0.5	
$New(0^+,1)$ Band, R Branch $(p'={\rm e},p^{\prime\prime}={\rm e})$						
16	15	18385.10515	-0.00034	0.003	-0.1	
17	16	18384.95636	0.00335	0.003	1.1	
18	17	18384.75507	0.01232	90.003	0.0	
19	18	18384.48229	0.00761	0.003	2.5	
20	19	18384.13255	-0.01624	90.003	0.0	
22	21	18383.32643	0.00292	0.003	1.0	
23	22	18382.82775	0.00367	0.003	1.2	
24	23	18382.27415	0.00737	0.003	2.5	
25	24	18381.65894	0.00735	0.003	2.5	
26	25	18380.98264	0.00416	0.003	1.4	
27	26	18380.25181	0.00436	0.003	1.5	
28	27	18379.46827	0.00979	10.003	0.0	
29	28	18378.60858	-0.00297	0.003	-1.0	
30	29	18377.7104	0.00377	0.003	1.3	
31	30	18376.7552	0.01148	10.003	0.0	
32	31	18375.71864	-0.00415	0.003	-1.4	
33	32	18374.6403	-0.00352	0.003	-1.2	
34	33	18373.49998	-0.00682	0.003	-2.3	
35	34	18372.32281	0.01112	10.003	0.0	
36	35	18371.06223	0.00374	0.003	1.2	
37	36	18369.73749	-0.00968	90.003	0.0	
38	37	18368.37959	0.00188	0.003	0.6	
39	38	18366.9477	-0.00239	0.003	-0.8	
40	39	18365.47265	0.00837	0.003	2.8	
41	40	18363.92806	0.00779	0.003	2.6	
42	41	18362.31693	-0.0011	0.003	-0.4	
43	42	18360.64989	-0.00765	0.003	-2.6	
44	43	18358.93336	-0.00542	0.003	-1.8	
45	44	18357.17199	0.01027	10.003	0.0	
46	45	18355.33836	0.01201	10.003	0.0	
47	46	18353.44073	0.00809	0.005	1.6	

Table B.2, Electronic Data of ¹⁸⁴WO Relative to X1 (*Cont'd*)

Tab		D. Floatnonia D	of 184 W	O Polotiz	$x_0 \neq_0 \mathbf{V} 1  (C_{om} t^2 d)$
Iac	I''	$\frac{2, \text{ Electronic D}}{Obs}$	Obs-Calc	Unc Unc	$\frac{(\text{Obs-Calc})/\text{Und}}{(\text{Obs-Calc})/\text{Und}}$
48	47	18351 47698	-0.00358	0.003	-1.2
49	48	18349 47164	0.00350	0.003	0.5
50	49	18347 40098	-0.00025	0.003	-0.1
51	50	18345 27474	0.00020	0.003	0.3
52	51	18343 08726	-0.00093	0.003	-0.3
53	52	18340 85813	0.01417	10.003	0.0
54	53	$18338\ 54742$	0.00618	0.003	2.1
55	54	18336 19284	0.00010	10.003	0.0
56	55	18333 75501	-0.00523	0.003	-17
58	57	18328 75146	0.00646	0.003	2.2
59	58	18326 13977	-0.00972	10,003	0.0
60	59	18323 49711	0.00012	0.003	0.6
61	60	18320 78413	0.00171 0.00152	0.003	0.5
Nei	$v(0^+)$	1) Band. P Br	anch $(p' = q)$	$p_{\rm e} n'' = e$	0.0
1	$2^{(0)}$	18377 98278	0.00341	0.003	11
2	3	18377 02426	-0.01133	0.000	-3.8
3	4	18376 02220	-0.01133	0.003	-4.0
1	4 5	18374 03753	-0.01100	0.003	-4.0
5	6	18373 85701	-0.00100	0.003	-0.5
6	7	18372 67040	-0.00142 0.01363	10.003	-0.0
7	8	18371 45999	0.01003	0.003	0.0
8	0	18370 1707	0.00004	0.003	0.0 2.7
0	10	18368 80705	0.00808	0.003	2.1
10	11	18367 41610	-0.00858	0.003	-2.8
10	12	18364 43065	0.00330	0.003	1.9
12	14	18362.86	0.00248	10.003	0.8
14	14	18361 21265	0.00949	10.003	0.0
15	16	18301.21200 18350 $52257$	-0.0020	0.003	-0.9
16	17	1835776700	0.0002	0.003	1.2
$10 \\ 17$	18	18355 96424	-0.00389	0.003	-1.5
18	10	18354 00861	0.00040 0.00053	0.003	0.2
10	20	18359 17658	0.00033	0.003	0.2
19	20	10332.17030	0.00181	0.003	0.0
20 91	21	10000.19009	0.00455	0.003	1.0
21	22 92	10040.10009	0.00005	0.003	0.0
22	20 94	18340.00191	0.00208	0.003 10.002	0.9
23	24 25	18343.89432	-0.01101	10.003	0.0
24	20 96	18341.09792	0.00309	0.003	1.2
20 96	20	10009.40101	0.00500	0.005	1.9
20	21	10007.10000	0.00147 0.01545	0.000	0.5
21	20	10004.70029	0.01343	10.005	0.0
28	29	18332.2087	-0.00451	0.003	-1.0
29	30 91	18329.7724	-0.00163	0.003	-0.5
30	31	18327.21984	0.00256	0.003	0.9
31	32	18324.00714	0.00417	0.003	1.4
32	33	18321.93188	0.00076	0.003	0.3
33	34	18319.20609	0.00435	0.003	1.5
34 95	35	18316.41441	-0.00042	0.003	-0.1
35	36	18313.57343	0.00303	0.003	1.0
36	37	18310.67304	0.00458	0.003	1.5
37	38	18307.70899	-0.00004	0.003	0.0
38	39	18304.69231	0.00018	0.003	0.1
39	40	18301.61947	0.00171	0.003	0.6
40	41	18298.48056	-0.00539	0.003	-1.8
41	42	18295.29446	-0.00224	0.003	-0.7
42	43	18292.04515	-0.0049	0.003	-1.6
43	44	18288.72675	-0.01926	10.003	0.0
44	45	18285.37985	-0.00475	0.003	-1.6

.J'	.I″	Obs	Obs-Calc	Unc	(Obs-Calc)/Unc
45	46	18281 9432	-0.02265	10 003	0.0
Ner	$n(0^+)$	1) Band O Br	$\operatorname{ranch}(n' - 4)$	n'' = f	0.0
1100	<i>v</i> (0 ,	i) Daild, & Di	and $(p) = 0$	(p - 1)	
1	1	18379.64503	0.00831	0.003	2.8
2	2	18379.52656	0.00444	0.003	1.5
3	3	18379.34858	-0.00165	0.003	-0.6
4	4	18379.11994	-0.0011	0.003	-0.4
5 C	5	18378.84417	0.00962	10.003	0.0
6	0	18378.48931	-0.00144	0.003	-0.5
(	(	183/8.0/0/4	-0.01291	10.003	0.0
8	8	18377.19416	-0.001	0.003	-0.3
10	10	18377.12410	0.00800	0.003	2.9
10	10	183/0.34283	0.00041	0.003	0.1
11 19	11	18373.91088	-0.00117	0.003	-0.4
12	12	10070.22000	0.00172	0.005	0.0
10	13	103/4.40100	0.00179	0.005	0.0
14 15	14	10373.0792	0.00254	0.005	0.8
10 16	10	18372.81404	-0.00305	0.003	-1.0
10 17	10	103/1.90324	0.00528	0.005	1.1
10	10	18370.92337	0.00011	0.003	0.0
10	10	10009.09209	-0.00118	0.005	-0.4
19	19	10300.00703	0.00270	0.003	0.9
20 91	20 91	10307.03003	-0.00070	0.003	-0.3
21 22	21 99	18300.43314	-0.00038	0.003	-0.1
22 92	22 92	10303.19310	0.00110	0.003	0.4
20 94	20 94	10303.07000	-0.00239	0.003	-0.8
$\frac{24}{25}$	$\frac{24}{25}$	10302.49497	-0.00209	0.003	-0.7
20 26	20	18301.03720	-0.00333	0.005	-1.8
$\frac{20}{97}$	$\frac{20}{97}$	18358 02108	-0.00104	0.000	-0.2
21	21	18356 41622	-0.0007	0.003	-0.2
20	20	18354 75081	-0.00017	0.003	-0.1
29	29	18353 02615	-0.00178	0.003	-0.0
31	31	$18351\ 2507$	-0.00313	0.003	-0.6
32	32	18349 41373	-0.00175	0.003	-0.8
33	33	18347 52363	0.00201 0.00153	0.003	0.5
34	34	$18345\ 56776$	-0.00283	0.003	-0.9
35	35	18343 56031	-0.00118	0.000	-0.4
36	36	18341 4983	0.00349	0.003	12
37	37	18339 36818	-0.00234	0.003	-0.8
38	38	18337.18709	-0.00153	0.003	-0.5
39	39	18334.94887	-0.00022	0.003	-0.1
40	40	18332.65816	0.00625	0.003	2.1
41	41	18330.29629	-0.0008	0.003	-0.3
42	42	18327.88878	0.00417	0.003	1.4
43	43	18325.41189	-0.00256	0.003	-0.9
44	44	18322.88839	0.00178	0.003	0.6
45	45	18320.30784	0.00675	0.003	2.3
46	46	18317.66251	0.00465	0.003	1.6
47	47	18314.95924	0.00232	0.003	0.8
48	48	18312.19659	-0.00168	0.003	-0.6
49	49	18309.3883	0.0064	0.003	2.1
50	50	18306.51531	0.00751	0.003	2.5
51	51	18303.57998	0.00401	0.003	1.3
52	52	18300.58301	-0.0034	0.003	-1.1
53	53	18297.54188	0.00278	0.003	0.9
54	54	18294.43806	0.00401	0.003	1.3
55	55	18291.2664	-0.00486	0.003	-1.6

Table B.2, Electronic Data of  $^{184}\mathrm{WO}$  Relative to X1 (Cont'd)

J'	J''	Obs	Obs-Calc	Unc	(Obs-Calc)/Unc
56	56	18288.0531	0.00237	0.003	0.8
57	57	18284.76389	-0.00857	0.003	-2.9
58	58	18281.43552	-0.00093	0.003	-0.3

Table B.2, Electronic Data of  $^{184}\mathrm{WO}$  Relative to X1 (Cont'd)

## Appendix C

## **Energy Origins of BeH Molecule**

The 1814 energy origins of the BeH isotopomers calculated using DSParFit^1 are listed in Appendix C

The 765 energy origins of BeH isotopomer are listed in Table C.1. The 812 energy origins of BeD isotopomer are listed in Table C.2. The 237 energy origins of BeT isotopomer are listed in Table C.3.

¹Robert J. Le Roy, Dept. of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1

## C.1 Energy Origins of BeH Isotopomer

Table C.1: Energy Origins of "Fluorescence Series" of BeH Isotopomer $(\mathrm{cm}^{-1})$ 

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 1 \ \pm 1)$	$2.005207400000D\pm04$	$(\pm /_{-} 1.7 D_{-} 0.2)$	3 3D-04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 1 \ +1)$ $T(0 \ 1 \ +1)$	3.04520800000D+04	(+/-2.4D-02) (+/-2.4D-01)	3 3D-04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 2 \ -1)$	2.009224600000D + 04	(+/-2.4D-01) (+/-2.4D-02)	4 5D-04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 2 \ -1)$ $T(0 \ 2 \ -1)$	2.003224000000D + 04 2.009311100000D $\pm 04$	(+/-2.4D-02) (+/-1.7D-02)	3 3D-04
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$T(0 \ 2 \ -1)$ $T(0 \ 2 \ -1)$	$3.04661500000D \pm 04$	$(\pm/-2.2)$	2 7D-04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 2 \ -1)$ $T(0 \ 2 \ \pm 1)$	3.04661500000D + 04 3.04661500000D + 04	(+/-2.2D-01) (+/-2.2D-01)	2.10-04 2 7D 04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 2 \ \pm 1)$ $T(0 \ 2 \ 1)$	3.040013000000D+04 2.015420100000D+04	$(\pm / \pm 2.2D-01)$	2.7D-04 2.2D 04
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$T(0 \ 3 \ -1)$ $T(0 \ 3 \ +1)$	2.015420100000D+04 2.01547700000D+04	(+/-1.7D-02)	3.3D-04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 3 \ \pm 1)$ $T(0 \ 3 \ 1)$	2.013477000000D+04 3.04873600000D+04	(+/-1.7D-02)	1 0D 04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 3 \ -1)$ $T(0 \ 2 \ 1)$	3.048736000000D + 04	(+/-1.9D-01)	1.9D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 3 \ \pm 1)$ $T(0 \ 4 \ 1)$	3.0487300000000000000000000000000000000000	(+/-1.9D-01)	1.9D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(0 4 -1) T(0 4 +1)	2.023049000000D+04 2.023602700000D+04	(+/-1.6D-02)	3.2D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 4 \ \pm 1)$ $T(0 \ 4 \ 1)$	2.023092700000D+04 2.05154200000D+04	$(\pm / - 1.6D - 02)$	1.0D.04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(0 4 -1) T(0 4 +1)	3.051542000000D+04 2.051542000000D+04	(+/-1.9D-01)	1.9D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(0 4 + 1) T(0 5 1)	3.0313420000000000000000000000000000000000	$(\pm / - 1.9D - 01)$	1.9D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 5 \ -1)$ $T(0 \ 5 \ +1)$	2.033912000000D+04 2.046120200000D+04	(+/-1.9D-02)	3.5D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 5 \ \pm 1)$ $T(0 \ 5 \ \pm 1)$	2.040139200000D+04 2.022046500000D+04	(+/-2.7D-02)	4.0D-04 2 2D 04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 5 \ \pm 1)$ $T(0 \ 5 \ 1)$	2.053940500000D+04	(+/-1.9D-02)	3.3D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 5 \ -1)$ $T(0 \ 5 \ +1)$	3.055002000000D+04	(+/-1.6D-01)	1.9D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 0 \ +1)$ $T(0 \ -1)$	3.033002000000D+04	(+/-1.6D-01)	1.9D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 6 \ -1)$ $T(0 \ 6 \ +1)$	2.040198100000D+04 2.060412700000D+04	(+/-2.1D-02)	3.3D-04 4.6D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 0 \ +1)$	2.000413700000D+04 2.046225200000D+04	(+/-2.9D-02)	4.0D-04 2.2D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1(0 \ 6 \ +1)$	2.046225300000D+04	(+/-2.1D-02)	3.3D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1(0 \ 6 \ -1)$	3.059273000000D+04	(+/-1.8D-01)	2.1D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1(0 \ 0 \ +1)$ Tr(0 7 1)	3.059273000000D+04	(+/-1.8D-01)	2.1D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1(0 (-1))	2.060491500000D+04	(+/-2.5D-02)	4.1D-04 4.CD-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1(0 (-1)) T(0 7 1)	2.046168500000D+04 2.076677800000D+04	(+/-2.7D-02)	4.6D-04 0.1D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1(0 (+1)) T(0 7 +1)	2.070077800000D+04 2.060514200000D+04	(+/-0.1D-02)	9.1D-04 4.1D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1(0 (+1)) T(0 7 1)	2.000514300000D+04 2.064182000000D+04	(+/-2.5D-02)	4.1D-04 1.0D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(0 (-1)) T(0 (7 + 1))	3.004182000000D+04 2.064182000000D+04	(+/-1.7D-01)	1.9D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(0 (1 + 1)) T(0 (2 - 1))	3.004182000000D+04 2.076776400000D+04	(+/-1.7D-01)	1.9D-04 4 1D 04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 8 \ -1)$ $T(0 \ 8 \ 1)$	2.070770400000D+04 2.060428600000D+04	(+/-2.7D-02)	4.1D-04 4.6D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 8 \ -1)$ $T(0 \ 8 \ 1)$	2.000438000000D+04 2.004010800000D+04	(+/-2.9D-02)	4.0D-04 0.1D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 8 \ +1)$ $T(0 \ 8 \ +1)$	2.094910800000D+04 2.076705400000D+04	(+/-0.2D-02)	9.1D-04 4.1D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 0 \ +1)$ $T(0 \ 0 \ 1)$	2.070795400000D+04 2.06078800000D+04	(+/-2.7D-02) (+/-1.7D-01)	4.1D-04 1.0D.04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 0 \ -1)$ $T(0 \ 0 \ -1)$	3.009788000000D+04 2.060788000000D+04	(+/-1.7D-01)	1.9D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 0 \ +1)$ $T(0 \ 0 \ 1)$	3.009788000000D+04 2.005033700000D+04	(+/-1.7D-01)	1.9D-04 8 4D 04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 9 \ -1)$ $T(0 \ 0 \ 1)$	2.093033700000D+04 2.076608400000D+04	$(\pm / 5.1D.02)$	0.4D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 9 \ -1)$ $T(0 \ 0 \ 1)$	2.070098400000D+04 2.11500500000D+04	(+/- 0.1D-02)	9.1D-04 9.1D 04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 9 \ \pm 1)$ $T(0 \ 9 \ \pm 1)$	2.113033000000D + 04 2.095049200000D + 04	$(\pm / - 1.1D-01)$ $(\pm / - 4.8D-02)$	8 4D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 9 \ \pm 1)$ $T(0 \ 0 \ 1)$	2.035043200000D+04 3.07607000000D+04	$(\pm / 1.7D 01)$	1  0D  04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 9 \ -1)$ $T(0 \ 0 \ \pm 1)$	3.076079000000D+04 3.07607000000D+04	$(\pm / 1.7D-01)$ $(\pm / 1.7D-01)$	1.5D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 9 \ -1)$ $T(0 \ 10 \ -1)$	$2.115240800000D\pm04$	$(\pm / - 5.0 D_{-}02)$	8 4D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 10 \ -1)$ $T(0 \ 10 \ -1)$	2.11524000000D + 04 2.094928600000D + 04	(+/-5.0D-02) (+/-5.2D-02)	9 1D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 10 \ -1)$ $T(0 \ 10 \ -1)$	2.03432000000000000000000000000000000000	(+/- 0.2D-02) (+/- 1.1D-01)	2 1D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(0 \ 10 \ \pm 1)$ $T(0 \ 10 \ \pm 1)$	2.1572000000000000000000000000000000000000	(+/- 4.9D-01)	8.3D-04
T(0101) $3.08305900000D+04$ $(+/-1.1D-01)$ $2.0D-04$ T(010+1) $3.08305900000D+04$ $(+/-1.7D-01)$ $2.0D-04$ T(011-1) $2.13737800000D+04$ $(+/-8.2D-02)$ $1.5D-04$ T(011-1) $2.11510800000D+04$ $(+/-9.2D-02)$ $1.6D-04$ T(011+1) $2.16119930000D+04$ $(+/-8.5D-02)$ $1.6D-04$ T(011+1) $2.13737980000D+04$ $(+/-8.5D-02)$ $1.5D-04$ T(011-1) $3.09071400000D+04$ $(+/-1.6D-01)$ $1.9D-04$	$T(0 \ 10 \ -1)$	3.08305900000D + 04	$(\pm /_{-} 1.7D_{-}02)$	2 0D-04
T(01011 $2.13737800000D+04$ $(+/-8.2D-02)$ $1.5D-04$ T(011-1) $2.11510800000D+04$ $(+/-8.2D-02)$ $1.5D-04$ T(011+1) $2.16119930000D+04$ $(+/-9.2D-02)$ $1.6D-04$ T(011+1) $2.137379800000D+04$ $(+/-8.5D-02)$ $1.5D-04$ T(011+1) $2.137379800000D+04$ $(+/-8.5D-02)$ $1.5D-04$ T(011-1) $3.09071400000D+04$ $(+/-1.6D-01)$ $1.9D-04$	$T(0 \ 10 \ -1)$	3.08305900000D + 04	$(\pm /_{-} 1.7D_{-}01)$	2.00-04 2 0D-04
T(011-1) $2.11510800000D+04$ $(+/- 0.2D-02)$ $1.0D-04$ T(011-1) $2.11510800000D+04$ $(+/- 1.1D-01)$ $2.1D-04$ T(011+1) $2.16119930000D+04$ $(+/- 9.2D-02)$ $1.6D-04$ T(011+1) $2.137379800000D+04$ $(+/- 8.5D-02)$ $1.5D-04$ T(011-1) $3.09071400000D+04$ $(+/- 1.6D-01)$ $1.9D-04$	T(0 10 + 1) T(0 11 - 1)	2137378000000D + 04	$(\pm /_{-} 8.9 D_{-} 0.02)$	1.5D-04
T(011-1) $2.161199300000D+04$ $(+/-9.2D-02)$ $1.6D-04$ T(011+1) $2.137379800000D+04$ $(+/-8.5D-02)$ $1.5D-04$ T(011-1) $3.09071400000D+04$ $(+/-1.6D-01)$ $1.9D-04$	T(0 11 -1)	2.15101000000D + 04 2.11510800000D + 04	$(+/-11D_01)$	2 1D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(0 11 -1) T(0 11 +1)	2.1101000000D + 04 2.161199300000D + 04	(+/- 9.2D-01)	1.10-04
$T(0 \ 11 \ -1)$ $3.09071400000D+04 \ (+/- \ 1.6D-01)$ $1.9D-04$	T(0 11 + 1)	2.137379800000D + 04	(+/-85D-02)	1.5D-04
	$T(0 \ 11 \ -1)$	3.090714000000D+04	(+/-1.6D-01)	1.9D-04

T(v' i' n')	Energy Origin	Uncertainty	Sensitivity
$\pm (v J P)$			
$T(0 \ 11 \ +1)$	3.09071400000D+04	(+/-1.6D-01)	1.9D-04
$T(0 \ 12 \ -1)$	2.161411600000D+04	(+/-5.6D-02)	8.3D-04
$T(0 \ 12 \ -1)$	2.137211000000D+04	(+/- 1.1D-01)	2.1D-04
$T(0 \ 12 \ +1)$	2.18708020000D + 04	(+/-5.8D-02)	8.6D-04
$T(0 \ 12 \ +1)$	2.161411600000D + 04	(+/-5.6D-02)	8.3D-04
$T(0 \ 12 \ -1)$	3.09905600000D + 04	(+/-1.6D-01)	1.9D-04
$T(0 \ 12 \ +1)$	3.09905600000D + 04	(+/-1.6D-01)	1.9D-04
T(0 13 -1)	2.187317600000D+04	(+/-5.8D-02)	8.0D-04
T(0 13 -1)	2.16120550000D + 04	(+/-9.2D-02)	1.6D-04
$T(0 \ 13 \ +1)$	2.214799300000D+04	(+/-6.0D-02)	8.6D-04
$T(0 \ 13 \ +1)$	2.187317600000D + 04	(+/-5.8D-02)	8.0D-04
$T(0 \ 13 \ -1)$	3.10807200000D + 04	(+/-1.7D-01)	2.1D-04
$T(0 \ 13 \ +1)$	3.10807200000D+04	(+/-1.7D-01)	2.1D-04
$T(0 \ 14 \ -1)$	2.215063400000D+04	(+/-4.7D-02)	4.1D-04
$T(0 \ 14 \ -1)$	2.187080200000D+04	(+/-5.8D-02)	8 6D-04
$T(0 \ 14 \ +1)$	2.244318400000D+04	(+/-50D-02)	4 6D-04
$T(0 \ 14 \ +1)$	2.215063500000D+04	(+/-47D-02)	4 1D-04
$T(0 \ 14 \ -1)$	3.117782000000D+04	(+/-1.7D-02) (+/-1.7D-01)	2 3D-04
$T(0 \ 14 \ +1)$	3.11778200000D + 01 3.11778200000D + 04	(+/-1.7D-01)	2.0D 01 2.3D-04
$T(0 \ 15 \ -1)$	2.244619300000D+04	(+/-4.9D-02)	4 1D-04
$T(0 \ 15 \ -1)$	2.214799300000D+04	(+/-6.0D-02)	8 6D-04
$T(0 \ 15 \ +1)$	2.211133000000D + 01 2.275612700000D + 04	(+/-51D-02)	4 5D-04
$T(0 \ 15 \ +1)$ $T(0 \ 15 \ +1)$	2.246012100000D + 01 2.244619300000D + 04	(+/-4.9D-02)	4 1D-04
$T(0 \ 15 \ -1)$ $T(0 \ 15 \ -1)$	3.12825900000D + 04	(+/-1.3D-0.2) (+/-1.8D-0.1)	2 3D-04
$T(0 \ 15 \ +1)$	3.128259000000D + 01 3.128259000000D + 04	(+/-1.0D 01) (+/-1.8D 01)	2.0D 01 2.3D-04
$T(0 \ 16 \ -1)$	2.275951000000D + 04	(+/-4.0D-01) (+/-4.9D-02)	3 3D-04
$T(0 \ 16 \ -1)$	2.21030100000D + 04 2.244318400000D + 04	(+/-5.0D-02)	4 6D-04
$T(0 \ 16 \ \pm 1)$	2.211010100000D + 01 2 308647300000D + 04	(+/-5.3D-02)	4 5D-04
$T(0 \ 16 \ +1)$ $T(0 \ 16 \ +1)$	2.300041900000D + 04 2.275951000000D + 04	(+/- 0.02) (+/- 4.9D-02)	3 3D-04
$T(0 \ 16 \ -1)$	3.13859300000D+04	$(+/-1.5D \cdot 02)$ (+/-1.7D - 01)	2 3D-04
$T(0 \ 16 \ +1)$	3 13859300000D + 04	(+/-1.7D-01)	2.3D-04
$T(0 \ 17 \ -1)$	2.309021100000D+04	(+/-50D-02)	3 3D-04
$T(0 \ 17 \ -1)$	2.275612700000D+04	(+/-51D-02)	4 5D-04
$T(0 \ 17 \ +1)$	2.343381300000D+04	(+/-54D-02)	4 5D-04
$T(0 \ 17 \ +1)$ $T(0 \ 17 \ +1)$	2.309021100000D + 01	(+/-5.0D-02)	3 3D-04
$T(0 \ 17 \ -1)$	3.150552000000D+04	(+/-1.9D-02) (+/-1.9D-01)	2 8D-04
$T(0 \ 17 \ +1)$	3.15055200000D+04	(+/-1.02.01)	2.8D-04
$T(0 \ 18 \ -1)$	2.343794600000D+04	(+/-5.2D-02)	3 2D-04
$T(0 \ 18 \ -1)$	2.308647300000D+04	(+/-5.3D-02)	4 5D-04
$T(0 \ 18 \ +1)$	2.379779300000D+04	(+/-5.6D-02)	4 5D-04
$T(0 \ 18 \ +1)$ $T(0 \ 18 \ +1)$	2.343794600000D+04	(+/-5.02,02)	3 2D-04
$T(0 \ 18 \ -1)$	3.16286400000D+04	(+/-2.0D-01)	2.9D-04
$T(0 \ 18 \ +1)$	3.16286400000D+04	(+/-2.0D-01)	2.9D-04
$T(0 \ 19 \ -1)$	2 380230200000D+04	(+/-5.3D-02)	3 3D-04
$T(0 \ 19 \ -1)$	2.343381300000D+04	(+/-54D-02)	4 5D-04
$T(0 \ 19 \ +1)$	2.417798700000D+04	(+/-57D-02)	4 5D-04
$T(0 \ 19 \ +1)$ $T(0 \ 19 \ +1)$	2.38023020000D+04	(+/-5.3D-02)	3.3D-04
$T(0 \ 19 \ -1)$	3.17581200000D+04	(+/-1.8D-01)	2 3D-04
T(0 19 + 1)	3.17581200000D+04	(+/-1.8D-01)	2.3D-04
$T(0 \ 20 \ -1)$	2.41828760000D+04	(+/-5.4D-02)	3.2D-04
$T(0 \ 20 \ -1)$	2.379779300000D+04	(+/-5.6D-02)	4.5D-04
$T(0 \ 20 \ +1)$	2.457395900000D+04	(+/-5.7D-02)	4.5D-04
$T(0 \ 20 \ +1)$	2.41828760000D+04	(+/-5.4D-02)	3.2D-04
$T(0 \ 20 \ -1)$	3.18937900000D+04	(+/-1.8D-01)	2.3D-04
$T(0 \ 20 \ +1)$	3.18937900000D+04	(+/-1.8D-01)	2.3D-04
T(0 21 -1)	2.457924700000D+04	(+/-5.5D-02)	3.2D-04
$T(0 \ 21 \ -1)$	2.417798700000D+04	(+/-5.7D-02)	4.5D-04

Table C.1 Energy origins of "fluorescence series" of BeH isotopomer  $(cm^{-1})$  (*Cont'd*)

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(0 \ 21 \ +1)$	2.498530400000D+04	(+/-5.8D-02)	4.6D-04
$T(0 \ 21 \ +1)$	2.457924700000D+04	(+/-5.5D-02)	3.2D-04
$T(0 \ 21 \ -1)$	3.20356900000D+04	(+/-2.0D-01)	2.7D-04
$T(0 \ 21 \ +1)$	3.20356900000D+04	(+/-2.0D-01)	2.7D-04
$T(0 \ 22 \ -1)$	2.499097800000D+04	(+/-5.5D-02)	3.2D-04
T(0 22 -1)	2.45739590000D+04	(+/-5.7D-02)	4.5D-04
$T(0 \ 22 \ +1)$	2.54115520000D+04	(+/-5.8D-02)	4.5D-04
$T(0 \ 22 \ +1)$	2.499097800000D+04	(+/-5.5D-02)	3.2D-04
T(0 22 -1)	3.21840200000D+04	(+/- 1.8D-01)	2.3D-04
$T(0 \ 22 \ +1)$	3.21840200000D+04	(+/-1.8D-01)	2.3D-04
T(0 23 -1)	2.541761600000D+04	(+/- 5.6D-02)	3.2D-04
T(0 23 -1)	2.49853040000D + 04	(+/- 5.8D-02)	4.6D-04
$T(0 \ 23 \ +1)$	2.58522860000D + 04	(+/- 5.9D-02)	4.6D-04
$T(0 \ 23 \ +1)$	2.541761600000D + 04	(+/-5.6D-02)	3.2D-04
T(0 23 -1)	3.23384100000D + 04	(+/-2.0D-01)	2.7D-04
$T(0 \ 23 \ +1)$	3.23384100000D + 04	(+/-2.0D-01)	2.7D-04
$T(0 \ 24 \ -1)$	2.58587050000D + 04	(+/-5.6D-02)	3.2D-04
T(0 24 -1)	$2.54115520000 \mathrm{D}{+}04$	(+/-5.8D-02)	4.5D-04
$T(0 \ 24 \ +1)$	$2.630690800000 \mathrm{D}{+}04$	(+/-5.9D-02)	4.6D-04
$T(0 \ 24 \ +1)$	$2.58587050000 \mathrm{D}{+}04$	(+/-5.6D-02)	3.2D-04
$T(0 \ 24 \ -1)$	3.24912500000D + 04	(+/-2.1D-01)	2.7 D-04
$T(0 \ 24 \ +1)$	3.24912500000D + 04	(+/-2.1D-01)	2.7 D- 04
$T(0 \ 25 \ -1)$	2.631376500000D + 04	(+/-5.6D-02)	3.2D-04
$T(0 \ 25 \ -1)$	2.58522860000D + 04	(+/-5.9D-02)	4.6D-04
$T(0 \ 25 \ +1)$	2.677510700000D+04	(+/-5.9D-02)	4.6D-04
$T(0 \ 25 \ +1)$	2.63137650000D + 04	(+/-5.6D-02)	3.2D-04
$T(0 \ 25 \ -1)$	3.26619900000D+04	(+/-2.1D-01)	2.7D-04
$T(0 \ 25 \ +1)$	3.26619900000D+04	(+/-2.1D-01)	2.7D-04
$T(0 \ 26 \ -1)$	2.678231900000D+04	(+/-5.6D-02)	3.2D-04
$1(0 \ 26 \ -1)$	2.630690800000D+04	(+/-5.9D-02)	4.6D-04
$T(0 \ 26 \ +1)$ $T(0 \ 26 \ +1)$	2.725629900000D+04	(+/-5.9D-02)	4.6D-04
$1(0 \ 26 \ +1)$ T(0 \ 26 \ 1)	2.078231900000D+04	(+/-5.0D-02)	3.2D-04
$1(0 \ 20 \ -1)$ T $(0 \ 26 \ +1)$	3.283405000000D + 04	(+/-2.2D-01)	2.(D-04 2.7D-04
$1(0 \ 20 \ +1)$ T $(0 \ 27 \ 1)$	3.2634000000000000000000000000000000000000	(+/-2.2D-01)	2.(D-04 2.2D-04
1(0 2( -1)) T $(0 27 1)$	2.7200000000000000000000000000000000000	(+/-0.7D-02)	3.2D-04 4 6D 04
$T(0 \ 27 \ -1)$ $T(0 \ 97 \ 1)$	$2.0774008600000D \pm 04$	$(\pm/-0.9D-02)$ $(\pm/-6.0D-02)$	4.0D-04 4.6D-04
$T(0 \ 27 \ \pm 1)$ $T(0 \ 97 \ \pm 1)$	2.7743360000000000000000000000000000000000	$(\pm / - 5.0D - 02)$	3.0D-04
$T(0 \ 27 \ \pm 1)$ $T(0 \ 97 \ 1)$	2.12030000000000000000000000000000000000	$(\pm / - 3.7D - 02)$ $(\pm / - 3.0D - 01)$	J.2D-04 Λ 6D_0Λ
T(0 27 -1) T(0 27 +1)	$3.30115300000D \pm 04$	(+/-2.9D-01) (+/-2.9D-01)	4.6D-04 4.6D-04
T(0 28 -1)	2.775790300000D+04	(+/-57D-01)	3 3D-04
T(0 28 -1)	2.72562990000D+04	(+/-5.9D-02)	4 6D-04
$T(0 \ 28 \ +1)$	2.82556630000D+04	(+/-6.0D-02)	4.6D-04
$T(0 \ 28 \ +1)$	2.775790600000D+04	(+/-5.7D-02)	3.2D-04
$T(0 \ 28 \ -1)$	3.31942600000D+04	(+/-2.7D-01)	3.3D-04
$T(0 \ 28 \ +1)$	3.31942600000D+04	(+/-2.7D-01)	3.3D-04
T(0 29 -1)	2.82639190000D+04	(+/-5.8D-02)	3.2D-04
T(0 29 -1)	2.77500800000D+04	(+/- 2.4D-01)	4.6D-04
$T(0 \ 29 \ +1)$	2.87726400000D+04	(+/- 2.4D-01)	4.6D-04
$T(0 \ 29 \ +1)$	2.826391900000D+04	(+/-5.8D-02)	3.2D-04
T(0 29 -1)	3.33914300000D + 04	(+/- 3.8D-01)	4.6D-04
$T(0 \ 29 \ +1)$	3.33914300000D + 04	(+/-3.8D-01)	4.6D-04
T(0 30 -1)	2.87813930000D + 04	(+/-5.9D-02)	3.2D-04
$T(0 \ 30 \ -1)$	$2.82556630000 \mathrm{D}{+}04$	(+/-6.0D-02)	4.6D-04
$T(0 \ 30 \ +1)$	$2.930090700000 \mathrm{D}{+}04$	(+/-6.2D-02)	4.6D-04
$T(0 \ 30 \ +1)$	2.87813930000D + 04	(+/-5.9D-02)	3.2D-04
T(0 30 -1)	3.35669600000D + 04	(+/-8.9D-01)	1.6D-04

Table C.1 Energy origins of "fluorescence series" of BeH isotopomer  $(cm^{-1})$  (*Cont'd*)

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(0, 30, \pm 1)$	335669600000D+04	(+/-89D-01)	1 6D-04
$T(0 \ 31 \ -1)$	2.930979200000D+04	(+/-6.0D-02)	3.3D-04
$T(0 \ 31 \ -1)$	2.877281100000D+04	(+/-6.1D-02)	4.6D-04
$T(0 \ 31 \ +1)$	2.930979200000D+04	(+/-6.0D-02)	3.3D-04
$T(0 \ 32 \ -1)$	2.984857500000D+04	(+/-6.1D-02)	3.3D-04
$T(0 \ 32 \ -1)$	2.930090700000D+04	(+/-6.2D-02)	4.6D-04
$T(0 \ 32 \ +1)$	2.984857500000D+04	(+/-6.1D-02)	3.3D-04
$T(0 \ 33 \ -1)$	3.039719900000D+04	(+/-6.2D-02)	3.3D-04
$T(0 \ 33 \ +1)$	3.039719900000D+04	(+/-6.2D-02)	3.3D-04
$T(0 \ 34 \ -1)$	3.09551080000D + 04	(+/-6.4D-02)	3.3D-04
$T(0 \ 34 \ +1)$	3.09551080000D + 04	(+/-6.4D-02)	3.3D-04
$T(0 \ 35 \ -1)$	3.152173900000D + 04	(+/-6.6D-02)	4.5D-04
$T(0 \ 35 \ +1)$	3.152173900000D+04	(+/-6.6D-02)	4.5D-04
$T(0 \ 36 \ -1)$	3.209652800000D + 04	(+/-6.7D-02)	3.3D-04
$T(0 \ 36 \ +1)$	3.209652800000D + 04	(+/-6.7D-02)	3.3D-04
$T(0 \ 37 \ -1)$	3.267888900000D + 04	(+/-6.8D-02)	3.3D-04
$T(0 \ 37 \ +1)$	3.267888900000D + 04	(+/-6.8D-02)	3.3D-04
T(0 38 -1)	3.326823500000D + 04	(+/- 7.0D-02)	3.3D-04
$T(0 \ 38 \ +1)$	3.326823500000D + 04	(+/-7.0D-02)	3.3D-04
$T(0 \ 39 \ -1)$	3.38639690000D + 04	(+/-7.1D-02)	3.3D-04
$T(0 \ 39 \ +1)$	3.38639690000D + 04	(+/-7.1D-02)	3.3D-04
$T(0 \ 40 \ -1)$	3.446548400000D + 04	(+/-7.2D-02)	3.3D-04
$T(0 \ 40 \ +1)$	3.446548400000D + 04	(+/-7.2D-02)	3.3D-04
$T(0 \ 41 \ -1)$	3.507216300000D + 04	(+/-7.3D-02)	3.3D-04
$T(0 \ 41 \ +1)$	3.507216100000D+04	(+/-7.3D-02)	3.3D-04
$T(0 \ 42 \ -1)$	3.568337800000D+04	(+/-7.4D-02)	3.3D-04
$T(0 \ 42 \ +1)$	3.568337800000D+04	(+/-7.4D-02)	3.3D-04
$T(0 \ 43 \ -1)$	3.629846900000D+04	(+/-7.6D-02)	4.6D-04
$T(0 \ 43 \ +1)$	3.629846900000D+04	(+/-7.6D-02)	4.6D-04
$1(0 \ 44 \ -1)$ T(0 \ 44 \ -1)	3.691682000000D+04	(+/-1.9D-01)	3.3D-04
$T(0 \ 44 \ +1)$ $T(0 \ 45 \ 1)$	3.091082000000D+04 2.75276000000D+04	(+/-1.9D-01)	3.3D-04 2.2D-04
T(0 45 -1) T(0 45 +1)	3.7337000000000000000000000000000000000	(+/-2.0D-01)	3.3D-04 2.2D-04
$T(0 \ 45 \ \pm 1)$ $T(0 \ 46 \ 1)$	3.1537000000000000000000000000000000000000	$(\pm/2.0D-01)$ $(\pm/2.0D-01)$	3.3D-04 3.3D-04
$T(0 \ 46 \ -1)$ $T(0 \ 46 \ +1)$	3.81599800000D + 04 3.81599800000D + 04	(+/-2.2D-01) (+/-2.2D-01)	3 3D-04
$T(1 \ 1 \ +1)$ $T(1 \ 1 \ +1)$	2.209708300000D + 04	(+/-44D-02)	4.6D-04
$T(1 \ 1 \ +1)$ $T(1 \ 1 \ +1)$	2.2051000000D + 01 2.205831400000D + 04	(+/-4.1D-02)	3.3D-04
$T(1 \ 2 \ -1)$	2.20971670000D+04	(+/-4.1D-02)	3.3D-04
$T(1 \ 2 \ +1)$	2.215693500000D+04	(+/-4.4D-02)	4.6D-04
$T(1 \ 2 \ +1)$	2.209801200000D+04	(+/-4.4D-02)	4.5D-04
$T(1 \ 2 \ -1)$	3.14566100000D + 04	(+/-2.5D-01)	3.1D-04
$T(1 \ 2 \ +1)$	3.14566100000D + 04	(+/-2.5D-01)	3.1D-04
T(1 3 -1)	2.215708500000D + 04	(+/- 4.1D-02)	3.3D-04
$T(1 \ 3 \ +1)$	2.223644300000D+04	(+/-4.4D-02)	4.6D-04
$T(1 \ 3 \ +1)$	$2.215765900000D{+}04$	(+/-4.1D-02)	3.3D-04
$T(1 \ 3 \ -1)$	3.14778200000D + 04	(+/-2.4D-01)	2.9D-04
T(1  3  +1)	3.14778200000D + 04	(+/-2.4D-01)	2.9D-04
$T(1 \ 4 \ -1)$	2.223671200000D + 04	(+/-4.0D-02)	3.3D-04
$T(1 \ 4 \ -1)$	2.21575030000D + 04	(+/-4.4D-02)	4.6D-04
$T(1 \ 4 \ +1)$	2.233561100000D+04	(+/-4.4D-02)	4.6D-04
$T(1 \ 4 \ +1)$	2.223715200000D+04	(+/-4.4D-02)	4.5D-04
T(1 4 -1)	3.150599000000D+04	(+/-2.4D-01)	2.9D-04
$I(1 \ 4 \ +1)$	3.150599000000D+04	(+/-2.4D-01)	2.9D-04
$I(1 \ 5 \ -1)$ T(1 \ F \ 1)	2.233601000000D+04	(+/-4.0D-02)	3.3D-04
$1(1 \ 5 \ -1)$ T(1 5 \ 1)	2.223088000000000+04 2.24542020000000+04	(+/-4.4D-02)	4.0D-04 4.6D-04
$T(1 \ 5 \ \pm 1)$ $T(1 \ 5 \ \pm 1)$	2.24949000000000000000000000000000000000	$(\pm /-4.4D-02)$ $(\pm /-4.0D-02)$	4.0D-04 3 3D-04

Table C.1 Energy origins of "fluorescence series" of BeH isotopomer  $(cm^{-1})$  (*Cont'd*)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(v)	j'	p')	Energy Origin	Uncertainty	Sensitivity
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1	5	-1)	3.15412300000D+04	(+/-2.3D-01)	2.9D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1)	$\tilde{5}$	$+1)^{-}$	3.15412300000D+04	(+/-2.3D-01)	2.9D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1)	6	-1)	2.24548630000D+04	(+/-4.1D-02)	3.3D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1)	õ	-1)	2.233596200000D+04	(+/-4.4D-02)	4.6D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1)	6	$+1)^{-)}$	2.259239200000D+04	(+/-4.4D-02)	4.6D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1)	6	+1)	2.24551400000D + 04	(+/-4.1D-02)	3.3D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1)	6	-1)	3.15834800000D + 04	(+/-2.3D-01)	2.9D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1)	6	+1)	3.15834800000D + 04	(+/-2.3D-01)	2.9D-04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1)	7	-1)	2.25931350000D + 04	(+/-4.1D-02)	3.3D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1)	7	-1)	2.24545980000D + 04	(+/-4.4D-02)	4.6D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1)	7	+1)	2.274971400000D+04	(+/-4.5D-02)	4.6D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1)	7	+1)	2.259336300000D+04	(+/-4.1D-02)	3.3D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1)	7	-1)	3.16327600000D + 04	(+/-2.3D-01)	2.9D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1)	7	+1)	3.16327600000D + 04	(+/-2.3D-01)	2.9D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1)	8	-1)	2.275065900000D + 04	(+/-4.1D-02)	3.3D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1)	8	-1)	2.25926600000D + 04	(+/-1.2D-01)	2.2D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1)	8	+1)	2.292606600000D + 04	(+/-4.5D-02)	4.6D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1)	8	+1)	2.275084900000D + 04	(+/-4.1D-02)	3.3D-04
$\begin{array}{llllllllllllllllllllllllllllllllllll$	T(1)	8	-1)́	3.16891800000D + 04	(+/-2.4D-01)	2.9D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1)	8	+1)	3.16891800000D + 04	(+/-2.4D-01)	2.9D-04
$\begin{array}{llllllllllllllllllllllllllllllllllll$	T(1)	9	-1)	2.292723000000D + 04	(+/-4.2D-02)	3.3D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1)	9	-1)	2.27499100000D + 04	(+/-1.2D-01)	2.2D-04
$\begin{array}{llllllllllllllllllllllllllllllllllll$	T(1)	9	+1)	2.312124000000D+04	(+/-1.2D-01)	2.2D-04
$\begin{array}{llllllllllllllllllllllllllllllllllll$	T(1)	9	+1)	2.292740400000D + 04	(+/-4.2D-02)	3.3D-04
$\begin{array}{llllllllllllllllllllllllllllllllllll$	T(1	9	-1)	3.17520500000D + 04	(+/-3.6D-01)	6.5D-04
$\begin{array}{llllllllllllllllllllllllllllllllllll$	T(1	9	+1)	3.17520500000D + 04	(+/-3.6D-01)	6.5 D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1	10	-1)	2.312267400000D + 04	(+/-4.5D-02)	4.4D-04
$\begin{array}{llllllllllllllllllllllllllllllllllll$	T(1	10	-1)	$2.29262500000 \mathrm{D}{+}04$	(+/-1.2D-01)	2.2D-04
$\begin{array}{llllllllllllllllllllllllllllllllllll$	T(1	10	+1)	2.33349800000D + 04	(+/- 1.1D-01)	2.1D-04
$\begin{array}{llllllllllllllllllllllllllllllllllll$	T(1	10	+1)	2.312277300000D + 04	(+/-8.0D-02)	1.3D-04
$\begin{array}{llllllllllllllllllllllllllllllllllll$	T(1	10	-1)	3.18223400000D + 04	(+/-3.6D-01)	6.5 D- 04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1	10	+1)	3.18225400000D + 04	(+/-3.6D-01)	6.5 D- 04
$\begin{array}{llllllllllllllllllllllllllllllllllll$	T(1	11	-1)	2.333674900000D+04	(+/-8.0D-02)	1.3D-04
$\begin{array}{llllllllllllllllllllllllllllllllllll$	T(1	11	-1)	2.31214000000D + 04	(+/- 1.2D-01)	2.2D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1	11	+1)	2.356714000000D+04	(+/- 1.1D-01)	2.1D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1	11	+1)	2.333674900000D+04	(+/-8.0D-02)	1.3D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1	11	-1)	3.13039000000D + 04	(+/-3.3D-01)	4.6D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1	12	-1)	2.356913500000D+04	(+/-7.9D-02)	1.3D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1)	12	-1)	2.33351400000D+04	(+/-1.1D-01)	2.1D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1)	12	+1)	2.381728400000D+04	(+/-9.5D-02)	1.6D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1)	12	+1)	2.356913500000D+04	(+/-7.9D-02)	1.3D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1)	12	-1)	3.197574000000D+04	(+/-3.5D-01)	4.6D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1)	12	+1)	3.197577000000D+04	(+/-3.5D-01)	4.6D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1)	13	-1)	2.381951000000D+04	(+/-7.4D-02)	1.2D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1)	13	-1)	2.356714000000D+04	(+/-1.1D-01)	2.1D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1)	13	+1)	2.40851600000000000000000000000000000000000	(+/-9.5D-02)	1.6D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I(1)	13	+1)	2.381951000000D+04	(+/-(.4D-02))	1.2D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I(1)	13	-1)	3.186000000000000000000000000000000000000	(+/-1.(D+02))	3.3D-01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{T^{(1)}}$	$13 \\ 14$	$^{+1)}_{1}$	3.18000000000000000000000000000000000000	(+/-1.(D+02))	3.3D-UI 1.9D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{T}$	14	-1)	2.408775300000D+04 2.281721600000D+04	(+/- 1.5D-02)	1.2D-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{T^{(1)}}$	14 14	-1)	2.301(31000000D+04) 2.437047100000D+04	(+/-4.9D-02)	4.0D-04 4 5D 04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{T}$	14 14	$^{+1)}_{+1}$	2.43704710000000+04 2.40877520000000+04	(+/-5.1D-02)	4.0D-04 1.9D-04
$T(1 \ 14 \ -1)$ $3.2100000000D+04$ $(+/-1.(D+02))$ $3.2D-01$ $T(1 \ 14 \ +1)$ $3.2160000000D+04$ $(+/-1.7D+02)$ $3.2D-01$ $T(1 \ 15 \ -1)$ $2.43733390000D+04$ $(+/-4.8D-02)$ $3.2D-04$ $T(1 \ 15 \ -1)$ $2.40851670000D+04$ $(+/-50D-02)$ $4.5D-04$	$\frac{1}{T}$	14 14	+1) 1)	2.40077000000000000000000000000000000000	(+/-1.3D-02)	1.2D-04 3 9D 01
$T(1 \ 14 \ +1)$ $5.210000000D+04$ $(+/-1.(D+02))$ $5.2D-01$ $T(1 \ 15 \ -1)$ $2.437333900000D+04$ $(+/-4.8D-02)$ $3.2D-04$ $T(1 \ 15 \ -1)$ $2.408516700000D+04$ $(+/-50D-02)$ $4.5D-04$	$\frac{1}{T}$	14 17	-1) 1)	3.21000000000000000000000000000000000000	$(\pm / 1.7D \pm 02)$	3.2D-01 2.2D-01
T(1 15 -1) 2.498516700000D+04 (+/- 5.0D-02) 3.2D-04 T(1 15 -1) 2.408516700000D+04 (+/- 5.0D-02) 4.5D-04	T(1)	14 15	+⊥) _1\	3.21000000000000000000000000000000000000	$(\pm / - 1.7D \pm 02)$ $(\pm / - 4.8D 02)$	3.2D-01 3.2D-04
	T(1)	15 15	-1) -1)	2.437333300000D+04 2.408516700000D+04	$(\pm / - 5.0D - 02)$	4 5D-04

Table C.1 Energy origins of "fluorescence series" of BeH isotopomer  $(cm^{-1})$  (*Cont'd*)

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(1 \ 15 \ +1)$	$2.467287000000D \pm 04$	(+/-12D-01)	2 2D-04
$T(1 \ 15 \ +1)$	2.437333900000D+04	(+/-4.8D-02)	3.2D-04
$T(1 \ 15 \ -1)$	3.22668900000D+04	(+/-3.6D-01)	6.5D-04
$T(1 \ 15 \ +1)$	3.22668900000D+04	(+/-3.6D-01)	6.5D-04
$T(1 \ 16 \ -1)$	2.46760620000D+04	(+/-4.9D-02)	3.2D-04
$T(1 \ 16 \ -1)$	2.437047100000D+04	(+/-5.1D-02)	4.5D-04
$T(1 \ 16 \ +1)$	2.49919700000D+04	(+/-1.2D-01)	2.2D-04
$T(1 \ 16 \ +1)$	2.467606200000D+04	(+/-4.9D-02)	3.2D-04
$T(1 \ 16 \ -1)$	3.23800000000D+04	(+/-1.7D+02)	3.3D-01
$T(1 \ 16 \ +1)$	3.23800000000D+04	(+/-1.7D+02)	3.3D-01
T(1 17 -1)	2.499552400000D+04	(+/-5.0D-02)	3.2D-04
T(1 17 -1)	2.467287800000D+04	(+/-5.2D-02)	4.6D-04
$T(1 \ 17 \ +1)$	2.532743000000D+04	(+/-1.2D-01)	2.1D-04
$T(1 \ 17 \ +1)$	2.499552400000D+04	(+/-5.0D-02)	3.2D-04
$T(1 \ 18 \ -1)$	2.53313500000D + 04	(+/-5.1D-02)	3.2D-04
$T(1 \ 18 \ -1)$	2.499198600000D+04	(+/-5.3D-02)	4.6D-04
$T(1 \ 18 \ +1)$	2.56788980000D+04	(+/-5.5D-02)	4.6D-04
$T(1 \ 18 \ +1)$	2.533135000000D+04	(+/-5.1D-02)	3.2D-04
$T(1 \ 19 \ -1)$	2.568316100000D+04	(+/-5.2D-02)	3.2D-04
$T(1 \ 19 \ -1)$	2.532743900000D+04	(+/-5.4D-02)	4.6D-04
$T(1 \ 19 \ +1)$ $T(1 \ 10 \ +1)$	2.604589500000D+04	(+/-5.5D-02)	4.6D-04
$T(1 \ 19 \ +1)$ $T(1 \ 20 \ 1)$	2.568316100000D+04	(+/-5.2D-02)	3.2D-04
$T(1 \ 20 \ -1)$ $T(1 \ 20 \ 1)$	2.605049800000D+04	(+/-5.3D-02)	3.2D-04
$T(1 \ 20 \ -1)$ $T(1 \ 20 \ +1)$	2.507889800000D+04 2.649809200000D+04	(+/-5.5D-02)	4.0D-04 4.6D-04
$T(1 \ 20 \ +1)$ $T(1 \ 20 \ +1)$	2.642802300000D+04	(+/-5.0D-02)	4.0D-04 2.2D_04
$T(1 \ 20 \ \pm 1)$ $T(1 \ 21 \ 1)$	2.003049800000D+04 2.64320800000D+04	(+/-5.3D-02)	3.2D-04 3.2D-04
$T(1 \ 21 \ -1)$ $T(1 \ 21 \ 1)$	2.045298900000D+04 2.604589500000D+04	$(\pm/55D.02)$	4 6D 04
$T(1 \ 21 \ -1)$ $T(1 \ 21 \ +1)$	2.0049899900000D + 04 2.682486100000D+04	(+/-5.6D-02) (+/-5.6D-02)	4.6D-04 4.6D-04
$T(1 \ 21 \ +1)$ $T(1 \ 21 \ +1)$	2.64329890000D+04	(+/-5.3D-02)	3 2D-04
$T(1 \ 22 \ -1)$	2.683018200000D+04	(+/-5.4D-02)	3.2D-04
$T(1 \ 22 \ -1)$	2.64280230000D+04	(+/-5.6D-02)	4.6D-04
$T(1 \ 22 \ +1)$	2.723594200000D+04	(+/-5.7D-02)	4.6D-04
$T(1 \ 22 \ +1)$	2.68301820000D + 04	(+/-5.4D-02)	3.2D-04
T(1 23 -1)	2.72416100000D + 04	(+/-5.4D-02)	3.2D-04
$T(1 \ 23 \ -1)$	2.682486100000D+04	(+/-5.6D-02)	4.6D-04
$T(1 \ 23 \ +1)$	2.76608300000D + 04	(+/-1.2D-01)	2.1D-04
$T(1 \ 23 \ +1)$	2.72416100000D + 04	(+/-5.4D-02)	3.2D-04
$T(1 \ 24 \ -1)$	2.766681800000D+04	(+/-5.5D-02)	3.2D-04
$T(1 \ 24 \ -1)$	2.723594200000D+04	(+/-5.7D-02)	4.6D-04
$T(1 \ 24 \ +1)$	2.80989780000D+04	(+/-5.8D-02)	4.6D-04
$T(1 \ 24 \ +1)$	2.76668190000D+04	(+/-5.4D-02)	3.2D-04
$T(1 \ 25 \ -1)$	2.810531800000D+04	(+/-5.5D-02)	3.2D-04
$T(1 \ 25 \ -1)$	2.76608300000D+04	(+/-1.2D-01)	2.1D-04
$T(1 \ 25 \ +1)$	2.810531800000D+04	(+/-5.5D-02)	3.2D-04
$T(1 \ 26 \ -1)$	2.855664700000D+04	(+/-5.5D-02)	3.2D-04
$T(1 \ 26 \ -1)$	2.809897800000D+04	(+/-5.8D-02)	4.6D-04 2.0D-04
$1(1 \ 20 \ +1)$ T(1 \ 27 \ 1)	2.855064700000D+04 2.002027200000D+04	(+/-5.5D-02)	3.2D-04 2.2D-04
1(1 2(-1)) T $(1 27 + 1)$	2.90202730000000+04 2.00202730000000+04	(+/-5.0D-02)	3.2D-04 3.2D-04
$T(1 \ 2( +1))$ $T(1 \ 29 \ 1)$	2.90202730000000+04 2.04056030000000+04	(+/-5.0D-02)	3.2D-04 3.2D-04
$T(1 \ 20 \ -1)$ $T(1 \ 28 \ +1)$	2.949909900000D+04 2.040560300000D+04	$(\pm / 5.0D - 02)$	3.2D-04 3.2D-04
$T(1 \ 20 \ +1)$ $T(1 \ 20 \ 1)$	2.9499099000000D+04 2.008238500000D⊥04	$(\pm / - 5.0D - 02)$	$\begin{array}{c} \mathbf{3.2D} \mathbf{-04} \\ 4 \mathbf{4D} 04 \end{array}$
T(1 23 -1) $T(1 20 \pm 1)$	2.33023050000000+04 2 99823850000000+04	$(\pm / - 5.0 - 02)$	4.4D-04
$T(1 \ 20 \ -1)$	2.3302300000000000000000000000000000000	$(\pm / 57D_{-}02)$	3.2D-04
$T(1 \ 30 \ \pm 1)$	3.047981100000D+04	(+/-57D-02)	3.2D-04
$T(1 \ 31 \ -1)$	3.098742800000D+04	(+/-5.8D-02)	3.3D-04

Table C.1 Energy origins of "fluorescence series" of BeH isotopomer  $(cm^{-1})$  (*Cont'd*)

T(v ²	j'	p')	Energy Origin	Uncertainty	Sensitivity
T(1	31	+1)	3.09874280000D+04	(+/-5.8D-02)	3.3D-04
T(1)	32	-1)	3.150468600000D+04	(+/-6.1D-02)	4.5D-04
T(1)	32	$+1)^{-}$	3.150468600000D+04	(+/-6.1D-02)	4.5D-04
T(1)	33	-1)	3.203099300000D+04	(+/-6.1D-02)	3.3D-04
T(1)	33	+1)	3.203099300000D+04	(+/-6.1D-02)	3.3D-04
T(1)	34	-1)	325658020000D+04	(+/-62D-02)	3 3D-04
T(1)	34	+1)	3256580200000D+04	(+/-62D-02)	3 3D-04
T(1)	35	-1)	3.310849800000D+04	(+/-6.3D-02)	3.3D-04
T(1)	35	$+1)^{-}$	3.310849800000D+04	(+/-6.3D-02)	3.3D-04
T(1)	36	-1)	3.36584800000D+04	(+/-6.5D-02)	3.3D-04
T(1)	36	+1)	3.365849400000D+04	(+/-6.6D-02)	4.6D-04
T(1)	37	-1)	3.421515700000D+04	(+/-6.7D-02)	3.3D-04
T(1)	37	+1)	3.42150000000D + 04	(+/-1.7D+01)	3.3D-02
T(1)	38	-1)	3.477787000000D + 04	(+/-6.9D-02)	3.3D-04
T(1)	38	+1)	3.477786800000D + 04	(+/-7.3D-02)	4.6D-04
T(1)	39	-1)	3.534593800000D+04	(+/-7.1D-02)	3.3D-04
T(1)	39	+1)	3.534595400000D+04	(+/-7.5D-02)	4.6D-04
T(1)	40	-1)	3.59188090000D + 04	(+/-7.2D-02)	3.3D-04
T(1)	40	+1)	3.59188090000D + 04	(+/-7.2D-02)	3.3D-04
T(1)	41	-1)	3.64954600000D + 04	(+/-1.8D-01)	3.3D-04
T(1)	41	+1)	3.64954600000D + 04	(+/-1.8D-01)	3.3D-04
T(1)	42	-1)	3.70748200000D + 04	(+/-1.9D-01)	3.3D-04
T(1)	42	+1)	3.70748200000D + 04	(+/-1.9D-01)	3.3D-04
T(1)	43	-1)	3.76585000000D + 04	(+/-2.0D-01)	3.3D-04
T(1)	43	+1)	3.76585000000D + 04	(+/-2.0D-01)	3.3D-04
T(2)	1	+1)	2.397977300000D+04	(+/-5.5D-02)	4.5D-04
T(2)	2	-1)	2.401726700000D + 04	(+/-5.3D-02)	3.3D-04
T(2)	2	+1)	2.40181050000D + 04	(+/-5.5D-02)	4.5D-04
T(2)	2	+1)	3.21000000000D+04	(+/-1.7D+02)	3.3D-01
T(2)	3	-1)	2.407515900000D + 04	(+/-5.2D-02)	3.3D-04
T(2	3	+1)	2.41518300000D + 04	(+/-5.5D-02)	4.6D-04
T(2	3	+1)	2.407572900000D + 04	(+/-5.5D-02)	4.5D-04
T(2	3	-1)	3.24216000000D + 04	(+/-2.4D-01)	3.3D-04
T(2	3	+1)	3.24216000000D+04	(+/-2.4D-01)	3.3D-04
T(2	4	-1)	2.415206800000D + 04	(+/-5.2D-02)	3.2D-04
T(2	4	-1)	2.407558900000D+04	(+/-6.8D-02)	9.1D-04
T(2	4	+1)	2.424761700000D+04	(+/-5.4D-02)	4.6D-04
T(2)	4	+1)	2.415249400000D+04	(+/-5.5D-02)	4.5D-04
T(2)	4	-1)	3.244965000000D+04	(+/-2.4D-01)	3.3D-04
T(2)	4	+1)	3.244965000000D+04	(+/-2.4D-01)	3.3D-04
T(2)	5	-1)	2.424799800000D+04	(+/-5.1D-02)	3.3D-04
T(2)	5	-1)	2.415227000000D+04	(+/-1.2D-01)	2.1D-04
1(2 TT(2)	5	+1)	2.436226900000D+04	(+/-5.4D-02)	4.6D-04
1(2 TT(2)	5	+1)	2.424834100000D+04	(+/-5.1D-02)	3.3D-04
1(2 TT(2)	5	-1)	3.248476000000D+04	(+/-2.8D-01)	4.5D-04
1(2)	5 6	$^{+1)}_{1)}$	3.248470000000D+04 2.426270400000D+04	(+/-2.8D-01)	4.5D-04 2.2D-04
T(2)	0	-1)	2.430279400000D+04 2.42470600000D+04	(+/-5.1D-02)	3.3D-04 4.6D-04
T(2)	0	-1)	2.424790900000D+04 2.44056200000D+04	(+/-0.4D-02)	4.0D-04 2.2D-04
T(2)	U G	$^{+1}_{\pm 1}$	2.44900000000000000000000000000000000000	$(\pm / 5 1D 00)$	2.2D-04 3 3D 04
т(2 Т(9	U G	$(\pm 1)$	2.430307300000D+04 3.95974500000D+04	$(\pm / - 0.1D - 02)$ $(\pm / - 2.2D - 01)$	3.3D-04 3.3D-04
т(2 Т(9	0 A	-1) _1)	3.2527450000000000000000000000000000000000	$(\pm / - 2.3D - 01)$ $(\pm / - 2.3D - 01)$	3.3D-04 3 3D 04
T(2)	7	_1)	2.20214000000000000000000000000000000000	$(\pm / - 5.0D - 01)$	3.3D-04 3.3D_04
T(2)	$\frac{1}{7}$	-1) _1)	2.44505500000000000000000000000000000000	$(\pm / = 5.0D - 02)$ $(\pm / = 5.4D - 02)$	4 6D-04
T(2)	7	-1) +1)	2.43020320000000+04 2.46475500000000+04	$(\pm / - 6.4D - 02)$	4.0D-04 0.2D_04
T(2)	7	+1)	2.404705500000D+04 2.44965610000D+04	(+/-50D-02)	3 3D-04
T(2)	7	-1)	3.257472000000D+04	(+/-2.2D-01)	3.3D-04

Table C.1 Energy origins of "fluorescence series" of BeH isotopomer  $(cm^{-1})$  (*Cont'd*)

T(v)	j'	p')	Energy Origin	Uncertainty	Sensitivity
T(2	7	+1)	3.25747200000D+04	(+/-2.2D-01)	3.3D-04
T(2)	8	-1)	2.464843700000D+04	(+/-5.0D-02)	3.3D-04
T(2)	8	-1)	2.44958800000D+04	(+/-1.2D-01)	2.2D-04
$\overline{T(2)}$	8	+1)	2.48178700000D+04	(+/-1.2D-01)	2.2D-04
$\tilde{T}(2)$	8	+1)	2.464863700000D+04	(+/-5.0D-02)	3.3D-04
T(2)	8	-1)	3263050000000000000000000000000000000000	(+/-22D-01)	3 3D-04
T(2)	8	+1)	3.263050000000D+04	$(+/-2.2D \cdot 01)$ $(+/-2.2D \cdot 01)$	3 3D-04
T(2)	ğ	-1)	2.481893000000D+04	(+/-50D-02)	3 3D-04
T(2)	9	-1)	2.464778000000D+04	(+/-2.2D-01)	4 1D-04
T(2)	ğ	+1)	2.500624000000D+04	(+/-1.2D-01)	2 1D-04
T(2)	9	+1)	2.481909400000D+04	(+/-50D-02)	3 3D-04
T(2)	9	-1)	3269290000000D+04	(+/-2.2D-01)	3 3D-04
T(2)	9	+1)	3269290000000D+04	(+/-2.2D-01)	3 3D-04
T(2)	10	-1)	2.500756800000D+04	(+/-5.3D-02)	4 5D-04
T(2)	10	-1)	2.481803000000D+04	(+/-1 2D-01)	2 2D-04
T(2)	10	$(+1)^{1}$	2.521259000000D+04	$(+/-1.2D \cdot 01)$ (+/-1.3D - 01)	2.3D-04
T(2)	10	+1)	2.500771000000D+04	(+/-5 2D-02)	4 4D-04
T(2)	10	-1)	3.27619500000D+04	(+/-2.2D-02) (+/-2.2D-01)	3 3D-04
T(2)	10	+1)	3.276195000000D+04	(+/-2.2D-01)	3 3D-04
T(2)	11	-1)	2.521418300000D+04	(+/-9.2D-02)	1.5D-04
$\tilde{T}(2)$	11	-1)	2.50063100000D+04	(+/-1.7D-01)	3.3D-04
T(2)	11	+1)	2.543654000000D+04	(+/-1.7D-01)	2 1D-04
T(2)	11	+1)	2.521426100000D+04	(+/-8.9D-02)	1 5D-04
T(2)	11	-1)	3.283754000000D+04	(+/-2.2D-01)	3 3D-04
T(2)	11	+1)	3283754000000D+04	(+/-2.2D-01)	3 3D-04
T(2)	$12^{11}$	-1)	2.543844400000D+04	(+/-5.3D-02)	4 5D-04
T(2)	$12^{12}$	-1)	2.521262300000D+04	(+/-9.5D-02)	1.6D-04
$\tilde{T}(2)$	$12^{-12}$	+1)	2.567794000000D+04	(+/-6.7D-02)	9.2D-04
$\tilde{T}(2)$	$12^{-12}$	+1)	2.543844200000D+04	(+/-5.3D-02)	4.5D-04
$\overline{T}(2)$	$13^{$	-1)	2.568003500000D+04	(+/-5.0D-02)	3.2D-04
T(2)	13	-1)	2.54366200000D + 04	(+/-1.2D-01)	2.1D-04
$\overline{T(2)}$	13	+1)	2.593633100000D+04	(+/-5.3D-02)	4.6D-04
T(2)	13	+1)	2.56800350000D + 04	(+/-5.0D-02)	3.2D-04
T(2)	14	-1)	2.593872100000D+04	(+/-5.3D-02)	4.5D-04
T(2)	14	-1)	2.56776900000D + 04	(+/-1.3D-01)	2.3D-04
T(2)	14	$+1)^{'}$	2.621146900000D+04	(+/-5.4D-02)	4.6D-04
T(2)	14	+1)	2.593871400000D+04	(+/-5.1D-02)	3.2D-04
T(2)	15	-1)	2.621414400000D+04	(+/-5.1D-02)	3.3D-04
T(2)	15	-1)	2.593633200000D+04	(+/-6.7D-02)	9.2D-04
T(2)	15	+1	2.650301500000D + 04	(+/-5.4D-02)	4.6D-04
T(2	15	+1	2.621414400000D + 04	(+/-5.1D-02)	3.3D-04
T(2)	16	-1)́	2.650598800000D+04	(+/-5.1D-02)	3.2D-04
T(2)	16	-1)	2.621147100000D+04	(+/-6.8D-02)	9.2D-04
T(2)	16	+1)	2.681057400000D+04	(+/-5.4D-02)	4.5D-04
T(2)	16	+1)	2.650598600000D+04	(+/-5.1D-02)	3.3D-04
T(2)	17	-1)́	2.681387400000D+04	(+/-5.2D-02)	3.3D-04
T(2)	17	-1)	2.650300800000D+04	(+/-5.4D-02)	4.5D-04
T(2)	17	+1)	2.713382300000D+04	(+/-5.5D-02)	4.6D-04
T(2	17	+1	2.681387400000D + 04	(+/-5.2D-02)	3.3D-04
T(2	18	-1)	$2.713743500000\mathrm{D}{+}04$	(+/-5.2D-02)	3.3D-04
T(2	18	-1)	$2.681057700000\mathrm{D}{+}04$	(+/-5.4D-02)	4.6D-04
T(2	18	+1	2.747233700000D + 04	(+/-5.5D-02)	4.6D-04
T(2	18	+1	$2.713743600000\mathrm{D}{+}04$	(+/-5.2D-02)	3.3D-04
T(2	19	-1)	$2.747627200000 \mathrm{D}{+}04$	(+/-5.3D-02)	3.2D-04
T(2	19	-1)	$2.713382300000 \mathrm{D}{+}04$	(+/-5.5D-02)	4.6D-04
T(2	19	+1	$2.782571600000\mathrm{D}{+}04$	(+/-5.6D-02)	4.6D-04
T(2)	19	+1	2.747627200000D + 04	(+/-5.3D-02)	3.2D-04

Table C.1 Energy origins of "fluorescence series" of BeH isotopomer  $(cm^{-1})$  (*Cont'd*)

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(2 \ 20 \ -1)$	2.782996500000D + 04	(+/-5.3D-02)	3.2D-04
$T(2 \ 20 \ -1)$	2.747233700000D+04	(+/-5.5D-02)	4.6D-04
$T(2 \ 20 \ +1)$	2.819352700000D+04	(+/-5.6D-02)	4.5D-04
$T(2 \ 20 \ +1)$	2.782996500000D+04	(+/-5.3D-02)	3.2D-04
$T(2 \ 21 \ -1)$	2.81980980000D + 01	(+/-5.3D-02)	3 2D-04
$T(2 \ 21 \ -1)$ $T(2 \ 21 \ -1)$	2.782571600000D+04	(+/-5.6D-02)	4 6D-04
$T(2 \ 21 \ -1)$ $T(2 \ 21 \ +1)$	2.102911000000D + 04 2.857533700000D + 04	(+/-5.0D-02) (+/-5.6D-02)	4.5D-04 4.5D-04
T(2 21 + 1) T(2 21 + 1)	2.801999100000D + 04 2.819809800000D + 04	(+/-5.0D-02) (+/-5.3D-02)	3 2D-04
T(2 21 + 1) T(2 22 - 1)	2.858021100000D+04	(+/-54D-02)	3 2D-04
T(2 22 -1) T(2 22 -1)	2.800021100000D + 04 2.819352700000D + 04	(+/-5.4D-02) (+/-5.6D-02)	4 5D-04
$T(2 \ 22 \ -1)$ $T(2 \ 22 \ +1)$	2.89706860000D + 04	(+/-5.0D-02) (+/-5.7D-02)	4.6D-04
$T(2 \ 22 \ +1)$ $T(2 \ 22 \ +1)$	2.85802090000D + 01 2.85802090000D + 04	(+/-54D-02)	3 3D-04
T(2 22 + 1) T(2 23 - 1)	2.897584800000D + 01	(+/-5.4D-02)	3 2D-04
T(2 23 -1) T(2 23 -1)	2.857533700000D+04	(+/-5.4D-02) (+/-5.6D-02)	4 5D-04
$T(2 \ 23 \ +1)$ $T(2 \ 23 \ +1)$	2.00100010000D + 01 2.937909700000D + 04	(+/-6.8D-02)	8 6D-04
$T(2 \ 23 \ +1)$ $T(2 \ 23 \ +1)$	2.897584800000D+04	(+/-54D-02)	3 2D-04
T(2 20 + 1) T(2 24 - 1)	2.93845660000D + 01	(+/-54D-02)	3 2D-04
$T(2 \ 24 \ -1)$	2.897068600000D+04	(+/-5.7D-02)	4 6D-04
$T(2 \ 24 \ +1)$	2.980010700000D+04	(+/-5.7D-02)	4 5D-04
$T(2 \ 24 \ +1)$ $T(2 \ 24 \ +1)$	2.938458000000D+04	(+/-5.6D-02)	4 4D-04
$T(2 \ 25 \ -1)$	2.980585200000D+04	(+/-6.1D-02)	6.3D-04
$T(2 \ 25 \ -1)$ $T(2 \ 25 \ -1)$	2.937909700000D+04	(+/-6.8D-02)	8 6D-04
$T(2 \ 25 \ +1)$	3.023320100000D+04	(+/-5.8D-02)	4 5D-04
$T(2 \ 25 \ +1)$ $T(2 \ 25 \ +1)$	2.980585200000D+04	(+/-6.1D-02)	6 3D-04
$T(2 \ 26 \ -1)$	3.023919900000D+04	(+/-6.8D-02)	8 5D-04
$T(2 \ 26 \ -1)$	2.980010700000D+04	(+/-57D-02)	4 5D-04
$T(2 \ 26 \ +1)$	3.067787700000D+04	(+/-5.8D-02)	4.5D-04
$T(2 \ 26 \ +1)$ $T(2 \ 26 \ +1)$	3.023919800000D+04	(+/-6.8D-02)	8 5D-04
$T(2 \ 27 \ -1)$	3.068409500000D+04	(+/-5.7D-02)	4.1D-04
$T(2 \ 27 \ -1)$	3.023320100000D+04	(+/-5.8D-02)	4.5D-04
$T(2 \ 27 \ +1)$	3.06840950000D + 04	(+/-5.7D-02)	4.1D-04
$T(2 \ 28 \ -1)$	3.114001600000D+04	(+/-5.6D-02)	3.3D-04
$T(2 \ 28 \ -1)$	3.067787700000D + 04	(+/-5.8D-02)	4.5D-04
$T(2 \ 28 \ +1)$	3.11400160000D + 04	(+/-5.6D-02)	3.3D-04
$T(2 \ 29 \ -1)$	3.160643100000D + 04	(+/-5.7D-02)	3.3D-04
$T(2 \ 29 \ +1)$	3.160643100000D+04	(+/-5.7D-02)	3.3D-04
$T(2 \ 30 \ -1)$	3.208276900000D+04	(+/-5.8D-02)	3.3D-04
$T(2 \ 30 \ +1)$	3.208276900000D + 04	(+/-5.8D-02)	3.3D-04
$T(2 \ 31 \ -1)$	3.256845600000D + 04	(+/-5.9D-02)	3.3D-04
$T(2 \ 31 \ +1)$	3.25684560000D + 04	(+/-5.9D-02)	3.3D-04
$T(2 \ 32 \ -1)$	3.306287700000D + 04	(+/-6.1D-02)	4.5D-04
$T(2 \ 32 \ +1)$	3.306287500000D + 04	(+/-7.2D-02)	8.6D-04
T(2 33 -1)	3.356548500000D + 04	(+/-6.2D-02)	3.3D-04
$T(2 \ 33 \ +1)$	3.356549900000D+04	(+/-6.4D-02)	4.1D-04
T(2 34 -1)	3.407552700000D + 04	(+/-6.4D-02)	4.1D-04
$T(2 \ 34 \ +1)$	3.407554500000D + 04	(+/-7.0D-02)	6.5D-04
$T(2 \ 35 \ -1)$	3.459138100000D + 04	(+/-6.7D-02)	4.1D-04
$T(2 \ 35 \ +1)$	3.45913900000D + 04	(+/-7.4D-02)	6.5D-04
$T(2 \ 36 \ -1)$	3.51160000000D + 04	(+/-1.5D+01)	2.9D-02
$T(2 \ 36 \ +1)$	3.51160000000D + 04	(+/-1.5D+01)	2.9D-02
$T(2 \ 37 \ -1)$	3.56439400000D + 04	(+/-1.9D-01)	3.3D-04
$T(2 \ 37 \ +1)$	$3.56439400000\mathrm{D}{+}04$	(+/-1.9D-01)	3.3D-04
T(3  1  +1)	$2.58144800000 \mathrm{D}{+04}$	(+/-1.0D-01)	1.6D-04
$T(3 \ 2 \ -1)$	$2.585057300000\mathrm{D}{+}04$	(+/-6.3D-02)	4.5D-04
$T(3 \ 2 \ +1)$	$2.59062600000 \mathrm{D}{+}04$	(+/-1.3D-01)	2.2D-04
$T(3 \ 2 \ +1)$	$2.58514200000\mathrm{D}{+}04$	(+/-6.1D-02)	3.3D-04
$T(3 \ 3 \ -1)$	2.590637200000D+04	(+/-6.3D-02)	4.5D-04

Table C.1 Energy origins of "fluorescence series" of BeH isotopomer  $(cm^{-1})$  (*Cont'd*)

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(3 \ 3 \ \pm 1)$	2 59803300000D+04	$(\pm/-1.3D-01)$	2 2D-04
$T(3 \ 3 \ +1)$	2.59069560000D + 01 2 590695600000D + 04	(+/-6.0D-02)	3 3D-04
$T(3 \ 4 \ -1)$	2.598053200000D + 01 2.598053200000D + 04	(+/-61D-02)	4 6D-04
$T(3 \ 4 \ -1)$	2.590659200000D + 01 2.590679000000D+04	(+/-1.3D-01)	2 2D-04
$T(3 \ 4 \ -1)$ $T(3 \ 4 \ -1)$	2.607265000000D + 04	(+/-1.3D-01) (+/-1.3D-01)	2.2D-04 2.2D-04
$T(3 \ 4 \ \pm 1)$ $T(3 \ 4 \ \pm 1)$	2.0012000000000000000000000000000000000	$(\pm / - 6.1 D_{-}02)$	4.5D-04
T(3 + 1) T(3 - 5 - 1)	2.556050100000D + 04 2.607293600000D + 04	$(\pm / 5.8D_{-}02)$	4.0D-04 3 3D-04
$T(3 \ 5 \ -1)$ $T(3 \ 5 \ -1)$	2.001233000000D + 04 2 598074000000D+04	(+/-2.0D-02) (+/-2.2D-01)	4 1D-04
$T(3 \ 5 \ \pm 1)$	2.618305500000D+04	(+/-6.0D-02)	4 6D-04
$T(3 \ 5 \ +1)$ $T(3 \ 5 \ +1)$	2.607328100000D+04	(+/-5.8D-02)	3 3D-04
$T(3 \ 6 \ -1)$	2.61835400000D+04	(+/-5.8D-02)	3 3D-04
$T(3 \ 6 \ -1)$	2.607293900000D+04	(+/-7.3D-02)	9 2D-04
$T(3 \ 6 \ +1)$	2.631155000000D+04	(+/-22D-01)	4 1D-04
$T(3 \ 6 \ +1)$	2.618382200000D+04	(+/-5.8D-02)	3.3D-04
$T(3 \ 7 \ -1)$	2.631218400000D+04	(+/-5.7D-02)	3.3D-04
$T(3 \ 7 \ -1)$	2.618334600000D+04	(+/-6.0D-02)	4.6D-04
$T(3 \ 7 \ +1)$	2.645790000000D+04	(+/-1.2D-01)	2.2D-04
$T(3 \ 7 \ +1)$	2.631241800000D+04	(+/-5.7D-02)	3.3D-04
$T(3 \ 8 \ -1)$	2.64587000000D+04	(+/-5.6D-02)	3.3D-04
$T(3 \ 8 \ -1)$	2.631178900000D+04	(+/-5.9D-02)	4.6D-04
$T(3 \ 8 + 1)$	2.662187100000D+04	(+/-5.8D-02)	4.6D-04
$T(3 \ 8 \ +1)$	2.645889700000D+04	(+/-5.6D-02)	3.3D-04
$T(3 \ 9 \ -1)$	2.662288300000D + 04	(+/-5.6D-02)	3.3D-04
$T(3 \ 9 \ -1)$	2.64580800000D + 04	(+/-2.0D-01)	3.8D-04
$T(3 \ 9 \ +1)$	2.68034800000D + 04	(+/-1.8D-01)	3.3D-04
$T(3 \ 9 \ +1)$	2.662305500000D + 04	(+/-5.6D-02)	3.3D-04
$T(3 \ 10 \ -1)$	2.680452800000D+04	(+/-6.2D-02)	6.5 D-04
$T(3 \ 10 \ -1)$	2.662206100000D + 04	(+/-5.8D-02)	4.6D-04
$T(3 \ 10 \ +1)$	2.70020000000D + 04	(+/-1.2D-01)	2.1D-04
$T(3 \ 10 \ +1)$	2.680467500000D + 04	(+/-6.2D-02)	6.4 D- 04
$T(3 \ 11 \ -1)$	2.700346500000D+04	(+/-6.7D-02)	8.3D-04
$T(3 \ 11 \ -1)$	2.68034800000D+04	(+/-1.8D-01)	3.3D-04
$T(3 \ 11 \ +1)$	2.721752000000D+04	(+/-1.3D-01)	2.2D-04
$T(3 \ 11 \ +1)$	2.700346500000D+04	(+/-6.7D-02)	8.3D-04
$T(3 \ 12 \ -1)$	2.72192560000D+04	(+/-8.5D-02)	1.3D-04
$T(3 \ 12 \ -1)$	2.700205000000D+04	(+/-1.8D-01)	3.3D-04
$T(3 \ 12 \ +1)$	2.744987000000D+04	(+/-2.4D-01)	4.5D-04
$T(3 \ 12 \ +1)$ $T(2 \ 12 \ 1)$	2.721925600000D+04	(+/-8.5D-02)	1.3D-04
1(3 13 -1) T(2 12 1)	2.745172700000D+04 2.721762500000D+04	(+/- 0.1D-02)	0.1D-04 0.2D_04
1(3 13 -1) T(2 12 +1)	2.721703300000D+04 2.76082800000D+04	(+/-7.0D-02)	9.2D-04 2.2D-04
$T(3 13 \pm 1)$ $T(2 12 \pm 1)$	2.709838000000D+04 2.745172700000D+04	(+/-1.5D-01)	2.3D-04 6 1D 04
$T(3 \ 13 \ \pm 1)$ $T(3 \ 14 \ -1)$	2.743172700000D+04 2.770055700000D+04	$(\pm / -5.6D - 02)$	$4 1D_{-}04$
$T(3 \ 14 \ -1)$ $T(3 \ 14 \ -1)$	2.7700000000000000000000000000000000000	$(\pm /_{-} 2.4D_{-}01)$	4.1D-04 4.5D-04
$T(3 \ 14 \ -1)$	2.7963000000000000000000000000000000000000	(+/-1.3D-01)	2 2D-04
$T(3 \ 14 \ +1)$ $T(3 \ 14 \ +1)$	2.7505000000D + 04 2 770055700000D+04	(+/-5.6D-02)	4 1D-04
$T(3 \ 15 \ -1)$	2.796541800000D+04	(+/-5.0D-02) (+/-5.4D-02)	3 2D-04
$T(3 \ 15 \ -1)$	2.769838400000D+04	(+/-7.0D-02)	9.2D-04
$T(3 \ 15 \ +1)$	2.824319900000D+04	(+/-9.9D-02)	1.6D-04
$T(3 \ 15 \ +1)$	2.796541700000D+04	(+/-5.4D-02)	3.2D-04
$T(3 \ 16 \ -1)$	2.824597300000D+04	(+/-5.4D-02)	3.3D-04
$T(3 \ 16 \ -1)$	2.79630000000D+04	(+/-1.3D-01)	2.2D-04
$T(3 \ 16 \ +1)$	2.853888200000D+04	(+/-5.7D-02)	4.5D-04
$T(3 \ 16 \ +1)$	2.824597300000D+04	(+/-5.4D-02)	3.3D-04
$T(3 \ 17 \ -1)$	2.854185100000D + 04	(+/- 5.7D-02)	4.6D-04
$T(3 \ 17 \ -1)$	2.824319900000D+04	(+/- 9.9D-02)	1.6D-04
$T(3 \ 17 \ +1)$	2.88494200000D+04	(+/-1.8D-01)	3.3D-04

Table C.1 Energy origins of "fluorescence series" of BeH isotopomer  $(cm^{-1})$  (*Cont'd*)

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(3 \ 17 \ +1)$	2.854185100000D+04	(+/-5.7D-02)	4.6D-04
$T(3 \ 18 \ -1)$	2.885267000000D+04	(+/-55D-02)	3 2D-04
$T(3 \ 18 \ -1)$	2.853888200000D+04	(+/-57D-02)	4 5D-04
$T(3 \ 18 \ \pm 1)$	2.000000000000000000000000000000000000	(+/-6.8D-02)	8 6D-04
$T(3 \ 18 \ \pm 1)$ $T(3 \ 18 \ \pm 1)$	2.517451400000D + 04 2 88526700000D $\pm 04$	$(\pm/-5.5D-02)$	3 2D-04
$T(3 10 \pm 1)$ $T(2 10 \pm 1)$	2.885207000000D + 04	$(\pm / 5.5D-02)$	3.2D-04 2 2D 04
T(3 19 -1) T(2 10 1)	2.917803000000D+04 2.884042000000D+04	(+/-0.3D-02)	3.3D-04
T(3 19 -1) T(2 10 +1)	2.884942000000D+04	(+/-1.6D-01)	0.1D.04
1(3 19 +1) T(2 10 +1)	2.951373800000D+04	(+/-7.0D-02)	9.1D-04
1(3 19 +1)	2.917803000000D+04	(+/-5.5D-02)	3.3D-04
$T(3 \ 20 \ -1)$	2.951750600000D+04	(+/-5.6D-02)	4.1D-04
$T(3 \ 20 \ -1)$	2.917451400000D+04	(+/-6.8D-02)	8.6D-04
$T(3 \ 20 \ +1)$	2.986664800000D+04	(+/-5.8D-02)	4.5D-04
$T(3 \ 20 \ +1)$	2.951750600000D+04	(+/-5.6D-02)	4.1D-04
$T(3 \ 21 \ -1)$	2.987065200000D+04	(+/-5.5D-02)	3.3D-04
$T(3 \ 21 \ -1)$	2.951373800000D+04	(+/-7.0D-02)	9.1D-04
$T(3 \ 21 \ +1)$	3.023280900000D+04	(+/-1.0D-01)	1.6D-04
$T(3 \ 21 \ +1)$	2.987065200000D+04	(+/-5.5D-02)	3.3D-04
$T(3 \ 22 \ -1)$	3.023702700000D + 04	(+/-5.6D-02)	3.3D-04
$T(3 \ 22 \ -1)$	2.986664800000D + 04	(+/-5.8D-02)	4.5D-04
$T(3 \ 22 \ +1)$	3.061179000000D+04	(+/-1.2D-01)	2.1D-04
$T(3 \ 22 \ +1)$	3.023702700000D + 04	(+/-5.6D-02)	3.3D-04
$T(3 \ 23 \ -1)$	3.061615600000D + 04	(+/-5.6D-02)	3.3D-04
T(3 23 -1)	3.023280900000D + 04	(+/-1.0D-01)	1.6D-04
$T(3 \ 23 \ +1)$	3.100292200000D+04	(+/-7.1D-02)	9.2D-04
$T(3 \ 23 \ +1)$	3.061615600000D + 04	(+/-5.6D-02)	3.3D-04
$T(3 \ 24 \ -1)$	3.100754300000D+04	(+/-5.6D-02)	3.3D-04
$T(3 \ 24 \ -1)$	3.061179000000D+04	(+/-1.2D-01)	2.1D-04
$T(3 \ 24 \ +1)$	3.100754300000D+04	(+/-5.6D-02)	3.3D-04
$T(3 \ 25 \ -1)$	3.141068600000D + 04	(+/-5.6D-02)	3.3D-04
$T(3 \ 25 \ -1)$	3.100292200000D+04	(+/-7.1D-02)	9.2D-04
$T(3 \ 25 \ +1)$	3.141068600000D + 04	(+/-5.6D-02)	3.3D-04
$T(3 \ 26 \ -1)$	3.182504400000D + 04	(+/-5.7D-02)	3.3D-04
$T(3 \ 26 \ +1)$	3.182504400000D+04	(+/-5.7D-02)	3.3D-04
$T(3 \ 27 \ -1)$	3.225004400000D+04	(+/-5.8D-02)	3.3D-04
$T(3 \ 27 \ +1)$	3.225004400000D+04	(+/-5.8D-02)	3.3D-04
$T(3 \ 28 \ -1)$	3.268516300000D + 04	(+/-5.9D-02)	3.3D-04
$T(3 \ 28 \ +1)$	3.268516300000D + 04	(+/-5.9D-02)	3.3D-04
$T(3 \ 29 \ -1)$	3.312958600000D + 04	(+/-6.0D-02)	3.3D-04
$T(3 \ 29 \ +1)$	3.31296000000D + 04	(+/-7.3D-02)	9.2D-04
$T(3 \ 30 \ -1)$	3.35923800000D + 04	(+/-3.4D-01)	6.5 D- 04
$T(3 \ 30 \ +1)$	3.35923800000D + 04	(+/-3.4D-01)	6.5 D- 04
$T(3 \ 31 \ -1)$	3.40457300000D + 04	(+/-3.4D-01)	6.5 D- 04
$T(3 \ 31 \ +1)$	3.40457300000D + 04	(+/-3.4D-01)	6.5 D- 04
$T(3 \ 32 \ -1)$	3.451424000000D + 04	(+/-3.4D-01)	6.5 D- 04
$T(3 \ 32 \ +1)$	3.451424000000D + 04	(+/-3.4D-01)	6.5 D- 04
T(3 33 -1)	3.498664000000D + 04	(+/-3.5D-01)	6.5D-04
$T(3 \ 33 \ +1)$	3.49867300000D + 04	(+/-2.2D-01)	4.1D-04
$T(3 \ 34 \ -1)$	3.54820000000D + 04	(+/-4.9D-01)	9.2D-04
$T(3 \ 34 \ +1)$	$3.54824900000 \mathrm{D}{+}04$	(+/-4.8D-01)	9.2D-04
$T(3 \ 35 \ -1)$	3.59640800000D + 04	(+/-2.1D-01)	3.3D-04
$T(3 \ 35 \ +1)$	$3.59640800000 \mathrm{D}{+}04$	(+/-2.1D-01)	3.3D-04
$T(4 \ 1 \ +1)$	$2.75595900000 \mathrm{D}{+}04$	(+/-1.8D-01)	3.3D-04
$T(4 \ 2 \ -1)$	$2.759427000000 \mathrm{D}{+}04$	(+/-7.0D-02)	4.5D-04
$T(4 \ 2 \ +1)$	$2.75951200000 \mathrm{D}{+}04$	(+/-1.2D-01)	2.1D-04
$T(4 \ 3 \ -1)$	$2.764786900000\mathrm{D}{+}04$	(+/-6.9D-02)	4.1D-04
$T(4 \ 3 \ +1)$	$2.764843600000\mathrm{D}{+}04$	(+/-6.9D-02)	4.6D-04
$T(4 \ 4 \ -1)$	2.771907100000D + 04	(+/-6.8D-02)	4.6D-04

Table C.1 Energy origins of "fluorescence series" of BeH isotopomer  $(cm^{-1})$  (*Cont'd*)
T(v, j)	p')	Energy Origin	Uncertainty	Sensitivity
T(4 4 -	+1)	2.771949900000D+04	(+/-6.8D-02)	4.6D-04
T(4 5)	-1)	2.78079000000D+04	(+/-1.7D-01)	3.1D-04
T(4 5 -	+1)	2.791362600000D+04	(+/-7.8D-02)	9.2D-04
Т(4 5 -	+1)	2.780816900000D+04	(+/-6.7D-02)	4.5D-04
$\overline{T}(4  6$	-1)	2.791404500000D+04	(+/-6.5D-02)	3.3D-04
T(4 6)	-1)	2.780787500000D+04	(+/-7.9D-02)	9.2D-04
T(4 - 6 - 6)	+1)	2.80369700000D+04	(+/-1.3D-01)	2.2D-04
T(4 6 -	+1)	2.791433400000D+04	(+/-6.5D-02)	3.3D-04
T(4 7)	-1)	2.803756600000D+04	(+/-6.3D-02)	3.3D-04
T(4 7)	-1)	2.791394000000D+04	(+/-1.3D-01)	2.3D-04
T(4 7 - 7)	+1)	2.817750000000D+04	(+/-1.3D-01)	2.3D-04
T(4 7 - 7)	+1)	2.803780300000D+04	(+/-6.3D-02)	3.3D-04
T(4 8)	-1)	2.817821500000D+04	(+/-6.2D-02)	3.3D-04
T(4 8)	-1)	2.803727000000D+04	(+/-1.3D-01)	2.2D-04
T(4 8 -	$+1)^{-}$	2.817841500000D + 04	(+/-6.2D-02)	3.3D-04
T(4 9)	-1)	2.833579000000D+04	(+/-6.3D-02)	4.5D-04
T(4 9)	-1)	2.817770000000D+04	(+/-1.3D-01)	2.3D-04
T(4 9 -	$+1)^{-}$	2.833599200000D+04	(+/-6.3D-02)	4.1D-04
$T(4 \ 10)$	-1)	2.851011400000D+04	(+/-6.1D-02)	3.3D-04
T(4 10 -	$+1)^{-}$	2.851027300000D + 04	(+/-6.3D-02)	4.1D-04
T(4 11)	-1)	2.870087300000D+04	(+/-6.7D-02)	6.5 D - 04
T(4 11)	-1)	2.850917000000D + 04	(+/-1.2D-01)	2.1D-04
T(4 11 -	+1	2.870100100000D + 04	(+/-6.7D-02)	6.5 D-04
$T(4 \ 12$	-1)	2.890790800000D+04	(+/-7.3D-02)	8.9D-04
T(4 12 -	+1	2.890790800000D + 04	(+/-7.3D-02)	8.9D-04
$T(4 \ 13$	-1)	2.913081900000D + 04	(+/-6.6D-02)	6.5 D-04
T(4 13 -	+1	2.913081900000D + 04	(+/-6.6D-02)	6.5D-04
$T(4 \ 14)$	-1)	2.936932100000D + 04	(+/-6.0D-02)	4.1D-04
T(4 14 -	+1	2.936932100000D + 04	(+/-6.0D-02)	4.1D-04
$T(4 \ 15)$	-1)	2.962311300000D + 04	(+/-5.9D-02)	3.3D-04
T(4 15 -	+1)	2.962311300000D + 04	(+/-5.9D-02)	3.3D-04
$T(4 \ 16$	-1)	2.989181900000D + 04	(+/-5.9D-02)	3.3D-04
T(4 16 -	+1)	2.989181900000D + 04	(+/-5.9D-02)	3.3D-04
$T(4 \ 17)$	-1)	3.017507800000D + 04	(+/-5.9D-02)	3.3D-04
T(4 17 -	+1)	3.017507800000D + 04	(+/-5.9D-02)	3.3D-04
$T(4 \ 18$	-1)	3.047246900000D + 04	(+/-5.9D-02)	3.3D-04
T(4 18 -	+1)	3.047246900000D + 04	(+/-5.9D-02)	3.3D-04
T(4 19)	-1)	3.078359600000D + 04	(+/-5.9D-02)	3.3D-04
T(4 19 -	+1)	3.078359600000D + 04	(+/-5.9D-02)	3.3D-04
$T(4 \ 20$	-1)	3.11080040000D + 04	(+/-5.9D-02)	3.3D-04
$T(4 \ 20 $	+1)	3.110800400000D+04	(+/-5.9D-02)	3.3D-04
$T(4 \ 21)$	-1)	3.144521000000D+04	(+/-1.8D-01)	3.4D-04
T(4 21 -	+1)	3.14452080000D + 04	(+/-6.0D-02)	3.3D-04
T(4 22)	-1)	3.179466000000D+04	(+/-1.8D-01)	3.3D-04
$T(4 \ 22 $	+1)	3.179466000000D+04	(+/-1.8D-01)	3.3D-04
$T(4 \ 23)$	-1)	3.21554900000D + 04	(+/-1.8D-01)	3.3D-04
$T(4 \ 23 -$	+1)	3.21554900000D + 04	(+/-1.8D-01)	3.3D-04
T(4 24)	-1)	3.253535000000D + 04	(+/-1.8D-01)	3.3D-04
T(4 24 - 7)	+1)	3.253538200000D+04	(+/-6.6D-02)	4.6D-04
T(4 25)	-1)	3.291373000000D+04	(+/-1.8D-01)	3.3D-04
$T(4 \ 25 \ -$	+1)	3.291373000000D+04	(+/-1.8D-01)	3.3D-04
T(4 26)	-1)	3.330645000000D+04	(+/-1.8D-01)	3.3D-04
T(4 26 -	+1)	3.330645000000D+04	(+/-1.8D-01)	3.3D-04
T(4 27)	-1)	3.37076000000D+04	(+/-1.7D+00)	3.3D-04
T(4 27 ·	+1)	3.370755000000D+04	(+/-1.8D-01)	3.3D-04
$1(4 \ 28)$	-1)	3.41011000000D+04	(+/-1.8D-01)	3.3D-04
1(4 28 -	+1)	3.410125000000D+04	(+/-1.8D-01)	3.3D-04

Table C.1 Energy origins of "fluorescence series" of BeH isotopomer  $(cm^{-1})$  (*Cont'd*)

T(v, j)	p')	Energy Origin	Uncertainty	Sensitivity
T(4 29	-1)	3.45527800000D+04	(+/-1.9D-01)	3.3D-04
T(4 29)	$+1)^{-)}$	3.455260000000D+04	(+/-2.4D+00)	4.6D-04
T(4 30)	-1)	3.497613000000D+04	(+/-2.0D-01)	3.3D-04
$T(4 \ 30$	$+1)^{-)}$	3.497586000000D+04	(+/-2.6D-01)	4.6D-04
$T(4 \ 31$	-1)	3.54000000000000000000000000000000000000	(+/-1.7D+02)	3.2D-01
$T(4 \ 31$	+1)	354000000000000000000000000000000000000	(+/-1.7D+02)	32D-01
T(5 2)	-1)	2.924386000000D+04	(+/-1.2D-01)	1 6D-04
T(5 2)	+1)	2.924473000000D+04	$(+/-1.2D \cdot 01)$ $(+/-1.2D \cdot 01)$	1.0D 01 1 6D-04
T(5 3)	-1)	2.92951900000D+04	(+/-1.2D-01)	1 6D-04
T(5 3)	+1)	2.92957600000D+04	(+/-1.2D-01)	1 6D-04
T(5 4)	-1)	2.93633100000D+04	(+/-1.2D-01)	1.6D-04
T(5 4)	$+1)^{-)}$	2.936374000000D+04	(+/-1.2D-01)	1.6D-04
T(5 5)	-1)	2.94481700000D+04	(+/-1.2D-01)	1.6D-04
T(5 5)	+1)	2.95494300000D+04	(+/-1.4D-01)	2.3D-04
T(5 5)	+1)	2.94485600000D+04	(+/-1.2D-01)	1.6D-04
T(5 6)	-1)	2.95497800000D+04	(+/-1.2D-01)	1.6D-04
T(5 6)	$+1)^{-}$	2.96674200000D+04	(+/-1.4D-01)	2.3D-04
T(5 6)	+1)	2.95500700000D+04	(+/-1.2D-01)	1.6D-04
T(5 7)	-1)	2.96678900000D + 04	(+/-1.1D-01)	1.6D-04
T(5 7)	+1)	2.98017900000D+04	(+/-1.4D-01)	2.3D-04
T(5 7)	+1)	2.96681200000D + 04	(+/-1.1D-01)	1.6D-04
T(5 8)	-1)	2.98023400000D+04	(+/-1.1D-01)	1.6D-04
T(5 8)	$+1)^{(-)}$	2.98025400000D + 04	(+/-1.1D-01)	1.6D-04
T(5 9)	-1)	2.99529400000D+04	(+/-1.1D-01)	1.6D-04
T(5 9)	+1)	3.01186600000D + 04	(+/-1.4D-01)	2.3D-04
T(5 9)	+1)	2.99531300000D + 04	(+/-1.1D-01)	1.6D-04
$T(5 \ 10)$	-1)	3.01195100000D + 04	(+/-1.1D-01)	1.6D-04
$T(5 \ 10)$	+1)	3.03007500000D + 04	(+/-1.4D-01)	2.2D-04
$T(5 \ 10)$	+1)	3.01196700000D + 04	(+/-1.1D-01)	1.6D-04
T(5 11)	-1)	3.03017000000D + 04	(+/- 1.1D-01)	1.6D-04
T(5 11)	+1)	3.04982400000D + 04	(+/- 1.4D-01)	2.3D-04
T(5 11)	+1)	3.03018400000D + 04	(+/-1.1D-01)	1.6D-04
$T(5 \ 12$	-1)	3.04993400000D + 04	(+/-1.1D-01)	1.6D-04
$T(5 \ 12$	+1)	3.07108800000D + 04	(+/-1.4D-01)	2.2D-04
$T(5 \ 12$	+1)	3.04994000000D + 04	(+/-1.1D-01)	1.6D-04
$T(5 \ 13$	-1)	3.07119600000D + 04	(+/- 1.1D-01)	1.6D-04
$T(5 \ 13$	+1)	3.09383300000D + 04	(+/-1.4D-01)	2.3D-04
$T(5 \ 13$	+1)	3.07119600000D + 04	(+/- 1.1D-01)	1.6D-04
$T(5 \ 14$	-1)	3.09392000000D + 04	(+/- 1.1D-01)	1.6D-04
$T(5 \ 14$	-1)	3.07108800000D + 04	(+/-1.4D-01)	2.2D-04
$T(5 \ 14$	+1)	3.11802300000D + 04	(+/-1.4D-01)	2.3D-04
$T(5 \ 14)$	+1)	3.093922000000D+04	(+/-1.1D-01)	1.6D-04
$T(5 \ 15$	-1)	3.11798300000D + 04	(+/- 1.1D-01)	1.6D-04
$T(5 \ 15$	-1)	3.09383300000D + 04	(+/-1.4D-01)	2.3D-04
$T(5 \ 15$	+1)	3.117989000000D+04	(+/-1.1D-01)	1.6D-04
$T(5 \ 16$	-1)	3.14424500000D+04	(+/- 1.1D-01)	1.6D-04
$T(5 \ 16$	-1)	3.11802800000D+04	(+/-1.3D-01)	2.1D-04
$T(5 \ 16$	+1)	3.14424500000D+04	(+/- 1.1D-01)	1.6D-04
$T(5 \ 17)$	-1)	3.17089800000D+04	(+/-1.1D-01)	1.6D-04
$T(5 \ 17)$	+1)	3.170898000000D+04	(+/-1.1D-01)	1.6D-04
$T(5 \ 18)$	-1)	3.199132000000D+04	(+/-1.1D-01)	1.6D-04
$T(5 \ 18)$	+1)	3.199132000000D+04	(+/-1.1D-01)	1.6D-04
T(5 19)	-1)	3.228645000000D+04	(+/-1.1D-01)	1.6D-04
T(5 19)	+1)	3.228645000000D+04	(+/-1.1D-01)	1.6D-04
T(5 20)	-1)	3.259299000000D+04	(+/-1.1D-01)	1.6D-04
T(5 20)	+1)	3.259302000000D+04	(+/-1.1D-01)	1.6D-04
1(5 21)	-1)	3.291000000000D+04	(+/-1.7D+02)	3.3D-01

Table C.1 Energy origins of "fluorescence series" of BeH isotopomer  $(cm^{-1})$  (*Cont'd*)

$T(\mathbf{v}' \mathbf{i}' \mathbf{p}')$	Energy Origin	Uncertainty	Sensitivity
T(r 01 + 1)	2 2010000000D + 04	(+/.1.7D+0.0)	2 2D 01
1(5 21 + 1) Tr(5 22 1)	3.291000000000000000000000000000000000000	(+/-1.7D+02)	3.3D-01
T(5 22 -1) Tr(5 22 +1)	3.320401000000D+04	(+/- 3.5D-01)	0.3D-04
1(5 22 +1) Tr(5 22 1)	3.326411000000D+04	(+/-1.2D-01)	1.6D-04
T(5 23 -1)	3.359732000000D+04	(+/-1.2D-01)	1.6D-04
$T(5 \ 23 \ +1)$	3.359732000000D+04	(+/-1.2D-01)	1.6D-04
T(5 24 -1)	3.394735000000D+04	(+/-1.3D-01)	1.6D-04
$T(5 \ 24 \ +1)$	3.394735000000D+04	(+/-1.3D-01)	1.6D-04
$T(5 \ 25 \ -1)$	3.430611000000D+04	(+/-2.0D-01)	3.3D-04
$T(5 \ 25 \ +1)$	3.430611000000D+04	(+/-2.0D-01)	3.3D-04
$T(6 \ 2 \ -1)$	3.079391000000D+04	(+/-1.3D-01)	9.2D-04
$T(6 \ 2 \ +1)$	3.079467000000D+04	(+/-2.6D-01)	4.5D-04
$T(6 \ 4 \ -1)$	3.090761000000D+04	(+/-1.2D-01)	9.2D-04
$T(6 \ 4 \ +1)$	3.090791000000D+04	(+/-2.4D-01)	4.1D-04
$T(6 \ 5 \ -1)$	3.098851000000D+04	(+/-3.3D-01)	6.1D-04
$T(6 \ 5 \ +1)$	3.10849300000D+04	(+/-2.4D-01)	4.1D-04
$T(6 \ 5 \ +1)$	3.09889300000D+04	(+/-1.3D-01)	9.0D-04
$T(6 \ 6 \ -1)$	3.108517000000D+04	(+/-3.4D-01)	6.3D-04
$T(6 \ 6 \ +1)$	3.119733000000D+04	(+/-2.6D-01)	4.5D-04
$T(6 \ 6 \ +1)$	3.10855600000D + 04	(+/-1.2D-01)	9.1D-04
$T(6 \ 7 \ -1)$	3.11974500000D + 04	(+/- 1.1D-01)	4.6D-04
$T(6 \ 7 \ -1)$	3.10852800000D + 04	(+/-2.6D-01)	4.6D-04
$T(6 \ 7 \ +1)$	3.132516000000D + 04	(+/-2.5D-01)	4.5D-04
$T(6 \ 7 \ +1)$	3.11977000000D + 04	(+/-1.9D-01)	3.1D-04
$T(6 \ 8 \ -1)$	3.13252300000D + 04	(+/-1.0D-01)	4.6 D- 04
$T(6 \ 8 \ -1)$	3.11976000000D + 04	(+/-2.6D-01)	4.5D-04
$T(6 \ 8 \ +1)$	3.14684700000D + 04	(+/-1.1D-01)	9.2D-04
$T(6 \ 8 \ +1)$	3.13255100000D + 04	(+/-1.9D-01)	3.2D-04
$T(6 \ 9 \ -1)$	3.14681600000D + 04	(+/-1.0D-01)	4.6 D- 04
$T(6 \ 9 \ -1)$	3.13254600000D + 04	(+/-2.5D-01)	4.5D-04
$T(6 \ 9 \ +1)$	3.16268100000D + 04	(+/-1.1D-01)	9.2D-04
$T(6 \ 9 \ +1)$	3.14684100000D + 04	(+/-1.9D-01)	3.1D-04
$T(6 \ 10 \ -1)$	3.16257900000D + 04	(+/-1.9D-01)	3.2D-04
$T(6 \ 10 \ -1)$	3.14685300000D + 04	(+/-3.0D-01)	5.5D-04
$T(6 \ 10 \ +1)$	3.179976000000D + 04	(+/-3.5D-01)	6.5D-04
$T(6 \ 10 \ +1)$	3.16259900000D + 04	(+/-1.9D-01)	3.2D-04
T(6 11 -1)	3.17962500000D + 04	(+/-1.9D-01)	3.3D-04
T(6 11 -1)	3.16269700000D + 04	(+/-1.5D-01)	2.3D-04
$T(6 \ 11 \ +1)$	3.19879000000D + 04	(+/-2.0D-01)	3.3D-04
$T(6 \ 11 \ +1)$	3.17965300000D + 04	(+/-1.9D-01)	3.3D-04
$T(6 \ 12 \ -1)$	3.18001500000D + 04	(+/-1.5D-01)	2.2D-04
$T(6 \ 12 \ +1)$	3.21899500000D + 04	(+/-2.0D-01)	3.3D-04
T(6 13 -1)	3.19877900000D + 04	(+/-2.0D-01)	3.3D-04
$T(6 \ 13 \ +1)$	3.24059300000D + 04	(+/-2.0D-01)	3.3D-04
$T(6 \ 14 \ -1)$	3.24106900000D + 04	(+/-1.9D-01)	3.3D-04
T(6 14 -1)	3.21899500000D + 04	(+/-2.0D-01)	3.3D-04
$T(6 \ 14 \ +1)$	3.26354700000D + 04	(+/-2.0D-01)	3.3D-04
$T(6 \ 14 \ +1)$	3.24106900000D+04	(+/-1.9D-01)	3.3D-04
T(6 15 -1)	3.26395000000D + 04	(+/- 1.9D-01)	3.3D-04
T(6 15 -1)	3.24059300000D + 04	(+/-2.0D-01)	3.3D-04
$T(6 \ 15 \ +1)$	3.28782200000D + 04	(+/-1.5D-01)	2.1D-04
$T(6 \ 15 \ +1)$	3.26395000000D + 04	(+/- 1.9D-01)	3.3D-04
T(6 16 -1)	3.28817500000D + 04	(+/-2.0D-01)	3.3D-04
$T(6 \ 16 \ -1)$	3.26354700000D + 04	(+/- 2.0D-01)	3.3D-04
$T(6 \ 16 \ +1)$	3.31336400000D + 04	(+/- 3.5D-01)	6.5 D-04
$T(6 \ 16 \ +1)$	3.28817500000D + 04	(+/- 2.0D-01)	3.3D-04
T(6 17 -1)	3.31365600000D + 04	(+/- 2.5D-01)	4.5D-04
T(6 17 -1)	3.28782600000D + 04	(+/-2.0D-01)	3.3D-04

Table C.1 Energy origins of "fluorescence series" of BeH isotopomer  $(cm^{-1})$  (*Cont'd*)

			- , , , , ,
T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(6 \ 17 \ +1)$	3.34017200000D + 04	(+/-1.2D-01)	9.2D-04
$T(6 \ 17 \ +1)$	3.31366200000D + 04	(+/-2.0D-01)	3.3D-04
T(6 18 -1)	3.34024600000D + 04	(+/-2.0D-01)	3.3D-04
$T(6 \ 18 \ -1)$	3.313364000000D+04	(+/-8.5D-01)	1.6D-04
$T(6 \ 18 \ +1)$	3.34024600000D + 04	(+/-2.0D-01)	3.3D-04
T(6 19 -1)	3.34015300000D + 04	(+/-8.5D-01)	1.6D-04
$T(6 \ 20 \ -1)$	3.39818100000D + 04	(+/-2.0D-01)	3.3D-04
$T(6 \ 20 \ +1)$	3.39818100000D + 04	(+/-2.0D-01)	3.3D-04
$T(6 \ 21 \ -1)$	3.42823300000D + 04	(+/-2.1D-01)	3.3D-04
$T(6 \ 21 \ +1)$	3.42823300000D + 04	(+/-2.1D-01)	3.3D-04
$T(6 \ 22 \ -1)$	3.45942900000D + 04	(+/-2.1D-01)	3.3D-04
$T(6 \ 22 \ +1)$	3.45942900000D + 04	(+/-2.1D-01)	3.3D-04
$T(6 \ 23 \ -1)$	3.49162600000D + 04	(+/-2.2D-01)	3.3D-04
$T(6 \ 23 \ +1)$	3.49162600000D + 04	(+/-2.2D-01)	3.3D-04

Table C.1 Energy origins of "fluorescence series" of BeH isotopomer  $(cm^{-1})$  (*Cont'd*)

#### C.2 Energy Origins of BeD Isotopomer

Table C.2: Energy Origins of "Fluorescence Series" of BeD Isotopomer  $(\mathrm{cm}^{-1})$ 

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(0 \ 1 \ +1)$	1.97881870000D + 04	(+/-3.4D-02)	3.3D-04
$T(0 \ 2 \ -1)$	1.98099940000D+04	(+/-3.4D-02)	3.3D-04
$T(0 \ 2 \ +1)$	1.98108010000D + 04	(+/-3.8D-02)	4.5D-04
$T(0 \ 3 \ -1)$	1.98443040000D + 04	(+/-3.8D-02)	4.5D-04
$T(0 \ 3 \ +1)$	1.984486100000D+04	(+/-3.4D-02)	3.3D-04
$T(0 \ 4 \ -1)$	1.988989300000D+04	(+/-3.8D-02)	4.5D-04
$T(0 \ 4 \ +1)$	1.989032700000D+04	(+/-3.8D-02)	4.6D-04
$T(0 \ 4 \ -1)$	3.03560600000D+04	(+/-2.9D-01)	3.3D-04
$T(0 \ 4 \ +1)$	3.035606000000D+04	(+/-2.9D-01)	3.3D-04
T(0 5 -1)	1.99467630000D+04	(+/-3.4D-02)	3.3D-04
$T(0 \ 5 \ +1)$	1.994711500000D+04	(+/-3.7D-02)	4.1D-04
$T(0 \ 6 \ -1)$	2.00149100000D+04	(+/-3.4D-02)	3.3D-04
$T(0 \ 6 \ +1)$	2.00152040000D+04	(+/-3.4D-02)	3.3D-04
$T(0 \ 6 \ -1)$	3.039906000000D+04	(+/-2.5D-01)	2.1D-04
$T(0 \ 6 \ +1)$	3.03990600000D+04	(+/-2.5D-01)	2.1D-04
$T(0 \ 7 \ -1)$	2009427900000D+04	(+/-37D-02)	4 1D-04
T(0 7 +1)	2.01845090000D+04	(+/-5.6D-02)	9.1D-04
T(0 7 + 1) T(0 7 + 1)	2.009451400000D+04	(+/-37D-02)	4 1D-04
T(0 7 -1)	3.04261100000D+04	(+/-2.5D-01)	2 1D-04
T(0 7 + 1) T(0 7 + 1)	3.042611000000D+04	(+/-2.5D-01)	2.1D-04
$T(0 \ 8 \ -1)$	2.018482600000D+04	(+/-5.3D-01) (+/-5.3D-02)	8 3D-04
$T(0 \ 8 \ +1)$	2.01810200000D+01 2.028610700000D+04	(+/-5.7D-02)	9 1D-04
$T(0 \ 8 \ +1)$ $T(0 \ 8 \ +1)$	2.028010700000D+04 2.018501900000D+04	(+/-5.3D-02) (+/-5.3D-02)	8 3D-04
$T(0 \ 8 \ -1)$	3.04571600000D+04	(+/-2.4D-02) (+/-2.4D-01)	2 0D-04
$T(0 \ 8 \ +1)$	3.04571600000D+04	(+/-2.10,01) (+/-2.4D-01)	2.0D-01 2.0D-04
$T(0 \ 9 \ -1)$	2.02866100000D+04	(+/-1.2D-01)	2.0D 01 2 3D-04
$T(0 \ 9 \ -1)$	2.02800100000D + 01 2.018471800000D + 04	(+/-5.6D-02)	9 1D-04
$T(0 \ 9 \ +1)$	2.03988260000D+04	(+/-57D-02)	9 1D-04
$T(0 \ 9 \ +1)$ $T(0 \ 9 \ +1)$	2.02866100000D+04	(+/-1.2D-01)	2 3D-04
$T(0 \ 9 \ -1)$	3.049201000000D+04	(+/-2.4D-01)	2.0D-04
$T(0 \ 9 \ +1)$	3.04920100000D+04	(+/-2.4D-01)	2.0D-04
$T(0 \ 10 \ -1)$	2.03993080000D+04	(+/-9.6D-02)	1.7D-04
$T(0 \ 10 \ -1)$	2.02862990000D+04	(+/-5.7D-02)	9.1D-04
$T(0 \ 10 \ +1)$	2.052243100000D+04	(+/-5.9D-02)	9.2D-04
$T(0 \ 10 \ +1)$	2.03993080000D+04	(+/-9.6D-02)	1.7D-04
$T(0 \ 10 \ -1)$	3.05306800000D+04	(+/-2.5D-01)	2.3D-04
$T(0 \ 10 \ +1)$	3.05306800000D + 04	(+/-2.5D-01)	2.3D-04
$T(0 \ 11 \ -1)$	2.052297100000D+04	(+/-5.6D-02)	8.3D-04
T(0 11 -1)	2.03988260000D+04	(+/-5.7D-02)	9.1D-04
$T(0 \ 11 \ +1)$	2.065692200000D+04	(+/-5.9D-02)	9.1D-04
$T(0 \ 11 \ +1)$	2.052297100000D+04	(+/-5.6D-02)	8.3D-04
T(0 11 -1)	3.057322000000D+04	(+/- 2.3D-01)	1.9D-04
$T(0 \ 11 \ +1)$	3.057322000000D+04	(+/-2.3D-01)	1.9D-04
$T(0 \ 12 \ -1)$	2.06575650000D + 04	(+/-4.4D-02)	4.6D-04
$T(0 \ 12 \ -1)$	2.052243100000D+04	(+/-5.9D-02)	9.2D-04
$T(0 \ 12 \ +1)$	2.080222200000D+04	(+/-6.0D-02)	9.1D-04
$T(0 \ 12 \ +1)$	2.06575650000D + 04	(+/-4.4D-02)	4.6D-04
$T(0 \ 12 \ -1)$	3.06194900000D + 04	(+/- 2.3D-01)	1.9D-04
$T(0 \ 12 \ +1)$	3.06194900000D + 04	(+/- 2.3D-01)	1.9D-04
T(0 13 -1)	2.08029630000D + 04	(+/- 4.1D-02)	3.3D-04
$T(0 \ 13 \ -1)$	2.065692200000D+04	(+/-5.9D-02)	9.1D-04
$T(0 \ 13 \ +1)$	2.095822800000D+04	(+/-4.6D-02)	4.6D-04
$T(0 \ 13 \ +1)$	2.08029630000D + 04	(+/-4.1D-02)	3.3D-04

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(0 \ 13 \ -1)$	3.066957000000D+04	(+/-2.2D-01)	2.0D-04
$T(0 \ 13 \ +1)$	3.06695700000D+04	(+/-2.2D-01)	2.0D-04
$T(0 \ 14 \ -1)$	2.095907400000D+04	(+/-4.3D-02)	3.3D-04
$T(0 \ 14 \ -1)$	2.080222200000D+04	(+/-60D-02)	9 1D-04
$T(0 \ 14 \ +1)$	2.112484800000D+04	(+/-4.8D-02)	4.6D-04
$T(0 \ 14 \ \pm 1)$	2.095907400000D+04	(+/-43D-02)	3 3D-04
$T(0 \ 14 \ -1)$	3.07234300000D+04	(+/-2.2D-01)	1 9D-04
$T(0 \ 14 \ +1)$	3.07234300000D+04	(+/-2.2D-01)	1.9D-04
$T(0 \ 15 \ -1)$	2.11258030000D+04	(+/-4.5D-02)	3.3D-04
$T(0 \ 15 \ -1)$	2.095822800000D+04	(+/-4.6D-02)	4.6D-04
$T(0 \ 15 \ +1)$ $T(0 \ 15 \ +1)$	2.00002200000D + 01 2.130195300000D+04	(+/-5.0D-02)	4 6D-04
$T(0 \ 15 \ +1)$	2.11258030000D+04	(+/-4.5D-02)	3.3D-04
$T(0 \ 15 \ -1)$	3.07810500000D+04	(+/-2.2D-01)	2.1D-04
$T(0 \ 15 \ +1)$	3.078105000000D+04	(+/-2.2D-01)	2.1D-04
$T(0 \ 16 \ -1)$	2.130303900000D+04	(+/-4.7D-02)	3.3D-04
$T(0 \ 16 \ -1)$	2.112484800000D+04	(+/-4.8D-02)	4.6D-04
$T(0 \ 16 \ +1)$	2.148947800000D+04	(+/-6.5D-02)	9.1D-04
$T(0 \ 16 \ +1)$	2.130303900000D+04	(+/-4.7D-02)	3.3D-04
$T(0 \ 16 \ -1)$	3.084238000000D+04	(+/-2.1D-01)	1.9D-04
$T(0 \ 16 \ +1)$	3.08423800000D+04	(+/-2.1D-01)	1.9D-04
$T(0 \ 17 \ -1)$	2.149066800000D+04	(+/-4.9D-02)	3.3D-04
T(0 17 -1)	2.130195300000D+04	(+/-5.0D-02)	4.6D-04
$T(0 \ 17 \ +1)$	2.168721800000D+04	(+/-6.7D-02)	9.1D-04
$T(0 \ 17 \ +1)$	2.149066800000D+04	(+/-4.9D-02)	3.3D-04
T(0 17 -1)	3.09075000000D + 04	(+/- 2.2D-01)	2.2D-04
$T(0 \ 17 \ +1)$	3.09075000000D + 04	(+/- 2.2D-01)	2.2D-04
$T(0 \ 18 \ -1)$	2.16885690000D + 04	(+/-5.0D-02)	3.3D-04
$T(0 \ 18 \ -1)$	2.14894780000D + 04	(+/-6.5D-02)	9.1D-04
$T(0 \ 18 \ +1)$	$2.18951560000\mathrm{D}{+}04$	(+/-6.8D-02)	9.1D-04
$T(0 \ 18 \ +1)$	$2.16885690000 \mathrm{D}{+}04$	(+/-5.0D-02)	3.3D-04
$T(0 \ 18 \ -1)$	3.09763700000D + 04	(+/-2.1D-01)	1.9D-04
$T(0 \ 18 \ +1)$	3.09763700000D + 04	(+/-2.1D-01)	1.9D-04
$T(0 \ 19 \ -1)$	$2.18966160000 \mathrm{D}{+}04$	(+/-5.6D-02)	4.5D-04
$T(0 \ 19 \ -1)$	2.168721800000D + 04	(+/-6.7D-02)	9.1D-04
$T(0 \ 19 \ +1)$	2.21130590000D + 04	(+/-5.6D-02)	4.6D-04
$T(0 \ 19 \ +1)$	2.189661600000D+04	(+/-5.6D-02)	4.5D-04
$T(0 \ 19 \ -1)$	3.10533800000D+04	(+/-2.1D-01)	2.1D-04
$T(0 \ 19 \ +1)$	3.10533800000D+04	(+/-2.1D-01)	2.1D-04
$T(0 \ 20 \ -1)$	2.211467500000D+04	(+/-5.4D-02)	3.3D-04
$T(0 \ 20 \ -1)$	2.189515600000D+04	(+/-6.8D-02)	9.1D-04
$T(0 \ 20 \ +1)$	2.234086300000D+04	(+/-5.8D-02)	4.0D-04
$T(0 \ 20 \ +1)$ $T(0 \ 20 \ 1)$	2.211467500000D+04 2.11940000000D+04	(+/-5.4D-02)	3.3D-04
$1(0 \ 20 \ -1)$ T(0 \ 20 \ \ 1)	3.112400000000000000000000000000000000000	(+/-2.2D-01)	2.3D-04
$1(0 \ 20 \ +1)$ T(0 \ 21 \ 1)	3.112400000000000000000000000000000000000	(+/-2.2D-01)	2.3D-04
$1(0 \ 21 \ -1)$ T(0 \ 21 \ 1)	2.23420110000000+04 2.21120500000000+04	(+/-5.5D-02)	3.3D-04 4.6D-04
T(0 21 -1) T(0 21 +1)	2.211303900000D+04 2.25783800000D+04	(+/-0.0D-02)	4.0D-04 0.1D-04
$T(0 \ 21 \ \pm 1)$ $T(0 \ 21 \ \pm 1)$	2.2070000000000000000000000000000000000	$(\pm / 55D.02)$	3.1D-04 3.3D 04
$T(0 \ 21 \ \pm1)$ $T(0 \ 21 \ 1)$	2.23420110000000+04 3 1903880000000000 + 04	$(\pm / - 0.0D - 02)$ $(\pm / - 0.1D - 01)$	9.9D 04
$T(0 \ 21 \ -1)$ $T(0 \ 21 \ \perp 1)$	3.120388000000D+04 3.120388000000D+04	$(\pm / - 2.10 - 01)$ $(\pm / - 2.10 - 01)$	2.2D-04 2.2D-04
$T(0 \ 21 \ \pm 1)$ $T(0 \ 22 \ -1)$	9.120300000000000000000000000000000000000	$(\pm / - 5.7D - 01)$	2.2D-04 3 3D-04
T(0 22 -1) T(0 22 -1)	2.2000211000000000000000000000000000000	$(\pm /_{-} 5.8D_{-}02)$	4 6D-04
T(0 22 -1) T(0 22 +1)	2.23400000000000000000000000000000000000	(+/-61D-02)	4.0D-04 4.6D-04
T(0 22 + 1) T(0 22 + 1)	2.258027700000D + 04	(+/-57D-02)	3 3D-04
T(0 22 -1)	3 12872800000D+04	(+/-21D-01)	2 1D-04
$T(0 \ 22 \ +1)$	3.12872800000D+04	(+/-2.1D-01)	2.1D-04 2.1D-04
T(0 23 -1)	2.28275250000D+04	(+/-5.8D-02)	3 3D-04

Table C.2 Energy origins of "fluorescence series" of BeD isotopomer  $(cm^{-1})$  (Cont'd)

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
T(0, 23, -1)	2 25783800000D+04	(+/-72D-02)	9 1D-04
$T(0 \ 23 \ +1)$	2.308199100000D+04	(+/-74D-02)	9 1D-04
$T(0 \ 23 \ +1)$ $T(0 \ 23 \ +1)$	2.82752500000D+04	(+/-5.8D-02)	3 3D-04
T(0 23 -1)	3 137413000000D+04	(+/-2.0D-01)	1 9D-04
$T(0 \ 23 \ +1)$	3.137413000000D+04	(+/-2.0D-01)	1.9D-04
T(0 24 -1)	2.308420100000D+04	(+/-6.0D-02)	3 3D-04
$T(0 \ 24 \ -1)$	2.282546800000D+04	(+/-61D-02)	4 6D-04
$T(0 \ 24 \ +1)$	2.334777200000D+04	(+/-7.5D-02)	9.1D-04
$T(0 \ 24 \ +1)$	2.308420100000D+04	(+/-6.0D-02)	3.3D-04
T(0 24 -1)	3.146455000000D+04	(+/-2.0D-01)	1.9D-04
$T(0 \ 24 \ +1)$	3.146455000000D+04	(+/-2.0D-01)	1.9D-04
$T(0 \ 25 \ -1)$	2.335015300000D+04	(+/-6.2D-02)	4.5D-04
$T(0 \ 25 \ -1)$	2.308199100000D+04	(+/-7.4D-02)	9.1D-04
$T(0 \ 25 \ +1)$	2.362267500000D+04	(+/-7.6D-02)	9.1D-04
$T(0 \ 25 \ +1)$	2.335015300000D+04	(+/-6.2D-02)	4.5D-04
$T(0 \ 25 \ -1)$	3.15585600000D + 04	(+/-2.0D-01)	1.9D-04
$T(0 \ 25 \ +1)$	3.15585500000D + 04	(+/-2.1D-01)	2.0D-04
$T(0 \ 26 \ -1)$	2.36251980000D + 04	(+/-6.2D-02)	3.3D-04
$T(0 \ 26 \ -1)$	2.334777200000D+04	(+/-7.5D-02)	9.1D-04
$T(0 \ 26 \ +1)$	2.39065300000D + 04	(+/-7.6D-02)	9.1D-04
$T(0 \ 26 \ +1)$	2.362519800000D + 04	(+/-6.2D-02)	3.3D-04
$T(0 \ 26 \ -1)$	3.16561900000D + 04	(+/-2.1D-01)	2.2D-04
$T(0 \ 26 \ +1)$	3.16561900000D + 04	(+/-2.1D-01)	2.2D-04
$T(0 \ 27 \ -1)$	2.390919900000D+04	(+/-6.3D-02)	3.3D-04
$T(0 \ 27 \ -1)$	2.36226750000D + 04	(+/-7.6D-02)	9.1D-04
$T(0 \ 27 \ +1)$	2.41990980000D + 04	(+/-6.6D-02)	4.6D-04
$T(0 \ 27 \ +1)$	2.39091990000D + 04	(+/-6.3D-02)	3.3D-04
$T(0 \ 27 \ -1)$	3.17571300000D + 04	(+/-2.2D-01)	2.2D-04
$T(0 \ 27 \ +1)$	3.17571300000D + 04	(+/-2.2D-01)	2.2D-04
$T(0 \ 28 \ -1)$	2.420195200000D+04	(+/-6.4D-02)	3.3D-04
$T(0 \ 28 \ -1)$	2.39065300000D + 04	(+/-7.6D-02)	9.1D-04
$T(0 \ 28 \ +1)$	2.42019520000D + 04	(+/-6.4D-02)	3.3D-04
$T(0 \ 28 \ -1)$	3.18625600000D + 04	(+/-2.0D-01)	1.9D-04
$T(0 \ 28 \ +1)$	3.18625600000D + 04	(+/-2.0D-01)	1.9D-04
$T(0 \ 29 \ -1)$	2.450329700000D + 04	(+/-6.5D-02)	3.3D-04
$T(0 \ 29 \ -1)$	2.419909800000D+04	(+/-6.6D-02)	4.6 D- 04
$T(0 \ 29 \ +1)$	2.450329700000D + 04	(+/-6.5D-02)	3.3D-04
$T(0 \ 29 \ -1)$	3.196858000000D + 04	(+/-2.1D-01)	2.0D-04
$T(0 \ 29 \ +1)$	3.196858000000D+04	(+/-2.1D-01)	2.0D-04
$T(0 \ 30 \ -1)$	2.481304500000D+04	(+/-6.8D-02)	4.5D-04
$T(0 \ 30 \ +1)$	2.48130450000D + 04	(+/-6.8D-02)	4.5D-04
$T(0 \ 30 \ -1)$	3.20800600000D+04	(+/-2.2D-01)	2.1D-04
$T(0 \ 30 \ +1)$	3.20800600000D+04	(+/-2.2D-01)	2.1D-04
$T(0 \ 31 \ -1)$	2.513102900000D+04	(+/-6.7D-02)	3.3D-04
$T(0 \ 31 \ +1)$	2.513102900000D+04	(+/-6.7D-02)	3.3D-04
$T(0 \ 31 \ -1)$	3.219466000000D+04	(+/-2.2D-01)	2.3D-04
$T(0 \ 31 \ +1)$	3.219466000000D+04	(+/-2.2D-01)	2.3D-04
$1(0 \ 32 \ -1)$	2.545704400000D+04	(+/-7.9D-02)	8.6D-04
$T(0 \ 32 \ +1)$ $T(0 \ 22 \ 1)$	2.545704400000D+04	(+/-7.9D-02)	8.6D-04
$1(0 \ 32 \ -1)$ T(0 \ 22 \ -1)	3.231252000000D+04	(+/-2.2D-01)	2.1D-04
$1(0 \ 32 \ +1)$ T(0 \ 22 \ 1)	3.2312510000000000000000000000000000000000	(+/-2.2D-01)	2.2D-04
1(0 33 -1) T(0 22 11)	2.37908970000D+04 2.57008070000D+04	(+/-0.8D-02)	う.うD-04 2 2D 04
1(0 33 +1) T(0 22 1)	2.079069700000D+04 2.04925700000D+04	(+/-0.8D-02)	3.3D-04 2.6D-04
1(0 33 -1) T(0 22 11)	3.2433370000000000000000000000000000000000	(+/-2.3D-01)	2.0D-04 2.6D-04
T(0 33 +1) T(0 34 -1)	3.2433700000000000000000000000000000000000	(+/-2.3D-01)	2.0D-04 2.3D-04
$T(0 \ 34 \ -1)$ $T(0 \ 34 \ +1)$	2.013240400000D + 04 2.613240400000D + 04	$(\pm / - 0.9D - 02)$	3.3D-04 3.3D-04
1(U J4 +1)	2.010240400000D+04	$(\top / - 0.3D - 02)$	0.0D-04

Table C.2 Energy origins of "fluorescence series" of BeD isotopomer  $(cm^{-1})$  (*Cont'd*)

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
T(0 34 -1)	3.25580600000D+04	(+/-2.5D-01)	3.1D-04
$\dot{T(0 \ 34 \ +1)}$	3.25580600000D+04	(+/-2.5D-01)	3.1D-04
$T(0 \ 35 \ -1)$	2.64813650000D + 04	(+/-7.2D-02)	4.1D-04
$T(0 \ 35 \ +1)$	2.648136500000D+04	(+/-7.2D-02)	4.1D-04
$T(0 \ 35 \ -1)$	3.26861300000D + 04	(+/-2.5D-01)	2.7D-04
$T(0 \ 35 \ +1)$	3.26861300000D+04	(+/-2.5D-01)	2.7D-04
$T(0 \ 36 \ -1)$	2.683756500000D+04	(+/-7.1D-02)	3.3D-04
$T(0 \ 36 \ +1)$	2.68375650000D + 04	(+/-7.1D-02)	3.3D-04
$T(0 \ 36 \ -1)$	3.28158200000D + 04	(+/-2.5D-01)	2.3D-04
$T(0 \ 36 \ +1)$	3.28158200000D + 04	(+/-2.5D-01)	2.3D-04
$T(0 \ 37 \ -1)$	2.72008190000D + 04	(+/-7.2D-02)	3.3D-04
$T(0 \ 37 \ +1)$	2.72008190000D + 04	(+/-7.2D-02)	3.3D-04
$T(0 \ 37 \ -1)$	3.29496600000D + 04	(+/-2.8D-01)	3.2D-04
$T(0 \ 37 \ +1)$	3.29496600000D + 04	(+/-2.8D-01)	3.2D-04
T(0 38 -1)	2.757090400000D+04	(+/-7.3D-02)	3.3D-04
$T(0 \ 38 \ +1)$	2.757090400000D+04	(+/-7.3D-02)	3.3D-04
T(0 38 -1)	3.30872800000D + 04	(+/-3.0D-01)	3.2D-04
$T(0 \ 38 \ +1)$	3.30872800000D + 04	(+/-3.0D-01)	3.2D-04
$T(0 \ 39 \ -1)$	$2.794763400000\mathrm{D}{+}04$	(+/-7.4D-02)	3.3D-04
$T(0 \ 39 \ +1)$	$2.794763400000\mathrm{D}{+}04$	(+/-7.4D-02)	3.3D-04
$T(0 \ 39 \ -1)$	$3.32263500000 \mathrm{D}{+}04$	(+/-3.0D-01)	3.3D-04
$T(0 \ 39 \ +1)$	3.32263500000D + 04	(+/-3.0D-01)	3.3D-04
$T(0 \ 40 \ -1)$	$2.83308000000D{+}04$	(+/-1.1D-01)	1.6D-04
$T(0 \ 40 \ +1)$	2.83308000000D + 04	(+/-1.1D-01)	1.6D-04
$T(0 \ 40 \ -1)$	3.337255000000D+04	(+/-3.7D-01)	4.4D-04
$T(0 \ 40 \ +1)$	3.33725500000D + 04	(+/-3.7D-01)	4.4D-04
$T(0 \ 41 \ -1)$	2.87201300000D+04	(+/-1.1D-01)	1.6D-04
$T(0 \ 41 \ +1)$	2.872013000000D+04	(+/-1.1D-01)	1.6D-04
$T(0 \ 41 \ -1)$	3.35163900000D+04	(+/-4.3D-01)	4.6D-04
$T(0 \ 41 \ +1)$ $T(0 \ 42 \ 1)$	3.35163900000D+04	(+/-4.3D-01)	4.6D-04
$T(0 \ 42 \ -1)$	2.911546000000D+04	(+/- 1.1D-01)	1.6D-04
$1(0 \ 42 \ +1)$ T(0 \ 42 \ 1)	2.911546000000D+04	(+/-1.1D-01)	1.6D-04
T(0 43 -1) T(0 42 +1)	2.951057200000D+04 2.051657200000D+04	(+/-9.0D-02)	9.1D-04 0.1D-04
T(0 43 +1) T(0 44 1)	2.931037200000D+04 2.002320800000D+04	(+/-9.0D-02) (+/-0.8D-02)	9.1D-04 8.6D 04
T(0 44 -1) $T(0 44 \pm 1)$	2.992320800000D+04 2.002320800000D+04	$(\pm / - 9.8D - 02)$ $(\pm / - 0.8D - 02)$	8.6D 04
T(0 44 + 1) T(0 45 - 1)	3.03351900000D+04	(+/- 3.3D-02) (+/- 1.4D-01)	2 1D-04
T(0 45 + 1) T(0 45 + 1)	3.03351900000D + 04	(+/-14D-01)	2.10-04 2.10-04
$T(0 \ 46 \ -1)$	3.075222000000D+04	(+/-13D-01)	1 6D-04
$T(0 \ 46 \ +1)$	3.075222000000D+04	(+/-1.3D-01)	1.6D-04
$T(0 \ 47 \ -1)$	3.117417000000D+04	(+/-1.3D-01)	1.6D-04
$T(0 \ 47 \ +1)$	3.117417000000D+04	(+/-1.3D-01)	1.6D-04
$T(0 \ 48 \ -1)$	3.16007600000D+04	(+/- 1.4D-01)	1.6D-04
$T(0 \ 48 \ +1)$	3.16007600000D+04	(+/- 1.4D-01)	1.6D-04
$T(0 \ 49 \ -1)$	3.203167000000D + 04	(+/- 1.5D-01)	1.6D-04
$\dot{T(0} 49 +1)$	3.203167000000D + 04	(+/- 1.5D-01)	1.6D-04
T(1  1  +1)	2.129327000000D + 04	(+/- 5.2D-02)	4.5D-04
$T(1 \ 2 \ -1)$	$2.13145050000\mathrm{D}{+}04$	(+/-6.4D-02)	8.6D-04
$T(1 \ 2 \ +1)$	$2.131532600000\mathrm{D}{+}04$	(+/-9.6D-02)	1.6D-04
$T(1 \ 3 \ -1)$	$2.134802100000\mathrm{D}{+}04$	(+/-5.2D-02)	4.5D-04
$T(1 \ 3 \ +1)$	$2.134856100000\mathrm{D}{+}04$	(+/-9.2D-02)	1.5D-04
$T(1 \ 4 \ -1)$	$2.139252100000\mathrm{D}{+}04$	(+/-5.2D-02)	4.6D-04
$T(1 \ 4 \ +1)$	$2.14479500000D{+}04$	(+/-1.2D-01)	2.1D-04
$T(1 \ 4 \ +1)$	2.139295100000D+04	(+/-4.9D-02)	3.3D-04
$T(1 \ 5 \ -1)$	2.14480320000D+04	(+/-5.1D-02)	4.1D-04
$T(1 \ 5 \ +1)$	2.151437300000D+04	(+/-5.2D-02)	4.6D-04
$T(1 \ 5 \ \pm 1)$	2 14483860000000+04	$(\pm / - 4.91) - (02)$	3 31)-04

Table C.2 Energy origins of "fluorescence series" of BeD isotopomer  $(cm^{-1})$  (*Cont'd*)

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(1 \ 6 \ -1)$	$2.151454100000D\pm04$	$(\pm /_{-} 4.9 D_{-} 02)$	3 3D-04
$T(1 \ 6 \ 1)$	2.101404100000D + 04 2.14482000000D + 04	(+/ 1.3D 02) (+/ 1.8D 01)	3 3D 04
$T(1 \ 6 \ \pm 1)$	2.14402000000D + 04 2.150178000000D + 04	(+/-5.0D-01) (+/-5.0D-02)	4.6D.04
$T(1 \ 0 \ \pm 1)$ $T(1 \ 6 \ \pm 1)$	2.159178000000D+04 2.151482500000D+04	(+/-5.2D-02)	4.0D-04 4.1D-04
$T(1 \ 0 \ \pm 1)$ $T(1 \ 7 \ 1)$	2.151482500000D+04 2.15020070000D+04	(+/-0.1D-02)	4.1D-04 2.2D-04
I(1 (-1))	2.159200700000D+04	(+/-4.9D-02)	3.3D-04
$T(1 \ 7 \ -1)$	2.151465900000D+04	(+/-5.2D-02)	4.6D-04
$T(1 \ 7 \ +1)$	2.168013400000D+04	(+/-5.2D-02)	4.6D-04
$T(1 \ 7 \ +1)$	2.159224000000D+04	(+/-4.9D-02)	3.3D-04
$T(1 \ 8 \ -1)$	2.168037200000D+04	(+/-5.7D-02)	6.5D-04
$T(1 \ 8 \ -1)$	2.159201900000D+04	(+/-5.2D-02)	4.6D-04
$T(1 \ 8 \ +1)$	2.177923300000D+04	(+/-6.6D-02)	9.1D-04
$T(1 \ 8 \ +1)$	2.168056900000D+04	(+/-5.7D-02)	6.5D-04
$T(1 \ 9 \ -1)$	2.177962800000D+04	(+/-6.4D-02)	8.4D-04
$T(1 \ 9 \ -1)$	2.16802500000D + 04	(+/-1.8D-01)	3.3D-04
$T(1 \ 9 \ +1)$	2.18892900000D + 04	(+/-1.8D-01)	3.3D-04
$T(1 \ 9 \ +1)$	2.177977500000D + 04	(+/-6.4D-02)	8.4D-04
$T(1 \ 10 \ -1)$	2.18896800000D + 04	(+/-6.4D-02)	8.3D-04
$T(1 \ 10 \ -1)$	2.17794080000D + 04	(+/-6.6D-02)	9.1D-04
$T(1 \ 10 \ +1)$	2.200986400000D+04	(+/-6.7D-02)	9.1D-04
$T(1 \ 10 \ +1)$	2.18896800000D + 04	(+/-6.4D-02)	8.3D-04
T(1 11 -1)	2.20104000000D+04	(+/- 1.0D-01)	1.7D-04
$T(1 \ 11 \ -1)$	2.18892900000D + 04	(+/-1.8D-01)	3.3D-04
$T(1 \ 11 \ +1)$	2.214114000000D+04	(+/-1.8D-01)	3.3D-04
$T(1 \ 11 \ +1)$	2.20104000000D+04	(+/-1.0D-01)	1.7D-04
$T(1 \ 12 \ -1)$	2.214172500000D+04	(+/-6.6D-02)	8.9D-04
$T(1 \ 12 \ -1)$	2.200986400000D+04	(+/-6.7D-02)	9.1D-04
$T(1 \ 12 \ +1)$	2.228291100000D+04	(+/-6.8D-02)	9.1D-04
$T(1 \ 12 \ +1)$	2.214172500000D+04	(+/-6.6D-02)	8.9D-04
T(1 13 -1)	2.22835900000D + 04	(+/-5.4D-02)	4.1D-04
$T(1 \ 13 \ -1)$	2.21411400000D + 04	(+/-1.8D-01)	3.3D-04
$T(1 \ 13 \ +1)$	2.24351200000D + 04	(+/-1.2D-01)	2.1D-04
$T(1 \ 13 \ +1)$	2.22835900000D + 04	(+/-5.4D-02)	4.1D-04
$T(1 \ 14 \ -1)$	2.243592300000D+04	(+/-5.3D-02)	3.3D-04
T(1 14 -1)	2.228291100000D+04	(+/-6.8D-02)	9.1D-04
$T(1 \ 14 \ +1)$	2.25976620000D + 04	(+/-5.6D-02)	4.6D-04
$T(1 \ 14 \ +1)$	2.243592300000D+04	(+/-5.3D-02)	3.3D-04
$T(1 \ 15 \ -1)$	2.259859800000D+04	(+/-5.4D-02)	3.3D-04
$T(1 \ 15 \ -1)$	2.24351200000D + 04	(+/-1.2D-01)	2.1D-04
$T(1 \ 15 \ +1)$	2.277047000000D+04	(+/-5.7D-02)	4.6D-04
$T(1 \ 15 \ +1)$	2.259859800000D+04	(+/-5.4D-02)	3.3D-04
$T(1 \ 16 \ -1)$	2.27715100000D + 04	(+/-5.5D-02)	3.3D-04
$T(1 \ 16 \ -1)$	2.25976620000D + 04	(+/-5.6D-02)	4.6D-04
$T(1 \ 16 \ +1)$	2.295340100000D+04	(+/-7.1D-02)	9.1D-04
$T(1 \ 16 \ +1)$	2.27715100000D + 04	(+/-5.5D-02)	3.3D-04
T(1 17 -1)	2.29545600000D + 04	(+/-5.6D-02)	3.3D-04
$T(1 \ 17 \ -1)$	2.277047000000D+04	(+/-5.7D-02)	4.6D-04
$T(1 \ 17 \ +1)$	2.314631800000D+04	(+/-5.9D-02)	4.6D-04
$T(1 \ 17 \ +1)$	2.29545600000D+04	(+/-5.6D-02)	3.3D-04
$T(1 \ 18 \ -1)$	2.314760800000D + 04	(+/-5.7D-02)	3.3D-04
$T(1 \ 18 \ -1)$	2.295340100000D+04	(+/-7.1D-02)	9.1D-04
$T(1 \ 18 \ +1)$	2.334914400000D+04	(+/-6.0D-02)	4.6D-04
$T(1 \ 18 \ +1)$	2.31476080000D+04	(+/-5.7D-02)	3.3D-04
$T(1 \ 19 \ -1)$	2.335054600000D+04	(+/-5.8D-02)	3.3D-04
$T(1 \ 19 \ -1)$	2.314631800000D+04	(+/-5.9D-02)	4.6D-04
$T(1 \ 19 \ +1)$	2.356164300000D+04	(+/-6.1D-02)	4.6D-04
$T(1 \ 19 \ +1)$	2.33505460000D+04	(+/-5.8D-02)	3.3D-04
$T(1 \ 20 \ -1)$	2.35632220000D+04	(+/-5.9D-02)	3 3D-04

Table C.2 Energy origins of "fluorescence series" of BeD isotopomer  $(cm^{-1})$  (*Cont'd*)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$T(1 \ 29 \ -1)$ 2.589155800000D+04 (+/- 6.6D-02) 3.3D-04
$T(1 \ 29 \ -1) \qquad 2.559528000000D + 04  (+/- \ 1.2D - 01) \qquad 2.1D - 04$
$T(1 \ 29 \ +1) \qquad 2.619035000000D+04  (+/-1.8D-01) \qquad 3.3D-04$
T(1 29 +1) 2.589155800000D+04 (+/-6.6D-02) 3.3D-04
$T(1 \ 30 \ -1) \qquad 2.619330600000D+04 \ (+/- \ 6.9D-02) \qquad 4.5D-04$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccc} 1 (1 & 30 & \pm 1) & 2.049977000000D \pm 04 & (\pm/-1.2D-01) & 2.1D-04 \\ T(1 & 20 & \pm 1) & 2.61022060000D \pm 04 & (\pm/-6.0D, 02) & 4.5D, 04 \\ \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccc} 1 & (1 & 51 & -1) & 2.019035000000D + 04 & (+/-1.8D-01) & 5.3D-04 \\ T(1 & 21 & +1) & 2.681712000000D + 04 & (+/-1.2D-01) & 2.1D-04 \\ \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$T(1 \ 31 \ \pm1) \qquad 2.000296200000D\pm04 \ (\pm/-0.7D-02) \qquad 3.3D-04 T(1 \ 22 \ 1) \qquad 2.682042800000D\pm04 \ (\pm/-6.7D \ 02) \qquad 2.2D \ 04$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
T(1 33 -1) 2.681712000000D $\pm 0.4$ ( $\pm /$ 1.20-02) 4.1D-04 T(1 33 -1) 2.681712000000D $\pm 0.4$ ( $\pm /$ 1.20-01) 2.1D 0.4
$T(1 \ 33 \ \pm 1)$ 2.10-04 $T(1 \ 33 \ \pm 1)$ 2.112-00000D $\pm 04$ ( $\pm / - 6 \ 0D_{-}09$ ) 4.1D 04
T(1 34 -1) = 2.747788600000D + 04 (+/-6.8D-02) = 3.3D-04
$T(1 \ 34 \ +1)$ 2.747788600000D+04 (+/- 6.8D-02) 3.3D-04 3.3D-04
T(1 35 -1) = 2.781747200000D+04 (+/-6.9D-02) = 3.3D-04
$T(1 \ 35 \ +1)$ 2.78174720000D+04 (+/- 6.9D-02) 3.3D-04

Table C.2 Energy origins of "fluorescence series" of BeD isotopomer  $(cm^{-1})$  (*Cont'd*)

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(1 \ 36 \ -1)$	2 816403300000D±04	$(\pm /_{-} 6.9 D_{-} 02)$	3 3D-04
$T(1 \ 36 \ \pm 1)$	2.816403300000D + 04 2.816403300000D ± 04	(+/-6.9D-02) $(\pm/-6.9D-02)$	3 3D-04
$T(1 \ 37 \ -1)$	2.851736300000D + 04 2.851736300000D ± 04	(+/-7.0D-02) (+/-7.0D-02)	3 3D-04
$T(1 \ 37 \ -1)$ $T(1 \ 37 \ -1)$	2.851736300000D + 04 2.851736300000D ± 04	(+/-7.0D-02) $(\pm/-7.0D-02)$	3 3D-04
$T(1 \ 38 \ -1)$	2.831730300000D + 04 $2.887725700000D \pm 04$	(+/-7.0D-02) (+/-7.0D-02)	3 3D-04
$T(1 \ 38 \ -1)$ $T(1 \ 38 \ \pm 1)$	$2.887725700000D \pm 04$	$(\pm / 7.0D-02)$	3 3D 04
$T(1 \ 30 \ -1)$ $T(1 \ 30 \ 1)$	2.001720100000D+04 2.024348400000D+04	$(\pm / 7.0D-02)$	4 5D 04
T(1 39 -1) T(1 30 +1)	2.924348400000D+04 2.024348400000D+04	(+/-7.2D-02)	4.5D-04 4.5D-04
$T(1 \ 59 \ \pm 1)$ $T(1 \ 40 \ 1)$	2.924346400000D+04 2.96158600000D+04	$(\pm / 1.2D-02)$ $(\pm / 1.1D.01)$	4.5D-04 1.6D-04
T(1 40 -1) T(1 40 +1)	2.901586000000D + 04 2.06158600000D + 04	(+/-1.1D-01)	1.0D-04 1.6D-04
$T(1 40 \pm 1)$ T(1 41 1)	2.901380000000D+04 2.900414300000D+04	$(\pm/ 7.3D.02)$	3 3D 04
T(1 41 -1) T(1 41 +1)	2.999414300000D+04 2.000414300000D+04	$(\pm / 7.3D-02)$	3.3D-04 3.3D-04
$T(1 41 \pm 1)$ T(1 42 = 1)	2.999414300000D+04 3.037810800000D+04	(+/-7.3D-02)	6 5D 04
T(1 42 -1) T(1 42 +1)	3.037810800000D + 04 3.037810800000D + 04	(+/-8.0D-02)	6 5D 04
$T(1 42 \pm 1)$ T(1 42 1)	3.037810800000D + 04 3.07675600000D + 04	(+/-8.0D-02)	8.6D 04
T(1 43 -1) T(1 43 +1)	$3.076756000000D \pm 04$	(+/-8.9D-02)	8.6D 04
$T(1 43 \pm 1)$ T(1 44 1)	3.07075000000000000000000000000000000000	$(\pm / 8.9D-02)$	8.6D 04
T(1 44 -1) T(1 44 +1)	3.116229300000D + 04 3.116220300000D + 04	$(\pm / 8.7D - 02)$	8.6D 04
T(1 44 + 1) T(1 45 1)	$3.110223500000D \pm 04$ $3.15610010000D \pm 04$	$(\pm / - 0.1D - 02)$	8 6D 04
T(1 40 -1) T(1 45 +1)	3.15610010000D + 04	(+/-9.0D-02)	8.6D 04
$T(1 40 \pm 1)$ T(1 46 1)	3 19663500000D-04	$(\pm / - 9.0D - 02)$ $(\pm / - 1.9D 01)$	0.0D-04 1 6D 04
T(1 40 -1) T(1 46 +1)	3.190035000000D+04 3.196635000000D+04	(+/-1.2D-01)	1.0D-04 1.6D-04
$T(1 40 \pm 1)$ T(1 47 1)	3.190035000000D+04 3.237536000000D+04	(+/-1.2D-01)	1.0D-04 $3.3D_{-}04$
T(1 47 -1) $T(1 47 \pm 1)$	$3.237536000000D \pm 04$ $3.237536000000D \pm 04$	$(\pm/ 1.9D-01)$ $(\pm/ 1.0D 01)$	3.3D-04 3.3D-04
$T(1 47 \pm 1)$ T(1 48 1)	3.23733000000000000000000000000000000000	(+/-1.9D-01)	3.3D-04 2 1D 04
T(1 40 -1) T(1 48 +1)	3.278867000000D + 04	(+/-1.5D-01)	2.1D-04 2.1D.04
$T(1 40 \pm 1)$ $T(2 3 \pm 1)$	3.278807000000D+04 2.284801000000D+04	$(\pm/ 1.3D-01)$ $(\pm/ 1.3D-01)$	2.1D-04 2 3D 04
$T(2 \ 3 \ \pm 1)$ $T(2 \ 4 \ 1)$	2.28489100000D + 04 2.284893400000D + 04	$(\pm / 6.4D.02)$	2.3D-04 3.3D.04
T(2 4 -1) $T(2 4 \pm 1)$	2.204095400000D+04 2.2002000000D+04	$(\pm / 1.3D \cdot 02)$	2 3D 04
T(2 4 + 1) T(2 4 + 1)	2.230230000000D + 04 2.284934300000D + 04	(+/-1.5D-01) (+/-6.6D-02)	4 5D-04
T(2 - 4 + 1) T(2 - 5 - 1)	2.204304500000D + 04 2 290308100000D+04	(+/-6.0D-02) (+/-6.4D-02)	3 3D-04
T(2 5 -1) T(2 5 -1)	2.290900100000D + 04 2.284934000000D + 04	(+/-1.3D-02) (+/-1.3D-01)	2 3D-04
$T(2 \ 5 \ -1)$ $T(2 \ 5 \ +1)$	2.204334000000D + 04 2.296774000000D + 04	(+/-1.5D-01) (+/-1.2D-01)	2.0D-04 2.1D-04
$T(2 \ 5 \ +1)$ $T(2 \ 5 \ +1)$	2.29011400000D+04 2.290341400000D+04	(+/-6.4D-02)	3 3D-04
$T(2 \ 6 \ -1)$	2.29679100000D+01	(+/-1.5D-01)	2 7D-04
$T(2 \ 6 \ -1)$	2.290191000000D+01 2 290330700000D+04	(+/-7.8D-02)	9 2D-04
$T(2 \ 6 \ +1)$	2.2000001000000000000000000000000000000	(+/-84D-01)	1 6D-04
$T(2 \ 6 \ +1)$	2.296821000000D+04	(+/-1.2D-01)	2 1D-04
$T(2 \ 7 \ -1)$	2.20002100000D + 01 2.304349400000D + 04	(+/-6.5D-02)	4 1D-04
T(2 7 -1)	2.29678600000D+04	(+/-1.8D-01)	3.3D-04
T(2 7 +1)	2.312939400000D+04	(+/-7.7D-02)	9.1D-04
T(2 7 +1) T(2 7 +1)	2.304373600000D+04	(+/-6.9D-02)	6.5D-04
$T(2 \ 8 \ -1)$	2.312965600000D+04	(+/-6.9D-02)	6.5D-04
$T(2 \ 8 \ -1)$	2.304352400000D+04	(+/-7.7D-02)	9.2D-04
$T(2 \ 8 \ +1)$	2.322607500000D+04	(+/-7.6D-02)	9.1D-04
$T(2 \ 8 \ +1)$	2.312985500000D+04	(+/-6.9D-02)	6.5D-04
$T(2 \ 9 \ -1)$	2.322640500000D+04	(+/-6.9D-02)	6.5D-04
$T(2 \ 9 \ -1)$	2.312957900000D+04	(+/-7.7D-02)	9.1D-04
$T(2 \ 9 \ +1)$	2.333334000000D+04	(+/-1.8D-01)	3.3D-04
$T(2 \ 9 \ +1)$	2.322657700000D+04	(+/-6.9D-02)	6.5D-04
$T(2 \ 10 \ -1)$	2.333377400000D+04	(+/-7.4D-02)	8.3D-04
$T(2 \ 10 \ -1)$	2.32262180000D+04	(+/-7.6D-02)	9.1D-04
$T(2 \ 10 \ +1)$	2.34508900000D+04	(+/-1.8D-01)	3.3D-04
$T(2 \ 10 \ +1)$	2.333377400000D+04	(+/-7.4D-02)	8.3D-04
$T(2 \ 11 \ -1)$	2.34514500000D+04	(+/- 1.1D-01)	1.7D-04
$T(2 \ 11 \ -1)$	2.333334000000D+04	(+/-1.8D-01)	3.3D-04
$T(2 \ 11 \ +1)$	2.357891700000D+04	(+/-76D-02)	9 1D-04

Table C.2 Energy origins of "fluorescence series" of BeD isotopomer  $(cm^{-1})$  (*Cont'd*)

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(2 \ 11 \ +1)$	2 34514500000D+04	(+/-11D-01)	1 7D-04
$T(2 \ 12 \ -1)$ $T(2 \ 12 \ -1)$	2.357952700000D+04	(+/-74D-02)	8 4D-04
$T(2 \ 12 \ -1)$ $T(2 \ 12 \ -1)$	2.34508900000D+04	(+/-1.8D-01)	3.3D-04
$T(2 \ 12 \ +1)$ $T(2 \ 12 \ +1)$	2.371715500000D+04	(+/-77D-02)	9 1D-04
$T(2 \ 12 \ +1)$ $T(2 \ 12 \ +1)$	2.357952700000D+04	(+/-74D-02)	8 4D-04
$T(2 \ 12 \ -1)$ $T(2 \ 13 \ -1)$	2.371784200000D+04	(+/-74D-02)	8 3D-04
$T(2 \ 13 \ -1)$ $T(2 \ 13 \ -1)$	2.357891700000D+04	(+/-7.6D-02)	9 1D-04
$T(2 \ 13 \ +1)$	2.38654900000D+04	(+/-1.8D-01)	3.3D-04
$T(2 \ 13 \ +1)$	2.371784200000D+04	(+/-7.4D-02)	8.3D-04
$T(2 \ 14 \ -1)$	2.386634400000D+04	(+/-6.4D-02)	4.1D-04
$T(2 \ 14 \ -1)$	2.37171550000D+04	(+/-7.7D-02)	9.1D-04
$T(2 \ 14 \ +1)$	2.386634400000D+04	(+/-6.4D-02)	4.1D-04
$T(2 \ 15 \ -1)$	2.402491700000D+04	(+/-6.4D-02)	3.3D-04
$T(2 \ 15 \ -1)$	2.38654900000D+04	(+/-1.8D-01)	3.3D-04
$T(2 \ 15 \ +1)$	2.41924040000D+04	(+/-7.7D-02)	9.1D-04
$T(2 \ 15 \ +1)$	2.402491700000D+04	(+/-6.4D-02)	3.3D-04
$T(2 \ 16 \ -1)$	2.41934580000D + 04	(+/-6.4D-02)	3.3D-04
$T(2 \ 16 \ +1)$	2.43707100000D + 04	(+/-1.8D-01)	3.3D-04
$T(2 \ 16 \ +1)$	2.41934580000D + 04	(+/-6.4D-02)	3.3D-04
$T(2 \ 17 \ -1)$	2.43718500000D + 04	(+/-6.6D-02)	4.1D-04
$T(2 \ 17 \ -1)$	2.41924040000D + 04	(+/-7.7D-02)	9.1D-04
$T(2 \ 17 \ +1)$	2.455874100000D+04	(+/-6.7D-02)	4.6D-04
$T(2 \ 17 \ +1)$	2.43718500000D + 04	(+/-6.6D-02)	4.1D-04
$T(2 \ 18 \ -1)$	2.455997300000D+04	(+/-6.7D-02)	4.6D-04
$T(2 \ 18 \ -1)$	2.43707100000D + 04	(+/-1.8D-01)	3.3D-04
$T(2 \ 18 \ +1)$	2.47564000000D + 04	(+/-1.8D-01)	3.3D-04
$T(2 \ 18 \ +1)$	2.455997300000D+04	(+/-6.7D-02)	4.6D-04
$T(2 \ 19 \ -1)$	2.475771700000D+04	(+/-6.7D-02)	4.5D-04
$T(2 \ 19 \ -1)$	2.455874100000D+04	(+/-6.7D-02)	4.6D-04
$T(2 \ 19 \ +1)$	2.49633760000D + 04	(+/-6.8D-02)	4.6 D- 04
$T(2 \ 19 \ +1)$	2.475771700000D + 04	(+/-6.7D-02)	4.5 D-04
$T(2 \ 20 \ -1)$	2.49649190000D + 04	(+/-6.6D-02)	3.3D-04
$T(2 \ 20 \ -1)$	2.47564000000D + 04	(+/-1.8D-01)	3.3D-04
$T(2 \ 20 \ +1)$	2.517983100000D+04	(+/-6.8D-02)	4.6D-04
$T(2 \ 20 \ +1)$	2.49649190000D + 04	(+/-6.6D-02)	3.3D-04
$T(2 \ 21 \ -1)$	2.518146100000D+04	(+/-6.6D-02)	3.3D-04
$T(2 \ 21 \ -1)$	2.496337600000D+04	(+/-6.8D-02)	4.6D-04
$T(2 \ 21 \ +1)$	2.54054800000D+04	(+/-6.8D-02)	4.6D-04
$T(2 \ 21 \ +1)$	2.518146100000D+04	(+/-6.6D-02)	3.3D-04
$T(2 \ 22 \ -1)$	2.54072020000D+04	(+/-6.6D-02)	3.3D-04
$T(2 \ 22 \ -1)$	2.517983100000D+04	(+/-6.8D-02)	4.6D-04
$T(2 \ 22 \ +1)$ $T(2 \ 22 \ +1)$	2.564010700000D+04	(+/-6.9D-02)	4.6D-04
$1(2 \ 22 \ +1)$ T(2 22 1)	2.540720200000D+04	(+/-0.0D-02)	3.3D-04
$T(2 \ 23 \ -1)$ $T(2 \ 23 \ -1)$	2.564198400000D+04	(+/-6.8D-02)	4.1D-04 4.CD-04
1(2 23 -1) T(2 22 +1)	2.540548000000D+04	(+/- 0.8D-02)	4.0D-04 2.2D-04
$T(2 \ 23 \ +1)$ $T(2 \ 22 \ +1)$	2.388303000000D+04 2.56410840000D+04	(+/-1.8D-01)	3.3D-04 4.1D-04
1(2 23 +1) T(2 24 1)	2.00419040000000+04 2.58856500000000+04	$(\pm / - 0.0D - 02)$	4.1D-04 4 5D 04
$T(2 \ 24 \ -1)$ $T(2 \ 24 \ 1)$	2.58505900000D+04 2.56401070000D+04	(+/-0.9D-02)	4.5D-04 4.6D-04
$1(2 \ 24 \ -1)$ T(2 24 \ $\pm 1$ )	2.504010700000D+04 2.613592000000D+04	$(\pm / - 0.9D - 02)$ $(\pm / - 1.8D 01)$	3 3D 04
$T_{(2 \ 24 \ \pm1)}$	2.0135520000000000000000000000000000000000	$(\pm / - 6.0D - 01)$	4 5D 04
$T_{(2} 24 \mp 1)$ $T_{(2} 25 -1)$	2.000000000000000000000000000000000000	$(\pm / - 6.9D - 02)$	4.5D-04
T(2 25 -1) T(2 25 -1)	2.513000000000000000000000000000000000000	$(\pm / - 1.8D - 02)$	3.3D-04
T(2 25 -1) T(2 25 +1)	$2.639671300000D \pm 04$	$(+/_{-}70D_{-}01)$	4 6D-04
T(2 25 + 1) T(2 25 + 1)	2.60001100000000000000000000000000000000	(+/-6.9D-02)	4 5D-04
$T(2 \ 26 \ -1)$	2.639903400000D+04	(+/-6.8D-02)	3.3D-04
$T(2 \ 26 \ -1)$	2.61359200000D+04	(+/-1.8D-01)	3.3D-04

Table C.2 Energy origins of "fluorescence series" of BeD isotopomer  $(cm^{-1})$  (*Cont'd*)

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(2 \ 26 \ +1)$	2.666597400000D+04	(+/-70D-02)	4 6D-04
$T(2 \ 26 \ +1)$	2.639903400000D+04	(+/-6.8D-02)	3 3D-04
$T(2 \ 27 \ -1)$	2.66683960000D+04	(+/-6.8D-02)	3.3D-04
$T(2 \ 27 \ -1)$	2.639671300000D+04	(+/-7.0D-02)	4.6D-04
$T(2 \ 27 \ +1)$	2.69434020000D+04	(+/-7.0D-02)	4.6D-04
$T(2 \ 27 \ +1)$	2.66683960000D + 04	(+/-6.8D-02)	3.3D-04
$T(2 \ 28 \ -1)$	2.694597700000D+04	(+/-6.8D-02)	3.3D-04
$T(2 \ 28 \ -1)$	2.666597400000D+04	(+/-7.0D-02)	4.6D-04
$T(2 \ 28 \ +1)$	2.694597700000D+04	(+/-6.8D-02)	3.3D-04
$T(2 \ 29 \ -1)$	2.723162700000D+04	(+/-6.9D-02)	3.3D-04
$T(2 \ 29 \ -1)$	2.69434020000D+04	(+/-7.0D-02)	4.6D-04
$T(2 \ 29 \ +1)$	2.723162700000D+04	(+/-6.9D-02)	3.3D-04
$T(2 \ 30 \ -1)$	2.75251200000D + 04	(+/-6.9D-02)	3.3D-04
$T(2 \ 30 \ +1)$	2.75251200000D + 04	(+/-6.9D-02)	3.3D-04
$T(2 \ 31 \ -1)$	2.782629900000D+04	(+/-7.1D-02)	4.6D-04
$T(2 \ 31 \ +1)$	2.782629900000D+04	(+/-7.1D-02)	4.6D-04
$T(2 \ 32 \ -1)$	2.81350060000D + 04	(+/-7.1D-02)	4.6D-04
$T(2 \ 32 \ +1)$	2.81350060000D + 04	(+/-7.1D-02)	4.6D-04
$T(2 \ 33 \ -1)$	2.845093100000D+04	(+/-7.2D-02)	4.5D-04
$T(2 \ 33 \ +1)$	2.845093100000D+04	(+/-7.2D-02)	4.5D-04
$T(2 \ 34 \ -1)$	2.877394400000D+04	(+/-7.0D-02)	3.3D-04
$T(2 \ 34 \ +1)$	2.877394400000D+04	(+/-7.0D-02)	3.3D-04
$T(2 \ 35 \ -1)$	2.91038900000D + 04	(+/-7.0D-02)	3.3D-04
$T(2 \ 35 \ +1)$	2.91038900000D+04	(+/-7.0D-02)	3.3D-04
$T(2 \ 36 \ -1)$	2.944051200000D+04	(+/-7.2D-02)	4.5D-04
$T(2 \ 36 \ +1)$	2.944051200000D+04	(+/-7.2D-02)	4.5D-04
$T(2 \ 37 \ -1)$	2.978359300000D+04	(+/-7.3D-02)	4.6D-04
$T(2 \ 37 \ +1)$	2.97835930000D + 04	(+/-7.3D-02)	4.6D-04
$T(2 \ 38 \ -1)$	3.013295200000D + 04	(+/-7.3D-02)	4.6D-04
$T(2 \ 38 \ +1)$	3.01329520000D + 04	(+/-7.3D-02)	4.6D-04
$T(2 \ 39 \ -1)$	3.048835400000D+04	(+/-8.3D-02)	8.6D-04
$T(2 \ 39 \ +1)$	3.048835400000D+04	(+/-8.3D-02)	8.6D-04
$T(2 \ 40 \ -1)$	3.084956700000D+04	(+/-7.6D-02)	4.6D-04
$T(2 \ 40 \ +1)$	3.084956700000D+04	(+/-7.6D-02)	4.6D-04
$T(2 \ 41 \ -1)$	3.121641500000D+04	(+/-7.8D-02)	4.1D-04
$T(2 \ 41 \ +1)$	3.12164150000D + 04	(+/-7.8D-02)	4.1D-04
$T(2 \ 42 \ -1)$	3.158863500000D+04	(+/-8.9D-02)	8.6D-04
$T(2 \ 42 \ +1)$	3.158863500000D+04	(+/-8.9D-02)	8.6D-04
$T(3 \ 3 \ -1)$	2.42159200000D+04	(+/-1.8D-01)	3.3D-04
$T(3 \ 3 \ +1)$ $T(2 \ 4 \ 1)$	2.42164400000D+04	(+/-1.3D-01)	2.1D-04
T(3 4 -1) T(2 4 +1)	2.425817800000D+04	(+/-7.3D-02)	4.5D-04
$T(3 \ 4 \ +1)$ $T(2 \ 5 \ 1)$	2.425863000000D+04	(+/-1.3D-01)	2.1D-04
$1(3 \ 5 \ -1)$ T(2 5 + 1)	2.431094000000D+04	(+/-1.1D-01)	1.6D-04
$1(3 \ 5 \ +1)$ T(2 C 1)	2.431127200000D+04 2.427415700000D+04	(+/-7.3D-02)	4.5D-04
$1(3 \ 0 \ -1)$ T(2 C + 1)	2.437415700000D+04 2.427442100000D+04	(+/-7.2D-02)	4.5D-04
$\begin{array}{ccc} 1(3 & 0 & \pm 1) \\ T(2 & 7 & 1) \end{array}$	2.437443100000D+04 2.44477450000D+04	(+/-7.2D-02)	4.5D-04 4.5D.04
T(3 (-1)) T(3 (7 + 1))	2.44477400000000+04 2.45314700000000+04	$(\pm / - 1.2D - 02)$	4.0D-04 2.2D 04
T(3 (+1)) T(3 (7 +1))	2.400147000000000000000000000000000000000	$(\pm/ 7.0D-01)$	3.3D-04 4 5D 04
T(3 + 1) T(3 + 1)	2.444750500000D+04 2 453173800000D+04	$(\pm / - 7.2D - 02)$ $(\pm / - 8.0D 02)$	4.0D-04 8 3D 04
$T(3 \ 8 \ -1)$	2.40517500000D+04 2.46257100000D+04	$(\pm / - 0.0D - 02)$	3 3D 04
$T(3 \ 8 \ \pm 1)$	2.40207100000D+04 2.45319300000D+04	$(\pm /_{-} 1.0D^{-01})$	1 9D_04
$T(3 \ 0 \ -1)$	2.462597500000D+04	$(\pm/-8.1D-01)$	8 7D-04
$T(3 \ 0 \ -1)$	$2.45315500000D \pm 04$	$(\pm / - 1.8D-02)$	3 3D-04
$T(3 \ 0 \ \pm 1)$	2.473013000000D+04	(+/-24D-01)	4 5D-04
T(3 9 + 1)	2.462614700000D+04	(+/-8.0D-02)	8.4D-04
$T(3 \ 10 \ -1)$	2.473052700000D+04	(+/-7.5D-02)	6.4D-04

Table C.2 Energy origins of "fluorescence series" of BeD isotopomer  $(cm^{-1})$  (Cont'd)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
T(311-1)2.47301300000D+04 $(+/-2.4D-01)$ 4.5D-04T(311+1)2.49693300000D+04 $(+/-2.4D-01)$ 3.3D-04T(311+1)2.49693300000D+04 $(+/-7.4D-02)$ 6.4D-04T(312-1)2.49698890000D+04 $(+/-7.4D-02)$ 8.7D-04T(312-1)2.48446900000D+04 $(+/-7.4D-02)$ 8.7D-04T(312+1)2.51039600000D+04 $(+/-7.4D-02)$ 8.7D-04T(312+1)2.51045990000D+04 $(+/-7.9D-02)$ 8.4D-04T(313-1)2.51045990000D+04 $(+/-7.9D-02)$ 8.4D-04T(313+1)2.52484100000D+04 $(+/-7.9D-02)$ 8.4D-04T(313+1)2.51045990000D+04 $(+/-7.9D-02)$ 8.4D-04T(314-1)2.52491960000D+04 $(+/-7.0D-02)$ 4.6D-04T(314+1)2.52491960000D+04 $(+/-7.0D-02)$ 4.6D-04T(314+1)2.52491960000D+04 $(+/-7.0D-02)$ 4.6D-04T(315+1)2.56667100000D+04 $(+/-7.0D-02)$ 4.5D-04T(315+1)2.56667100000D+04 $(+/-1.3D-01)$ 2.1D-04T(316+1)2.55667100000D+04 $(+/-1.3D-01)$ 2.2D-04T(316+1)2.55667100000D+04 $(+/-1.3D-01)$ 3.3D-04T(316+1)2.55667100000D+04 $(+/-1.3D-01)$ 3.3D-04T(316+1)2.55667100000D+04 $(+/-1$
T(311+1)2.49693300000D+04 $(+/-1.8D-01)$ 3.3D-04T(311+1)2.48451750000D+04 $(+/-7.4D-02)$ $6.4D-04$ T(312-1)2.49698890000D+04 $(+/-8.0D-02)$ $8.7D-04$ T(312+1)2.5103600000D+04 $(+/-8.0D-02)$ $8.7D-04$ T(312+1)2.5103600000D+04 $(+/-8.0D-02)$ $8.7D-04$ T(312+1)2.49698890000D+04 $(+/-8.0D-02)$ $8.7D-04$ T(313-1)2.51045990000D+04 $(+/-7.9D-02)$ $8.4D-04$ T(313-1)2.52484100000D+04 $(+/-1.3D-01)$ $2.1D-04$ T(313+1)2.52481960000D+04 $(+/-7.9D-02)$ $8.4D-04$ T(314-1)2.52491960000D+04 $(+/-7.0D-02)$ $4.6D-04$ T(314-1)2.52491960000D+04 $(+/-7.0D-02)$ $4.6D-04$ T(314+1)2.54027500000D+04 $(+/-7.0D-02)$ $4.6D-04$ T(315-1)2.5248100000D+04 $(+/-7.0D-02)$ $4.5D-04$ T(315-1)2.5248100000D+04 $(+/-7.0D-02)$ $4.5D-04$ T(315-1)2.5248100000D+04 $(+/-1.3D-01)$ $2.1D-04$ T(315+1)2.56667100000D+04 $(+/-1.3D-01)$ $2.2D-04$ T(315+1)2.56676920000D+04 $(+/-1.3D-01)$ $2.1D-04$ T(316+1)2.57402600000D+04 $(+/-1.3D-01)$ $3.3D-04$ T(316+1)2.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$T(3 \ 18 \ +1)$ 2.592445200000D+04 (+/- 6.8D-02) 3.3D-04
$T(3 \ 19 \ -1) \qquad 2.61168790000D + 04  (+/-7.0D-02) \qquad 4.6D-04$
$T(3 \ 19 \ -1) \qquad 2.592328000000D + 04 \ (+/- \ 1.8D - 01) \qquad 3.3D - 04$
T(3 19 +1) 2.631711700000D+04 (+/-7.0D-02) 4.6D-04
T(3 19 +1) 2.611687900000D+04 (+/-7.0D-02) 4.6D-04
$T(3 \ 20 \ -1) \qquad 2.631851200000D + 04  (+/-7.0D-02) \qquad 4.5D-04$
$T(3 \ 20 \ -1)$ 2.611550000000D+04 (+/- 2.2D-01) 4.1D-04
$T(3 \ 20 \ +1) \qquad 2.652760000000D + 04 \ (+/-1.8D-01) \qquad 3.3D-04$ $T(2 \ 20 \ +1) \qquad 2.651051200000D + 04 \ (+/-7.0D, 02) \qquad 4.5D, 04$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$T(3 \ 21 \ -1) \qquad 2.631711700000D + 04  (+/-7.0D-02) \qquad 4.6D-04$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$T(3 23 -1) = 2.037712300000D \pm 04 (\pm /-7.1D-02) = 4.1D-04 = 10000000000000000000000000000000000$
$T(3 \ 23 \ \pm 1)$ 2.01410300000D + 04 $(\pm/-1.3D-02)$ 4.0D-04 $T(3 \ 23 \ \pm 1)$ 2.79122000000D $\pm 0.4$ $(\pm/-1.3D-01)$ 2.1D 04
$T(3 \ 23 \ \pm 1)$ 2.12122000000D $\pm 04$ $(\pm / - 7.0D_{-}01)$ 2.1D-04 $T(3 \ 23 \ \pm 1)$ 2.697712300000D $\pm 04$ $(\pm / - 7.0D_{-}02)$ 4.1D 04
$T(3 \ 24 \ -1)$ 2.03111200000D+04 (+/- 7.1D-02) 4.1D-04 T(3 24 -1) 2.721408200000D+04 (+/- 7.1D-02) 4.5D-04
$T(3 \ 24 \ -1)$ 2.697535100000D+04 (+/- 7.1D-02) 4.6D-04

Table C.2 Energy origins of "fluorescence series" of BeD isotopomer  $(cm^{-1})$  (*Cont'd*)

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(3 \ 24 \ +1)$	2.745742000000D+04	(+/-2.2D-01)	4.1D-04
$T(3 \ 24 \ +1)$	2.721408200000D+04	(+/-7.1D-02)	4.5D-04
$T(3 \ 25 \ -1)$	2.74594690000D+04	(+/-7.1D-02)	4.5D-04
$T(3 \ 25 \ -1)$	2.72122000000D+04	(+/-1.3D-01)	2 1D-04
$T(3 \ 25 \ +1)$	2.72122000000D + 01 2.771094100000D + 04	(+/-71D-02)	4 6D-04
$T(3 \ 25 \ +1)$ $T(3 \ 25 \ +1)$	2.74594690000D+04	(+/-7.1D-02) (+/-7.1D-02)	4 5D-04
$T(3 \ 26 \ -1)$	2.71315100000D+01 2.771315100000D+04	(+/-7.1D-02) (+/-7.1D-02)	4 5D-04
$T(3 \ 26 \ -1)$	2.74574200000D+04	(+/-2.2D-01)	4 1D-04
$T(3 \ 26 \ +1)$	2.797257200000D+04	(+/-71D-02)	4 6D-04
$T(3 \ 26 \ +1)$ $T(3 \ 26 \ +1)$	2.771315100000D+04	(+/-71D-02)	4 5D-04
$T(3 \ 27 \ -1)$	2.797489900000D+04	(+/-82D-02)	9 1D-04
$T(3 \ 27 \ -1)$	2.771094100000D+04	(+/-7.1D-02)	4.6D-04
$T(3 \ 27 \ +1)$	2.824215000000D+04	(+/-2.2D-01)	4 1D-04
$T(3 \ 27 \ +1)$	2.797489900000D+04	(+/-8.2D-02)	9.1D-04
$T(3 \ 28 \ -1)$	2.824464800000D+04	(+/-7.1D-02)	4.5D-04
$T(3 \ 28 \ -1)$	2.797257200000D+04	(+/-7.1D-02)	4.6D-04
$T(3 \ 28 \ +1)$	2.85195700000D+04	(+/-1.8D-01)	3.3D-04
$T(3 \ 28 \ +1)$	2.824464800000D+04	(+/-7.1D-02)	4.5D-04
$T(3 \ 29 \ -1)$	2.85221250000D+04	(+/-7.0D-02)	3.3D-04
$T(3 \ 29 \ -1)$	2.82421500000D+04	(+/-2.2D-01)	4.1D-04
$T(3 \ 29 \ +1)$	2.880446200000D+04	(+/-7.2D-02)	4.6D-04
$T(3 \ 29 \ +1)$	2.852212500000D+04	(+/-7.0D-02)	3.3D-04
$T(3 \ 30 \ -1)$	2.880715100000D+04	(+/-7.0D-02)	3.3D-04
$T(3 \ 30 \ -1)$	2.851957000000D+04	(+/-1.8D-01)	3.3D-04
$T(3 \ 30 \ +1)$	2.909677000000D+04	(+/-1.8D-01)	3.3D-04
$T(3 \ 30 \ +1)$	2.880715100000D+04	(+/-7.0D-02)	3.3D-04
$T(3 \ 31 \ -1)$	2.909957400000D+04	(+/-7.0D-02)	3.3D-04
$T(3 \ 31 \ -1)$	2.880446200000D+04	(+/-7.2D-02)	4.6D-04
$T(3 \ 31 \ +1)$	2.939625700000D+04	(+/-8.3D-02)	9.1D-04
$T(3 \ 31 \ +1)$	2.909957400000D+04	(+/-7.0D-02)	3.3D-04
$T(3 \ 32 \ -1)$	2.939917700000D+04	(+/-7.3D-02)	4.5D-04
$T(3 \ 32 \ -1)$	2.909677000000D+04	(+/-1.8D-01)	3.3D-04
$T(3 \ 32 \ +1)$	2.939917700000D+04	(+/-7.3D-02)	4.5D-04
T(3 33 -1)	2.970577000000D+04	(+/- 7.1D-02)	3.3D-04
$T(3 \ 33 \ -1)$	2.939625700000D+04	(+/-8.3D-02)	9.1D-04
$T(3 \ 33 \ +1)$	3.00159800000D + 04	(+/-2.2D-01)	4.1D-04
$T(3 \ 33 \ +1)$	2.97057700000D + 04	(+/- 7.1D-02)	3.3D-04
$T(3 \ 34 \ -1)$	3.001916200000D+04	(+/-7.3D-02)	4.6D-04
$T(3 \ 34 \ +1)$	3.03359400000D + 04	(+/-1.8D-01)	3.3D-04
$T(3 \ 34 \ +1)$	3.001916200000D + 04	(+/-7.3D-02)	4.6D-04
$T(3 \ 35 \ -1)$	3.033911900000D+04	(+/-7.4D-02)	4.5D-04
$T(3 \ 35 \ -1)$	3.00159800000D + 04	(+/-2.2D-01)	4.1D-04
$T(3 \ 35 \ +1)$	3.033911900000D+04	(+/-7.4D-02)	4.5D-04
$T(3 \ 36 \ -1)$	3.06654900000D + 04	(+/- 1.1D-01)	1.6D-04
$T(3 \ 36 \ -1)$	3.033594000000D+04	(+/-1.8D-01)	3.3D-04
$T(3 \ 36 \ +1)$	3.06654900000D + 04	(+/-1.1D-01)	1.6D-04
$T(4 \ 6 \ -1)$	2.573235000000D+04	(+/-7.6D-02)	4.6D-04
$T(4 \ 6 \ +1)$	2.573262800000D+04	(+/-7.6D-02)	4.6D-04
$T(4 \ 7 \ -1)$	2.58039430000D+04	(+/-8.4D-02)	8.6D-04
$T(4 \ 7 \ +1)$	2.58855300000D+04	(+/-2.2D-01)	4.1D-04
$T(4 \ 7 \ +1)$	2.580418600000D+04	(+/-8.4D-02)	8.6D-04
$T(4 \ 8 \ -1)$	2.58856320000D+04	(+/- 8.4D-02)	8.6D-04
$T(4 \ 8 \ +1)$	2.597707000000D+04	(+/-2.2D-01)	4.1D-04
$T(4 \ 8 \ +1)$	2.588582800000D+04	(+/- 8.4D-02)	8.6D-04
$T(4 \ 9 \ -1)$	2.597743100000D+04	(+/-8.4D-02)	9.0D-04
$T(4 \ 9 \ -1)$	2.588553000000D+04	(+/-2.2D-01)	4.1D-04
$T(4 9 \pm 1)$	2.6078690000001)+04	(+/-2.2D-01)	4 11)-04

Table C.2 Energy origins of "fluorescence series" of BeD isotopomer  $(cm^{-1})$  (*Cont'd*)

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(4 \ 9 \ +1)$	2 59774310000D+04	(+/-84D-02)	9 0D-04
$T(4 \ 10 \ -1)$	2.60790620000D+04	(+/-84D-02)	9 1D-04
$T(4 \ 10 \ -1)$	2.59771900000D+04	(+/-2.2D-01)	4.1D-04
$T(4 \ 10 \ +1)$	2.60790620000D+04	(+/-84D-02)	9 1D-04
$T(4 \ 11 \ -1)$	2.61905400000D+04	(+/-7.8D-02)	6.5D-04
$T(4 \ 11 \ -1)$	2.60786900000D+04	(+/-2.2D-01)	4.1D-04
$T(4 \ 11 \ +1)$	2.63113200000D+04	(+/-2.2D 01) (+/-2.4D 01)	4 5D-04
$T(4 \ 11 \ +1)$	2.61905400000D+04	(+/-7.8D-02)	6.5D-04
$T(4 \ 12 \ -1)$	2.63118360000D + 04	(+/-7.3D-02)	4.1D-04
$T(4 \ 12 \ +1)$	2.63118360000D + 04	(+/-7.3D-02)	4.1D-04
$T(4 \ 13 \ -1)$	2.644284200000D+04	(+/-7.1D-02)	3.3D-04
$T(4 \ 13 \ -1)$	2.63113200000D + 04	(+/-2.4D-01)	4.5D-04
$T(4 \ 13 \ +1)$	2.644284200000D+04	(+/-7.1D-02)	3.3D-04
$T(4 \ 14 \ -1)$	2.658344200000D+04	(+/-7.3D-02)	4.6D-04
$T(4 \ 14 \ +1)$	2.673274900000D+04	(+/-7.3D-02)	4.6D-04
$T(4 \ 14 \ +1)$	2.658344200000D+04	(+/- 7.3D-02)	4.6D-04
T(4 15 -1)	2.67335700000D + 04	(+/- 1.2D-01)	2.0D-04
$T(4 \ 15 \ +1)$	$2.68921400000 \mathrm{D}{+}04$	(+/-2.4D-01)	4.5D-04
$T(4 \ 15 \ +1)$	$2.67335700000 \mathrm{D}{+}04$	(+/-1.2D-01)	2.0D-04
$T(4 \ 16 \ -1)$	$2.68931000000 \mathrm{D}{+}04$	(+/-1.2D-01)	2.0D-04
T(4 16 -1)	$2.673274900000\mathrm{D}{+}04$	(+/-7.3D-02)	4.6D-04
$T(4 \ 16 \ +1)$	2.70609000000D+04	(+/-2.2D-01)	4.1D-04
$T(4 \ 16 \ +1)$	2.68931000000D + 04	(+/-1.2D-01)	2.0D-04
$T(4 \ 17 \ -1)$	2.706187200000D+04	(+/-7.0D-02)	3.3D-04
$T(4 \ 17 \ -1)$	2.68921400000D+04	(+/-2.4D-01)	4.5D-04
$T(4 \ 17 \ +1)$	2.72386900000D+04	(+/-2.4D-01)	4.5D-04
$T(4 \ 17 \ +1)$	2.706187200000D+04	(+/-7.0D-02)	3.3D-04
$T(4 \ 18 \ -1)$	2.723982400000D+04	(+/-7.0D-02)	3.3D-04
$T(4 \ 18 \ -1)$	2.70609000000D+04	(+/-2.2D-01)	4.1D-04
$T(4 \ 18 \ +1)$	2.742562400000D+04	(+/-7.2D-02)	4.6D-04
$1(4 \ 18 \ +1)$ T(4 \ 10 \ 1)	2.723982400000D+04 2.742680200000D+04	(+/-7.0D-02)	3.3D-04
$T(4 \ 19 \ -1)$ $T(4 \ 10 \ 1)$	2.742080200000D+04 2.72286000000D+04	(+/-7.0D-02)	5.5D-04 4 5D 04
T(4 19 -1) $T(4 10 \pm 1)$	2.72380900000D+04 2.74268020000D+04	$(\pm / - 2.4D-01)$ $(\pm / - 7.0D, 02)$	4.5D-04 3 3D 04
$T(4 19 \pm 1)$ $T(4 20 \pm 1)$	2.742080200000D+04 2.762271900000D+04	$(\pm / - 7.0D - 02)$ $(\pm / - 7.0D - 02)$	3 3D-04
T(4 20 -1) T(4 20 -1)	2.702271300000D + 04 2.742562400000D + 04	(+/-7.0D-02) (+/-7.2D-02)	4.6D-04
$T(4 \ 20 \ -1)$ $T(4 \ 20 \ +1)$	2.742502400000D+04 2.78259000000D+04	(+/-2.2D-02) (+/-2.2D-01)	4.0D-04 4.1D-04
$T(4 \ 20 \ +1)$ $T(4 \ 20 \ +1)$	2.762271900000D+01 2.76227190000D+04	(+/-7.0D-02)	3 3D-04
$T(4 \ 21 \ -1)$	2.782735400000D+04	(+/-7.0D-02)	3 3D-04
$T(4 \ 21 \ +1)$	2.80390300000D+04	(+/-2.2D-01)	4.1D-04
$T(4 \ 21 \ +1)$	2.782735400000D+04	(+/-7.0D-02)	3.3D-04
$T(4 \ 22 \ -1)$	2.804062100000D+04	(+/-7.0D-02)	3.3D-04
T(4 22 -1)	2.78259000000D+04	(+/-2.2D-01)	4.1D-04
$T(4 \ 22 \ +1)$	2.82606500000D + 04	(+/-2.2D-01)	4.1D-04
$T(4 \ 22 \ +1)$	2.804062100000D+04	(+/-7.0D-02)	3.3D-04
T(4 23 -1)	2.82623600000D + 04	(+/-1.8D-01)	3.2D-04
$T(4 \ 23 \ -1)$	2.80390300000D + 04	(+/-2.2D-01)	4.1D-04
$T(4 \ 23 \ +1)$	2.849060700000D+04	(+/-7.3D-02)	4.6D-04
$T(4 \ 23 \ +1)$	$2.82623600000 \mathrm{D}{+04}$	(+/-1.8D-01)	3.2D-04
$T(4 \ 24 \ -1)$	$2.849238300000D{+}04$	(+/-7.3D-02)	4.6D-04
$T(4 \ 24 \ -1)$	$2.82606500000 \mathrm{D}{+}04$	(+/-2.2D-01)	4.1D-04
$T(4 \ 24 \ +1)$	2.87286800000D + 04	(+/-2.4D-01)	4.5D-04
$T(4 \ 24 \ +1)$	2.849238300000D+04	(+/-7.3D-02)	4.6D-04
$T(4 \ 25 \ -1)$	2.87305700000D+04	(+/-7.1D-02)	3.3D-04
$T(4 \ 25 \ -1)$	2.84906070000D+04	(+/-7.3D-02)	4.6D-04
$T(4 \ 25 \ +1)$	2.897477000000D+04	(+/-2.2D-01)	4.1D-04
$1(4 25 \pm 1)$	$2.87305700000000\pm04$	(+/-7)	3 31)-04

Table C.2 Energy origins of "fluorescence series" of BeD isotopomer  $(cm^{-1})$  (*Cont'd*)

T(v' i' p')	Energy Origin	Uncertainty	Sensitivity
T(4, 26, -1)	2 897667400000D⊥04	$(\perp/_{-}73D_{-}02)$	4 6D-04
T(4 26 -1) T(4 26 -1)	2.837007400000D+04 2.872868000000D±04	$(\pm /_{-} 2.4 D_{-}01)$	4.0D-04 4.5D-04
$T(4 \ 26 \ +1)$ $T(4 \ 26 \ +1)$	2.0120000000D + 04 2 92286000000D+04	(+/-2.4D-01) (+/-1.3D-01)	2 2D-04
$T(4 \ 26 \ +1)$ $T(4 \ 26 \ +1)$	2.52200000000D + 04 2.897667400000D+04	(+/-7.3D-01) (+/-7.3D-02)	4.6D-04
$T(4 \ 27 \ -1)$	2.031001400000D+04 2 923068600000D+04	(+/-7.3D-02) (+/-7.3D-02)	4.6D-04
$T(4 \ 27 \ -1)$	2.92500000000000000000000000000000000000	(+/-2.2D-01)	4 1D-04
$T(4 \ 27 \ +1)$	2.94900800000D+04	(+/-2.4D-01)	4 5D-04
$T(4 \ 27 \ +1)$	2.923068600000D+04	(+/-7.3D-02)	4.6D-04
$T(4 \ 28 \ -1)$	2.949229000000D+04	(+/-1.7D-01)	3.1D-04
$T(4 \ 28 \ -1)$	2.922860000000D+04	(+/-1.3D-01)	2.2D-04
$T(4 \ 28 \ +1)$	2.949229000000D+04	(+/-1.7D-01)	3.1D-04
$T(4 \ 29 \ -1)$	2.97613290000D + 04	(+/-7.2D-02)	3.3D-04
$T(4 \ 29 \ -1)$	2.94900800000D + 04	(+/-2.4D-01)	4.5D-04
$T(4 \ 29 \ +1)$	2.976132900000D + 04	(+/-7.2D-02)	3.3D-04
$T(4 \ 30 \ -1)$	3.00376150000D + 04	(+/-7.3D-02)	4.5D-04
$T(4 \ 30 \ +1)$	3.00376150000D + 04	(+/-7.3D-02)	4.5D-04
T(4 31 -1)	3.032100500000D+04	(+/-7.5D-02)	4.6D-04
$T(4 \ 31 \ +1)$	3.032100500000D + 04	(+/-7.5D-02)	4.6D-04
$T(4 \ 32 \ -1)$	3.061124300000D + 04	(+/-7.5D-02)	4.6D-04
$T(4 \ 32 \ +1)$	3.061124300000D + 04	(+/-7.5D-02)	4.6D-04
$T(4 \ 33 \ -1)$	3.09081600000D + 04	(+/-1.7D-01)	3.1D-04
$T(4 \ 33 \ +1)$	3.09081600000D + 04	(+/-1.7D-01)	3.1D-04
$T(4 \ 34 \ -1)$	3.121149700000D+04	(+/-7.6D-02)	3.3D-04
$T(4 \ 34 \ +1)$	3.121149700000D+04	(+/-7.6D-02)	3.3D-04
$T(4 \ 35 \ -1)$	3.15210860000D+04	(+/-8.8D-02)	9.1D-04
$T(4 \ 35 \ +1)$	3.152108600000D+04	(+/- 8.8D-02)	9.1D-04
$1(4 \ 30 \ -1)$ T(4 \ 26 \ +1)	3.183076400000D+04	(+/-8.6D-02)	4.6D-04
$1(4 \ 30 \ +1)$ T(5 $6 \ 1)$	3.183070400000D+04	(+/-8.0D-02)	4.0D-04 4.5D.04
$T(5 \ 6 \ \pm 1)$ $T(5 \ 6 \ \pm 1)$	2.704128000000D+04 2.704162700000D+04	$(\pm/-2.5D-01)$ $(\pm/-8.3D-02)$	4.5D-04 4.6D-04
$T(5 \ 0 \ \pm 1)$ $T(5 \ 7 \ -1)$	2.704102700000D+04 2.711088700000D+04	$(\pm / - 8.3D - 02)$	4.0D-04 4.5D-04
T(5 7 + 1) T(5 7 + 1)	2.71100070000D+04 2.71114100000D+04	(+/-82D-02) (+/-82D-02)	4.5D-04 4.5D-04
T(5 8 -1)	2.71902160000D+04	(+/-9.0D-02)	8 6D-04
$T(5 \ 8 \ +1)$	2.71904050000D+04	(+/-9.0D-02)	8.6D-04
T(5 9 -1)	2.727935500000D+04	(+/-8.9D-02)	8.6D-04
$T(5 \ 9 \ +1)$	2.727937900000D+04	(+/-8.9D-02)	8.6D-04
T(5 10 -1)	2.73780730000D + 04	(+/-9.0D-02)	9.0D-04
$T(5 \ 10 \ +1)$	2.73780730000D + 04	(+/-9.0D-02)	9.0D-04
$T(5 \ 11 \ -1)$	2.74863280000D + 04	(+/-9.0D-02)	9.0D-04
$T(5 \ 11 \ +1)$	2.748632800000D + 04	(+/-9.0D-02)	9.0D-04
$T(5 \ 12 \ -1)$	2.760408200000D+04	(+/-8.4D-02)	6.5 D-04
$T(5 \ 12 \ +1)$	2.760408200000D+04	(+/-8.4D-02)	6.5D-04
$T(5 \ 13 \ -1)$	2.77312360000D + 04	(+/-7.8D-02)	3.3D-04
$T(5 \ 13 \ +1)$	2.773123600000D+04	(+/-7.8D-02)	3.3D-04
$T(5 \ 14 \ -1)$	2.786770300000D+04	(+/-7.9D-02)	4.6D-04
$T(5 \ 14 \ +1)$	2.786770300000D+04	(+/-7.9D-02)	4.6D-04
$T(5 \ 15 \ -1)$ $T(5 \ 15 \ -1)$	2.801340500000D+04	(+/-7.8D-02)	3.3D-04
1(5 15 +1) T(5 16 1)	2.801340500000D + 04	(+/-7.8D-02)	3.3D-04
1(0 10 -1) T(5 16 +1)	2.81081000000000000000000000000000000000	(+/-1.8D-01)	3.1D-04 3.1D-04
T(5 10 +1) T(5 17 1)	2.0100100000000000000000000000000000000	$(\pm / - 1.6D - 01)$ $(\pm / - 7.7D - 02)$	3.1D-04 3.3D-04
T(5 17 - 1) T(5 17 + 1)	2.000190400000D+04	$(\pm / - 7.7 D - 02)$	3.3D-04 3.3D-04
$T(5 17 \pm 1)$ T(5 18 -1)	2.850457500000D+04 2.850457500000D+04	$(\pm / - 7.7 D - 02)$	3 3D-04
$T(5 \ 18 \ +1)$	2.850457500000D + 04 2.850457500000D + 04	(+/-77D-02)	3 3D-04
T(5 19 -1)	2.86859380000D + 04	(+/-7.9D-02)	4 5D-04
T(5 19 +1)	2.868593800000D+04	(+/-7.9D-02)	4.5D-04
T(5 20 -1)	2.88758930000D+04	(+/-7.9D-02)	4.5D-04

Table C.2 Energy origins of "fluorescence series" of BeD isotopomer  $(cm^{-1})$  (*Cont'd*)

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(5 \ 20 \ +1)$	2.88758930000D+04	(+/-7.9D-02)	4.5D-04
$T(5 \ 21 \ -1)$	2.90743260000D+04	(+/-7.9D-02)	4.5D-04
$T(5 \ 21 \ +1)$	2.907432600000D+04	(+/-7.9D-02)	4.5D-04
T(5 22 -1)	2.928104100000D+04	(+/-7.9D-02)	4.5D-04
T(5 22 +1)	2.928104100000D+04	(+/-7.9D-02)	4.5D-04
T(5 23 -1)	2.949587500000D+04	(+/-8.9D-02)	9.0D-04
$T(5 \ 23 \ +1)$	2.949587500000D+04	(+/-8.9D-02)	9.0D-04
$T(5 \ 24 \ -1)$	2.97188000000D+04	(+/-7.9D-02)	4.6D-04
$T(5 \ 24 \ +1)$	2.97188000000D+04	(+/-7.9D-02)	4.6D-04
$T(5 \ 25 \ -1)$	2.994949000000D+04	(+/-1.8D-01)	3.2D-04
$T(5 \ 25 \ +1)$	2.994949000000D+04	(+/-1.8D-01)	3.2D-04
$T(5 \ 26 \ -1)$	3.01878800000D+04	(+/-1.8D-01)	3.2D-04
$T(5 \ 26 \ +1)$	3.018788000000D+04	(+/-1.8D-01)	3.2D-04
$T(5 \ 27 \ -1)$	3.043378000000D+04	(+/-1.3D-01)	2.0D-04
$T(5 \ 27 \ +1)$	3.04337800000D+04	(+/-1.3D-01)	2.0D-04
$T(5 \ 28 \ -1)$	3.068688200000D+04	(+/-7.9D-02)	4.1D-04
$T(5 \ 28 \ +1)$	3.06868820000D+04	(+/-7.9D-02)	4.1D-04
T(5 29 -1)	3.094713700000D+04	(+/-7.9D-02)	3.3D-04
T(5 29 + 1)	3.094713700000D+04	(+/-7.9D-02)	3.3D-04
$T(5 \ 30 \ -1)$	3.12143400000D+04	(+/-1.3D-01)	2.1D-04
$T(5 \ 30 \ +1)$	3.12143400000D+04	(+/-1.3D-01)	2.1D-04
$T(5 \ 31 \ -1)$	3.14882260000D+04	(+/-8.2D-02)	4.6D-04
$T(5 \ 31 \ +1)$	3.14882260000D+04	(+/-8.2D-02)	4.6D-04
T(6 7 -1)	2.836696200000D+04	(+/-1.0D-01)	4.1D-04
$T(6 \ 7 \ +1)$	2.836717300000D+04	(+/-1.0D-01)	4.1D-04
$T(6 \ 8 \ -1)$	2.84438500000D+04	(+/-1.0D-01)	6.5D-04
$T(6 \ 8 \ +1)$	2.84440500000D+04	(+/-1.1D-01)	9.1D-04
$T(6 \ 9 \ -1)$	2.853016600000D+04	(+/-9.9D-02)	4.6D-04
$T(6 \ 9 \ +1)$	2.85302800000D+04	(+/-1.1D-01)	9.1D-04
$T(6 \ 10 \ -1)$	2.86258100000D+04	(+/-1.0D-01)	6.5D-04
$T(6 \ 10 \ +1)$	2.86259060000D + 04	(+/-9.8D-02)	4.5D-04
T(6 11 -1)	2.87307100000D + 04	(+/- 1.0D-01)	8.6D-04
$T(6 \ 11 \ +1)$	2.873078200000D+04	(+/-9.6D-02)	4.1D-04
$T(6 \ 12 \ -1)$	$2.88448090000 \mathrm{D}{+}04$	(+/-9.5D-02)	4.5D-04
$T(6 \ 12 \ +1)$	$2.88448540000\mathrm{D}{+}04$	(+/-9.9D-02)	6.5 D-04
$T(6 \ 13 \ -1)$	2.89679600000D + 04	(+/-1.0D-01)	9.1D-04
$T(6 \ 13 \ +1)$	$2.89679700000 \mathrm{D}{+}04$	(+/-1.4D-01)	2.1D-04
$T(6 \ 14 \ -1)$	$2.910018900000 \mathrm{D}{+}04$	(+/-9.4D-02)	4.1D-04
$T(6 \ 14 \ +1)$	$2.910018900000D{+}04$	(+/-9.4D-02)	4.1D-04
$T(6 \ 15 \ -1)$	$2.924128800000D{+}04$	(+/-9.4D-02)	4.1D-04
$T(6 \ 15 \ +1)$	2.924128800000D+04	(+/-9.4D-02)	4.1D-04
$T(6 \ 16 \ -1)$	2.939117900000D+04	(+/-9.3D-02)	3.3D-04
$T(6 \ 16 \ +1)$	2.939117900000D+04	(+/-9.3D-02)	3.3D-04
$T(6 \ 17 \ -1)$	2.95497230000D+04	(+/-9.2D-02)	3.3D-04
$T(6 \ 17 \ +1)$	2.954972300000D+04	(+/-9.2D-02)	3.3D-04
$T(6 \ 18 \ -1)$	2.971677000000D+04	(+/-1.5D-01)	2.3D-04
$T(6 \ 18 \ +1)$	2.971677000000D+04	(+/-9.3D-02)	4.6D-04
$T(6 \ 19 \ -1)$	2.98923560000D + 04	(+/-9.4D-02)	4.6D-04
$T(6 \ 19 \ +1)$	2.98923400000D+04	(+/-1.0D-01)	8.6D-04
$T(6 \ 20 \ -1)$	3.007613700000D+04	(+/-9.3D-02)	4.1D-04
$T(6 \ 20 \ +1)$	3.007613600000D+04	(+/-9.3D-02)	4.5D-04
$T(6 \ 21 \ -1)$	3.02680400000D+04	(+/-1.0D-01)	9.1D-04
$T(6 \ 21 \ +1)$	3.02680500000D+04	(+/-1.4D-01)	2.1D-04
$T(6 \ 22 \ -1)$	3.046796700000D+04	(+/-9.6D-02)	6.5D-04
$T(6 \ 22 \ +1)$	3.046796700000D+04	(+/-9.6D-02)	6.5D-04
$T(6 \ 23 \ -1)$	3.067568400000D+04	(+/-9.3D-02)	4.1D-04
$T(6 \ 23 \ \pm 1)$	$3.067568500000D \pm 04$	(+/-9.6D-02)	6 5D-04

Table C.2 Energy origins of "fluorescence series" of BeD isotopomer  $(cm^{-1})$  (*Cont'd*)

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$\begin{array}{ccc} T(6 & 24 & -1) \\ T(6 & 24 & +1) \end{array}$	$\substack{3.08911020000D+04\\3.089115800000D+04}$	(+/- 9.4D-02) (+/- 9.9D-02)	4.5D-04 7.7D-04

Table C.2 Energy origins of "fluorescence series" of BeD isotopomer  $(cm^{-1})$  (*Cont'd*)

# C.3 Energy Origins of BeT Isotopomer

Table C.3:	Energy Origi	ns of "Fluores	scence Series"	of BeT Iso-
topomer (c	$m^{-1})$			

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(0 \ 3 \ -1)$	1.97176200000D+04	(+/-1.7D-01)	3.3D-04
$T(0 \ 3 \ +1)$	1.97176200000D+04	(+/-1.7D-01)	3.3D-04
$T(0 \ 4 \ -1)$	1.97508400000D + 04	(+/-1.7D-01)	3.3D-04
$T(0 \ 4 \ +1)$	1.975084000000D+04	(+/-1.7D-01)	3.3D-04
T(0 5 - 1)	1.97926200000D + 04	(+/-1.7D-01)	3.3D-04
$T(0 \ 5 \ +1)$	1.97926200000D + 04	(+/-1.7D-01)	3.3D-04
$T(0 \ 6 \ -1)$	1.984198000000D+04	(+/-1.7D-01)	3.3D-04
$T(0 \ 6 \ +1)$	1.984198000000D+04	(+/-1.7D-01)	3.3D-04
$T(0 \ 7 \ -1)$	1.990002000000D+04	(+/-1.7D-01)	3.3D-04
$T(0 \ 7 \ +1)$	1.990002000000D+04	(+/-1.7D-01)	3.3D-04
$T(0 \ 8 \ -1)$	1.997000000000D+04	(+/-1.7D+02)	3.3D-01
$T(0 \ 8 \ +1)$	1.997000000000D+04	(+/-1.7D+02)	3.3D-01
$T(0 \ 9 \ -1)$	2.00406000000D+04	(+/-1.7D-01)	3.3D-04
$T(0 \ 9 \ +1)$	2.00406000000D+04	(+/- 1.7D-01)	3.3D-04
T(0 10 -1)	2.01230300000D + 04	(+/- 1.7D-01)	3.3D-04
$T(0 \ 10 \ +1)$	2.01230300000D + 04	(+/- 1.7D-01)	3.3D-04
T(0 11 -1)	2.02137500000D + 04	(+/- 1.7D-01)	3.3D-04
$T(0 \ 11 \ +1)$	$2.02137500000 \mathrm{D}{+}04$	(+/- 1.7D-01)	3.3D-04
$T(0 \ 12 \ -1)$	2.031224000000D+04	(+/-1.7D-01)	3.3D-04
$T(0 \ 12 \ +1)$	2.031224000000D+04	(+/-1.7D-01)	3.3D-04
$T(0 \ 13 \ -1)$	2.041888000000D + 04	(+/-1.7D-01)	3.3D-04
$T(0 \ 13 \ +1)$	2.041888000000D + 04	(+/-1.7D-01)	3.3D-04
$T(0 \ 14 \ -1)$	2.05333600000D + 04	(+/- 1.7D-01)	3.3D-04
$T(0 \ 14 \ +1)$	2.053336000000D + 04	(+/-1.7D-01)	3.3D-04
$T(0 \ 15 \ -1)$	2.06559300000D + 04	(+/-1.7D-01)	3.3D-04
$T(0 \ 15 \ +1)$	2.06559300000D + 04	(+/-1.7D-01)	3.3D-04
$T(0 \ 16 \ -1)$	2.07862300000D+04	(+/-1.7D-01)	3.3D-04
$T(0 \ 16 \ +1)$	2.07862300000D+04	(+/-1.7D-01)	3.3D-04
$T(0 \ 17 \ -1)$	2.09242900000D+04	(+/-1.8D-01)	3.3D-04
$T(0 \ 17 \ +1)$	2.09242900000D+04	(+/-1.8D-01)	3.3D-04
$T(0 \ 18 \ -1)$	2.107013000000D+04	(+/-1.8D-01)	3.3D-04
$T(0 \ 18 \ +1)$	2.107013000000D+04	(+/-1.8D-01)	3.3D-04
$T(0 \ 19 \ -1)$	2.122357000000D+04	(+/- 8.4D-01)	1.6D-04
T(0 19 +1) T(0 20 1)	2.12235700000000000000000000000000000000000	(+/-8.4D-01)	1.0D-04 1.6D-04
$T(0 \ 20 \ -1)$ $T(0 \ 20 \ +1)$	2.138489000000D+04 2.12848000000D+04	(+/- 8.4D-01)	1.0D-04 1.6D-04
$T(0 \ 20 \ +1)$ $T(0 \ 21 \ 1)$	2.138489000000D+04 2.155308000000D+04	(+/- 0.4D-01)	1.0D-04 3 3D 04
$T(0 \ 21 \ -1)$ $T(0 \ 21 \ \pm1)$	$2.15530800000D \pm 04$ 2.15530800000D \pm 04	(+/-1.8D-01) (+/-1.8D-01)	3.3D-04
$T(0 21 \mp 1)$ T(0 22 1)	2.133303000000D + 04 2.17201000000D + 04	$(\pm/1.8D-01)$	3.3D-04 3.3D 04
T(0 22 -1) T(0 22 +1)	2.17291000000D + 04 2.17291000000D + 04	(+/-1.8D-01) (+/-1.8D-01)	3.3D-04
T(0 22 + 1) T(0 23 - 1)	2.11201000000D + 04 2.191237000000D+04	(+/-1.0D-01) (+/-1.8D-01)	3 3D-04
$T(0 \ 23 \ +1)$ $T(0 \ 23 \ +1)$	2.191237000000D + 01 2.191237000000D+04	(+/-1.8D-01)	3 3D-04
T(0 24 -1)	2.101201000000D + 01 2.210280000000D + 04	(+/-1.8D-01)	3 3D-04
$T(0 \ 24 \ +1)$	2.210280000000D+04	(+/-1.8D-01)	3.3D-04
$T(0 \ 25 \ -1)$	2.230077000000D+04	(+/-1.8D-01)	3.3D-04
$T(0 \ 25 \ +1)$	2.230077000000D+04	(+/-1.8D-01)	3.3D-04
$T(0 \ 26 \ -1)$	2.250539000000D+04	(+/-1.8D-01)	3.3D-04
$T(0 \ 26 \ +1)$	2.250539000000D+04	(+/-1.8D-01)	3.3D-04
T(0 27 -1)	2.271707000000D+04	(+/-1.8D-01)	3.3D-04
$T(0 \ 27 \ +1)$	2.27170700000D + 04	(+/- 1.8D-01)	3.3D-04
T(0 28 -1)	$2.29358100000 \mathrm{D}{+}04$	(+/- 1.8D-01)	3.3D-04
$T(0 \ 28 \ +1)$	$2.29358100000 \mathrm{D}{+}04$	(+/- 1.8D-01)	3.3D-04
T(0 29 -1)	2.31609800000D + 04	(+/- 1.9D-01)	3.3D-04

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
T(0, 29, +1)	2.31609800000D+04	(+/-1.9D-01)	3 3D-04
$T(0 \ 30 \ -1)$	2.339331000000D+04	(+/-1.02.01) (+/-1.9D-01)	3 3D-04
$T(0 \ 30 \ +1)$	2.339331000000D+04	(+/-1.02.01) (+/-1.9D-01)	3 3D-04
T(0 31 -1)	2.363199000000D+04	(+/-1.02.01) (+/-1.9D-01)	3 3D-04
$T(0 \ 31 \ +1)$	2.363199000000D+04	(+/-1.9D-01)	3 3D-04
$T(0 \ 32 \ -1)$	2.387728000000D+04	(+/-1.02.01) (+/-1.00-01)	3 3D-04
$T(0 \ 32 \ +1)$ $T(0 \ 32 \ +1)$	2.387728000000D + 01 2 387728000000D + 04	(+/-1.9D-01)	3 3D-04
$T(0 \ 33 \ -1)$	2.36112600000D + 04 2.41287700000D + 04	(+/-1.9D-01) (+/-1.9D-01)	3.3D-04
$T(0 \ 33 \ +1)$	2.412877000000D+04	(+/-1.02.01) (+/-1.00-01)	3 3D-04
T(0 34 -1)	2.438657000000D+04	(+/-1.02.01) (+/-1.9D-01)	3 3D-04
$T(0 \ 34 \ +1)$	2.13865700000D + 01 2.43865700000D + 04	(+/-1.9D-01)	3 3D-04
T(0 35 -1)	2465039000000D+04	(+/-1.02.01) (+/-1.9D-01)	3 3D-04
$T(0 \ 35 \ +1)$	2.465039000000D+04	(+/-1.02.01) (+/-1.9D-01)	3 3D-04
$T(0 \ 36 \ -1)$	2.492041000000D+04	(+/-1.9D-01)	3 3D-04
$T(0 \ 36 \ +1)$	2.192011000000D + 01 2.492041000000D + 04	(+/-1.9D-01)	3 3D-04
$T(0 \ 37 \ -1)$	2.192011000000D + 01 2.519637000000D + 04	(+/-1.9D-01)	3 3D-04
$T(0 \ 37 \ +1)$	2.519637000000D + 04 2.519637000000D + 04	(+/-1.9D-01) (+/-1.9D-01)	3.3D-04
$T(0 \ 38 \ -1)$	2.547784000000D+04	(+/-1.9D-01)	3 3D-04
$T(0 \ 38 \ +1)$	2.54778400000D+04	(+/-1.9D-01)	3 3D-04
T(0 39 -1)	2.57654600000D+04	(+/-1.9D-01)	3 3D-04
$T(0 \ 39 \ +1)$	2.576546000000D + 04 2.576546000000D + 04	(+/-1.9D-01) (+/-1.9D-01)	3.3D-04
$T(1 \ 2 \ -1)$	2.098249000000D+04	(+/-1.8D-01)	3 3D-04
$T(1 \ 2 \ +1)$ $T(1 \ 2 \ +1)$	2.09824900000D + 01 2.098249000000D + 04	(+/-1.8D-01)	3 3D-04
$T(1 \ 3 \ -1)$	2.00021900000D + 01 2.100738000000D + 04	(+/-84D-01)	1 6D-04
$T(1 \ 3 \ +1)$	2.100738000000D+04	(+/-84D-01)	1.6D-04
$T(1 \ 4 \ -1)$	2.10396000000D+04	(+/-1.8D-01)	3 3D-04
$T(1 \ 4 \ +1)$	2.10396000000D + 01 2.10396000000D + 04	(+/-1.8D-01)	3 3D-04
$T(1 \ 5 \ -1)$	2.108052000000D+04	(+/-1.8D-01)	3 3D-04
$T(1 \ 5 \ +1)$	2.10805200000D+04	(+/-1.8D-01)	3.3D-04
$T(1 \ 6 \ -1)$	2.11288900000D+04	(+/-1.8D-01)	3.3D-04
T(1  6  +1)	2.112889000000D+04	(+/-1.8D-01)	3.3D-04
$T(1 \ 7 \ -1)$	2.118574000000D+04	(+/-1.8D-01)	3.3D-04
$T(1 \ 7 \ +1)$	2.11857400000D+04	(+/-1.8D-01)	3.3D-04
$T(1 \ 8 \ -1)$	2.125080000000D+04	(+/-1.8D-01)	3.3D-04
$T(1 \ 8 \ +1)$	2.12508000000D + 04	(+/-1.8D-01)	3.3D-04
$T(1 \ 9 \ -1)$	2.132362000000D+04	(+/-1.8D-01)	3.3D-04
$T(1 \ 9 \ +1)$	2.132362000000D+04	(+/-1.8D-01)	3.3D-04
$T(1 \ 10 \ -1)$	2.14044000000D+04	(+/-1.8D-01)	3.3D-04
$T(1 \ 10 \ +1)$	2.14044000000D+04	(+/-1.8D-01)	3.3D-04
$T(1 \ 11 \ -1)$	2.149312000000D+04	(+/-1.8D-01)	3.3D-04
$T(1 \ 11 \ +1)$	2.149312000000D+04	(+/-1.8D-01)	3.3D-04
T(1 12 -1)	2.158957000000D+04	(+/- 1.8D-01)	3.3D-04
$T(1 \ 12 \ +1)$	2.158957000000D + 04	(+/- 1.8D-01)	3.3D-04
$T(1 \ 13 \ -1)$	2.169391000000D+04	(+/-1.8D-01)	3.3D-04
$T(1 \ 13 \ +1)$	2.16939100000D + 04	(+/- 1.8D-01)	3.3D-04
T(1 14 -1)	2.18061900000D + 04	(+/-1.8D-01)	3.3D-04
$T(1 \ 14 \ +1)$	2.18061900000D + 04	(+/-1.8D-01)	3.3D-04
$T(1 \ 15 \ -1)$	2.19262800000D + 04	(+/- 1.8D-01)	3.3D-04
$T(1 \ 15 \ +1)$	2.19262800000D + 04	(+/- 1.8D-01)	3.3D-04
$T(1 \ 17 \ -1)$	2.21900000000D+04	(+/-1.7D+02)	3.3D-01
$T(1 \ 17 \ +1)$	2.21900000000D+04	(+/-1.7D+02)	3.3D-01
T(1 18 -1)	2.23300000000D+04	(+/-1.7D+02)	3.3D-01
$T(1 \ 18 \ +1)$	2.23300000000D+04	(+/-1.7D+02)	3.3D-01
$T(1 \ 19 \ -1)$	2.24800000000D+04	(+/-1.7D+02)	3.3D-01
$T(1 \ 19 \ +1)$	2.24800000000D+04	(+/-1.7D+02)	3.3D-01
$T(1 \ 20 \ -1)$	2.26400000000D + 04	(+/-1.7D+02)	3.3D-01
$T(1 \ 20 \ +1)$	$2.26400000000 \mathrm{D}{+}04$	(+/-1.7D+02)	3.3D-01

Table C.3 Energy origins of "fluorescence series" of BeT isotopomer  $(cm^{-1})$  (Cont'd)

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(1 \ 21 \ -1)$	2 28100000000D+04	(+/-1.7D+02)	3 3D-01
$T(1 \ 21 \ +1)$ $T(1 \ 21 \ +1)$	2.28100000000D+04	(+/-1.7D+02) (+/-1.7D+02)	3 3D-01
$T(1 \ 22 \ -1)$	2.29800000000D+04	(+/-1.7D+02)	3.3D-01
$T(1 \ 22 \ +1)$	2.29800000000000000000000000000000000000	(+/-1.7D+02)	3.3D-01
T(1 23 -1)	2.316000000000000000000000000000000000000	(+/-1.7D+02)	3.3D-01
$T(1 \ 23 \ +1)$	2.316000000000000000000000000000000000000	(+/-1.7D+02)	3 3D-01
$T(1 \ 24 \ -1)$	2.334411000000D+04	(+/-84D-01)	1 6D-04
$T(1 \ 24 \ +1)$	2.334411000000D+04	(+/- 8.4D-01)	1.6D-04
$T(1 \ 25 \ -1)$	2.354000000000000000000000000000000000000	(+/-1.7D+02)	3.3D-01
$T(1 \ 25 \ +1)$	2.354000000000000000000000000000000000000	(+/-1.7D+02)	3.3D-01
$T(1 \ 26 \ -1)$	2.374000000000D+04	(+/-1.7D+02)	3.3D-01
$T(1 \ 26 \ +1)$	2.37400000000D+04	(+/-1.7D+02)	3.3D-01
$T(1 \ 27 \ -1)$	2.39500000000D+04	(+/-1.7D+02)	3.3D-01
$T(1 \ 27 \ +1)$	2.39500000000D+04	(+/-1.7D+02)	3.3D-01
T(1 28 -1)	2.41593800000D + 04	(+/-8.4D-01)	1.6D-04
$T(1 \ 28 \ +1)$	2.41593800000D + 04	(+/-8.4D-01)	1.6D-04
$T(1 \ 30 \ -1)$	2.46100000000D + 04	(+/-2.4D+02)	4.6D-01
$T(1 \ 30 \ +1)$	2.46100000000D+04	(+/-1.7D+02)	3.3D-01
T(1 31 -1)	2.48400000000D+04	(+/-1.7D+02)	3.3D-01
$T(1 \ 31 \ +1)$	2.48400000000D+04	(+/-1.7D+02)	3.3D-01
T(1 32 -1)	2.50800000000D+04	(+/-1.7D+02)	3.3D-01
$T(1 \ 32 \ +1)$	2.50800000000D+04	(+/-1.7D+02)	3.3D-01
T(1 33 -1)	2.53300000000D + 04	(+/-1.7D+02)	3.3D-01
$T(1 \ 33 \ +1)$	2.53300000000D+04	(+/-1.7D+02)	3.3D-01
$T(2 \ 5 \ -1)$	2.23349600000D+04	(+/-1.8D-01)	3.3D-04
$T(2 \ 5 \ +1)$	2.23349600000D + 04	(+/-1.8D-01)	3.3D-04
$T(2 \ 6 \ -1)$	2.23829500000D + 04	(+/-1.8D-01)	3.3D-04
$T(2 \ 6 \ +1)$	2.23829500000D + 04	(+/-1.8D-01)	3.3D-04
$T(2 \ 7 \ -1)$	2.24381300000D + 04	(+/-1.8D-01)	3.3D-04
$T(2 \ 7 \ +1)$	2.24381300000D + 04	(+/-1.8D-01)	3.3D-04
$T(2 \ 8 \ -1)$	2.25014800000D + 04	(+/-8.4D-01)	1.6D-04
$T(2 \ 8 \ +1)$	2.25014800000D + 04	(+/-8.4D-01)	1.6D-04
$T(2 \ 9 \ -1)$	2.25730300000D + 04	(+/-8.4D-01)	1.6D-04
$T(2 \ 9 \ +1)$	2.25730300000D + 04	(+/-8.4D-01)	1.6D-04
$T(2 \ 10 \ -1)$	2.26520900000D + 04	(+/-1.8D-01)	3.3D-04
$T(2 \ 10 \ +1)$	2.26520900000D + 04	(+/-1.8D-01)	3.3D-04
$T(2 \ 11 \ -1)$	2.27390400000D + 04	(+/-1.8D-01)	3.3D-04
$T(2 \ 11 \ +1)$	2.27390400000D + 04	(+/-1.8D-01)	3.3D-04
$T(2 \ 12 \ -1)$	2.28335800000D + 04	(+/-8.4D-01)	1.6D-04
$T(2 \ 12 \ +1)$	2.283358000000D+04	(+/-8.4D-01)	1.6D-04
$T(2 \ 13 \ -1)$	2.293575000000D+04	(+/-1.8D-01)	3.3D-04
$T(2 \ 13 \ +1)$	2.293575000000D+04	(+/-1.8D-01)	3.3D-04
$T(2 \ 14 \ -1)$	2.304547000000D+04	(+/-1.8D-01)	3.3D-04
$T(2 \ 14 \ +1)$	2.304547000000D+04	(+/-1.8D-01)	3.3D-04
$T(2 \ 15 \ -1)$	2.316341000000D+04	(+/-1.8D-01)	3.3D-04
$T(2 \ 15 \ +1)$	2.316341000000D+04	(+/-1.8D-01)	3.3D-04
$T(2 \ 16 \ -1)$	2.328797000000D+04	(+/-1.9D-01)	3.3D-04
$T(2 \ 16 \ +1)$	2.328797000000D+04	(+/-1.9D-01)	3.3D-04
$T(2 \ 17 \ -1)$	2.342022000000D+04	(+/-1.9D-01)	3.3D-04
$1(2 \ 1( +1))$	2.342022000000D+04	(+/-1.9D-01)	3.3D-04
1(2 19 -1)	2.370698000000D+04	(+/-1.9D-01)	3.3D-04
1(2 19 +1) T(2 20 1)	2.370098000000D + 04	(+/-1.9D-01)	3.3D-04
$1(2 \ 20 \ -1)$ T(2 20 \ 1)	2.380138000000D + 04	(+/- 0.4D-01)	1.0D-04
$1(2 \ 20 \ +1)$ T(2 21 1)	2.380138000000D + 04	(+/- 0.4D-01)	1.0D-04 2.2D-01
$1(2 \ 21 \ -1)$ T(2 \ 21 \ 1)	2.402000000000D+04	(+/-1.(D+02))	3.3D-01 2.3D-01
$T(2 \ 21 \ \pm1)$ $T(2 \ 22 \ \pm1)$	2.4020000000000000000000000000000000000	$(\pm / - 1.7D \pm 02)$ $(\pm / - 8.4D + 01)$	3.3D-01 1 6D 04
I (2 22 -I)	2.41914900000D+04	$(\top / - 0.4D - 01)$	1.010-04

Table C.3 Energy origins of "fluorescence series" of BeT isotopomer  $(cm^{-1})$  (*Cont'd*)

$T(\mathbf{x}^{\prime}, \mathbf{i}^{\prime}, \mathbf{n}^{\prime})$	Energy Origin	Uncortainty	Sonsitivity
	Energy Origin		Sensitivity
$T(2 \ 22 \ +1)$	2.419149000000D+04	(+/-8.4D-01)	1.6D-04
$T(2 \ 23 \ -1)$	2.436772000000D+04	(+/- 8.4D-01)	1.6D-04
$T(2 \ 23 \ +1)$	2.436772000000D+04	(+/-8.4D-01)	1.6D-04
$T(2 \ 24 \ -1)$	2.455000000000D+04	(+/-1.7D+02)	3.3D-01
$T(2 \ 24 \ +1)$	2.455000000000D+04	(+/-1.7D+02)	3.3D-01
$T(2 \ 26 \ -1)$	2.49400000000D+04	(+/-1.7D+02)	3.3D-01
$T(2 \ 26 \ +1)$	2.49400000000D+04	(+/-1.7D+02)	3.3D-01
$T(2 \ 27 \ -1)$	2.51400000000D+04	(+/-1.7D+02)	3.3D-01
$T(2 \ 27 \ +1)$	2.51400000000D+04	(+/-1.7D+02)	3.3D-01
$T(2 \ 28 \ -1)$	2.535000000000D+04	(+/-1.7D+02)	3.3D-01
$T(2 \ 28 \ +1)$	2.535000000000D+04	(+/-1.7D+02)	3.3D-01
$T(3 \ 2 \ -1)$	2.34600000000D+04	(+/-1.7D+02)	3.3D-01
$T(3 \ 2 \ +1)$	2.34600000000D + 04	(+/-1.7D+02)	3.3D-01
$T(3 \ 3 \ -1)$	2.34800000000D+04	(+/-1.7D+02)	3.3D-01
$T(3 \ 3 \ +1)$	2.34800000000D + 04	(+/-1.7D+02)	3.3D-01
$T(3 \ 4 \ -1)$	2.351592000000D+04	(+/-1.9D-01)	3.3D-04
$T(3 \ 4 \ +1)$	2.351592000000D+04	(+/-1.9D-01)	3.3D-04
$T(3 \ 5 \ -1)$	2.355539000000D + 04	(+/-1.9D-01)	3.3D-04
$T(3 \ 5 \ +1)$	2.355539000000D + 04	(+/-1.9D-01)	3.3D-04
$T(3 \ 7 \ -1)$	2.365625000000D + 04	(+/-1.9D-01)	3.3D-04
$T(3 \ 7 \ +1)$	2.365625000000D + 04	(+/-1.9D-01)	3.3D-04
$T(3 \ 8 \ -1)$	2.37185500000D + 04	(+/-1.9D-01)	3.3D-04
$T(3 \ 8 \ +1)$	2.37185500000D + 04	(+/-1.9D-01)	3.3D-04
$T(3 \ 9 \ -1)$	2.379000000000D+04	(+/-1.7D+02)	3.3D-01
$T(3 \ 9 \ +1)$	2.379000000000D+04	(+/-1.7D+02)	3.3D-01
$T(3 \ 10 \ -1)$	2.386548000000D + 04	(+/-1.9D-01)	3.3D-04
$T(3 \ 10 \ +1)$	2.386548000000D + 04	(+/-1.9D-01)	3.3D-04
$T(3 \ 11 \ -1)$	2.395059000000D + 04	(+/-1.9D-01)	3.3D-04
$T(3 \ 11 \ +1)$	2.395059000000D+04	(+/-1.9D-01)	3.3D-04
$T(3 \ 12 \ -1)$	2.404319000000D+04	(+/-1.9D-01)	3.3D-04
$T(3 \ 12 \ +1)$	2.40431900000D + 04	(+/-1.9D-01)	3.3D-04
$T(3 \ 13 \ -1)$	2.414317000000D+04	(+/-1.9D-01)	3.3D-04
$T(3 \ 13 \ +1)$	2.414317000000D+04	(+/-1.9D-01)	3.3D-04
$T(3 \ 14 \ -1)$	2.42507800000D + 04	(+/-8.4D-01)	1.6D-04
$T(3 \ 14 \ +1)$	2.425078000000D+04	(+/-8.4D-01)	1.6D-04
$T(3 \ 15 \ -1)$	2.43653000000D + 04	(+/-1.9D-01)	3.3D-04
$T(3 \ 15 \ +1)$	2.43653000000D + 04	(+/-1.9D-01)	3.3D-04
$T(3 \ 16 \ -1)$	2.448751000000D+04	(+/-1.9D-01)	3.3D-04
$T(3 \ 16 \ +1)$	2.448751000000D+04	(+/-1.9D-01)	3.3D-04
$T(3 \ 17 \ -1)$	2.461664000000D+04	(+/-8.4D-01)	1.6D-04
$T(3 \ 17 \ +1)$	2.461664000000D + 04	(+/-8.4D-01)	1.6D-04
$T(3 \ 18 \ -1)$	$2.475376000000 \mathrm{D}{+}04$	(+/-1.9D-01)	3.3D-04
$T(3 \ 18 \ +1)$	2.475376000000D + 04	(+/-1.9D-01)	3.3D-04

Table C.3 Energy origins of "fluorescence series" of BeT isotopomer  $(cm^{-1})$  (*Cont'd*)

# Appendix D

# **Energy Origins of MgH Molecule**

The 713 energy origins of the MgH isotopomers calculated using DSParFit¹ are listed in Appendix D

The 270 energy origins of ²⁴MgH isotopomer are listed in Table D.1. The 59 energy origins of ²⁵MgH isotopomer are listed in Table D.2. The 59 energy origins of ²⁶MgH isotopomer are listed in Table D.3. The 202 energy origins of ²⁴MgD isotopomer are listed in Table D.4. The 63 energy origins of ²⁵MgD isotopomer are listed in Table D.5. The 60 energy origins of ²⁶MgD isotopomer are listed in Table D.6.

¹Robert J. Le Roy, Dept. of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1

# D.1 Energy Origins of ²⁴MgH Isotopomer

Table D.1: Energy Origins of "Fluorescence Series" of  $^{24}\mathrm{MgH}$  Isotopomer (cm $^{-1})$ 

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(0 \ 0 \ +1)$	2.208236800000D+04	(+/-7.5D-02)	3.4D-04
$T(0 \ 1 \ +1)$	2.208754330000D+04	(+/-9.3D-03)	2.4D-05
$T(0 \ 2 \ +1)$	2.209793300000D+04	(+/-1.2D-02)	4.1D-05
$T(0 \ 3 \ +1)$	2.211348850000D+04	(+/-8.3D-03)	1.7D-05
$T(0 \ 4 \ +1)$	2.213423010000D+04	(+/-8.8D-03)	2.2D-05
$T(0 \ 5 \ +1)$	2.216013700000D+04	(+/-1.1D-02)	3.9D-05
$T(0 \ 6 \ +1)$	2.219119600000D+04	(+/-1.1D-02)	3.9D-05
$T(0 \ 7 \ +1)$	2.222738360000D + 04	(+/-8.2D-03)	2.3D-05
$T(0 \ 8 \ +1)$	2.226871820000D + 04	(+/-6.4D-03)	1.7D-05
$T(0 \ 9 \ +1)$	2.231513610000D + 04	(+/-6.4D-03)	1.7D-05
$T(0 \ 10 \ +1)$	2.236663770000D + 04	(+/-8.0D-03)	2.2D-05
$T(0 \ 11 \ +1)$	2.242320480000D+04	(+/-8.0D-03)	2.0D-05
$T(0 \ 12 \ +1)$	2.248478380000D + 04	(+/-6.9D-03)	1.7D-05
$T(0 \ 13 \ +1)$	2.255135300000D+04	(+/-2.2D-02)	9.4D-05
$T(0 \ 14 \ +1)$	2.262293330000D+04	(+/-8.7D-03)	2.0D-05
$T(0 \ 15 \ +1)$	2.269940830000D+04	(+/-9.3D-03)	2.9D-05
$T(0 \ 16 \ +1)$	2.278077850000D+04	(+/-8.0D-03)	2.2D-05
$T(0 \ 17 \ +1)$	2.28670360000D+04	(+/-1.0D-02)	2.9D-05
$T(0 \ 18 \ +1)$	2.29581000000D+04	(+/-1.0D-02)	1.7D-05
$T(0 \ 19 \ +1)$	2.305395000000D+04	(+/-1.1D-02)	2.2D-05
$T(0 \ 20 \ +1)$	2.315449100000D+04	(+/-1.2D-02)	1.6D-05
$T(0 \ 21 \ +1)$	2.325975900000D+04	(+/-1.2D-02)	2.2D-05
$T(0 \ 22 \ +1)$	2.336969400000D+04	(+/-1.3D-02)	2.3D-05
$T(0 \ 23 \ +1)$	2.348420700000D+04	(+/-1.7D-02)	5.4D-05
$T(0 \ 24 \ +1)$	2.360329100000D+04	(+/-1.5D-02)	2 4D-05
$T(0 \ 25 \ +1)$	2.37268650000D+04	(+/-1.6D-02)	2.1D 00 2.4D-05
$T(0 \ 26 \ +1)$ $T(0 \ 26 \ +1)$	2.385487900000D+04	(+/-1.02.02) (+/-1.7D-02)	2.1D-05
$T(0 \ 27 \ +1)$ $T(0 \ 27 \ +1)$	2.398731300000D+04	(+/-1.9D-02)	2.1D-05
$T(0 \ 28 \ +1)$ $T(0 \ 28 \ +1)$	2.000101000000D + 01 2.412409600000D + 04	(+/-3.9D-02)	1.6D-04
$T(0 \ 20 \ +1)$ $T(0 \ 29 \ +1)$	2.41240500000D + 04 2.426517600000D + 04	(+/-3.5D-02) (+/-3.8D-02)	1.5D-04 1.5D-04
$T(0 \ 20 \ +1)$ $T(0 \ 30 \ +1)$	2.420911000000D + 01 2.441050700000D + 04	(+/-4.1D-02)	1.5D-04
$T(0 \ 30 \ +1)$ $T(0 \ 31 \ +1)$	2.441050100000D + 04 2 456001900000D + 04	(+/-4.1D-02) (+/-4.5D-02)	1.3D-04 1.4D-04
$T(0 \ 32 \ +1)$	2.450001500000D + 04 2 471368600000D + 04	(+/-4.0D-02) (+/-64D-02)	2 3D-04
$T(0 \ 32 \ +1)$ $T(0 \ 33 \ +1)$	2.47130000000D + 04 2.487137700000D + 04	(+/-7.4D-02) (+/-7.4D-02)	2.5D-04 2.7D-04
$T(0 \ 34 \ \pm 1)$ $T(0 \ 34 \ \pm 1)$	2.401191100000D + 04 2 503309400000D ± 04	(+/-7.4D-02) (+/-8.4D-02)	2.1D-04 3.0D-04
$T(0 \ 35 \ +1)$ $T(0 \ 35 \ +1)$	2.505505400000D+04 2.51987000000D+04	(+/-0.4D-02) (+/-1.1D-01)	3.4D-04
$T(0 \ 36 \ \pm 1)$	2.515670000000D + 04 2.536821000000D ± 04	(+/-1.1D-01) (+/-1.2D-01)	3.4D-04 3.4D-04
$T(0 \ 37 \ \pm 1)$ $T(0 \ 37 \ \pm 1)$	2.55002100000000000000000000000000000000	(+/-1.2D-01) (+/-1.2D-01)	3.0D 04
$T(0 \ 38 \ \pm 1)$	2.5341500000000000000000000000000000000000	$(\pm/ 1.2D-01)$	1.6D 04
$T(0 \ 30 \ \pm 1)$ $T(0 \ 30 \ \pm 1)$	$2.571882000000D \pm 04$ 2 580041000000D \pm 04	$(\pm/$ 1.5D-01)	3 4D 04
$T(0 \ 59 \ \pm 1)$ $T(0 \ 40 \ \pm 1)$	2.589941000000D+04 2.60840100000D+04	$(\pm/ 1.5D-01)$	3.4D-04
$T(0 \ 40 \ \pm 1)$ $T(0 \ 41 \ \pm 1)$	2.003401000000D + 04 2.627424000000D + 04	(+/-1.7D-01) (+/-2.3D-01)	6 0D 04
$T(0 \ 41 \ \pm1)$ $T(0 \ 42 \ \pm1)$	2.021424000000D+04 2.646367000000D+04	$(\pm/2.3D-01)$ $(\pm/2.1D.01)$	0.0D-04 4 2D 04
T(0 42 +1) T(1 0 +1)	2.040307000000000000000000000000000000000	(+/-2.1D-01)	4.2D-04
$T(1 \ 0 \ \pm 1)$ $T(1 \ 1 \ \pm 1)$	2.200141400000D+04 2 280265840000D+04	$(\pm / 8.9D-02)$	2.2D-04 1 7D 05
T(1 + 1) T(1 + 1)	2.209200040000D + 04 2 200307110000D + 04	$(\pm / 8.2D 03)$	1.7D-00 1.2D-05
$T(1 2 \pm 1)$ $T(1 2 \pm 1)$	2.290307110000D + 04 2.201867660000D + 04	$(\pm / 2400)$	1.2D-00 1.7D-05
$T(1 \rightarrow +1)$ $T(1 \rightarrow +1)$	2.2910070000000000000000000000000000000000	(+/-0.4D-03)	
T(1 + 1) T(1 + 1)	2.293941030000000+04 2 2065456500000+04	$(\pm / - 0.0D - 0.0)$	1.9D-00 1.9D-05
$T(1  0  \pm 1)$ $T(1  e  \pm 1)$	2.29004000000000000000000000000000000000	(+/-7.3D-03)	1.2D-00 1.2D-05
$T(1 \ 0 \ \pm 1)$ $T(1 \ 7 \ \pm 1)$	2.299000260000000+04 2.30398099000000+04	(+/-7.00-03)	1.3D-03 1.3D-05
T(1 + 1) T(1 + 1)	2.3032692300000D + 04 2.307431440000D + 04	$(\pm / - 7.0D-03)$ $(\pm / -7.1D-03)$	1.3D-03 1.4D-05
I(I 0 +I)	2.001401440000D⊤04	(⊤/- i.iD-00)	1.417-00

			~
$T(\mathbf{v}' \mathbf{j}' \mathbf{p}')$	Energy Origin	Uncertainty	Sensitivity
$T(1 \ 9 \ +1)$	2.312085720000D+04	(+/-7.0D-03)	1.3D-05
$T(1 \ 10 \ +1)$	2.317248120000D+04	(+/-8.0D-03)	2.1D-05
$T(1 \ 11 \ +1)$	2.32291630000D+04	(+/-1.0D-02)	3.6D-05
$T(1 \ 12 \ +1)$ $T(1 \ 12 \ +1)$	2.329090130000D+04	(+/-85D-03)	2.3D-05
$T(1 \ 12 \ +1)$ $T(1 \ 13 \ \pm1)$	2.325050150000D + 04 2.335795020000D + 04	$(\pm /_{-} 7 4 D_{-} 03)$	1.00-00
$T(1 \ 10 \ +1)$ $T(1 \ 14 \ +1)$	2.333733020000D + 04 2.342842400000D + 04	(+/-2.7D.02)	1.2D-00
$T(1 \ 14 \ \pm 1)$ $T(1 \ 15 \ \pm 1)$	2.342842400000D + 04	(+/-3.7D-02)	1.7D-04
$T(1 \ 10 \ \pm 1)$ $T(1 \ 16 \ \pm 1)$	2.330342390000D+04	(+/-9.9D-03)	2.3D-03 1.9D-04
$T(1 \ 10 \ \pm 1)$ $T(1 \ 17 \ \pm 1)$	2.338082300000D+04	(+/-2.7D-02)	1.2D-04
$I(1 \ 1( +1))$	2.307314070000D+04	(+/-9.9D-03)	2.3D-05
$1(1 \ 18 \ +1)$	2.376422000000D+04	(+/-1.0D-02)	1.7D-05
$1(1 \ 19 \ +1)$ T(1 \ 20 \ +1)	2.386002600000D+04	(+/-1.1D-02)	1.7D-05
$T(1 \ 20 \ +1)$	2.396052500000D+04	(+/-1.1D-02)	2.2D-05
$T(1 \ 21 \ +1)$	2.406564400000D+04	(+/-1.2D-02)	1.7D-05
$T(1 \ 22 \ +1)$	2.417535600000D+04	(+/-1.3D-02)	2.2D-05
$T(1 \ 23 \ +1)$	2.428990900000D+04	(+/-3.2D-02)	2.4D-05
$T(1 \ 24 \ +1)$	2.440841200000D+04	(+/-1.4D-02)	1.7 D-05
$T(1 \ 25 \ +1)$	2.453189400000D+04	(+/-1.5D-02)	1.7 D-05
$T(1 \ 26 \ +1)$	2.465900700000D+04	(+/-1.8D-02)	2.3D-05
$T(1 \ 27 \ +1)$	2.479083400000D+04	(+/-1.6D-02)	2.4D-05
$T(1 \ 28 \ +1)$	2.492711400000D+04	(+/-1.8D-02)	2.4D-05
$T(1 \ 29 \ +1)$	2.506753900000D+04	(+/-2.0D-02)	2.4D-05
$T(1 \ 30 \ +1)$	2.521205400000D+04	(+/-2.3D-02)	2.4D-05
$T(1 \ 31 \ +1)$	2.536063200000D+04	(+/-4.0D-02)	1.3D-04
$T(1 \ 32 \ +1)$	2.55132280000D+04	(+/-5.3D-02)	1.6D-04
$T(1 \ 33 \ +1)$	2.56705800000D+04	(+/-10D-01)	4 2D-04
$T(1 \ 34 \ +1)$ $T(1 \ 34 \ +1)$	2.583027000000D+04	(+/-1.02.01) (+/-1.10-01)	4 2D-04
$T(1 \ 35 \ +1)$ $T(1 \ 35 \ +1)$	2.503021000000D + 04 2.599452000000D + 04	(+/-1.1D-01) (+/-1.2D-01)	4.2D-04 4.2D-04
$T(1 \ 36 \ \pm 1)$ $T(1 \ 36 \ \pm 1)$	2.000000000000000000000000000000000000	$(\pm /_{-} 1.2D-01)$	4.2D-04
$T(1 \ 30 \ \pm 1)$ $T(1 \ 37 \ \pm 1)$	2.610252000000D + 04 2.633418000000D + 04	(+/-1.3D-01)	4.2D-04
$T(1 \ 39 \ \pm 1)$ $T(1 \ 39 \ \pm 1)$	2.03341000000D + 04 2.65004400000D + 04	(+/-1.4D-01)	4.2D-04
$T(1 \ 30 \ \pm 1)$ $T(1 \ 20 \ \pm 1)$	2.030944000000D+04 2.66881000000D+04	(+/-1.5D-01)	4.2D-04
$T(1 \ 59 \ \pm 1)$ $T(1 \ 40 \ \pm 1)$	2.008819000000D+04	(+/-1.7D-01)	4.2D-04
$I(1 \ 40 \ +1)$	2.087042000000D+04	(+/-1.8D-01)	4.2D-04
$1(1 \ 41 \ +1)$	2.705609000000D+04	(+/-1.9D-01)	4.2D-04
$1(2 \ 1 \ +1)$	2.307408200000D+04	(+/-9.6D-02)	4.2D-04
$T(2 \ 2 \ +1)$	2.368476800000D+04	(+/-9.5D-02)	4.2D-04
$T(2 \ 3 \ +1)$	2.37004090000D+04	(+/-9.5D-02)	4.2D-04
$T(2 \ 4 \ +1)$	2.372006200000D+04	(+/-9.4D-02)	4.2D-04
$T(2 \ 5 \ +1)$	2.374671600000D+04	(+/-6.5D-02)	3.0D-04
$T(2 \ 6 \ +1)$	2.377794300000D+04	(+/-5.8D-02)	2.7D-04
$T(2 \ 7 \ +1)$	2.381431800000D+04	(+/-2.3D-02)	9.7D-05
$T(2 \ 8 \ +1)$	2.385571200000D+04	(+/-9.3D-02)	4.2D-04
$T(2 \ 9 \ +1)$	2.390226300000D+04	(+/-2.9D-02)	1.2D-04
$T(2 \ 10 \ +1)$	2.395382400000D+04	(+/-4.3D-02)	2.0D-04
$T(2 \ 11 \ +1)$	2.401046700000D+04	(+/-3.5D-02)	1.5D-04
$T(2 \ 12 \ +1)$	2.407214200000D + 04	(+/-4.9D-02)	2.3D-04
$T(2 \ 13 \ +1)$	2.41386600000D + 04	(+/-3.5D-02)	1.6D-04
$T(2 \ 14 \ +1)$	2.42101900000D + 04	(+/-2.9D-02)	1.3D-04
$T(2 \ 15 \ +1)$	2.428661600000D + 04	(+/-3.4D-02)	1.5D-04
$T(2 \ 16 \ +1)$	2.436791800000D + 04	(+/-3.5D-02)	1.6D-04
$T(2 \ 17 \ +1)$	2.445398700000D + 04	(+/- 3.0D-02)	1.3D-04
$T(2 \ 18 \ +1)$	2.454487400000D+04	(+/- 3.1D-02)	1.4D-04
$T(2 \ 19 \ +1)$	2.46406510000D + 04	(+/-3.2D-02)	1.4D-04
$T(2 \ 20 \ +1)$	2.474154200000D+04	(+/-3.3D-02)	1.5 D - 04
$T(2 \ 21 \ +1)$	2.484827200000D+04	(+/-3.6D-02)	1.6D-04
$T(2 \ 22 \ +1)$	2.49558070000D+04	(+/-4.6D-02)	2.0D-04
$T(3 \ 1 \ +1)$	2.44333100000D+04	(+/-1.3D-01)	6.0D-04
$T(3 \ 2 \ +1)$	2.44436500000D+04	(+/-6.5D-02)	3.0D-04
- (~ - · +)		(,,	· · ·

Table D.1 Energy origins of "fluorescence series" of  $^{24}\mathrm{MgH}$  isotopomer (cm^{-1}) (Cont'd)

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(3 \ 3 \ +1)$	2.44592560000D + 04	(+/-6.5D-02)	3.0D-04
$T(3 \ 4 \ +1)$	2.447999000000D+04	(+/-4.9D-02)	2.3D-04
$T(3 \ 5 \ +1)$	2.45059300000D+04	(+/-5.3D-02)	2.4D-04
$T(3 \ 6 \ +1)$	2453700900000D+04	(+/-49D-02)	2.3D-04
$T(3 \ 7 \ +1)$	2.457319000000D+04	(+/-5.3D-02)	2.00 01 2.4D-04
$T(3 \ 8 \ \pm 1)$	2.161015000000D + 01 2.461455500000D + 04	$(\pm /_{-} 4 \text{ gD}_{-} 02)$	2.10 01 $2.3D_{-}04$
T(3 0 + 1) T(3 0 + 1)	2.461400000000000000000000000000000000000	(+/-4.0D-02) (+/-4.0D-02)	2.5D-04 2.3D 04
$T(3 \ 10 \ \pm 1)$ $T(3 \ 10 \ \pm 1)$	2.400100400000D + 04 $2.471245100000D \pm 04$	$(\pm /_{-} 5 3D_{-}02)$	2.5D-04 2 4D-04
T(3 10 + 1) $T(3 11 \pm 1)$	2.471240100000D + 04 2.476005700000D + 04	(+/-65D.02)	2.4D-04 3.0D 04
$T(3 11 \pm 1)$ $T(3 12 \pm 1)$	2.470900700000000000000000000000000000000	$(\pm / 5.3D - 02)$	2.00-04
$T(3 \ 12 \ \pm 1)$ $T(2 \ 12 \ \pm 1)$	2.485075700000D + 04 2.48074000000D + 04	(+/-3.3D-02)	2.4D-04 2.0D 04
$T(3 \ 13 \ \pm 1)$ $T(2 \ 14 \ \pm 1)$	2.48974900000D+04 2.40606100000D+04	$(\pm / 65D.02)$	2.0D-04
$T(3 \ 14 \ \pm 1)$ $T(2 \ 15 \ \pm 1)$	2.490901900000D+04	(+/-0.5D-02)	3.0D-04
$T(3 \ 10 \ \pm 1)$ $T(2 \ 17 \ \pm 1)$	2.504042500000D+04	(+/-4.5D-02)	2.0D-04 4.2D-04
$T(3 \ 1( +1))$ $T(2 \ 10 \ +1)$	2.520094000000D+04	(+/-9.2D-02)	4.2D-04 2.0D-04
$T(3 \ 10 \ \pm 1)$ $T(2 \ 10 \ \pm 1)$	2.529855500000D+04	(+/-0.5D-02)	3.0D-04
1(3 19 +1)	2.53936860000000000000000000000000000000000	(+/-6.6D-02)	3.0D-04
$1(3 \ 20 \ +1)$	2.549340900000D+04	(+/-7.0D-02)	3.4D-04
$1(3 \ 21 \ +1)$	2.559761100000D+04	(+/-6.6D-02)	3.0D-04
$T(3 \ 22 \ +1)$	2.570633300000D+04	(+/-7.6D-02)	3.4D-04
$T(3 \ 23 \ +1)$	2.581954500000D+04	(+/-6.7D-02)	3.0D-04
$T(3 \ 24 \ +1)$	2.593727000000D+04	(+/-7.7D-02)	3.4D-04
$T(4 \ 0 \ +1)$	2.516383200000D+04	(+/-9.1D-02)	4.2D-04
$T(4 \ 1 \ +1)$	2.516880700000D+04	(+/-6.4D-02)	3.0D-04
$T(4 \ 2 \ +1)$	2.517923400000D+04	(+/-6.5D-02)	3.0D-04
$T(4 \ 3 \ +1)$	2.519467000000D+04	(+/-7.4D-02)	3.4D-04
$T(4 \ 4 \ +1)$	2.521538600000D+04	(+/-5.8D-02)	2.7D-04
$T(4 \ 5 \ +1)$	2.524118200000D+04	(+/-4.9D-02)	2.3D-04
$1(4 \ 6 \ +1)$	2.527209500000D+04	(+/-6.4D-02)	3.0D-04
$T(4 \ 7 \ +1)$	2.530814200000D+04	(+/-7.4D-02)	3.4D-04
$T(4 \ 8 \ +1)$	2.534876200000D+04	(+/-4.9D-02)	2.3D-04
$T(4 \ 9 \ +1)$	2.539507500000D+04	(+/-4.9D-02)	2.3D-04
$T(4 \ 10 \ +1)$	2.544614000000D+04	(+/-4.9D-02)	2.3D-04
$T(4 \ 11 \ +1)$ $T(4 \ 10 \ +1)$	2.550226700000D+04	(+/-4.9D-02)	2.3D-04
$1(4 \ 12 \ +1)$ T(4 \ 12 \ +1)	2.556329500000D+04	(+/-5.3D-02)	2.4D-04
$1(4 \ 13 \ +1)$	2.562918200000D+04	(+/-5.3D-02)	2.4D-04
$1(4 \ 14 \ +1)$ T(4 \ 15 \ +1)	2.569986700000D+04	(+/-6.5D-02)	3.0D-04
$1(4 \ 15 \ +1)$ T(4 \ 16 \ +1)	2.577537700000D+04	(+/-0.3D-02)	2.9D-04
$1(4 \ 10 \ +1)$ T(4 \ 17 \ +1)	2.585570500000D+04	(+/-0.5D-02)	3.0D-04
$T(4 \ 17 \ \pm 1)$ $T(4 \ 18 \ \pm 1)$	2.594098500000D+04	(+/-5.8D-02)	2.7D-04 2.4D-04
$T(4 \ 10 \ \pm 1)$ $T(4 \ 10 \ \pm 1)$	2.003007300000D+04 2.61240040000D+04	(+/-5.4D-02)	2.4D-04
$T(4 19 \pm 1)$ $T(4 20 \pm 1)$	2.012499400000D+04 2.62241020000D+04	(+/-0.0D-02)	3.0D-04
$T(4 \ 20 \ \pm 1)$ $T(4 \ 21 \ \pm 1)$	2.022419300000D+04 2.632846100000D+04	(+/-0.0D-02)	3.0D-04 2.4D-04
$T(4 \ 21 \ \pm 1)$ $T(5 \ 0 \ \pm 1)$	2.032840100000D + 04 2.58761000000D + 04	(+/-0.1D-02)	2.4D-04 4.2D-04
$T(5 \ 0 \ \pm 1)$ $T(5 \ 1 \ \pm 1)$	2.58701000000D + 04 2.588100700000D + 04	(+/-9.1D-02)	4.2D-04
$T(5 \ 1 + 1)$ $T(5 \ 2 + 1)$	2.388109700000D + 04 2.580138700000D + 04	(+/-0.4D-02)	3.0D-04
$T(5 \ 2 \ \pm 1)$ $T(5 \ 3 \ \pm 1)$	2.589138700000D+04 2.59067500000D+04	$(\pm / - 0.4D - 02)$	3.0D-04
$T(5 \ 5 \ +1)$ $T(5 \ 4 \ +1)$	2.590079000000D + 04 2.592721000000D + 04	(+/-0.4D-02) (+/-6.4D-02)	3.0D-04
$T(5 4 \pm 1)$ $T(5 5 \pm 1)$	2.592721000000D+04 2.595277200000D+04	$(\pm/-6.4D-02)$	3.0D-04
$T(5 6 \pm 1)$ T(5 6 ±1)	$2.59833580000D \pm 04$	(+/-64D-02)	3 0D-04
$T(5 7 \pm 1)$	2.601903900000D + 04	(+/-5.8D-02)	2.01-04
$T(5 8 \pm 1)$	2.605974700000D + 04	(+/-5.02)	2.10-04 2 7D-04
T(5 9 + 1)	2.61053850000D+04	(+/-5.8D-02)	2.7D-04
$T(5 \ 10 \ +1)$	2.615601100000D+04	(+/-5.8D-02)	2.7D-04
T(5 11 + 1)	2.62115460000D+04	(+/-5.3D-02)	2.4D-04
$T(5 \ 12 \ +1)$	2.62719500000D+04	(+/-6.5D-02)	3.0D-04
$T(5 \ 13 \ +1)$	2.633714500000D+04	(+/-6.5D-02)	3.0D-04
· · /		x : i	

Table D.1 Energy origins of "fluorescence series" of ²⁴MgH isotopomer (cm⁻¹) (*Cont'd*)

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(5 \ 14 \ +1)$	2.640713300000D+04	(+/-6.5D-02)	3.0D-04
$T(5 \ 15 \ +1)$	2.64818500000D + 04	(+/-5.8D-02)	2.7D-04
$T(5 \ 16 \ +1)$	2.656122900000D+04	(+/-53D-02)	2 4D-04
$T(5 \ 17 \ +1)$	2.664537400000D+04	(+/-5.3D-02)	2.4D-04
$T(5 18 \pm 1)$	2.004091400000D+04 $2.673230300000D\pm04$	$(\pm / 5.0 D - 02)$	2.4D-04 2 7D-04
T(5 10 + 1) T(5 10 + 1)	2.675255500000D + 04 2.682640700000D + 04	(+/-5.3D-02)	2.10-04 2.40.04
$T(5 19 \pm 1)$ $T(5 20 \pm 1)$	2.082040700000D+04	(+/-5.4D-02)	2.4D-04
$T(5 \ 20 \ \pm 1)$ $T(5 \ 21 \ \pm 1)$	2.092392200000D+04 2.70257070000D+04	(+/-5.5D-02)	2.4D-04
$T(5 \ 21 \ \pm 1)$ $T(5 \ 20 \ \pm 1)$	2.702379700000D+04 2.71210070000D+04	(+/-0.0D-02)	2.7D-04
1(3 22 +1) Tr(5 22 +1)	2.713190700000D+04	(+/-5.0D-02)	2.4D-04
$1(5 \ 23 \ +1)$	2.724219800000D+04	(+/-6.7D-02)	3.0D-04
$1(5 \ 24 \ +1)$	2.735664400000D+04	(+/-6.2D-02)	2.7D-04
$T(5 \ 25 \ +1)$	2.747515900000D+04	(+/-7.0D-02)	3.0D-04
$T(5 \ 26 \ +1)$	2.759753700000D+04	(+/-7.3D-02)	3.0D-04
$T(5 \ 27 \ +1)$	2.772520700000D+04	(+/-8.7D-02)	3.4D-04
T(6 0 +1)	2.65647400000D + 04	(+/-9.1D-02)	4.2D-04
$T(6 \ 1 \ +1)$	2.656967200000D + 04	(+/-7.4D-02)	3.4D-04
$T(6 \ 2 \ +1)$	2.657984300000D+04	(+/-9.1D-02)	4.2D-04
$T(6 \ 3 \ +1)$	2.65951000000D + 04	(+/-6.4D-02)	3.0D-04
$T(6 \ 4 \ +1)$	2.661529800000D+04	(+/-6.4D-02)	3.0D-04
$T(6 \ 5 \ +1)$	2.66406000000D + 04	(+/-6.4D-02)	3.0D-04
$T(6 \ 6 \ +1)$	2.66709800000D + 04	(+/-6.4D-02)	3.0D-04
T(6 7 + 1)	2.670624800000D+04	(+/-6.4D-02)	3.0D-04
$T(6 \ 8 \ +1)$	2.674661200000D+04	(+/-5.8D-02)	2.7D-04
$T(6 \ 9 \ +1)$ $T(6 \ 9 \ +1)$	2.67921050000D+04	(+/-5.8D-02)	2.7D-04
$T(6 \ 10 \ \pm 1)$	2.675210500000D + 04 2.684268500000D + 04	$(\pm / - 6.4 D_{-}02)$	2.1D-04 3.0D-04
$T(6 \ 11 \ \pm 1)$	2.0042000000D + 04 2.600000000D + 04	(+/-0.4D-02) (+/-6.4D-02)	3 0D 04
$T(0 11 \pm 1)$ $T(6 12 \pm 1)$	2.09000900000D+04 2.605403200000D+04	(+/-0.4D-02)	3.0D-04
$T(0 \ 12 \ \pm 1)$ $T(6 \ 12 \ \pm 1)$	2.095495200000D+04 2.70100560000D+04	(+/-0.3D-02)	3.0D-04
$T(0 \ 13 \ \pm 1)$ $T(c \ 14 \ \pm 1)$	2.701995000000D+04	(+/-5.8D-02)	2.7D-04
$1(0 \ 14 \ +1)$	2.708906300000D+04	(+/- 0.5D-02)	3.0D-04
$1(0 \ 15 \ +1)$ T(0 \ 10 \ +1)	2.716288900000D+04	(+/-5.8D-02)	2.7D-04
$T(6 \ 16 \ +1)$	2.724123500000D+04	(+/-6.5D-02)	3.0D-04
$T(6 \ 17 \ +1)$	2.732413100000D+04	(+/-5.8D-02)	2.7D-04
$T(6 \ 18 \ +1)$	2.741145100000D+04	(+/-5.3D-02)	2.4D-04
$T(6 \ 19 \ +1)$	2.750314700000D+04	(+/-5.9D-02)	2.7D-04
$T(6 \ 20 \ +1)$	2.759924100000D+04	(+/-5.0D-02)	2.3D-04
$T(6 \ 21 \ +1)$	2.769959800000D + 04	(+/-5.9D-02)	2.7D-04
$T(6 \ 22 \ +1)$	2.780451900000D + 04	(+/-5.5D-02)	2.4D-04
$T(6 \ 23 \ +1)$	2.791334900000D+04	(+/-6.1D-02)	2.7D-04
$T(6 \ 24 \ +1)$	2.802520400000D+04	(+/-9.4D-02)	4.2D-04
$T(7 \ 2 + 1)$	2.724355100000D+04	(+/-9.1D-02)	4.2D-04
$T(7 \ 3 +1)$	2.725878500000D+04	(+/-9.1D-02)	4.2D-04
$T(7 \ 4 \ +1)$	2.727871800000D + 04	(+/-6.5D-02)	3.0D-04
$T(7 \ 6 \ +1)$	2.733346400000D+04	(+/-7.4D-02)	3.4D-04
$T(7 \ 7 \ +1)$	2.736832100000D+04	(+/-6.4D-02)	3.0D-04
$T(7 \ 8 \ +1)$	2.740788300000D+04	(+/-74D-02)	3 4D-04
$T(7 \ 9 \ +1)$	2.745232700000D+04	(+/-64D-02)	3 0D-04
$T(7 \ 10 \ +1)$	2.75016620000D+04	(+/-74D-02)	3 4 D - 04
$T(7 \ 10 \ +1)$ $T(7 \ 11 \ +1)$	2.75556620000D + 01	(+/-7.4D-02) (+/-7.4D-02)	3 4 D - 04
$T(7 19 \pm 1)$	2.76000000000000000000000000000000000000	$(\pm /_{-} 0.1D.02)$	4 2D_04
$T(1 12 \pm 1)$ T(7 13 $\pm 1$ )	2.767782100000D + 04	$(\pm /_{-} 75D.02)$	3 AD 0A
$T(7 \ 10 \ \pm 1)$ $T(7 \ 14 \ \pm 1)$	$2.1011021000000\pm04$ $2.7745672000000\pm04$	$(\pm / 0.1D.02)$	4 9D 04
$1(1 \ 14 \ +1)$ T(7 \ 15 \ 1)	2.77400700000D+04 2.781817600000D+04	(+/-9.1D-02)	4.2D-04 2 4D 04
1(1 10 +1) T(7 16 +1)	2.70101700000D + 04	(+/-75D-02)	0.4D-04 2.4D-04
$1(1 \ 10 \ +1)$ T(7 \ 17 \ +1)	2.109021100000D+04	(+/-7.5D-02)	5.4D-04
I((11) +1)	2.797000800000000000000000000000000000000	(+/-(.5D-02))	3.4D-04
T(7 18 +1)	2.806241700000D+04	(+/-5.8D-02)	2.7D-04
T(7 19 +1)	2.815247800000D+04	(+/-9.2D-02)	4.2D-04
$T(7 \ 20 \ +1)$	2.824635900000D+04	(+/-6.6D-02)	3.0D-04

Table D.1 Energy origins of "fluorescence series" of ²⁴MgH isotopomer (cm⁻¹) (*Cont'd*)

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(7 \ 21 \ +1)$	$2.834493200000\mathrm{D}{+}04$	(+/-5.9D-02)	2.7D-04
$T(7 \ 22 \ +1)$	2.844733600000D + 04	(+/-6.6D-02)	3.0D-04
$T(7 \ 23 \ +1)$	2.855358600000D + 04	(+/-6.8D-02)	3.0D-04
$T(7 \ 24 \ +1)$	2.866387400000D+04	(+/-6.8D-02)	3.0D-04
$T(7 \ 25 \ +1)$	2.87780100000D + 04	(+/-8.0D-02)	3.4D-04
$T(7 \ 26 \ +1)$	2.889581800000D+04	(+/-7.6D-02)	3.0D-04
$T(7 \ 27 \ +1)$	2.901787600000D + 04	(+/-8.5D-02)	3.0D-04
$T(7 \ 28 \ +1)$	2.914032900000D+04	(+/-9.6D-02)	4.2D-04
$T(7 \ 29 \ +1)$	2.926866400000D+04	(+/-9.5D-02)	4.2D-04
$T(8 \ 8 \ +1)$	2.804255700000D+04	(+/-9.1D-02)	4.2D-04
$T(8 \ 9 \ +1)$	2.808626600000D+04	(+/-9.1D-02)	4.2D-04
$T(8 \ 10 \ +1)$	2.81356080000D + 04	(+/-9.1D-02)	4.2D-04
$T(8 \ 11 \ +1)$	2.818879100000D + 04	(+/-9.1D-02)	4.2D-04
$T(8 \ 12 \ +1)$	2.824737900000D + 04	(+/-9.1D-02)	4.2D-04
$T(8 \ 13 \ +1)$	2.83053060000D + 04	(+/-9.1D-02)	4.2D-04
$T(8 \ 17 \ +1)$	2.860082300000D+04	(+/-9.2D-02)	4.2D-04
$T(8 \ 18 \ +1)$	2.868488800000D + 04	(+/-7.5D-02)	3.4D-04
$T(8 \ 19 \ +1)$	2.877307300000D + 04	(+/-9.2D-02)	4.2D-04
$T(8 \ 20 \ +1)$	2.886513100000D + 04	(+/-7.5D-02)	3.4D-04
$T(8 \ 21 \ +1)$	2.896138100000D + 04	(+/-7.6D-02)	3.4D-04
$T(8 \ 22 \ +1)$	2.90614060000D + 04	(+/-6.6D-02)	3.0D-04
$T(8 \ 23 \ +1)$	2.916523600000D+04	(+/-7.6D-02)	3.4D-04
$T(8 \ 24 \ +1)$	2.927290900000D+04	(+/-7.7D-02)	3.4D-04
$T(8 \ 25 \ +1)$	2.938475300000D+04	(+/-9.5D-02)	4.2D-04
$T(9 \ 2 \ +1)$	2.849289900000D+04	(+/-9.1D-02)	4.2D-04
$T(9 \ 4 \ +1)$	2.852662700000D + 04	(+/-9.1D-02)	4.2D-04
$T(9 \ 5 \ +1)$	2.855102800000D + 04	(+/-9.1D-02)	4.2D-04
$T(9 \ 6 \ +1)$	2.857965400000D + 04	(+/-7.4D-02)	3.4D-04
$T(9 \ 8 \ +1)$	2.865127900000D + 04	(+/-6.4D-02)	3.0D-04
$T(9 \ 9 \ +1)$	2.86940800000D + 04	(+/-7.4D-02)	3.4D-04
$T(9 \ 10 \ +1)$	2.874146600000D + 04	(+/-6.5D-02)	3.0D-04
$T(9 \ 11 \ +1)$	2.879333900000D + 04	(+/-7.5D-02)	3.4D-04
$T(9 \ 12 \ +1)$	2.884970700000D+04	(+/-7.5D-02)	3.4D-04
$T(9 \ 13 \ +1)$	2.891053400000D + 04	(+/-7.5D-02)	3.4D-04
$T(9 \ 14 \ +1)$	2.897570400000D+04	(+/-9.1D-02)	4.2D-04
$T(9 \ 15 \ +1)$	2.904512900000D+04	(+/-9.1D-02)	4.2D-04
$T(9 \ 16 \ +1)$	2.91187000000D + 04	(+/-9.1D-02)	4.2D-04
$T(9 \ 17 \ +1)$	2.919652300000D + 04	(+/-9.1D-02)	4.2D-04
$T(9 \ 18 \ +1)$	2.927844300000D + 04	(+/-9.2D-02)	4.2D-04
$T(9 \ 19 \ +1)$	2.936432800000D+04	(+/-9.2D-02)	4.2D-04
$T(10 \ 18 \ +1)$	2.984186300000D + 04	(+/-9.2D-02)	4.2D-04
$T(10 \ 19 \ +1)$	2.992685800000D+04	(+/-9.2D-02)	4.2D-04

Table D.1 Energy origins of "fluorescence series" of  $^{24}MgH$  isotopomer (cm⁻¹) (*Cont'd*)

#### D.2 Energy Origins of ²⁵MgH Isotopomer

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(0 \ 2 \ +1)$	2.20976850000D+04	(+/-9.2D-02)	4.2D-04
$T(0 \ 3 \ +1)$	2.211314300000D+04	(+/-75D-02)	3 4D-04
$T(0 \ 4 \ +1)$	2.213385900000D+04	(+/-7.5D-02)	3.4D-04
$T(0 \ 5 \ +1)$	2.21596666660000000000000000000000000000000	(+/-5.8D-02)	2.1D 01 2.7D-04
$T(0 \ 6 \ +1)$	2.219070700000D+01	(+/-5.8D-02)	2.7D-04
$T(0 \ 7 \ +1)$ $T(0 \ 7 \ +1)$	2.212010100000D + 01 2 222682800000D + 04	(+/-5.02.02) (+/-5.3D-02)	2.1001 2.4D-04
$T(0 \ 8 \ +1)$	2.22200200000D + 01 2.226809800000D + 04	(+/-5.3D-02) (+/-5.3D-02)	2.1D 01 2 4D-04
$T(0 \ 9 \ +1)$ $T(0 \ 9 \ +1)$	2.220000000000000000000000000000000000	(+/-5.3D-02) (+/-5.3D-02)	2.1D 01 2.4D-04
$T(0 \ 10 \ \pm 1)$	2.23144300000D + 04 2 236587100000D + 04	$(\pm / 53D-02)$	2.4D-04 2 4D-04
$T(0 \ 10 \ +1)$ $T(0 \ 11 \ +1)$	2.250507100000D + 04 2.242233000000D + 04	(+/-5.3D-02) (+/-5.3D-02)	2.4D-04 2 4D-04
$T(0 \ 12 \ +1)$ $T(0 \ 12 \ +1)$	2.242233000000D + 04 2 248379400000D+04	(+/-5.3D-02) (+/-5.3D-02)	2.4D-04 2 4D-04
$T(0 \ 12 \ +1)$ $T(0 \ 13 \ \pm1)$	2.24007040000000 + 04 2 255027100000000000	$(\pm / 53D-02)$	2.4D-04 2 4D-04
$T(0 \ 10 \ +1)$ $T(0 \ 14 \ +1)$	2.255027100000D + 04 2 262172500000D ± 04	$(\pm / 53D-02)$	2.4D-04 2 4D-04
T(0 14 + 1) $T(0 15 \pm 1)$	2.202172500000D + 04 2 269808200000D ± 04	$(\pm / 53D-02)$	2.4D-04 2 4D-04
$T(0 \ 16 \ \pm 1)$ $T(0 \ 16 \ \pm 1)$	2.2030002000000000000000000000000000000	(+/-5.3D-02) (+/-5.4D-02)	2.4D-04 2 4D 04
$T(0 \ 10 \ +1)$ $T(0 \ 17 \ \pm1)$	2.211552100000D + 04 2 286541500000D + 04	(+/-5.4D-02) (+/-5.4D-02)	2.4D-04 2 4D 04
$T(0 \ 18 \ \pm 1)$ $T(0 \ 18 \ \pm 1)$	2.200341900000D + 04 2 295631900000D ± 04	$(\pm / 5.4D-02)$	2.4D-04 2 4D-04
$T(0 \ 10 \ +1)$ $T(0 \ 10 \ -1)$	2.235031300000D + 04 2 30520100000D $\pm 04$	$(\pm / 5.9D - 02)$	2.4D-04 2 7D-04
$T(0 \ 10 \ \pm 1)$ $T(0 \ 20 \ \pm 1)$	2.3052010000000000000000000000000000000000	(+/-5.9D-02) (+/-5.9D-02)	2.7D-04 2 7D 04
$T(0 \ 20 \ \pm 1)$ $T(0 \ 21 \ \pm 1)$	2.31524500000000000000000000000000000000000	$(\pm / 5.5D-02)$	2.7D-04 2.4D-04
T(0 21 + 1) T(0 22 + 1)	2.326732600000D + 04 2 336732600000D + 04	(+/-6.0D-02) (+/-6.0D-02)	2.4D-04 2 7D-04
T(0 22 + 1) T(0 23 + 1)	2.330132000000D + 04 2 348165100000D+04	(+/-6.0D-02) (+/-6.0D-02)	2.7D-04 2 7D-04
T(0 20 + 1) T(0 24 + 1)	2.34010010000D + 04 2 36006000000D+04	(+/-7.6D-02)	3 4D-04
$T(0 \ 25 \ +1)$ $T(0 \ 25 \ +1)$	2.372399100000D+04	(+/-7.7D-02)	3.4D-04
$T(0 \ 26 \ +1)$ $T(0 \ 26 \ +1)$	2.385184100000D+04	(+/-77D-02)	3 4D-04
$T(0 \ 27 \ +1)$ $T(0 \ 27 \ +1)$	2.398418400000D+04	(+/-9.3D-02)	4 2D-04
$T(0 \ 28 \ +1)$ $T(0 \ 28 \ +1)$	2.00011010000D + 01 2 412082000000D+04	(+/-1.3D-02)	6 0D-04
T(0 29 + 1) T(0 29 + 1)	2.426169100000D+04	(+/-95D-02)	4 2D-04
$T(0 \ 30 \ +1)$	2.440669900000D+04	(+/-9.6D-02)	4.2D-04
$T(0 \ 31 \ +1)$	2.455600000000000000000000000000000000000	(+/-1.8D+01)	8.5D-02
$T(1 \ 2 \ +1)$	2.290207800000D+04	(+/-9.1D-02)	4.2D-04
$T(1 \ 3 \ +1)$	2.29176690000D + 04	(+/-9.1D-02)	4.2D-04
$T(1 \ 4 \ +1)$	2.293847100000D+04	(+/-9.1D-02)	4.2D-04
$T(1 \ 5 \ +1)$	2.296435800000D+04	(+/-6.5D-02)	3.0D-04
$T(1 \ 6 \ +1)$	2.299550500000D+04	(+/-5.8D-02)	2.7D-04
$T(1 \ 7 \ +1)$	2.303171800000D + 04	(+/-4.9D-02)	2.3D-04
$T(1 \ 8 \ +1)$	2.307307000000D+04	(+/-5.3D-02)	2.4D-04
$T(1 \ 9 \ +1)$	2.311949300000D+04	(+/-4.9D-02)	2.3D-04
$T(1 \ 10 \ +1)$	2.317105600000D+04	(+/-4.9D-02)	2.3D-04
$T(1 \ 11 \ +1)$	2.322762500000D + 04	(+/-4.9D-02)	2.3D-04
$T(1 \ 12 \ +1)$	2.328921400000D + 04	(+/-5.8D-02)	2.7D-04
$T(1 \ 13 \ +1)$	2.335607200000D+04	(+/-6.5D-02)	3.0D-04
$T(1 \ 14 \ +1)$	2.342636300000D + 04	(+/-6.5D-02)	3.0D-04
$T(1 \ 15 \ +1)$	2.350338800000D + 04	(+/-5.4D-02)	2.4D-04
$T(1 \ 16 \ +1)$	$2.358474400000\mathrm{D}{+}04$	(+/-5.9D-02)	2.7D-04
$T(1 \ 17 \ +1)$	2.367094300000D+04	(+/-5.9D-02)	2.7D-04
$T(1 \ 18 \ +1)$	2.376181800000D + 04	(+/-7.6D-02)	3.4D-04
$T(1 \ 19 \ +1)$	2.385747700000D + 04	(+/-6.5D-02)	3.0D-04
$T(1 \ 20 \ +1)$	2.395782300000D+04	(+/-5.9D-02)	2.7D-04
$T(1 \ 21 \ +1)$	2.406277900000D+04	(+/-6.6D-02)	3.0D-04
$T(1 \ 22 \ +1)$	2.417232800000D+04	(+/-5.9D-02)	2.7D-04
$T(1 \ 23 \ +1)$	2.428643500000D+04	(+/-7.6D-02)	3.4D-04

Table D.2: Energy Origins of "Fluorescence Series" of  $^{25}\mathrm{MgH}$  Isotopomer (cm $^{-1})$ 

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(1 \ 24 \ +1)$	2.440505400000D + 04	(+/-6.6D-02)	3.0D-04
$T(1 \ 25 \ +1)$	2.452833000000D + 04	(+/-7.6D-02)	3.4D-04
$T(1 \ 26 \ +1)$	2.465530700000D + 04	(+/-9.3D-02)	4.2D-04
$T(1 \ 27 \ +1)$	2.47870000000D + 04	(+/-9.3D-02)	4.2D-04
$T(1 \ 28 \ +1)$	2.492296400000D+04	(+/-9.4D-02)	4.2D-04
$T(1 \ 29 \ +1)$	2.506317500000D+04	(+/-9.5D-02)	4.2D-04

Table D.2 Energy origins of "fluorescence series" of  ${}^{25}MgH$  isotopomer (cm⁻¹) (*Cont'd*)

#### D.3 Energy Origins of ²⁶MgH Isotopomer

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(0 \ 2 \ +1)$	2.209725500000D+04	(+/-6.5D-02)	3.0D-04
$T(0 \ 3 \ +1)$	2.211277500000D+04	(+/-5.8D-02)	2.7D-04
$T(0 \ 4 \ +1)$	2.213343100000D+04	(+/-5.3D-02)	2.1201 2.4D-04
$T(0 \ 5 \ +1)$	2.215919100000D + 01 2.215929300000D + 04	(+/-4.9D-02)	2.10 01 2.3D-04
$T(0 \ 6 \ +1)$	2.219023300000D+01	(+/-49D-02)	2.3D-04
$T(0 \ 7 \ +1)$ $T(0 \ 7 \ +1)$	2.2100200000D + 01 2.222631900000D + 04	(+/-4.6D-02)	2.5D 01 2.1D-04
$T(0 \ 8 \ +1)$	2.22200100000D + 01 2.226749900000D + 04	(+/-4.6D-02)	2.1D 01 2 1D-04
$T(0 \ 9 \ +1)$ $T(0 \ 9 \ +1)$	2.2207100000D + 01 2.231378800000D + 04	(+/-4.3D-02)	2.0D-04
$T(0 \ 10 \ +1)$	2.236512500000D + 01 2 236512500000D + 04	(+/-4.6D-02)	2.0D 01 2 1D-04
$T(0 \ 10 \ +1)$ $T(0 \ 11 \ +1)$	2.20001200000D + 01 2.242150100000D + 04	(+/-4.3D-02)	2.1D 01 2.0D-04
$T(0 \ 12 \ +1)$ $T(0 \ 12 \ +1)$	2.24829200000D + 01	(+/-4.3D-02)	2.0D-04
$T(0 \ 12 \ +1)$ $T(0 \ 13 \ +1)$	2.2102020000000000000000000000000000000	(+/-4.9D-02)	2.0D 01 2 3D-04
$T(0 \ 10 \ +1)$ $T(0 \ 14 \ +1)$	2.20192700000D + 01 2.262062300000D + 04	(+/-41D-02)	1.9D-04
$T(0 \ 15 \ +1)$ $T(0 \ 15 \ +1)$	2.202002500000D + 04 2 269686400000D+04	(+/-4.1D-02) (+/-4.6D-02)	2 1D-04
$T(0 \ 16 \ +1)$ $T(0 \ 16 \ +1)$	2.200000000000000000000000000000000000	(+/-4.2D-02)	1.9D-04
$T(0 \ 10 \ +1)$ $T(0 \ 17 \ +1)$	2.211001100000D + 04 2 286397200000D+04	(+/-4.2D-02) (+/-44D-02)	2.0D-04
$T(0 \ 18 \ +1)$ $T(0 \ 18 \ +1)$	2.200397200000D + 04 2 295478500000D + 04	(+/-4.4D-02) (+/-4.4D-02)	2.0D-04 2.0D-04
$T(0 \ 10 \ +1)$ $T(0 \ 19 \ +1)$	2.20011000000D + 01 2 305033200000D + 04	(+/-47D-02)	2.0D 01 2 1D-04
$T(0 \ 20 \ +1)$ $T(0 \ 20 \ +1)$	2.315059300000D+04	(+/-47D-02)	2.1D 01 2 1D-04
$T(0 \ 21 \ +1)$ $T(0 \ 21 \ +1)$	2.32555400000D+04	(+/-4.3D-02)	1.9D-04
$T(0 \ 22 \ +1)$	2.336512700000D+04	(+/-4.3D-02)	1.9D-04
$T(0 \ 23 \ +1)$	2.347932100000D+04	(+/-5.1D-02)	2.3D-04
$T(0 \ 24 \ +1)$	2.359804300000D+04	(+/-5.5D-02)	2.4D-04
$T(0 \ 25 \ +1)$	2.372125400000D+04	(+/-6.6D-02)	3.0D-04
$T(0 \ 26 \ +1)$	2.38489030000D + 04	(+/-5.2D-02)	2.3D-04
$T(0 \ 27 \ +1)$	2.398098100000D+04	(+/-6.0D-02)	2.7D-04
$T(0 \ 28 \ +1)$	2.411736800000D+04	(+/-6.8D-02)	3.0D-04
$T(0 \ 29 \ +1)$	2.425801800000D + 04	(+/-6.2D-02)	2.7D-04
$T(0 \ 30 \ +1)$	2.440298900000D+04	(+/-6.3D-02)	2.7D-04
$T(0 \ 31 \ +1)$	2.455227900000D + 04	(+/-8.0D-02)	3.4D-04
$T(0 \ 32 \ +1)$	2.470503600000D + 04	(+/-9.7D-02)	4.2D-04
$T(1 \ 3 \ +1)$	2.291666000000D+04	(+/-7.5D-02)	3.4D-04
$T(1 \ 4 \ +1)$	2.29375000000D + 04	(+/-7.5D-02)	3.4D-04
$T(1 \ 5 \ +1)$	2.29633800000D + 04	(+/-6.5D-02)	3.0D-04
$T(1 \ 6 \ +1)$	2.299439900000D+04	(+/-5.8D-02)	2.7D-04
$T(1 \ 7 \ +1)$	2.303058500000D+04	(+/-5.8D-02)	2.7D-04
$T(1 \ 8 \ +1)$	2.307188200000D + 04	(+/-5.3D-02)	2.4D-04
$T(1 \ 9 \ +1)$	2.31182800000D + 04	(+/-6.5D-02)	3.0D-04
$T(1 \ 10 \ +1)$	2.31697500000D + 04	(+/-5.3D-02)	2.4D-04
$T(1 \ 11 \ +1)$	2.322626400000D+04	(+/-5.8D-02)	2.7D-04
$T(1 \ 12 \ +1)$	2.328772700000D+04	(+/-5.3D-02)	2.4D-04
$T(1 \ 13 \ +1)$	2.335444800000D+04	(+/-5.8D-02)	2.7D-04
$T(1 \ 14 \ +1)$	2.342465300000D+04	(+/-5.8D-02)	2.7D-04
$T(1 \ 15 \ +1)$	2.350156700000D + 04	(+/-6.5D-02)	3.0D-04
$T(1 \ 16 \ +1)$	2.358283900000D+04	(+/-5.4D-02)	2.4D-04
$T(1 \ 17 \ +1)$	2.36689350000D+04	(+/-7.5D-02)	3.4D-04
$T(1 \ 18 \ +1)$	2.375967500000D+04	(+/-5.4D-02)	2.4D-04
$T(1 \ 19 \ +1)$	2.385512900000D+04	(+/-6.5D-02)	3.0D-04
$T(1 \ 20 \ +1)$	2.395533900000D+04	(+/-6.6D-02)	3.0D-04
$T(1 \ 21 \ +1)$	2.406016300000D+04	(+/-7.5D-02)	3.4D-04
1(1 22 +1) T(1 22 +1)	2.410900800000000+04	(+/-5.9D-02)	2.7D-04 2.0D-04
1(1 23 + 1)	2.426551500000000+04	(+/-0.0D-02)	3.0D-04

Table D.3: Energy Origins of "Fluorescence Series" of  $\rm ^{26}MgH$  Isotopomer  $\rm (cm^{-1})$ 

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(1 \ 24 \ +1)$	2.440193500000D+04	(+/-6.6D-02)	3.0D-04
$T(1 \ 25 \ +1)$	2.452506700000D + 04	(+/-9.3D-02)	4.2D-04
$T(1 \ 26 \ +1)$	2.46520000000D + 04	(+/-1.5D+01)	6.9D-02
$T(1 \ 27 \ +1)$	2.478346200000D + 04	(+/-9.3D-02)	4.2D-04
$T(1 \ 28 \ +1)$	2.491914700000D + 04	(+/-9.4D-02)	4.2D-04
$T(1 \ 29 \ +1)$	2.50591300000D + 04	(+/-9.5D-02)	4.2D-04

Table D.3 Energy origins of "fluorescence series" of  $^{26}{\rm MgH}$  isotopomer (cm $^{-1})$  (Cont'd)

# D.4 Energy Origins of ²⁴MgD Isotopomer

Table D.4: Energy Origins of "Fluorescence Series" of ²⁴MgD Isotopomer (cm⁻¹)j' p')Energy OriginUncertaintySensitivity

1(v j p)	Energy Origin	Uncertainty	Sensitivity
$T(0 \ 0 \ +1)$	2.196886200000D+04	(+/-6.2D-02)	2.7D-04
$T(0 \ 1 \ +1)$	2.197154600000D+04	(+/-5.8D-02)	2.4D-04
$T(0 \ 2 \ +1)$	2.19769520000D + 04	(+/-4.4D-02)	1.8D-04
$T(0 \ 3 \ +1)$	2.198506700000D + 04	(+/-4.3D-02)	1.7D-04
$T(0 \ 4 \ +1)$	2.19958790000D+04	(+/-4.3D-02)	1.7D-04
$T(0 \ 5 \ +1)$	2.200937000000D+04	(+/-4.1D-02)	1.7D-04
$T(0 \ 6 \ +1)$	2.20255690000D+04	(+/-40D-02)	1 7D-04
$T(0 \ 7 \ +1)$	2.204445300000D+04	(+/-40D-02)	1 7D-04
$T(0 \ 8 \ +1)$	2.206601400000D+04	(+/-40D-02)	1 7D-04
$T(0 \ 9 \ +1)$ $T(0 \ 9 \ +1)$	2.200001100000D+01 2.209025300000D+04	(+/-3.9D-02)	1.6D-04
$T(0 \ 10 \ +1)$ $T(0 \ 10 \ +1)$	2.2030200000 D + 01 2.211717300000 D + 04	(+/-3.7D-02)	1.5D-04
$T(0 \ 10 \ +1)$ $T(0 \ 11 \ +1)$	2.211111900000D + 04 2.214675400000D + 04	$(\pm /_{-} 3.0 D_{-} 02)$	1.6D-04
T(0 11 + 1) $T(0 12 \pm 1)$	2.214079400000D + 04 2.21780060000D + 04	(+/-3.3D-02) (+/-4.0D,02)	1.0D-04 1.7D.04
$T(0 \ 12 \ \pm 1)$ $T(0 \ 13 \ \pm 1)$	2.21789900000D+04 2.22138050000D+04	$(\pm / 3.0D - 02)$	1.7D-04 1.6D.04
$T(0 \ 13 \ \pm 1)$ $T(0 \ 14 \ \pm 1)$	2.221389300000D + 04 2.225141800000D + 04	(+/-3.9D-02)	1.6D-04
$T(0 \ 14 \ \pm 1)$ $T(0 \ 15 \ \pm 1)$	2.225141800000D + 04 2.220150400000D + 04	(+/-3.9D-02)	1.0D-04 1.6D.04
$T(0 \ 10 \ \pm 1)$ $T(0 \ 16 \ \pm 1)$	2.229139400000D+04 2.229139400000D+04	(+/-3.9D-02)	1.0D-04 1.7D.04
$T(0 \ 10 \ \pm 1)$ $T(0 \ 17 \ \pm 1)$	2.233437400000D+04 2.22707060000D+04	(+/-4.0D-02)	1.7D-04 1.6D-04
$T(0 \ 17 \ \pm 1)$ $T(0 \ 18 \ \pm 1)$	2.237979000000D+04	(+/-3.9D-02)	1.0D-04
$T(0 \ 18 \ +1)$ $T(0 \ 10 \ +1)$	2.242778500000D+04	(+/-3.9D-02)	1.0D-04 1.6D-04
T(0 19 +1)	2.247830800000D+04	(+/-4.0D-02)	1.0D-04 1.7D-04
$1(0 \ 20 \ +1)$	2.253151300000D + 04	(+/-4.2D-02)	1.7D-04
$T(0 \ 21 \ +1)$	2.258729700000D+04	(+/-4.2D-02)	1.7D-04
1(0 22 +1)	2.264559900000D+04	(+/-4.4D-02)	1.7D-04
$1(0 \ 23 \ +1)$	2.270642000000D+04	(+/-4.5D-02)	1.7D-04
$1(0 \ 24 \ +1)$	2.276976100000D+04	(+/-4.6D-02)	1.7D-04
$1(0 \ 25 \ +1)$ T(0 \ 26 \ +1)	2.283562700000D+04 2.200207200000D+04	(+/-4.7D-02)	1.7D-04
$1(0 \ 20 \ +1)$ T $(0 \ 27 \ +1)$	2.290397200000D+04	(+/-4.8D-02)	1.7D-04
$T(0 \ 27 \ +1)$ $T(0 \ 28 \ +1)$	2.297481300000D+04 2.204811400000D+04	(+/-5.0D-02)	1.7D-04
$T(0 \ 28 \ +1)$ $T(0 \ 20 \ +1)$	2.304811400000D+04 2.212284800000D+04	(+/-5.1D-02)	1.7D-04 1.0D-04
T(0 29 +1) T(0 20 +1)	2.312384800000D+04 2.22020200000D+04	(+/-0.0D-02)	1.9D-04 2.1D-04
$T(0 \ 50 \ \pm 1)$ $T(0 \ 21 \ \pm 1)$	2.320202900000D+04 2.228262500000D+04	(+/-0.1D-02)	2.1D-04 2.2D-04
$T(0 \ 51 \ \pm1)$ $T(0 \ 22 \ \pm1)$	2.328202300000D+04 2.22655000000D+04	(+/-0.0D-02)	2.3D-04 2.2D-04
$T(0 \ 32 \ \pm 1)$ $T(0 \ 32 \ \pm 1)$	2.330339900000D+04 2.34500700000D+04	(+/-0.9D-02) (+/-7.1D,02)	2.3D-04 2.3D 04
$T(0 \ 33 \ \pm 1)$ $T(0 \ 34 \ \pm 1)$	2.343097000000D+04 2.35386600000D+04	(+/-7.1D-02)	2.3D-04 2 4D 04
$T(0 \ 34 \ \pm 1)$ $T(0 \ 35 \ \pm 1)$	2.353800000000000000000000000000000000000	$(\pm / - 7.5D-02)$ $(\pm / - 8.0D, 02)$	2.4D-04 2 7D 04
$T(0 \ 36 \ \pm 1)$ $T(0 \ 36 \ \pm 1)$	2.302370000000D + 04 2.372115200000D + 04	$(\pm / 8.0D-02)$ $(\pm / 8.0D-02)$	2.7D-04 2 7D 04
$T(0 \ 30 \ \pm 1)$ $T(0 \ 37 \ \pm 1)$	$2.372113200000D \pm 04$ 2.381580400000D \pm 04	(+/-0.2D-02) (+/-0.0D-02)	2.10-04 3 4D 04
$T(0 \ 38 \ \pm 1)$ $T(0 \ 38 \ \pm 1)$	$2.301270800000D \pm 04$	$(\pm / 0.3D - 02)$	3.4D-04
$T(0 \ 30 \ \pm 1)$ $T(0 \ 30 \ \pm 1)$	2.391279800000D + 04 2.401202300000D + 04	$(\pm / - 9.5D-02)$ $(\pm / - 9.6D-02)$	3.0D-04
$T(0 \ 40 \ +1)$ $T(0 \ 40 \ +1)$	2.40120200000D + 04 2.411351000000D + 04	(+/- 1.0D-02) (+/- 1.0D-01)	3 4D-04
$T(0 \ 40 \ +1)$ $T(0 \ 41 \ \pm1)$	2.41155100000D + 04 2.421721900000D + 04	(+/-1.0D-01) (+/-1.0D-01)	3.4D-04
$T(0 \ 42 \ +1)$ $T(0 \ 42 \ +1)$	2.421121900000D + 04 2.432317000000D + 04	(+/-1.0D-01) (+/-1.2D-01)	4 2D-04
$T(0 \ 43 \ +1)$	2.443121000000D+04	(+/-11D-01)	3 4 D - 04
$T(0 \ 44 \ +1)$	2.45410000000D+04	(+/-1.120+01)	5.4D-02
T(0 45 + 1)	2.465374000000D+04	(+/-1.3D-01)	4.2D-04
$T(0 \ 46 \ +1)$	2.47682300000D+04	(+/-1.3D-01)	3.4D-04
$T(0 \ 47 \ +1)$	2.488471000000D+04	(+/-1.5D-01)	4.2D-04
$T(0 \ 48 \ +1)$	2.50030000000D+04	(+/-1.5D+01)	6.9D-02
$T(0 \ 49 \ +1)$	2.51240800000D+04	(+/-1.5D-01)	4.2D-04
T(0 50 + 1)	2.52470000000D+04	(+/-1.8D+01)	8.5D-02
T(1  1  +1)	2.255715800000D + 04	(+/- 6.0D-02)	2.7D-04

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(1 \ 2 \ +1)$	2.256252200000D+04	(+/-4.3D-02)	1.8D-04
$T(1 \ 3 \ +1)$	2.257064600000D+04	(+/-4.3D-02)	1.8D-04
$T(1 \ 4 \ +1)$	2.258150300000D+04	(+/-4.2D-02)	1.7D-04
$T(1 \ 5 \ +1)$	2.259504400000D+04	(+/-4.0D-02)	1.7D-04
$T(1 \ 6 \ +1)$	2.261127500000D+04	(+/-3.8D-02)	1.5D-04
$T(1 \ 7 \ +1)$	2.263021000000D+04	(+/-3.9D-02)	1.6D-04
$T(1 \ 8 \ +1)$	2.265183700000D+04	(+/-3.7D-02)	1.5D-04
$T(1 \ 9 \ +1)$	2.267615700000D+04	(+/-3.7D-02)	1.5D-04
$T(1 \ 10 \ +1)$	2.270311400000D+04	(+/-4.1D-02)	1.7D-04
$T(1 \ 11 \ +1)$	2.273281400000D+04	(+/-3.8D-02)	1.6D-04
$T(1 \ 12 \ +1)$	2.276506300000D+04	(+/-3.7D-02)	1.5D-04
$T(1 \ 13 \ +1)$	2.280004500000D+04	(+/-3.7D-02)	1.5D-04
$T(1 \ 14 \ +1)$	2.283766600000D + 04	(+/-3.8D-02)	1.6D-04
$T(1 \ 15 \ +1)$	2.287790800000D+04	(+/-4.0D-02)	1.7D-04
$T(1 \ 16 \ +1)$	2.292079200000D+04	(+/-3.8D-02)	1.6D-04
$T(1 \ 17 \ +1)$	2.296626100000D + 04	(+/-4.1D-02)	1.7D-04
$T(1 \ 18 \ +1)$	2.301435500000D + 04	(+/-3.9D-02)	1.6D-04
$T(1 \ 19 \ +1)$	2.306501900000D+04	(+/-4.1D-02)	1.7D-04
$T(1 \ 20 \ +1)$	2.311825900000D+04	(+/-4.3D-02)	1.7D-04
$T(1 \ 21 \ +1)$	2.31740700000D + 04	(+/-4.2D-02)	1.7D-04
$T(1 \ 22 \ +1)$	2.32324060000D+04	(+/-4.2D-02)	1.7D-04
$T(1 \ 23 \ +1)$	2.329330500000D + 04	(+/-4.3D-02)	1.7D-04
$T(1 \ 24 \ +1)$	2.335667900000D + 04	(+/-4.4D-02)	1.7D-04
$T(1 \ 25 \ +1)$	2.342259400000D+04	(+/-4.8D-02)	1.8D-04
$T(1 \ 26 \ +1)$	2.349097300000D+04	(+/-4.9D-02)	1.8D-04
$T(1 \ 27 \ +1)$	2.356181000000D + 04	(+/-5.0D-02)	1.8D-04
$T(1 \ 28 \ +1)$	2.363508200000D+04	(+/-5.3D-02)	1.9D-04
$T(1 \ 29 \ +1)$	2.371081900000D + 04	(+/-5.7D-02)	2.0D-04
$T(1 \ 30 \ +1)$	2.378892200000D+04	(+/-6.0D-02)	2.1D-04
$T(1 \ 31 \ +1)$	2.386942200000D + 04	(+/-6.6D-02)	2.4D-04
$T(1 \ 32 \ +1)$	2.395232500000D+04	(+/-6.8D-02)	2.4D-04
$T(1 \ 33 \ +1)$	2.403762900000D + 04	(+/-7.1D-02)	2.4D-04
$T(1 \ 34 \ +1)$	2.412516800000D + 04	(+/-8.0D-02)	3.0D-04
$T(1 \ 35 \ +1)$	2.42151400000D + 04	(+/-8.2D-02)	3.0D-04
$T(1 \ 36 \ +1)$	2.430717200000D+04	(+/-8.4D-02)	3.0D-04
$T(1 \ 37 \ +1)$	2.440164600000D + 04	(+/-9.5D-02)	3.4D-04
$T(1 \ 38 \ +1)$	2.449835300000D+04	(+/-9.5D-02)	3.4D-04
$T(1 \ 39 \ +1)$	2.459732600000D+04	(+/-9.7D-02)	3.4D-04
$T(1 \ 40 \ +1)$	2.46985980000D + 04	(+/-1.0D-01)	3.4D-04
$T(1 \ 41 \ +1)$	2.48020300000D+04	(+/-1.1D-01)	4.2D-04
$T(1 \ 42 \ +1)$	2.49090000000D+04	(+/-1.8D+01)	8.5D-02
$T(2 \ 1 \ +1)$	2.313047200000D+04	(+/-9.5D-02)	4.2D-04
$T(2 \ 2 \ +1)$	2.313590700000D+04	(+/-7.9D-02)	3.4D-04
$T(2 \ 3 \ +1)$	2.314405400000D+04	(+/-7.9D-02)	3.4D-04
$T(2 \ 4 \ +1)$	2.315488700000D+04	(+/-6.9D-02)	3.0D-04
$T(2 \ 5 \ +1)$	2.316845500000D+04	(+/-6.8D-02)	3.0D-04
$T(2 \ 6 \ +1)$	2.318468100000D+04	(+/-6.8D-02)	3.0D-04
1(2 (+1)) T(2 2 + 1)	2.320300800000D+04	(+/-0.8D-02)	3.0D-04
$1(2 \ 8 \ +1)$ T(2 0 \ 1)	2.322528500000000+04	(+/-0.8D-02)	3.0D-04 2.0D-04
$1(2 \ 9 \ +1)$ T(2 10 \ +1)	2.3249033000000000000000000000000000000000	(+/-0.8D-02)	3.0D-04 2.0D-04
$1(2 \ 10 \ +1)$ T(2 \ 11 \ +1)	2.52700200000000000000000000000000000000	(+/-0.(D-02))	3.0D-04 2.0D-04
1(2 11 +1) T(2 12 +1)	2.3300200000000000000000000000000000000	(+/-0.7D-02)	3.0D-04 3.0D-04
$T(2 \ 12 \ \pm 1)$ $T(2 \ 12 \ \pm 1)$	2.333003900000D+04 2.33736040000D+04	$(\pm / - 0.7D - 02)$ $(\pm / - 6.7D - 02)$	3.0D-04 3.0D-04
$T(2 \ 13 \ \pm 1)$ $T(2 \ 14 \ \pm 1)$	2.33730040000000+04 2.34112440000000+04	$(\pm / - 0.7D - 02)$ $(\pm / - 6.7D - 02)$	3.0D-04 3.0D-04
$T(2 \ 14 \ \pm 1)$ $T(2 \ 15 \ \pm 1)$	2.341124400000D+04 2 34515600000D+04	$(\pm / - 0.7D - 02)$ $(\pm / -7.7D - 02)$	3.0D-04 3.4D-04
$T(2 10 \pm 1)$ $T(2 16 \pm 1)$	2.343130300000D+04 2 349444200000D+04	$(\pm / = 7.7D - 02)$	3 4D 04
1(2 IU TI)	2.049444200000D+04	$(1)^{-1}(1)^{-02}$	0.40-04

Table D.4 Energy origins of fluorescence series of  ${}^{24}MgD$  isotopomer (cm⁻¹) (Cont'd)

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(2 \ 17 \ +1)$	2.353992100000D+04	(+/-7.7D-02)	3.4D-04
$T(2 \ 18 \ +1)$	2.358800600000D+04	(+/-7.8D-02)	3.4D-04
$T(2 \ 19 \ +1)$	2.363869500000D+04	(+/-7.8D-02)	3.4D-04
$T(2 \ 20 \ +1)$	2.369196900000D+04	(+/-9.4D-02)	4.2D-04
$T(2 \ 21 \ +1)$	2.374778300000D+04	(+/-9.4D-02)	4.2D-04
$T(2 \ 24 \ +1)$	2.393002000000D+04	(+/-9.6D-02)	4.2D-04
$T(2 \ 25 \ +1)$ $T(2 \ 25 \ +1)$	2.399587200000D+04	(+/-71D-02)	3 0D-04
$T(2 \ 26 \ +1)$ $T(2 \ 26 \ +1)$	2406419700000D+04	(+/-72D-02)	3 0D-04
$T(2 \ 27 \ +1)$	2.413500100000D+04	(+/-9.8D-02)	4.2D-04
$T(2 \ 28 \ +1)$	2.420814300000D+04	(+/-8.3D-02)	3.4D-04
$T(2 \ 29 \ +1)$	2.428361800000D+04	(+/-9.9D-02)	4.2D-04
$T(2 \ 30 \ +1)$	2.436151000000D+04	(+/-1.0D-01)	4.2D-04
$T(2 \ 31 \ +1)$	2.44418000000D+04	(+/-1.0D-01)	4.2D-04
$T(2 \ 32 \ +1)$	2.452461000000D+04	(+/-1.0D-01)	4.2D-04
$T(2 \ 33 \ +1)$	2.460997000000D+04	(+/-9.1D-01)	4.2D-03
$T(3 \ 2 \ +1)$	2.369709800000D+04	(+/-9.5D-02)	4.2D-04
$T(3 \ 3 \ +1)$	2.370533800000D+04	(+/-9.5D-02)	4.2D-04
$T(3 \ 4 \ +1)$	2.371619000000D+04	(+/-6.9D-02)	3.0D-04
$T(3 \ 5 \ +1)$	2.372975200000D+04	(+/-6.9D-02)	3.0D-04
$T(3 \ 6 \ +1)$	2.37460100000D+04	(+/-6.8D-02)	3.0D-04
$T(3 \ 7 \ +1)$	2.37649950000D+04	(+/-6.8D-02)	3.0D-04
$T(3 \ 8 \ +1)$	2.378665300000D+04	(+/-6.8D-02)	3.0D-04
$T(3 \ 9 \ +1)$	2.381100200000D+04	(+/-6.8D-02)	3.0D-04
$T(3 \ 10 \ +1)$	2.383807000000D+04	(+/-9.4D-02)	4.2D-04
$T(3 \ 11 \ +1)$	2.386779600000D+04	(+/-9.4D-02)	4.2D-04
$T(3 \ 12 \ +1)$	2.390005000000D+04	(+/-9.1D-01)	4.2D-03
$T(4 \ 1 \ +1)$	2.424091300000D+04	(+/-9.3D-02)	4.2D-04
$T(4 \ 2 \ +1)$	2.42464740000D+04	(+/-6.5D-02)	3.0D-04
$T(4 \ 3 \ +1)$	2.425461500000D + 04	(+/-6.7D-02)	3.0D-04
$T(4 \ 4 \ +1)$	2.42654380000D + 04	(+/-5.9D-02)	2.7D-04
$T(4 \ 5 \ +1)$	2.42789400000D + 04	(+/-6.7D-02)	3.0D-04
$T(4 \ 6 \ +1)$	2.429515400000D + 04	(+/-6.6D-02)	3.0D-04
$T(4 \ 7 \ +1)$	2.43141050000D + 04	(+/-6.6D-02)	3.0D-04
$T(4 \ 8 \ +1)$	2.433572200000D + 04	(+/-5.4D-02)	2.4D-04
$T(4 \ 9 \ +1)$	2.436002800000D + 04	(+/-5.9D-02)	2.7D-04
$T(4 \ 10 \ +1)$	2.438694900000D + 04	(+/-5.0D-02)	2.3D-04
$T(4 \ 11 \ +1)$	2.44165920000D + 04	(+/-5.8D-02)	2.7D-04
$T(4 \ 12 \ +1)$	2.444881300000D + 04	(+/-5.8D-02)	2.7 D- 04
$T(4 \ 13 \ +1)$	2.448379500000D + 04	(+/-5.3D-02)	2.4D-04
$T(4 \ 14 \ +1)$	2.452133900000D + 04	(+/-5.3D-02)	2.4D-04
$T(4 \ 15 \ +1)$	2.45614780000D + 04	(+/-5.8D-02)	2.7D-04
$T(4 \ 16 \ +1)$	2.460423500000D+04	(+/-5.3D-02)	2.4D-04
$T(4 \ 17 \ +1)$	2.464957700000D + 04	(+/-5.3D-02)	2.4D-04
$T(4 \ 18 \ +1)$	2.469751100000D + 04	(+/-5.8D-02)	2.7D-04
$T(4 \ 19 \ +1)$	2.474800400000D+04	(+/-5.9D-02)	2.7D-04
$T(4 \ 20 \ +1)$	2.480119300000D+04	(+/-5.9D-02)	2.7D-04
$T(4 \ 21 \ +1)$	2.48570730000D + 04	(+/-5.9D-02)	2.7D-04
$T(4 \ 23 \ +1)$	2.497635500000D+04	(+/-9.2D-02)	4.2D-04
$T(5 \ 1 \ +1)$	2.47784060000D+04	(+/-9.1D-02)	4.2D-04
T(5 2 +1)	2.47840000000D+04	(+/-1.8D+01)	8.5D-02
$T(5 \ 3 \ +1)$	2.479205500000D+04	(+/-7.5D-02)	3.4D-04
$T(5 \ 4 \ +1)$	2.48028520000D+04	(+/-6.5D-02)	3.0D-04
T(5 5 +1)	2.481634200000D+04	(+/-6.5D-02)	3.0D-04
$T(5 \ 6 \ +1)$	2.483253800000D+04	(+/-6.5D-02)	3.0D-04
T(5 7 +1)	2.485137400000D+04	(+/-6.5D-02)	3.0D-04
1(5 8 +1)	2.487293000000D+04	(+/-0.5D-02)	3.0D-04
T(5 9 + 1)	2.489713500000D+04	(+/-6.5D-02)	3.0D-04

Table D.4 Energy origins of fluorescence series of  ${}^{24}MgD$  isotopomer (cm⁻¹) (*Cont'd*)
T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(5 \ 10 \ +1)$	2.492405700000D+04	(+/-6.5D-02)	3.0D-04
$T(5 \ 11 \ +1)$	2.49535020000D + 04	(+/-6.5D-02)	3.0D-04
$T(5 \ 12 \ +1)$	2.49857250000D + 04	(+/-7.5D-02)	3.4D-04
$T(5 \ 13 \ +1)$	2.502041700000D+04	(+/-7.5D-02)	3.4D-04
$T(5 \ 14 \ +1)$	2.505789400000D+04	(+/-6.5D-02)	3.0D-04
$T(5 \ 15 \ +1)$	2.50980080000D + 04	(+/-9.1D-02)	4.2D-04
$T(5 \ 16 \ +1)$	2.514057400000D+04	(+/-9.1D-02)	4.2D-04
$T(5 \ 17 \ +1)$	2.51859750000D + 04	(+/-9.2D-02)	4.2D-04
$T(5 \ 19 \ +1)$	2.528299900000D+04	(+/-7.5D-02)	3.4D-04
$T(5 \ 20 \ +1)$	2.53357860000D + 04	(+/-5.9D-02)	2.7D-04
$T(5 \ 21 \ +1)$	2.53912090000D + 04	(+/-6.6D-02)	3.0D-04
$T(5 \ 22 \ +1)$	2.544901100000D+04	(+/-6.7D-02)	3.0D-04
$T(5 \ 23 \ +1)$	2.550931300000D+04	(+/-5.5D-02)	2.4D-04
$T(5 \ 24 \ +1)$	2.55719000000D + 04	(+/-6.1D-02)	2.7 D- 04
$T(5 \ 25 \ +1)$	2.563726300000D + 04	(+/-5.7D-02)	2.4D-04
$T(5 \ 26 \ +1)$	2.570502300000D + 04	(+/-9.3D-02)	4.2D-04
$T(5 \ 27 \ +1)$	2.577498300000D + 04	(+/-6.9D-02)	3.0D-04
$T(5 \ 28 \ +1)$	2.584765400000D + 04	(+/-7.9D-02)	3.4D-04
$T(5 \ 29 \ +1)$	2.592268500000D + 04	(+/-7.9D-02)	3.4D-04
$T(5 \ 30 \ +1)$	2.600040100000D+04	(+/- 8.1 D-02)	3.4D-04
$T(5 \ 31 \ +1)$	2.608041000000D+04	(+/-9.1D-01)	4.2D-03
$T(6 \ 9 \ +1)$	2.54212300000D + 04	(+/-9.1D-02)	4.2D-04
$T(6 \ 11 \ +1)$	2.547774900000D+04	(+/-9.1D-02)	4.2D-04
$T(6 \ 12 \ +1)$	2.550976300000D+04	(+/-9.1D-02)	4.2D-04
$T(6 \ 13 \ +1)$	2.55443150000D + 04	(+/-7.5D-02)	3.4D-04
$T(6 \ 14 \ +1)$	2.558150100000D + 04	(+/-6.5D-02)	3.0D-04
$T(6 \ 15 \ +1)$	2.562131900000D + 04	(+/-6.5D-02)	3.0D-04
$T(6 \ 16 \ +1)$	2.56636600000D + 04	(+/-6.5D-02)	3.0D-04
$T(6 \ 17 \ +1)$	2.57085530000D + 04	(+/-6.5D-02)	3.0D-04
$T(6 \ 18 \ +1)$	2.575593400000D+04	(+/-6.5D-02)	3.0D-04
$T(6 \ 19 \ +1)$	2.580585800000D + 04	(+/-6.5D-02)	3.0D-04
$T(6 \ 20 \ +1)$	2.585831900000D+04	(+/-6.6D-02)	3.0D-04
$T(6 \ 21 \ +1)$	2.591321100000D+04	(+/-7.6D-02)	3.4D-04
$T(6 \ 22 \ +1)$	2.597063300000D+04	(+/-6.6D-02)	3.0D-04
$T(6 \ 23 \ +1)$	2.603043100000D+04	(+/-6.7D-02)	3.0D-04
$T(6 \ 24 \ +1)$	2.609271900000D+04	(+/-7.7D-02)	3.4D-04
$T(6 \ 25 \ +1)$	2.615730900000D+04	(+/-6.8D-02)	3.0D-04
$T(6 \ 26 \ +1)$	2.622432600000D+04	(+/-7.8D-02)	3.4D-04
$T(6 \ 27 \ +1)$	2.629362800000D+04	(+/-7.0D-02)	3.0D-04
$T(6 \ 28 \ +1)$	2.636528500000D+04	(+/-9.6D-02)	4.2D-04
$T(6 \ 29 \ +1)$	2.643915500000D + 04	(+/-9.7D-02)	4.2D-04

Table D.4 Energy origins of fluorescence series of  ${}^{24}MgD$  isotopomer (cm⁻¹) (*Cont'd*)

## D.5 Energy Origins of ²⁵MgD Isotopomer

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(0 \ 8 \ +1)$	2.20652350000D+04	(+/-9.4D-02)	4.2D-04
$T(0 \ 9 \ +1)$	2.208943900000D+04	(+/-94D-02)	4 2D-04
$T(0 \ 10 \ +1)$	2.2162280000D + 01 2 21162280000D + 04	(+/-7.7D-02)	3 4D-04
$T(0 \ 10 \ +1)$ $T(0 \ 11 \ +1)$	2.214576300000D+04	(+/-6.8D-02)	3 0D-04
$T(0 \ 12 \ +1)$ $T(0 \ 12 \ +1)$	2.217789600000D+04	(+/-6.8D-02)	3 0D-04
$T(0 \ 12 \ +1)$ $T(0 \ 13 \ +1)$	2.21110000000D + 01 2.221271300000D + 04	(+/-7.7D-02)	3.4D-04
$T(0 \ 14 \ +1)$ $T(0 \ 14 \ +1)$	2.221211000000D+01 2.225008900000D+04	(+/-6.8D-02)	3 0D-04
$T(0 \ 15 \ +1)$ $T(0 \ 15 \ +1)$	2.2290000000D + 01 2.22901400000D + 04	(+/-6.8D-02)	3.0D-04
$T(0 \ 16 \ \pm 1)$ $T(0 \ 16 \ \pm 1)$	2.223014000000D + 04 2 233281400000D + 04	$(\pm / - 6.0 D - 0.02)$	$2.7D_{-0.4}$
$T(0 \ 10 \ +1)$ $T(0 \ 17 \ +1)$	2.235201400000D + 04 2.237806400000D + 04	(+/-5.7D-02)	2.10-04 2 4D-04
$T(0 \ 18 \ +1)$ $T(0 \ 18 \ +1)$	2.25100040000D + 04 2.242591100000D + 04	(+/-5.1D-02) (+/-5.3D-02)	2.4D-04 2 3D-04
$T(0 \ 10 \ +1)$ $T(0 \ 10 \ \pm1)$	2.242551100000D + 04 2.247639200000D + 04	$(\pm / 5.5D-02)$	2.3D-04 2 3D-04
$T(0 \ 10 \ \pm 1)$ $T(0 \ 20 \ \pm 1)$	2.247039200000D + 04 2 252939200000D + 04	$(\pm / 5.4D - 02)$	2.3D-04 2 3D-04
$T(0 \ 20 \ \pm 1)$ $T(0 \ 21 \ \pm 1)$	2.252939200000D + 04 2 258492300000D + 04	$(\pm / - 5.4D - 02)$	2.5D-04 2 1D-04
T(0 21 + 1) $T(0 22 \pm 1)$	2.256432500000D + 04 2.264306800000D + 04	(+/-5.1D-02) (+/-5.2D,02)	2.10-04 2 1D 04
T(0 22 + 1) $T(0 23 \pm 1)$	2.20430000000000000000000000000000000000	(+/-5.2D-02) (+/-5.3D,02)	2.10-04 2 1D 04
$T(0 \ 23 \ \pm 1)$ $T(0 \ 24 \ \pm 1)$	$2.276571700000D \pm 04$ 2 276686600000D \pm 04	$(\pm / - 6.0D - 02)$	2.10-04 2 4D-04
T(0 24 + 1) $T(0 25 \pm 1)$	2.2100000000000000000000000000000000000	(+/-5.5D-02) (+/-5.5D-02)	2.4D-04 2 1D-04
T(0 20 + 1) $T(0 26 \pm 1)$	2.20323400000D + 04 2 200063300000D + 04	(+/-5.0D-02) (+/-5.0D-02)	2.10-04 2 3D 04
$T(0 \ 20 \ \pm 1)$ $T(0 \ 27 \ \pm 1)$	2.290003300000D + 04 2.297131700000D + 04	$(\pm / - 6.8D - 02)$	2.5D-04 2 7D-04
T(0 27 + 1) $T(0 28 \pm 1)$	2.251151100000D + 04 2 304439600000D + 04	$(\pm / - 6.0 D - 0.02)$	2.10-04 2 3D-04
T(0 20 +1) T(0 29 +1)	2.304493000000D + 04 2 311992100000D+04	(+/-6.1D-0.2) (+/-6.3D-0.2)	2.5D-04 2 3D-04
$T(0 \ 30 \ +1)$ $T(0 \ 30 \ +1)$	2.31932100000D + 04 2 319785800000D + 04	(+/-6.8D-02) (+/-6.8D-02)	2.5D-04 2 4D-04
$T(0 \ 31 \ +1)$ $T(0 \ 31 \ +1)$	2.327817800000D+04	(+/-8.8D-02)	3 4D-04
$T(0 \ 32 \ +1)$	2.336092300000D+04	(+/-7.2D-02)	2 4D-04
$T(0 \ 33 \ +1)$	2.344603200000D+04	(+/-82D-02)	3 0D-04
$T(0 \ 34 \ +1)$	2.35334620000D+04	(+/-7.9D-02)	2.7D-04
$T(0 \ 35 \ +1)$	2.36231800000D+04	(+/-1.02.02) (+/-1.4D-01)	6 0D-04
$T(0 \ 36 \ +1)$	2.371511000000D+04	(+/-1.1D-01)	4.2D-04
$T(0 \ 37 \ +1)$	2.38098300000D+04	(+/-1.1D-01)	4.2D-04
$T(0 \ 38 \ +1)$	2.390633000000D+04	(+/-1.1D-01)	4.2D-04
$T(0 \ 39 \ +1)$	2.40052200000D + 04	(+/-1.2D-01)	4.2D-04
$T(1 \ 10 \ +1)$	2.270126600000D+04	(+/-6.7D-02)	3.0D-04
$T(1 \ 11 \ +1)$	2.273086800000D + 04	(+/-7.7D-02)	3.4D-04
$T(1 \ 12 \ +1)$	2.27630200000D + 04	(+/-6.7D-02)	3.0D-04
$T(1 \ 13 \ +1)$	2.279797300000D+04	(+/-6.0D-02)	2.7D-04
$T(1 \ 14 \ +1)$	2.283541300000D+04	(+/-5.6D-02)	2.4D-04
$T(1 \ 15 \ +1)$	2.287555100000D + 04	(+/-5.6D-02)	2.4D-04
$T(1 \ 16 \ +1)$	2.29183080000D + 04	(+/-5.6D-02)	2.4D-04
$T(1 \ 17 \ +1)$	2.29636500000D + 04	(+/-5.6D-02)	2.4D-04
$T(1 \ 18 \ +1)$	2.301159500000D + 04	(+/-5.6D-02)	2.4D-04
$T(1 \ 19 \ +1)$	2.306216100000D+04	(+/-5.6D-02)	2.4D-04
$T(1 \ 20 \ +1)$	2.311518200000D+04	(+/-6.2D-02)	2.7D-04
$T(1 \ 21 \ +1)$	2.317081400000D + 04	(+/-6.2D-02)	2.7D-04
$T(1 \ 22 \ +1)$	2.32289930000D + 04	(+/-6.9D-02)	3.0D-04
$T(1 \ 23 \ +1)$	$2.328972800000 \mathrm{D}{+}04$	(+/-6.9D-02)	3.0D-04
$T(1 \ 24 \ +1)$	$2.335295800000 \mathrm{D}{+}04$	(+/-7.9D-02)	3.4D-04
$T(1 \ 25 \ +1)$	$2.341863700000\mathrm{D}{+}04$	(+/-9.6D-02)	4.2D-04
$T(1 \ 26 \ +1)$	$2.348675700000\mathrm{D}{+}04$	(+/-8.1D-02)	3.4D-04
$T(1 \ 27 \ +1)$	$2.355741600000 \mathrm{D}{+}04$	(+/-8.2D-02)	3.4D-04
$T(1 \ 28 \ +1)$	2.363038900000D+04	(+/-8.3D-02)	3.4D-04
$T(1 \ 29 \ +1)$	2.370587800000D + 04	(+/-8.2D-02)	3.4D-04

Table D.5: Energy Origins of "Fluorescence Series" of  $^{25}\mathrm{MgD}$  Isotopomer (cm $^{-1})$ 

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(1 \ 30 \ +1)$	2.378375600000D+04	(+/-7.5D-02)	3.0D-04
$T(1 \ 31 \ +1)$	2.386406700000D+04	(+/-8.5D-02)	3.4D-04
$T(1 \ 32 \ +1)$	2.394668200000D+04	(+/-7.8D-02)	3.0D-04
$T(1 \ 33 \ +1)$	2.403164000000D+04	(+/-1.0D-01)	4.2D-04
$T(2 \ 19 \ +1)$	2.363487100000D + 04	(+/-9.4D-02)	4.2D-04
$T(2 \ 20 \ +1)$	2.368797100000D + 04	(+/-9.4D-02)	4.2D-04
$T(2 \ 24 \ +1)$	2.392536800000D + 04	(+/-9.6D-02)	4.2D-04
$T(2 \ 25 \ +1)$	2.39908950000D + 04	(+/-9.7D-02)	4.2D-04
$T(2 \ 26 \ +1)$	2.40591040000D + 04	(+/-9.8D-02)	4.2D-04
$T(2 \ 27 \ +1)$	2.41300000000D + 04	(+/-1.8D+01)	8.5D-02
$T(2 \ 28 \ +1)$	2.42030000000D + 04	(+/-1.8D+01)	8.5D-02

Table D.5 Energy origins of "fluorescence series" of  $^{25}\mathrm{MgD}$  isotopomer (cm^{-1}) (Cont'd)

## D.6 Energy Origins of ²⁶MgD Isotopomer

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(0 \ 8 \ +1)$	2.20645270000D+04	(+/-9.4D-02)	4.2D-04
$T(0 \ 9 \ +1)$	2.208865100000D+04	(+/-94D-02)	4 2D-04
$T(0 \ 10 \ +1)$	2.211543700000D+04	(+/-6.8D-02)	3 0D-04
$T(0 \ 11 \ +1)$	2.214481400000D+04	(+/-6.8D-02)	3 0D-04
$T(0 \ 12 \ +1)$ $T(0 \ 12 \ +1)$	2.217686800000D+04	(+/-9.3D-02)	4 2D-04
$T(0 \ 12 \ +1)$ $T(0 \ 13 \ +1)$	2.2110000000D + 01 2.221155100000D + 04	(+/-6.8D-02)	3 0D-04
$T(0 \ 14 \ +1)$ $T(0 \ 14 \ +1)$	2.22110010000D + 01 2.224886400000D + 04	(+/-61D-02)	2.7D-04
$T(0 \ 15 \ +1)$	2.22887930000D+04	(+/-57D-02)	2.4D-04
$T(0 \ 16 \ +1)$ $T(0 \ 16 \ +1)$	2.233134900000D+04	(+/-57D-02)	2.10  of 2.4D-04
$T(0 \ 17 \ +1)$ $T(0 \ 17 \ +1)$	2.23764560000D + 01	(+/-5.7D-02)	2.10 01 2.4D-04
$T(0 \ 18 \ +1)$	2.24242020000D+04	(+/-5.3D-02)	2.1D 01 2.3D-04
$T(0 \ 10 \ +1)$ $T(0 \ 19 \ +1)$	2.2474500000000000000000000000000000000000	(+/-5.02) (+/-5.4D-02)	2.00 01 2 3D-04
$T(0 \ 20 \ +1)$ $T(0 \ 20 \ +1)$	2.252732600000D+04	(+/-5.10, 02) (+/-5.70-02)	2.6D 01 2 4D-04
$T(0 \ 21 \ +1)$ $T(0 \ 21 \ +1)$	2.258279800000D+04	(+/-54D-02)	2.12  or 2.3D-04
T(0 22 +1) T(0 22 +1)	2.264074200000D+04	(+/-52D-02)	2.02  or 2 1D-04
T(0 22 + 1) T(0 23 + 1)	2.201011200000D + 01 2.270121300000D + 04	$(+/-5.2D \cdot 02)$ $(+/-5.3D \cdot 02)$	2.1D 01 2 1D-04
T(0 20 + 1) T(0 24 + 1)	2.276418500000D+04	(+/-6.0D-02)	2.10 01 2 4D-04
$T(0 \ 25 \ +1)$ $T(0 \ 25 \ +1)$	2.29011000000D + 01 2.282966700000D + 04	(+/-5.5D-02)	2.1D 01 2 1D-04
$T(0 \ 26 \ +1)$ $T(0 \ 26 \ +1)$	2.289762800000D+04	(+/-5.8D-02)	2.10  of 2 3D-04
$T(0 \ 27 \ +1)$ $T(0 \ 27 \ +1)$	2.20070200000D + 01 2.296806600000D + 04	(+/-6.0D-02)	2.3D-04
$T(0 \ 28 \ +1)$	2.304096400000D+04	(+/-6.1D-02)	2.3D-04
T(0 29 + 1)	2.311623200000D+04	(+/-6.6D-02)	2.4D-04
$T(0 \ 30 \ +1)$	2.319396900000D+04	(+/-7.2D-02)	2.7D-04
$T(0 \ 31 \ +1)$	2.32740850000D + 04	(+/-7.4D-02)	2.7D-04
$T(0 \ 32 \ +1)$	2.33566080000D+04	(+/-7.6D-02)	2.7D-04
$T(0 \ 33 \ +1)$	2.34414360000D+04	(+/-7.8D-02)	2.7D-04
$T(0 \ 34 \ +1)$	2.352867100000D+04	(+/-7.6D-02)	2.4D-04
$T(0 \ 35 \ +1)$	2.361820700000D+04	(+/-8.7D-02)	3.0D-04
$T(0 \ 36 \ +1)$	2.371000500000D + 04	(+/-9.6D-02)	3.4D-04
$T(0 \ 37 \ +1)$	2.380432500000D+04	(+/-9.2D-02)	3.0D-04
$T(0 \ 38 \ +1)$	2.39007900000D + 04	(+/- 1.0D-01)	3.4D-04
$T(0 \ 39 \ +1)$	2.399937000000D+04	(+/- 1.0D-01)	3.4D-04
$T(0 \ 40 \ +1)$	2.41003800000D + 04	(+/- 1.2D-01)	4.2D-04
$T(0 \ 41 \ +1)$	2.42035200000D + 04	(+/-1.2D-01)	4.2D-04
$T(1 \ 12 \ +1)$	2.276121800000D + 04	(+/-9.3D-02)	4.2D-04
$T(1 \ 13 \ +1)$	2.279598900000D+04	(+/-6.0D-02)	2.7D-04
$T(1 \ 14 \ +1)$	2.283334400000D+04	(+/-6.0D-02)	2.7D-04
$T(1 \ 15 \ +1)$	2.28734000000D + 04	(+/-6.0D-02)	2.7D-04
$T(1 \ 16 \ +1)$	2.291603900000D+04	(+/-5.6D-02)	2.4D-04
$T(1 \ 17 \ +1)$	2.296124700000D+04	(+/-5.6D-02)	2.4D-04
$T(1 \ 18 \ +1)$	2.300905300000D+04	(+/-6.1D-02)	2.7D-04
$T(1 \ 19 \ +1)$	2.305940700000D+04	(+/-5.6D-02)	2.4D-04
$T(1 \ 20 \ +1)$	2.31123690000D + 04	(+/-6.2D-02)	2.7D-04
$T(1 \ 21 \ +1)$	2.316781100000D+04	(+/-6.2D-02)	2.7D-04
$T(1 \ 22 \ +1)$	2.322588200000D+04	(+/-6.9D-02)	3.0D-04
$T(1 \ 23 \ +1)$	2.328636200000D+04	(+/-6.9D-02)	3.0D-04
$T(1 \ 24 \ +1)$	2.33500000000D+04	(+/-1.5D+01)	6.9D-02
$T(1 \ 25 \ +1)$ $T(1 \ 26 \ +1)$	2.341499500000D+04	(+/-9.6D-02)	4.2D-04
$1(1 \ 20 \ +1)$ T(1 \ 27 \ +1)	2.348289900000D + 04	(+/- 8.1D-02)	3.4D-04 2.4D-04
$1(1 \ 2( +1))$ T(1 28 +1)	2.355329700000D+04	(+/- 8.2D-02)	3.4D-04 4.2D-04
$T(1 \ 20 \ +1)$ $T(1 \ 20 \ +1)$	2.3020030000000000000000000000000000000	(+/-9.8D-02)	4.2D-04 3 0D 04
1(1 29 +1)	2.370140100000D+04	$(\pm / - 1.4D - 02)$	<b>J.UD-</b> 04

Table D.6: Energy Origins of "Fluorescence Series" of  $\rm ^{26}MgD$  Isotopomer  $\rm (cm^{-1})$ 

T(v' j' p')	Energy Origin	Uncertainty	Sensitivity
$T(1 \ 30 \ +1)$	2.377907400000D+04	(+/-8.3D-02)	3.4D-04
$T(1 \ 31 \ +1)$	2.38589300000D + 04	(+/- 1.4D-01)	6.0D-04
$T(1 \ 32 \ +1)$	2.39416010000D + 04	(+/-8.7D-02)	3.4D-04
$T(1 \ 33 \ +1)$	2.40263000000D + 04	(+/- 1.4D-01)	6.0D-04
$T(2 \ 20 \ +1)$	2.368443300000D+04	(+/-9.4D-02)	4.2D-04
$T(2 \ 21 \ +1)$	2.373988800000D+04	(+/-9.4D-02)	4.2D-04
$T(2 \ 24 \ +1)$	2.39210260000D + 04	(+/-9.6D-02)	4.2D-04
$T(2 \ 25 \ +1)$	2.398646200000D+04	(+/-9.7D-02)	4.2D-04
$T(2 \ 27 \ +1)$	2.41250000000D + 04	(+/-1.8D+01)	8.5D-02
$T(2 \ 28 \ +1)$	$2.41980000000 D{+}04$	(+/-1.8D+01)	8.5D-02

Table D.6 Energy origins of "fluorescence series" of  $^{26}{\rm MgD}$  isotopomer (cm^{-1}) (Cont'd)