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Abstract

Earth, Moon and Sun unite when they star together in the three-body problem, whose

intricate plot still baffles us today. For some reason, the factorization of the two-body

problem into two one-body problems does not, in general, cross the N = 2 border. Is com-

putational irreducibility responsible for this emergence of complexity, as Stephen Wolfram

likes to think? We don’t know. The introduction to this thesis in Chapter 1, however,

makes it clear that the history of science is marked by intermittent encounters of sudden

complexities when the number 2 is left behind. In Chapter 2, I present an experiment

that is quite similar in spirit, for my colleagues and I observe three-photon interference

without two-photon and single-photon interference. We had to overcome significant exper-

imental challenges that are typical for most quantum interference experiments involving

more than two photons. Next in line is the three-slit interference experiment. Again

a deceptively simple extension of the famous double-slit experiment, we are faced with

questions that are difficult to access experimentally: the existence of genuine three-slit

interference was first denied and then affirmed, though no experiment has decided yet. My

contribution to the study of this problem is outlined in Chapter 3, where I use symmetry

of measurement settings in such interference experiments to theoretically derive higher-

order interference terms. In Chapter 4, I take a step back in one sense, for we study a

two-photon phenomenon, but we also leap forward and discover entirely new interference

landscapes. Theoretically and experimentally, I demonstrate how to use a polarization-

modulated lasers to go beyond the standard Hong-Ou-Mandel (HOM) dip, and generate

both triangular and square wave HOM interference patterns. Two-photon interference

is also subject of Chapter 5, but with an interesting twist. While laser HOM interfer-

ence relies on two independent photons, here we endow the pair with the strongest known

correlations, namely entanglement. More specifically, we entangle a polarization and a

time-bin qubit and use this hybrid to assess the viability of a rather special interferometer

for quantum communication purposes.
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Chapter 1

Introduction

 

Screen

Three-Slit Mask

Single Photons
Photon Triplets

Three-Photon
Interferometer

Detectors

(a) (b)

Figure 1.1: Three-Photon and Three-Slit Interference Experiments. Two quantum

interference phenomena shape this thesis’ heart. Its beating is driven by two questions.

First, is it possible to observe three-photon interference without two-photon and without

single-photon interference? Second, is a three-slit interference pattern always determined

by double-slit and single-slit patterns? (a) Three entangled photons propagate through

three optical interferometers and are detected by single-photon detectors. (b) A single

photon has three alternative paths for a detection on a screen behind a three-slit mask.

What is the difference between classical and quantum interference? There is no simple

answer to this question, although, asking quantum opticians, one often hears “Hong-Ou-

Mandel (HOM) interference with 100 % visibility is only possible using single photons”.

Classical fields can also interfere at a beam splitter to form an anticorrelation dip, how-

ever, the visibility is limited to 50 % (and even this number is model-dependent: (i) two

phase-randomized coherent input states and (ii) bucket detectors). Still, this quantitative

1



difference seems a bit unsatisfactory, for we do not gain, to use Ian Hacking’s terminology,

a Cartesian cognizance of interference. The Leibnizian understanding we have instead does

grant us access to the mathematical machinery of both theories, but we can rarely step

beyond a simple comparison of results, the strength of interference fringes in particular. To

a certain extent, this betrays the complexity inherent in recently discovered interference

phenomena and partially explains the difficulties encountered in applying advanced inter-

ference concepts to biological systems, where work at the classical-quantum boundary is

paramount. This border is as intangible as ever and we lost a little bit the motivation to go

through the trouble and calculate, for example, classical visibility bounds. Firmly estab-

lished numbers can be attached to only a few interference phenomena, notably fourth-order

interference, of which HOM interference is an example. Finding classical models in clos-

est correspondence to multiparticle quantum interference phenomena is a daunting task.

Why should we bother anyway? For we know that, ultimately, light is quantized, which

guarantees the existence of a quantum-theoretical model for every interference phenomena

(though we do not know yet whether gravity can be quantized, which means interference

of gravitational waves are interesting). Still, we should pin down the difference between

classical and quantum interference. I do not suggest that we will find an interference phe-

nomena with a classical but no quantum model. However, the conclusion that, because

the quantum nature of light is so thoroughly established, we can safely abandon classical

theories altogether at the frontier of interference phenomena, cannot be upheld for several

reasons.

First, there is the question whether a newly discovered interference phenomena has

a classical model. The past ten years or so have witnessed a series of claims, falsely

proclaiming genuine quantum effects where, in fact, classical interference has taken place.

Examples are “ghost” imaging, anticorrelation dips and superresolution interferometry, as

discussed later. Not only a resource question (see next point) for metrology, applications

in quantum information critically rely on true non-classicality for both computational

speed-up and ultimate communication security. Those advantages disappear as soon as we

can fake, or simulate, quantum correlations with, potentially quite complex, statistically

correlated, classical systems. Hence the importance of identifying with utmost confidence

the closest available classical model for a newly discovered interference phenomena.

Second, classical interference is “cheaper”. The generation of non-classical field states,

be they independent, indistinguishable single photons, or multiphoton states with tailored

entanglement, is, and for the foreseeable future will remain so, experimentally challenging.

However, it is often possible to replace quantum with classical sources and use a qualita-

tively identical interference pattern —at a calculable visibility cost. One can go further
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and safely treat the whole system classically as long as the detector is based on quantum

effects, in which case quantum interference is deferred to the end of the experiment (the

principle of deferred measurement is also a powerful concept in quantum circuits). This

is not only a cost-saving strategy but sometimes the only viable route for realizations of

ideas with great potential. Practical quantum key distribution, for instance, makes exten-

sive and efficient use of weak coherent states as an approximation to single photon Fock

states. In fact, the essential ingredient for the security of quantum communication systems

is not “single photons” but “non-orthogonality”, illustrating the importance of knowing

what resources are actually needed [1].

Third, classical models are indispensable for a complete categorization of interference

phenomena. Wading through the newly discovered interference landscapes inhabited by

more than two photons, we are in need of the map and compass afforded by such a classifi-

cation. In particular, we want to have knowledge on the whereabouts of classical-quantum

borders; to know what concepts reign supreme in each part, and what concepts bind

fast the two contending territories. The strongest tie is the superposition principle: it is

applied to electromagnetic fields and quantum states in classical and quantum theories, re-

spectively, though superposition is only half the story. Whereas quantum systems possess

intrinsic interference capabilities, namely entanglement and exchange symmetry, classical

systems typically rely on another, statistical layer on top of Maxwell’s equations. The

result is coherence theory and fully accounts for fluctuating fields and how these translate

into beautiful and intricate interference patterns. More generally, statistical optics tells

us a great deal about light where there is simply no need for quantum theory. Just to

name one example, a classic result of coherence theory is that fields emitted from inde-

pendent sources, upon propagation, become correlated and their spectral decomposition

in the far field can be altered —without any matter interaction! Quantum optics adopted

the most important concepts such as correlation functions, mainly through the work of

Glauber, Sudarshan, and others in the 1960s. A new wave of ideas from group theory

and combinatorics recently backed the analysis of interferometers, linear optical networks

in particular. I expect that group and representation theory will carry the bulk of the

burden of a full classification of interference phenomena. Once we possess the mathemat-

ical tools and experimental methods that inevitably come with structured knowledge, we

can incorporate principles from quantum information and biology to full effect and study

interference phenomena in truly complex systems.

How complexity arises in simple systems ranks among the perennial questions in sci-

ences. From Newton’s three-body problem, through symmetric polyhedra in solid ge-
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ometry, all the way to cellular automata in modern times, intermittent encounters with

surprising complexities define, shape and extend scientific thinking and concepts. Ven-

turing beyond two-photon interference, we may witness another such occurrence. Already

three-photon interference, discussed and demonstrated in this thesis, shows novel interfer-

ence phenomena and, looking closely enough, we may see vestiges of a similar happening

around 320 years ago. Hon and Goldstein [2] traced back our modern concept of symmetry

to a definition of Adrien-Marie Legendre in 1794. The usages of symmetry in mathematics,

natural sciences, and the arts prior to that year have little in common with our modern

notion. As every student of Euclid’s Elements will remember, in two dimensions, polygons

such as squares, triangles and so on are completely categorized by their number of edges.

Any two similar polygons can be scaled, moved and rotated to superpose them; and if two

polygons are mirror images, we can make use of the third dimension as a temporary re-

source and flip over one polygon to superpose them. Thus, in (two-dimensional) Euclidean

geometry, the notion of congruence is a triviality because of superposeability. However,

things change dramatically when moving up a dimension. In three dimensions, polyhedra

exist that are equal (congruent faces, same volume) but cannot be superposed. Think of

your two hands: no matter how much you rotate, twist and move them, you will never

be able to superpose them. Moreover, we cannot make use of a fourth dimension to flip

them over. Thus, in solid geometry we have to deal with objects that are equal, but which

cannot be superposed. In 1794, Adrien-Marie Legendre recognized this in his Éléments de

géométrie and defined a new form of equality, namely equality by symmetry:

Thus two equal solid angles which are formed (by the same plane angles)

but in the inverse order will be called angles equal by symmetry, or simply

symmetric angles.1

Wielding this novel concept, Legendre answered Euler’s call to study solid geometry, and

delivered a complete proof of Euler’s polyhedra formula V + F = E + 2, as he was now

able to properly use spherical angles.

The development in geometry spurned by the third dimension is paralleled by a similar

progress in algebra (the following examples are taken from [3]). In the 16th century, algebra

was little more than solving polynomial equations. Formulas for calculating roots of those

equations formed the theoretical backbone. Problematic was only that those formulas

yielded solutions containing terms of the form n
√
a, where a is any real number, i.e. also

1Ainsi les deux angles solides dont il s’agit, qui sont formés par trois angles plans égaux chacun à

chacun, mais disposés dans un order inverse, s’appelleront angles égaux par symmétrie, ou simplement

angles symmétriques.
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negative ones. For example, the equation

x2 + 3 = 2x (1.1)

has the formal solution

x2 = 1±
√
−2 , (1.2)

but since only numbers on the real line were accepted, mathematicians would have said that

this equation possesses no solution. For quadratic equations, it is true that “nonsensical”

terms like
√
−2 only appear if the equation has no real solution but are absent otherwise.

This provided comfort, for the “artifact”
√
−2 is synonymous with lack of a solution. For

cubic equations such as

x3 = 15x+ 4 , (1.3)

turning a blind eye on roots of negative numbers is no longer an option. Why? Well, the

solution

x3 =
3

√
2 +
√
−121 +

3

√
2−
√
−121 (1.4)

is in fact equal to x3 = 4! Mathematicians knew, now that they arrive at real solutions

through those negative-square-root terms, their formal structure merit a stringent study.

Thus, the emergence of complex numbers, with their formal perfection by Hamilton in the

first half of the 19th century, was initiated by a phenomenon that only appears in the

third dimension. This little digression conveys how two great ideas, namely the concept

of symmetry and complex numbers, came into being through study of essentially the same

problem, but with an additional dimension. As demonstrated in this thesis, three photons

display behavior that goes beyond a simple extension of two-photon interference.

I commenced my graduate studies with the goal to answer the introductory question

and was hoping to find a thorough and exhausting answer by the time I write my Dok-

torarbeit. I did not quite achieve this lofty goal but finished work on four main projects,

the results of which I report here. The first two chapters form the core of this thesis and

deal with two diametrically opposite interference phenomena, which are sketched in Figure

1.1. In Chapter 2, I report the Observation of Genuine Three-Photon Interference. In

this experiment, we realized a Greenberger-Horne-Zeilinger interferometer, which has been

studied theoretically since 1990. Using energy-time entangled photon triplets we were able

to isolate pure three-photon interference. This is the interferometric way to demonstrate

that the photon triplet, despite separation of its constituents (single photons), still acts

as a whole. Then, in Chapter 3, I turn my attention to the Origin of Interference Terms.

Remember that interference between two paths in a double-slit experiment means they

are indistinguishable. When a third path, via another slit, is added, however, a degree of
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distinguishability is introduced, despite the fact that full interference is still observed. How

can we understand this? After initial experimental evidence that the three-slit interference

term is zero, we now believe there is genuine three-slit interference. I studied the problem

theoretically using an algebraic (group and representation theory) approach and was able

to derive the three-slit interference term (in fact, any N -slit interference term). This is

quite surprising, for I did not make use of concepts such as waves or quantum interference.

In Chapter 4 we discover new interference landscapes, as we study the HOM effect with

lasers in three different degrees of freedom. Chapter 5 summarizes the development of a

multimode time-bin qubit analyzer and we demonstrate its usability for experiments with

hybrid-entangled photon pairs.

Nomenclature. Correlation or coherence functions can be used to roughly classify

interference phenomena. Traditionally, there have been two schools. The Harvard school

centered around Roy J. Glauber defines interference order according to the number of in-

tensities in the expectation value, whereas the definition according to Rochester’s Institute

of Optics, centered around Leonard Mandel and Emil Wolf, the number of E-fields is the

more accurate and general one. I follow the latter in this thesis, i.e. what the former

calls “first-order” and “second-order” interference, is “second-order” and “fourth-order”

interference in the latter.
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Chapter 2

Observation of Genuine Three-Photon

Interference

2.1 Notes

The results presented in this chapter have been partially published as [4]

Sascha Agne, Thomas Kauten, Jeongwan Jin, Evan Meyer-Scott, Jeff Z. Sal-

vail, Deny R. Hamel, Kevin J. Resch, Gregor Weihs, and Thomas Jennewein,

”Observation of Genuine Three-Photon Interference”, Physical Review Letters,

118, 153602 (2017)

and be presented under the same title at

Conference on Lasers and Electro-Optics (CLEO) 2017, San Jose, California,

Postdeadline Papers Session II (JTh5B).
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2.2 Introduction

Maximal knowledge of a total system does not necessarily include total knowl-

edge of all its parts, not even when these are fully separated from each other

and at the moment are not influencing each other at all.1

—Erwin Schrödinger (1935)

When Schrödinger coined the term Verschränkung in 1935, he had in mind the simplest

system comprising just two particles. In the same year, Einstein, Podolsky and Rosen

directed attention to the consequences of the strong correlations graced by entanglement [5],

but it took another 55 years before the next logical step was taken by Greenberger, Horne

and Zeilinger (GHZ) in 1989 [6]. As they put more than two particles on the dissecting

table, they discovered even stronger correlations than those that exists for two particles.

Ramifications for the foundations of quantum mechanics were profound [7, 8] but those

correlations are hard to create. Hence, it took another 20 years to directly generate photon

triplets [9] and another half decade to make the source viable for interferometery. The

observation of genuine three-photon interference, which I describe in detail in this chapter,

testifies to the ongoing efforts to access (pure) higher-order correlations for fundamental

questions and applications.

2.3 A Three-Photon Coincidence

Multiparticle quantum interference lies at the heart of quantum information processing and

fundamental tests of quantum mechanics [10]. However, interference phenomena involving

more than two photons are largely unexplored. As we dive deeper into mathematical struc-

tures and empirical methods, the challenges are both theoretical and experimental. Here

we study the simplest, non-trivial interference effect of more than two photons, namely gen-

uine three-photon interference. What the adjective “genuine” attempts to communicate

is three-photon interference without two-photon and single photon interference —a pure

three-photon effect. Its isolation has recently been achieved by us [4] and Menssen et al.

[11] using entangled and independent photons, respectively. In our setup, the strong corre-

lations of energy-time entangled photon triplets are converted into the desired interference

1Maximale Kenntnis von einem Gesamtsystem schließt nicht notwendig maximale Kenntnis aller seiner

Teile ein, auch dann nicht, wenn dieselben völlig voneinander abgetrennt sind und einander zur Zeit gar

nicht beeinflussen.
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pattern using a so-called Greenberger-Horne-Zeilinger (GHZ) interferometer. Introduced

in 1990 by Greenberger et al. [12], this approach has been studied theoretically [10, 13–23]

but the experimental challenges were not overcome until now. The biggest problem is

posed by the source: how can we directly generate genuinely tripartite entangled photons?

In their original proposal [12], Greenberger et al. included the possibility to cascade two

parametric downconversion processes, each of which can produce two entangled photons.

When such a source was finally realized in our labs in 2010 [9], the triplet generation rate

would not allow the compilation of robust measurement statistics needed for interferometry.

Only with an improved source design, substantially more efficient single photon detectors,

a stable three-photon interferometer, and clever detection and analysis techniques, were

we able to observe genuine three-photon interference.

The hurdle in Menssen et al.’s experiment is a theoretical one, for there is no obvious

phase in their interferometer. Experimental setups to interfere three independent photons

at a three-port beam splitter, or tritter, are in use for a couple of years now [24, 25].

However, because of the photon’s mutual independence, the tritter cannot convert optical

phase differences into photon number fluctuations (which are measurable). This phase-

independence is already known from the Hong-Ou-Mandel interferometer, of which the

tritter setup is the three-photon generalization. So where do we find the missing phase?

A couple of years ago, around 2010, the boson sampling problem was discovered [26],

which reinvigorated group theoretical and combinatorial considerations of interferometers.

These mathematical structures allow us to extract a three-photon, or triad, phase [27].

In contrast to our interferometric three-photon phase, which is the sum of three optical

phases, the phase in Menssen et al.’s experiment refers to the argument of the complex

scalar product of states of two photons. While no optical phase dependence exists for

any number of independent photons, the distinguishability phase only shows up for more

than two photons. This is the equivalent for three-photon correlation without two-photon

correlations and the mechanism that allows Menssen et al. to observe phase-dependent

count rates as well. The conceptual puzzle, how three photons, strongly correlated in one

hand, and statistically independent in the other, give rise to the same same interference

phenomena, is thereby partially explained. A full understanding will only be formed in the

future, with differences emerging in setups with four or more photons and common traits

explored in the interference of entangled, identical photons.
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Figure 2.1: Venn Diagram for Three Correlated Variables. Illustrating the nature

of genuine tripartite correlations using Venn diagrams. Shown here is the union of three

sets, which can be expressed using the inclusion-exclusion expansion as |A ∪ B ∪ C| =

|A| + |B| + |C| − |A ∩ B| − |A ∩ C| − |B ∩ C| + |A ∩ B ∩ C|. We see in the center the

overlap of all three sets together, |A ∩ B ∩ C|, but we also see this automatically implies

in this region |A ∩B| 6= ∅, |A ∩C| 6= ∅, and |B ∩C| 6= ∅. However, for the phenomena we

study, these three intersections need to be empty—but how is this possible?

2.4 What are Genuine Correlations?

Think of two correlated things A and B. Standing on George Boole’s shoulders, the laws of

thought nudge us towards an association of correlation with synchronization and causality.

This fallacy is met with immense academic force ever since the introduction of the statistical

concept of correlation by Francis Galton in the 19th century, yet prevails to this day. Our

failure to imbibe a correct notion of correlation is symptomatic for the progress of both

natural and social sciences. Only rarely do the systems we study demand a venture (far)

beyond the most trivial correlations or statistical moments, namely averages and variance.

The empirical information we throw away by neglecting higher orders is, admittedly, of

little value in the overwhelming number of cases. However, all this means, really, is that we

restrict our studies to systems that permit explanations of complex phenomena in terms of

simple observations. This possibility of reduction is usually encoded in a powerful theorem,
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for instance the Gaussian moment-factoring theorem. In Gaussian random systems, all the

first and second order moments completely determine all higher-order moments. It is likely,

however, that truly complex systems, such as life, require pure higher-order phenomena.

Most likely, traditional methods will either be supplemented or even replaced by new

methods, as for example suggested by Stephen Wolfram [28].

The complexity is already evident when we consider three correlated things A, B,

and C. If there is some correlation in the system, we would instinctively say that either

A&B, A&C, or B&C must be correlated. Kant’s pure intuition aside, this thinking

takes root in the observation that synchronized behavior of, say, three persons implies an

act in tandem for any pair. However, tripartite without bipartite correlations exist and

are not confined to quantum-mechanical systems. A typical classical situation bearing this

correlation signature is the following. We wish three persons to have access to a secret or

trigger an action —but only all three together: a single person is without power and no

collusion with any other person should be possible. This example outlines an important

class of security protocols [29] comprising secret sharing, N -man rule, separation of duties,

and so on (think of the procedure to launch a nuclear missile), and is perhaps the most

general way to illustrate what we mean with genuine three-photon correlations, or genuine

three-photon interference.

Mathematically, correlations are put on firm foundations within probability theory.

Think of two random variables X and Y with probability distributions PX(x) and PY (y).

These do not necessarily tell us anything about the joint probability distribution PXY (x, y).

Even in case PXY (x, y) = PX(x)PY (y) do we need to postulate the independence of X

and Y . This is a piece of information not contained in either X or Y but exclusively

in the joint consideration of both. Similarly, for three random variables X, Y , and Z

with given probability distributions, we have substantial freedom to construct PXY (x, y),

PXZ(x, z), PY Z(y, z) and PXY Z(x, y, z). The rich diversity is exemplified by the existence

of probability models with pairwise independent events that are not independent [30]: in

a fair drawing of four balls 1,2,3,4 from an urn, the events X = {1, 2}, Y = {1, 3} and

Z = {1, 4} all have probability 1/2 and the three joint probabilities are 1/4, which means

the events are pair-wise independent, i.e. P (XY ) = P (X)P (Y ), P (XZ) = P (X)P (Z),

and P (Y Z) = P (Y )P (Z). However, the events are not totally independent because the

intersection of X, Y , and Z is {1}; thus, P (XY Z) = 1/4 6= P (X)P (Y )P (Z). The sim-

plicity of this example should not blind us from the fact that identification of naturally

occurring (higher-order) random processes with desired properties is difficult in general (as

well as engineering a corresponding system). Simple models nevertheless have the benefit

to start the mathematical engine and in the next section we construct an elementary statis-
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tical prototype for three-photon interference, before proceeding to systems with quantum

correlations.

2.5 Classical Genuine Third-Order Interference

φ1

B1

A1
B3

A3

A2 B2

φ3

φ2

C
orrelator

Figure 2.2: Classical Third-Order Interference. Setup for classical third-order in-

terference. Three fields are emitted into three Mach-Zehnder interferometers with phases

ϕk ≡ ϕk(tk), k ∈ {1, 2, 3}, that are subject to a random process. The detectors Ak, Bk

measure field intensities, and their current outputs are fed into a correlator.

Higher-order interference or correlation phenomena are actually quite common through

statistical, or accidental correlations coming from lower orders. Their elimination defines

hard problems and is at the heart of genuine three-photon interference. Consider three

fields, each transmitted through an interferometer with phase ϕk ≡ ϕk(tk), k ∈ {1, 2, 3},
and harmonic intensities,

Ik(ϕk) =
I0

2

(
1 + cos

(
ϕk
))

. (2.1)
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Simply multiplying the signals we get

I(3)(ϕ1, ϕ2, ϕ3) = I1(ϕ1)I2(ϕ2)I3(ϕ3)

=
I3

0

8

(
1 + cos

(
ϕ1

)
+ cos

(
ϕ2

)
+ cos

(
ϕ3

)
+ cos

(
ϕ1

)
cos
(
ϕ2

)
+ cos

(
ϕ1

)
cos
(
ϕ3

)
+ cos

(
ϕ2

)
cos
(
ϕ3

)
+

1

4
cos
(
ϕ1 − ϕ2 + ϕ3

)
+

1

4
cos
(
ϕ1 + ϕ2 − ϕ3

)
+

1

4
cos
(
ϕ1 − ϕ2 + ϕ3

)
+

1

4
cos
(
ϕ1 + ϕ2 + ϕ3

))
,

(2.2)

where we used trigonometric identities to break up cos
(
ϕ1

)
cos
(
ϕ2

)
cos
(
ϕ3

)
. Obviously,

the third-order intensity is phase-dependent, though in a highly convoluted way. We are

absolutely not interested in the constant term, the single-phase cosine terms, and the

product-cosine terms, for we can obtain these through zeroth-, first-, and second-order

measurements, respectively. The interesting terms, however, namely the linear combina-

tions of all three phases, contribute only a small and hardly discernible part to the overall

signal. This is what we mean when we say the lower orders swamp the higher-order signals.

So what can we do to isolate, say the term carrying the ϕ1 + ϕ2 + ϕ3 information? We

could use a tailored random process and try to impose the desired correlations as follows.

Consider the correlation functions

G(2)
mn(ϕm, ϕn) =

〈
Im(ϕm)In(ϕn)

〉
=
I2

0

4

(
1 +

〈
cos
(
ϕ1

)〉
+

〈
cos
(
ϕ2

)〉
+

〈
cos
(
ϕ1

)
cos
(
ϕ2

)〉) (2.3)

for all mn ∈ {12, 13, 23}, and the triple intensity correlation function

G(3)(ϕ1, ϕ2, ϕ3) =

〈
I(3)(ϕ1, ϕ2, ϕ3)

〉
. (2.4)

For genuine third-order interference, we would like to have

Īk(ϕk) =

〈
Ik(ϕk)

〉
=
I0

2

(
1 +

〈
cos
(
ϕk
)〉) !

=
I0

2
∀ k ∈ {1, 2, 3} , (2.5)

and

G(2)
mn(ϕm, ϕn)

!
=
I2

0

4
∀mn ∈ {12, 13, 23} , (2.6)

while

G(3)(ϕ1, ϕ2, ϕ3)
!

= G(3)(ϕ1 + ϕ2 + ϕ3) . (2.7)

13



The random process to realize this interference phenomena is characterized by the proba-

bility distributions

Pk(ϕk) =
1

2π
∀ k ∈ {1, 2, 3}

Pkl(ϕk, ϕl) = Pk(ϕk)Pl(ϕl) ∀ k, l ∈ {1, 2, 3}
(2.8)

with the single constraint

ϕ1 + ϕ2 + ϕ3 = ϕc , (2.9)

where ϕc is an arbitrary constant. We immediately calculate〈
cos
(
ϕk
)〉

=
1

2π

∫ 2π

0

cos
(
ϕk
)
dϕk = 0 , (2.10)

and, using elementary trigonometric identities, we find that all expectation values of cosine

products vanish as well. For the remaining terms we find, for example,〈
cos
(
ϕ1 − ϕ2 + ϕ3

)〉
=

〈
cos
(
ϕc − 2ϕ2

)〉
= 0 , (2.11)

and the only term left is, by construction of the random process, the one involving the

sum of all phases. We obtain constant intensities, Equation (2.5), constant second-order

correlations, Equation (2.6), and a third-order correlation function dependent on the sum

of the phases,

G(3)(ϕc) =
I3

0

8

(
1 +

1

4
cos
(
ϕc
))

. (2.12)

However, we incur a visibility cost of 75 %, because

V3 =
G

(3)
max −G(3)

min

G
(3)
max +G

(3)
min

= 25 % , (2.13)

which is incompatible with the more than 90 % we observe in our experiment. Admittedly,

our toy model was simple, yet even more sophisticated classical models cannot do better

than 50 % [31–33]. Thus, there is always a visibility penalty if we “cheat”, i.e. if we want to

remove contamination by lower-order interference. Evidently, a more sophisticated model

is needed to explain a complete elimination of single-photon and two-photon interference

while retaining, ideally, perfect three-photon visibility. What we need are three photons in

a GHZ state.

2.6 Greenberger-Horne-Zeilinger Correlations

Greenberger, Horne and Zeilinger (GHZ) [6, 12] discovered the strong correlations of three

entangled particle while noticing a gap in Bell’s test of EPR’s local realism —the idea that
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“If, without in any way disturbing a system, we can predict with certainty the value of

a physical quantity, then there exists an element of physical reality corresponding to this

quantity” [5]. To this day, the elements of reality are cross-examined in Bell tests and are

consistently found to be at odds with the concepts ordained by nature [34–36]. However,

“Bell’s results say nothing in the special case covered directly by the EPR argument,

namely the case where a measurement on one particle allows one to predict what happens

to the other particle with 100 % certainty” [6]. What was missing is a situation where local

realism and quantum mechanics make diametrically opposed predictions without a layer of

statistical arguments obscuring judgment. As we observed in the introduction to this thesis,

history abounds of situations where the step from two to three is accompanied by radically

new concepts. In the case at hand, not only are the elements of really attacked from a

different angle, but, as Mermin puts it [7], their “demolition is spectacularly more efficient”.

To understand Mermin, and those strong three-particle correlations, we follow Mermin’s

succinct exposition, and consider three spin-1/2 particles living in an eight-dimensional

Hilbert space H2 ⊗H2 ⊗H2, spanned by the product basis

B =

{
|↑↑↑〉, |↑↑↓〉, |↑↓↑〉, |↑↓↓〉, |↓↑↑〉, |↓↑↓〉, |↓↓↑〉, |↓↓↓〉

}
, (2.14)

where the isomorphism to the canonical Hilbert space associates

|↑〉 ≡

(
1

0

)
and |↓〉 ≡

(
0

1

)
. (2.15)

The following single-particle observables (Pauli operators),

σ̂x ≡
~
2

(
0 1

1 0

)
and σ̂y ≡

~
2

(
0 −i
i 0

)
, (2.16)

anticommute, {σx, σy} = 0, but do not commute, [σx, σy] = 2iσz. For an experiment

where two spins are measured in the y-direction and one in the x-direction, consider the

three-particle observables

Σ̂1 = σ̂1
xσ̂

2
yσ̂

3
y

Σ̂2 = σ̂1
yσ̂

2
xσ̂

3
y

Σ̂3 = σ̂1
yσ̂

2
yσ̂

3
x .

(2.17)

They commute, [
Σ̂k, Σ̂l

]
= 0 ∀ k, l ∈ {1, 2, 3} , (2.18)

and have unit-square,

Σ̂2
k = 1 , (2.19)
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implying common eigenvectors and eigenvalues of ±1. Among the eight possible eigen-

states, labeled by a triple of signs of eigenvalues

(λ1λ2λ3) ∈
{

+ ++,+ +−,+−+,+−−,−+ +,−+−,−−+,−−−
}
, (2.20)

we consider

|+ + +〉 =
1√
2

(
|↑↑↑〉 − |↓↓↓〉

)
. (2.21)

A measurement of any two spins immediately tells us, with certainty, the outcome of a

measurement on the third spin—without disturbing it.

The EPR reality criterion is thus fulfilled and we can assign elements of reality

ms
o ∈ {+1,−1}, s ∈ {1, 2, 3}, o ∈ {x, y} , (2.22)

to measurements. Consistent with the measurement outcome (eigenvalue of |+ + +〉 for all

three operators is 1), we must have

m1 = m1
xm

2
ym

3
y = 1

m2 = m1
ym

2
xm

3
y = 1

m3 = m1
ym

2
ym

3
x = 1 ,

(2.23)

which implies the prediction that a measurement of all three spins in the x-direction yields

a product of unity,

m1m2m3 = m1 = m1
xm

2
xm

3
x = 1 . (2.24)

Quantum mechanics, on the other hand, predicts the opposite result,

σ̂1
xσ̂

2
xσ̂

3
x|+ + +〉 = −1|+ + +〉 , (2.25)

and therefore, neglecting unavoidable experimental imperfections, a single experiment can

give the verdict. Using polarization [37, 38], Mermin’s three-spin gadget [8] became exper-

imentally feasible around 1999, and the results clearly favor quantum mechanics [39]. The

GHZ interferometer we use here to study GHZ correlations in continuous variables, was put

to a deep slumber, while skillful extensions of the original polarization-GHZ setup allowed

the experimental study of up to ten-photon correlations [40]. Before we proceed, I would

like to point out that it is perfectly possible to obtain GHZ correlations classically [41].

However, this only works in an orchestra of single particle degrees of freedom. Breaking it

up, as we do when we split a pump photon into three photons, immediately destroys the

correlations in the same step, and classical optics loses its grip.
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Figure 2.3: From Two-Particle Interferometry to GHZ Interferometer. (a) Exam-

ple of a two-photon interferometer. Each photon of a (continuously) momentum-entangled

pair is transmitted through a Young double-slit. The slit mask defines two paths, or beams,

and thus discretizes the continuous state, as explained in the main text. In contrast to the

historic experiment with classical fields or single photons, no interference pattern shows up

on either screen. The correlation of the two photons has the effect to transfer the pattern

into the coincidences (registered by detectors A1 and A2). (b) The GHZ interferometer

generalizes this idea of pre-selection of a continuously entangled state to three photons,

and has been extensively studied theoretically since its conception in 1990 [12].

2.7 From Two to Three Photon Interferometry

The generic GHZ state

|GHZ〉 =
1√
2

(
|000〉+ |111〉

)
(2.26)

describes strong correlations of three entangled particles, though we could also probe the

wave nature of such a triphoton [23]. If we do this, qualitatively new effects appear. For ex-

ample, we can force a pair of the triphoton into a product or entangled state, depending on

whether we chose to probe the particle or wave properties of the third photon, respectively

[13, 42]. In our endeavors, what kind of interferometer is needed to probe the triphoton

wave?
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A single interferometer allows us to observe interference in single-photon detection

events. Having two interferometers at our disposal, we can “wire” them and, in addition,

observe interference in the two-photon coincidences. Already we face quite interesting

problems. For example, we can ask whether single-photon and two-photon interference are

independent phenomena? We quickly come up with setups where one is observed without

the other, which in terms of visibility means that (V1,V2) = (1, 0) or (V1,V2) = (0, 1).

However, given any V1 ∈ [0, 1], V2 can not take on arbitrary values in [0, 1], for the duality

relation

V2
1 + V2

2 ≤ 1 (2.27)

imposes a surprising restriction [43]. Obviously, fourth-order (two-photon) interference is

much richer than second-order (single-photon) interference, though only the photon pic-

ture allows a seamless integration of information-theoretic principles, through which duality

relations are easily derived. Famously, Einstein refused to believe in the simplest such re-

lation, namely wave-particle duality [44], which essentially amalgamates continuous and

discrete natural structures. Imbibed with classical ideals, it is thus not surprising that Ein-

stein, together with co-workers Podolsky and Rosen (EPR), assaulted the consequences of

continuous-variable entanglement, namely position and momentum [5]. Attention shifted

to discrete variables only with the work of Bohm [45] and Bell [46]. Thence, research

efforts were channeled into spin or polarization entanglement until a series of experiments,

initiated by results of Freedman and Clauser [47], and later Aspect et al. [48], sufficiently

supported quantum mechanics. Around 1985, Horne and Zeilinger returned to continuous

variables, studying a setup more akin to the original EPR scenario [49, 50], which was finally

realized experimentally in 2004 [51]. Their work paved the way for two-particle interfer-

ometry [52], as it was recognized that interferometers work as a sort-of analogue-to-digital

converter. For instance, two particles from a source that emits them in a superposition of

all directions (but always opposite and with the same absolute value of linear momentum

k = |~k|), will be continuously entangled,

|Ψ〉 =

∫
d3~k δ (k)

∣∣∣~k〉
1

∣∣∣−~k〉
2
. (2.28)

By a suitable post-selection procedure, for example using a slit mask around the source,

we can easily discretize this state, yielding

|Ψ〉 =
1√
2

(∣∣∣~k〉
1

∣∣∣−~k〉
2

+
∣∣∣~k′〉

1

∣∣∣−~k′〉
2

)
. (2.29)

Since the k’s label a certain direction, and thereby a path, states of the type (2.29) became

known to the literature as beam entanglement [15]. Having two beams at our disposal, we
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can propagate a photon within each beam through a standard Mach-Zehnder interferometer

with two internal paths and phases φ1 and φ2. Each photon is guided to either of the two,

complementary, output ports. Detectors there define two-valued (labels “+” and “-”) which

port [53] observables. The output state

|Ψ〉 =
1√
2

[
sin (∆φ)

(
|−〉1|+〉2 − |+〉1|−〉2

)
− cos (∆φ)

(
|−〉1|−〉2 + |+〉1|+〉2

)]
, (2.30)

where ∆φ = (φ1 − φ2)/2, gives constant detection probabilities for each detector, but

phase-dependent joint detection probabilities

P (+1,+2) = P (−1,−2) =
1

2

(
1 + cos (2∆φ)

)
P (+1,−2) = P (−1,+2) =

1

2

(
1− cos (2∆φ)

)
.

(2.31)

The first demonstration of non-classical interference without polarization modulation (a

defining feature of two-particle interferometry [15]) was given by Gosh and Mandel [54].

In their double-slit-like setup, the interpretation of two-photon interference without single-

photon interference is lucid enough to merit quotation: “Despite the fact that any one

photon can be detected at any position x, we see that if the photon is detected at x1, there

are certain positions x2 where the other photon can never be found”. This understanding is

naturally formed when calculating conditional instead of joint probabilities and is template

for all interferometers employing entangled photon pairs. Though in Gosh and Mandel’s

setup photon-pairs overlapped in the interferometer, later implementations such as [55]

showed that (local) optical mixing prior detection is not necessary and in fact may even

be detrimental. So, entangled photons can be separated spatially but still form a logical

whole. If one insists on assigning a name to this single entity, the preferred choice is bipho-

ton [56]. Using entangled photons, we can eliminate the detrimental effects of lower-order

interference. This is the case for any number of particles in a state of the GHZ type—thus

the name GHZ interferometry [16]. As we saw above for three photons, a classical ana-

logue always incurs a visibility loss, which can be significant. This quantum advantage

showed itself in a couple of two-photon interferometers towards the end of the 1980s, most

prominently in setups of Hong, Ou and Mandel [59], Shih and Alley [60], and Franson [61].

The GHZ interferometer is related to so-called NOON- or de Broglie-interferometers [22].

There, as shown in Figure 2.4, N photons are collectively presented with two alternative

paths and are not broken up, as is the case in GHZ-interferometry. Both interferome-

try paradigms share the common goal to eliminate lower-order interference, though the

erasure in NOON-interferometry is usually partial [10, 22, 62, 63]. In principle, GHZ-

interferometers can be converted into NOON-interferometers simply by keeping the three
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Figure 2.4: Sketch of a NOON or de Broglie Interferometer. Three photons are

emitted together in either of two alternative paths with phase-difference ϕ. The triphoton

is more sensitive, however, and picks up a phase 3ϕ. The way the three photons are drawn

reminds us of a “super-photon”, which appears in photonic Bose-Einstein condensates [57].

When N is the number of photons in the condensate, we may assign a wavelength λ/N [58],

with λ the individual photon wavelength, to this super-photon, yielding a complementary

picture: a photon with wavelength λ/3 is three times more sensitive to phase changes.

photons together. This might be experimentally challenging because the triplet source

may produce non-identical photons. For instance, our source, as we see shortly, produces

three photons with wavelength differences of more than 700 nm. When combined with the

ability to break up triphotons, the versatility of the GHZ interferometer may be of use

in novel imaging techniques that would like to probe non-local correlations of molecules

differing in their optical traits, for example neuroscience. Similar to GHZ-interferometry,

NOON-interferometry aims to suppress lower-order signals for extraction of higher-order

phase terms [22]. We have a brief look at the defining problem, as I deem its resolution

beneficial to the general understanding of how interferometers work. Consider the unitary

describing a phase-shift,

Û = exp (−iφn̂) = exp
(
−iφâ†â

)
, (2.32)

where n̂ is the photon number operator, and apply it to an input state,

|Ψ(φ)〉 = Û |Ψ〉 =
∞∑
n=0

cn exp (−inφ) |n〉 . (2.33)
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We see that the phase shift is proportional to the number n of photons. However, in stan-

dard interferometry, the whole superposition (2.33) contributes to the signal, in which case

the photon number information is lost. If we could isolate a term with a particularly high

n, then we were able to detect phase-differences with n-times better resolution. Quantum

states that can pick up this phase in an interferometer, like the one shown in Figure 2.4,

are called NOON-states,

|NOON〉 =
1√
2

(
|N0〉+ |0N〉

)
. (2.34)

Though phase superresolution has been demonstrated experimentally [63][64], classical in-

terference models can achieve the same improvement, and it really is phase supersensitivity

[65] that confers a quantum-advantage.

2.8 Photon Triplet Sources
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Figure 2.5: Cascaded Spontaneous Parametric Downconversion. (a) Cascaded

spontaneous parametric downconversion (CSPDC) employing a periodically poled potas-

sium titanyl phosphate (PPKTP) and a periodically poled lithium niobate (PPLN) for the

first and second stage of the conversion, respectively. (b) Realization of the GHZ inter-

ferometer employing two CSPDC sources. Photon triplets are generated in either of the

two paths of an interferometer and are optically mixed at beam splitters. If there is no

source information attached to photon triplets, interference in three-photon coincidences

is observed.

From mixing independent biphotons to cascaded spontaneous parametric downconver-

sion, quite a few proposals to generate three entangled photons have been proposed. Few
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have been realized, however. The idea for the first viable three-photon source originated

from a similar consideration for two-photon sources. Yurke and Stole were the first to note

that entangled particles can be obtained from two independent pair-sources. The idea is to

mix photons from each source on a symmetric beam splitter in such a way that we cannot

tell from which source a detected photon was emitted [66, 67]. This erasure of source in-

formation is necessary for the scheme to work, as highlighted by Zukowski et al. [68]. The

effect is similar to randomization of path bits in conventional second-order interferometry

such as in Young’s double slit [69], and underlines yet again the fundamental role played

by the beam splitter [70]. At the same time, Zukowski et al. introduced entanglement

swapping, which developed into viable tools in quantum communication, namely quantum

cryptography [71] and quantum repeaters [72]. Extension of the idea to the production

of three entangled photons did not take long [73] and a viable proposal came in 1997

[19, 20, 74], with experimental realization in 1999 [39]. Note that the nature of the source

does not matter too much as long as we work in the single-photon counting regime and

experimental setups, detectors in particular, can work with the source statistics. Thus,

one can work with non-maximally entangled states [75] and even replace one of the SPDC

sources in the scheme of Zeilinger et al. with a weak coherent state source [76].

For some experiments, we would actually like to have three simultaneously existing

photons in a genuinely tripartite entangled state and not merely their strong correlations

in detection (though these are sufficient for some experiments, including GHZ tests of local

realism). Photon triplets can be directly generated using various nonlinear processes. One

way is to first produce photon pairs in spontaneous parametric downconversion (SPDC) and

then take a single photon from each pair for sum-frequency generation (SFG) [77]. Another

proposal makes use of χ(3)-interaction in a single nonlinear medium, for example in fiber [78]

and in crystals [79]. So far, however, third-order spontaneous parametric downconversion

has not been shown to be a viable source for photon triplets. Lastly, cascaded spontaneous

parametric downconversion (CSPDC), as shown in Figure 2.5 (a), was developed by my

predecessors in a collaboration between the groups of Thomas Jennewein and Kevin Resch

[9]. There, pump photons at 404 nm are converted into two daughter photons at 842 nm

and 776 nm. The latter give birth to two granddaughter photons at 1530 nm and 1570 nm

and so we have three photons that are genuinely tripartite entangled in energy and time

[80]. As a proof of versatility, the CSPDC source has been embedded in a polarization-

interferometer setup to directly generate a polarization GHZ state [81]. As shown in Figure

2.5 (b), CSPDC sources can be used to realize the GHZ interferometer from Figure 2.3 (b).

The drawback of this design is that it requires two CSPDC sources. The three-photon

Franson interferometer, however, requires only one triplet source.
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2.9 The Franson Interferometer
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Figure 2.6: Franson Interferometers. (a) Sketch of the original two-photon Franson

interferometer [61]. (b) Photons triplets are emitted into a three-photon Franson inter-

ferometer with identical short (S1 = S2 = S3) and long (L1 = L2 = L3) paths, optical

phases ϕ1, ϕ2, ϕ3 that are set by glass plates, and pairs of complementary detectors Ak, Bk,

k ∈ {1, 2, 3}. The three-photon Franson interferometer is a special case of a GHZ inter-

ferometer where energy-time entanglement is converted into post-selected beam-entangled

states.

The original motivation behind development of the CSPDC source was to generalize

the two-photon Franson interferometer shown in 2.6 (a). It turns out that the three-photon

pendant is in fact a probabilistic, or post-selected, version of the GHZ interferometer [18],

which is sketched in 2.6 (b). Similar to Horne and Zeilinger’s momentum interferometer

[49], Franson [61] considered a source of energy-time entangled photon pairs. The under-

standing of energy-time entanglement relies on generalizations of the standard energy-time

uncertainty relation,

∆E∆t ≥ ~
2
. (2.35)

Classically we may think of time-frequency inequalities imposed by the theory of Fourier

(and more general) transforms. Franson’s source emits two photons simultaneously (within

a very small time window), though when the emission happens is quite uncertain. One

photon is send to Alice, the other to Bob. Alice has a huge uncertainty in the prediction
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when her photon is arrives (Bob as well). However, given that the other photon has been

detected by Bob, with high precision she can pin-point the arrival of her photon because

they are emitted simultaneously (for sake of illustration, we here neglect the necessary

communication between the two parties). So far, there is nothing “quantum” about this

source. With interferometers between source and detectors, however, things start to get

interesting. The interferometers provide two alternatives for each photon, namely a short

(S) and long (L) path. With this additional degree of freedom we can ask a new question

given that we have coincident clicks, say of detectors A1 and A2: we know that both

photons must have taken the same path, but which alternative has been realized? S-S or

L-L? It turns out, the interferometer erased the bit containing the S/L information for

the following simple reason: there is no origin of time, no zero with respect to which we

can reverse-calculate the time it took for the pair to travel from source to detectors. As a

result, we do have interference, which is revealed by changing either of the two phases ϕ1 or

ϕ2. Similar to the coincidence probability in the Horne-Zeilinger interferometer, Equation

(2.31), the two-photon detection rate

R2−Franson ∝ 1± cos (ϕ1 + ϕ2) . (2.36)

Single-photon detection rates are not phase-sensitive, however, because if we just look

at one photon, the path information is carried by the other photon, whether we chose

to look at it or not. The optical explanation for this interference pattern (fourth-order

without second-order interference) is readily available as well. Individually, fields have a

coherence length much short than the S/L path difference. Correlations between the two-

fields, however, translates into a joint-field coherence length much longer than the path

difference. This interference phenomenon has been observed in a variety of experiments [53,

82, 83], and later served to introduce time-bins [84], which is subject of another experiment

presented later.

2.10 Theory of the Experiment

2.10.1 Input Triplet State

The general wavefunction describing photon triplets is given by

|Ψ〉 =

∫
dω1

∫
dω2

∫
dω3 ψ(ω1, ω2, ω3)â†1(ω1)â†2(ω2)â†3(ω3)|0〉 , (2.37)

where the joint-spectral function ψ(ω1, ω2, ω3) describes coherence properties of photon

triplets and |0〉 ≡ |0〉1|0〉2|0〉3 is the vacuum state. In CSPDC, fields for the three photons
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are generated in a two-step process. First, a pump photon at central frequency ωp gives

birth to a photon pair with frequencies such that ω0 +ω1 = ωp and a joint-spectral function

ψ1(ω1, ωp − ω1) determined by phase-matching conditions. Next, the photon at frequency

ω0 pumps a second nonlinear crystal, where two photons are created such that ω2 +ω3 = ω0

and joint-spectral function ψ2(ω2, ωp−ω1−ω2). Even though the cascade of downconversion

processes leads to a factorization

ψ(ω1, ω2, ω3) = ψ1(ω1, ωp − ω1)ψ2(ω2, ωp − ω1 − ω2) (2.38)

of the three-photon spectrum [80], the photon triplets are strongly frequency correlated.

This is evident from the arguments of the two joint-spectral functions and is a result from

the constraint that in a parametric process, frequencies of downconverted fields sum up

to the pump frequency, reflecting energy conservation. If we furthermore assume that the

pump coherence length approaches infinity and coherence lengths of the three photon fields

approach zero, the joint-spectral function takes on an analytically convenient form

ψ(ω1, ω2, ω3) = δ(ωp − ω1 − ω2 − ω3) . (2.39)

Strictly speaking, this is not a true field state, though it works fine as an approximation

to bring out the desired effect [22]. Inserting into (2.37) yields

|Ψ〉 =

∫
dω1

∫
dω2

∫
dω3 δ(ωp − ω1 − ω2 − ω3) â†1(ω1)â†2(ω2)â†3(ω3)|0〉 . (2.40)

where integration is from −∞ to +∞. Now, it turns out that photon triplets are not

only strongly correlated in energy, but also in time. One can show this experimentally by

measuring the arrival time distribution of photon triplets. One then finds that the his-

togram peak width, i.e. time uncertainty, is much smaller than is expected from a classical

perspective coming from energy-time uncertainty relations (we will meet the inequalities

later). Strong time-correlations are evident in the time-domain, to which we switch now

using a Fourier transform of the creation operators [85],

â†k(ωk) =
1√
2π

∫
dt â†k(t) exp(iωkt) k ∈ {1, 2, 3} . (2.41)

Inserting into (2.40), and re-arranging integrals, we obtain

|Ψ〉 =
1

(2π)3/2

∫
dt1

∫
dt2

∫
dt3 â

†
1(t1)â†2(t2)â†3(t3)

×
∫
dω1

∫
dω2

∫
dω3 δ(ωp − ω1 − ω2 − ω3)ei(ω1t1+ω2t2+ω3t3)|0〉 .

(2.42)
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We can now use two well-known identities from Fourier theory of generalized functions to

evaluate ∫
dω1 δ(ωp − ω1 − ω2 − ω3) exp(iω1t1) = exp

(
i[ωp − ω2 − ω3]t1

)
, (2.43)

and then
1√
2π

∫
dω2 exp

(
iω2[t2 − t1]

)
= δ(t2 − t1) , (2.44)

and
1√
2π

∫
dω3 exp

(
iω3[t3 − t1]

)
= δ(t3 − t1) , (2.45)

and thus

|Ψ〉 =

∫
dt1

∫
dt2

∫
dt3 â

†
1(t1)â†2(t2)â†3(t3)δ(t2 − t1)δ(t3 − t1)eiωpt1|0〉

=

∫
dt â†1(t)â†2(t)â†3(t)eiωpt|0〉 ,

(2.46)

where we changed the variable notation from t1 to t.2 We now send each photon individually

through a two-path interferometer.

2.10.2 Propagation Through Three-Photon Interferometer

The three interferometers are independent, allowing us to perform the mode transforma-

tions separately. Consider an unbalanced interferometer with short and long propagation

times τS and τL, respectively, and phase ϕ. The first beam splitter transforms the annihi-

lation operators according to

âS(ω) = T â1(ω) +Râ2(ω)

âL(ω) = Râ1(ω) + T â2(ω) ,
(2.47)

where we assumed frequency-independence of both transmission T and reflection R coef-

ficients within the frequency-band of interest. Propagation along short and long interfer-

ometer paths is described, respectively, by transforms

t→ t+ τS and âS(ω)→ âS(ω) exp(iωτS)

t→ t+ τL and âL(ω)→ âL(ω) exp(iωτL) exp(iϕ) ,
(2.48)

2The state used in the brief analysis by Barnett et al. [22], which we cite in [4], misses the pump phase

factor exp(iωpt), which, depending on the concrete experiment, may be of relevance.

26



and the final beam splitter gives us the detection modes

Â(t) =
1√
2π

∫
dω Â(ω)e−iωt

=
R2eiϕ√

2π

∫
dω â(ω)e−iω(t−τL) +

T 2

√
2π

∫
dω â(ω)e−iω(t−τS)

+
RT eiϕ√

2π

∫
dω b̂(ω)e−iω(t−τL) +

RT√
2π

∫
dω b̂(ω)e−iω(t−τS)

= R2eiϕâ(t− τL) + T 2â(t− τS) +RT eiϕb̂(t− τL) +RT b̂(t− τS) ,

(2.49)

and

B̂(t) =
1√
2π

∫
dω B̂(ω)e−iωt

=
RT eiϕ√

2π

∫
dω â(ω)e−iω(t−τL) +

RT√
2π

∫
dω â(ω)e−iω(t−τS)

+
T 2eiϕ√

2π

∫
dω b̂(ω)e−iω(t−τL) +

R2

√
2π

∫
dω b̂(ω)e−iω(t−τS)

= R2b̂(t− τS) + T 2eiϕb̂(t− τL) +RT eiϕâ(t− τL) +RT â(t− τS) .

(2.50)

A symmetric beam splitter is characterized by

T =
1√
2

and R =
eiπ/2√

2
=

i√
2
, (2.51)

which gives us, for k ∈ {1, 2, 3}, interferometer transformations

Âk(t) =
eiϕk

2

(
âk(t− τL) + ib̂k(t− τL)

)
− 1

2

(
âk(t− τS)− ib̂k(t− τS)

)
B̂k(t) =

ieiϕk

2

(
âk(t− τL) + ib̂k(t− τL)

)
+
i

2

(
âk(t− τS)− ib̂k(t− τS)

) (2.52)

with inverse relations

âk(t) = −1

2

(
Âk(t+ τS) + iB̂k(t+ τS)

)
+
e−iϕk

2

(
Âk(t+ τL)− iB̂k(t+ τL)

)
b̂k(t) = − i

2

(
Âk(t+ τS) + iB̂k(t+ τS)

)
− ie−iϕk

2

(
Âk(t+ τL) + iB̂k(t+ τL)

)
.

(2.53)

Finally, Hermitian conjugation gives us creation operators3

â†k(t) = −1

2

(
Â†k(t+ τS)− iB̂†k(t+ τS)

)
+
eiϕk

2

(
Â†k(t+ τL) + iB̂†k(t+ τL)

)
b̂†k(t) =

i

2

(
Â†k(t+ τS)− iB̂†k(t+ τS)

)
+
ieiϕk

2

(
Â†k(t+ τL)− iB̂†k(t+ τL)

)
.

(2.54)

3The transformations used in the brief analysis by Barnett et al. [22], namely their Equation (38),

which we use in [4], misses the minus sign between the terms in parenthesis.
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Note that we can factor out a minus sign and replace integration variables from t→ t+ τS,

whence, with propagation time difference τ := τL− τS, we obtain the triplet state in terms

of the detection modes as

|Ψ〉 =

∫
dt
eiωpt

8

3∏
k=1

{(
Â†k(t)− iB̂

†
k(t)
)
− eiϕk

(
Â†k(t+ τ) + iB̂†k(t+ τ)

)}
|0〉

=
1

8

∫
dt eiωpt

3∏
k=1

{
Â†k(t)− iB̂

†
k(t)
}
|0〉

− eiϕ1

8

∫
dt eiωpt

(
Â†1(t+ τ) + iB̂†1(t+ τ)

) ∏
k=2,3

{
Â†k(t)− iB̂

†
k(t)
}
|0〉

− eiϕ2

8

∫
dt eiωpt

(
Â†2(t+ τ) + iB̂†2(t+ τ)

) ∏
k=1,3

{
Â†k(t)− iB̂

†
k(t)
}
|0〉

− eiϕ3

8

∫
dt eiωpt

(
Â†3(t+ τ) + iB̂†3(t+ τ)

) ∏
k=1,2

{
Â†k(t)− iB̂

†
k(t)
}
|0〉

+
ei(ϕ1+ϕ2)

8

∫
dt eiωpt

(
Â†3(t)− iB̂†3(t)

) ∏
k=1,2

{
Â†k(t+ τ) + iB̂†k(t+ τ)

}
|0〉

+
ei(ϕ1+ϕ3)

8

∫
dt eiωpt

(
Â†2(t)− iB̂†2(t)

) ∏
k=1,3

{
Â†k(t+ τ) + iB̂†k(t+ τ)

}
|0〉

+
ei(ϕ2+ϕ3)

8

∫
dt eiωpt

(
Â†1(t)− iB̂†1(t)

) ∏
k=2,3

{
Â†k(t+ τ) + iB̂†k(t+ τ)

}
|0〉

− ei(ϕ1+ϕ2+ϕ3)

8

∫
dt eiωpt

3∏
k=1

{
Â†k(t+ τ) + iB̂†k(t+ τ)

}
|0〉 .

(2.55)

Each term corresponds to a possible path combination and we can write

|Ψ〉 = |SSS〉+ |LSS〉+ |SLS〉+ |SSL〉+ |LLS〉+ |LSL〉+ |SLL〉+ |LLL〉 . (2.56)

2.10.3 Calculation of Coincidence Detection Rates

In our experiment we can look at all detection events in a time-resolved manner, in which

case we can post-select on those terms that are of interest. Genuine three-photon interfer-

ence is only observed in triple coincidence events, which correspond to path combination

short-short-short (SSS) or long-long-long (LLL). Hence, we are interested in the first and
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last term,

|cGHZ〉 := |SSS〉+ |LLL〉

1

8

∫
dt eiωpt

3∏
k=1

{
Â†k(t)− iB̂

†
k(t)
}
|0〉

− ei(ϕ1+ϕ2+ϕ3)

8

∫
dt eiωpt

3∏
k=1

{
Â†k(t+ τ) + iB̂†k(t+ τ)

}
|0〉 ,

(2.57)

which is a continuous version of the GHZ state (cGHZ). Now, since we pump CSPDC with

a continuous-wave laser having a coherence time much longer than the interferometer path

difference τ , we actually have no special triplet generation time. Similar to a stationary

random process, we can shift the time origin without changing the integral. Thus, in the

second integral we can change the variable of integration to t′ = t + τ , and after pulling

out the constant pump-phase term, we obtain

|cGHZ〉 =
1

8

∫
dt eiωpt

3∏
k=1

{
Â†k(t)− iB̂

†
k(t)
}
|0〉

− ei(ϕ1+ϕ2+ϕ3+ωpτ)

8

∫
dt′ eiωpt′

3∏
k=1

{
Â†k(t

′) + iB̂†k(t
′)
}
|0〉 .

(2.58)

Multiplying out brackets, the first and second term indeed yield identical integrals (we can

relabel t′ → t),

|cGHZ〉 =
ξ−
8

∫
dt eiωptÂ†1(t)Â†2(t)Â†3(t)|0〉 − iξ+

8

∫
dt eiωptÂ†1(t)Â†2(t)B̂†3(t)|0〉

− iξ+

8

∫
dt eiωptÂ†1(t)B̂†2(t)Â†3(t)|0〉 − ξ−

8

∫
dt eiωptÂ†1(t)B̂†2(t)B̂†3(t)|0〉

− iξ+

8

∫
dt eiωptB̂†1(t)Â†2(t)Â†3(t)|0〉 − ξ−

8

∫
dt eiωptB̂†1(t)Â†2(t)B̂†3(t)|0〉

− ξ−
8

∫
dt eiωptB̂†1(t)B̂†2(t)Â†3(t)|0〉+

iξ+

8

∫
dt eiωptB̂†1(t)B̂†2(t)B̂†3(t)|0〉 ,

(2.59)

with ξ± := 1 ± ξ, where ξ := exp
(
i[ϕ1 + ϕ2 + ϕ3 + ωpτ ]

)
. Each term corresponds to one

detector combination,

|cGHZ〉 = |A1A2A3〉+ |A1A2B3〉+ |A1B2A3〉+ |A1B2B3〉
+ |B1A2A3〉+ |B1A2B3〉+ |B1B2A3〉+ |B1B2B3〉 ,

(2.60)

which are all orthogonal to each other because at least one detector pair is always un-

matched, e.g.

〈A1A2A3|A1A2B3〉 ∝
∫
dt

∫
dt′ eiωp(t′−t)〈0|Â1(t)Â2(t)Â3(t)Â†1(t′)Â†2(t′)B̂†3(t′)|0〉

= 0 ,

(2.61)

29



because

〈0|Â3(t)|0〉 = 〈0|B̂†3(t)|0〉 = 0 (2.62)

for all times t. The scalar product of a detector state with itself, however, is in general

non-zero. For instance,

〈A1A2A3|A1A2A3〉 =
|ξ−|2

64

∫
dt

∫
dt′ eiωp(t′−t)α1(t, t′)α2(t, t′)α3(t, t′) (2.63)

with

αk(t, t
′) = 〈0|Âk(t)Â†k(t

′)|0〉 = δ(t− t′) . (2.64)

The delta function collapses integrals and we get

〈A1A2A3|A1A2A3〉 =
1

8

(
1− cos(ϕ1 + ϕ2 + ϕ3 + ωpτ)

)
. (2.65)

This result indicates a non-trivial triple coincidence rate, which is given by

RA1A2A3(t0, t12, t13) = η

∫ t0+∆T

t0

dt1

∫ t0+t12+∆T

t0+t12

dt2

∫ to+t13+∆T

t0+t13

dt3G
(3)
A1A2A3

(t1, t2, t3) ,

(2.66)

with t12 and t13 the detection time differences, η = η1η2η3 the product of detector efficien-

cies, and where the third-order correlation function is defined as

G
(3)
A1A2A3

(t1, t2, t3) := 〈A1A2A3|Â†1(t1)Â†2(t2)Â†3(t3)Â3(t3)Â2(t2)Â1(t1)|A1A2A3〉 . (2.67)

If the correlation time is much longer than our detector time-resolution ∆T , then we can

analyze the correlation function in a time-resolved manner, in which case

RA1A2A3(t0, t12, t13) ≈ η∆T 3G
(3)
A1A2A3

(t0, t0 + t12, t0 + t13) . (2.68)

Furthermore, when the absolute detection time is of no relevance, we can simply integrate

over all detection events during measurement time TM , i.e.

RA1A2A3(t12, t13) =

∫ TM/2

−TM/2

dt0 PA1A2A3(t0, t12, t13) . (2.69)

Now, let us calculate

Â3(t3)Â2(t2)Â1(t1)|A1A2A3〉 =
ξ−
8

∫
dt eiωptÂ3(t3)Â2(t2)Â1(t1)Â†1(t)Â†2(t)Â†3(t)|0〉

=
ξ−
8

∫
dt eiωptδ(t− t1)δ(t− t2)δ(t− t3)|0〉

=
ξ−
8
,

(2.70)
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and likewise

〈A1A2A3|Â†1(t3)Â†2(t2)Â†3(t1) =

(
Â3(t3)Â2(t2)Â1(t1)|A1A2A3〉

)†
=
ξ∗−
8
,

(2.71)

so that

G
(3)
A1A2A3

(t0, t0 + t12, t0 + t13) =
|ξ−|2

64
(2.72)

and

RA1A2A3(t12, t13) =
η∆T 3TM

8

(
1− cos(ϕ1 + ϕ2 + ϕ3 + ωpτ)

)
. (2.73)

The proportionality constant shows how crucial high detection efficiencies are and the

reduction by factor 8 is due to the probabilistic nature of the Franson interferometer,

splitting transmitted triplets into eight possible detector combinations. We could of course

increase the measurement time TM indefinitely, but the choice is ultimately constrained by

practical considerations such as phase stability of the interferometer, as well as alignment

of the setup, in particular mechanical relaxation of setup components. Furthermore, the

detector time resolution ∆T has to be kept small enough to pick out the |cGHZ〉 term

from the triplet state (2.56), and cannot be increased arbitrarily. The detection rates of

all other detector combinations are obtained in a likewise manner,

RA1A2B3 =
η∆T 3TM

8

(
1 + cos(ϕ1 + ϕ2 + ϕ3 + ωpτ)

)
RA1B2A3 =

η∆T 3TM
8

(
1 + cos(ϕ1 + ϕ2 + ϕ3 + ωpτ)

)
RA1B2B3 =

η∆T 3TM
8

(
1− cos(ϕ1 + ϕ2 + ϕ3 + ωpτ)

)
RB1A2A3 =

η∆T 3TM
8

(
1 + cos(ϕ1 + ϕ2 + ϕ3 + ωpτ)

)
RB1A2B3 =

η∆T 3TM
8

(
1− cos(ϕ1 + ϕ2 + ϕ3 + ωpτ)

)
RB1B2A3 =

η∆T 3TM
8

(
1− cos(ϕ1 + ϕ2 + ϕ3 + ωpτ)

)
RB1B2B3 =

η∆T 3TM
8

(
1 + cos(ϕ1 + ϕ2 + ϕ3 + ωpτ)

)
.

(2.74)

The rates actually observed in the experiment also depend on source efficiency, intrinsic

triplet generation rate in particular, and losses throughout the experimental setup. We see

that detection events split up into two sets of complementary detector combinations,

AAA = {A1A2A3, A1B2B3, B1A2B3, B1B2A3}
BBB = {B1B2B3, B1A2A3, A1B2A3, A1A2B3} .

(2.75)
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These sets are easily found if we remember (see Section 2.7) that each interferometer defines

a two-valued variable with A ≡ +1 and B ≡ −1. Multiplication of detector combinations

in the set AAA and BBB yields +1 and −1, respectively, which is why we can call them

even and odd parity detectors. Summing up all detection events in AAA and BBB, we

get a triple coincidence detection rate

R3 ∝ 1± cos(ϕ1 + ϕ2 + ϕ3 + ϕp) , (2.76)

where the minus and plus sign are for AAA and BBB detection events, respectively. The

pump phase ϕp := ωpτ is constant to a very good approximation over the duration of the

experiment and can be ignored in later analysis of the data (though one could use the

pump phase to control triplet coincidences as well).

Each of the other states in (2.56) is unmatched in the sense that the corresponding

triple photon detection events are distinguishable in time. This is visible in the histogram

of detection events in Figure 2.15 and implies that these events are not phase-sensitive.

We also see that the two-photon coincidences are constant, e.g.

RA1A2 = RA1A2A3 +RA1A2B3 =
η∆T 3TM

4
, (2.77)

and so are the single detection rates, e.g.

RA1 = RA1A2A3 +RA1A2B3 +RA1B2A3 + +RA1B2B3 =
η∆T 3TM

2
. (2.78)

2.11 Experimental Setup

2.11.1 Overview

The experimental setup consists of three parts: a CSPDC source producing three energy-

time entangled photons, a compact and phase-stable three-photon Franson interferometer,

and a detection setup that allows to both efficiently register single photons and assign

time-stamps with high time-resolution. An overview photo of the experimental setup is

shown in Figure 2.7 and a schematic can be found in Figure 2.8. Table 2.1 shows a count

rate estimation calculation we did just before commencing the experiment. Following the

formula

RT =
R0η1η2η3γ1γ2γ3

4
, (2.79)

we find more than 10 triplets per hour usable for interferometry. This means that, given

the interferometer and source are stable enough for a few days, each phase can be set for a
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Figure 2.7: Overview of the Three-Photon Interference Experiment. The triplet

source, three-photon Franson interferometer and silicon avalanche photo diodes were on an

optical table. The superconducting nanowire single photon detectors and the time taggers

were installed in a separate rack, which is connected to a helium compressor in a small

room next to the main lab.

couple of hours. This should give us a few tens of photons per phase angle, in which case√
N counting errors should not be detrimental for a clear maximum-minimum separation.
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Directly generated photon triplets per hour R0 2000

Si-APD Detection Efficiency (for 842nm photons) η1 0.4

SNSPD Detection Efficiency (for 1530nm photons) η2 0.8

SNSPD Detection Efficiency (for 1570nm photons) η3 0.8

Detected photon triplets per hour 512

Interferometer throughput at 842nm γ1 0.4

Interferometer throughput at 1530nm γ2 0.5

Interferometer throughput at 1570nm γ3 0.5

Detected photon triplets per hour through interferometer RI 51.2

Interfering photon triplets per hour (divide by 4) RT 12.8

Table 2.1: Photon Triplet Count Rate Estimation. Si-APD: silicon avalanche photo

diodes. SNSPD: superconducting nanowire single photon detectors.
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Figure 2.8: Experimental Setup for the Observation of Genuine Three-Photon

Interference. (from Agne et al. [4]) A continuous-wave grating-stabilized laser diode

(404 nm, 43 mW, > 25 m coherence length) pumps a 25 mm periodically-poled potassium

titanyl phosphate (PPKTP) crystal to generate pairs of 842/776 nm photons in type-II

down-conversion, which are split at a polarizing beam splitter (PBS). The 776 nm photons

pump a periodically-poled lithium niobate (PPLN) waveguide to generate 1530/1570 nm

photon pairs in type-0 down-conversion. These infrared photons are split in free-space by

a dichroic mirror (DM) before entering the three-photon Franson interferometer, which is

realized as three spatial modes of a single interferometer with a path difference τ = 3.7 ns.

Photon phase control is achieved with motorized glass plates. At the two output ports

A and B, the 842 nm and 1530/1570 nm photons are detected with free-running silicon

avalanche photodiodes (Si-APD) and superconducting nanowire single photon detectors

(SNSPD), respectively, and their arrival time is registered with a time tagger system. All

fibers (yellow) are single-mode fibers at respective wavelengths. A few pump photons are

picked off and sent through another interferometer path (S — not drawn) for interferometer

stabilization.
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2.11.2 Triplet Source

In the theoretical derivation of the count rate we already alluded to the fact that in higher-

order interference experiments the losses scale exponentially with the number of inter-

ferometers. Schemes relying on post-selection, like ours, suffer from additional photon

depletion, as non-interfering paths are equally populated. Moreover, current methods to

tailor multiphoton states of the kinds we need are very inefficient. For instance, with the

original CSPDC source in our lab [9], my colleagues were barely able to detect 6 (coinci-

dent) triplets per hour. One has to be absolutely convinced, both in the working principle

of idea and ensuing benefits, in order to attempt such an experimental demonstration! A

three-photon interferometer experiment was unthinkable back then, not only because of

all additional losses due to the interferometer, but also triplets have to be distributed over

a couple of phase settings to compile a meaningful interference fringe. Now, with an an

improved triplet source and more efficient detectors, we detect around 46000 triplets in

24 hours, i.e. approximately 2000 triplets per hour, which is a factor ∼ 400 improvement.

This is mainly due to a brighter first-stage (PPKTP) pair source: we detect 6.5 million sin-

gles per second and 1.9 million 776/842 nm pairs per second within a 3.125 ns coincidence

window in either early or late time slot. The rates used in the experiment are around 10 %

below the maximum previously achieved with this PPKTP and are probably very close

to the optimum before multiphoton emissions, which supply non-interfering background

photons, degrade entanglement quality. At the moment, the coincidences-to-accidentals

ratio (CAR), solely due to multi-pair emissions in the PPKTP, is

CAR =
C12

S1S2δt
≈ 14 , (2.80)

with single count rates S1 = 7 and S2 = 6, and a coincidence rate of C12 = 1.85 in

a δt = 3.125 ns window (all rates in million per second). Note that these are half the

detected rates because photons, upon propagation through the interferometer with short

and long arm, distribute across two time bins. Furthermore, the corresponding dark counts

rate of ∼ 200 per second are low enough that we need not subtract these from the single

count rates. This CAR value yields an upper bound of

V =
CAR

CAR + 1
≈ 93 % (2.81)

for both two-photon and three-photon fringe visibilities. Consequently, multi-pair emis-

sions cannot explain the lack of two-photon interference in our experiment, but agrees well

with our maximum triplet interference visibilities. At this point, only an increase in the

intrinsic conversion efficiency of the PPKTP seems to be the way forward to increase the
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usable pair-rate from the first source. The typical internal conversion probabilities for bulk

and waveguide crystals are on the order of 10−9 (PPKTP) and 10−6 (PPLN), respectively,

indicating that an improvement of two or three orders may be feasible with a waveguide

PPKTP. Photos and more experimental information of both the first-stage and second-

stage source can be found in Figures 2.9 and 2.10, respectively. The crystal cascade results

in an exponential drop in number of generated photon pairs in the second crystal. The

asymmetry in count rates between the three channels (842 nm, 1530 nm and 1570 nm) is

visible in Figure 2.16. More concretely, the detected number of 842 nm photons is between

1.6 and 2.2 million per second. The 1530/157 nm detectors, on the other hand, see only

150-400 photons per second, which is the dark count level of our superconducting nanowire

single photon detectors. Fortunately, the asymmetry does not translate into problems for

the observed effect. What it means is that we have to measure longer, because not every

842 nm photon has matching 1530/1570 nm partner. Also, we cannot resolve modulation

of telecom single detection events. Three-photon interference is unaffected, however, since

we post-select on triple coincidences.

2.11.3 Three-Photon interferometer

A photo of the three-photon Franson interferometer used in the experiment is shown in Fig-

ure 2.11. We integrate all three interferometers into one big interferometer, using common

retroreflectors and beam splitter. We have four well-separated paths for 842 nm, 1530 nm,

1570 nm and 404 nm photons. This monolithic design avoids cross-stabilization of three

spatially separated interferometers. Phase stabilization in this interferometer is achieved

as follows. Pump photons at 404 nm, having a coherence length much larger than the

interferometer path difference, are obtained from the first-stage source setup (see Figure

2.9) and are sent through the interferometer (we have a fourth path through the interfer-

ometer) and detected with a silicon avalanche photo diode. Scanning the interferometer

phase with a piezo electric actuator attached to the long path retroreflector, we observe

second-order interference fringes. Employing a simple PID feedback loop with set point

equal to half-fringe counts (∼ 600000 counts per second), we can stabilize the interferom-

eter for at least 96 hours without re-alignment. The interferometer throughput is roughly

44% for all paths, including all fiber coupling losses. Individual phase control for 842 nm,

1530 nm and 1570 nm photons is achieved with 3 mm thick BK7 windows (anti-reflection

coated at the respective wavelength) mounted on motorized glass phase plates (see Figure

2.12). We characterize the zero-position of the glass phase plates with lasers and verify the

nonlinear relationship between glass phase plate angle and induced optical phase. Based

on these measurements, we pre-tilt the glass phase plate by a few degrees to observe at
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least one fringe over two degrees and define the pre-tilt angle as the zero-position for our

measurements.

2.11.4 Detection Setup

For each photon channel (1530, 1570 and 842 nm), the interferometer has two outputs A

and B. Therefore, we need six single photon detectors. For 842 nm photons we employ

standard silicon avalanche photodiodes (Si-APD) and for the 1530/1570 nm photons we

employ newly developed superconducting nanowire single photon detectors (see Figure

2.13), operated at system efficiencies (measured) of 80, 48, 60 and 85 % with 150-400 dark

counts per second. We use three time taggers to simultaneously record 842A-telecom, 842B-

telecom coincidences and single detection events. Here, “telecom” refers to all events in the

1530/1570 nm detectors. The resolution with which the time taggers assign time stamps

to detection events are 78 ps for coincidence recording and 156 ps for singles recording

(higher resolution not needed here). The time taggers assign time stamps to all detection

events so that later analysis can extract single photon detections, as well as two-photon

and three-photon coincidences. All time taggers receive the same 10 MHz signal from an

arbitrary waveform generator (Agilent 33250A) as an external timing reference and to

increase long-term stability. Figure 2.14 shows both the time tagger setup and a schematic

of the information flow, from photon detection to registration by a computer. In total we

used four computers in the experiment: one for singles collection, one for 842A-telecom

coincidences and glass plate control, one for 842B-telecom coincidences, pump laser control

and temperature logging, and one for interferometer stabilization. The reason we use three

time taggers and three corresponding computers is that in the beginning we worried about

the coincidences-time-tag file size (estimate ∼GBs over a few minutes). The reason for this

are the high 842 nm singles (up to 4 million per second) which results in lots of accidental

coincidences. The lab computers running the experiment control program (LabVIEW)

might struggle and post-processing and analysis with Matlab would require more resources.

We therefore used two time taggers for coincidences, one for each 842 nm channel. However,

after a 42 hour experiment, we only had file sizes of about ∼ 1.8 GB for each time tagger,

which can be easily stored and processed: Matlab running on my office computer (12GB,

Quad-Core i7-4770 at 3.4GHz) can easily analyze these files within a few minutes. Later

measurements generated 13 GB files due to higher dark counts in the SNSPDs, which I

analyzed with a 32GB 16-Core computer. For these measurements, the split-up of time

tags paid off.
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Figure 2.9: The First-Stage (PPKTP) Source. (a) Shown is the new and brighter

first-stage source for cascaded spontaneous parametric downconversion. It was built in

Kevin Resch’s group and for the experiment we added two modifications. First, we pick

off some 404 nm pump photons (path indicated by solid purple line) and send them into

the interferometer for active phase stabilization. Photons are reflected off the focusing

lens (which is slightly tilted) and directed into a single mode fiber (path indicated by

dashed light purple line). Second, we have a classical light coupling path for interferometer

alignment and measurement of its path difference. Light is sent into the second input

port of the polarizing beam splitter (PBS), which splits 776/842 nm photon based on their

polarization. The amount of light coupled into 776 nm and 842 nm fibers is controlled with

both half-wave plate and neutral density filters before the PBS. (b) Close-up photo of the

crystal mount. The periodically poled potassium titanyl phosphate (PPKTP) crystal is

stabilized at a temperature of TPPKTP = 41.7◦C (the original temperature, 42.1◦C, was not

optimal for second-stage crystal with 776 nm photons). At its peak, 14 million 776 nm and

842 nm photons were produced per second, of which 4 million were coincident (within a

∼ 3 ns coincidence window). The tilt stage of the crystal mount was the primary reason

for gradual misalignment of the source. Counts rates consistently dropped by about 20 %

over two days, but could be brought back to normal with a few turns of four tilt screws.
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Figure 2.10: The Second Stage (PPLN) Source. (a) Shown is the periodically-poled

lithium niobate (PPLN) waveguide with exposed bare input fiber (highlighted in pink, for

otherwise it would hardly be visible). During the experiment we found that we lose a few

percent of coupling efficiency into the PPLN itself when the fiber is curled up in the silver

round tray. This is probably due to some polarization rotation through the fiber (input has

to be H-polarized). The PPLN was held at a temperature T = 51.3◦C for duration of the

experiment. (b) Polishing of the PPLN output fiber. We regularly switched between two

connecting fibers (one to the interferometer, the other directly to detectors), in which case

we are almost guaranteed to contaminate the PPLN output. Thus, regular fiber cleaning

and polishing to maintain a high coupling efficiency of 1530/1570 nm photon was crucial

for the experiment’s success.
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Figure 2.11: The Three-Photon Franson Interferometer. (a) The three-photon Fran-

son interferometer, as used in the experiment. The interferometer was built by Thomas

Kauten in Innsbruck and modified in Waterloo for the experiment: (1) Addition of half-

wave plates after the input coupler for each photon to mitigate polarization effects. (2)

Addition of a 1530/1570 nm dichroic mirror to split in free-space photons coming from

the PPLN. (3) Addition of a long-pass filter after the 1530/1570 nm input coupler to

subtract residual 776 nm photons. (4) Replacement of optical fibers with ones that have

anti-reflection coating to reduce back-reflection losses. (5) Replacement (and addition for

the 842 nm path) of motorized glass plates with a new set (use motors compatible with our

data acquisition system). (6) Installation of a piezoelectric actuator attached to the long

path retroreflector for use with our PID feedback system (phase stabilization). (7) Increase

of the interferometer long path by 10 cm to get a path difference sufficiently larger than the

detector timing jitter of up to 2 ns. (b) The beam splitter is optimized for 1530/1570 nm

photons (reduced splitting efficiency for 842 nm photons, but we have orders of magnitudes

more 842 nm photons so that losses are acceptable). (c) View down the long path of the

interferometer. Visible are the three glass plates that we installed for the second round of

high-visibility measurements (see also Figure 2.12).
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Figure 2.12: Three-Photon Franson Interferometer Glass Plates. Compensation

(a) and phase-scan (b) glass plates for the short and long arm of the interferometer, re-

spectively (all glass holders 3D-printed). In the first round of measurements (some results

are shown in Figure 2.18) we used 2 mm and 1 mm thick BK7 glass plates for 1530/1570 nm

and 842 nm photons, respectively, and did not have compensation glass plates in the short

path. For the second round of measurements, and thus the main results shown in Fig-

ures 2.16 and 2.17, we switched to 3 mm glass plates (with anti-reflection coating at the

respective wavelength) for both short and long path.
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Figure 2.13: Superconducting Nanowire Single Photon Detectors. Photo of the

rack housing our Quantum Opus One superconducting nanowire single photon detector

(SNSPD) system with four channels. For the first round of measurement, the maximum

measured efficiencies were 44 %, 81 %, 72 % and 74 %, respectively. However, these values

came at a cost of high dark counts. Consequently, we set the bias voltage such that we

had around 300-1000 dark counts, reducing the efficiency a bit. For the second round

of measurements, we received a detector upgrade from Aaron Miller (Quantum Opus),

resulting in measured system efficiencies up to 85 % (see main text). The SNSPDs are

cooled to ∼ 2.2−2.3 K with a 4 K two-stage cryocooler Sumitomo Model SRDK-101D, part

of the Sumitomo Model RDK-101D cold head system, which is supplied with helium by a

Sumitomo HC-4E2 water cooled compressor (shown in the left inset). The end temperature

below 4 K depends on how good the initial vacuum is. The temperature is monitored by

Stanford Research System SIM 922, whose silicon diodes can detect as low as 1.4 K. The

nanowire voltages are monitored by a SIM 970 quad digital voltmeter with good long-

term stability. Nanowire bias voltages are delivered by four SIM 928 isolated voltage

sources, which deliver “ultra-clean DC voltages” with mV resolution. All SIM modules

are mounted in a SIM 900 mainframe. A stack of Mini-Circuit components connects the

nanowires with SIM electronics and time taggers. For each of the four channels this stack

consists of a ZFBT-4R2GW+ bias-tee and two ZFL-500LN+ amplifiers in series. The

nanowire electrical signal is fed into the RF+DC input port of the bias-tee and the bias

voltage is fed into the DC port, to which the SIM 970 channels are hooked up as well. The

RF output is connected to the two-stage amplifier, whose output is sent to the time tagger

system. 43



Figure 2.14: Time Taggers and Detection Schematic. (a) Photo of the three Uni-

versal Quantum Devices time taggers (silver boxes) and the Ortec 935 constant-fraction

discriminator (CFD, brown box) used in the experiment. The CFD is employed to both

clean up the (electronic) detection signal from SNSPDs and split up signals. (b) Schematic

showing the information flow from single photon detection (SNSPD and Si-APD), to power

splitting (PS and CFD), assignment of time stamps (Time Taggers) and digital processing

(PC’s).
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2.12 Experimental Results

We first record photon events for 12 phase settings of 1570 nm photons by changing angles

of the glass phase plate in the 1570 nm long arm. Measuring for 2 hours per angle, over 24

hours we detect 4648 triplets within a coarse 20 ns coincidence window. The histogram in

Figure 2.15 shows the distribution of arrival times with seven peaks that reflect the eight

possible path combinations. With a bin size of 0.78 ns in both dimensions, we have 309

triplets in the central bin and an average of 137 triplets in each of the six highest side bins.

The triplets in the central bin are shown as a function of the 1570 nm phase in Figure 2.16

(a). We now want to fit Equation (2.76) to the triple coincidences and obtain the fringe

visibility. The first step in estimating the fringe visibility is to calculate the phase that

results from tilting the glass plate in the interferometer of, for example, 1570 nm photons.

The phase difference due to optical path difference is a function of photon wavelength λ,

refractive indices of surrounding medium (air, n1 = 1) and glass (BK7, n2 ≈ 1.5), glass

thickness (t = 3 mm) and of course tilt angle α, which determines the optical path length.

Using geometric optics and the laws of refraction, one can derive the relationship

ϕ = kt

(
n1 − n2 +

n2 − n1 cos(α− β)

cos(β)

)
, (2.82)

with k = 2π/λ and

β = arcsin

(
n1 sin(α)

n2

)
. (2.83)

Using this formula, we convert all angles α to phase ϕ and then estimate the fringe visibility

with a fit

f(ϕ) = a1

(
1 + V1 sin(b1 · ϕ+ c1)

)
(2.84)

to BBB data and then use b1 and c1 for fitting

g(ϕ) = a2

(
1 + V2 sin(b1 · ϕ+ c1)

)
(2.85)

to AAA data. Here, a1, a2, b1, c1, V1, V2 are fit parameters (the latter ones being estimated

visibilities). With that we get visibilities

VAAA = (92.8± 6.6) %

VBBB = (92.7± 6.4) % ,
(2.86)

and the corresponding fits are shown in Figure 2.16 (a). The average visibility is thus

VAverage = (92.7± 4.6) % (2.87)
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without background subtraction, which is above the classical visibility bound of 50 % for

genuine three-photon interference [31–33]. Note that we performed a phase-locked fit pro-

cedure since the AAA and BBB curves should be complementary and thus have the same

phase. Independent fits to the AAA and BBB data yield slightly higher visibilities (e.g.

94.6 % for the 1570 nm phase scan in Figure 2.16), which are, however, well within the vis-

ibility uncertainty. The visibility errors are determined as follows. From the original data

set, ten new data sets are generated from a Poisson distribution with mean equal to mea-

sured data points (Monte Carlo method). Following the same fitting procedure as above,

visibilities were obtained for each sample. The standard deviation of those visibilities form

the reported visibility error bars.

As shown in Figure 2.16 (b) and (c), two-photon coincidences and single count rates

from the same data set display only small drifts in count rates over the course of the

experiment but no systematic, complementary modulation. We observe no two-photon

Franson interference of 1530/1570 nm photons because the coherence length of 776 nm

photons as a pump for the second SPDC process is much smaller than the interferometer

path difference (spectra are shown in Figures 2.19 and 2.20). Variations in two-photon

coincidences can be due to fluctuations in the mean SNSPD dark count rate, which affects

observed three-fold coincidences. For example, comparing Figures 2.16 (a) and (b) at the

fifth (≈ π/2) and ninth (≈ 3π/2) data point we see that the higher three-fold coincidences

agree with an isolated increase in two-fold coincidences. Note that whereas the infrared

singles are dominated by dark counts, the ratio of signal to dark counts per second in the

Si-APDs is ∼ 105 and therefore any modulation present in the 842 nm single counts would

be clearly visible.

In a second measurement, we scan the phase of 1530 nm photons. Figure 2.17 (a) shows

the result of a scan in which the 1530 nm glass phase plate is pre-tilted so that two fringes

are observed over 2.2 degrees. The three-photon interference visibilities are

VAAA = (77.9± 7.9) %

VBBB = (91.4± 9.9) % ,
(2.88)

giving us an average visibility of

VAverage = (84.6± 6.3) % (2.89)

without background subtraction. The visibility difference between AAA and BBB curves

is consistent with statistical errors that we observe when generating Monte Carlo data sets

for visibility error estimation.
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The phase of 842 nm photons is scanned in a third measurement. Given that the

wavelength is about half the other photon’s wavelengths and the glass plates have identical

thicknesses, we expect a full three-photon interference fringe over half the 1570 nm scan

range. Indeed, as Figure 2.17 (b) shows, we observe fringe visibilities of

VAAA = (82.9± 6.4) %

VBBB = (86.3± 5.2) % ,
(2.90)

giving us an average visibility of

VAverage = (84.6± 4.1) % (2.91)

without background subtraction. As for the 1570 nm phase scan, two-photon coincidences

and single detection rates show no modulation for both the 1530 nm and 842 nm phase

scans.

In a last series of measurements, we block individual or all interferometer paths and

record photon events. As expected, three-photon coincidences are no longer phase-sensitive.

If modulation of three-photon coincidences is due to interference of indistinguishable paths,

then the modulation should vanish when individual paths are blocked. Figure 2.18 (b)-

(d) show the results of several blocked-paths experiments, which are compared with the

case where all paths are open in (a). Using the phase-locked fitting procedure described

above, we estimate average visibilities of (63.6 ± 7.5) %, (33.1 ± 15.1) %, (10.0 ± 13.9) %

and (24.1± 16.6) % for (a)-(d), respectively. Note that the visibilities for (b)-(d) are only

so high because the large error bars admit a reasonable sinusoidal fit to the first data set.

Crucially, however, a phase-locked fit to the complementary data set fails. For example, in

(c) we obtain a reasonable fit to BBB data but not AAA data. If instead we first perform a

sinusoidal fit to AAA data and then a phase-locked fit to BBB data, we obtain nearly zero

visibility for the AAA data. In contrast, the order, in which the fits are performed in (a),

only change the visibilities for both AAA and BBB by ∼1 %. Note that for blocked-path

measurements, the count rates are much lower (measurement time is 6 hours), only eight

phase settings were used and the three-photon interference visibility is reduced. The reason

is that those measurements were carried out in the beginning where we used SNSPDs with

lower efficiencies and higher dark counts.

Further evidence that three-photon interference is not due to lower-order interference

is found in the spectra of photons produced in CSPDC. As shown in Figure 2.19 and 2.20,

the approximate coherence lengths lc = c/(π∆ν) for near-infrared and infrared photons are

≈ 260µm and ≈ 15µm, respectively, and thus much shorter than the interferometer path

difference of ≈ 1.11 m. The slight spectral asymmetry is mainly due to the SPDC process
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itself and spectral filters before our spectrometer. The results are not affected, however,

as fringe visibilities are mainly determined by photon bandwidths.

We now show that the photon triplets we produce violate energy-time inequalities

(these results have not been reported in [4]). The correlations observed in energy-time

entanglement can be interpreted in terms of uncertainties in time and frequency, wherein

the three-photon wavepacket is localized both in time and frequency, summarized by a

violation of the following set of inequalities [80],

Q1 = (∆t21 + ∆t31)∆ω123 ≥ 1 (2.92)

Q2 = (∆t21 + ∆t32)∆ω123 ≥ 1 (2.93)

Q3 = (∆t32 + ∆t31)∆ω123 ≥ 1 (2.94)

Q4 = (∆t21 + ∆t31 + ∆t32)∆ω123 ≥ 2 , (2.95)

where ∆tij = ∆(ti − tj) and ∆ω123 = ∆(ω1 + ω2 + ω3) are uncertainties in arrival time of

two photons and sum-frequency of the three-photon wavepacket, respectively. Following

the method in [80], time uncertainties are obtained from Gaussian fits to the central peak

in the arrival time histogram shown in Figure 2.15 as

∆t21 = (1.07± 0.18) ns

∆t32 = (1.06± 0.01) ns

∆t31 = (0.70± 0.07) ns .

(2.96)

The interferometer path difference τ upper bounds ∆ω123/2π ≤ 1/τ if the pump spectrum

is single-peaked, which we verify with a spectrum analyzer (2 GHz resolution). From

peak separations in the arrival time histogram we calculate τ = (3.72 ± 0.02) ns. Using

∆ω123 = 2π/τ , we obtain

Q1 = 0.477± 0.055

Q2 = 0.572± 0.05

Q3 = 0.474± 0.022

Q4 = 0.761± 0.055 ,

(2.97)

representing in all cases a clear violation. A stronger violation was reported by Shalm

et al. [80], but there only time correlations were directly measured and ∆ω123 had to be

approximated from ∆ωpump/2π = (6± 2) MHz under the assumption of energy conservation

in CSPDC [80]. In our setup, the unbalanced interferometers automatically ensure tight

frequency correlations when three-photon interference is observed without two-photon and

single-photon interference. By increasing the interferometer path difference τ we can, in

principle, approach ∆ω123 ≈ ∆ωpump.
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Figure 2.15: Three-Photon Time-of-Arrival-Histogram. (from Agne et al. [4]) The

measured arrival time difference histogram with a bin size of 0.78 ns and peak separation

of τ = 3.7 ns displays seven narrow peaks corresponding to the eight possible path com-

binations S1S2S3, L1S2S3, S1L2S3, S1S2L3, L1L2S3, L1S2L3, S1L2L3, and L1L2L3. When

all three photons take either the short or the long path the relative arrival time is the

same, so the S1S2S3 and L1L2L3 events overlap, forming the central peak. This overlap is a

coherent superposition, leading to a three-photon coincidence rate that depends on phases

ϕn (n = 1, 2, 3).
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Figure 2.16: Genuine Three-Photon Interference for 1570 nm Phase Scan. (from

Agne et al. [4]) (a) Three-photon coincidences show interference with an average visibility

of (92.7± 4.6) % without background subtraction (error bars are Poissonian count errors).

Plots (b) and (c) show no systematic modulation of two-photon coincidences and single

detection events, respectively. The letters in the legend of the two-fold coincidences indicate

the set of detector combinations. For example 1530/1570 AA is is the sum of 1530/1570

coincidences in detector combinations A2A3 and B2B3. The shown single detection rates

for the 1530/1570 nm photons are dominated by dark counts of the SNSPDs, while the

842 nm dark counts (Si-APDs, ∼2400 per second) are negligible.
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Figure 2.17: Genuine Three-Photon Interference for 1530 nm and 842 nm Phase

Scans. (from Agne et al. [4]) The phase scan for 1530 nm (a) and 842 nm (b) photons

of photon triplets provide further evidence for genuine three-photon interference, yielding

average interference visibilities of (84.6± 6.3) % and (84.6± 4.1) %, respectively.
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Figure 2.18: Three-Photon Interference with Blocked Paths. (from Agne et al.

[4])These measurements compare cases when all paths are open (a), 842 nm long path is

blocked (b), 842 nm and 1530 nm long paths are blocked (c) and all short paths are blocked

(d), and demonstrate vanishing complementarity. The histograms reflect the restriction

to path combinations (S1S2S3, S1S2L3, S1L2S3, S1L2S3), (S1S2S3, S1S2L3) and L1L2L3,

respectively. See text for a discussion of visibilities.
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Figure 2.19: Spectra of Near-Infrared Photons from our CSPDC Source. (from

Agne et al. [4]) We fit Gaussian functions I(x) = I0 exp(−(λ − λ0)/2σ2) to peaks and

calculate the full width at half maximum FWHM= 2
√

2 ln(2)σ: FWHM776 = 0.75 nm

and FWHM842 = 0.86 nm. The center wavelengths are λ0,776 = 776.45 nm and λ0,842 =

841.50 nm. The finite width introduces a phase error ∆ϕ = ∆λ/λ ≈ 0.1 %.
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Figure 2.20: Spectra of Infrared Photons from our CSPDC Source. (from Agne

et al. [4]) We measured these by pumping the PPLN waveguide with 776 nm light from a

mode-locked Ti:sapphire laser (Coherent MIRA 900) whose spectrum approximates that of

the 776 nm photons from the PPKTP, and scanning a diffractive spectrometer coupled to

a single-photon detector. Here the pump bandwidth is of the same order as the acceptance

band of our PPLN waveguides, leading to non-Gaussian output spectra by summing over

many down-conversion spectral modes. We estimate the spectral width by the full width

at half maximum (FWHM) of a moving average fit (solid line). We obtain FWHM1530 =

(51± 1) nm and FWHM1570 = (60± 1) nm, respectively. The finite width introduces phase

errors ∆ϕ = ∆λ/λ, which is about 3% for both photons.
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2.13 Conclusion and Outlook
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Figure 2.21: Future Directions for Photon Triplets. (a) Using a pulsed laser one

can pump CSPDC in two discrete time-slots using an unbalanced interferometer (with the

continuous-wave lasers we currently use, the full continuum over the long coherence length

of the laser defines possible triplet generation times). The three-photon analyzer need not

change. (b) One can increase the dimension of the system by providing more alternative

paths through the interferometer. (c) With the current triplet rate and the prospect of a

more efficient PPKTP, the direct generation of four entangled photons seems feasible.

We have experimentally demonstrated that genuine three-photon interference is acces-

sible with energy-time entangled photon triplets. Such states, and new quantum inter-

ference phenomena they exhibit, suggest several interesting directions for future research.

Using a pulsed pump, our experimental apparatus should be able to generate and analyze

three-photon time-bin states [84], Figure 2.21 (a), for direct implementations of quantum

communication protocols [86]. Our setup could be converted to perform NOON-style in-

terferometry with applications in phase superresolution and supersensitivity [22]. Further-
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more, this system could be used for fundamental questions of non-locality [87] in tests of

both Mermin [88] and Svetlichny inequalities [89], more detailed study on the three-photon

joint-spectral function [80], and enable the realization and study of genuine tripartite hy-

perentanglement [90] and entanglement in higher dimensions, Figure 2.21 (b). Another

step upward in higher-order interference phenomena would be possible with a source that

directly produces four entangled photons [91], Figure 2.21 (c).
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Chapter 3

On the Origin of Interference Terms

3.1 Notes

The results have not been published yet but were partially presented at a conference and

a summer school,

� Sascha Agne, “Mathematical Structure of a Three-Slit Experiment”, Quan-

tum Communication, Measurement and Computing (QCMC) 2014, Hefei,

Anhui, China, Poster Presentation A24

� Sascha Agne, “Origin of Interference Terms”, Canadian Summer School on

Quantum Information (CSSQI) 2015, Toronto, Ontario, Canada, Poster

Presentation.

3.2 Introduction

In 2010, Sinha et al. experimentally realized the three-slit experiment [92], which general-

izes Young’s double slit experiment that has been so crucial in establishing the wave nature

of light. Living up to the the legacy of Young’s experiment, Sinha et al. interrogated Born’s

rule. Ranking among the essential ideas of elementary quantum mechanics, Born’s rule

states, in simplest terms, the following. If Ψ(x) is the wavefunction (in position represen-

tation) of a particle, then the probability that a particle is found at x is P (x) = |Ψ(x)|2.

Nothing exciting thus far. However, particles share with humans an insatiable desire for

alternatives, and, if the set is big enough, they display extraordinary interference phe-

nomena. Though progressively more important in modern quantum mechanics (think of
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1 Slit 2 Slits 3 Slits 4 Slits(b)(a)

Figure 3.1: Slit Interference Experiments and Measurement Settings. (a) Illustra-

tion of possible alternative paths through a three-slit mask. The “straight” paths through

just one slit are obvious. The looped path is rather exotic and definitely non-classical, but

considering “alternatives” or “paths” abstractly, one can find it. The important observa-

tion is that one has to take into account all possibilities. (b) Defining paths with a slit

mask, there are 2N measurements, or measurement settings, for a slit interference exper-

iment. The combinatorial aspects to count these alternatives is further enriched with an

algebraic structure that can handle the notion of indistinguishability or symmetry, namely

group theory.

computational paths in quantum information), only rarely can we agree on what we actu-

ally mean with “alternatives”. The N -slit experiment is one of those few systems where

we can easily abstract from the concrete setup and think of the N slits defining N paths

from a source to a detector, as illustrated in Figure 3.1 (a). In other words, we say each

path can be excited by a particle and so each path defines a possible state and together
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they span an N -dimensional Hilbert space, embodied by the completeness relation

1 =
N∑
k=1

|k〉〈k| . (3.1)

Following Duarte [93], for a particle traveling from source s to a detector x, we assign the

probability amplitude

〈x|s〉 = 〈x|1|s〉 =
N∑
k=1

〈x|k〉〈k|s〉 . (3.2)

This mathematical decomposition follows Feynman’s physical insight that in order to travel

from source to detector, the particle travels from source to slit k with amplitude

〈k|s〉 = Ψ(xk,s) exp(−iΘk) , (3.3)

and then from slit k to detector x with amplitude

〈x|k〉 = Ψ(xx,k) exp(−iφk) . (3.4)

The wave functions Ψ can describe optical fields, in which case the phases Θ and φ are

optical phases, but we don’t need this specificity here and simply treat the amplitudes as

complex scalar products. Note that, as long as we have no means to distinguish between

the N alternatives, we have to sum over all possibilities. To come back to Born’s rule, and

the notation used in Sinha et al.’s paper, we write (3.2) as

Ψ(x) =
N∑
k=1

Ψk(x) , (3.5)

with Ψ(x) ≡ 〈x|s〉, and Ψk(x) ≡ Ψ(xk,s)Ψ(xx,k) exp
(
− i[φk + Θk]

)
. The detection proba-

bility then is

P (x) =

(
Ψ1(x)Ψ2(x) · · ·ΨN(x)

)(
Ψ∗1(x)Ψ∗2(x) · · ·Ψ∗N(x)

)
=

N∑
k=1

|Ψk(x)|2 +
N∑

k=1,l 6=k

Ψk(x)Ψ∗l (x) ,

(3.6)

from which we may infer that only quadratic terms contribute to the probability. This is

a direct consequence of squaring the wave function and what seems suggested here is that

only pair-wise “interactions” ever contribute to the probability but not higher-order terms

such as ΨkΨlΨm. For instance, for two slits we get

P12(x) = |Ψ1(x)|2 + |Ψ2(x)|2 + 2Re

{
Ψ1(x)Ψ∗2(x)

}
= P1(x) + P2(x) + I12 ,

(3.7)

58



and for three slits

P123(x) = |Ψ1(x)|2 + |Ψ2(x)|2 + |Ψ3(x)|2

+ 2Re

{
Ψ1(x)Ψ∗2(x)

}
+ 2Re

{
Ψ1(x)Ψ∗3(x)

}
+ 2Re

{
Ψ2(x)Ψ∗3(x)

}
= P1(x) + P2(x) + P3(x) + I12 + I13 + I23 ,

(3.8)

which we can express in a different way using (3.7) as

P123(x) = P12(x) + P13(x) + P23(x)− P1(x)− P2(x)− P3(x) . (3.9)

This equation says there is no third-order interference term I123 and consequently, the

three-slit interference pattern is explained entirely by diffraction at the three single slits and

the three implicit double-slit interference patterns. This is in fact the conclusion of Sinha et

al.: “we are able to bound the magnitude of the third-order interference term to less than

10−2 of the regular expected second-order interference, at several detector positions”. In a

surprising turn of events, Sawant et al. actually found a three-slit interference term [94],

which, moreover, does not violate Born’s rule, i.e. is not of the form ΨkΨlΨm indicated

above. The problem is that we failed to specify the complete set of alternative paths in the

beginning, i.e. we said that there are N paths from source to detector because there are N

slits that define them. This intuition finds its mathematical expression in the completeness

relation (3.1). But did we really capture the whole set of alternative paths? The answer

is a resounding “no” and even in hindsight, the curvy path shown in Figure 3.1 (a) is not

obvious from a physical point of view. And we are quite right, for the amplitude associated

with this path is very small indeed (∼ 10−6) and explains why we were not able to detect

its presence so far. Theoretically, however, an abstract point of view we promulgated when

writing down (3.1) and (3.2), it must be clear that such a path does add another dimension

to our Hilbert space simply because it is a possible alternative path (again, theoretically;

the physical relevance is a completely different matter), which highlights yet again how

difficult it is to actually construct a complete set of alternatives —hence our difficulty in

fully classifying interference phenomena (which also means more surprises lie still ahead of

us). Thus, just to add this one path to our Hilbert space, we would write, for three slits,

1 =
3+m∑
k=1

|k〉〈k|

= |1〉〈1|+ |2〉〈2|+ |3〉〈3|︸ ︷︷ ︸
direct paths

+
m∑
k=4

|k〉〈k|︸ ︷︷ ︸
looped path

,
(3.10)
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where the last sum is over of non-classical paths we take into consideration. The theoretical

derivation leading to (3.10) will not be discussed here but the crux of the matter is that

the superposition of wave functions for the three slit setup does not consists of three terms,

but of more terms. Taking into account only the lower-order looped paths, we find [95]

Ψ(x) = Ψ1(x) + Ψ2(x) + Ψ2(x) + ΨNC(x)

= Ψ1(x) + Ψ2(x) + Ψ3(x)

+ Ψ12(x) + Ψ21(x) + Ψ13(x) + Ψ31(x) + Ψ23(x) + Ψ32(x) .

(3.11)

Taking the absolute-square of this wave function to calculate, following Born’s rule, the

probability for a detection at position x on the screen, we obtain terms in addition to those

in (3.8), namely

I123 ≈ 2Re

{
Ψ∗1
(
Ψ23 + Ψ32

)
+ Ψ∗2

(
Ψ13 + Ψ31

)
+ Ψ∗3

(
Ψ12 + Ψ21

)}
, (3.12)

which we may justly call genuine three-slit interference terms. As the theory of the triple

slit experiment was refined, Kauten et al. pushed the experimental accuracy further and

now bound genuine three-slit interference terms to 3 × 10−5 [96], thus approaching the

regime where terms like (3.12) play a role.

3.3 Interference Terms

The subject matter are interference terms, defined for two and three slits as

I12 := P12(x)− P1(x)− P2(x) , (3.13)

and

I123 := P123(x)− P12(x)− P13(x)− P23(x) + P1(x) + P2(x) + P3(x) . (3.14)

Later we will see that these linear combinations of probabilities are obtained via natural

transformations on our data from slit experiments. But already, we may ask why these

linear combinations in particular? Sorkin [97] wrote in 1994: “superimpose the eight

patterns, using a plus sign when an odd number (3 or 1) of the slits were open, and a

minus sign when an even number (2 or 0) were open”. There is a piece missing here, for

what really determines the plus and minus sign in front of the terms? What is the origin

of those term? How elaborate does the theory need to be? Elementary probability theory
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provides us with structurally identical terms, namely via the inclusion-exclusion formula

[30],

P

(
N⋃
i=1

Ei

)
=
∑
i

P (Ei)−
∑
i<j

P (EiEj) +
∑
i<j<k

P (EiEjEk)

−
∑

i<j<k<l

P (EiEjEkEl) + · · ·+ (−1)n+1P (E1E2 · · ·EN) ,

(3.15)

where Ek denotes events to which we attach probabilities P (Ek) and products such as EkEl

denote intersections. For example, for two events

P (E1 ∪ E2) = P (E1) + P (E2)− P (E1E2) , (3.16)

and for three events

P (E1 ∪ E2 ∪ E3) = P (E1E2E3)− P (E1E2)− P (E1E3)− P (E2E3)

+ P (E1) + P (E2) + P (E3) .
(3.17)

We see that interference terms correspond to the union of events and particular linear

combinations are simply a way to break up probabilities—a process which is illustrated in

Figure 3.2. We may associate P (Ek) with Pk(x), P (EkEl) with Pkl(x) and so on, in which

case two and three slit interference terms correspond to intersection of two and three slits,

respectively. If we then compare (3.16) and (3.17) with (3.13) and (3.14), respectively, we

find, however, that we would have to multiply the former by −1 to get the latter. This

sign difference is interesting and is something we will encounter later again, namely when

we have the results from group and representation theory.
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P(E1)+P(E2)+P(E3) -P(E1E2)-P(E1E3)-P(E2E3) +P(E1E2E3) =P(E1UE2UE3)

Figure 3.2: Venn Diagrams for Inclusion-Exclusion Formula. A two-step process

illustrates the structure of the inclusion-exclusion formula in probability theory [98]. Our

goal is to calculate the probability for the union of three events. We first add probabilities

for all events individually. In doing so we overcount: there are points in sample space

that are common to pairs of events (whose probability we count twice) and common to all

three events (whose probability we count thrice). This is why we subtract the probabilities

corresponding to the pair-wise intersection of events. Because there are three pairs, no

contribution to the probability from the intersection of all three is left. Thus, in the last

step we have to add it. Now, each portion of the union is counted exactly once.

3.4 The Cyclic Group

What does group theory has to do with slit interference experiments? First of all, it is the

mathematical structure embodying the concept of symmetry like no other formal system

[99]. The idea is actually quite simple. As with any other algebraic structure, a group

G is a set together with a composition ◦, which fulfills certain axioms. In the case of

a group, apart from the obvious closure requirement (composition of two elements in G

yields another element in G), the axioms are

1. Associativity: For any a, b, c ∈ G, a ◦ (b ◦ c) = (a ◦ b) ◦ c.

2. Identity element: There exists an e ∈ G such that a ◦ e = e ◦ a = a for all a ∈ G.

3. Inverse: For each a ∈ G there exists an a−1 ∈ G such that a ◦ a−1 = a−1 ◦ a = e.

The first axiom ensures that the (binary!) composition of more than two group elements

is well-defined, i.e. the result does not depend on the order in which group elements are

composed. The second axiom immediately tells us the difference between an ordinary set

and a group: while the “smallest” set is the empty set ∅, a group must contain at least

one element, namely the identity e. The third axiom, namely the insistence of inverses,

is the heart of the matter. We feel its consequences already when we look at the set of
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all matrices Mn(R), which form a vector space. When restricting ourselves to all those

matrices that possess an inverse, we obtain the (very important) group GLn(R). But these

elements do not form a vector space anymore. The reason is that matrix addition cannot

be defined. For example, though(
1 0

0 1

)
and

(
−1 0

0 −1

)
(3.18)

both have inverses, their sum, being the zero-matrix, is not invertible. This, in a nutshell,

is the definition of a group.

The general group we are interested in here are direct product groups

Z
⊗N
2 = Z2 ⊗ ...⊗ Z2︸ ︷︷ ︸

N times

(3.19)

of the cyclic group

Z2 :=

({
0, 1
}
,+mod2

)
, (3.20)

where addition modulo 2 is defined as

0 +mod2 0 = 0

0 +mod2 1 = 1

1 +mod2 0 = 1

1 +mod2 1 = 0 .

(3.21)

Shortly, we will associate these elements with measurement settings and measurement

results constitute a function over a group. This means we have to consider all formal sums

P0 · 0 + P1 · 1 , (3.22)

where P0, P1 ∈ R. These can be regarded as data vectors (P0, P1)T in the associated

vector space R2 with canonical basis B = {e0, e1}. Cyclic groups are Abelian and therefore

all irreducible representations are one-dimensional. What this means in terms of vector

spaces is that we can decompose it into two one-dimensional subspaces. The two irreducible

representations of Z2 are (R, T ) and (R, S), which are called trivial and sign representation,

respectively. Without going too much into representation theory, let it suffice to say that

representations associate with abstract group elements concrete elements of vector spaces.

In our case we consider R and the homomorphisms are given by

T :=

{
0 7→ 1

1 7→ 1

S :=

{
0 7→ 1

1 7→ −1
.

(3.23)
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One easily verifies that, indeed, the group structure is preserved (with ordinary multipli-

cation · in R),

1 = T (0) = T (0 +mod2 0) = T (0) · T (0) = 1 · 1 = 1

1 = T (1) = T (0 +mod2 1) = T (0) · T (1) = 1 · 1 = 1

1 = T (1) = T (1 +mod2 0) = T (1) · T (0) = 1 · 1 = 1

1 = T (0) = T (1 +mod2 1) = T (1) · T (1) = 1 · 1 = 1 ,

(3.24)

and
1 = S(0) = S(0 +mod2 0) = S(0) · S(0) = 1 · 1 = 1

−1 = S(1) = S(0 +mod2 1) = S(0) · S(1) = 1 · (−1) = −1

−1 = S(1) = S(1 +mod2 0) = S(1) · S(0) = (−1) · 1 = −1

1 = S(0) = S(1 +mod2 1) = S(1) · S(1) = (−1) · (−1) = 1 .

(3.25)

Irreducible representations can be identified with group-invariant subspaces of our (data)

vector space. The projection of (P0, P1)T onto these subspaces is realized by the generalized

Fourier transform F at T and S, which is to say(
F(T )

F(S)

)
=

(
1 1

1 −1

)(
P0

P1

)
=

(
P0 + P1

P0 − P1

)
. (3.26)

One may also recognize this as a Hadamard matrix (also compare the entries with (3.23)).

The interpretation of these data transforms are simple: we obtain information about the

average and difference of the observation.

3.5 Cyclic Groups and Measurement Settings

We will now connect the abstract group concept with interference experiments. The prob-

abilities appearing on the right-hand side of (3.13) and (3.14) are measured using certain

measurement settings, which are composed of open and closed slit combinations and which

I denote by � and �, respectively. The possible combinations are shown in Figure 3.1 (b).

Thus, we make the following association for two-slit experiments

��→ P00

��→ P1

��→ P2

��→ P12

, (3.27)
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and likewise for three-slit experiments,

���→ P000

���→ P1

���→ P2

���→ P3

���→ P12

���→ P13

���→ P23

���→ P123

. (3.28)

Note that in both cases, one more measurement is included, namely the case when all

slits are closed. The corresponding probabilities P00 and P000 are usually not found in

theoretical expressions like (3.13) and (3.14), though in experiments we always perform a

“background measurement”, to which the all-slits-closed measurement setting corresponds

to (roughly, see discussion later). After all measurements are done, we are left with data

vectors

D2 =


P00 ≡ P��

P1 ≡ P��

P2 ≡ P��

P12 ≡ P��

 , (3.29)

and

D3 =



P000 ≡ P���

P1 ≡ P���

P2 ≡ P���

P3 ≡ P���

P12 ≡ P���

P13 ≡ P���

P23 ≡ P���

P123 ≡ P���


. (3.30)

Data analysis now consists of finding linear combinations of interest—and interference

terms are particular linear combinations. But what makes them special? To answer this

question, we now associate measurement settings with group elements, namely a closed slit

with 0 and an open slit with 1. The group thus defined is, by construction, isomorphic to

the cyclic group,

M1 =

({
�,�

}
,on
)
∼=
({

0, 1
}
,+mod2

)
= Z2 , (3.31)
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where on is the formal equivalent of +mod2. Then the possible data transformation is given

by Eq. (3.26) from which we can calculate, for example, a visibility

V =
F1(S)

F1(T )
=
P� − P�

P� + P�
. (3.32)

3.6 Interference Terms from Representation Theory

We now have the basics to proceed to the more interesting cases of N = 2 and more slits.

With two-slits we can use four measurement settings

M2 =
{
��,��,��,��

}
, (3.33)

for which it will be recognized that

M2 = M1 ⊗ M1
∼= Z2 ⊗ Z2 . (3.34)

This group, being Abelian, has four one-dimensional irreducible representations (R, σ1),

(R, σ2), (R, σ3), and (R, σ4). From the direct product structure, the homomorphisms are

easily determined,

σ1 := T1 × T2 (average over both slits)

σ2 := S1 × T2 (average over second slit)

σ3 := T1 × S2 (average over first slit)

σ4 := S1 × S2 (average over no slit) .

(3.35)

In words, these are products of the single slit irreducible representation. For instance, σ2

means to apply the sign representation to slit one and the trivial representation to slit two.

More concretely, for σ4 we have

σ4

(
��
)

= S1

(
�
)
· S2

(
�
)

= 1 · 1 = 1

σ4

(
��
)

= S1

(
�
)
· S2

(
�
)

= (−1) · 1 = −1

σ4

(
��
)

= S1

(
�
)
· S2

(
�
)

= 1 · (−1) = −1

σ4

(
��
)

= S1

(
�
)
· S2

(
�
)

= (−1) · (−1) = 1 .

(3.36)

These numbers will be recognized in the last row of the Fourier transform

F2(σ) =


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 . (3.37)
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Applying this transform to our data vector (3.29), i.e. evaluating the (generalized) Fourier

transform at σ4, yields the standard interference term

F2(σ4) = P�� − P�� − P�� + P�� . (3.38)

Or nearly. What is this odd term P�� doing there? Of course, it corresponds to a back-

ground measurement. But then why add instead of subtracting it? The thing is that

the theory does not interpret �� as corresponding to “measurement of unwanted signal”

(in fact, the information obtained from this measurement can be quite valuable). What

we request from group and representation theory is structural information intrinsic to the

measurement! What do I mean with that? Well, we invoke group theory because mea-

surement settings are not picked randomly but for reasons of comparison. We can do this

without having any idea about the inner workings of the underlying system, which is why

the exact same formalism is applicable remote fields such as agriculture (see later). To

make this more precise, what we do when we assign 0 to �, and 1 to �, is to take the

first step towards gaining knowledge about how these two measurement settings influence

something individually and combined. For that we need to make sense of differences, or

inverses, which is the hallmark of the concept of symmetry, or group theory. Represen-

tations map the structural difference (the difference between two measurement settings is

abstract) to 1 and -1, respectively, to make them amenable to ordinary calculation in R.

If we were used to calculate and interpret results in Z2, then we could stay there (it is of

course a fun fact that our computers do exactly that so that the translation to and from R

really is only for us humans). To wrap this up, we could replace the measurement setting

� with �, i.e. half-transparent slit. The formalism would still be correct, and group theory

duly reports average and difference for a single slit, plus non-trivial linear combinations

containing interference terms for two and more slits. In this case, we would not interpret

� as corresponding to a background measurement setting, and we would be glad that our

theory does not simply drop the term. For an intuition as to why this term is added instead

of subtracted, it helps to look at (3.16) and Figure 3.2 in conjunction with (3.38): the ��

term compensates for the subtraction of the individual closed slit contributions.

Let us for now continue with the addition of further slits, and hence measurement

settings. For the triple slit we have to look at the group

M3 = M1 ⊗ M1 ⊗ M1
∼= Z2 ⊗ Z2 ⊗ Z2 . (3.39)

The measurement settings, homomorphisms of irreducible representations (R, ρi), i =
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1, ..., 8, and Fourier transform are summarized succinctly by the character table,

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

ρ1 := T1 × T2 × T3 1 1 1 1 1 1 1 1

ρ2 := S1 × T2 × T3 1 −1 1 1 −1 −1 1 −1

ρ3 := T1 × S2 × T3 1 1 −1 1 −1 1 −1 −1

ρ4 := T1 × T2 × S3 1 1 1 −1 1 −1 −1 −1

ρ5 := S1 × S2 × T3 1 −1 −1 1 1 −1 −1 1

ρ6 := S1 × T2 × S3 1 −1 1 −1 −1 1 −1 1

ρ7 := T1 × S2 × S3 1 1 −1 −1 −1 −1 1 1

ρ8 := S1 × S2 × S3 1 −1 −1 −1 1 1 1 −1 .

(3.40)

Evaluating the Fourier transform at ρ8, i.e. applying the matrix in (3.40) to data vector

(3.30) gives us the three-slit interference term,

F3(ρ8) = P��� − P��� − P��� − P��� + P��� + P��� + P��� − P��� , (3.41)

which is in fact −1 times the standard expression (3.14).

The general idea may now become apparent. The N -slit interference experiment is

described by the group

Z
⊗N
2 = Z2 ⊗ · · · ⊗ Z2︸ ︷︷ ︸

N times

, (3.42)

and its direct product representations. The irreducible representation we are particularly

interested in is what we now call interference representation, namely

SNint := S1 × · · · × SN , (3.43)

which gives rise to the N th order interference term FN
(
SNint

)
. We benefit greatly from the

fact that representation theory of finite Abelian groups is well-understood, and character

tables such as (3.40) are, more or less, readily available or easily constructible. Thus, one

easily computes the four-slit interference term as

F4(S4
int) = P���� − P���� − P���� − P���� − P���� + P���� + P���� + P����

+ P���� + P���� + P���� − P���� − P���� − P���� − P���� + P���� .

(3.44)
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The theory gives us even more than that, because the Fourier transform can be evaluated

at N irreducible representations (the transformed data vector has N entries). What are

those N quantities? To answer this question, let us finish the analysis of the triple slit

experiment. First of all we have

F3(ρ1) = P��� + P��� + P��� + P��� + P��� + P��� + P��� + P��� , (3.45)

which gives is the total sum or average. This term is trivial and present for any N . Next,

we extract information about the single-slit contributions, for which we average out slit 2

and 3,

F3(ρ2) = P��� − P��� + P��� + P��� − P��� − P��� + P��� − P���

=

(
P��� + P��� + P��� + P���

)
︸ ︷︷ ︸

First slit closed

−
(
P��� + P��� + P��� + P���

)
︸ ︷︷ ︸

First slit open

, (3.46)

or slit 1 and 3,

F3(ρ3) = P��� + P��� − P��� + P��� − P��� + P��� − P��� − P���

=

(
P��� + P��� + P��� + P���

)
︸ ︷︷ ︸

Second slit closed

−
(
P��� + P��� + P��� + P���

)
︸ ︷︷ ︸

Second slit open

, (3.47)

or slit 1 and 2,

F3(ρ4) = P��� + P��� + P��� − P��� + P��� − P��� − P��� − P���

=

(
P��� + P���P��� + P���

)
︸ ︷︷ ︸

Third slit closed

−
(
P��� + P��� + P��� + P���

)
︸ ︷︷ ︸

Third slit open

. (3.48)

More interestingly, we also have the three two-slit interference terms, namely contributions

from the double slit formed by slits 1 and 2,

F3(ρ5) = P��� − P��� − P��� + P��� + P��� − P��� − P��� + P���

=

(
P��� + P���

)
︸ ︷︷ ︸

≡P��×

−
(
P��� + P���

)
︸ ︷︷ ︸

≡P��×

−
(
P��� + P���

)
︸ ︷︷ ︸

≡P��×

+

(
P��� + P���

)
︸ ︷︷ ︸

≡P��×

,

(3.49)

the double slit formed by slits 1 and 3,

F3(ρ6) = P��� − P��� + P��� − P��� − P��� + P��� − P��� + P���

=

(
P��� + P���

)
︸ ︷︷ ︸

≡P�×�

−
(
P��� + P���

)
︸ ︷︷ ︸

≡P�×�

−
(
P��� + P���

)
︸ ︷︷ ︸

≡P�×�

+

(
P��� + P���

)
︸ ︷︷ ︸

≡P�×�

,

(3.50)
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and lastly, the double slit formed by slits 2 and 3,

F3(ρ7) = P��� + P��� − P��� − P��� − P��� − P��� + P��� + P���

=

(
P��� + P���

)
︸ ︷︷ ︸

≡P×��

−
(
P��� + P���

)
︸ ︷︷ ︸

≡P×��

−
(
P��� + P���

)
︸ ︷︷ ︸

≡P×��

+

(
P��� + P���

)
︸ ︷︷ ︸

≡P×��

.

(3.51)

Two-slit interference terms (3.38) emerge here through marginal distributions, which re-

flects the obvious fact that the double-slit is intrinsic to the triple-slit experiment. To

conclude the formal part, note how the irreducible representations in (3.40) point out

those slits that are compared (sign representation S), and those that are averaged out

(trivial representation T ).

3.7 Conclusion and Outlook

What we have found is a mathematical structure describing simple slit interference experi-

ments, and we were able to derive all classical interference terms. It is a bit surprising that

we did not invoke wave theory, quantum mechanics or probability theory at all. Though at

some points I used the language of these theories to illustrate or interpret certain aspects,

the derivation itself is free of any such baggage. The success relies critically on abstracting

everything except for measurement settings. We are left with the simplest of all analyti-

cal tools, namely plain old data comparison. For that we need a notion of differences or

inverses, and the simplest algebraic structure imbibed with this concept is the group. Rep-

resentation theory then was necessary to translate relationships between the measurement

settings into real space (because that’s where our data lives). The Fourier transform then

decomposes the data into its natural constituents, and in our case gives us interference

terms.

I would like to conclude this investigation with an example taken from agriculture.

Statisticians there perform experiments operationally similar to slit experiments, which are

called factorial design experiments. These kinds of statistical experiments were introduced

by Yates and Hotelling [100, 101] into agriculture in the years around 1940. Their aim

was to increase the yield of crops given certain factors that presumably influence the crop

yield. Usually, controlled quantities of these factors can be applied, which is why they

are also called treatments. It is obvious that factors in isolation do not wholly determine

the yield. Rather, we need to understand their interaction. This is easier said than done,

however, as we are dealing with a complex biological process. Yates and Hotelling realized,
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however, that we can make statistical experiments and to a desired degree of accuracy

answer very specific questions. Rockmore [102] gives a very illuminating example for this.

Suppose we grow wheat and we want to know how a high / low amount of sunlight, weed

killer, and fertilizer influence the growth. Hence, we measure the height of plants for

each of the eight possible factor combinations, whereby for each treatment we can answer

the corresponding question “what is the plant height”? However, looking at the eight

measurements together, we may isolate what is known as the effects: “what is the effect

of sunlight or weed killer or fertilizer alone”, “what is the effect of sunlight and weed

killer or sunlight and fertilizer or weed killer and fertilizer combined”, and finally “what

is the effect of all three factors combined”? Intuitively, these are sensible questions to ask

since the eight treatments are not picked randomly but a link is imparted: each factor

appears in each measurement, either as “low” or “high”. Answers therefore only make

use of these intrinsic connections, without further assumptions. In complete analogy, in

slit experiments we ask, for example, “what is the influence (on the detection probability)

of two slits”? The irreducible representations of the underlying symmetry group answer

precisely these kinds of questions, whose answers can be read off the Fourier transform,

summarized for one, two, and three slits by the following equations.(
1 1

1 −1

)(
P0

P1

)
=

(
Average

Difference

)
(3.52)


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




P00

P10

P01

P11

 =


Average

Slit 1 Amplitude

Slit 2 Amplitude

Slit 3 Amplitude

Slit 12 Interference

 (3.53)



1 1 1 1 1 1 1 1

1 −1 1 1 −1 −1 1 −1

1 1 −1 1 −1 1 −1 −1

1 1 1 −1 1 −1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 −1 1 1 1 −1





P000

P100

P010

P001

P110

P101

P011

P111


=



Average

Slit 1 Amplitude

Slit 2 Amplitude

Slit 3 Amplitude

Slit 12 Interference

Slit 13 Interference

Slit 23 Interference

Slit 123 Interference


(3.54)

I believe this rather high-level way of thinking about interference experiments is what will

lead us to a full classification of interference phenomena simply because we abstract of
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everything except for alternatives, distinguishable or not, which are the conceptual basis

for (quantum) interference.

Sun

Fertilizer
Weed
Killer

L

L L

L

H L

L

H H

L

L H

H

H L

H

L H

H

L L

H

H H

Figure 3.3: Factorial Design Experiment in Agriculture. Illustration of the use of

group theory in agriculture, which is operationally similar to three-slit interference exper-

iments. We have eight plots (small triangles) where we grow a plant under different, but

related conditions (colored balls): there are three factors that influence the growth (sun

light, fertilizer, and weed killer) and we chose to apply two dosages, namely high (H) and

low (L). Note that we do not need to specify “high” and “low” because the questions the

experiment will answer are not sensitive to factor quantities. However, the qualitative dif-

ferences between the eight setups translate into eight quantities based on, say, the measured

height of the plant under the eight conditions. The mathematical structure enabling us to

achieve this feat is group theory, leading, via representation theory, to Fourier transform

of data vectors.
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Chapter 4

Hong-Ou-Mandel Interference with

Independent Coherent States

4.1 Notes

The authors in a forthcoming publication are: Sascha Agne, Jeongwan Jin, Katanya B.

Kuntz, Filippo Miatto, Jean-Philippe Bourgoin, and Thomas Jennewein.

4.2 Hong-Ou-Mandel Effect

BS Some
 coincidences.BS No coincidence.

(a) (b)

Figure 4.1: Hong-Ou-Mandel Interference Using Quantum and Classical Light

Sources. (a) The Hong-Ou-Mandel effect with single, identical photons. (b) The analogue

setup using classical light (continuous-wave lasers in our case). An anticorrelation dip is

observed in both experiments and the only difference is that in the former, coincidences

can completely vanish.
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When two identical photons impinge on a symmetric beam splitter, as illustrated in

Figure 4.1 (a), the output state is [103]

|Ψ34〉 =
1√
2

(
|23, 04〉 − |03, 24〉

)
, (4.1)

and it is not difficult to see that the second-order cross-correlation function

G(2x)(t3, t4) =
〈

Ψ34

∣∣∣Ê−3 (t3)Ê−4 (t4)Ê+
4 (t4)Ê+

3 (t3)
∣∣∣Ψ34

〉
= 0 , (4.2)

which means that no coincidences are measured. Initially thought to be attributable to the

bosonic nature of photons (“bunching”), this interpretation has to be taken with a grain of

salt, for the same interference phenomena can be observed using photons without temporal

overlap at the beam splitter [104], showing that it is really the two-photon amplitudes that

interfere, and not the photons themselves. Moreover, HOM interference is not restricted to

two Fock states and has been observed with various light sources. For example Rarity et al.

[105] and Li et al. [106] interfered a single photon with a weak coherent pulse and a thermal

state, respectively. The motivating question for Hong, Ou and Mandel concerned the

simultaneity of photon-pair production in spontaneous parametric downconversion, which

they upper-bounded to ∼100 fs. [59]. Despite its simplicity and the fact it was devised

for a very concrete measurement, the HOM interferometer, as it became known, proved to

be the most important and versatile of all the two-photon interferometers (other examples

being Shih-Alley [60] and Franson [61] interferometers), which were devised towards the

end of the 1980s. The ideal single-mode consideration in (4.1) and (4.2) cannot account

for the shape of the coincidence dip that is observed in a HOM interference experiment,

because the underlying assumption, that single photons populate a monochromatic wave,

is not physical. Rather, photons are emitted as wavepackets ζk(t), and the second-order

cross-correlation function becomes [103]

G(2x)(t3, t4) = |ζ1(t3)|2|ζ2(t4)|2 + |ζ2(t3)|2|ζ1(t4)|2

− ζ∗1 (t3)ζ∗2 (t4)ζ1(t4)ζ2(t3)− ζ∗2 (t3)ζ∗1 (t4)ζ2(t4)ζ1(t3)

=

∣∣∣∣ζ1(t4)ζ2(t3)− ζ1(t3)ζ2(t4)

∣∣∣∣2 .
(4.3)

For the longest time, G(2)(t3, t4) could not be directly measured, as the ∼ns detector time

resolution TR was much larger than the∼ps width of G(2)(t3, t4) for single photons produced

via spontaneous parametric downconversion. Instead, one measured the coincidence rate

R =

∫
TR

dt4

∫
TR

dt3G
(2x)(t3, t4) . (4.4)
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This changed around 2004, when Legero et al. [107, 108] had access to a source that pro-

duced single photons “slow enough” so that wavepackets had ∼ µs coherence length—much

longer than typical single photon detector time resolutions. It was the first time that the

HOM dip could be studied in a time-resolved manner and Legero et al. were immediately

able to observe fringes within the HOM dip, which resulted from frequency beating of two

photons. But let us not adorn quantum theory with laurels before its due [109]. Sixteen

years earlier, Ou et al. used a HOM-like setup to extract both beat fringe [110] and HOM

dip [111] in the interference of two classical beams. Nowadays, HOM interference of laser

beams has entered metrology. For instance, Lebreton et al. measured the second-order

cross-correlation function of nano-lasers and were able to conclusively tell whether the laser

field is chaotic or coherent with amplitude fluctuations [112, 113]. Furthermore, broadband

spectra fluctuations can be measured using this technique [114], and has become the basis

for few-photon Fourier transform spectroscopy [115, 116]. Practical implementations of

quantum communication protocols also found a work-around for Fock state HOM interfer-

ence by simply replacing single photons with weak coherent pulses (WCP) [71, 117–120].

The use of pulses is trademark for most fourth-order interference experiments with coherent

states, though recently continuous-wave (CW) lasers celebrated a revival [121–124], which

is a flame we keep alive in this thesis. Before we proceed let me point out that the two

light sources in HOM interference experiments need not be identical. In fact, their mutual

independence affords a new degree of freedom and, for example, anticorrelations between

laser and thermal light has been observed [125]. The first experimental demonstration of

two-photon interference from “truly” independent photons came only in 2006 [126].

4.3 Interference of Independent Lasers

Working at optical frequencies, interference of statistically independent light sources rank

among the more mysterious electromagnetic phenomena. In the early days of the laser, it

was shown that two independently oscillating masers can show interference in time (fre-

quency beating) [127] and space [128, 129]. For their latter experiments, Mandel and

co-workers started to employ the “photon-billiard ball” picture, in which it seems strange

that two photons (one from each laser) interfere despite the fact that “one photon is ab-

sorbed before the next one is emitted by one or the other source” [129]. As most quantum

optics text books explain, interference is due to probability amplitudes associated with

the photons, which are merely guided through the interference landscape [130]. Classical

electromagnetism has in fact no difficulties to account for the effect [131, 132], as inter-

ference of independent radiation is, for people working in lower frequency ranges of the
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electromagnetic spectrum, a common affair and most likely a nuisance when engineer-

ing communication systems. Admittedly, this argument only convinces a pragmatist, but

the theoretical reasoning is not far away. For, as a direct consequence of the linearity of

Maxwell’s equations, interference comes about by superposing two or more fields. Crucially,

the superposition principle remains valid at all intensities, even at the single photon level.

For sure, there are pure quantum effects predicting nonlinearities in vacuum, for example

light-by-light scattering, which happens when two close-by photons happen to simultane-

ously convert into an electron-positron pair (obeying the energy-time uncertainty relation,

of course) [133]. However, the first experimental evidence for the occurrence of this process

has been presented only earlier this year [134] and it seems unlikely that photon nonlin-

earities explain the interference effect observed by Mandel and co-workers. Hence, let us

actually look at how classical optics accounts for the interference of independent lasers. I

decided to study frequency beating instead of spatial fringes, as the literature is already

skewed towards the latter and temporal interference is more relevant for our experiment.

Classically, if we superpose two monochromatic electric fields, the instantaneous inten-

sity is periodic in the beat frequency ∆ω := ω2 − ω1,

I(t) ∝ E−(t)E+(t) = I1 + I2 + I1I2 cos

(
∆ωt+ ∆Θ(t)

)
. (4.5)

However, fluctuations in the relative phase ∆Θ may wash out interference when we have

to integrate the instantaneous intensity over the resolving time of our detector. Thus,

the question is under what conditions do we actually observe beating? First of all, our

detection bandwidth needs to be bigger than ∆ω, which is easily achieved in most cases.

More important is the detector time resolution ∆t, which determines whether we can

actually trace a particular sample of the random process, i.e. follow the instanteneous

intensity, or whether we have to consider the ensemble average 〈I〉 = 〈I(t)〉∆Θ, which is

determined by fluctuations of the cosine term. For independent laser, 〈cos(∆Θ)〉∆Θ = 0,

and no fringes are observed. The average we perform in an actual experiment is over time,

I(t,∆t) =
1

∆t

∫ t+∆t/2

t−∆t/2

dt I(t) , (4.6)

and the limit lim∆t→∞ I = 〈I〉 for ergodic processes. However, if ∆t is small enough,

1

∆t

∫ t+∆t/2

t−∆t/2

dt cos

(
∆ωt+ ∆Θ(t)

)
≈ cos

(
∆ωt+ ∆Θ(t)

)
, (4.7)

and therefore, with a fast detector, the beat note is directly observable. Direct detection

fails if the relative phase fluctuations are too rapid, but intensity correlation techniques
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can be used to recover fringes, which is exactly what Magyar and Mandel [128] did for

spatial fringes (see [135] for a recent demonstration).

Do we somehow need a quantum descriptions as soon as correlations are involved? In

2011, Chen et al. thought they found proof, both theoretical and experimental, that only

two-photon interference can explain anticorrelations observed in a HOM interferometer

with thermal input pulses [136]. Their starting point was the following decomposition of

the second-order cross-correlation function,

G(2x) = G
(2)
AA +G

(2)
BB +G

(2)
AB , (4.8)

where the first two terms correspond to Hanbury-Brown-Twiss correlations between the

two input modes A and B, respectively, and the last term is the interference term. A

quantum-mechanical analysis results in a two-photon coincidence rate

RAB ∝ 1− exp

(
−δ

2

t2c

)
, (4.9)

where δ is the optical delay between the two inputs and tc the width or coherence time of

a pulse. The visibility is thus 50 % but can be made 100 % by subtracting the HBT terms,

which are constant. They then proceeded to an analogous, classical analysis, but were not

able to reproduce the rate (4.9), the dependence on the optical delay in particular. As

pointed out earlier, however, there better be a classical field description, for otherwise, a

classical state would be “quantized” by a simple, linear transformation (the beam splitter).

This was pointed out in a reply to the paper of Chen et al. by Shapiro and Lantz [137].

They showed that the appropriate classical input fields are Gaussian pulses

E±(t) =
v±

4

√
πτ 2

p /2
exp

(
− [t± δt/2]2

τ 2
p

)
exp(−iω0t) (4.10)

with complex-valued Gaussian random variables v± (independent, identically distributed,

zero-mean, isotropic) having constant intensities〈
|v+|2

〉
=
〈
|v−|2

〉
= N . (4.11)

Obtaining a similar expression for the second-order cross-correlation function as we do

later, they arrived at a rate structurally identical to (4.9). Anticorrelations are then a

simple consequence of the complementarity of the two output ports of beam splitters,

i.e. energy-conservation property of linear field transformations. Though challenging in

general, so far we have always found a classical field description where one should exists.

In the following section, we lay the groundwork for the theoretical description of our laser

HOM interference experiment.
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4.4 Continuous Mode Quantum Optics

4.4.1 The Electric Field for Continuous Mode Excitations

The goal of this section is to establish the relationship between electric field and time-

dependent creation and annihilation operators. Given our detection method, we are mostly

interested in the positive frequency part of the field. The canonical quantization with

quantization volume V gives us for the electric field [138]

Ê+(r, t) = i
∑
k

∑
s

eks

√
~ωk
2ε0V

âks exp (−iωkt+ ik.r) . (4.12)

In our experiment, we only use Gaussian beams and our optical elements and detectors

are insensitive to these transversal modes, which is why we can safely neglect them in

our theoretical treatment1. Furthermore, all stray cavities, formed by back-reflection off

optical elements, are completely negligible, as there is dominant, unidirectional flow of

energy from source to detector. Consequently, quantization along the photon propagation

axis has to be in a continuum of modes. This free-space quantization offers free choice

of modes and it is convenient for us to pick so-called spatio-temporal modes instead of

standard monochromatic plane waves. For now, let us define the appropriate field operator

for spatially single-mode light and a continuum of modes in the z-direction [85],

Ê+(z, t) = i
∑
s

es

∫ ∞
0

dω

√
~ω

4πε0cA
âs(ω) exp

(
−iω

[
t− z

c

])
. (4.13)

For our experiment, we can set z = 0, corresponding, in the end, to a measurement directly

after the HOM beam splitter. The continuous operators

â†s(ω) and âs(ω), with
[
âs(ω), â†s′ (ω

′)
]

= δs,s′δ(ω − ω′) , (4.14)

create and annihilate photons at a certain frequency, and polarization s. In our experi-

ment, the narrow-bandwidth approximation ∆ω � ω0 is valid [138], which justifies the

approximation ω ≈ ω0 in the square-root factor in the integral and extension of the lower

integration limit to −∞. The field operator is therefore

Ê+(t) = i

√
~ω0

4πε0cA

∑
s

es

∫ ∞
−∞

dω âs(ω) exp(−iωt) . (4.15)

1A spatial multimode treatment may be useful later for spatial multi-mode field, which are encountered

in multi-mode fibers and free-space communication channels.
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This expression invites us to define new operators

âs(t) =
1√
2π

∫ ∞
−∞

dω âs(ω) exp(−iωt)

â†s(t) =
1√
2π

∫ ∞
−∞

dω â†s(ω) exp(iωt) ,

(4.16)

which, because the bosonic commutation relation is still preserved,[
âs(t), â

†
s′ (t

′)
]

= δs,s′δ(t− t′) , (4.17)

annihilate and create, respectively, photons at time t in polarization mode s. The operators

(4.16) are the quantum-mechanical analogue of quasi-monochromatic light amplitudes in

the context of analytic signals of classical wave fields [139]. The operators (4.14) and

(4.16) in the two domains tackle two distinct problems, namely “what frequency does the

photon have” and “where in time is the photon”? Answers to these questions are mutually

exclusive to a degree specified by Heisenberg’s uncertainty relation. They also represent

mathematical limits not achievable in any physical system. We usually have to deal with

“lab” or “physical” photons, which describe excitations of wavepackets that have some

localization in time and are of finite bandwidth. Since we perform correlation detection in

time, corresponding correlation functions, and thus coincidence probabilities, are expressed

in terms of time-dependent creation and annihilation operators, as we will see later. Using

(4.16), the electric field operator (4.15) in the time-domain takes the final form

Ê+(t) = i

√
~ω0

2ε0cA

(
eH âH(t) + eV âV (t)

)
≡ eH âH(t) + eV âV (t) ,

(4.18)

where we absorbed the constant into the units of measurement (“photon units”) and called

the two orthogonal polarization modes H (horizontal) and V (vertical). This is the field

expression we are going to use, which implies that we are working in the Heisenberg picture.

4.4.2 Wavepacket Excitations

As said, photons described in the previous section are not physical, because the finite

energy they carry would have to spread across R and thus a photon detection would not

be possible at any time t. We are, however, free to pick any mode basis {Φi(ω)} that is

orthonormal and complete, i.e. which fulfills∫ ∞
−∞

dωΦi(ω)Φ∗j(ω) = δi,j

∞∑
i=0

Φ∗i (ω)Φi(ω
′) = δ(ω − ω′) .

(4.19)
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These modes can carry an excitation, as testified by the existence of annihilation and

creation operators associated with these modes,

ĉs(Φi) =

∫ ∞
−∞

dωΦ∗i (ω)âs(ω)

ĉ†s(Φi) =

∫ ∞
−∞

dωΦi(ω)â†s(ω) .

(4.20)

Again, these fulfill the canonical commutation relation,[
ĉs(Φi), ĉ

†
s′(Φj)

]
= δs,s′δi,j , (4.21)

and a Fock state photon in such a mode is simply

|1s(Φi)〉 = ĉ†s(Φi)|0〉 . (4.22)

The transition to the time-domain is again facilitated by a Fourier transform

Φi(t) =
1√
2π

∫ ∞
−∞

dωΦi(ω) exp(−iωt) . (4.23)

With time-dependent monochromatic operators defined in (4.16), we obtain wavepacket

annihilation and creation operators

ĉs(Φi) =

∫ ∞
−∞

dtΦ∗i (t)âs(t)

ĉ†s(Φi) =

∫ ∞
−∞

dtΦi(t)â
†
s(t) .

(4.24)

Since the Φi’s are complete, we can easily obtain new, permissible, modes by linear super-

position,

ζ(t) =
∞∑
i=1

ciΦi(t) , (4.25)

with associated annihilation and creation operators

ĉs(ζ) =
∞∑
i=1

c∗i ĉs(Φi)

ĉ†s(ζ) =
∞∑
i=1

ciĉ
†
s(Φi) .

(4.26)

4.4.3 Spectrally Determined Wavepackets

Photon wavepackets (or pulses) in time are related to their spectra. As we will see later,

classically, the source spectrum relates to statistical properties of emitted fields. Whenever
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this is possible, we can rigorously define coherence properties of fields. For instance, the

spectra considered here permit us to assign a coherence length τcoh to the fields, which we

can determine experimentally from measurements of the first-order correlation function via

τcoh =

∫ ∞
−∞

dτ
∣∣g(1)(τ)

∣∣2 . (4.27)

Three kinds of spectra are of particular interest in optical problems and they are all con-

nected [138]. The ideal monochromatic spectrum (central frequency ω0)

FM(ω) = δ(ω − ω0) (4.28)

can be obtained from both the Lorentzian spectrum,

FL(ω) =
1

π

γ

(ω0 − ω)2 + γ2
, (4.29)

and the Gaussian spectrum,

FG(ω) =
1√

2π∆2
exp

(
− [ω0 − ω]2

2∆2

)
, (4.30)

by taking the limits

FM(ω) = lim
γ→0

FL(ω) = lim
∆→0

FG(ω) . (4.31)

The interpretation of γ depends on the physical model for the stochastic process leading

to a Lorentzian spectrum, but we can regard it as a damping rate whose inverse is τcoh

(and likewise the linewidth ∆). Wavepackets associated with monochromatic spectra are,

of course, plane waves exp(−iω0t). A Gaussian wavepacket has a Gaussian amplitude

spectrum and linear spectral phase,

ζ(ω) =
4

√
σ2

2π
exp

(
− [ω0 − ω]2

4/σ2

)
exp(iωδτ) , (4.32)

where σ is the 1/e-width of the Gaussian and δτ a time-delay (a bit of change in notation

here). In the time domain, this corresponds to a time-shifted Gaussian wavepacket,

ζ(t) =
1√
2π

∫ ∞
−∞

dω ζ(ω) exp(−iωt)

=
4

√
2

πσ2
exp

(
− [t− δτ ]2

σ2

)
exp

(
iω0[t− δτ ]

)
.

(4.33)

In complete analogy, the Lorentzian wavepacket is defined by

ζ(ω) =

√
2γ3

π

exp(−iωτ)

(ω0 − ω)2 + γ2
, (4.34)
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and the Fourier transform gives

ζ(t) =
√
γ exp

(
− γ|t− τ |+ iω0[t− τ ]

)
. (4.35)

Note that the constants are chosen to normalize the wavepackets,∫ ∞
−∞

dt |ζ(t)|2 =

∫ ∞
−∞

dω |ζ(ω)|2 = 1 . (4.36)

4.5 Theoretical Exploration of Laser HOM Interference Landscapes

4.5.1 Second-Order Cross-Correlation Function

We commence with definition of the second-order cross-correlation function,

G(2x)(t3, t4) :=
〈
Ê−3 (t3)Ê−4 (t4)Ê+

4 (t4)Ê+
3 (t3)

〉
=

1

4

〈(
ζ∗1 (t3)â†1(t3) + ζ∗2 (t3)â†2(t3)

)(
ζ∗1 (t4)â†1(t4)− ζ∗2 (t4)â†2(t4)

)
×
(
ζ1(t4)â1(t4)− ζ2(t4)â2(t4)

)(
ζ1(t3)â1(t3) + ζ2(t3)â2(t3)

)〉
,

(4.37)
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where the two input modes to a beam splitter carry excitations described by mode envelope

functions ζ1(t) and ζ2(t). We explicitly calculate

G(2x)(t3, t4) =
|ζ1(t3)ζ1(t4)|2

4

〈
â†1(t3)â†1(t4)â1(t4)â1(t3)

〉
+
ζ∗1 (t3)ζ∗1 (t4)ζ1(t4)ζ2(t3)

4

〈
â†1(t3)â†1(t4)â1(t4)â2(t3)

〉
− ζ∗1 (t3)ζ∗1 (t4)ζ2(t4)ζ1(t3)

4

〈
â†1(t3)â†1(t4)â1(t3)â2(t4)

〉
− ζ∗1 (t3)ζ∗1 (t4)ζ2(t4)ζ2(t3)

4

〈
â†1(t3)â†1(t4)â2(t4)â2(t3)

〉
− ζ∗1 (t3)ζ∗2 (t4)ζ1(t4)ζ1(t3)

4

〈
â†1(t3)â1(t4)â1(t3)â†2(t4)

〉
− ζ∗1 (t3)ζ∗2 (t4)ζ1(t4)ζ2(t3)

4

〈
â†1(t3)â1(t4)â†2(t4)â2(t3)

〉
+
ζ∗1 (t3)ζ∗2 (t4)ζ2(t4)ζ1(t3)

4

〈
â†1(t3)â1(t3)â†2(t4)â2(t4)

〉
+
ζ∗1 (t3)ζ∗2 (t4)ζ2(t4)ζ2(t3)

4

〈
â†1(t3)â†2(t4)â2(t4)â2(t3)

〉
+
ζ∗2 (t3)ζ∗1 (t4)ζ1(t4)ζ1(t3)

4

〈
â†1(t4)â1(t4)â1(t3)â†2(t3)

〉
+
ζ∗2 (t3)ζ∗1 (t4)ζ1(t4)ζ2(t3)

4

〈
â†1(t4)â1(t4)â†2(t3)â2(t3)

〉
− ζ∗2 (t3)ζ∗1 (t4)ζ2(t4)ζ1(t3)

4

〈
â†1(t4)â1(t3)â†2(t3)â2(t4)

〉
− ζ∗2 (t3)ζ∗1 (t4)ζ2(t4)ζ2(t3)

4

〈
â†1(t4)â†2(t3)â2(t4)â2(t3)

〉
− ζ∗2 (t3)ζ∗2 (t4)ζ1(t4)ζ1(t3)

4

〈
â1(t4)â1(t3)â†2(t3)â†2(t4)

〉
− ζ∗2 (t3)ζ∗2 (t4)ζ1(t4)ζ2(t3)

4

〈
â1(t4)â†2(t3)â†2(t4)â2(t3)

〉
+
ζ∗2 (t3)ζ∗2 (t4)ζ2(t4)ζ1(t3)

4

〈
â1(t3)â†2(t3)â†2(t4)â2(t4)

〉
+
|ζ2(t3)ζ2(t4)|2

4

〈
â†2(t3)â†2(t4)â2(t4)â2(t3)

〉
.

(4.38)

In general, all sixteen terms contribute, but for two independent light sources, only six

terms can be non-zero [140]. This is true for both quantum and classical light such as single

photon sources and star light, respectively, and is a direct consequence of randomizing the

relative phase over [0, 2π), which can be achieved in various ways. For instance, one can

dither the optical path length in one input mode, so that âk → âk exp(iΦk), in which case

the above expectation values are multiplied by expectation values of the form〈
exp

(
± imΦk[t]

)〉
=

1

2π

∫ 2π

0

dΦk exp(±iΦk) , (4.39)
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which is zero for unpaired annihilation (+) or creation (−) operators in the expectation

value (m = 1 or m = 2). The only surviving terms are those with balanced creation and

annihilation operators (m = 0 above), and we get

G(2x)(t3, t4) =
1

4
|ζ1(t3)ζ1(t4)|2

〈
â†1(t3)â†1(t4)â1(t4)â1(t3)

〉
+

1

4
|ζ2(t3)ζ2(t4)|2

〈
â†2(t3)â†2(t4)â2(t4)â2(t3)

〉
+

1

4
|ζ1(t3)|2|ζ2(t4)|2

〈
â†1(t3)â1(t3)â†2(t4)â2(t4)

〉
+

1

4
|ζ1(t4)|2|ζ2(t3)|2

〈
â†1(t4)â1(t4)â†2(t3)â2(t3)

〉
− 1

2
Re

{
ζ∗1 (t3)ζ1(t4)ζ2(t3)ζ∗2 (t4)

〈
â†1(t3)â1(t4)â†2(t4)â2(t3)

〉}
.

(4.40)

In our case, the two impinging fields are statistically independent, resulting in a factoriza-

tion of correlation functions,〈
â†1(t)â1(t′′)â†2(t′′)â2(t′′′)

〉
=
〈
â†1(t)â1(t′)

〉〈
â†2(t′′)â2(t′′′)

〉
. (4.41)

4.5.2 Optical Equivalence Theorem

The two fields we use are excited into mixtures of coherent states with complex amplitudes

αk = |αk| exp(iΘk), whose Glauber-Sudarshan P-Representation [141, 142] is given by

ρ̂ =
⊗
k=1,2

∫
Ck
dαk P (αk)|αk〉〈αk| , (4.42)

where the integration is over an area in the complex plane. Evaluation of (4.40) using

the state (4.42) is simplified dramatically by the optical equivalence theorem [142]. The

theorem establishes a relation between quantum and classical expectation values and is

thus particularly useful for the task at hand, namely the calculation of expectation values

of functions

fk

(
âk, â

†
k

)
=
∑
n,m

cn,mâ
†nâm (4.43)
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of normally-ordered operators for states with a close classical correspondence. The theorem

states 〈
fk

(
âk, â

†
k

)〉
QM

=

∫
Ck
dαk P (αk)

∑
n,m

cn,m〈αk|â†nk â
m
k |αk〉

=

∫
Ck
dαk P (αk)

∑
n,m

cn,mα
∗n
k α

m
k

=

∫
Ck
dαk P (αk)f

(N)(αk, α
∗
k)

=

〈
fk

(
αk, α

∗
k

)〉
αk

.

(4.44)

This result implies that in all our calculations we do not have to evaluate a single quantum-

mechanical expectation value but can replace all instances of annihilation and creation

operators with the (classical) c-number functions αk (laser amplitudes), and perform an

ensemble average over all realizations of αk with probability distribution P (αk). The

ensemble in our case is a phase-ensemble.

4.5.3 Statistical Assumptions

Applying the optical equivalence theorem to each mode separately we obtain

G(2x)(t3, t4) =
1

4

(
|ζ1(t3)ζ1(t4)|2

〈
|α1(t3)|2|α1(t4)|2

〉
α1

+ |ζ2(t3)ζ2(t4)|2
〈
|α2(t3)|2|α2(t4)|2

〉
α2

+ |ζ1(t3)|2|ζ2(t4)|2
〈
|α1(t3)|2

〉
α1

〈
|α2(t4)|2

〉
α2

+ |ζ1(t4)|2|ζ2(t3)|2
〈
|α1(t4)|2

〉
α1

〈
|α2(t3)|2

〉
α2

− 2Re

{
ζ∗1 (t3)ζ1(t4)ζ2(t3)ζ∗2 (t4)G

(1)
1 (τ)G

∗(1)
2 (τ)

})
.

(4.45)

Here, the first-order autocorrelation functions

G
(1)
k (τ) =

〈
α∗k(t)αk(t+ τ)

〉
αk

(4.46)

only depend on the detection-time difference τ := t4 − t3 because the fields are statisti-

cally stationary, which is fair assumption for continuous-wave lasers. The lasers also have

statistically constant intensities,〈
|αk(t)|2

〉
αk

= G
(1)
k (0) = Nk , (4.47)
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and for sufficiently small τ , the intensity fluctuations are constant,〈
|αk(t)|2|αk(t′)|2

〉
αk

= N2
k . (4.48)

Note that even though the laser phase is subject to a random process, leading to a non-

trivial first-order autocorrelation function (in particular of the Lorentzian or Gaussian

type), the laser is still coherent and not chaotic [112, 113, 143]. Thus, the intensity fluc-

tuations are constant and not of, for example, Lorentzian or Gaussian type, as expected

for chaotic light, which one would get using the Gaussian-moment factoring theorem [138].

Defining the degree of first-order coherence

g
(1)
k (τ) :=

G
(1)
k (τ)

G
(1)
k (0)

=
G

(1)
k (τ)

Nk

, (4.49)

we obtain

G(2x)(t0, t0 + τ) =
N2

1

4
|ζ1(t0)ζ1(t0 + τ)|2 +

N2
2

4
|ζ2(t0)ζ2(t0 + τ)|2

+
N1N2

4
|ζ1(t0)|2|ζ2(t0 + τ)|2 +

N1N2

4
|ζ1(t0 + τ)|2|ζ2(t0)|2

− N1N2

2
Re

{
ζ∗1 (t0)ζ1(t0 + τ)ζ2(t0)ζ∗2 (t0 + τ)g

(1)
1 (τ)g

∗(1)
2 (τ)

}
,

(4.50)

where we changed notation to indicate that we are interested in an initial detection at t0

and a subsequent one at t0 + τ .

4.5.4 Coincidence Detection Rate

In the lab we rarely measure correlation functions directly and only sometimes can recon-

struct them from coincidence detection rates

R(2x)(t0, τ,∆T ) = η1η2

∫ t0+∆T

t0

dt1

∫ t0+τ+∆T

t0+τ

dt2G
(2x)(t1, t2) . (4.51)

If the detector time resolution ∆T is much smaller than the width of G(2x)(t1, t2), then

R(2x)(t0, τ,∆T ) ≈ η1η2(∆T )2G(2x)(t0, t0 + τ) , (4.52)

which means that we are working in the time-resolved regime. Moreover, if the absolute

detection time t0 is of no relevance, we integrate (sum over all events in the time tag files)

over t0 for the duration of measurement TM ,

R(2x)(τ,∆t) = η1η2∆T 2
2

∫ TM/2

−TM/2

dt0G
(2x)(t0, t0 + τ) . (4.53)
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We will later see that this integration plays an important part in determining whether we

resolve HOM interference landscapes. Since we are working in the time-resolved regime,

we can safely continue working with G(2x)(t0, t0 + τ), as the coincidence rate only differs by

a scaling factor (which we could factor out by data normalization if we wanted to). The

analysis so far assumed a photon-number-resolving detector, which is not readily available

and certainly not used in our experiments, namely silicon avalanche photodiodes (Si-APD).

Rather, we have a so-called “bucket” detector, which is described by the projective mea-

surement operators [144]

M̂click =
∞∑
n=1

Q(n)|n〉〈n|

M̂no click = 1− M̂click ,

(4.54)

with

Q(n) = 1− (1− η)n + ε− ε(1− (1− n)n) , (4.55)

where η and ε are the detector efficiency and dark count probability, respectively. In an ac-

curate description of the detection process, these operators would replace normally-ordered

operators inside the expectation value of the second-order cross-correlation function. Yet,

given that the experiment actually works with Si-APDs, do the theoretical predictions

change at all? The answer is “no” [145]. All we need to ensure is that we have only one

photon in a time interval approximately equal to the detector dead time (∼ µs). But this

is already implicitly assumed in the semi-classical model we employed in the derivation

above [146] . Accordingly, the measured temporal correlation functions is ([145], Eq. 2.68)

γ̂
(2)
click(τ) =

Nc(τ ; ∆τ)

R3R4∆τTint

, (4.56)

where Nc(τ ; ∆τ) are the number of coincidences in the histogram bin centered at detection

time difference τ with bin size ∆τ , R3 and R4 are the single detection rates, and Tint is the

integration time. This result is a solid bridge between the theoretical result (4.53) and the

way we actually measure and analyze the data (time tag files, from which histograms are

generated and HOM dips distilled).

4.5.5 Laser HOM Dips

The negative sign of the interference term in the second-order cross-correlation function

(4.50) indicates that for certain wavepackets ζk(t) and degrees of first-order coherence

g
(1)
k (τ) we can observe anticorrelations at the two output ports of a symmetric beam split-

ter. Note that both classical [137] and quantum [103] interpretations of this effect rely
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on energy conservation at the beam splitter. Furthermore, anticorrelations are statistical

in nature since our interference term contains a product of two first-order autocorrela-

tion functions. For identical and phase-randomized, ideal coherent states, in which case

g
(1)
k (τ) = exp(−iωkτ), N1 = N2 = N , and ω1 = ω2, we get (t0 = 0, as for stationary

processes the origin in time doesn’t matter)

G(2x)(τ) =
N2

4

(
|ζ1(0)ζ1(τ)|2 + |ζ2(0)ζ2(τ)|2 +

∣∣∣∣ζ1(0)ζ2(τ)− ζ1(τ)ζ2(0)

∣∣∣∣2) . (4.57)

If the fields were excited in a single photon Fock state, i.e. ρ̂ = |11〉〈11|, then a similar

calculation leads to an expression for the correlation function proportional to the third term

in Eq. (4.57), which has the interesting property that no matter how different the mode

functions ζ1(t) and ζ2(t) are, for τ = 0 coincidences always vanish [107, 108], and 100 %

visibility is obtained. In our case, the first two terms are non-zero and are responsible for

the 50 % visibility bound for any classical field.

For a laser far above threshold, its amplitude is stable. Its phase, however, is subject to

a diffusion process and leads to a laser’s natural (Schawlow-Townes) linewidth [147]. The

theory of random walks along the unit circle in the complex plane tells us that the degree

of first-order coherence is (see for example [138])

g
(1)
k (τ) =

〈
exp

(
Θk[t+ τ ]−Θk[t]

)〉
αk

= exp

(
−|τ |
τk

)
exp(−iωkτ) , (4.58)

where τk is source k’s coherence length. When the laser is inhomogeneously broadened

(e.g. Doppler broadening), the spectrum follows a Gaussian with a degree of first order

coherence given by

g
(1)
k (τ) = exp

(
−τ

2

τ 2
k

)
exp(−iωkτ) . (4.59)

In the study of interference phenomena with broadband sources, for example thermal light

and single photons from spontaneous parametric downconversion, the Gaussian model is

often the more accurate one. In these cases, a filter is employed to narrow the spectrum

to a “line”, and more often than not, the frequency transmission function of the filter is a

Gaussian. The second-order cross-correlation function then becomes

G(2x)(t0, t0 + τ) =
N2

1

4
|ζ1(t0)ζ1(t0 + τ)|2 +

N2
2

4
|ζ2(t0)ζ2(t0 + τ)|2

+
N1N2

4

(
|ζ1(t0)|2|ζ2(t0 + τ)|2 + |ζ1(t0 + τ)|2|ζ2(t0)|2

)
− N1N2

2
Re

{
ζ∗1 (t0)ζ1(t0 + τ)ζ2(t0)ζ∗2 (t0 + τ)

}
F (τ) cos

(
∆ωτ

)
,

(4.60)
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where

F (τ) = exp

(
−|τ |

[
1

τ1

+
1

τ2

])
(4.61)

and

F (τ) = exp

(
−τ 2

[
1

τ 2
1

+
1

τ 2
2

])
(4.62)

for Lorentzian and Gaussian spectra, respectively, and ∆ω := ω2 − ω1. To evaluate this

expression, we assume a CW laser (constant mode envelope),

ζk(t) = 1 , (4.63)

emitting the same mean photon number, N1 = N2 = N , and furthermore that both sources

undergo the same phase diffusion process with τ1 = τ2 ≡ τcoh. This way we obtain our first

basic result,

G(2x)(τ) = N2

(
1− 1

2
cos
(
∆ωτ

)
F (τ)

)
, (4.64)

which is plotted in Figure 4.2. We find oscillations within the dip with a period corre-

sponding to the beat frequency of the two lasers. In our experiment, however, two beams

are derived from the same laser, and since we have no appreciable optical nonlinearity

from source to detector, ∆ω = 0, which we assume for the remainder of this work. The

visibility of laser HOM dips is determined by F (τ). For both Gaussian and Lorentzian

type functions, minimum and maximum of 0 and 1 are achieved for τ → ∞ and τ = 0,

respectively. We thus calculate

VHOM :=
G(2x)(τ)max −G(2x)(τ)min

G(2x)(τ)max

=
1− 0.5

1
= 0.5 , (4.65)

as expected. What if N1 6= N2? Then we have

VHOM =

1
4

(
N2

1 +N2
2 + 2N1N2

)
− 1

4

(
N2

1 +N2
2

)
1
4

(
N2

1 +N2
2 + 2N1N2

) =
2N1N2

(N1 +N2)2
. (4.66)

Let us assume N1 = αN2, for some α > 1. The visibility is then given by

VHOM =
2αN2

2

(αN2 +N2)2
=

2α

(1 + α)2
, (4.67)

which is plotted in Figure 4.3. We can then modify Equation (4.64) to become

G(2x)(τ) = N2

(
1− VHOM cos

(
∆ωτ

)
F (τ)

)
. (4.68)
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Figure 4.2: Oscillations Within Laser HOM Dips. The dip shape (red solid line) is

determined by the laser spectrum: (a) Lorentzian and (b) Gaussian. Beating between two

lasers (black solid lines) happens whenever there is a frequency difference and modulates

the anticorrelation dip (see Equation 4.64).

4.5.6 Laser HOM Polarization Interference Landscapes

We now extend our study to more than two modes, namely two polarization modes at each

input port of the HOM beam splitter. Polarization is not changing anything fundamentally,

i.e. anticorrelations at a beam splitter, but provides us with a degree of freedom to engineer

different dip shapes, which can be used to encode information via modulation techniques.

Before we speak of those, we first need to find out how the second-order cross-correlation

function is modified when the two input modes have arbitrary linear polarization.

Consider the following state for beam splitter input ports k ∈ {1, 2} and polarization

modes s ∈ {H,V } (horizontal and vertical polarization, respectively),

ρ̂ =
⊗
k=1,2
s=H,V

∫
Ck,s

dαk,s P (αk,s)|αk,s〉〈αk,s|

= ρ̂1H ⊗ ρ̂1V ⊗ ρ̂2H ⊗ ρ̂2V .

(4.69)

Our single-photon detectors are not polarization-sensitive, in which case the second-order

cross-correlation function decomposes as a sum over all possible polarization combinations
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Figure 4.3: Laser HOM Dip Visibility as Function of Count Rate Difference.

We see that the visibility, as predicted by Equation (4.67), drops only slowly, reaching

VHOM = 0.1 for α = N1/N2 ≈ 18. The inset is a zoom into the plot region α ∈ [1, 2], which

is the operating regime in practice. We see that, even if we have double the count rate in

one detector, i.e. α = 2, the visibility would still be 44.44 %.

[148],

G(2x)(t3, t4) =
∑
s,s′

Tr
{
ρ̂â†3s(t3)â†4s′(t4)â4s′(t4)â3s(t3)

}
= Tr

{
ρ̂â†3H(t3)â†4H(t4)â4H(t4)â3H(t3)

}
+ Tr

{
ρ̂â†3V (t3)â†4V (t4)â4V (t4)â3V (t3)

}
+ Tr

{
ρ̂â†3H(t3)â†4V (t4)â4V (t4)â3H(t3)

}
+ Tr

{
ρ̂â†3V (t3)â†4H(t4)â4H(t4)â3V (t3)

}
= G

(2x)
HH (t3, t4) +G

(2x)
V V (t3, t4) +G

(2x)
HV (t3, t4) +G

(2x)
V H (t3, t4) .

(4.70)

The first two terms only depend on a single polarization, namely H and V , respectively, and

should be quite similar to the second-order cross-correlation function we already obtained.

The last two terms concern mixed polarizations and should not contribute to interference
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terms. Inserting the expansion of ρ̂, Equation (4.69), we get

G(2x)(t3, t4) = Tr
{
ρ̂1H ⊗ ρ̂2H

(
â†3H(t3)â†4H(t4)â4H(t4)â3H(t3)

)}
+ Tr

{
ρ̂1V ⊗ ρ̂2V

(
â†3V (t3)â†4V (t4)â4V (t4)â3V (t3)

)}
+ Tr

{
ρ̂1H ⊗ ρ̂1V ⊗ ρ̂2H ⊗ ρ̂2V

(
â†3H(t3)â†4V (t4)â4V (t4)â3H(t3)

)}
+ Tr

{
ρ̂1H ⊗ ρ̂1V ⊗ ρ̂2H ⊗ ρ̂2V

(
â†3V (t3)â†4H(t4)â4H(t4)â3V (t3)

)}
.

(4.71)

Henceforth, we assume αk,H = αk,V (and thus NkH = NkV ≡ Nk), i.e. both coherent states

are equally “strong”. The analysis for G
(2x)
HH (t3, t4) and G

(2x)
V V (t3, t4) is conducted as before

and the only difference is that now the mode envelope functions ζk,H and ζk,V are not

constant but cos[φk(t)] and sin[φk(t)] for horizontal and vertical polarization, respectively.

We calculate

G
(2x)
HH (t3, t4) =

N2
1

4
cos2

[
φ1(t3)

]
cos2

[
φ1(t4)

]
+
N2

2

4
cos2

[
φ2(t3)

]
cos2

[
φ2(t4)

]
+
N1N2

4
cos2

[
φ1(t3)

]
cos2

[
φ2(t4)

]
+
N1N2

4
cos2

[
φ2(t3)

]
cos2

[
φ1(t4)

]
− N1N2

2
cos
[
φ1(t3)

]
cos
[
φ1(t4)

]
cos
[
φ2(t3)

]
cos
[
φ2(t4)

]
Re

{
g

(1)
1 (τ)g

∗(1)
2 (τ)

}
,

(4.72)

and similarly,

G
(2x)
V V (t3, t4) =

N2
1

4
sin2

[
φ1(t3)

]
sin2

[
φ1(t4)

]
+
N2

2

4
sin2

[
φ2(t3)

]
sin2

[
φ2(t4)

]
+
N1N2

4
sin2

[
φ1(t3)

]
sin2

[
φ2(t4)

]
+
N1N2

4
sin2

[
φ2(t3)

]
sin2

[
φ1(t4)

]
− N1N2

2
sin
[
φ1(t3)

]
sin
[
φ1(t4)

]
sin
[
φ2(t3)

]
sin
[
φ2(t4)

]
Re

{
g

(1)
1 (τ)g

∗(1)
2 (τ)

}
.

(4.73)

Adding these two functions we obtain

G
(2x)
HH (t3, t4) +G

(2x)
V V (t3, t4) =

N2
1

4
P‖[φ1(t3), φ1(t4)] +

N2
2

4
P‖[φ2(t3), φ2(t4)]

+
N1N2

4

(
P‖[φ1(t3), φ2(t4)] + P‖[φ2(t3), φ1(t4)]

)
− N1N2

2
Pint(t3, t4)Re

{
g

(1)
1 (τ)g

∗(1)
2 (τ)

}
,

(4.74)

with

P‖[φk(t), φl(t
′)] := cos2[φk(t)] cos2[φl(t

′)] + sin2[φk(t)] sin2[φl(t
′)]

Pint[φ1(t3), φ1(t4), φ2(t3), φ2(t4)] := cos
[
φ1(t3)

]
cos
[
φ1(t4)

]
cos
[
φ2(t3)

]
cos
[
φ2(t4)

]
+ sin

[
φ1(t3)

]
sin
[
φ1(t4)

]
sin
[
φ2(t3)

]
sin
[
φ2(t4)

]
.

(4.75)
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To make sure we derive correct contributions from the crossed-polarization terms, we bet-

ter write them down explicitly. We do this for G
(2)
HV (t3, t4), but the result is similar for

G
(2)
V H(t3, t4). We proceed along the lines of Equation (4.38), though we have to keep track

of polarization mode indices.

G
(2x)
HV (t3, t4) =

〈
Ê−H3(t3)Ê−V 4(t4)Ê+

V 4(t4)Ê+
H3(t3)

〉
=

1

4

〈(
ζ∗1 (t3)â†H1(t3) + ζ∗2 (t3)â†H2(t3)

)(
ζ∗1 (t4)â†V 1(t4)− ζ∗2 (t4)â†V 2(t4)

)
×
(
ζ1(t4)âV 1(t4)− ζ2(t4)âV 2(t4)

)(
ζ1(t3)âH1(t3) + ζ2(t3)âH2(t3)

)〉
=

1

4
ζ∗1 (t3)ζ∗1 (t4)ζ1(t4)ζ1(t3)

〈
â†H1(t3)â†V 1(t4)âV 1(t4)âH1(t3)

〉
+

1

4
ζ∗1 (t3)ζ∗1 (t4)ζ1(t4)ζ2(t3)

〈
â†H1(t3)â†V 1(t4)âV 1(t4)âH2(t3)

〉
− 1

4
ζ∗1 (t3)ζ∗1 (t4)ζ2(t4)ζ1(t3)

〈
â†H1(t3)â†V 1(t4)âV 2(t4)âH1(t3)

〉
− 1

4
ζ∗1 (t3)ζ∗1 (t4)ζ2(t4)ζ2(t3)

〈
â†H1(t3)â†V 1(t4)âV 2(t4)âH2(t3)

〉
− 1

4
ζ∗1 (t3)ζ∗2 (t4)ζ1(t4)ζ1(t3)

〈
â†H1(t3)â†V 2(t4)âV 1(t4)âH1(t3)

〉
− 1

4
ζ∗1 (t3)ζ∗2 (t4)ζ1(t4)ζ2(t3)

〈
â†H1(t3)â†V 2(t4)âV 1(t4)âH2(t3)

〉
+

1

4
ζ∗1 (t3)ζ∗2 (t4)ζ2(t4)ζ1(t3)

〈
â†H1(t3)â†V 2(t4)âV 2(t4)âH1(t3)

〉
+

1

4
ζ∗1 (t3)ζ∗2 (t4)ζ2(t4)ζ2(t3)

〈
â†H1(t3)â†V 2(t4)âV 2(t4)âH2(t3)

〉
+

1

4
ζ∗2 (t3)ζ∗1 (t4)ζ1(t4)ζ1(t3)

〈
â†H2(t3)â†V 1(t4)âV 1(t4)âH1(t3)

〉
+

1

4
ζ∗2 (t3)ζ∗1 (t4)ζ1(t4)ζ2(t3)

〈
â†H2(t3)â†V 1(t4)âV 1(t4)âH2(t3)

〉
− 1

4
ζ∗2 (t3)ζ∗1 (t4)ζ2(t4)ζ1(t3)

〈
â†H2(t3)â†V 1(t4)âV 2(t4)âH1(t3)

〉
− 1

4
ζ∗2 (t3)ζ∗1 (t4)ζ2(t4)ζ2(t3)

〈
â†H2(t3)â†V 1(t4)âV 2(t4)âH2(t3)

〉
− 1

4
ζ∗2 (t3)ζ∗2 (t4)ζ1(t4)ζ1(t3)

〈
â†H2(t3)â†V 2(t4)âV 1(t4)âH1(t3)

〉
− 1

4
ζ∗2 (t3)ζ∗2 (t4)ζ1(t4)ζ2(t3)

〈
â†H2(t3)â†V 2(t4)âV 1(t4)âH2(t3)

〉
+

1

4
ζ∗2 (t3)ζ∗2 (t4)ζ2(t4)ζ1(t3)

〈
â†H2(t3)â†V 2(t4)âV 2(t4)âH1(t3)

〉
+

1

4
ζ∗2 (t3)ζ∗2 (t4)ζ2(t4)ζ2(t3)

〈
â†H2(t3)â†V 2(t4)âV 2(t4)âH2(t3)

〉
.

(4.76)

We see immediately, on account of our earlier discussion, that only four terms can con-
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tribute a non-zero value, namely〈
â†H1(t3)âH1(t3)

〉〈
â†V 1(t4)âV 1(t4)

〉
= N2

1〈
â†H2(t3)âH2(t3)

〉〈
â†V 2(t4)âV 2(t4)

〉
= N2

2〈
â†H1(t3)âH1(t3)

〉〈
â†V 2(t4)âV 2(t4)

〉
= N1N2〈

â†H2(t3)âH2(t3)
〉〈
â†V 1(t4)âV 1(t4)

〉
= N1N2 ,

(4.77)

and we calculate

G
(2x)
HV (t3, t4) =

N2
1

4
cos2

[
φ1(t3)

]
sin2

[
φ1(t4)

]
+
N2

2

4
cos2

[
φ2(t3)

]
sin2

[
φ2(t4)

]
+
N1N2

4

(
cos2

[
φ1(t3)

]
sin2

[
φ2(t4)

]
+ cos2

[
φ2(t3)

]
sin2

[
φ1(t4)

])
,

(4.78)

G
(2x)
V H (t3, t4) =

N2
1

4
sin2

[
φ1(t3)

]
cos2

[
φ1(t4)

]
+
N2

2

4
sin2

[
φ2(t3)

]
cos2

[
φ2(t4)

]
+
N1N2

4

(
sin2

[
φ1(t3)

]
cos2

[
φ2(t4)

]
+ sin2

[
φ2(t3)

]
cos2

[
φ1(t4)

])
.

(4.79)

Adding these two functions we obtain

G
(2x)
HV (t3, t4) +G

(2x)
V H (t3, t4) =

N2
1

4
P⊥[φ1(t3), φ1(t4)] +

N2
2

4
P⊥[φ2(t3), φ2(t4)]

+
N1N2

4

(
P⊥[φ1(t3), φ2(t4)] + P⊥[φ2(t3), φ1(t4)]

)
,

(4.80)

where

P⊥[φk(t), φl(t
′)] := cos2[φk(t)] sin2[φl(t

′)] + sin2[φk(t)] cos2[φl(t
′)] . (4.81)

Now, using standard trigonometric identities,

P‖[φk(t), φk(t
′)] + P⊥[φk(t), φk(t

′)] = 1

P‖[φ1(t3), φ2(t4)] + P‖[φ2(t3), φ1(t4)] + P⊥[φ1(t3), φ2(t4)] + P⊥[φ2(t3), φ1(t4)] = 1 ,
(4.82)

and adding Equations (4.74) and (4.80) gives thus

G(2x)(t3, t4) =
1

4

(
N1 +N2

)2 − N1N2

2
Pint(t3, t4)Re

{
g

(1)
1 (τ)g

∗(1)
2 (τ)

}
. (4.83)

For constant polarization angles φk(t) = φk,

Pint[φ1, φ2] = cos2(φ1) cos2(φ2) + sin2(φ1) sin2(φ2) , (4.84)

which means the the anticorrelation dip visibility now depends on the relative polarization

of the two lasers, though not its shape. For two CW lasers with Lorentzian or Gaussian

spectrum we obtain the interference landscapes shown in Figure 4.4.
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Figure 4.4: Laser HOM Dip Polarization Interference Landscapes. With polar-

ization (via relative polarization angle φ) we have another degree of freedom in addition

to the detection time difference τ for control over laser HOM interference. Plotted here

is Equation (4.83) for (a) Lorentzian and (b) Gaussian spectrum with φ2 = 0. C =

coincidences.

4.5.7 Laser HOM Square Wave Interference Landscapes

The typical HOM dip has an inverse Gaussian shape, but it is possible to obtain more

“exotic” shapes. In type-II parametric downconversion, for example, one can get triangular

shapes [149]. Non-stationary light sources such as pulsed lasers give rise to second-order

cross-correlation functions that depend on the optical delay between the two modes, adding

another degree of freedom. In fact any kind of intensity modulation technique gives rise to

non-trivial wavepackets ζk(t), and since polarization modulation can be regarded a type of

intensity modulation, we could work with non-trivial mode functions. However, we already

laid the groundwork for our specific problem in the previous section and can directly make

use of the result (4.83). In our experiment we switch between two linear and orthogonal

polarizations, say H (horizontal) and V (vertical). An ideal switch between H and V

polarization is described by the (Heaviside) step function

H(t) :=


0 for |t| < 0
1
2

for t = 0

1 for |t| > 0

, (4.85)

which we can press, whenever we like. For the current experiment we consider a simple,

pre-determined sequence, namely a square wave Π(x), which is defined as

Π(t) :=


0 for |t| > 1

2
1
2

for t = 1
2

1 for |t| < 1
2

, (4.86)
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together with

Π(t+ T ) = Π(t) , (4.87)

where T is the period. More generally, we can let the time argument

t→ t− τopt

T
, (4.88)

where τopt and T are offset (which in our case results from an optical delay) and period,

respectively. In a first step, let us make only one polarization angle time-dependent. Thus,

let us set φ2 = 0 (second beam is always H-polarized), and φ1 is modulated between 0 and

π/2 so that

φ1(t) :=


0 for |t| > 1

2
π
4

for t = 1
2

π
2

for |t| < 1
2

, (4.89)

with φ1(t+ T ) = φ1(t). More succinctly, we write

φ1(t) =
π

4

(
1 + SquareWave

[
t− τopt

T

])
, (4.90)

where SquareWave(·) represents the square wave in the Wolfram Language, and is plotted

in Figure 4.5. The reason we adopt this definition is that the piece-wise definition (4.89)

is not particularly useful theoretically, and analytical expressions such as [150]

Π(t) =
A

2

∞∑
n=−∞

Sinc
(n

2

)
exp

(
2πi

nt

T

)
, (4.91)

though correct, more a burden than of help numerically. Thus, since we have to choose

a representation of the square wave anyway, we may pick the most serviceable one right

away. The polarization function then becomes (t0 ≡ t3 and t4 = t0 + τ , and τopt = 0 as the

optical delay does not matter here)

Pint[φ1] =
1

4

(
1 + SquareWave

[
t0
T

])(
1 + SquareWave

[
t0 + τ

T

])
(4.92)

and the second-order cross-correlation function (4.83), with N1 = N2 = 1, takes the form

G(2x)(t0, τ, τopt) = 1− F (τ)

8

(
1 + SquareWave

[
t0
T

])(
1 + SquareWave

[
t0 + τ

T

])
.

(4.93)

For “true” coincidences τ = 0, and thus F (0) = 1, as well as

Pint[φ1] =
1

2

(
1 + SquareWave

[
t0
T

])
, (4.94)
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Figure 4.5: Plot of Square Waves. (a) Plot of SquareWave(t) as defined in the Wolfram

Language. (b) Plot of the “normalized” version, identical to Eq. (4.92), which alternates

between 0 and 1. A (c) shifted (τopt = 1/4) version and (d) one with twice (T = 2) the

period are also shown.

whereby

G(2x)(t0, τopt) = 1− 1

4

(
1 + SquareWave

[
t0 − τopt

T

])
. (4.95)

Despite the fact that we are working with continuous-wave lasers, we do get a dependence of

HOM interference on the optical delay. Intuitively, this makes sense because the modulation

essentially gives us a pulse train (at least on the level on modes). At this point, the

interested reader may want to revisit the dispute between Chen et al. [136] and Shapiro et

al. [137], outlined in Section 4.3. Figure 4.6 shows the interference landscape described by

Equation (4.93) but the question is whether we can actually resolve it? The problem is the

t0-dependence. The plots in Figure 4.6 assumed an arbitrarily fixed value. However, if we

don’t have this piece of information, a coincidence detection, and hence interference, can

happen at any point t0! As we accumulate statistics to actually reconstruct G(2x)(t0, τ, τopt)

(remember, this is a statistical quantity), we do this for a certain measurement time TM

(essentially, we are replacing the ensemble with a time average), and thus integrate over
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Figure 4.6: Square Laser HOM Interference Landscapes. The square wave

polarization-modulation of one input field leads to an interference pattern in both detec-

tion time difference τ and optical delay τopt. (a) Gaussian and (b) Lorentzian spectrum.

Parameters for Equation (4.93) are t0 = 0 and T = 1. C = coincidences.

all possible t0. For instance, in experiments without time resolution, instead of Equation

4.95, we would measure

G(2x)(τopt) :=

∫ TM/2

−TM/2

dt0G
(2x)(t0, τopt)

= TM −
1

4

(
TM +

∫ TM/2

−TM/2

dt0 SquareWave

[
t0 − τopt

T

])
.

(4.96)

For the evaluation of the integral we first perform a change of variables, namely

t̃0 :=
t0 − τopt

T

dt̃0 = dt0/T ,
(4.97)

so that the integration boundaries

±TM
2
→ Λ± :=

±TM
2
− τopt

T
=
±TM − 2τopt

2T
. (4.98)

The resulting integral, ∫ Λ+

Λ−

dt̃0 SquareWave
(
t̃0
)
, (4.99)

is a matter of triviality when we consider that, usually, our measurement time TM is much

larger than either T or τopt. For example, T ∼ 10−6 (MHz modulation), τopt ∼ 10−9, and

TM ∼ 1 seconds, which implies Λ± ≈ ±T . This gives us integration limits with identical

absolute values and so, to a very good approximation,∫ T

−T
dt̃0 SquareWave

(
t̃0
)
≈ 0 , (4.100)
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because SquareWave(t) is an antisymmetric function. With exception of the factor TM ,

which can be absorbed into a coincidence rate or factored out via normalization, we thus

obtain,

G(2x)(τ) =
3

4
TM . (4.101)

The coincidence reduction is only 25 % and thus, in general, we incur a drastic visibility

cost from modulating without phase information, i.e. the inability to fix t0. When a

coincidence happens, polarizations are sometimes parallel (HH in this case), and sometimes

perpendicular (HV ). Because we modulate with a 50 % duty cycle (i.e. half the period H,

the other half V ), a coincidence reduction due to HOM interference can only happen half

the time it usually does.

In summary, with polarization modulation we obtain a second-order cross-correlation

function, Equation (4.93), that depends on both detection time difference τ and optical

delay τopt. They are decoupled from each other, and yet it is not guaranteed that we can

simply take a particular τopt-slice in the interference landscapes of Figure 4.6, i.e. do a

“normal” HOM dip measurement, because without fixing t0, the statistical average reduces

the interference visibility. Lastly, note that Equation (4.101) is independent of τopt, which

intuitively makes sense because the modulation is periodic and our average over time does

not care about zero offsets.

4.5.8 Laser HOM Interference with Double Square Wave Modulation

We now consider the slightly more complicated situation where we modulate both polar-

ization angles,

φ1(t) =
π

4

(
1 + SquareWave

[
t− τopt

T

])
φ2(t) =

π

4

(
1 + SquareWave

[
t

T

])
.

(4.102)

Note that we do not explicitly introduce a separate optical delay for the second field,

because the overlap polarization pattern at the beam splitter, and thus HOM interference,

is only dependent on the relative optical delay. Restricting ourselves to true coincidences
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(τ = 0, or, equivalently, t3 = t4 ≡ t0), the polarization function becomes

Pint(t0) = cos2
[
φ1(t0)

]
cos2

[
φ2(t0)

]
+ sin2

[
φ1(t0)

]
sin2

[
φ2(t0)

]
=

1

4

(
1 + SquareWave

[
t0
T

])(
1 + SquareWave

[
t0 − τopt

T

])
+

1

4

(
1− SquareWave

[
t0
T

])(
1− SquareWave

[
t0 − τopt

T

])
=

1

2

(
1 + SquareWave

[
t0
T

]
SquareWave

[
t0 − τopt

T

])
,

(4.103)

which gives us the following second-order cross-correlation function (N1 = N2 = 1)

G(2x)(t0, τopt) =
1

4

(
3− SquareWave

[
t0
T

]
SquareWave

[
t0 − τopt

T

])
. (4.104)

This function spans the HOM interference landscape displayed in Figure 4.7. Clearly,

double square wave modulation impresses itself, though the landscape’s remarkable fea-

tures only start to become apparent when we look at Figure 4.8. There we show the two

modulator signals for φ1 and φ2, as well as G(2x)(t0, τopt), as a function of initial detection

time, or modulator phase t0, for various optical delays τopt. First of all note that here the

coincidences follow a square waveform, completely absent in traditional HOM dips. More-

over, the period and duty cycle of this waveform changes not as a function of modulation

period (which stays constant, T = 1), but as a function of optical delay. In particular,

for τopt = 0.25 (we use arbitrary units here), the coincidence wave has half the original

modulation period! This is not something we could get with a simple (single) modulation.

We also see that the coincidence waveform follows the overlap pattern of the two modulator

signals for φ1 and φ2 and if we look closely, we find a nice interpretation in the photon

picture of HOM dips: whenever the two polarizations are identical, coincidences drop to

0.5, and whenever they are opposite, they rise to 1. In the extreme case when polarization

modulation patterns are completely synchronized (corresponding here to τopt = 0), then

two photons at the beam splitter always have the same polarization (though whether it is

H or V depends on time), and thus always show HOM interference with 50 % visibility. In

the other extreme, when the optical delay is such that two photons always have opposite

polarization at the beam splitter (corresponding here to τopt = 0.5), they never interfere

and therefore, coincidences are flat at 1.
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Figure 4.7: Laser HOM Interference with Double Square Wave Modulation. Plot

of Equation (4.104) for T = 1. This two-photon coincidence landscape is distinguished by

its rhomboid wells resulting from square-wave polarization modulation of both input fields

to the HOM beam splitter. The well depths depend on “which” coincidences we consider:

here we get the full 50 % well visibility as we restrict ourselves to “true” coincidences,

namely those for which the detection time difference τ ≈ 0. Events |τ | 6= 0 require us to

take into account the visibility reduction governed by F (τ). C= coincidences.

4.5.9 Laser HOM Interference with Double Square Wave Modulation and

Phase Averaging

We get another interesting phenomena when we neglect phase information t0 but keep

modulating both fields. Let us therefore integrate over t0,

G(2x)(τ, τopt) =

∫ TM/2

−TM/2

dt0G
(2x)(t0, τopt)

= TM −
1

4

(
TM + p(τopt, TM)

)
,

(4.105)

where

p(τopt, TM) :=

∫ TM/2

−TM/2

dt0 SquareWave

(
t0
T

)
SquareWave

(
t0 − τopt

T

)
. (4.106)

101



C
o
i
n
c
i
d
e
n
c
e
s

-2 -1 0 1 2
-4

-3

-2

-1

0

1

τOptical = 0

-2 -1 0 1 2
-4

-3

-2

-1

0

1

τOptical = 0.05

-2 -1 0 1 2
-4

-3

-2

-1

0

1

τOptical = 0.1

-2 -1 0 1 2
-4

-3

-2

-1

0

1

τOptical = 0.2

-2 -1 0 1 2
-4

-3

-2

-1

0

1

τOptical = 0.25

-2 -1 0 1 2
-4

-3

-2

-1

0

1

τOptical = 0.3

-2 -1 0 1 2
-4

-3

-2

-1

0

1

τOptical = 0.4

-2 -1 0 1 2
-4

-3

-2

-1

0

1

τOptical = 0.45

-2 -1 0 1 2
-4

-3

-2

-1

0

1

τOptical = 0.5

Time (a.u.)

Figure 4.8: Square HOM Waves. Plots of Equation (4.104) (red solid line) for optical

delays ranging from 0 to 0.5 (a.u.) and T = 1. For each τopt we also show traces of polar-

ization modulator signals (black dashed lines), i.e. plots of Equations (4.102), which are

rescaled and offset for sake of presentation. The bottom trace is the (reference) modulation

signal for φ2 (independent of τopt). The middle trace, i.e. modulation of φ1, changes with

τopt, as does the overlap pattern of the two modulator signals for φ1 and φ2 at the HOM

beam splitter, which is reflected in the detected coincidences (detailed discussion in the

main text).

Let us change the variables

t̃0 := t0/T

dt̃0 = dt0/T ,
(4.107)

with new integration boundaries ±TM/2T , and define ∆ := τopt/T . The result

p(τopt, TM) = T

∫ TM/2T

−TM/2T

dt̃0 SquareWave
(
t̃0
)

SquareWave
(
t̃0 −∆

)
(4.108)

is reminiscent of the autocorrelation ? of two functions, namely

(SquareWave ? SquareWave)(∆) = lim
TM→∞

p(τopt, TM), (4.109)
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which is related to their convolution ∗,

(SquareWave ? SquareWave)(∆) = SquareWave (∆) ∗ SquareWave (−∆) . (4.110)

We know that convolving two square waves yields a triangle wave [151, 152], nudging us

towards an educated guess that our autocorrelation function over a finite interval also has

this form. Indeed, we can explicitly calculate (the factor T cancels with a scaling factor

coming from the integration limits)

p(τopt, TM) = TMTriangleWave

(
∆− 3

4

)
, (4.111)

where TriangleWave(·) represents the triangle wave in the Wolfram Language. As we

substitute this result into (4.105), we finally get (replacing ∆ with its definition)

G(2x)(τopt) = TM

(
1− 1

4

[
1 + TriangleWave

{
τopt

T
− 3

4

}])
. (4.112)

This result is quite remarkable for the following reason. Apart from scaling factor TM ,

which is unimportant, this equation looks remarkably similar to (4.95): the triangular

wave takes the place of the square wave but without the t0-dependence. In other words,

despite the fact that we average over time, G(2x) does not lose its dependence on the optical

delay! Compare that to the case we studied previously: if we modulate only one field,

then integration over t0 washes out interference patterns. Thus, whereas individual phase

information is needed to resolve those features in the G(2x) interference landscape that are

due to individually modulated fields, when both fields are modulated, traits depending on

the relative phase (controlled via τopt) survive. This is one of those effects we demonstrate

experimentally.

4.5.10 Remark

We took a semi-classical approach in that we commenced with the quantum mechanical

correlation function, which subsequently is converted into a classical coherence function

using the optical equivalence theorem. I believe this method is the most powerful and

versatile for our task, in which we are asked to walk along the quantum-classical boundary.

Adopting this modus operandi, we can always directly compare the results obtained with

classical and quantum states of light. In particular, we move within the correct frame-

work to prove the 50 % visibility bound for classical field states [103]. Nevertheless, other

approaches for this particular problem exist. For example, in the study of weak coherent

pulses one calculates the quantum-mechanical expectation value for truncated and fully
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phase-randomized coherent states [105, 144, 153]. For CW lasers, a fully classical descrip-

tion in terms of intensity correlations can be used [121, 148]. In both cases, however,

precisely because only one theoretical aspect of the phenomenon is studied, extra care

needs to be taken.

4.6 Experimental Setup

We now proceed to experimentally demonstrate the results of our theoretical analysis. We

first verify Equation (4.83), i.e. polarization sensitivity of the HOM dip. For this we use

the setup sketched in Figure 4.9 (a). We then test the predictions of Equation (4.112),

namely a HOM triangle wave. The critical addition to the previous setup is an optical

delay line, as shown in Figure 4.9 (b). Finally, we are going to distill a HOM square wave,

as suggested by Equation (4.104). The essential addition here is to use the trigger from

the arbitrary waveform generator driving the polarization modulator, as shown in Figure

4.9 (c). Photos of the experimental setups in the lab are shown in Figures 4.10 and 4.11.

In the first setup, light from a continuous-wave grating-stabilized laser diode (single

mode, 785 nm, > 2 mW, ∼ µs coherence time, which can be varied) is attenuated to

single photon levels using either ND filters in free space or a variable fiber attenuator

(VFA). Photons are then split up in a 10:90 fiber beam splitter (FBS). The 10 % output is

coupled into a variable free-space delay line (VFSD), though the delay is fixed for the first

experiment. The 90 % output is coupled into a fixed fiber delay (FFD). Starting with 90 %

we account roughly for the losses through the fiber (as compared to the free-space delay

line losses). The fiber is ∼ 2 km long and supports a single mode at around 1550 nm. Thus,

for 785 nm the fiber is multimode. However, connecting a 785 nm single-mode fiber to the

output of the telecom fiber acts like a spatial filter so that multimodicity only results in

losses [154]. A far bigger concern are polarization drifts in the fiber. These only play a

role, however, if the fiber, or the glass of which it is made of, is far from thermodynamic

equilibrium. This happens if the fiber is bent or exposed to temperature and humidity

changes. We take care of this by placing the fiber spool inside an insulating box and let it

rest for a day before taking data. Photons from the two paths are then coupled into a free-

space HOM interferometer, defined by a 50:50 non-polarizing beam splitter (BS). Before

recombination at the BS, however, polarizers (POL) define linear polarization axis and a

half-wave plate (HWP) is used to rotate the polarization of the beam, coming from the

free-space delay line, into any desired linear polarization. After the BS, photons are coupled

into single-mode fibers and sent into time-resolving single-photon detectors (TRSPD). The

TRSPD consists of silicon avalanche photodiodes, which, whenever they detect a photon,
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Figure 4.9: Sketch of the Three Laser HOM Experiments. Three CW Laser HOM

Experiments to demonstrate (a) polarization dependence, (b) optical delay dependence

and (c) modulator phase dependence. The first experiment is a “standard” Hong-Ou-

Mandel experiment with laser light, where the distinguishability is controlled via polariza-

tion. (b) As we modulate polarization, and thereby change the relative overlap of the fields

at the HOM beam splitter using a VFSD, the distinguishability becomes time-dependent.

(c) However, only with additional timing information, delivered by the modulation trigger,

can we actually resolve the HOM dip into the modulation pattern. VFA: variable fiber

attenuator, FBS: 10:90 fiber beam splitter, PC: polarization controller, FFD: fixed 2 km

fiber delay line, VFSD: variable free-space delay line, POL: polarizer, HWP: half-wave

plate, BS: (HOM) 50:50 non-polarizing beam splitter, PMOD (see Figure 4.12 for details):

polarization-modulator, TRSPD: time-resolving single-photon detectors.

sent a signal to time taggers, which assign time stamps to detection events with 78.125 ps

time resolution.

The whole setup is basically a big Mach-Zehnder interferometer “pumped” with highly

attenuated laser light. This permits interferometry in form of correlation measurements in

the single-photon counting regime [110, 111, 155, 156]. The ubiquitous feature in our setup

is, of course, the long (2 km) delay line in one of the two interferometer paths. However,
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Figure 4.10: Setup for Free-Space Laser HOM Experiment. (a) The optical table

with polarization-modulated, continuous-wave grating-stabilized laser diode, fixed fiber

delay and variable free-space delay line, and Hong-Ou-Mandel interferometer. (b) View

down the variable free-space delay line, with retroreflector positioned at maximum distance.

Figure 4.11: Setup for Fiber-Based Laser HOM Experiment. (a) The interferom-

eter, with exception of the free-space delay line, is now fully fiber-based and a in-fiber

variable attenuator is used instead of ND filters. The fiber beam splitter is a Thorlabs

TN785R5F2 and has near-perfect 50:50 splitting ratio with negligible effect on polariza-

tion. (b) An updated version of the free-space delay line with improved fiber couplers and

a longer delay line.

this path imbalance is only to suppress second-order interference at the output ports of

the interferometer (the delay line is longer than the laser coherence length). Elimination

of second-order interference allows us to isolate a pure fourth-order interference pattern,

namely the (CW laser) HOM effect. There are other methods to phase-randomize two

laser beams. Alternatively, one may consider fast modulation of the optical path length in

one arm using a piezoelectric actuator [113], or the use of acousto-optic modulators [121].
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Figure 4.12: Schematic of a Polarization Modulator (PMOD in Figure 4.9). Light

in a superposition of horizontal and vertical polarization is split at a polarizing beam

splitter (PBS). The relative phase between horizontal and vertical polarization is controlled

with two phase modulator driven by an arbitrary waveform generator (AWG). Light is then

recombined on a second PBS, yielding output state (4.114). We split

In the second setup we send attenuated laser light directly into a polarization-modulator

(PMOD), thus relaying the usable laser light to the modulator output: we essentially have

a polarization-modulated laser. Though polarization modulation is entirely classical, we

make use of Dirac’s intuitive notation to briefly describe the working principle of our polar-

ization modulator, which has been used for quantum key distribution (QKD) experiments

in our labs (see for example [157, 158]), and which is illustrated in Figure 4.12. Treating

the polarization modulator as a black box, the input state is

|Ψ〉out = α|H〉+ βeiφ|V 〉 (4.113)

and the output state

|Ψ〉out = α|H〉+ βei(φ+Θ)|V 〉 , (4.114)

where Θ is the relative phase impressed by the two phase modulators. In principle, we

can employ both phase modulator (synchronized), in which case they impress phases Θ1

and Θ2 onto the fields. However, apart from technical reasons for doing this (share the

workload between two modulators, i.e. reducing the voltage needed per modulator for

a full π-shift), we accrue no benefit for such a detailed treatment here. Now, we can

always set φ = 0, for example by using a linear polarizer at the input. Then we can

define the four time-independent output states shown in Table 4.1 using appropriate phase

modulator driving voltages. The output states become time-dependent as soon as we start

to modulate the phase modulator, i.e. sending a driving signal from an arbitrary waveform

generator (AWG). Which of the four states we actually use for the experiment depends on
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(unitary) polarization transformations along the experimental setup. As a simple example,

we show in Table 4.1 the action of a QWP. In our experiment, we have fiber channels that

apply random, time-dependent unitaries. Usually in that case, active polarization (pre-)

compensation is required before any data can be taken. For example, implementations of

the BB84 protocol encodes information using all four polarization states |H〉, |V 〉, |D〉, and

|A〉, but if we do not characterize our transmission channel, then the receiver won’t be able

to extract any meaningful message. Here, however, all we want are any two orthogonal

polarization states, since the raw polarization HOM interference visibility only depends

on the scalar product of two polarization states and not on the specific pair that gives

us, for example, a scalar product of zero. Thus, in our experiment, we only use a manual

polarization controller (PC, “bat ears”) in one path to alter the relative polarization (see

Figure 4.9). A simple two-state (H/V) polarization analyzer after any HOM beam splitter

output port can be used to equalize the two channel unitaries using just this one PC. If

the polarization modulation is to have any effect, we have to take out the POLs and HWP

in front of the BS (which we use in the first experiment).

UPM (V) Θ |Ψ〉out After QWP

1.65 π
2

α|H〉+ iβ|V 〉 |H〉

4.95 3π
2

α|H〉 − iβ|V 〉 |V 〉

0 0 α|H〉+ β|V 〉 |D〉

2.3 π α|H〉 − β|V 〉 |A〉

Table 4.1: Polarization Modulator Settings. Summarized are phase modulator volt-

ages responsible for optical phase shifts Θ, and the polarization state |Ψ〉out after the

modulator. Also shown is the action of a quarter-wave plate (QWP) (see e.g. [159]): we

can chose between two sets of orthogonal polarization states, namely (H,V ) and (D,A).

Note that the voltages depend on both temperature and modulation frequency and need

to be adjusted accordingly.

Finally, for this experiment we need to make use of the free-space optical delay line. This

part of the setup consists of an optical rail with 1/20-inches markers, which allows us to

set the position with 1/40 inch accuracy, and a hollow retroreflector mounted on a carrier,

which also has a marking engraved. Alignment of the optical delay line was performed

prior to experiments and consisted of mounting the retroreflector centrally (ensure this

using pin holes along propagation path) and coupling light out and into free space such
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Figure 4.13: Setup of the Free-Space HOM Interferometer. (a) HOM interferometer

alignment. To ensure photon indistinguishability, we need to overlap spatial modes at the

HOM beam splitter (BS). This is achieved as follows. We split up laser light using a 50:50

BS and sent one beam into input 1 and the other into input 2 of the HOM interferometer.

Since we use single-mode fibers, both beams are Gaussian. When the two beams overlap

at the HOM BS, a spatial second-order interference pattern can be observed using a beam

profiling camera: stripes tell us the relative inclination of the two beams, which can be

steered using mirrors. A piezoelectric actuator can be used to scan the interferometer

phase. As we scan the phase, a beating interference pattern is observed on the camera and

as we align the beams using mirrors, stripes give way to a uniform intensity distribution

that periodically varies between zero and maximum intensity. Achieving this beating at

any two points along the beam in output port 2, where the camera is placed, we ensure

perfect beam overlap at the beam splitter. (b) After the initial alignment, we put the half-

wave plate in a motorized mount for better experimental precision. The polarizers ensure

identical, horizontal polarization but need to be taken out, of course, for experiments with

polarization modulation.

that at all positions of the retroreflector the coupling efficiency is roughly constant (use

collimators with adjustable focus to control beam divergence).

The third setup is identical to the second one except for an additional signal that

we record. The arbitrary waveform generator (AWG) that drives the PMOD (not drawn

separately in Figure 4.9), can send a trigger signal whenever a new modulation period

starts. We record a down-sampled version of this. Downsampling is necessary because

the time tagger speed is only ∼ 10 MHz but our modulation speed is ∼ 350 MHz. The

downsampled signal we use is at ∼ 350 kHz, and assuming good stability of the AWG, the

missing trigger signals are equally spaced between the recorded trigger signals, allowing an

exact interpolation during data analysis.
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4.7 Experimental Results

4.7.1 Time Tag Analysis

Before showing any experimental results, I feel obliged to explain how to find the laser

HOM dip. An excerpt of raw data produced in the experiment is shown in Table 4.2. We

first sort the time stamps into two lists (retaining the order): one containing time stamps

from detector 1 and the other containing time stamps from detector 2. The time stamps

Time Stamp Detector Shifted Time Stamp Time Stamp (µs)

4004161838388906 2 0 0

4004161838389989 1 1080 0.169

4004161838392150 1 3250 0.508

4004161838403304 2 14400 2.250

4004161838428995 2 40090 6.264

4004161838429350 2 40450 6.320

4004161838431588 1 42680 6.669

4004161838439984 1 51080 7.981

4004161838452586 2 63680 9.950

4004161838457949 1 69040 10.788

4004161838460201 2 71300 11.141

4004161838464791 1 75890 11.858

4004161838475202 2 86300 13.484

4004161838481613 2 92710 14.486

4004161838515114 2 126210 19.720

Table 4.2: Raw Data (Time Tag) Excerpt. The first two columns are raw data: time

stamp of the count event and channel or detector number where the count has occurred.

A time tagger assigns time stamps in terms of in internal units, namely integer multiples

of the time tagger resolution TRes, which is 156.25 ps for this particular measurement. The

time tagger does not start counting from zero. However, we can subtract the time stamp

of the first event from all time stamps so that the first time stamp, which is now zero,

indicates start of the experiment (column 3). We can multiply time stamps by TRes to

obtain the actual time an event has occurred (column 4).
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are in units, i.e. multiples, of the time tagger resolution TRes. Thus, the actual time can

be found by simple multiplication (we worked with TRes = 78.125 ps and TRes = 156.25 ps

time taggers). The conversion is only really needed for presentation of data, however, and

not needed for finding coincidences. The analysis goal is to find all coincidences within

a certain time window and note down the detection time difference τ . Then we plot the

number of coincidences versus τ , which gives us a histogram. We first need to chose a

histogram width THist, which is time window that defines coincidences. Next we define the

histogram bin size Tbin, which sets the (time) resolution of our histogram, i.e. the resolution

with which we want to resolve coincidences. As discussed a bit later, Tbin � TRes. The

number of bins, i.e. the number of different delays we distinguish, can then be calculated

as

Nbins =

⌈
THist

Tbin

⌉
, (4.115)

where the ceiling function de indicates that the fraction is rounded up to the nearest integer.

Since Tbin � TRes, we can also calculate the number of time tagger bins within a histogram

bin,

NTTbins =

⌊
THist

TbinNbins

⌋
, (4.116)

where the floor function bc indicates that the fraction is rounded down to the nearest

integer.

How do we actually find coincidences? The basic idea is to go through one of the two

lists, say the one for detector 1, and for each detection event go through time stamp list

for detector 2 and calculate time stamp differences. If this difference lies within THist, then

write it in a new list. We do this for all detection events. Following this algorithm we

end up with a one-column list containing all the τ ’s we have found. We can now build a

histogram, i.e. we put each of the τ ’s in one of the Nbins bins with resolution Tbin. There are

of course rules how to deal with “border cases”, i.e. cases where there is some ambiguity

where exactly to put a particular τ . But these can be resolved. The actual algorithm we

implemented in Matlab (see Appendix A) is a bit more involved. The complication arises

from (i) making the search more efficient using break-conditions (we do not loop through

the whole list of detector 2 for all events of detector 1) and (ii) to take into account multiple

coincidences. However, the underlying idea remains and finding coincidences really boils

down to comparison of detection events and decide whether the detection time difference

falls within a coincidence window.

Figure 4.14 (a) shows a plot of raw coincidence we obtain using the method just de-

scribed (I’ll explain shortly how to obtain the fits). Admittedly, the plot is already polished

for sake of presentation, however, it still exhibits a feature of unprocessed data: the default
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Figure 4.14: Laser HOM Dip for Varying Histogram Bin Sizes. As we vary the

histogram bin size, holding the histogram size THist = 60µs constant, the number of counts

change but not the dip shape. The gray dots are measured coincidences and the green and

red curves are Lorentzian (4.117) and Gaussian (4.118) fit models. We see that both fits

are not quite right: the Gaussian fit underestimates the visibility, and the Lorentzian fit

overestimates it.

choice of histogram parameters leads to huge fluctuations in the number of coincidences!

What is going on? Working with coincidences and histograms, one has substantial degrees

of freedom in the analysis stage. In Figure 4.14, we start with THist = 60µs and Tbin = 1 ns,

giving us Nbins = 60000. The result are substantial fluctuations (∼ ±200) in the number of

coincidence counts between neighboring bins. As we increase the bin size to 10 ns, 100 ns

and 1µs, corresponding to 6000, 600, and 60 bins, respectively, the fluctuations average

out. A smooth coincidence curve appears, though the dip minimum starts to shift away

from the origin. If we increase the bin size further still, the dip slowly washes out and

disappears completely for THist = Tbin. These artifacts, namely count fluctuations for small

bin sizes, and dissolving structural features for large bin sizes are typical for histograms.

Consequently, one needs to make a “reasonable” choice of histogram parameters so that

quantities that are derived from histogram analysis only have a negligible dependence on
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this choice. A good sign for us is already the dip shape’s invariance under bin size scaling.

What our eyes perceive, is backed up by the analysis results shown in Table 4.3. We see

that both depth and width of the dip, corresponding to visibility VHOM and coherence

length τcoh, respectively, stay approximately constant. This is good news, for if we just

pick say Nbins = 6000, then the results we derive are not mere artifact of the coincidence

analysis.

4.7.2 Laser HOM Dip Shape and Parameters

Let us now come to the fits to the second-order cross-correlation function (4.68), which

we see already in Figure 4.14, and on which the numbers in Table 4.3 are based on.

Since our laser linewidth (as low as 100 kHz) is much narrower than the resolution of

Nbins 60000 6000 600 60

Lorentzian
VHOM(%) 43.3± 1.7 43.3± 3.0 43.3± 8.5 43.4± 26.4

τcoh (µs) 12.40 11.55 11.55 11.49

Gaussian
VHOM (%) 33.8± 1.0 33.9± 1.7 33.9± 5.7 33.8± 6.0

τcoh (µs) 9.93 9.38 9.38 9.41

Voigt
VHOM (%) 39.7± (0.04) 39.8± (0.04) 39.8± 0.1 40.0± 0.3

τcoh (µs) 10.76 10.16 10.16 10.18

Table 4.3: Laser HOM Parameters Extracted from Fits. Shown are estimated laser

HOM dip visibilities and coherence lengths for the dips shown in Figures 4.14 and 4.16, and

where the fit functions are given in Equations (4.117), (4.118), and (4.125), respectively.

Errors are standard deviations (SD) of the respective fit parameters (see main text). SD’s

for coherence lengths are smaller than significant digits. For the same reason, visibility

errors for Nbins = 60000 and 6000 for the Voigt fit are shown in parenthesis. Large errors

for Nbins = 600 and 60 for both Lorentz and Gauss model are no fit artifacts. In fact,

the dip shape is captured quite well, which is reflected by the small error for the dip

width (coherence length). The fits fail at the dip minimum, however, which is also visible

in the corresponding figures. The larger visibility error for decreasing bin size is then a

consequence of diminishing spread in the data, i.e. less variability for the fit. The Voigt

fit, on the other hand, captures all features of the dip, for any bin size choice, very well.
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Figure 4.15: Laser Spectrum. We use a Bristol spectrum Analyzer 721 with 4 GHz

resolution to look at the spectrum of our laser (Toptica DL Pro). We fit a Gaussian function

to the central portion of the peak to extract the central wavelength, δ0 = 785.714 nm. The

width (FWHM) is 9.26 pm, corresponding to a coherence length of lcoh = 21.2 m. However,

this is only a lower-bound, for the actual laser linewidth is much smaller than the spectrum

analyzer resolution.

our spectrometer (4 GHz—see also Figure 4.15), we do not know whether the first-order

autocorrelation function is Lorentzian (4.58) or Gaussian (4.59). Thus, for nonlinear fit

models we consider both Lorentzian type,

G̃
(2x)
Lorentz(τ) := c

(
1− b exp

[
−2|τ − d|

a

])
, (4.117)

and Gaussian type,

G̃
(2x)
Gauss(τ) := c

(
1− b exp

[
−2(τ − d)2

a2

])
. (4.118)

The fit parameter b estimates HOM visibilities and into c we absorb both the single count

rates N1 and N2 and the proportionality constant in the relationship (4.52) between coin-

cidence count rate and second-order cross-correlation function. The origin offset d takes
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into account potential shifts of the dip due to histogram binning artifacts, as discussed

above, but is usually negligible. Furthermore, we assume

τ1 = τ2 ≡ τcoh =̂ a , (4.119)

which also explains the factor 2 in the exponents of (4.118) and (4.117). The equality of

τ1 and τ2 is justified, because the two beams derive from the same laser, and no obvious

random process influencing the field coherence lengths are identifiable in our setup shown

in Figure 4.9.

Results of the fits can be seen in Figure 4.14. Though both functions roughly follow the

dip shape, we would not say that the fits explain the shape in its entirety. In particular,

on which fit should we base our visibility on? There are two simple possibilities. We either

define an experimental visibility

VExp :=
Cmax − Cmin

Cmax

, (4.120)

where Cmax/min are the maximum and minimum number of measured coincidences, or we

take some kind of average, for example

VAvg :=
1

2

(
VHOM, Gauss + VHOM, Lorentz

)
. (4.121)

The former method is prone to outliers and entails a choice of representative maximum or

minimum coincidences. The latter method demands some theoretical justification, i.e. why

in particular the arithmetic mean? A third option is to reconsider source spectrum and

with it the random process giving rise to the degree of first-order coherence in Equation

(4.50). Now, this is a hard task for we would need to know much more about the inner

workings of the laser. One educated guess we can make here is to assume that more than

one random process contributes appreciably to the laser spectrum. In this case we have

to deal with a composite spectrum. In our case, it seems reasonable to assume that the

linewidth of the laser, which, again, we cannot resolve with our spectrum analyzer, is a

composition of a Lorentzian and Gaussian, in which case [138]

FV (ω) =

∫ ∞
−∞

dν FG(ν)FL(ω + ω0 − ν) =
1√

2π∆
Re

{
Erf

(
ω0 − ω + iγ√

2∆

)}
, (4.122)

where ω0 is the common center frequency. The latter equality is based on a certain integral

representation of the (complex) error function w(z), namely∫ ∞
−∞

dt
ye−t

2

(x− t)2 + y2
= πRe {w(x+ iy)}

(
x ∈ R, y > 0

)
, (4.123)
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which is integral (7.4.13) in Abramovitz and Stegun’s Handbook of Mathematical Functions

(10th printing). The resulting lineshape is known as Voigt profile and is quite tedious

to work with. At least in principle we can convert (4.122) into a probability density

function in time and then calculate the first-order correlation function. However, we need

to be careful here (apart from the mathematical difficulties), because we have to think

about the physical reasons for the occurrence of both Gaussian and Lorentzian broadening

mechanisms. Usually the two processes are linked, resulting in correlated processes. The

difficulties are obvious but we can try to get away with the assumption of independence

[160], in which case the probability distributions factorize and consequently

g(1)(τ)Voigt = g(1)(τ)Gaussian · g(1)(τ)Lorentzian . (4.124)

Hence, we attempt the following nonlinear fit,

G̃
(2x)
Voigt(τ) := c

(
1− b exp

[
−2|τ − dL|

aL
− 2(τ − dG)2

a2
G

])
, (4.125)

where the six fit parameters retain their obvious meaning. The result is shown in Figure

4.16. A visible improvement is clearly discernible: when compared with the Gaussian

and Lorentzian fits in Figure 4.14, the “Voigtian” fit is situated between them. Most

importantly, whereas Gaussian and Lorentzian fits under- and overestimate the dip depth,

respectively, the Voigt fit approximates the data minimum quite well. In all cases, the

visibilities lie in-between those for Gaussian and Lorentzian type fits, as shown in Table

4.3.

Finally, let us find the coherence length associated with a Voigt profile. The lineshape

is still single-peaked, and so we can sensibly assign a coherence length based on the inverse

linewidth, however, determining the FWHM δVoigt is not trivial. We use the following

approximation [161],

δVoigt ≈ 0.5346 δLorentz +
√

0.2166 δ2
Lorentz + δ2

Gauss . (4.126)

Then, with δLorentz = 1/τL = 1/aL and δGauss = 1/τG = 1/
√
aG, we can estimate

τcoh ≈̂

(
0.5346

aL
+

√
0.2166

a2
L

+
1

aG

)−1

, (4.127)

which are are also shown in Table 4.3. Without further (physical) motivation for better

models, these visibilities represent the average we were looking for, and it is thus the Voigt

random process, which best explains our anticorrelation data.
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Figure 4.16: Laser HOM Dip with Voigtian Fit. Here we use Equation (4.125) to

model the coincidence data and see see a clear improvement over both Lorentzian and

Gaussian fits in Figure 4.14.

4.7.3 Laser HOM Dip Polarization Dependence

We move on to demonstrate the laser HOM dip’s polarization dependence in a free-space

HOM interferometer. We make sure that the two light fields have identical polarization

just before the HOM beam splitter using polarizing beam splitters (PBS) oriented such

that horizontal polarization is transmitted. Then, between PBS and HOM BS, we place a

half-wave plate (HWP) in the path of one of the input fields, as shown in Figure 4.9. After

finding the zero position, we rotate the HWP by an angle φ, which induces a polarization

rotation of 2φ. Since we keep the polarization of the other input field constant, this varies

the relative polarization and according to Equation (4.83). Indeed, Figure 4.17 shows

laser HOM dips for various polarization angles, rotating the HWP in 10 degree steps. The

maximum reduction of coincidences below the coincidences baseline, which is approximated

by accidental coincidences

CA = S1S2TbinTM , (4.128)
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Figure 4.17: Polarization Dependence of Laser HOM Dips. As we vary the relative

polarization between the two input fields (φ is HWP angle), the dip shape remains unal-

tered but its visibility varies between 0 (orthogonal polarization) and maximum (parallel

polarization) visibility. Here, Nbins = 600 and the error bars are smaller than size of plot

symbols. Red lines show fits using the Voigt model Equation (4.125).

is achieved for identical polarizations, i.e. φ = 0. The corresponding visibility is

VHOM(φ = 0) = (41.8± 1.7) % . (4.129)

As we start to make the two input fields distinguishable by their polarization, Equation

(4.83) predicts a cosine-squared variation of the visibility with relative polarization angle.

This we verify by plotting visibilities as function of φ and fitting

ṼHOM(φ) := a cos2
(
bφ− c

)
−∆V , (4.130)

with fit parameters a, b, and c, as well visibility difference ∆V = 0.5 − VHOM(φ = 0)

(here we only want to account for the cosine-squared dependence). The result is shown

in Figure 4.18, which agrees well with the prediction. We briefly turn to the question,

why the maximum visibility is below 50 %. In principle, there are various experimental

imperfections that can explain this. Since we work with CW light, however, we do not have
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Figure 4.18: Laser HOM Visibility vs. Relative Polarization. Here we plot visi-

bilities of the plots shown in Figure 4.17, together with a fit of the polarization function

P‖(φ) = cos2(φ) (see main text). The error bars for φ are given by the HWP angular

accuracy and the visibility error is composed of φ error and standard deviations from dip

fits.

synchronization problems, i.e. overlap of pulses at the HOM beam splitter. Furthermore,

the extinction ratio of our PBS’ are > 1000 : 1, guaranteeing experimentally identical

polarization. Both beams are coupled out and into single-mode fibers at 780 nm, which

means that photons should also not be distinguishable in their spatial degree of freedom.

Of course, the two beams can have slightly different divergence angles, or fail to completely

overlap at the HOM beam splitter. However, the HOM interferometer alignment technique

based on second-order interference showed very high visual fringe contrast so that we believe

this cannot account for ∼ 8 % visibility reduction. It may be that the single count rate

difference reduces the visibility. The single count rates in the measurements of Figure 4.17

are shown in Table 4.4. There we calculate α = 1.25 for φ = 0, in which case Equation

(4.67) predicts a theoretical visibility VHOM ≈ 49.4 %. Thus, the single count rate difference

contributes less than 1 % to the visibility loss. Lastly, it may also be that the the coherence
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φ -40 -30 -20 -10 0 10 20 30 40

TM 220.8 220 225.5 223.5 222.2 222.9 221.3 220.7 218.3

N1 112827 114260 119770 117658 111378 110483 109292 101772 102717

N2 83437 85249 91692 90782 88551 85068 80746 74619 74863

α 1.35 1.34 1.31 1.30 1.26 1.30 1.35 1.36 1.37

CA 4264 4428 4870 4779 4439 4216 3988 3441 3523

Table 4.4: Typical Count Rate Data for Laser HOM Experiments. Count data

extracted from the time tag file for laser HOM dip results shown in Figure 4.17 (the

relative polarization angle φ is measured in degrees): N1 (detector 1) and N2 (detector

2) are the total detected number of photons during measurement time TM (milliseconds).

The non-interfering, accidental, coincidences are calculated using Equation 4.128, and the

multiplicative count rate difference α is calculated as N1/N2.

properties of the laser fields are not entirely described by our Gaussian-Lorentzian model.

Rather than exploring the potential source for the missing visibility, we now proceed to

design the laser HOM dip using its polarization dependence.

4.7.4 Triangle Laser HOM Interference

We now experimentally demonstrate triangle HOM interference predicted by Equation

(4.112). We modulate the polarization of the laser between horizontal (H) and vertical (V)

polarization with a 353 MHz square wave. The arbitrary waveform generator we use is a

Tabor WX2184C. The experimental setup is as before, but now we move the retroreflector

along an optical rail in two inch steps, thereby changing the optical delay τopt. We have

to double this distance (i.e. four inches) to calculate ∆τopt = 0.3389 ≈ 0.34 ns (using

vacuum speed of light), because light travels this distance to and from reflection off the

retroreflector. As mentioned in the description of the experimental setup, the accuracy with

which we can set the retroreflector is 1/40 inches and so the error we make in setting the

optical delay is ∼ 10−3 ns, which is negligible. Starting at τopt = 0, we measure coincidences

at 22 points along the optical rail (the last being thus τopt = 7.14 ns). From each of these

measurements, we extract HOM dips as before. Some of those are shown in Figure 4.20.

For distillation of triangle laser HOM interference, we consider only coincidences for which

τ ≈ 0. Moreover, since the (normalized) coincidences at τ = 0 are directly proportional

to the dip visibility, the latter, plotted as a function of optical delay, should also follow a
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Figure 4.19: Illustration of Polarization Modulation and Free-Space Delay. Here

we illustrate how the variable free-space delay line is used to control the polarization mod-

ulation pattern in time, as shown in Figure 4.8. The top trace (light blue dashed line)

shows the polarization modulation pattern in time, namely a square wave alternating be-

tween horizontal (H) and vertical (V) polarization. The two beams used in the experiment

are split at the output of the polarization modulator and thus, at the point of splitting

their polarization pattern overlaps in time. One of the beams is traversing the free-space

delay line. As the retroreflector (RR) is moved, the time it takes for the beam to travel

through the delay line changes and thus the polarization pattern in time. Depending on

the retroreflector position, polarization patterns either overlap completely (green trace) or

not at all (red trace), or something in-between these two extreme cases. The overlap pat-

terns determines the photon distinguishability in time, which in turn controls two-photon

interference, as Figure 4.8 explains in more detail.

triangle wave. Taking into consideration data offsets and a proportionality constant with

fit parameters a, d and b, respectively, we take

ṼHOMTW(τopt) := a+
b

4

(
3− TriangleWave

[
τopt

c
− 3

4
+ d

])
, (4.131)

as a data model for Equation (4.112). The essential fit parameter is c, which, according to

Equation (4.112) estimates the polarization modulation period T = 2.83 ns. The results

are shown in Figure 4.21. The triangular wave is clearly visible with an estimated period

of c = (2.80± 0.04) ns, matching the polarization modulation period of quite well.
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Figure 4.20: Optical Delay Dependence of Laser HOM Dips. As we scan the optical

delay between two square-wave polarization modulated fields at 22 points, the HOM dip

visibility changes periodically. The visibilities of the nine dips shown here are, respectively,

(12.6±2.5) %, (18.6±1.8) %, (40.0±3.4) %, (12.7±2.7) %, (10.4±3.2) %, and (25.4±2.0) %.

The visibilities of all 22 dips are plotted in Figure 4.21. Red lines show fits using the Voigt

model Equation (4.125).

4.7.5 Square Laser HOM Interference

In the last experiment, we extract square HOM interference described by Equation (4.104).

For the extraction to work we need one last piece of information, namely the modulation

phase t0. We call it this way because we need to analyze τ ≈ 0 coincidences with respect to

the modulation phase. Remember that, given a certain polarization overlap pattern at the

beam splitter (see Figures 4.8 and 4.19), a coincidence can happen anywhere within that

pattern. Crucially, the coincidence probability depends on whether the polarizations are

identical or orthogonal. Now, if, whenever we detect a coincidence, we have no information

where within the overlap pattern it occurred, then we automatically lump all coincidences

together: we have to integrate over t0. Equation (4.104) asks us, however, to plot the

coincidences as a function of t0. This means we would like put coincidences in bins labeled

by, let’s say, t0 = 0 ns, t0 = 0.5 ns, t0 = 1 ns, and so on. Coincidences in each t0-bin

correspond to events that happened during exactly the same part (hence modulation phase)

of the polarization overlap pattern. We obtain the required phase information directly from

the arbitrary waveform generator (AWG). As before (triangle laser HOM interference), we

use a Tabor WX2184C AWG to generate 353 MHz square waves. The AWG can send a

trigger signal whenever a new modulation period starts, e.g. with the rising edges of square
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Figure 4.21: Experimental Triangle Laser HOM Interference. Plotting the visibility

VHOM(τopt) of laser HOM dips for 22 optical delays (step size 0.34 ns). The red curve is a

fit described by Equation (4.131) with offsets of visibility a = (−0.27± 0.05) % and origin

d = (0.85± 0.02) ns. The period of the waveform is c = (2.80± 0.04) ns.

waves. We send this trigger signal to the very same time tagger that assigns time stamps

to photon detection events in the two detectors after the HOM BS. Thus, the time tagger

records three signals. A technical difficulty here is the fact that we modulate at 353 MHz,

which is a rate the time tagger cannot cope with. We therefore program the AWG to send

a downsampled version of the trigger, namely at 353 kHz. If the AWG trigger signal is

stable enough (meaning the uncertainty in the time difference between consecutive triggers

is � 1 ns), then we can interpolate the missing trigger signals later in the analysis stages

and pretend they are real. We then have a constant reference signal with respect to which

we can locate coincidences. Here I outline the analysis idea, and the full Matlab analysis

code can be found in Appendix B.

The first task is to find two-photon coincidences. Since we restrict ourselves to co-

incidences τ ≈ 0, we pick a tiny coincidence window Tcoin = k · TRes. The goal is to

make k as small as possible. However, with a smaller coincidence window, we have fewer
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Figure 4.22: Experimental Square Laser HOM Interference. Two-photon detections

within a Tcoin = 312.5 ps coincidence window are plotted as a function of modulator phase

t0. The histogram bin size is 0.1 ns. As the optical delay τopt is varied in ∆τopt = 0.34 ns

steps from 0 to 6.46 ns, the HOM square wave appears (0-1.02 ns) and disappears (1.36-

2.04 ns). It then starts to appear again (2.38-3.74 ns). Note the similarity between the

pairs (0, 2.72 ns), (0.34, 3.06 ns), 0.68, 3.40 ns), and 1.02, 3.74 ns), which are all separated

by 2.72 ns, and so roughly the period of the polarization modulator (2.83 ns).

counts in that window. We found the best trade-off between “true coincidence” and good

signal-to-noise ratio is k = 2 − 4. For the time tagger we used in the HOM square wave

measurements, TRes = 78.125 ps, defining coincidence windows Tcoin = 156.25− 312.5 ps.

Then we locate the coincidence within two consecutive downsampled trigger signals (re-

member we have their time stamps as well). After this rough localization, we interpolate

the missing trigger signals within the two downsampled triggers and find the difference

between two time stamps: the one corresponding to the coincidence, and the other corre-
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Figure 4.23: Fits to Square HOM Interference Patterns. Comparison of the HOM

square waves for τopt = 0, 0.34, 2.72 and 3.06 ns shown in Figure 4.22. The data points

here have coordinates corresponding to bin height (y-axis) and t0 of the center of the bin

(x-axis). The error bars represent Poissonian counting errors.

sponding to the closest, interpolated trigger prior to the coincidence. This difference is the

modulator phase t0, which we save for each coincidence.

We locate all coincidences in this manner and end up with a distribution for t0. Creating

a histogram for t0 is exactly what Equations (4.104) requires. A plot of histogram heights

for optical delays ranging from τopt = 0 − 6.46 ns is shown in Figure 4.22. The delay

is again set by the retroreflector position on the optical rail. We clearly see both the

emergence and fading away of a square waveform as the optical delay is changed. The

data interference visibility is only about 25 %, which we attribute to problems with the

phase modulators. Consequently, those square waves in Figure 4.8 that have very narrow

features can hardly be distilled. Most importantly, however, we do see the HOM square

waves with half the original (modulator) period. Consider for example the square waveform

for τopt = 0 ns: it’s period is about 1.4 ns (note that the x-axis goes from 0 to 2.83 ns, i.e.

one modulator period). We would like to fit Equation (4.104) to those plots, as they have
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clearly discernible features. Our first attempt using

G̃(2x)(t0) := a+
b

4

(
3− SquareWave

[
t0
c

]
SquareWave

[
t0 − d
c

])
(4.132)

fails. This was expected because at speeds of several hundred MHz, the ideal square

wave is hardly a good approximation to the modulation signal outputted by the AWG. In

particular, the rise time of is of the order of a few 100 ps, which results in a noticeable slope

for our square waves with less than 3 ns period. In the Fourier series expansion, the “real

world” square wave deviates from the ideal square wave, which has only sine terms in it.

So one could add cosine terms, but one needs a fairly good model to justify the assigned

cosine amplitudes. A simpler approach is to pass the ideal square wave through a low-pass

filter, which means to truncate the Fourier series at some (small) finite n. This is what we

are going to do, i.e. we define

RealSquareWaven(t) :=
n∑
k=1

ck sin(2πkt) , (4.133)

where the Fourier coefficients are given by

ck = 4

∫ 1/2

0

dt SquareWave(t) sin(2πkt) . (4.134)

The chosen order n must enable us to synthesize a function closely resembling a square

wave, but does not need to be excessively high unless there is good reasons for it (ck ∼
1/k and thus we must really look for specific features to take into account these small

coefficients). With this in mind, we picked n = 20 and verified that higher orders do not

improve the fit quality, giving us

RealSquareWave20(t) =
4

π
sin(2πt) +

4

3π
sin(6πt) + · · ·+ 4

19π
sin(38πt) . (4.135)

Our fit function is therefore

G̃(2x)(t0) := a+
b

4

(
3− RealSquareWave

[
t0
c

]
RealSquareWave

[
t0 −−d

c

])
, (4.136)

which we use to compare the four HOM square waves from Figure 4.22, namely those for

τopt = 0, 0.34, 2.72 and 3.06 ns. The idea being that the square wave τopt = 0 ns should

closely resemble that from τopt = 2.72 ns and likewise for the other pair. The results are

shown in Figure 4.23. We see that the fits work quite well. In particular, the real world

square wave model (4.136) captures the edges (slopes due finite rise and fall times). The
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Figure 4.24: Binning Choices for Square HOM Interference. Illustration of how the

HOM square wave changes with binning choice. At small bin sizes we have a corresponding

low number of photon coincidence counts and the histogram appears noisy. At large bin

sizes, the difference between lowest and highest bin starts to disappear. Though at both

extremes, the square features start to get washed out, the structure never fully disappears

and is discernible for all choices.

fits allow us to estimate the modulation period as

c0 = (2.64± 0.02) ns

c0.34 = (2.74± 0.02) ns

c2.72 = (2.65± 0.02) ns

c3.06 = (2.76± 0.02) ns .

(4.137)

These values are a bit off from the nominal T = 2.83 ns and the reason is that c is necessary

to adjust the fit in a way to compensate for data features not captured by (4.136). However,

these numbers are consistent within each comparison group, i.e. c0 ≈ c2.72 and c0.34 ≈ c3.06.
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Moreover, the fit parameters

d0 = (1.76± 0.01) ns

d0.34 = (2.10± 0.02) ns

d2.72 = (1.85± 0.02) ns

d3.06 = (2.15± 0.02) ns

(4.138)

permit estimates of the optical delay difference, namely d0.34 − d0 = (0.34 ± 0.02) ns and

d3.06 − d2.72 = (0.35 ± 0.03) ns, which are exactly on the set point, ∆τopt = 0.34 ns. Note

also that d0 and d2.72 are very similar, as well as are d0.34 and d3.06. One would expect

these to differ by 2.72 ns, i.e. roughly one period. And they do. The fit, however, sees a

periodic function and therefore d gives us an estimate for ∆τopt only modulo T .

Let me conclude this section by showing a series of histograms for ∆τopt = 0 in Figure

4.23. The coincidence window here is even smaller than for the results presented in Figures

4.22 and 4.23, namely Tcoin = 156.25 ps. Moreover, the HOM square wave persists as the

histogram bin size, which is a second choice in the analysis (0.1 ns in the results presented

above), is systematically varied. Taken together, this shows that the phenomenon is not

artifact of a felicitous choice of analysis parameters.

4.8 Conclusion and Outlook

We studied, both theoretically and experimentally, ways to generate non-trivial continuous-

wave laser Hong-Ou-Mandel (HOM) interference patterns. The core of the work centers

around the second-order cross-correlation function, for which we derived various expres-

sions depending on source characteristics (spectrum), control capabilities (polarization

modulation) and detection modalities (taking into account trigger from arbitrary wave-

form generator). We are thus provided with three anchor points to design fourth-order

interference patterns. Though experimental imperfections were lurking everywhere, we

managed to distill both triangular and square wave HOM interference patterns. This is

completely counterintuitive and it is true that with traditional Hong-Ou-Mandel analysis

methods, one cannot find these new interference landscapes. While the polarization Hong-

Ou-Mandel dip shows up in the detection time difference, the triangle and square wave

appear when the data is analyzed in terms of optical delay and modulator phase, respec-

tively. While it is true that ordinary HOM dip experiments with pulses also make use of

the optical delay, here we use a continuous-wave laser, for which modulation is necessary to

make photon interference dependent on the optical delay between two beam splitter input

modes.
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There are now three ways forward. The first one is to improve the current results,

for which the setups needs optimization at various points, the polarization modulator in

particular. The use of other lasers with varying spectrum (shape, central wavelength) and

coherence length would also help to experimentally explore the opened up interference

landscapes. The second avenue is to think about potential applications, the encoding of

information in particular. For instance, the modulation between two HOM dip levels,

corresponding to horizontal and vertical polarization, can be considered a bit. As the

system is improved, we should be able to distinguish more than four HOM dip levels.

Hence, we can think about encoding information in four polarization states for BB84-type

MDI-QKD, and decode not with a polarization analyzer but with a HOM dip analyzer,

where the four states correspond to four HOM dip levels. The third route combines the

current free-space HOM interferometer with an atmospheric turbulence simulator. In such

a setup, laser beams are subjected to controlled disturbances of the spatial mode, rendering

the whole beam multimode (see also the multimode time-bin qubit analyzer presented in the

next chapter). These beams can then be coupled into the HOM interferometer, allowing the

dependence of HOM visibility on, say, turbulence strength, to be systematically studied.

One may expect that the HOM visibility, due to phase-insensitivity of the interference

pattern, is less sensitive to atmospheric turbulences and thus, in a way, more suitable for

encoding information in turbulent free-space channels. But that remains to be seen.
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Chapter 5

Multimode Time-Bin Qubit Interference

Analyzers

5.1 Notes

The results presented in this chapter have been submitted for publication and are deposited

on the arXiv preprint server as

Jeongwan Jin, Sascha Agne, Jean-Philippe Bourgoin, Yanbao Zhang, Norbert

Lütkenhaus, and Thomas Jennewein, “Efficient time-bin qubit analyzer com-

patible with multimode optical channels”, arXiv:1509.07490 (2015).

5.2 Introduction

In the short history of experimental quantum communication, polarization has been the

preferred degree of freedom for free-space channels [162–166], and is used even for continuous-

variable quantum key distribution [167]. Just recently, our group demonstrated successful

key exchange between an airplane and a ground station with secure key lengths up to

200 kbit using polarization-encoded qubits [158]. However, we also believe that time is

a viable alternative to polarization, and may prove to be superior in situations where

the free-space channel includes media capable of polarization randomization. Thinking

beyond practical concerns, all optical elements are ultimately polarization sensitive and

as we devise experiments with precision beyond imagination [168], we never know when

these minute effects start to become relevant. The aim of the experiment presented in
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this chapter was and still is to make time-bin encoding accessible for free-space quantum

communication. The adoption within the quantum communication community is hindered

by the fact that, till now, no efficient time-bin qubit analyzer for multimode channels was

available. Here, we investigate and experimentally realize two designs for such an analyzer

and demonstrate its viability for quantum communication experiments.

In Chapter 2 we studied three-photon interference in an interferometer that can be

regarded the successor to Franson’s two-photon interferometer [61]. There, it may be

remembered, the interference resource is continuous energy-time entanglement. In the

conclusion of this experiment we alluded to the possibility to use a pulsed pump laser for

generation of photon triplets that are entangled in energy and discrete time. Where is the

discreteness coming from? If we send a laser pulse through an interferometer with short and

long path, then we pump the first nonlinear crystal in two time slots, called early and late.

As a result, photon pairs can be produced either in the early or late time slot. However,

we can only get entanglement in time if there exists some form of coherence between the

two time slots. The question of coherence must be our starting point before it makes

sense to talk about advanced concepts such as quantum teleportation or applications in

quantum communication. Brendel et al. in 1999 were the first to demonstrate a coherent

superposition of time bins [84]. The generic time-bin setup, is sketched in Figure 5.2.

The interferometric setup is in fact identical to the two-photon Franson interferometer

but with an interesting twist. Assume we produce photon pairs with either early or late

pump pulse. Send the photons into unbalanced interferometers that have path length

differences identical to the one of the pump pulse interferometer (in practice, the allowed

mismatch is bounded by the pump pulse coherence length). What do we expect to see? As

with Franson’s interferometer, there are four path combinations of interest, namely “short-

short”, “short-long”, “long-short”, and “long-long”, depending on which path combination

the two photons “realized”. As Figure 5.2 shows, in a coincidence histogram, say with

respect to detection of the red photon, we would see three peaks: one “early“ time slot

(the yellow photon took the short path), corresponding to the SL alternative, one “late”

time slot (the yellow photon took the long path), corresponding to LS, and a “middle” time

slot for the SS and LL alternatives. The latter two give us coincidences but, analogous to

the situation in the Franson interferometer, since we do not know whether the pair was

produced within the “early” or within the “late” pump pulse, we have no time reference

with respect to which we could tell appart SS and LL. The situation is essentially the same

as in the Franson interferometer but instead of having a continuuum of possible creation

times, the pulses define two sharply peaked ones. Hence discrete energy-time entanglement.

That events in the middle correspond to not merely a simple mixture of SS and LL, but a
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Figure 5.1: Free-Space Quantum Communication with Time-Bins. Sketch of how

time-bin interferometers can be used to enable quantum communication between widely

separated receivers. The present work is concerned with the development of a time-bin

qubit analyzer, which is an interferometer whose main characteristic are unequal path

lengths, suitable for multimode communication channels. These channels are encountered

in many practical situations, for example on sea in the communication between ships. We

are interested in quantum communication links between earth-based ground stations and

airborne objects, say an airplane or satellite. The channel is naturally multimode because

of refractive index fluctuations in the transmission medium, atmospheric turbulence in

particular [169].

coherent superposition, is verified by varying interferometer phases. As we do this, counts

in the middle bin should go up and down and this is exactly what Brendel et al. observed.

Hence, time slots can be used to encode qubits (with remarkable simplicity). The encoding

scheme is a natural extension to classical time-multiplexing, which was adopted to quantum
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Figure 5.2: Indistinguishable Alternatives in Time-Bin Interference. (a) A generic

time-bin interferometer setup where a source (S) emits photon pairs either in an early (E)

or late (L) time slot. (b) Subsequently, photons can take either of four possible path

combinations: short-short (SS), short-long (SL), long-short (LS), and long-long (LL). (c)

The time-of-arrival (coincidence) histogram shows three peaks. As explained in the main

text, the SS and LL alternatives are indistinguishable and thus, count rates in the middle

peak are sensitive to variations in φ1 and φ2.

cryptography tasks a few years earlier [170, 171]. Subsequently, time-bin encoding proved

to be the only viable degree of freedom for quantum communication through long optical
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fibers [172–175] and has already been connected with quantum memories [176–178].

5.3 What are Time-Bin Qubits?

Coherence between two time slots allows us to encode a quantum bit onto the time slots,

the time-bin qubit. A qubit is an abstract two-level system that is structurally identical to

a two-dimensional Hilbert space HT over the complex numbers. The canonical basis states

are labeled by early and late time slots,

|E〉 ≡

(
1

0

)
, |L〉 ≡

(
0

1

)
. (5.1)

Any linear superposition

|Ψ〉 = c1|E〉+ c2|L〉 (5.2)

of these two states can be realized experimentally, because parameters ck (amplitudes) and

γk (arguments) of the scalar products 〈Ψ|E〉 = |c1| exp(iγ1) and 〈Ψ|L〉 = |c2| exp(iγ2) can

be controlled with beam splitters and phase shifters. In fact, any (unitary) transformation,

i.e. elements in the group U(N), can be constructed from these two optical elements

[179]. For our purposes, the full generality is not needed and all we need to describe our

interferometers are the symmetric beam splitter

B =
1√
2

(
1 1

1 −1

)
, (5.3)

and relative optical phase shifters

P =

(
eiφ 0

0 1

)
. (5.4)

The superposition states we consider here can be labeled by phase angles φ,

|±φ〉 =
1√
2

(
|E〉 ± eiφ|L〉

)
. (5.5)

For instance,

|±〉 ≡ |±π〉 =
1√
2

(
|E〉 ± |L〉

)
|±i〉 ≡ |±π/2〉 =

1√
2

(
|E〉 ± i|L〉

)
.

(5.6)
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Observables of interest here are connected to Pauli operators

X̂ = |E〉〈L|+ |L〉〈E| ≡

(
0 1

1 0

)

Ŷ = i|L〉〈E| − i|E〉〈L| ≡

(
0 −i
i 0

)

Ẑ = |E〉〈E| − |L〉〈L| ≡

(
1 0

0 −1

)
.

(5.7)

Our measurements are described by simple projections operators. For measurements in X,

Y , and Z basis, these are

ΠX =

{
Λ+ ≡ |+〉〈+|, Λ− ≡ |−〉〈−|

}
ΠY =

{
Λi ≡ |i〉〈i|, Λ−i ≡ |−i〉〈−i|

}
ΠZ =

{
ΛE ≡ |E〉〈E|, ΛL ≡ |L〉〈L|

}
.

(5.8)

Detection probabilities are then calculated by forming expectation values, for instance a

time-bin qubit in state |Ψ〉 has the following probabilities to be found in the early or late

time slot,

PE = 〈Ψ|ΛE|Ψ〉
PL = 〈Ψ|ΛL|Ψ〉 .

(5.9)

5.4 Polarization-Time Hybrid Entanglement

In our experiment we actually work with two qubits. In addition to a time-bin qubit, we

also have a polarization qubit, which lives in a Hilbert space

HP
∼= HT . (5.10)

The isomorphism implies that algebraic properties of both polarization and time-bin qubit

are identical and all we need to do is change labels, i.e.

|E〉 → |H〉
|L〉 → |V 〉 .

(5.11)

Of course, experimentally, polarization and time-bin qubits are distinguishable, but in the

Hilbert space formalism they are identical. The composite system is then described by the
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tensor product Hilbert space HTP = HT ⊗HP , which is spanned by products basis states

(we use the short notation |Ψψ〉 ≡ |ΨT 〉 ⊗ |ψP 〉)

|EH〉 ≡


1

0

0

0

 , |EV 〉 ≡


0

1

0

0

 , |LH〉 ≡


0

0

1

0

 , |LV 〉 ≡


0

0

0

1

 . (5.12)

In our experiment, we generate entangled photon pairs, which are best described in the

Bell basis, comprising the four states

∣∣ΨAB
+

〉
=

1√
2

(
|EV 〉+ |LH〉

)
≡


0
1√
2

1√
2

0


∣∣ΨAB
−
〉

=
1√
2

(
|EV 〉 − |LH〉

)
≡


0
1√
2

− 1√
2

0


∣∣ΦAB

+

〉
=

1√
2

(
|EH〉+ |LV 〉

)
≡


1√
2

0

0
1√
2


∣∣ΦAB
−
〉

=
1√
2

(
|EH〉 − |LV 〉

)
≡


1√
2

0

0

− 1√
2

 .

(5.13)

Despite the fact that we can segregate one photon from the other in physical space, two

photons in any one of the Bell states are non-separable as qubits. In other words, the

qubits qua carrier of quantum information are de-localized, though the physical carriers

(time slots and photon polarization) are individually accessible. If the latter were not

possible, then there would be no way physically to access the strong correlations inherent

in biphotons (entangled photon-pairs). Experimental demonstration of a biphoton’s logical

inseparability requires some thought but since we are already standing on the shoulders of

giants, we might as well make use of pre-existing knowledge [180]: the four observables we

are looking for are (again, we use short notation here, ÂkB̂l ≡ Âk ⊗ B̂l)

Â1B̂1, Â1B̂2, Â2B̂2, and Â2B̂2 , (5.14)
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Figure 5.3: Illustration of a Polarization Qubit Analyzer. (a) A polarizing beam

splitter (PBS) together with two single photon detectors allow us to measure the Ẑ ob-

servable for a polarization qubit. (b) The addition of a half-wave plate (HWP) oriented

at 22.5◦ permits measurements of the X̂ observable. Though we are still detecting hori-

zontal and vertical polarization, as in (a), the one-to-one map H ↔ D and V ↔ A via the

HWP essentially lets us measure diagonal (D) and antidiagonal (A) polarization, respec-

tively. Note: |+〉 represents D and |−〉 A polarization in the main text. In (c) we added

a QWP to enable measurements in the X̂ ± Ẑ-basis. With the same idea as in (b), the

“eigenpolarizations” of this configuration are mapped to the H and V output ports of the

PBS.

with single qubit observables

Â1 = Ẑ

Â2 = X̂
(5.15)

for the time-bin qubit and

B̂1 =
1√
2

(
X̂ + Ẑ

)
≡ 1√

2

(
1 1

1 −1

)

B̂2 =
1√
2

(
X̂ − Ẑ

)
≡ 1√

2

(
−1 1

1 1

) (5.16)

for the polarization qubit. We follow here the nomenclature and use letters A for the first

qubit (“Alice”) and letters B for the second qubit (“Bob”). What are these observables

and how do we work with them experimentally? First of all, their eigenvalues are λ = ±1.
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This is in fact true for any linear combination

Ŵ (α) = sin(α)X̂ + cos(α)Ẑ , (5.17)

which can be quickly verified, for the matrix representation

W (α) =

(
cos(α) sin(α)

sin(α) − cos(α)

)
(5.18)

has the characteristic polynomial λ2 = 1. Not only does this tell us there are two mea-

surement outcomes, but also that the analyzers feature two complementary detectors, i.e.

detectors labeled by the sign of λ. For the polarization qubit, things are quite simple. For

a measurement in the Ẑ basis we only need a polarizing beam splitter (PBS) in front of

two single photon detectors. As shown in Figure 5.3 (a), a PBS directs input photons in

states |H〉 and |V 〉 into “+” and “−” detectors, respectively. As already alluded to, the

label ± indicates the measured eigenvalue λ = ±1 of Ẑ. For instance, when a photon is

detected in the “+” detector, we say our measurement resulted in λ = +1 because |H〉 is

eigenvector of Ẑ with eigenvalue +1. Consequently, the complementary detector in the V

output is the λ = −1 detector. Measurements in other bases require wave plates in front of

the PBS. More specifically, we need a half-wave plate (HWP), represented by the unitary

matrix

HWP(Θ) =

(
cos(2Θ) sin(2Θ)

sin(2Θ) − cos(2Θ)

)
, (5.19)

and a quarter-wave plate (QWP),

QWP(θ) =
1√
2

(
1 + i cos(2θ) i2 sin(θ) cos(θ)

i2 sin(θ) cos(θ) 1− i cos(2θ)

)
, (5.20)

where Θ and θ are the physical rotation angles (which the “fast” axis makes with respect

to the H-axis). For instance, an X̂-basis measurement requires a HWP set to Θ = 22.5◦,

as shown in Figure 5.3 (b). Why? Let us assume we have |+〉 as an input. Then

HWP (22.5◦) |+〉 =
1

2

(
1 1

1 −1

)(
1

1

)
=

(
1

0

)
≡ |H〉 , (5.21)

which the following PBS directs into the “+” detector. Likewise, the input state |−〉 is

transformed by the HWP into |V 〉, which is then directed into the “−” detector. Therefore,

this setup can perfectly distinguish between |+〉 and |−〉, and since these are the eigenstates

of X̂, a HWP set to Θ = 22.5◦, together with a PBS, acts as an X̂-analyzer. The Ẑ-analyzer

for a time-bin qubit is simpler in one sense and more involved in another. First, we only
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Figure 5.4: Illustration of a Time-Bin Qubit Analyzer. (a) Time-bin qubit mea-

surement in Ẑ-basis. The beam splitter (BS) is not really necessary for this measurement

and is only there for better illustration of (b). All we need is a single detector and a time

tagger, which sorts photons into arrival time bins (with respect to a time reference, e.g.

detection of a partner photon). The early and late time bins correspond to eigenvalue +1

and −1 measurement outcomes, respectively. (b) The addition of an unbalanced interfer-

ometer provides another path and with it a third arrival time possibility, which the time

tagger recognizes as “middle bin”. A second detector can now act as the complementary

one, because, depending on the optical phase (OP), a middle bin detection happens either

in the “+” or “-” detector due to interference. Probabilistic splitting at the BS’ has the

consequence that also here we detect time-bins in the Ẑ-basis.
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need one physical detector and no optical elements in front of the detector. However, we

need to perform photon detection in a time-resolved manner, i.e. we need to assign time

stamps to detection signals with respect to some time reference (for instance a trigger

signal). Figure 5.4 (a) shows such a setup where a beam splitter (BS) and second detector

are included. Again, these are not essential for the Ẑ-analyzer but highlights that a Ẑ-

analyzer is implicit also in a, say, X̂-analyzer shown in (b). There we place an unbalanced

interferometer in front of two detectors. Photons in the early and late time slots can now

interfere provided the path length difference matches the separation in time. Depending

on whether the interference is constructive or destructive, photons sort themselves into the

“+” and “-” detectors.

In our experiment we generate photons in state |ΦAB
+ 〉, which means we take a vested

interest in expectation values 〈
ÂkB̂l

〉
≡
〈

ΦAB
+

∣∣ÂkB̂l

∣∣ΦAB
+

〉
. (5.22)

We can explicitly calculate〈
Â1B̂1

〉
=

1

2
√

2

(〈
E|Ẑ|E

〉〈
H|X̂|H

〉
+
〈
E|Ẑ|L

〉〈
H|X̂|V

〉
+
〈
L|Ẑ|E

〉〈
V |X̂|H

〉
+
〈
L|Ẑ|L

〉〈
V |X̂|V

〉
+
〈
E|Ẑ|E

〉〈
H|Ẑ|H

〉
+
〈
E|Ẑ|L

〉〈
H|Ẑ|V

〉
+
〈
E|Ẑ|E

〉〈
H|Ẑ|H

〉
+
〈
E|Ẑ|L

〉〈
H|Ẑ|V

〉)
=

1

2
√

2

(
1 · 0 + 0 · 1 + 0 · 1 + (−1) · 0 + 1 · 1 + 0 · 0 + 1 · 1 + 0 · 0

)
=

1√
2
,

(5.23)

〈
Â1B̂2

〉
=

1

2
√

2

(〈
E|Ẑ|E

〉〈
H|X̂|H

〉
+
〈
E|Ẑ|L

〉〈
H|X̂|V

〉
+
〈
L|Ẑ|E

〉〈
V |X̂|H

〉
+
〈
L|Ẑ|L

〉〈
V |X̂|V

〉
−
〈
E|Ẑ|E

〉〈
H|Ẑ|H

〉
−
〈
E|Ẑ|L

〉〈
H|Ẑ|V

〉
−
〈
E|Ẑ|E

〉〈
H|Ẑ|H

〉
−
〈
E|Ẑ|L

〉〈
H|Ẑ|V

〉)
=

1

2
√

2

(
1 · 0 + 0 · 1 + 0 · 1 + (−1) · 0− 1 · 1− 0 · 0− 1 · 1− 0 · 0

)
= − 1√

2
,

(5.24)
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〈
Â2B̂1

〉
=

1

2
√

2

(〈
E|X̂|E

〉〈
H|X̂|H

〉
+
〈
E|X̂|L

〉〈
H|X̂|V

〉
+
〈
L|X̂|E

〉〈
V |X̂|H

〉
+
〈
L|X̂|L

〉〈
V |X̂|V

〉
+
〈
E|X̂|E

〉〈
H|Ẑ|H

〉
+
〈
E|X̂|L

〉〈
H|Ẑ|V

〉
+
〈
E|X̂|E

〉〈
H|Ẑ|H

〉
+
〈
E|X̂|L

〉〈
H|Ẑ|V

〉)
=

1

2
√

2

(
0 · 0 + 1 · 1 + 1 · 1 + 0 · 0 + 0 · 1 + 1 · 0 + 0 · 1 + 1 · 0

)
=

1√
2
,

(5.25)

and 〈
Â2B̂2

〉
=

1

2
√

2

(〈
E|X̂|E

〉〈
H|X̂|H

〉
+
〈
E|X̂|L

〉〈
H|X̂|V

〉
+
〈
L|X̂|E

〉〈
V |X̂|H

〉
+
〈
L|X̂|L

〉〈
V |X̂|V

〉
−
〈
E|X̂|E

〉〈
H|Ẑ|H

〉
−
〈
E|X̂|L

〉〈
H|Ẑ|V

〉
−
〈
E|X̂|E

〉〈
H|Ẑ|H

〉
−
〈
E|X̂|L

〉〈
H|Ẑ|V

〉)
=

1

2
√

2

(
0 · 0 + 1 · 1 + 1 · 1 + 0 · 0− 0 · 1− 1 · 0− 0 · 1− 1 · 0

)
= − 1√

2
.

(5.26)

When then calculate the CHSH-Bell parameter

S =
∣∣∣〈Â1B̂1

〉
−
〈
Â1B̂2

〉
+
〈
Â2B̂1

〉
+
〈
Â2B̂2

〉∣∣∣ = 2
√

2 ≈ 2.83 , (5.27)

transgressing the classical bound SClassical = 2. This violation is signature of the strong

correlation inherent in biphotons such as the ones we produce. The expectation values

are estimated experimentally in coincidence measurements, which we illustrate for the

measurement of
〈
Â1B̂1

〉
. In this setup, we count time-bin photons in the early and late

bins, and polarization photons in the “+” and “-” detectors with the X̂ ± Ẑ-analyzer

(Θ = +11.25◦ and θ = 0◦) setup of Figure 5.3 (c). There are now four events possible,

namely

N++
11 := Coincidences between |E〉 and |H〉

N+−
11 := Coincidences between |E〉 and |V 〉

N−+
11 := Coincidences between |L〉 and |H〉

N−−11 := Coincidences between |L〉 and |V 〉 .

(5.28)
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In a similar manner, we record coincidence counts for the other three measurement config-

urations, and can then calculate the (empirical) expectation value, defined as

E(ÂkB̂l) :=

∑
p,q=± λpλqN

pq
kl∑

p,q=±N
pq
kl

, (5.29)

where the products λpλq = ±1 are the possible measurement outcomes of joint-observables

ÂkB̂l. The desired expectation values can now be estimated,〈
Â1B̂1

〉
=̂E(Â1B̂1) =

N++
11 +N−−11 −N+−

11 −N−+
11

N++
11 +N−−11 +N+−

11 +N−+
11〈

Â1B̂2

〉
=̂E(Â1B̂2) =

N++
12 +N−−12 −N+−

12 −N−+
12

N++
12 +N−−12 +N+−

12 +N−+
12〈

Â2B̂1

〉
=̂E(Â2B̂1) =

N++
21 +N−−21 −N+−

21 −N−+
21

N++
21 +N−−21 +N+−

21 +N−+
21〈

Â2B̂2

〉
=̂E(Â2B̂2) =

N++
22 +N−−22 −N+−

22 −N−+
22

N++
22 +N−−22 +N+−

22 +N−+
22

.

(5.30)

5.5 Multimode Time-Bin Qubit Analyzer

5.5.1 The Problem with Unbalanced Interferometers

Geometrical optics is very effective for exhibition of basic optical phenomena. One of the

method it provides is ray tracing, which can be performed by hand or with the aid of

computer programs for complicated problems. Consider the unbalanced Michelson inter-

ferometer in Figure 5.5. Let lL and lS denote the distance between center of beam splitter

and mirror for long and short path, respectively. An incident ray can have an angle of

incidence (AOI) α, which it makes with respect to the optical input axis. For normal inci-

dence, α = 0, a photon travels the distance 2lL in the long path and 2lS in the short path

before exiting the interferometer. The path difference is ∆l0 = 2(lL − lS). For a non-zero

AOI, this quantity becomes α dependent, as we now show.

The distance between beam splitter diagonal and mirror front surface is (i = S, L)

BS−Mi =
li

cos(α)
, (5.31)

and then back again,

Mi − BS =
li
(
1− tan(α)

)
cos(α) + sin(α)

. (5.32)
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Figure 5.5: Input Angle Problem for Unbalanced Interferometers. Shown is a

ray making an angle with respect to the system’s optical axis. The angle translates into

a distance-dependent lateral offset with respect to that axis. Hitting the beam splitter

of the balanced interferometer shown in (a), returning rays do not hit the center again.

Crucially, however, since the paths are of same length, both rays hit the same spot. (b)

This is no longer the case in an unbalanced interferometer. There, because a ray traveling

along the short path accumulates less offset than a ray through the long arm, returning

rays no longer intersect at the beam splitter. Substituting rays with beams, this leads to

a reduced overlap and hence diminished interference visibility.
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As Figure 5.5 (b) illustrates, paths do not overlap at the beam splitter for α 6= 0 and there

is an additional path difference after the beam splitter (“triangle difference”),

Extra = δ(α) tan
(
α− π

4

)
, (5.33)

where

δ(α) =
∆l0 tan(α)

1 + tan(α)
(5.34)

is the angle-dependent lateral offset between two exiting rays. Thus, the total, angle-

dependent path difference rays accrue is given by

∆l(α) =
∆l0
2

(
1

cos(α)
+

1− tan(α)

cos(α) + sin(α)

)
+ δ(α) tan

(
α− π

4

)
. (5.35)

Leaving the ray picture, we consider a Gaussian input beam, which describes a light field

exiting a single-mode fiber. Neglecting beam expansion during propagation, the intensity

interference pattern of two Gaussian beams exiting the interferometer is governed by beam

overlap at the beam splitter [181]. With lateral offset δ(α), the Gaussian beam intensity

at the interferometer output is

I
(
δ(α), φ

)
= I0

(
1 + exp

[
−
{
δ(α)

2σ

}2
]

cos(φ)

)
, (5.36)

with input beam intensity I0, beam width σ, and interferometer phase φ. We calculate the

interference visibility for the unbalanced Michelson interferometer (UMI) as

VUMI :=
I
(
δ(α), φ

)
max
− I
(
δ(α), φ

)
min

I
(
δ(α), φ

)
max

+ I
(
δ(α), φ

)
min

. (5.37)

The minimum and maximum of (5.36) with respect to φ are easily found. To the result we

multiply the system visibility V0, which is the best visibility we achieve with the interfer-

ometer (at α = 0). It is usually less than 1 due to other experimental imperfections that

render two beams distinguishable. Absorbing all those visibility degradations into V0, we

get the visibility as a function of α,

V(α) = V0 exp

(
−
[

∆l0 tan(α)√
2σ{1 + tan(α)}

]2
)
. (5.38)

The visibility drops rapidly with α (as we demonstrate experimentally). For example,

starting with a system efficiency V0 = 91 %, a beam of width σ = 1.49 mm through

our interferometer with ∆l0 = 60 cm, we get V(0.1◦) = 70 %. There are two scenarios

where we actually encounter beams with a non-zero α. First, if we couple into the in-

terferometer a free-space beam, then we typically do so with some AOI. In the free-space
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quantum communication experiment between the islands La Palma and Tenerife [162], for

instance, atmospheric turbulence lead to beam wander within an angular range of ∼ 0.004◦

(75µrads). Moving systems suffer from additional pointing errors, which can be quite sub-

stantial. The QKD experiments to a moving truck in our group, for example, showed an

angular spread of ∼ 0.06 [169]. The second source for a α variation (a distribution, really)

is provided by multimode beams. These posses non-trivial spatial intensity distributions

with a correspondingly broad transversal Fourier spectrum. If we consider a multimode

beam in a plane z = 0 (z is the propagation direction, and z = 0 can be, for example,

the exit facet of a multimode fiber), then the angular spectrum representation of wave

fields [139] tells us that each spatial frequency component in the z = 0 plane is associated

with exactly one plane-wave mode, which all travel in different directions (hence angular

spectrum). In free-space quantum communication we almost always have to deal with

turbulent channels (within cities, or to airborne objects) that render a single-mode beam

multimode. The receiver, for any kind of qubit encoding technique, has to deal with those

highly structured beams. Of course, one could make use of spatial filters such pin holes

—or simply couple light into a single-mode fiber. These methods, however, are by their

very nature highly inefficient [182]. Depending on the application, any losses in addition

to channel loss may be unacceptable, in particular when dealing with (entangled) single

photons. So the question is, how can we solve this angle problem with minimal photon

loss?

5.5.2 Compensation Optics for Unbalanced Interferometers

We investigate here two solutions for the AOI problem outlined in the previous section. The

first is based on imaging optics, and the second makes use of refractive index differences.

Though we arrived at the resulting interferometer design independently, the general idea

has been discovered before us [183–185]. In fact, much earlier designs exist [186], namely

Mertz “dielectric method” and Connes “telescope method”. The root of the problem is the

unbalanced interferometer’s intrinsic asymmetry. We want this with respect to time but

not with respect to spatial mode. Thus, grandly speaking, our aim is to symmetrize the

interferometer with respect to space while leaving time untouched. In the beginning we

thought about intricate “mirror mazes” embedded into the interferometer to compensate

for the offset. In hindsight this was foolish, for a particular mirror arrangement can account

for only one offset. What is needed here is an optical system that also maps angles to lateral

offset, namely an imaging system. More precisely, we need a 4f -system, i.e. two identical

lenses with focal length f separated by a distance 2f , which maps an object at distance

f from the first lens to an image at distance f from the second lens. The magnification
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MirrorLensesVirtual Mirror

f f2f

Figure 5.6: Relay Lens System in an Unbalanced Interferometer. Illustrating with

a single ray how a 4f -lens system in the long arm of an unbalanced Michelson interferometer

maps everything it “sees” in the virtual mirror plane back to it after propagation (object

plane is identical with the image plane). As explained in more detail in the main text,

with respect to the spatial mode, the interferometer appears balanced.

is −1 so that we get an inverted image identical in size to the object. Propagating again

through such a system, we get a magnification of 1, as matrix optics verifies,[(
1 f

0 1

)(
1 0

−1/f 1

)(
1 2f

0 1

)(
1 0

−1/f 1

)(
1 f

0 1

)]2

= 1 , (5.39)

and which is illustrated in Figure 5.6 with a single ray (see also setup Figure 5.7 (c)). This

means, despite the fact that a beam traversed a distance 8f , the output wavefront (the

image) looks identical to the input wavefront (the object). This is why the 4f -system is

also known as relay lens system because it simply relays an object. This is exactly what

we need. If we place a relay system in the long path of the unbalanced interferometer such

that at distance f from the first lens we would have the mirror if the interferometer was

balanced (virtual mirror), and if the actual mirror is a distance f behind the second lens,

then we have the following situation: a beam still travels the whole distance through the

long arm, thus accruing a time difference with respect to the beam traveling along the

short path, but the wavefront is the same for both paths. This is because the relay system

in the long arm “picks up” the wavefront from position of the virtual mirror, preserves it

during propagation and “puts it back” to the position of the virtual mirror with the result

that the effective mirror position, which determines the offset at the beam splitter due to

α, is identical for both arms. Thus, with respect to the spatial mode, the interferometer is

balanced; with respect to time it remains unbalanced.

Over the course of the experiment, we investigated a second approach to solve the

problem. As later shown in Figure 5.7 (f), a piece of glass in the long arm also produces
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an angle-dependent lateral offset [183], which can be used, by careful choice of refractive

index and length of the glass, to compensate lateral offsets coming from non-zero input

angles. Again, the idea is to produce a virtual mirror for the spatial mode at the location

where a real mirror would make the interferometer balanced. As before, consider an input

beam with angle α with respect to the optical axis. The optical path difference of the

interferometer is then given by

∆l = 2

(
nLlL cos(αL)− nSlS cos(αS)

)
, (5.40)

where ni and αi (i = S, L) are refractive indices and reflection angles (off mirrors), re-

spectively. For small angles αi, we can use Taylor’s approximation for Snell’s law and get

∆l ≈ 2

(
nLlL − nSlS

)
− sin2

(
α

[
lL
nL
− lS
nS

])
. (5.41)

We see that, with a proper choice of parameters, the two terms cancel and the effective

path difference is, to first order, zero. These, then, are the two schemes on which our

multimode time-bin qubit analyzers (MM-TQA) are based on.

5.5.3 Experimental Demonstration of a Multimode Time-Bin Qubit Analyzer

We now proceed to an experimental demonstration of multimode time-bin qubit analyzers.

Schematics for the two realized compensation schemes are shown in Figure 5.7 (c) and

(f). For the relay system we employ f = 7.5 mm achromatic lenses, which sets the path

difference to ∆l0 = 8f = 60 cm, or 2.0 ns. For the refractive-index material we had available

a 118 mm long glass cube with refractive index nG=1.4825 (the refractive index in the short

path is that of air nair ≈ 1), which determines the path difference as ∆l0 = 17 cm or 0.57 ns.

The best total throughput we achieve from input to output is 0.74. First of all, we assess

the severity of visibility reduction with multimode beams. For that we use a continuous-

wave grating-stabilized laser at 776 nm, and couple light through a single mode (SM) fiber

into an unbalanced interferometer without correcting optics. As shown in Figure 5.7 (d),

the visibility decreases rapidly from its initial value of VSM
0 = (91± 1) % and matches nicely

with the predictions of Equation (5.38). The same is true for the (shorter) interferometer

we use with the glass cube: here, if we take out the glass cube, the visibility also drops from

VSM
0 = (94 ± 1) %, but much more slowly. The reason is, of course, that the path difference

is only 17 cm. With either of the two correction optics in place, however, the visibility stays

constant. But does it also work for a multimode beam? To test this, we couple the same

laser light into a 1 m-long step-index multimode fiber (Thorlabs M43L01) and repeat the
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Figure 5.7: Demonstration of Two Compensation Schemes for Unbalanced In-

terferometers. (from Jin et al. [187]) We compare the interference visibilities for (a)

single and (b) multimode beams (images taken with a WinCamD-UCD12 beam profiling

camera). The relay lens method is sketched in (c), and refractive-index method in (f). The

results are summarized in (d) (single mode, design (c)), (e) (multimode, design (c)), (g)

(single mode, design (f)) and (h) (multimode, design (d)). There we plot the visibilities

measured with the respective interferometer and also compare them with those measured

when the compensation system is taken out (uncorrected interferometer). Solid lines are

fits of Equation (5.38) and error bars are smaller than plot symbol size.
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measurements. We immediately see a huge drop in the best achievable visibility, namely

VMM
0 = (16 ± 1) %, which continues diminishing as α is increased. With imaging and

glass cube in place, however, we achieve constant visibilities of VMM
0 = (89 ± 1) % and

VMM
0 = (90 ± 1) %, respectively.

5.6 Experimental Hybrid Entanglement of Polarization and Multi-

mode Time-bin Qubits

5.6.1 Experimental Setup

We now integrate the newly developed multimode time-bin qubit analyzers in an exper-

iment using entangled photons. The setup is shown in Figure 5.8. We first produce

polarization-entangled photons using a nonlinear crystal embedded in a Sagnac interfer-

ometer (setup EPS in Figure 5.8). The Sagnac entangled photon source has been used

extensively in our labs and in fact, my first task as a PhD student was to align the Sagnac

source we used for our time-bin experiments. The crystal is a 30 mm long periodically poled

potassium titanyl phosphate (PPKTP) slab, which we pump with a continuous-wave grat-

ing stabilized laser (404 nm, 6 mW). When the pump polarization is set to a superposition

of H and V , then two processes can happen (neglecting normalization), namely

|V 〉P + |H〉P
PBS−−→

{
|H〉P

SPDC−−−→ |H〉s|V 〉i
HWP−−−→ |V 〉s|H〉i

|V 〉P
HWP−−−→ |H〉P

SPDC−−−−→ |H〉s|V 〉i

}
PBS−−→ |H〉s|V 〉i + |V 〉s|H〉i ,

(5.42)

where the crystal is phase-matched for type-II spontaneous parametric downconversion

(SPDC). Signal (s) and idler (i) photons have wavelengths 842 nm and 776 nm, respectively.

We get an entangled state only when the two processes are indistinguishable, which is

the most critical part (alignment of the Sagnac interferometer). Once aligned, however,

the two paths of our ring-interferometer are absolutely identical and therefore we do not

have to worry about phase-difference fluctuations between the two processes over time.

The downconverted photons are sent through bandpass filters to remove residual 404 nm

photons. For both photons we have set up polarization qubit analyzers (PQA) to measure

the source entanglement visibility. However, 776 nm photons can also be directed into a

time-bin qubit converter, which maps

|V 〉 → |E〉 and |H〉 → |L〉. (5.43)
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Figure 5.8: Experimental Setup for Polarization-Time-Bin Entanglement with

Multimode Channels. (from Jin et al. [187]) The experiment consists of three parts:

generation of polarization-entangled photons, conversion of one polarization qubit into a

time-bin qubit, and the analysis stage. The setup is detailed in the main text. EPS: entan-

gled photon source, TQC: time-bin qubit converter, MM-TQA: multimode time-bin qubit

analyzer, PQA: polarization qubit analyzer, HWP: half-wave plate, QWP: quarter-wave

plate, BPF: bandpass filter, POL: polarizer, DM: dichroic mirror, FM: flip mirror, M: mir-

ror, PBS: polarizing beam splitter, BS: beam splitter, FPC: fiber polarization controller,

Si-APD: silicon-avalanche photodiodes, PPKTP: periodically poled potassium titanyl phos-

phate crystal, SMF: single mode fiber, MM: multimode fiber.
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The way this is achieved is as follows. First a PBS directs H and V polarized photons into

the long and short path of an unbalanced interferometer, respectively. Since this is also the

preparation interferometer of our time-bin qubit, the interferometer is ideally identical to

the time-bin qubit analyzer. We use QPWs set to θ = 22.5◦ in double-pass configuration

(imitating a HWP set to Θ = 45◦) to change the polarization of photons in long and short

path to V and H, respectively, so that both are sent into the same output port of the

PBS. A polarizer (POL) set to 45◦ ensures that polarization information is deleted and

thus no physical label for early and late time-bin exists (other than the partner photon

itself). We have now produced the desired state Bell state |ΦAB
+ 〉 from Equation (5.13).

Time-bin qubits are now sent through a multimode fiber (as before the 776 nm laser in

the visibility experiments) into either of the two presented MM-TQA’s. We use standard

silicon avalanche photodiodes to detect photons and assign time stamps to all detection

events with time taggers. The MM-TQA’s we built for the experiments have no active

phase control, which prevents deterministic setting of time-bin qubit superposition bases

for observables like X̂. Hence, in the experiment we have no control over Ŵ (α), Equation

(5.17). This is a problem for a true Bell test, however, later we show how to obtain an

estimate for S.

5.6.2 Experimental Results

We first take images of single time-bin qubit photons after the multimode fiber using

an electron multiplier CCD camera. Figure 5.9 (a) testifies to the multimodocity of our

photons’ spatial mode. Before attempting a Bell test, for which the observables are given

in Equation (5.14), we determine entanglement visibilities and their robustness against

angular input fluctuations. To start with, we measure both qubits in the Ẑ-basis, i.e.

the observable is ẐẐ. Experimentally this means to measure coincidences Npq, p, q = ±,

analogous to the one outlined for the observable Â1B̂1 in Equation (5.28). The results

are shown in Figure 5.9 (b). Dashed boxes in the histogram surround those time slots

that correspond to counts in the Ẑ-basis. We see that around 12 ns a peak corresponding

to |LV 〉 coincidences appear (orange trace), and around 9 ns a peak corresponding to

|EH〉 coincidences appears (green trace). These are the only states contributing to |ΦAB
+ 〉.

Consequently, no contributions from |LH〉 and |EV 〉 are expected. The histogram clearly

shows that coincidences corresponding to these two states are barely above the noise level.

151



AOI (degrees)

E
ntanglem

en
t visibility

0.05 0.10 0.15 0.200
0

0.2

0.4

0.6

0.8

1

Phase	(radians)

0

30

280

S
ingle counts (kH

z)C
oi

nc
id

en
ce

s 
(H

z)
N

or
m

al
iz

ed
 c

oi
nc

id
en

ce
s

Time (ns)

0

0.2

1

0 3 6 9 12 15 18 21

-Z    +Z +Z    -Z

-Z     -Z

Z

  Y

   X
2 mm

210

140

70

60

90

120

2 4 6

0.4

0.6

0.8

Method 1
Method 2

ϕ'+ϕ'

-ϕ'

+Z    +Z (d)(a) (b)

(c)

Figure 5.9: Measured Entanglement Visibilities with Multimode Time-bin

Qubits. (from Jin et al. [187]) (a) We use a Hamamatsu electron multiplier CCD camera

(C9100-13) to take images of photons that encode the time-bin qubit. The multimodicity

is clearly visible and similar to Figure 5.7 (b). Two-photon coincidences for the observables

(b) ẐẐ and (c) φ̂φ̂′ demonstrate high-visibility entanglement (discussion in main text) de-

spite the multimodicity of time-bin photons. In (c) we also show the single counts, which

are essentially flat, showing that we observe two-photon interference. (d) The measured

visibilities remain constant, as the AOI α is scanned from 0◦ to 0.2◦.

We can make this qualitative difference precise by calculating visibilities

V+ :=
N++ −N−+

N++ +N−+

V− :=
N−− −N+−

N−− +N+−
,

(5.44)

from which we obtain average visibilities

V(1)

ẐẐ
:=
V(1)

+ + V(1)
−

2
= (95 ± 1) %

V(2)

ẐẐ
:=
V(1)

+ + V(2)
−

2
= (92 ± 1) % ,

(5.45)

where the superscript indicates which compensation method [relay lenses (1), or glass cube

(2)] has been used. Now that we have verified that our MM-TQA’s can handle photons

with multimode wavefronts, we continue with a continuous phase-scan along the X̂Y -plane

of the Bloch sphere: the polarization qubit is transformed into a superposition of the form

(5.5), where φ′ is continuously varied using motorized waveplates: the QWP is set to

θ = 45◦ and the HWP continuously rotated from Θ = 0◦ to 90◦. For the time-bin qubit we

could not set the superposition basis deterministically, as mentioned above, but if we scan

fast, the interferometer phase should be stable enough to give us a high-visibility fringe.
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Figure 5.10: Phase Stability of the Time-Bin Qubit Analyzer. (from Jin et al.

[187]) Using the time-bin qubit analyzer with relay optics, we continuously scan the AOI

from -0.2◦ to +0.2◦ over 20 seconds. The expectation value Eφ stays essentially constant

around Eφ = (80 ± 1) %.

The results are shown in Figure 5.9 (c), which are counts in the central time slot in (b).

We see two complementary sine curves, for which we can calculate visibilities

V(1)

φ̂φ̂′
:=
V(1)

+ + V(1)
−

2
= (80 ± 1) %

V(2)

φ̂φ̂′
:=
V(2)

+ + V(2)
−

2
= (77 ± 1) % .

(5.46)

The average visibilities in these experiments are therefore

V(1) :=
V(1)

ẐẐ
+ 2V(1)

φ̂φ̂′

2
= (85 ± 1) %

V(2) :=
V(2)

ẐẐ
+ 2V(2)

φ̂φ̂′

2
= (82 ± 1) % .

(5.47)

Despite the lack of active phase control for MM-TQA’s and multimodicity of time-bin

photons, we achieve entanglement visibilities remarkably close to the measured (average)

EPS visibilities of Vsource = (93 ± 1) and (91 ± 1) % for the times when experiments with

method (1) and (2) were carried out, respectively [see Figure 5.9 (d)]. The last step is now

to verify that these visibilities remain constant as the AOI is varied. For this we carry out
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the measurement from (c) for α ∈ [0◦, 0.2◦] and extract visibilities, which are plotted in

Figure 5.9 (d). With both compensation methods, the visibilities stay relatively constant

and, more importantly, do not drop. As a last measurement, we consider the question

whether our multimode time-bin analyzer is also robust against phase fluctuations, which

are normally present in uncorrected interferometers for varying AOI α [188]. The origin of

these phase fluctuations is the following. As α changes, so does geometrical path length,

as we know from (5.35). This also means that the optical path length changes and with it

the optical phase. Since interference is only concerned with the optical phase, and not its

origin, the interferometer has effectively changed its path length and therefore its phase

setting. In our case, from Equation (5.35) we expect a 5π-shift with an AOI of only 1×10−4

degrees, leading to rapid oscillations in expectation values (see inset to Figure 5.10). Thus,

in order to assess the phase stability of our analyzer with relay optics experimentally, we

pick any phase from Figure 5.9 (c) and vary the angle. If the interferometer’s phase is

insensitive to α variations, then the phase should stay constant and hence the expectation

value

Eφ :=
Nφ(+φ′) −Nφ(−φ′)

Nφ(+φ′) +Nφ(−φ′)
, (5.48)

with the signs being understood from Figure 5.9 (c). Ideally we do this measurement for a

large Eφ, i.e. at maximum fringe separation in Figure 5.9 (c). As we sweep α ∈ [−0.2◦, 0.2◦]

over 20 seconds, Figure 5.10 shows that Eφ only fluctuates with a small amplitude but never

varies strongly and sinusoidally. This demonstrates the phase stability of our relay lens

based MM-TQA. Note that in all measurements, the AOI scan range is already larger than

angle fluctuations expected in free-space quantum communication experiments to moving

receivers (e.g. [169], see above). Hence, the results are representative for potential outdoor

time-bin qubit quantum communication experiments.

The interested reader is referred to our paper [187] for a more rigorous assessment of

the entanglement quality using the negative partial transpose criterion. Here I would like

to conclude with an estimation for the CHSH-Bell parameter (5.27). The polarization

qubit observables B̂1 and B̂2 are measured by setting the QWP to θ = 0◦ and the HWP to

Θ = ±11.25◦. As mentioned above (description of experimental setup), we had no active

phase control for our MM-TQA and could only induce phase drifts over time. We do this by

directing a heat gun at the analyzers, which results in turbulence inside the interferometer.

We then monitor coincidences over time, as shown in Figure 5.11. Coincidences for Â1B̂1,

Â2B̂1 are shown in (a) and those for Â1B̂2, Â2B̂2 in (c). Due to lack of phase control

we were not able to set Â2 = X̂. The coincidences in the middle temporal bin thus

correspond to an arbitrary phase basis Â2 = φ̂. However, as the interferometer drifts over

time, there are moments where expectation values are maximized (or minimized in the
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complementary detector). In the analysis stage we can therefore search for expectation

values that maximize the CHSH-Bell parameter S, as shown in (b) and (d). We thus

extract S̃ = (2.42 ± 0.05) > Sclassical.
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Figure 5.11: Estimation of CHSH-Bell Parameter. (from Jin et al. [187]) Using the

time-bin qubit analyzer with relay optics, we perform coincidence measurements of the

observables required to calculate the CHSH-Bell parameter S. (a) The yellow and light

blue lines show coincidences for B̂1 (+/-) and Â1 (early temporal bin), the green and orange

lines show coincidences for B̂1 (+/-) and Â1 (late temporal bin), and the purple and blue

lines show coincidences for B̂1 (+/-) and Â2 = φ̂ (middle temporal bin). (c) The yellow

and light blue lines show coincidences for B̂2 (+/-) and Â1 (early temporal bin), the green

and orange lines show coincidences for B̂2 (+/-) and Â1 (late temporal bin), and the purple

and blue lines show coincidences for B̂2 (+/-) and Â2 = φ̂ (middle temporal bin). (b) and

(d) show surface plots of calculated expectation values for the projection measurements in

(a) and (c), respectively. Black dashed lines indicate times for which maximal expectation

values are found.
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5.7 Conclusion and Outlook

We realized two multimode time-bin qubit analyzers (MM-TQA) that are suitable for

measurements with spatially distorted photons. In multimode channels, as they propagate,

photons progressively populate more (transversal) spatial modes. This can be intentional

but most often it is a consequence of uncontrolled turbulences in the transmission medium.

In the kind of experiments we are interested in, namely quantum communication between

sender and receiver with a free-space channel linking them, we cannot avoid turbulences

and ignore their effect on efficiency, quantum bit error rate and so on. The results of our

demonstration are very promising indeed. First we showed that time-bin interferometers

equipped with correction optics can passively compensate the intrinsic path asymmetry of

unbalanced interferometers. In our case, the uncorrected time-bin interferometer supports

only (16 ± 1) % interference visibility for a multimode beam. With correction optics in

place, however, we measured up to (90 ± 1) %. Moreover, while the former drops with

increasing angle of incidence of the input beam, the latter stays constant. Hence, only

with correction optics in place can we hope to use time-bin qubits over turbulent free-

space channels. In the second part of this work we employed the MM-TQAs in an actual

entanglement experiment. We generated polarization-time-bin Bell states and demonstrate

average entanglement visibilities of up to (85 ± 1) %. This clearly shows that we are able

to access the strong correlations of entangled photon pairs despite the fact that one of

them was transmitted through a multimode channel. Though an entanglement visibility

of (85 ± 1) % may not seem high, with respect to the source visibility (which is in indeed

a bit low), we only lose 8 − 9 % through the multimode channel. The next step, then,

is to improve the interferometers (for example switch from Michelson to Mach-Zehnder

configuration to allow detection in a second, complementary, output port) and take them

outside for real field tests, i.e. quantum communication experiments through actual free-

space links.
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Chapter 6

Conclusion and Outlook

In this thesis we explored a broad spectrum of higher-order quantum optical interference

phenomena. We used one (Chapter 3), two (Chapters 4 and 5), and three (Chapter 2)

photons to tackle fundamental open questions and provide new methods, in particular for

quantum communication applications.

The main result is surely the experimental proof that strong correlations of three entan-

gled photons are transferable into an interferometric setting. The distillation of more than

90 % genuine three-photon interference shows how far we have come in less than seven

years after development of the first photon triplet source. Yet we also have to concede

that progress is rather slow, for where are photon quadruplet, quintet, ... sources? At this

point in time we can only guess at the fabulous interference landscapes that must exist

in these higher orders. One day it may be possible to say “I need ten-photon interference

with 80 % visibility, a little bit of nine-photon interference, say 2 %, nothing between four-

and eight-photon interference, and one- to three-photon interference, each with 6 %”. Is

it even possible? How so? What problems require such precise specification? Quantum

optics would surely benefit from answers to these questions and results will surely rub

off on quantum information processing implementations. A good way to start is to think

about the possible ways to combine one-, two-, three-,... photon interference phenomena

in addition to genuinely new phenomena that arise in those higher orders. However, we

can only hope to tackle these questions experimentally if we progress in designing sources

for multiphoton states with tailored (quantum) correlations.

In the meantime, we can advance our understanding of lower-order interference phenom-

ena and with “understanding” I mean a full classification. The mathematical structures

best equipped for such a task appear to be group and representation theory, which I used

here to identify interference terms in N -path (or N -slit) experiments. My confidence rests
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upon a certain refinement that the concept “alternatives” experiences in quantum theory

via the notion of distinguishability. If N alternatives are indistinguishable, then every

attempt to label them must fail—ergo we have symmetry in the system. The algebraic

properties are thus (partially) captured by group theory, and after “exposure” we can let

representation theory develop the picture for us. This already works remarkably well in

other disciplines. For example, symmetries of atomic arrangements are described by groups.

The effect of this symmetry on physical observables is then determined via representation

theory, namely vibrational spectra of molecules in this case. The three-slit experiment,

to which group theory was applied, is only a single photon system, but considering the

exchange symmetry of photons in linear optical networks alone (boson sampling), we can

get a feel for how powerful these methods become.

The classification will also require us to clearly identify classical and quantum trade-

marks in a given interference phenomenon. Of course, in order to obtain the HOM dips,

triangle and square waves shown in Chapter 4, we need to work in the single photon count-

ing regime. However, the theoretical derivation also shows how many classical features

factor in. The dip shape, for example, is entirely determined by the source’s spectral prop-

erties, which in turn is described by a classical random process. Though light is ultimately

quantized, we would do good not to throw all phenomena into the “quantum bin”, for

mathematical models represent, above all in the physical sciences, laws of thought, and if

we fail to recognize tiny features because of our inability to handle various mathematical

structures simultaneously, then how can we ever be audacious enough to seduce nature for

another act of interaction without interaction (which is what interference is, as far as the

superposition principle is concerned)?
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[154] E. Meyer-Scott, H. Hübel, A. Fedrizzi, C. Erven, G. Weihs, and T. Jennewein. Quan-

tum entanglement distribution with 810 nm photons through telecom fibers. Applied

Physics Letters, 97:1–4, 2010.

[155] Y. Miyamoto, T. Kuga, M. Baba, and M. Matsuoka. Measurement of ultrafast optical

pulses with two-photon interference. 18:900–902, 1993.

[156] R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and

A. J. Shields. Postselective two-photon interference from a continuous nonclassical

stream of photons emitted by a quantum dot. Physical Review Letters, 100:1–4, 2008.

172



[157] Z. Yan, E. Meyer-Scott, J. P. Bourgoin, B. L. Higgins, N. Gigov, A. MacDonald,

H. Hubel, and T. Jennewein. Novel high-speed polarization source for decoy-state

bb84 quantum key distribution over free space and satellite links. Journal of Light-

wave Technology, 31:1399–1408, 2013.

[158] Christopher J. Pugh, Sarah Kaiser, Jean-Philippe Bourgoin, Jeongwan Jin, Nigar

Sultana, Sascha Agne, Elena Anisimova, Vadim Makarov, Eric Choi, Brendon L.

Higgins, and Thomas Jennewein. Airborne demonstration of a quantum key distri-

bution receiver payload. Quantum Science and Technology, 2:024009, 2017.

[159] B. E. A. Saleh and M. C. Teich. Fundamentals of photonics. Wiley-Interscience,

2007.

[160] Jeanna Buldyreva. Collisional line broadening and shifting of atmospheric gases : a

practical guide for line shape modeling by current semi-classical approaches. World

Scientific, 2011.

[161] J. J. Olivero and R. L. Longbothum. Empirical fits to the Voigt line width: A brief

review. Journal of Quantitative Spectroscopy and Radiative Transfer, 17:233–236,

1977.

[162] R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Linden-

thal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst,
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Appendix A

Matlab Code for Finding Two-Photon

Coincidences

Presented here is a Matlab code to search time tag files for coincidences. It has been

used for the laser Hong-Ou-Mandel experiments. The first two columns of Table 4.2 show

a typical .dat file produced by our time taggers. The main text surrounding this Table

explains the meaning of the important variables in this code. The result of running this

code is the array “detc”. It contains the detection time differences of coincidences that fall

within the histogram window THist. I wrote this code with suggestions from Jean-Philippe

Bourgoin (optimizing loops).

1 clear; tic;

2 %% Set parameters and read in rawdata.

3 % Time Tagger resolution.

4 TTres=78.125*10ˆ−12;%156.25*10ˆ−12;
5 % Histogram size (coincidence window).

6 THist=30e−6;
7 % Time tagger channel number of detectors 1 and 2.

8 det1 ch=1; det2 ch=2;

9 rawdata=double(dlmread('filename.dat','\t'));
10 %% Generate two time tag lists for time tags from detector 1 and 2.

11 det1=[]; det2=[]; k=1; l=1;

12 for i=1:length(rawdata)

13 if rawdata(i,2)==det1 ch

14 det1(k)=rawdata(i,1);

15 k=k+1;

16 end

17 if rawdata(i,2)==det2 ch
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18 det2(l)=rawdata(i,1);

19 l=l+1;

20 end

21 end

22 clear rawdata;

23 %% Find D1−D2 coincidences

24 a=1; b=1; detc=[];

25 Nbins=ceil(THist/1e−7);
26 Tbin=floor(THist/TTres/Nbins);

27 ∆=Nbins*Tbin/2;

28 for i=1:numel(det1)

29 coinc=0;

30 for j=a:numel(det2)

31 c=det2(j)−det1(i);
32 if c>−∆

33 if coinc<0.5

34 if c<∆

35 detc(b)=c; % First coincidence.

36 a=j;

37 b=b+1;

38 coinc=1;

39 end

40 elseif c<∆

41 detc(b)=c; % Another coincidence.

42 b=b+1;

43 elseif coinc>0.5

44 break; % Exit loop; no more coincidences for this det1.

45 end

46 else

47 a=a+1;

48 end

49 end

50 end

51 toc
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Appendix B

Matlab Code for Finding Two-Photon and

Trigger Coincidences

Presented here is a Matlab code to search time tag files for coincidences with respect to

the modulator phase in the laser Hong-Ou-Mandel experiments. Again, raw data files look

like the first two columns of Table 4.2. However, here we have an additional detector

channel (channel 3 in this case) for the modulator trigger. The goal is to first find a

coincidence within a very narrow window and then find the time difference (the “phase”

variable) between this coincidence and the nearest (interpolated) trigger time stamp. Do

this for all coincidences and then save the phase variable. Do this for all optical delays

(retroreflector positions). Further data processing (histograms and data fitting) is done

with a Mathematica program. I wrote this code but benefited from discussions with Jean-

Philippe Bourgoin and Brendon L. Higgins (making efficient use of Matlab’s mod function

to calculate the phase).

1 clear; tic;

2 %% Set parameters.

3 % Time Tagger resolution.

4 TTres=78.125*10ˆ−12;%156.25*10ˆ−12;
5 % Coincidence window.

6 coinwin=4*TTres;

7 % The trigger rate, downsampled trigger rate and downsample factor.

8 trigrate=353*10ˆ6; dstrigrate=353*10ˆ3; dsfactor=trigrate/dstrigrate;

9 % Time tagger channel number of detectors 1, 2 and trigger.

10 det1 ch=1; det2 ch=2; trig ch=3;

11 % Retroreflector scan step size.

12 step=2; fileindex=15:step:57; histindex=1;
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13 %% Loop through all files.

14 for files=1:length(fileindex)

15 rawdata=double(dlmread(sprintf('HOM square 353MHz 353kHz %g.dat', ...

fileindex(files)),'\t'));
16 %% Generate three time tag lists for time tags from detector 1 and 2, ...

as well as laser trigger tags.

17 det1=[]; det2=[]; trig=[];

18 k=1; l=1; m=1;

19 shift=0;%1.4*10ˆ−9/TTres;
20 for i=1:length(rawdata)

21 if rawdata(i,2)==det1 ch

22 det1(k)=rawdata(i,1);

23 k=k+1;

24 end

25 if rawdata(i,2)==det2 ch

26 det2(l)=rawdata(i,1);

27 l=l+1;

28 end

29 if rawdata(i,2)==trig ch

30 trig(m)=rawdata(i,1)+shift;

31 m=m+1;

32 end

33 end

34 clear rawdata;

35 %% Find D1−D2 coincidences

36 a=1; b=1; detc=[];

37 for i=1:numel(det1)

38 for j=a:numel(det2)

39 if abs(det1(i)−det2(j))<coinwin/TTres
40 detc(b)=det1(i); % Coincidence.

41 b=b+1; a=a+1;

42 break;

43 end

44 if (det2(j)−det1(i))>coinwin/TTres
45 break; % Exit loop; no more coincidences for this det1.

46 end

47 a=a+1;

48 end

49 end

50 %% Find two downsampled laser triggers containing the coincidences.

51 c=1;d=1;phase=[];trigpair=[];

52 for i=1:numel(detc)

53 for j=c:numel(trig)−1
54 if (detc(i)−trig(j)>0) && (detc(i)−trig(j+1)<0)
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55 phase(d)=TTres*mod(detc(i)−trig(j),(trig(j+1)−trig(j))/dsfactor);
56 d=d+1;

57 c=j; % Don't need to look at previous trigger tags anymore.

58 trigpair(d)=j; % Index of trigger pair containing ...

coincidence.

59 break;

60 end

61 end

62 end

63 %% Save phases.

64 filename=strcat(sprintf('%g',fileindex(files)),'.xlsx');

65 xlswrite(filename,phase')

66 end

67 toc
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