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Abstract

It is well-known that dimension reduction techniques such as the Brownian bridge, principal

component analysis, linear transformation could increase the efficiency of Quasi-Monte

Carlo (QMC) methods. Caflisch et al. (1997), who introduced two notions of effective

dimension known as superposition dimension and truncation dimension, in part explain

the overwhelming success of these methods for high-dimensional finance applications.

By exploiting dimension reduction in QMC, we propose a new measure of effective di-

mension which we denote as the delta dimension. Unlike the previously proposed effective

dimensions, it is easy to compute delta dimension, including its dimension distribution. We

also propose a new dimension reduction technique known as the directional control (DC)

method. By assigning appropriately the direction of importance of the given function, the

proposed DC method optimally determines the generating matrix used to simulate the

Brownian paths. Because of the flexibility of our proposed method, it can be shown that

many of the existing dimension reduction methods are special cases of our proposed DC

method. Furthermore, considering the functions with multiple discontinuities or differen-

tiabilities, we propose a severity measure that allows us to identify the relative importance

of the various sub-functions, which allows us to dynamically construct the optimal path

generation method.

By exploiting dimension reduction techniques in portfolio of insurance contracts, we pro-

pose a real-time evaluation model, i.e. Green-mesh, to select smaller number of synthetic

representative points. We show that our pre-computed values could be recycled for eval-

uating incoming contracts. Unlike the general machine learning method, our green-mesh

real-time evaluation model only takes a little computing at time 0, and achieves much

higher accuracy.

By exploiting dimension reduction techniques in portfolio selection, we propose an Effec-

tive Portfolio (EP) model to select smaller number of stocks in portfolio selection and

uniquely determine the weights of selected stocks. We propose so called effective portfo-
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lio. We show that only certain portion of stocks dominant the whole market in which we

define the number of effective stocks as EPD. Unlike randomly selected stocks, our EPD

is a counting random variable with corresponding probability mass function, and it can be

shown that a better portfolio alpha and beta trade-off based on a sophisticated strategy

could be achieved via dimension reduction.
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Chapter 1

Introduction

Because of the complexity of derivative securities and the sophistication of financial models,

the integrals associated with finance applications typically cannot be evaluated analytically.

Consequently Monte Carlo (MC) method, which is first introduced in quantitative finance

by Boyle (1977), becomes a popular numerical method. However, MC method attains a

convergence rate of O(1/
√
N) where N is the number of simulation trials . MC method

is often criticized to be a slow method despite the convergence rate is independent of the

dimension. In mid 1990s, several reports have surfaced advocating the use of Quasi-Monte

Carlo (QMC) methods, as opposed to the classical MC methods. QMC offers a convergence

rate of O
(
N−1(logN)d

)
in dimension d. This rate is asymptotically more efficient than

the MC. The results in Joy et al. (1996) and Paskov and Traub (1995) showed that

QMC yields a much higher accuracy than the Monte Carlo (MC) method, even for several

hundred dimensions. As a result of these findings and the theoretically more efficiency

(than MC), there is a surge of interest among financial engineers and academicians in

using QMC methods to computational finance.

One key area of research focus is to provide a better understanding on why QMC can be

effective in finance applications. The analysis of variance (ANOVA) has been widely used

in the study of quasi-Monte Carlo (QMC) integration methods, where it is applied to var-
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ious notions of the effective dimension of an integrand. Using the ANOVA decomposition

of a function, Caflisch et al. (1997) defined two notions of the effective dimension: trun-

cation dimension and superposition dimension, in part explain the overwhelming success

of these methods for high-dimensional finance applications. Essentially, the truncation

dimension indicates the number of important variables which predominantly capture the

evaluation function f , and the superposition dimension measures to what extent the low-

order ANOVA terms dominate the function. By exploiting these definitions, Owen (2003)

proposed dimension distribution for a square integrable function to provide additional in-

sights to the effective dimension of a function.

However, when the dimension of a function is high, it is computationally burdensome

to compute the ANOVA decomposition for an arbitrary function. The first topic of this

thesis is to propose an easy-to-build effective dimension and dimension distribution for any

arbitrary function, and argue that the conditional tail dimension (CTD) of a dimension

random variable is a better measurement than the effective dimension.

Another area of research focus is to seek better QMC-based algorithms for evaluating high-

dimensional integrals. We now provide a brief overview connecting MC and QMC methods

to pricing European derivative securities. For a detailed exposition of these topics, see

Boyle et al. (1997), Glasserman (2004) and Lemieux (2009). For simplicity, we assume

that the dynamics of the asset price is governed by the Black-Scholes (BS) model so that

the risk-neutral process of the underlying asset St at time t, is given by

dSt = rSt dt+ σSt dBt, (1.1)

where r is the risk-free interest rate, σ is the volatility and Bt is the standard Brownian

motion.

By h(S) = h(S1, . . . , Sd) we denote as the payoff function of a particular derivative security

at maturity T years. Note that the payoff function depends on the asset prices Sj := Stj

at equally spaced times tj = j∆t for j = 1, . . . , d and ∆t = T/d. According to the option

2



pricing theory, the value of the financial derivative at t = 0 is

IE [e−rTh(S)], (1.2)

where IE [·] is the expectation under the risk-neutral measure. For example, the price of a

European arithmetic Asian option is IE [e−rT max(SA −K, 0)], where SA is the arithmetic

average of the underlying asset prices at times t1, . . . , td and K is the strike price.

It is easy to verify that the payoff function h(S) can be re-expressed as

h(S) = h(exp(µ1 + σx1), . . . , exp(µd + σxd)) := g(x), (1.3)

where µj = logS0 + (r − σ2/2) tj, for j = 1, · · · , d, and x := (x1, . . . , xd)
T ∼ Nd(0,Σ); i.e,

x is normally distributed with mean 0 and covariance matrix Σ with its entry given by

Σij = min(ti, tj) = ∆t min(i, j). (1.4)

Note that in (1.3) we have redefined h(S) as g(x) to emphasize the explicit role of x.

Consequently, the time-0 value of the financial derivative can be expressed as a Gaussian

integral:

V (g) := IE [g(x)] =
e−rT

(2π)d/2
√

det Σ

∫
IRd

g(x) exp

(
−1

2
xTΣ−1x

)
dx. (1.5)

From the point of view of integration, by setting x = Az, where AAT = Σ, z =

(z1, . . . , zd)
T ∼ Nd(0, Id) and Id is a d× d identity matrix, and then imposing the transfor-

mation z = Φ−1(u) = (Φ−1(u1), . . . ,Φ−1(ud))
T , the componentwise inverse of the standard

normal cumulative distribution function, the Gaussian integral (1.5) is transformed to

V (g) =
e−rT

(2π)d/2

∫
IRd

G(Az) exp

(
−1

2
zTz

)
dz = e−rT

∫
[0,1]d

G(AΦ−1(u)) du. (1.6)
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The change of variables x = Az is equivalent to the generation of the Brownian motions

(B1, . . . , Bd)
T = A (z1, . . . , zd)

T , (1.7)

where Bj is the Brownian motion at time tj. Hence we refer toA as the generating matrix of

the Brownian motion. A key insight to the above transformation is thatA can be arbitrary

as long as it satisfies AAT = Σ. Consequently, different specification of A yields different

methods of generating the Brownian motions. These methods are commonly known as the

path generating methods (PGMs) since they relate to the simulation of Brownian paths.

By defining zk = Φ−1(uk) and P := {ui, i = 1, . . . , N} as a low discrepancy point set over

the unit cube [0, 1]d, the QMC estimate of (1.6) is given by

Q(g,A,P) =
e−rT

N

N∑
k=1

G(Azk) =
e−rT

N

N∑
k=1

G(AΦ−1(uk)),

Clearly, the accuracy of the above estimate depends on the point set P , the payoff function g

and the generating matrix A. While it is known that the MC algorithms based on different

PGMs, i.e. different A, are equivalent since the mean square error of MC is determined by

the variance of the integrand, which is unchanged, different PGMs have significant impact

on QMC. This phenomenon arises as the resulting functionG(AΦ−1(u)) may have different

dimension structure and may also induce different smoothness property depending on the

chosen A. In particular, it is widely believed that techniques that reduce the effective

dimension of the function G increases the efficiency of QMC. As such, many dimension

reduction techniques such as the Brownian bridge (BB) (Moskowitz and Caflisch 1996), the

principal component analysis (PCA) (Acworth et al 1998), the linear transformation (LT)

(Imai and Tan 2006), orthogonal transformation on discontinuous function (OT) (Wang

and Tan 2012) and fast orthogonal transformation (FOT) method (Leobacher 2012), have

been proposed to increase the efficiency of QMC.

Papageorgiou (2002) pointed out that any decompositionAAT = Σ provides a construction
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for a discrete approximation of a Brownian path via Y = AZ, where Z is a standard

normal vector. In this context, the forward construction corresponds to the Cholesky

decomposition of Σ. However, Wang and Sloan (2011) show an “equivalence principle”,

which roughly states that every decomposition is equally bad and good for QMC, depending

on the function that one wants to integrate. In other words, every decomposition that is

good for one payoff function is bad for another.

This thesis designs the QMC-friendly path generation matrix (PGM) explicitly depending

on the function of interest under Delta approach for any arbitrary function. The proposed

DC method basically comprises of the following two phases:

Step 1. The first phase is a change of coordinates (variables), where we can transform

an original function so that the function after this transformation can be handled

effectively. The induction of the change of coordinates gives us another degree of

freedom that can be used to improve numerical efficiency. In practice, we judiciously

choose how to conduct the change of coordinates to reduce the nominal dimension

of the function. In order to keep the transformation meaningful for our purpose,

the first order of Taylor expansion is utilized. This operation is known as the delta

method.

Step 2. In the second phase of the design, we determine an optimal path-generation ma-

trix (PGM) based on the functional covariance matrix, namely, the covariance matrix

of the function after the transformation. Note that most of the existing dimension

reduction methods are based on a decomposition with respect to a given covariance

matrix for the underlying process. All possible path-generation methods, such as

Cholesky, BB, PCA and LT could be used in this phase, in response to the structure

of the transformed function, that further enhances the numerical efficiency of the

QMC. It is worth emphasizing that although the DC approach looks complicated at

first sight due to the introduction of the functional covariance matrix, it can facilitate

to specify an optimal PGM as will be demonstrated in our numerical demonstration.
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Furthermore, we also show that our DC methods can handle multiple non-differentiability

and multiple high-dimensionality at the same time and is equipped with enough flexi-

bility to handle complicated functions which cannot be properly handled by many other

dimension reduction methods.

When using a PGM to simulate trajectory of stock prices at time periods 1, 2, . . . , d, there

is an implicit ordering of how stock prices are being simulated. For example, the classical

STD method, with its path generation matrix derived from the Cholesky decomposition,

simulates the stock prices given S0 in the order {Ŝ1, Ŝ2, . . . , Ŝd}. On the other hand, the

PGM based on BB generates stock prices in the following order {Ŝd, Ŝd/2, Ŝ3d/4, . . . , Ŝ1},

assuming d is a power of 2. Similarly the LT method constructs the path generation matrix

by optimizing its first column, then second column, and iteratively until the d-th column.

A natural question to consider is that for these PGMs if there exists a better “ordering”?

More specifically, is it always optimal to first simulate the terminal stock price for the

BB method? Similarly, for the LT method is it always optimal to optimize the columns

starting from the first column? The “optimal” ordering of the BB construction has been

addressed in Lin and Wang (2008) who demonstrate that under their prescribed optimality,

it is never optimal to first simulate the terminal stock price. In fact they formally establish

that the first optimal stock price to be simulated is Ŝ3d/4.

Under the functions with multiple discontinuities or non-differentiabilities, we propose a

new measure that allows us to identify the relative importance of the various sub-functions,

which is called severity measure. Based on that, we propose a new PGM that explicitly

exploits the hierarchical order of functions. It turns out that once the preferred order is

determined, the flexibility of the LT method implies that an optimal generation matrix can

be determined accordingly. We label the resulting PGM that integrates the LT method

with the hierarchical order as the hierarchical liner transformation (HLT) method.

Motivated by the theme of QMC, we extend our dimension reduction on pricing large

portfolio of insurance contracts. In the last few decades, variable annuities (VAs) have

6



become one of the innovative investment-linked insurance products for the retirees. VA

is a type of annuity that offers investors the opportunity to generate higher rates of re-

turns by investing in equity and bond subaccounts. Its innovation stems from a variety

of embedded guaranteed riders wrapped around a traditional investment-linked insurance

product. The appealing features of these guarantees spark considerable growth of the VA

markets around the world. According to the Insured Retirement Institute, the VA total

sales in the U.S. were $130 billion and $138 billion for 2015 and 2014, respectively. Con-

sequently many insurance companies are managing large VAs portfolio involving hundreds

of thousands of policies. This in turn exposes insurance companies to significant financial

risks, and hence heightens the need for an effective risk management program (such as

the calculation of VA’s sensitivity or Greeks to underlying market risk factors) for VAs.

Because of the complexity of these products, closed-form pricing formulas exist only in

some rather restrictive modelling assumptions and simplified guarantee features. Hence, it

is a computational burden to price a portfolio of VA contracts via Monte-Carlo simulation.

Machine learning based methods such as the Kriging method or other spatial interpolation

methods were proposed to accomplish this task by many researchers. Although these

methods have already achieved a significant reduction in computational time, there are

some potential outstanding issues. We identify the following six issues and summon that

an efficient large VAs portfolio valuation algorithm should adequately address all of these

issues:

1. the complexity of the proposed algorithm,

2. the cost of finding representative VA policies,

3. the cost of initial training set, if any,

4. the cost of estimating the entire large VAs from the representative VA policies,

5. the computer memory constraint,

6. the portability to other large VAs portfolio valuation.

7



Inevitability of these issues become more pronounced with the size of the VAs portfolios

and the representative VA policies. More concretely, if Monte Carlo method were to price

a VAs portfolio consisting of 200,000 policies, the time needed is 1042 seconds, as reported

in Table 3 of Gan (2013). If one were to implement the method proposed by Gan (2013),

the computational time reduces remarkably by about 70 times with 100 representative

VA policies. However, if one were to increase the representative VA policies to 2000,

the reduction in computational time drops from 70 to 14 times. While we are still able

to achieve a 14-fold reduction in computational time, the deterioration of the proposed

method is obvious.

Alternatively, we provide another compromised solution attempting to alleviate all of the

issues mentioned above. More specifically, our proposed solution is based on the evalu-

ation of low discrepancy synthetic representative points. It has a number of appealing

features including its simplicity, ease of implementation, less computer memory, etc. More

importantly, the overall computational time is comparatively less and hence our proposed

method is a potential real-time solution to the problem of interest. Finally, unlike most

other competitive algorithms, our proposed method is portable, i.e. the results can be

recycled for other large VAs portfolio valuation.

Furthermore, motivated by the theme of QMC, our fifth topic is to import the idea of

dimension reduction into portfolio selection. In about the fourth century, Rabbi Issac bar

Aha proposed the following rule for asset allocation: One should always divide his wealth

into three parts: a third in land, a third in merchandise, and a third ready to hand. In

the literature on asset allocation, there have been considerable advances starting with the

pathbreaking work of Markowitz (1952).

In this thesis, we discuss the various models from the portfolio-choice literatures that we

consider. DeMiguel et at. (2009) has discussed that no general methods can consistently

beat 1/N, so we will instead focus on explaining how to potentially outperform 1/N both

theoretically and numerically by choosing smaller number of stocks. Following DeMiguel
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et. at. (2009), we use Rm
t to denote the m− vector of excess returns (over the risk-free

assets) on m risky assets available for investment at date t. The number of stocks m = N is

called as the total number of stocks. The m− dimensional vectors µmt is used to denote the

expected returns on the risky asset in excess of the risk-free rate, and Σm
t is denoted as the

corresponding m×m variance-covariance matrix of returns, with their sample counterparts

given by µ̂mt and Σ̂m
t , respectively. Let 1m denote an m− dimensional vector of ones, Im

indicate the m×m identity matrix, and xmt be the vector of portfolio weights invested in

the m risky assets, with 1 − 1Tmx
m
t invested in the risk-free assets. The vector of relative

weights in the portfolio with only-risky assets is

wmt =
xmt
|1Tmxmt |

,

where the normalization by the absolute value of the sum of the portfolio weights, |1Tmxmt |,

guarantees that the direction of the portfolio position is preserved in the few cases where

the sum of the weights on the risky assets is negative.

In general, when m = N , we consider an investor whose preferences are fully described by

the mean and variance of a chosen portfolio, xt. At each time t, the decision-maker selects

xt to maximize expected utility:

max
xt

xTt µt −
γ

2
xTt Σtxt, (1.8)

where γ is interpreted as the investor’s risk aversion. The solution of the above optimization

is xt = (1/γ)Σ−1
t µt.

We are trying to study under the framework of m� N . The fantastic part of our method

is to show that given any arbitrary portfolio, we could construct a so called “effective

portfolio” with Jensen’s alpha > 0 and portfolio beta < 1 via dimension reduction. i.e.

by choosing smaller number of stocks. We argue that each selected stock is treated as

a factor, defined in a linear multi-factor model, and we show that only small portion of
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stocks, denoted as the effective portfolio dimension (EPD), dominant the variance of the

whole market. Our proposed portfolio which depends on a predetermined beta value is

called effective portfolio (EP). Interestingly, we show that the EP yields a better portfolio

alpha and beta tradeoff. Due to the estimation error in the practical situation, we show

that our EP could be incorporated with mispricing factors, e.g. momentum and value.

Then our EP achieves smaller variance, portfolio alpha > 0 and portfolio beta < 1 with

small number of stocks.

The layout of this thesis is described as follows: Chapter 2 introduces dimension distri-

bution and argues that the conditional tail dimension (CTD) is a better measure than

the effective dimension. Chapter 3 designs our new QMC-friendly dimension reduction

techniques for an arbitrary function, and Chapter 3 discusses the severity of sub-functions

and the construction of PGM corresponding to different severities. Chapter 4 extends the

dimension reduction technique on the real-time pricing of a large portfolio of insurance

contacts. Then Chapter 5 proposes the effective portfolio to improve existing sophisticated

strategies under dimension reduction framework.

1.1 Review of Path Generation Method (PGM)

The objective of this section is to provide a brief overview of the existing PGMs, including

the standard way of generating the Brownian motions.

1.1.1 Forward or Standard (STD) Construction

The standard construction generates the Brownian motion sequentially as follow: given

B0 = 0,

Btj = Btj−1
+
√
tj − tj−1zj, zj ∼ N(0, 1), j = 1, . . . , n.
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This method takes O(n) operations to generate a path. The corresponding generating

matrix A is the Cholesky decomposition of the covariance matrix Σ, which takes the form

A = ASTD =



√
t1 0 · · · 0
√
t1
√
t2 − t1 · · · 0

...
. . . . . .

...
√
t1
√
t2 − t1 · · ·

√
tn − tn−1

 .

1.1.2 Principal Component Analysis (PCA)

Acworth et al. (1998) proposed the PCA construction, which is based on an eigenvalue

decomposition of the covariance matrix Σ, such that Σ = V TΛV , where V is the matrix

of its eigenvectors and Λ is a diagonal matrix of its eigenvalues. This method maximises

the concentration of the total variance of the Brownian path in the first few dimensions.

The path is obtained as follows

A = APCV =
√

ΛV =


√
λ1v11 ...

√
λdv1d

...
. . .

...
√
λ1vd1 ...

√
λdvdd

 ,

where vij denotes the j-th coordinate of the i-th eigenvector and λi denotes the i-th eigen-

value of the covariance matrix Σ satisfying λ1 ≥ λ2 ≥ · · · ≥ λd. Akesson and Lehoczky

(1998) showed that for i = 1, ..., d, the i-th eigenvalue and eigenvector of the matrix Σ can

be written as

vij =
2√

2d+ 1
sin

(
2i− 1

2d+ 1
jπ

)
(1.9)

λk =

(
4d sin2

(
2k − 1

2d+ 1

)
π

2

)−1

(1.10)
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SinceA is a full matrix, the PCA construction requires O (d2) operations for the generation

of one path instead of O(d) operations which are needed by forward construction. For large

d, this often increases the run time of the simulation and limits the practical use of the

PCA construction. It has been observed by Scheicher (2007) that a Brownian path using

PCA can be computed using O(d log(d)) floating point operations via certain discrete sine

transformation. Also see (Leobacher 2011).

1.1.3 Brownian Bridge (BB)

The BB method, which was first proposed by Moskowitz and Caflisch (1996), simulates the

Brownian motion by first generating the final value Bd, and then samples the intermediate

values Bbd/2c conditional on the values of Bd and B0. After that, this method recursively

fills the intermediate values on
(
B0, Bbd/2c

)
and

(
Bbd/2c, Bd

)
, where bxc denotes the greatest

integer less than or equal to x. In particular, if d is a power of 2, then BB generates the

Brownian motion as follows:

Bd =
√
TZ1,

Bd/2 =
1

2
(B0 +Bd) +

√
T/4Z2,

Bd/4 =
1

2

(
B0 +Bd/2

)
+
√
T/8Z3,

· · ·

Bd−1 =
1

2
(Bd−2 −Bd) +

√
T/2dZd, (1.11)

where Zi are independent standard normal random variables for i = 1, ..., d. BB construc-

tion corresponds to a certain matrix ABB such that ABBABB
T = Σ. For example, if

T = 4 and ∆t = 1, then the decomposition matrix corresponds to the BB method is
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ABB =


1/2 1/2

√
2/2 0

1 1 0 0

3/2 1/2 0
√

2/2

2 0 0 0

 .

More generally, suppose we are interested in constructing a discrete Brownian path (Bt1 , ..., Btd)

with covariance matrix Σ.

Algorithm 1.1.1. Suppose the elements of (Bt1 , ..., Btd) should be computed in the order

of Btπ(1), Btπ(2), ... , Btπ(d) for some permutation π of d Brownian paths. Consequently, in

computing Btπ(j), we need to take into account the previously computed elements. Fortu-

nately at most two of those are of relevance, the one next to π(j) on the left and the one next

to π(j) on the right. Now, for every j ∈ {1, ..., n}, L(j) := {k : k < π(j) and π−1(k) < j},

and R(j) := {k : k > π(j) and π−1(k) < j}. That is, L contains all the indices k that are

smaller than π(j) for which Btk has already been constructed and R contains all the in-

dices k that are greater than π(j) for which Btk has already been constructed. Then, if we let

l(j) :=

 0 if L(j) = φ

maxL(j) if L(j) 6= φ
,

r(j) :=

 ∞ if R(j) = φ

minR(j) if R(j) 6= φ
,

and set Bt0 = 0, we have

Btπ(j) :=

 Btl(j) +
√
tπ(j) − tl(j)Zj if r(j) =∞

tr(j)−tπ(j)
tr(j)−tl(j)

Btl(j) +
tπ(j)−tl(j)
tr(j)−tl(j)

Btr(j) +
√

(tπ(j)−tl(j))(tr(j)−tπ(j))
tr(j)−tl(j)

Zj if r(j) <∞
.

It is straightforward to check that the vector Bt1 , ..., Btn constructed in this way has again

covariance matrix Σ with Σij = (min(tj, tk)) for i, j = 1, · · · , d. It is obvious that the

13



Brownian bridge construction uses O(n) floating point operations. In particular, the clas-

sical BB construction are constructed in the order Bd, Bd/2, Bd/4, B3d/4, · · · .

The above description of the BB gives one implementation of generating the discrete Brow-

nian motions. The optimal permutation of the Brownian bridge construction in the sense

of explained variability is proved by Lin and Wang (2008) according to the following three

theorems:

Theorem 1.1.1. In a permutation-based construction of the Brownian motion B1, ..., Bd,

the optimal first step π1 is the integer nearest to (6d+ 3)/8.

Theorem 1.1.2. In a permutation-based construction of the Brownian motion B1, ..., Bd,

assume that Bq has been sampled (for some q with 0 ≤ q ≤ d − 1), while Bq+1, ..., Bd

have not yet been generated. Among Bq+1, ..., Bd conditional on the past value Bq, the local

optimal new step qnew is the integer nearest to (6d+ 2q + 3)/8.

Theorem 1.1.3. In a permutation-based construction of the Brownian motion B1, ..., Bd,

assume that Bq1 and Bq2 have been sampled (for some q1, q2 with 0 ≤ q1 < q2 ≤ d),

while Bq1+1, ..., Bq2−1 have not yet been generated. Among Bq1+1, ..., Bq2−1 conditional on

the past value Bq1 and the future value Bq2, the optimal new step is the integer nearest to

(q1 + q2)/2.

See Lin and Wang (2008) for the optimal permutations when d = 2, 4, 8, 16, 32, 64, 128, 256.

1.1.4 Orthogonal Transformation (OT)

Wang and Tan (2012) proposed an OT method for generating Brownian paths under Barrier

options.

Theorem 1.1.4. (Wang and Tan) Let C be a d× d positive definite matrix and let A0 be

a fixed decomposition matrix such that A0A0
T = C. Suppose that the indicator function

Λ(x) has the form

Λ(x) = Ih(qTx)(x), x = (x1, ..., xd)
T ∼ Nd(0,C), (1.12)
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where q = (q1, ..., qd)
T is a vector of constants and h(· ) is a function defined in R. If U is

a d× d orthogonal matrix, whose first column U1 is given by

U1 =
1

D
A0

Tq, (1.13)

where D :=
√
qTCq, the remaining columns are arbitrary as long as they satisfy the

orthogonality conditions, then by the transformation x = A0Uz, the function h(qTx)

involved in the indicator function Λ(x) is transformed to a function depending only on the

first component of z:

h(qTx) = h(Dz1).

Consequently, the indicator function Λ(x) is transformed to

Λ(x) = Ih(Dz1)<H(z), z = (z1, ..., zd)
T ∼ Nd(0, (I)).

If h(· ) is strictly increasing on R and if Ih(Dz1)<H(z) is further transformed by the inverse

normal transformation z = Φ−1(u), then the indicator function Λ(x) is transformed to a

one-dimensional function:

Λ(x) = Iu1<c(u), u = (u1, ..., ud)
T ∼ U(0, 1)d,

where c = Φ(D−1h−1(H)) is a constant. The discontinuities of the indicator function

Iu1<c(u) are aligned with the coordinate axes.

Proof. See Appendix D. 2

Theorem 1.1.4 offers a new PGM for simulating Brownian motion. Wang and Tan (2012)

referred to this new PGM as the orthogonal transformation (OT). The OT method is simple

to implement by constructing an orthogonal matrix U according to Theorem 1.1.4 and

taking the generating matrix to be A = A0U for some fixed A0 satisfying A0A0
T = C.

15



Whenever a function involves an indicator function of the form (1.12), Theorem 1.1.4

guarantees that the discontinuities are aligned with the coordinate axes. When a function

involves an indicator function which is not exactly the form (1.12), but is “close”to this

form in some sense, Theorem 1.1.4 is still useful in finding a good PGM as illustrated by

Wang and Tan (2012). The value of the simple situation in Theorem 1.1.4 is to give insight

of a function.

From a practical point of view, Wang and Tan (2012) mentioned two issues in Theorem

1.1.4.

1. Theorem 1.1.4 gives us only the first column of U . Other columns of U are found by

the Gram-Schmidt method or modified Gram-Schmidt algorithm (Wang and Sloan

2010). The determination of other columns also leaves room for further optimization

of the generating matrix by taking into account the knowledge of the function.

2. Another issue is the choice of the initial decomposition matrix A0. If the underlying

integrand is, say, a product of an indicator function of the form (1.12) with another

function G0(x), i.e. G(x) = G0(x)Λ(x), then the choice of A0 could have impact on

the practical performance of QMC methods, since Theorem 1.1.4 only focuses on the

indicator function Λ(x). If there is an indication that the function G0(x) is PCA-

friendly, then we may choose the initial decomposition matrix A0 to be APCA. If no

priori information is available, then A0 is taken to be the Cholesky decomposition

of C.

1.1.5 Linear Transformation

To derive the optimal orthogonal matrix A in general functions, Imai and Tan (2006)

proposed to approximate the objective function by linearizing the function g and then

maximizing the variance contribution according the first-order Taylor expansion to a gen-
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eral function g at around an arbitrary point ε = ε̂+ ∆ε:

g(ε) ≈ g (ε̂) +
d∑

k=1

∂g

∂εk
|ε=ε̂∆εk, (1.14)

and the approximated function is linear in the normal random variables ∆ε with

(
∂g

∂εk
|ε=ε̂
)2

(1.15)

to be the variability contributed by the kth component. The optimization of A is given by

max
A.k∈Rd

(
∂g(Aε)

∂εk
|ε=ε̂k

)2

subject to ‖A.k = 1‖ and 〈A.j ,A.k〉 = 0, for j = 1, ..., k − 1.

Furthermore, Imai and Tan (2009) extends the LT method into a more general way. By

addressing the general problem of estimating E(g(X)) where X = (X1, · · · , Xd)
T is a

vector of d iid random variables with arbitrary probability density function (pdf) f(x) and

cumulative distribution function (cdf) F (x). Note that the distribution of x may not be

normally distributed. Then we have

E[g(X)] =

∫
Ω

g(x)f(x1) · · · f(xd)dx1 · · · dxd,

where Ω is the domain ofX. By substituting yi = F (xi), i = 1, · · · , d, the above integration

reduces to the following problem:

E[g(X)] =

∫
[0,1]d

g(F−1(y1), · · · , F−1(yd))dy1 · · · dyd.

Now consider the transformation Z = Φ−1(Y ) where Φ represents the cdf of the standard
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normal distribution. Then E[g(X)] can be expressed as follows:

∫
· · ·

∞∫
−∞

g(F−1(Φ(z1)), · · · , F−1(Φ(zd)))φ(z1) · · ·φ(zd)dz1 · · · dzd = g(F−1(Φ(Z1)), · · · , F−1(Φ(Zd))),

where φ is the pdf of the standard normal, and Z = (Z1, · · · , Zd)T is a vector of indepen-

dent standard normal random variable. This implies that another consistent estimator of

E[g(X)] can be obtained via E[g(F−1(Φ(A1.Z)), · · · , F−1(Φ(Ad.Z)))], for any orthogonal

matrix A where Aj. corresponds to the j-the row of A. This is referred as the generalized

LT method (GLT).
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Chapter 2

Art of Dimension Distribution

Key contributions of this chapter

1. Propose a new measure of effective dimension known as the delta dimension.

2. Compared to the superposition and truncation dimensions, the delta dimension is

simple and it is easy to compute.

3. Propose two other measures of quantifying effective dimensions known as the tail

dimension and the conditional tail dimension.

4. Some justifications are provided to demonstrate the importance of the conditional

tail dimension in determining the efficiency of QMC.

2.1 Introduction

There is ample numerical evidence attesting to the competitive advantage of quasi-Monte

Carlo (QMC) methods in finance applications, even if these problems are of several hun-

dred dimensions. While the success of the QMC methods in finance applications cannot be

fully explained by the Koksma-Hlawka error bound, (see Niederreiter, 1992), it is widely

believed that it is attributed to the notion of effective dimension, as argued by Caflisch et

al. (1997). By exploiting the analysis of variance (ANOVA) decomposition of a function,
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Caflisch et al. (1997) proposed two versions of effective dimensions known as the superposi-

tion dimension and truncation dimension. As we will review in Section 2.3.2, the downside

of these measures is that it is computationally burdensome to compute them for an ar-

bitrary function, hence hindering their usefulness. Motivated by this limitation, the key

contribution of this chapter is to propose a new measure of effective dimension, which we

denote as the delta dimension. The proposed delta dimension has the advantage of its sim-

plicity and that it can easily be calculated for any arbitrary function. Furthermore, based

on the dimension distribution of a dimension random variable, we create other measures

known as the tail dimension and the conditional tail dimension. Some numerical evidences

are provided to demonstrate that the efficiency of QMC is linked to the conditional tail

dimension. The contributions of this chapter can be summarized as follows: (1) Propose

a new measure of effective dimension known as the delta dimension. (2) Compared to the

superposition and truncation dimensions, the delta dimension is simple and it is easy to

compute. (3) Propose two other measures of quantifying effective dimensions known as the

tail dimension and the conditional tail dimension. (4) Some justifications are provided to

demonstrate the importance of the conditional tail dimension in determining the efficiency

of QMC.

The rest of this chapter is organized as follows. Next section provides a brief overview of

the sampling methods based on the Monte Carlo (MC) and Quasi-Monte Carlo (QMC)

for estimating high-dimensional integrals. Section 2.3 then discusses the decomposition of

a function, including the ANOVA decomposition. Based on the ANOVA decomposition,

Section 2.4 formally defines the effective dimensions of Caflisch et al. (1997) as well as the

dimension distributions of Owen (2003). Finally, Section 2.5 presents our proposed new

measures of quantifying effective dimension. A numerical example is provided to conclude

the chapter to highlight the advantage of our proposed measures.
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2.2 Sampling Methods for Estimating High-Dimensional

Integrals

High-dimensional integrals appear in various mathematical models in finance. In many

cases, the arising integrals cannot be calculated analytically and hence are often resorted

to numerical methods. The curse of dimensionality for the classical multivariate quadrature

methods states that their efficiency decay exponentially with the dimension of the problem;

hence their applicability to estimating high-dimensional problems in finance is very limited.

In this section, we briefly review these methods as well as other sampling methods based

on Monte Carlo and quasi-Monte Carlo methods.

2.2.1 Classical Multivariate Quadrature Methods

We start with the numerical methods for the computation of high-dimensional integrals

I(f) :=

∫
[0,1]d

f(x)dx (2.1)

over the unit cube. Note that any rectangular integration domains [a1, b1] × ... × [ad, bd]

can be mapped to the unit cube by a simple linear transformation via

b∫
a

f(y)dy = (b− a)

1∫
0

f(a+ (b− a)x)dx.

We also consider numerical methods for high-dimensional integrals of the form

Iϕ(f) :=

∫
Rd

f(x)ϕd(x)dx

over the d-dimensional Euclidean space with the Gaussian weight function ϕd.
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All numerical quadrature methods approximate the d-dimensional integral I(f) by a weighted

sum of N function evaluations:

QN(f) :=
N∑
i=1

wif(xi), (2.2)

with weights wi ∈ IR and nodes xi = (xi1, ..., x
i
d) ∈ Ωd. Here, Ω is either [0, 1] or IR.

Depending on the choice of the weights and nodes, different classes of methods with vary-

ing properties are obtained, for examples, QMC, MC, polynomial-based, and sparse grid

methods. In this thesis, we are only interested in QMC and MC methods, with particular

focus in the high-dimensional finance applications.

2.2.2 Crude Monte Carlo (MC) Methods

The MC technique is possibly the most popular way of estimating the high dimensional

integral (2.1). It involves sampling points from a pseudo-random sequence so that the

MC estimate that corresponds to the estimator (2.2) is an equally weighted rule of the

following:

Q̂MC
N (f) :=

1

N

N∑
i=1

f(xi). (2.3)

where xi ∈ [0, 1]d and N denotes the number of random points used to estimate (2.1). The

law of large numbers ensures that the above MC estimate Q̂MC
N (f) converges to I(f) as

N → ∞. If f is square-integrable and let σ2 be the variance of f , then the MC estimate

Q̂MC
N (f) converges to I(f) at a rate of σ/

√
N , which is independent of the dimension d.

In practice, σ is typically estimated from the sample standard deviation as

σ̂N(f) =

√√√√ 1

N − 1

N∑
i=1

[f(xi)− Q̂MC
N ]2.

The Central Limit Theorem can then be used to construct the confidence interval of the

MC estimate to gauge its efficiency.
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While the MC method has some appealing features, including it is a flexible method with

a wide range of application, and its convergence rate is independent of dimension, never-

theless this method is often criticized for its slow rate of convergence. Consequently ways

of enhancing the efficiency of the crude MC method have been proposed. Among them

the variance reduction techniques such as the control variate, importance sampling, etc.

have been proposed. A comprehensive account of these methods can be found in stan-

dard textbook on MC methods. An excellent source of reference is Glasserman (2004).

The quasi-Monte Carlo methods, which we will discuss in the next subsection, is another

sampling-based method alternate to MC in an attempt to outperform the MC methods.

2.2.3 Quasi-Monte Carlo (QMC) Methods

As in the MC methods, the QMC methods are another type of equal-weight sampling

methods for estimating high-dimensional integrals (2.1). A critical difference between MC

and QMC methods lies in the properties of the points xi ∈ [0, 1]d, i = 1, . . . , N that

are used to evaluate (2.1). The former method relies on a sequence of points that are

randomly, uniformly, and independently generated from [0, 1]d. In contrast, the latter

method uses a specially constructed sequence known as the low discrepancy sequence. The

low discrepancy sequences are deterministic and are known to have greater uniformity than

the traditional pseudo-random sequences. As we have mentioned in the last chapter, the

irregularity or the uniformity of a set of points is measured by the discrepancy. Some

popular low discrepancy sequences are attributed to Halton (1960), Faure (1982), and

Sobol (1967).

It follows from the Koksma-Hlawka inequality that the worst case error bound of QMC is

of order O
(
N−1(logN)d

)
for integrands of bounded variation. This rate is asymptotically

better than the probabilistic O(N−1/2) error bound of MC. Unlike the MC methods, the

convergence rate of QMC depends on the dimension d, as reflected in the factor (logN)d.

In practical applications, QMC methods involving randomized low discrepancy sequences,
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as opposed to the traditional deterministic low discrepancy sequences, are typically imple-

mented. As we have discussed briefly that the traditional deterministic low discrepancy

sequences can be randomized via methods such as random shifts or random permutations

of digits. The advantage of using the randomized QMC permits an easy way of quantifying

the precision of the QMC estimate. See for example Tan and Boyle (2000), Ökten and

Eastman (2004) and Xu and Ökten (2015). For a survey on the randomized QMC, see

Lecuyer and Lemieux (2002).

2.3 Dimension-wise Decomposition

In this section we briefly review two possible ways of dimension-wise decomposition. The

first method is proposed by Griebel and Holtz (2010) and the second method is based on

the ANOVA decomposition. The latter decomposition has been exploited in quantifying

the effective dimensions of an arbitrary functrion.

2.3.1 Griebel and Holtz (2010)

Griebel and Holtz (2010) provide a general dimension-wise decomposition of an arbitrary

function. Let Ω ⊆ IR be a set and let

dµ(x) =
d∏
j=1

dµj(xj) (2.4)

denote a d-dimensional product measure defined on Borel subsets of Ωd. Here, x =

(x1, ..., xd)
T and µj for j = 1, ..., d are probability measures on Borel subsets of Ω. Let

V (d) be the Hilbert space of all square integrable functions f : Ωd → IR with the inner

product

〈f, g〉 :=

∫
Ωd

f(x)g(x)dµ(x).
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For a given set u ⊆ D, where D := {1, ..., d} denotes the set of coordinate indices and |u|

denotes the cardinality of u, the projections Pu : V (d) → V (|u|) can be defined as

Puf(xu) :=

∫
Ωd−|u|

f(x)dµD\u(x),

where xu denotes the |u|−dimensional vector containing those components of x whose in-

dices belong to the set u, and D\u denotes its complementary set in D so that dµD\u(x) :=∏
j /∈u

dµj(xj). In the special case with u = ∅, we have

P∅f(x∅) :=

∫
Ωd

f(x)dµ(x) =: I(f).

The projections define a dimension-wise decomposition of f ∈ V (d) into a finite sum ac-

cording to

f(x1, ..., xd) = f∅ +
d∑
i=1

fi(xi) +
d∑

i,j=1,i<j

fi,j(xi, xj) + ...+ f1,...,d(x1, ..., xd),

which is often written in a more compact notation as follows:

f(x) =
∑
u⊆D

fu(xu).

The 2d terms fu describe the dependence of the function f on the dimensions j ∈ u with

respect to the measure µ. They could be defined recursively by

fu(xu) := Puf(xu)−
∑
v⊂u

fv(xv), (2.5)

or equivalently given by

fu(xu) =
∑
v⊆u

(−1)|u|−|v|Pvf(xv).
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The resulting decomposition is unique for a fixed measure µ and orthogonal in the sense

that

〈fu, fv〉 = 0 for u 6= v.

2.3.2 ANOVA Decomposition

ANOVA decomposition is a way of decomposing a function into a sum of orthogonal func-

tions. By assuming f(x) is a square integrable function and denoting [0, 1]|u| as the

|u|-dimensional unit cube involving the coordinates in u, we can write f(x) as the sum of

its 2d ANOVA terms:

f(x) =
∑
u⊆D

fu(x),

i.e.

f(x) = f∅ +
d∑
i=1

fi(xi) +
∑
i<j

fij(xi, xj) + · · ·+ f1,2,··· ,d(x1, · · · , xd). (2.6)

The ANOVA terms fu(x) are defined recursively by

fu(x) =

∫
[0,1]d−|u|

f(x)dxD\u −
∑
v⊂u

fv(x)

with f∅ =
∫

[0,1]d
f(x)dx = I(f). The ANOVA term fu(x) is the part of the function de-

pending only on the variables xj with j ∈ u. The ANOVA terms enjoy some interesting

properties:

1.
1∫
0

fu(x)dxj = 0 for j ∈ u.

2. The ANOVA decomposition is orthogonal whenever u 6= v. i.e.
∫

[0,1]d
fu(x)fv(x)dx =

0.
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3. By letting σ2(f) :=
∫

[0,1]d
(f(x)− I(f))2dx =

∫
[0,1]d

f 2(x)dx− [I(f)]2 be the variance of

the function f , then the orthogonality implies that

σ2(f) =
∑
u⊆D

σ2
u(f),

where σ2
u(f) =

∫
[0,1]d

[fu(x)]2dx for |u| > 0 is the variance of fu, and σ2
∅(f) = 0.

In Sobol’ and Kucherenko (2005), the ratio σ2
u(f)/σ2(f) is known as the global sensitivity

index and it has been advocated to measure the relative importance of the term fu with

respect to the function f .

2.3.3 Special Case I

Griebel (2006) and Griebel and Holtz (2010) argue that ANOVA decomposition is closely

related to the multivariate Taylor expansion. Consider an infinitely differentiable, real-

valued function f(x) that depends on d independent variables x = (x1, · · · , xd)T ∈ IRd or

[0, 1]d. The Taylor expansion of f(x) can be expressed by

f(x) = f(µ) +
∞∑
j=1

1

j!

d∑
i=1

∂jf(µ)

∂xji
(xi − µi)j (2.7)

+
∞∑
j1=1

∞∑
j2=1

1

j1!j2!

∑
i1<i2

∂j1+j2f(µ)

∂xj1i1∂x
j2
i2

(xi1 − µi1)j1(xi2 − µi2)j2

+
∞∑
j1=1

∞∑
j2=1

∞∑
j3=1

1

j1!j2!j3!

∑
i1<i2<i3

∂j1+j2+j3f(µ)

∂xj1i1∂x
j2
i2
∂xj3i3

(xi1 − µi1)j1(xi2 − µi2)j2(xi3 − µi3)j3

+ · · ·

+
∞∑
j1=1

· · ·
∞∑
jd=1

1

j1!j2! · · · jd!
∑

1<2<···<d

∂j1+j2+···+jdf(µ)

∂xj11 · · · ∂x
jd
d

(x1 − µ1)j1 · · · (xd − µd)jd ,

where µi = IE(xi) and ∂jf(µ)

∂xji
means the j-th derivative with respect to xi. It is easy to see

that the first additive term in (2.7) is related to f defined in the ANOVA decomposition
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(2.6), the second additive term in (2.7) is related to
d∑
i=1

fi(xi) defined in the ANOVA

decomposition (2.6), · · · , and the last additive term in the formula (2.7) is related to

f1,2,··· ,d(x1, · · · , xd) defined in the ANOVA decomposition (2.6).

2.3.4 Special Case II

Lemma 2.3.1. If a function f has only the first order partial derivative with respect to

any xi in (2.7), for i = 1, · · · , d, then the ANOVA decomposition of f(x), which depends

on d independent variables x, is in the form

f∅ = f(µ)

f{i} =
∂f

∂xi
(µ)(xi − µi)

f{i,j} =
∂2f

∂xi∂xj
(µ)(xi − µi)(xj − µj)

· · ·

f{1,2,··· ,d} =
∂df(µ)

∂x1 · · · ∂xd

d∏
i=1

(xi − µi)

Proof: The Taylor expansion of f with only the first order partial derivative with respect

to any xi can be written as

f(x) = f(µ) +
d∑
i=1

∂f

∂xi
(µ)(xi − µi)

+
∑
i1<i2

∂2f

∂xi1∂xi2
(µ)(xi1 − µi1)(xi2 − µi2)

+
∑

i1<i2<i3

∂3f(µ)

∂xi1∂xi2∂xi3
(xi1 − µi1)(xi2 − µi2)(xi3 − µi3)

+ · · ·

+
∂df(µ)

∂x1 · · · ∂xd

d∏
i=1

(xi − µi).
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Since we have
∫

(xi − µi)dxi = 0, for any i = 1, · · · , d, assume that we have independent

marginal distributions of xi, it is obvious to see that each additive term in the Taylor

expansion is orthogonal to others, and the Taylor expansion is in the sum of all ANOVA

decomposition terms. i.e. f(x) = f∅ +
∑
i

f{i} + · · ·+ f{1,2,··· ,d}. 2

To conclude this section, we remark that in general it is computationally burdensome to

compute the terms in the ANOVA decomposition.

2.4 Truncation and Superposition Dimensions

By exploiting the properties of ANOVA decomposition, Caflisch et al. (1997) provide

two formal definitions of effective dimensions, known as the truncation dimension and the

superposition dimension.

Definition 2.4.1. The effective dimension of f in the truncation sense (or truncation

dimension) is the smallest integer dT such that

∑
u⊆{1,...,dT },u6=∅

σ2
u(f) ≥ ασ2(f), (2.8)

where α ∈ (0, 1).

In the above definition, the parameter α is arbitrary but it is often set to some values

close to one, such as 0.99. Roughly speaking, the truncation dimension represents that the

first dT variables are “important” variables of the function f . For large d, it is no longer

possible to compute all 2d ANOVA terms, but the truncation dimension can be computed

recursively by

Du(f) =

∫
[0,1]2d−|u|

f(x)f(xu,yD\u)dxdyD\u − (I(f))2, (2.9)

where Du(f) is computed by (2d − |u|)-dimensional integral with x = (xu,xD\u) and

y = (yu,yD\u). In practice the estimation of the truncation dimension is accomplished by
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estimating the integrals via MC methods. This requires computing at most d+ 1 integrals

with each integral of dimension up to 2d− 1.

The algorithm of computing the truncation dimension proposed by Barth et al. (2011) is

given as follow:

Algorithm 2.4.1. (truncation dimension):

Step 1: Compute I(f) and σ2(f)

Step 2: For i = 1, , , d

Compute D1,...,i(f) by (2.9).

If D1,...,i(f) > ασ2(f), then

return i

End If

End For

Definition 2.4.2. For α ∈ (0, 1), the effective dimension of f in the superposition sense

(or superposition dimension) is the smallest integer dS such that

∑
|u|≤dS ,u 6=∅

σ2
u(f) ≥ ασ2(f). (2.10)

The superposition dimension roughly represents the highest order of important interactions

between variables. The algorithm of computing the superposition dimension proposed by

Barth et al. (2011) is given as follow:

Algorithm 2.4.2. (superposition dimension):

Step 1: Compute I(f) and σ2(f), D (f tot) = 0, σ2
tot = 0

Step 2: For i = 1, ..., d

Compute σ2
i (f) = Di(f) by (2.9).

σ2
tot = σ2

tot + σ2
i (f)

End For

Step 3: If σ2
tot > ασ2(f)

return dS = 1
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End If

Step 4: For i = 1, ..., d

For j = i+ 1, ..., d

Compute Di,j(f) by (2.9).

σ2
i,j(f) = Di,j(f) - σ2(fi) - σ2(fj)

σ2
tot = σ2

tot + σ2(fi,j)

End For

End For

Step 5: If σ2
tot > ασ2(f)

return dS = 2

Else

return dS ≥ 3

End If

We remark that computing the superposition dimension is computational burdensome. It

requires to compute σ2
u(f), for u ∈ D, calculated from (2.9). This implies that if dS = 1,

we need to compute
(
d
1

)
values; if dS = 2, we need to compute

(
d
1

)
+
(
d
2

)
values, and etc.

Hence for large d and dS ≥ 3, it can be computationally intensive. This also explains why

the algorithm provided above only calculates the variance contributions of the order-1 and

order-2 terms of the ANOVA decomposition. Hence the algorithm works only if dS ≤ 2.

For each notion of effective dimension, it is also possible to define its corresponding di-

mension distribution, as discussed in Owen (2003). More specifically, assuming that the

dimension of any arbitrary function f is a random variable, Owen (2003) gives the following

two definitions of dimension distributions of f as follows:

Definition 2.4.3. Let DS denote the dimension random variable under superposition

sense. The dimension distribution of f (in the superposition sense) is the probability dis-
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tribution of |U | where Pr(U = u) = σ2
u/σ

2. It has probability mass function

Pr(DS = i) =
∑
|u|=i

σ2
u

σ2
,

for i = 1, ..., d.

Definition 2.4.4. Let DT denote the dimension random variable under truncation sense.

The dimension distribution of f (in the truncation sense) is the probability distribution of

max{j|j ∈ U} where Pr(U = u) = σ2
u/σ

2. It has probability mass function

Pr(DT = i) =
∑

max{j|j∈u}=i

σ2
u

σ2
,

for i = 1, · · · , d.

Remark 2.4.1. Since the set {u : max{j|j ∈ u} = i} ⊆ {u : |u| = i}, Pr(DT ≤ i) ≤

Pr(DS ≤ i), for i = 1, · · · , d.

Armed with the probability mass functions of the dimension random variables, it is possible

to obtain a number of other interesting information. For example, their cumulative mass

functions (CMFs) are easily derived. We will use FDS(i) and FDT (i) to denote the resulting

cumulative mass function forDS andDT , respectively. The mean dimensions corresponding

to the expectations of |U | and maxj∈U can similarly be calculated, as defined as follows:

The mean dimension of f in the superposition sense is defined as

mS =

∑
|u|>0

σ2
u|u|∑

|u|>0

σ2
u

,

and the mean dimension of f in the truncation sense is defined as

mT =

∑
|u|>0

σ2
u max{j|j ∈ u}∑
|u|>0

σ2
u

.
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2.5 Delta Effective Dimension

The objective of this section is to propose some other plausible measures of effective dimen-

sion. The key contribution of this chapter is also collected in this section. Our proposed

delta dimension is formally defined based on f(x) and A where x ∼ Nd(0,Σ) and assum-

ing that A is a decomposed matrix of Σ; i.e. AA′ = Σ. The proposed delta dimension is

defined as follows.

Definition 2.5.1. (Delta Dimension) For α ∈ (0, 1), consider a function f(x) = f(Az)

where z is a vector of d dimensional standard normal random variables, then the delta

dimension of f , denoted as dD, is the smallest integer k such that

dD = min{k : V ar(f(x̂1, · · · , x̂k)) ≥ αV ar(f)}

= min{k : V ar(f(A·1:kz1:k)) ≥ αV ar(f))},

where (x̂1, · · · , x̂k) = A·1:kz1:k, (A)·1:k is the first k columns of A, and z1:k is the first k

elements of z for k = 1, 2, ..., d. Note: the ordering in this definition is important as this

will have a direct impact on the “tail dimension”, which will be discussed later.

The term V ar(f(A·1:kz1:k)) corresponds to the variance as captured by the first k com-

ponents of x. Note that since f(A·1:kz1:k) may not be orthogonal to f − f(A·1:kz1:k),

this means f(A·1:kz1:k) may not be the ANOVA decomposition of f and hence dD will

be different from dT and dS. However, if f follows the definition in Special Case

II, then f(A·1:kz1:k) and f − f(A·1:kz1:k) are orthogonal. Hence, the correlation

between f(A·1:kz1:k) and f − f(A·1:kz1:k) are expected to be small.

There are two advantages associated with our proposed definitions of delta dimension.

1. The first advantage is that the delta dimension ties directly to the PGM A. As

pointed out in Chapter 1 that the efficiency of the QMC is intricately related to the

choice of PGM; i.e. A. Hence the delta dimension dD tells us how many columns

of A (i.e. the number of components of x) we need in order to achieve significant
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contribution of the total variance. Hence if dD is low relative to d, then the function

f under the PGM A is said to have low effective dimension in that the first dD

components of x are sufficient to capture at least α proportion of the total variance.

2. The second advantage lies in its simplicity and its ease of calculating dD. This is

especially important as this feature allows us to integrate the delta dimension with

the design of PGM.

Note that the delta dimension is defined in term of a function that depends on a set of

normal random variables. For a general function f(x) where x is a d-dimensional random

vector that needs not be normally distributed, the delta dimension of f is then defined after

applying the delta transformation. Hence the reason for naming the proposed measure as

the delta dimension. To see this more explicitly, let us suppose that we can transform f

to a function ψ{f1(x), f2(x), · · · , fk(x)}. We then let Y = {f1(x), f2(x) , ... , fk(x)}. By

applying the first-order vector Taylor expansion to each of the function fi with respect to

x around an arbitrary vector x̂ for i = 1, ..., k, we have

Y ≈ Y (x̂) +∇Y (x̂) (x− x̂) . (2.11)

Then, applying the Delta method (see Oehlert, 1992), the covariance matrix of Y , denoted

as Σf , is defined as follows:

V ar(Y ) = Σf = JΣJT (2.12)

where the linear approximation of J is the Jacobian matrix of Y at x; i.e.

J =


∂f1
∂x1

... ∂f1
∂xd

∂f2
∂x1

... ∂f2
∂xd

... ... ...

∂fk
∂x1

... ∂fk
∂xd

 .

Then, according to (2.11) and the Delta method, we can construct the effective dimension
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of the approximated function ψ(Afz), where

f = ψ(f1, · · · , fk) ≈ ψ(Afz),

AfA
T
f = Σf , and z is a vector of standard normal random variables.

Corresponding to the delta dimension defined in (2.5.1), we denote DD as its random

variable. The cumulative mass function of DD can be defined as follows:

Pr(DD ≤ i) := FDD(i) =
V ar(f(z1, · · · , zi))
V ar(f(z1, · · · , zd))

=
V ar(f(A·1:iz1:i)

V ar(f(Az))
,

for i ∈ {1, · · · , d}.

2.5.1 Other Dimension-Based Distributional Quantities

In this subsection, we introduce two additional measures of effective dimension known

as the tail dimension and the conditional tail dimension. These two measures apply to

any given dimension distribution. Let D denote a discrete dimension random variable

admitting values of {1, 2, . . . , d} and FD denote its cumulative mass function. Note that

D can be one of the DS, DT , or DD discussed above. The tail dimension is then defined as

follows:

Definition 2.5.2. (Tail Dimension) The tail dimension of the dimension random variable

D at the 100α % level, denoted by Tailα(D), is defined as

Tailα(D) = inf{k ∈ {1, ..., d} : FD(k) ≥ α}. (2.13)

Note that if D is DS, DT , or DS, then the Tailα(D) recovers their respective effective

dimensions dS, dS, or dD.

Associated with Tailα(D), we define the conditional tail dimension as follows:
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Definition 2.5.3. (Conditional Tail Dimension) The conditional tail dimension of D at

the 100α % level, denoted by CTDα(D), is defined as

CTDα(D) =
1

1− α

∫ 1

α

Tails(D)ds. (2.14)

Intuitively CTDα(D) measures the average dimension conditional on being greater than

the effective dimension. Note that in the context of risk management with D interpreted

as the loss random variable, then both (2.13) and (2.14) become the popular risk measures

known as the Value at Risk and the Conditional Tail Expectation, respectively.

As the dimension random variable is a discrete random variable, the equivalent definition

of (2.14) can be defined as follows:

CTDα(D) =
(β∗ − α)Tailα(D) + (1− β∗)IE(D|D > Tailα(D))

1− α
, (2.15)

where β∗ = max{β : Tailβ(D) = Tailα(D)}.

We remark that two functions may have the same variance and the same effective dimen-

sion, yet their conditional tail dimension can be very different. We argue that while the

effective dimension provides some measure of efficiency of QMC, the conditional tail di-

mension can be another useful indicator. To see this, let us consider an arbitrary function

f and assume the following decomposition applies:

f = fD≤Tail + fD>Tail,

where Tail = Tailα(D). In the above decomposition, fD≤Tail is a function that captures up

to Tail components of the function while fD>Tail depends on components that are greater

than Tail components. Both functions fD≤Tail and fD>Tail do not need to be orthogonal.

To continue, it is useful to introduce the concept of QMC-friendly, as defined in Wang

and Sloan (2011) and Wang and Tan (2013). Let V arMC(g) and V arQMC(g) denote the
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variance of the estimator of g using the method of MC and QMC, respectively.

Definition 2.5.4. (QMC-friendly) A function g is called “QMC-friendly” if the variance

reduction ratio (VRR) of g defined as

V RR(g) =
V arMC(g)

V arQMC(g)

is sufficiently large; i.e., V RR(g) � 1. Note: in QMC method, we apply low-discrepancy

sequences instead of random sequences to achieve this.

In other words, if g is QMC-friendly, then relative to the MC method, QMC is an extremely

effective method for estimating g.

By denoting V RRD≤k as V RR(fD≤k) and V RRD>k as V RR(fD>k), we have the following

result.

Theorem 2.5.1. If fD≤Tail is QMC-friendly, i.e., V RR(fD≤Tail) is sufficiently large, then

the QMC variance of f , i.e. the variance of the estimate f using QMC sequences, is

dominated by fD>Tail.

Proof:

V arQMC(f) = V arQMC(fD≤Tail) + V arQMC(fD>Tail)

+ 2ρQMC(fD≤Tail, fD>Tail)
√
V arQMC(fD≤Tail)× V arQMC(fD>Tail)

=
V arMC(fD≤Tail)

V RRD≤Tail
+
V arMC(fD>Tail)

V RRD>Tail

+ 2ρQMC(fD≤Tail, fD>Tail)

√
V arMC(fD≤Tail)

V RRD≤Tail
× V arMC(fD>Tail)

V RRD>Tail

→ V arMC(fD>Tail)

V RRD>Tail

= V arQMC(fD>Tail),

where ρQMC(fD≤Tail, fD>Tail) denotes the correlation between the QMC estimators of

fD≤Tail and fD>Tail. Note that in deriving the above results, we assume that V RR(fD≤Tail)
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is sufficiently large (due to the assumption of QMC-friendly) so that
V arMC(fD≤Tail)

V RRD≤Tail
→ 0.

Hence, the QMC variance of f is dominated by fD≥Tail. 2

The above theorem suggests that the effect as attributed to the fD>Tail cannot be neglected.

In fact, the following example suggests that its conditional tail dimension can be a useful

indicator for determining efficiency of QMC.

Example 2.5.1. (The importance of CTD) In this example we are interested in the role

of effective dimension and the conditional tail dimension on the efficiency of QMC when

estimating fi, i = 0, . . . , 8. We use f0 as the benchmark. The functions fi, i = 0, . . . , 8, are

shown in Table 2.1, assuming zi ∈ U(0, 1), for all i. These functions are chosen so that

their mean, their effective dimensions (both superposition and truncation) are exactly the

same. In particular, E(fi) = 0 and V ar(fi) = 1, for i = 0, . . . , 8. For each function, we

compute its variance, effective dimension, V RRQMC(f)/V RRQMC(fi), and CTDα(D).

Table 2.1: Impact of effective dimension, conditional tail dimension on the efficiency of
QMC

i fi Variance dS or dT
V arQMC(f0)
V arQMC(fi)

CTDα(D)

0 f0 =
√

0.9f1 +
√

0.099f2 +
√

0.001f4 1 4 = 1 4.24

1 f1 =
√

12(z1 − 1
2) 1 1 > 1 1

2 f2 =
√

124
4∏
i=1

(zi − 1
2) 1 4 < 1 4

3 f3 =
√

128
8∏
i=1

(zi − 1
2) 1 8 < 1 8

4 f4 =
√

1216
16∏
i=1

(zi − 1
2) 1 16 < 1 16

5 f5 =
√

0.95f1 +
√

0.05f2 1 1 > 1 4

6 f6 =
√

0.95f1 +
√

0.05f3 1 1 < 1 8

7 f7 =
√

0.95f1 +
√

0.01f2 +
√

0.04f4 1 1 < 1 13.6

8 f8 =
√

0.95f1 +
√

0.05f4 1 1 < 1 16

Note that for our benchmark function f0, it has variance of 1, effective dimension of 4,

and conditional tail dimension of 4.24. This implies that if effective dimension is a good

indicator of the efficiency of QMC, then fi, i = 1, . . . , 8, with effective dimension smaller

than 4 should be more efficient than the benchmark; i.e. V arQMC(f0)
V arQMC(fi)

> 1. The results seem
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to be consistent for functions fi for i = 1, . . . , 5. For functions f6, f7 and f8, they are less

efficient than f0 even though their effective dimensions are one. The measure given by the

CTD according to (2.15) appears to be a better indicator. For the same function f6, f7 and

f8, their CTD ranging from 8 to 16, which are substantially larger than the CTD of f0 of

4.24. Hence there is no reason why these functions are better than the benchmark function

f0, even though their effective dimension is one.

2.6 Conclusion

We proposed a new measure of effective dimension known as the delta dimension. Com-

paring to the superposition dimension and truncation dimension, the delta dimension is a

simple and easy to compute, and it helps to decompose a function into the summary of

an analytical tractable function and a remainder whose variance is close to zero. This also

provides a further research opportunity on seeking better QMC-based algorithms for eval-

uating high-dimensional integral. We also proposed the tail dimension and the conditional

tail dimension to quantify the effective dimensions, and proved that the conditional tailed

dimension is a better measurement than the effective dimension.

Key Drawbacks of this chapter

1. When using Delta dimension random variable, fD≤Tail may be correlated with

fD>Tail although their first order approximations are uncorrelated, and hence, larger

fD≤Tail may not necessarily give smaller fD>Tail

2. Although tail dimension and conditional tail dimension are good measures of the

efficiency of QMC methods, it is difficult to design a PGM that minimizes these

ratios.

39



Chapter 3

Dimension Reduction in

Quasi-Monte Carlo

Key contributions of this chapter

1. Propose a new path generation method (PGM) which we denote as the delta control

(DC) method;

2. Demonstrate that the DC method is a general method in that it encompasses many

existing PGMs as its special cases. Furthermore because of its flexibility, we provide

three implementations of DC, which we label them as FC, FP, and FMIX methods.

3. Extensive numerical results are provided to demonstrate the competitive efficiency

of the DC-based methods.

4. The DC method is not only powerful for high-dimensional problems, but its ef-

fectiveness remains even on problems with (multiple) discontinuities. This feature

distinguishes DC method from other existing PGMs.

5. Demonstrate through the numerical results, the conditional tail dimension (CTD)

can be a good measure of the efficiency of the QMC-based PGM.
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3.1 Introduction

Because of the complexity of derivative securities and the sophistication of financial models,

the integrals associated with finance applications typically cannot be evaluated analytically

and efficient numerical methods are demanded. Consequently, Monte Carlo (MC) method,

which is first introduced in quantitative finance by Boyle (1977), becomes a popular numer-

ical method. The MC method, however, is often being criticized to be inefficient despite

its convergence rate is independent of the dimension, as it only attains a convergence rate

of O(1/
√
N) where N is the number of simulation trials.

Since 90s, several studies have surfaced advocating the use of quasi-Monte Carlo (QMC)

methods to high-dimensional finance applications. The QMC offers a convergence rate of

O
(
N−1(logN)d

)
in dimension d. This rate is asymptotically more efficient than that of

the MC, especially in low dimension cases. The results in Joy et al. (1996) and Paskov and

Traub (1995) show that the QMC yields a much higher accuracy than the MC method,

even for dimension of several hundreds. As a result of both theoretical and empirical

findings, there is a surge of interest among financial industries and academics in using the

method of QMC.

However, it has been reported that there are some types of problems for which QMC may

not be friendly in the sense that the QMC may not be effective. To highlight the issue, let

us first look at a fundamental property that explains theoretical background of the QMC

method. The QMC method can be regarded as a deterministic counterpart to the MC

method, that is, the quadrature points are deterministically chosen in [0, 1]d. From the

well-known Koksma-Hlawka inequality (see Niederreiter, 1992), the approximation error,

denoted by |err|, is bounded by a product of two factors,

|err| ≤ VHK(f)D∗(u1, . . . ,uN). (3.1)

The factor D∗(u1, . . . ,uN) is called star discrepancy which quantifies the uniformity of
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the points u1, . . . ,uN . The second factor VHK(f) in inequality (3.1) is called the bounded

variation in the sense of Hardy and Krause.

The Koksma-Hlawka inequality provides important insights about factors that influence

the performance of the QMC. The dimension and the smoothness or discontinuity of the

integrand are two such key factors. It is shown that the QMC method yields a deterministic

error bound O(N−1(logN)d) for functions of a finite variation of d dimensions. This

convergence rate is asymptotically faster than that of the MC, but it clearly depends on

the dimension d.

In the QMC, a low-discrepancy sequence that satisfies the discrepancy bound of D∗ is

utilized for the simulation, hence, theoretically it outperform the MC asymptotically .

In the case for low dimensional integration, the QMC attains approximately a rate of

O(N−1(logN)d) that outperforms the MC. In a higher dimensional case, however, the

powers of log(N) in the convergence rate of the QMC are not negligible for practical sample

sizes, i.e., the theoretical higher asymptotic convergence rate of the QMC is not achievable

for practical applications in high dimensions. In non-finance applications, in particular,

Bratley et al. (1992) indicated that a QMC method offers no practical advantage over MC,

even for problems with relatively lower dimensions.

Another important factor for a success of QMC in high dimensions lies in the distinction

between nominal dimension and effective dimension. Using the “analysis of variance”

(ANOVA) decomposition of a function, Caflisch et al. (1997) defined two notions of the

effective dimension: truncation dimension and superposition dimension. (See Chapter 2)

Essentially, the truncation dimension indicates the number of important variables which

predominantly capture the evaluation function, and the superposition dimension measures

to what extent the low-order ANOVA terms dominate the function.

The argument implies that numerical accuracy of the QMC in practice can be improved

if we can effectively reduce the dimension of the function of interest. Many dimension

reduction techniques such as the Brownian bridge (BB) (Moskowitz and Caflisch 1996),
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the principal component analysis (PCA) (Acworth et al. 1998), the linear transformation

(LT) (Imai and Tan 2006), and fast orthogonal transformation (FOT) method (Leobacher

2012), have been proposed along this line to increase the efficiency of the QMC.

The efficiency of QMC also depends on the continuity of the function. If the function is

discontinuous, its variation in the sense of Hardy Krause might be unbounded and hence the

Koksma-Hlawka inequality is no longer applicable. Discontinuities may have a detrimental

effect on the efficiency of QMC, as pointed out in Berblinger et al. (1997), Morokoff

and Caflisch (1995) and Moskowitz and Caflisch (1996). The orthogonal transformation

(OT) proposed in Wang and Tan (2013) provides a QMC-friendly path generation method

(PGM), even in the presence of discontinuity.

Motivated by all of the above issues associated with QMC, this chapter proposes a new

PGM that has the potential of enhancing numerical efficiency of the QMC method. The

new PGM is denoted as the delta control (DC) approach. As we will shortly explain, the

DC has least the following properties:

• The DC approach can be viewed as a general approach in that it encompasses many

existing PGMs as its special case;

• The numerical examples demonstrate that the DC method is competitively more

efficient than the existing methods;

• Finally, the DC method can handle problems involving multiple discontinuity and

high-dimensionality at the same time. This is the feature that offers significant com-

petitive advantage of our proposed DC method, relative to other existing methods.

The remaining of this chapter is organized as follows. The next section provides a brief

overview of the PGMs. Section 3.3.2, which is the core contribution of this chapter, de-

scribes our proposed DC-based PGM. At high level, the proposed DC method can be

described as follows. We first demonstrate that by a judiciously transforming a given func-

tion of interest to another equivalent function, the nominal dimension can be artificially
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reduced. More importantly, through the first order Taylor expansion and the delta method,

we show that a new PGM can be constructed. As formally shown in Section 3.3.2, the new

PGM can be formulated in terms of the Jacobian matrix J and the functional covariance

matrix Af (see (3.11)). Armed with this result, the remaining task is to determine an

appropriate functional transformation, and hence the Jacobian matrix J and the func-

tional covariance matrix Af . As discussed in Section 3.3.2, the choice of the functional

transformation depends on the structure of the original function of interest. The existing

PGM matrix such as that based on the STD, BB, PCA can be exploited to provide fur-

ther dimension reduction. In fact, depend on the choice of the functional transformation,

many of the existing PGM can be derived as special cases of the DC method. Because of

the flexibility of defining the functional transformation, we propose three possible imple-

mentations of the DC method, and their relative efficiencies are assessed in the numerical

illustrations in Section 3.4.

3.2 A Brief Review of Path Generation Method (PGM)

Recall that in Chapter 1 we briefly review the MC and QMC approaches to estimating high-

dimensional European-style derivative securities. Under the Black-Scholes model, the key

to pricing high-dimensional European-style derivative securities boils down to evaluating

the following expectation involving normal random variables:

V (g) := IE [g(x)] =
e−rT

(2π)d/2
√

det Σ

∫
IRd

g(x) exp

(
−1

2
xTΣ−1x

)
dx, (3.2)

where x ∼ Nd(0,Σ) denotes a d-dimensional normal vector with mean vector 0 and co-

variance matrix Σ, the function g : IRd 7→ IR captures the payoff of the derivative security

at maturity T , and r is the risk-free rate, T is time of the expiration date of the option, Σ

represents a covariance matrix.

By exploiting the transformation x = Az where z = (z1, . . . , zd)
T ∼ Nd(0, Id), AA

T = Σ,
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and each normal variate can be transformed by z = Φ−1(u) = (Φ−1(u1), . . . ,Φ−1(ud))
T

with u ∈ (0, 1)d, where Φ−1 represents the inverse of the cumulative distribution function

of the standard normal, it is easy to see that (3.2) simplifies to

V (g) =
e−rT

(2π)d/2

∫
IRd

G(Az) exp

(
−1

2
zTz

)
dz = e−rT

∫
(0,1)d

G(AΦ−1(u)) du. (3.3)

Note that the above integral involves only the transformed function G(·) that depends

explicitly on the decomposed matrix A and the d-dimensional points u ∈ (0, 1)d. This

expression also implies that its value can be estimated via sampling method. In particular

for the QMC method, let P := {ui, i = 1, . . . , N} be a low discrepancy point set over the

unit cube [0, 1]d, then the QMC estimate of (3.3) is given by

Q(g,A,P) =
e−rT

N

N∑
k=1

G(Azk) =
e−rT

N

N∑
k=1

G(AΦ−1(uk)). (3.4)

Note that the above QMC estimate is a function of the point set P , the payoff function

G and the decomposed matrix A. More importantly, for a given point set P and a payoff

function G, it is well-known that the precision of the QMC-based estimator Q(g,A,P) is

highly dependent on the choice of A. In the context of the Black-Scholes model, the de-

composed matrix A determines how a trajectory of a Brownian motion is being generated.

For this reason, A is known as a path-generation matrix of the Brownian motion.

A key insight to the above transformation is that the path-generation matrix A can be

arbitrary as long as it satisfies AAT = Σ. Hence different selection of A yields different

path generation method (PGM), and hence different estimator of (3.4). As such PGM such

as that based on the Brownian bridge (BB) (Moskowitz and Caflisch 1996), the principal

component analysis (PCA) (Acworth et al 1998), the linear transformation (LT) (Imai

and Tan 2006), orthogonal transformation on discontinuous function (OT) (Wang and

Tan 2012) and fast orthogonal transformation (FOT) method (Leobacher 2012), have been

proposed. These methods increase the efficiency of QMC via dimension reduction.
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To conclude this section, it should be emphasized that if the point set P were from a

random sequence, then the resulting estimator Q(g,A,P) becomes the estimator of the

MC method. The efficiency of MC, on the other hand, does not depend on the choice of

A.

3.3 Delta Control (DC) Method: A New PGM

3.3.1 The Delta Method

The delta method is a method of deriving the approximate distribution of a nonlinear

function of an estimator from the approximate distribution of the estimator itself. If g is

a non-linear, differentiable vector-to-vector function, the best linear approximation, which

is the Taylor series up through linear terms, is

g(y)− g(x) ≈ ∇g(x)(y − x),

where x, y are arbitrary random variables, J := ∇g(x) is the matrix of partial derivatives

with respect to x, also called the Jacobian matrix. If gi(x) denotes the i-th component of

vector g(x), then the (i, j)-th component of J is ∂gi(x)
∂xj

.

The delta method is particularly useful when θ̂ is an estimator and θ is the unknown true

(vector) parameter value it estimates, and the delta method says

g(θ̂)− g(θ) ≈ ∇g(θ)(θ̂ − θ)

It is not necessary that θ and g(θ) be vectors of the same dimension. Hence it is not

necessary that ∇g(θ) be a square matrix. Here are some properties of Delta method:

1. The delta method is a good approximation for sufficiently small values of θ̂ − θ and

a bad approximation for sufficiently large values of θ̂ − θ.
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2. Overall, it is good if those “sufficiently large” values have small probability.

3. The delta method is particularly easy to use when the distribution of θ̂ − θ is mul-

tivariate normal, exactly or approximately.

4. The reason this is easy is that normal distributions are determined by their mean

vector and variance matrix, and there is a theorem which gives the mean vector and

variance matrix of a linear function of a random vector.

Theorem 3.3.1. Theorem of Delta Method of Functions of Normal R.V. Suppose θ̂ is

normal with mean vector θ and variance-covariance matrix Σ, then θ̂−θ has mean 0 and

variance-covariance Σ, and

E[g(θ̂)− g(θ)] ≈ 0

V ar[g(θ̂)− g(θ)] ≈ ∇g(θ)Σ∇g(θ)T

Remark 3.3.1. In this Chapter, we will focus on controlling functions fi = gi and x ∼

N(0,Σ), hence, we have

E(f(x)) ≈ E(f(0)),

V ar(f(x)) ≈ JΣJT ,

where J is the derivative of f with respect to x evaluated at 0. f(x) ≈ E(f(0)) +Jx, i.e,

this is a vector of first order Taylor approximation of f(x).

3.3.2 Our New PGM

In this section we describe our proposed PGM, which is denoted as the Delta Control (DC)

method. In the first part of this section we first explain why a functional transformation

leads to a new PGM that is defined in term of the Jacobian matrix J and the functional

covariance matrix Af with potential lower nominal dimension. Based on these results,

the second part of this section focuses on the choice of the functional transformation, and
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hence the proposed new PGM.

Recall that fundamentally we are interested in providing an efficient QMC-based algorithm

for estimating

IE [g(x)], where x ∼ Nd(0,Σ). (3.5)

To continue, let us introduce a new function ψ : IRk 7→ IR, k < d, such that

g(x) = ψ(f) = ψ(f1(x), · · · , fk(x)), (3.6)

where f = (f1, . . . , fk) with fi : IRd 7→ IR.

Note that the original problem is given by the function g(·) in terms of the normal random

vector x of d (nominal) dimensions. The functional transformation (3.6) enables us to view

the original problem equivalently as ψ(·) but depends on f of k functions f1, . . . , fk. By

construction, the nominal dimension of the problem is artificially reduced from d to k.

As an illustration, suppose we are interested in pricing an Asian option with its payoff at

maturity given by max

(
1
d

d∑
i=1

Si −K, 0
)

, where Si denotes the stock price at time i and

K is the strike price. A possible candidate for ψ and f are

ψ(f) = max

(
d∑
i=1

fi −K, 0

)
and fi = 1

d
Si. (3.7)

Another plausible set of candidates is

ψ(f) = max (f1 −K, 0) and f1 := 1
d

d∑
i=1

Si (3.8)

In this case, fi, i = 2, . . . , d can be arbitrary. We will discuss how to determine the functions

ψ and f in the second part of this section.

In what follows, we argue that the introduction of ψ via (3.6) provides us with another

way of defining a new PGM. To see this, let us consider the following delta approximation
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based on the first order Taylor expansion around an arbitrary point x0:

fi(x)− fi (x0) ≈ ∇fi (x0) (x− x0) , (3.9)

where J :=


∇f1(x0)

...

∇fk(x0)

 is the Jacobian matrix of {f1, · · · , fk} with respect to {x1, · · · , xd}

and is evaluated at x0. In other words, we have

J =


∂f1
∂x1

· · · ∂f1
∂xd

∂f2
∂x1

· · · ∂f2
∂xd

...
. . .

...

∂fk
∂x1

· · · ∂fk
∂xd


|x=x0

.

Assuming that x0 = 0 and f(x0) = 0, the function ψ in equation (3.6) can be written as

ψ(f(x)) ≈ ψ(Jx). (3.10)

This result indicates that, under the delta method, the vector {f1, · · · , fk} can be approx-

imated by a linear function of the normal vector x. More precisely we have
f1

...

fk

 ≈ Jx ∼ Nd(0,Σf ),

where Σf = JΣJT.

Let A and Af denote the decomposed matrices of Σ and Σf , respectively; i.e., AAT = Σ

and hence an appropriate choice of AfA
T
f = Σf . It is therefore easy to see that the

decomposed matrices of Σ and Σf are related to the Jacobian matrix J via

A = J−1Af . (3.11)
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The above relation demonstrates the reason for considering the transformation given in

(3.6). From the vector-valued function f , we obtain the corresponding J and Af . This

in turn enables us to derive a new PGM A based on (3.11) for estimating (3.5). This is

named as Delta control (DC) path generation method.

We now proceed to the selection of ψ and f . This is important to the DC method as it

explicitly determines J , and hence Af and A. The idea underlies the selection of f is

such that the effective dimension of the function ψ is as small as possible. Recall that in

Chapter 2 an extensive discussion was provided with respect to the effective dimension of

a function.

Ideally the functions f and hence Af should be chosen in such a way that the effective

dimension of the transformed function ψ is optimally minimized. In practice this can be

a challenging goal. Instead of seeking a best overall choice of f , here we argue that most

of the practical problems can be divided into the following three categories and hence

heuristic argument is provided to facilitate the selection of a reasonable choice of f and

hence Af . The resulting methods, which are special cases of the DC method, are denoted

as FC, FP, and FMIX. The numerical examples to be conducted in the next section attests

to the effectiveness of these methods. We now describe the following three implementations

of the DC methods.

FC Method The method of FC is motivated by the possibility that in some cases, the

function f may have one highly dominating component. Assuming that f1 is the

dominant function, then the function ψ can be approximated as

ψ(f1, · · · , fk) ≈ φ(f1),

where φ is a function that depends on the dominating function f1 in terms of variabil-

ity. In this case, the Cholesky decomposition is suitable since it focuses on the first

column of the matrix. In fact, under this particular setting its effective dimension

can optimally be reduced to one. A practical example that fits into this category is
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a weighted arithmetic average option (see Example 3.8). We refer to this method as

functional Cholesky construction (FC).

FP Method At the other extreme, let us suppose that the function ψ(f1, · · · , fk) is of

the following form

ψ(f1, · · · , fk) ≈ φ(f1 + f2 + · · ·+ fk),

where the sum f1 + f2 + · · ·+ fk emphasizes that each of these functions contributes

equally to the function φ. For function with this structure, it is found that the

construction based on the principal component analysis (PCA) can be very effective.

In fact numerous studies have documented that applying PCA to the above φ can

optimally reduce the superposition dimension of ψ to one. See Wang and Sloan

(2011). We refer to this method as functional principal component construction (FP).

Note: this is a very special case where all the k components are equally

important, however, when there is no information concluding that some

function is more important than others, PCA method is still a good way

to construct a good PGM.

FMIX Method While the above discussion (heuristically) addresses the two extremes

cases for which the methods of FC and FP can be effective, it should be pointed out

that in practice the decomposed matrix Af needs not to be strictly derived based

on either of these two methods. In particular, most problems do not necessary fall

into the two extremes as prescribed by the above two categories. Our proposed third

method is a mixture of both FC and FP methods so that the resulting method is

referred as the “FMIX” method. Under the FMIX method and for k1 < k, the first

k1 columns of Af are derived from the method of FC and the remaining columns are

based on the FP method. For example, by inspecting from f = (f1, f2, · · · , fk) with

corresponding Jacobian matrix J and functional covariance matrix Σf = JΣJT , the

method of FC is first applied to the functions f1, · · · , fk1 . This produces the first

k1 columns of Af , i.e. (Af )·1:k1 . This in turn leads to the first k1 columns of the
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PGM A, i.e. A·1:k1 = J−1(Af )·1:k1 . The residual columns are then determined by

the FP method; i.e. (Af )·k1+1:d(Af )
T
·k1+1:d = J(Σ −A·1:k1A

T
·1:k1

)JT . Then, the first

k columns of A can be constructed as

A·1:k = [A·1:k1 ,A·k1+1:k],

where A·k1+1:k = J−1(Af )·k1+1:d.

We now make following remarks:

Remark 3.3.2.

1. When k < d, our methods determine the first k columns of the PGM A, i.e. A·1:k.

The remaining d− k columns of A are constructed arbitrarily as long as AAT = Σ

so that

E[ψ(f1(x), · · · , fk(x))] = E[g(x)]

according to Equation (3.6), where x = Az and z ∼ N(0, I).

2. It is desirable to decrease the dimension k of the function ψ. A smaller k indicates

that nominal dimension of the transformed function has been decreased.

3. Even if the dimension k is not reduced, it is also promising when the structure of the

function ψ has a form that can be exploited by either the methods of FC, or FP, or

even FMIX.

4. Since J is set as a k by d matrix, it can be computationally intensive for large k

and d. For an efficient computation of Jacobian matrix and its inverse, see Xu et

al. (2016). Note that as J may not be a full rank matrix, the inverse of J is not

unique. See Moore (1920). Hence, there exist many different ways of constructing

the optimal PGM A to achieve the same QMC efficiency under DC approach.

5. Finally, it should be emphasized that although the proposed method is based on the ap-

proximation method in (3.9) for obtaining Af , it uses the original decomposed matrix
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A in utilizing the QMC. It guarantees that the QMC-based estimator is unbiased.

To conclude this section, we point out that the proposed DC approach can be interpreted

as a general class of method of deriving the PGM A. Hence many of the existing PGM

is a special case of the proposed DC method. To see this suppose we have fi(x) = xi, i =

1, . . . , k. This is a trivial case in that Σ = Σf . Hence any PGM used to determine Af is

also the same method that determines the PGM directly from A.

As another example, by setting f1(x) := xd, f2(x) := xd/2, . . ., and applying FC, the

resulting PGM reduces to BB method. On the other hand, if ψ(f) := f1(x) with f1(x) =

g(x) and apply the FC in the second phase, it is then equivalent to the LT method in

which the only first column of the orthogonal matrix is optimized.

3.4 Numerical Results

In this section, we demonstrate that the proposed methods are applicable to a wide range

of practical problems, and then show that they significantly enhance numerical efficiency

of QMC.

To compare the efficiency of our proposed methods relative to the crude MC methods, we

provide the variance reduction ratio (VRR). For each option, we simulate its price using

crude MC method and various QMC-based methods. In addition to estimating the option

price, we also compute the sample variance of the estimated price. We gauge the relative

efficiency of QMC-based method to MC method by computing the VRR defined by

VRR :=
V arMC(f)

V arQMC(f)
. (3.12)

Here V arMC(f) denotes the sample variance of the problem f estimated by the crude

MC method and V arQMC(f) represents the sample variance of the problem f estimated

by the respective QMC-based method. A VRR greater than one implies that the QMC-
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based method is more efficient than the crude MC method. The larger the VRR the more

favourable the underlying QMC-based method.

For the crude MC method, we use the 64-bit Mersenne Twister pseudo-random generator.

For the methods involving QMC, we use the Sobol’s Quasirandom Sequence Generator by

Bratley and Fox (1988), and a random linear scramble combined with a random digital

shift by Hong and Hickernell (2003) and Matousek (1998).

For the methods involving QMC, their sample variances are obtained by independent

batches. By denoting N as the number of low discrepancy points and M as the number

of independent batches, then {u(k)
j ∈ [0, 1]d; j = 1, . . . N, k = 1, . . . ,M} corresponds to the

j-th d-dimensional low discrepancy point of the k-th independent batch. An estimate of

the option price for the k-th independent batch is given by

µ̂(k) :=
1

N

N∑
j=1

g
(
u

(k)
j

)
. (3.13)

In practice, u
(k)
j needs to be transformed to the desired random variates depending on the

distributional assumption of the underlying assets. The option price is then approximated

by the pooled estimate over M independent estimates {µ̂(k), k = 1, . . . ,M} as

µ̂ :=
1

M

M∑
k=1

µ̂(k). (3.14)

The sample variance, which measures the variability of µ̂, is then computed as

σ̂2 :=
1

M − 1

M∑
k=1

(
µ̂(k) − µ̂

)2
. (3.15)

In other to ensure fairness between MC and QMC methods, the number of points for the

MC method is MN so that the variance of the MC estimate can be produced in the usual

manner.

54



Throughout this section, we assume the underlying asset price process follows the Black-

Scholes model with the following parameter values:

• initial asset price S0 = 100,

• time to maturity T = 1,

• risk-free rate r = 0.1, and

• volatility σ = 0.2.

In addition to the proposed DC-based methods, for comparison we also consider the fol-

lowing methods which are commonly used in the QMC methods (see also Chapter 1):

1. Standard approach (STD) with A corresponds to the Cholesky decomposition of Σ;

2. Principal component analysis (PCA) method of Acworth et al. (1998);

3. Brownian bridge (BB) construction of Moskowitz and Caflisch (1996);

4. Linear Transformation (LT) construction of Imai and Tan (2006).

To compute the estimators (3.13)-(3.15) we use M = 100 and N = 4096 for each of

the above methods. Finally, by setting α = 0.95, whenever applicable we also produce

FD(1), FD(2), FD(3), and CTDα(D), where D ∈ {DS, DT , DD}. As defined in Chapter

2, FD(·) denotes the cumulative mass function (CMF) of the dimension random variable

D and CTDα(D) corresponds to the conditional tail dimension (2.14) at α confidence

level. The random variables DS, DT , and DD represent, respectively, the superposition,

truncation and delta dimension random variables. The CTDα(D) for D ∈ {DS, DT , DD}

are computed according to the (2.15). Recall also that comparing their CMF allows us

to address the relative magnitude of their effective dimension; i.e. the Tailα(D) for D ∈

{DS, DT , DD} as defined in (2.13).
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3.4.1 Arithmetic Asian Option

For the first example, we consider discretely monitored arithmetic Asian call options with

different exercise prices and different monitoring frequencies. Their payoffs are given by

h1(S) = max

(
1

d

d∑
i=1

Si −K, 0

)
,

where S = (S1, . . . , Sd) with Si represents i-th monitored underlying asset price, and K is

the exercise price of the option. The arithmetic Asian option is one of the most popular

financial instruments to hedge an operating profit in nonfinancial industries. Option of this

type has generated a significant interest among academics due to its lack of tractability

and hence numerous numerical procedures have been proposed.

For the FP method, we set ψ(f) = max

(
d∑
i=1

fi −K, 0
)

with fi = 1
d
Si. For the FC method,

we set ψ(f) = max (f1 −K, 0) with f1 := 1
d

d∑
i=1

Si and fi, i = 2, . . . , d can be arbitrary. In

the examples we simply follow the order of the Brownian bridge construction.

Table 3.1: VRRs of Arithmetic Asian Options (h1(S)) on various PGMs
d K STD PCA BB LT FP FC
16 90 247.50 13318.52 3286.68 14257.02 16469.31 15087.19
16 100 75.76 9808.65 1500.36 9241.58 11694.19 10217.05
16 110 28.32 3911.06 553.64 4471.20 5248.01 4242.79
64 90 118.68 17331.31 3239.18 12621.27 21272.76 15987.61
64 100 42.33 7912.42 1433.32 6973.41 13907.24 7886.25
64 110 12.67 5016.97 464.16 4393.73 6167.23 4830.13
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Table 3.2: Cumulative Mass Function and Conditional Tail Dimension of h1(S)
with K = 100 and α = 95%
d CMF STD PCA BB LT FP FC
Truncation Dimension(DT )

16 FDT (1) 0.136436 0.987793 0.752961 0.999399 0.983821 1.000000
16 FDT (2) 0.262657 0.997401 0.933346 0.999581 0.997911 1.000000
16 FDT (3) 0.384212 0.999182 0.954294 0.999581 0.999135 1.000000
16 CTDα 13.041883 1.329084 9.302353 1.032612 1.388176 1.000049
64 FDT (1) 0.030108 0.987554 0.728587 0.999629 0.983768 0.999715
64 FDT (2) 0.064833 0.998105 0.927200 0.999682 0.997665 0.999808
64 FDT (3) 0.100569 0.999545 0.950177 0.999749 0.999082 0.999827
64 CTDα 49.325668 1.311369 33.437341 1.041029 1.410484 1.019190
Delta Dimension(DD)

16 FDD(1) 0.199431 0.977257 0.789979 0.982863 0.973734 0.982970
16 FDD(2) 0.335630 0.990446 0.939414 0.986819 0.990664 0.989711
16 FDD(3) 0.452092 0.994205 0.957359 0.988008 0.993963 0.991132
16 CTDα 12.950284 2.128261 8.919705 2.472921 2.190194 2.351469
64 FDD(1) 0.067515 0.977229 0.773450 0.982731 0.973656 0.983093
64 FDD(2) 0.118362 0.990393 0.934347 0.989794 0.990520 0.989187
64 FDD(3) 0.161749 0.994055 0.953493 0.991752 0.993755 0.990568
64 CTDα 49.453242 2.593105 30.883266 3.425480 2.672298 3.195196

By assuming d ∈ {16, 64} and K ∈ {90, 100, 110}, the results are depicted in Tables 3.1

and 3.2. Table 3.1 reports VRRs of the PGMs STD, PCA, BB, as well as our proposed

FP and FC. Table 3.2 presents the CMF and CTD for the truncation and delta dimension

random variables. Based on these results, we make the following remarks:

• The VRRs reported in Table 3.1 are greater than 1, signifying that the QMC-based

methods are more efficient than the classical MC.

• The dimension reduction methods PCA, BB, LT, FP and FC significantly outperform

the QMC-based STD, demonstrating the tremendous efficiency can be gained from

using methods that reduce the effective dimension of the problem.

• More importantly both implementations of FP and FC are very competitive, partic-

ularly the Delta-based FP which outperforms the rest of the methods.
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• The impact of PGMs on the dimension reduction can also be seen from Table 3.2.

Apart from the STD, the remaining methods’ CMF are very close to 1, indicating

that the effective dimension under these methods tend to be very small. In fact for

the methods of LT and FC, the effective dimension reduces to the best case of one

at 99% level. Note that the corresponding CMF for the superposition dimension

variable is not reported since its FDS(1) is already very close to 1 for all PGMs and

hence their effective dimension are reduced to one in the superposition sense.

• The superposition dimension FDS(1) is close to 1 and hence its CTD is also close

to 1. The truncation and delta dimensions’ CTDs suggest that PCA, LT, FP and

FC are better than STD and BB. However, the truncation CTDs prefer LT and FC

methods, while the delta CTDs prefer PCA and FP methods although their VRRs

are all very comparable to each other.

3.4.2 Weighted Arithmetic Average Options

The second example is a weighted average option whose payoff function is given by

h2(S) = max

(
d∑
i=1

wiSi −K, 0

)
.

where wi represents the weight corresponds to the i-th monitoring asset price Si. In our

examples, we consider two sets of weights:

• Increasing weights such that wi = ci for i = 1, ..., d, where c is a normalized constant;

• Decreasing weights such that wi = ci−1 for i = 1, ..., d, where c is a normalized

constant.

Controlling weights in these manners allows us to examine the impact these weights may

have on the numerical efficiency of the PGMs.

For the FP method, we design ψ(f) = max

(
d∑
i=1

fi −K, 0
)

with fi = wiSi. For the FC, we

58



set ψ(f) = max (f1 −K, 0) with f1 :=
d∑
i=1

wiSi. As in the previous example, fi, i = 2, . . . , d

can be arbitrary and in our examples we simply follow the order of the Brownian bridge

construction.

Table 3.3: VRRs of Weighted Arithmetic Average Asian Option (h2(S)) with
increasing weights on various PGMs

d K STD PCA BB LT FP FC
16 90 310.55 10535.70 3947.59 10638.26 10667.03 11032.83
16 100 74.53 9073.61 1859.78 8771.67 8610.59 9194.50
16 110 23.51 6187.36 732.58 5972.13 5022.56 5602.22
64 90 71.30 17339.32 4290.79 16239.49 16307.56 17678.54
64 100 25.83 10234.41 2517.37 10368.61 10115.28 10461.20
64 110 12.82 4733.65 966.90 4694.12 4496.15 4907.44

Table 3.4: Cumulative Mass Function and Conditional Tail Dimension of h2(S)
with increasing weights, K = 100 and α = 95%
d CMF STD PCA BB LT FP FC
Truncation Dimension(DT )

16 FDT (1) 0.089534 0.995550 0.842003 0.999417 0.978965 1.000000
16 FDT (2) 0.180833 0.999771 0.947809 0.999730 0.996946 1.000000
16 FDT (3) 0.278347 0.999987 0.950538 0.999749 0.999042 1.000000
16 CTDα 13.860213 1.095333 10.677013 1.036053 1.528120 1.000000
64 FDT (1) 0.016695 0.996474 0.815324 1.000000 0.980169 0.999860
64 FDT (2) 0.039725 0.999890 0.938918 1.000000 0.996841 0.999860
64 FDT (3) 0.063909 0.999990 0.942124 1.000000 0.998796 0.999874
64 CTDα 52.676944 1.072936 38.316367 1.000000 1.495347 1.019084
Delta Dimension(DD)

16 FDD(1) 0.142967 0.983420 0.863754 0.986989 0.973797 0.987485
16 FDD(2) 0.250099 0.993159 0.952060 0.990024 0.992016 0.992666
16 FDD(3) 0.348544 0.995608 0.955243 0.990174 0.995406 0.994516
16 CTDα 13.869771 1.848697 9.964406 2.467868 2.022111 1.996717
64 FDD(1) 0.044253 0.983590 0.845682 0.987463 0.973843 0.987529
64 FDD(2) 0.081948 0.993194 0.945215 0.992714 0.991970 0.992041
64 FDD(3) 0.114672 0.995471 0.948736 0.993512 0.995285 0.993926
64 CTDα 52.725242 2.226043 37.905897 2.863392 2.371733 2.765151
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Table 3.5: VRRs of Weighted Arithmetic Average Asian Option (h2(S)) with
decreasing weights on various PGMs

d K STD PCA BB LT FP FC
16 90 1134.90 5480.53 2967.61 26506.31 25571.58 29849.25
16 100 138.89 1586.89 867.78 15981.52 12151.16 16866.35
16 110 43.24 434.65 160.59 2693.42 2104.61 2958.46
64 90 767.28 6021.82 5198.30 20489.94 18734.41 20443.36
64 100 43.04 853.26 483.45 14884.76 10404.32 15562.73
64 110 4.49 103.71 53.64 1612.56 702.49 1613.44

Table 3.6: Cumulative Mass Function and Conditional Tail Dimension of h2(S)
with decreasing weights, K = 100 and α = 95%

d CMF STD PCA BB LT FP FC
Truncation Dimension(DT )

16 FDT (1) 0.331484 0.811373 0.534034 0.997988 0.911462 0.999412
16 FDT (2) 0.518053 0.924270 0.787230 0.998371 0.992173 0.999412
16 FDT (3) 0.648316 0.960244 0.904404 0.999080 0.998897 0.999412
16 CTDα 10.895650 4.994556 7.060890 1.171092 2.182018 1.075775
64 FDT (1) 0.137104 0.775593 0.492752 0.998350 0.809732 0.999047
64 FDT (2) 0.231132 0.895025 0.747383 0.998599 0.976601 0.999398
64 FDT (3) 0.306772 0.934386 0.871662 0.998712 0.996363 0.999816
64 CTDα 41.028551 9.281665 17.915896 1.168267 2.567660 1.051791
Delta Dimension(DD)

16 FDD(1) 0.404419 0.845702 0.604571 0.974229 0.902069 0.974721
16 FDD(2) 0.578288 0.937609 0.826404 0.979261 0.978685 0.984448
16 FDD(3) 0.691687 0.965889 0.919691 0.986342 0.989646 0.988891
16 CTDα 10.897150 4.991014 7.008862 3.306013 3.106338 2.786054
64 FDD(1) 0.208022 0.817471 0.569521 0.972525 0.821409 0.973138
64 FDD(2) 0.308536 0.913212 0.792957 0.983175 0.960875 0.982737
64 FDD(3) 0.382861 0.944580 0.892412 0.985528 0.983089 0.987540
64 CTDα 41.459278 8.989668 18.029935 4.822205 4.567622 4.021737

By assuming d ∈ {16, 64} and K ∈ {90, 100, 110}, the VRRs are depicted in Tables 3.3

and 3.5 for the options with increasing and decreasing weights, respectively. Similarly

the CMFs for the truncation dimension variable are shown in Tables 3.4 and 3.6 for the

respective cases with K = 100. We draw the following remarks based on these results:

• Similar to the last example, all the QMC-based PGMs are more efficient than the
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classical MC methods and that STD is the least efficient.

• While the QMC-based PGMs are efficient, it is of interest to note that the weights

can have a non-trivial effect on these PGMs. In particular, the efficiency of PCA

and BB declines as the weight changes from increasing to decreasing. In contrast,

PGMs such as STD, LT, FP and FC exhibit an increased in performance for the

same change in the weights (at least for at-the-money and in-the-money options).

• The FC method appears to be the most efficient in most cases, regardless of the

weighting functions.

• The dimension distribution is also affected by the weighting function. While the

method of STD is the least effective at dimension reduction, its effective dimension

is lower with decreasing weights. On the other hand, the dimension reduction is less

effective under the decreasing weighting function for both PCA and BB. This may in

part account for the decline in their efficiency as we change from increasing weights

to decreasing weights. In contrast, in term of the dimension distribution, LT, FP and

FC appear to be less affected by the weights. In most cases, their effective dimensions

reduce to one.

• The superposition dimension has CMF(1) close to 1 and hence their CTDs are also

close to 1. The truncation and delta CTDs both tell us that PCA,LT,FP and FC out-

perform STD and BB when the weights are increasing and LT,FP and FC outperform

others when the weights are decreasing.

• When the weights are increasing, both truncation CTDs prefer PCA, LT and FC,

however, delta CTDs prefer PCA,FP and FC although there is no significant evidence

which PGM among PCA,LT,FP and FC is the best in the Table 3.3. It is still

interesting to see that truncation dimension prefers LT comparing to PCA when

they have similar VRRs.

• When the weights are decreasing, both truncation and delta CTDs prefer FC, which
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is consistent with the VRR Table 3.5. It is also interesting to see that delta dimension

prefers PCA comparing to LT when they have similar VRRs.

• Note: comparing to the LT method, the CMF(3) and CTD of FC method

is smaller under both truncation sense or delta sense, and hence, FC has

smaller tail dimension than LT.

3.4.3 Options depending on the average of distances from the

current price

We introduce call options that depend on the average of distances from the current under-

lying price. Their payoffs are given by

h3(S) = max

(
1

d

d∑
i=1

|Si − S0| −K, 0

)
.

This option is of interest due to its non-differentiability and hence method such as the LT

cannot be applied.

For the FP method, we design ψ(f) = max

(
d∑
i=1

|fi| −K, 0
)

with fi = 1
d
(Si − S0). For

the FC, we set f1 = 1
d
(Sd − S0), f2 = 1

d
(Sd/2 − S0), up to fd, which follows the order of

Brownian motion. In this case, we equivalently use the functional BB method.

Table 3.7: VRRs of (h3(S)) on various PGMs
d K STD PCA BB FP FC
16 0 31.79 1534.34 849.18 1728.70 1108.88
16 10 43.77 2320.29 535.06 2774.19 1821.79
16 20 16.48 1457.71 200.19 1465.40 1400.23
64 0 8.26 1987.36 1239.02 2118.27 1474.87
64 10 18.60 2179.21 484.14 2234.62 997.16
64 20 4.65 1069.29 139.98 1250.37 1149.24
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Table 3.8: Cumulative Mass Function and Conditional Tail Dimension of h3(S)
with K = 10 and α = 95%

d CMF STD PCA BB FP FC
Truncation Dimension(DT )

16 FDT (1) 0.072142 0.985949 0.695662 0.981837 0.991169
16 FDT (2) 0.158394 0.996444 0.911486 0.996475 0.992986
16 FDT (3) 0.260861 0.998475 0.932838 0.998416 0.993185
16 CTDα 13.621666 1.438138 10.904632 1.521332 1.694619
64 FDT (1) 0.010905 0.986334 0.661553 0.981544 0.990931
64 FDT (2) 0.026074 0.996882 0.901062 0.996746 0.993035
64 FDT (3) 0.043904 0.998922 0.924635 0.998868 0.993192
64 CTDα 51.522081 1.381330 37.985794 1.487865 1.778738
Delta Dimension(DD)

16 FDD(1) 0.042682 0.960698 0.692985 0.954831 0.970577
16 FDD(2) 0.147527 0.978197 0.905910 0.977762 0.978928
16 FDD(3) 0.268306 0.984560 0.931679 0.984206 0.980564
16 CTDα 13.475805 3.521117 10.785763 3.688295 3.832335
64 FDD(1) 0.000648 0.956501 0.660790 0.950375 0.966746
64 FDD(2) 0.007178 0.974807 0.892191 0.974182 0.974742
64 FDD(3) 0.020799 0.981433 0.920343 0.980867 0.976437
64 CTDα 51.597895 5.716308 37.942458 5.927360 6.750866

By assuming d ∈ {16, 64} and K ∈ {0, 10, 20}, the results are depicted in Tables 3.7

and 3.8 for the VRRs and the CMF, respectively. Despite the non-differentiability of the

options, PCA, FP and FC are very competitive efficient, though FP is marginally more

efficient. It is interesting to see that both truncation and delta CTDs suggest to use PCA

and FP methods for K = 100 which is consistent with the VRR Table 3.7. Note that

the superposition CTD is either close to 1 or becomes computationally burdensome to

compute. See Algorithm 2.4.2. However according to Remark 2.4.1, we could use the

CMF of DT as the lower bound of the CMF of DS.
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3.4.4 Options depending on the weighted average of distances

from the current price

The next examples are weighted version of the previous options. The payoff is given by

h4(S) = max

(
d∑
i=1

wi|Si − S0| −K, 0

)
.

As in the second example, increasing and decreasing weights are similarly considered.

For FP method, we design ψ(f) = max(
d∑
i=1

wi|fi| − K, 0) with fi = wi(Si − S0) For FC

method, we design f1 = 2d(Sd−S0),f2 = xd/2(Sd/2−S0),and so on, which follows the order

of Brownian bridge.

Table 3.9: VRRs of (h4(S)) with increasing weights on various PGMs
d K STD PCA BB FP FC
16 0 22.34 2146.58 989.36 2946.04 2620.01
16 10 43.33 4466.03 1027.15 4824.06 5122.60
16 20 20.14 2976.58 359.22 2738.42 2945.61
64 0 8.47 2531.32 1275.78 3500.13 2181.50
64 10 8.88 2695.50 583.67 2728.13 2053.75
64 20 4.73 2215.31 302.61 1919.12 2021.63
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Table 3.10: Cumulative Mass Function and Conditional Tail Dimension of h4(S)
with increasing weights, K = 10 and α = 95%

d CMF STD PCA BB FP FC
Truncation Dimension(DT )

16 FDT (1) 0.049632 0.988290 0.799296 0.975586 0.996568
16 FDT (2) 0.106920 0.999331 0.926690 0.996458 0.997309
16 FDT (3) 0.180660 0.999758 0.929526 0.998886 0.998211
16 CTDα 14.262948 1.267263 11.293142 1.622831 1.222979
64 FDT (1) 0.005636 0.989635 0.763304 0.977070 0.996372
64 FDT (2) 0.016876 0.999408 0.912535 0.996310 0.997104
64 FDT (3) 0.028996 0.999785 0.915866 0.998498 0.997855
64 CTDα 54.291382 1.230051 40.230670 1.580066 1.306913
Delta Dimension(DD)

16 FDD(1) 0.037201 0.982125 0.823560 0.969869 0.987278
16 FDD(2) 0.116203 0.991921 0.938689 0.991209 0.992915
16 FDD(3) 0.209725 0.994667 0.942456 0.993976 0.993966
16 CTDα 14.125204 1.985574 11.096306 2.466742 2.029439
64 FDD(1) 0.001367 0.981782 0.797710 0.969237 0.986812
64 FDD(2) 0.008901 0.991637 0.928472 0.990729 0.992031
64 FDD(3) 0.021262 0.994324 0.932633 0.993512 0.993260
64 CTDα 53.883849 2.482498 39.275251 3.486524 2.910098

Table 3.11: VRR of (h4(S)) with decreasing weights on various PGMs
d K STD PCA BB FP FC
16 0 58.99 213.94 393.00 697.85 274.72
16 10 30.60 275.49 119.46 897.93 389.67
16 20 8.00 54.00 29.80 150.03 139.68
64 0 22.99 235.23 507.42 562.36 217.65
64 10 5.50 104.25 68.95 361.51 205.30
64 20 1.44 14.74 6.77 21.86 42.13
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Table 3.12: Cumulative Mass Function and Conditional Tail Dimension of h4(S)
with decreasing weights, K = 10 and α = 95%

d CMF STD PCA BB FP FC
Truncation Dimension(DT )

16 FDT (1) 0.189611 0.770873 0.438667 0.818438 0.972019
16 FDT (2) 0.354426 0.906672 0.737658 0.982591 0.977499
16 FDT (3) 0.497427 0.947969 0.873661 0.996506 0.983936
16 CTDα 12.069912 5.834269 9.019824 2.446149 3.307101
64 FDT (1) 0.042133 0.715551 0.350273 0.610479 0.963672
64 FDT (2) 0.087492 0.874103 0.669438 0.945026 0.970698
64 FDT (3) 0.129178 0.922981 0.826581 0.989155 0.979647
64 CTDα 45.982774 10.624976 32.784212 3.304701 4.948579
Delta Dimension(DD)

16 FDD(1) 0.093246 0.685335 0.312617 0.787437 0.929017
16 FDD(2) 0.273322 0.852717 0.653176 0.953908 0.946151
16 FDD(3) 0.435073 0.907693 0.822133 0.977395 0.956563
16 CTDα 12.352352 8.326780 9.442277 4.283664 6.758462
64 FDD(1) 0.000454 0.548416 0.172148 0.527816 0.879478
64 FDD(2) 0.008358 0.742357 0.501227 0.881771 0.900565
64 FDD(3) 0.027148 0.811595 0.695579 0.944130 0.915012
64 CTDα 48.711965 28.375361 35.843713 7.921431 19.042265

By assuming d ∈ {16, 64} and K ∈ {0, 10, 20}, the VRRs are depicted in Tables 3.9 and

3.11 for the options with increasing and decreasing weights, respectively. Similarly the

CMFs for the dimension variable are shown in Tables 3.10 and 3.12 for the respective cases

with K = 10. We draw the following remarks based on these results:

• A key conclusion can be drawn from these results is that the non-trivial impact of

the weights on the efficiency of PGMs is clearly highlighted in options of this type.

More specifically, PCA, FP and FC are extremely effective for pricing options with

increasing weights. For example, for the range of parameter values we considered,

the VRRs for PCA range from as low of 2146.58 to as high as 4466.03. Similar VRRs

for the FP are 1919.12.4 to 3500.13.

• The PCA is particularly pruned to the weight change from increasing to decreasing.

• In particular, the efficiency of PCA drops at least by 10 times to as high as 150 times.
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• Similar comparison for the FP method ranging from 4 times to 88 times. Hence

impact of the weights on FP is relatively less. Nevertheless, the method of FP still

outperforms the other PGMs, regardless of the weights.

• When the weights are increasing, both CTDs prefer PCA,FP and FC methods; When

they are decreasing, both prefer FP as the best PGM which are all consistent with

Tables 3.9 and 3.11. Hence, CTDs are truly good measures of tail dimensionality

when the performance of different PGMs have significant difference.

3.4.5 Single Barrier combining with high dimensionality

The fifth example considers single barrier problem. The payoff function of the Asian option

with knock-out feature at the maturity is defined as

h5(S) = max(SR −K, 0)I{Sd/4≤H}(S), (3.16)

where

SR =
d∑
i=1

1

d
|Si − S0| (3.17)

where K is the strike price, H is the barrier.

This option is of interest because it shows that not only discontinuity but also non-

differentiability will affect the efficiency of PGM. Hence, a good PGM should be able

to reflect both of these issues concurrently.

In this example, we include the orthogonal transformation (OT) method in Wang and

Tan (2012) with the initial decomposition matrix A0 being the Cholesky decomposition.

Wang and Tan (2012) first designed the optimal transformation method controlling the

discontinuity under single barrier options. However, they does not discuss the optimal

choice of A0 for an arbitrary function, and also does not consider the function of interest

in the payoff function except the barrier.
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For FMIX method, we assign f1 = Sd/4, fi = 1
d
(Si−1 − S0),for i = 2, · · · , d/4 − 1, and

fi = 1
d
(Si − S0), for i = d/4 + 1, · · · , d. FMIX will handle the barrier by the FC and the

rest of dimensions by the FP method. In other words, we first apply FC with Cholesky

decompostion of Σf = JΣJT , and get the first column Af .1 and the corresponding A.1 =

J−1Af .1. Next FP method is applied on the residual, i.e. J(Σ −A.1A
T
.1)JT , and obtain

the corresponding decomposition matrix (Af )residual. This in turn allows us to determine

Aresidual = J−1(Af )residual and finally A = [A.1,Aresidual].

Note: the comparison of CMFs of dimension random variables are not important here as

the discontinuity has no direct relationship with the variance contribution. i.e. the larger

CMFs may not give a better result for a discontinuous function. For further illustration of

the effect of discontinuity, see Wang and Tan (2013).

Table 3.13: VRRs of Modified Asian Options with Knock-out Feature at Matu-
rity (h5(S)) on various PGMs

d K H STD PCA BB OT FP FC FMIX
16 0 100 6.97 6.88 16.04 23.52 10.94 11.51 840.52
16 0 120 4.69 6.86 13.77 15.28 7.14 12.62 677.64
16 0 140 18.99 84.92 111.20 19.16 99.63 75.86 487.74
16 10 100 5.87 9.79 13.40 8.53 11.16 11.31 184.87
16 10 120 5.65 9.35 16.84 22.05 9.70 16.55 530.87
16 10 140 34.19 94.43 119.31 33.95 107.01 73.62 405.13
64 0 100 4.29 10.63 22.42 5.04 11.58 14.96 712.21
64 0 120 2.29 7.55 12.56 7.35 7.49 9.08 893.93
64 0 140 9.88 75.34 96.11 12.28 81.40 81.61 601.89
64 10 100 2.69 11.42 14.43 6.08 9.64 14.27 278.23
64 10 120 2.82 9.70 14.45 6.04 9.79 12.33 476.24
64 10 140 9.34 90.05 96.50 14.37 102.22 84.92 528.59

The results are shown in Table 3.13 for parameter values d ∈ {16, 64}, K ∈ {0, 10}, and

H ∈ {120, 140}. The effectiveness of FMIX is clearly demonstrated in these results. This

example also confirms the importance of handling both high-dimensionality and disconti-

nuity concurrently. The performance of the remaining PGMs are comparable similar. PCA

and BB, for example, attempt to increase the efficiency of QMC via dimension reduction.
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Hence these methods manage to reduce the effective dimension but not able to handle the

discontinuity. As shown in Wang and Tan (2013), the discontinuity of the option is critical

to the efficiency of QMC. Hence under some specific cases their OT is able to address

option with discontinuity. The drawback of their approach is that they did not address the

high-dimensionality of the option. Hence the performance of these methods are comparable

similar.

3.5 Conclusion

We proposed the delta control (DC) path generation method which is a general method

to reduce the nominal dimension of any arbitrary function f . Under our new designed

DC approach, we could easily find optimal PGM by combining sophisticated methods on

the functional covariance matrix. We also showed that the DC method encompasses many

existing PGMs as its special case and importantly it can handle high dimensionality and

multiple non-differentiability at the same time.

Drawbacks of this chapter

1. The method of DC is more complicated than other dimension reduction methods

such as BB and PCA.

2. We have proposed three implementations of DC methods and in practice it is not

clear which of these methods is most efficient.

3. For an arbitrary problem, there is no obvious way of defining fi, i = 1, . . . , k.

4. The method of DC requires the calculation of the Jacobian matrix J . This imposes

additional initial overhead computational time.
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Chapter 4

Severity in Quasi-Monte Carlo

Key contributions of this chapter

1. Define differentiable mimic functions to evaluate variables {f1, . . . , fk} which have

unknown distributions.

2. Propose a new measure that allows us to identify the relative importance of the

various sub-functions. For the g function in (4.1), this is equivalent to determining in

what order a PGM should be applied to. We accomplish this objective by proposing

a new measure known as severity of a function. The severity measure allows us to

determine a picking order or a hierarchical order of the relative importance of the

functions.

3. Propose a new PGM that explicitly exploits the hierarchical order of functions.

It turns out that once the preferred order is determined, the flexibility of the LT

method implies that an optimal generation matrix can be determined accordingly.

We label the resulting PGM that integrates the LT method with the hierarchical

order as the hierarchical liner transformation (HLT) method.

4. Some justifications are provided to demonstrate the importance of severity for mul-

tiple non-differentiable or discontinuous functions.
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4.1 Introduction

When using a PGM to simulate trajectory of stock prices at time periods 1, 2, . . . , d, there

is an implicit ordering of how stock prices are being simulated. For example, the classical

STD method, with its path generation matrix derived from the Cholesky decomposition,

simulates the stock prices given S0 in the order {Ŝ1, Ŝ2, . . . , Ŝd}. On the other hand, the

PGM based on BB generates stock prices in the following order {Ŝd, Ŝd/2, Ŝ3d/4, . . . , Ŝ1},

assuming d is a power of 2. Similarly the LT method constructs the path generation

matrix by optimizing its columns starting from first column, then second column, and

iteratively until the d-th column. A natural question to consider is that if there exist a

better “ordering” for these PGMs? More specifically, is it always optimal to first simulate

the terminal stock price for the BB method? Similarly, for the LT method is it always

optimal to optimize the columns starting from the first column? The “optimal” ordering

of the BB construction has been addressed in Lin and Wang (2008) who demonstrate that

under their prescribed optimality, it is never optimal to first simulate the terminal stock

price. In fact they formally establish that the first optimal stock price to be simulated is

Ŝ3d/4.

In this chapter we similarly investigate the “preferred” ordering of applying a PGM. We

are still interested in estimating IE [g(x)] where x ∼ Nd(0,Σ). However, we are more

interested in function g that has a more complicated structure. An example of interest is

of the following form:

g(x) = f1(x)× f2(x)× f3(x) = I{g1(x)≤H1} ×max(g2(x), H2)× g3(x)), (4.1)

where H1, H2 are constants, g1, g2, and g3 are continuous functions and f1(x) = I{g1(x)≤H1},

f2(x) = max(g2(x), H2) and f3(x) = g3(x).

There are at least three reasons that motivated us to consider (4.1):

1. Derivative securities with their payoff functions similar to that in (4.1) are quite
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common. Some notable examples are the knock-in and knock-out options.

2. The discontinuity induced by the indicator function increases the difficulty for the

QMC-based PGM considerably. The numerical results in Wang and Tan (2013) show

that the nature of the discontinuity has a tremendous effect on the efficiency of QMC.

While the orthogonal transformation (OT) proposed by Wang and Tan (2013) is able

to recover the high precision of QMC even with the discontinuity, there are two issues

with their method.

(a) The OT method applies only to discontinuity with very specified structure and

with only one discontinuity.

(b) The OT method focuses only on discontinuity re-alignment; i.e. if focuses only

on f1 while ignoring f2 and f3. As argued in Imai and Tan (2014), the high-

dimensionality of f2 and f3 can severely affect the overall effectiveness of the

QMC-based PGM. Hence it is important to have a PGM that has the capability

of handling both discontinuity and high-dimensionality concurrently.

3. If g is continuous, we postulate that the efficiency gain from using the “optimal

ordering” of a PGM (apart from STD) is negligible. The numerical results conducted

in Lin and Wang (2008) appear to support this assertion. While the “optimal” BB

of Lin and Wang (2008) outperforms the standard BB, the efficiency gains as shown

in their numerical examples, however, are quite minimum.

In summary, the following describes the two objectives of this chapter are as follows:

1. Propose a new measure that allows us to identify the relative importance of the

various sub-functions. For the g function in (4.1), this is equivalent to determining

in what order a PGM should be applied to. In other words, should a PGM be first

applied to f1, f2, or f3? We accomplish this objective by proposing a new measure

known as severity of a function. The severity measure allows us to determine a

picking order or a hierarchical order of the relative importance of the functions.
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Formal definition of severity will be provided in the next section.

2. Propose a new PGM that explicitly exploits the hierarchical order of functions. It

turns out that once the preferred order is determined, the flexibility of the LT method

implies that an optimal generation matrix can be determined accordingly. We label

the resulting PGM that integrates the LT method with the hierarchical order as the

hierarchical liner transformation (HLT) method. HLT is presented in Section 4.3 and

the numerical illustration is given in Section 4.4

4.2 Severity

We begin the section by re-expressing the function g(x) as follows:

g(x) = ψ(f1(x), . . . , fk(x)), (4.2)

where k ≤ n, and ψ : IRk 7→ IR . We implicitly assume that each component fi, i = 1, . . . , k

should be separately handled due to, for instance, discontinuity or non-differentiability. A

sample of ψf (·) is of the form ψ(f1, f2, f3) = f1f2f3, as in (4.1). Note that the function

ψ is differentiable with respect to each component fi. We also assume the existence of

expectation and variance of each component.

In what follows, we assume that a given random vector f = (f1, . . . , fk) can further be

classified into three groups (F1,F 2,F 3) := F , where F1 ∈ {f1, . . . , fk} is a random variable,

F 2 ∈ {(f1, . . . , fk)\F1} is a random vector of k2 dimension, and F 3 is the residual random

vector of dimension k − 1− k2. For a given vector X, we denote dim(X) as its dimension

so that dim(F 2) = k2 and dim(F ) = k.

For a given permutation F = (F1,F 2,F 3) from f = (f1, . . . , fk), we define ξf with respect
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to (F1,F 2,F 3) as follows:

ξf (F1,F 2,F 3) = Var(F1,F 2)

(
IEF 3|(F1,F 2) [ψ (F )]

)
, (4.3)

where Var(F1,F 2) represents the variance with respect to the distribution for the random

vector (F1,F 2), while IEF 3|(F1,F 2) represents the conditional expectation with respect to

the conditional distribution for F 3 |(F1,F 2) .

Note that since ψ(f) = ψ(F1,F 2,F 3) and from the low of total variance, we have

Var(ψ(F1,F 2,F 3)) = Var(F1,F 2)

(
IEF 3|(F1,F 2) [ψ (F )]

)
+ IE(F1,F 2)

(
VarF 3|(F1,F 2) [ψ (F )]

)
= ξf (F1,F 2,F 3) + IE(F1,F 2)

(
VarF 3|(F1,F 2) [ψ (F )]

)
.

Due to the effectiveness of the dimension reduction, we expect that conditional variance

V arF 3|(F1,F 2) [ψ (F )] to be as small as possible. Hence the quantity ξf (F1,F 2,F 3) will be

the dominating term in the above variance decomposition. For this reason, we focus on

ξf (F1,F 2,F 3) and the notion of severity will be defined in terms of this quantity.

We now introduce our definition of severity in terms of the function ξf .

Definition 4.2.1. The level-1 of severity for each component fi, i = 1, . . . , k in the function

ψ, denoted by SV 1(fi), is defined as follows:

SV 1 (fi) = ξf (F1,F 2,F 3), (4.4)

where F1 = fi,F 2 = ∅,F 3 = {f1, . . . , fi−1, fi+1, . . . , fk}.

Intuitively, the level-1 severity extracts the effect of the function fi on the variance of the

function ψ. Hence, the larger the value of its severity, the larger its impact for estimating

the expectation of ψ. Accordingly, the first hierarchical severity order of the function ψ is

optimally chosen as the one that yields the greatest level-1 severity. Let π = (π1, π2, . . . , πk)

represents the optimal hierarchical severity order of the function ψ so that πi denotes the
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i-th highest hierarchical severity order. Thus, the optimal first hierarchical severity order

π1 is obtained as follows:

π1 := arg max
i=1,...,k

SV 1(fi). (4.5)

We now proceed to the second hierarchical severity order of the function ψ. This requires

us to define the level-2 severity, conditioning on the optimal level-1 severity.

Definition 4.2.2. The level-2 of severity for component fi, i ∈ {1, . . . , k} \ {π1} in the

function ψ given the first component fπ1 , denoted by SV 2, is defined as follows:

SV 2 (fi |fπ1 ) = ξf (F1,F 2,F 3), (4.6)

with F1 = fi,F 2 = fπ1, and F 3 are the residual (k − 2) functions.

From the level-2 severity, the second optimal hierarchical severity order π2 is then deter-

mined by

π2 := arg max
i∈{1,...,k}\{π1}

SV 2 (fi |fπ1 ) . (4.7)

Analogously, m-th hierarchical severity order can be similarly determined optimally as the

maximum of all level-m severity. In other words, we have

Definition 4.2.3. Given the m − 1 components π1, . . . , πm−1, the level-m of severity for

component fi, i ∈ {1, . . . , k} \ {π1, . . . , πm−1} in the function ψf , denoted by SV m, is

defined as follows

SV m (fi |fπr , r = 1, . . . ,m− 1) = ξf (F1,F 2,F 3), (4.8)

with F1 = fi,F 2 = fπ1,...,πm−1, and F 3 is the residual k −m functions .

The m-th hierarchical severity order is then determined as

πm := arg max
i∈{1,...,k}\{π1,...,πm−1}

SV m (fi |fπr , r = 1, . . . ,m− 1) . (4.9)
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4.2.1 Approximating ξ

In general, evaluating the function ξ is very difficult and in most cases the distributions

of the functions {f1, f2, . . . , fk} are unknown. Furthermore, in many cases the function fi

is discontinuous. To facilitate the calculation of ξ, we introduce a concept named as the

mimic function. Formally the mimic function is defined as follows:

Definition 4.2.4. A function h is called a mimic function of f if the following conditions

hold.

1. h is continuous and differentiable with respect to x,

2. f |h is constant.

Going back to the functions f1, f2, and f3 defined in (4.1), then possible mimic functions for

f1, f2, and f3 are h1(x) = g1(x), h2(x) = g2(x), and h3(x) = g3(x). Note that under the

assumption that x ∼ N(0,Σ), then the mimic function is a continuous differentiable func-

tion in terms of the normal random variables. Note: The severity only measures the

importance of general functions {f1, · · · , fk}. {g1, · · · , gk} are the mimic functions

of {f1, · · · , fk} where {g1, · · · , gk} are differentiable functions and can be used to

construct PGM.

In what follows, we assume that ψ(x) in ((4.2)) can be approximated using the mimic

functions. In other words, we have

ψ(f1, · · · , fk) ≈ ψh(h1(x), . . . , hk(x)), (4.10)

where hi is a mimic function of fi, for i = 1, . . . , k.

To proceed, it is useful to recall the following properties associated with the normal random

vectors. First, any normal vector x can be expressed as x = Achz where Ach denotes the

Cholesky decomposition of the covariance matrix Σx, i.e., Σx = AchAchT
and z ∼ N(0, I).

Second, since Ach is a lower triangular matrix, the first component h1(x) can be expressed
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only by z1. In general, j-th component hj(x) can be expressed by zi for i = 1, . . . , j.

Based on these observations, we will rewrite ((4.10)) as a function of z so that it can

be analyzed explicitly. Let y = (y1,y2,y3) denote a permutation of the random vector

z = (z1, . . . , zk), where we denote y1 as the current random variable, i.e. the random

variable we would control, y2 as selected random variables, and y3 as the residual random

variables.

We define ξy with respect to (y1,y2,y3) as follows:

ξy (y1,y2,y3) = Var(y1,y2)

(
IEy3|(y1,y2) [ψ (y1,y2,y3)]

)
. (4.11)

The normality of the random vector y facilitates the evaluation of the above function

ξy (y1,y2,y3).

µy3 (y1,y2) := IEy3|(y1,y2) [ψ (y)] =

∫ ∞
−∞
· · ·
∫ ∞
−∞

ψf
(
f1

(
Achỹ

)
, . . . , fk

(
Achỹ

))
φy3 (y3) dy3,

(4.12)

where ỹT = (y1,y2,y3), and φy3 (y3) is given by dim(y3) products of density functions of

the standard normal, that is,

φy3 (y3) = φ
(
y1

3

)
· · ·φ

(
y
dim(y3)
3

)
,

where yj3 is the jth element of the vector y3, and dy3 = dy1
3 · · · dy

dim(y3)
3 .

Using eqs. ((4.11)) and ((4.12)), we can write

ξy(y) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

(
µy3 (y1,y2)− IE(y1,y2) [µy3 (y1,y2)]

)2
φ(y1,y2) (y1,y2) dy(y1,y2), (4.13)

and

IE(y1,y2) [µy3 (y1,y2)] =

∫ ∞
−∞
· · ·
∫ ∞
−∞

µy3 (y1,y2)φ(y1,y2) (y1,y2) dy(y1,y2), (4.14)
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where

φy1,y2 (y1,y2) = φ(y1)φ
(
y1

2

)
· · ·φ

(
y
dim(y2)
2

)
,

and

dy(y1,y2) = dy1dy
1
2 · · · dy

dim(y2)
2 .

In practice the multiple integrals in (4.13) and (4.14) can be evaluated using standard MC

methods.

Note that in order to exploit the idea of severity as advocated in this chapter,

we need an additional pre-computational effort for identifying the function’s

hierarchical severity order. For practical application, it is anticipated that the

additional computational cost could be reduced for the following reasons:

1. First is that the severity values do not need to be calculated with high precision.

We are only concerned with the ordering, rather than their individual values. This

implies that the severity value can be approximated quickly using a small simulation

sample such as Ns = 1024, as in our numerical examples to be presented at the end

of this chapter.

2. If k is large, then it may be quite costly to obtain the entire hierarchical severity

orders π1, π2, . . . , πk. In view of the effectiveness of the dimension reduction methods,

in practice it is sufficient to deduce the severity up to second or third level. The

efficiency gain from having higher level of severity is of diminishing return. Note that

if we were to compute up to severity l, the floating point operations of computation

is O(Ns
k!

(k−l)!).

3. If the additional computational overhead is still a concern, then the following ap-

proximation may be used. The idea behind the proposed approximation is as follows.

Instead of calculating the exact expectation in ((4.12)), we replace it by a single value

evaluated at some representative point. More precisely, an approximated function
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can be defined as

µ̃y3 (y1,y2) = ψf
(
f1

(
Achŷ

)
, . . . , fk

(
Achŷ

))
(4.15)

where ŷ is given by ŷT = (y1,y2,y
′
3) with y′3 ≡ 0 under condition that y3 is under

the standard normal law with mean zero. Since dim(y3) is much larger than dim(y2)

in determining the low-level of severity, this approximation significantly decreases the

computational burden, though it leads to some bias. Accordingly, the function ξy in

eq.((4.11)) is replaced by ξ̃y which is given by

ξ̃y (y) = Var(y1,y2) (µ̃y3 (y1,y2)) . (4.16)

In our numerical results, we will still use ((4.13)), instead of the approximation ((4.15)).

4.3 Hierarchical Linear Transformation (HLT)

Recall that the LT method of Imai and Tan (2006) achieves the dimension reduction by

seeking a generation matrix that optimally minimizes the truncation dimension of the

function. The key assumptions of this method are the differentiability of the function and

the normality of the underlying state variables. For non-Gaussian applications, see the

Generalized Linear Transformation (GLT) of Imai and Tan (2009).

While the original implementation of the LT method implies that the columns of the

generation matrix A are determined iteratively starting from column 1 until column d, in

theory the columns of the generation matrix can be optimized in any arbitrary order (after

a suitable permutation). This feature suggests that the LT method can be implemented

in such a way that reflects the hierarchical severity order of a function determined from

the last section. To distinguish from the original implementation of the LT method that

produces A, we use the notation Aπ to denote the generation matrix derived as a result
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of the hierarchical severity order π. We refer to the resulting PGM as the Hierarchical

Linear Transformation (HLT).

Once the hierarchical order of severity is found, the HLT method applies the LT method to

each component of the function. We now describe in greater details the implementation of

HLT. Let us assume that x is a normal vector, x ∼ Nd(0,Σ) and let Cchol be a decomposed

matrix of the covariance matrix Σ. Then we can write x = Ccholε where ε stands for a

standard normal vector, i.e., ε = (ε1, . . . , εd)
T ∼ Nd(0, I).

With a slight abuse of notation, we denote by fπ(i)(ε) the component with the i-th largest

severity. The LT method essentially proposes the optimal orthogonal matrixA∗ and replace

ε by A∗ε for the LT path-generation, i.e, fπ(i)(A
∗ε).

In the HLT method, we first select the component fπ(1) that has the largest value of

severity. By applying first-order Taylor expansion to the mimic function gπ(1) at arbitrary

point ε = ε̂+ ∆ε:

gπ(1)(ε) ≈ gπ(1)(ε̂) +
d∑
l=1

∂gπ(1)

∂εl

∣∣∣∣
ε=ε̂

∆εl (4.17)

The candidate vector b1 of the 1st column of the orthogonal matrix, denoted by A∗·1, can

be given by

bT
1 =

(
∂gπ(1)

∂ε1

, . . . ,
∂gπ(1)

∂εd

)
. (4.18)

In the LT method, we usually set ε̂ = 0. To be more precise, the first column of the

orthogonal matrix is given by

A∗·1 = ± b
|b|
,

where |b| denotes the norm of the vector b. In the case when the vector x is under

non-Gaussian distribution, it is replaced by

bT
1 =

(
∂gπ(1)

∂x1

φ(ε1)

h(x1)
, . . . ,

∂gπ(1)

∂xd

φ(εd)

h(xd)

)
, (4.19)

where h represents a density function for xi and φ is a standard normal density. For the
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technical details of the LT paper, we refer the readers to Imai and Tan (2006, 2014).

In the HLT method, the j-th column can be determined based on the function fπ(j) in

exactly the same manner, i.e, the candidate vector for j-th column of A∗ is calculated by

bT
j =

(
∂gπ(j)

∂ε1

, . . . ,
∂gπ(j)

∂εd

)
, (4.20)

for j = 1, . . . , k.

Note that if we let gi = xi, then severity measure will determine the optimal permuta-

tion of Brownian bridge. This is because Brownian bridge is the re-ordering of Chelosky

decomposition. In a more general case, e.g. Levy process, the severity measure could be

used to determine the optimal order of bridges. For example, the normal inverse Gaussian

process could be simulated by Inverse Gaussian bridges.

It is straightforward to construct the optimal orthogonal matrix A∗. Let B be a d by d

matrix that is given by

B = (b1, . . . , bk, · · ·, bd) .

Note that j-th columns of B with k+ 1 ≤ j ≤ d are arbitrary as long as it is non-singular.

The optimal orthogonal matrix A∗ can be obtained by applying the QR-decomposition to

the matrix B, that is,

B = QR,

where Q and R are an orthogonal matrix and an upper triangular matrix, respectively.

We can set A∗ = Q for the HLT method.

When the function fπ(j) is differentiable, it is easy to implement. It is, however, often

the case when fπ(j) is not differentiable or even discontinuous. Typical instances include

indicator functions or max(min) operations. In this case, we proposes to use a differen-

tiable function that mimics the original function for specifying the orthogonal matrix. For

instance, in the case of our example given in ((4.1)) we replace f1, f2 and f3 by g1, g2 and

g3 to determine the candidate vector b in ((4.20)).
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In summary, the HLT contains two types of linear transformations. The first type corre-

sponds to a permutation Aπ that depends on the severity in the decreasing order.

The second type of transformation is accomplished after the permutation in which j-th

column of the orthogonal matrix is determined based on the function fπ(j), separately, i.e.

the first column of Aπ corresponds to the fπ(1), the second column of Aπ corresponds to

the fπ(2), and etc.

4.4 Numerical Illustrations

In this section we provide some numerical evidence supporting the importance of severity as

well as its effect on the efficiency of QMC-based PGM. Subsection 4.4.1 provides additional

insight on the severity ranking while Subsection 4.4.2 assesses the efficiency of the proposed

HLT method relative to some other existing PGMs.

4.4.1 The Importance of Severity

Let us begin with the following example to demonstrate the importance of severity order

for an efficient implementation of QMC:

ψ(x) = I
{
d∑
j=1

w1
jxj≤H1}

I
{
d∑
j=1

w2
jxj≤H2}

I
{
d∑
j=1

w3
jxj≤H3}

, (4.21)

where x ∼ N(0,Σ) and for i = 1, ..., d, w1
i = 1/d, w2

i = ci, and w3
i = ci−1, representing

the cases with equal weight, increasing weight, and decreasing weight, respectively. In the

latter two weights c is a normalized constant with their weights sum to one. This is an

interesting function as it is notoriously challenging for QMC due to the presence of three

discontinuities. By letting f1 = I
{
d∑
j=1

w1
jxj≤H1}

, f2 = I
{
d∑
j=1

w2
jxj≤H2}

, and f3 = I
{
d∑
j=1

w3
jxj≤H3}

,

we are interested in finding out if the order of applying the PGM to each of these functions
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f1, f2, and f3 matters?

For a given set of ordering, we use the HLT to first determine the optimal generation matrix

Aπ. The resulting generation matrix is then used to simulate f in order to estimate the

value of (4.21). Note that f1, f2, and f3 are discontinuous functions so that they cannot

be applied to HLT directly. Instead, the generation matrix is optimally determined based

on their respective mimic functions. More specifically, the HLT is implemented based on

h1, h2, and h3 where h1 =
d∑
j=1

w1
jxj, h2 =

d∑
j=1

w2
jxj, and h3 =

d∑
j=1

w3
jxj.

With only three functions f1, f2, and f3, there are six possible permutations of ordering.

This implies that we can exhaust all six possible permutations and compare the efficiency of

the resulting estimator. To gauge the efficiency among these six possible permutations, we

resort to the Variance Reduction Ratio (VRR), which is defined as V RR(f) = V arMC(g)
V arQMC(g)

,

where V arMC(g) means the variance of g under MC estimate and V arQMC(g) means the

variance of g under QMC-based HLT estimate. The resulting VRRs for d ∈ {16, 64} and

H1, H2, H3 ∈ {−1, 0, 1} are reported in the last six columns of Table 4.1.

One immediately conclusion can be drawn from these results is that the relative efficiency

of HLT is highly dependent on the ordering. Just to illustrate, let us consider the case

with d = 64, H1 = 0, H2 = 0, and H3 = 1. If the HLT has been applied in the order

of {f3, f2, f1}, then the gain is almost 18 times more efficient than the corresponding

MC method. Had we chosen the order to be {f1, f2, f3} or {f1, f3, f2}, we can achieve a

remarkable VRR of 8553. These results clearly indicate the ordering can have a profound

effect on the efficiency of PGM.

Along with the VRRs, the table also displays two additional information. One is the

expected value of ψ estimated based on the MC method. The other is the hierarchical

order of severity estimated based on the MC method as described in the previous section.

What is of significant interest is to note that the ranking provided by the severity coincides

with the VRRs’ results. For the case we just considered, using ordering of either {f1, f2, f3}

or {f1, f3, f2} leads to a remarkable VRR of 8553. The hierarchical order of severity
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also suggests that the first ranking of {f1, f2, f3} should be selected. For all other set of

parameter values, the severity ranking is also consistent with the best permutation set of

ordering.

Table 4.1: The VRR for the 6 possible permutations based on (4.21)
d H1 H2 H3 IE(ψ) Severity [1,2,3] [1,3,2] [2,1,3] [2,3,1] [3,1,2] [3,2,1]

(MC) Ranking
16 -1 0 1 0.0481 [1,2,3] 807.56 807.56 50.47 27.32 33.90 25.07
16 -1 1 0 0.0484 [1,2,3] 836.48 836.48 44.97 31.32 35.71 25.84
16 0 -1 1 0.0849 [2,1,3] 79.43 26.77 1349.76 1349.76 19.99 43.39
16 0 1 -1 0.0054 [3,1,2] 6.27 12.17 4.27 9.97 92.05 92.05
16 1 -1 0 0.0854 [2,1,3] 62.08 24.23 791.87 657.01 24.14 45.89
16 1 0 -1 0.0056 [3,1,2] 5.04 11.20 5.44 9.35 92.45 92.45
64 -1 0 1 0.0433 [1,2,3] 8552.61 8552.61 42.80 24.44 36.22 17.91
64 -1 1 0 0.0411 [1,2,3] 4410.59 4410.59 43.46 24.05 37.26 19.93
64 0 -1 1 0.0914 [2,1,3] 64.17 35.32 1333.91 1333.91 18.73 37.78
64 0 1 -1 0.0004 [3,1,2] 2.19 2.56 2.33 2.50 6.00 6.00
64 1 -1 0 0.0848 [2,3,1] 62.09 30.95 409.16 544.71 16.12 44.69
64 1 0 -1 0.0003 [3,1,2] 2.04 2.99 2.06 1.90 5.14 5.14

4.4.2 Relative Efficiency of HLT

In this subsection, we consider two additional example to demonstrate the relative efficiency

of the HLT method, hence highlighting the importance of severity ranking. The first

example is of the following form:

ψ(x) = max{
d∑
j=1

w1
jSj, H1}I

{
d∑
j=1

w2
jSj≤H2}

I
{
d∑
j=1

w3
jSj≤H3}

(4.22)

where the weights are defined similarly as in the previous example. This is an option

involving a double barriers. If both of these barriers are not breached over the life of the

option, then the payoff of the option reduces to an Asian-style.

By considering d ∈ {16, 64} and H1, H2, H3 ∈ {90, 100, 110}, Table 4.2 provides a compar-

ison of the VRRs for the PGMs STD, BB, PCA, and HLT. Note that for the method of
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HLT, its implementation is based on the optimal severity rankings that are depicted in the

5-th column of the table.

Among the four PGMs, both STD and BB are inferior while the efficiency of PCA is

highly sensitive to the parameter values. These results may not be surprising since these

PGMs are not designed to handle problems with multiple discontinuities. In all cases, the

superiority of the HLT is obvious, confirming the importance of the severity measure.

Table 4.2: VRRs of (4.22) based on STD, BB, PCA, and HLT
d H1 H2 H3 Severity STD BB PCA HLT

Ranking
16 90 100 110 [2,1,3] 3.72 11.29 143.12 186.67
16 90 110 100 [3,2,1] 3.70 8.78 11.38 150.42
16 100 90 110 [2,1,3] 3.22 12.20 131.70 187.90
16 100 110 90 [3,1,2] 2.79 5.38 4.79 97.97
16 110 90 100 [2,3,1] 2.50 10.07 55.03 138.17
16 110 100 90 [3,1,2] 4.34 6.20 6.01 72.07
64 90 100 110 [2,1,3] 3.55 13.51 151.83 158.84
64 90 110 100 [3,2,1] 2.78 7.02 9.69 112.87
64 100 90 110 [2,1,3] 2.49 11.06 120.18 137.49
64 100 110 90 [3,1,2] 1.84 4.30 4.66 42.80
64 110 90 100 [2,3,1] 2.14 9.20 59.11 98.43
64 110 100 90 [3,1,2] 2.14 3.21 3.54 41.45

Next we consider another function with the following structure:

ψ(§) =

max{
d∑
j=1

w1
jSj, H1}

max{
d∑
j=1

w2
jSj, H1}+ max{

d∑
j=1

w3
jSj, H1}

. (4.23)

We similarly use the same set of parameter values as in the previous example. The results

are displayed in Table 4.3. While (4.23) is a rather unusual function, nevertheless it can be

used as a toy example to assess the relative efficiency of the various PGMs. Interestingly,

the VRRs of the HLT can be as high as over 60,000 times more efficient that the MC

method. This compares favourably to all other PGMs considered in Table 4.3.
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Table 4.3: VRRs of (4.23) based on STD, BB, PCA, and HLT
d H1 H2 H3 Severity STD BB PCA HLT
16 90 100 110 [1,2,3] 21.44 461.94 7,260.33 57,359.28
16 90 110 100 [1,2,3] 13.93 599.84 7,263.15 53,579.61
16 100 90 110 [1,3,2] 2.92 75.80 1,350.39 11,773.56
16 100 110 90 [1,2,3] 4.78 68.64 1,974.98 7,339.18
16 110 90 100 [1,3,2] 14.55 308.99 4,497.46 61,239.65
16 110 100 90 [1,3,2] 16.78 269.55 6,497.61 39,673.45
64 90 100 110 [1,3,2] 21.89 530.61 8,814.78 47,169.85
64 90 110 100 [1,2,3] 14.55 644.04 5,543.73 49,640.41
64 100 90 110 [1,2,3] 4.54 104.24 1,483.45 9,185.10
64 100 110 90 [2,1,3] 4.73 137.05 4,064.18 9,615.43
64 110 90 100 [1,3,2] 7.28 276.42 3,328.65 30,760.94
64 110 100 90 [1,3,2] 9.23 276.32 8,382.32 35,098.15

4.4.3 Comparison to He and Wang (2014)

Next we consider another function with the following structure:

ψ(§) = IS1≤HIS2≤HIS3≤H . (4.24)

We similarly use the same set of parameter values as in the previous example. The results

are displayed in Table 4.4. The order of HW is {S3, S2, S1} accordingly, and the order of

HLT is {S3, S1, S2}. This is because conditional on S3, the residual variance of S1 is larger

than that of S2.

Table 4.4: VRRs
d H STD ([1,2,3]) BB PCA HW ([3,2,1]) HLT ([3,1,2])
16 95 23.23 2.89 4.24 19.00 26.35
16 100 22.05 5.41 5.86 27.68 40.80
16 105 27.30 5.34 6.62 38.53 48.60
64 95 10.84 1.37 2.72 5.53 10.15
64 100 26.17 3.59 5.21 30.98 54.96
64 105 22.27 2.69 3.63 45.46 36.64

When H is small, the discontinuity has a significant impact on S1; When H is large, the

86



discontinuity has a significant impact on S3; When the discontinuity has no significant

impact on a particular function, severity is a good measure of variance contribution.

4.5 Conclusion

We proposed a severity measure to identify the relative importance of the various sub-

functions for evaluating an arbitrary function. By incorporating this measure, the mimic

functions and hierarchical linear transformation PGM are proposed to explicitly exploits

the hierarchical order of functions. Importantly, this method could efficiently handle the

functions with multiple non-differentiability or discontinuities.

Drawbacks of this chapter

1. Severity is not the only way of quantifying the importance of the various sub-

functions.

2. When there is axis parallel in the discontinuous functions, referring to Wang and

Tan (2013), He and Wang (2014), our proposed severity measure may not necessary

the best measure.
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Chapter 5

Dimension Reduction on Large

Portfolio of Insurance Pricing

Key contributions of this chapter

1. Extend the idea of low discrepancy sequences to the problem of selecting the repre-

sentative synthetic variable annuity (VA) policies.

2. Propose a new algorithm, named as green mesh method, that is not only able to

approximate the large VAs portfolio with a high degree of precision, but also is

simple, easy to implement, and offers real-time application.

3. The green mesh method has the additional advantage of being portable, i.e. we only

need to incur the start-up cost once and the results can be re-cycled or re-used to

effectively price other arbitrary large VAs portfolios.

5.1 Introduction

In this chapter, we extend our dimension reduction on pricing large portfolio of insur-

ance contracts. In the last few decades variable annuities (VAs) have become one of the

innovative investment-linked insurance products for the retirees. VA is a type of annu-
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ity that offers investors the opportunity to generate higher rates of returns by investing

in equity and bond subaccounts. Its innovation stems from a variety of embedded guar-

anteed riders wrapped around a traditional investment-linked insurance product. These

guaranteed minimum benefits are collectively denoted as GMxB, where “x” determines the

nature of benefits. For example, the guaranteed minimum death benefit (GMDB) guaran-

tees the beneficiary of a VA holder to receive the greater of the sub-account value of the

total purchase payments upon the death of the VA holder. The guaranteed minimal ac-

cumulation benefit (GMAB), guaranteed minimal income benefit (GMIB) and guaranteed

minimal withdrawal benefit (GMWB) are examples of living benefit protection options.

More specifically the GMAB and GMIB provide accumulation and income protection for

a fixed number of year contingent on survival of the VA holder, respectively. The GMWD

guarantees a specified amount for withdrawals during the life of the contract as long as

both the amount that is withdrawn within the policy year and the total amount that is

withdrawn over the term of the policy stay within certain limits. See the monograph by

Hardy (2003) for a detailed discussion on these products.

The appealing features of these guarantees spark considerable growth of the VA markets

around the world. According to the Insured Retirement Institute, the VA total sales in the

U.S. were $130 billion and $138 billion for 2015 and 2014, respectively. Consequently many

insurance companies are managing large VAs portfolio involving hundreds of thousands of

policies. This in turn exposes insurance companies to significant financial risks. Hence

heightens the need for an effective risk management program (such as the calculation of

VA’s sensitivity or Greeks to underlying market risk factors) for VAs.

The sophistication and challenges of the embedded guarantees also stimulate a phenomenon

interest among academics in proposing novel approaches to pricing and hedging VAs. Be-

cause of the complexity of these products, closed-form pricing formulas exist only in some

rather restrictive modelling assumptions and simplified guarantee features (see e.g. Boyle

and Tian, 2008; Lin et al., 2009; Ng and Li, 2011; Tiong, 2013). In most other cases,

the pricing and hedging of VAs resort to numerical methods such as numerical solution
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to partial differential equations (PDE, Azimzadeh and Forsyth, 2015; Peng, et al., 2012;

Shen, et al., 2016, Forsyth and Vetzal, 2014), tree approach (Hyndman and Wenger, 2014;

Dai, et al., 2015; Yang and Dai, 2013), Monte Carlo simulation approach (Bauer, et al.,

2008, 2012; Hardy, 2000; Huang and Kwok, 2016; Jiang and Chang, 2010, Boyle, et al.,

2001), Fourier Space Time-Stepping algorithm (Ignatieva et al., 2016). See also Bacinello

et al. (2016), Zineb and Gobet (2106), Fan et al. (2015), Luo and Shevchenko (2015),

Steinortha and Mitchell (2015), for some recent advances on pricing and hedging of VAs.

The aforementioned VA pricing and hedging methodologies tend to be very specialized,

customized to a single VA with a specific type of GMxB, and are computationally too

demanding to scale to large portfolio of VAs. This is a critical concern as hedging the large

portfolio of VA policies dynamically calls for calculation of the VA’s sensitivity parameters

(i.e. Greeks) in real-time. The need for the capability of pricing and hedging large VAs

efficiently has prompted a new direction of research inquiry. The objective is no longer

on seeking a method that has the capability of pricing every single policy with a very

high precision and hence can be extremely time-consuming, but rather is to seek some

compromised solutions that have the capability of pricing hundreds of thousands of policies

in real time while retaining an acceptable level of accuracy. This is precisely the motivation

by Gan (2013), Gan and Lin (2015, 2016), Gan and Valdez (2016), Hejazi and Jackson

(2016), Xu, et al. (2016), Hejazi, et al.(2015), among others. Collectively we refer these

methods as the large VAs portfolio valuation methods.

In all of the valuation methods for the large VAs portfolio, the underpinning idea is as

follow. Instead of pricing each and every single policy in the large portfolio of VAs, a

“representative” set of policies is first selected and their corresponding quantities of interest,

such as prices, Greeks, etc, are valuated. These quantities of interest are then used to

approximate the required values for each of the policy in the entire large portfolio of VAs.

If such approximation yields a reasonable accuracy and that the number of representative

policies is very small relative to all the policies in the VAs portfolio, then a significant

reduction in the computational time is possible since we now only need to evaluate the
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representative set of VA policies.

The above argument hinges on a number of other additional assumptions. First, we need

to have an effective way of determining the representative VA policies. By representative,

we loosely mean that the selected VA policies provide a good representation of the entire

large VAs portfolio. Data clustering is typically used to achieve this objective. Second, we

need to have an effective way of exploiting the quantities of interest from the representative

VA policies to provide a good approximation to the entire large VAs portfolio. Machine

learning based methods such as the Kriging method or other spatial interpolation methods

have been proposed to accomplish this task.

The experimental results provided the above mentioned papers have been encouraging.

While these methods have already achieved a significant reduction in computational time,

there are some potential outstanding issues. We identify the following six issues and we

summon that an efficient large VAs portfolio valuation algorithm should adequately address

all of these issues:

1. the complexity of the proposed algorithm,

2. the cost of finding representative VA policies,

3. the cost of initial training set, if any,

4. the cost of estimating the entire large VAs from the representative VA policies,

5. the computer memory constraint,

6. the portability to other large VAs portfolio valuation.

Inevitably these issues become more pronounced with the size of the VAs portfolios and

the representative VA policies. More concretely, if Monte Carlo method were to price a

VAs portfolio consisting of 200,000 policies, the time needed is 1042 seconds, as reported

in Table 3 of Gan (2013). If one were to implement the method proposed by Gan (2013),

the computational time reduces remarkably by about 70 times with 100 representative

91



VA policies. However, if one were to increase the representative VA policies to 2000,

the reduction in computational time drops from 70 to 14 times. While we are still able

to achieve a 14-fold reduction in computational time, the deterioration of the proposed

method is obvious.

Many of the existing large VAs portfolio valuation algorithms incur a start-up cost, such

as the cost of finding the representative VA policies, before it can be used to approximate

all the policies in the VAs portfolio. For some algorithms the initial set-up cost can be

computational intensive and hence the property of portability becomes more important.

By portability, we mean that we only need to incur the start-up cost once and the results

can be re-cycled or re-used. In our context, the portability property implies that we only

need to invest once on finding the representative set of VA policies so that the same set

of representative VA policies can be re-cycled to effectively price other arbitrary large VAs

portfolios. Unfortunately most of the existing large VAs portfolio valuation algorithms do

not possess this property. For this reason we refer our proposed large VA valuation method

as the green mesh method.

The objective of this paper is to provide another compromised solution attempting to

alleviate all of the issues mentioned above. More specifically, our proposed solution has a

number of appealing features including its simplicity, ease of implementation, less computer

memory, etc. More importantly, the overall computational time is comparatively less and

hence our proposed method is a potential real-time solution to the problem of interest.

Finally, unlike most other competitive algorithms, our proposed method is portable.

The remaining chapter is organized as follows. Section 5.2 provides a brief overview of some

of the large VA valuation algorithms. Our focus is on the method of Gan (2013) and Gan

and Lin (2015) and hence a more detailed description is provided. Section 5.3 introduces

and describes our proposed green mesh method. Section 5.4 compares and contracts our

proposed method to that of Gan (2013) and Gan and Lin (2015).
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5.2 Review of some existing large VAs portfolio val-

uation methods

As pointed out in the preceding section that a few approaches have been proposed to tackle

the valuation of large VAs portfolio of n policies. Broadly speaking, the existing methods

typically involve the following four steps:

Step 1: Determine a set of k representative synthetic VA policies.

Step 2: Mapping the set of k representative synthetic VA policies onto the set of k rep-

resentative VA policies that are in the large VAs portfolio.

Step 3: Estimate the quantities of interest of the k representative VA policies.

Step 4: Estimate the quantities of interest of the entire large VAs portfolio from the k

representative VA policies.

The above algorithm is best illustrated by considering the k-prototype data clustering

method proposed by Gan (2013) and Gan and Lin (2015). The description of this algorithm,

including notation, are largely abstracted from these two references. Let xi, i = 1, 2, . . . , n,

represent the i-th VA policy in the large VAs portfolio and X denote the set containing all

the n VA policies; i.e. X = {x1,x2, . . . ,xn}. Without loss of generality, we assume that

each VA policy x ∈ X can further be expressed as x = (x1, . . . , xd), where xj corresponds

to the j-th attribute of the VA policy x. In our context, examples of attributes are gender,

age, account value, guarantee types, etc., so that any arbitrary VA policy is completely

specified by its d attributes. We further assume that the attributes can be categorized as

either quantitative or categorical. For convenience, the attributes are arranged in such a

way that the first d1 attributes, i.e. xj, j = 1, . . . , d1, are quantitative while the remaining

d − d1 attributes, i.e. xj, j = d1 + 1, . . . , d, are categorical. A possible measure of the
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closeness between two policies x and y in X is given by (Huang, 1998; Huang et al., 2005)

D(x,y) =

√√√√ d1∑
j=1

wj(xj − yj)2 +
d∑

j=d1+1

wjδ(xj, yj), (5.1)

where wj > 0 is a weight assigned to the j-th attribute, and δ(xj, yj) is the simple matching

distance defined for the categorical variable as

δ(xj, yj) =

 0, if xj = yj,

1, if xj 6= yj.

To proceed with Step 1 of determining the set of k representative synthetic VA policies,

the k-prototype data clustering method proposed by Gan (2013) and Gan and Lin (2015)

boils down to first optimally partitioning the portfolio of n VA policies into k clusters.

The k representative synthetic VA policies are then defined as the centers or prototypes of

the k clusters. By defining Cj as the j-th cluster and µj as its prototype, the k-prototype

data clustering method for determining the optimal clusters (and hence the optimal cluster

centers) involves minimizing the following function:

P =
k∑
j=1

∑
x∈Cj

D2(x,µj). (5.2)

The above minimization needs to be carried out iteratively in order to optimally determin-

ing the membership of Cj and its µj. This in turn involves the following four sub-steps:

Step 1a: Initialize cluster center.

Step 1b: Update cluster memberships.

Step 1c: Update cluster centers.

Step 1d: Repeat Step 1b and Step 1c until some desirable stop conditions.

We refer readers to Gan (2013) and Gan and Lin (2015) for the mathematical details of
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the above k-prototype algorithm.

After Step 1 of the k-prototype algorithm, we optimally obtain the k representative syn-

thetic VA policies which correspond to the clusters centers µj, j = 1, . . . , k. Step 2 is then

concerned with mapping the representative synthetic VA policies to the representative VA

policies that are actually within the large VAs portfolio. This objective can be achieved

via the nearest neighbour method. By denoting zj, j = 1, . . . , k, as the j-th representative

VA policy, then zj is optimally selected as one that is closest to the j-th representative

synthetic VA policy µj. Using (5.1) as the measure of closeness, zj is the solution to the

following nearest neighbour minimization problem:

zj = argmin
x∈X

D(x,µj).

Note that µj may not be one of the policies in X but zj is. The resulting k representative

VA policies are further assumed to satisfy

D(zr, zs) > 0

for all 1 ≤ r < s ≤ k to ensure that these policies are mutually distinct.

Once the k representative VA policies are determined, the aim of Step 3 is to estimate

the corresponding quantities of interest, such as prices and sensitivities. This is typically

achieved using the Monte Carlo (MC) method, the PDE approach, or other efficient nu-

merical methods that were mentioned in the introduction. The resulting estimate of the

quantity of interest corresponding to the representative VA policy zj is denoted by fj.

The final step of the algorithm focuses on estimating the entire large VAs portfolio from

the k representative VA policies. The method advocated by Gan (2013) and Gan and Lin

(2015) is to rely on the Kriging method (Isaaks and Srivastava, 1990). For each VA policy
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xi ∈ X , i = 1, . . . , n, the corresponding quantity of interest, f̂i, is then estimated from

f̂i =
k∑
j=1

wijyj (5.3)

where wi1, wi2, . . . , wik are the Kriging weights. These weights, in turn, are obtained by

solving a system of k + 1 linear equations.

Note that the algorithm proposed by Gan (2013) and Gan and Lin (2015) draws tools

from data clustering and machine learning. For this reason we refer their method as

the clustering-Kriging method. The experiments conducted by Gan (2013) and Gan and

Lin (2015) indicate that their proposed method can be used to approximate large VAs

portfolio with an acceptable accuracy and in a reasonable computational time. However,

there are some potential complications associated with the underlying algorithm and hence

in practice the above algorithm is often implemented sub-optimally. The key complications

are attributed to the k-prototype clustering method and the Kriging method.

Let us now discuss these issues in details. The k-prototype clustering method of determin-

ing the representative synthetic VA policies can be extremely time consuming, especially

for large n and k. This is also noted in Gan (2013, page 797) that “if n and k are large (e.g.,

n > 10000 and k > 20), the k-prototypes algorithm will be very slow as it needs to perform

many distance calculations.” The problem of solving for the optimal clusters using the

clustering method is a known difficult problem. In computational complexity theory, this

problem is classified as a NP-hard problem. (see Aloise et al. 2009; Dasgupta 2007). This

feature severely limits the practicality of using k-prototype clustering method to identify

the representative VA policies as in most cases n is in the order of hundreds of thousands

and k is in the order of hundreds or thousands. Because of the computational complexity,

in practice the k-prototype clustering method is typically implemented sub-optimally via

a so-called “divide and conquer” approach. Instead of determining the optimal clusters

directly from the large VAs portfolio, the “divide and conquer” strategy involves first parti-

tioning the VAs portfolio into numerous sub-portfolios and then identifying “sub-clusters”
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from the sub-portfolio. By construction, the sub-portfolio is many times smaller than

the original portfolio and hence the optimal sub-clusters within each sub-portfolio can be

obtained in a more manageable time. The optimal clusters of the large VAs portfolio is

then the collection of all sub-clusters from the sub-portfolios. While the sub-clusters are

optimal to each sub-portfolio, it is conceivable that their aggregation may not be optimal

to the entire large VAs portfolio, and hence cast doubt on the “representativeness” of the

synthetic VA polices obtained from the centers of the clusters.

The second key issue is attributed to using the Kriging method of approximating the large

VAs portfolio. For a large set of representative VA policies, the Kriging method breaks

down due to the demand in computer memory and computational time. This issue is also

acknowledged by Gan (2013) that “a large number of representative policies would make

solving the linear equation system in Eq. [ (5.3)] impractical because solving a large linear

equation system requires lots of computer memory and time.

We conclude this section by briefly mentioning other works related to the large valuation

of VAs portfolio. For example, Hejazi, el al. (2015) extended the method of Gan (2013)

by investigating two other spatial interpolation techniques, known as the Inverse Distance

Weighting and the Radial Basis Function, in addition to the Kriging. Gan and Lin (2016)

propose a two-level metamodeling approach for efficient Greek calculation of VAs and

Hejazi and Jackson (2016) advocate using the neutral networks. The large VAs portfolio

valuation method proposed by Xu, et. al (2016) exploit a moment matching scenario

selection method based on the Johnson curve and then combine with the classical machine

learning methods, such as neural network, regression tree and random forest, to predict the

quantity of interest of the large VAs portfolio. By using the generalized beta of the second

kind, in conjunction with the regression method and the Latin hypercube sampling method,

Gan and Valdez (2016) provide another method of approximating large VAs portfolios.
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5.3 Proposed Green Mesh Method

As we have discussed in the preceding section that the existing large VAs portfolio valuation

methods can be quite complicated and computationally intensive, especially when we wish

to increase the accuracy of the underlying method by using a larger set of representative VA

policies. Recognizing the limitations of these methods, we now propose a new algorithm

that is not only able to approximate the large VAs portfolio with a high degree of precision,

but also a surprisingly simple, easy to implement, portable, and real-time application.

Hence the proposed algorithm has the potential of resolving all the limitations of the

existing methods. We refer our proposed approach as the green mesh method. Hence

the determination of the representative VA policies is equivalent to the construction of

green mesh. Its construction and its application to valuing large VAs portfolio can be

summarized in the following four steps:

Step 1: Determine the boundary values of all attributes.

Step 2: Determine a representative set of synthetic VA policies, i.e. green mesh.

Step 3: Estimate mesh’s quantities of interest.

Step 4: Estimate the quantities of interest of the entire large VAs portfolio from the green

mesh.

Each of the above steps is further elaborated in the following subsections.

5.3.1 Step 1: Boundary values determination

Recall that for a VA policy x ∈ X , its d attributes are represented by {x1, x2, . . . , xd}, where

the first d1 attributes are quantitative and the remaining d− d1 attributes are categorical.

The first step of determining the attributes’ boundaries is an easy task for the quantitative

attributes. This entails finding the extremum values for each j-th quantitative attribute,

with j = 1, . . . , d1, to obtain xMIN
j and xMAX

j that represent the j-th attribute’s minimum
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and maximum values, respectively. The categorical variables, on the other hand, contain

a finite number of categories such as male and female for the gender attribute. Hence

the categorical data do not have any intrinsic order and it is meaningless to discuss their

extremals. In our application, all our categorical attributes are dichotomous; i.e. binary

attributes with only two possible values. For these categorical variables; i.e., for j = d1 +

1, . . . , d, it is convenient to use xMIN
j to denote one of the binary values (with probability of

occurrence pj) and xMAX
j to represent the other binary value (with probability of occurrence

1− pj).

In summary, after Step 1 we obtain the boundary conditions for all the attributes of our

large VAs portfolio. The possible values for which all of these attributes must lie can be

represented succinctly as

[
xMIN

1 , xMAX
1

]
×
[
xMIN

2 , xMAX
2

]
× · · · ×

[
xMIN
d , xMAX

d

]
. (5.4)

In other words, the boundary conditions is a d-dimensional hyperrectangle (or box) al-

though care need to be taken in interpreting the attributes that are categorical; i.e. at-

tributes d1 + 1, . . . , d. In these cases, xMIN
j and xMAX

j do not represent the extremals of

the j-th categorical attribute, but rather their possible values since these attributes are

assumed to be dichotomy.

5.3.2 Step 2: Green mesh determination

We now proceed to Step 2. The objective of this step is to determine the representative

synthetic VA policies; i.e. construct the green mesh. Let Xj, j = 1, . . . , d denote the

random variable of the j-th attribute and Fj(x) be its cumulative distribution function

(CDF). For j = 1, . . . , d1, Fj(x) is the CDF of the random variable Xj, with domain

on
[
xMIN
j , xMAX

j

]
, that can be continuous or discrete depending on the nature of the

attribute. For j = d1 + 1, . . . , d, Xj is a binary random variable that admits xMIN
j with
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probability pj and xMAX
j with probability 1− pj. Despite there is no intrinsic ordering for

the categorical attribute, the corresponding CDF is assumed to be defined as Fj(x
MIN
j ) =

pj and Fj(x
MAX
j ) = 1.

Determining the representative synthetic VA policies boils down to sampling representative

attributes from Fj(x), j = 1, . . . , d, subject to the domains given by the hyperrectangle

(5.4). Suppose we are interested in generating m representative synthetic VA policies and

that ri = (ri1, ri2, . . . , rid), i = 1, 2, . . . , k, denotes the attributes of the i-th representative

synthetic VA policy. In practice there exists various ways of sampling rij from the given

CDF Fj(x). In this paper we use the simplest method known as the inversion method.

For a given uij ∈ [0, 1], the method of inversion implies that the corresponding rij can be

determined as

rij = F−1
j (uij), (5.5)

where i = 1, . . . , k, j = 1, . . . , d, and F−1(·) is the inverse function of F (·). Care must be

taken for inverting Fj(x) since the function can be continuous or right continuous. For

example, suppose the random variable Xj is a quantitative attribute that is uniformly

distributed on
[
xMIN
j , xMAX

j

]
. Then its CDF has the form Fj(x) =

x−xMIN
j

xMAX
j −xMIN

j
, where

xMIN
j ≤ x ≤ xMAX

j and xMIN
j 6= xMAX

j . This implies that for a given arbitrary uij ∈ [0, 1],

the inversion method yields

rij = uijx
MAX
j + (1− uij)xMIN

j .

If Xj is a categorical attribute, then for uij ∈ [0, 1] the inversion method of (5.5) becomes

rij =

 xMIN
j if uij ≤ pj

xMAX
j otherwise

In summary, if ui = (ui1, . . . , uid) ∈ [0, 1]d, i = 1, 2, . . . , k, then the inversion method (5.5)

provides a simple way of transforming each d-dimensional hypercube point ui onto the

synthetic VA policy with attributes given by ri. The linkage between the input hypercube
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points ui and the output synthetic VA policy ri, for i = 1, 2, . . . , k, provides a useful clue on

determining the quality of the representativeness of the synthetic VA policies. In particular,

the greater the uniformity of ui, i = 1, 2, . . . , k over the d-dimensional hypercube [0, 1]d,

the better the representativeness of the synthetic VA policies.

0 1

1

128 Monte Carlo (Random) Points

0 1

1

512 Monte Carlo (Random) Points

Figure 5.1: A sample of 128 and 512 Monte Carlo (random) points

There are a few ways of sampling uniformly distributed points from [0, 1]d. Among them,

the simplest approach is based on the Monte Carlo (MC) method that selects points ran-

domly from [0, 1]d. While this is the most common method, the points distribute uniformly

on [0, 1]d at a rate of O(1/k1/2), which is deemed to be slow for practical application. Fur-

thermore because of the randomness, the generated finite set of points tends to have gaps

and clusters and hence these points are far from being uniformly distributed on [0, 1]d.

This issue is highlighted in the two panels in Figure 5.1 which depict two-dimensional

projections of 128 and 512 randomly selected points. Gaps and clusters are clearly visible

from these plots even when we increase the number of points from 128 to 512.

A possible solution of alleviating the issues associated with the MC is to rely on the strat-

ification sampling, which is one of the common variance reduction techniques. Suppose we

are interested in sampling m points that are uniformly distributed on the one-dimensional
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unit interval [0, 1]. Rather than selecting m points randomly from [0, 1] as in the classical

MC method, the simplest stratification method is to first divide the unit interval equally

into m strata, and then randomly select a point from each of these strata to produce k

stratified samples. The resulting stratified samples have exactly one point in each stratum

(i.e. sub-interval), hence effectively avoiding gaps and clusters and hence the points tend

to have greater uniformity on [0, 1].

While the stratification method has proven to be a very effective variance reduction method

for one-dimensional application, stratifying high dimensions can be problematic due to the

exponential growth of the stratified samples. To see this, let us suppose each dimension is

divided into k strata. A direct generalization of the stratification would lead to stratifying

kd strata from [0, 1]d. This is computationally prohibitive even for moderate values of m

and d. To prevent the exponential growth of the stratified samples, an alternate method

known as the Latin hypercube sampling (LHS) has been proposed (see McKay et al.,

1979). LHS, which is another popular variance reduction technique, can be an efficient

and a practical high dimensional stratification method.

LHS is a multi-dimensional generalization of the basic one-dimensional stratification in

the following sense. Suppose we are interested in k LHS samples from [0, 1]d. As in the

basic stratification, each dimension is first stratified independently to produce m stratified

samples of one dimension. To produce the d-dimensional stratified samples, rather than

using the Cartesian product approach of producing kd d-dimensional stratified samples,

LHS samples are generated by merely concatenating all one-dimensional “marginal” k

stratified samples. Algorithmically, the LHS samples can be generated as follows:

ûij =
πij − 1 + uij

k
, i = 1, . . . , k, j = 1, . . . , d, (5.6)

where uij is the original randomly selected sample from [0, 1] and (π1j, π2j, . . . , πkj) are inde-

pendent random permutations of {1, 2, . . . , k}. Then ûi = (ûi1, ûi2, . . . , ûid), i = 1, 2, . . . , k

is the required LHS samples from [0, 1]d and the resulting LHS samples, in turn, are applied
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to (5.5) to produce the necessary representative synthetic VA attributes.

The method of LHS offers at least the following three advantages. Firstly, the number

of points required to produce a stratified samples is kept to a manageable size, even for

high dimension. Secondly, by construction the one-dimensional projection of the stratified

samples reduces to the basic one-dimensional marginal stratification of m samples. Thirdly,

the intersection of the stratum in high dimension has exactly one point. Panel (a) in

Figure 5.2 depicts a 2-dimensional LHS sample of 8 points. To appreciate the stratification

of the Latin hypercube sampling, we have produced Panels (b), (c) and (d) for better visual

effect. First note that the points in these panels are exactly the same as that in Panel (a).

Second, by subdividing the unit horizontal axis into 8 rectangles of equal size as in Panel

(b), each of the rectangles contains exactly one point. The same phenomenon is observed

if we partition the vertical axis as in Panel (c), instead of the horizontal axis. Finally, if

both axes are divided equally as shown in Panel (d), then each intersection of the vertical

and horizontal rectangle again has exactly a point in the sense that once a stratum has

been stratified, then there are no other stratified points along either direction (vertical or

horizontal) of the intersection of the stratum. This property ensures that each marginal

stratum is optimally evaluated only once.

From the above discussion and demonstration, the method of LHS seems to provides a

reasonable good space-filling method for determining the representative VA policies. In

fact some variants of LHS have also been used by Hejazi, el al. (2015) and Gan and

Valdez (2016) in connection to valuation of large VAs portfolios. To end the discussion

on LHS, we point out two potential issues of using LHS to generate the representative

synthetic VA policies. Firstly, whenever we wish to increase the stratified samples of LHS,

we need to completely re-generate the entire set of representative synthetic VA policies.

This is because the LHS design depends on k. If k changes, then we need to re-generate

a new set of LHS design. Secondly and more importantly, the LHS design is essentially a

combinatorial optimization. For a given k and d, there are (k!)d−1 possible LHS designs.

This implies that if we were to optimize 20 samples in 2 dimensions, then there are 1036
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Figure 5.2: An example of 8 points LHS
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0 1

1

Figure 5.3: A perfectly valid 8 points LHS but with a bad distribution

possible designs to choose from. If the number of dimensions increases to 3, then we will

have more than 1055 designs. Hence it is computational impossible to optimally select

the best possible LHS design. More critically, not all of these designs have the desirable

“space-filling” quality such as that shown in Figure 5.3. Although unlikely, there is nothing

preventing a LHS design with the extreme case as illustrated in Figure 5.3.

Finally we present another promising sampling method based on the randomized quasi-

Monte Carlo (RQMC) method. Before describing RQMC, it is useful to distinguish the

quasi-Monte Carlo (QMC) method from the classical MC method. In a nutshell, the

key difference between these two methods lies on the properties of the points they use.

MC uses points that are randomly generated while QMC relies on specially constructed

points known as low discrepancy points/sequences. The low discrepancy points have the

characteristics that they are deterministic and have greater uniformity (i.e. low discrep-

ancy) than the random points. Some popular explicit constructions of low discrepancy

points/sequences satisfying these properties are attributed to Halton (1960), Sobol (1967)

and Faure (1982). Theoretical justification for using points with enhanced uniformity fol-

lows from the Koksma-Hlawka inequality which basically asserts that the error of using

sampling-based method of approximating a d-dimensional integral (or problem) depends

105



crucially on the uniformity of the points used to evaluate the integral. Hence for a given

integral, points with better uniformity lead to lower upper error bound. It follows from the

Koksma-Hlawka inequality that QMC attains a convergence rate O(k−1+ε), ε > 0, which

asymptotically converges at a much faster rate than the MC rate of O(k−1/2). The mono-

graph by Niederreiter (1992) provides an excellent exposition on QMC. The theoretically

higher convergence rate of QMC has created a surge of interests among financial engineers

and academicians in the pursuit of more effective ways of valuing complex derivative secu-

rities and other sophisticated financial products. See for example Glasserman (2004) and

Joy et al. (1996).

Recent development in QMC has supported the use of a randomized version of QMC, i.e.

RQMC, instead of the traditional QMC. The idea of RQMC is to introduce randomness

to the deterministically generated low discrepancy points in such a way that the resulting

set of points is randomized while still retaining the desirable properties of low discrepancy.

Some advantages of RQMC are (i) improve the quality of the low discrepancy points; (ii)

permit the construction of confidence interval to gauge the precision of RQMC estimator;

(iii) under some additional smoothness conditions, the RQMC’s root mean square error

of integration using a class of randomized low discrepancy points is O(k−1.5+ε), which is

smaller than the unrandomized QMC error of O(k−1+ε). See for example Tan and Boyle

(2000), Owen (1997) and Lemieux (2009). For these reasons our proposed construction

of green mesh will be based on RQMC with randomized Sobol points, other randomized

low discrepancy points can similarly be used. The two panels in Figure 5.4 plot two-

dimensional randomized Sobol points of 128 and 512 points. Compared to the MC points,

the randomized Sobol points appear to be more evenly dispersed over the entire unit-square.

5.3.3 Step 3: Estimating green mesh’s quantities of interest

Once the representative set of synthetic VA policies has been determined from Step 2, we

need to compute their quantities of interest, such as their market value and their dollar
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Figure 5.4: A sample of 128 and 512 randomized Quasi-Monte Carlo points

delta. As in Gan (2013) and Gan and Lin (2015), the simplest method is to rely on the

MC simulation method, which we also adopt for our proposed method. In this step, we

will also be estimating the gradient of each representative synthetic VA policy, which is

needed in Step 4.

5.3.4 Step 4: Large VAs portfolio approximation from the green

mesh

Once the green mesh and its corresponding quantities of interest have been determined

from Steps 2 and 3, respectively, the remaining task is to provide an efficient way of ap-

proximating the large VAs portfolio from the green mesh. Recall that Gan (2013) and Gan

and Lin (2015) advocate using the Kriging method, which unfortunately is computation-

ally burdensome, in term of both time and memory requirement. To alleviate these issues,

we propose a very simple approximation technique by combining both the nearest neigh-

bour method and the Taylor’s method. In particular, let x ∈ X be one of the VA policies

and f(x) be its quantity of interest we are interested in approximating. Our proposed
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approximation method involves the following two substeps:

Step 4a: Use the nearest neighbour method to find the green mesh (i.e. the representative

synthetic VA policy that is closest to x. This can be determined by resorting to

distance measure such as that given by (5.1). Let y be the synthetic VA policy that

is closest to x.

Step 4b: f(x) can be estimated from the nearest neighbour y via the following Taylor

approximation:

f(x) ≈ f(y) +∇f(y)(x− y), (5.7)

where ∇f(y) is the gradient of f with respect to y.

Step 4b is simply the first order Taylor approximation and hence it requires the pre-

computation of gradients for each synthetic VA policy y. These values were pre-computed

from Step 3. We assume that the given VA policy x is sufficiently close to the synthetic

VA policy y so that the locally linear approximation yields sufficient accuracy. In situation

where the linear approximation is questionable, higher order Taylor approximation can be

applied to enhance the accuracy.

The above four steps complete the description of our proposed large VAs portfolio valuation

method. There are some important features of our proposed method. Other than its sim-

plicity and its ease of implementation, the most appealing feature is that if the boundaries

of all the attributes are set correctly, then we only need to determine the representative set

of synthetic VA policies once. This implies that if we subsequently change the composition

of the VAs portfolio such as changing its size, then the same set of representative synthetic

VA policies can be used repeatedly. This is the portability of the algorithm that we em-

phasized earlier. Also, our proposed algorithm avoids the mapping of the synthetic VA

policy to the actual VA policy within the portfolio. This avoid using the nearest neighbour

method to furnish the mapping and hence reduce some computational effort.
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5.4 Large VAs portfolio valuation

The objective of this section is to provide some numerical evidences on the relative effi-

ciency of our proposed mesh methods. The set up of our numerical experiment largely

follow that of Gan (2013) and Gan and Lin (2015). In particular, we first create two large

VAs portfolios consisting of 100,000 and 200,000 policies, respectively. The VA policies are

randomly generated based on the attributes given in Table 5.1. The attributes with a dis-

crete set of values are assumed to be selected with equal probability. Examples of attributes

satisfying this property are “Age”, “GMWB withdrawal rate”, “Maturity”. “Guarantee

type” and “Gender”. The latter two are the categorical attributes, with “Guarantee type”

specifies the type of guarantees of the VA policy; i.e. GMDB only or GMDB + GMWB,

and “Gender” admits either “male” or “female”. The remaining attribute “Premium” is a

quantitative variable with its value distributes uniformly on the range [10000, 500000].

Attributes Values
Guarantee type GMDB only, GMDB + GMWB
Gender Male, Female
Age 20, 21, . . . , 60
Premium [10000, 500000]
GMWB withdrawal rate 0.04,0.05,. . . ,0.08
Maturity 10, 11, . . . , 25

Table 5.1: Variable annuity contract specification

The two VAs portfolios constructed above can then be used to test against various large VAs

portfolio valuation methods. As in Gan (2013) and Gan and Lin (2015), we are interested in

the VAs portfolio’s market value and its sensitivity parameter dollar delta. We assume that

all the VA policies in our benchmark portfolios are written on the same underlying fund

so that to estimate their market values and dollar deltas, we need to simulate trajectories

of the fund over the maturity of the VA policies. Under the lognormality assumption, the

yearly fund can be simulated according to

St = St−1e
r− 1

2
σ2+σZt , t = 1, 2, · · · (5.8)
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where r is the annual interest rate, σ is the volatility of the fund, St is the value of the

fund in year t, and Zt is the standardized normal variate. On the valuation date t = 0, the

fund value is normalized to 1; i.e. S0 = 1. We also set r = 3% and σ = 20%. Note that

to simulate a trajectory of the fund , we need to generate {Zt, t = 1, 2, . . . , }. As discussed

in details in Gan (2013), the simulated trajectory can then be used to evaluate each and

every VA policy within the portfolio, depending on the attributes.

The simulated VAs portfolio’s market values and its dollar deltas are displayed in Table 5.2.

The reported values under the heading “Benchmark” are estimated using the MC method

with 10,000 trajectories and applying to all the policies in the portfolio. For our numerical

experiment, we will assume that these estimates are of sufficient accuracy so that they are

treated as the “true values” and hence become the benchmark for all future comparisons.

The values reported under “MC-1024” are based on the same method as the “Bencmark”

except that these values are estimated based on a much smaller number of trajectories, i.e.

1024 trajectories. The values for the “RQMC-1024” are also the corresponding estimates

from valuing all policies in the portfolio except that the trajectories are generated based

on the RQMC method with 1024 paths and randomized Sobol points. Here we should

emphasize that when we simulate the trajectories of the fund, (5.8) is used iteratively

for MC. For RQMC, the trajectories are generated using the randomized Sobol points

coupling with the principal component construction. Detailed discussion of this method

can be found in Wang and Tan (2013). To gauge the efficiency of the MC and RQMC from

using almost 10-fold smaller number of trajectories, errors relative to the “Benchmark” are

tabulated. The effectiveness of RQMC is clearly demonstrated, as supported by the small

relative errors of less than 1%, regardless of the size of the VAs portfolio. In contrast, the

MC method with the same number of simulated paths leads to relative errors of more than

7%.
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Method Market Value Relative Error Dollar Delta Relative Error

n = 100, 000
Benchmark 736,763,597 - -2,086,521,832 -
MC-1024 793,817,541 7.74% -2,237,826,994 7.25%

RQMC-1024 742,849,028 0.83% -2,094,359,793 0.38%
n = 200, 000
Benchmark 1,476,872,416 - -4,182,264,066 -
MC-1024 1,591,202,285 7.74% -4,484,725,861 7.23%

RQMC-1024 1,489,074,001 0.82% -4,197,858,556 0.37%

Table 5.2: Market values and dollar deltas of the two large VAs portfolio of n = 100, 000
and 200, 000 policies. The “benchmark” is the MC method with 10,000 trajectories, MC-
1024 is the MC method with 1024 trajectories, and RQMC-1024 is the RQMC method
with 1024 trajectories. The relative errors are the errors of the respective method relative
to the “benchmark”.

We now proceed to comparing the various large VAs portfolio valuation methods. By using

the two large VAs portfolios constructed above, we consider two green meshes based on

the methods of LHS and RQMC. Recall that our VAs portfolios consist of two categorical

attributes: “Guarantee type” and “Gender”. In term of the sensitivity of the attribute

to the value of VAs portfolio, the categorical attribute tends to be more pronounced than

the quantitative attribute. For example, the value of a VA policy crucially depends on the

feature of the guarantee. This implies that two policies with different “Guarantee type” can

have very different market values (and dollar delta) even though their remaining attributes

are exactly the same. Similarly two VA policies with identical attributes except that one

annuitant is male and the other is female, the value of the policy can be quite different due

to the difference in gender’s mortality. For this reason, if a VA policy is approximated by

a representative synthetic VA policy for which their categorical attributes are not aligned,

then the proposed Taylor approximation may not be as accurate. To avoid this situation,

a possible adjustment is to implement the mesh method in the following way. Rather

than selecting a single set of synthetic VA policies that is representative of all attributes

(i.e. both quantitative and categorical), we can first focus on finding the representative

synthetic VA policies for each possible combination of categorical attributes. For instance,
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there are four possible combinations of “Guarantee type” and “Gender” in our example.

Then for each stratified combination, a set of synthetic VA policies that is representative

of only the quantitative attributes is determined and evaluated. Via the nearest neighbour

approach and the Taylor method, these representative synthetic VA policies, in turn, are

used to approximate those VA policies that have the same categorical attributes. We refer

this implementation as the conditional-green mesh approach, to differentiate it from the

standard green mesh method.

There are some advantages associated with the conditional-green mesh implementation.

Firstly, the dimensionality of the conditional-green mesh method is reduced by the num-

ber of categorical attributes. This decreases the dimension of the representative synthetic

VA policies so that fewer points are needed to achieve the representativeness. Secondly, the

nearest neighbour method can be implemented more efficiently since we now only need to

focus on the “closeness” among all the quantitative attributes. Furthermore, the number

of representative synthetic VA policies conditioned on the combination of categorical at-

tributes tends to be smaller than the total number of representative synthetic VA policies

under the standard mesh method. Hence the computational time required for the nearest

neighbour search is also reduced. Thirdly and more importantly, by first conditioning on

the categorical attributes and then using the resulting representative synthetic VA policies

to approximate the VA policies has the potential of increasing the accuracy of the Taylor’s

approximation since any mismatch among the categorical attributes has been eliminated.

Tables 5.3 and 5.4 give the necessary comparison for n = 100, 000 and 200, 000 VA poli-

cies, respectively. For each large VAs portfolio, we compare and contrast five valuation

methods: Gan (2013) and Gan and Lin (2015) clustering-Kriging method, mesh method

and conditional mesh method based on LHS and RQMC sampling, respectively. For the

each method we use four different set of representative points k ∈ {100, 500, 1000, 2000}

to estimate each VA policy’s market value and its dollar delta. For the conditional mesh

method, there are four equal probable combinations of the categorical variables so that for

fair comparison, k/4 mesh points are used of these sub-meshes.
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Due to the memory constraint and computational time, a sub-optimal clustering-Kriging

method is implemented. More specifically, for the k-prototype clustering algorithm of

determining the representative VA policies, the large VAs portfolio is first divided into a

sub-portfolios comprises of 10,000 VA policies so that there are 10 and 20 of these sub-

portfolios for n = 100, 000 and 200, 000, respectively. Then the k-prototype clustering

algorithm is applied to each sub-portfolio 100 and 50 representative VA policies for n =

100, 000 and 200, 000, respectively, so that in aggregate there are k = 1000 for each of the

large VAs portfolios. For k = 2000, the above procedure applies except that we generate 200

and 100 representative VA policies from the corresponding sub-portfolios for n = 100, 000

and 200, 000, respectively. The Kriging method also faces the same challenge. In this case,

For Kriging method, we solve the linear equation system according to equation (6) of Gan

(2013) for each data point except the representative VA. i.e. For 100,000 data points and

k = 1, 000, we solve 100,000-1,000=99,000 linear equation systems; For 200,000 data points

and k = 1, 000, we solve 200,000-1,000=199,000 linear equation systems.

For each of the above method, we quantify its efficiency by comparing the following error

measures:

MAPE =

n∑
i=1

|Ai −Bi|∣∣∣∣ n∑
i=1

Bi

∣∣∣∣ (5.9)

MRE =
1

n

n∑
i=1

∣∣∣∣Ai −Bi

Bi

∣∣∣∣ . (5.10)

where Ai and Bi are, respectively, the estimated value and benchmark value for the i-th

VA policy, for i = 1, 2, . . . , n. MAPE denotes the mean absolute percentage error and

MRE the mean relative error. In all of these cases, smaller value implies greater efficiency

of the underlying method. Furthermore, these measures quantify errors with respect to

pricing each VA policy in some averaging ways and do not allow cancellation of errors.

An conclusion can be drawn from the results reported in these two tables is that the

113



clustering-Kriging method of Gan (2013) and Gan and Lin (2015) is clearly not very effi-

cient, with unacceptably large errors in many cases and irrespective of which error measure.

The mesh methods, on the other hand, are competitively more effective than the clustering-

Kriging method. Comparing among the green mesh methods, the conditional green mesh

method in general leads to smaller errors, hence supporting the advantage of constructing

the green mesh conditioning on the categorical variables. Finally the mesh constructed

from the RQMC method yields the best performance. More specifically, the method of

clustering-Kriging with 100 clusters yields MAPE of 0.4072 for estimating 100,000 VA

policies’ market value. If the sampling method were based on LHS, then it is more ef-

fective than Gan (2013) and leads to smaller MAPE by 2.4 and 2.9 times for standard

green mesh and conditional green mesh, respectively. However, the QMC-based sampling

method produces even smaller MAPE of 2.6 and 3.6 times for standard green mesh and

conditional green mesh, respectively. By increasing k from 500 to 2,000, the MAPE of

Gan (2013)’s method reduces from 0.4072 to 0.0652 for estimating the same set of VA poli-

cies. On the other hand, the efficiency of LHS method increased by 2.5 and 3.1 times for

standard green mesh and conditional green mesh, respectively. The QMC-based sampling

method gives even better performance and leads to 3.2 and 4.3 times smaller MAPE for

the same set of comparison.
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Method Market Value MAPE MRE Dollar Delta MAPE MRE

k = 100
Clustering-Kriging 733,408,057 0.4072 2.9113 -2,111,059,490 0.3966 3.7120
Standard-Mesh-LHS 779,382,382 0.1708 1.1190 -2,187,748,111 0.1634 0.7207
Standard-Mesh-RQMC 774,787,351 0.1560 0.5905 -2,177,917,524 0.1426 0.4937
Conditional-Mesh-LHS 756,514,592 0.1390 1.2262 -2,142,052,361 0.1307 0.8952
Conditional-Mesh-RQMC 758,395,576 0.1119 0.7700 -2,127,495,679 0.1088 0.5904
k = 500
Clustering-Kriging 743,952,147 0.1504 1.1946 -2,106,736,645 0.1395 1.4383
Standard-Mesh-LHS 750,143,449 0.0718 0.2909 -2,118,171,620 0.0689 0.2317
Standard-Mesh-RQMC 746,493,713 0.0554 0.2287 -2,108,624,022 0.0541 0.1880
Conditional-Mesh-LHS 751,246,815 0.0583 0.2489 -2,120,137,979 0.0557 0.2012
Conditional-Mesh-RQMC 746,632,631 0.0437 0.2134 -2,107,111,384 0.0450 0.1716
k = 1, 000
Clustering-Kriging 746,981,504 0.1004 0.7411 -2,100,747,984 0.0881 0.8729
Standard-Mesh-LHS 743,740,049 0.0439 0.1683 -2,099,803,880 0.0414 0.1396
Standard-Mesh-RQMC 743,569,931 0.0387 0.1542 -2,101,802,728 0.0380 0.1226
Conditional-Mesh-LHS 744,940,085 0.0345 0.1546 -2,103,392,558 0.0344 0.1266
Conditional-Mesh-RQMC 744,379,692 0.0291 0.1372 -2,101,114,587 0.0300 0.1154
k = 2, 000
Clustering-Kriging 744,091,499 0.0652 0.4334 -2,101,521,754 0.0580 0.5043
Standard-Mesh-LHS 744,368,005 0.0264 0.1057 -2,099,895,472 0.0259 0.0897
Standard-Mesh-RQMC 743,474,594 0.0206 0.0742 -2,097,515,603 0.0214 0.0624
Conditional-Mesh-LHS 744,432,495 0.0207 0.0902 -2,099,564,732 0.0214 0.0773
Conditional-Mesh-RQMC 743,848,669 0.0152 0.0669 -2,097,895,831 0.0155 0.0569

Table 5.3: Comparison of large VAs portfolio valuation methods on a portfolio of 100, 000
policies
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Method Market Value MAPE MRE Dollar Delta MAPE MRE

k = 100
Clustering-Kriging 1,486,323,825 0.4112 2.8492 -4,238,127,436 0.4195 3.4307
Standard-Mesh-LHS 1,562,487,430 0.1699 1.1450 -4,386,501,086 0.1629 0.7362
Standard-Mesh-RQMC 1,551,783,419 0.1540 0.5850 -4,362,008,069 0.1414 0.4907
Conditional-Mesh-LHS 1,517,430,764 0.1384 1.2058 -4,297,122,824 0.1303 0.8773
Conditional-Mesh-RQMC 1,519,975,189 0.1120 0.7562 -4,264,064,685 0.1088 0.5781
k = 500
Clustering-Kriging 1,524,702,769 0.1600 1.2734 -4,300,058,619 0.1435 1.5098
Standard-Mesh-LHS 1,503,408,982 0.0709 0.2837 -4,245,571,030 0.0684 0.2260
Standard-Mesh-RQMC 1,496,248,048 0.0559 0.2288 -4,227,061,000 0.0546 0.1879
Conditional-Mesh-LHS 1,506,144,258 0.0580 0.2435 -4,250,124,644 0.0554 0.1973
Conditional-Mesh-RQMC 1,496,583,907 0.0434 0.2067 -4,223,483,061 0.0449 0.1673
k = 1, 000
Clustering-Kriging 1,475,050,093 0.1064 0.7102 -4,162,797,915 0.0969 0.8247
Standard-Mesh-LHS 1,489,935,827 0.0438 0.1681 -4,207,022,610 0.0413 0.1386
Standard-Mesh-RQMC 1,490,282,637 0.0390 0.1535 -4,213,262,468 0.0383 0.1223
Conditional-Mesh-LHS 1,493,011,025 0.0339 0.1508 -4,215,750,737 0.0340 0.1233
Conditional-Mesh-RQMC 1,492,559,392 0.0292 0.1362 -4,212,586,115 0.0301 0.1149
k = 2, 000
Clustering-Kriging 1,482,550,735 0.0643 0.3962 -4,185,408,010 0.0556 0.4496
Standard-Mesh-LHS 1,491,875,469 0.0261 0.1057 -4,208,431,745 0.0257 0.0896
Standard-Mesh-RQMC 1,490,238,009 0.0209 0.0740 -4,204,332,533 0.0215 0.0617
Conditional-Mesh-LHS 1,492,100,073 0.0207 0.0889 -4,207,726,068 0.0214 0.0763
Conditional-Mesh-RQMC 1,491,084,172 0.0152 0.0665 -4,205,294,903 0.0155 0.0567

Table 5.4: Comparison of large VAs portfolio valuation methods on a portfolio of 200, 000
policies

Comparing both green meshes, the conditional green mesh has the advantage of dimension

reduction and that each possible categorical variables combination has been stratified with

the right proportion of representative synthetic VA policies. As supported by our numer-

ical results, the conditional green mesh is more efficient than the standard green mesh,

irrespective of the sampling method.

As noted in the above illustration that the sampling method also plays an important

role in determining the efficiency of green meshes. We now provide an additional insight

on why the sampling method based on the RQMC is more efficient than the LHS. This

can be attributed to the greater uniformity of the RQMC points, as demonstrated in Ta-

ble 5.5 which displays the standard green meshes of 8 representative synthetic VA policies
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constructed from LHS and RQMC sampling methods. Recall in our example we have 2

categorical attributes “Guarantee types” and “ Gender”, each with two equal probable

values (denoted by either 0 or 1) and hence four equally likely combinations represented

by {(0, 0), (0, 1), (1, 0), (1, 1)}. With 8 representative synthetic VA policies, each of these

permutations should ideally have 2 policies. This patten is observed for RQMC but not

LHS. The LHS sampling, for example, has three representative synthetic VA policies that

are (0, 1) and (1, 0) combinations but only one representative synthetic VA policy in com-

binations (0, 0) and (1, 1). Therefore the RQMC sampling a more uniform sampling than

the LHS sampling, even under the standard green mesh construction.

Green Mesh (Representative synthetic VA policies)

1 2 3 4 5 6 7 8
LHS

Guarantee Type 1 1 0 0 0 0 1 1
Gender 1 0 1 0 1 1 0 0
Age 49 37 29 52 59 40 23 31
Premium 59,694 114,891 188,169 342,207 213,144 405,271 290,174 460,528
Withdrawal rate 0.05 0.05 0.06 0.06 0.08 0.08 0.07 0.04
Maturity 11 12 17 19 15 22 21 25

RQMC
Guarantee Type 1 0 1 0 1 0 1 0
Gender 0 1 1 0 1 0 0 1
Age 24 58 37 44 55 26 46 34
Premium 313,162 29,307 155,153 438,036 365,276 97,869 217,046 485,394
Withdrawal rate 0.04 0.07 0.06 0.07 0.08 0.05 0.06 0.05
Maturity 11 23 20 16 18 14 13 25

Table 5.5: Comparison of standard green mesh construction under LHS and RQMC sam-
plings with 8 points

We now compare the computational efforts among the various methods. For our proposed

green meshes, the computational time can be divided into two parts. The first part relates

to the initial cost of determining a representative set of synthetic VA policies as well as

determining their market values, dollar deltas and the gradients for the Taylor approx-

imation. This computational effort, which is denoted as the start-up time, is invariant

to the size of the portfolio. The second part of the computational effort corresponds to
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the time it takes to approximate all VA policies in the portfolio. This is denoted as the

evaluation time and is proportional to the number of policies in the portfolio. Using the

same two large VAs portfolios of 100,000 and 200,000 policies, Table 5.6 reports the break-

down of the computational time for the various implementations of green meshes involving

k ∈ {100, 500, 1000, 2000}.

Let us first comment on the start-up time of the green meshes. Firstly, the start-up time

for implementing among various green meshes is very comparable. Secondly, the start-up

time is proportional to k, the size of mesh points. Thirdly, and most importantly is that

the start-up time is invariant to the size of the VAs portfolio. This is an important feature

in that once we have produced a representative set of synthetic VA policies, the same

mesh can be re-used or re-cycled on any other large VAs portfolios. We now consider the

evaluation time. Similar to the start-up time, the evaluation time for the various mesh

implementations are also competitively comparable and also proportional to k. However,

the evaluation time in this case depends on the size of the VAs portfolio; doubling the size

of the VAs portfolio doubling the evaluation time.

To appreciate the computational efficiency of our proposed green meshes, Table 5.6 also

reports the computational time if the entire VAs portfolio were to be evaluated using the

benchmark method (MC with 10,000 trajectories) and MC and RQMC methods (with 1,024

trajectories). If the MC method with 10,000 trajectories (i.e. the benchmark method) were

to evaluate the entire portfolio of 200,000 VA policies, it would take about 8.4 hours of com-

putational time. This is 10 times computationally more intensive than the corresponding

MC and RQMC methods (with 1,024 trajectories) since the latter methods use trajectories

of almost 10-fold smaller. In contrast, if the RQMC-based conditional mesh with k = 500

and 1, 000 were used to approximate the same large VAs portfolio, the time it takes to

approximate all the VA policies in the portfolio, given the meshes, is less than 6 and 9

seconds, respectively. Even if we take into account the initial set up cost of constructing

the green meshes and determining their prices and gradients, the total time it requires

is still 634 and 326 times less than the benchmark, for k = 500 and 1000, respectively.
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The saving in computational time relative to the direct valuation of large VAs portfolio is

remarkable.

A more interesting comparison is to contrast the computational efficiency from our pro-

posed green meshes to clustering-Kriging method. Recall that the implementation of the

cluster-Kriging method basically involves four steps: (i) k-prototype clustering, (ii) nearest

neighbouring of mapping representative synthetic VA policies to the actual VA policies,

(iii) MC evaluation of representative VA policies, (iv) Kriging method of approximating all

the VA policies within the portfolio. The respective time for these steps applying to the

same two large VAs portfolios with k = 1, 000 are reported in the upper panel of Table 5.7.

The breakdown of these steps also provides useful insight to the time complexity of the

clustering-Kriging method. The k-prototype clustering is the second most time-consuming

step, leading to 174 and 351 seconds for VAs portfolios of 100,000 and 200,000 policies.

The Kriging step, on the other hand, has the most demand on time. The Kriging approach

of approximating all the 200,000 policies of the VAs portfolio would take about 7.14 hours

and such computational effort is proportional to the size of the VAs portfolio. These re-

sults confirm that the clustering-Kriging method is not only memory intensive, but also

computationally burdensome.

Along with the clustering-Kriging method, the lower panel of Table 5.7 reproduces from

Table 5.6 the corresponding computational time but for the green meshes with k = 1, 000.

In this case, the start-up time is in the neighbourhood of 85 seconds and the evaluation

time ranges from 4 to 11 seconds, depending on the sampling methods and the size of the

VAs portfolio. Compared to the computational time of the clustering-Kriging method, the

proposed green mesh is remarkably efficient, with a time saving of about 280 times. Another

important difference that needs to be emphasized is that for the method of clustering-

Kriging the representative VA policies depend on the VAs portfolio. Hence when we change

the size of the VAs portfolio, the representative VA policies determined from the clustering

approach need to be up-dated. On the other hand, this is not the case for the green mesh

methods. As long as all the domains of the attributes remain unchange, the same set of
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representative synthetic VA policies can be re-cycled repeatedly to approximate VA policies

of any portfolio.

n = 100, 000 n = 200, 000
Benchmark 15,184 30,337
MC-1024 1,564 3,166
RQMC-1024 1,555 3,115

Green Mesh k = 100 k = 500 k = 1000 k = 2000
Start-Up Time any n
• Standard-Mesh-LHS 8.88 42.31 85.17 169.23
• Standard-Mesh-RQMC 9.25 42.34 85.94 172.77
• Conditional-Mesh-LHS 9.75 42.61 83.63 167.75
• Conditional-Mesh-RQMC 8.95 42.25 84.47 171.45
Evaluation Time n = 100, 000; 200, 000
• Standard-Mesh-LHS 1.91; 3.50 3.31; 6.56 5.38; 10.81 9.52; 19.80
• Standard-Mesh-RQMC 1.72; 3.41 2.98; 6.09 4.61; 9.55 7.88; 15.77
• Conditional-Mesh-LHS 1.89; 3.58 2.89; 5.91 4.39; 9.05 7.39; 15.38
• Conditional-Mesh-RQMC 1.83; 3.33 2.89; 5.88 4.42; 9.05 7.39; 15.27

Table 5.6: Computational time for the benchmark (MC with 10,000 trajectories), MC
and RQMC with 1024 trajectories, and the green meshes with k ∈ {100, 500, 1000, 2000}
on large VAs portfolio of n = 100, 000 and 200, 000 policies. For the green meshes we
decompose the computational time into start-up time and evaluation time. All reported
times are in seconds and run on laptop with Single Thread, 2.5 GHz CPU and Matlab
program. The first and second entries of the evaluation time of the green meshes are for
100, 000 and 200, 000 VA policies, respectively.
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n = 100, 000 n = 200, 000

Clustering-Kriging (k = 1, 000)
(i) Clustering 174 351
(ii) Nearest neighbour mapping 5.92 5.97
(iii) MC evaluation 16 16
(iv) Kriging 12,886 25,709

Green Mesh (k = 1, 000)
Start-Up Time:
• Standard-Mesh-LHS 85.17 85.17
• Standard-Mesh-RQMC 85.94 85.94
• Conditional-Mesh-LHS 83.63 83.63
• Conditional-Mesh-RQMC 84.47 84.47
Evaluation Time:
• Standard-Mesh-LHS 5.38 10.81
• Standard-Mesh-RQMC 4.61 9.55
• Conditional-Mesh-LHS 4.39 9.05
• Conditional-Mesh-RQMC 4.42 9.05

Table 5.7: Comparison of computational time between Clustering-Kriging and the green
meshes for k = 1000 on large VAs portfolio of n = 100, 000 and 200, 000 policies. All
reported times are in seconds and run on laptop with Single Thread, 2.5 GHz CPU and
Matlab program.

5.5 Conclusion

We extended the idea of low discrepancy sequence in the QMC on selecting the representa-

tive synthetic variable annuity policies. The proposed green mesh method is not only able

to approximate the large VAs portfolio with a high degree of precision but also a simple

and real-time application. We discussed that our green mesh method needs only a little

start-up cost and it’s results can be re-cycled or re-used to effectively price other arbitrary

large VAs portfolios. The downsize of the proposed method it does not apply to nested

simulation.
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Chapter 6

Dimension Reduction in Portfolio

Selection

Key contributions of this chapter

1. Propose a new and novel portfolio strategy which we denote as the effective portfolio

(EP) strategy

2. The EP strategy has the potential of providing better risk and reward trade-off on

a given target portfolio.

3. If the target portfolio has N stocks, then the EP portfolio has the following charac-

teristics:

(a) it contains EPD stocks, where EPD � N ;

(b) all EPD stocks are selected from the original list of N stocks;

(c) the EP portfolio has higher positive alpha and β < 1

4. An extensive empirical studies are conducted to demonstrate the efficiency and

robustness of the EP strategy.
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6.1 Introduction

In a typical portfolio selection,1 the problem boils down to selecting appropriate assets

to be included in the portfolio as well as their relative investment proportion within the

portfolio. More specifically, we assume there are N risky stocks to be considered for

investment and Ri, i = 1, . . . , N, represents the i-th stock rate of return random variable

over a single investment horizon. The i-th stock return’s expected value and variance is

given by IE[Ri] = µi and V ar(Ri) = σ2
i = σii, respectively, and the correlation between

returns of stock i and stock j is denoted by Corr(Ri, Rj) = ρij, i, j = 1, . . . , N .

Let wi, i = 1, . . . , N , represent the portfolio weight in stock i. Positive wi implies long

position in stock i and negative wi implies a short position. The resulting rate of return

random variable RP for a portfolio P constructed involving R = (R1, . . . , RN)T and with

weight w = (w1, . . . , wN)T is given by

RP =
N∑
i=1

wiRi = wTR, where
N∑
i=1

wi = 1. (6.1)

The portfolio’s expected return, µP , and its variance, σ2
P , in turn, can be computed by

IE(Rp) = µP =
N∑
i=1

wiµi = wTµ (6.2)

V ar(RP ) = σ2
P =

N∑
i=1

N∑
j=1

wiwjσi,j = wTΣw, (6.3)

with mean vector µ = (µ1, · · · , µN)T and variance-covariance matrix Σ = (σij)i,j=1,...,N ,

where σij = σiσjρij, for i 6= j.

The above portfolio selection formulation assumes that the assets in the investment port-

folio are all risky. It can be desirable to construct a portfolio that has some exposure to

1In this chapter N is defined as the number of stocks or the number of factors. In our context, N can
be interpreted as the dimension of the problem of interest, though in other chapters we have consistently
used d to denote the dimension.
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the risk-free asset. By denoting rf as the risk-free asset’s deterministic return and w0 as

its portfolio weight, then the portfolio rate of return random variable (6.1) generalizes to

RP =
N∑
i=0

wiRi = w0rf +wTR = wTR+ (1−wT1N)rf , (6.4)

where w0 +wT1N = 1 and 1N is an N -by-1 vector of ones. Similarly, the portfolio mean

(6.2) and variance (6.3) become

IE(Rp) = µP = w0rf +wTµ = wT (µ− rf1N) + rf (6.5)

V ar(RP ) = σ2
P = wTΣw. (6.6)

In the presence of risk-free asset, it is useful to express the return in excess of the risk-free

return, so that (6.4) and (6.5), respectively, become

R̃P = RP − rf = wTR+wT1Nrf (6.7)

µ̃P = µP − rf = wT (µ− rf1N). (6.8)

Throughout the chapter, we will consistently use the notation with “̃ ” to denote its excess

return.

For any given investment strategy w, its risk and rewards are captured by (6.3) and (6.2)

(or analogously by (6.6) and (6.5) in the presence of risk-free asset). An optimal portfolio

strategy w is derived by formulating the portfolio selection problem as some optimization

problem. The classical Markowitz (1952) model is a mean-variance efficient portfolio in the

sense that the resulting portfolio yields the largest reward (as measured by the portfolio

expected return) for a given level of portfolio risk exposure (as measured by the portfolio

variance); or equivalently the smallest risk for a given level of reward.

The pioneering work of Markowitz (1952) forms the foundation of the well-known “Modern

Portfolio Theory”. It opens up a new line of research inquiry that is of interest to both
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academics and practitioners. In particular, it is also well known that mean-variance efficient

portfolios that are based on sample estimates of the first two moments perform poorly in

out-of-sample. See Jobson and Korkie (1981), Frost and Savarino (1986), Michaud (1989),

Black and Litterman (1990) and DeMiguel et. al. 2009. Subsequently a number of models

attempting to address this issue has been proposed. Some of these extensions include

imposing the shortsale constraint (see Frost and Savarino, 1988; Jagannathan and Ma,

2003), reducing the impact of estimation risk (see Kan and Zhou, 2007; Tu and Zhou,

2011), Bayesian shrinkage on covariance matrix (see Tibshirani, 1996; Ledoit and Wolf

2003, 2004, 2012), constraint on transaction cost (see Boyle and Lin, 1997; Olivares-Nadal

and DeMiguel, 2015).

Another restriction under modern portfolio theory is on the pricing error. This includes

parameter uncertainty, see Brown(1976), Klein and Bawa and (1976), Bawa et. al. (1979),

Jorion (1986), Pástor (2000), Pástor and Stambaugh (2000), MacKinlay and Pástor (2000),

Tu and Zhou (2004), Kan and Zhou (2007), and Tu and Zhou (2011), and model uncer-

tainty, see Goldfarb and Iyengar (2003), Halldórsson and Tütüncü (2000), and Tütüncü

and Koenig (2004). For the portfolio selection considering both parameter and model

uncertainty, see Garlappi et al. (2007).

By resorting to an extensive empirical studies, DeMigueal at al. (2009) conclude that “[o]f

the 14 models [they] evaluate across seven empirical datasets, none is consistently better

than the 1/N rule in terms of Sharpe ratio, certainty-equivalent return, or turnover”. A

key reason for the “inefficiency” of the 14 sophisticated models is due to the estimation

errors. This is also pointed out in Kritzman et al. (2010) that by relying on longer-term

samples, the optimized portfolios may outperform 1/N in out-of-sample tests. However,

the sophisticated optimization strategies rely heavily on the in-sample estimates, i.e. the

“ex ante” perspective.

Another approach is to construct the portfolio based on economic values. In order to

explain economic phenomena on asset prices and analyse relationships between variables,
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Fama and French (1993) introduced the well known three-factor model. Following their

work, Carhar (1997) extend the Fama-French three-factor model to include a momentum

factor; Fama and French (2015) extends their own work to a five-factor pricing model;

Stambaugh and Yuan(2015) incorporate the mispricing factors aggregating information

across 11 prominent anomalies and produced a better-performing three-factor models.

We now provide a brief review of factor model. In general, a linear factor model assumes

that the rate of return of i-th asset is given by

Ri = ai + bi1f1 + bi2f2 + · · ·+ bikfk + εi, (6.9)

where fj, j = 1, · · · , k, are k ≥ 1 random variables called factors, ai is the expectation

of Ri, bij is a constant and εi is called the “error” term with E(εi) = 0 and E(εifj) =

E(εi)E(fj) = 0, for i = 1, · · · , N . The factors themselves are allowed to be correlated and

are meant to simplify and reduce the amount of randomness required in an analysis of our

assets. When k = 1, this model is called a single factor model.

However the investable assets have the issue of misspecification. One form of misspecifica-

tion is referred as alpha. Using the intuition behind the Treynor Index (Treynor (1965))

and Jensen’s alpha (Jensen (1969)), Dybvig and Ross(1985) argues that “If the security

market line tells us how much of a reward is justified for a given amount of risk, it makes

intuitive sense that deviations from the security market line can be used to measure supe-

rior or inferior performance.” Hence, they constructed a so called “alpha portfolio”. See

also Kan and Wang (2016).

Following Kan and Wang (2016), suppose R̃ = [R̃a, R̃b], where R̃a and R̃b are the excess

returns of the benchmark portfolios and the investing assets. We assume that R̃ follows a

multivariate normal distribution with mean

µ̃ =

 µ̃a
µ̃b
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and covariance matrix of R̃ as

Σ =

 Σaa Σab

Σba Σbb

 ,
where a is the number of assets in R̃1 and b is the number of assets in R̃2. The investor is

assumed to choose a portfolio P in order to maximize the mean-variance utility function

which is U = µP − γ
2
σ2
P , where γ is the investor’s risk aversion coefficient, and µp and σ2

p

are the mean and variance of portfolio P .

When the benchmarks are ex ante efficient, the investing assets will have zero alphas, i.e.

α = µ̃b −ΣbaΣ
−1
aa µ̃a = 0N . (6.10)

When the benchmarks are inefficient, the test assets will have nonzero alphas, i.e.

α = µ̃b −ΣbaΣ
−1
aa µ̃a 6= 0N . (6.11)

In this chapter, we attempt to address the following question. Given a portfolio strategy

with investment in N stocks, is it possible to design a revised strategy with the following

characteristics

(a) the revised portfolio contains only a stocks, where a� N ;

(b) the a stocks are selected from the original list of N stocks;

(c) outperform the original portfolio strategy, possibly with a higher Jensen’s alpha?

Property (a) ensures the revised portfolio is exposed to much less estimation errors relative

to the original portfolio since it involves less stocks.

The answer to this question is yes. We accomplish this objective via the notion of effective

portfolio dimension.
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We make the following contributions in this paper. First, we show that only small number

of stocks could dominate the whole market in terms of variance contribution. In other

words, in order to enhance the portfolio performance, we could reduce the number of

trading stocks without increasing the variance. Second, we show that we could construct

our own factor models so that our portfolio could achieve any give beta value via dimension

reduction. Third, we demonstrate that the dispersion of high performance stocks could be

reduced when selecting smaller number of stocks. In other words, we could select preferred

stocks or high-performance stocks which still reduce the variance of the portfolio. To be

more exciting, we could construct our effective portfolio to achieve β < 1 and potential

portfolio α > 0. Fourth, we show that any sophisticated strategy could be combined

with our effective portfolio strategy to enhance its performance relying on both statistical

concepts and economic factors.

Section 6.2 introduces our effective portfolio strategy and the relationship to the factor

model. In particular, Subsection 6.2.2 discusses the relationship between the selected

and non-selected stocks, Subsection 6.2.3 addresses the question of determining effective

portfolio dimension, and Subsection 6.2.4 proposes an algorithm on the ordering of stock

preference. Then Section 6.3 provides ample of empirical results to support our proposed

portfolio strategies.

6.2 Effective Dimension Portfolio Strategy

We begin the section by assuming that R = (R1, R2, . . . , RN)T is multivariate normally

distributed with mean vector µ and variance-covariance matrix Σ so that R ∼ N(µ,Σ).

In other words we have

R = µ+AZ, (6.12)
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where A is an arbitrary decomposition matrix as long as it satisfies Σ = AAT and Z is a

vector of N standardized independent normally distributed random variables.

In Subsection 6.2.1 we consider a situation for which the N stocks are partitioned into two

separate groups and provide a relationship between the stocks in one group and the stocks

in another group. Subsection 6.2.3 discusses, effectively, the number of stocks should be

included in the revised portfolio.

6.2.1 Stock Partitions

In this subsection we assume that the N stocks have been partitioned into two groups,

with the first group consists of the a stocks and the second group consists of b = N − a

stocks. In term of the matrix notation, the representation (6.12) can be partitioned as

follows:

R =

 Ra

Rb

 =

 µa
µb

+

 Aaa Aab

Aba Abb

 Za

Zb

, (6.13)

where the subscript of each vector or matrix indicates their dimensions. As A can be

arbitrarily selected as long as variance-covariance condition is satisfied, in what follows we

impose an additional constraint on the decomposed A such that Aab is a zero matrix.

For the partition displayed in (6.13), we assume that the stocks in the first group are

simply the first a stocks from R; i.e. R1, . . . , Ra and the stocks in the second group are

the remaining set of b stocks; i.e. Ra+1, Ra+2, . . . , RN . In order to cater to a general stock

partitioning for which stocks from each group can be from any of the N stocks (instead

of the first a stocks as in the first group described above), it is useful to introduce a

permutation vector π = (π1, . . . , πN)T of {1, . . . , N}. The permutation vector π facilitates

the partitioning of stocks so that Rπ1 , Rπ2 , . . . , Rπa are assigned to the first group while

Rπa+1 , Rπa+2 , . . . , RπN are allocated to the second group.
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In order to distinguish the “permuted” notation from the “non-permuted” notation, the

former notation is attached with a superscript π. For example, the permuted N stocks is

denoted byRπ = (Rπ1 , Rπ2 , . . . , RπN )T . The partition (6.13) is generalized to the following:

Rπ =

 Rπ
a

Rπ
b

 =

 µπa
µπb

+

 Aπ
aa 0

Aπ
ba Aπ

bb

 Zπa
Zπb

 .
=

 µπa +Aπ
aaZ

π
a

µπb +Aπ
baZ

π
a +Aπ

bbZ
π
b

 . (6.14)

Note that Rπ
a = µπa + Aπ

aaZ
π
a and hence Zπ

a = (Aπ
aa)
−1(Rπ

a − µπa). This implies Rπ
b in

(6.14) can be expressed as

Rπ
b = µπb +Aπ

baZ
π
a +Aπ

bbZ
π
b

= µπb +Aπ
ba(A

π
aa)
−1(Rπ

a − µπa) +Aπ
bbZ

π
b

= Aπ
ba(A

π
aa)
−1Rπ

a + θπ (6.15)

where θπ = µπb −Aπ
ba(A

π
aa)
−1µπa +Aπ

bbZ
π
b .

The relationship (6.15) demonstrates that returns in Rπ
b are the sum of the returns in

Rπ
a (adjusted by Aπ

ba(A
π
aa)
−1) and the residual component θπ. The residual component is

independent ofRπ
a with its mean and variance given by µπb −Aπ

ba(A
π
aa)
−1µπa andAπ

bb(A
π
bb)

T ,

respectively. More importantly, this result can also be interpreted as providing a way of

replacing stocks in Rπ
b from the stocks in Rπ

a . This result plays an important role in our

portfolio strategy, as discussed in the next subsection.

6.2.2 Revised Portfolio: Selected Stocks vs Non-selected Stocks

We now assume that w is the original portfolio strategy constructed from N stocks. Based

on the given portfolio strategy, our objective is to devise a new portfolio strategy that
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uses only a subset of the original N stocks. Ideally our revised portfolio strategy should

outperform the original portfolio strategy w. In this aspect, the original portfolio strategy

w can be interpreted as the benchmark or target portfolio and we use TP to denote the

resulting target portfolio. The objective is therefore to outperform the target portfolio TP

constructed by the portfolio weight w.

Our revised portfolio strategy consists of a stocks and the risk-free asset. We assume that

the stocks can only be selected from the original N stocks of the target portfolio TP .

Which of the a stocks to be selected is dictated by the permutation vector π. For this

reason, the permutation vector π can be interpreted as the order of preference for investing

among the N stocks; with the π1-th stock being the most preferred and the πN -th stock

being the least. Depending on the risk attitude of the investor, the stock preference order

can be based on the expected return, variance, or some other statistics or attributes of the

stocks. In Section 6.2.4 we will propose some plausible ways of determining π. For now

we will simply refer the permutation vector π as the stock picking vector or rule.

Using the same notation as convention on the stock partition and the permutation, we

have

w =

wa

wb

 , wπ =

wπ
a

wπ
b

 , πT =

πa
πb

 .
Let Q be the revised portfolio strategy consisting of a selected stocks according to the

stock picking rule π and the risk-free asset rf . This implies that the stocks in Rπ
a are the

“selected” stocks and the stocks in Rπ
b are the “non-selected” stocks. By denoting RQ as

the return random variable of the revised portfolio strategy with the corresponding weight

wπQ for the selected stocks, we have

RQ = (wπQ)TRπ
a + [1− (wπQ)T1a]rf , (6.16)

where 1a is a a× 1 vector of ones and wπQ is a column vector of a dimension.

To fully specify our proposed revised portfolio Q we have yet to determine the portfolio
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weight wπQ. We propose to construct wπQ based on the following formula:

wπQ = wπa + (Aπ
ba(A

π
aa)
−1)Twπb . (6.17)

It is important to point out that the portfolio Q depends on the original portfolio strategy

w, the stock picking rule π, as well as the decomposition matrix A.

The adjusted portfolio weight based on (6.17) can be justified from a linear regression

model. To see this, let R̃πaP be the excess portfolio return of the selected stocks with excess

return vector R̃
π

a and portfolio weight wπ
a . Analogously, let R̃πbP be the excess portfolio

return of the non-selected stocks with excess return vector R̃
π

b and portfolio weight wπ
b .

Now it is possible to assume that the selected stocks and the non-selected stocks are related

as follows:

R̃πbP = (wπ
b )T R̃

π

b = απb + (βπb )T R̃
π

a + επb , (6.18)

where απy is a drift term, βπa is a a by 1 coefficient vector, επb is an error term with mean

0, variance Ωπ
b , and is independent of R̃

π

a . The coefficient vector βπb can be derived as the

least square estimator of the standard multiple regression model as

(βπb )T = Cov(R̃πbP , R̃
π

a )(Σπ
aa)
−1 = (wπ

b )TΣπ
ba(Σ

π
aa)
−1 = (wπ

b )TAπ
ba(A

π
aa)
−1. (6.19)

For the proof of Σπ
ba(Σ

π
aa)
−1 = Aπ

ba(A
π
aa)
−1, see Appendix A.

Consequently the portfolio strategy (6.17) corresponds to the sum of the two weights

(1) original weight of the selected stocks (wπa ), and

(2) weight given by the beta coefficient βπb (6.19).

In other words,

wπ
Q = wπa + (Aπ

ba(A
π
aa)
−1)Twπb = wπ

a + βπb . (6.20)
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The revised portfolio Q based on (6.20) can also be interpreted in the following way. The

portfolio Q is similar to the target portfolio except that the non-selected assets of the target

portfolio are being linearly replaced by the selected assets. As a result, the proportion of

investment in the selected stocks is increased by βπb .

An additional insight on the return of the revised portfolio Q can be gleaned by considering

the following decomposition, which follows from (6.20):

µ̃Q = IE[R̃Q] = (wπ
Q)T µ̃πa = (wπ

a + βπb )T µ̃πa = (wπ
a)T µ̃πa + (βπb )T µ̃πa . (6.21)

The above decomposition demonstrates that the excess expected return of the portfolio

Q arises from two sources. The first source is attributed to the excess expected return

produced by the “selected” stocks of the target portfolio ((wπ
a)T µ̃πa). The second source

is the incremental excess expected return for having additional exposure in the selected

stocks or by replacing the “non-selected” stocks with the “selected” stocks ((βπb )T µ̃πa).

An even more important insight is the relationship between the revised portfolio Q and the

Jensen’s alpha. In our context the Jensen’s alpha is defined as the difference between the

excess expected return of a portfolio and the excess expected return of the target portfolio.2

Hence we have

Jensen’s Alpha = µ̃Q − µ̃TP

= (wπ
Q)T µ̃πa −wT µ̃

= (wπ
a + βπb )T µ̃πa −wT µ̃

= (βπb )T µ̃πa − (wπ
b )T µ̃πb

= (wπ
b )TΣπ

ba(Σ
π
aa)
−1µ̃πa − (wπ

b )T µ̃πb

= (wπ
b )T
[
Σπ
ba(Σ

π
aa)
−1µ̃πa − µ̃πb

]
= −απb , (6.22)

2It should be pointed out that the original definition of the Jensen’s alpha assumes CAPM so that the
target portfolio is the market portfolio.
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where απb = (wπ
b )T µ̃πb − (βπb )T µ̃πa = (wπ

b )T
[
µ̃πb − Σπ

ba(Σ
π
aa)
−1µ̃πa

]
is obtained from (6.18)

after taking expectation. Interestingly, we can prove that the effective portfolio could

achieve smaller variance and higher expected return when the selected and non-selected

stocks have different correlation and the number of selected stocks is not too small. (See

Appendix E)

This result provides useful guidance on how the stocks should be selected to the portfolio

Q so that the resulting Jensen’s alpha is as positive as possible. Ideally, the selected stocks

should possess the following properties:

1. Partition the selected and non-selected stocks in such a way that the intercept (i.e.

απb ) in the multiple regression model (6.18) is as negative as possible.

2. The excess expected return induced by the beta portfolio is larger than the corre-

sponding excess expected return of the non-selected stocks of the target portfolio (i.e.

(βπb )T µ̃πa > (wπ
b )T µ̃πb )

3. For positive portfolio weight, the selected stocks should have low variance and/or

high expected returns while the non-selected stocks should have low expected returns.

This follows from wishing to have Σπ
ba(Σ

π
aa)
−1µ̃πa − µ̃πb as positive as possible.

By integrating some of these recommendations, Section 6.2.4 will propose some algorithms

for constructing the revised portfolio Q.

We make the following two remarks before concluding this subsection.

Remark 6.2.1. According the model of Kan and Wong (2016), our constructed Jensen’s

alpha is the negative value of weighted value of alphas of non-selected assets with respect

to the selected assets. This can be seen by noting that α from (6.18) is equivalent to the

“unweighted” negative απb of (6.22).

Remark 6.2.2. Our discussions so far have assumed that R is a collection of N stocks

that are investable. Our results still apply if each of Rj, j = 1, . . . , N is treated as factor.

In particular, by setting k = a and fj = (R̃
π

a )j, according to (6.9), (6.18) corresponds to
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a factor model where the factors are the selected assets. Hence the selection of stocks is

transformed to the selection of factors. For this reason, we can equivalently view the stocks

as the stock factors. An important difference these two interpretations is that if it is a

stock factor, then it is not investable, except when the factor is a market portfolio and we

assume that the stock index, which is a proxy for the market portfolio, is investable.

6.2.3 Effective Portfolio Dimension (EPD)

So far we have argued that by an appropriate choice of stocks selected from a list of

N stocks, it is possible to produce a portfolio strategy Q that outperforms the target

portfolio with a higher Jensen’s alpha. As also pointed out in the introduction that one of

the key issues associated with the sophisticated portfolio strategies is the need to estimate

their parameters for implementing these strategies in practice. Hence these strategies are

subject to estimation errors. Because of the estimation errors, their empirical out-of-

sample performance may not be as efficient as compared to the theoretical efficiency. The

estimation errors become more severe on portfolio with more underlying stocks.

This results in a conflicting dilemma in the sense that if one is interested in reducing esti-

mation error, then the portfolio should contain as few stocks as possible (such as investing

in the “familiar assets”) but this increases the so-called concentration risk. On the other

hand, Markowitz advocates diversification. This implies that the portfolio should include

as many stocks as possible but at the expense of estimation errors. More discussion on the

tradeoff between the concentration (i.e. familiarity) and diversification, see Boyle, et al.

(2012).

Likewise our proposed strategy faces the similar tradeoff between concentration and diver-

sification. We begin with a target portfolio of N stocks. Our revised strategy, however,

comprises of a stocks that are selected from the given N stocks. What should the appro-

priate value of a be? If a is close to N , then the revised portfolio Q will be close to the

target portfolio but if a� N , then it subjects to concentration risk, though the estimation
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errors also reduced substantially.

To resolve this tradeoff, we relate an optimal choice of a to a concept known as the effective

portfolio dimension (EPD). Let Dπ
w denote a dimension random variable of a portfolio

strategy with a portfolio weight and a stock picking rule w. Its cumulative mass function,

FDπ
w

(j), is defined as follows:

FDπ
w

(j) = Pr(Dπ
w ≤ j) =

(wπ)TAπ
·1:j(A

π
·1:j)

T (wπ)T

wTΣw
, j = 1, . . . N, (6.23)

whereAπ
·1:j is the first j columns ofAπ. Intuitively, FDπ

w
(j) captures the relative proportion

of variance contributed by the first j stocks selected for a given portfolio rule w and

a permutation vector π. It is easy to see that FDπ
w

(j) is a non-decreasing function in

j ∈ [1, N ].

The dimension distribution of Dπ
w enables us to define the effective portfolio dimension of

a portfolio, as shown below. Note the similarity between the effective portfolio dimension

and the delta dimension defined in Chapter 2.

Definition 6.2.1. Given a portfolio weight w and a stock picking rule π, the effective

portfolio dimension (EPD) of the portfolio at a confidence level β∗ ∈ (0, 1), denoted by

EPDπ
β∗, is defined as

EPDπ
β∗ = inf{k ∈ [1, · · · , N ] : FDπ

w
(j) ≤ k) ≥ β∗}. (6.24)

Typically β∗ is close to 1. Intuitively, EPDπ
β∗ measures the smallest number of stocks that

captures at least β∗ proportion of the total portfolio variance. If EPDπ
β∗ � N , then the

portfolio is effectively dominated by EPDπ
β∗ stocks even though the portfolio contains a

large number of stocks. For example, suppose N = 100 and EPDπ
β∗ = 5 at β∗ = 99%.

Then a portfolio constructed based on w and π implies that five of the stocks captures

at least 99% of the total portfolio variance. This also suggests that the stocking picking

rule π is extremely effective at reducing the dimension of the portfolio from 100 stocks to
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effectively only 5 stocks. For this reason an optimal a can be chosen as one that corresponds

to EPDπ
β∗ for β∗ close to 1. We then relabel the resulting portfolio from Q to effective

portfolio (EP).

Suppose βQ is the beta of the portfolio Q relative to the target portfolio TP , then analogous

to the CAPM, we have

βQ =
Cov(RQ, RTP )

V ar(RTP )
, (6.25)

where RTP is the return random variable of the target portfolio. The following theorem

establishes an important connection between βQ and FDπ
w

(j).

Theorem 6.2.1. Let RTP be the return random variable of a target portfolio with portfolio

weight w. For a given a and a stock picking rule π, let RQ be the return random variable

of a revised portfolio constructed from the target portfolio according to (6.20). Then we

have

FDπ
w

(a) = βQ, (6.26)

where the cumulative mass function FDπ
w

(·) and βQ are defined in (6.23) and (6.25), re-

spectively.

Proof: For arbitrary w, according to (6.15),

RTP = wTR+
(
1− 1Tw

)
rf = (wπ)T

 Rπ
a

Aπ
ba(A

π
aa)
−1Rπ

a + θπ

+
(
1− 1Twπ

)
rf .

Similarly, according to (6.17),

RQ = (wπ)T

 Rπ
a

Aπ
ba(A

π
aa)
−1Rπ

a

+

1− 1T

 wπ
a

(Aπ
ba(A

π
aa)
−1)Twπb

 rf ,

where Rπ
a is independent of θπ and the risk-free rate rf is considered to be a constant.
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Hence,

Cov(RQ, RTP ) = V ar(RQ) = (wπ)T

 Aπ
aa

Aπ
ba

 Aπ
aa

Aπ
ba

T wπ = (wπ)TAπ
.1:a(A

π
.1:a)

Twπ,

where (wπ)Aπ
.1:a(A

π
.1:a)

Twπ is the numerator of (6.23) and V ar(RTP ) is the denominator

of (6.23). Hence, the cumulative distribution function in (6.23) could be reconstructed as

Pr(Dπ
w ≤ a) =

Cov(RQ, RTP )

V ar(RTP )
. (6.27)

Note that Pr(Dπ
w ≤ a) equals to the market beta if w is equally weighted. i.e. the target

portfolio is RM .

6.2.4 Determining Stock Picking Rule

The preceding subsection provided a way of determining a via the notion of effective

portfolio dimension. This measure depends on a given stock picking rule; i.e. permutation

vector π. Hence to complete the description of the effective portfolio strategy, we need to

have a way of identifying π. Recall that π represents the order of preference among the

N stocks. This can depend on investor’s risk attitude, or the stocks’ various attributes

such as the expected returns, variances, etc. In other words, there is no universal optimal

way of determining π. Ideally the stocks that to be selected should lead to a portfolio

with high Jensen’s alpha. In fact from (6.22) we have already provided some guidelines on

appropriate choices of π. In this section, we provide a specific procedure of determining

π. The empirical evidence to be provided in the next section indicates that our proposed

algorithm is quite effective.

Assume that we are given an initial set of N stocks. The following algorithm provides a

way of determining π

Algorithm 6.2.1. (Goal: Constructing stock picking rule π)
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Step 1: Pre-screening N stocks to produce a good candidate set of N∗ stocks. Let ζ denotes

the resulting candidate set.

Step 2: Sort the stocks in ζ according to the variance from smallest to largest. Assign π

so that πj-th stock has the j-th smallest variance among all the stocks in ζ.

We now provide some rationale for the above algorithm 6.2.1. Let us first note that the

above algorithm determines π via a two-step procedure. The first step narrows down the

feasible set of stocks from N to N∗. After pre-screening, π is then defined explicitly based

on the magnitude of the variances. In theory these two steps can obviously be combined

into a single step so that the constructed π reflects both selection criteria in Steps 1 and 2.

Nevertheless we choose to present the algorithm involving a two-step procedure to simplify

the explanation.

The objective of the pre-screening step is to ensure that the stocks in ζ at least have

some desirable properties. For example, if the pre-screening criterion corresponds to the

expected return of at least 8%, then the stocks in ζ are guarantee to have 8% expected

return. Then in Step 2 we are only allowed to define π from the smaller set of N∗ stocks,

instead from the original list of N stocks.

In our empirical studies, ζ corresponds to the top 70% of the momentum stocks. This is

supported by the numerous empirical evidences that stocks that had relatively high returns

over the past years tend to give above average returns over the next relative short period.

This is attributed to the concept of momentum stocks (see Jegadeesh and Titman. 1993;

Li, et al., 2008, 2009; Beker and Espino, 2013) Another reason for considering top 70%

is due to Appendix E, i.e. the inequality will hold if N∗ is not too small. Also, some

literature pointed out the poor performance of bottom 30% momentum stocks.

Let us now consider Step 2. Conditioned on ζ, stocks with low variance have high priority

to be selected. This can be justified from (6.22) that high Jensen’s alpha can be expected

from selecting stocks with low variance. An alternate justification is from the regression

model. Recall that the regression model (6.18) which relates the “non-selected” stocks to
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the “selected” stocks. The coefficient of determination (R2) is defined

R2(R̃π
bP ) := R2(wπbR

π
b ) =

(wπ
b )TAπ

ba(A
π
ba)

Twπb
(wπb )TAπ

ba(A
π
ba)

Twπ
b + Ωπ

b

,

where Ωπ
b is the residual variance for non-selected stocks with respect to selected stocks

defined in (6.18). The denominator is the total variance of weighted average of the non-

selected stocks in the target portfolio, and the numerator is the variance explained by the

selected stocks. Hence, we would like Ωπ
b to be as small as possible or (wπ

b )TAπ
ba(A

π
ba)

Twπ
b

to be as large as possible so that R2(wπ
bR

π
b ) approaches to 1.

By our model set-up, we have the following property

Proposition 6.2.1. (coefficient of determination R2(wπ
bR

π
b )) Under effective portfolio,

maximizing the coefficient of determination is equivalent to choosing non-selected stocks

with higher variance; i.e. selected stocks with smaller variance.

The proof is provided in Appendix B.

The above proposition implies that to produce a portfolio that has as high the lower bound

of the coefficient of determination as possible, an optimal strategy is to ensure that the

variance of the selected stocks is as small as possible.

Once π is determined from Algorithm 6.2.1, then for a given confidence level β∗, the stocks

that are selected are given by

{Rπ1 , Rπ2 , . . . , RπEPD}

where EPD = EPDπ
β∗ and is defined from (6.24). This is our proposed EP effective

portfolio strategy and its return random variable is denoted by REP . From the definition

of EPD, it is easy to see that

β∗V ar(RTP ) ≤ V ar(REP ) ≤ V ar(RTP ). (6.28)
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6.3 Empirical Studies

In this section we provide an extensive empirical studies to demonstrate the efficiency of

our proposed EP portfolio strategies. Subsection 6.3.1 describes the setup of our empirical

studies, including the portfolio strategies that we will benchmark against. Subsection 6.3.2

then describes the measures that will be used in gauging the efficiency of the portfolio

strategies. The empirical results will be presented in Subsection ??.

6.3.1 Empirical Studies Setup and Methodology

Following DeMiguel et al. (2009), our goal in this section is to empirically assess the

relative effectiveness of the various asset allocation strategies by applying a variety of

datasets. These datasets have been considered extensively in the literature. Our analysis

relies on a “rolling-sample” approach. Specifically, given a T -month-long dataset of asset

returns, we choose an estimation window of length M = 10 × 12 months with out-of-

sample being 1 month. In each month t, starting from t = M + 1, we use the data in the

previous M months to estimate the parameters needed to implement a particular strategy.

These estimated parameters are then used to determine the relative portfolio weights in

the portfolio. We then use these weights to compute the return in month t + 1. This

process is continued by adding the return for the next period in the dataset and dropping

the earliest return, until the end of the dataset is reached. The outcome of this rolling-

window approach is a series of T −M monthly out-of-sample returns generated by each of

the portfolio strategies we are investigating.

For the estimation of mean and variance-covariance matrix of monthly returns, we use in-

sample mean and variance-covariance matrix. For robust check, we have also included the

in-sample robust estimation of 120 data points using Jorion (1986) and Ledoit and Wolf

(2003), and in-sample mean and covariance matrix using 240 data points demonstrated in

Appendix C. The risk-free rate is according to the 90-day T-bill rate download from Ken
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French Website.

As a brief review of portfolio investment methodology, we use Rm
t to denote the m-vector

of excess returns (over the risk-free assets) on m risky assets available for investment at

date t. The number of stocks m = N is called as nominal dimension, and m = EPD is

called as the effective portfolio dimension. The m-dimensional vectors µmt and µmt is used

to denote the expected returns on the risky asset in excess of the risk-free rate, and Σm
t

is denoted as the corresponding m ×m variance-covariance matrix of returns, with their

sample counterparts given by µ̂mt and Σ̂m
t , respectively. Let M be denoted as the length

over which these moments are estimated and T as the total length of the data series. We

use 1m to define an m-dimensional vector of ones, and Im for the m×m identity matrix.

Furthermore, xmt is the vector of portfolio weights invested in the m risky assets, with

1 − 1Tmx
m
t invested in the risk-free assets. The vector of relative weights in the portfolio

with only-risky assets is

wmt =
xmt
|1Tmxmt |

,

where the normalization by the absolute value of the sum of the portfolio weights, |1Tmxmt |,

guarantees that the direction of the portfolio position is preserved in the few cases where

the sum of the weights on the risky assets is negative.

In general, when m = N , we consider an investor whose preferences are fully described by

the mean and variance of a chosen portfolio, xt. At each time t, the decision-maker selects

xt to maximize expected utility:

max
xt

xTt µt −
γ

2
xTt Σtxt, (6.29)

where γ is interpreted as the investor’s risk aversion. The solution of the above optimization

is xt = (1/γ)Σ−1
t µt.

We now describe the portfolio strategies that will be used in our empirical studies. From

these strategies, we will then construct the effective portfolio strategies.
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Naive portfolio

The naive portfolio or equally weighted portfolio (’1/N’ or ’EWP’) that we consider involves

holding a portfolio weight wewpt = 1/N in each of the N risky assets. This strategy does

not involve any optimization or estimation and completely ignores the data.

Sample-based mean-variance portfolio

In the mean-variance (’MV’) model of Markowitz (1952), the investor optimizes the tradeoff

between the mean and variance of portfolio returns. To implement this model, we follow

the classic ’plug-in’ approach; that is, we solve the problem in Equation (6.29) with the

mean and covariance matrix of asset returns replaced by their sample counterparts µ̂

and Σ̂, respectively. Note that this portfolio strategy completely ignores the possibility of

estimation error. According to Jagannathan and Ma (2003), we use non-negative constraint

on MV portfolio to enhance the performance.

Sample-based minimum-variance portfolio

In the minimum-variance (’MIN’) model,we choose the portfolio of risky assets that mini-

mizes the variance of returns; i.e.

min
wmint

(wmint )TΣtw
min
t , (6.30)

such that 1TNw
min
t = 1. This method uses only the estimate of the covariance matrix

of asset returns (the sample covariance matrix) and completely ignores the estimates of

the expected returns. According to Jagannathan and Ma (2003), we use non-negative

constraint on MIN portfolio to enhance the performance.

Sample-based Optimal Constrained portfolio

We follow Kirby and Ostdiek (2012) for the sample-based optimal constrained (’OC’)

portfolio. Under the standard approach to conditional mean-variance optimization, the

investor’s objective in period t is to choose the N × 1 vector of risky assets weights wpt

143



that maximizes the quadratic objective function

Q(wpt) = wTptµ̃t −
γ

2
wTptΣ̃twpt,

where µ̃t = Et(rt+1) is the conditional mean vector of the excess risky-asset returns, Σ̃t is

the conditional variance-covariance matrix of the excess risky-asset returns, and γ denotes

the investor’s coefficient of relative risk aversion. The weight in the risk-free asset is

determined implicitly by 1 − wTpt1N . This problem has a straightforward and well-known

solution: wpt = Σ̃−1
t µ̃t/γ. The solution implies that, in general, the investor divides his

wealth between the risk-free asset and a tangency portfolio (TP) of risky assets with

weights wTPt = Σ̃−1
t µ̃t/1N Σ̃−1

t µ̃t. Because there is a 1 to 1 correspondence between γ and

µ̃pt = wTptµ̃t for each t, we can express the vector of optimal weights as

wpt = µ̃pt

(
Σ̃−1
t µ̃t

µ̃Tt Σ̃−1
t µ̃t

)
. (6.31)

If the objective is to study MV portfolios that exclude the risk-free asset, an alternative

to considering the TP is to solve the investor’s portfolio problem subject to the constraint

wTpt1N = 1. The 1st-order condition for this problem is

µ̃t + δt1N − γΣ̃twpt = 0,

where δt is the Lagrange multiplier associated with the constraint. Hence the optimal

vector of constrained portfolio weights is

wpt =
1

γ
Σ̃−1
t µ̃t +

δt
γ

Σ̃−1
t 1N . (6.32)

Solving for δt and substitute the resulting expression, Kirby and Ostdiek (2012) obtained

woct =

(
µ̃pt − µ̃mvt
µ̃TPt − µ̃mvt

)(
Σ̃−1
t µ̃t

1TN Σ̃−1
t µ̃t

)
+

(
1− µ̃pt − µ̃mvt

µ̃TPt − µ̃mvt

)(
Σ̃−1
t 1N

1TN Σ̃−1
t 1N

)
. (6.33)
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According to Jagannathan and Ma (2003), we use non-negative constraint on OC portfolio

to enhance the performance.

Sample-based Volatility timing portfolio

According to Fleming et al. (2001,2003) and Kirby and Ostdiek (2012), the volatility

timing (’VT’) strategy represents how faster the investor will review their portfolios and

rebalance it when volatility changes. It has the weights of the form

ŵvtit =
(1/σ̂2

it)
η

N∑
i=1

(1/σ̂2
it)
η

, (6.34)

for i = 1, 2, · · · , N , where η ≥ 0 and σ̂it is the estimation of excess volatility at time t for

asset i. The tuning parameter η is a measure of timing aggressiveness. i.e. it determines

how aggressively we adjust the portfolio weights in response to volatility changes. When

η = 0, the VT strategy reduces to the 1/N strategy. When η goes to ∞, the weight of the

asset with less variance will tend to 1. In the numerical result, we let η = 1 for simplicity.

Sample-based Reward-to-Risk timing portfolio

According to Kirby and Ostdiek (2012), the reward-to-risk timing (’RRT’) strategy has

the weights of the form

ŵrrtit =
(µ̂+

it/σ̂
2
it)
η

N∑
i=1

(µ̂+
it/σ̂

2
it)
η

, (6.35)

for i = 1, 2, · · · , N , where µ+
it = max(µ̂it, 0), µ̂it is the estimation of mean and σ̂it is the

estimation of volatility at time t for asset i, and η ≥ 0. In the numerical result, we let

η = 1 for simplicity.
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6.3.2 Performance Measures

Using the “rolling-sample” described in the last subsection, each strategy produces a time

series of monthly out-of-sample returns. To compare and evaluate the relative performance

of the portfolio strategies, we consider the following three statistics:

1. Sharpe ratio:

The out-of-sample Sharpe ratio of strategy k, defined as the sample mean of out-of-

sample excess returns (over the risk-free asset), µ̂k, divided by their sample standard

deviation, σ̂k:

ŜRk =
µ̂k
σ̂k
. (6.36)

Note that µ̂k and σ̂k are estimated from the time series of monthly out-of-sample

returns corresponding to the respective portfolio strategy. The more effective the

portfolio strategy, the larger the Sharpe ratio.

2. Certainty-equivalent (CEQ) Return:

The CEQ of a portfolio strategy is defined as the risk-free rate that an investor

is willing to accept rather than adopting a particular risky portfolio strategy. For a

given risk aversion parameter γ, which is 3 in the numerical results, CEQ is calculated

as

ˆCEQk = µ̂k −
γ/2

σ̂2
k

. (6.37)

Therefore the higher the CEQ, the more effective the portfolio strategy.

3. Turnover

To get a sense of the amount of trading required to implement each portfolio strategy,

we compute the portfolio turnover, defined as the average sum of the absolute value
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of the trades across all the available assets:

Turnover =
1

T −M

T−M∑
t=1

N∑
j=1

(|ŵk,j,t+1 − ŵk,j,t+|), (6.38)

where ŵk, j, t is the portfolio weight in asset j at time t under strategy k, ŵk,j,t+ is

the portfolio weight before rebalancing at t + 1, and ŵk,j,t+1 is the desired portfolio

weight at time t+ 1 after rebalancing.

In addition to producing the above three performance measures, we are also interested in

testing the statistical significance of the two strategies by computing the p-value of the

difference. Using the approach suggested by DeMiguel et. al. (2009) and Jobson and

Korkie (1981) (after making the correction pointed out in Memmel (2003)), the p-value of

the difference between the Sharpe ratio of each strategy and that of the 1/N benchmark

is computed using as follows. Given two portfolios i and N , with µ̂i,µ̂N ,σ̂i, σ̂N ,σ̂i,N as

their estimated means, variances, and covariances over a sample of size T −M , the test

of the hypothesis H0 : µ̂i/σ̂i − µ̂N/σ̂N = 0 is obtained via the test statistic ẑJK , which is

asymptotically distributed as a standard normal:

ẐJK =
σ̂N µ̂i − σ̂iµ̂N√

θ̂
,

where θ̂ = 1
T−M (2σ̂2

i σ̂
2
N − 2σ̂iσ̂N σ̂i,N + 1

2
µ̂2
i σ̂

2
N + 1

2
µ̂2
N σ̂

2
i −

µ̂iµ̂N
σ̂iσ̂N

σ̂2
i,N).

The above statistical test can similarly be carried for the CEQ returns. The p-value of the

difference between the CEQ of each strategy and that of the 1/N benchmark is computed

using the method shown in Greene (2002) and DeMiguel et al(2009). Specifically, if we

denote ν as the vector of moments ν = (µi, µn, σ
2
i , σ

2
n), ν̂ as its empirical counterpart

obtained from a sample of size T −M , and f(ν) = (µi− γ
2
σ2
i )− (µn− γ

2
σ2
n) as the difference

in the certainty equivalent of two strategies i and n, the asymptotic distribution of f(ν) is
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√
T (f(ν̂ − f(ν))) has normal distribution with mean 0 and variance ∂f

∂ν
TΘ∂f

∂ν
, where

Θ =


σ2
i σi,n 0 0

σi,n σ2
n 0 0

0 0 2σ4
i 2σ2

i,n

0 0 2σ2
i,n 2σ4

n

 .

Other than reporting the raw turnover for each strategy, we report an economic measure

of this by reporting how transactions costs generated by this turnover affect the returns

from a particular strategy; i.e. by denoting Wk,t as the wealth of strategy k at time t, and

define

Wk,t+1 = Wk,t(1 +Rk,p)(1− ψt), (6.39)

with the return net of transactions costs given by
Wk,t+1

Wk,t
− 1. Considering the case with a

proportional transaction cost (PTC) and fixed transaction cost (FTC), then

ψt = PTC × Turnover + FTC × (Number of Trading Stocks).

For the research on optimal portfolio selection with transaction costs, see Lobo et al (2006)

and Boyle and Lin (1997).

6.3.3 Empirical Results

The empirical results are collected in this subsection. The first set of comparison merely

compares the efficiency of both 1/N and the EP portfolio by assuming 1/N as the target

portfolio. This is depicted in Figure 6.1 which plots the accumulation values over time

from both the EP portfolio (red curve) and the 1/N strategy (black curve). These results

are based on the Industry 10 data (second dataset in Table 6.2). It is reassuring that the

accumulation values from the EP portfolio are always greater than the corresponding 1/N
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strategy, thus indicating the superiority of the EP portfolio.

Figure 6.1: Accumulation value under both EPD portfolio and 1/N strategy, using Industry
10 dataset

We now provide more comprehensive comparison by considering an exhaustive list of strate-

gies as depicted in Table 6.1. Reference that corresponds to each strategy is provided. For

the EP-based strategy, we consider β∗ = 0.95. In the Appendix C, we have included the

results for β∗ = 0.90, for robustness check. It is still an open problem determining the

optimal number of trading stocks or optimal β. However, from the investor’s perspective,

we would prefer β < 1, i.e. the investment is less volatile, but the number of trading

stocks is not reduced too much as diversification is still valuable, see Samuelson (1967),

and suboptimal, see Ibragimov et al. (2011).

Following George and Hwang (2004) and Jegadeesh and Titman (1993), the holding period

for momentum stocks is 6 months. However, our portfolio rebalances monthly. For all

sophisticated strategies, we compare their performance based on all stocks in the market

and top 70% momentum stocks.
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Table 6.1: List of sophisticated strategies considered
# Description Abbreviation Reference

1 Naive Strategy EWP DeMiguel, et al. (2009)
2 Mean Variance Portfolio with normalized non-negative weights MV Markowitz (1952)
3 Minimum Variance Portfolio with normalized non-negative weights MIN Markowitz (1952)
4 Optimal Constrained Portfolio with normalized non-negative weights OC Kirby and Ostdiek (2012)
5 Volatility Timing Portfolio VT Fleming et al. (2001,2003)
6 Reward-to-Risk Timing Portfolio RRT Kirby and Ostdiek (2012)

7 EWP on top 70% momentum stocks EWP2
8 MV on top 70% momentum stocks MV2
9 MIN on top 70% momentum stocks MIN2
10 OC on top 70% momentum stocks OC2
11 VT on top 70% momentum stocks VT2
12 RRT on top 70% momentum stocks RRT2

13 effective portfolio on EWP EWP + EP
14 effective portfolio on MV MV + EP
15 effective portfolio on MIN MIN + EP
16 effective portfolio on OC OC + EP
17 effective portfolio on VT VT + EP
18 effective portfolio on RRT RRT + EP

Note that we also denote “nn” as non-negative constraints, i.e. no-short selling constraints,

and “nr” as normalized weights based on non-negative constraints, i.e. no risk-free assets.

Table 6.2: List of datasets considered (source: Ken French)
# Dataset and source N Time period Abbreviation

1 25 Portfolios Formed on Size and Book-to-Market 25 07/1963-12/2015 BM-25
2 100 Portfolios Formed on Size and Book-to-Market 100 07/1963-12/2015 BM-100
3 25 Portfolios Formed on Size and Operating Profitability 25 07/1963-12/2015 OP-25
4 100 Portfolios Formed on Size and Operating Profitability 100 07/1963-12/2015 OP-100
5 25 Portfolios Formed on Size and Investment 25 07/1963-12/2015 INV-25
6 100 Portfolios Formed on Size and Investment 100 07/1963-12/2015 INV-100
7 10 Industry Portfolios 10 07/1963-12/2015 IND-10
8 49 Industry Portfolios 49 07/1963-12/2015 IND-49

Remark 6.3.1. Note: the data starts from 07/1963, we use the starting date of 07/1983

for the robust check of 120 and 240 in sample monthly data points, respectively.
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Table 6.3: Sharpe ratios for empirical data (Zero Transaction Cost)
Strategy BM-25 BM-100 OP-25 OP-100 INV-25 INV-100 IND-10 IND-49
EWP 0.1464 0.1475 0.1392 0.1456 0.1480 0.1517 0.1639 0.1413
EWP2 0.1566 0.1538 0.1532 0.1607 0.1637 0.1626 0.1778 0.1673

( 0.1201 ) ( 0.2897 ) ( 0.0086 ) ( 0.0010 ) ( 0.0054 ) ( 0.0187 ) ( 0.2385 ) ( 0.0028 )
EWP + EP 0.1912 0.2005 0.1794 0.1735 0.1835 0.2037 0.1870 0.1643

( 0.0000 ) ( 0.0000 ) ( 0.0001 ) ( 0.0231 ) ( 0.0037 ) ( 0.0001 ) ( 0.0554 ) ( 0.1034 )
EWP + EP nn 0.1934 0.1980 0.1789 0.1777 0.1814 0.1944 0.1868 0.1714

( 0.0000 ) ( 0.0000 ) ( 0.0001 ) ( 0.0127 ) ( 0.0061 ) ( 0.0012 ) ( 0.0574 ) ( 0.0359 )
EWP + EP nr 0.1914 0.1943 0.1825 0.1748 0.1861 0.1994 0.1829 0.1637

( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0190 ) ( 0.0017 ) ( 0.0002 ) ( 0.1245 ) ( 0.1261 )
MV 0.1773 0.1646 0.1527 0.1511 0.1430 0.1443 0.1407 0.1298
MV2 0.1855 0.1650 0.1623 0.1580 0.1500 0.1425 0.1466 0.1311

( 0.2413 ) ( 0.9613 ) ( 0.0402 ) ( 0.2647 ) ( 0.2847 ) ( 0.7172 ) ( 0.5665 ) ( 0.9202 )
MV + EP 0.1902 0.1769 0.1609 0.1643 0.1548 0.1801 0.1516 0.1122

( 0.2019 ) ( 0.3489 ) ( 0.3030 ) ( 0.3113 ) ( 0.2061 ) ( 0.0065 ) ( 0.2347 ) ( 0.1603 )
MV + EP nn 0.1749 0.1590 0.1588 0.1464 0.1585 0.1774 0.1511 0.1438

( 0.8655 ) ( 0.7758 ) ( 0.6105 ) ( 0.7901 ) ( 0.2936 ) ( 0.0225 ) ( 0.2954 ) ( 0.4864 )
MV + EP nr 0.1772 0.1785 0.1701 0.1707 0.1565 0.1792 0.1550 0.1200

( 0.9888 ) ( 0.2671 ) ( 0.0297 ) ( 0.1166 ) ( 0.1968 ) ( 0.0077 ) ( 0.1450 ) ( 0.4346 )
MIN 0.1644 0.1671 0.1630 0.1644 0.1848 0.1823 0.1918 0.1676
MIN2 0.1791 0.1801 0.1676 0.1788 0.1867 0.1814 0.1895 0.1845

( 0.0989 ) ( 0.0783 ) ( 0.6997 ) ( 0.1271 ) ( 0.8905 ) ( 0.8775 ) ( 0.8881 ) ( 0.2813 )
MIN + EP 0.1642 0.1866 0.1480 0.1676 0.1862 0.2056 0.1920 0.1897

( 0.9962 ) ( 0.1019 ) ( 0.1899 ) ( 0.7856 ) ( 0.8973 ) ( 0.0576 ) ( 0.9897 ) ( 0.1680 )
MIN + EP nn 0.1823 0.1872 0.1680 0.1687 0.1956 0.2058 0.1899 0.1695

( 0.3345 ) ( 0.0922 ) ( 0.8227 ) ( 0.7088 ) ( 0.6602 ) ( 0.0558 ) ( 0.9178 ) ( 0.9473 )
MIN + EP nr 0.1686 0.1842 0.1643 0.1706 0.1869 0.2053 0.1850 0.1782

( 0.7314 ) ( 0.1491 ) ( 0.9332 ) ( 0.5879 ) ( 0.8874 ) ( 0.0623 ) ( 0.7037 ) ( 0.5585 )
OC 0.1787 0.1609 0.1528 0.1378 0.1411 0.1420 0.1384 0.1251
OC2 0.1853 0.1626 0.1633 0.1497 0.1536 0.1357 0.1467 0.1344

( 0.3269 ) ( 0.8392 ) ( 0.0250 ) ( 0.1051 ) ( 0.0441 ) ( 0.4672 ) ( 0.4858 ) ( 0.4943 )
OC + EP 0.1888 0.1668 0.1591 0.1480 0.1531 0.1759 0.1484 0.1148

( 0.2713 ) ( 0.6414 ) ( 0.4090 ) ( 0.4368 ) ( 0.1999 ) ( 0.0137 ) ( 0.2623 ) ( 0.3903 )
OC + EP nn 0.1796 0.1606 0.1573 0.1416 0.1599 0.1770 0.1501 0.1424

( 0.9358 ) ( 0.9899 ) ( 0.7007 ) ( 0.8488 ) ( 0.1887 ) ( 0.0854 ) ( 0.2239 ) ( 0.3688 )
OC + EP nr 0.1760 0.1697 0.1681 0.1540 0.1577 0.1730 0.1529 0.1164

( 0.7748 ) ( 0.4556 ) ( 0.0441 ) ( 0.2086 ) ( 0.1027 ) ( 0.0290 ) ( 0.1203 ) ( 0.4780 )
VT 0.1601 0.1606 0.1503 0.1564 0.1621 0.1651 0.1815 0.1567
VT2 0.1667 0.1640 0.1617 0.1679 0.1717 0.1710 0.1923 0.1785

( 0.2296 ) ( 0.4841 ) ( 0.0182 ) ( 0.0028 ) ( 0.0638 ) ( 0.1249 ) ( 0.3394 ) ( 0.0039 )
VT + EP 0.1843 0.2052 0.1831 0.1670 0.1877 0.2039 0.2141 0.1773

( 0.0188 ) ( 0.0002 ) ( 0.0003 ) ( 0.3865 ) ( 0.0207 ) ( 0.0017 ) ( 0.0087 ) ( 0.1564 )
VT + EP nn 0.1874 0.2027 0.1833 0.1695 0.1877 0.1992 0.2141 0.1797

( 0.0102 ) ( 0.0004 ) ( 0.0003 ) ( 0.2901 ) ( 0.0211 ) ( 0.0060 ) ( 0.0087 ) ( 0.1154 )
VT + EP nr 0.1867 0.2004 0.1855 0.1675 0.1897 0.2020 0.2113 0.1758

( 0.0117 ) ( 0.0008 ) ( 0.0001 ) ( 0.3653 ) ( 0.0121 ) ( 0.0028 ) ( 0.0176 ) ( 0.1933 )
RRT 0.1625 0.1619 0.1527 0.1568 0.1624 0.1658 0.1795 0.1551
RRT2 0.1675 0.1649 0.1611 0.1658 0.1720 0.1706 0.1857 0.1724

( 0.2600 ) ( 0.4527 ) ( 0.0192 ) ( 0.0022 ) ( 0.0293 ) ( 0.1310 ) ( 0.6118 ) ( 0.0424 )
RRT + EP 0.1868 0.2076 0.1763 0.1759 0.1837 0.2015 0.2062 0.1713

( 0.0106 ) ( 0.0001 ) ( 0.0130 ) ( 0.1058 ) ( 0.0480 ) ( 0.0036 ) ( 0.0330 ) ( 0.2522 )
RRT + EP nn 0.1904 0.2050 0.1753 0.1800 0.1795 0.2002 0.2067 0.1749

( 0.0047 ) ( 0.0002 ) ( 0.0194 ) ( 0.0649 ) ( 0.1051 ) ( 0.0053 ) ( 0.0305 ) ( 0.1623 )
RRT + EP nr 0.1871 0.2031 0.1777 0.1773 0.1837 0.2003 0.2045 0.1732

( 0.0101 ) ( 0.0004 ) ( 0.0085 ) ( 0.0838 ) ( 0.0436 ) ( 0.0047 ) ( 0.0541 ) ( 0.2171 )

Based on the Table 6.3, we make the following remarks:
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• The sophisticated strategies under effective portfolio have been highlighted as they

are constructed according to the algorithm 6.2.1.

• The effective portfolios consistently outperform 1/N strategy under zero transaction

cost.

• The effective portfolios with non-negative constraints and normalized weights do not

affect the performance too much under zero transaction cost.

• In most cases, the sophisticated strategies based on top 70 % momentum stocks could

outperform themselves based on all stocks in the market. This verifies that momen-

tum effects happen everywhere. It is important to incorporate economic factors in

terms of investment. See George and Hwang (2004) and Asness et al. (2013).

• Our methods could outperform any sophisticated portfolio based on all stocks and

most of sophisticated portfolios based on top 70 % momentum stocks under zero

transaction cost. This means if the transaction cost is zero, reducing number of

trading stocks is very important.

• In terms of p-value, the sophisticated strategies constructed under effective portfolio

could enhance the performance over 1/N .
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Table 6.4: Sharpe ratios for empirical data (50 bps Transaction Cost)
Strategy BM-25 BM-100 OP-25 OP-100 INV-25 INV-100 IND-10 IND-49
EWP 0.1443 0.1450 0.1373 0.1431 0.1461 0.1492 0.1607 0.1376
EWP2 0.1485 0.1446 0.1457 0.1515 0.1560 0.1534 0.1665 0.1567

( 0.5268 ) ( 0.9516 ) ( 0.1196 ) ( 0.0747 ) ( 0.0837 ) ( 0.3750 ) ( 0.6221 ) ( 0.0284 )
EWP + EP 0.1696 0.1764 0.1589 0.1497 0.1651 0.1823 0.1694 0.1432

( 0.0190 ) ( 0.0067 ) ( 0.0351 ) ( 0.6028 ) ( 0.1298 ) ( 0.0142 ) ( 0.4683 ) ( 0.6862 )
EWP + EP nn 0.1733 0.1764 0.1592 0.1556 0.1635 0.1751 0.1694 0.1521

( 0.0089 ) ( 0.0077 ) ( 0.0369 ) ( 0.3387 ) ( 0.1627 ) ( 0.0515 ) ( 0.4707 ) ( 0.3121 )
EWP + EP nr 0.1714 0.1732 0.1626 0.1527 0.1683 0.1799 0.1656 0.1445

( 0.0132 ) ( 0.0166 ) ( 0.0145 ) ( 0.4511 ) ( 0.0739 ) ( 0.0190 ) ( 0.6899 ) ( 0.6353 )
MV 0.1551 0.1456 0.1313 0.1334 0.1197 0.1235 0.1212 0.1094
MV2 0.1590 0.1374 0.1381 0.1297 0.1208 0.1133 0.1232 0.1054

( 0.5658 ) ( 0.2454 ) ( 0.1403 ) ( 0.5602 ) ( 0.8540 ) ( 0.0418 ) ( 0.8508 ) ( 0.7366 )
MV + EP 0.1561 0.1271 0.1309 0.1247 0.1173 0.1435 0.1262 0.0668

( 0.9231 ) ( 0.1788 ) ( 0.9711 ) ( 0.5184 ) ( 0.8226 ) ( 0.1340 ) ( 0.5821 ) ( 0.0009 )
MV + EP nn 0.1483 0.1316 0.1347 0.1191 0.1296 0.1479 0.1282 0.1138

( 0.6302 ) ( 0.4671 ) ( 0.7658 ) ( 0.4099 ) ( 0.4939 ) ( 0.0948 ) ( 0.4824 ) ( 0.8287 )
MV + EP nr 0.1506 0.1489 0.1461 0.1427 0.1279 0.1493 0.1320 0.0931

( 0.6647 ) ( 0.7874 ) ( 0.0585 ) ( 0.4614 ) ( 0.4326 ) ( 0.0504 ) ( 0.2722 ) ( 0.1960 )
MIN 0.1554 0.1590 0.1554 0.1551 0.1775 0.1728 0.1846 0.1572
MIN2 0.1580 0.1576 0.1461 0.1543 0.1646 0.1582 0.1692 0.1607

( 0.7798 ) ( 0.8455 ) ( 0.4121 ) ( 0.9299 ) ( 0.2950 ) ( 0.0198 ) ( 0.3884 ) ( 0.8344 )
MIN + EP 0.1367 0.1615 0.1148 0.1403 0.1511 0.1824 0.1685 0.1504

( 0.1250 ) ( 0.8449 ) ( 0.0011 ) ( 0.2070 ) ( 0.0472 ) ( 0.4406 ) ( 0.3361 ) ( 0.6688 )
MIN + EP nn 0.1625 0.1622 0.1458 0.1421 0.1751 0.1826 0.1701 0.1439

( 0.7108 ) ( 0.7973 ) ( 0.6055 ) ( 0.2640 ) ( 0.8949 ) ( 0.4293 ) ( 0.4286 ) ( 0.5302 )
MIN + EP nr 0.1506 0.1593 0.1437 0.1437 0.1676 0.1821 0.1647 0.1523

( 0.6860 ) ( 0.9867 ) ( 0.3451 ) ( 0.3229 ) ( 0.4741 ) ( 0.4587 ) ( 0.2800 ) ( 0.7701 )
OC 0.1572 0.1316 0.1331 0.1110 0.1151 0.1008 0.1195 0.0970
OC2 0.1591 0.1334 0.1407 0.1194 0.1222 0.0996 0.1248 0.1049

( 0.7747 ) ( 0.8311 ) ( 0.0949 ) ( 0.2739 ) ( 0.2445 ) ( 0.8875 ) ( 0.6599 ) ( 0.5651 )
OC + EP 0.1559 0.0974 0.1310 0.0877 0.1097 0.1103 0.1227 0.0626

( 0.8962 ) ( 0.0141 ) ( 0.8064 ) ( 0.0920 ) ( 0.5928 ) ( 0.4983 ) ( 0.7128 ) ( 0.0044 )
OC + EP nn 0.1537 0.1286 0.1348 0.1066 0.1267 0.1320 0.1278 0.1067

( 0.7797 ) ( 0.9086 ) ( 0.8698 ) ( 0.8328 ) ( 0.4063 ) ( 0.1261 ) ( 0.3894 ) ( 0.6116 )
OC + EP nr 0.1506 0.1322 0.1456 0.1185 0.1250 0.1284 0.1309 0.0832

( 0.4948 ) ( 0.9503 ) ( 0.0942 ) ( 0.5625 ) ( 0.3304 ) ( 0.0554 ) ( 0.2186 ) ( 0.2605 )
VT 0.1579 0.1579 0.1483 0.1538 0.1600 0.1625 0.1780 0.1529
VT2 0.1580 0.1544 0.1535 0.1583 0.1631 0.1611 0.1797 0.1670

( 0.9885 ) ( 0.4845 ) ( 0.2899 ) ( 0.2616 ) ( 0.5486 ) ( 0.7379 ) ( 0.8813 ) ( 0.0624 )
VT + EP 0.1653 0.1826 0.1646 0.1436 0.1702 0.1845 0.1961 0.1566

( 0.4781 ) ( 0.0333 ) ( 0.0763 ) ( 0.4049 ) ( 0.3669 ) ( 0.0774 ) ( 0.1417 ) ( 0.7906 )
VT + EP nn 0.1690 0.1815 0.1650 0.1468 0.1703 0.1805 0.1961 0.1595

( 0.3035 ) ( 0.0431 ) ( 0.0719 ) ( 0.5749 ) ( 0.3625 ) ( 0.1502 ) ( 0.1417 ) ( 0.6472 )
VT + EP nr 0.1682 0.1794 0.1670 0.1449 0.1723 0.1832 0.1934 0.1554

( 0.3378 ) ( 0.0657 ) ( 0.0454 ) ( 0.4634 ) ( 0.2722 ) ( 0.0954 ) ( 0.2148 ) ( 0.8549 )
RRT 0.1580 0.1574 0.1485 0.1525 0.1581 0.1614 0.1716 0.1467
RRT2 0.1579 0.1543 0.1524 0.1554 0.1627 0.1599 0.1670 0.1570

( 0.9694 ) ( 0.4435 ) ( 0.2908 ) ( 0.3347 ) ( 0.2999 ) ( 0.6385 ) ( 0.7208 ) ( 0.2271 )
RRT + EP 0.1670 0.1849 0.1555 0.1528 0.1659 0.1821 0.1859 0.1472

( 0.3585 ) ( 0.0167 ) ( 0.4615 ) ( 0.9763 ) ( 0.4789 ) ( 0.0960 ) ( 0.2454 ) ( 0.9705 )
RRT + EP nn 0.1712 0.1839 0.1551 0.1585 0.1622 0.1818 0.1869 0.1525

( 0.1913 ) ( 0.0215 ) ( 0.4977 ) ( 0.6301 ) ( 0.6996 ) ( 0.1013 ) ( 0.2174 ) ( 0.6850 )
RRT + EP nr 0.1679 0.1823 0.1572 0.1558 0.1665 0.1818 0.1849 0.1507

( 0.3127 ) ( 0.0298 ) ( 0.3638 ) ( 0.7798 ) ( 0.4340 ) ( 0.0980 ) ( 0.2994 ) ( 0.7847 )

Based on the Table 6.4, we make the following remarks:
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• we already know from Table 6.3 that the effective portfolios with or without non-

negative and normalized constraints do not affect the performance too much. As all

sophisticated strategies having no-short selling and no risk-free assets constraints, it

is reasonable to compare the sophisticated strategies under effective portfolio and

these constraints.

• The effective portfolios consistently outperform 1/N , OC and RRT strategies un-

der 50 bps proportional transaction cost. However, they may perform as good as

constrained MV , constrained MIN and V T strategies, which belong to strategies

reducing turnover rates. This demonstrates that when the proportional transaction

cost is high, reducing both dimension and turnover rate is very important.

• With proportional transaction cost, the sophisticated strategies based on top 70%

momentum stocks could not consistently outperform themselves based on all stocks

in the market.

• In terms of p-value, the sophisticated strategies constructed under effective portfolio

could enhance the performance in most cases. However, the advantage becomes less

comparing to Table 6.3. This means that the effective portfolio could not reduce the

turnover rate.
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Table 6.5: Sharpe ratios for empirical data (50 bps Transaction Cost + 1 bps fixed Trans-
action Cost on each trading stock)

Strategy BM-25 BM-100 OP-25 OP-100 INV-25 INV-100 IND-10 IND-49
EWP 0.0926 -0.0518 0.0862 -0.0591 0.0947 -0.0545 0.1366 0.0355
EWP2 0.1097 -0.0002 0.1078 0.0028 0.1176 0.0044 0.1489 0.0818

( 0.0095 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.2963 ) ( 0.0000 )
EWP + EP 0.1593 0.1537 0.1494 0.1299 0.1555 0.1610 0.1555 0.1138

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.1153 ) ( 0.0000 )
EWP + EP nn 0.1644 0.1573 0.1506 0.1383 0.1546 0.1574 0.1557 0.1263

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.1126 ) ( 0.0000 )
EWP + EP nr 0.1613 0.1496 0.1527 0.1315 0.1579 0.1575 0.1520 0.1150

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.2102 ) ( 0.0000 )
MV 0.1037 -0.0568 0.0799 -0.0691 0.0644 -0.0854 0.1008 0.0268
MV2 0.1214 -0.0074 0.1000 -0.0150 0.0802 -0.0362 0.1084 0.0457

( 0.0100 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0133 ) ( 0.0000 ) ( 0.4624 ) ( 0.1081 )
MV + EP 0.1424 0.0846 0.1173 0.0915 0.1029 0.1153 0.1162 0.0302

( 0.0003 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0927 ) ( 0.7941 )
MV + EP nn 0.1387 0.1094 0.1251 0.0978 0.1196 0.1267 0.1199 0.0906

( 0.0111 ) ( 0.0000 ) ( 0.0002 ) ( 0.0000 ) ( 0.0002 ) ( 0.0000 ) ( 0.0553 ) ( 0.0011 )
MV + EP nr 0.1399 0.1141 0.1352 0.1138 0.1168 0.1232 0.1236 0.0651

( 0.0004 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0199 ) ( 0.0026 )
MIN 0.0954 -0.0631 0.0937 -0.0747 0.1140 -0.0674 0.1558 0.0247
MIN2 0.1138 -0.0041 0.1020 -0.0146 0.1188 -0.0150 0.1495 0.0690

( 0.0425 ) ( 0.0000 ) ( 0.4726 ) ( 0.0000 ) ( 0.7054 ) ( 0.0000 ) ( 0.7196 ) ( 0.0047 )
MIN + EP 0.1229 0.1470 0.0974 0.1248 0.1328 0.1693 0.1534 0.1052

( 0.0239 ) ( 0.0000 ) ( 0.7669 ) ( 0.0000 ) ( 0.1530 ) ( 0.0000 ) ( 0.8877 ) ( 0.0000 )
MIN + EP nn 0.1535 0.1481 0.1363 0.1273 0.1658 0.1697 0.1582 0.1165

( 0.0013 ) ( 0.0000 ) ( 0.0310 ) ( 0.0000 ) ( 0.0240 ) ( 0.0000 ) ( 0.8951 ) ( 0.0000 )
MIN + EP nr 0.1416 0.1443 0.1337 0.1279 0.1573 0.1683 0.1533 0.1215

( 0.0002 ) ( 0.0000 ) ( 0.0016 ) ( 0.0000 ) ( 0.0019 ) ( 0.0000 ) ( 0.8852 ) ( 0.0000 )
OC 0.1508 0.0772 0.1271 0.0477 0.1087 0.0139 0.1153 0.0785
OC2 0.1536 0.0886 0.1354 0.0731 0.1164 0.0449 0.1212 0.0937

( 0.6871 ) ( 0.1634 ) ( 0.0682 ) ( 0.0024 ) ( 0.2109 ) ( 0.0006 ) ( 0.6203 ) ( 0.2690 )
OC + EP 0.1436 0.0406 0.1194 0.0397 0.0961 0.0704 0.1151 0.0322

( 0.4634 ) ( 0.0134 ) ( 0.3282 ) ( 0.5790 ) ( 0.2046 ) ( 0.0001 ) ( 0.9922 ) ( 0.0002 )
OC + EP nn 0.1455 0.1040 0.1273 0.0822 0.1179 0.1069 0.1221 0.0881

( 0.6689 ) ( 0.3039 ) ( 0.9720 ) ( 0.0901 ) ( 0.5081 ) ( 0.0000 ) ( 0.4812 ) ( 0.6116 )
OC + EP nr 0.1417 0.0896 0.1371 0.0827 0.1151 0.0959 0.1251 0.0610

( 0.3390 ) ( 0.3163 ) ( 0.1802 ) ( 0.0091 ) ( 0.5241 ) ( 0.0000 ) ( 0.2892 ) ( 0.1578 )
VT 0.1039 -0.0476 0.0951 -0.0564 0.1056 -0.0522 0.1519 0.0436
VT2 0.1179 0.0046 0.1143 0.0051 0.1231 0.0051 0.1611 0.0876

( 0.0106 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0008 ) ( 0.0000 ) ( 0.4164 ) ( 0.0000 )
VT + EP 0.1563 0.1627 0.1557 0.1264 0.1617 0.1664 0.1831 0.1310

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0121 ) ( 0.0000 )
VT + EP nn 0.1606 0.1635 0.1564 0.1309 0.1619 0.1635 0.1831 0.1350

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0121 ) ( 0.0000 )
VT + EP nr 0.1591 0.1584 0.1576 0.1264 0.1630 0.1630 0.1806 0.1287

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0217 ) ( 0.0000 )
RRT 0.1078 -0.0346 0.0992 -0.0421 0.1070 -0.0394 0.1480 0.0555
RRT2 0.1198 0.0109 0.1152 0.0103 0.1245 0.0110 0.1497 0.0875

( 0.0092 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.8848 ) ( 0.0002 )
RRT + EP 0.1581 0.1654 0.1469 0.1342 0.1571 0.1639 0.1738 0.1204

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0378 ) ( 0.0000 )
RRT + EP nn 0.1631 0.1668 0.1469 0.1420 0.1538 0.1654 0.1752 0.1282

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0290 ) ( 0.0000 )
RRT + EP nr 0.1591 0.1624 0.1483 0.1364 0.1573 0.1624 0.1733 0.1239

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0496 ) ( 0.0000 )

Based on the Table 6.5, we make the following remarks:

155



• Dedicated to the contribution of dimension reduction, the effective portfolios has

significant impact on the fixed transaction cost.

• With fixed transaction cost, the “1/N” or “EWP” strategy performs the worst among

all sophisticated strategies. This is dedicated to its low return and high transaction

cost in this case.

• Due to the dimension reduction, the sophisticated strategies based on top 70% mo-

mentum stocks could consistently outperform themselves based on all stocks in the

market with fixed transaction cost.

• Our methods could still consistently outperform all sophisticated portfolios based on

either all stocks or top 70% momentum stocks under fixed transaction cost. This

means if there is certain fixed transaction cost, reducing number of trading stocks is

given priority.

• In terms of p-value, the sophisticated strategies constructed under effective portfolio

perform could enhance the performance over 1/N in all cases.

156



Table 6.6: CEQ (Risk-aversion=3) for empirical data (Zero Transaction Cost)
Strategy BM-25 BM-100 OP-25 OP-100 INV-25 INV-100 IND-10 IND-49
EWP 0.0036 0.0036 0.0032 0.0035 0.0037 0.0038 0.0042 0.0033
EWP2 0.0041 0.0039 0.0039 0.0043 0.0044 0.0044 0.0048 0.0045

( 0.1090 ) ( 0.2854 ) ( 0.0028 ) ( 0.0006 ) ( 0.0019 ) ( 0.0087 ) ( 0.2078 ) ( 0.0011 )
EWP + EP 0.0058 0.0064 0.0053 0.0050 0.0055 0.0065 0.0051 0.0044

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0019 ) ( 0.0001 ) ( 0.0000 ) ( 0.0748 ) ( 0.0485 )
EWP + EP nn 0.0059 0.0063 0.0052 0.0052 0.0054 0.0061 0.0051 0.0048

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0004 ) ( 0.0002 ) ( 0.0000 ) ( 0.0745 ) ( 0.0063 )
EWP + EP nr 0.0056 0.0057 0.0052 0.0048 0.0053 0.0058 0.0050 0.0042

( 0.0004 ) ( 0.0036 ) ( 0.0001 ) ( 0.1923 ) ( 0.0141 ) ( 0.0240 ) ( 0.1241 ) ( 0.3795 )
MV 0.0051 0.0044 0.0039 0.0038 0.0034 0.0035 0.0033 0.0025
MV2 0.0055 0.0045 0.0043 0.0041 0.0037 0.0034 0.0036 0.0026

( 0.1045 ) ( 0.6547 ) ( 0.0156 ) ( 0.1122 ) ( 0.1720 ) ( 0.9763 ) ( 0.5196 ) ( 0.9070 )
MV + EP 0.0058 0.0051 0.0043 0.0045 0.0039 0.0052 0.0038 0.0015

( 0.0730 ) ( 0.1333 ) ( 0.1549 ) ( 0.1377 ) ( 0.1115 ) ( 0.0007 ) ( 0.3241 ) ( 0.1000 )
MV + EP nn 0.0051 0.0037 0.0042 0.0033 0.0042 0.0052 0.0038 0.0029

( 0.3434 ) ( 0.1518 ) ( 0.1235 ) ( 0.3621 ) ( 0.0465 ) ( 0.0007 ) ( 0.2669 ) ( 0.1735 )
MV + EP nr 0.0051 0.0050 0.0047 0.0047 0.0040 0.0050 0.0040 0.0021

( 0.9866 ) ( 0.5085 ) ( 0.0276 ) ( 0.3329 ) ( 0.1302 ) ( 0.0372 ) ( 0.1321 ) ( 0.2511 )
MIN 0.0043 0.0044 0.0042 0.0043 0.0050 0.0050 0.0049 0.0041
MIN2 0.0049 0.0050 0.0044 0.0049 0.0051 0.0050 0.0050 0.0048

( 0.0426 ) ( 0.0335 ) ( 0.3799 ) ( 0.1189 ) ( 0.6034 ) ( 0.9677 ) ( 0.6577 ) ( 0.0861 )
MIN + EP 0.0042 0.0054 0.0035 0.0045 0.0049 0.0061 0.0047 0.0048

( 0.7274 ) ( 0.0185 ) ( 0.0661 ) ( 0.4387 ) ( 0.7512 ) ( 0.0062 ) ( 0.6113 ) ( 0.1511 )
MIN + EP nn 0.0052 0.0054 0.0046 0.0046 0.0060 0.0061 0.0049 0.0045

( 0.0560 ) ( 0.0151 ) ( 0.2097 ) ( 0.3414 ) ( 0.0439 ) ( 0.0058 ) ( 0.9152 ) ( 0.1857 )
MIN + EP nr 0.0045 0.0051 0.0043 0.0045 0.0052 0.0059 0.0048 0.0047

( 0.4403 ) ( 0.1513 ) ( 0.6458 ) ( 0.7212 ) ( 0.4551 ) ( 0.0774 ) ( 0.8389 ) ( 0.1606 )
OC 0.0052 0.0043 0.0039 0.0031 0.0033 0.0034 0.0031 0.0022
OC2 0.0055 0.0044 0.0044 0.0037 0.0039 0.0030 0.0036 0.0027

( 0.1621 ) ( 0.7870 ) ( 0.0090 ) ( 0.0484 ) ( 0.0159 ) ( 0.8910 ) ( 0.3590 ) ( 0.4417 )
OC + EP 0.0057 0.0046 0.0042 0.0036 0.0039 0.0050 0.0037 0.0016

( 0.1218 ) ( 0.4948 ) ( 0.2205 ) ( 0.3092 ) ( 0.1199 ) ( 0.0061 ) ( 0.3587 ) ( 0.3043 )
OC + EP nn 0.0053 0.0030 0.0041 0.0026 0.0043 0.0052 0.0038 0.0028

( 0.2188 ) ( 0.1426 ) ( 0.1609 ) ( 0.2076 ) ( 0.0232 ) ( 0.0051 ) ( 0.1717 ) ( 0.1285 )
OC + EP nr 0.0050 0.0047 0.0046 0.0039 0.0041 0.0047 0.0039 0.0018

( 0.8260 ) ( 0.8360 ) ( 0.0387 ) ( 0.4685 ) ( 0.0694 ) ( 0.0939 ) ( 0.1143 ) ( 0.2880 )
VT 0.0042 0.0042 0.0038 0.0040 0.0043 0.0044 0.0048 0.0040
VT2 0.0045 0.0044 0.0043 0.0046 0.0047 0.0047 0.0052 0.0049

( 0.1670 ) ( 0.3935 ) ( 0.0037 ) ( 0.0009 ) ( 0.0174 ) ( 0.0597 ) ( 0.1621 ) ( 0.0010 )
VT + EP 0.0054 0.0065 0.0054 0.0046 0.0055 0.0064 0.0060 0.0049

( 0.0027 ) ( 0.0000 ) ( 0.0000 ) ( 0.1105 ) ( 0.0021 ) ( 0.0000 ) ( 0.0037 ) ( 0.0716 )
VT + EP nn 0.0055 0.0064 0.0054 0.0047 0.0055 0.0062 0.0060 0.0050

( 0.0007 ) ( 0.0000 ) ( 0.0000 ) ( 0.0559 ) ( 0.0021 ) ( 0.0001 ) ( 0.0037 ) ( 0.0409 )
VT + EP nr 0.0053 0.0059 0.0053 0.0045 0.0054 0.0058 0.0060 0.0047

( 0.0280 ) ( 0.0068 ) ( 0.0003 ) ( 0.8565 ) ( 0.0546 ) ( 0.0556 ) ( 0.0033 ) ( 0.4035 )
RRT 0.0043 0.0043 0.0039 0.0041 0.0043 0.0045 0.0048 0.0039
RRT2 0.0046 0.0045 0.0043 0.0045 0.0048 0.0047 0.0050 0.0047

( 0.1833 ) ( 0.3135 ) ( 0.0037 ) ( 0.0004 ) ( 0.0067 ) ( 0.0445 ) ( 0.5037 ) ( 0.0290 )
RRT + EP 0.0055 0.0066 0.0050 0.0051 0.0054 0.0063 0.0058 0.0047

( 0.0010 ) ( 0.0000 ) ( 0.0014 ) ( 0.0148 ) ( 0.0081 ) ( 0.0001 ) ( 0.0275 ) ( 0.2030 )
RRT + EP nn 0.0057 0.0065 0.0050 0.0053 0.0052 0.0063 0.0058 0.0049

( 0.0002 ) ( 0.0000 ) ( 0.0017 ) ( 0.0036 ) ( 0.0183 ) ( 0.0001 ) ( 0.0181 ) ( 0.0784 )
RRT + EP nr 0.0054 0.0060 0.0050 0.0049 0.0052 0.0058 0.0058 0.0046

( 0.0200 ) ( 0.0049 ) ( 0.0234 ) ( 0.2875 ) ( 0.1386 ) ( 0.0728 ) ( 0.0274 ) ( 0.5519 )

Based on the Table 6.6, we make the following remarks:
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• In terms of CEQ, out effective portfolios could consistently outperform all sophisti-

cated strategies under effective portfolios with zero transaction cost. This means that

our effective portfolios could reduce both variance and dimensions while maximizing

the returns at the same time.

• There are many cases in red colour showing that he sophisticated strategies based

on top 70% momentum stocks could not outperform themselves based on all stocks.

• In terms of p-value, the sophisticated strategies constructed under effective portfolio

perform could enhance the performance in all cases.
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Table 6.7: CEQ (Risk-aversion=3) for empirical data (50 bps Transaction Cost + 1 bps
fixed Transaction Cost on each trading stock)

Strategy BM-25 BM-100 OP-25 OP-100 INV-25 INV-100 IND-10 IND-49
EWP 0.0010 -0.0061 0.0006 -0.0064 0.0011 -0.0062 0.0031 -0.0016
EWP2 0.0018 -0.0036 0.0017 -0.0033 0.0022 -0.0033 0.0036 0.0006

( 0.0038 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.2600 ) ( 0.0000 )
EWP + EP 0.0042 0.0039 0.0037 0.0027 0.0040 0.0043 0.0038 0.0020

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.1362 ) ( 0.0000 )
EWP + EP nn 0.0045 0.0041 0.0038 0.0031 0.0040 0.0041 0.0038 0.0026

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.1291 ) ( 0.0000 )
EWP + EP nr 0.0042 0.0037 0.0039 0.0029 0.0041 0.0040 0.0037 0.0022

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.2037 ) ( 0.0000 )
MV 0.0015 -0.0061 0.0003 -0.0069 -0.0002 -0.0075 0.0013 -0.0034
MV2 0.0023 -0.0039 0.0013 -0.0044 0.0005 -0.0053 0.0017 -0.0023

( 0.0019 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0039 ) ( 0.0000 ) ( 0.3993 ) ( 0.0663 )
MV + EP 0.0034 0.0005 0.0021 0.0008 0.0016 0.0020 0.0021 -0.0032

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0886 ) ( 0.7731 )
MV + EP nn 0.0031 0.0002 0.0024 0.0003 0.0022 0.0025 0.0023 -0.0006

( 0.0009 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0309 ) ( 0.0005 )
MV + EP nr 0.0033 0.0021 0.0030 0.0021 0.0022 0.0025 0.0025 -0.0010

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0099 ) ( 0.0005 )
MIN 0.0014 -0.0056 0.0013 -0.0059 0.0022 -0.0054 0.0036 -0.0010
MIN2 0.0021 -0.0030 0.0016 -0.0033 0.0024 -0.0033 0.0035 0.0005

( 0.0164 ) ( 0.0000 ) ( 0.3103 ) ( 0.0000 ) ( 0.5215 ) ( 0.0000 ) ( 0.9646 ) ( 0.0012 )
MIN + EP 0.0025 0.0036 0.0015 0.0026 0.0029 0.0045 0.0034 0.0018

( 0.0135 ) ( 0.0000 ) ( 0.8181 ) ( 0.0000 ) ( 0.1350 ) ( 0.0000 ) ( 0.5764 ) ( 0.0000 )
MIN + EP nn 0.0039 0.0036 0.0031 0.0027 0.0045 0.0045 0.0037 0.0022

( 0.0000 ) ( 0.0000 ) ( 0.0036 ) ( 0.0000 ) ( 0.0008 ) ( 0.0000 ) ( 0.7445 ) ( 0.0000 )
MIN + EP nr 0.0033 0.0034 0.0030 0.0027 0.0040 0.0044 0.0036 0.0025

( 0.0000 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.7412 ) ( 0.0000 )
OC 0.0038 0.0001 0.0026 -0.0015 0.0018 -0.0028 0.0020 -0.0006
OC2 0.0039 0.0007 0.0030 -0.0002 0.0022 -0.0016 0.0022 0.0003

( 0.4967 ) ( 0.1086 ) ( 0.0348 ) ( 0.0005 ) ( 0.1313 ) ( 0.0002 ) ( 0.5129 ) ( 0.2078 )
OC + EP 0.0034 -0.0018 0.0022 -0.0020 0.0012 0.0000 0.0020 -0.0033

( 0.5091 ) ( 0.0047 ) ( 0.3513 ) ( 0.5175 ) ( 0.1599 ) ( 0.0000 ) ( 0.8005 ) ( 0.0000 )
OC + EP nn 0.0035 -0.0015 0.0024 -0.0015 0.0021 0.0012 0.0023 -0.0008

( 0.6933 ) ( 0.2084 ) ( 0.4448 ) ( 0.1021 ) ( 0.2105 ) ( 0.0000 ) ( 0.4290 ) ( 0.4802 )
OC + EP nr 0.0033 0.0009 0.0031 0.0006 0.0021 0.0013 0.0025 -0.0013

( 0.3120 ) ( 0.3470 ) ( 0.1857 ) ( 0.0056 ) ( 0.4938 ) ( 0.0000 ) ( 0.2844 ) ( 0.0999 )
VT 0.0016 -0.0055 0.0012 -0.0059 0.0017 -0.0056 0.0036 -0.0009
VT2 0.0022 -0.0031 0.0020 -0.0030 0.0025 -0.0030 0.0040 0.0010

( 0.0031 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.2406 ) ( 0.0000 )
VT + EP 0.0040 0.0044 0.0040 0.0026 0.0043 0.0046 0.0048 0.0029

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0050 ) ( 0.0000 )
VT + EP nn 0.0043 0.0044 0.0041 0.0028 0.0043 0.0044 0.0048 0.0030

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0050 ) ( 0.0000 )
VT + EP nr 0.0041 0.0041 0.0041 0.0027 0.0042 0.0042 0.0048 0.0028

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0048 ) ( 0.0000 )
RRT 0.0018 -0.0049 0.0013 -0.0053 0.0017 -0.0050 0.0035 -0.0005
RRT2 0.0023 -0.0028 0.0021 -0.0029 0.0025 -0.0028 0.0036 0.0009

( 0.0020 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.8473 ) ( 0.0000 )
RRT + EP 0.0041 0.0045 0.0036 0.0030 0.0041 0.0044 0.0045 0.0024

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0267 ) ( 0.0000 )
RRT + EP nn 0.0044 0.0046 0.0036 0.0033 0.0039 0.0045 0.0046 0.0027

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0148 ) ( 0.0000 )
RRT + EP nr 0.0041 0.0042 0.0036 0.0031 0.0040 0.0042 0.0045 0.0026

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0231 ) ( 0.0000 )

Based on the Table 6.7, we make the following remarks:
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• With fixed transaction cost, the sophisticated strategies based on small number of

stocks, such as BM-25, OP-25, INV-25, IND-10, outperform those based on large

number of stocks, such as BM-100, OP-100, INV-100, IND-49. This is dedicated to

the transaction cost penalty on the number of trading stocks.

• With fixed transaction cost, it is obvious that our effective portfolios could outper-

form any sophisticated strategy in terms of CEQ. This is again dedicated to the

contribution of dimension reduction.

• With fixed transaction cost, any sophisticated strategy under effective portfolio could

outperform itself. This is because dimension reduction can reduce fixed transaction

cost.

Table 6.8: Effective Dimension for empirical data (β = 0.95)
Strategy BM-25 BM-100 OP-25 OP-100 INV-25 INV-100 IND-10 IND-49

EWP + EP 4.8000 11.1077 4.5538 9.5846 4.6308 10.3692 5.3231 13.1231
MV + EP 6.3846 19.9846 6.3538 15.8308 6.2308 13.0462 4.5231 19.8615
MIN + EP 5.1231 6.0615 6.3077 6.4308 6.4308 5.2923 4.6769 14.5385
OC + EP 6.5846 27.2769 6.8462 23.9385 6.4769 17.7692 4.6154 19.4308
VT + EP 4.0308 9.3231 4.0769 8.0462 3.8308 8.3538 4.7077 10.6923
RRT + EP 4.0308 9.0154 3.9846 8.7385 3.9385 8.3692 4.5077 11.3692

Based on the Table 6.8, we make the following remarks:

• The higher the total dimension is, the more we could reduce. For example, the

reduction ration with respect to 1/N strategy for INV-25 is (25-4.6308)/25=81.48%

and for INV-100 is (100-10.3692)/100=89.63%

• The largest proportion of stocks the effective portfolio suggests to invest under these

datasets is around 50 %. This means only a small number of stocks could dominant

the whole market in terms of variance contribution.

• The smallest proportion of stocks the effective portfolio suggests to invest under these

datasets is around 5 %. This means our procedure do not suggest to invest a very

small number, such as 1 % or 2 %.
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6.4 Conclusion

By incorporating the idea of dimension reduction, the effective portfolio strategy achieves

better efficiency by improving on any given target portfolio in terms of investing smaller

number of assets, positive alpha and beta < 1.

Key Drawbacks of this chapter

1. The performance of effective portfolio may still rely on the in-sample estimation.

2. The effective portfolio performs better if the targeting portfolio is a more diversified

portfolio strategy.
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Chapter 7

Conclusions & Further Research

7.1 Conclusions

Effective dimension describes the efficiency of the QMC in estimating high-dimensional

integrals. In general, it is hard and computationally inefficient to compute the effective

dimension for an arbitrary function with large dimensionality by ANOVA decomposition.

Our proposed Delta dimension distribution method provides a simple way to compute as-

pects of the effective dimension for any arbitrary test function. The Delta method provides

one method to decompose a function into the summary of an analytical tractable function

and a remainder whose variance is close to zero. This also provides a further research

opportunity on seeking better QMC-based algorithms for evaluating high-dimensional in-

tegral. We also proved that the conditional tailed dimension is a better measurement than

the effective dimension.

For past decade of years, researchers about Quasi-Monte Carlo in the area of numerical

finance try to seek optimal PGM by considering the functions of interest under both non-

differentiable and high-dimensional functions. We proved a multivariate Delta approach to

reduce the nominal dimension for a close function. Under our new designed Delta control

approach, we could easily found optimal PGM by combining sophisticated methods on the
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function covariance matrix. We also give the new definition of effective dimensions under

Delta approach, and discussed that our DC methods intend to handle high dimensionality

and multiple non-differentiability at the same time. Furthermore, we showed that the

existing PGMs could be covered by our DC method if we let fi = xi, for i = 1, · · · , d. For

the numerical results, we could see that our new DC methods are consistently competitive

on reducing effective dimension, and especially it could handle multiple non-differentiability

and high dimensionality. Furthermore, our severity control could test the importance of

various sub-functions, which may involve discontinuous functions. For further work, we

could intend to generalize the dimension reduction with more general dynamics of asset

prices, consider mixture of different PGMs, and even design the dimension reduction for

rare events.

In the area of insurance, we extend the idea of dimension reduction in the portfolio of

insurance contracts. In the past few decades significant advances have been made in the

pricing and hedging of VAs. These algorithms are typically able to price a single VA policy

with high precision but they are not scalable to large portfolio of VAs valuation. This

is unfortunate as in practice, the VA providers are concerned with pricing and hedging

of hundreds of thousands of VA policies. In this aspect, the VA providers are willing to

sacrifice the high precision of a valuation method that applies to a single VA policy, but

resort to a compromised algorithm that has the capability of valuing a large portfolio of

VAs at an acceptable level of accuracy. This is precisely the motivation for our proposed

green mesh method. As demonstrated in the paper, our proposed method relies on the

greater uniformity of the (randomized) low discrepancy sequence of QMC. It has several

appealing features, including its simplicity, easy to implement and portability. Its efficiency

and its real-time application were also highlighted in our numerical examples. While our

experiments focused on the example provided in Gan (2013), for further work we could

generalize our algorithm so that it can handle nested simulation, such as that considered

in Gan and Lin (2015) and Xu, et al. (2016).

In the area of finance, investors believe that a portfolio with market beta < 1 and portfolio
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alpha > 0 is a better investment strategy. Motivated by dimension reduction in quasi-

monte carlo simulation in derivative pricing, this thesis shows how to construct better

portfolio alpha and beta trade-off via dimension reduction, i.e. by choosing smaller number

of stocks. We showed that the effective portfolio corresponds to a factor model where the

factors are the selected assets, and only small portion of stocks or factors, denoted as the

effective portfolio dimension (EPD), dominate the whole market. The EPD depends on

a predetermined beta value, and it is very flexible so that the stocks with higher alphas

could be selected. Due to the estimation error in the practical situation, we show that our

effective portfolio could be combined with mispricing factors, i.e. momentum and value,

to construct a portfolio with beta < 1 and portfolio alpha > 0 in a robust way. For further

work, the pre-screening of stocks could be incorporated by other informations, such as

familiarity, see Boyle et al. (2012); option pricing linked stock prices, see Shristoffersen and

Pan (2014); clustering, see Harris (1992); risk measures (drawdown, drawup), see Chekhlov

et al. (2005); and nonlinear support vector machine (kernel function), see Huerta et al.

(2013). The effective portfolio method should be applied because higher returns increase

the potential for higher risks.

All in all, controlling the effective dimensionality is related to control the time complexity,

risk and reward trade-off, model and parameter uncertainty. This will become the crucial

research in the area of quantitative finance and insurance.

7.2 Further Research on QMC

The past three decades has sparked the development of a large body of theory concerning

multivariate probability distributions. Most studies about multivariate asset models are

based on Brownian motions due to their simple structure. However, since the work of

Mandelbrot and Taylor (1967) and Clark (1973), it has been widely recognized the presence

of significant skewness and excess kurtosis in empirical asset return distributions; that is,

the returns are non-normally distributed. To allow for both kurtosis and skewness for the
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multivariate probability distribution of assets returns, multivariate Lévy processes are used

as a tractable model for asset returns.

Definition 7.2.1. (Multivariate Affine Transformation) Let X = (X1, · · · , XN)′ be an N-

dimensional random vector distributed with mean vector M ∈ RN and covariance matrix

Σ ∈ RN×N is a square matrix such that AA′ = Σ. We defined the multivariate affine trans-

formation of X is AZ, where Z is a vector of N-dimensional independent and identically

distributed (i.i.d) random variables with mean 0 and variance 1, which is called standard

distribution. If Z is a vector N-dimensional i.i.d standard general hyperbolic (GH) random

variables, then X is said to have multivariate affine general hyperbolic (MAGH) distribu-

tion. If Z is a vector N-dimensional i.i.d standard jump diffusion (JD) random variables,

then X is said to have multivariate affine jump diffusion (MAJD) distribution.

As Schmidt et al. (2006) and Fajardo and Farias (2010) pointed out, this definition is re-

sponsible for simplifying the estimation procedure and allows us to model more leptokurtic

data. Following the similar algorithm used by Schmidt et al. (2006) and Fajardo and

Farias (2009, 2010), we use the following steps to estimate the parameter of MAGH and

MAJD distributions.

Step 1: Get Z = B(X −M), where B is the inverse square matrix of A such that

AA′ = Σ. Then Z has mean 0 and variance covariance matrix I, with parameters ω.

Step 2: Estimate the parameters of univariate standard random variables Zi by using max-

imum likelihood estimation, for i = 1, · · · , N .

The procedure leads to a simplification on the parameter estimation and allows us to es-

timate d one-dimensional standard distributions rather than the simultaneous estimation.

Note that A is a key generation of MAGH and MAJD distributions, and hence we refer to

A as a generating matrix.

The two additional advantages of MAGH or MAJD distributions are that the joint den-

sity and characteristic functions exist in closed-form. Specifically, according to Definitions

(7.2.1), the density function of X adhering to an MAGH or MAJD density can be repre-
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sented as

fX(x) = |A|−1

N∏
j=1

fZj(zj), (7.1)

where |A| is the determinant of A, x = (x1, · · · , xN)′ and z = (z1, · · · , zN)′ = B(x−M ).

In addition, the characteristic function (CF) of X is given by

φX(ω) = E(exp(iω′X)) = exp(iω′X)
N∏
k=1

φZk(ψk), (7.2)

where ω = (ω1, · · · , ωN)′ and ψ′ = (ψ1, · · · , ψN) = ω′A.

Now, we introduce the MAGH and MAJD models for the asset returns. The risky asset

returns over a small time interval are defined as follows:

Rj(t) = log(Sj(t))− log(Sj(t− 1)), j = 1, · · · , N, t = 1, · · · , T, (7.3)

where Sj(t) is the j-th asset price at time t. The return on the risk-free asset over the same

time interval equals rf . In this line, we construct the assets returns using the MAGH or

MAJD distributions based on the standard GH or JD margins; that is

R(t) =


M1(t)

. . .

MN(t)

+


A11(t) · · · A1N(t)

...
. . .

...

An1(t) · · · ANN(t)



Z1

. . .

ZN

 = M (t) +A(t)Z, (7.4)

where Mj(t) is mean of the asset return Rj(t); Zj adheres to a standard GH or JD distri-

bution; and A(t) is a generating matrix such that the covariance matrix Σ(t) at time t, i.e.

A(t)A(t)T = Σ(t). Note in a single period model, we could simply define R = M + Z,

where Z is a vector of N -dimensional standard GH or JD random variables.

For Derivative pricing, we have to construct a risk-neutral measure to ensure that there is

no arbitrage opportunities in the market described by the model (see Harrison and Kreps,
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1979; Harrison and Pliska, 1981, 1983). Gerber and Shiu (1994) first employ the use of

the Esscher transform for option valuation in an incomplete market. Employing Esscher

transform to multidimensional derivative pricing, Fajardo and Farias (2010) provide the

risk-neutral probability density function of MAGH distribution.

The choice of a generating matrix A such that AA′ = Σ plays a indispensable role in pric-

ing derivatives under Black-Scholes model and can be generalized to the MAGH or MAJD

models. Different specification of A generates different simulated paths of MAGH or MAJD

distributions, which in turn affects pricing efficiency of Quasi Monte Carlo simulation.

7.3 Further Research on Portfolio Selection

An investor is concerned with allocating his or her initial wealth among the above N + 1

assets. Let w := (w1, · · · , wN)′ denote the portfolio strategy for the N risky assets so that

wi, i = 1, . . . , N , captures the portfolio weight that is invested in the i-th risky asset. Then

1 − w′1 gives the weight invested in the risk-free asset, where 1 = (1, 1, . . . , 1)′ ∈ RN .

Without loss of generality, we assume that the investor’s initial wealth at time 0 is $1.

Let Ww denote the investor’s wealth random variable at time 1 corresponding to the

portfolio weight w. Then we have

Ww = (1 + rf ) +w′(R− rf1). (7.5)

Under the utility-based approach to portfolio selection, the optimal portfolio strategy w is

chosen as one that maximizes the expected utility of the terminal wealth. Formally, this

boils down to solving the following optimization problem:

max
w

E[U(Ww)], (7.6)

where U(·) corresponds to the investor’s utility function. In our case, U(·) is selected to
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be the exponential utility function

U(W ) = −e−λW , W ∈ R, (7.7)

where λ > 0 quantifies the risk aversion of the investor. Using (7.5) and (7.7), the objective

function in (7.6) can be expressed explicitly as

E[U(Ww)] = −e−λ(1+rf )E[exp(−λw′(R− rf1))]. (7.8)

Hence the tractability of the expected utility optimization problem (7.6) in turn depends

on the complexity of the distributional assumption of the multivariate random vector R.

Assuming the assets returns follow the MAGH or MAJD distribution, then R = M +AZ

according to (7.2.1). We could solve the optimal portfolio strategy according to(7.6). Then

the expectation in (7.8) becomes

E[exp(−λw′(R− rf1))] = E[exp(−λw′(M − rf1)− λw′AZ)].

Therefore, the exponential utility-based portfolio maximization problem (7.6) is equivalent

to

max
w
{λw′(M − rf1)− lnφGH(iλw̃)} . (7.9)

We could see that the value of utility function also depends on the choice of A even incor-

porating skewness and kurtosis, and hence, the dimension reduction technique is important

to determine the optimal matrix A.
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Appendix A

Proof of Equality 6.19

This appendix gives the proof of the Equality (6.19). If the matrix A =

 Aaa 0

Aba Abb

,

then AbaA
−1
aa = ΣbaΣ

−1
aa . i.e. Let x = AbaA

−1
aa , and (βπb )T = (wb)

Tx = (wb)
TAbaA

−1
aa , then

for i = 1, · · · , a, j = a+ 1, · · · , d, the solution of solving x such that

xj−a,1A(1, 1) + xj−a,2A(2, 1) + · · ·+ xj−a,aA(a, 1) = A(j, 1) (A.1)

xj−a,1A(1, 2) + xj−a,2A(2, 2) + · · ·+ xj−a,aA(a, 2) = A(j, 2)

· · ·

xj−a,1A(1, a) + xj−a,2A(2, a) + · · ·+ xj−a,aA(a, a) = A(j, a),

i.e. [xj−a,1xj−a,2 · · ·xj−a,a]Aaa = [A(j, 1)A(j, 2) · · ·A(j, a)], is equivalent to solve x such

that

xj−a,1Σ(1, 1) + xj−a,2Σ(2, 1) + · · ·+ xj−a,aΣ(a, 1) = Σ(j, 1) (A.2)

xj−a,1Σ(1, 2) + xj−a,2Σ(2, 2) + · · ·+ xj−a,aΣ(a, 2) = Σ(j, 2)

· · ·

xj−a,1Σ(1, a) + xj−a,2Σ(2, a) + · · ·+ xj−a,aΣ(a, a) = Σ(j, a),
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i.e. [xj−a,1xj−a,2 · · ·xj−a,a]Σaa = [Σ(j, 1)Σ(j, 2) · · ·Σ(j, a)] Proof: For j = a + 1, · · · , d,

x = AbaA
−1
aa is the solution of

[xj−a,1xj−a,2 · · ·xj−a,a]Aaa = [A(j, 1)A(j, 2) · · ·A(j, a)] (A.3)

i.e.

[xj−a,1xj−a,2 · · ·xj−a,a]AaaA
T
aa = [A(j, 1)A(j, 2) · · ·A(j, a)]ATaa,

where AaaA
T
aa = Σaa. Furthermore, we let Aad =

[
Aaa 0

]
, then AT

ad =

 Aaa

0

. i.e.

[A(j, 1)A(j, 2) · · ·A(j, a)]AT
aa = [A(j, 1)A(j, 2) · · ·A(j, d)]AT

ad

Due to zeros, there is no change on the value

= [Σ(j, 1)Σ(j, 2) · · ·Σ(j, a)]

by definition Σ(j, i) = Aj.A.i

for j = a+ 1, · · · , d, where Aj. denotes the jth row of A and A.i denotes the ith column of

A

Hence, by substituting Equation (A.3) into the above formula, we have

[Σ(j, 1)Σ(j, 2) · · ·Σ(j, a)] = [xj−a,1xj−a,2 · · ·xj−a,a]ATaa = [xj−a,1xj−a,2 · · ·xj−a,a]AaaA
T
aa,

where AaaA
T
aa = Σaa. i.e.

[xj−a,1xj−a,2 · · · xj−a,a] = [Σ(j, 1)Σ(j, 2) · · ·Σ(j, a)]Σ−1
aa = ΣbaΣ

−1
aa ,

for j = a+ 1, · · · , d.

Thus,

x = ΣbaΣaa
−1.

By definition, AbaA
−1
aa = x = ΣbaΣaa

−1
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Appendix B

Proof of Selecting Stocks with

Smaller Variance

R2(R̃π
bP ) =

(wπb )TAπ
ba(A

π
ba)

Twπb
(wπb )TAπ

ba(A
π
ba)

Twπb + Ωπ
b

=

(
(wπb )TAπ

ba(A
π
ba)

Twπb + Ωπ
b

(wπb )TAπ
ba(A

π
ba)

Twπb

)−1

(B.1)

=

(
1 +

Ωπ
b

(wπb )TAπ
ba(A

π
ba)

Twπb

)−1

≥

(
1 +

(1− α)V ar(R̃P )

(wπb )TAπ
ba(A

π
ba)

Twπb

)−1

. (B.2)

Let y1 = (wπa )TAπaa, y2 = (wπb )TAπba, y3 = (wπb )TAπbb. We have by triangle inequality

(||y1||+ ||y2||)2 ≥ V ar(R̃EPD
P ) = ||y1 + y2||2 ≥ αV ar(R̃P ),

where ||x|| denotes by the Euclidean norm of vector x. Because ||y1|| =
√
V ar(R̃π

aP ), we

have

||y2||2 = (wπb )TAπ
ba(A

π
ba)

Twπb ≥
(√

αV ar(R̃P )−
√
V ar(R̃π

aP )

)2

. (B.3)
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Substituting this into Equation (B.1), we want (wπb )TAπ
ba(A

π
ba)

Twπb as large as possible.

One feasible way is to make the lower bound, i.e.

(√
αV ar(R̃P )−

√
V ar(R̃π

aP )

)2

, to be

as large as possible, or equivalently,
√
V ar(R̃π

aP ) to be as small as possible. This completes

the proof of Appendix A.
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Appendix C

Robust Check

In terms of robust check, we only consider the cases with zero transaction cost or 50 bps

proportional transaction cost following DeMiguel at al. (2009), and the holding period for

momentum stocks is 6 months following George and Hwang (2004).
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C.1 Robust Check For β = 0.90

Table C.1: Sharpe ratios for empirical data (Zero Transaction Cost, In-Sample = 120,
β = 0.90)

Strategy BM-25 BM-100 OP-25 OP-100 INV-25 INV-100 IND-10 IND-49
EWP 0.1464 0.1475 0.1392 0.1456 0.1480 0.1517 0.1639 0.1413
EWP2 0.1566 0.1538 0.1532 0.1607 0.1637 0.1626 0.1778 0.1673

( 0.1201 ) ( 0.2897 ) ( 0.0086 ) ( 0.0010 ) ( 0.0054 ) ( 0.0187 ) ( 0.2385 ) ( 0.0028 )
EWP + EP 0.1923 0.2082 0.1859 0.1638 0.1785 0.2037 0.2070 0.1802

( 0.0005 ) ( 0.0003 ) ( 0.0001 ) ( 0.2519 ) ( 0.0500 ) ( 0.0024 ) ( 0.0090 ) ( 0.0433 )
EWP + EP nn 0.1962 0.2078 0.1853 0.1657 0.1784 0.2040 0.2065 0.1893

( 0.0002 ) ( 0.0003 ) ( 0.0002 ) ( 0.2117 ) ( 0.0490 ) ( 0.0024 ) ( 0.0096 ) ( 0.0147 )
EWP + EP nr 0.1955 0.2032 0.1892 0.1658 0.1814 0.2051 0.2005 0.1813

( 0.0003 ) ( 0.0009 ) ( 0.0001 ) ( 0.2021 ) ( 0.0298 ) ( 0.0021 ) ( 0.0270 ) ( 0.0427 )
MV 0.1773 0.1646 0.1527 0.1511 0.1430 0.1443 0.1407 0.1298
MV2 0.1855 0.1650 0.1623 0.1580 0.1500 0.1425 0.1466 0.1311

( 0.2413 ) ( 0.9613 ) ( 0.0402 ) ( 0.2647 ) ( 0.2847 ) ( 0.7172 ) ( 0.5665 ) ( 0.9202 )
MV + EP 0.1982 0.1906 0.1702 0.1512 0.1624 0.1900 0.1485 0.1233

( 0.0956 ) ( 0.1288 ) ( 0.1892 ) ( 0.9982 ) ( 0.1304 ) ( 0.0046 ) ( 0.4188 ) ( 0.7009 )
MV + EP nn 0.1948 0.1953 0.1672 0.1427 0.1560 0.1907 0.1470 0.1439

( 0.2326 ) ( 0.0932 ) ( 0.3496 ) ( 0.6680 ) ( 0.4410 ) ( 0.0042 ) ( 0.5446 ) ( 0.5629 )
MV + EP nr 0.1869 0.1900 0.1742 0.1568 0.1621 0.1868 0.1509 0.1333

( 0.4547 ) ( 0.1330 ) ( 0.0956 ) ( 0.7451 ) ( 0.1470 ) ( 0.0072 ) ( 0.3214 ) ( 0.8581 )
MIN 0.1644 0.1671 0.1630 0.1644 0.1848 0.1823 0.1918 0.1676
MIN2 0.1791 0.1801 0.1676 0.1788 0.1867 0.1814 0.1895 0.1845

( 0.0989 ) ( 0.0783 ) ( 0.6997 ) ( 0.1271 ) ( 0.8905 ) ( 0.8775 ) ( 0.8881 ) ( 0.2813 )
MIN + EP 0.1711 0.1942 0.1339 0.1762 0.1793 0.2006 0.1917 0.1839

( 0.6066 ) ( 0.0776 ) ( 0.0369 ) ( 0.4271 ) ( 0.6806 ) ( 0.2233 ) ( 0.9979 ) ( 0.3594 )
MIN + EP nn 0.1885 0.1942 0.1498 0.1763 0.1905 0.2006 0.1884 0.1550

( 0.1956 ) ( 0.0776 ) ( 0.4796 ) ( 0.4218 ) ( 0.7993 ) ( 0.2233 ) ( 0.8628 ) ( 0.5788 )
MIN + EP nr 0.1712 0.1878 0.1402 0.1767 0.1794 0.2001 0.1834 0.1697

( 0.6243 ) ( 0.1754 ) ( 0.1093 ) ( 0.4013 ) ( 0.6903 ) ( 0.2355 ) ( 0.6543 ) ( 0.9228 )
OC 0.1787 0.1609 0.1528 0.1378 0.1411 0.1420 0.1384 0.1251
OC2 0.1853 0.1626 0.1633 0.1497 0.1536 0.1357 0.1467 0.1344

( 0.3269 ) ( 0.8392 ) ( 0.0250 ) ( 0.1051 ) ( 0.0441 ) ( 0.4672 ) ( 0.4858 ) ( 0.4943 )
OC + EP 0.1991 0.1837 0.1714 0.1433 0.1653 0.1895 0.1459 0.1195

( 0.1013 ) ( 0.1885 ) ( 0.1618 ) ( 0.7682 ) ( 0.0516 ) ( 0.0082 ) ( 0.4138 ) ( 0.7353 )
OC + EP nn 0.1971 0.1634 0.1692 0.1266 0.1644 0.1894 0.1477 0.1441

( 0.2079 ) ( 0.9280 ) ( 0.2945 ) ( 0.6223 ) ( 0.1567 ) ( 0.0178 ) ( 0.3444 ) ( 0.4264 )
OC + EP nr 0.1885 0.1828 0.1751 0.1537 0.1686 0.1828 0.1498 0.1280

( 0.4396 ) ( 0.1954 ) ( 0.0853 ) ( 0.3747 ) ( 0.0295 ) ( 0.0225 ) ( 0.2352 ) ( 0.8789 )
VT 0.1601 0.1606 0.1503 0.1564 0.1621 0.1651 0.1815 0.1567
VT2 0.1667 0.1640 0.1617 0.1679 0.1717 0.1710 0.1923 0.1785

( 0.2296 ) ( 0.4841 ) ( 0.0182 ) ( 0.0028 ) ( 0.0638 ) ( 0.1249 ) ( 0.3394 ) ( 0.0039 )
VT + EP 0.1892 0.1944 0.1827 0.1657 0.1691 0.2029 0.2197 0.1922

( 0.0199 ) ( 0.0329 ) ( 0.0106 ) ( 0.5468 ) ( 0.6208 ) ( 0.0165 ) ( 0.0188 ) ( 0.0571 )
VT + EP nn 0.1898 0.1954 0.1831 0.1687 0.1691 0.2031 0.2197 0.1947

( 0.0174 ) ( 0.0285 ) ( 0.0097 ) ( 0.4303 ) ( 0.6193 ) ( 0.0160 ) ( 0.0188 ) ( 0.0420 )
VT + EP nr 0.1898 0.1898 0.1845 0.1678 0.1697 0.2020 0.2150 0.1908

( 0.0185 ) ( 0.0674 ) ( 0.0073 ) ( 0.4572 ) ( 0.5941 ) ( 0.0200 ) ( 0.0418 ) ( 0.0716 )
RRT 0.1625 0.1619 0.1527 0.1568 0.1624 0.1658 0.1795 0.1551
RRT2 0.1675 0.1649 0.1611 0.1658 0.1720 0.1706 0.1857 0.1724

( 0.2600 ) ( 0.4527 ) ( 0.0192 ) ( 0.0022 ) ( 0.0293 ) ( 0.1310 ) ( 0.6118 ) ( 0.0424 )
RRT + EP 0.1743 0.1948 0.1853 0.1559 0.1715 0.2014 0.2061 0.1878

( 0.3529 ) ( 0.0343 ) ( 0.0138 ) ( 0.9505 ) ( 0.5111 ) ( 0.0222 ) ( 0.0735 ) ( 0.0692 )
RRT + EP nn 0.1762 0.1956 0.1833 0.1592 0.1689 0.2019 0.2067 0.1905

( 0.2956 ) ( 0.0302 ) ( 0.0220 ) ( 0.8841 ) ( 0.6355 ) ( 0.0201 ) ( 0.0679 ) ( 0.0481 )
RRT + EP nr 0.1749 0.1911 0.1857 0.1577 0.1710 0.2012 0.2039 0.1897

( 0.3335 ) ( 0.0614 ) ( 0.0122 ) ( 0.9588 ) ( 0.5312 ) ( 0.0230 ) ( 0.1092 ) ( 0.0654 )
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Table C.2: Sharpe ratios for empirical data (50 bps Transaction Cost + 1 bps fixed Trans-
action Cost on each trading stock, In-Sample = 120, β = 0.90)

Strategy BM-25 BM-100 OP-25 OP-100 INV-25 INV-100 IND-10 IND-49
EWP 0.0926 -0.0518 0.0862 -0.0591 0.0947 -0.0545 0.1366 0.0355
EWP2 0.1097 -0.0002 0.1078 0.0028 0.1176 0.0044 0.1489 0.0818

( 0.0095 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.2963 ) ( 0.0000 )
EWP + EP 0.1676 0.1718 0.1576 0.1265 0.1545 0.1733 0.1771 0.1360

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0002 ) ( 0.0000 ) ( 0.0146 ) ( 0.0000 )
EWP + EP nn 0.1729 0.1730 0.1578 0.1304 0.1554 0.1745 0.1770 0.1493

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0148 ) ( 0.0000 )
EWP + EP nr 0.1715 0.1664 0.1606 0.1280 0.1580 0.1732 0.1710 0.1381

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0385 ) ( 0.0000 )
MV 0.1037 -0.0568 0.0799 -0.0691 0.0644 -0.0854 0.1008 0.0268
MV2 0.1214 -0.0074 0.1000 -0.0150 0.0802 -0.0362 0.1084 0.0457

( 0.0100 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0133 ) ( 0.0000 ) ( 0.4624 ) ( 0.1081 )
MV + EP 0.1574 0.1389 0.1328 0.0969 0.1159 0.1473 0.1143 0.0446

( 0.0000 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.1689 ) ( 0.3076 )
MV + EP nn 0.1610 0.1549 0.1367 0.1010 0.1218 0.1514 0.1164 0.0932

( 0.0001 ) ( 0.0000 ) ( 0.0002 ) ( 0.0000 ) ( 0.0008 ) ( 0.0000 ) ( 0.1382 ) ( 0.0052 )
MV + EP nr 0.1529 0.1460 0.1424 0.1102 0.1268 0.1453 0.1202 0.0798

( 0.0002 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0616 ) ( 0.0060 )
MIN 0.0954 -0.0631 0.0937 -0.0747 0.1140 -0.0674 0.1558 0.0247
MIN2 0.1138 -0.0041 0.1020 -0.0146 0.1188 -0.0150 0.1495 0.0690

( 0.0425 ) ( 0.0000 ) ( 0.4726 ) ( 0.0000 ) ( 0.7054 ) ( 0.0000 ) ( 0.7196 ) ( 0.0047 )
MIN + EP 0.1412 0.1629 0.0967 0.1427 0.1426 0.1711 0.1576 0.1210

( 0.0009 ) ( 0.0000 ) ( 0.8382 ) ( 0.0000 ) ( 0.0372 ) ( 0.0000 ) ( 0.9187 ) ( 0.0000 )
MIN + EP nn 0.1646 0.1629 0.1230 0.1431 0.1639 0.1711 0.1602 0.1130

( 0.0002 ) ( 0.0000 ) ( 0.1402 ) ( 0.0000 ) ( 0.0143 ) ( 0.0000 ) ( 0.8191 ) ( 0.0002 )
MIN + EP nr 0.1487 0.1563 0.1150 0.1429 0.1528 0.1700 0.1556 0.1256

( 0.0001 ) ( 0.0000 ) ( 0.1501 ) ( 0.0000 ) ( 0.0058 ) ( 0.0000 ) ( 0.9820 ) ( 0.0000 )
OC 0.1508 0.0772 0.1271 0.0477 0.1087 0.0139 0.1153 0.0785
OC2 0.1536 0.0886 0.1354 0.0731 0.1164 0.0449 0.1212 0.0937

( 0.6871 ) ( 0.1634 ) ( 0.0682 ) ( 0.0024 ) ( 0.2109 ) ( 0.0006 ) ( 0.6203 ) ( 0.2690 )
OC + EP 0.1588 0.0884 0.1365 0.0684 0.1173 0.1213 0.1146 0.0369

( 0.5279 ) ( 0.5369 ) ( 0.4701 ) ( 0.2742 ) ( 0.4952 ) ( 0.0000 ) ( 0.9440 ) ( 0.0146 )
OC + EP nn 0.1639 0.1201 0.1418 0.0811 0.1301 0.1358 0.1207 0.0903

( 0.3767 ) ( 0.1110 ) ( 0.3398 ) ( 0.1370 ) ( 0.1883 ) ( 0.0000 ) ( 0.5843 ) ( 0.6162 )
OC + EP nr 0.1550 0.1219 0.1462 0.0993 0.1340 0.1256 0.1230 0.0713

( 0.7449 ) ( 0.0091 ) ( 0.1328 ) ( 0.0042 ) ( 0.0449 ) ( 0.0000 ) ( 0.4213 ) ( 0.7046 )
VT 0.1039 -0.0476 0.0951 -0.0564 0.1056 -0.0522 0.1519 0.0436
VT2 0.1179 0.0046 0.1143 0.0051 0.1231 0.0051 0.1611 0.0876

( 0.0106 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0008 ) ( 0.0000 ) ( 0.4164 ) ( 0.0000 )
VT + EP 0.1640 0.1589 0.1571 0.1303 0.1473 0.1738 0.1938 0.1490

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0044 ) ( 0.0000 ) ( 0.0101 ) ( 0.0000 )
VT + EP nn 0.1648 0.1604 0.1577 0.1346 0.1474 0.1741 0.1938 0.1529

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0044 ) ( 0.0000 ) ( 0.0101 ) ( 0.0000 )
VT + EP nr 0.1645 0.1534 0.1586 0.1318 0.1477 0.1714 0.1894 0.1468

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0042 ) ( 0.0000 ) ( 0.0230 ) ( 0.0000 )
RRT 0.1078 -0.0346 0.0992 -0.0421 0.1070 -0.0394 0.1480 0.0555
RRT2 0.1198 0.0109 0.1152 0.0103 0.1245 0.0110 0.1497 0.0875

( 0.0092 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.8848 ) ( 0.0002 )
RRT + EP 0.1495 0.1615 0.1589 0.1193 0.1481 0.1711 0.1781 0.1441

( 0.0013 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0041 ) ( 0.0000 ) ( 0.0427 ) ( 0.0000 )
RRT + EP nn 0.1520 0.1631 0.1577 0.1250 0.1463 0.1721 0.1795 0.1489

( 0.0008 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0053 ) ( 0.0000 ) ( 0.0341 ) ( 0.0000 )
RRT + EP nr 0.1505 0.1573 0.1593 0.1218 0.1482 0.1697 0.1770 0.1458

( 0.0010 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0037 ) ( 0.0000 ) ( 0.0567 ) ( 0.0000 )
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Table C.3: CEQ (Risk-aversion=3) for empirical data (Zero Transaction Cost, In-Sample
= 120, β = 0.90)

Strategy BM-25 BM-100 OP-25 OP-100 INV-25 INV-100 IND-10 IND-49
EWP 0.0036 0.0036 0.0032 0.0035 0.0037 0.0038 0.0042 0.0033
EWP2 0.0041 0.0039 0.0039 0.0043 0.0044 0.0044 0.0048 0.0045

( 0.1090 ) ( 0.2854 ) ( 0.0028 ) ( 0.0006 ) ( 0.0019 ) ( 0.0087 ) ( 0.2078 ) ( 0.0011 )
EWP + EP 0.0058 0.0068 0.0056 0.0045 0.0052 0.0065 0.0059 0.0051

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0684 ) ( 0.0156 ) ( 0.0001 ) ( 0.0051 ) ( 0.0170 )
EWP + EP nn 0.0061 0.0068 0.0055 0.0046 0.0052 0.0065 0.0059 0.0056

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0412 ) ( 0.0108 ) ( 0.0001 ) ( 0.0052 ) ( 0.0022 )
EWP + EP nr 0.0057 0.0060 0.0055 0.0044 0.0050 0.0060 0.0057 0.0049

( 0.0011 ) ( 0.0081 ) ( 0.0004 ) ( 0.5874 ) ( 0.1858 ) ( 0.0528 ) ( 0.0183 ) ( 0.1697 )
MV 0.0051 0.0044 0.0039 0.0038 0.0034 0.0035 0.0033 0.0025
MV2 0.0055 0.0045 0.0043 0.0041 0.0037 0.0034 0.0036 0.0026

( 0.1045 ) ( 0.6547 ) ( 0.0156 ) ( 0.1122 ) ( 0.1720 ) ( 0.9763 ) ( 0.5196 ) ( 0.9070 )
MV + EP 0.0061 0.0058 0.0047 0.0038 0.0043 0.0057 0.0037 0.0022

( 0.0717 ) ( 0.0289 ) ( 0.1158 ) ( 0.8010 ) ( 0.0692 ) ( 0.0005 ) ( 0.5422 ) ( 0.5457 )
MV + EP nn 0.0061 0.0062 0.0047 0.0032 0.0041 0.0058 0.0036 0.0030

( 0.0582 ) ( 0.0035 ) ( 0.0861 ) ( 0.7200 ) ( 0.1031 ) ( 0.0003 ) ( 0.5467 ) ( 0.2743 )
MV + EP nr 0.0055 0.0055 0.0049 0.0040 0.0043 0.0053 0.0038 0.0029

( 0.5467 ) ( 0.2997 ) ( 0.1394 ) ( 0.7776 ) ( 0.1197 ) ( 0.0434 ) ( 0.3148 ) ( 0.7552 )
MIN 0.0043 0.0044 0.0042 0.0043 0.0050 0.0050 0.0049 0.0041
MIN2 0.0049 0.0050 0.0044 0.0049 0.0051 0.0050 0.0050 0.0048

( 0.0426 ) ( 0.0335 ) ( 0.3799 ) ( 0.1189 ) ( 0.6034 ) ( 0.9677 ) ( 0.6577 ) ( 0.0861 )
MIN + EP 0.0045 0.0057 0.0029 0.0049 0.0047 0.0058 0.0047 0.0046

( 0.8278 ) ( 0.0209 ) ( 0.0063 ) ( 0.2152 ) ( 0.3348 ) ( 0.1041 ) ( 0.5746 ) ( 0.3695 )
MIN + EP nn 0.0054 0.0057 0.0037 0.0049 0.0055 0.0058 0.0048 0.0039

( 0.0529 ) ( 0.0209 ) ( 0.8531 ) ( 0.2085 ) ( 0.2437 ) ( 0.1041 ) ( 0.9218 ) ( 0.7034 )
MIN + EP nr 0.0046 0.0053 0.0033 0.0048 0.0048 0.0056 0.0048 0.0043

( 0.3287 ) ( 0.1392 ) ( 0.1642 ) ( 0.4044 ) ( 0.9420 ) ( 0.3242 ) ( 0.8879 ) ( 0.4143 )
OC 0.0052 0.0043 0.0039 0.0031 0.0033 0.0034 0.0031 0.0022
OC2 0.0055 0.0044 0.0044 0.0037 0.0039 0.0030 0.0036 0.0027

( 0.1621 ) ( 0.7870 ) ( 0.0090 ) ( 0.0484 ) ( 0.0159 ) ( 0.8910 ) ( 0.3590 ) ( 0.4417 )
OC + EP 0.0062 0.0055 0.0048 0.0034 0.0044 0.0056 0.0035 0.0019

( 0.0775 ) ( 0.0823 ) ( 0.1059 ) ( 0.5861 ) ( 0.0221 ) ( 0.0025 ) ( 0.5420 ) ( 0.5913 )
OC + EP nn 0.0062 0.0031 0.0048 0.0016 0.0045 0.0058 0.0036 0.0030

( 0.0496 ) ( 0.1171 ) ( 0.0613 ) ( 0.6731 ) ( 0.0184 ) ( 0.0012 ) ( 0.2971 ) ( 0.1922 )
OC + EP nr 0.0056 0.0052 0.0049 0.0039 0.0046 0.0051 0.0037 0.0026

( 0.5664 ) ( 0.4705 ) ( 0.1426 ) ( 0.6376 ) ( 0.0202 ) ( 0.0803 ) ( 0.2353 ) ( 0.7635 )
VT 0.0042 0.0042 0.0038 0.0040 0.0043 0.0044 0.0048 0.0040
VT2 0.0045 0.0044 0.0043 0.0046 0.0047 0.0047 0.0052 0.0049

( 0.1670 ) ( 0.3935 ) ( 0.0037 ) ( 0.0009 ) ( 0.0174 ) ( 0.0597 ) ( 0.1621 ) ( 0.0010 )
VT + EP 0.0056 0.0059 0.0053 0.0045 0.0047 0.0064 0.0062 0.0055

( 0.0042 ) ( 0.0042 ) ( 0.0017 ) ( 0.2250 ) ( 0.3755 ) ( 0.0010 ) ( 0.0105 ) ( 0.0275 )
VT + EP nn 0.0056 0.0060 0.0053 0.0047 0.0047 0.0064 0.0062 0.0056

( 0.0034 ) ( 0.0032 ) ( 0.0015 ) ( 0.1293 ) ( 0.3741 ) ( 0.0009 ) ( 0.0105 ) ( 0.0154 )
VT + EP nr 0.0054 0.0054 0.0052 0.0045 0.0046 0.0059 0.0061 0.0052

( 0.0450 ) ( 0.1984 ) ( 0.0166 ) ( 0.8786 ) ( 0.9503 ) ( 0.1065 ) ( 0.0121 ) ( 0.1942 )
RRT 0.0043 0.0043 0.0039 0.0041 0.0043 0.0045 0.0048 0.0039
RRT2 0.0046 0.0045 0.0043 0.0045 0.0048 0.0047 0.0050 0.0047

( 0.1833 ) ( 0.3135 ) ( 0.0037 ) ( 0.0004 ) ( 0.0067 ) ( 0.0445 ) ( 0.5037 ) ( 0.0290 )
RRT + EP 0.0049 0.0060 0.0055 0.0040 0.0048 0.0063 0.0058 0.0053

( 0.2513 ) ( 0.0043 ) ( 0.0023 ) ( 0.6480 ) ( 0.3409 ) ( 0.0020 ) ( 0.0729 ) ( 0.0702 )
RRT + EP nn 0.0050 0.0060 0.0054 0.0042 0.0047 0.0063 0.0058 0.0055

( 0.1720 ) ( 0.0030 ) ( 0.0033 ) ( 0.3936 ) ( 0.3961 ) ( 0.0016 ) ( 0.0521 ) ( 0.0360 )
RRT + EP nr 0.0048 0.0055 0.0053 0.0040 0.0046 0.0058 0.0058 0.0052

( 0.6114 ) ( 0.1582 ) ( 0.0238 ) ( 0.6245 ) ( 0.9422 ) ( 0.1357 ) ( 0.0624 ) ( 0.3085 )
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Table C.4: CEQ (Risk-aversion=3) for empirical data (50 bps Transaction Cost + 1 bps
fixed Transaction Cost on each trading stock, In-Sample = 120, β = 0.90)

Strategy BM-25 BM-100 OP-25 OP-100 INV-25 INV-100 IND-10 IND-49
EWP 0.0010 -0.0061 0.0006 -0.0064 0.0011 -0.0062 0.0031 -0.0016
EWP2 0.0018 -0.0036 0.0017 -0.0033 0.0022 -0.0033 0.0036 0.0006

( 0.0038 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.2600 ) ( 0.0000 )
EWP + EP 0.0046 0.0049 0.0041 0.0025 0.0040 0.0049 0.0047 0.0031

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0077 ) ( 0.0000 )
EWP + EP nn 0.0049 0.0050 0.0041 0.0027 0.0040 0.0050 0.0047 0.0037

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0075 ) ( 0.0000 )
EWP + EP nr 0.0047 0.0044 0.0042 0.0027 0.0040 0.0046 0.0045 0.0031

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0002 ) ( 0.0000 ) ( 0.0244 ) ( 0.0000 )
MV 0.0015 -0.0061 0.0003 -0.0069 -0.0002 -0.0075 0.0013 -0.0034
MV2 0.0023 -0.0039 0.0013 -0.0044 0.0005 -0.0053 0.0017 -0.0023

( 0.0019 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0039 ) ( 0.0000 ) ( 0.3993 ) ( 0.0663 )
MV + EP 0.0041 0.0032 0.0029 0.0010 0.0022 0.0036 0.0020 -0.0022

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.1634 ) ( 0.2312 )
MV + EP nn 0.0043 0.0040 0.0030 0.0008 0.0023 0.0038 0.0021 -0.0003

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0973 ) ( 0.0020 )
MV + EP nr 0.0039 0.0035 0.0034 0.0019 0.0027 0.0035 0.0023 0.0001

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0379 ) ( 0.0023 )
MIN 0.0014 -0.0056 0.0013 -0.0059 0.0022 -0.0054 0.0036 -0.0010
MIN2 0.0021 -0.0030 0.0016 -0.0033 0.0024 -0.0033 0.0035 0.0005

( 0.0164 ) ( 0.0000 ) ( 0.3103 ) ( 0.0000 ) ( 0.5215 ) ( 0.0000 ) ( 0.9646 ) ( 0.0012 )
MIN + EP 0.0033 0.0043 0.0015 0.0034 0.0033 0.0046 0.0036 0.0024

( 0.0003 ) ( 0.0000 ) ( 0.9190 ) ( 0.0000 ) ( 0.0290 ) ( 0.0000 ) ( 0.7495 ) ( 0.0000 )
MIN + EP nn 0.0043 0.0043 0.0025 0.0034 0.0043 0.0046 0.0038 0.0021

( 0.0000 ) ( 0.0000 ) ( 0.0443 ) ( 0.0000 ) ( 0.0008 ) ( 0.0000 ) ( 0.7345 ) ( 0.0000 )
MIN + EP nr 0.0036 0.0040 0.0022 0.0034 0.0037 0.0044 0.0037 0.0026

( 0.0000 ) ( 0.0000 ) ( 0.0587 ) ( 0.0000 ) ( 0.0005 ) ( 0.0000 ) ( 0.6281 ) ( 0.0000 )
OC 0.0038 0.0001 0.0026 -0.0015 0.0018 -0.0028 0.0020 -0.0006
OC2 0.0039 0.0007 0.0030 -0.0002 0.0022 -0.0016 0.0022 0.0003

( 0.4967 ) ( 0.1086 ) ( 0.0348 ) ( 0.0005 ) ( 0.1313 ) ( 0.0002 ) ( 0.5129 ) ( 0.2078 )
OC + EP 0.0042 0.0006 0.0031 -0.0006 0.0022 0.0024 0.0020 -0.0028

( 0.5235 ) ( 0.4460 ) ( 0.4070 ) ( 0.2078 ) ( 0.4079 ) ( 0.0000 ) ( 0.7661 ) ( 0.0052 )
OC + EP nn 0.0045 -0.0004 0.0033 -0.0015 0.0027 0.0030 0.0022 -0.0006

( 0.1568 ) ( 0.0629 ) ( 0.1111 ) ( 0.1352 ) ( 0.0475 ) ( 0.0000 ) ( 0.5460 ) ( 0.4940 )
OC + EP nr 0.0040 0.0024 0.0036 0.0014 0.0030 0.0026 0.0024 -0.0004

( 0.8858 ) ( 0.0089 ) ( 0.1863 ) ( 0.0021 ) ( 0.0291 ) ( 0.0000 ) ( 0.4230 ) ( 0.5877 )
VT 0.0016 -0.0055 0.0012 -0.0059 0.0017 -0.0056 0.0036 -0.0009
VT2 0.0022 -0.0031 0.0020 -0.0030 0.0025 -0.0030 0.0040 0.0010

( 0.0031 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.2406 ) ( 0.0000 )
VT + EP 0.0044 0.0042 0.0041 0.0028 0.0036 0.0049 0.0052 0.0036

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0005 ) ( 0.0000 ) ( 0.0041 ) ( 0.0000 )
VT + EP nn 0.0044 0.0043 0.0041 0.0030 0.0036 0.0049 0.0052 0.0038

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0005 ) ( 0.0000 ) ( 0.0041 ) ( 0.0000 )
VT + EP nr 0.0043 0.0038 0.0041 0.0029 0.0036 0.0046 0.0051 0.0035

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0034 ) ( 0.0000 ) ( 0.0054 ) ( 0.0000 )
RRT 0.0018 -0.0049 0.0013 -0.0053 0.0017 -0.0050 0.0035 -0.0005
RRT2 0.0023 -0.0028 0.0021 -0.0029 0.0025 -0.0028 0.0036 0.0009

( 0.0020 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.8473 ) ( 0.0000 )
RRT + EP 0.0037 0.0043 0.0042 0.0022 0.0036 0.0048 0.0047 0.0034

( 0.0001 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0005 ) ( 0.0000 ) ( 0.0320 ) ( 0.0000 )
RRT + EP nn 0.0038 0.0044 0.0041 0.0024 0.0036 0.0048 0.0048 0.0037

( 0.0001 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0006 ) ( 0.0000 ) ( 0.0193 ) ( 0.0000 )
RRT + EP nr 0.0037 0.0040 0.0041 0.0024 0.0036 0.0045 0.0047 0.0034

( 0.0007 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0038 ) ( 0.0000 ) ( 0.0255 ) ( 0.0000 )
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C.2 Robust Check Using 240 In-sample Data Points

Table C.5: Sharpe ratios for empirical data (Zero Transaction Cost, In-Sample = 240)
Strategy BM-25 BM-100 OP-25 OP-100 INV-25 INV-100 IND-10 IND-49
EWP 0.1464 0.1475 0.1392 0.1456 0.1480 0.1517 0.1639 0.1413
EWP2 0.1566 0.1538 0.1532 0.1607 0.1637 0.1626 0.1778 0.1673

( 0.1201 ) ( 0.2897 ) ( 0.0086 ) ( 0.0010 ) ( 0.0054 ) ( 0.0187 ) ( 0.2385 ) ( 0.0028 )
EWP + EP 0.1844 0.1930 0.1560 0.1962 0.1926 0.2082 0.1828 0.1870

( 0.0003 ) ( 0.0001 ) ( 0.1163 ) ( 0.0003 ) ( 0.0004 ) ( 0.0000 ) ( 0.1244 ) ( 0.0017 )
EWP + EP nn 0.1836 0.1863 0.1562 0.1964 0.1927 0.2080 0.1828 0.1889

( 0.0004 ) ( 0.0011 ) ( 0.1096 ) ( 0.0003 ) ( 0.0004 ) ( 0.0000 ) ( 0.1243 ) ( 0.0011 )
EWP + EP nr 0.1833 0.1884 0.1595 0.1970 0.1937 0.2096 0.1799 0.1887

( 0.0005 ) ( 0.0006 ) ( 0.0595 ) ( 0.0002 ) ( 0.0003 ) ( 0.0000 ) ( 0.1918 ) ( 0.0011 )
MV 0.1651 0.1699 0.1374 0.1490 0.1530 0.1589 0.1653 0.1267
MV2 0.1744 0.1627 0.1425 0.1591 0.1558 0.1559 0.1873 0.1236

( 0.1275 ) ( 0.3952 ) ( 0.3400 ) ( 0.1066 ) ( 0.7870 ) ( 0.4587 ) ( 0.0632 ) ( 0.8166 )
MV + EP 0.1822 0.1889 0.1366 0.1769 0.1616 0.1946 0.1871 0.1278

( 0.0485 ) ( 0.0881 ) ( 0.9388 ) ( 0.0244 ) ( 0.2094 ) ( 0.0015 ) ( 0.0690 ) ( 0.9393 )
MV + EP nn 0.1693 0.1863 0.1344 0.1741 0.1542 0.1912 0.1890 0.1422

( 0.6834 ) ( 0.3262 ) ( 0.7771 ) ( 0.0553 ) ( 0.9283 ) ( 0.0061 ) ( 0.0528 ) ( 0.3487 )
MV + EP nr 0.1721 0.1895 0.1385 0.1775 0.1594 0.1951 0.1826 0.1364

( 0.4032 ) ( 0.0783 ) ( 0.9058 ) ( 0.0206 ) ( 0.4934 ) ( 0.0013 ) ( 0.1671 ) ( 0.5247 )
MIN 0.1689 0.1645 0.1533 0.1592 0.1837 0.1690 0.1973 0.1911
MIN2 0.1774 0.1777 0.1584 0.1766 0.1890 0.1703 0.1939 0.1974

( 0.3554 ) ( 0.0758 ) ( 0.6186 ) ( 0.0150 ) ( 0.6976 ) ( 0.8427 ) ( 0.8407 ) ( 0.6660 )
MIN + EP 0.1683 0.1810 0.1473 0.1727 0.1839 0.1848 0.1921 0.1967

( 0.9449 ) ( 0.1377 ) ( 0.5953 ) ( 0.2430 ) ( 0.9770 ) ( 0.1883 ) ( 0.7584 ) ( 0.7116 )
MIN + EP nn 0.1813 0.1818 0.1675 0.1733 0.1853 0.1844 0.1989 0.1737

( 0.4207 ) ( 0.1191 ) ( 0.4299 ) ( 0.2216 ) ( 0.9510 ) ( 0.2024 ) ( 0.9208 ) ( 0.3366 )
MIN + EP nr 0.1725 0.1813 0.1564 0.1771 0.1825 0.1881 0.1905 0.1798

( 0.7717 ) ( 0.1363 ) ( 0.8262 ) ( 0.1140 ) ( 0.9283 ) ( 0.1149 ) ( 0.6934 ) ( 0.4809 )
OC 0.1665 0.1683 0.1282 0.1423 0.1542 0.1509 0.1531 0.1216
OC2 0.1733 0.1585 0.1348 0.1592 0.1552 0.1481 0.1732 0.1242

( 0.1992 ) ( 0.3643 ) ( 0.2674 ) ( 0.0191 ) ( 0.9225 ) ( 0.6054 ) ( 0.0613 ) ( 0.8752 )
OC + EP 0.1830 0.1770 0.1349 0.1596 0.1630 0.1843 0.1811 0.1192

( 0.0249 ) ( 0.5062 ) ( 0.4701 ) ( 0.1422 ) ( 0.1947 ) ( 0.0034 ) ( 0.0102 ) ( 0.8601 )
OC + EP nn 0.1727 0.1643 0.1377 0.1676 0.1500 0.1774 0.1831 0.1362

( 0.4895 ) ( 0.8751 ) ( 0.3770 ) ( 0.1260 ) ( 0.7648 ) ( 0.0417 ) ( 0.0062 ) ( 0.4107 )
OC + EP nr 0.1749 0.1753 0.1332 0.1666 0.1582 0.1810 0.1775 0.1315

( 0.2300 ) ( 0.5731 ) ( 0.5810 ) ( 0.0423 ) ( 0.6793 ) ( 0.0094 ) ( 0.0265 ) ( 0.5421 )
VT 0.1598 0.1604 0.1489 0.1555 0.1626 0.1654 0.1788 0.1569
VT2 0.1660 0.1638 0.1604 0.1678 0.1732 0.1718 0.1888 0.1781

( 0.2929 ) ( 0.5214 ) ( 0.0212 ) ( 0.0021 ) ( 0.0421 ) ( 0.1072 ) ( 0.3902 ) ( 0.0056 )
VT + EP 0.1872 0.2071 0.1594 0.1899 0.1989 0.2113 0.1944 0.2063

( 0.0051 ) ( 0.0000 ) ( 0.2733 ) ( 0.0097 ) ( 0.0012 ) ( 0.0001 ) ( 0.2126 ) ( 0.0010 )
VT + EP nn 0.1872 0.2046 0.1594 0.1912 0.1987 0.2122 0.1944 0.2059

( 0.0053 ) ( 0.0001 ) ( 0.2729 ) ( 0.0075 ) ( 0.0013 ) ( 0.0001 ) ( 0.2126 ) ( 0.0011 )
VT + EP nr 0.1861 0.2035 0.1624 0.1914 0.1996 0.2115 0.1930 0.2047

( 0.0078 ) ( 0.0001 ) ( 0.1652 ) ( 0.0071 ) ( 0.0009 ) ( 0.0001 ) ( 0.2592 ) ( 0.0014 )
RRT 0.1663 0.1662 0.1495 0.1548 0.1662 0.1694 0.1734 0.1589
RRT2 0.1713 0.1679 0.1601 0.1645 0.1742 0.1732 0.1858 0.1731

( 0.2871 ) ( 0.6763 ) ( 0.0052 ) ( 0.0023 ) ( 0.0797 ) ( 0.2587 ) ( 0.2200 ) ( 0.0498 )
RRT + EP 0.1847 0.1952 0.1553 0.1963 0.1876 0.2055 0.1963 0.2044

( 0.0514 ) ( 0.0096 ) ( 0.5694 ) ( 0.0029 ) ( 0.0530 ) ( 0.0018 ) ( 0.0594 ) ( 0.0010 )
RRT + EP nn 0.1858 0.1949 0.1570 0.1974 0.1876 0.2073 0.1974 0.2048

( 0.0426 ) ( 0.0123 ) ( 0.4663 ) ( 0.0027 ) ( 0.0527 ) ( 0.0014 ) ( 0.0489 ) ( 0.0008 )
RRT + EP nr 0.1834 0.1912 0.1588 0.1974 0.1883 0.2060 0.1946 0.2024

( 0.0695 ) ( 0.0244 ) ( 0.3615 ) ( 0.0020 ) ( 0.0431 ) ( 0.0015 ) ( 0.0810 ) ( 0.0017 )
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Table C.6: Sharpe ratios for empirical data (50 bps Transaction Cost + 1 bps fixed Trans-
action Cost on each trading stock, In-Sample = 240)

Strategy BM-25 BM-100 OP-25 OP-100 INV-25 INV-100 IND-10 IND-49
EWP 0.0926 -0.0518 0.0862 -0.0591 0.0947 -0.0545 0.1366 0.0355
EWP2 0.1097 -0.0002 0.1078 0.0028 0.1176 0.0044 0.1489 0.0818

( 0.0095 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.2963 ) ( 0.0000 )
EWP + EP 0.1547 0.1487 0.1291 0.1533 0.1672 0.1631 0.1521 0.1357

( 0.0000 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.2037 ) ( 0.0000 )
EWP + EP nn 0.1565 0.1493 0.1299 0.1569 0.1686 0.1681 0.1522 0.1429

( 0.0000 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.2024 ) ( 0.0000 )
EWP + EP nr 0.1548 0.1470 0.1321 0.1539 0.1683 0.1650 0.1495 0.1389

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.2887 ) ( 0.0000 )
MV 0.0991 -0.0450 0.0592 -0.0673 0.0825 -0.0671 0.1263 0.0151
MV2 0.1193 -0.0065 0.0768 -0.0082 0.0940 -0.0184 0.1506 0.0304

( 0.0009 ) ( 0.0000 ) ( 0.0015 ) ( 0.0000 ) ( 0.2630 ) ( 0.0000 ) ( 0.0413 ) ( 0.2814 )
MV + EP 0.1431 0.1141 0.0964 0.1197 0.1238 0.1499 0.1570 0.0535

( 0.0000 ) ( 0.0000 ) ( 0.0002 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0102 ) ( 0.0061 )
MV + EP nn 0.1383 0.1348 0.1006 0.1273 0.1252 0.1523 0.1618 0.0886

( 0.0002 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0015 ) ( 0.0000 ) ( 0.0035 ) ( 0.0000 )
MV + EP nr 0.1404 0.1291 0.1042 0.1267 0.1299 0.1530 0.1565 0.0830

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0151 ) ( 0.0000 )
MIN 0.1039 -0.0642 0.0888 -0.0738 0.1168 -0.0689 0.1649 0.0562
MIN2 0.1155 0.0006 0.0956 -0.0076 0.1230 -0.0195 0.1565 0.0867

( 0.2032 ) ( 0.0000 ) ( 0.5179 ) ( 0.0000 ) ( 0.6440 ) ( 0.0000 ) ( 0.6220 ) ( 0.0327 )
MIN + EP 0.1324 0.1434 0.1015 0.1327 0.1315 0.1479 0.1580 0.1275

( 0.0093 ) ( 0.0000 ) ( 0.3019 ) ( 0.0000 ) ( 0.2890 ) ( 0.0000 ) ( 0.6816 ) ( 0.0000 )
MIN + EP nn 0.1532 0.1449 0.1370 0.1341 0.1538 0.1483 0.1703 0.1275

( 0.0009 ) ( 0.0000 ) ( 0.0065 ) ( 0.0000 ) ( 0.0510 ) ( 0.0000 ) ( 0.7461 ) ( 0.0001 )
MIN + EP nr 0.1454 0.1437 0.1274 0.1365 0.1521 0.1504 0.1627 0.1316

( 0.0004 ) ( 0.0000 ) ( 0.0036 ) ( 0.0000 ) ( 0.0152 ) ( 0.0000 ) ( 0.9000 ) ( 0.0000 )
OC 0.1449 0.0697 0.0943 0.0263 0.1337 0.0300 0.1295 0.0883
OC2 0.1503 0.0744 0.0966 0.0602 0.1279 0.0470 0.1487 0.0877

( 0.3030 ) ( 0.6635 ) ( 0.7055 ) ( 0.0000 ) ( 0.5692 ) ( 0.0027 ) ( 0.0740 ) ( 0.9615 )
OC + EP 0.1482 0.0626 0.0932 0.0691 0.1260 0.1169 0.1497 0.0452

( 0.6353 ) ( 0.6107 ) ( 0.9117 ) ( 0.0012 ) ( 0.2788 ) ( 0.0000 ) ( 0.0594 ) ( 0.0041 )
OC + EP nn 0.1462 0.1059 0.1044 0.1125 0.1217 0.1261 0.1550 0.0856

( 0.8700 ) ( 0.1472 ) ( 0.3583 ) ( 0.0000 ) ( 0.3968 ) ( 0.0000 ) ( 0.0181 ) ( 0.8727 )
OC + EP nr 0.1481 0.1003 0.0990 0.1023 0.1295 0.1246 0.1503 0.0815

( 0.6343 ) ( 0.0122 ) ( 0.6104 ) ( 0.0000 ) ( 0.6585 ) ( 0.0000 ) ( 0.0543 ) ( 0.6693 )
VT 0.1038 -0.0469 0.0939 -0.0567 0.1065 -0.0507 0.1498 0.0453
VT2 0.1174 0.0049 0.1131 0.0052 0.1250 0.0068 0.1581 0.0883

( 0.0207 ) ( 0.0000 ) ( 0.0002 ) ( 0.0000 ) ( 0.0005 ) ( 0.0000 ) ( 0.4734 ) ( 0.0000 )
VT + EP 0.1611 0.1674 0.1331 0.1507 0.1753 0.1722 0.1639 0.1584

( 0.0000 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.2606 ) ( 0.0000 )
VT + EP nn 0.1612 0.1674 0.1331 0.1537 0.1753 0.1754 0.1639 0.1611

( 0.0000 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.2606 ) ( 0.0000 )
VT + EP nr 0.1595 0.1635 0.1353 0.1513 0.1754 0.1716 0.1629 0.1572

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.2999 ) ( 0.0000 )
RRT 0.1123 -0.0319 0.0954 -0.0470 0.1116 -0.0363 0.1437 0.0524
RRT2 0.1237 0.0130 0.1139 0.0079 0.1268 0.0137 0.1547 0.0867

( 0.0162 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0011 ) ( 0.0000 ) ( 0.2789 ) ( 0.0000 )
RRT + EP 0.1584 0.1547 0.1281 0.1546 0.1640 0.1656 0.1662 0.1567

( 0.0000 ) ( 0.0000 ) ( 0.0019 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0648 ) ( 0.0000 )
RRT + EP nn 0.1603 0.1583 0.1307 0.1603 0.1648 0.1707 0.1678 0.1586

( 0.0000 ) ( 0.0000 ) ( 0.0009 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0490 ) ( 0.0000 )
RRT + EP nr 0.1573 0.1520 0.1315 0.1573 0.1648 0.1666 0.1654 0.1543

( 0.0000 ) ( 0.0000 ) ( 0.0006 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0763 ) ( 0.0000 )
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Table C.7: CEQ (Risk-aversion=3) for empirical data (Zero Transaction Cost, In-Sample
= 240)

Strategy BM-25 BM-100 OP-25 OP-100 INV-25 INV-100 IND-10 IND-49
EWP 0.0036 0.0036 0.0032 0.0035 0.0037 0.0038 0.0042 0.0033
EWP2 0.0041 0.0039 0.0039 0.0043 0.0044 0.0044 0.0048 0.0045

( 0.0749 ) ( 0.2352 ) ( 0.0009 ) ( 0.0001 ) ( 0.0006 ) ( 0.0036 ) ( 0.1616 ) ( 0.0003 )
EWP + EP 0.0055 0.0059 0.0041 0.0061 0.0059 0.0067 0.0049 0.0054

( 0.0000 ) ( 0.0000 ) ( 0.0160 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.1368 ) ( 0.0001 )
EWP + EP nn 0.0055 0.0057 0.0041 0.0061 0.0059 0.0068 0.0049 0.0056

( 0.0000 ) ( 0.0000 ) ( 0.0134 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.1366 ) ( 0.0000 )
EWP + EP nr 0.0052 0.0054 0.0042 0.0057 0.0057 0.0062 0.0048 0.0053

( 0.0005 ) ( 0.0045 ) ( 0.0980 ) ( 0.0014 ) ( 0.0007 ) ( 0.0010 ) ( 0.1507 ) ( 0.0027 )
MV 0.0045 0.0047 0.0031 0.0037 0.0038 0.0041 0.0042 0.0026
MV2 0.0050 0.0044 0.0034 0.0042 0.0040 0.0040 0.0052 0.0025

( 0.0263 ) ( 0.4281 ) ( 0.1159 ) ( 0.0151 ) ( 0.5207 ) ( 0.6337 ) ( 0.0051 ) ( 0.7105 )
MV + EP 0.0054 0.0056 0.0031 0.0051 0.0042 0.0059 0.0051 0.0027

( 0.0079 ) ( 0.0122 ) ( 0.6840 ) ( 0.0015 ) ( 0.1037 ) ( 0.0000 ) ( 0.0294 ) ( 0.8576 )
MV + EP nn 0.0048 0.0058 0.0030 0.0050 0.0040 0.0058 0.0052 0.0033

( 0.1620 ) ( 0.0061 ) ( 0.6022 ) ( 0.0011 ) ( 0.3045 ) ( 0.0000 ) ( 0.0101 ) ( 0.1400 )
MV + EP nr 0.0048 0.0055 0.0032 0.0049 0.0042 0.0056 0.0050 0.0031

( 0.3547 ) ( 0.1178 ) ( 0.6146 ) ( 0.0344 ) ( 0.1789 ) ( 0.0065 ) ( 0.0205 ) ( 0.5743 )
MIN 0.0044 0.0043 0.0038 0.0041 0.0049 0.0045 0.0052 0.0050
MIN2 0.0048 0.0049 0.0040 0.0048 0.0052 0.0045 0.0052 0.0053

( 0.1803 ) ( 0.0079 ) ( 0.2939 ) ( 0.0027 ) ( 0.3497 ) ( 0.8475 ) ( 0.6960 ) ( 0.2961 )
MIN + EP 0.0044 0.0051 0.0035 0.0047 0.0048 0.0052 0.0049 0.0051

( 0.6615 ) ( 0.0182 ) ( 0.3420 ) ( 0.0464 ) ( 0.6131 ) ( 0.0451 ) ( 0.4095 ) ( 0.9199 )
MIN + EP nn 0.0051 0.0051 0.0045 0.0048 0.0054 0.0052 0.0053 0.0047

( 0.1245 ) ( 0.0131 ) ( 0.0615 ) ( 0.0344 ) ( 0.1197 ) ( 0.0401 ) ( 0.7525 ) ( 0.8523 )
MIN + EP nr 0.0046 0.0050 0.0039 0.0048 0.0050 0.0052 0.0052 0.0048

( 0.4627 ) ( 0.0637 ) ( 0.5104 ) ( 0.0530 ) ( 0.5997 ) ( 0.1539 ) ( 0.6659 ) ( 0.9853 )
OC 0.0046 0.0047 0.0027 0.0034 0.0039 0.0038 0.0038 0.0023
OC2 0.0049 0.0042 0.0030 0.0042 0.0040 0.0037 0.0047 0.0025

( 0.0621 ) ( 0.3008 ) ( 0.1426 ) ( 0.0006 ) ( 0.6096 ) ( 0.8929 ) ( 0.0034 ) ( 0.9602 )
OC + EP 0.0054 0.0051 0.0030 0.0042 0.0043 0.0054 0.0049 0.0022

( 0.0019 ) ( 0.4220 ) ( 0.1655 ) ( 0.0417 ) ( 0.1003 ) ( 0.0002 ) ( 0.0017 ) ( 0.6278 )
OC + EP nn 0.0049 0.0041 0.0031 0.0046 0.0037 0.0052 0.0051 0.0030

( 0.0685 ) ( 0.1683 ) ( 0.0591 ) ( 0.0025 ) ( 0.6392 ) ( 0.0005 ) ( 0.0003 ) ( 0.1859 )
OC + EP nr 0.0050 0.0049 0.0029 0.0045 0.0041 0.0051 0.0049 0.0028

( 0.1232 ) ( 0.9370 ) ( 0.3774 ) ( 0.0500 ) ( 0.3701 ) ( 0.0333 ) ( 0.0012 ) ( 0.6367 )
VT 0.0042 0.0042 0.0037 0.0040 0.0043 0.0045 0.0047 0.0040
VT2 0.0045 0.0044 0.0042 0.0046 0.0048 0.0048 0.0051 0.0049

( 0.1792 ) ( 0.3880 ) ( 0.0018 ) ( 0.0002 ) ( 0.0048 ) ( 0.0302 ) ( 0.1778 ) ( 0.0006 )
VT + EP 0.0055 0.0065 0.0042 0.0057 0.0061 0.0067 0.0052 0.0062

( 0.0001 ) ( 0.0000 ) ( 0.0684 ) ( 0.0001 ) ( 0.0000 ) ( 0.0000 ) ( 0.1826 ) ( 0.0000 )
VT + EP nn 0.0055 0.0065 0.0042 0.0058 0.0061 0.0068 0.0052 0.0062

( 0.0001 ) ( 0.0000 ) ( 0.0680 ) ( 0.0001 ) ( 0.0000 ) ( 0.0000 ) ( 0.1826 ) ( 0.0000 )
VT + EP nr 0.0053 0.0060 0.0043 0.0055 0.0059 0.0063 0.0053 0.0059

( 0.0059 ) ( 0.0005 ) ( 0.2145 ) ( 0.0129 ) ( 0.0015 ) ( 0.0019 ) ( 0.1101 ) ( 0.0015 )
RRT 0.0045 0.0045 0.0037 0.0040 0.0045 0.0046 0.0045 0.0040
RRT2 0.0047 0.0046 0.0042 0.0044 0.0049 0.0048 0.0050 0.0047

( 0.1305 ) ( 0.4596 ) ( 0.0001 ) ( 0.0001 ) ( 0.0075 ) ( 0.0722 ) ( 0.0379 ) ( 0.0046 )
RRT + EP 0.0054 0.0059 0.0040 0.0060 0.0055 0.0064 0.0053 0.0060

( 0.0027 ) ( 0.0001 ) ( 0.2231 ) ( 0.0000 ) ( 0.0050 ) ( 0.0000 ) ( 0.0256 ) ( 0.0000 )
RRT + EP nn 0.0055 0.0060 0.0041 0.0062 0.0055 0.0065 0.0053 0.0060

( 0.0015 ) ( 0.0001 ) ( 0.1340 ) ( 0.0000 ) ( 0.0038 ) ( 0.0000 ) ( 0.0171 ) ( 0.0000 )
RRT + EP nr 0.0052 0.0055 0.0041 0.0058 0.0054 0.0060 0.0053 0.0057

( 0.0574 ) ( 0.0699 ) ( 0.4102 ) ( 0.0027 ) ( 0.0591 ) ( 0.0149 ) ( 0.0109 ) ( 0.0009 )
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Table C.8: CEQ (Risk-aversion=3) for empirical data (50 bps Transaction Cost + 1 bps
fixed Transaction Cost on each trading stock, In-Sample = 240)

Strategy BM-25 BM-100 OP-25 OP-100 INV-25 INV-100 IND-10 IND-49
EWP 0.0010 -0.0061 0.0006 -0.0064 0.0011 -0.0062 0.0031 -0.0016
EWP2 0.0018 -0.0036 0.0017 -0.0033 0.0022 -0.0033 0.0036 0.0006

( 0.0013 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.2106 ) ( 0.0000 )
EWP + EP 0.0040 0.0037 0.0027 0.0039 0.0046 0.0044 0.0037 0.0031

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.2076 ) ( 0.0000 )
EWP + EP nn 0.0041 0.0037 0.0027 0.0041 0.0047 0.0047 0.0037 0.0034

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.2058 ) ( 0.0000 )
EWP + EP nr 0.0039 0.0036 0.0029 0.0039 0.0045 0.0043 0.0036 0.0032

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.2352 ) ( 0.0000 )
MV 0.0012 -0.0054 -0.0003 -0.0066 0.0007 -0.0063 0.0027 -0.0029
MV2 0.0022 -0.0037 0.0004 -0.0039 0.0011 -0.0042 0.0037 -0.0021

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.1192 ) ( 0.0000 ) ( 0.0037 ) ( 0.1654 )
MV + EP 0.0034 0.0020 0.0012 0.0023 0.0025 0.0037 0.0039 -0.0009

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0015 ) ( 0.0004 )
MV + EP nn 0.0031 0.0028 0.0014 0.0026 0.0025 0.0039 0.0041 0.0006

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 )
MV + EP nr 0.0033 0.0028 0.0016 0.0027 0.0028 0.0038 0.0039 0.0005

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0005 ) ( 0.0000 )
MIN 0.0017 -0.0055 0.0011 -0.0060 0.0023 -0.0056 0.0040 0.0001
MIN2 0.0022 -0.0029 0.0013 -0.0031 0.0025 -0.0036 0.0038 0.0011

( 0.0876 ) ( 0.0000 ) ( 0.3168 ) ( 0.0000 ) ( 0.3940 ) ( 0.0000 ) ( 0.9001 ) ( 0.0048 )
MIN + EP 0.0029 0.0034 0.0016 0.0029 0.0028 0.0036 0.0037 0.0026

( 0.0015 ) ( 0.0000 ) ( 0.2214 ) ( 0.0000 ) ( 0.2377 ) ( 0.0000 ) ( 0.3922 ) ( 0.0000 )
MIN + EP nn 0.0038 0.0035 0.0031 0.0030 0.0039 0.0036 0.0042 0.0027

( 0.0000 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0011 ) ( 0.0000 ) ( 0.5679 ) ( 0.0000 )
MIN + EP nr 0.0035 0.0034 0.0027 0.0031 0.0037 0.0037 0.0041 0.0029

( 0.0000 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0004 ) ( 0.0000 ) ( 0.5583 ) ( 0.0000 )
OC 0.0035 -0.0003 0.0011 -0.0024 0.0030 -0.0020 0.0028 0.0006
OC2 0.0038 -0.0001 0.0012 -0.0008 0.0027 -0.0013 0.0036 0.0006

( 0.1273 ) ( 0.5631 ) ( 0.5932 ) ( 0.0000 ) ( 0.7115 ) ( 0.0002 ) ( 0.0073 ) ( 0.8982 )
OC + EP 0.0037 -0.0006 0.0009 -0.0004 0.0026 0.0022 0.0036 -0.0015

( 0.4167 ) ( 0.5183 ) ( 0.8898 ) ( 0.0000 ) ( 0.1843 ) ( 0.0000 ) ( 0.0233 ) ( 0.0002 )
OC + EP nn 0.0035 -0.0001 0.0013 0.0012 0.0023 0.0025 0.0039 0.0002

( 0.3166 ) ( 0.0548 ) ( 0.1141 ) ( 0.0000 ) ( 0.7123 ) ( 0.0000 ) ( 0.0020 ) ( 0.9445 )
OC + EP nr 0.0037 0.0014 0.0013 0.0015 0.0028 0.0026 0.0037 0.0004

( 0.5222 ) ( 0.0030 ) ( 0.4395 ) ( 0.0000 ) ( 0.8084 ) ( 0.0000 ) ( 0.0058 ) ( 0.5051 )
VT 0.0016 -0.0055 0.0011 -0.0060 0.0017 -0.0056 0.0036 -0.0009
VT2 0.0022 -0.0031 0.0020 -0.0030 0.0026 -0.0030 0.0039 0.0010

( 0.0029 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.2646 ) ( 0.0000 )
VT + EP 0.0043 0.0046 0.0029 0.0038 0.0049 0.0048 0.0041 0.0041

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.2080 ) ( 0.0000 )
VT + EP nn 0.0043 0.0046 0.0029 0.0039 0.0049 0.0050 0.0041 0.0042

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.2080 ) ( 0.0000 )
VT + EP nr 0.0041 0.0043 0.0031 0.0038 0.0048 0.0046 0.0041 0.0039

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.1407 ) ( 0.0000 )
RRT 0.0020 -0.0047 0.0012 -0.0055 0.0020 -0.0048 0.0033 -0.0004
RRT2 0.0025 -0.0027 0.0020 -0.0030 0.0027 -0.0026 0.0038 0.0010

( 0.0014 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0754 ) ( 0.0000 )
RRT + EP 0.0041 0.0040 0.0027 0.0040 0.0044 0.0045 0.0042 0.0040

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0257 ) ( 0.0000 )
RRT + EP nn 0.0042 0.0042 0.0028 0.0043 0.0044 0.0048 0.0042 0.0040

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0154 ) ( 0.0000 )
RRT + EP nr 0.0040 0.0038 0.0029 0.0040 0.0043 0.0044 0.0042 0.0038

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0116 ) ( 0.0000 )
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C.3 Robust Check Using Jorion (1986) and Ledoit and

Wolf (2003) (JLW)

Table C.9: Sharpe ratios for empirical data (Zero Transaction Cost, In-Sample = 120
(JLW))

Strategy BM-25 BM-100 OP-25 OP-100 INV-25 INV-100 IND-10 IND-49
EWP 0.1464 0.1475 0.1392 0.1456 0.1480 0.1517 0.1639 0.1413
EWP2 0.1566 0.1538 0.1532 0.1607 0.1637 0.1626 0.1778 0.1673

( 0.1201 ) ( 0.2897 ) ( 0.0086 ) ( 0.0010 ) ( 0.0054 ) ( 0.0187 ) ( 0.2385 ) ( 0.0028 )
EWP + EP 0.1948 0.1894 0.1793 0.1860 0.1915 0.1976 0.1990 0.1683

( 0.0036 ) ( 0.0135 ) ( 0.0168 ) ( 0.0357 ) ( 0.0087 ) ( 0.0228 ) ( 0.0034 ) ( 0.0406 )
EWP + EP nn 0.1910 0.1874 0.1793 0.1860 0.1911 0.1951 0.1990 0.1698

( 0.0070 ) ( 0.0180 ) ( 0.0168 ) ( 0.0357 ) ( 0.0095 ) ( 0.0303 ) ( 0.0034 ) ( 0.0320 )
EWP + EP nr 0.1898 0.1846 0.1789 0.1844 0.1899 0.1931 0.1952 0.1644

( 0.0078 ) ( 0.0258 ) ( 0.0159 ) ( 0.0408 ) ( 0.0106 ) ( 0.0382 ) ( 0.0097 ) ( 0.0862 )
MV 0.1747 0.1664 0.1427 0.1546 0.1507 0.1559 0.1523 0.1530
MV2 0.1808 0.1707 0.1537 0.1633 0.1590 0.1584 0.1700 0.1558

( 0.2816 ) ( 0.3618 ) ( 0.0503 ) ( 0.1159 ) ( 0.2076 ) ( 0.5503 ) ( 0.1063 ) ( 0.7887 )
MV + EP 0.1933 0.1724 0.1508 0.1800 0.1679 0.1867 0.1545 0.1586

( 0.0605 ) ( 0.6981 ) ( 0.2841 ) ( 0.1291 ) ( 0.1287 ) ( 0.0792 ) ( 0.8362 ) ( 0.6084 )
MV + EP nn 0.1838 0.1710 0.1481 0.1797 0.1600 0.1859 0.1550 0.1608

( 0.3816 ) ( 0.7684 ) ( 0.4841 ) ( 0.1337 ) ( 0.4046 ) ( 0.0868 ) ( 0.8001 ) ( 0.5350 )
MV + EP nr 0.1881 0.1668 0.1539 0.1795 0.1640 0.1836 0.1591 0.1559

( 0.1885 ) ( 0.9771 ) ( 0.1598 ) ( 0.1304 ) ( 0.2601 ) ( 0.1075 ) ( 0.5463 ) ( 0.8288 )
MIN 0.1646 0.1692 0.1605 0.1677 0.1829 0.1818 0.1909 0.1789
MIN2 0.1788 0.1798 0.1686 0.1801 0.1882 0.1853 0.1949 0.1873

( 0.1028 ) ( 0.1071 ) ( 0.4877 ) ( 0.1753 ) ( 0.7079 ) ( 0.6003 ) ( 0.8481 ) ( 0.5926 )
MIN + EP 0.1713 0.1832 0.1557 0.1818 0.1798 0.1949 0.1888 0.1969

( 0.5354 ) ( 0.2789 ) ( 0.7000 ) ( 0.3374 ) ( 0.8286 ) ( 0.3251 ) ( 0.8983 ) ( 0.2091 )
MIN + EP nn 0.1731 0.1832 0.1551 0.1818 0.1792 0.1949 0.1856 0.1851

( 0.4434 ) ( 0.2782 ) ( 0.6678 ) ( 0.3374 ) ( 0.7979 ) ( 0.3251 ) ( 0.7601 ) ( 0.7136 )
MIN + EP nr 0.1761 0.1795 0.1652 0.1800 0.1809 0.1944 0.1878 0.1861

( 0.3139 ) ( 0.4135 ) ( 0.7462 ) ( 0.3928 ) ( 0.8903 ) ( 0.3544 ) ( 0.8622 ) ( 0.6831 )
OC 0.1799 0.1635 0.1488 0.1475 0.1471 0.1449 0.1463 0.1468
OC2 0.1838 0.1676 0.1581 0.1602 0.1562 0.1501 0.1565 0.1566

( 0.4840 ) ( 0.4624 ) ( 0.0404 ) ( 0.0571 ) ( 0.1902 ) ( 0.3822 ) ( 0.3640 ) ( 0.4111 )
OC + EP 0.1873 0.1757 0.1493 0.1835 0.1630 0.1818 0.1547 0.1517

( 0.3987 ) ( 0.3533 ) ( 0.9427 ) ( 0.0186 ) ( 0.1418 ) ( 0.0551 ) ( 0.3685 ) ( 0.6525 )
OC + EP nn 0.1830 0.1644 0.1471 0.1795 0.1562 0.1795 0.1538 0.1597

( 0.7248 ) ( 0.9393 ) ( 0.8361 ) ( 0.0364 ) ( 0.3931 ) ( 0.0690 ) ( 0.4377 ) ( 0.3041 )
OC + EP nr 0.1827 0.1708 0.1505 0.1787 0.1604 0.1774 0.1597 0.1542

( 0.7536 ) ( 0.5652 ) ( 0.8200 ) ( 0.0366 ) ( 0.2351 ) ( 0.0819 ) ( 0.1767 ) ( 0.5413 )
VT 0.1601 0.1606 0.1503 0.1564 0.1621 0.1651 0.1815 0.1567
VT2 0.1667 0.1640 0.1617 0.1679 0.1717 0.1710 0.1923 0.1785

( 0.2296 ) ( 0.4841 ) ( 0.0182 ) ( 0.0028 ) ( 0.0638 ) ( 0.1249 ) ( 0.3394 ) ( 0.0039 )
VT + EP 0.1927 0.1849 0.1725 0.1873 0.1889 0.1943 0.2114 0.1940

( 0.0265 ) ( 0.1283 ) ( 0.1553 ) ( 0.0795 ) ( 0.0612 ) ( 0.1123 ) ( 0.0110 ) ( 0.0040 )
VT + EP nn 0.1927 0.1842 0.1725 0.1873 0.1889 0.1943 0.2114 0.1941

( 0.0265 ) ( 0.1398 ) ( 0.1553 ) ( 0.0795 ) ( 0.0612 ) ( 0.1126 ) ( 0.0110 ) ( 0.0039 )
VT + EP nr 0.1891 0.1797 0.1711 0.1851 0.1864 0.1910 0.2079 0.1905

( 0.0440 ) ( 0.2207 ) ( 0.1741 ) ( 0.0972 ) ( 0.0838 ) ( 0.1551 ) ( 0.0271 ) ( 0.0100 )
RRT 0.1614 0.1615 0.1518 0.1570 0.1625 0.1655 0.1789 0.1560
RRT2 0.1670 0.1648 0.1616 0.1674 0.1723 0.1711 0.1884 0.1746

( 0.2625 ) ( 0.4660 ) ( 0.0217 ) ( 0.0038 ) ( 0.0405 ) ( 0.1116 ) ( 0.3655 ) ( 0.0094 )
RRT + EP 0.1916 0.1851 0.1711 0.1860 0.1901 0.1956 0.2105 0.1950

( 0.0367 ) ( 0.1338 ) ( 0.2189 ) ( 0.0973 ) ( 0.0472 ) ( 0.0985 ) ( 0.0069 ) ( 0.0020 )
RRT + EP nn 0.1916 0.1842 0.1711 0.1860 0.1901 0.1953 0.2105 0.1950

( 0.0367 ) ( 0.1494 ) ( 0.2189 ) ( 0.0973 ) ( 0.0472 ) ( 0.1006 ) ( 0.0069 ) ( 0.0019 )
RRT + EP nr 0.1876 0.1797 0.1698 0.1842 0.1872 0.1919 0.2076 0.1925

( 0.0632 ) ( 0.2357 ) ( 0.2422 ) ( 0.1137 ) ( 0.0693 ) ( 0.1417 ) ( 0.0138 ) ( 0.0043 )
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Table C.10: Sharpe ratios for empirical data (50 bps Transaction Cost + 1 bps fixed
Transaction Cost on each trading stock, In-Sample = 120 (JLW))

Strategy BM-25 BM-100 OP-25 OP-100 INV-25 INV-100 IND-10 IND-49
EWP 0.0926 -0.0518 0.0862 -0.0591 0.0947 -0.0545 0.1366 0.0355
EWP2 0.1097 -0.0002 0.1078 0.0028 0.1176 0.0044 0.1489 0.0818

( 0.0095 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.2963 ) ( 0.0000 )
EWP + EP 0.1681 0.1519 0.1526 0.1517 0.1643 0.1620 0.1692 0.1183

( 0.0000 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0064 ) ( 0.0000 )
EWP + EP nn 0.1651 0.1513 0.1526 0.1517 0.1641 0.1606 0.1692 0.1219

( 0.0000 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0064 ) ( 0.0000 )
EWP + EP nr 0.1623 0.1449 0.1509 0.1469 0.1615 0.1543 0.1655 0.1124

( 0.0000 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0169 ) ( 0.0000 )
MV 0.0996 -0.0545 0.0694 -0.0684 0.0722 -0.0723 0.1092 0.0317
MV2 0.1161 -0.0029 0.0915 -0.0144 0.0904 -0.0214 0.1286 0.0583

( 0.0029 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0044 ) ( 0.0000 ) ( 0.0787 ) ( 0.0075 )
MV + EP 0.1541 0.1232 0.1129 0.1419 0.1249 0.1476 0.1183 0.0866

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.4116 ) ( 0.0000 )
MV + EP nn 0.1473 0.1244 0.1120 0.1417 0.1195 0.1471 0.1196 0.1002

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.3416 ) ( 0.0000 )
MV + EP nr 0.1513 0.1176 0.1176 0.1391 0.1230 0.1420 0.1238 0.0947

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.1940 ) ( 0.0000 )
MIN 0.0966 -0.0630 0.0921 -0.0716 0.1127 -0.0694 0.1555 0.0363
MIN2 0.1147 -0.0040 0.1039 -0.0091 0.1213 -0.0124 0.1561 0.0719

( 0.0411 ) ( 0.0000 ) ( 0.3122 ) ( 0.0000 ) ( 0.5259 ) ( 0.0000 ) ( 0.9836 ) ( 0.0248 )
MIN + EP 0.1376 0.1499 0.1188 0.1479 0.1423 0.1638 0.1558 0.1338

( 0.0002 ) ( 0.0000 ) ( 0.0409 ) ( 0.0000 ) ( 0.0320 ) ( 0.0000 ) ( 0.9884 ) ( 0.0000 )
MIN + EP nn 0.1414 0.1499 0.1222 0.1479 0.1456 0.1638 0.1544 0.1340

( 0.0001 ) ( 0.0000 ) ( 0.0250 ) ( 0.0000 ) ( 0.0230 ) ( 0.0000 ) ( 0.9470 ) ( 0.0000 )
MIN + EP nr 0.1452 0.1455 0.1334 0.1452 0.1489 0.1623 0.1574 0.1352

( 0.0000 ) ( 0.0000 ) ( 0.0028 ) ( 0.0000 ) ( 0.0167 ) ( 0.0000 ) ( 0.9306 ) ( 0.0000 )
OC 0.1464 0.0244 0.1131 -0.0079 0.1124 -0.0331 0.1200 0.1070
OC2 0.1486 0.0495 0.1235 0.0291 0.1161 0.0138 0.1263 0.1176

( 0.6897 ) ( 0.0000 ) ( 0.0193 ) ( 0.0000 ) ( 0.5797 ) ( 0.0000 ) ( 0.5712 ) ( 0.3695 )
OC + EP 0.1463 0.0994 0.1090 0.1257 0.1159 0.1292 0.1226 0.0830

( 0.9984 ) ( 0.0000 ) ( 0.5680 ) ( 0.0000 ) ( 0.7407 ) ( 0.0000 ) ( 0.7813 ) ( 0.0252 )
OC + EP nn 0.1443 0.1021 0.1088 0.1247 0.1121 0.1296 0.1229 0.1048

( 0.8303 ) ( 0.0000 ) ( 0.5620 ) ( 0.0000 ) ( 0.9880 ) ( 0.0000 ) ( 0.7598 ) ( 0.8432 )
OC + EP nr 0.1437 0.1028 0.1121 0.1202 0.1157 0.1237 0.1285 0.0987

( 0.7866 ) ( 0.0000 ) ( 0.8911 ) ( 0.0000 ) ( 0.7542 ) ( 0.0000 ) ( 0.3888 ) ( 0.4761 )
VT 0.1039 -0.0476 0.0951 -0.0564 0.1056 -0.0522 0.1519 0.0436
VT2 0.1179 0.0046 0.1143 0.0051 0.1231 0.0051 0.1611 0.0876

( 0.0106 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0008 ) ( 0.0000 ) ( 0.4164 ) ( 0.0000 )
VT + EP 0.1685 0.1510 0.1458 0.1543 0.1632 0.1621 0.1817 0.1492

( 0.0000 ) ( 0.0000 ) ( 0.0013 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0111 ) ( 0.0000 )
VT + EP nn 0.1685 0.1506 0.1458 0.1543 0.1632 0.1622 0.1817 0.1494

( 0.0000 ) ( 0.0000 ) ( 0.0013 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0111 ) ( 0.0000 )
VT + EP nr 0.1640 0.1439 0.1436 0.1498 0.1599 0.1560 0.1786 0.1435

( 0.0000 ) ( 0.0000 ) ( 0.0017 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0252 ) ( 0.0000 )
RRT 0.1056 -0.0465 0.0970 -0.0547 0.1063 -0.0496 0.1492 0.0421
RRT2 0.1188 0.0060 0.1149 0.0056 0.1242 0.0070 0.1575 0.0844

( 0.0082 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0002 ) ( 0.0000 ) ( 0.4342 ) ( 0.0000 )
RRT + EP 0.1675 0.1513 0.1447 0.1534 0.1639 0.1632 0.1811 0.1510

( 0.0000 ) ( 0.0000 ) ( 0.0026 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0062 ) ( 0.0000 )
RRT + EP nn 0.1675 0.1507 0.1447 0.1534 0.1639 0.1631 0.1811 0.1511

( 0.0000 ) ( 0.0000 ) ( 0.0026 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0062 ) ( 0.0000 )
RRT + EP nr 0.1628 0.1441 0.1425 0.1494 0.1602 0.1569 0.1786 0.1465

( 0.0001 ) ( 0.0000 ) ( 0.0033 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0115 ) ( 0.0000 )
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Table C.11: CEQ (Risk-aversion=3) for empirical data (Zero Transaction Cost, In-Sample
= 120 (JLW))

Strategy BM-25 BM-100 OP-25 OP-100 INV-25 INV-100 IND-10 IND-49
EWP 0.0036 0.0036 0.0032 0.0035 0.0037 0.0038 0.0042 0.0033
EWP2 0.0041 0.0039 0.0039 0.0043 0.0044 0.0044 0.0048 0.0045

( 0.1090 ) ( 0.2854 ) ( 0.0028 ) ( 0.0006 ) ( 0.0019 ) ( 0.0087 ) ( 0.2078 ) ( 0.0011 )
EWP + EP 0.0060 0.0058 0.0052 0.0056 0.0059 0.0062 0.0056 0.0046

( 0.0004 ) ( 0.0010 ) ( 0.0023 ) ( 0.0041 ) ( 0.0008 ) ( 0.0024 ) ( 0.0029 ) ( 0.0106 )
EWP + EP nn 0.0058 0.0057 0.0052 0.0056 0.0058 0.0061 0.0056 0.0047

( 0.0007 ) ( 0.0013 ) ( 0.0023 ) ( 0.0041 ) ( 0.0009 ) ( 0.0032 ) ( 0.0029 ) ( 0.0062 )
EWP + EP nr 0.0054 0.0052 0.0050 0.0052 0.0054 0.0055 0.0054 0.0043

( 0.0368 ) ( 0.1394 ) ( 0.0550 ) ( 0.1769 ) ( 0.0754 ) ( 0.2620 ) ( 0.0088 ) ( 0.2853 )
MV 0.0049 0.0045 0.0034 0.0040 0.0037 0.0040 0.0037 0.0039
MV2 0.0052 0.0047 0.0039 0.0044 0.0041 0.0041 0.0045 0.0040

( 0.1233 ) ( 0.2355 ) ( 0.0146 ) ( 0.0913 ) ( 0.0961 ) ( 0.4145 ) ( 0.0390 ) ( 0.5580 )
MV + EP 0.0058 0.0049 0.0038 0.0053 0.0045 0.0055 0.0038 0.0041

( 0.0227 ) ( 0.3089 ) ( 0.1962 ) ( 0.0230 ) ( 0.0605 ) ( 0.0204 ) ( 0.9308 ) ( 0.7459 )
MV + EP nn 0.0054 0.0048 0.0037 0.0052 0.0042 0.0055 0.0038 0.0043

( 0.1464 ) ( 0.3230 ) ( 0.3023 ) ( 0.0241 ) ( 0.1855 ) ( 0.0222 ) ( 0.9814 ) ( 0.4211 )
MV + EP nr 0.0056 0.0045 0.0039 0.0050 0.0043 0.0051 0.0040 0.0040

( 0.1172 ) ( 0.7411 ) ( 0.1136 ) ( 0.2445 ) ( 0.1948 ) ( 0.3597 ) ( 0.3931 ) ( 0.9997 )
MIN 0.0043 0.0045 0.0041 0.0044 0.0049 0.0050 0.0048 0.0045
MIN2 0.0049 0.0050 0.0044 0.0050 0.0052 0.0051 0.0052 0.0049

( 0.0365 ) ( 0.0816 ) ( 0.2395 ) ( 0.1366 ) ( 0.4341 ) ( 0.4404 ) ( 0.3961 ) ( 0.2720 )
MIN + EP 0.0045 0.0052 0.0038 0.0052 0.0047 0.0056 0.0046 0.0051

( 0.7664 ) ( 0.0728 ) ( 0.3871 ) ( 0.1030 ) ( 0.6522 ) ( 0.1286 ) ( 0.5463 ) ( 0.1508 )
MIN + EP nn 0.0046 0.0052 0.0038 0.0052 0.0047 0.0056 0.0046 0.0049

( 0.5343 ) ( 0.0724 ) ( 0.4799 ) ( 0.1030 ) ( 0.7884 ) ( 0.1286 ) ( 0.5274 ) ( 0.2928 )
MIN + EP nr 0.0048 0.0050 0.0043 0.0049 0.0049 0.0054 0.0049 0.0050

( 0.1456 ) ( 0.3852 ) ( 0.5432 ) ( 0.4159 ) ( 0.6578 ) ( 0.4529 ) ( 0.6579 ) ( 0.2545 )
OC 0.0052 0.0044 0.0037 0.0036 0.0036 0.0035 0.0036 0.0036
OC2 0.0054 0.0046 0.0041 0.0042 0.0040 0.0038 0.0040 0.0041

( 0.3032 ) ( 0.4266 ) ( 0.0116 ) ( 0.0321 ) ( 0.0901 ) ( 0.3108 ) ( 0.2008 ) ( 0.2665 )
OC + EP 0.0056 0.0051 0.0037 0.0054 0.0043 0.0053 0.0039 0.0038

( 0.2619 ) ( 0.1202 ) ( 0.9023 ) ( 0.0030 ) ( 0.0746 ) ( 0.0198 ) ( 0.4974 ) ( 0.7665 )
OC + EP nn 0.0054 0.0045 0.0036 0.0052 0.0040 0.0052 0.0039 0.0042

( 0.4369 ) ( 0.2994 ) ( 0.9552 ) ( 0.0062 ) ( 0.1893 ) ( 0.0224 ) ( 0.5530 ) ( 0.1767 )
OC + EP nr 0.0054 0.0047 0.0038 0.0050 0.0042 0.0049 0.0042 0.0040

( 0.6708 ) ( 0.7065 ) ( 0.9294 ) ( 0.0970 ) ( 0.1815 ) ( 0.2756 ) ( 0.1543 ) ( 0.6870 )
VT 0.0042 0.0042 0.0038 0.0040 0.0043 0.0044 0.0048 0.0040
VT2 0.0045 0.0044 0.0043 0.0046 0.0047 0.0047 0.0052 0.0049

( 0.1670 ) ( 0.3935 ) ( 0.0037 ) ( 0.0009 ) ( 0.0174 ) ( 0.0597 ) ( 0.1621 ) ( 0.0010 )
VT + EP 0.0058 0.0055 0.0048 0.0056 0.0056 0.0059 0.0059 0.0056

( 0.0048 ) ( 0.0250 ) ( 0.0526 ) ( 0.0120 ) ( 0.0128 ) ( 0.0224 ) ( 0.0055 ) ( 0.0008 )
VT + EP nn 0.0058 0.0055 0.0048 0.0056 0.0056 0.0059 0.0059 0.0056

( 0.0048 ) ( 0.0279 ) ( 0.0526 ) ( 0.0120 ) ( 0.0128 ) ( 0.0225 ) ( 0.0055 ) ( 0.0008 )
VT + EP nr 0.0054 0.0050 0.0046 0.0052 0.0052 0.0053 0.0058 0.0052

( 0.1086 ) ( 0.5144 ) ( 0.3216 ) ( 0.2644 ) ( 0.2886 ) ( 0.5406 ) ( 0.0066 ) ( 0.0478 )
RRT 0.0043 0.0043 0.0038 0.0041 0.0043 0.0045 0.0046 0.0039
RRT2 0.0045 0.0044 0.0043 0.0046 0.0048 0.0047 0.0051 0.0047

( 0.1851 ) ( 0.3495 ) ( 0.0046 ) ( 0.0011 ) ( 0.0094 ) ( 0.0462 ) ( 0.1380 ) ( 0.0013 )
RRT + EP 0.0057 0.0055 0.0048 0.0056 0.0057 0.0060 0.0058 0.0056

( 0.0082 ) ( 0.0247 ) ( 0.0960 ) ( 0.0158 ) ( 0.0097 ) ( 0.0207 ) ( 0.0021 ) ( 0.0002 )
RRT + EP nn 0.0057 0.0055 0.0048 0.0056 0.0057 0.0060 0.0058 0.0056

( 0.0082 ) ( 0.0288 ) ( 0.0960 ) ( 0.0158 ) ( 0.0097 ) ( 0.0212 ) ( 0.0021 ) ( 0.0002 )
RRT + EP nr 0.0053 0.0050 0.0046 0.0052 0.0053 0.0054 0.0058 0.0053

( 0.1533 ) ( 0.5075 ) ( 0.4417 ) ( 0.2803 ) ( 0.2576 ) ( 0.5191 ) ( 0.0018 ) ( 0.0144 )
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Table C.12: CEQ (Risk-aversion=3) for empirical data (50 bps Transaction Cost + 1 bps
fixed Transaction Cost on each trading stock, In-Sample = 120 (JLW))

Strategy BM-25 BM-100 OP-25 OP-100 INV-25 INV-100 IND-10 IND-49
EWP 0.0010 -0.0061 0.0006 -0.0064 0.0011 -0.0062 0.0031 -0.0016
EWP2 0.0018 -0.0036 0.0017 -0.0033 0.0022 -0.0033 0.0036 0.0006

( 0.0038 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.2600 ) ( 0.0000 )
EWP + EP 0.0047 0.0038 0.0039 0.0038 0.0045 0.0044 0.0044 0.0022

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0047 ) ( 0.0000 )
EWP + EP nn 0.0045 0.0038 0.0039 0.0038 0.0045 0.0043 0.0044 0.0024

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0047 ) ( 0.0000 )
EWP + EP nr 0.0042 0.0035 0.0037 0.0035 0.0042 0.0038 0.0042 0.0021

( 0.0000 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0002 ) ( 0.0000 ) ( 0.0132 ) ( 0.0000 )
MV 0.0013 -0.0058 -0.0001 -0.0064 0.0002 -0.0066 0.0020 -0.0019
MV2 0.0021 -0.0034 0.0010 -0.0039 0.0010 -0.0043 0.0028 -0.0007

( 0.0003 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0008 ) ( 0.0000 ) ( 0.0313 ) ( 0.0023 )
MV + EP 0.0039 0.0024 0.0020 0.0033 0.0026 0.0036 0.0023 0.0008

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.4560 ) ( 0.0000 )
MV + EP nn 0.0036 0.0024 0.0019 0.0033 0.0023 0.0036 0.0024 0.0014

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.3689 ) ( 0.0000 )
MV + EP nr 0.0038 0.0023 0.0022 0.0032 0.0025 0.0033 0.0026 0.0012

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.1087 ) ( 0.0000 )
MIN 0.0014 -0.0055 0.0013 -0.0058 0.0021 -0.0054 0.0036 -0.0006
MIN2 0.0022 -0.0030 0.0017 -0.0031 0.0025 -0.0031 0.0037 0.0006

( 0.0142 ) ( 0.0000 ) ( 0.1849 ) ( 0.0000 ) ( 0.3522 ) ( 0.0000 ) ( 0.6171 ) ( 0.0091 )
MIN + EP 0.0031 0.0037 0.0024 0.0036 0.0033 0.0043 0.0035 0.0029

( 0.0001 ) ( 0.0000 ) ( 0.0334 ) ( 0.0000 ) ( 0.0158 ) ( 0.0000 ) ( 0.7422 ) ( 0.0000 )
MIN + EP nn 0.0033 0.0037 0.0025 0.0036 0.0034 0.0043 0.0035 0.0029

( 0.0000 ) ( 0.0000 ) ( 0.0131 ) ( 0.0000 ) ( 0.0070 ) ( 0.0000 ) ( 0.7759 ) ( 0.0000 )
MIN + EP nr 0.0035 0.0035 0.0030 0.0035 0.0036 0.0041 0.0038 0.0030

( 0.0000 ) ( 0.0000 ) ( 0.0003 ) ( 0.0000 ) ( 0.0017 ) ( 0.0000 ) ( 0.5472 ) ( 0.0000 )
OC 0.0036 -0.0024 0.0020 -0.0039 0.0020 -0.0051 0.0023 0.0015
OC2 0.0037 -0.0012 0.0025 -0.0021 0.0022 -0.0028 0.0026 0.0021

( 0.5235 ) ( 0.0000 ) ( 0.0050 ) ( 0.0000 ) ( 0.4478 ) ( 0.0000 ) ( 0.4103 ) ( 0.2570 )
OC + EP 0.0036 0.0011 0.0018 0.0025 0.0022 0.0027 0.0025 0.0004

( 0.8981 ) ( 0.0000 ) ( 0.5041 ) ( 0.0000 ) ( 0.6620 ) ( 0.0000 ) ( 0.9358 ) ( 0.0080 )
OC + EP nn 0.0035 0.0011 0.0017 0.0025 0.0020 0.0027 0.0025 0.0014

( 0.9672 ) ( 0.0000 ) ( 0.5590 ) ( 0.0000 ) ( 0.8470 ) ( 0.0000 ) ( 0.8818 ) ( 0.8962 )
OC + EP nr 0.0034 0.0015 0.0019 0.0024 0.0022 0.0025 0.0027 0.0012

( 0.8053 ) ( 0.0000 ) ( 0.7595 ) ( 0.0000 ) ( 0.7370 ) ( 0.0000 ) ( 0.3671 ) ( 0.3373 )
VT 0.0016 -0.0055 0.0012 -0.0059 0.0017 -0.0056 0.0036 -0.0009
VT2 0.0022 -0.0031 0.0020 -0.0030 0.0025 -0.0030 0.0040 0.0010

( 0.0031 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.2406 ) ( 0.0000 )
VT + EP 0.0046 0.0038 0.0035 0.0040 0.0044 0.0043 0.0047 0.0036

( 0.0000 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0050 ) ( 0.0000 )
VT + EP nn 0.0046 0.0038 0.0035 0.0040 0.0044 0.0044 0.0047 0.0037

( 0.0000 ) ( 0.0000 ) ( 0.0001 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0050 ) ( 0.0000 )
VT + EP nr 0.0043 0.0034 0.0034 0.0037 0.0041 0.0039 0.0047 0.0033

( 0.0000 ) ( 0.0000 ) ( 0.0012 ) ( 0.0000 ) ( 0.0002 ) ( 0.0000 ) ( 0.0065 ) ( 0.0000 )
RRT 0.0017 -0.0055 0.0012 -0.0059 0.0017 -0.0055 0.0035 -0.0009
RRT2 0.0023 -0.0031 0.0021 -0.0030 0.0025 -0.0030 0.0039 0.0009

( 0.0020 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.2122 ) ( 0.0000 )
RRT + EP 0.0046 0.0038 0.0035 0.0039 0.0044 0.0044 0.0047 0.0037

( 0.0000 ) ( 0.0000 ) ( 0.0003 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0017 ) ( 0.0000 )
RRT + EP nn 0.0046 0.0038 0.0035 0.0039 0.0044 0.0044 0.0047 0.0037

( 0.0000 ) ( 0.0000 ) ( 0.0003 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0017 ) ( 0.0000 )
RRT + EP nr 0.0043 0.0034 0.0034 0.0037 0.0041 0.0039 0.0047 0.0035

( 0.0000 ) ( 0.0000 ) ( 0.0028 ) ( 0.0000 ) ( 0.0002 ) ( 0.0000 ) ( 0.0016 ) ( 0.0000 )
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Appendix D

Proof of Theorem 1.1.4 according to

Wang and Tan (2012)

Here’s the proof of Theorem 1.1.4 according to Wang and Tan (2012).

Proof: From (1.13), we have

qTA0 = DU1
T .

Define the columns of U as U1, ...,Ud. Under the transformation x = A0Uz, we have

qTx = qTA0Uz = DU1
T (U1z1 +U2z2 + · · ·+Udzd) = Dz1,

by the orthogonality of the columns U1, ...,Ud of U . Therefore,

h(qTx) = h(Dz1).

This proves the first part of the theorem.

The remaining results follow form the following equivalences (under the transformations
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x = A0Uz and z = Φ−1(u)) that

{h(qTx < H} ⇐⇒ {h(Dz1) < H} ⇐⇒ {u1 < c}.2
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Appendix E

Special Case of Effective Portfolio

Theorem E.0.1. Suppose µ̃1 = · · · = µ̃N = µ̃, and

Σaa =


1 ρ1 · · · ρ1

ρ1 1 · · · ρ1

· · · · · · · · · · · ·

ρ1 ρ1 · · · 1

 ,

Σba =


ρ2 ρ2 · · · ρ2

ρ2 ρ2 · · · ρ2

· · · · · · · · · · · ·

ρ2 ρ2 · · · ρ2

 .

We have βEP < 1 and E(R̃EP ) > E(R̃M) if and only if aρ2
1+(a−1)ρ1

> 1. i.e. ρ2 > ρ1 and

a� 0.

Proof: If w are equal weight, then by inspection, E(R̃EP ) > E(R̃M) iff

a

N
+

b

N

aρ2

1 + (a− 1)ρ1

> 1.
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i.e. aρ2
1+(a−1)ρ1

> 1.

Note: this could be generalized for any arbitrary weight w, E(R̃EP ) > E(R̃TP ) if

aρ2

1 + (a− 1)ρ1

> 1.

i.e. ρ2 > ρ1 and a� 0.
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