
Performance of the Ultra-Wide Word
Model

by
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Abstract

The Ultra-wide word model of computation (UWRAM) is an extension of the Word-
RAM model which has an ALU that can operate on w2 bits at a time, where w is the size
in bits of a cell in memory. The purpose of this thesis is to explore the applicability of the
UWRAM model, particularly when compared to the PRAM model, from an algorithmic
point of view, to determine its potential for common applications.

The work is divided into three sections: First we describe the model, its instruction set,
strengths and weaknesses, and provide a few small examples that showcase the functionality
of the model and how simple techniques can be used to speed up sequential algorithms.
In the second section, we discuss the problem of sorting and searching, and show that
elaborate data structures such as the fusion tree can be easily adapted to the model,
allowing the sorting of n integers in O(n logn

log logn
) time with small constant factors. Lastly,

we provide simulations of UWRAM and PRAM programs to solve two problems: subset
sum and string matching. In the first case we show how a dynamic programming algorithm
can be sped up using bit parallelism where traditional parallelism is difficult to achieve,
and in the second, we show that even in a problem that is simple to parallelize traditionally,
the UWRAM can perform well when compared to a PRAM.
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Chapter 1

Introduction

Ever since the creation of computers and processors, great research efforts have been made
to improve their performance. For many years, improvement was achieved through minia-
turization, decreasing the size of transistor gate length and thus the clock rate of the
processor. As transistor size approaches its physical limits, however, efforts have shifted
toward exploiting parallelism to increase computational power [33, 16]. For example, Intel
has not upgraded the transistor gate length in its popular desktop Intel Core series since
2008, but they have more than doubled the number of cores in them. Older versions had
up to four cores and recent releases have up to ten, while gate length has remained between
14nm and 32nm throughout, depending on the version [36].

Parallelism can be achieved in several different ways, and is usually grouped by the
type of instruction and data streams that the processor can manage into the categories
proposed by Michael J. Flynn in [12]. This categorization is commonly known as Flynn’s
taxonomy.

Flynn classifies computers as either SISD, SIMD, MISD or MIMD. SISD computers
(Single Instruction Single Data) are traditional sequential computers. Models of compu-
tation such as the RAM and Word-RAM fit into this category. Vector or array computers
fit into the SIMD (Single Instruction Multiple Data) category; they were devised to solve
problems where relatively simple tasks need to be executed over massive amounts of data.
Typical applications are scientific calculations and computer graphics. Many Intel proces-
sors come equipped with vector registers of 128 to 256 bits, into which smaller types can
be packed and operated on simultaneously through special instruction sets [21]. Current
graphics processing units (GPUs) are also members of this group. The MISD (Multiple
Instruction Single Data) category is mostly theoretical and has no well-known applica-
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tions. However, specialized hardware could make use of an architecture such as this one;
in signal processing for example, a MISD computer would allow multiple frequency filters
to be applied to a single signal simultaneously [2]. The MIMD (Multiple Instruction Mul-
tiple Data) category is the most explored, and includes all multiprocessors and multi-core
architectures.

The MIMD category is so popular in fact, that it can be further categorized depend-
ing on the computer’s memory structure and synchronization techniques [24]. Johnson
divides MIMD computers into GMSV (Global Memory Shared Variables), GMMP (Global
Memory Message Passing), DMSV (Distributed Memory Shared Variables), and DMMP
(Distributed Memory Message Passing). A PRAM, for example, would be considered a
MIMD GMSV model.

In this thesis we will explore a particular type of SIMD parallelism known as bit paral-
lelism. Bit parallelism exploits the fact that in current architectures with larger word sizes
(32 or 64 bits), many types are smaller than the processor word and so several elements can
be packed and operated on simultaneously. In a 64 bit architecture, eight 8-bit characters
can be operated on at once. It is a curious type of parallelism, since it can be executed in
a purely sequential computer.

The theoretical model which allows, and in fact, was defined to analyze bit parallelism
is called a Word RAM, and was defined by Torben Hagerup in 1998 [17]. Although there
is plenty of research improving algorithms by using bit parallelism [15, 6, 17], the speedups
achieved are small due to limited word sizes.

In 2014, Farzan, Lopez-Ortiz, Nicholson and Salinger proposed a model specifically to
exploit bit level parallelism, which they called the Ultra Wide Word Model (UWRAM)
[11]. They introduce a processor with word size ranging from 1,000 to 10,000 bits, while
maintaining regular word size in memory. There are two main differences between their
model and vector processors, which at first glance seem to be the most similar. Firstly,
memory access operations in the UWRAM are a lot more flexible than in vector processors,
which are limited to consecutive or evenly spaced access. The UWRAM allows arbitrary
access to memory, and is in that aspect a lot closer to the PRAM model. The second
important difference is that the UWRAM does not have any boundaries dividing the large
word, increasing again the flexibility of the model. A full description of the model is given
in chapter 2.

The goal of this thesis is to explore the UWRAM model in greater depth and to analyze
its applicability from an algorithmic point of view in order to determine its potential for
common applications. In chapter 2 we will review the details of the model, introduce
some new instructions to improve its performance, and discuss some small examples that
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show the general feel of the model. In chapter 3 we will discuss the problem of sorting and
searching in this architecture, and in chapter 4 we will present simulations of two problems,
one which is considered traditionally easy to parallelize (String Matching) and one which
is not (Subset Sum), and compare them to the performance of a PRAM (essentially a
stronger parallel model), showing in one case that the UWRAM can perform reasonably
well against a PRAM, and can improve the worst-case run-time of the algorithm, and in
the other, that the UWRAM can significantly outperform, thus showcasing the type of
techniques that can be used to devise efficient algorithms for the UWRAM model, and the
advantages that can be obtained with the use of flexible large scale bit parallelism.
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Chapter 2

The Ultra-Wide Word Model

The Ultra-Wide Word-RAM model (UWRAM), proposed by Farzan, et al. in their 2014
paper [11], is an extension of the Word-RAM model, or simply Word model, as described
by Hagerup [17]. In the Word-RAM model, each memory location is w bits long and
stores an integer in the range {0, ..., 2w − 1}. The instruction set includes basic arithmetic
operations (addition and subtraction), binary operations (AND,OR and NOT), conditional
and unconditional jumps, right and left shifts, and store and load operations. We will try to
keep this model as close to the restricted model as possible, so multiplication and division
will not be supported. Each operation, including memory access, is assumed to take unit
time.

The UWRAM introduces an ALU which works on w2 bit ultra-wide words, from here
on referred to as ultrawords, which are divided into w bit blocks for addressing purposes,
but are treated like a single word by the ALU; this means that basic Word-RAM operations
can be used on entire ultra-words at once. The model maintains a w bit ALU additional
to the ultra-wide one , and maintains w bit memory addressing.

Before we continue with the description of the model, it is important to define the
notation we will use. This notation is very straightforward and can be found in Table 2.1.

Since the UWRAM allows parallel access to memory, it is necessary to define its memory
access type. The model will accept concurrent reads from a memory location, but not
concurrent writes. This access type is known as CREW (Concurrent Read Exclusive Write).
If a programmer should attempt to write to the same memory location from more than
one block of an ultraword at a time, no assumptions can be made as to the result written
in the cell, since these assumptions lead to stronger models that are sub-versions of the
CRCW (Concurrent Read Concurrent Write) access types; for example, CRCW-R will

4



Wk ultraword k
Wk[i] block i of ultraword k
Wk[i][j] jth bit of block i of ultraword k
wk word k
wk[i] bit i of word k
w word size in bits
u ultraword size in bits

Table 2.1: UWRAM notation

write a random word into memory from the ones attempting to be saved, and CRCW-S,
CRCW-A and CRCW-X will store reductions of the words using sum, logical and or logical
xor respectively [29]. For this reason, the programmer must assume that anything stored
in the conflicting cell will be completely useless.

The original definition of the model introduced three types of memory access operations,
which allow access by block, ultra-word or content for both reads and writes, as can be
seen in the following instructions:

#Read access by block
uwlb $ud j base # Ud[j] = MEM[base+j]

#Read access by ultra−word
uwluw $ud base # for every j in Ud: Ud[j] = MEM[base+j]

#Read access by content
uwlc $ud base # for every j in Ud: Ud[j] = MEM[base+Ud[j]]

Write access follows the same patterns, though in the write access by content, the
programmer must be careful not to attempt to access the same location more than once.

#Write access by block
uwsb $ud j base # MEM[base+j] = Ud[j]

#Write access by ultra−word
uwsuw $ud base # for every j in Ud: MEM[base+j] = Ud[j]
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#Write access by content
uwsc $u1 $u2 base # for every j in U1: MEM[base+U2[j]] = U1[j]

Through these instructions, we make the assumption that the model can access any
w cells in memory in parallel and in constant time (Figure 2.1). This memory model is
completely theoretical; in practice, memory access would need to be implemented through
an interconnection network, and due to the extensive number of memory slots, blocks of
slots would need to share network access points [29]. It is important to note that this
assumption is usually made by popular shared memory multi-processor models such as
the PRAM, which is in a way the closest model to the UWRAM, and the one we will be
comparing it to. Latency produced by memory accesses can also be mitigated in practice
by caching [11], so the assumption is not unreasonable. A more detailed description of the
PRAM can be found in section 2.2. Since both models we will compare suffer from the
same memory access limitations, this assumption will not affect results.

A physical implementation of a UWRAM would require a large data bus to handle
concurrent access to memory. A UWRAM with w = 32 would require a data bus of at
least 1024 bits to access w words concurrently, and one with w = 64 would need 4096.
There are GPUs in the market today with data buses of those sizes, showing that the
requirement is not unreasonable. For example, Nvidia’s Quadro family GPUs have data
bus sizes ranging from 64 to 4096 bits [27].

UWRAM

Memory

w0

w1

w2

ww−1

0

1

2

3

n − 1

.

.

.

...

...

...

...

...

Figure 2.1: Conceptual network required for concurrent memory accesses assumed by
the model [29]
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2.1 Additional Instructions

Since the main motivation behind the UWRAM model is to be able to operate on w
elements of w bits at once, it makes sense to provide the model with instructions to aid in
this task. The following instructions facilitate memory access for regularly spaced words
and arithmetic operations. Even though the model allows operations for any field size
f ≤ w2 , field size w is the most natural, and should be simple to deal with.

We will maintain the UWRAM instructions introduced in [11]: compress and spread.
The compress instruction packs the first bit of each block of an ultraword into the first word
of another one, such that if W2 = compress(W1), then W2[0][i] = W1[i][0] for 0 ≤ i < w,
and the rest of the blocks are set to zeros. The spread operation is the opposite of compress,
and spreads each bit of the first word of an ultraword into the first bit of each block of
another one, such that if W2 = spread(W1), then W2[i][0] = W1[0][i], and all other bits are
set to zeros.

W1 =

compress(W1) =

1 X X X 0 X X X 1 X X X 1 X X X

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

W1 =

spread(W1) =

1 0 1 0 X X X X X X X X X X X X

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Figure 2.2: Examples of the compress and spread operations, with w = 4. Bit values
that are not relevant for the final result are marked with an X.

We propose the addition of three more ultraword instructions: replicate, spread sequence
and uwpopcnt. The instruction replicate arises from the need to operate over every block
of an ultraword with a single w sized value. Simple operations like adding a constant to
every element of an array, or applying a bitmask to a set of elements, or even comparisons
to zero require replicating a w sized value into each block of an ultraword. Without an
instruction to enable this operation, it requires the execution of log(w) instructions. The
instruction replicate can then be defined the following way: if W1 = replicate(w0), where
w0 can be any w sized word, then W [i] = w0 for 0 ≤ i < w. In a word RAM, this effect
can be achieved through multiplication, which our model does not allow. Replication can
also be achieved by reading from the same cell simultaneously using a read by content
instruction, but this in turn would require the address of the cell to be replicated into an
ultraword, so it is logical to have an instruction specifically for this purpose. Replication
is most natural with field size f = w, but can be easily implemented with additional shifts
and ors for f < w, as long as f is a power of two.
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We add the instruction spread sequence for the specific purpose of reading from and
writing to evenly spaced blocks of memory, through the read content or write content
operations, simply and in constant time. The power of these instructions, which are key to
the functionality of the model, is greatly hindered if every address needs to be calculated
sequentially. The instruction takes a single word sized parameter w0 and outputs an
ultraword holding the first w elements of an arithmetic progression with 0 as an initial
term and a common difference of w0. There are several situations where it is necessary to
read in this spaced manner; for example, when reading from a large matrix stored in row
or column major order, or when packing an ultraword with more than one element per
word. This instruction is not in any way meant to cheat the ”no multiplication” constraint
of the model, and none of the examples we give use it for anything other than evenly
spaced memory access. If the model were to be physically implemented, this instruction
could be substituted with a memory access instruction taking a base and a stride as a
parameter. We chose to keep this instruction for the simulations to avoid having too many
types of memory access. Parallel access with a stride or spacing ≥ 1 is already a common
instruction in processors today, since it is part of Intel’s AVX instruction set [21], available
in many Intel and AMD processors.

w0 =

replicate(w0) =

spread sequence(w0) =

2

2 2 2 2

0 2 4 6

Figure 2.3: Examples of the replicate and spread sequence operations, with w = 4,
in decimal representation.

The instruction uwpopcnt is an ultrawide version of the popcnt instruction, available in
recent processors from Intel and AMD that support the SSE4.2 and ABM instruction sets
respectively [20]. This instruction takes an unsigned integer word as input and outputs a
count of set bits in that word (bits that are equal to 1). In the ultrawide version, instead
of considering all bits in the ultraword, only the first bit in each block is considered. The
instruction can be thought of as a compress instruction followed by a regular popcnt.
Since the model does not support direct methods for field-size arithmetic, methods such as
adding sentinel bits for subtraction must often be used. A combination of this technique
and the uwpopcnt could be used, for example, to calculate the rank of an integer in an
array of w integers in constant time, regardless of word size. Further use of this instruction
will be explained in detail further on.
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W1 =

uwpopcnt(W1) =

1 X X X 0 X X X 1 X X X 1 X X X

3

Figure 2.4: Example of the uwpopcnt instruction, with w = 4.

2.2 Comparing with a PRAM

The PRAM is a generalization of the Word-RAM generally used to measure the complexity
of parallel algorithms. The model is assumed to have an unbounded number of processors
and unbounded shared memory cells, which are the only way the processors can communi-
cate with each other [29]. Each processor also has local memory (registers) of its own, and
has an additional register which stores its identifier. The instruction set for each processor
is the same as that of a regular Word-RAM processor, and they operate the same way.
The execution of any instruction in this model is also assumed to take unit time. The read
and write memory accesses will be restricted by the CREW access type.

Another important characteristic of the model is the fact that all processors share a
common clock. This means that all processors will execute an identical program, which
they will execute in a synchronous manner, although clearly local memory and input may
lead each of them towards a different execution path[18].

In order to activate processors for execution, there will be a single activation register,
or slot in memory, to which the number of processors needed for the computation will be
written. Processor P0 will have this responsibility, and will also halt all processors when it
executes a halt instruction. Beside these extra responsibilities, P0 is a regular Word-RAM
processor. Since the model allows concurrent reads, all models may read concurrently
from the activation register. Processors with an identifier smaller than the number in the
activation register will be activated and will immediately begin execution of the program.

In many cases, a reduction of each of the processor’s results to a final unique result will
be necessary. Since the model does not allow concurrent writes, this must be done through
a tree like fan-in operation, which has logarithmic complexity.

In order to compare the models fairly and for the sake of simulation, the PRAM model
cannot be unbounded in its number of processors. For this reason, we will use a small-
PRAM, with w processors. This means that there will be w processors available, but a
program may choose to use less. This restriction will give us w2 bits to work with in each
of the models.

In this section we will review a few small examples that will show the general feel of the
UWRAM model and how it compares to the PRAM, making emphasis on examples where
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the UWRAM outperforms the PRAM. In these examples, we will refer to the number of
processors (in case of the PRAM) or the number of blocks (for the UWRAM) as p, and to
the word size in both models as w. We assume throughout the text that p is equal to w,
but will differentiate to make algorithm analysis easier to understand.

2.2.1 Checking if every element in an array is zero

Given an array of integers A = {a1, a2, ..., an} , we output 1 if all elements are equal to
zero, and 0 otherwise. The sequential algorithm for this problem is to simply loop through
the array and to output a 0 if anything other than zero is found. This algorithm clearly
has an O(n) running time. To run this algorithm in the PRAM, n/p entries of the array
are assigned to each processor, each processor checks each of these entries, and then a
logarithmic fan-in operation is necessary to obtain the final result. This algorithm has a
run-time of O((nlog(n))/p) , and thus a speedup to the sequential algorithm of p/log(n).
In the UWRAM, n/p entries are loaded into an ultra-word register, and can be compared
to zero in a single operation resulting in a single value. Since the final result can be
accumulated in a local register, no other operations are necessary and the run-time is
O(n/p), giving an optimal speedup of p over the sequential algorithm.

2.2.2 Transposing a bit matrix

Given an n× n matrix M of packed bits, stored in row-major order, find the transpose of
M . This means one bit is one element, so a word in memory would store w elements of
the matrix (Example from [35]).

0 1 2 3 4 5 6 7
8 9 a b c d e f
g h i j k l m n
o p q r s t u v
w x y z A B C D
E F G H I J K L
M N O P Q R S T
U V W X Y Z % #


−→



0 8 g o w E M U
1 9 h p x F N V
2 a i q y G O W
3 b j r z H P X
4 c k s A I Q Y
5 d l t B J R Z
6 e m u C K S %
7 f n v D L T #


A sequential algorithm for this problem would require accessing each element of the ma-

trix once, by reading the correct block from memory, masking out all but the required bit,
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and accumulating bits in a register until an entire word has been packed and can be saved
to memory. Element M [a][b] of the array can be found in the word ((a+ 1)× (n/w))− 1
from the beginning of the array, in bit b%w (where bit 0 is the most significant). This
algorithm is clearly O(n2).

A PRAM can access p memory blocks at once, in column order, out of which one bit
will be taken to pack into a word and output as a block of a row. We see an example from
the 8× 8 matrix above, whith w = 4 where the first bit of each word is taken to form the
first word of the first row of the transpose.

[0 1 2 3] [8 9 a b] [g h i j] [o p q r] −→ [0 8 g o]

This operation requires a logarithmic fan-in for the packing, and clearly still needs to
visit every element of the matrix, which gives a run-time of O(n2log(n2)/p), and a speedup
to the sequential algorithm of p/log(n2).

The UWRAM can perform this calculation in constant time, using the spread sequence
operation for spaced memory access and the compress operation for bit extraction and
packing. This gives a run-time of O(n2/p), and so a speedup of p.

2.2.3 Adding large numbers

Given two integers a and b with n bits each, find c = a + b. We assume that the number
is stored in contiguous w sized blocks in memory. The sequential algorithm to solve this
problem iterates through every block of the number, keeping a flag or register to indicate
if there is a carry, so that it may be added to the next block. Since this algorithm must
access each block once, it has a run-time of O(n).

The PRAM splits two blocks of the large number to each of the processors, so that
processor with index i will be responsible of adding a[i] + b[i]. Carries, if they exist, are
stored into an array in memory, as described in [3], and then added to the next block in the
following iteration until there are no more carries. In the worst case, there will be carries
in every iteration, and so the run-time is of O(n), gaining no speedup over the sequential
algorithm.

The UWRAM can add two numbers of w×p bits in a single operation, and would only
have to keep track of a carry bit for n > w2. This results in a simple algorithm with a
run-time of O(n/p), and a speedup of p over the sequential.
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2.3 Limitations

The UWRAM model is closely related to both PRAM models and VPUs in different ways.
It is similar to vector processors in that a single instruction is executed over a large amount
of data. Even though the UWRAM is more flexible in its field size and memory access,
the VPU executes parallelism in a more straight forward way. Since field sizes are fixed,
calculations of flags or carries are part of the instructions and are given at no extra cost. In
the UWRAM, however, the programmer must handle possible overlap of fields and carries
as the cost of greater flexibility. This will create overhead of instructions: when using
sentinel bits for subtraction for example, it is necessary to split the subtraction operation
into two parts, and then mask the result to access each field separately if needed.

The PRAM has the obvious advantage of being able to perform different operations on
different data at the same time, which means it can execute different programs concurrently.
The UWRAM cannot in any way compete with this, since it is still essentially a sequential
model. In order to simulate a PRAM with a UWRAM, each different operation would have
to be executed separately and on the right fields aided by bit masks. This would lead to a
constant time overhead, where the constant would be a value related to the total number
of instructions available in the PRAM [11]. The main strength of the UWRAM over the
PRAM is that the different fields can interact with each other very easily through shifts or
addition or subtraction operations. The ”no boundary” model also allows decisions to be
taken over all the fields at once without the need of fan-in operations.

2.3.1 Multiplication

An undeniable weakness of the model is the fact that it does not support multiplication.
There are two reasons for this: one is the complexity of the multiplication operation, which
depends not only on the number of bits in the numbers to be multiplied, but on their value.
The other is the fact that the result of the multiplication of two n bit numbers may require
as many as 2n bits to store the product. Assuming that multiplication would be carried
out on two ultrawords without any concept of blocks or boundaries, as is the definition of
the model for other arithmetic operations, this would not be possible, since the model does
not support registers or memory accesses larger than w2. This could be worked around
by allowing the multiplication only of half-ultrawords, with w2/2 bits, resulting in a full
ultraword product. This leaves only the problem of the complexity of the operation, which
is not a small hurdle to overcome.

There are many different algorithms to multiply two binary numbers, most of which can
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be implemented both in software and in hardware if enough resources are available. The
Shift/Add algorithms are the simplest among these, and the most economical regarding
space and hardware, but are also the slowest. These algorithms work essentially the way
grade school multiplication works, with the additional observation that, when multiplying
any bit of the multiplier by the entire multiplicand, the result can only be zero or a
shifted version of the multiplicand: this reduces the multiplication to a series of shifts and
additions, as can be seen in the example in 2.5.

X =

Y =
1010
1100

×
0000
0000
1010

1010
1111000

XY3 << 0
XY2 << 1
XY1 << 2
XY0 << 3

XY

+

Figure 2.5: Example showing the shift/add multiplication method on two four bit
binary numbers.

This algorithm could be implemented simply in software, or in hardware using a k-bit
adder, where k is the number of bits in the factors. However, running the algorithm would
require executing between 6k + 3 and 7k + 3 machine instructions, depending on whether
the left or right shift version of the algorithm were being used [28]. This means that even
in a regular 32-bit processor, the algorithm would need to execute around 200 instructions.
In a 32 bit UWRAM (with ultrawords of 1024 bits), half-ultraword multiplication would
require between 3000 and 3600 instructions.

Another popular way to multiply is by using algorithms based on Booth’s 1951 radix-
2 algorithm for signed (twos complement) binary numbers [8], described in Algorithm 1.
The recoding in this algorithm, which is achieved by looking ahead at an extra bit in
each iteration, is based on Booth’s observation that the additions needed to multiply a
segment of consecutive ones can be replaced by one addition and one subtraction. This
algorithm still requires k shifts and an average of k/2 additions, since it still only eliminates
a single bit in each iteration, but it is the base for more efficient higher radix multiplication
algorithms.

In a radix-r algorithm, log2 r + 1 bits are inspected and log2 r bits are eliminated in
each iteration. The improvement in number of iterations,however, comes at the cost of
a greater number of required instructions for pre-processing and and the need for larger
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Algorithm 1 Booth’s radix-2 algorithm for signed binary multiplication. X is the multi-
plicand, Y is the multiplier,j is the number of bits in X, and k is the number of bits in Y .
All new definitions of numbers have a length of (j + k + 1)

1: procedure BoothMultiply(X,Y,k)
2: A← value of X in most significant bits
3: S ← value of -X in most significant bits
4: P ← Y << 1
5: for c← 1 to k do
6: aux← two least significant bits of P
7: if aux = 01 then
8: P ← P + A

9: if aux = 10 then
10: P ← P + S

11: P ← P >> 1
12: return P >> 1

hardware components. For example, while a radix-2 algorithm requires only the calculation
of −X and shifted versions of X, and a two-way multiplexer for its hardware version, a
radix-4 algorithm would require the calculation of 2X, 3X and their complements, and a
4-way multiplexer for hardware. Despite the additional pre-processing steps, studies have
shown that the high-radix approach is useful when computing the multiplication of very
large numbers; for example, Javeed and Wang show that a radix-8 modular multiplication
approach is faster than a radix-4 when multiplying 256 bit numbers, taking dk/3e + 4
clock cycles to complete; this would translate to 175 cycles in a 32 bit UWRAM halfword
multiplication. [23].

Other popular hardware multiplication techniques such as full-tree multipliers, which
grant O(log k) multiplication for k bit integers, might prove unfeasible due to the large
number of components they require. A Wallace tree multiplier, for example, requires k2

AND gates only to generate the first level of inputs for the addition tree. In a 32 bit
UWRAM, for half-word multiplication, this would be equal to 262144 AND gates.

Finally, we have the option of forgoing the idea of multiplying w2 (or w2/2) bit numbers,
and instead multiplying w/2 fields of size w of two ultrawords to produce an ultraword with
the w/2 results of size 2w, ad shown in figure 2.6. This approach would clearly not require
anything more than replicating the hardware necessary for w bit multiplication in a regular
processor. Any of the methods described above may be used for this task. Even though
microprocessor manufacturers do not reveal the algorithms or specific hardware they use
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to support their instruction sets, benchmarks can be run to calculate the approximate
latency in cycles generated by each instruction. As an example, the latency for a 32 bit
multiplication in a QuadCore Intel Core i7-7700K processor is 4.3 cycles [13].

XXXX a0 XXXX a1

XXXX b0 XXXX b1

a0b0 a1b1

A =

B =

AB =

Figure 2.6: Example of multiplication of w bit numbers, with w = 4.

Providing this type of multiplication could be useful when calculating the multiplication
of large numbers in software, using algorithms such as the Fast Fourier Transform based
algorithm for numbers given in polynomial representation, which is O(n log n), where n is
the degree of the polynomial.
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Chapter 3

Sorting and Searching

The problems of sorting and searching are among the most studied in the field of computer
science. This is because not only do they provide a very basic and fundamental functionality
to computers (which is thus expected to be performed well and fast), but are also the
foundation of many algorithms across different fields. In comparison based models, the
complexity of sorting a list of n integers is well known to be Θ(n log n). Fredman and
Willard broke this barrier in 1990 by proposing a data structure called a fusion tree that
used bit level parallelism to compare several elements at once [14]. While theoretically
interesting, the constant factors associated to its operations made it unusable in practice.
In this chapter we will first describe the problem of static ranking, and how it can be solved
in the UWRAM, and the build on it to describe a UWRAM implementation of fusion trees.

3.1 Ranking

The definition of the rank function is as follows: given an integer q that is part of the set
S, rank(q, S) = x such that Si ≤ q for all i < x. Calculating the rank of every element
in the set will result in a sorted set. Hagerup proposes a word based, bit-parallel ranking
algorithm in [17], which we adapt to our model and instruction set.

Elements of the set S can be represented with f bits each: f is thus the field size
required to hold the representation of an element in the UWRAM. For this algorithm, we
will assume that f is small enough so that all elements of S fit in a single ultraword. We
will also assume that f is a power of two, such that packed elements align with the blocks
of the ultraword.
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Hagerup’s algorithm consists of three simple steps: first, replicate the query q into every
field of an ultraword and pack the elements of S into another one. Second, compare each
field with the query, setting the value 1 in fields where Si ≥ q. Lastly, count the number
of ones set to obtain the rank of q.

The first step is trivial in our model since we can simply use the replicate instruction
to spread the query along an ultraword. If f < w, then an additional constant number of
or and shift operations are needed. The elements of the set can be packed by reading from
ram with a stride of w/f and shifting the fields before reading the next w elements. An
example of the packing technique is shown in 3.1.

00001101

00000001

00001001

00000101

RAM

S

base

00000000 00000010

00001101 00001001

11010000 10010000

00000001 00000101

11010001 10010101{ { { {

S0 S1 S2 S3

W1 = spread sequence 2 =

W2 = load content from W1 + base =

W2 << f =

W3 = load content from W1 + (base+ 1) =

W2|W3 =

Figure 3.1: Example showing the instructions needed to pack 4 elements of f = 4
into an ultraword. w = 8 and the ultraword is shown to have only two blocks for
simplicity of representation

Now that both the replication of the query and the set are contained in an ultraword
each, we may compare both in a single operation, using a subtraction. The problem with
this operation is that it will cause fields to exceed their boundaries when the result of
the field subtraction is negative. To avoid this problem, we will extend each field with an
additional bit, called a sentinel bit, which will be the most significant. The minuend, or
element is extended with a value of 1 and the subtrahend (the query) with a value of 0.
This trick ensures that the minuend in each field is larger than the subtrahend, and so
the result will never ”leak” past field boundaries. The sentinel bit remains set to 1 if the
element in that field is larger or equal to q, but is flipped to 0 if it is smaller.
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Since we cannot simply expand the size of the ultraword during the execution of a
program, we have two choices: either consider a larger than required field size from the
beginning, such that the most significant bit can be set as required without altering the
value of the element in the field, or, if this is not possible (for example when f = w), we
can use two ultrawords instead of one for the comparisons, leaving an entire field for the
sentinel bit.

Step 3 now consists simply of counting the sentinel bits that remain set to one. This
can be achieved with a single uwpopcount instruction if f = w, or through the sum of the
results of w/f uwpopcount operations when f < w.

Sorting S requires calculating the rank of each element in the set, and shifting it to its
new position. Since calculating the rank is clearly O(1), sorting in this case is O(n).

3.2 Fusion Trees

The fusion tree data structure, proposed by Fredman and Willard in [14], adapts remark-
ably well to the ultra-wide model, since it can be implemented without sketching.

A fusion tree is essentially a B-tree with B = (log n)
1
5 [4, 26]. The main difference

between B-trees and fusion trees is the time required to search for a key within a node of the
tree; while B-trees require O(B) time, fusion trees can do it in O(1) by comparing several
elements at once. This is achieved by compressing the elements of the node into a single
word so that they may be compared simultaneously. The compression is accomplished
by identifying which bits are relevant to the comparison, in other words, which bits are
necessary to differentiate between the elements of the node; irrelevant bits are masked out
and relevant bits are packed together, such that individual bits lose their original position,
but elements remain ordered. The compressed, relevant bit representation of a number
is known as its sketch. A sketch can be computed using a prefix tree, into which each
element of the node is added bit by bit, starting from the most significant. Each level of
the tree l holds the values of the lth bit of each element. If a level has branches, it means
that it holds significant bits.

A perfect sketch cannot be computed in constant time in a restricted model, but an
approximate sketch, which will include some extra zeros, can be calculated in constant
time with the use of multiplication [14].

The objective of this parallelized, constant time comparison is to compute the rank of
a query. Once the rank of a query has been calculated, either the element has been found,
or the node in which to continue the search is known.
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b0

b1

b2

b3

Node elements
S0 = 0001

S1 = 0100

S2 = 1000

S3 = 1100

sketch(S0) = 00

sketch(S1) = 01

sketch(S2) = 10

sketch(S3) = 11

Figure 3.2: Example of the calculation of sketches for the elements of a fusion tree
node.

The UWRAM has a word size of at least w = log n (or elements cannot be indexed),
and an ALU that can operate on w2 bit words at once. This means that we can use the
same method for comparison that is used to calculate rank in a fusion tree node without
needing any type of compression, because an ultraword can fit w elements at the time,
which means that the node of a tree with a branching factor of w can be processed in
constant time.

The algorithm for calculation of rank is defined in Section 3.1. For the specific case
of a fusion tree node, field size f = w, and so the population count can be executed in
a single step, since no additional alignment shifts are necessary. When the rank function
is executed on an ordered set, calculating the rank also calculated the predecessor and
successor of the query.

p0 S0 p1 S1 p2 S2 p3 S3 p4

0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0Fusion tree node =

1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 1 1 1 0 0

0 1 0 1query =

0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1

0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1

Node elements extended with sentinel bits (N) =

Replicated query with sentinel bits (Q) =

R = N −Q =

uwpopcnt(¬R) = rank(query) = 2

Figure 3.3: Example of the calculation of the rank of a query in a fusion tree node.
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Clearly the blocks of an ultraword cannot simply be expanded by one bit: instead, a
whole block is given for each sentinel bit, and the calculation is split into two parts.

To sort a sequence of n elements with a fusion tree, all elements must be inserted into
the tree. The time to insert an element depends directly on the height of the tree and
on the time needed to find an element within a node. Since a fusion tree is in essence a
B-tree, its height is O(logB n) with B = log n, so the height of a fusion tree is proportional
to O( logn

log logn
). Since the time to search within a node is O(1), the complexity of searching

or inserting an element is O( logn
log logn

), and the complexity of sorting is O(n logn
log logn

).

Even though the use of ultrawords does not improve the performance of the fusion tree
asymptotically, it does improve the constant factors drastically. It is well known that a
data structure such as this one has only theoretical value in traditional architectures due
to the large coefficients associated to its operations [37], but an architecture such as this
one could make it usable.

Another less practical way of adapting the fusion tree to the UWRAM model is by
modifying the branching factor to B = (log2 n)

1
5 , preserving the need for sketch and

desketch functions, but achieving a structure with operations that can be preformed in
O( logn

log log2 n
) time, with large constant factors, in a UWRAM model that supports ultraword

sized multiplication.

3.3 Predecessor Search

The predecessor of a query q in a set S can be defined as follows:

predecessor(q, S) = max{s ∈ S|s ≤ q}

This problem is important because it is an integral part of sorting and searching in general.
If the query q exists in S, the predecessor search is simply the search for q; if q is not an
element of S, then a predecessor search will tell us where to insert it.

In their 2006 paper [30], Patrascu and Thorup explore the time and space trade-offs for
predecessor search in different models of computation. They describe a RAM based model
with word size b, where elements of the set S can be represented with l bits and b = Bl
(a standard word RAM has b = l). This model describes the UWRAM perfectly: b is the
size of an ultraword (which can be considered word size, since it can be read from memory
in unit time),l is the regular word size w and B is also w, giving us the definition of an
ultraword u = w2.
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They show that the optimal predecessor search time in this model is given by logb n =
lg(n)

lg(B)+lg(n)
= Θ(min{logl n, logBn}) which are the running times of predecessor search in

fusion trees and B-trees respectively. Since in our model l = B = w = log n, the optimal
search time is given by O( logn

log logn
), unless there is a better RAM algorithm that takes no

benefit from the larger word size.
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Chapter 4

Simulations

In order to provide a more empirical perspective of the UWRAM model, we decided to
test some algorithms in the UWRAM and PRAM models to see how they compared. Since
neither machine exists in practice, we will test them through simulations. We chose the
number of instructions executed to be our measure of performance; since we assume all
instructions take the same time to execute, this measure can give us a good idea of how
long it would take to execute a program in either model.

For clarity, we will refer to the programs which simulate the machines, RAM and
assembler as the simulators, and to the programs we run in the simulators as simulations.
There are thus two simulators: one for the PRAM, and one for the UWRAM model.
Each receive an assembly style program as input, which is then run on a simulated RAM
and registers, while counting the number of instructions needed to end the execution flow
of the program. The instruction sets used for the simulators are based on the MIPS
RISC instruction set, since the reduced instruction set is similar to the one we wished to
implement, and the register to register syntax is simple to read and write [34]. The complete
instruction sets used can be found in Appendix A. All simulations are written in the
language described by this instruction set. Execution stops when the program has finished
running in case of the UWRAM, and when all processors have finished their execution in
the PRAM. Instructions are counted in parallel in the PRAM, which means that if each
processor executes an instruction simultaneously, it is counted as one instruction for the
final instruction count.

Specifically, we will simulate 32 bit UWRAM, with words of 32 bits and two types of
registers: regular registers (32 registers of 32 bits), and ultra wide registers (32 registers of
1024 bits). The PRAM will have a word size of 32 bits, and 32 processors with 32 registers
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of 32 bits each.

We decided to test two different types of problems; the first one, known as the subset
sum problem, is generally solved using dynamic programming techniques, and is well known
to be difficult to parallelize. The second is the string matching problem, which is very
simple to parallelize in multi-core models.

4.1 The Subset Sum Problem

The subset sum problem can be stated as follows: given a set S = {s1, s2, ..., sn} of positive
integers and a positive integer t, find a subset S ′ of S such that

∑
S′ si ≤ t and is maximized.

The decision version of the problem, which is the one we will work with in this section,
asks whether there is a subset S ′ such that

∑
S′ si = t. The algorithms we will use for these

simulations are based on the dynamic programming (DP) solution proposed by Bellman
in [5] , which means that in order to calculate the answer for the decision problem for a
target sum of t, the algorithm must also calculate the answer for every t′ < t; this means
that once the decision is given, either the answer is true or a simple iteration through the
last row of the DP table is the only step required to obtain the largest t′ attainable with
the given set. For simplicity we will use the basic decision version of the problem, which
returns a true or false answer.

These algorithms are a great example of techniques that can benefit greatly from bit
parallelism and not as much from multiprocessor parallel design. Filling each cell of the
DP table requires access to elements in the previous row (which must have been filled
already) and elements in the same row where the cell is located, which means that DP
algorithms are essentially sequential and the table cannot be split in any trivial way to be
filled in parallel. In the following sections we will review two algorithms which are based
on Bellman’s original DP algorithm: one is adapted to use the extensive bit parallelism of
the UWRAM, and the other to fit a multicore architecture such as that of the PRAM.

4.1.1 The UWRAM Algorithm

For the UWRAM solution we will use the algorithm proposed in [11] which is a direct
implementation of Pisinger’s Word RAM algorithm [31] in the UWRAM. The algorithm
uses the following recursion:

Ci = (Ci−1 | Ci−1 >> si)
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where Ci is the ith row of the DP table. Each bit position in the row represents a different
value of t: the bit will be 1 if that sum can be achieved with the elements of S inspected
so far, and 0 otherwise. This representation allows w2 elements of the table to be updated
simultaneously and in constant time in the UWRAM. Shifting a row by si is the same as
adding si to each element already in the row. This algorithm runs in O(nt/ log2 t) time,
which is proportional to the number of ultrawords in the table.

Algorithm 2 UWRAM algorithm for the subset sum problem

1: procedure isSubsetSum(S,t)
2: w← ultraword size in bits
3: words-per-row← d(t+ 1)/we
4: rows← size(S) + 1
5: dptable[rows][words-per-row]
6: dptable[0][0]← 1 << (w − 1) . Place 1 in the first position of the first row
7: for c← 1 to rows do
8: aux← dptable[c− 1] >> S[c− 1]
9: for i← 0 to words-per-row do

10: dptable[c][i]← dptable[c− 1][i]|aux[i]

11: mask← 1 . Ultraword with 1 in the last block
12: result← dptable[rows− 1][words-per-row− 1] >> (w ∗ words-per-row− t− 1)
13: return result & mask

4.1.2 The PRAM Algorithm

For the PRAM solution we will use the first algorithm proposed by Sanches, Soma and
Yanasse in [32]. Their algorithm runs in O(n

p
(t − smin)) on a CREW PRAM, with the

restriction that the number of processors p ≤ smin. They present two other algorithms
with the same asymptotic run time, but one requires that p ≤ n and requires processors to
make queries to RAM cells to check if they are available for writing, and the other requires
that log(n − 2 log t) ≤ p ≤ n − log t. For simplicity, we will describe and test only the
first algorithm. Other examples of parallel algorithms for the subset sum can be found in
[25, 7, 10] but none of them improve on the O(n

p
(t−smin)) time, even when using a CRCW

PRAM.

Sanches’ algorithm fills a vector g of size t − smin instead of the entire DP table,
and the vector is divided into groups of size p, that are processed in parallel. An extra
d = smax − smin − 1 positions are needed in the vector to allow required accesses when
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processing the first block. At the end of the execution, target values in the vector that
cannot be achieved with the given set hold a value of n, otherwise, they hold the index of
the largest element in the set needed for the solution.

The algorithm is divided into three stages or phases. In the first, the vector is initialized
with the value n. In the second, solutions with a single element are allocated, and in the
third, the rest of the vector is filled. This is done by checking each element of the set against
each position of the vector, in increasing order. The detailed algorithm is described below.

Algorithm 3 PRAM algorithm for the subset sum problem

1: procedure isSubsetSum(S,t)
2: d← smax − smin − 1
3: g[t+ d+ 1]
4: in parallel:
5: for k ← 0 to d(t+ d)/pe − 1 do . Phase I
6: if kp+ pid− d ≤ t then
7: g[kp+ pid− d]← n

8: for k ← 0 to d(t− smin)/pe − 1 do . Phase II
9: tpid ← kp+ pid + smin

10: if tpid ≤ t then
11: for j ← n− 1 to 0 do
12: if sj = tpid then
13: g[tpid]← j

14: for k ← 0 to d(t− smin)/pe − 1 do . Phase III
15: tpid ← kp+ pid + smin + 1
16: if tpid ≤ t then
17: for j ← n− 1 to 0 do
18: if (g[tpid > j)]and(g[tpid < j]) then
19: g[tpid]← j

20: return g[t− 1]

4.1.3 Experiments and Results

Since the runtimes of both algorithms depend on the values of both t and n, we will run
two separate tests on each of these values. In the first test, n = 20 is chosen arbitrarily
and remains constant throughout the experiment, while the values of t range from 1000
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t UWRAM instructions PRAM instructions
1000 1170 14012
5000 2565 72047
10000 4395 146328
50000 17665 731135
100000 34320 1467553
200000 68105 2891266
300000 103080 4163228
400000 134525 5719068
500000 176005 7245660
600000 205820 8672044
700000 241690 9873753
800000 275365 11755944
900000 309685 13104753
1000000 360840 14529597

Table 4.1: Test values and results for subset sum tests on the value of t.

to 1, 000, 000. In the second test, t = 100, 000 is chosen arbitrarily and the values of n
range from 10 to 1000. For both tests, the values of the elements of S are random numbers
between 32 and t. Even though both algorithms make use of multiplication, which the
models do not allow, it is always by the same value (w in the UWRAM algorithm and
p in the PRAM), and so it can be replaced by a left shift, since both of these values are
powers of two, which means that if x = 2k, then xy = y << k. Integer division can be
implemented the same way with left shifts. In our programs, k is given as a parameter;
since most parallel programs need to be aware of the number of processors available or
the word size in case of bit parallelism, it would also be reasonable to add an instruction
to copy this number to a register, so that it would not be necessary to hard code it into
programs.

The values used and results obtained for the first experiment can be found in Table 4.1.

The values used and results obtained for the second experiment can be found in Table
4.2. As we can see from the results of both experiments, the UWRAM algorithm runs
approximately 38 times faster than its PRAM counterpart.
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Figure 4.1: Number of instructions needed for the execution of the subset sum algo-
rithms with increasing values of the traget sum.

Figure 4.2: Number of instructions needed for the execution of the subset sum algo-
rithms with increasing values of n.
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n UWRAM instructions PRAM instructions
10 17025 672972
50 89135 3439830
100 173300 6705313
200 353305 13326184
300 527645 19911756
400 702790 26764199
500 875440 33366198
600 1054430 40225810
700 1229810 46889054
800 1405945 53833329
900 1577860 60271379
1000 1744990 66898268

Table 4.2: Test values and results for subset sum tests on the value of n.

4.2 String Matching

Given a text T of size n and a pattern P of size m, both taken from an alphabet Σ of
size σ, the string matching problem asks for the indices of all the occurrences of P in
T . Generally, n is assumed to be much larger than m: for this reason we will look at
algorithms that allow pre-processing of the pattern, but not of the text. Unlike the subset
sum example, this problem is very easy to parallelize; to parallelize across p processing
units, all that is required is to split the text into p parts, so that each processor may search
its assigned segment independently. The search can be parallelized the same way across
the blocks of the ultraword in the UWRAM. In this case, we will use the same algorithm
for both models.

4.2.1 The Boyer-Moore-Horspool Algorithm

The algorithm we will test on both models is a simplification of Boyer and Moore’s 1977
string searching algorithm [9] proposed by Horspool in 1980 [19]. Boyer and Moore’s algo-
rithm is based on the observation that more information can be obtained from comparing
the last character of the pattern to the text than when comparing the first. The pattern is
aligned with the text and the last position of the window is checked; if the last character of
the text window is not present in the pattern, clearly there is no possible alignment of the
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pattern and the text that will produce a match and include that character. This means
that the algorithm can safely skip m characters in the text without having ever inspected
them, which results in a very fast algorithm in the average case. The algorithm performs
a preprocessing step on the pattern to generate two tables: delta1, which holds an entry
for each character in the alphabet indicating how many characters the algorithm may skip
if said character is found at the end of the window being inspected, and delta2, which
holds an entry for each position of the pattern at which a mismatch may occur (for cases
where the pattern is partially matched), and is built by identifying possible reocurrences of
suffixes of the pattern within the pattern itself. Horspool’s main observation and change
to the algorithm is that in most cases, the second table results in very small improvements
when compared to the first, so it may be omitted by making a small change to delta1,
which consists of saving index of the second to last occurrence of the last character in the
pattern, instead of the last. Horspool names this modified table delta12. A description of
the Boyer-Moore-Horspool (BMH) algorithm is given in Algorithm 4.

Algorithm 4 Boyer-More-Horspool algorithm for string matching.

1: procedure BMH(Text,n,Pattern,m)
2: delta12[∗]← m . Build delta12 table
3: for j ← 0 to m− 2 do
4: delta12[∗]← m− j
5: lastch← Pattern[m− 1] . Last character of Pattern
6: i← m− 1
7: while i < n do
8: ch← Text[i]
9: if ch = lastch then

10: if Text[i−m...j] = Pattern then
11: save i−m
12: i← i+ delta12[ch]

The parallelization of the algorithm in the PRAM model is straight-forward: the cal-
culation of the delta12 table is performed sequentially, and then the text is split into p
segments of equal size, so that each processor may execute the BMH algorithm on a single
segment independently.

We adapt the algorithm to the UWRAM in the same way as in the PRAM; each block
of the ultraword will simulate a PRAM processor, and so each block will process a segment
of text of size (n/w) + (m− 1), each segment will have an overlap of m− 1 characters with
the following segment, to ensure that no window of text is left unchecked. The delta12
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table is calculated sequentially in the same way as in the PRAM algorithm.

Several considerations need to be made in order to simulate the independence between
blocks of the ultraword. First, it is necessary to calculate how many blocks we need to fit
the pattern by calculating b = (log σ)m/w. In the examples used in our simulations, b = 1.
This case is the simplest in the UWRAM, because it allows for natural memory accessing,
where each block keeps track of the address of the text it is searching, and updating the
addresses is simple, as we will describe ahead.

In order to compare windows of text with the pattern simultaneously, we must pack
the pattern and then replicate it across an ultraword. Since we assume the entire pattern
fits in a block, this can be done by packing the pattern into a simple register and then
spreading it using the spread instruction (UWSPR). The first set of text addresses (The
addresses of the beginning of each text segment) can be calculated by spreading a sequence
of the size of segments (UWSSQ). Now the separate windows of the pattern may be packed
into a single ultraword and compared with the sentinel bit technique described in chapter
3. A sentinel bit need only be set at the beginning of each block, and not at the beginning
of every character, since we are only searching for exact matches, and do not care where
the first mismatch occurs. If the packing is tight and does not allow for a sentinel to be
added, the comparison can be done in two steps instead, by giving an entire block to the
sentinel.

In order to identify the windows where there is an exact match of the pattern, it is
necessary to perform two subtractions, P −T and T −P , where P is the ultraword holding
the replicated pattern and T is the ultraword holding the windows of text. Performing a
logical AND on the result of of both operations will result in a one in the most significant
bit of each block where the pattern has been found. A compress operation can be used
to check if any of the sentinel values are set to one. If the compression equals zero,
then the pattern was not found in any block, and the addresses may be updated. If the
compression is different to zero, then the pattern has been found in at least one block and
a mask to select the relevant values from the address word can be calculated by computing
M = H−(H >> (f−1)), where H is the result of ANDing the result of both subtractions,
with all but the sentinel bits masked out, and f is the field size [11].

The addresses can be updated the following way: first, all but the last character of each
block are masked out, so that an access by content, with the base address of the delta12
table as the base will result in delta12[lasti] in each block, where lasti is the last character
of the text window in block i. The values obtained can now be added to the original set of
addresses, and the result will be the updated set of addresses, ready for the next iteration
of the search loop.
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The algorithm has an average runtime of O(n) in both models (O(n/p) for the PRAM
and O(n/w) in the UWRAM). In the worst case, which is when the pattern can be found
at every index of the text, the PRAM version has a running time of O(nm). In the worst
case, provided that the pattern can be fitted into a single block, the run time for the
UWRAM remains O(n), since comparisons are made on the whole pattern at once. In
fact, as long as the pattern can fit into an ultraword, the runtime remains O(n), although
with no parallelization on the text, the actual runtime would be much slower than that of
the PRAM. If the pattern exceeds the size of an ultraword, then the worst case runtime is
O(mn log σ/w2).

4.2.2 Experiments and Results

We will run two separate tests on varying values of n. In both tests, the value of m will
remain constant, and will be such that the entire pattern can be packed into a single block
of the ultraword. Since we will be using an 8 bit ascii alphabet, and a 32 bit UWRAM
model, m will be equal to four. We will test two types of text: the first will be a ”lorem
ipsum” Latin placeholder text generated with an online tool [1], and for which the pattern
will be an arbitrary four character pattern taken from the text. The second text will be
an example of a worst case text, and will be a long string of a single ascii character, with
a pattern of four instances of that same character. Both texts will be tested in a range
of 1, 000 to 100, 000 characters. As in the previous experiment, we will use number of
instructions executed as a measure of performance.

The values used and results obtained from the first experiment can be found in Table
4.3 and Figure 4.3. The values used and results obtained from the second experiment can
be found in Table 4.4 and Figure 4.4.

Fitting the first experiment’s results to a straight line gives a linear equation of 0.27n+
840.24 for the UWRAM and 0.099n+876.44 for the PRAM. For the second experiment, the
equations are 1.09n+807.66 and 1.50n+875.56 respectively. Even though the UWRAM is
approximately 2.6 times slower than the PRAM in the average case, it is not a bad result,
considering we are comparing the performance of a single processor against 32. To truly
be able to choose the superior model (regarding this problem), it would be necessary to
analyze the cost of each one.
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n UWRAM instructions PRAM instructions
1000 1083 984
5000 2148 1404
10000 3513 1876
20000 6243 2896
30000 8863 3833
40000 11598 4870
50000 14278 5802
60000 16893 6809
70000 19473 7704
80000 22268 8844
90000 24923 9903
100000 27633 10850

Table 4.3: Test values and results for string matching tests using a regular text on
the value of n.

n UWRAM instructions PRAM instructions
1000 1903 2386
5000 6278 8386
10000 11738 15874
20000 22693 30849
30000 33613 45874
40000 44568 60849
50000 55488 75874
60000 66443 90849
70000 77363 105874
80000 88318 120849
90000 99238 135874
100000 110193 150849

Table 4.4: Test values and results for string matching tests using a regular text on
the value of n.
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Figure 4.3: Number of instructions needed for the execution of the BMH algorithm
with increasing values of n, in an average case.

Figure 4.4: Number of instructions needed for the execution of the BMH algorithm
with increasing values of n, in the worst case.
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Chapter 5

Conclusions

In this work, we have explored the Ultra-Wide Word model proposed by Farzan, Lopez-
Ortiz, Nicholson and Salinger in [11] in a more empirical fashion. In Chapter 2 we describe
the model and provide additional instructions to ease the parallelization of different pro-
cedures, such as packing of small fields in an ultraword and sentinel bit arithmetic, both
which are key to the efficient parallelization of different algorithms. We also discuss some
of the weaknesses of the model, in particular its lack of multiplication support, and several
ways in which it could be implemented (out of the unit cost assumption).

In Chapter 3, we discuss the problem of sorting and searching in the model, and show
that searching can be achieved in O( logn

log logn
) time , and sorting in O(n logn

log logn
) time with

the use of fusion trees, which can be implemented in the model in an efficient way with
low constant factors.

In Chapter 4, we present the results of simulating the algorithms to solve two different
problems in both the UWRAM and the PRAM. The subset sum problem is solved in both
cases with a modified dynamic programming algorithm, adapted to the different types of
parallelism of the models. We showed that for this problem, which is traditionally hard
to parallelize in multi-core models, the UWRAM significantly outperformed the PRAM
in number of instructions needed to complete the task. The second simulated problem
was string matching; here we show that even when dealing with problems that are easy to
parallelize in a multi-core model, the UWRAM can perform reasonably well. In an average
case, the PRAM is around 2.6 times faster (requires 2.6 times less instructions) than the
UWRAM, and in the worst case, the UWRAM runs approximately 1.4 times faster.

We have shown a wide range of techniques to aid in the bit-parallelization of algorithms
in the model, and how many algorithms and data structures may be adapted for UWRAM
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use. We also show through simulation that the UWRAM can perform well practically even
when compared with a PRAM, which is a stronger parallel model. The logical next step for
this research would be to create a hardware model for it, in order to determine aspects like
pricing more precisely, so that its viability, and preferability against other parallel models
may be determined objectively.
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Appendix A

Instruction Set for Simulators

The instruction set for the PRAM simulator can be found in Table A.1, and the instruction
set for the UWRAM con be found in Tables A.1 and A.2. Regular registers begin with $r
and ultrawide registers begin with $u.

Table A.1: Basic Register Instruction Set

Instruction Syntax Meaning
ADD ADD $rd, $r1, $r2 $rd = $r1 + $r2
ADDI ADDI $rd, $r1, imm $rd = $r1 + imm
AND AND $rd, $r1, $r2 $rd = $r1 ∧ $r2
ANDI $rd, $r1, imm $rd = $r1 ∧ imm
BEQ $r1, $r2, off if($r1 == $r2) then branch to off
BNE BNE $r1, $r2, off if($r1 != $r2) then branch to off
J J add PC = add

JAL JAL add $r29 = PC, PC = add
JR JR $r1 PC = $r1
LI LI $rd, imm $rd = imm

LUW LUW $rd, $u1 $rd = $u1[0]
LW LW $rd, $r1, off $rd = MEM[$r1 + off]
NOT NOT $rd,$r1 $rd = ¬$r1
OR OR $rd, $r1, $r2 $rd = $r1 ∨ $r2
ORI ORI $rd, $r1, imm $rd = $r1 ∨ imm
SL SL $rd, $r1, $r2 $rd = $r1 << $r2
SLI SLI $rd, $r1, imm $rd = $r1 << imm
SLT SLT $rd, $r1, $r2 $rd = ($r1 < $r2)
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Instruction Syntax Meaning
SLTI SLTI $rd, $r1, imm $rd = ($r1 < imm)
SR SR $rd, $r1, $r2 $rd = $r1 >> $r2
SRI SRI $rd, $r1, imm $rd = $r1 >> imm
SUB SUB $rd, $r1, $r2 $rd = $r1 - $r2
SW SW $r1, $r2, off MEM[$r2 + off] = $r1
XOR XOR $rd, $r1, $r2 $rd = $r1 ⊕ $r2
XORI XORI $rd, $r1, imm $rd = $r1 ⊕ imm

Table A.2: Ultra-Wide Register Instruction Set

Instruction Syntax Meaning
UWADD UWADD $ud, $u1, $u2 $ud = $u1 + $u2
UWAND UWAND $ud, $u1, $u2 $ud = $u1 ∧ $u2
UWBEQ UWBEQ $u1, $u2, off if($u1 == $u2) then branch to off
UWBNE UWBNE $u1, $u2, off if($u1 != $u2) then branch to off
UWCOM UWCOM $ud, $u1 $ud[0][j] = $u1[j][0]
UWEXP UWEXP $ud, $u1 $ud[j][0] = $u1[0][j]
UWLB UWLB $ud,j,base $ud[j] = MEM[base+j]
UWLC UWLC $ud,$uc,base $uc[j] = MEM[base+$ud[j]]
UWLRR UWLRR $ud, $r1 $ud[0] = $r1
UWLUW UWLUW $ud,base $ud[j] = MEM[base+j]
UWNOT UWNOT $ud,$u1 $ud = ¬$u1
UWOR UWOR $ud, $u1, $rs $ud = $u1 ∨ $u2
UWSB UWSB $ud,j,base MEM[base+j] = $ud[j]
UWSC UWSC $ud,$u1,base MEM[base+$u2[j]] = $u1[j]
UWSL UWSL $ud, $u1, $r1 $ud = $u1 << $r1
UWSLI UWSLI $ud, $u1, imm $ud = $u1 << imm
UWSPR UWSPR $ud, $u1 $ud[j] = $r1 for all j
UWSR UWSR $ud, $u1, $r1 $ud = $u1 >> $r1
UWSRI UWSRI $ud, $u1, imm $ud = $u1 >> imm
UWSRR UWSRR $rd, $u1 $rd = $u1[0]
UWSSQ UWSSQ $ud,imm $ud[j] = j*imm
UWSSQR UWSSQR $ud, $r1 $ud[j] = j*$r1
UWSUB UWSUB $ud, $u1, $rs $rd = $r1 - $rs
UWSUW UWSUW $ud,base MEM[base+j] = $u1[j]
UWXOR UWXOR $ud, $u1, $u2 $ud = $u1 ⊕ $u2

41


	Introduction
	The Ultra-Wide Word Model
	Additional Instructions
	Comparing with a PRAM
	Checking if every element in an array is zero
	Transposing a bit matrix
	Adding large numbers

	Limitations
	Multiplication


	Sorting and Searching
	Ranking
	Fusion Trees
	Predecessor Search

	Simulations
	The Subset Sum Problem
	The UWRAM Algorithm
	The PRAM Algorithm
	Experiments and Results

	String Matching
	The Boyer-Moore-Horspool Algorithm
	Experiments and Results


	Conclusions
	References
	Instruction Set for Simulators

