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ABSTRACT: Time weighted average (TWA) passive sampling with thin film solid phase  

microextraction(TF-SPME) and liquid chromatography tandem mass spectrometry(LC-MS/MS) 

was used forcollection, identification, and quantification of benzophenone-1, benzophenone-2, 

benzophenone-3, benzophenone-4, 2-phenylbenzimidazole-5-sulfonic acid, octocrylene, 

octylmethoxycinnamate,  butylmethoxydibenzoylmethane,  triclocarban and triclosan in the 

aquatic environment. Two types of TF-SPME passive samplers, including a retracted thin film 

device using a hydrophilic lipophilic balance(HLB)coating, andan open bed configuration with 

anoctadecyl silica-based (C18)coating, were evaluated in anaqueous standard generation 

system.Laboratory calibration results indicated that the thin filmretracted device using HLB 

coatingis suitable to determine TWA concentrations of polar analytes in water, with an 

uptakethat waslinear up to 70 days. In open bed form, a one-calibrant kinetic calibration 

technique was accomplished by loading benzophenone3-d5 as calibrant on the C18 coating to 

quantify allnon-polar compounds. The experimental results showed that the one-calibrant 

kinetic calibration technique can be used for determination of classes of compounds in cases 

wheredeuterated counterparts are either not available or expensive. The developed passive 

samplers were deployed in wastewater-dominated reaches of the Grand River (Kitchener, ON) 

to verify their feasibility for determinationof TWAconcentrationsinon-site applications. Field 

trials results indicated that these devices are suitable for long-term and short-term monitoring 

of compounds varying in polarity, such as UV blockers and biocide compounds in water, and the 

data were in good agreement with literature data.     .  
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INTRODUCTION 

The environmental impact of biocides and UV blockers hasreceivedincreasedattention within 

the past few years, as these ingredients can be found in various products used in everyday life, 

such as personal care products (PCPs), cleaning agents, paints, and coatings. 1-2 They are used in 

large quantities on a daily basis, and are continuously discharged into surface water through 

municipal wastewater treatment planteffluent. In view of this, constant monitoring of 

concentrations of UV filters and biocides in aquatic environments is required for assessing  

water quality, whereby sampling is a crucial firststepthat can be achieved either through 

grab/spot sampling or passive sampling methods. However, the spot sampling method can only 

provide information regarding the system at the time and point of sampling.Consequently, spot 

sampling may not provide a realistic picture ofaquatic-life continuous exposure to biocides and 

UV blockers for prolonged periods of time.3Traditionally,when levels of contaminants fluctuate 

within a body of water,collection of large numbersof samples over a prolongedperiod of time is 

needed to obtain a time weighted average (TWA) water concentration,a process thatis time 

consuming, laborious, and costly.4-5TWA concentrations can be obtained in one of two ways: 

the first method includes the collection ofcomposite samples through employment of active 

sampling techniques, which can be accomplished, for example, by use of automatic or manual 

water samplers. Passive sampling methods, as an alternative option to the process described 
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above, are now widely used for monitoring of TWA concentrations of environmental 

contaminants.6,7 

The passive sampling approach is based on the free movement of analytes from sample matrix 

to the extraction phase. Differences in the chemical potential of the analytes between two 

media cause accumulation of theanalytesinto the extraction phase.3-8Passive sampling 

eliminatespower requirements, reduces analysis cost, and also prevents decomposition of the 

analyte during storage and transportation.9Several passive sampling methods are used for 

monitoring of organic contaminants in water, including semi-permeable membrane devices 

(SPMDs),10,11 polar organic chemical integrative samplers (POCIS),12,13Chemcatcher,4,14 ceramic 

dosimeters,7,15low density polyethylene (LDPE),16–19polymeric samplers,17,20and membrane 

enclosed sorptive coatings.21Passive sampling has gained popularity and a recently published 

articlehas proposed to establish a global network for monitoring organic contaminants in open 

waters, building upon the recent success of passive sampling techniques.22 

Solid phase microextraction (SPME) was developed as a solvent-freesample 

preparationtechnique that integrates sampling, extraction, and pre-concentration in a single 

step.23Owing to theseadvantages, it has been widely used for on-site sampling of a broad range 

of target analytes in different matrices.24-25A SPME retracted device, in which the SPME fiber is 

retracted a certain distance into the needle housing during the sampling,has been used for 

TWA sampling in air26-27and water28-29 for volatile and semi volatile compounds. However, this 

sampler technique is associated with some limitations,such as the loss of hydrophobic 

compounds on the diffusion path.30Additionally, the low surface-to-volume ratio of the SPME 
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fiber maypose constraints on sampling timeand the overall sensitivityof the 

method.31Moreover, the chemistry of the coatingis mostlylimited to PDMS, which is not an 

appropriatecoating for hydrophilic analytes, and does not act as a zerosink for volatile 

compounds.26, 30Thin film solid phase microextraction (TF-SPME), a technique which provides 

ahighsurfacearea-to-volume ratio, has been introduced to overcome the low-capacity 

limitations and low extraction rates of traditional SPME fibers.32-33 The performance reference 

compounds (PRC)technique was first introduced by Booijet al. and Huckinset al. for calibration 

of uptake kinetics of semipermeable membrane devices.34,35Thistechniquehas since then been 

adapted toapplications of TF-SPME for TWA sampling of polycyclic aromatic hydrocarbons 

(PAHs) in water,namely the kinetic calibration technique.28,36 However, there are factors that 

limit the application of traditional kinetic calibration for multiple compound analysis, 

sincepreloading of a number of calibrants is a complex process, and isotopically labelled 

counterparts may not always be available or affordable for all target analytes. To address these 

limitations, Ouyang et al. introduced the one-calibrant kinetic calibration technique, where one 

isotopically labelled standard was used in order to quantify multiple analytes of interest. 37 

In this study, wepropose two types of TF-SPME passive samplers:  aretracted TF-SPME device 

and an open bed configuration TF-SPME device. Theproposed passive samplersoffer an 

integrated approach to TWA determination of analytes covering a wide range of physical-

chemical properties for on-site applications. The herein presented methods were investigated 

in a flow-through aqueous standard generation system, which provides accurate calibration 

data of the devices over a wide polarity range of PCP chemicals.Employment of the aqueous 
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standard generator systemallowed for the provision of an environmentally realistic calibration 

of hydrophobic compounds withoutincurring depletion of analytes.The samplerswere 

thendeployedin the Grand River (ON, Canada) to validate the suitability of the developed 

devices for on-site applications.  

 

 

 

MATERIALS ANDMETHODS 

Chemicals and Materials.The physical-chemical properties of eight UV blockers and two 

biocides compounds used in this study, namely octylmethoxycinnamate (OMC), benzophenone-

1 (Ben-1), benzophenone-2 (Ben-2), benzophenone-3 (Ben-3), benzophenone-4 (Ben-4), 2-

phenylbenzimidazole-5-sulphonic acid (PBSA), octocrylene (OCR), 

butylmethoxydibenzoylmethane (BM-DBM), triclosan (TCS), and triclocarban (TCC), are shown 

in Table S1 (Supporting Information).For details regarding the chemicals, materials, and stock 

solutions used in this study, see Supporting Information. 

 

Instrumentation. For details related to use of LC-MS equipment, including methodology 

and mass spectrometric parameters used in the quantification of analytes,see Supporting 

Information and Table S2. 

 

https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB0QFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FOctyl_methoxycinnamate&ei=K3IzVNntN67IsATUvoHgDQ&usg=AFQjCNHbvG-S8l_UcIsWWQyDBGkFOWtWjw&sig2=MzZWW9LLe1xDMZqiXB7Oxw&bvm=bv.76943099,d.b2U
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Aqueous standards generation system. An aqueous standard generation system was 

used for development and evaluation of the TWA samplers, as it provides large volumes and a 

steady state concentration of analytes in water. For details related to theaqueousstandard 

generation systemused in this research, see Supporting Information.   

 

SPME procedure using TF-SPME. The coating was immobilized on the blade with 

spraying methoddescribed by Mirnaghi et al. in which polyacrylonitrile (PAN) dissolved in N, N-

dimethylformamide (DMF) is used as a glue for the immobilisation of functional particles to the 

blade.33The thickness of thecoating on the blade was 200 ± 10 μm.Retractedand open bed 

configurations of TF-SPME used in the studyareshown in Figure 1a and Figure 1b, 

respectively.For details related to TF-SPME method development, experimental procedures, 

preparation of field samplers, and related on-site sampling procedures, see Supporting 

Information.  
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Retracted thin film solid phase microextraction.The design of the retracted TF-SPME 

TWA sampler is illustrated in Figure1a. The sampler consisted of a copper tube, caps, a Teflon 

rod assembly, a Teflon spacer (all made at the Machine Shop at the University of Waterloo), 

and a thin film (HLB particles) coated blade made in the laboratory. The copper tube was made 

from a copper rod that was drilled, creating a hole with a 0.76 mm inner diameter and10.0 mm 

length (diffusion path). To avoid the trapping of air bubbles in the sampler, all parts of the 

sampler were assembled under ultrapure water. Assembly of the sampler was conducted by 

first locating the Teflon spacer inside the copper tube, followed by insertion of the thin film on 

the Teflon holder inside the copper tube, and finally, tightly screwing the cap to fix the TF-SPME 

in place. The sampler was then removed from the ultrapure water basin and transferred to the 

sampling chamber. In order to perform TWA sampling with retracted TF-SPME, three basic 

prerequisites have to be met.31,38 First, the coating of the TWA sampling device should act as a 

zero sink (also known as infinite sink) for all of the analytes under study, and the mass uptake 

rate should not be influenced by the amount of analytealready sorbed.The zero sink behavior of 

the coating was validated by a simple test whereby the TF-SPME devices were exposed to the 

aqueous standard generation in two separate modes: continuous and intermittent exposure. 

For continuous exposure, the selected analytes were extracted for 180 min from the aqueous 

standard generator before being exposed to pure water for 60 min. As for intermittent 

exposure, 60 min of extraction from the aqueous standard generator was followed by exposure 

of the TF-SPME device into pure water for 60 min. The intermittent exposure process was 

repeated three times and results of both exposure modes were compared. The difference 
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between extracted amounts from both exposure modes was negligible, therefor proving the 

zero sink nature of the coating26. The second requirement is that the passive sampler should 

respond proportionally to changes in analyte concentrations at the face of the device. The 

capability of the device to integrate high peak concentrations is an important function of any 

passive sampler.31The third condition is that the bulk concentration (Cbulk) of analytes must be 

equal to the concentration of analytes at the face of the device (Cbulk=Cface). The overall mass-

transfer resistance of the analyte from the bulk of the samples to the collecting medium should 

be limited to the diffusion path of the sampler. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       (a)                                  (b) 
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Figure 1. (a) Retracted TF-SPME TWA sampler (top figure from left to right: Teflon rod assembly 

with TF-SPME, Teflon spacer, copper tube with adrilled hole as diffusion path; bottom figure: 

schematic of assembled sampler), and (b) Open bed TF-SPME. 

Diffusion calibration of retracted TF-SPME sampler.Laboratory calibration of the 

TWA sampler was performed by placing nine samplers in the aqueous standard generator 

system simultaneously for different time intervals. The samplers were retrieved on the 30th, 

56th and 70th day.Since the diffusion of analytes in stagnant water between the thin film and the 

opening of the sampler is controlled by the mass-transfer, the diffusion is assumed to follow 

Fick’s first law under a steady state condition; as such, the mass uptake can be calibrated by use 

of Fick’s first law of diffusion (equation 1).  

𝐶𝐶 = 𝑛𝑛𝑛𝑛
𝐴𝐴𝐴𝐴𝐴𝐴

           (1) 

Where C is the TWA concentration, n is the amount of analyte extracted, Z is the diffusion path 

length, A is the cross-sectional area of the opening, D is the diffusion coefficient, and t is 

sampling time. 

The diffusion coefficient of neutral and charged organic molecules in water can be obtained 

using equations S2 and S3 (see Supporting Information). For analytes which are predominantly 

presented in their ionic forms (e.g. Ben-4, PBSA) the diffusion coefficients were calculated 

based on equation S3. Whereas, if they are presented at equilibrium of neutral and ionic forms 

(e.g. Ben-1, Ben-2) equation S2 and S3 were used separately for neutral and ionic species, 

respectively, and then the average diffusion coefficients were determined.The ratio of 

theoretical sampling rate (RS) to analyte diffusion coefficient (D) depends on the geometric 
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configuration of the sampler only, i.e. (RS/D) = A/Z. The ratio of theoretical sampling rate to the 

experimental sampling rate (RS) should be equal to 1, which verifies that the sampler can be 

calibrated by diffusion-based calibration. For this purpose, samplers with three different 

diffusion paths were exposed in the sampling chamber with known concentrations of analytes 

for a defined time. By utilizing the amount of extracted analyteas determined by LC-MS/MS, the 

sampling rate could then be calculated with the following equation: 

𝑆𝑆𝑆𝑆 = 𝑛𝑛
𝐶𝐶𝐶𝐶
𝑅𝑅𝑆𝑆 = 𝑛𝑛

𝐶𝐶𝐶𝐶
          

 (2) 

The device was calibrated at 24±1 °C, and the water temperature in the sampling site varied 

from 19-22 °C during the sampling.The effect of temperature on the sampling rate was within 

the predetermined experimental error limits in this experiment. However, if the temperature of 

the sampling site is significantly different than the temperature that the device is calibrated 

with, the diffusion coefficient of a given analyte should be re-calculated, taking into 

consideration the dynamic viscosity of water at the alternate temperature.  

 

Kinetic calibration of open bed TF-SPME passive sampler 

Symmetry of desorption and absorption verification.To ensure the applicability of the 

method, the existence of isotropic behaviour of absorption between the analyteand device and 

desorption of the calibrantfrom the device should be verified. This experiment involved the 

simultaneous determination of thedesorption time profile of Ben-3-d5 as a calibrant, and the 

extraction time profile of Ben-3. Pre-loaded C18 thin film blades were exposed in the sampling 
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chamber of theaqueous standard generator system for different sampling times in triplicate at 

agitation of 800 rpm, equal to linear velocity of 50 cmsec-1, the linear velocity was calculated 

based on the agitation speed (revolution per minute),radius of the stir bar and distance of TF-

SPME from the center of the vessel.39 After each specified extraction time, the TF-SPMEwere 

removed from the sampling chamber and desorbed in the selected desorption solvent.The 

desorption process of the pre-loaded C18 thin film blades can be described by the following 

equation: 

𝑄𝑄
𝑞𝑞0

= 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑎𝑎′𝑡𝑡)  (3) 

Where q0 is the amount of loaded calibrant on the extraction phase, Q is the amount of 

calibrant remaining in the extraction phase after exposure to the sample matrix, a′ is the 

desorption rate constantof the calibrant, and t is sampling time. The kinetics of the absorption 

process for 

TF-SPME can be defined using the following equation: 

𝑛𝑛
𝑛𝑛𝑒𝑒

= 1 − 𝑒𝑒𝑒𝑒𝑒𝑒 ( −𝑎𝑎𝑎𝑎)  (4) 

Where n is the amount of extracted analyte at sampling time t, ne is the amount of analyte 

extracted onto the coating at equilibrium, and a is the absorption rate constant of the analytes. 

The sums of Q/q0 and n/ne at any time were close to 1, demonstrating the isotropy of the 

method.  

𝑛𝑛
𝑛𝑛𝑒𝑒

+ 𝑄𝑄
𝑞𝑞0

= 1                    (5) 
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The linearized absorption and desorption time constant profiles can be obtained with 

ln (1 - n/ne) or ln (Q/q0) as the y-axis, where the regression slope is –a.  The rate constant 𝑎𝑎 is 

described by equation6: 

𝑎𝑎 = 𝐷𝐷𝑠𝑠𝐴𝐴
𝑉𝑉𝑓𝑓𝛿𝛿𝑠𝑠𝐾𝐾

𝑎𝑎 = 𝐷𝐷𝑠𝑠𝐴𝐴
𝑉𝑉𝑓𝑓𝛿𝛿𝑠𝑠𝐾𝐾

 (6) 

Where K is the distribution coefficient of the analyte between the C18 coating and 

water, A is the surface area, Vf is the volume of the coating, Ds is the diffusion coefficient of the 

analyte in water; and δs is the thickness of the boundary layer. It is assumed that the diffusion 

boundary layer controlled kinetic. The thicknesses of the diffusion boundary layers are 

determined by hydrodynamics and the diffusivity of the analytes.For the sake of simplicity, 

thediffusive boundary which depends on diffusion coefficient was ignored because it is 10 

times smaller than convective boundary layer.22 

 

For desorption of calibrant, an equation similar to equation7 can be defined: 

𝑎𝑎′ = 𝐷𝐷′𝑠𝑠𝐴𝐴
𝑉𝑉𝑓𝑓𝛿𝛿′𝑠𝑠𝐾𝐾′

           (7) 

Where D′s is the diffusion coefficient of the calibrant in water, and K′ is the distribution 

coefficient of the calibrant between the C18 coating and water. Since the thickness of the 

diffusion layer, the surface area, and the volume of the coatingare the same for both target 

analytes (δs) and the calibrant (δ′s),the distribution coefficients of the analytes and calibrant 

between the C18 coating and water can be determined experimentally (see Supporting 

Information).Open bed TF-SPME coated withC18 (Figure 1b) was evaluated for monitoring of 

hydrophobic compounds with use of the one-calibrant kinetic calibration approach. The 
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calibrantsolution was first loaded on the coating by performing an extraction from an aqueous 

solution containing 100 ng mL-1 of the calibrant in a 2mL amber vial for 60 min at 1500 rpm 

agitation. Then it was transferred to the sampling chamber of the aqueous standard generator 

system to investigate isotropismbetween absorption and desorption. The aqueous standard 

generator systemprovided a steady state free concentration of the analytes during the 

experiment. Extraction times ranged from 30-7230 min. Benzophenone-3 (Ben-3) 

andBenzophenone-3-d5(Ben-3-d5) were used as analyte and calibrant, respectively. Absorption 

rates related to the analytes under study were calculated with the use of equation 8: 

𝑎𝑎
𝑎𝑎′

= 𝐷𝐷𝐷𝐷𝐾𝐾′

𝐷𝐷′𝑠𝑠𝑠𝑠
           (8) 

Equation 8 can be used to specify the relationships that exist between the desorption rate 

constant of the calibrant and the absorption rate constants of different compounds; 

accordingly, all extracted analytes can be quantified with a single pre-loaded calibrant. The 

distribution coefficient of Ben-3 was used for the calibrant Ben-3-d5, as both compounds display 

the same retention time in the chromatographic separation on the C18 column, which indicates 

the similar physical-chemical properties between Ben-3-d5 and Ben-3. In order to investigate 

the validity of equation 8for determination of TWA concentrations of other analytes, three C18 

TF-SPME devices were loaded with the calibrant and exposed in the sampling chamber at50 

cmsec-1 for 900 min, where the uptake is still in the kinetic region of the extraction time profile, 

and the obtained concentrations can be assumed to be TWA concentrations. The concentration 

ofanalytes in the sample can be determinedusing equation9in the kinetic and equilibrium 

regime of the extraction time profile. 
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𝐶𝐶𝑠𝑠 = 𝑛𝑛
𝐾𝐾𝑉𝑉𝑓𝑓[1−𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑎𝑎𝑎𝑎) ]

           (9) 

If the rate constants aand a′ are the same, then equation 9 can be rewritten as the following 

equation: 

𝐶𝐶𝑠𝑠 = 𝑛𝑛
𝐾𝐾𝑉𝑉𝑓𝑓[1−𝑒𝑒𝑒𝑒𝑒𝑒 (𝑄𝑄/𝑞𝑞0)𝑡𝑡 ]

         (10) 

Where Csis the concentration of the analyte in the sample matrix.Based on equations 8,9 and 

10,the open bed sampler can be deployed with a  

pre-loaded calibrant into the sample medium, retrieved after different sampling times,and then 

TWA concentration of the target analyte can be calculated.  

 

Preparation of field samplers and on-site sampling procedures.On-site sampling 

was performed with a retracted sampler and an open bed device. Three disassembled retracted 

devices with a 10 mm diffusion path weretransported to the sampling location in appropriate 

containers to ensure that individual passive sampling devices remained isolated from the 

environment and each other during storage, transport to the deployment site, and return to 

the laboratory following retrieval. They were assembled under ultrapure water in the sampling 

location, and the opening of the device was covered by copper mesh in order to prevent 

biofouling from the sampling environment.On the other hand, three open bed C18TF-SPME 

devices (Figure S1a) were loaded with calibrant and wrapped with aluminum foil, then 

transported in a cold box filled with dry ice to the sampling location. Upon arrival, TF-SPME 

samplers were inserted individuallyinto copper bags (Figure S1b) to secure them in the 
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sampling environment. All samplers were then placed in the plastic cage (Figure S1c) and 

deployed at the sampling site. Sampling time was 90 days for the retracted devices and 5 days 

for the open bed configuration. Once the sampling time had elapsed, the samplers were 

retrieved and rewrapped inaluminum foil,placed in the dry ice box, and transported to the 

laboratory.The analytes were desorbed in 1800 L of a desorption solvent consisted of 

methanol/acetonitrile/isopropanol(50/25/25, v/v/v)for 30 min. The desorption solvent was 

evaporated under nitrogen stream and residue was reconstituted in 300 L of methanol/water 

(50/50, v/v),then analyzed with the LC-MS/MS.  

 

RESULTS AND DISCUSSION 

Selection of the coating and TF-SPME passive samplers.The main objectiveof this 

study was to identify and evaluate TF-SPME approaches for the TWA determination of PCP 

compounds, which are comprised of a wide range of polarity. Preliminary evaluations revealed 

that relatively polar analytes, such as Ben-1, Ben-2, Ben-3, Ben-4 and PBSA, can be monitored 

by theretracted device sampler. In the retracted device, the coating is placed in a copper tube 

with a well-defined path length“boundary layer”, in which the analytes diffuse through the 

narrow opening to the coating. According to coating selectionresults (Table S4 A-J),the HLB 

coating can be concluded to have a higher affinity for the polar compounds under 

study.However, for non-polar compounds,retracted devices may not provide reasonable TWA 

concentrations, as thesubstantial thermodynamic gradient drives the hydrophobic molecules 

out of the aqueous solution to stick to the wall of the diffusion path of the sampler.31 Thus, an 
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open bed geometry, which can be easily calibrated with a kinetic calibration approach, was 

selected for extraction of thenon-polar compounds in thisstudy (OCR, OMC, TCC, TCS and BM-

DBM).The HLB coated TF-SPME was found to provideless desorption of the calibrant from the 

sampler to the solution (data not shown).However,the C18coatingnot only showed complete 

desorption of the calibrant from the sampler to solution, it also showed a better extraction 

efficiency than HLB for non-polar compounds. Therefore,C18 was selected for the open bed TF-

SPME device.The key characteristics of the two approaches are described in the following 

sections. 

 

Retracted TF-SPME TWA sampler with HLB coating.The zero sinktest for the HLB 

coating was performed as described in the experimental section. A t-test was conducted to 

compare the results obtained for the different approaches, indicating that there was no 

statistically significant difference (〈=0.05)between amounts of extracted analytesfor 

intermittent and continuous exposure. Thus, it could be concluded that the HLB coating 

behaved as azero sinkfor all of the target analytes due to its strong affinity towards the analytes 

and the large capacity of the coating via surface adsorption. The amount of analytes adsorbed 

on the surface of the coating after 70 days of TWA sampling time corresponded to less than 5% 

of equilibrium amounts.The extraction time profiles of the analytes were investigated from 30-

9660 min in triplicateusingHLB TF-SPME in sampling chamber of aqueous standard generator 

system in orderto find the equilibrium time and subsequently the extracted amount 

atequilibrium. The amounts of analytes extracted to the coating at equilibrium were 1200, 
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8000, 1700, 1350, and 2200 ng for Ben-1, Ben-2, Ben-4, PBSA, and Ben-3, respectively.For the 

thin film retracted devicewith adiffusion path length of 10.0 mm, the response time for the 

analytes was 4-10 h. The response time is defined as the average dwelling time of an analyte 

inside the diffusion path, which can be easily calculated using equation 11, 

Response time=𝑍𝑍
2

2𝐷𝐷
          (11) 

where Z is the diffusion path length (in cm) and D isthe diffusion coefficient (in cm2 s-1). 

Nevertheless, response time is negligible in comparison to sampling time, which could be as 

long as 90 days.To confirm the third condition mentioned before, a face velocity effect test was 

carried out in a well-agitated sampling chamber (800 rpm, calculated linear flow rate was ∼50 

cmsec-1) and in a mixing chamber where the linear velocity was low (0.15 cmsec-1). Three 

samplers were exposed in each chamber for 30 days. The obtained results showed that there 

was no significant difference between accumulated masses in the samplersfor both conditions. 

This is a desired feature of the sampler for on-site applications, where convection 

conditionsaretypically variable and difficult to measure and calibrate for. 
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Calibration ofretracted TF-SPMEpassive sampler.The diffusion coefficient of 

neutraland charged organic molecules in water can be obtainedusingequations S2 and S3. Table 

1summarizes the experimental results for (RSZ)/(AD) at 5.0, 10.0, and 15.0 mm diffusion path 

lengths. The obtained results show that the values of (RSZ)/ (AD) for all analytes are close to 1. 

This indicates the zero sinkbehaviour of the HLB coating for the target analytes,thus confirming 

that diffusion calibration is the right calibration approach for this sampler.There 

areuncertainties associated with the measurement of the experimental and theoretical 

sampling rates, which are mainly dependent on fabrication of the device (A and 

L);determination of the diffusion coefficients in water; sampling time;and determination of 

amounts of extractedanalytesand concentrations of the analytes under study. As such, a 20% 

deviation from 1 was set as an acceptable value for TWA measurement in this study.  

 

Table 1. Comparison of experimental values: (RSZ)/ (AD) (n=3) 

 (RSZ)/(AD) 

 Z=0.5 cm Z=1 cm Z=1.5 cm 

Ben 2 0.9±0.1 0.9±0.1 1.1±0.1 

Ben 4 0.9±0.2 0.9±0.2 1.0±0.2 

PBSA 1.1±0.2 1.0±0.2 0.9±0.2 

Ben 1 0.9±0.1 0.9±0.2 0.9±0.2 

Ben3 1.0 ±0.2 0.9±0.1 1.0±0.2 
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Figure 2and FiguresS3-S6 demonstrate good correlations between the theoretical and 

experimental data for amount of analyteextracted, as well as good linear relationships between 

mass uptake and sampling times of up to 70 days. According to the trendsobserved for the 

amounts of analytes extracted, sampling time canpotentially be further extended, owing to the 

sufficiently large capacity of the thin film coating.The experimental results indicated that 

retracted TF-SPMEpassive sampling by HLB coating works very well for TWA sampling of polar 

compounds in water. Theretracted TF-SPME device was shown to meet all the required 

criteriafor successful performance as a TWA sampler,i.e. zerosink behaviour, response time, 

and independencefrom face velocity. The disadvantage of this sampler is itslow sampling rate 

and low response time in flashy conditions.It is important to note thatsampling time must be 

ensured to be sufficiently long to enable measurement of TWA concentrations in real 

environmental applications, as is the case for water monitoring. 
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Figure 2. TWA concentration of Ben-1 using the retracted TF-SPME sampler (diffusion path: 10 

mm and analyte concentration in the aqueous standard generator system: 138 ng mL-1) 

Open bed TF-SPMEpassive sampler with C18 coating.In the retracted device 

described in the previous section, the boundary layer thickness(diffusion path) is constant and 

not affected by convection conditions; therefore, calibration is straightforward and follows 

Fick’s law. In the open bed configuration, since the sampler is directly exposed into the 

sampling location,the boundary layer is strongly dependent on the convection conditions; thus, 

acalibrant is necessary for adequatecalibration.The application of a kinetic calibration process 

was assessed using the aqueous standard generator system. This includedan evaluation of the 

symmetry of absorption and desorption of the analytes, as well as an investigation into the 

possibility of using a single calibrant for all tested compounds. The obtained data exhibited a 

good linear relationship between ln (1 - n/ne)orln (Q-qe/q0), and time (R >0.99), demonstrating 

that equations3 and 4 accurately describe the kinetics of desorption and absorption (Figure 3). 
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Figure 3. (A) Ben-3 absorption time profile (B) Ben-3-d5desorption time profiles(C) Isotropy of 

absorptionand desorption in TF-SPME 

 

One-calibrant kinetic calibration of open bed TF-SPME passive sampler.Verification of theone 

calibrant kinetic calibration approach to estimate analyte absorption rate and subsequently 

calculate TWA concentrations of other hydrophobic analytes (OCR, OMC, BM-DBM, TCC, and 

TCS) was performed in theaqueous standard generator system.The quantitative results are 

shown in Table 2. It is clear that the one-calibrantkinetic calibration is able to quantify TWA 

concentrations of other analytes. It can be concluded from the KVf data (Table 2) that the used 

calibrant has the highest desorption or absorption rate in relation to the other analytes, which 

basically means that the sampling time could be longer than when the calibrant loss is 50%.  

Although the temperature of the aqueous standard generator system (24 °C) is different from 

the temperature of the sampling site(19-22 °C) one-calibrant kinetic calibration is able to 
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compensate for water temperatureand concentration changes in realistic sampling 

conditions.37This is significant because temperature can affect the distribution and diffusion 

coefficients of the analytes which can be adjusted accordingly for average water temperatures 

during sampling time. The pH and ionic strength of the aqueous standard generator systemwas 

kept close to values characteristic ofthe sampling location so as to create a realistic sampling 

rate for the analytes. However, for compounds with a lower pKa, the average diffusion 

coefficient of ionic and neutral forms of a given molecule can be considered for laboratory 

calibration of the devices. 

 

Table 2. Blade constant (KVf), diffusion coefficient (DS), absorption rate constant(a) and TWA 

concentrations of theanalytesin aqueous standard generator system (Mean± Standard 

Deviation; n =3) 

Analytes 
KVfb 

 (mL) 

(Ds×10-5)a 

(cm2s-1) 

a ×104b 

(min-1) 

Cone-calibrant 

(ngmL-1) 

CASG 

 (ngmL-1) 

OCR 300 0.408 0.43±0.04 0.25±0.03 0.24±0.04 

OMC 80 0.458 2.8±0.1 0.08±0.01 0.08±0.01 

BM-DBM 400 0.460 0.24±0.03 0.12±0.02 0.12±0.01 

TCS 180 0.358 1.3±0.1 3.2±0.4 3.3±0.3 

TCC 220 0.536 2.8±0.3 1.2±0.2 1.3±0.1 

Ben-3-d5 30 0.508 6.6±0.5 28±3 28±2 

 

a: Calculated  

b: Determined  
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On-site water sampling with TWA samplers. The two TWA samplers developed and 

validated in the laboratory were subsequently usedforan on-site investigation.The downstream 

of the Doon (Kitchener) municipal wastewater treatment plant, whichreaches Grand 

River(Southern Ontario, Canada) (43°28’23.21”N; 80°28’40.4”W), wasselected for deployment 

of the devices (Figure S8) as the indirect input of this contamination stems from effluent of a 

wastewater treatment plant. Sampling time of the retracted device was selected in view of 

typical concentration levels found for the analytes in pre-screened investigations as well as the 

detection limit of the LC-MS/MS instrument. Two samplers were deployed at the same time 

and the samplingtime for retracted and open TF-SPME TWA samplers was set as 90 and 5 days, 

respectively.Average concentrations and relative standard deviations (RSD) of spot sampling 

and TWA sampling results are shownin Table 3.The TWA concentrations of the analytes were 

calculated with the use of equation 1.The results obtained by the two methods are similar.Ben-

1, Ben-3, Ben-4, and PBSA were detected in spot sampling,whileonly PBSA and Ben-4 were 

detected in TWA sampling. This isdue to the low sampling rate of the device, and the low 

concentrations of Ben-1 and Ben-3 in river water.38No biofouling of the phase was observed for 

HLB TF-SPME,substantiating previous reports by other researchers in the literature.40–42The 

stability of the analytes on the extraction phase was validatedin laboratory by two months 

exposure of analyte pre-loaded thin films to collected river water and compared to analyte pre-

loaded control thin films which were immersed in purewater with pH and ionic strength 

adjustedto reflect typical river water. All experiments were performed in triplicate, and the 

results of the two studies were compared by t-test. No statistical differences observed (α=0.05) 
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between the two sets of data which agrees with previous studies where it was  reported that 

the analytes are more stable in theextraction phase rather than in the sample matrix.43,44Three 

of the open bed samplers were retrieved after 2, 5, and 10 days. Analysis showed that 50% of 

the calibrant was lost within 5 days of sampling, which was determined to be the optimum time 

for measuring TWA concentrations. TCS, OCR, and Ben-3 were detected and quantified 

byequation10, withresults shownin Table 3. In addition to TWA sampling with open bed TF-

SPME, spot sampling, conducted by grab sampling with a bottle, was investigated for 

determination of the concentrations of analytes over the TWA sampling time (see SI for grab 

sampling procedure). Although the used sampler has the lowest limits of detection for 

OMC,TCC and BM-DBM, these compoundswere not detected in the sampling site (see SI for 

limits of detection of TWA samplers, grab samplings and instrument (Table S5)). In addition to 

the potential effects of biodegradation45 and photodegradation,46the lack of detection of these 

analytes may be explained by their high binding coefficient to sediment, as they possess ahigh 

distribution coefficient between water anddissolved organic carbon (DOC) or particulates, 

caused by their high KOW value.  Yet another reason would beeffective elimination of these 

compounds in wastewater treatment plants. Both formats of TF-SPME presented in this 

research can measure the free concentrations of analytesin complex matrices when DOC or 

particulates are present. Binding to organic carbon lowers the free fraction of organic 

contaminantsthe sampling uptake of highly bound analytes. Moreover, procedural and field 

blank samples were analyzed, and none of the analytes under study were detected (see SI for 

blank sample procedure). The data in Table 3 shows good agreement between the TWA passive 
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sampling methods and relevant spot sampling results. The targeted analytes were also reported 

by other researchers in different sampling sitesknown to hold comparable concentrationsto 

thosedetected in Grand River, as reported in this research.  

Additionally, possible biofouling on the sampling devices was also investigated. As previously 

mentioned, the samplers were protected in copper mesh bags in order to prevent biofouling. In 

addition, the retracted devices that were deployed for a longer time were further protected 

from biofouling by being retracted in the sampler. Moreover, polyacrylonitrile, which was used 

to immobilize HLB and C18 particles, serves as a biocompatible glue and membrane, providing 

additional protection from biofouling. Thus, in none of the deployed devices was biofouling 

observed.A scanning electron microscopy (SEM) image, shown in Figure S9, reveals that the 

devices were free from any biofouling after on-sitedeployment. 

The field study showed that the one-calibrant kinetic calibration is perfectly suitable for 

quantitation of hydrophobic compounds in river waters. The concentrations that were found by 

the developed passive samplers are consistent with typical concentrations reported in the 

literature.47–53 However, this comparison is qualitative in nature; the matrix of the sampling 

location, sampling season, usage pattern of personal care products, and the type of sewage 

treatments being implemented at individual plants may all contribute to apparent 

concentrations. 

This study demonstrated the feasibility of practical deployment and TWA concentration 

measurement for two different passive sampling devices, namely, open bed TF-SPME and 

retracted TF-SPME. The combination of bothdeveloped methods offers an integrated approach 
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for TWA determination of analytes with a wide range of physical-chemical properties for on-site 

applications. Retracted TF-SPME devices using the HLB coating offer a promising passive 

sampling method for monitoring of polar analytes in water, without the need for calibration or 

control of convection conditions. The implementation of such a sampler is straight-forward 

compared to other passive sampling methods such as the polar organic chemical integrative 

sampler (POCIS), since the use of such a samplerrequires calibration in the laboratory or field. 

The retracted TF-SPME sampler showedrelatively high detection limits for the target analytes 

which may limit the large-scale application of field sampling in less-impacted regions. However, 

in certain cases, the detection limits of the sampler can be improved by decreasing the diffusion 

path and increasing the diameter of the opening.Application of the open bed configuration 

using the one-calibrant method with C18 coating showed its capability for measurement of the 

TWA concentrations of hydrophobic compounds in instances where their isotopic labelled 

standards are either not available or affordable. The limitation of the evaluated sampler is its 

dependency on the convection conditions, which effects the desorption rate of the calibrant, 

thus limiting its use for long-term monitoring only at low convection conditions. In addition, 

determination of the K value was necessary in this approach, although this step is only required 

to be performed once for a given sampler and given target analyte. Such a method could be 

potentially applied to TWA measurement of other non-polar environmental chemicals by using 

different calibrants to cover a wider range of compounds and/or a thicker coating, which would 

proportionally increase the capacity of the sampler, thus allowing longer sampling times before 

unacceptable depletion of the calibrant.  

https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwiQk5-un6fJAhUG9x4KHUXUA-0QFggmMAE&url=http%3A%2F%2Fwww.cerc.usgs.gov%2Fpubs%2Fcenter%2FpdfDocs%2FPOCIS.pdf&usg=AFQjCNGeF9yDtF2gOrI69P-4MvZnV71oTw&bvm=bv.108194040,d.dmo
https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwiQk5-un6fJAhUG9x4KHUXUA-0QFggmMAE&url=http%3A%2F%2Fwww.cerc.usgs.gov%2Fpubs%2Fcenter%2FpdfDocs%2FPOCIS.pdf&usg=AFQjCNGeF9yDtF2gOrI69P-4MvZnV71oTw&bvm=bv.108194040,d.dmo
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Table 3. Field sampling results of retracted TF-SPME and open bed TF-SPME TWA samplers in 
Grand River, ON 

 
 

 Grab sampling with open 

bed HLB TF-SPME 

(Equilibriumsampling) 

Concentration (ngL-1) 

Ben-1 

(RSD, %) 

Ben-3 

(RSD, %) 

Ben-4 

(RSD, %) 

PBSA 

(RSD, %) 

Ben- 2 

(RSD, %) 
 

Jun 13- Jun 22 (n=3)  5 (7) 23 (12) 4500 (12) 2300 (20) <0.5  

Jul15 – Jul 24 (n=3)  5 (13) 17 (11) 6000 (11) 4000 (12) <0.5  

Aug 12- Aug 21 (n=3)  6 (8) 19 (6) 6600 (15) 4900 (11) <0.5  

Average 5 20 5700 3700 <0.5  

Retracted  HLB TF-

SPMETWA Sampler (n=3) 

 Jun 13- Sep 13 

<700 <800 5400 (15) 4000(12) <130  

Procedural blank <500 <1000 <2500 <500 <100  

Field blank <700 <800 <160 <130 <500  

Cross reference data 1249 32.754 148147 250347 3255  

       

One-calibrant kinetic 

calibration 

Concentration (ngL-1) 

OCR 

 (RSD, %) 

TCS 

 (RSD, %) 

Ben-3 

 (RSD, %) 

OMC 

(RSD, %) 

TCC 

(RSD, %) 

BM-DBM 

(RSD, %) 

Open bed C18 TF-SPME 

TWAsampler (n=3) 

Jun 13- Jun 17 

 

90 (9) 

 

36 (5) 

 

27 (19) 

 

<0.04 

 

<0.01 

 

<0.01 

Grab sampling (n=6) 

Jun 13, Jun 17 
130 (15) 50 (15) 28 (10) <20 <0.1 <3 

Procedural blank <1000 <100 <1000 <500 <1 <160 

Field blank <0.2 <0.2 <0.5 <0.04 <0.1 <0.01 

Cross reference data 2356 1856 2057 3358 3.549 6850 
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