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Introduction

Road safety studies, such as network screening of road network and evaluating safety effects of countermeasures, rely on
collision prediction models or safety performance functions (SPF) to estimate the expected safety levels of specific road enti-
ties such as intersection and sections under specific conditions. Safety performance functions are commonly developed sep-
arately for different types of highways or entities and locally using data collected from the study area representing the
specific highway types to be modelled. For example, SPFs are developed separately for freeways, two-lane rural highways,
multilane rural highways and other highway types, depending on the context of the analysis. Such practices are well
reflected in the Highway Safety Manual (HSM) that documents a number of example SPFs for various types of highways
and intersections from different jurisdictions (https://www.fhwa.dot.gov/research/publications/technical, 2017; Highway
Safety Manual, 2010).

This traditional approach of developing individual local models, e.g., based on highway types or geographical regions, is
often time consuming as we need to go through the modelling approach for each case separately (Aguero-Valverde and
Jovanis, 2008). Moreover, the commonly used parametric form of models (e.g., Negative Binomial (NB) model) require a ser-
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ies of trial and error process before arriving at the final model structure with a set of significant variables (Thakali et al.,
2016; Shankar et al., 1995), while this model specification step is not required in the machine learning technique (e.g., deep
belief network). In this research, we explore the feasibility of developing a modelling framework where datasets coming
from multiple regions could be pooled together into a same modelling step and used to generate a single global model. Ide-
ally, this modelling approach is superior in prediction performance as compared to the local models, is adaptive with ability
to incorporate new data, and can be automated in model training and updating. However, the challenge lies in making sure
that there is no loss of site-specific information during the generalization of the global model (Connors et al., 2013).

In this paper, we propose to apply the deep learning technique for developing a global SPF. Deep learning is one of the
most recent and promising techniques developed in machine learning (Yann et al., 2015). It overcomes the shortcomings
of traditional artificial neural network (ANN) and has been implemented successfully in many areas, such as pattern recog-
nition, computer vision, and intelligent decision-support (Dahl et al., 2011; Yichuan, 2013; Taylor et al., 2006). An extensive
empirical study is conducted to investigate the model performance in terms of prediction accuracy as compared to the tra-
ditional NB modelling approach which is the most widely used technique in road safety studies (Cheng et al., 2013; Usman
et al,, 2012). The paper hereafter is arranged as follows: Section 2 reviews some of the popular machine learning methods
under the domain of artificial neural networks, including the deep neural networks proposed in this paper. Section 3
describes the deep belief network (DBN) model proposed for modelling road collision along with its training algorithm. Sec-
tion “Case Studies” discusses the important parameters of the global DBN, and also presents a few case studies to demon-
strate the idea of a global model. Finally, Section 5 concludes with the main findings.

Literature review

Machine learning (ML) has become a very popular topic of study in the field of computer science in recent years. This
includes techniques such as artificial neural network (ANN) which is aimed to reproduce and simulate human behaviour
and cognitive functions. ANN uses a network of nodes (often called “neurons”) containing configurable weights that can
be trained to produce a desired output (Miaou and Lord, 2003; Abdel-Aty and Haleem, 2011). These weights and layers
can be configured to solve many kinds of pattern recognition problems, some ML models even have found their way into
other fields, including road safety studies where they have been used for predicting collisions. For example, a recent study
by Chang (2005) implemented an ANN to predict collisions in National Freeway in Taiwan. The model in their study accepts
road condition features as input and provides collision numbers as output.

While ANN models are easy to understand, its weight solution space is non-convex, which means there are many local
minimums, making it difficult to find the global optimum solution. Another drawback of traditional ANN is its supervised
learning construct that necessitate availability of training data, limiting its applicability in real-world situations
(Rumelhart et al., 1986; Bengio and Olivier, 2011). To address these problems, other improved versions of BP such as Baye-
sian regularization have been proposed (Xie et al., 2007). While Bayesian regularization shows improvements, it still requires
training data that limits its applicability.

Deep learning (DL), or deep neural network (DNN), is a new machine learning technique that has been widely explored
and successfully applied for a variety of problems such as in image and voice recognition and games (Hinton and
Salakhutdinov, 2006; Hinton et al., 1207; Ren et al., 2014). A few variations of DNN have been developed, among which Deep
Belief Network (DBN) is one of the most popular (Yann et al., 2015). What makes DBN different is its unique training method
called greedy unsupervised training. Its development is based on mimicking the cognitive and knowledge reference pro-
cesses of the human brain. By stacking several Restricted Boltzmann Machines (RBM, a kind of recursive ANN model that
contains two layers, one input layer and one output layer), one upon another, DBN learns the features from inputs and
obtains a better distributed representation of the input data, without requiring training data like back propagation. One
of the most impressive characteristics of deep neural network is its ability to learn representation from multi-category data
(Papandreou et al., 2015). For example, in Srivastava and Ruslan (2012), a Deep Belief Network architecture was shown to be
able to learn the distribution over the space of multimodal inputs. The model is capable of creating a multimodal represen-
tation even when some image data modalities are missing.

Global deep belief network model
Model architecture

An illustration of global DBN model is shown in Fig. 1. It consists of three types of layers. The first is the visible layer (V)
which receives the original feature data and acts as the input layer. This input layer is followed by several hidden layers, L1,
L2 and more if necessary, with V and L1 forming the first RBM, and L1 and L2 the second RBM, and so on. The structure of
each RBM is that of a two-way full connectivity between V and L as shown by double-sided arrows in Fig. 1. No connections
exist between units of the same layer. In the training process, each hidden layer extracts the last layer’s data information and
features to form a better, although more abstract, distributed representation of input data. The last layer is the output layer
which has only one unit, representing the predicted collision frequency. In our case study, we only illustrate a global DBN
with two hidden layers, and more details will be discussed in Section “Case Studies”.
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Fig. 1. Global DBN’s architecture.

Traditional Deep Belief Networks (DBN) can only process binary signals (0 and 1). However, real world road safety related
data are continuous values, which can be easily normalized to lie between 0 and 1. Hinton (Chen and Murray, 2003)
improved the visible layer to receive continuous values, while the signal in the unsupervised training process will still be
transformed to a binary value, and this limitation can be addressed by using an improved continuous version of the transfer
function which is proposed by Bengio (Bengio, 2009). Based on his work, a continuous RBM can be used in continuous value
prediction problem. For example, a continuous DBN is used in predicting a time series benchmark and good results are
obtained (Qiao et al., 2015). Therefore, in our research, the continuous transfer function is employed. In the layer-wise
greedy unsupervised training, once the first RBM is finished training, the output of it becomes the input of the second
RBM. Furthermore, for a global DBN, the previous dataset may be used multiple times in training the model whenever a
new dataset is added to update the model, thus the model may easily become overfitting. Therefore, in the proposed model,
Bayesian regularization, instead of traditional back propagation, is implemented to raise prediction accuracy and, in the
meantime, to reduce the overfitting problem (Pan et al., 2014).

Model algorithm
Global DBN is made of several RBMs, in which the first one is continuous RBM. They are trained separately before unfold-

ing all the layers and using back propagation to fine-tune the weights. For the training of the first continuous RBM, the idea
of knowledge learning and reasoning processes are shown in Egs. (1) and (2).

Py =1) = )
S =@ <2wijsj +0-N;(0, 1)) 2)
J
where
008 = 00+ On —00) 1y &)
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and v; is the binary value of input neuron i of the visible (input) layer while s; is the continuous value of it, h; is the value of
unit j in the hidden (output of the RBM) layer; b and c stand for the biases of the visible and hidden layers, respectively; wj is
the weight between visible unit i and hidden unit j, N(0, 1) is a Gaussian random variable with mean 0 and variance 1. ¢ is a
constant, ¢(.) in (3) denotes the sigmoid function in equation (2) with asymptote of 6y and 0;. a is a variable that controls
noise, which means it controls the gradient of the transfer function.

For the rest RBMs, the two processes are shown in Egs. (4) and (5).

1
plhy=1)=—— 4)
" 1+efbjley,-w,-j
po=1)=— (5)
1 14 e 2w

We then define 6 = (W, b, c) according to a fast training method that is commonly used to estimate successive new
weights and biases with a Markov chain, as follows (Hinton, 2002).

0 =< h'? > — <hlv} > (6)

where <> denotes the average over the sampled states, hj(-’ 29 is the initial state of the visible layer multiplied by the hidden

layer, and h} v} is the same product after a single iteration of a Markov chain.

Just like the general DBN model, a global DBN must also be fine-tuned in terms of model structure and learning rate. How-
ever, training a network based on limited samples is a loosely framed problem. That is to say, there are many potential mod-
els that could be used to train the model such that its output is very close to the expected output. In the proposed global DBN,
this problem could be more severe, especially when a new dataset is added to an already well-trained model to retrain and
update the weights. The retrained model can be easily over fitted, as the previously trained dataset will be reused. In order to
avoid this problem, the model needs to be regularized. That is, additional conditions apart from the requirement that the
response of the trained network must agree with the expected one need to be imposed. Therefore, the proposed global
DBN is trained using Bayesian regularization supervised training algorithm.

Bayesian regularization is a technique commonly employed to achieve this objective. In Bayesian regularization, the addi-
tional term imposed ensures that the selected trained network not only minimizes a metric of the error but also achieves this
with weights that are of as small a magnitude as possible. In this research, we propose Bayesian regularization instead of
back propagation for the fine-tuning process after unsupervised training. The objective function employed is as follows,

Fy = P + BEw (7)

where, Fy is the new objective function in the process of supervised training, P is the original object function as per Eq. (8).
Ew is the Bayesian regularization item, and o and B are performance parameters that need to be calculated in the iterations or
be set before iteration. Ey has the form of mean square of the weights.

P—1>0-0 ®
t=1

1 m n
Ew = m-n ZZW3 9)

j=1i=
where, T is the testing set, O; means output at testing set t, O, is the ideal output or teacher’s signal. w;j means the weight
between layer i and j. If o >> g, then the first part of Fyy dominates, which means that the objective of the training is to
decrease the training error. Specifically, if « = 1, § = 0, then Fy, = P, and the Bayesian regularization becomes ordinary back
propagation. On the other hand, if « < g, the training will focus on decreasing the weights. Therefore, by introducing this
regularization term, one can expect that weights that do not contribute to the response will be minimized ensuring that only
parts of the network that have learned important features common to all the input patterns will remain. Therefore, an

improvement in the response of the trained network to unknown test inputs is expected.

Bayesian regularization models are then trained by calculating values of o and g during the training process. During this
process, the weights are treated as random variables, and assumes that the prior probabilities of P and Ey, are Gaussian. o and
B can then be obtained by using Bayes criterion.

For our study, we use Matlab as our computing tool with the codes being obtained from www.deeplearning.net (www.
deeplearning.net, 2017) and modified for our modelling and experiments.

Case studies

To evaluate the feasibility of developing a single global safety performance function using DBN that can be used to predict
the expected collision frequency on highways of different types from different regions, an empirical study is conducted using
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collision data from three different regions, including, including Highway 401 of Ontario, highways of Colorado and Washing-
ton states in US, as shown in Fig. 1. A detailed description of the case study data is provided in the following section. We also
developed negative binomial (NB) models, for benchmarking the performance of traditional approach of developing individ-
ual (local) model with the global DBN as well as with individual DBNs. It is noted that the NB model is the most widely used
technique in road safety analysis (Lord and Mannering, 2010) which has also been adopted by HSM manual (Highway Safety
Manual, 2010). More details on NB modelling can be found in Washington and Karlaftis (P. Washington et al., 2010). An
attempt is made to include as many variables as possible in the model, e.g., traffic level, geometric features of roadways
and other road environment related factors, depending on the data availability for each case study.

Case descriptions

Highway 401 in Ontario, Canada

This case is based on historical collisions and related data from Highway 401, a multilane access controlled highway in
Ontario, Canada (hereafter, it is also referred as ON-M). This highway is one of the busiest highways in North America and
connects Quebec in the east and the Windsor-Detroit international border in the west. The total length of the highway is
817.9 km of which approximately 800 km was selected for this study. According to 2008s traffic volume data, the annual
average daily traffic (AADT) ranges from 14,500 to 442,900 indicating comparatively a very busy road corridor. The databases
used in this case study include: 1) historical crash records for the period from 2000 to 2008 extracted from MTQ’s Accident
Information System (AIS); 2) historical AADT data for the same years from MTO’s Traffic Volume Inventory System (TVIS);
and 3) road geometric features from MTO’s Highway Inventory Management System (HIMS) database. Note that each record
in this database is referenced to MTO’s linear highway reference system (LHRS). LHRS is a one-dimensional spatial referenc-
ing system with a unique five-digit number representing a node/link on a particular highway. LHRS can be used to locate the
position of features on a map using a Geographical Information System (GIS) tool.

Our first step in data processing was to generate a set of homogenous sections (HS) in which each HS section represents
segments with similar characteristics such as number of lanes, shoulder width, the presence of median, curvatures, and other
roadway features. As previously mentioned, all the data (crash, road geometry and traffic data), are spatially referenced to
MTO’s LHRS system. All features were geocoded in the GIS map through a multi-step procedure. First, the geometric features
from the HIMS database, which was in a spreadsheet format, were geocoded in the GIS platform. There were a total of 244
records in the HIMS layer, each representing a road section with a set of uniform road geometry features. However, as the
road curvature was missing in the database, further geoprocessing was needed to obtain the final set of HS sections. For this,
curve sections were first demarcated on a map using a GIS tool, thus generating a curve layer. This tool automatically created
an attribute table for the curve layer with detailed information such as LHRS number, start point, length and radius related to
each curve. For a refined set of HS sections, the initial HIMS layer was split at the intersection of the curve layer, and the
segmented HIMS layer was spatially joined to the curve layer in order to transfer all the curvature related information. As
each road section’s initial HIMS may have one or more curvature sections, these were disaggregated into smaller subsections
thereby including an additional level of homogeneity. Note that the shortest length of HS section was 0.2 km. This selection
of a certain lower threshold value complies with literature as it had been suggested that very short road segments might
have higher uncertainty and lower exposure problems (Council and Stewart, 1999; Begum et al., 2009; Ahmed et al.,
2011). Finally, these HSs, assigned with unique IDs, were used as the spatial unit for integrating crash and traffic volume
data. There are a total of 418 unique HS sections with length ranging from 0.2 km to 12.7 km and covering 800 km, or
97.9%, of Highway 401.

After generating HS sections, historical crash data from 2000-2008 were geocoded. Similarly, traffic count data, consisting
of AADT and average annual commercial vehicle counts for the period 2000-2008, were also geocoded. As each observation
recorded LHRS and offset information, the traffic counts were spatially located using the linear referencing GIS tool. Each HS
was then assigned the nearest traffic observation. Note that a total of 170 traffic counting stations were available for the 418
HSs. Approximately 85% of the HSs have traffic values assigned from its nearest count station within 2 km distance indicating
that the traffic data was quite an extensive in this particular study area. To identify whether the HS segments located in rural
or urban environment, we used google earth.

Finally, the processed crash and traffic data were integrated into a single dataset with HS and year as the mapping fields
that resulted into total 3762 records. The input features included in this dataset are location, access type, lane number, ter-
rain, AADT, segment length, city type (rural or urban), lane width, median width, left shield, right shield, curve deflection,
commercial AADT. These set of variables relevant to Ontario’s case study is indicated by “1” in Fig. 1. We also provide a sum-
mary description of continuous input features in Table 1, including the sample sizes for training and testing.

Two-lane two-way highways in Colorado, US

This dataset contains crash data from rural two-lane highways in the Colorado State, US (hereafter, it is also referred as
CO-R). It represents a case of two-lane rural roads with observations from 1991 to 1998 (downloaded from http://extras.
springer.com; (Hauer, 2015). Its AADT is ranging from 40 to 21,720, with an average approximately 2200, which is signifi-
cantly lower than the first case described previously. The dataset covers a total of 4593 unique sections with length ranging
from 0.21 to 31.76 km, which is much large in sample size of the Ontario case. The dataset is divided into two subsets: 1991-
1996 set (27,558 observations) for training, and 1997-1998 (9186 observations) for testing. The input features included in
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Table 1
Summary of the dataset (Highway 401, Ontario).
Variables Mean Max Min St. dev. Sample size
Collisions (per year) 23.81 468 0 50.02 3762 Training:2926 Testing: 836
AADT (veh /day) 76633 442900 12000 91476
Segment Length (km) 1.95 12.7 0.2 2.06
No of lanes 5.44 12 4 242
AADT- Commercial (veh/day) 13993 42076 0 6719
Median width (m) 11.11 30.5 0.6 6.14
Shoulder width-right (m) 3.14 4 2.6 0.28
Curve deflection (per km) 0.19 1.86 0 0.35
Shoulder width-left (m) 1.6 5.19 0 1.19

this dataset are location, access type, lane number, terrain, AADT, segment length, city type (rural or urban). These variables
relevant to Colorado’s case study are indicated by “2” in Fig. 1. We also provide a summary description of continuous input
features in Table 2, including the sample sizes for training and testing.

Highways in Washington State, US

This dataset was obtained from the Federal Highway Administration’s (FHWA) Highway Safety Information System
(HSIS), containing inventory and crash data for four types highways - rural two-lane two-way, rural multi-lanes, urban high-
ways with two lanes, and urban highways with multi lanes, in Washington State, US. HSIS crash data has detailed informa-
tion about the time, location and types of crashes. Each crash record is referenced to a geographical location by two fields,
namely, route number and milepost. Our study focused on highway segments; therefore, we removed all the crashes that
occurred at intersections, interchanges, ramps, driveways including those that are not related to the study scope. HSIS high-
way inventory data has detailed information about road geometry features (e.g., the number of lanes, shoulder width, med-
ian width and others) and traffic counts on a yearly basis. Each record in the file represented a homogenous (uniform)
segment and is referenced to a geographical location by three fields - route number, beginning milepost and ending mile-
post. These locations related fields are important for merging inventory data with the crash data. Note that a separate inven-
tory file is obtained for each year; therefore, any modifications in road geometric features over the years could have been
included. Then, we excluded all the records with segment length less than 0.16 km and lane width less than 7.32 m, similar
to the study by Vogt and Bared (1998). We also removed records that have missing traffic data. Finally, crashes were aggre-
gated on an annual basis over individual homogenous segments in the inventory file using the common location related
fields mentioned previously. Four types of highways are included in this dataset, rural highways with two lanes, rural high-
ways with multi lanes, urban highways with two lanes, and urban highways with multi lanes, hereafter, they are also
referred as WA-R2, WA-RM, WA-U2 and WA-UM, respectively. The input features included in this dataset are location, access
type, lane number, terrain, AADT, segment length, city type (rural or urban), lane width, median width, left shoulder width,
right shoulder width. These set of variables relevant to Washington’s case study is indicated by “3” in Fig. 1. We also provide
a summary description of continuous input features in Table 3, including the sample sizes for training and testing

Experimental design

Experiment 1: separate training
We first analyse the effect of the model performance with two case studies: Hwy401, Ontario and Colorado, US. The fol-
lowing bootstrapping process is followed:

1) Split the given dataset into two subsets: a training set and a testing set. The training set includes the first several years
of data while the testing set includes the remaining data. In this experiment, we conduct HWY401 and Colorado data-
set to evaluate the performance. For HWY401, the training set used year 2000-2006, and the testing set is 2007-2008.
While in Colorado data, the training set designed is data 1991-1996 and testing is 1997-1998.

2) The whole data size is used to calibrate or train the candidate model, which is subsequently used to predict the col-
lisions at the testing data set. The MAE and RMSE are then calculated as per Eqs. (10) and (11).

3) Repeat Step 2) for several times to reduce the error of affection of training set (100 times for HWY401 and 25 times for
Colorado). After done, calculate the average, minimum and maximum MAE and RMSE of the repetitions.

Table 2
Summary Description of Datasets for Colorado Highway.
Variables Mean Max Min St. dev. Sample size
Collisions (per year) 0.9 54.0 0.0 2.2 36744
AADT (veh/day) 2217 21720 40 2534 Training: 27558 Testing: 9186
Length (km) 21 31.8 0.2 24
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Table 3
Summary description of datasets for washington highways.
Variable Mean Max Min St.dev Sample size
Rural two-lane highways (WA-R2)
Collisions (per year) 0.47 15.00 0 0.96 45005 Training: 28436 Testing: 16569
AADT (veh/day) 3424.00 27540 121 3431.54
No of lanes 2 2 2 0.00
Lane width (m) 3.53 7.32 244 0.33
Segment length (km) 0.93 13.02 0.16 1.07
Median width (m) 0.02 57.91 0.00 0.69
Shoulder width- left (m) 1.43 11.28 0.00 0.81
Shoulder width- right (m) 1.43 12.19 0.00 0.81
Rural multi-lane highways (WA-RM)
Crashes (per year) 1.28 54.00 0 235 6837 Training: 3381 Testing: 3456
AADT (veh/day) 21337.14 121311 3453 16628.81
No of lanes 4 8 3 0.82
Lane width (m) 3.68 7.32 3.35 0.20
Segment length (km) 0.59 9.55 0.16 0.71
Median width (m) 28.84 304.50 0.00 40.18
Shoulder width- left (m) 1.20 7.92 0.00 0.64
Shoulder width- right (m) 2.90 12.19 0.00 0.68
Urban two-lane highways (WA-U2)
Crashes (per year) 0.63 13.00 0 1.13 4704 Training: 3566 Testing: 1138
AADT (veh/day) 11146.32 66603 428 6292.23
No of lanes 2 2 2 0.00
Lane width (m) 3.72 7.32 3.05 0.69
Segment length (km) 0.39 3.98 0.16 0.34
Median width (m) 0.20 152.40 0.00 4.12
Shoulder width- left (m) 1.62 9.14 0.00 0.89
Shoulder width- right (m) 1.72 6.71 0.00 0.88
Urban multi-lane highways (WA-UM)
Crashes (per year) 1.28 54.00 0 2.35 7910 Training: 5377 Testing: 2533
AADT (veh/day) 21337.14 121311 3453 16628.81
No of lanes 4 8 3 0.82
Lane width (m) 3.68 7.32 3.35 0.20
Segment length (km) 0.59 9.55 0.16 0.71
Median width (m) 28.84 304.50 0.00 40.18
Shoulder width- left (m) 1.20 7.92 0.00 0.64
Shoulder width- right (m) 2.90 12.19 0.00 0.68

Model performances mentioned in Step 2 are estimated on the basis of mean absolute error (MAE) and root mean square
error (RMSE) in these case studies, as defined in Egs. (10) and (11). These measures quantify the average deviation of the
estimated crash frequencies from the observed values. Therefore, smaller the magnitude of these measures better is their
performance level.

n PR .
mag = Zi=1 /P =01 “:l i O (10)

RMSE = (11)

where, P; is the predicted collision frequency for ith observation, O; is the ith observed collision frequency, and n is the total
number of observations.

Note that the difference between these two performance measures, MAE and RMSE, is how the residuals are weighted. In
MAE, equal weights are given to the residuals from the observed points, whereas in RMSE larger residuals are given greater
weights by squaring the deviation. Hence, the smaller the magnitude is, the better the performance level we achieve.

Experiment 2: simultaneous training

In this experiment, we analyze the performance of the DBN trained using all of the three data sets described previously in
Section “Case Descriptions”. As illustrated in Fig. 2, these datasets are collected from different kinds of highways and with
different features. Therefore, we need to process some of the input features that indicate the three kinds before training. The
training process is as follows.
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Fig. 2. Location map of case studies in three different regions: Ontario (ON) province, Colorado (CO) state and Washington (WA) state.

1) Three input neurons are used to indicate the different datasets. The first one is to indicate locations. We use a constant
number for each study location: 1 for Hwy 401, 2 for Colorado highways and 3 for Washington highways. However,
the dataset of Washington contains four road types, which are rural or urban, two-lane or multi-lane. Therefore, we
design the second and the third input neurons to indicate road type and access type. For road type, a constant input is
used to distinguish all rural or all urban roads, and similar method is conducted to distinguish limited or controlled
access type, and for where the feature information is missing, a constant 0 will be used instead.

2) Normalize the full dataset to [0,1], so that the global DBN can uniformly regard the inputs of the three cases we
designed from step 1.

3) The full size training data is then used to train the candidate model, which is subsequently used to predict the colli-
sions at the testing data set separately. The MAE and RMSE are then calculated.

4) Repeat Step 3) for 10 times to reduce the affection of initialization. After done, calculate the average, minimum and
maximum MAE and RMSE of the repetitions.

5) Change model size and repeat step 3) to 4) again.

Experiment 3: sequential training

This experiment is designed to testify the generalization of the global DBN. As in course of time, road conditions could
change and more collision data could become available. This experiment is to show whether or not a DBN model, once
trained, can be further trained with a completely new data set without significant loss in prediction performance. For this
experiment, a DBN is first trained using the first two datasets and then further trained using the dataset of Washington.
The experimental process is as follows.

1) Train a global DBN using the datasets of HWY401 and Colorado as in Experiment 2.

2) Combine the three training datasets together and normalize them. Fine tune the model using the updated dataset with
only supervised learning approach.

3) Repeat the process for 10 times to reduce the effect of initialization.

Model settings

Parameters that affect the effect of DBN are various, and among those parameters, several are the most important, and
sensitivity analysis is necessary in model setting (Hinton, 2010). To experiments in this paper, the key parameters include
network structure, including layers and neuron numbers, learning rate, and input features.

The structure pertaining to a DBN model is defined by the number of hidden layers and number of units (or nodes) in each
layer, which could have a significant effect on the performance of the model. Too many hidden layers and hidden units can
increase the computation and training time as well as lead to overfitting problem, while too few hidden layers and hidden
units may lead to poor feature learning and under-fitting situation. The significance of these parameters on the model per-
formance means that these values must be chosen carefully. Previous studies have shown that the most effective method for
model size selection is an empirical one. A structure with two layers was chosen due to the fact that traditional DBN
employed in a pattern recognition task often only include two layers. This structure strikes a balance between the need
for a more powerful model and the desire to keep computation times lower. It offers more predictive power than a single
layer model, but is significantly less time-consuming than a three layer model (Pan et al., 2014).
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Beside the model structure, selection of an appropriate learning rate is also very important. For a given DBN, learning
rates for both unsupervised and supervised component must be specified, as they control the weights of the connections
between layers in each iteration. If the learning rate is too large, the reconstruction error (the index to evaluate unsupervised
learning) and weights usually increase dramatically. On the other hand, if learning rate is too small, more epochs are needed,
which not only increases the learning time but may also limit its chance to find the global optimal solutions.

In addition to the learning rate and model structure, the input features themselves are also important to the performance.
Normally, we want to include as many good features as possible, however, some features may contain too much noise and
their inclusion may reduce the accuracy of the model. To assess these effects, this paper also explored the relationship
between features and performance. In order to test how road features can affect the final modelling result, we compare
the results of HWY401 and Colorado in Experiments 1 and 2 by using different training features as have discussed previously.

For Experiment 1, we used a network structure of 13-10-10-1 (13 units for the input layer - 10 units for the hidden layer
1-10 units for the hidden layer and 2-1 units for the output layer) for the model for case HWY401. Previous researches have
showed that in certain range, with neurons increased, the accuracy increased, however when the network size became too
large, the accuracy fell. And the best network size was also related to input dataset. So for the three experiments, it is nec-
essary to test and try, to determine the most effective size. After deciding network size, the same method was used on choos-
ing learning rate. Basis of our previous work (Qiao et al., 2015), we found that when the training dataset is around 3000 two
hidden layers with no more than 10 are the most effective. The same structure is used because the effective input for case
Colorado is much fewer. Also, different learning rates varying from 0.1 to 0.5 were tried, with the learning rate of 0.1 being
the most effective. In terms of training, we used a total of 20 unsupervised iterations and 1000 fine-tuning iterations to
ensure model convergence. In experiment 2, the training dataset is much larger than the first one; as a result, the size of
hidden layers should be larger. Model structures which contain hidden neurons from 8 to 14 were tested, of which the struc-
ture with more hidden neurons was found to outperform the other structures for case Washington. However, fewer hidden
neurons are still better for the first two cases. So the structure of the model was set to be 13-12-12-1 at last. Accordingly, a
total of 50 unsupervised iterations and 1000 fine-tuning iterations were adopted. A learning rate of 0.1 is also selected after
trying out a range of values from 0.1 to 0.5. For experiment 3, we use the structure of 13-12-12-1 although at this moment
we assume there is no dataset of Washington, we still want the model can be more tolerant in case there is a new database.
After the new dataset has come, we conduct the supervised training with another 1000 iterations. As the supervised training
has been implemented for the pervious data, the training error has already met the setting value, so the new training error
should set to be much smaller otherwise the added supervised training will stop soon.

Results

NB models

A NB model is developed for each highway type and geographical location, as this is a common practice of the existing
road safety studies. Unlike the DBN, a NB model requires pre-specification of the relation of crash frequency and a set of
input features (explanatory variables). We specify this relation using exponential function as shown in Eq. (12).

,Ll — e/}0+/§X (12)

where, u is expected crash frequency, X is a vector of features (e.g., exposure, lane width, shoulder width etc.), g is a vector of
model coefficients for the corresponding input features and g, is intercept.

Note that, for the exposure related features, namely, AADT and segment length, we used their log forms so that their
transformations lead to the case of zero crash for zero values. We also tested these features in two forms. First, we considered
their combined form by multiplying AADT and length to represent the total exposure as a single feature, as shown in Case
Study 1 in Table 4. Second, we considered these features individually as in case study 2 and 3 (Tables 4 and 5). Decision on
which exposure form to retain was made based on performance measures, MAE and RMSE, which were evaluated using the
testing dataset. In addition, like in any other parametric model, we exclude the features that have a high correlation with any

Table 4

NB model results for Case 1 (Ontario) and Case 2 (Colorado).
Highway 401, Ontario Rural Two-lane Two-way Highways, Colorado
Variable Coefficient estimate Variable Coefficient estimate
(Intercept) —1.070 (<0.000) (Intercept) —7.93 (<0.000)
log(AADT*Length*365/1076) 0.827 (<0.000) log(AADT) 0.87 (<0.000)
AADT-commercial 0.000 (<0.000) log(Length) 0.97 (<0.000)
Median width (m) —0.014 (<0.000) Terrain-Mountainous 0.96 (<0.000)
Shoulder width-left (m) -0.104 (<0.000) Terrain- Rolling 0.50 (<0.000)
Shoulder width-right (m) 0.138 (<0.000) Terrain- Flat 0.00
Curve deflection (per km) -0.132 (<0.000)
Lane width (m) ns

Note: ns means not significant; value in the parenthesis represents p-value.

Please cite this article in press as: Pan, G., et al. Development of a global road safety performance function using deep neural networks.
International Journal of Transportation Science and Technology (2017), http://dx.doi.org/10.1016/j.ijtst.2017.07.004



http://dx.doi.org/10.1016/j.ijtst.2017.07.004

10 G. Pan et al./ International Journal of Transportation Science and Technology xxx (2017) xXx—-XXX

Table 5
NB model results for Case 3 (Washington).

Variable Coefficient estimates

Rural two-lane

Urban two-lane

Rural multilane

Urban multilane

(Intercept)
log(AADT)
log(Length)
Median width (m)

Shoulder width-left (m)
Shoulder width- right (m)

Lane width (m)

Terrain: Mountainous

Terrain: Rolling
Terrain: Level

~6.321 (<0.000)
0.827 (<0.000)
0.951 (<0.000)
0.047 (<0.000)
~0.090 (<0.000)
~0.112 (<0.000)
—0.185 (<0.000)
0.473 (<0.000)
0.149 (<0.000)
0.00

—5.400 (<0.000)
0.773 (<0.000)
0.933 (<0.000)
ns

~0.199 (<0.000)
—0.113 (<0.010)
~0.210 (<0.000)
/

ns

ns

—6.672 (<0.000)
0.776 (<0.000)
0.999 (<0.000)
ns

~0.124 (<0.000)
—0.112 (<0.000)
~0.129 (<0.000)
1.025 (<0.000)
0.276 (<0.000)
0.00

~12.087 (<0.000)
1.319 (<0.000)
0.854 (<0.000)
~0.008 (<0.000)
ns

—0.193 (<0.000)
ns

/

0.144 (<0.023)
0.00

Note: ns means not significant; value in the parenthesis represents p-value; / means no data.

other important features. An example in our study is the existence of a high correlation between AADT and lane number.
Therefore, we included only the AADT feature.

The NB model coefficients are estimated using the maximum likelihood method on R statistical platform. A backward
selection approach is employed to include only those features that are significant at 5% level of significance. For the first case
study, we did include the road type feature (Rural or Urban) in the model; however, this caused other road geometry related
features (median width and shoulder width-left) to be insignificant. As previously mentioned, information regarding the
road type - being rural or urban was obtained using google map which could be relatively less accurate compared to the
information related to road geometric features obtained from the inventory file. We also confirmed that there was minimum
difference in their model performance measures. Therefore, for this particular case study, we retained the model based on
road geometric features only. A summary of model results for all case studies are presented in Table 4 and 5.

Experiment 1: local DBN model

This experiment focuses on comparing the relative performance of DBN versus NB model when applied for modelling
crashes at a specific region. Case 1 (Ontario) and Case 2 (Colorado) were used for this analysis. Fig. 3 shows the validation
results for the Ontario case, including the minimum, average, maximum MAE and RMSE of the two models. Table 6 shows
the values of testing MAE (minimum, average, and maximum) and RMSE (minimum, average, and maximum) of DBN and NB.
The final testing MAE is 9.59 and RMSE is 19.58 using global DBN, which are all better than the other one. The improvements
are 22.60% and 32.34% respectively, comparing to NB.

For the Colorado case, three features (AADT, length, terrain) are used for both models (NB and DBN). The training and
testing results are shown from Fig. 4. The results of using different models are summarized in Table 7. After trying different
structures, we conclude that a DBN with 10 hidden neurons has the best prediction power for this case, having the lowest
MAE of 0.81, comparing to 0.83 by NB. Similarly, the best RMSE is 1.48, comparing to 1.67 by NB. Although more features
may mean more uncertainty and sometimes unwanted features, and larger model sizes need more training time and data
and may learn less important features, the result has turned out the be very similar to the one using only three feature in
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Fig. 3. Performance of DBN and NB (The Ontario HWY401 case).
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Table 6
Comparison of models in training HWY401.
Models NB (Base) Bayesian ANN DBN
Error %lmprovement
MAE 12.39 11.61 9.59 22.60
RMSE 28.94 26.81 19.58 32.34
1.2 T T T r 3 T T T r

N N N ©)
o o o =
W N3 N o
o\ o S W
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Fig. 4. Performance of global DBN and NB in Colorado highways.

Table 7
Comparison of models in training Colorado highways.

Models NB (Base) Bayesian ANN Global DBN

Error %Improvement
MAE 0.83 0.83 0.81 2.40
RMSE 1.67 1.60 1.48 11.38

a normal DBN, which shows that the DBN is capable of learning the correct knowledge from the different input patterns.
Besides, different unsupervised learning iterations from 50 to 80 were tested for this case, and the results of testing MAE
and RMSE didn’t change much, this proves that the DBN also has good generalization ability that is capable of reducing over-
fitting when there is fewer input data.

Experiment 2: simultaneously trained global DBN model

In this experiment, data from all three cases described in Section “Case Descriptions” are used to train a global DBN,
which is then compared to the local site specific NB models. As shown in Table 1, the Ontario case (ON-M) contains 2926
samples for training set and 836 for testing set. Similarly, Colorado highway (CO-R2) has 27,558 samples for training set
and 9186 for testing set. In case of Washington highways, we categorised them into four groups (WA-R2, WA-RM, WA-
U2 and WA-UM), and they together contained 40,760 samples for training set and 23,696 for testing set. Therefore, the total
training data set for this global DBN includes 71,244 observations, with each including 13 features. Comparing to the Exper-
iment 1, this experiment is to show if a DBN can be trained globally with multiple datasets from different regions and “act”
locally. The network size with 8-14 neurons and unsupervised learning iterations of 50 and 80 were tested separately.

Fig. 5(a) shows the minimum testing MAE on the six highway types. It is obvious that for HWY401 (mostly rural high-
ways), a global DBN with 10 hidden neurons has the best performance while for the other 5 locations the number of hidden
neurons makes little differences. As shown in Fig. 5(b), a model with fewer hidden neurons has better performance for the
Ontario and Colorado cases. In contrast, for highways in Washington State, better performance can be achieved when using
more hidden neurons, especially for WA-R2 and WA-U2. Similar results can also be found in Fig. 6(a) and (b).

Table 8 compares the results of different models and training methods. The best performance was achieved when training
separate DBN models; however, the globally trained model is still able to outperform the traditional NB model in most cases.
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Table 8
Comparison of models.
Models NB (Base) DBN training each case individually Global DBN training All cases globally
Error %Improvement
MAE ON-M 12.39 9.59 10.00 19.29
RMSE ON-M 28.94 19.58 22.24 23.15
MAE CO-R 0.83 0.81 0.82 1.20
RMSE CO-R 1.67 1.48 1.52 8.98
MAE WA-R2 0.50 / 0.47 6.00
RMSE WA-R2 0.79 / 0.82 -3.80
MAE WA-RM 0.98 / 0.98 0.00
RMSE WA-RM 1.56 / 1.59 -1.92
MAE WA-U2 0.66 / 0.59 10.61
RMSE WA-U2 0.93 / 0.93 0.00
MAE WA-UM 2.04 / 1.91 6.37
RMSE WA-UM 3.81 / 3.45 9.45

Note: For notations, see Section 4.1. “/” means no data.
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Table 9
Comparison of before and after training new database.
Models NB (Base) Global DBN Training Globally Global DBN Training Globally
Before new data After new data
Error %lmprovement
MAE ON-M 12.39 14.60 10.68 13.80
RMSE ON-M 28.94 42.49 22.24 23.15
MAE CO-R 0.83 0.80 0.82 1.20
RMSE CO-R 1.67 1.51 1.51 9.58
MAE WA-R2 New added data 0.50 / 0.47 6.00
RMSE WA-R2 0.79 / 0.83 —-5.06
MAE WA-RM 0.98 / 1.00 -2.04
RMSE WA-RM 1.56 / 1.65 -5.77
MAE WA-U2 0.66 / 0.60 9.09
RMSE WA-U2 0.93 / 0.96 -3.22
MAE WA-UM 2.04 / 1.94 4.90
RMSE WA-UM 3.81 / 3.61 5.25

Note: For notations, see Section 4.1. “/” means no data.

The two exceptions are the results from the rural highway cases - WA-R2 and WA-RM, in which the global DNB was slightly
outperformed by the local NB model.

Experiment 3: sequentially trained global DBN

This experiment is designed to test the generalization ability of a global DBN when trained sequentially with new data-
sets. We started the experiment by first training a global DBN with data from the Ontario and Colorado cases (Cases ON-M
and CO-R). We then re-trained the model using a new dataset — data from the Washington case, includes four classes of high-
ways: rural two-lane, rural multi-lane and urban multi-lane, and urban multilane. In this experiment, we also explored sev-
eral retraining methods.

Fig. 7(a) shows the minimum testing MAE on the six types, in which the results of before retraining and after retraining
for ON-M and CO-R are shown separately. It can be seen that a global DBN with 10 hidden neurons still has the best perfor-
mance for ON-M (both before and after retraining), so is for CO-R and WA-R2. While for the rest kinds, more hidden neurons
could be slightly better. Fig. 7(b) shows a little different pattern of testing RMSE. As can be observed, when a new database is
added into the model, literally more training iterations are used in training the model, a larger model could imply better
performance. Therefore, for this instance, the final network structure is 13-12-12-1 after testing different sizes. Similar
results could also be observed in Fig. 8. Fig. 8(a) and (b) also show that when using a structure that is larger than 10 hidden
neurons, the performance for ON-M is not satisfactory at first, this may be a sign of overfitting. However, it becomes much
better after retraining, because after combined with the new database, the problem of overfitting is reduced.

Table 9 compares the results of different models and training methods. Large progresses are achieved in case of ON-M and
ON-R. Besides, significant progresses are also achieved for WA-U2 and WA-UM, comparing to NB. There are also some decent
in terms of testing RMSE of WA-R2 and WA-U2, and testing MAE and RMAE of WA-R2, which are the same highway types as
ON-M and ON-R, so this may suggest that those areas are affected too much by the previous learned knowledge.

Conclusions

In this paper, we have investigated the potential of applying a deep belief network (DBN) - one of the most popular deep
learning models for developing a global road safety performance function (SPF) for highways of different types from different
regions. An extensive empirical investigation was conducted using three large real world crash data sets from vastly different
highways and regions. It was shown that a single DBN could be trained globally with multiple datasets to predict the
expected crash frequencies with a performance at least comparable to the traditional NB model.

This research finding suggests that, as compared to traditional approach which involves developing several local models
separately, the proposed framework of developing a global model using DBN technique significantly reduces the modelling
steps. Furthermore, the DBN technique was shown to have the flexibility to make use of newly available data for improved
model accuracy, adaptation and automation, which would otherwise have been a very tedious process if the traditional NB
modelling technique were to apply.

This research represents an initiating effort with several unsolved questions that need to be investigated in the future. For
example, the robustness of the model performance to network structure and size needs to be further studied so that methods
for determining the best network configuration could be devised for specific problems. The second issue is related to the
need of adapting network structure to increased data size. Our preliminary analysis has shown the performance advantage
of a fixed global DBN model as data size increases. There may be further performance gain with adjusted model structure.
Lastly, we have not explored the potential of applying deep neural networks for addressing road safety problems by using the
raw crash data.

Please cite this article in press as: Pan, G., et al. Development of a global road safety performance function using deep neural networks.
International Journal of Transportation Science and Technology (2017), http://dx.doi.org/10.1016/j.ijtst.2017.07.004



http://dx.doi.org/10.1016/j.ijtst.2017.07.004

G. Pan et al./ International Journal of Transportation Science and Technology xxx (2017) xXx—-Xxx 15
Acknowledgement

This research is supported by National Science and Engineering Research Council of Canada (NSERC). Authors would like
to thank Federal Highway Administration (FHWA) and Ministry of Transportation Ontario (MTO) for providing the datasets
used in this study.

References

https://www.fhwa.dot.gov/research/publications/technical, 2017.

Highway Safety Manual (HSM), American Association of State Highway and Transportation Officials (AASHTO), 2010.

Aguero-Valverde, ]., Jovanis, P.P., 2008. Analysis of road crash frequency with spatial models. J. Transport. Res. Board 2061 (1), 55-63.

Thakali, L., Fu, L., Chen, T., 2016. Model-based versus data-driven approach for road safety analysis: do more data help? In: Transportation Research Board
95th Annual Meeting. pp. 3516-3531.

Shankar, V., Mannering, F., Barfield, W., 1995. Effect of roadway geometrics and environmental factors on rural freeway accident frequencies. Accid. Anal.
Prev. 27 (3), 371-389.

Connors, R.D., Maher, M., Wood, A., Mountain, L., 2013. Methodology for fitting and updating predictive accident models with trend. Accid. Anal. Prev. 56,
82-94.

Yann, L., Bengio, Y., Hinton, G.E., 2015. Deep learning. Nature 521 (7553), 436-444.

Dahl, G.E., Dong, Y., Deng, L., 2011. Large vocabulary continuous speech recognition with context-dependent DBN-HMMS. In: Proc of IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 4688-4691.

Yichuan, T., 2013. Deep learning using linear support vector machines, arXiv preprint arXiv:1306.0239.

Taylor, G.M., Hinton, G.E., Roweis, S., 2006. Modeling human motion using binary latent variables, In: Advances in Neural Information Processing Systems
19: Proceedings of the 2006 Conference, pp. 1345-1352.

Cheng, L., Geedipally, S.R., Lord, D., 2013. The poisson-weibull generalized linear model for analysing motor vehicle crash data. Saf. Sci. 54, 38-42.

Usman, T., Fu, L., Miranda-Moreno, L.F., 2012. A disaggregate model for quantifying the safety effects of winter road maintenance activities at an operational
level. Accid. Anal. Prev. 48, 368-378.

Miaou, S.P., Lord, D., 2003. Modeling traffic crash-flow relationships for intersections: dispersion parameter, functional form, and bayes versus empirical
bayes methods. J. Transport. Res. Board 1840, 31-40.

Abdel-Aty, M., Haleem, K., 2011. Analyzing angle crashes at unsignalized intersections using machine learning techniques. Accid. Anal. Prev. 43 (1), 461-
470.

Chang, LY., 2005. Analysis of freeway accident frequencies: negative binomial regression versus artificial neural network. Saf. Sci. 43 (8), 541-557.

Rumelhart, D.E., Hinton, G.E., Williams, RJ., 1986. Learning representation by back-propagating errors. Nature 232, 533-536.

Bengio, Y., Olivier, D., 2011. On the expressive power of deep architectures. Algorithmic Learning Theory. Springer, Berlin Heidelberg, pp. 18-36.

Xie, Y., Lord, D., Zhang, Y., 2007. Predicting motor vehicle collisions using Bayesian neural network models: An empirical analysis. Accid. Anal. Prev. 39 (5),
922-933.

Hinton, G.E., Salakhutdinov, R.R., 2006. Reducing the dimensionality of data with neural networks. Science 313 (5786), 504-507.

Hinton, G.E., Srivastava, N., Krizhevsky, A., 2012. Improving neural networks by preventing co-adaptation of feature detectors, arXiv preprint arXiv:
1207.0580.

Ren, Z., Shen, F., Zhao, J., 2014. A model with fuzzy granulation and deep belief networks for exchange rate forecasting, JCNN2014, Beijing, pp. 366-373.

Papandreou, G., lasonas, K., Pierre-André, S., 2015. Modeling local and global deformations in deep learning: Epitomic convolution, multiple instance
learning, and sliding window detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 390-399.

Srivastava, N., Ruslan, S., 2012. Learning representations for multimodal data with deep belief nets. In: International conference on machine learning
workshop.

Chen, H., Murray, A.F., 2003. A continuous restricted Boltzmann machine with an implementable training algorithm. IEEE Proc Vision Image Signal Process 3
(150), 153-158.

Bengio, Y., 2009. Learning Deep Architectures for Al. Foundations & Trends in Machine Learning 2 (1), 1-127.

Qiao, ], Pan, G., Han, H., 2015. The design and application of continuous deep belief network. Acta Automatica Sinica 12 (41), 2138-2146.

Pan, G., Qiao, J., Chai, W., Dimopoulos, N., 2014. An improved RBM based on bayesian regularization. In: 2014 IEEE International Joint Conference on Neural
Networks (IJCNN), pp. 2935-2939.

Hinton, G.E., 2002. Training products of experts by minimizing contrastive divergence. Neural Comput. 14, 1771-1800.

www.deeplearning.net [Online], 2017.

Lord, D., Mannering, F., 2010. The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives. Transp. Res. Part A
Policy Pract. 44 (5), 291-305.

Washington, S.P., Karlaftis, M.G., Mannering, F.L., 2010. Statistical and Econometric Methods for Transportation Data Analysis, Chapman & Hall/CRC.

Vogt, A., Bared, J.G., 1998. Accident Models for Two-lane Rural Roads: Segment and Intersections. Transport. Res. Rec.: J. Transport. Res. Board 1635, 18-29.

Hauer, E., 2015. The art of regression modelling in road safety. Springer International Publishing, Cham.

Council, F.M., Stewart, J.R., 1999. Safety Effects Of The Conversion Of Rural Two-Lane To Four-Lane Roadways Based On Cross-Sectional Models. Transport.
Res. Rec.: ]. Transport. Res. Board 1665 (1), 35-43.

Begum, M., Persaud, B., Nichol, S., 2009. Safety Performance of Ontario Road Segments. In: Proc 19th Canadian Multidisciplinary Road Safety Conference, pp.
8-10.

Ahmed, M., Huang, H., Abdel-Aty, M., 2011. Exploring a Bayesian Hierarchical Approach for Developing Safety Performance Functions for a Mountainous
Freeway. Accid. Anal. Prev. 43 (4), 1581-1589.

Hinton, G., 2010. A practical guide to training restricted Boltzmann machines. Momentum 9 (1), 926.

Please cite this article in press as: Pan, G., et al. Development of a global road safety performance function using deep neural networks.
International Journal of Transportation Science and Technology (2017), http://dx.doi.org/10.1016/j.ijtst.2017.07.004



https://www.fhwa.dot.gov/research/publications/technical
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0015
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0025
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0025
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0030
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0030
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0035
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0055
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0060
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0060
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0065
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0065
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0070
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0070
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0075
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0080
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0085
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0090
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0090
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0095
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0120
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0120
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0125
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0130
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0140
http://www.deeplearning.net
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0150
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0150
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0160
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0165
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0170
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0170
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0180
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0180
http://refhub.elsevier.com/S2046-0430(17)30019-9/h0185
http://dx.doi.org/10.1016/j.ijtst.2017.07.004

	Development of a global road safety performance function using deep neural networks
	Introduction
	Literature review
	Global deep belief network model
	Model architecture
	Model algorithm

	Case studies
	Case descriptions
	Highway 401 in Ontario, Canada
	Two-lane two-way highways in Colorado, US
	Highways in Washington State, US

	Experimental design
	Experiment 1: separate training
	Experiment 2: simultaneous training
	Experiment 3: sequential training

	Model settings
	Results
	NB models
	Experiment 1: local DBN model
	Experiment 2: simultaneously trained global DBN model
	Experiment 3: sequentially trained global DBN


	Conclusions
	Acknowledgement
	References


