
Predictable Cache Coherence
Protocols for Mixed-Time-Criticality

Multi-core Systems

by

Nivedita Sritharan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2017

c© Nivedita Sritharan 2017

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

In Chapters 6, 7, 8, Hassan, M., Kaushik, A. M. and Patel, H., aided in formalising the
idea of HourGlass, provided inputs on the architectural details of the protocol and timing
analysis. Hassan, M. aided in writing the analysis for HourGlass(H-DD-WC-0). Kaushik, A.
M., helped in Section 7.1 of Chapter 7.

iii

Abstract

Modern real-time systems consist of a combination of hard real-time, firm real-time and
soft real-time tasks. Hard real-time (HRT) tasks mandate strict timing requirements by
requiring that a static timing analysis can be performed to compute a worst-case latency
(WCL) bound. Firm real-time (FRT) and soft real-time (SRT) tasks, on the other hand,
do not impose such stringent requirements. Instead, they tolerate infrequent violations of
deadlines in favour of improved average-case performance. When deploying such a system
on a multi-core platform, the hardware resources such as the main memory, caches and
shared bus are shared between the tasks. This results in interference by FRT or SRT tasks
on HRT tasks, which complicates the timing analysis for HRT tasks, and potentially yields
unbounded WCL. This thesis presents a time-based cache coherence protocol, HourGlass,
to predictably share data in a multi-core system across different criticality tasks. HourGlass

is derived from the conventional Modified Shared Invalid (MSI) cache coherence protocol,
and it is equipped with a timer mechanism that allows the cores to hold a valid copy
of data in its private cache for certain duration. HourGlass is designed to ensure WCL
bounds for HRT tasks, and it also provides performance improvements for FRT and SRT

tasks. Such a coherence protocol encourages a trade-off between the WCL bounds for hard
real-time tasks, and performance offered to firm or soft real-time tasks with the help of
timer mechanisms. HourGlass was prototyped in gem5, a micro-architectural simulator, and
evaluated with multi-threaded benchmarks.

iv

Acknowledgements

I express my deep gratitude to my supervisor, Professor Hiren Patel, for his patience,
encouragement, and training during my graduate studies. This thesis would not be pos-
sible without his support and guidance. I thank my readers for reviewing this thesis and
providing valuable feedback: Professor Rodolfo Pellizzoni and Professor Nachiket Kapre.

I thank my colleagues in the Computer Architecture and Embedded Systems Research
(CAESR) group at University of Waterloo for the valuable discussions, guidance and sup-
port: Yunling Cui, Mohammed Hassan, Anirudh M. Kaushik, and Paulos Tegegn.

I thank my parents for their endless support and encouragement throughout my life. I
am grateful to them for always believing in me and helping me in fulfilling my dreams. I
am thankful to my grandparents, who supported me in all my decisions and showered me
with blessings and love.

I also thank my brother, Nikhil, without whose constant encouragement I would not
have pursued my graduate studies. I am also grateful to my family, who were always
there for me when I was homesick: Renuka, Kemburaj, Anu, Prabakaran, Kunal, Akkilaa,
Vishal, Janani, Ajit, Krithika.

Special thanks to my wonderful friends here at Waterloo, who provided great moral
support and made my stay here more lively and enjoyable: Kritika, Arshee, Jacqueline,
Meghana, Namrah and Rabeeah.

Finally, I thank the Almighty for giving me the strength to complete my graduate
studies.

v

Dedication

This thesis is dedicated to my parents, Radhika Sritharan and V. Sritharan, who have
supported and encouraged me throughout my life. This thesis is possible only because of
their constant love and sacrifices.

vi

Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1

2 Related Work 4

2.1 Real-time systems . 4

2.2 Mixed time-criticality systems . 5

2.3 Bus arbitration . 6

2.4 Time-based coherence protocol . 7

3 Background 9

3.1 Cache coherence . 9

3.1.1 Coherence protocol . 11

3.2 Mixed time-criticality multi-core systems 13

3.2.1 Arbitration schemes . 14

4 System Model 16

vii

5 Bus Arbitration schemes 20

5.1 Dedicated slots for all cores (ALL-DD) . 21

5.2 Dedicated slots for HRT cores with Non work conserving arbitration (H-DD-
NWC) . 22

5.3 Dedicated slots for HRT cores with Work-conserving arbitration (H-DD-WC) 23

6 Use of Criticality-aware Bus Arbitration and Timers - an Illustration 25

7 HourGlass 30

7.1 Architectural Modifications . 30

7.1.1 Architectural modifications to shared bus 31

7.1.2 Architectural modifications to cache controllers 33

7.1.3 Hardware overhead . 35

7.2 Cache Coherence Protocol Modifications 35

7.2.1 Modifications for Criticality awareness 37

7.2.2 Support for Timers . 39

7.2.3 Illustrative Examples . 40

8 Timing Analysis 47

8.1 Timing Analysis for HourGlass(H-DD-NWC) 49

8.1.1 Bound for HRT cores . 50

8.1.2 Bound for FRT cores . 60

8.2 Timing Analysis for HourGlass(H-DD-WC) 71

8.2.1 Bound for HRT cores . 71

8.2.2 Bound for FRT cores . 78

9 Evaluation 86

9.1 Data correctness and protocol verification 87

9.2 Bounding memory access latencies . 87

viii

9.3 Comparison of per request WCL bounds of HourGlass with other approaches 89

9.4 Comparison with other approaches . 91

9.5 Effect of timers on the performance of {FRT,SRT} cores 95

9.5.1 Effect on HourGlass(H-DD-NWC) 97

9.5.2 Effect on HourGlass(H-DD-WC) . 98

9.5.3 Effect on HourGlass(H-DD-WC-0) 98

9.6 Scalability . 99

9.6.1 Effect on HourGlass(H-DD-NWC) 99

9.6.2 Effect on HourGlass(H-DD-WC) . 100

9.6.3 Effect on HourGlass(H-DD-WC-0) 101

10 Conclusion and Future Work 103

References 105

ix

List of Tables

7.1 State transitions at the private cache . 36

7.2 Different state transitions based on core criticality and issuance of requests
in slack or dedicated slots . 38

7.3 State transitions at the shared memory . 38

A1 HourGlass configurations. 89

x

List of Figures

3.1 Cache Coherence Protocol. 10

3.2 MSI Cache Coherence Protocol. 12

3.3 Cache Coherence Protocol with states. 13

3.4 Mixed time-criticality multi-core system. 14

4.1 Mixed time-criticality multi-core system. 17

5.1 Bus arbitration schemes. 21

6.1 PMSI cache coherence protocol with fixed priority arbitration. 26

6.2 Proposed solution with timers for SRT cores. 28

6.3 Proposed solution with timers for HRT cores. 29

7.1 Architectural Modifications. 31

7.2 Multiple pending requests from HRT and SRT cores. 41

7.3 Multiple sharers. 43

7.4 Multiple pending requests in HourGlass(H-DD-WC). 44

8.1 Different latency components per request of a core. 48

8.2 Illustration for the latency due to data transfer at requesting core slot. . . 49

8.3 Critical Instance for H-DD-NWC HRT core - Read-Write Unshared. 52

8.4 Critical Instance for H-DD-NWC HRT core - Read-Write Shared. 56

8.5 Critical Instance for H-DD-NWC FRT core - Read-Write Unshared. 63

xi

8.6 Critical Instance for H-DD-NWC FRT core - Read-Write Shared. 67

8.7 Critical Instance for H-DD-WC-0 HRT core - Read-Write Shared. 72

8.8 Critical Instance for H-DD-WC FRT core - Read-Write Shared. 80

9.1 Observed WCL components for HourGlass(H-DD-NWC). 87

9.2 Observed WCL components for HourGlass(H-DD-WC). 88

9.3 Observed WCL components for HourGlass(H-DD-WC-0). 88

9.4 Observed per request WCL of HRT cores for all real-time approaches. . . . 90

9.5 Total execution time slowdown compared to MESI protocol. 91

9.6 Speedup compared to PMSI protocol - Synchrobench. 93

9.7 Speedup compared to PMSI protocol - AutoBench 2.0. 94

9.8 Speedup compared to PMSI protocol - Synthetic benchmarks. 94

9.9 Effect of timers in HourGlass(H-DD-NWC). 96

9.10 Effect of timers in HourGlass(H-DD-WC). 97

9.11 Effect of timers in HourGlass(H-DD-WC-0). 98

9.12 Effect of scalability in HourGlass(H-DD-NWC). 99

9.13 Effect of scalability in HourGlass(H-DD-WC). 101

9.14 Effect of scalability in HourGlass(H-DD-WC-0). 102

xii

Chapter 1

Introduction

Modern real-time systems consist of a combination of tasks that may be of different critical-
ity levels. These tasks may further share the underlying hardware resources when deployed
on a computing platform. For certification, it is imperative to guarantee that tasks deemed
to be of high criticality such as hard real-time tasks, never exceed their temporal require-
ments. Naturally, exceeding the temporal requirements for such hard real-time tasks (HRT)
may render the system in a state with the potential for catastrophic consequences. How-
ever, modern real-time systems also consist of tasks that do not require such strict temporal
requirements, but instead, those may only require best-effort service. Classical examples
of such tasks include firm real-time tasks (FRT) and soft real-time tasks (SRT). A real-time
system with a combination of HRT, FRT and SRT tasks is what we refer to as a mixed
time-criticality system. Example domains include avionics and automotive (DO 178C and
ISO 26262) [8], which have further extended the MCS model to multiple criticality lev-
els. For instance, the Anti-lock Braking System (ABS) of the automotive is required to
respond within a certain time duration, otherwise leading to life-threatening consequences
(hard real-time). The automotive navigation system is required to provide results within
a certain time duration, otherwise the result is invalid (firm real-time). However, they do
not lead to life-threatening consequences like HRT tasks. The infotainment system, on the
other hand, only requires best-effort service for the user and do not require any timing
requirements (soft real-time).

As demands for more functionality and better performance from mixed time-criticality
systems increase, there is noticeable interest in leveraging multi-core platforms to deploy
such applications (Freescale P4080, [3]). The use of multi-core platforms reduces hardware
cost, and it also offers true parallelism that applications can exploit for better performance.
However, a primary concern in mixed time-criticality multi-core systems is the interference

1

caused between HRT, FRT and SRT tasks that share the hardware resources. This is
because the FRT and SRT tasks, that do not have strict timing requirements, interfere
with the HRT tasks. The contributing interference may originate from one or many of the
hardware components such as the main memory, last-level caches, and shared buses. This
interference can either cause the HRT tasks to miss their timing guarantees or the FRT

and SRT tasks to contribute to the worst-case execution time (WCET) of HRT tasks. This
significantly complicates the WCET analysis for HRT tasks because a static analysis of the
HRT tasks must incorporate the effect of the FRT and SRT tasks’ execution. Consequently,
there is considerable interest in devising strategies to mitigate the impact of the interference
such that HRT tasks are guaranteed to meet their requirements.

Multi-core platforms also introduce additional sources of interference. One such inter-
ference occurs when multiple tasks deployed on different cores access data that is temporar-
ily stored in the private cache of a core. Since multiple threads may update the shared
data, ensuring that any read of the shared data receives the most up-to-date write to the
shared data is essential for correct execution. This involves transferring the data from one
private cache, through the bus, to the requesting core’s cache. Since the worst-case latency
(WCL) to access data is a component of the task’s WCET, predictably managing shared
data across multiple tasks deployed on different cores remains a challenging problem [8].

General purpose micro-architectures use cache coherence in such scenarios. Cache co-
herence is a mechanism that maintains data coherently across the private caches of the
cores to ensure correct and high performance execution of the application. However, con-
ventional cache coherence protocols do not manage predictable transfer of shared data
across the cores. Hence, prior work has focused on disabling caches to predictably share
data across multiple cores [18, 24], or only caching non-shared data [10]. Another alter-
nate solution in [10, 9, 16] proposed OS scheduler modifications to map tasks that share
data to the same core and thereby avoid simultaneous caching of shared data across the
cores. Though these solutions are suitable for real-time systems as they guarantee timing
requirements for HRT tasks, they do not offer significant performance benefits. Recently,
a hardware-based cache coherence protocol to predictably manage accesses to shared data
in multi-cores called PMSI [21] was proposed. PMSI improved the average-case perfor-
mance compared to other predictable approaches by allowing simultaneous cached shared
data accesses. Thus cache coherence is a good solution to provide performance benefits
for real-time systems. However, PMSI does not differentiate between different criticality
tasks. It provides strict timing guarantees for all tasks (HRT, FRT or SRT). As a result,
a FRT or SRT task would cost HRT tasks an opportunity for tighter worst-case latency
bounds by providing unnecessary strict timing guarantees for FRT or SRT tasks. Further-
more, PMSI does not offer any mechanisms to encourage FRT and SRT tasks to improve

2

their average-case performance. Hence, it is beneficial to provide support that allows si-
multaneous caching of shared data in a multi-core while being criticality-aware, such that
HRT tasks have worst-case bounds, and FRT and SRT tasks are provided with performance
benefits.

In this thesis, I propose HourGlass, a predictable cache coherence protocol that is
criticality-aware. Specifically, HourGlass differentiates between HRT and FRT or SRT tasks
and ensures that different requirements of these tasks are met. For HRT tasks, HourGlass

ensures worst-case latency bounds. For FRT tasks, HourGlass provides timing guarantees
but a looser bound compared to HRT tasks and also support to improve the average-case
performance. For SRT tasks, HourGlass provides no guarantees but has support to improve
the average-case performance. HourGlass is equipped with a timer-based mechanism to al-
low for FRT and SRT tasks to improve their performance. The timers allow for a trade-off
between potentially improving performance of FRT or SRT tasks while loosening the WCL
bounds of HRT tasks. This is acceptable as long as the HRT tasks continue to meet their
temporal requirements. Further, HourGlass also has support that allows predictable shar-
ing of data across HRT and FRT or SRT tasks. Most work do not focus on sharing data
across different criticality tasks, however, this is conservative. As long as HRT tasks are
guaranteed to meet the timing requirements, it is beneficial to support such accesses.

This thesis is organized into several sections as follows: In Chapter 2, I discuss the
related work in mixed time-criticality systems and timer-mechanisms in cache coherence
protocols. In Chapter 6, I discuss the motivation for HourGlass compared to the existing
predictable cache coherence protocol PMSI. I also discuss different versions of HourGlass ob-
tained by changing the criticality-aware bus arbitration. Chapter 5 gives an account of the
different arbitration schemes considered in this work. Chapter 7 gives a detailed descrip-
tion of the hardware modifications and cache coherence protocol modifications required for
HourGlass. I also provide a timing analysis for all versions of HourGlass, and describe the
various latency components that contribute to the WCL of requests from HRT and FRT

tasks in Chapter 8. I prototype HourGlass in gem5 [7], a cycle accurate micro-architectural
simulator, and evaluate with multi-threaded benchmarks from SPLASH-2 [31] and syn-
thetic benchmarks that exhibit maximum data sharing (Chapter 9). It is observed that
the WCL of all memory requests from HRT tasks are within their analytical bounds, and
that timers do encourage a trade-off between performance improvement from FRT or SRT

tasks and WCL for HRT tasks.

3

Chapter 2

Related Work

2.1 Real-time systems

Real-time systems ensure that the application does not only function correctly, but also
meets the timing requirements. Tasks in the application should complete before a fixed
worst-case execution deadline [21]. With increasing demand for real-time systems in several
domains with importance to performance and cost-efficiency, there is a shift to multi-core
systems. Multi-core real-time platforms contain interconnects, caches, and main memory
that are shared by all the cores in the platform. Typical real-time models assume task
isolation where there is no sharing of data across the tasks. This requires partioning of
the memory based on the number of tasks. Authors in [21] identified that task isolation
suffers from limitations such as memory underutilization and does not scale with increasing
number of cores. Thus there is need for sharing data across the tasks for performance and
cost efficiency. This further complicates the timing analysis for the accesses by the cores
due to interference when multiple cores access the shared memory.

Prior work on sharing data across the cores focussed on bypassing the cache hierarchy
to access shared data [18, 24]. Alternate solutions proposed in [10, 9, 16] make operating
system (OS) changes to include data-sharing aware scheduler policies that identify tasks
that share data. The tasks that share data are mapped to the same core and thereby
avoid simultaneous access to shared data by multiple cores. Authors in [26] modified the
application such that accesses to shared data are protected using lock mechanisms. As a
result, shared data is accessed by only one core at any time instance. This approach, in
the worst-case will lead to sequential execution of tasks, thereby overriding the effect of
parallelism.

4

Hassan et al. [21] proposed a novel hardware cache coherence protocol Predictable
Modified Shared Invalid Cache Coherence Protocol (PMSI) to manage shared data accesses.
Compared to prior approaches that either bypass the cache or make application or OS
modifications, PMSI allowed simultaneous access to shared data by multiple tasks, resulting
in improved average-case execution time. It is a modified version of the standard MSI
protocol that allows for sharing of data in a predictable manner. However, this thesis
proposes a cache coherence protocol for a different platform of embedded systems - mixed
time-criticality systems, that has a combination of hard real-time (HRT) and firm real-time
(FRT) or soft real-time (SRT) tasks. PMSI does not differentiate between HRT and FRT

or SRT tasks and assumes all tasks to be HRT, thereby providing timing guarantees for all
tasks, even though SRT tasks do not require guarantees. Hence, I present HourGlass, that is
criticality-aware with support for two time-criticality levels, which offers tighter worst-case
latencies for HRT tasks.

2.2 Mixed time-criticality systems

In recent years, work on real-time systems has shifted on allowing tasks of different levels
of criticality to share a common hardware platform [6, 8]. Tasks are of different criticality
levels based on the levels of safety assurance required by the system (DO 178C and ISO
26262) [8]. If we consider only the timing requirements of the tasks, the system includes
a combination of tasks of different time-criticality levels: hard real-time (HRT), firm real-
time (FRT) and soft real-time (SRT). For example, consider the automotive and avionics
industries. The Anti-lock Braking Systems (ABS) of the automobile (hard real-time task)
is strictly required to meet the deadline, otherwise leading to catastrophic behaviour. The
automotive navigation system (firm real-time task), allows for infrequent misses to meet
the deadline for better average-case performance; however the result is not valid. The
entertainment system (soft real-time task), on the other hand, is not required to meet
strict timing requirements, but only better average-case performance [5]. Such a system,
that has a combination of different time-criticality levels deployed on the same platform,
is termed as mixed time-criticality system [15].

Multi-core platform in mixed time-criticality systems form the topic of interest in recent
embedded and real-time systems to benefit performance and efficiency. With tasks of
different levels of criticality, co-existing on the same platform, allowing data sharing across
different levels is an important concern. Most works focussed on disallowing data sharing
across different criticality levels in order to maintain isolation of tasks of different criticality
levels [8]. However, isolating tasks based on criticality on a multi-core platform is not

5

trivial, as it requires partitioning mechanisms at the cache and memory level [14]. Also,
disallowing data sharing across criticality levels is an unnecessary restriction, that degrades
the performance [34]. Alternatively, there are solutions that allow data sharing across
criticality levels [14, 10, 34]. As long as the HRT tasks meet the required deadline, there is
prospect in supporting data sharing across criticality levels.

In [10], Chisholm et al. studied the tradeoffs caused by data sharing across criticality
levels through shared memory and propose techniques to reduce them. They proposed
methods to bypass LLC (Last Level Cache) for data accessed by tasks of different criticality
levels and accessed data from DRAM, eliminating unpredictable LLC interference across
the tasks. They also proposed techniques to assign the tasks that share data to the same
core, thereby avoiding concurrent access to the shared data, as a core executes only one
task at a time. Giannopoulou et al. in [14] proposed time-triggered scheduling strategy
that allows tasks of same criticality to access the shared resources (caches, memory bus) at
a time to prevent tasks of different criticality levels from affecting the response time of HRT
tasks. Zhao et al. proposed highest-locker criticality, priority-ceiling protocol (HLC-PCP)
that used semaphores to access shared data. If a task, say SRT, wants to access the data
that is shared by a HRT task, then the SRT task acquires the priority of the HRT task till
it accesses the data, and then its priority is restored. They also showed that the blocking
of shared resources by different criticality levels is bounded and hence there is predictable
data sharing across criticality levels. These prior work focussed on adding modifications to
the scheduling mechanisms [34, 14] or to the OS [10]. While these mechanisms work well for
systems that do not use caches for shared data, for better performance there is a need for
a mechanism that makes use of caches for shared data. In this work, I propose a hardware
cache coherence protocol along with a predictable arbitration scheme that handles data
sharing in a predictable manner in a mixed time-criticality system. I assume a system
model similar to [13], where tasks of same criticality are mapped to the same core. Hence
the core inherits the criticality of the tasks that are mapped to it.

2.3 Bus arbitration

Bus arbiters for mixed time-criticality systems are different from those for real-time sys-
tems, as they must support tasks of different criticality levels in a predictable way. There
are several research efforts that provide explicit support for different criticalities in bus
arbiters [25, 19, 12, 11]. Paolieri et al. [25] presented a dual-criticality arbitration where
HRT tasks (HRT) used round-robin arbitration, and whenever there were no requests from
HRT, SRT tasks are serviced yielding a worst-case bound for HRT. Hassan et al. [19] pre-

6

sented CArb, a statically scheduled two-level bus arbitration scheme that used harmonic
weighted round-robin (HWRR) arbitration. The first level performed HWRR amongst
criticality classes, and the second among tasks within a criticality class. CArb is not only
criticality-aware, but also requirement-aware as it allocates services to tasks based on their
requirements. Cilku et al. [12, 11] proposed a two-layer arbiter that distinguished between
memory requests from HRT and FRT tasks. Their approach used TDM arbitration such
that HRT tasks were pre-assigned slots in the TDM schedule after which a fixed number of
slots were reserved to service requests from FRT tasks. Within the slots reserved for FRT

tasks, round-robin was performed. Gomony et al. [15] proposed work-conserving arbitra-
tion scheme by allocating slack slots to FRT tasks to improve the average-case performance.
HourGlass takes inspiration from Paolieri et al. [25], Cilku et al. [12, 11] and Gomony et
al. [15]. I consider different combination of arbitration schemes that are criticality-aware
and provide varying worst-case latency bounds for the cores, that is explained in Chapter 5.

2.4 Time-based coherence protocol

Several works on timestamp-based cache coherence protocols were proposed such as [27, 28,
32] as alternative techniques to the standard directory-based protocols to reduce network
traffic and address the scalability issue of directory protocols. Shim et al. presented Library
Cache Coherence (LCC) in [27] where the cache lines are held for a certain time duration,
which is maintained by a global timer. In the presence of multiple sharers, a write to a
cache line is stalled until the cache lines held by the sharers invalidate after their timer
duration. This timestamp-based configuration reduced the network traffic for directory
protocols. Singh et al. in [28] proposed time-based cache coherence called Temporal
Coherence (TC) to minimize the network traffic overheads for Graphics Processing Unit
(GPU) architecture. While LCC focussed on a time-based coherence for a system that
implemented sequential consistency, TC focussed on Release Consistency model. TC used
timestamp-based fence instructions to avoid the stalling of writes. Yu et al. proposed a
novel cache coherence protocol Tardis [32], that is simpler and more scalable compared to
the standard directory protocol. Tardis is similar to LCC, but it does not require a globally
synchronized clock. It maintains sequential consistency by storing the logical time of the
read and write accesses. These prior work on time-based coherence used timers to reduce
network traffic for general-purpose multi-core systems and GPU architecture. However, in
HourGlass, we use the timer concept to provide differential services to the cores based on
their criticality, focusing on providing improved average-case performance for FRT or SRT

tasks. A cache line is held for a pre-defined time duration by a core in its private cache,

7

even if it is requested by other cores, so that repeated reads or writes to the cache line
from the core are cache hits, thus improving the performance of FRT and SRT tasks.

8

Chapter 3

Background

This chapter gives a brief introduction of cache coherence in a multi-core system and the
conventional cache coherence protocol. This also provides a background on the mixed
time-criticality multi-core system and the bus arbitration schemes used in this work.

3.1 Cache coherence

Multi-core systems share data between cores by accessing addresses within a shared ad-
dress space. Modern multi-core platforms implement private cache hierarchies that exploit
spatial and temporal locality to improve the application’s performance. Hence, shared or
private data may reside in the private cache hierarchy of multiple cores, allowing multiple
copies of the data to co-exist across the cores simultaneously. For correct execution of par-
allel programs with shared data, it is essential that any core performing a read operation
on the shared data obtains the most recent write to the shared data. Since multiple copies
of the shared data are privately cached across multiple cores, there must be a mechanism
to ensure that reads to the shared data receive the most up-to-date data. This is known as
keeping data values coherent across multiple cores. A mechanism known as cache coherence
is a solution that keeps shared data values coherent across multiple cores [29].

Figure 3.1a presents an example illustrating the need for a cache coherence protocol.
This example shows two cores c0 and c1 accessing shared data A. Initially, the shared data
variable A has a value of 5 in the shared memory and it is not cached in any of the private
caches. 1 Core c0 performs a write operation on A with a value of 10. This is a miss in c0’s
private cache requiring the shared memory to respond with A 2 , which is later modified

9

A: -A:5

Write A:10

A:10

Shared
memory

c0 c1

A: -

3

Modify A

Read A

A:5

1

2

4a

(a) Without cache coherence.

A: -A:5

Write A:10

A:10

Shared
memory

c0 c1

A: -

3

Modify A

Read A

1

2

4b
A:10 A:10

Update
shared memory

(b) With cache coherence.

Figure 3.1: Cache Coherence Protocol.

by c0 with the value of 10. Next, 3 core c1 performs a read operation on cache line A,
which is a miss in its private cache. Without cache coherence, either the shared memory or
c0 may respond to c1’s request. In order to ensure that c1 reads the most up-to-date value
of the shared data, the correct response should be from c0’s private cache. Figure 3.1a
presents a situation without cache coherence where the shared memory responds to the
read by c1 4a . This provides c1 with a stale value 5 of A. This results in the presence of
two different copies of the same cache line in the system at the same time. This clearly

indicates a need for a set of rules that ensures the value written by c0 is read by c1. 4b
Figure 3.1b continues the example assuming the existence of a cache coherence protocol.
With the presence of a cache coherence protocol, c0, on seeing a read request from another
core, provides c1 with the latest value 10. c0 also writes back the value to the shared
memory to maintain a coherent view of A across the system.

There are software and hardware techniques to implement cache coherence. Software
approaches for cache coherence require additional software instructions to be added to man-
age the various copies of shared data explicitly by invalidating the data in the cache [2].
These additional instructions impact the performance [23]. It requires the programmer or
the compiler to analyze the shared data and invalidate them in a timely manner to ensure
the correct functioning of the application [2, 30]. On the other hand, a hardware implemen-
tation of cache coherence does not require any application or compiler modifications and
is independent of the application. A hardware cache controller implements a protocol that
enforces strict rules governing the coherent view of multiple cached copies of data across
multiple cores. Hardware cache coherence works at the granularity of cache lines, which is
the unit of data transfer in the memory hierarchy. Based on the implementation, hardware
cache coherence can be realized either as a snoopy-bus-based protocol or a directory-based
protocol [29]. In a snoopy bus-based protocol, each core broadcasts coherence messages to
the shared bus on any read/write request. All the cores snoop the bus to observe the activ-

10

ity of all the cores. Directory-based cache coherence protocol uses a centralized directory
that acts as an interconnect across multiple cores to maintain coherence. The cores and
the shared memory communicate only via the directory. This work focuses on hardware
cache coherence that use a snoopy shared bus implementation, which is appropriate for
current multi-core platforms with eight cores or less (Freescale P4080, [3]) used in real-time
multi-core systems.

3.1.1 Coherence protocol

A cache coherence protocol is an implementation of a set of rules that ensures data coher-
ence. This set of rules identifies states that denote the read and write permissions of cache
lines, and transitions between these states that occur due to activities of other cores in
the system on the same cache line. The Modified-Shared-Invalid (MSI) cache coherence
protocol is a fundamental cache coherence protocol that several modern cache coherence
protocols are based upon such as the MESIF, and MOESI protocols [29]. MSI consists of
three stable states. The semantics for each of these states are as follows: 1) Invalid (I)
indicates that the cache line does not have valid data. 2) Modified (M) represents that the
core has modified the cache line data; hence, it has the most up-to-date data. Only one
core can have a cache line in the modified state. 3) Shared (S) identifies that the cache
line was read, but not modified. Multiple cores may have the same cache line in the shared
state. This allows read hits in their respective private caches.

Cache coherence protocol also consists of transient states, which are intermediate states
between stable states. These states represent whether the core is waiting for a data re-
sponse, or waiting for the memory requests to be ordered on the shared bus. For instance,
the transient state IMAD is an intermediate state between the invalid (I) state and mod-
ified (M) state, when a write request is issued on the bus by a core with a cache line in I
state. Here A denotes that the core is waiting for its coherence message to be broadcasted
and D denotes that it is waiting for data response. A cache line changes states based
on the activities of the cores. Once the write request is observed on the bus, it moves
to another intermediate state IMD denoting that the core awaits only a data response.
Transitions between states occur by exchanging coherence messages between the cores and
shared memory.

When discussing coherence activities, I refer to the private core to identify the core
whose cache controller is under consideration, and remote cores as all other cores. Since
every private cache implements the same set of rules in its cache controller, I distinguish
requests made by the private core and those by the remote cores. To accomplish this, a

11

core views coherence messages on the bus as either Own or Other coherence messages. Own
denotes that the cache controller observes a coherence message generated by its private
core, and Other as a coherence message generated by remote cores.

MSI Cache Coherence Protocol

M

I

S

Read : GETS
Write : GETM

O
th

er
G

ET
M

/

O
w

nP
U

TM
O

w
nG

ET
M

OwnGETM

OtherGETS

O
therG

ETS
O

therG
ETM

Read/ Write Read/
OtherGETS

Figure 3.2: MSI Cache Coherence Protocol.

Figure 3.2 shows the state-transition diagram for the standard Modified-Shared-Invalid
(MSI) cache coherence protocol. Recall that cores observe the memory activities of other
cores in a snoopy bus based cache coherence implementation. Hence, the coherence mes-
sages are differentiated as Other and Own to distinguish messages generated by the private
core versus the remote cores. The labels on the transitions denote requests generated either
by the private core (read/write) or by remote cores resulting in coherence messages across
the snooping bus. For example, a GetM(A) coherence message generated on a store request
denotes that the private core wishes to perform a write on data A. Similarly, a GetS(A)
coherence message is generated on a load request, and denotes a read by the private core
on data A. A PutM(A) coherence message is generated during write-backs of dirty cache
lines.

Consider the previous example scenario along with the information on different states
as shown in Figure 3.3. c0 has the cache line A in a stable modified (M) state once it
receives the data from the shared memory 2 . Next, 3 c1, on observing a miss in its

12

S

A: -A:5

Write A:10

A:10

Shared
memory

c0 c1

A: -

3

Modify A

Read A

1

2

A:10 A:10

Update
shared memory

M

A:10 S

I I

OtherGetS OwnGetS

Figure 3.3: Cache Coherence Protocol with states.

private cache for the read operation of A, broadcasts the message GetS(A) on the bus. As
a result, c0 observes this coherence message as OtherGetS(A) and so responds with the up-
to-date value of A to c1 and moves to shared (S) state. c1, on the other hand, observes the
coherence message as OwnGetS(A) and moves to a transient state ISD. Once it receives
the correct data from c1, c0 completes the read operation and moves to shared state.

3.2 Mixed time-criticality multi-core systems

Recent work on multi-core real-time systems propose tasks of different criticality levels to
share the same platform [6]. The tasks are either hard real-time (HRT), firm real-time
(FRT) or soft real-time (SRT). These tasks have different requirements, based on their
criticality, that must be guaranteed. For example, the deadline by which the task should
finish may vary for different criticality levels. Hard real-time (HRT) tasks have strict
timing requirements and it is necessary that the tasks complete before the pre-determined
deadline. Firm real-time (FRT) tasks, on the other hand, are not required to always meet
their deadlines. Instead they can tolerate occasional missed deadlines at the expense of
degraded performance. These firm real-time tasks benefit from improved average-case
performance. SRT tasks do not have any strict guaranteed requirements, but instead,
may require best-effort service such as improved average-case performance. Such a system
that has a combination of tasks, that have different timing requirements, are termed as
mixed time-criticality systems. I focus on a mixed time-criticality system that consists of
a combination of two time-criticality levels: HRT and FRT tasks or HRT and SRT tasks
sharing the same platform. The cores in the multi-core system are differentiated as HRT

13

and FRT or SRT cores, where HRT tasks are mapped to HRT cores and FRT or SRT tasks
are mapped to FRT or SRT cores. Figure 3.4 shows a four-core system with two HRT cores
and two FRT cores. They are connected via a snoopy shared bus to the memory. Here
shared memory represents the DRAM main memory.

c0hrt

Shared bus

Shared memory

c1hrt c2frt

hrt

c3frt

frt

Hard-real-time core

Firm-real-time core

Figure 3.4: Mixed time-criticality multi-core system.

3.2.1 Arbitration schemes

There needs to be a predictable arbitration at the shared bus to decide which task in a
real-time application gains access to the hardware resources (for example, the shared mem-
ory) via the bus. Time-division multiplexing (TDM) is one of the predictable arbitration
schemes that provides timing isolation across the tasks [12] by assigning a dedicated time
slot for each core. But with different levels of criticality, different arbitration schemes can
be proposed by assigning varying number of guaranteed slots to the tasks based on their
criticality. Chapter 2 discusses some prior work on bus-arbiter schemes in [25, 19, 12, 11]
to support different criticality tasks to access the shared bus. Another way for a bus arbi-
tration scheme would be to assign all HRT cores with a guaranteed slot, as they are always
required to meet their timing requirements. On the other hand, since FRT cores tolerate
some misses to timing deadlines, they can be assigned fewer slots and serviced in a round-
robin manner. The TDM arbitration can be work-conserving or non-work-conserving.
Work-conserving TDM allows a core to use the slot of another core’s dedicated slot if
the other core has no pending request (slack slot). Non-work-conserving, on the other
hand, leaves the slack slots idle. Work-conserving TDM is useful to improve performance
as slack slots are used to service other pending requests. HRT cores are required only to

14

meet the timing requirements, whereas the FRT or SRT cores require better average-case
performance. Hence, the slack slots can be used to service requests from FRT or SRT cores
to improve their performance [15].

15

Chapter 4

System Model

This work assumes a mixed-time-criticality multi-core real-time system consisting of a
combination of tasks that have two different timing requirements. It assumes the task set to
be Γ = {τ1, τ2, . . . , τm} with m number of tasks, where τi is a task that has pre-determined
requirements to be met depending on its time-criticality and i indicates the task identifier.
Based on their timing requirements, the tasks can be hard real-time, firm real-time or
soft real-time tasks. Hard real-time (HRT) tasks mandate strict timing requirements and
require that they always complete their execution before the deadline. Firm real-time
(FRT) tasks, on the other hand, are not required to always meet their deadlines. Instead
they can tolerate occasional missed deadlines at the expense of degraded performance.
This allows firm real-time tasks to leverage techniques that improve its performance. Soft
real-time (SRT) tasks are those that do no require any strict timing guarantees, but only
benefit from improved average-case performance. I assume that the system consists of a
combination of 2 levels of time-criticality - cl1 and cl2, where cl1 are HRT tasks and cl2 are
either FRT or SRT tasks. It can either have FRT tasks or SRT tasks along with HRT tasks
based on the requirements of the second level for that application.

The multi-core platform has N in-order cores {c0, c1, . . . , cN−1}. Each core has its own
private instruction cache (L1-I$) and data cache (L1-D$). The shared memory is assumed
to be the main memory. The cores and the shared memory are interconnected with a
snooping bus, which exchanges cache coherence messages between them. Additionally,
there is a common cache data bus connecting the cores to support cache-to-cache transfers.
It is assumed that once a data transfer over the bus starts, it cannot be preempted.

This work assumes that a single task is mapped onto a single core for the duration of
the application’s execution. Each core is associated with a logic that programs whether

16

the core is a HRT, FRT or SRT core, based on the criticality of the task mapped to it. Each
core in the multi-core system is characterized by the criticality of its task (cl) and the core
identifier, ccli where cl ∈ {hrt, frt, srt} and i indicates the core identifier. Memory request
from HRT cores must have WCL guarantees per request whereas memory requests from
FRT or SRT cores have no strict timing guarantees. However, FRT and SRT cores benefit
from improved average-case performance. I denote the number of HRT cores as Nhrt, FRT
cores as Nfrt and SRT cores as Nsrt. Since the system assumes only two levels of criticality,
it is seen that N = Ncl1 + Ncl2 , where cl1 ∈ hrt and cl2 ∈ {frt, srt}. The number of HRT

and FRT or SRT cores are set based on the number of tasks of different criticality required
for the application. Each core is then programmed to be HRT, FRT or SRT based on the
Nhrt, Nfrt or Nsrt. HRT tasks are mapped to cores that are programmed as HRT, whereas
FRT or SRT tasks are mapped to FRT or SRT cores. Hence, the core acquires the criticality
of the task that is mapped to it and so tasks and cores are used interchangeably in this
thesis. The tasks distributed across the multiple cores with different criticality levels can
share data.

Figure 4.1 illustrates a system model assumed for this work. It consists of two HRT

tasks and two FRT tasks, mapped on a four-core system. Hence two cores are programmed
as HRT and two cores as FRT. Each core has a private L1 cache and the cores and shared
memory are connected via the snoopy bus and the common data bus. The shared memory
is the DRAM main memory.

c0hrt

Shared snooping bus

Shared memory

c1hrt c2frt

hrt

c3frt

frt

HRT core

FRT core

Message bus

Data bus

L1-$ L1-$ L1-$ L1-$

ARB

Timers

P P P P

Logic to set
hrt / frt

Figure 4.1: Mixed time-criticality multi-core system.

17

The shared snooping bus uses a predictable arbitration scheme to arbitrate accesses to
the shared memory from different cores. I assume Time Division Multiplexing (TDM) for
predictable arbitration of memory accesses, although HourGlass can be extended to support
any other predictable arbitration scheme. Some TDM slots are pre-assigned for certain
cores, and these are termed as dedicated slots. In the dedicated slots, only the core that is
assigned that slot can make a request. If the dedicated core has no pending request, then
that slot is idle and is called a slack slot.

Chapter 5 describes the different arbitration schemes considered in this work. ALL-DD

allocates dedicated slots for all the cores, irrespective of whether they are HRT, FRT or
SRT. H-DD-NWC, in order to get tighter worst-case latency bounds for HRT cores, allocates
dedicated slots for all the HRT cores, but only fewer dedicated slots to FRT cores. Among
the few dedicated slots, the FRT cores are serviced in round-robin and the slack slots
remain idle. To improve the performance of FRT cores, H-DD-NWC is modified to allow the
slack slots to be utilized by the FRT cores to issue requests. This scheme is given by H-

DD-WC. A special case of H-DD-WC is where no slots are dedicated to the second criticality
level. This arbitration, H-DD-WC-0, can be utilized for SRT cores, that do not require a
guaranteed bound. All HRT cores are assigned dedicated slots, whereas SRT cores use only
the slack slots of HRT cores. Based on the arbitration scheme used, different version of
HourGlass is chosen. In order to characterize this, I represent HourGlass as a function of the
arbitration scheme chosen (arb) - HourGlass(arb). The hardware for arbitration is present
at the shared bus, as shown in Figure 4.1. The bus arbitrates memory requests, data
responses, and coherence messages.

I assume the TDM slot-width SW to be large enough to complete one data transfer
from the shared memory to the private cache of a core, and the transfer of any necessary
coherence messages. The transfer of coherence messages and data responses begin at the
start of a TDM slot. I also assume that a core can issue only one memory request in its
designated TDM slot. Further, a core is allowed to have only one pending request to the
bus. The bus arbiter also supports fixed-priority arbitration to handle multiple pending
requests from different cores. Requests from HRT cores are prioritized over the requests
from FRT and SRT cores. Multiple pending requests from cores of the same criticality are
serviced in First-Come First-Serve (FCFS) manner.

Each core contains timers that enable holding onto the cache line for a fixed time
duration (cycles) even when it is requested by a remote core as shown in Figure 4.1. Once
the timers expire, the private core responds to the coherence messages from the requesting
remote cores. Two timers are associated with each cache line for a core. The countdown
timers are denoted as tn(A, ccln , c

cl
m) where tn identifies the current value of the timers for a

cache line A present in cn where n,m ∈ {0, 1, ..., N − 1} and cl ∈ {hrt, frt, srt}. cn denotes

18

the core that has a valid copy of the cache line, and cm denotes the requesting core. For
example, assume that ci is a HRT core, and cj is a SRT core. Then, ti(A, c

hrt
i , csrtj) denotes

the timer configuration for cache line A when a HRT core chrti has the cache line A, and
observes a memory request from a SRT core csrtj for the same cache line A. Since there are

two time-criticality levels - cl1 (HRT) and cl2 (frt or srt), a valid cache line in a cl1 core, ccl1i ,
may receive requests for the cache line from a core of either criticality (cl1 or cl2) resulting
in two timer configurations ti(A, c

cl1
i , ccl1k), and ti(A, c

cl1
i , ccl2l) where A is the cache line that

is requested, ck is a HRT core and cl is either a FRT or SRT core. Notice that these two
timer configurations identify the requesting core to be either of the two criticality levels.
Similarly, a request to a valid cache line in a core of cl2 criticality ccl2j also has two timer

configurations tj(A, c
cl2
j , ccl1i), and tj(A, c

cl2
j , ccl2l) where cl is another cl2 core and A is the

cache line. The timers are initialized with timeout values on receiving a valid copy of the
cache line. I denote v(hrt, hrt) as the initial timeout value for a cache line present in the
private cache of a HRT core, and requested by another HRT core, and v(hrt, cl2), where cl2 is
either FRT or SRT, as the initial timeout value for a cache line present in the private cache
of a HRT core, and requested by a FRT or SRT core. Similarly v(cl2, hrt) and v(cl2, cl2)
represent the initial timeout values for cache lines present in the private cache of a cl2 core,
and requested by another HRT core and cl2 core respectively, where cl2 is either FRT or
SRT. The timer configurations are set based on the requirements of the application, and
they are not changed during application execution. Moreover, the timers are private to the
core; hence, their values are not communicated to other cores.

In HourGlass, I assume that lock variables are not shared between the two criticality
levels (HRT and FRT or HRT and SRT). Though HourGlass guarantees per request worst-
case latency for HRT tasks, it is necessary to guarantee that the critical section of the task
is also bounded in order to have a guaranteed bound for the task. There can be a case
when a SRT core obtains the lock and does not release it as the requests are not predictable
for SRT tasks. Other mixed criticality work use wait-free buffers to handle this. With the
provision of timers in HourGlass, HourGlass can be extended to support sharing of locks
across criticality levels. A core, on obtaining a lock variable, holds it for a particular time
duration. This time duration can be set based on the upper bound on the duration of
critical section for all HRT tasks. If SRT cores still hold the lock variables after this time
duration, then they are released, thus providing guarantees for HRT tasks. In this thesis,
for experimentation, I assume that FRT and SRT cores have an upper bound on the critical
section that requires locking the mutex variables. Thus, this guarantees bounds for HRT

tasks.

19

Chapter 5

Bus Arbitration schemes

The cores in a multi-core platform access the shared memory and DRAM via the inter-
connecting shared bus. Read/write requests or cache coherence messages are broadcasted
to other cores and shared memory using the shared bus. A bus arbiter arbitrates requests
from all the cores, such that no core is starved from accessing the bus. For this, there
needs to be a predictable bus arbitration scheme in order to avoid unbounded interference
from different cores accessing the bus. HourGlass uses Time Division Multiplexing (TDM)
for predictable arbitration of requests across the cores. TDM allocates slots of fixed time
duration to each core in order to access the shared bus. It provides temporal isolation
across the cores. I discuss different arbitration mechanisms that can be used in mixed
time-criticality systems, that have different timing requirements for the tasks/cores. Mem-
ory requests from HRT cores must have worst-case latency (WCL) guarantees per request,
whereas memory requests from FRT cores tolerate infrequent violations of timing guaran-
tees. SRT cores, on the other hand, do not require strict timing guarantees. However,
FRT and SRT cores benefit from improved average-case performance. In this thesis, for
analysis and evaluation, I allocate only one slot per core in a TDM schedule. However,
each core can be allocated more than one slot in a TDM schedule. Figure 5.1 illustrates
the allocation of TDM slots to the cores for all the arbitration schemes discussed here.
The example in the figure considers a system with four cores with two HRT cores and two
FRT or SRT cores. As discussed in Chapter 4, the total number of cores in the system is
represented as N , number of HRT cores as Nhrt, number of FRT or SRT cores as Nfrt or
Nsrt.

20

c0hrtc3frtc2frtc1hrtc0hrt c1hrt

c2frtc1hrtc0hrt c3frtc1hrtc0hrt

1 2 3 4 5 6

1 2 3 4 5 6

1

2

TDM period

TDM period

c2frtc1hrtc0hrt c2frt
c1hrtc0hrt c3frt

c1hrtc0hrt
c0hrt

c2srt
c0hrt

c3srt
c1hrt

c2srt
c1hrt

1 2 3 4 5 6

1 2 3 4 5 6

3

4

TDM period

TDM period

HRT core slot

FRT core slot

Slack slot

c0
hrt, c1

hrt

c2
frt , c3

frt

- HRT cores

- FRT cores

c2
srt , c3

srt - SRT cores

Figure 5.1: Bus arbitration schemes.

5.1 Dedicated slots for all cores (ALL-DD)

ALL-DD allocates a dedicated TDM slot for each core, irrespective of its time-criticality.
Assuming that the system has two levels of time-criticality with HRT and FRT cores, every
HRT and FRT core is guaranteed a dedicated slot. Figure 5.1 1 illustrates the allocation
of slots using ALL-DD. The TDM repeats its schedule after this fixed allocation of slots to
cores. The TDM period P is given by,

P = N × SW

where N is the number of cores in the system and SW is the fixed slot width.

In Figure 5.1 1 , each core is allocated a dedicated slot and TDM period P is 4 TDM
slots. The TDM slot width SW is large enough to broadcast necessary coherence messages
and complete one memory transfer. The worst-case arbitration latency (WCLarb) for any
core is given by the time the core takes to gain access to the bus again after it has just
missed its slot. The worst-case arbitration latency for HRT and FRT cores are as follows:

WCLhrtarb = N × SW

WCLfrtarb = N × SW (5.1)

21

In the worst-case, the request issued by a core ci just missed its slot; hence, it has to
wait for its next slot, which is after a TDM period. In ALL-DD, HRT and FRT cores have the
same worst-case arbitration latency. This arbitration scheme makes no distinction between
HRT and FRT cores, and this is a good policy for a real-time system with cores of same
criticality level (for example, PMSI). However, for a system with different criticality levels,
the arbiter should also be criticality-aware. HRT cores are required to have tight bounds,
whereas FRT cores require performance improvements compared to guaranteed bounds.
ALL-DD allocates dedicated slots for each FRT core, thus treating the FRT core as a HRT

core. FRT cores are provided with strict timing guarantees which is not necessary; they
benefit from improved performance. To this end, I discuss another arbitration scheme,
H-DD-NWC.

5.2 Dedicated slots for HRT cores with Non work con-

serving arbitration (H-DD-NWC)

H-DD-NWC is criticality-aware and assumes a dual-layer arbiter similar to [12], with a
fixed priority arbitration that gives priority to HRT cores. It allocates a dedicated slot for
each HRT core, and few fixed number of dedicated slots to FRT cores. As a result, the
WCL for HRT cores is tighter when compared to ALL-DD. Consider the number of slots
allocated for all FRT cores be denoted as N frt

s , where N frt
s < Nfrt. Among the slots for

FRT cores, Round-Robin (RR) arbitration is used, that ensures FRT cores are not starved.
RR provides services to FRT cores based on pending FRT requests. If a FRT core has no
pending request, then the next FRT core in the round-robin order is given access to the
bus. This helps with the average-case performance improvement for FRT cores. In this
arbitration, if the dedicated core does not have any pending request to be broadcasted on
the bus, then that slot remains idle. Such an arbitration is non work conserving and the
idle slot is termed as slack slot. The TDM period P for this arbitration is given by

P = (Nhrt +N frt
s)× SW

In Figure 5.1 2 , 2 slots are allocated to two HRT cores and 1 slot is allocated for FRT

cores. The TDM period P is thus 3 TDM slots. Worst-case arbitration latency for the
cores is given as follows:

WCLhrtarb = (Nhrt +N frt
s)× SW

WCLfrtarb =

⌈
Nfrt

N frt
s

⌉
× P (5.2)

22

where P is the TDM period.

All the HRT cores are guaranteed a dedicated slot, and hence the worst-case arbitration
latency for HRT cores is the TDM period. However, only N frt

s slots are allocated for FRT

cores per TDM period. The remaining FRT cores are granted access to the bus in the next
TDM period and hence WCLfrtarb is in terms of P .

5.3 Dedicated slots for HRT cores with Work-conserving

arbitration (H-DD-WC)

The TDM arbitration in ALL-DD and H-DD-NWC assume non-work-conserving arbitration,
where slack slots (no pending request in a dedicated slot from its dedicated core) remain
idle. From experiments, it is observed that the HRT cores have low slot utilization resulting
in more slack slots. Work-conserving TDM allows a core to use the slot of another core’s
dedicated slot if it is a slack slot and thus improves performance. However, HRT cores are
needed only to meet guaranteed timing requirements, but not improved performance. The
FRT and SRT cores, on the other hand, benefit from improved average-case performance.
Hence, it makes sense to allow these cores to make use of the slack slots to improve their
average-case performance.

FRT cores allow for occasional violation of worst-case latency bounds, but it is required
to meet the bound for valid outcome. Hence, I assume an arbitration that considers the
same policy as H-DD-NWC, along with work-conserving arbitration. All the HRT cores are
allocated dedicated slots, whereas fixed number of dedicated slots are allocated to FRT

cores. However, the slack slots of HRT cores are utilized to service requests from FRT

cores. 3 in Figure 5.1 illustrates this scheme. In the 5th TDM slot, chrt1 has no pending

request and hence this slack slot is used by FRT core cfrt3 . By RR, the arbiter grants the

6th TDM slot to the next FRT core, cfrt2 .

The TDM period P and the worst-case latency bound for HRT and FRT cores are the
same as H-DD-NWC given by Equations 5.2. In the worst-case, there are no slack slots and
hence the FRT cores are issued only in the dedicated slots.

SRT cores, on the other hand, do not require any guaranteed timing requirements. SRT

cores only require better performance. Hence, I consider a special case of H-DD-WC, where
dedicated slots are allocated only to HRT cores. I term this arbitration where no slots are
dedicated to SRT cores as H-DD-WC-0. By not allocating dedicated slots for SRT cores,
the TDM period is less and thus the worst-case latency bound for HRT cores is tighter.

23

Dedicated TDM slots are allocated only to HRT cores and the SRT cores are granted access
only in slack slots of HRT cores.

Now the TDM period P is given by

P = Nhrt × SW

4 in Figure 5.1 shows an example using H-DD-WC-0. Since there are only 2 HRT cores,
the TDM period is 2 TDM slots. Worst-case arbitration latency is given by

WCLhrtarb = Nhrt × SW (5.3)

The SRT cores, will not have a guaranteed bound, as they are not allocated a dedicated
slot. The SRT cores access the bus depending on the availability of slack slots.

24

Chapter 6

Use of Criticality-aware Bus
Arbitration and Timers - an
Illustration

Cache coherence maintains a coherent view of multiple copies of shared data by propagat-
ing changes of one copy to the other copies systematically. However, conventional cache
coherence protocols [29] do not distinguish between different time-criticality levels across
the cores. Also, conventional cache coherence protocols lead to unpredictable scenarios,
which is not suitable for real-time systems that require strict timing guarantees [21]. In
[21], the authors propose invariants for predictable cache coherence and propose a protocol
PMSI. However, in mixed-time-criticality systems, HRT, FRT and SRT cores have differ-
ent timing requirements. Recall that HRT cores have strict timing requirements, whereas
FRT and SRT cores benefit from improved performance, and allow occasional misses to
deadlines. Hence, it is essential to differentiate requests from HRT, FRT or SRT cores in
mixed time-criticality systems. It is necessary to reduce the interference suffered by HRT

cores originating from other criticality levels to assist in tighter worst-case bounds while
encouraging FRT or SRT cores to improve their average-case performance.

PMSI does not differentiate requests from HRT, FRT and SRT cores. Therefore, a FRT

or SRT core in PMSI would be treated as a HRT core. This means the coherence state of a
shared cache line in a HRT core is affected by the activities of the other criticality level by
the mere fact that a TDM slot must be assigned to the FRT or SRT core. Consequently,
introducing criticality-awareness in cache coherence can provide tighter worst-case bounds
for HRT cores. An alternative is to make modifications to PMSI to support the two different

25

time-criticality levels considered for that application. Suppose that the bus arbitration
policy is changed to distinguish requests from HRT and FRT or SRT cores. H-DD-NWC and
H-DD-WC presented in Section 4 are criticality-aware. In contrast to the TDM arbitration
used in PMSI, criticality-aware arbitration pre-allocates few slots (in case of FRT tasks) or
no slots (in case of SRT tasks) to obtain tighter WCL bounds for HRT cores and allows FRT

or SRT cores to utilize the slack slots in round-robin fashion to improve their performance.
Chapter 5 gives a detailed account of the different arbitration schemes and their benefits
over the conventional TDM arbitration.

Assume that PMSI uses one of the criticality-aware arbitration schemes. The FRT

cores do not always get a dedicated slot every TDM period when H-DD-NWC or H-DD-WC

is used. In case of H-DD-WC-0, the SRT cores are never allocated a dedicated slot. Hence
conventional PMSI will not be predictable with this arbitration, when a HRT core requests
for a cache line that is held by a SRT core. This is explained in detail in Chapter 7.
So, PMSI requires architectural and coherence protocol changes in order to support this
criticality-aware bus arbitration. For the sake of simplicity, let us assume that PMSI also
supports cache-to-cache transfers between cores, which it originally does not as presented
by Hassan et al. [21]. Figure 6.1 illustrates this implementation of PMSI using H-DD-WC-0

arbitration, that provides for tighter worst-case latency (WCL) bounds for HRT cores by
not allocating any TDM slots to SRT cores.

A:10 MA:5 M
1

2

3 Write A:20
Send data

A:10 I A:20 M

Shared
memory

c0hrt c2srt

c2srt: Write A: 20

c0hrt: Write A: 40

c0hrt

c1hrt

c0hrt

Miss

4

5

TDM
schedule

c2srt: Write A: 606

c1hrt

A:20 I
Send data

A:40 M

Write A:40
Miss

A:40 I

Write A:60
Miss

A:60 M
Send data

7

Figure 6.1: PMSI cache coherence protocol with fixed priority arbitration.

Figure 6.1 assumes a four-core multi-core system of HRT cores chrt0 , chrt1 , and SRT cores

csrt2 , csrt3 . It shows the core activity for HRT core chrt0 and SRT core csrt2 . Initially, chrt0 has

26

data A in modified state 1 . At 2 , csrt2 has a write request. Since, chrt1 does not have a
pending memory request, the arbiter uses the slack slot to issue csrt2 ’s write request to A

3 . Since chrt0 has the most up-to-date copy of A, it sends A to csrt2 , and invalidates its

copy 3 . At 4 , chrt0 has a write request to A. At 5 , chrt0 ’s write request is placed on the

shared bus, and csrt2 sends the up-to-date data to chrt0 , and invalidates its copy. At 6 , csrt2

has a write request to A. Since, chrt1 does not have a pending request, the bus arbitration
grants this slack slot to csrt2 ’s pending write request, and completes its write request at 7 .
Note that this example performs coherence correctly, but it requires only two TDM slots
to be assigned to the HRT cores, as only the HRT cores require timing guarantees. With
conventional PMSI, all four cores would need to be assigned at least one slot. Although
this is a simple example, it illustrates that one can obtain tighter WCL bounds on HRT

cores by using a criticality-aware bus arbitration.

Note that H-DD-WC-0 arbitration only ensures WCL bounds for HRT cores, and no
guarantees on WCL or performance for SRT cores. The requests from SRT cores are
satisfied depending on the availability of slack slots. It is desirable to provide SRT cores a
mechanism to improve its performance while still ensuring WCL bounds for HRT cores. For
example, in Figure 6.1, consider that the first write request to A from csrt2 (2) is succeeded
by multiple read and write requests to A from csrt2 (not shown). Currently, requests from
HRT cores to the same data results in csrt2 ’s copy of A to be invalidated. This in turn results

in cache misses for succeeding requests to A for the csrt2 . Further, consider that at 7 , chrt1

has some pending request and so chrt1 ’s slot cannot be utilized by csrt2 . The multiple read
and write requests to A from csrt2 can be satisfied only when csrt2 obtains a slack slot. A
mechanism that I propose in this work is to allow cores to hold shared data in their private
caches for a pre-defined time duration. The time duration still guarantees WCL bounds
for HRT cores, but it allows SRT cores to leverage cache hits for repeated data accesses
resulting in reduced total memory access latency and thus improving performance.

Figure 6.2 shows the use of timers with the criticality-aware bus arbitration policy: H-

DD-WC-0. This assumes that only the SRT cores have timers. The initial states (1 , 2) are
similar to the example in Figure 6.1. At 3 , csrt2 ’s write request is satisfied in the slack slot

of chrt1 . The difference from the previous example is that csrt2 holds A for a time duration

of 1 TDM period. In other words, at the end of the next slot of chrt1 , csrt2 self-invalidates its
copy of A in its private cache. During this time period, successive write requests from csrt2

to A are cache hits 5 , 6 resulting in reduced memory access latency for SRT cores. During
this timer period, the response for the write request from chrt0 4 is deferred until the end
of the timer duration or timeout 7 . At the end of the timer duration, csrt2 invalidates its

copy of A (8), and sends it to the first pending HRT core, which is chrt0 . The use of timers

27

A:10 MA:5 M
1

2

3 Write A:20
Send data

A:10 I A:20 M

Shared
memory

c0hrt c2srt

c2srt: Write A: 20c0hrt

c1hrt

c0hrt

Miss

TDM
schedule

c2srt: Write A: 605

c0hrt

A:60 M

A:70 I

Hit

8 Send data
A:40 M

Write A:40
Miss

c1hrt c2srt: Write A: 706A:70 M
Hit

Timer
duration

c0hrt: Write A: 404

7
Write A:40

4

Figure 6.2: Proposed solution with timers for SRT cores.

for SRT cores results in improved average-case performance, while still guaranteeing WCL
bound for HRT cores. Note that there is no reordering of memory requests, but there is
only a change in the interleaving of requests between two different cores. The memory
requests from a single core are still satisfied in order. So the usage of timers is valid under
sequential consistency [29]. It is observed that the WCL bound for HRT cores depends on
the value of timers set initially for the SRT cores, but it is still a guaranteed bound as the
value is constant throughout the progress of the application. The timers, thus, introduce a
trade-off between the WCL of memory requests from HRT cores, and performance of SRT

cores.

Mixed time-criticality systems also require that there is less interference suffered by
HRT cores due to SRT cores. By assuming timers for HRT cores, a HRT core also holds data
for some time duration. It gives some buffer time within which HRT and SRT cores can
make requests. If there is no HRT core requesting for the same data in that buffer time,
then SRT cores can obtain the data. However if there are HRT and SRT cores requesting
for the same data, then by fixed priority arbitration, HRT cores are serviced before SRT

cores. Figure 6.3 illustrates a scenario where HRT cores also have timers. Initially 1 , chrt0

holds the cache line A in modified state. At 2 , csrt2 has a write request to A. This write

is broadcasted in chrt0 ’s slack slot at 3 . Now chrt1 also requests for write on A, that is

broadcasted in the next slot of chrt1 4 . If chrt0 does not hold A for some time duration,
then csrt2 would have obtained A at 3 and holds for some time duration (1 TDM period

as in the example in Figure 6.2). Now chrt1 ’s write is interfered by csrt2 ’s write and it has to

28

A:10 MA:5 M
1

2

Write A:20

Shared
memory c0hrt c2srt

c2srt: Write A: 20
c1hrt

c0hrt

c1hrt

Miss

TDM
schedule

c1hrt
6

A:40 M

Write A:40
Miss

c0hrt

Timer
duration

c1hrt: Write A: 404

Write A:40

c1hrt
A:10 I

3

4

5

Figure 6.3: Proposed solution with timers for HRT cores.

wait for csrt2 ’s timer to expire before it can receive A. Though this will not affect the WCL

bound of chrt1 , it is beneficial to have support to quantify this interference from SRT cores.

If chrt0 holds A for some time duration, say 2 TDM periods, then it expires at the end of

chrt0 ’s slot 5 . Now, chrt0 observes two pending requests, and by fixed-priority arbitration,

chrt1 receives A before csrt2 6 . Thus, chrt1 receives A that is not modified by a SRT core,
csrt2 . This amount of interference allowed by memory requests of SRT cores on HRT cores
can be quantified based on the timer duration. For example, setting the timer duration,
that a HRT core holds data, to a high value may prohibit any interference from SRT cores.
This is beneficial in applications where it is required to prevent a less secure SRT core from
interfering with a HRT core, until it is complete. The presence of timers for HRT cores also
lead to increase in number of slack slots, as each HRT core should wait for the timers of
other HRT cores to timeout. This allows more FRT or SRT cores to access the bus, thereby
improving the performance of FRT or SRT cores.

I propose HourGlass that includes all these changes to support criticality-aware fixed
priority arbitration and timers. HourGlass is a novel predictable cache coherence protocol
compared to PMSI and is useful for mixed time-criticality systems. It provides provisions
to improve the average-case performance of SRT cores by increasing the number of cache
hits, with an increase in WCL bound for HRT cores.

29

Chapter 7

HourGlass

HourGlass is a predictable time-based cache coherence protocol for mixed-time-criticality
systems. HourGlass is derived from the conventional MSI cache coherence protocol. It is
designed such that there is a per request worst-case latency bound for HRT cores as all HRT
cores are allocated dedicated slots. For FRT cores, few TDM slots are allocated. So there
is a per-request worst-case latency bound for FRT cores. It is a looser bound compared to
the HRT cores, but it has a guaranteed bound. Since FRT cores utilize the slack slots of
HRT cores, it also provides improved average-case performance. For SRT cores, no TDM
slots are guaranteed and so they do not have a worst-case latency bound, but benefit from
improved performance due to the use of slack slots. For predictability of any core (observed
request latency is always within the derived worst-case request latency bound), HourGlass
must satisfy the invariants described in PMSI [21]. However, with different criticality levels
co-existing on the same platform, the HRT cores must be prioritized over the FRT or SRT

cores. HourGlass requires architectural changes and cache coherence protocol changes to
support this criticality-aware cache coherence.

7.1 Architectural Modifications

Figure 7.1 shows the architectural modifications necessary to support HourGlass(arb). There
is a need for modifications in the architecture of the shared bus and the cache controller,
as explained in Sections 7.1.1 and 7.1.2.

30

ci
hrt cj

srt

Shared bus

Shared
memory

L1 $ L1 $
1PRSP of ci

srt

A: SendData for c0
hrt

B: SelfInv for c2
srt

Tag

Cache line organization

2

4

Tag
Cache line organization

Owner bits Sharer count
Addr CID Criticality Msg

A 3 srt GetM
A 0 hrt GetS

7PR LUT

6

B: SelfInv for c1
hrt

hrt timer srt timer Dest-dd Dest-sl

0

0

RB for srt
A: GetM c3

srt

B: GetS c2
srt

Slot
sl
dd

Sl

3 5

1

Figure 7.1: Architectural Modifications.

7.1.1 Architectural modifications to shared bus

The arbiter assigns dedicated slots to all the HRT cores and few dedicated slots to FRT cores
or no dedicated slots to SRT cores, depending on the arbitration scheme chosen. The slack
slots of HRT cores are utilized by FRT or SRT cores. I assume that the hardware support to
handle this arbitration across the requests from different cores, is already available in the
shared bus. For instance, the shared bus can have a pending request queue for each core,
from which the arbiter chooses the request from the corresponding core for that TDM slot.

FRT cores can broadcast their requests on the bus in the dedicated slots for FRT cores
or in slack slots of HRT cores. SRT cores broadcast their requests only in the slack slots of
HRT cores. It is therefore required to identify the FRT or SRT cores utilizing the slack slots.
This is required because the requests from FRT or SRT cores broadcasted in the slack slots
lead to unpredictable behaviour for requests from HRT cores. There can be more pending
requests (FRT or SRT) than the number of dedicated slots in the TDM schedule, leading
to unbounded request latency for HRT cores. As a result, it is required that the requests
broadcasted in the slack slots are cancelled and reissued in the presence of a pending request
from HRT core. To this end, the arbiter must append the information on whether it is a
slack or dedicated slot in the coherence message with a bit isSlackSlot, before broadcasting
it. With this information, HourGlass takes appropriate state transitions.

31

Recall that for H-DD-WC-0, the arbiter does not allocate dedicated slots to the SRT

cores. Assume that a HRT core, chrti , requests for a cache line that is present in the private

cache of a SRT core, csrtj . In such a scenario, the predictability of the request from chrti

is lost, as there is no guarantee that the csrtj will definitely get a slack slot, where it can

send data to chrti . To handle this, HourGlass allows for sending data in the requesting
core’s slot. To this end, HourGlass requires the addition of two new coherence messages
needed for cache-cache transfer (when cache line is in modified state) called SendData and
self-invalidation (when cache line is in shared state) called SelfInv. More details on these
coherence messages are provided in Section 7.2. These coherence messages are required
to be reordered based on criticality, before they are broadcasted in the requesting core’s
slot. For example, consider chrt0 has a cache line A in modified state in its private cache.

Next, there are two pending requests to A from csrt2 in slack slot and chrt1 in dedicated

slot, observed in the same order by chrt0 . chrt0 sends SendData coherence message initially

for csrt2 , and then on observing a higher priority chrt1 ’s request, sends another SendData

coherence message for chrt1 . In this case, HourGlass should reorder SendData messages such

that chrt0 sends data to chrt1 , and cancel the pending data response coherence message to

csrt2 although chrt0 observed the request from csrt2 first. To support this, a pending response
(PRSP) buffer for each core is added in the shared bus. This buffer holds the coherence
messages issued by the corresponding core related to sending data to another core and to
shared memory (SendData), and self-invalidation messages (SelfInv). This is shown as 1
in Figure 7.1. Each PRSP buffer is of size N. Recall from the example that, in case of
multiple pending requests from HRT and SRT cores, the core that has the cache line issues
two coherence messages. Hence, whenever a coherence message for a HRT core is added to
the PRSP buffer, the arbiter cancels the pending coherence messages for requests from FRT

or SRT cores broadcasted in slack slots. These cancelled messages are identified by using a
valid bit in the PRSP entries as shown in 1 . When a coherence message for a particular
data is added to the PRSP buffer, that already has a valid pending coherence message
for the same data but for a different core of same criticality level, then the new coherence
message is cancelled. This is done to ensure that requests from the same criticality level
are serviced in order in first-come first-serve policy.

Adding PRSP buffers requires changes to the criticality-aware arbitration logic. At the
start of a TDM slot for a particular core ck, the arbiter needs to check the PRSP buffers
of all the cores if there exists a valid pending coherence message (SendData or SelfInv) for
ck. If there exists one, then this message is broadcasted in the TDM slot for ck. HourGlass

allows for the existence of multiple sharers of a cache line simultaneously. As a result, for
a core ck (requesting for a write operation), there can be N − 1 cores holding the cache

32

line in shared state. Hence, there are now N − 1 SelfInv messages for ck sent by all the
cores in shared state. The arbiter allows for the broadcast of multiple coherence messages
for the same core. Thus, the slot width must be large enough to account for the transfer
of at least N − 1 coherence messages and latency due to data transfer from main memory.
If ck does not have any pending request, or any coherence message in its PRSP buffers,
then this TDM slot (slack slot) is assigned to a FRT or SRT core in round-robin. The
arbiter determines which FRT or SRT core to grant access to the bus at the beginning of
the slot, and only one core may proceed in that slot. This ensures that the core completes
its request within the slot.

Recall that FRT or SRT requests broadcasted in slack slots are reissued on observing a
HRT request. These reissued requests are again broadcasted in the next slot for that FRT

or SRT core. The SRT cores do not require guaranteed bound. However, in order to have a
bound for FRT cores, the reissue request from a FRT core is broadcasted in a dedicated FRT

slot (detailed explanation in Section 7.2.1). To handle this, the shared bus has a Reissue
Buffer (RB) shown as 2 in Figure 7.1, that holds reissue requests from FRT cores. In the
dedicated slot of a FRT core, the arbiter first broadcasts the requests from RB buffer, and
if it is empty, it broadcasts requests from FRT cores in round-robin.

7.1.2 Architectural modifications to cache controllers

HourGlass uses timers to guarantee WCL bounds for HRT cores while simultaneously allow-
ing FRT or SRT cores to benefit from improved performance. These timers are typically
available in most current commercial-off-the-shelf (COTS) micro-architectures in the form
of time-stamp registers. For example, x86 architectures have the timer-stamp registers
[22] that increments based on the core frequency, and most ARM architectures have a
system counter that counts at a specific frequency [4]. HourGlass utilizes these commonly
found high precision timer support to deliver WCL bounds for HRT cores, and performance
improvement for FRT and SRT cores.

In order for cores to hold cache lines for a time duration, the tag bits of cache lines are
extended to hold two timer values based on their criticality. For example, each cache line
A in HRT core, chrti , will have two countdown timers ti(A, c

hrt
i , ccl2j), where cl2 is either FRT

or SRT (FRT or SRT timer) and ti(A, c
hrt
i , chrtk) (HRT timer) where i, j, k ∈ {0, ..., N − 1}.

The initial values of the countdown timers are set based on the latency requirements of
HRT tasks and on the application. The counter values are represented as 64 bit values.
This architectural modification is shown in Figure 7.1 as 3 . When a core receives a cache
line from either the shared memory or from a remote core, the timer values are set with

33

the timeout configured values, and begin to count down every cycle until they are zero.
When TDM arbitration is used, the initial values of the timer can be set in terms of TDM
periods. In this case, the timers are aligned to TDM slots and expire at the end of TDM
periods. Now, the bit overhead per cache line can be reduced to 12 bits by storing the
TDM period at which the cacheline is invalidated.

The cache controller is also augmented with logic to identify the criticality of the remote
requests. The cores are aware of the criticality of other cores present in the multi-core
platform. This information can be configured at boot time, and stored in a dedicated
on-chip read-only memory (ROM). The criticality of the requesting core and information
on the issuance of the request in slack or dedicated slot, is required for the coherence
protocol to make correct transitions and prevent unpredictability. This allows a core that
holds a valid copy of a cache line to differentiate criticality of pending requests, that is
needed for cache-to-cache transfer. The core that holds a valid copy of cache line, marks
the requesting core’s identifier in a field called Dest. This is required for the core to send
its data to the requestor after its timer expires. I extend the tag bits of a cache line to
include two destination fields to denote the requests broadcasted in slack slots (Dest-sl)
and dedicated slots(Dest-dd) as shown in Figure 7.1 4 . The cache controller is included
with a logic to identify the core identifier to which the data is transferred after the timers
expire. In the presence of multiple pending requests from FRT cores, data is transferred
to the first FRT core that made the request, irrespective of whether it was from the slack
slot or dedicated slot. But if there is a pending HRT core, then data is transferred to the
core that made the request in a dedicated HRT or FRT slot. Any request made by a FRT

or SRT core in slack slot is reissued in the presence of a HRT request.

Each cache line is also extended with one bit Sl to identify if the request for that core is
from a slack slot or dedicated slot shown as 5 in Figure 7.1. Recall that this information
is sent by the arbiter when it services the memory requests. This bit is required by the
FRT or SRT cores as they must reissue their request on seeing a HRT core only when it is
from a slack slot.

In HourGlass, the shared memory keeps track of the number of sharers of a cache line
in the system. This is not necessary in conventional cache coherence protocols and PMSI.
HourGlass requires this information at the shared memory due to the presence of multiple
sharers of a cache line, that timeout at different instances. In order to maintain coherence,
only one core can be in modified state at a time. Hence, when a core ci broadcasts a write
request in the bus on a cache line that already has multiple sharers, ci should wait for
all the sharers to invalidate before it can obtain the cache line for write operation. This
important property of cache coherence protocols is termed as single writer multiple reader
(SMWR) invariant. To ensure this SMWR invariant, HourGlass requires that each entry in

34

the shared memory be extended with bits to hold the number of sharers of a cache line
at that instant (6 in Figure 7.1). In the worst-case, all cores can have the cache line in
shared state and hence it requires log2N bits per cache line, where N is the number of
cores (Nhrt +Nsrt).

The shared memory also has a pending request lookup table (PR LUT) similar to
PMSI [21], that is used to manage multiple pending requests in a predictable manner.
HourGlass, however, requires modifications to the PR LUT such that pending requests to
a cache line from HRT cores are serviced before pending requests to the same cache line
from FRT or SRT cores broadcasted in slack slots. Hence, I extend the PR LUT to include
the criticality of the pending requests to a cache line shown as 7 in Figure 7.1. Pending
requests from FRT or SRT cores issued in slack slots are cancelled when there is a HRT

request to the same cache line.

7.1.3 Hardware overhead

Each cache line in the private caches is extended by 2 timer fields, two destination fields
and one Sl bit. For a 4-core system, this results in an overhead of 64 + 64 + log2(4) +
log2(4) + 1 = 133 bits per cache line. This overhead is for a general solution of HourGlass,
where any arbitration scheme can be considered. However, if TDM arbitration is used
with the timers values aligned to TDM periods, then 4 bits for each timer in a cache line
are enough to store the initial values for timers. Hence the bit overhead is reduced to
4+4+ log2(4)+ log2(4)+1 = 13 bits per cache line. Each cache line in the shared memory
includes the sharer count, which for a 4-core system results in an overhead of log2(4) = 2
bits per cache line. Each entry in the PR LUT in the shared memory is extended by a bit
to denote the criticality of the request and another bit to denote if it was broadcasted in
slack or dedicated slot. Each entry in the PRSP buffer holds the memory address for the
request, the coherence message, the core identifier, and a valid bit. For a physical address
space of 4GB, this results in roughly 40 bits per entry.

7.2 Cache Coherence Protocol Modifications

HourGlass requires modifications to the MSI cache coherence protocol in addition to the
architectural changes described in the previous section. This is because the coherence
messages and responses need to be differentiated based on the criticality of the cores.
Tables 7.1 and 7.2 describe the different coherence states and transitions between the

35

State Core events Bus events - common to hrt and frt or srt cores

Load Store Replacement Timeout
Own-
GetS

Own-
GetM

Own-
PutM

Own-
SelfInv

InvAll
Own-

SendData
Data

OtherGetS-
hrt, frt or

srt

OtherGetM-
hrt, frt or

srt

I
issue
GetS
/ISAD

issue GetM
/IMAD X X X X X X X X X - -

ISAD X X X X /ISD X X X X X X - -

ISD X X X X X X X X X X
load /S
and ST

* *

ISDI X X X X X X X X X X
load /ST I
and ST

* *

S hit
/STM and

WT
issue SelfInv

/SIA
/S and RT X X X X X X X -

update
Dest-sl or
dd /ST I and

WT

ST I hit
STM and

WT
issue SelfInv

/SIA

issue
SelfInv
/SIA

X X X X X X X -
update

Dest-sl or
dd

SIA hit

issue
SelfInv and

GetM
/SMA

issue SelfInv X X X X /SI X X X - issue SelfInv

SI hit
issue GetM

/IMAD /I X X X X X /I X X - -

STM hit X X

issue
SelfInv

and GetM
/SMA

X X X X X X X -
update

Dest-sl or
dd

SMA hit X X X X X X /IMAD X X X - issue SelfInv
IMAD X X X X X /IMD X X X X X - -

IMD X X X X X X X X X X
store /M
and ST

* *

IMDI X X X X X X X X X X
store /MT I

and ST
* *

M hit hit
issue PutM

/MIA
/M and

RT
X X X X X X X

/MT I and
WT

update
Dest-sl or

dd /MT I and
WT

MT I hit hit

issue PutM
and

SendData
/MIA

issue
SendData

/MIA
X X X X X X X

update
Dest-sl or

dd

update
Dest-sl or

dd

MIA hit hit
issue PutM

/MIR
X X X WB/I X X

issue Send-
Data/I

X
issue

SendData
issue

SendData

Table 7.1: State transitions at the private cache

states for private caches. Table 7.3 describes the coherence states and state transitions for
shared memory controller. Core events denote activity of the core such as loads, stores, and
replacements, and bus events denote coherence messages and data responses observed on
the bus. In the tables, msg/state denotes that a core issues the message msg, and moves
to a coherence state state. Cells marked as “×” indicate that a bus or core event cannot
happen for a cache line in that state, and cells marked as “-” denote that a cache line in
that state does not change state or take any action with a core event or bus event. Shaded
rows are new states introduced by HourGlass. In Table 7.1, “WT” denotes wait for timer
timeout, “RT” denotes restart timer and “ST” denotes start timer. The modifications
to MSI are categorized into two categories: modifications for criticality awareness, and
modifications for timer support.

36

7.2.1 Modifications for Criticality awareness

Recall from section 7.1.2 that the cache controllers have hardware support to differentiate
memory requests based on the criticality of the requesting cores and the issuance of the
requests in dedicated or slack slots. In the presence of pending requests from only FRT

cores or only from SRT cores, the requests are serviced in First-Come First-Serve policy.
However if there is a pending HRT request, to maintain predictability of the HRT request,
the first request that was broadcasted in a dedicated slot is serviced. FRT or SRT requests
broadcasted in slack slots are reissued. Since FRT cores are also required to have bounds,
the requests from FRT cores that were broadcasted in their own dedicated slot are not
reordered. This differentiation in responses to the requests from different cores, is carried
out through coherence messages issued to the bus for the remote cores. Since each core is
aware of the criticality of remote requestors, the core identifier information in the coherence
messages is used to identify the criticality of the incoming request. Each core identifies the
coherence messages based on the criticality of the remote core as Message-hrt, Message-frt
and Message-srt. For instance, OtherGetM -hrt denotes that a core with a valid copy of a
cache line observes a write request from a HRT core. Table 7.2 shows the different state
transitions at the private cache of the cores, based on the criticality and issuance of requests
at dedicated or slack slots. Further, recall from Section 7.1.1 that the arbiter appends the
coherence message with information whether the request is broadcasted in dedicated or
slack slot. Hence the core that made the request, on observing its own message, updates
the bit Sl based on the slot (dedicated or slack) the request was broadcasted. 1 in
Table 7.2 denotes that the Dest-dd is updated only if Dest-dd is empty (this is the first
request that is broadcasted in dedicated slot). Based on these information, the core with
the valid cache line identifies the remote core to which it should transfer data.

The requests broadcasted by FRT or SRT cores in slack slots are cancelled in the pres-
ence of a pending HRT request. As explained in Section 7.1.2, a FRT or SRT core, that
broadcasted its request on a cache line A in slack slot, reissues its request on A on observ-
ing a HRT remote request on A. In the worst case, the reissue request of a FRT core, say
cfrtj , is always broadcasted in a slack slot, resulting in unpredictable behaviour for cfrtj . To
handle this, any reissue request from a FRT core is broadcasted on the bus in a dedicated
slot for FRT cores. The FRT core should thus send this information (whether it is a reissue
request) along with the coherence message. A bit isReissue can be used to identify it. The
arbiter then takes appropriate action to broadcast the reissue requests in dedicated slots.

In HourGlass, the shared memory is required to identify cache lines that are not cached
in the private cache of any core (I state), and when there exists at least one core with a
valid read-only copy of the cache line (S state). To identify this differentiation, the shared

37

State Sl Bus events

OtherGetS-hrt OtherGetS-frt
OtherGetS-

frt/srt
OtherGetM-hrt OtherGetM-frt

OtherGetM-
frt/srt

dedicated slot dedicated slot slack slot dedicated slot dedicated slot slack slot

ISD dd - - -
update

Dest-dd/ISDI
update

Dest-dd/ISDI
update

Dest-sl/ISDI
ISDI dd - - - update Dest-dd 1 update Dest-dd 1 -

IMD dd
update

Dest-dd/IMDI
update

Dest-dd/IMDI
update

Dest-sl/IMDI
update

Dest-dd/IMDI
update

Dest-dd/IMDI
update

Dest-sl/IMDI

IMDI dd
update

Dest-dd 1
update

Dest-dd 1
- update Dest-dd 1 update Dest-dd 1 -

ISD sl - - -
reissue

GetS/ISAD

update
Dest-dd/ISDI

update
Dest-sl/ISDI

ISDI sl - - -
reissue

GetS/ISAD update Dest-dd 1 -

IMD sl
reissue GetM

/IMAD

update
Dest-dd/IMDI

update
Dest-sl/IMDI

reissue GetM
/IMAD

update
Dest-dd/IMDI

update
Dest-sl/IMDI

IMDI sl
reissue GetM

/IMAD

update
Dest-dd 1

-
reissue GetM

/IMAD update Dest-dd 1 -

Table 7.2: Different state transitions based on core criticality and issuance of requests in
slack or dedicated slots

State Bus events
GetS-

hrt/frt/srt
GetM-

hrt/frt/srt
SendData PutM Data

I send Data /S send Data /M X X X

S send Data /S
add to PR
LUT /SM

X X X

SM
add to PR

LUT
add to PR

LUT
X X X

M
add to PR

LUT
add to PR

LUT
update owner/M or wait for

data/SD
wait for data/MD X

MD X X X X write to memory /I

SD X X X X write to memory /S

Table 7.3: State transitions at the shared memory

38

memory has two separate states - I and S state, where I denotes no private copy of cache
line in any core and S denotes at least one core has the cache line in shared state. In
the conventional MSI cache coherence protocol and PMSI, the shared memory requires
no such differentiation and hence fuses the I and S states into one I/S state. This is
necessary in HourGlass in order to track multiple sharers of a cache line that can timeout
at different time instances. HourGlass also introduces another new state SM that occurs
due to a write request on a cache line that already is present in a shared state in at least
one core’s private cache. Hence, the write request has to wait until all the sharers time
out, and SM state denotes this waiting state. Once all the sharers timeout, then it moves
from SM to M state by sending cache line to the core that requested for write operation.
The shared memory also has information about the criticality of the cores present in the
system. This is necessary to identify and reorder requests in the PR LUT and issue data
responses to the requesting cores. The different states and state transitions in the shared
memory are shown in Table 7.3.

7.2.2 Support for Timers

Timers are required in HourGlass to allow the cores to hold cache lines for a duration of
time. HourGlass requires changes to the coherence protocol in order to support the use
of timers. New stable and transient states are introduced in HourGlass to accommodate
timer support. When a core receives data either from a remote core or from the shared
memory, it moves to a stable state (S or M state depending on read/ write request),
and populates both the timer fields with the initial timeout values and begins to count
down. When a core, that has a cache line in a valid stable state such as S (shared) or
M (modified) state, observes a request from a remote HRT, FRT or SRT core on the same
cache line, it moves to a stable state ST I or MT I. These states indicate that there are
pending remote requests for the cache line, but the responses to these requests are deferred
until the timers expire. Once the timers expire, the core issues coherence messages to the
remote requests based on their criticality and their broadcast in dedicated or slack slots,
with the help of Dest fields. If the core has the cache line in shared state (ST I), then it
issues a coherence message SelfInv to indicate that the core is ready to invalidate itself.
If the core has the cache line in modified state (MT I), then it issues a coherence message
SendData to indicate that that core is ready to send data. Once the core issues these
coherence messages, they move to SIA state or M IA state, indicating that it is waiting
for the coherence message to be broadcasted in the requesting core’s slot. These coherence
messages contain the requesting core identifier, criticality information and information of
whether the requestor broadcasted its request in dedicated or slack slot. The PRSP buffer

39

holds these coherence messages until it is broadcasted in the requesting core’s slot. As a
performance optimization, if a core with a valid copy of the cache line does not observe
any remote requests, and the timers expire, HourGlass has support to restart the timers.

To maintain the SMWR invariant (described in Section 7.1.2), a write request on a
cache line with multiple sharers should wait for the sharers to invalidate. Recall that
different sharers invalidate at different time instances. Hence, the write can proceed only
after the last sharer invalidates (its timer expires). In this scenario, any core ci in shared
state, whose SelfInv message is broadcasted, need not invalidate as it still has the valid
cache line. Any future read on ci can be a hit until the last sharer invalidates. To this
end, a state SI is added, that indicates that the SelfInv message is already broadcasted,
but there are still other sharers of the same cache line. The shared memory issues a
coherence message AllInv once all the sharers of a cache line invalidate, to notify all the
cores to invalidate their copy of the cache line. The shared memory, on observing a SelfInv
message, decrements the sharer count. When all the timers of all the sharers expire, the
sharer count is zero and so the shared memory broadcasts a coherence message AllInv,
which indicates that all sharers can invalidate and the write can proceed safely.

In HourGlass, for a cache line A, present in a core ci, to move from S to M state on a write
request, it has to wait for its own timer (ti(A, c

hrt
i , chrti), ti(A, c

frt
i , cfrti) or ti(A, c

srt
i , csrti)) to

expire before proceeding with the write request. This introduces a new stable state STM ,
indicating that it is waiting for its own timer to expire. HourGlass currently does not allow
for upgrades, which are optimized transitions from S state to M state. When there is a
write request on a cache line that is in S state, it can move to M state only after all the
sharers are invalidated. However, in HourGlass, the sharers invalidate only after their timers
expire and the cores can have their timers expiring at different instances. HourGlass also
does not support a cache line in M state to downgrade to S state, on observing OtherGetS.
However this is not a constraint. HourGlass can support these optimizations with additional
transient states and state transitions.

7.2.3 Illustrative Examples

Multiple pending requests from HRT and SRT cores

Figure 7.2 illustrates a scenario with multiple pending requests to a shared cache line A
using HourGlass(H-DD-WC-0). This arbitration assumes dedicated slots for all HRT cores
and no dedicated slots for SRT cores. SRT cores utilize the slack slots of HRT cores. Initially
no core has a valid copy of A. The initial timeout value for all the timer configurations is
2 TDM periods.

40

c0
hrt c1

hrt

TDM slots

c0
hrt c0

hrt c0
hrtc1

hrt c1
hrt

A: I à IMD
Write A: 300

5

A: IMD à M
Recv A: 100

11

A: I à IMD
Write A: 5

3 OtherGetM-hrt(A)

A: IMD à IMAD
Reissue Write A:5
6

A: I à IMD
Write A: 100

Recv A:50
A: IMD à M

1

2
OtherGetM-srt(A)

A: M à MTI

4
OtherGetM-hrt(A)

A: MTI

7 Read hit to A 8

t3(A, c3
srt, c0

hrt) = 0
Issue SendData

for c0
hrt

A:MTI à MIA

9

Own_SendData
Send A:100

to c0
hrt

A:MIA à I

10

A: I à M
GetM-srt(A)

Send A:50
GetM-srt(A)

A: M

c0
hrt

Shared
memory

c1
hrt

c2
srt

c3
srt

CORES

GetM-hrt(A)
A: M

A: M
SendData for M

Update owner

M, MTI - Valid data held by the core in modified state

IMD - Waiting for data

Figure 7.2: Multiple pending requests from HRT and SRT cores.

At 1 , csrt3 has a pending write request to A, which is serviced in the slack slot of chrt0 .
Since there are no sharers for this cache line, the shared memory responds with A, and
changes its state to M . On receiving the data 2 , the two timers for A are loaded with
initial timeout values and begin to count down. At 3 , chrt1 does not have any pending
request, and hence this slack slot is granted to csrt2 , which broadcasts a write request to A.
csrt3 observes the write request from csrt2 on the bus as OtherGetM -srt 4 , and changes its
state from M to MT I. It also marks the SRT core identifier csrt2 in the Dest-sl field of A.

In the next TDM slot of chrt0 , chrt0 has a pending write request to A that is serviced by the

shared bus 5 . Now, csrt2 observes a HRT core chrt0 ’s write request as OtherGetM -hrt 6 ,

and reissues its write request. At the same time, csrt3 also observes chrt0 ’s write request 7 ,
and updates the Dest-dd and clears Dest-sl fields. This ensures that csrt3 sends data to

the HRT core chrt0 and not to SRT core csrt2 . Since csrt3 has A in MT I state and is waiting for

its timer to expire, it does not respond to chrt0 ’s request yet. At 8 , a read request from csrt3

to A is a cache hit. Notice that this is a cache hit because of the timers, thereby providing
performance improvement. In the absence of timers, the pending write requests to A would
have resulted in A’s invalidation in csrt3 resulting in cache miss for this read request. At

9 , the timer t3(A, c
srt
3 , chrt0) expires, and issues SendData message with requestor core

41

information set to chrt0 . csrt3 moves from MT I to M IA state, indicating that it is waiting

for the Senddata message to be ordered on the bus in the requesting core’s slot (chrt0).

At chrt0 ’s slot, which is the requesting core’s slot, csrt3 ’s SendData message is broadcasted

by the arbiter. csrt3 , on observing its own SendData message 10 , sends the up-to-date A

to chrt0 , and invalidates itself. The shared memory, on observing the SendData message,

checks the pending message from PR LUT. Since the pending message is chrt0 ’s write, the

shared memory remains in M state and updates the owner to be chrt0 . chrt0 finally receives

A sent by csrt3 , completes its write operation 11 , and moves to M state.

Multiple sharers

Figure 7.3 shows a scenario where there is a write request on a cache line A, that has
multiple sharers. This example also assumes HourGlass(H-DD-WC-0), where SRT cores are
not given any dedicated slots, and use only the slack slots. Initially assume that csrt2 has

a cache line A in shared (S) state, and it has obtained A in the slack slot of chrt0 . So, if

the timer values are in terms of TDM periods, they expire at the end of chrt0 ’s slot. The
shared memory also has A in S state and have the sharer count as 1, indicating A has one
sharer. The initial timeout value for all the timer configurations is 2 TDM periods.

At 1 , chrt0 broadcasts a read request on A and moves to the transient state ISD,
indicating that its request is broadcasted and that it is waiting for the data. Since HourGlass

allows for the existence of multiple sharers, the shared memory responds with A to chrt0 ,

and updates the sharer count to 2. chrt0 receives A, moves to S state and begins the two
timer values 2 . This is indicated in Figure 7.3 by the shaded region to show that the cache
line is held by a core. At 3 , chrt1 broadcasts a write request on A. In order to maintain
SWMR invariant, this write cannot proceed until the timers of the cache lines present in
the two sharers expire. To keep track of this, the shared memory moves to a state SM
4 , showing that a core has made a write request on a cache line that is in shared state
in atleast one core. chrt0 and csrt2 both observe chrt1 ’s write as OtherGetM -hrt and move

to ST I state and hold the cache line till their timers expire 5 . In the next slot of chrt0

6 , the timer for A present in csrt2 , t2(A, c
srt
2 , chrt1), expires. As a result, csrt2 issues SelfInv

to be broadcasted at chrt1 ’s slot and moves to SIA state. At 7 , the SelfInv message of

csrt2 is broadcasted at the requesting core’s slot, chrt1 . csrt2 , on observing its own SelfInv,
moves to a state SI, that denotes that its timer is expired, but there are still other sharers
present. Hence any read on this cache line in this private cache is still valid and it is a
hit. The shared memory, on observing a SelfInv message, decrements the sharer count by
1 8 . It remains in SM state as the sharer count is non-zero indicating that there is at

42

c0
hrt c1

hrt

TDM slots

c0
hrt c1

hrtc1
hrt

A: I à IMD
Write A: 1003

OtherGetM-hrt(A)
A: S à STI

5
Own_SelfInv
A:SIA à SI

7

A:S
GetS-hrt(A)

Send A:50

GetM-hrt(A)
A: S à SM

c0
hrt

Shared
memory

c1
hrt

c2
srt

c3
srt

CORES

A: S

A: I à ISD
Read A

Recv A:50
A: ISD à S

1
2

Count: 2

OtherGetM-hrt(A)
A: S à STI

5

t2(A, c2srt, c1hrt) = 0

Issue SelfInv
A:STI à SIA 6

Count: 2

SelfInv(A)
A: SM
Count: 1

Own_SelfInv
A:SIA à SI

SelfInv(A)
Count: 0
A: SM à M

Issue AllInv(A)

AllInv
A: SI à I

Send A:50
to c0

hrt

t0(A, c0hrt, c1hrt) = 0

Issue SelfInv
A:STI à SIA 9

A: IMD à M
Recv A: 100 11

OtherGetS-hrt
(A)

4
8

10

c0
hrt

AllInv
A: SI à I

M, MTI - Valid data held by the core in modified state

IMD - Waiting for data

S, STI – Valid data held by the core in shared state

ISD - Waiting for data

Figure 7.3: Multiple sharers.

least one sharer of A. At 9 , in chrt0 ’s slot, A’s timer in chrt0 , t0(A, c
hrt
0 , chrt1), expires and

SelfInv message is issued. This SelfInv message is broadcasted in chrt1 ’s slot. The shared
memory decrements the sharer count by 1 on seeing the SelfInv message. Once the sharer
count is zero (all sharers have their timers expired), the shared memory issues a AllInv
coherence message. Any core that has the cache line in SI state invalidates itself on seeing
AllInv message, as all sharers have their timers expired. The shared memory then services
the request present in the PR LUT. chrt1 ’s write request is the pending request and hence,

the shared memory sends data to chrt1 10 . chrt1 finally receives A 11 , completes its write
operation and moves to M state.

Multiple pending requests in HourGlass(H-DD-WC)

Figure 7.4 illustrates a scenario where there are multiple pending requests from HRT and
FRT cores when HourGlass(H-DD-WC) is used. This arbitration allocates all the HRT cores
dedicated slots and few dedicated slots to FRT cores. This example assumes two HRT cores

43

and two FRT cores, with one dedicated slot allocated to FRT cores. Initially assume that
the cache line A is not present in the private cache of any core. The initial value for timers
is 2 TDM periods (here, 1 TDM period = 3 TDM slots).

TDM slots

c0
hrt c1

hrt c1
hrtc0

hrtCores frt c1
hrt frtc0

hrtfrt

c0
hrt

Sh.
mem.

c1
hrt

c2
frt

c3
frt

A: I à IMD
Write A: 100

Recv A:50
A: IMD à M

1 3

A: I à M

GetM-hrt(A)

Send A:50

A: I à IMD
Write A: 5

OtherGetM-frt(A)
A: M à MTI

4

A: I à ISD
Read A

OtherGetS-frt(A)
A: MTI

OtherGetS-frt(A)
A: IMD à IMDI

A: I à IMD
Write A: 5

OtherGetM-hrt(A)

A: IMD à IMAD

OtherGetM-hrt(A)
A: MTI

OtherGetM-hrt(A)
A: ISD à ISDI

A: I à IMD

Write A: 5

OtherGetM-frt(A)
A: IMD à IMDI

t0(A, c0
hrt, c3

frt)=0
Issue SendData

for c3
frt

A:MTI à MIA

Own_SendData
Send A:100

to c3
frt &sh mem

A:MIA à I 16

A: ISDIà STI
Recv A: 100

Dest-dd: -
Dest-sl: c2

Dest-dd: c3
Dest-sl: -

Dest-dd: c3
Dest-sl: c2

Slot: sl

Slot: dd

Slot: sl
Slot: dd

Slot: sl

Dest-dd: c3
Dest-sl: -

Dest-dd: c1

OtherGetM-frt(A)
A: ISDI
Dest-dd: c1

Dest-dd: c2
Dest-sl: -

Dest-dd: c1
Dest-sl: -

GetM c2 sl

GetS c3 dd

GetM c2 sl GetM c2 sl

GetS c3 dd

GetM c1 dd

A: M à SD
SendData for S

Recv A SDàSM
GetM c1 dd

GetM c2 dd

GetS c3 sl

GetM c1 dd

GetM c2 dd

Slot: ddSlot: dd
Dest-sl: - Dest-sl: -

A: M A: MA: MA: M

2

5

7

6 9

8

Reissue Write A:5

11

10

12

17

13

14

14

14

15

16

M, MTI - Valid data held by the core in modified state

IMD - Waiting for data

S, STI – Valid data held by the core in shared state

ISD - Waiting for dataFRT cores dedicated slot

HRT cores dedicated slots

Figure 7.4: Multiple pending requests in HourGlass(H-DD-WC).

At 1 , chrt0 requests for write operation on cache line A. The shared memory responds

with A to chrt0 as A is not present in the private cache of any core. chrt0 receives A, completes

its write operation and moves to M state and begins the count down of timers. chrt0 holds

this copy of A for 2 TDM periods. At 2 , chrt1 does not have any pending request and hence

this slack slot is utilized by FRT core cfrt2 to broadcast its write request on A. cfrt2 moves
to a state IMD, indicating that it is waiting for data. Since this request is broadcasted

44

in a slack slot, the arbiter provides this information along with the GetM message when
it is broadcasted. So cfrt2 updates the bit Slot - Sl to sl, indicating that its request is

broadcasted in a slack slot. chrt1 observes the write request as OtherGetM -frt 3 , and
moves to MT I state. It stores the requesting core’s identifier in the destination field of the
cache line. Since cfrt2 ’s write was broadcasted in slack slot, Dest-sl is updated with c2.
The shared memory stores the pending request in the PR LUT shown as 4 in Figure 7.4.

At 5 , in the dedicated slot of FRT cores, cfrt3 broadcasts a read request on A and moves

to ISD state. Since this is broadcasted in dedicated slot, the Slot bit is dd. cfrt2 observes
this read request as OtherGetS-frt, and moves to a state IMDI as pending FRT cores are
services in FCFS manner 6 . It updates Dest-dd to c3. c

hrt
0 observes OtherGetS-frt and

updates Dest-dd to c3 as cfrt3 ’s read request is broadcasted in dedicated slot. Dest-dd is
updated only if it is the first request that is broadcasted in dedicated slot (i.e., Dest-dd is

empty). The shared memory adds cfrt3 ’s read request to PR LUT. At 8 , chrt1 broadcasts a
write request on A and moves to IMD state. On observing a HRT request, the FRT requests
broadcasted in slack slots should be reissued. At 9 , cfrt2 observes OtherGetM -hrt and since

its own request was broadcasted in slack slot (from Sl bit), cfrt2 reissues its write request

and moves to IMAD state. This reissue write request of cfrt2 is added to the RB (Reissue

Buffer). chrt0 , on the other hand, observes chrt1 ’s request and clears Dest-sl field as slack

slot requests are reissued 10 . chrt0 now marks the first request broadcasted in dedicated

slot as its destination, which is cfrt3 . Though cfrt3 observes a HRT request OtherGetM -hrt

11 , it does not reissue its request as cfrt3 broadcasted its request in a dedicated slot. cfrt3

marks c1 as its destination in Dest-dd and moves to ISDI. The shared memory observes
chrt1 ’s write request and adds it to PR LUT 12 . As discussed in Section 7.1.2, the shared

memory cancels the pending FRT request from slack slot in PR LUT, cfrt2 ’s write request,

in the presence of a HRT request, chrt1 ’s write request. At 13 , in the dedicated slot of FRT

cores, RB is checked first and hence cfrt2 ’s write request is now broadcasted in dedicated

slot. cfrt2 moves to IMD state with Slot bit set to be dd. chrt1 and cfrt3 observe this request

as OtherGetM -frt and make appropriate transitions 14 . chrt1 moves to IMDI and marks
Dest-dd as c2, indicating that once it receives data, it holds the data for a time duration
and then sends A to c2. c

frt
3 remains in ISDI state and does not update Dest-dd as it is

non-empty. Shared memory adds cfrt2 ’s write request to PR LUT.

At 15 , the timer for A in chrt0 , t0(A, c
hrt
0 , cfrt3), expires and chrt0 issues SendData for

cfrt3 (from Dest-dd), and moves to M IA state. SendData is broadcasted on the bus when

the requesting core, cfrt3 , is assigned a slot. Assume that cfrt3 is allocated a slot only at

16 , the dedicated slot for FRT cores. chrt0 , on observing its own SendData, invalidates

45

itself and sends data to cfrt3 and shared memory as cfrt3 requested A for read operation.
The shared memory, on observing SendData, checks the PR LUT for pending message and
moves to SD state on seeing cfrt3 ’s read request as the first pending request. When the

shared memory receives A from chrt0 , it writes back the up-to-date value of A to the main
memory and moves to SM state, indicating that a core has requested for write operation
on A that is present in shared state in some core. The shared memory also increments the
sharer count (not shown in the figure). Finally, cfrt3 receives A 17 , and reads the up-to-date
value 100 and moves to ST I, indicating that there is a pending write request to A. Once
cfrt3 ’s timer expires, the shared memory sends A to chrt1 . After chrt1 ’s request is serviced,

cfrt2 ’s write request is serviced (not shown in the figure).

46

Chapter 8

Timing Analysis

In this chapter, I derive the worst-case (WC) latency bound of a memory request, WCLcl
i ,

that a core, ccli where cl ∈ {hrt, frt, srt}, suffers due to interference from other cores while
accessing the shared memory. WCLcl

i depends on the arbitration scheme chosen. WCLcl
i

for a core ci (hrt, frt or srt), has three latency components: arbitration latency, access
latency, and coherence latency.

Definition 1. Arbitration latency, Larb
i , of any request generated by ci is measured

from the time stamp of its issuance until it is granted access to the bus. Larb
i occurs due to

prior requests from other cores scheduled before ci.

Definition 2. Access latency is the time required to transfer the data requested by ci
from the shared memory or from the private cache of another core (cache-to-cache transfer)
to the private cache of ci. Recall that the TDM slot-width SW is set based on this latency
and the transfer of necessary coherence messages required for data transfer to the requesting
core. SW also accounts for the latency required to identify and replace a cache line based on
the replacement policy when the cache is full. Hence, Lacc is given by SW, the upper bound
on the latency required to transfer coherence messages and to transfer data from either the
shared memory or from the private cache of another core.

Definition 3. Coherence latency, Lcoh
i , of any request generated by ci is measured

from the time stamp when the request is granted access to the bus until it starts its data
transfer. Lcoh

i is due to the coherence protocol rules that ensure data correctness in the
cache hierarchy.

Figure 8.1 illustrates the different latencies suffered by a core, c0, when it issues a write
request on a cache line A. At 1 , c0 has a write request on A. However, this is not c0’s slot

47

c0 c0 c0

TDM period

.

Store Other
requests

c0 GetM Receive
data

Other
requests
serviced

L0arb L0coh Lacc

Slot of c0

Slots of other HRT or FRT cores

1

2
3

Figure 8.1: Different latency components per request of a core.

and hence the write request cannot be broadcasted on the bus. c0 broadcasts the write
request on bus with a coherence message GetM in its next slot. This latency accounts
for the arbitration latency Larb

0 . Assume that requests by some other cores on A are
broadcasted on the bus before c0’s request is broadcasted. In such a scenario, the other
cores receive A and hold them for some time duration before c0 receives it 2 . This latency,
from the time GetM is broadcasted till c0 is ready to receive data, accounts for coherence
latency Lcoh

0 . Once c0 is ready to receive data at its own slot, the shared memory sends
data to c0. This time required to transfer data to the private cache of c0 from shared
memory or from private cache of another core is given by access latency Lacc 3 . The
total latency for a request issued by c0 is the summation of Larb

0 , Lcoh
0 and Lacc.

With the addition of timers in HourGlass, any core, after its timer expires, sends a
SelfInv message (if it is in shared state) or a SendData coherence message (if it is in
modified state). These messages are broadcasted at the requesting core’s slot. I represent
this latency that is incurred due to transfer of data at requesting core’s slot as Lcl′

req, where
cl′ is the criticality level of the requesting core. Figure 8.2 illustrates a case to calculate
this latency. The example considers four cores with 2 HRT cores and 2 SRT cores, using
H-DD-WC-0 arbitration, and hence the TDM period is 2 slots. Initially assume that csrt2

obtained a cache line A in the slack slot of chrt0 . Then, in its next slot, chrt0 broadcasts
write request on A. In the worst case, csrt2 ’s timer expires and sends SelfInv coherence

message just after chrt0 ’s start of slot. Hence, the message and data are transferred at chrt0 ’s

48

c0
hrtc1

hrtc0
hrt

c2
srt

c0
hrt

c3
srt

c1
hrt

c2
srtc1

hrt

1 2 3 4 5 6

TDM period

c0
hrt

7

Lreq
c2

srt GetS

S

GetM Receives Datac0
hrt

HRT core slot

Slack slot

Shared State

c0
hrt, c1

hrt

c2
srt , c3

srt

- HRT cores

- SRT cores

Figure 8.2: Illustration for the latency due to data transfer at requesting core slot.

next slot. As a result, the latency added due to data transfer at requesting core’s slot for
the HRT core, Lhrtreq , is given by the arbitration latency for the HRT core, in the worst case.

This is 1 TDM period (Nhrt×SW), in this example. Similarly for a FRT core, Lfrtreq is given
by the arbitration latency for FRT core, in the worst case. Once the requesting core gets
its slot, the coherence messages are broadcasted and data is transferred from the shared
memory or from the private cache of some other core, and this is given by Lacc. After it
receives the data, it starts its timer.

In this Chapter, I derive the WCLcl
i for a core ci based on the different arbitration

schemes discussed in Chapter 5. Recall that Nhrt, Nfrt and Nsrt denote the number of HRT,

FRT and SRT cores. N frt
s denotes the number of dedicated slots allocated for FRT cores.

Ns denotes the number of slots in the TDM schedule and is given by Ns = Nhrt +N frt
s , as

each HRT core is allocated one dedicated slot. TDM period is therefore P = Ns × SW .

8.1 Timing Analysis for HourGlass(H-DD-NWC)

H-DD-NWC allocates Nhrt dedicated slots for HRT cores and N frt
s dedicated slots for FRT

cores, where 0 < N frt
s < Nfrt. However, it is non-work-conserving and slack slots remain

idle. Both HRT and FRT cores broadcast their requests on the bus only in their dedicated
slots. They have a guaranteed worst-case latency bound per request.

49

8.1.1 Bound for HRT cores

The worst-case latency bound of a memory request that a HRT core, chrti , suffers is given

by WCLhrti . It is the summation of arbitration latency, coherence latency and the access
latency.

Lemma 1. The worst-case bus arbitration latency of a HRT core, chrti , WCLhrtbus,arb occurs

when the request is issued just after it missed chrti ’s start of slot. Hence, in the worst case,

it has to wait until its next slot, which is after 1 TDM period. WCLhrtbus,arb for any chrti is
given by:

WCLhrtbus,arb = Ns × SW

= (Nhrt +N frt
s)× SW (8.1)

The WC coherence latency, WCLhrti,coh, for a request issued by chrti varies depending
on the type of memory requests from HRT and FRT cores. Depending on whether the
data is read-only or read-write, the WC coherence latency is affected. Further, sharing of
data between HRT and FRT cores also affects the WC coherence latency. If data is not
shared between HRT and FRT cores, then there is no interference between the two levels.
Each core is affected by memory requests from other cores within the same criticality level.
However, with data shared between HRT and FRT cores, the WC coherence latency of any
core should now account for interference from both HRT and FRT cores.

Lemma 2. For read-only data, the WC arbitration latency is equal to the WC bus arbi-
tration latency, WCLhrtbus,arb, and the WC coherence latency is equal to zero, irrespective of
whether it is shared or unshared between criticality levels as they are all read accesses.

Read-Only Unshared:

WCLhrti,arb = WCLhrtbus,arb (8.2)

WCLhrti,coh = 0 (8.3)

Read-Only Shared:

WCLhrti,arb = WCLhrtbus,arb (8.4)

WCLhrti,coh = 0 (8.5)

50

Proof. If the access pattern of tasks is such that data is only read by HRT and FRT cores,
then each core obtains all cache lines in shared state. Whenever a core ci requests for a
read operation on a cache line A, it takes bus arbitration latency (Lemma 1) to arrive
at its slot. Since there are no write requests from a core, the WC arbitration latency for
chrti , WCLhrti,arb, is given by the WC bus arbitration latency. In this slot of ci, the shared
memory sends A to ci as this is read-only data and hence no cores have A in modified
state. This accounts for the access latency, Lacc, for ci to receive data. Thus, in case of
read-only data, the cores receive data immediately once it reaches its own slot. There is
no latency due to interference from other cores. Recall that the coherence latency of a
request is measured from the time stamp ci is granted access to the bus until it reaches the
slot where it starts its data transfer. So, it does not include the latency where the actual
data is transferred to ci. This is given by access latency. Hence the WC coherence latency
is zero for read-only data. This latency remains the same irrespective of whether data is
shared or not between HRT and FRT cores as they are all read-only data and always obtain
the cache line in shared state.

Theorem 1. When HRT and FRT cores request for read and write accesses on data, then
WC total latency varies as there can be write requests to a cache line that is held in shared
or modified state by any core. If data is not shared between HRT and FRT cores, then WC
total latency of a core depends on the interference from other cores of the same criticality
level. WCLhrti,arb for a request issued by chrti occurs under the critical instance when it

requests for write on a cache line that chrti has just received in the shared state(S) in its

private cache. WCLhrti,coh for a request issued by chrti occurs under the critical instance when
all the remaining HRT cores issue write requests on the same cache line. For data that is
requested for read and write operations by HRT cores, the worst case instance will be when
all HRT cores request for write operation on the same cache line. Figure 8.3 illustrates the
critical instance when WCLhrti,arb and WCLhrti,coh are observed for a HRT core, chrti .

The critical instance is explained as follows:

1. chrti issues a write request to a cache line A, which chrti has just received to be in the
shared state (S) in its private cache and no other core has A in a valid state. Hence,
the write request is broadcasted on the bus only after the timer for A, that holds A in
shared state, in its own private cache expires.

2. During this time when chrti holds A in shared state and has not broadcasted its write
on the bus, all the remaining (Nhrt − 1) HRT cores broadcast write requests to A

before chrti ’s write is broadcasted on the bus. Hence, by the arbitration policy, chrti ’s

write is serviced only after the write requests from HRT cores broadcasted before chrti

51

Store
cihrt

cihrt GetMNhrt
GetM

. . .
-1

S STM

v(hrt,hrt)

Lbus
arb

. . .

Receive and hold
data

MTI MTI MTI

v(hrt,hrt)

Lacc

Nhrt -1

Lhrt
req

Lhrt
req

M

Shared Modified

1

3

2

Li
coh

time

Li
arb

Lacc 4

Figure 8.3: Critical Instance for H-DD-NWC HRT core - Read-Write Unshared.

are serviced. Each HRT core, after its write operation holds the cache line for a time
duration and then invalidates.

The WC arbitration latency for a HRT core is given as:

Read-Write Unshared:

WCLhrti,arb =v(hrt, hrt) +WCLhrtbus,arb

=v(hrt, hrt) + (Ns × SW) (8.6)

The WC coherence latency for a HRT core is given as:

52

Read-Write Unshared:

WCLhrti,coh =(Nhrt − 1)×
(
Lhrtreq + Lacc + v(hrt, hrt)

)
+ Lhrtreq

− (Ns × SW)

=(Nhrt − 1)×
(
(Ns × SW) + SW + v(hrt, hrt)

)
+ (Ns × SW)

− (Ns × SW)

=(Nhrt − 1)×
(
(Ns × SW) + SW + v(hrt, hrt)

)
(8.7)

The different components of equations 8.6 and 8.7 are explained as follows:

1. The first term of WCLhrti,arb, v(hrt, hrt), is the time duration chrti holds A in shared

state, and chrti ’s write should wait until it expires. This is shown as 1 in Figure 8.3.

2. Only after the timer expires, chrti issues its write request on A, but this is broadcasted

on the bus only at the start of chrti ’s next slot (bus arbitration latency). In the worst

case, the write request is issued just after chrti misses its start of slot. Hence, this
will take a latency of WCL,

bus,arb given by the second term in equation 8.6.

3. Before chrti broadcasts its write on the bus, (Nhrt − 1) HRT cores broadcast write
requests on A, 2 in Figure 8.3. Each HRT core receives the data in its own slot and
hence to arrive at this slot, I add the latency due to data transfer at the requesting
core’s slot, Lhrtreq , 3 in Figure 8.3. Each HRT core incurs this Lhrtreq latency, which is
given by the arbitration latency for a HRT core (as discussed initially in this Chapter).
Each HRT core, after arriving at its slot, receives A after the transfer of necessary
coherence messages and then completes its write operation. This accounts for Lacc,
that is equal to 1 SW. Each HRT core, after its write operation, also holds A for a
time duration v(hrt, hrt). These account for the first term in equation 8.7.

4. Finally the core under analysis, chrti , also incurs Lhrtreq , after the last HRT core has its
timer for A expired shown as 4 in Figure 8.3. This is given by the second term in
the equation for WCLhrti,coh.

53

5. Recall that the coherence latency is measured from the time stamp chrti ’s write is

broadcasted on the bus. However, once the timer for chrti expires, the next requesting

core receives the cache line, and this is shown as Lhrtreq of the requesting core 3 .
Hence, part of the first term in equation 8.7 is not included in coherence latency.
As discussed, once the timer for A in chrti expires, it takes bus arbitration latency

WCLhrtbus,arb to broadcast its write request on the bus. Thus we subtract the additional
part from first term in equation 8.7, which is equal to the bus arbitration latency.

Proof. I prove Theorem 1 by contradiction to show that the provided instance is the critical
instance.

1. Suppose that the critical instance is when chrti issues write request on A which is not
present in its cache (invalid state) or is present for a time duration t > 0 in shared
state. Now, the first term of Equation 8.6 will either be removed or be replaced
with v(hrt, hrt) − t. The observed arbitration latency is thus less than WCLhrti,arb in
equation 8.6 and so this is not the worst case arbitration latency. Hence, the critical
instance must be when chrti requests for write on A immediately after it obtains A in
shared state (t = 0).

2. Suppose that chrti requests for write on A when chrti is in shared state and there are H
HRT cores also holding A in a valid (shared or modified) state, where H ≤ (Nhrt−1).

Now all Nhrt− 1 cannot make write requests to A before chrti ’s write is broadcasted,
as each of these H cores should either wait for their timers to time out (shared state)
or are cache hits (modified). Hence, only N ′ HRT cores, where N ′ = (Nhrt− 1)−H,

broadcast write requests on A before chrti broadcasts its write request. The latency
incurred due to N ′ HRT cores is less than the latency due to (Nhrt − 1) HRT cores,

as N ′ < (Nhrt − 1). The observed coherence latency is thus less than WCLhrti,coh in
equation 8.7 and so this is not the critical instance. The critical instance should have
pending requests from all the remaining (Nhrt − 1) HRT cores. Hence, the critical

instance should be when no other core holds A in a valid state, when chrti requests
for write on A.

3. Suppose that v(hrt, hrt) is large enough that a HRT core, chrtk where i 6= k, receives
more than 1 dedicated slot and so broadcasts multiple write requests on the cache
line A. Now there are more than (Nhrt− 1) HRT pending requests before chrti ’s write
is broadcasted. However, in case of an in-order core, a core cannot issue another
request to a same cache line A that already has a pending request by the same

54

core. Thus, by contradiction, chrtk can broadcast only one pending request per cache

line A. chrtk can broadcast write request on another cache line B if there are more

than 1 dedicated slot for chrtk . However, this does not affect the coherence states

corresponding to cache line A under analysis for chrti . A maximum of only (Nhrt−1)

HRT cores can have pending requests for A before chrti ’s write is broadcasted. Hence,
the critical instance is when all (Nhrt − 1) HRT cores broadcast write requests on A

before chrti ’s write is broadcasted.

4. Suppose that the critical instance is when the remaining HRT cores request for read
on A instead of write. Since HourGlass allows for the presence of multiple sharers of
the same cache line A, a core, ci, requesting for a read on A, that is already present
in shared state in some other core cj, need not wait for cj’s timer to expire. In this
scenario, the timer duration for which the cores hold A, overlap. This results in a
latency less than WCLhrti,coh and hence this is not the critical instance. The critical
instance should be when the remaining HRT cores request for write on A.

The above instances lead to either arbitration latency Larb
i < WCLhrti,arb or coherence

latency Lcoh
i < WCLhrti,coh. This proves by contradiction that the critical instance provided

in Theorem 1 results in WC arbitration latency and WC coherence latency for a HRT core,
thereby resulting in WC total latency per request for a HRT core.

Theorem 2. When data is shared between HRT and FRT cores and there are read and
write accesses to the shared data from these cores, then WC arbitration latency, WCLhrti,arb,

and WC coherence latency, WCLhrti,coh, depend on the interference from both HRT and FRT

cores. The WC coherence latency, WCLhrti,coh, for a request issued by chrti to a cache line A
occurs under the critical instance where there is interference from all the remaining HRT

and FRT cores. Figure 8.4 illustrates the critical instance when WCLhrti,coh is observed for a

HRT core, chrti .

The critical instance is explained as follows:

1. Similar to the critical instance discussed in Theorem 1, chrti issues a write request to

A, which chrti has just received to be in the shared state (S) in its private cache and

no other core holds A in a valid state. Hence, chrti has to waits for its own timer for
A to expire.

2. During this time, all the remaining (Nhrt − 1) HRT cores broadcast write requests to

A. Since, FRT cores are also allocated dedicated slots, N frt
s FRT cores can broadcast

55

Store
cihrt

cihrt GetMNhrt
GetM

. . .
-1

S STM

v(hrt,hrt)

Lbus
arb

. . .

Receive and hold
data

MTI MTI MTI

v(cl,cl’)

Lacc

Nhrt -1

Lhrt
req

Lcl’
req

M

1

3

2

Li
coh

time

Li
arb

Lacc

4

N’frt
GetM

N’frt
and

Shared

Modified

cl - Criticality of core that holds data

cl’ - Criticality of requesting core of data

Figure 8.4: Critical Instance for H-DD-NWC HRT core - Read-Write Shared.

write requests per TDM period. Based on the initial value of timer v(hrt, hrt), consider

N ′frt FRT cores broadcast write requests to A before chrti ’s write is broadcasted.

3. chrti ’s write request is broadcasted only after these HRT and FRT requests. Hence, by

the arbitration policy, chrti ’s write is serviced only after the write requests from HRT

and FRT cores broadcasted previously are serviced. Each HRT or FRT core, after its
write operation holds the cache line for a time duration and then invalidates.

The WC arbitration latency for a HRT core is given as:

Read-Write Unshared:

WCLhrti,arb =v(hrt, hrt) +WCLhrtbus,arb

=v(hrt, hrt) + (Ns × SW) (8.8)

The WC coherence latency for a HRT core is given as:

56

Read-Write Shared:

WCLhrti,coh =(Nhrt − 1)×
(
Lhrtreq + Lacc + max{v(hrt, hrt), v(hrt, frt)}

)
+ (N ′frt)×

(
Lfrtreq + Lacc + max{v(frt, hrt), v(frt, frt)}

)
+ Lhrtreq

− (Ns × SW)

=(Nhrt − 1)×
(
(Ns × SW) + SW + max{v(hrt, hrt), v(hrt, frt)}

)
+
(

min{
⌈
v(hrt, hrt) + (Ns × SW)

Ns × SW

⌉
×N frt

s , Nfrt}
)
×

(
(

⌈
Nfrt

N frt
s

⌉
× P) + SW + max{v(frt, hrt), v(frt, frt)}

)
+ (Ns × SW)

− (Ns × SW)

=(Nhrt − 1)×
(
(Ns × SW) + SW + max{v(hrt, hrt), v(hrt, frt)}

)
+
(

min{
⌈
v(hrt, hrt) + (Ns × SW)

Ns × SW

⌉
×N frt

s , Nfrt}
)
×

(
(

⌈
Nfrt

N frt
s

⌉
× P) + SW + max{v(frt, hrt), v(frt, frt)}

)
(8.9)

The different components of equations 8.8 and 8.9 are explained as follows:

1. The first term of equation 8.8, v(hrt, hrt), is the time duration chrti holds A in shared

state, and chrti ’s write should wait until it expires. This is shown as 1 in Figure 8.4.

2. Only after the timer expires, chrti issues its write request on A, but this is broadcasted

on the bus only at the start of chrti ’s next slot (bus arbitration latency). In the worst

case, chrti ’s timer expires and the write request is issued just after chrti misses its start

of slot. Hence, this will take a latency of WCLhrtbus,arb, given by the second term in
equation 8.8.

57

3. 3 in Figure 8.4 shows the latency added due to data transfer at requesting core’s
slot. It is represented as Lcl′

req, where cl′ represents the criticality of the requesting
core. This latency is added for every HRT or FRT core that is required to be serviced.

4. Before chrti ’s write is broadcasted on the bus, (Nhrt − 1) HRT cores broadcast write
requests on A, 2 in Figure 8.4. Each HRT core incurs the latency due to data transfer
at requesting core’s slot, Lhrtreq , that is given by 1 TDM period (arbitration latency),
in the worst case, as HRT cores have a slot every TDM period. Each HRT core, after
arriving at its slot, receives A after the transfer of necessary coherence messages
and then completes its write operation. This accounts for Lacc, that is equal to 1
SW. Further, each HRT core, after its write operation, holds A for a time duration
v(hrt, hrt) or v(hrt, frt) based on the criticality of the requesting core to which it has
to send A. Hence, for the worst case scenario, I take the maximum of the two timer
values.

5. The number of FRT cores that can broadcast write requests on A after chrti requests

for write on A but before chrti ’s write is broadcasted on the bus, N ′frt, depends on
the duration v(hrt, hrt), arbitration latency (Ns × SW) and TDM period. This is

because, in the worst case, only N frt
s FRT cores can get access to the bus every

TDM period. If (v(hrt, hrt) + (Ns × SW)) is large (more than 1 TDM period), then

in each TDM period, N frt
s FRT cores broadcast write requests. So N ′frt is given as⌈

v(hrt,hrt)+(Ns×SW)
P

⌉
× N frt

s , where P is the TDM period. However if (v(hrt, hrt) +

(Ns × SW)) is very large, in the worst case, all Nfrt FRT cores get access to the bus

and broadcast write requests on A, before chrti ’s write is broadcasted. This accounts
for ‘min’ term in the second term of equation 8.9, that determines N ′frt. This is shown

as N ′frt FRT requests 2 in Figure 8.4. Since, H-DD-NWC allocates dedicated slots for

FRT cores, these FRT cores are serviced before chrti . The second term of equation 8.9
includes the latency due to interference from each FRT core.

6. Each FRT core accounts for Lfrtreq, latency due to data transfer at requesting core’s
slot, Lacc, latency to transfer coherence messages and receive data, and then v(frt, hrt)
or v(frt, frt), the time duration it holds the cache line based on the criticality of the

requesting core. Lfrtreq for a FRT core is given by

⌈
Nfrt
Nfrts

⌉
× P . This is the worst case

when each FRT core just missed its slot in round-robin and hence it has to let all the
other FRT cores to get access to the bus before it can get a slot.

7. Finally the core under analysis, chrti , also incurs Lhrtreq , after the last core (HRT or

58

FRT) has its timer for A expired shown as 4 in Figure 8.4. This is given by the third

term in the equation for WCLhrti,coh.

8. Once the timer for A in chrti expires, it takes arbitration latency WCLhrti,arb to broad-
cast its write request on the bus. By definition, coherence latency is measured from
the time stamp the core is granted access to the bus, i.e., when chrti broadcasts its
write request. However, once the timer expires, the next requesting core receives the
cache line, and this is included as Lcl′

req of HRT or FRT requesting core 3 and the
time duration that core holds the cache line in equation 8.9. Thus a part of the first
term in equation 8.9 should not be included in coherence latency. This is given by
WCLhrti,arb shown as 5 in Figure 8.4. I subtract the arbitration latency of chrti from
equation 8.9, which is 1 TDM period.

Proof. I prove Theorem 2 by contradiction to show that the provided instance is the critical
instance.

1. Suppose that the critical instance is when chrti requests for write on a cache line A
that is not present in its cache (invalid state) or is present for a time duration t > 0
in shared state. As discussed in Theorem 1, now the first term of equation 8.8 will
either be removed or be replaced with v(hrt, hrt)− t. The observed coherence latency

is thus less than WCLhrti,arb in equation 8.8 and hence this is not the worst case latency.

Hence, the critical instance must be when chrti requests for write on A immediately
after it obtains A in shared state (t = 0).

2. Suppose that the critical instance is when N ′ HRT cores, where N ′ < (Nhrt − 1),

broadcast write requests on A before chrti broadcasts its write request. The latency
incurred due to N ′ HRT cores is less than the latency due to (Nhrt−1) HRT cores, as

N ′ < (Nhrt−1). The observed coherence latency is less than WCLhrti,coh in equation 8.9
and so this is not the worst case coherence latency. The critical instance should thus
have pending write requests from all the remaining (Nhrt − 1) HRT cores before chrti

broadcasts its write request. Hence, as discussed in Theorem 1, for (Nhrt − 1) HRT

cores to have pending write requests on A, initially no core holds A in a valid state.

3. Suppose that the critical instance is when N ′ FRT cores broadcast write requests
on A before chrti broadcasts its write request, where N ′ is less than the maximum

number of FRT slots present between chrti ’s write request and its issuance on the bus,
N ′frt (i.e., N ′ < N ′frt). Since N ′ < N ′frt, the latency incurred due to interference from
N ′ FRT cores is less than the latency incurred due to N ′frt FRT cores. This results in

59

coherence latency less than WCLhrti,coh in equation 8.9 and hece this is not the qorst
case latency. So this cannot be the critical instance.

4. Suppose that the critical instance is when a core ck has more than 1 dedicated slot
and hence broadcasts more than 1 write request for A before chrti ’s broadcast of write
request. Now there are more than (Nhrt−1)+N ′frt pending write requests from HRT

and FRT cores. However, in case of an in-order core, a core cannot issue another
request to a same cache line A that already has a pending request by the same core.
As a result, if a core ck has more than 1 dedicated slot, it can issue a read/write

request to another cache line B before chrti ’s broadcast of write request. This does
not affect the worst latency for the request to A. Hence, at the maximum, there can
be only Nhrt − 1 pending HRT requests and Nfrt pending FRT requests to the same

cache line A before chrti broadcasts its write request as the critical instance.

5. Suppose that the critical instance is when HRT and FRT cores request for read on A
instead of write. Since HourGlass allows for the presence of multiple sharers of the
same cache line A, a core, ci, requesting for a read on A, that is already present in
shared state in some other core cj, need not wait for cj’s timer to expire. In this
scenario, the timer duration for which the cores hold A, overlap. This results in a
latency less than WCLhrti,coh and hence this is not the critical instance. Hence for the
critical instance, all cores request for write operations on A.

The above instances lead to coherence latency Lcoh
i < WCLhrti,coh or arbitration latency

Larb
i < WCLhrti,arb. This proves by contradiction that the critical instance provided in

Theorem 2 results in WC total latency for a HRT core.

Theorem 3. The total worst-case latency for a request issued by a HRT core chrti is given

by the WC arbitration latency, WC coherence latency and the WC access latency for chrti .

The WCLhrti per request for chrti is given as follows:

WCLhrti = WCLhrti,arb +WCLhrti,coh + Lacc (8.10)

8.1.2 Bound for FRT cores

I derive the worst-case latency bound of a memory request, WCLfrti , that a FRT core, cfrti ,
suffers due to interference from other cores. It is given by the summation of WC arbitration
latency, WC coherence latency and access latency incurred by cfrti .

60

Lemma 3. The worst-case bus arbitration latency of a FRT core, cfrti occurs when it has a

write request on a cache line A just after cfrti has broadcasted a request on some other cache
line B and all the remaining Nfrt − 1 FRT cores have a pending request to be broadcasted

on the bus. Thus, WC bus arbitration latency WCLfrtbus,arb for any cfrti is given by:

WCLfrtbus,arb =

⌈
Nfrt

N frt
s

⌉
× P

=

⌈
Nfrt

N frt
s

⌉
× ((Nhrt +N frt

s)× SW) (8.11)

Proof. cfrti has a write request on A just after it has broadcasted a request to another cache
line B. Now, there are also Nfrt− 1 FRT cores that are waiting to be granted access to the

bus. Since the FRT cores are serviced in round-robin, cfrti can broadcast its request on A
only after the remaining (Nfrt − 1) FRT cores are granted access to the bus. In the worst

case, all the (Nfrt − 1) FRT cores have some pending request. So, cfrti is granted access to

the bus only after (Nfrt− 1) slots for FRT cores. However, only N frt
s slots are allocated for

FRT cores per TDM period. Hence, WCLfrtbus,arb for cfrti is more than 1 TDM period and is
given by Equation 8.11.

The WC coherence latency, WCLfrti,coh, for a request issued by cfrti depends on whether
data is shared between HRT and FRT cores. As discussed previously, if data is not shared
between HRT and FRT cores, then there is no interference between the two criticality levels.
The WC latency of each core is affected by memory requests from other cores within the
same criticality level. However, if data is shared between HRT and FRT cores, the WC
coherence latency of any core should consider the interference from both HRT and FRT

cores. WC coherence latency also depends on the type of memory requests from HRT and
FRT cores. Depending on whether the data is read-only or read-write, the WC coherence
latency varies.

Lemma 4. For read-only data, the WC arbitration latency is equal to the WC bus arbi-
tration latency and the WC coherence latency is zero for a FRT core, when data is shared
or unshared between HRT and FRT cores.

Read-Only Unshared:

WCLfrti,arb = WCLfrtbus,arb (8.12)

WCLfrti,coh = 0 (8.13)

61

Read-Only Shared:

WCLfrti,arb = WCLfrtbus,arb (8.14)

WCLfrti,coh = 0 (8.15)

Proof. If the access pattern of the tasks is such that the data is only read by the HRT

and FRT cores, then all the cache lines exist in shared state in all the cores. As discussed
in Section 8.1.1, proof of Lemma 2, a core receives data immediately once it reaches its
own slot, when the data is read-only. Arbitration latency is given by the bus arbitration
latency to arrive at its own slot. The WC coherence latency, on the other hand, is zero
for read-only data. This latency remains the same irrespective of whether data is shared
or not between HRT and FRT cores as they are all read-only data and always obtain the
cache line in shared state.

Theorem 4. When FRT cores request for read and write accesses on data, then WC arbi-
tration latency and WC coherence latency of a FRT core vary as there can be write requests
to a cache line that is held in shared or modified state by some other core. However, if
data is not shared between HRT and FRT cores, then WC coherence latency of a FRT core
depends only on the interference from other FRT cores. WCLfrti,arb for a request issued by

cfrti occurs under the critical instance when it requests for write on a cache line that cfrti

has just received in the shared state(S) in its p rivate cache. WCLfrti,coh for a request issued

by cfrti occurs under the critical instance when all the remaining FRT cores issue write re-
quests on the same cache line. The worst case instance for a FRT core for read-write data
will be when all FRT cores request for write operation on the same cache line. Figure 8.5
illustrates the critical instance when WCLfrti,coh is observed for a FRT core, cfrti .

The critical instance is explained as follows:

1. cfrti issues a write request to a cache line A, which cfrti has just received to be in the
shared state (S) in its private cache and no other core holds A in a valid state. Now,
the write request is broadcasted on the bus only after the timer for A, that holds A in
shared state, in its own private cache expires.

2. During this time, all the remaining (Nfrt − 1) FRT cores broadcast write requests to

A before cfrti ’s write is broadcasted on the bus.

62

Store
cifrt

cifrt GetMNfrt
GetM

. . .
-1

S STM

v(frt,frt)

Lbus
arb

. . .

Receive and hold
data

MTI MTI MTI

v(frt,frt)

Lacc

Nfrt -1

Lfrt
req

Lfrt
req

M

Shared Modified

1

3

2

Li
coh

time

Li
arb

Lacc 4

Figure 8.5: Critical Instance for H-DD-NWC FRT core - Read-Write Unshared.

3. cfrti ’s write is serviced only after the write requests from FRT cores broadcasted before

cfrti are serviced. Each FRT core, after its write operation holds the cache line for a
time duration and then invalidates.

The WC arbitration latency for a FRT core is given as:

Read-Write Unshared:

WCLfrti,arb =v(frt, frt) +WCLfrtbus,arb

=v(frt, frt) + (

⌈
Nfrt

N frt
s

⌉
× P) (8.16)

The WC coherence latency for a request issued by a FRT core is as follows:

63

Read-Write Unshared:

WCLfrti,coh =(Nfrt − 1)×
(
Lfrtreq + Lacc + v(frt, frt)

)
+ Lfrtreq

−WCLfrtbus,arb

=(Nfrt − 1})×
(
(

⌈
Nfrt

N frt
s

⌉
× P) + SW + v(frt, frt)

)
+ (

⌈
Nfrt

N frt
s

⌉
× P)

− (

⌈
Nfrt

N frt
s

⌉
× P)

=(Nfrt − 1})×
(
(

⌈
Nfrt

N frt
s

⌉
× P) + SW + v(frt, frt)

)
(8.17)

The different components of equations 8.16 and 8.17 are explained as follows:

1. The WC arbitration latency WCLfrti,arb is derived in a similar way compared to

WCLhrti,arb in Section 8.1.1. Since cfrti holds A in shared state for v(frt, frt) before

its write can be broadcasted, this latency is included in WCLfrti,arb (first term), rep-
resented as 1 in Figure 8.5. It takes bus arbitration latency to broadcast this write
request on the bus, given by WCLfrtbus,arb (second term), in the worst case.

2. The first term of equation 8.17 accounts for the latency due to interference from the
remaining FRT cores. WC arbitration latency for cfrti allows for all remaining FRT

cores to be granted access to the bus before cfrti is granted access. Hence, in the worst

case, all the remaining (Nfrt− 1) FRT cores broadcast write requests to A before cfrti

broadcasts its write request (shown as 2 in Figure 8.5). Each FRT core incurs Lfrtreq,
latency due to data transfer at requesting core’s slot, Lacc, latency to transfer data
from the shared memory or from the private cache of any core, and the latency due
to timers as each core holds A in valid state for some time duration (v(frt, frt).

64

3. The second term in the equation 8.17 accounts for the latency due to data transfer at
requesting core’s slot (Lfrtreq) for cfrti , the FRT core under analysis. This is represented
as 3 in Figure 8.5.

4. Recall that the coherence latency is measured from the time stamp the cfrti ’s write is

broadcasted on the bus. However, once the timer for cfrti expires, the next request-

ing core receives the cache line, and this accounts for Lfrtreq and v(frt, frt of the next
requesting core 4 . Hence, part of the first term in equation 8.17 is not included in
coherence latency. As discussed, once the timer for A in cfrti expires, it takes bus

arbitration latency WCLfrtbus,arb to broadcast its write request on the bus. Thus we
subtract the additional part from first term in equation 8.17, which is equal to the
bus arbitration latency.

Proof. The proof for Theorem 4 is by contradiction. It shows that the instance discussed
is the critical instance that results in WC coherence latency.

1. Suppose that cfrti requests for write on A which is not present in its private cache

(invalid state) or which is present in cfrti in shared state for a time duration t, where

0 < t < v(frt, frt). Now the first term v(frt, frt) is either not included in WCLfrti,arb or
is replaced with v(frt, frt)− t. This results results in arbitration latency less that the

latency presented in equation 8.16. So the critical instance must be when cfrti has a
write request on A immediately after it receives A in shared state.

2. Suppose that the critical instance is when N ′ FRT cores broadcast write requests on
A before cfrti broadcasts its write request, where N ′ < Nfrt − 1. The latency due
to interference from FRT cores is given by the first term in equation 8.17. Since
N ′ < Nfrt − 1, the latency due to interference from N ′ FRT cores is less than the
latency due to interference from Nfrt − 1 FRT cores. This results in the observed

coherence latency Lcoh
i that is less than WCLfrti,coh provided in 8.17. Hence, as

discussed in Theorem 1, the critical instance should be when all the remaining FRT

cores request for A only after cfrti ’s write request.

3. Supppose that the critical instance is when a core ck broadcasts more than 1 write
request on A, resulting in more than Nfrt − 1 pending FRT requests before cfrti ’s
write request. In case of an in-order core, a core cannot issue another request to
a same cache line A that already has a pending request by the same core. As a
result, if a core ck has more than 1 dedicated slot, it can issue a read/write request

to another cache line B before cfrti ’s broadcast of write request, but not A. Hence,

65

at the maximum, there can be only Nfrt− 1 pending FRT requests to the same cache

line A before cfrti broadcasts its write request that provides the worst case coherence
latency.

4. Suppose that the critical instance is when FRT cores broadcast read requests instead
of write requests on A. In this case, multiple copies of A exist in the private cache
of different cores in shared state, as HourGlass allows for the existence of multiple
sharers of a cache line at a time. As a result, the latency due to the interference from
each core, holding A for some time duration, overlap. This results in a latency less
than WCLfrti,coh and hence this is not the worst case coherence latency. The critical

instance is when Nfrt − 1 FRT cores have pending write requests to A before cfrti

broadcasts its write request.

The instances discussed above lead to either arbitration latency Larb
i < WCLfrti,arb or

coherence latency Lcoh
i < WCLfrti,coh. This proves by contradiction that the critical instance

provided in Theorem 4 results in WC arbitration and WC coherence latency, thus WC
total latency for a FRT core.

Theorem 5. When data is shared between HRT and FRT cores, then the WC coherence
latency should account for the interference from both HRT and FRT cores. WC arbitration
latency, WCLfrti,arb, for a request issued by cfrti occurs under the critical instance when it

requests for write on a cache line that cfrti has just received in the shared state(S) in its

private cache. The WC coherence latency, WCLfrti,coh, for a request issued by cfrti to a cache
line A occurs under the critical instance where there is interference from all the remaining
HRT and FRT cores. Figure 8.6 shows the critical instance when WCLfrti,arb and WCLfrti,coh

are observed for a FRT core, cfrti .

The critical instance where WCLfrti,coh is obtained for FRT core, cfrti , is explained as
follows:

1. cfrti requests for write on a cache line A, which it has just received in shared state in

its private cache and no other core holds A in a valid state. Now, cfrti has to wait for
A’s timer in its own cache to expire before it can broadcast the write request on the
bus.

2. In this time duration, all the remaining HRT (Nhrt) and FRT (Nfrt−1) cores broadcast

write requests to A before cfrti ’s write is broadcasted.

66

Store
cifrt

cifrt GetMNhrt
GetM

. . .
-1

S STM

v(frt,frt)

Lbus
arb

. . .

Receive and hold
data

MTI MTI MTI

v(cl,cl’)

Lacc

Nhrt

-1

Lfrt
req

Lcl’
req

M

1

3

2

Li
coh

time

Li
arb

Lacc 4Nfrt
GetM

Nfrt

and

Shared

Modified

cl - Criticality of core that holds data

cl’ - Criticality of requesting core of data

Figure 8.6: Critical Instance for H-DD-NWC FRT core - Read-Write Shared.

3. cfrti ’s write is serviced only after the HRT and FRT cores, that broadcasted requests

before cfrti write is broadcasted, are serviced. Each of this core holds the cache line
for some time duration after its write operation and invalidates.

The WC arbitration latency for a FRT core is given as:

Read-Write Shared:

WCLfrti,arb =v(frt, frt) +WCLfrtbus,arb

=v(frt, frt) + (

⌈
Nfrt

N frt
s

⌉
× P) (8.18)

The WC coherence latency for a request issued by a FRT core is as follows:

67

Read-Write Shared:

WCLfrti,coh =Nhrt ×
(
Lhrtreq + Lacc + max{v(hrt, hrt), v(hrt, frt)}

)
+ (Nfrt − 1)×

(
Lfrtreq + Lacc + max{v(frt, hrt), v(frt, frt)}

)
+ Lfrtreq

−WCLfrtbus,arb

WCLfrti,coh =Nhrt ×
(
(Ns × SW) + SW + max{v(hrt, hrt), v(hrt, frt)}

)
+ (Nfrt − 1})×

(
(

⌈
Nfrt

N frt
s

⌉
× P) + SW + max{v(frt, hrt), v(frt, frt)}

)
+ (

⌈
Nfrt

N frt
s

⌉
× P)

− (

⌈
Nfrt

N frt
s

⌉
× P)

=(Nhrt)×
(
(Ns × SW) + SW + max{v(hrt, hrt), v(hrt, frt)}

)
+ (Nfrt − 1)×

(
(

⌈
Nfrt

N frt
s

⌉
× P) + SW + max{v(frt, hrt), v(frt, frt)}

)
(8.19)

The different components of equations 8.18 and 8.19 are explained as follows:

1. Since cfrti holds A in shared state for v(frt, frt) before its write can be broadcasted, this

latency is included in WCLfrti,arb (first term), represented as 1 in Figure 8.6. After

cfrti ’s timer expires, the write is broadcasted in cfrti ’s slot which takes bus arbitration

latency, WCLfrtbus,arb, in the worst case.

2. All the HRT cores broadcast write requests to A (2 in Figure 8.6). Each of this

HRT core incurs the latency Lhrtreq due to data transfer at requesting core’s slot, data
access latency, Lacc, and the latency due to the core holding valid A in its cache for a
fixed time duration (depends on the criticality of the requesting core). As discussed

previously, Lhrtreq is given by 1 TDM period (arbitration latency for HRT cores). This
accounts for the first term in equation 8.19.

68

3. The second term accounts for the latency due to interference from FRT cores. WC
arbitration latency for cfrti allows for all remaining FRT cores to be granted access

to the bus before cfrti is granted access. Hence, in the worst case, all the remaining
(Nfrt − 1) FRT cores broadcast write requests to A before csrti broadcasts its write
request (shown as 2 in Figure 8.6). Each FRT core incurs latency due to timers
(holds A in valid state), access latency, Lacc, and latency due to data transfer at

requesting core’s slot Lfrtreq.

4. The third term in the equation accounts for the latency due to data transfer at
requesting core’s slot (Lfrtreq) for cfrti , the FRT core under analysis. This is represented
as 3 in Figure 8.6.

5. Recall that the coherence latency is measured from the time stamp the cfrti ’s write is

broadcasted on the bus. However, once the timer for cfrti expires, the next requesting
core receives the cache line, and this accounts for Lcl′

req and v(frt, cl′) of the next

requesting core, ccl
′

i , 4 . Hence, part of the first term in equation 8.17 is not included

in coherence latency. As discussed, once the timer for A in cfrti expires, it takes bus

arbitration latency WCLfrtbus,arb to broadcast its write request on the bus. Thus we
subtract the additional part from first term in equation 8.17, which is equal to the
bus arbitration latency.

Proof. The proof for Theorem 5 is by contradiction. It shows that the instance discussed
is the critical instance that results in WC coherence latency.

1. Suppose that the critical instance is when cfrti requests for write on A which is not

present in its private cache (invalid state) or which is present in cfrti in shared state
for a time duration t, where 0 < t < v(frt, frt). Now the first term v(frt, frt) is either

not included in WCLfrti,arb or is replaced with v(frt, frt) − t. This results results in
arbitration latency less that the latency presented in equation 8.18 and hence this
instance will not result in the worst case arbitration latency. So the critical instance
must be when cfrti has a write request on A immediately after it receives A in shared
state.

2. Suppose that the critical instance be when N ′ HRT cores broadcast write requests
on A before cfrti ’s write request is broadcasted, where N ′ < Nhrt. Now the ob-
served coherence latency includes the interference from N ′ HRT cores given as N ′ ×(

max{v(hrt, hrt), v(hrt, frt)}+ Lhrtreq

)
. However this term is less than the first term in

equation 8.19, as N ′ < Nhrt, resulting in a latency less than WCLfrti,coh. Hence this is

69

not the critical instance. Critical instance is when N ′ < Nhrt cores broadcast write

requests before cfrti ’s write request is broadcasted.

3. Suppose that the critical instance is when N ′ FRT cores broadcast write requests on
A before cfrti broadcasts its write request, where N ′ < Nfrt − 1. The latency due
to interference from FRT cores is given by the second term in equation 8.19. Since
N ′ < Nfrt − 1, the latency due to interference from N ′ FRT cores is less than the
latency due to interference from Nfrt − 1 FRT cores. This results in the observed

coherence latency Lcoh
i that is less than WCLfrti,coh provided in 8.19 and hence this

is not the critical instance. Critical instance is when Nfrt − 1 cores broadcast write

requests before cfrti ’s write request is broadcasted.

4. Suppose that the critical instance is when cfrti requests for write on A, atleast one
core, ck, has A in a valid state (shared or modified). If ck is in shared state, then it

can broadcast its request only after its own timer and cfrti ’s timer expire. Based on

arbitration, there can be a case when cfrti ’s write is broadcasted before ck. If ck is in
modified state, then it is a cache hit and so there is no need of broadcast request to
A. Thus, this results in pending write requests either less than Nhrt HRT cores or
Nfrt− 1 FRT cores. But as discussed before, critical instance is when Nhrt HRT cores
and Nfrt− 1 FRT cores have pending write requests. Hence, critical instance is when

no other core holds A in a valid state when cfrti requests for write on A.

5. Supppose that the critical instance is when a core ck broadcasts more than 1 write
request on A, resulting in more than Nfrt − 1 pending FRT requests or more than

Nhrt HRT requests before cfrti ’s write request is broadcasted. However, in case of an
in-order core, a core cannot issue another request to a same cache line A that already
has a pending request by the same core. As a result, if a core ck has more than 1
dedicated slot, it can issue a read/write request to another cache line B before cfrti ’s
broadcast of write request, but not A. Hence, at the maximum, there can be only
Nhrt pending HRT requests and Nfrt−1 pending FRT requests to the same cache line

A before cfrti broadcasts its write request.

6. Suppose that the critical instance is when HRT and FRT cores broadcast read requests
instead of write requests on A. In this case, multiple copies of A exist in the private
cache of different cores in shared state, as HourGlass allows for the existence of multiple
sharers of a cache line at a time. As a result, the latency due to the interference from
each core, holding A for some time duration, overlap. This results in a latency less

70

than WCLfrti,coh and hence this is not lead to worst-case coherence latency. Hence,
the critical instance is when all the other cores request for write on A.

The instances discussed above lead to arbitration latency Larb
i < WCLfrti,arb or coherence

latency Lcoh
i < WCLfrti,coh. This proves by contradiction that the critical instance provided

in Theorem 5 results in WC total latency for a FRT core.

Theorem 6. The total worst-case latency for a request issued by a FRT core cfrti is given

by the WC arbitration latency, WC coherence latency and the WC access latency for cfrti .

The WCLfrti per request for cfrti is given as follows:

WCLfrti = WCLfrti,arb +WCLfrti,coh + Lacc (8.20)

8.2 Timing Analysis for HourGlass(H-DD-WC)

H-DD-WC is similar to H-DD-NWC but is work-conserving. The slack slots of HRT cores
are utilized by FRT or SRT cores to broadcast pending requests. Since HRT and FRT cores
have dedicated slots, they have a guaranteed WC latency bound. For the special case of
this arbitration where slots are allocated only for HRT cores, H-DD-WC-0, the cores of the
second criticality level, SRT, do not have a guaranteed bound.

8.2.1 Bound for HRT cores

The only difference of this arbitration from H-DD-NWC is that the slack slots of HRT cores
are utilized by FRT or SRT cores. However, requests from FRT cores (in case of H-DD-WC)
or from SRT cores (in case of H-DD-WC-0) broadcasted in slack slots are reissued in the
presence of a request from HRT core. If the FRT cores broadcast requests in dedicated
slots, then a HRT core chrti is serviced only after all these FRT cores are serviced. Thus,
the HRT cores are still guaranteed a WCL bound as the number of slots allocated for FRT

cores is fixed, N frt
s , and the requests broadcasted in slack slots are reissued. The analysis

for WCLhrti for a HRT core when H-DD-WC is used is similar to the WC latency discussed
in Section 8.1 and is given by equation 8.10.

For H-DD-WC which has N frt
s as non-zero, for all different cases, where data is shared

or not between different criticality levels or when the memory accesses are read-only or

71

read-write, the analysis for WC arbitration latency and WC coherence latency is similar
to the analysis for H-DD-NWC in Lemma 2 and Theorems 1 and 2.

However, for the special case of arbitration H-DD-WC-0 where N frt
s = 0, the worst case

instance for the case where data is read-write and also shared between different criticality
levels, is different compared to H-DD-NWC and H-DD-WC. For the other scenarios, such as
Read-Only Unshared, Read-Only Shared, Read-Write Unshared, the analysis for
WC arbitration latency and WC coherence latency and hence the WC total latency is the
same as that of H-DD-NWC with N frt

s set as 0. Here, I discuss the WC arbitration latency
and WC coherence latency for a HRT core, with read-write data shared between HRT and
SRT cores, when H-DD-WC-0 is used. The WC bus arbitration latency, on the other hand,
is given by Lemma 1. By substituting N frt

s = 0 in equation 8.1, it is observed that the WC
bus arbitration latency is tighter compared to H-DD-NWC and H-DD-WC.

Theorem 7. When H-DD-WC-0 is used, WC arbitration latency, WCLhrti,arb, and WC coher-

ence latency, WCLhrti,coh, for a request issued by chrti to a cache line A, that is shared between
HRT and SRT cores and is read-write, occurs under the critical instance, where there is in-
terference from one SRT core and all the remaining HRT cores. Figure 8.7 illustrates the
critical instance under which the WC total latency for a HRT request is observed.

cjsrtStore
cihrt

cihrtGetMNhrt
GetM

. . .

. . .

-1

Nhrt -1
Receive and

hold data

S

GetS
S

MTI MTI MTI

M

STM

v(hrt,hrt)

v(srt,hrt)

Lbus
arb Lhrt

req
Lacc

v(hrt,hrt)

Li
coh

Shared Modified

1
2

3

4

Lhrt
req

cihrt

Lhrt
req

time

Li
arb

Lacc

5

Figure 8.7: Critical Instance for H-DD-WC-0 HRT core - Read-Write Shared.

72

The critical instance is explained as follows:

1. chrti issues a write request to A, which chrti has just received to be in the shared state
(S) in its private cache and begins its timer for A and no other core holds A in valid
state. The write request is issued only after the timer for A, that holds A in shared
state, in its own private cache expires.

2. When chrti ’s timer is about to expire, a SRT core csrtj requests for a read on A and
obtains it in the shared state, as HourGlass allows for the presence of multiple sharers
of a cache line. Thus, there are now two sharers of A. csrtj now holds A for a fixed
time duration v(srt, hrt). The interference from SRT core is dependent on the values
of v(srt, hrt) and v(hrt, hrt).

3. After csrtj obtains A in shared state, but before chrti ’s write is broadcasted on the bus,
all the other (Nhrt−1) HRT cores broadcast write requests to A. The write request to
any core can be serviced only after the timer of A expires for the last sharer (either

chrti or csrtj).

4. Since chrti ’s write is broadcasted only after Nhrt−1 write requests, by first-come first-

serve policy, chrti ’s write is serviced only after the Nhrt − 1 write requests from HRT

cores are serviced. Each HRT core, after its write operation, holds the data for a time
duration v(hrt, hrt) and then invalidates.

The WC arbitration latency for a HRT core for H-DD-WC-0, where N frt
s = 0, is given

by:

Read-Write Shared:

WCLhrti,arb =v(hrt, hrt) +WCLhrtbus,arb

=v(hrt, hrt) +
(
Nhrt × SW) (8.21)

Consider a term X, that is based on the initial values of timer configurations v(srt, hrt)
and v(hrt, hrt) compared to the TDM period. X is given by,

X =

{
0, if v(srt, hrt)or v(hrt, hrt) < (Nhrt × SW)

1, otherwise

73

The WC coherence latency is given as:

Read-Write Unshared:

WCLhrti,coh =
(
X × v(srt, hrt)

)
+ (Nhrt − 1)× (Lhrtreq + Lacc + v(hrt, hrt))

+ Lhrtreq

−WCLhrtbus,arb

WCLhrti,coh =
(
X × v(srt, hrt)

)
+ (Nhrt − 1)×

(
(Nhrt × SW) + SW + v(hrt, hrt)

)
+ (Nhrt × SW)

− (Nhrt × SW)

WCLhrti,coh =
(
X × v(srt, hrt)

)
+ (Nhrt − 1)×

(
(Nhrt × SW) + SW + v(hrt, hrt)

)
(8.22)

The different components in the above equations 8.21 and 8.22 is explained with the
help of Figure 8.7.

1. chrti issues a write request to A present in shared state 1 and so it has to wait for
its own timer to expire. Since it requested for A immediately after it obtained A in
shared state, it has to wait for v(hrt, hrt), the first term in equation 8.21.

2. After chrti ’s timer expires, chrti issues its write request on A, that is broadcasted on

the bus in chrti ’s slot. This accounts for the bus arbitration latency. In the worst
case, it just missed its start of slot and thus this is given by the WC bus arbitration
latency. This is given by the second term in equation 8.21.

3. After the csrtj obtains A in shared state 2 , there are two sharers of A: chrti and

csrtj . Any write request to A by any other core can be serviced only after A’s timer
expires in the private cache of the last sharer. Hence the term v(srt, hrt), first term
of equation 8.22 is added as csrtj is the last sharer.

74

4. However, the interference from SRT component, v(srt, hrt) (first term), is added de-
pending on the value of v(srt, hrt), v(hrt, hrt) and TDM period. If v(srt, hrt) < P , where
P = Nhrt×SW (TDM period), the time duration that csrtj holds A is hidden by the

time duration chrti holds the data and Larb
i . On the other hand, if v(hrt, hrt) < P ,

then the SRT core will not get a slack slot to make a request before all (Nhrt − 1)

HRT cores and chrti broadcast write requests. Hence, I include the term X in the
first term in equation 8.22, which is 0 if v(srt, hrt) or v(hrt, hrt) < P . As a result, the
interference from csrtj , v(srt, hrt), is not included in the worst-case coherence latency.

5. After the last sharer invalidates (chrti or csrtj), all Nhrt − 1 HRT cores receive A and
hold for some time duration. Each Nhrt − 1 HRT core, thus incurs the latency due

to data transfer at the requesting core’s slot, Lhrtreq , access latency, Lacc, and the time
duration it holds A in a valid state (v(hrt, hrt)). This is given by the second term in
equation 8.22.

6. The third term in equation 8.22, Lhrtreq , is added to account for the latency due to

data transfer at the requesting core’s slot for the core under analysis, chrti .

7. For the critical instance, all the remaining (Nhrt − 1) HRT cores broadcast write

requests after csrtj obtained A in shared state, but before chrti broadcasts its write
request 3 . Each core broadcasts the request in its dedicated slot and hence for
(Nhrt− 1) HRT cores to broadcast requests, csrtj should have obtained A and started

its timer countdown (Nhrt−1) slots before chrti ’s slot. However, the coherence latency

is measured from the time when chrti broadcasts its write request. So, I subtract the
component (Nhrt × SW) from v(srt, hrt), as csrtj obtained A (Nhrt − 1) slots before
coherence latency measurement starts. If there is no interference from SRT core, then
once the timer for A in chrti (sharer) expires, it sends A to the next requesting HRT

core, say chrtk . Now part of Lhrtreq added for chrtk is not included in coherence latency
and hence it must be subtracted. This is given by WC bus arbitration latency,
Nhrt × SW . This is given by the last term in equation 8.22.

Proof. The proof for Theorem 7 is by contradiction. It shows that the instance provided
is the critical instance.

1. Suppose that the critical instance is when the HRT core under analysis chrti , requests
for write operation on cache line A, when it is in invalid state or when it is in shared
state for a time duration t, where 0 < t < v(hrt, hrt). If chrti has A in invalid state

75

(A is not cached in the private cache), then WCLhrti,arb will not include the first term

v(hrt, hrt) as A is not cached. If chrti has A in shared state, and t > 0, then WCLhrti,arb

will only include v(hrt, hrt) − t, which is less than v(hrt, hrt). Both these scenarios

result in a latency less than the WCLhrti,arb presented in the equation 8.21. So this
is not the critical instance as this is not provide the worst-case arbitration latency.
Hence, the critical instance must be when chrti requests for write on A immediately
after it obtains A in shared state (t = 0).

2. Suppose that there is no SRT sharer after A expires in chrti ’s cache and X is non-zero.
Then the coherence latency will only include latencies incurred due to (Nhrt−1) HRT

cores. The term v(srt, hrt) will not be included in coherence latency, which results in

a value less than WCLhrti,coh of equation 8.22. So this is not the critical instance that
will result in the worst-case coherence latency. By contradiction, critical instance is
when there is SRT sharer.

3. Suppose that the critical instance is when csrtj broadcasts a write request, instead of
read on A. In such a situation, to maintain data correctness by having only a single
writer at a time, csrtj must wait for chrti ’s timer to expire. In the meanwhile, if there
are other write requests from HRT cores, by fixed-priority arbitration, the requests
from the other HRT cores are ordered before csrtj ’s request. It will result in a scenario

where chrti ’s write request is also ordered before csrtj ’s write request, resulting in chrti

receiving A before csrtj . This results in a coherence latency for chrti less than WCLhrti,coh

of equation 8.22 as it will not include the interference from the SRT core. So this is
not the critical instance as it does not result in worst-case coherence latency. Thus,
the critical instance should be when csrtj broadcasts a read request on A and obtains
it in shared state.

4. Suppose that the critical instance be when the first HRT core, say chrtk , broadcast a
read request, instead of write after csrtj obtains A in shared state. As the protocol

allows for multiple sharers, chrtk also obtains A in shared state and starts its timer,
resulting in 3 sharers of A. In such a situation, the first term of equation 8.21,
v(hrt, hrt), overlaps with the timer values added for csrtj and chrtk . Therefore, the

resulting total latency is less than total latency obtained by adding WCLhrti,arb and

WCLhrti,coh from equations 8.21 and 8.22. Hence, this is not the critical instance that
leads to WC total latency.

5. Suppose that the critical instance is when N ′ HRT cores broadcast write requests
to A before chrti broadcasts its write request after its timer expires, such that N ′ <

76

(Nhrt−1). The remaining (Nhrt−1−N ′) HRT cores either have no request or request

a different cache line B. Now, chrti waits for N ′ cores to complete their request and
hold A for a time duration, before it obtains A. The second term in equation 8.22
will now be

(
N ′× (v(hrt, hrt) +Nhrt×SW)

)
. Since N ′ < (Nhrt− 1), this above term

is less than the third term in equation 8.22, resulting in a lesser latency compared to
WCLhrti,coh of equation 8.22. So this cannot be the critical instance.

6. Supppose that the critical instance is when a core ck broadcasts more than 1 write
request on A, resulting in more than Nhrt − 1 pending HRT requests before chrti ’s
write request is broadcasted. In case of an in-order core, a core cannot issue another
request to a same cache line A that already has a pending request by the same core.
As a result, if a core ck has more than 1 dedicated slot, it can issue a read/write

request to another cache line B before chrti ’s broadcast of write request, but not A.
Hence, at the maximum, there can be only Nhrt − 1 pending HRT requests to the

same cache line A before chrti broadcasts its write request. This results in the critical
instance that provides the worst case coherence latency.

7. Suppose that csrtj requests for read after chrti ’s timer expires. Since SRT cores broad-
cast requests only in slack slots, this denotes that there is a HRT core which did not
make any request. This results in less than (Nhrt−1) cores requesting for write on A

before chrti broadcasts its write request. However, as discussed previously, this is not
the critical instance. The critical instance is when there are Nhrt − 1 pending HRT

requests to the same cache line A before chrti broadcasts its write request. Hence, the

critical instance should be when csrtj requests for read before chrti ’s timer expires.

8. Suppose that the SRT core, csrtj , requests for read on A few TDM slots before chrti ’s
timer expires. Now there will be an overlap between the first of equation 8.21 and
first term of equation 8.22. This results in a total latency less than that obtained
from the critical instance that was discussed. Hence, this is not the WC total latency
and so this is not the critical instance. By contradiction, the critical instance should
be when csrtj requests just when chrti is about to expire. There can be other SRT cores

requesting for read on A before csrtj , but only the last sharer accounts for the WC

coherence latency of chrti .

From the above discussion, it is seen that the observed arbitration latency Larb
i < WCLhrti,arb

or observed coherence latency Lcoh
i < WCLhrti,coh. Hence, I prove by contradiction that the

critical instance mentioned in Theorem 7 is the instance that results in the WC total
latency.

77

Lemma 5. If the timer values are assumed to be aligned to the TDM slots, then WCLhrti,arb

and WCLhrti,coh of chrti are tighter.

Proof. Consider that the initial values of timers v(hrt, hrt) and v(srt, hrt) are assigned to
be multiples of TDM period and hence the timer values are aligned to TDM slots. Now,
v(hrt, hrt) and v(srt, hrt) will be at least 1 TDM period, and so there is no need of the
term X in equation 8.22. Since the timers for a cache line in a core, start their countdown
after it received the cache line, the timers expire at the end of that core’s slot. chrti ’s timer
expires at the end of its slot, and hence it takes only (Nhrt − 1) slots to arrive at its next
slot to broadcast the write request. The latency due to transfer of data at requesting core’s
slot, Lhrtreq , is also tighter and given by (Nhrt − 1)× SW . From the example in Figure 8.2,

csrt2 ’s timer will expire at the end of chrt0 ’s slot, and hence, in the worst case, Lhrtreq is only
1 SW .
Equation 8.21 can now be expressed as follows:

WCLhrti,arb =v(hrt, hrt) +
(
(Nhrt − 1)× SW) (8.23)

Equation 8.22 can now be expressed as follows:

WCLhrti,coh =v(srt, hrt)

+ (Nhrt − 1)×
(
v(hrt, hrt) + SW + ((Nhrt − 1)× SW)

)
+ ((Nhrt − 1)× SW)

− ((Nhrt − 1)× SW) (8.24)

The WC arbitration and coherence latency from equations 8.23 and 8.24 are less than
the latency provided in Theorem 7 by aligning the timer values to the TDM slots. This
not only makes the total WC latency tighter, but also leads to lesser hardware overhead
as discussed in Chapter 7 Section 7.1.2.

8.2.2 Bound for FRT cores

The analysis for WC latency for a FRT core is different from H-DD-NWC due to FRT requests
being broadcasted in slack slots of HRT cores. The FRT cores broadcasts requests in the
dedicated slots and also in the slack slots of HRT cores to improve performance of FRT

cores. These requests broadcasted in slack slots will affect the WC latency bound for HRT

78

cores. Hence any pending FRT request to a cache line, broadcasted in the slack slot before
a HRT request to the same cache line, must be cancelled and reissued. This is done to make
sure that the HRT cores are always predictable and have a guaranteed bound. However,
this affects the WC latency bound of FRT cores as it now has to account for the requests
being reissued. For the special case of this arbitration, H-DD-WC-0, no slots are allocated
to SRT cores and hence they do not have a guaranteed bound. Here, I derive the WCL
bound for a FRT core, cfrti , when H-DD-WC is used, where N frt

s is non-zero.

Bus arbitration latency: The WC bus arbitration latency of FRT cores remain the
same as WCLfrtbus,arb provided in Lemma 3 equation 8.11 of Section 8.1. Though H-DD-WC

allows for FRT cores to utilize the slack slots of HRT cores, in the worst case, we can assume
that there are no slack slots available. Then all FRT cores must broadcast their requests
in dedicated slots of FRT cores. This results in a latency same as equation 8.11.

Coherence latency: If the access pattern of the tasks is such that the data is only
read by the HRT and FRT cores, then all the cache lines exist in shared state in all the
cores. As discussed in Section 8.1.2 Lemma 4, a core receives data immediately once it
reaches its own slot, when the data is read-only. The use of slack slots only improves the
average-case performance, but the worst case is when there are no slack slots. Hence, WC
arbitration latency and WC coherence latency when H-DD-WC is used are the same as that
given by H-DD-NWC in Lemma 4. This latency is not affected if data is shared or not
between HRT and FRT cores, as all cores have only read accesses.

If data is not shared between HRT and FRT cores, and the FRT cores request for read and
write accesses, then WC coherence latency of a FRT core depends only on the interference
from other FRT cores. Hence there can be no HRT cores requesting for the same cache
line as a FRT core. As a result, there are no reissue of FRT requests. Therefore the WC
latencies are the same as those derived for H-DD-NWC- Read-Write Unshared and is
given by Equation 8.17.

Theorem 8. When FRT cores request for read and write accesses and the data is shared
between HRT and FRT cores, the WC coherence latency depends on the interference from
HRT and FRT cores. WC arbitration latency, WCLfrti,arb, for a request issued by cfrti occurs

under the critical instance when it requests for write on a cache line that cfrti has just re-

ceived in the shared state(S) in its private cache. The WC coherence latency, WCLfrti,coh, for

a request issued by a FRT core, cfrti , occurs under the critical instance where cfrti broadcasts
its request in a slack slot, after write requests from other cores, and then has to reissue its
request in a dedicated slot due to a pending request from HRT core. Figure 8.8 illustrates
the critical instance under which WC arbitration and WC coherence latency for a FRT core
cfrti using HourGlass(H-DD-WC) are observed.

79

Overlapreissue

Store
cifrt

cifrt GetM in
slack

Nhrt
GetM

. . .
S STM

v(frt,frt)

Lbus
arb

Nfrt -1
GetM

. . .

Receive and
hold data

MTI MTI MTI

v(cl,cl’)

Lacc

Nhrt

Nfrt -1
and

Lfrt
req

M

Shared

Modified

cl - Criticality of core that holds data

1

4

3

2

Li
coh

cjhrt
GetM

...

Nhrt -1
GetM

MTI MTI MTI

Receive and
hold dataNhrt

Lhrt
req

. . .

Lfrt
req

cifrt GetM in
dedicated

Lreissue

v(hrt,frt)

9

5

6

8

cifrt reissues

7

cifrt supposed
to receive A

cl’ - Criticality of requesting core of data

time

Lacc

Li
arb

Figure 8.8: Critical Instance for H-DD-WC FRT core - Read-Write Shared.

The critical instance is explained as follows:

1. cfrti requests for write on a cache line A which cfrti just received to be in shared state

and has started its timer countdown 1 . Now cfrti has to wait for the timer for A,
v(frt, frt), in its own cache to expire before it can broadcast the write request on the
bus. No other core holds A in a valid state.

2. In this duration, all HRT cores and the remaining (Nfrt − 1) FRT cores broadcast
write requests on A in dedicated slots 2 . Each of this core (HRT or FRT) completes
its write operation and holds A for some time duration before it invalidates.

3. Finally cfrti ’s write request is broadcasted in a slack slot of any HRT core shown as
3 in Figure 8.8. This is different from the critical instance explained in Theorem 5
of Section 8.1, as in Section 8.1, H-DD-NWC is non-work conserving and slack slots
remain idle. Since cfrti ’s write request is broadcasted only after the remaining HRT

and FRT write requests, cfrti ’s write is serviced only after the previous pending requests
are serviced.

4. Just before cfrti ’s write request is serviced (i.e., all the previous pending requests are

serviced and cfrti is about to receive A), a HRT core, chrtj , broadcasts a write request

on A 4 . Since, cfrti ’s write was broadcasted in a slack slot, chrtj ’s write is prioritized

80

and so chrtj will receive A before cfrti . cfrti reissues its write request in a dedicated
FRT slot 5 .

5. Before cfrti ’s write is reissued in the dedicated slot, all the remaining (Nhrt− 1) HRT

cores broadcast write requests on A. So cfrti ’s write is serviced only after all the Nhrt
requests are serviced.

The WC arbitration latency for a FRT core is given as:

Read-Write Shared:

WCLfrti,arb =v(frt, frt) +WCLfrtbus,arb

=v(frt, frt) + (

⌈
Nfrt

N frt
s

⌉
× P) (8.25)

The WC coherence latency WCLfrti,coh for a FRT core is given as follows:

Read-Write Shared:

WCLfrti,coh =WCLfrti,coh-H-DD-NWC

+ Lreissue (8.26)

where WCLfrti,coh-H-DD-NWC is the WC coherence latency incurred by a FRT core cfrti

when HourGlass(H-DD-NWC) for Read-Write Shared data is used. This is discussed in
Section 8.1.2 Theorem 5 and is given by the equation 8.19.

81

Lreissue is given by:

Lreissue =Nhrt ×
(
Lhrtreq + Lacc + max{v(hrt, hrt), v(hrt, frt)}

)
+ Lfrtreq

−Overlapreissue

=Nhrt ×
(
(Ns × SW) + SW + max{v(hrt, hrt), v(hrt, frt)}

)
+ (

⌈
Nfrt

N frt
s

⌉
× P)

− (Nhrt × SW) (8.27)

From Equations 8.19, 8.26, 8.27, WCLfrti,coh is calculated as:

WCLfrti,coh =Nhrt ×
(
(Ns × SW) + SW + max{v(hrt, hrt), v(hrt, frt)}

)
+ (Nfrt − 1)×

(
(

⌈
Nfrt

N frt
s

⌉
× P) + SW + max{v(frt, hrt), v(frt, frt)}

)
+Nhrt ×

(
(Ns × SW) + SW + max{v(hrt, hrt), v(hrt, frt)}

)
+ (

⌈
Nfrt

N frt
s

⌉
× P)

− (Nhrt × SW)

WCLfrti,coh =2×Nhrt ×
(
(Ns × SW) + SW + max{v(hrt, hrt), v(hrt, frt)}

)
+ (Nfrt − 1)×

(
(

⌈
Nfrt

N frt
s

⌉
× P) + SW + max{v(frt, hrt), v(frt, frt)}

)
+ (

⌈
Nfrt

N frt
s

⌉
× P)

− (Nhrt × SW) (8.28)

82

The different components of the above equation are explained as follows:

1. the WC arbitration latency of a FRT core cfrti when HourGlass(H-DD-WC) is used,

WCLfrti,arb, is the same as the WC arbitration latency when HourGlass(H-DD-NWC) is
used.

2. The WC coherence latency of a FRT core cfrti when HourGlass(H-DD-WC) is used,

WCLfrti,coh-H-DD-WC, includes the latency incurred due to reissue of cfrti ’s write re-
quest and the WC coherence latency of FRT core when HourGlass(H-DD-NWC) is

used, WCLfrti,coh-H-DD-NWC. This is given by equation 8.26. WCLfrti,coh-H-DD-NWC is
included because the critical instance explained here is similar to the critical instance
explained in Theorem 5 of Section 8.1, with the only difference being that cfrti broad-
casts the write request in a slack slot. However, since it is broadcasted in a slack
slot, when there is a HRT request, cfrti reissues and this leads to additional latency
Lreissue 6 .

3. The derivation of WCLfrti,coh-H-DD-NWC is explained in Theorem 5 of Section 8.1.

4. Lreissue is due to the issue of a write request from a HRT core, chrtj . In the worst
case, the first HRT core in the TDM schedule issues a write request on A, just before
cfrti is about to receive A. As a result, cfrti reissues its write request. However, this
write request is reissued in the dedicated slot of FRT cores. In the meanwhile, all
the remaining (Nhrt − 1) HRT cores, that are scheduled before the dedicated slots

for FRT cores, broadcast write requests on A. So cfrti ’s write is serviced only after all
Nhrt HRT cores are serviced.

5. The first term of Lreissue in equation 8.27 accounts for interference due to all Nhrt
HRT cores, that complete their write operation and hold the data for some time
duration 7 . Each HRT core also includes Lhrtreq latency, as explained in Theorem 2 of
Section 8.1.1.

6. After all Nhrt HRT cores are serviced, cfrti is serviced in its own slot. This latency

to receive data in its own slot is given by Lfrtreq 8 (second term in the equation for
Lreissue).

7. For the critical instance, all Nhrt HRT cores broadcast write requests before cfrti is
supposed to receive A. However, the first HRT request will cause a reissue and that
latency is given by Lreissue. Thus there is an overlap (Overlapreissue) of Lreissue with

83

Lfrtreq for cfrti before it was reissued (i.e., Lfrtreq from equation 8.19). This Overlapreissue

is shown as 9 in Figure 8.8 and is given by (Nhrt × SW).

Proof. The proof for Theorem 8 is by contradiction. It shows that the critical instance
provided is the critical instance.

1. The initial part of the critical instance is similar to the critical instance considered
in Section 8.1 Theorem 5 which is already proved. Hence, I prove only the reissue
part of the critical instance.

2. Suppose that cfrti broadcasted its request in a dedicated slot. Now, even if a HRT

core broadcasts a write request before cfrti is serviced, the requests are not reordered

as cfrti broadcasted its request in a dedicated slot. So the reissue component, Lreissue

is not added. This results in a latency less than WCLfrti,coh in equation 8.27. So this

is not the critical instance. For critical instance, cfrti should broadcast its request in
a slack slot.

3. Suppose that there is another FRT core requesting for write on A, instead of a HRT

core. In this case, the FRT core will not be reissued as the FRT cores are serviced in
first-come first-serve manner. So this will not include Lreissue, resulting in a latency
less than WCLfrti,coh in equation 8.27. Thus the critical instance should have HRT

cores requesting for A before cfrti receives A.

4. Suppose that only N ′ HRT cores broadcasted write requests on A, before cfrti reissues
its request in a dedicated slot, where N ′ < Nhrt. So only N ′ write requests are

serviced before cfrti is serviced. Since N ′ < Nhrt, the latency incurred due to N ′

cores is less than the latency due to Nhrt, in the equation for Lreissue. This results

in a coherence latency less than WCLfrti,coh in equation 8.27. This is not the critical

instance. Critical instance is when all Nhrt broadcast write requests on A before cfrti

reissues its request in a dedicated slot.

The observed coherence latency, explained above, is less thanWCLfrti,coh in equation 8.27.
Thus by contradiction, I prove that the critical instance considered in Theorem 8 is the
instance that results in WC coherence latency.

Theorem 9. The total worst-case latency for a request issued by a FRT core cfrti is given

by the WC arbitration latency, WC coherence latency and the WC access latency for cfrti .

84

From the discussion on arbitration latency and Theorem 8, the WCLfrti per request for cfrti

is given as follows:

WCLfrti = WCLfrti,arb +WCLfrti,coh + Lacc (8.29)

85

Chapter 9

Evaluation

HourGlass is implemented in gem5 [7], which is a cycle accurate micro-architectural simula-
tor. I use Ruby memory model to implement the cache, memory subsystem, and coherence
protocol with high precision. Ruby Memory model of gem5 has flexibility to implement
different cache coherence protocols and accurately models the different states and state
transitions. I consider a multi-core setup consisting of four x86 in-order cores that run
at 2GHz. I use two HRT cores, and two FRT or SRT cores. Every core has a separate
16kB direct mapped private L1-data (L1-D) and instruction (L1-I) cache with a cache line
size of 64B. Access to the private L1 caches takes 3 cycle latency. All the cores share a
8-way 1MB set-associative last-level cache (LLC). Accesses to the LLC are assumed to be
perfect and incur an access latency of 50 cycles. This allows the evaluation of this work
to focus on measuring metrics relevant to cache coherence. The TDM slot width in the
TDM schedule is set to 50 cycles. I assume that main-memory access overheads can be
calculated using prior approaches such as [20], and are additive to the coherence latencies
derived in this work [33]. The bus manages accesses between cores and the shared memory
using one of the arbitration schemes discussed in Chapter 5. This is represented as Hour-
Glass(arb), where arb is the arbitration scheme chosen. For evaluation, I use SPLASH-2
[31], a multi-threaded benchmark suite, and multi-threaded synthetic benchmarks for max-
imum sharing of data across cores. I also use a micro-benchmark suite, Synchrobench [17],
and a multi-core performance suite for automotive processors, AutoBench 2.0 [1]. I run
these benchmarks using four threads, and map each thread to a core.

86

9.1 Data correctness and protocol verification

I verify the correctness of HourGlass using synthetic benchmarks, Synchrobench, AutoBench
2.0 and SPLASH-2 benchmarks. For synthetic benchmarks, I run the same set of instruc-
tions across all cores on the same data simultaneously. This results in maximum sharing
of data and stresses all the states and state transitions of HourGlass. This also causes
intereference among requests from different criticality levels. I manually verified that all
state transitions and timer events of HourGlass are correctly exercised. I verified all the cor-
ner cases when using different arbitration schemes on all the benchmark suites. I observe
that the WCL per request for HRT cores and FRT cores are within the analytical bound,
indicating that no unpredictable scenario occurred. This verifies the correctness of the
protocol. However, a cache coherence protocol must also ensure data correctness by keep-
ing data coherent across the cores. For data correctness of HourGlass, I check the output
of SPLASH-2 benchmarks. These benchmarks have in-built single threaded verification
routines that check the output generated from the multi-threaded workload.

9.2 Bounding memory access latencies

0
200
400
600
800

1000
1200
1400
1600

Synth1 Synth2 Synth3 Synth4 Synth5 Synth6

W
CL

 (c
yc

le
s)

Arbitration latency Coherence latency Total latency

Arbitration latency bound

Coherence latency bound

Total latency bound

(a) HRT cores.

0
250
500
750

1000
1250
1500

Synth1 Synth2 Synth3 Synth4 Synth5 Synth6

W
CL

 (c
yc

le
s)

Arbitration latency Coherence latency Total latency

Total latency bound

Coherence latency bound

Arbitration latency bound

(b) FRT cores.

Figure 9.1: Observed WCL components for HourGlass(H-DD-NWC).

I show that HourGlass, with all the different arbitration schemes, have a bound on
the access latency to shared data. Figures 9.1 and 9.2 show the observed worst-case re-
quest access latency, and the individual latency components such as the coherence latency,
and arbitration latency for HRT and FRT cores observed when HourGlass(H-DD-NWC) and
HourGlass(H-DD-WC) are used. For HourGlass(H-DD-WC-0), I show the observed latency

87

0
200
400
600
800

1000
1200
1400
1600

Synth1 Synth2 Synth3 Synth4 Synth5 Synth6

W
CL

 (c
yc

le
s)

Arbitration latency Coherence latency Total latency

Total latency bound

Coherence latency bound

Arbitration latency bound

(a) HRT cores.

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200

Synth1 Synth2 Synth3 Synth4 Synth5 Synth6

W
CL

 (c
yc

le
s)

Arbitration latency Coherence latency Total latency

Total latency bound

Coherence latency bound

Arbitration latency bound

(b) FRT cores.

Figure 9.2: Observed WCL components for HourGlass(H-DD-WC).

0
50

100
150
200
250
300
350
400
450
500

Synth1 Synth2 Synth3 Synth4 Synth5 Synth6

W
CL

 (c
yc

le
s)

Arbitration latency Coherence latency Total latency

Arbitration latency bound

Coherence latency bound

Total latency bound

(a) HRT cores.

Figure 9.3: Observed WCL components for HourGlass(H-DD-WC-0).

components only for HRT cores, as SRT cores do not have a bound in Figure 9.3. In this
evaluation, I configure the initial timer values for all timer configurations as 1 TDM period.
The TDM period P depends on the arbitration scheme chosen. I use synthetic benchmarks
that perform the same set of instructions on all cores. For all the benchmarks: SPLASH-2,
Synchrobench and AutoBench 2.0, I observe that the different latencies per request are
bounded and well within the analytical bound. This is because they do not stress the
worst case instances due to low sharing of data across the cores. Hence, I show the ob-
served WCL for synthetic workloads that stress the coherence protocol, and the WCL and
their respective components for all benchmarks are within the analytical bounds.

88

Configuration Timer values Description

HourGlass(ALL-DD) (1)

v(hrt,hrt) = 1 ∗ P , Each HRT, FRT or SRT core
v(hrt, srt) = 1 ∗ P , is allocated
v(srt,hrt) = 1 ∗ P , a dedicated slot
v(srt, srt) = 1 ∗ P

HourGlass(H-DD-NWC) (2,4,2,1)

v(hrt,hrt) = 2 ∗ P , Each HRT core is
v(hrt, frt) = 4 ∗ P , allocated a dedicated slot

v(frt,hrt) = 1 ∗ P , and N frt
s = 1 slot is

v(frt, frt) = 2 ∗ P allocated for FRT cores;
Non-work-conserving

HourGlass(H-DD-WC) (2,4,2,1)

v(hrt,hrt) = 2 ∗ P , Each HRT core is
v(hrt, frt) = 4 ∗ P , allocated a dedicated slot

v(frt,hrt) = 1 ∗ P , and N frt
s = 1 slot is

v(frt, frt) = 2 ∗ P allocated for FRT cores;
Work-conserving

HourGlass(H-DD-WC-0) (2,4,2,1)

v(hrt,hrt) = 2 ∗ P , Each HRT core is
v(hrt, srt) = 4 ∗ P , allocated a dedicated slot
v(srt,hrt) = 1 ∗ P , and no slots are
v(srt, srt) = 2 ∗ P allocated for SRT cores;

Work-conserving

Table A1: HourGlass configurations.

9.3 Comparison of per request WCL bounds of Hour-
Glass with other approaches

Figure 9.4 shows the observed WCL for a request from a HRT core deployed using real-
time approaches, PMSI and HourGlass. The other approaches used in real-time systems for
predictable data sharing include uncache-all that does not cache any data in the private
caches, uncache-shared [10] that caches only private data and accesses shared data from
shared memory (main memory), and task mapping that maps all tasks that share data to
the same core [10]. By using different arbitration schemes, different versions of HourGlass are
obtained. I tabulate the different HourGlass versions along with their timer configurations
used in this evaluation in Table A1. The initial timer values are set based on the TDM
period of the arbitration scheme P .

The conventional PMSI uses TDM arbitration, by allocating dedicated slots for all
cores (HRT, FRT or SRT) and does not support cache-to-cache transfer. Since HourGlass has
cache-to-cache transfer, I modify PMSI to support cache-to-cache transfers and compute
the analytical WCL for a memory request under this variant of PMSI. I also compare the

89

different versions of HourGlass with a configuration that sets the initial timer values to zero
(HourGlass (0)). By setting the timer values to zero, I assume a version of HourGlass that
does not use timers and hence does not hold cache lines in the private cache for certain
time duration. For this evaluation, I use one of the synthetic benchmarks to observe the
WCL for a request from a HRT core.

0

200

400

600

800

1000

1200

1400

1600

W
C

L
(c

yc
le

s)

WCL bound for PMSI

WCL bound for HourGlass(H-DD-NWC)(0) and HourGlass(H-DD-WC)(0)

WCL bound for Uncache all, Uncache shared and Task mapping

WCL bound for HourGlass(H-DD-WC-0)(0)
WCL bound for HourGlass(H-DD-WC-0)(1)

WCL bound for HourGlass(H-DD-NWC)(1) and HourGlass(H-DD-WC)(1)

HRT core

Figure 9.4: Observed per request WCL of HRT cores for all real-time approaches.

In uncache-all, uncache-shared and task mapping approaches, the worst-case latency
for a request is observed to be the latency to obtain data from main memory. However,
this results in degraded overall performance as most requests are serviced from main mem-
ory. PMSI and HourGlass, on the other hand, provide significant performance benefits, by
allowing simultaneous access of shared data from private caches. This is discussed in Sec-
tion 9.4. PMSI allocates a dedicated slot for all HRT and FRT or SRT cores and so does not
differentiate between different criticality levels. WCL for HRT cores, thereby, incurs addi-
tional arbitration latency for arbitrating across FRT or SRT cores. When timer values are
zero, HourGlass, with any one of the criticality-aware arbitration schemes, provides tighter
bounds on the WCL for HRT cores compared to that of PMSI. Few slots are allocated for
FRT cores in case of H-DD-NWC and H-DD-WC and hence it results in lower arbitration
latencies for HRT cores and thereby lower total WCL per request. In H-DD-WC-0, no slots
are allocated for SRT cores and hence it does not have a bound. But this also provides
tighter WCL compared to PMSI. FRT or SRT cores benefit from improved average-case
performance and not tighter WCL bounds. The timers in HourGlass are added for this
purpose, i.e., to improve the performance of FRT or SRT cores. In Figure 9.4, HourGlass (1)
denotes HourGlass with timers. It is observed that HourGlass with timers increases the WCL

90

bound for HRT cores. However, they provide improvement in performance of FRT or SRT

cores. I discuss the trade-offs between WCL bound for HRT cores and performance of FRT

or SRT cores in Section 9.5. However, not all versions of HourGlass with timers increase
the WCL bound. HourGlass(H-DD-WC-0) (1) provides tighter WCL bound for HRT cores
than PMSI. This provides both tighter WCL for HRT cores and improved average-case
performance for SRT cores. Thus, compared to PMSI, HourGlass is a criticality-aware cache
coherence protocol that satisfies the requirements of HRT and FRT or SRT cores.

9.4 Comparison with other approaches

I compare the performance of HourGlass with conventional cache coherence protocols such
as the MSI and MESI protocols, state-of-the-art real-time cache coherence protocol PMSI,
and other real-time approaches for sharing data predictably, such as uncache-all, uncache-
shared and task mapping in Figure 9.5. The different HourGlass versions along with their
timer configurations used in this evaluation are tabulated in Table A1. Figure 9.5 compares
the slowdown experienced by different approaches to MESI cache coherence protocol for
SPLASH-2 benchmarks. uncache-all has the largest slowdown compared to the rest of the

97
.8

8

92
.6

1

81
.4

2

74
.1

2

87
.8

1

80
.6

6

7.
88

11
.9

8

49
.5

9

1.
31

2.
54

1.
66 1.
74

1.
41

2.
55

1.
68

1.
26

2.
84

2.
20

2.
51

1.
18

2.
36

1.
22

1.
22

2.
00

1.
92

1.
41 1.

52

1.
32 1.

50

1.
491.

59

1.
44

2.
72

2.
66

1.
84 2.

09

1.
49

2.
24

1.
95

1.
36

1.
31

2.
31

2.
59

1.
64

1.
60

1.
36

2.
08

1.
73

1.
34

1.
27

1.
95 2.

12

1.
51 1.
57

1.
90

1.
59

1.
22

1.
15

1.
77 2.

01

1.
40

1.
37

1.
21

1.
74

1.
46

1.
01

1.
00

1.
01

1.
01

1.
01

1.
01

1.
00

1.
00

1.
01

0.00

0.50

1.00

1.50

2.00

2.50

3.00

LU FFT Radix Ocean FMM Cholesky Radiosity Raytrace Geomean

Sl
ow

do
w

n

Uncache all Uncache shared Task mapping
PMSI HourGlass(ALL-DD)(1) HourGlass(H-DD-NWC)(2,4,1,2)
HourGlass(H-DD-WC)(2,4,1,2) HourGlass(H-DD-WC-0)(2,4,1,2) MSI

Figure 9.5: Total execution time slowdown compared to MESI protocol.

approaches and protocols. On average it suffers from a 49.59× slowdown as the SPLASH-2
benchmarks exhibit data reuse. This is because every data access incurs the long memory
access latency. uncache-shared performs significantly better than uncache-all as some of
the private data reuse are cache hits in the private caches. On average, uncache-shared
suffers a slowdown of 2.55× compared to the MESI protocol. Task mapping has all tasks

91

that share data mapped to the same core. So if all tasks share data, then it is similar to
running the application on a single core, and hence it does not observe the performance
benefits from multi-core platform. It suffers 2.36× slowdown compared to MESI protocol.
PMSI protocol outperforms previous real-time approaches as it allows for multiple copies
of shared and private data to be cached simultaneously in the private caches of different
cores. Hence, PMSI experiences less average slowdown (49%) compared to the previous
approaches.

All versions of HourGlass perform much better than uncache-all and uncache-shared on
average. However, in benchmarks such as LU and raytrace, it is seen that uncache-shared
performs better than HourGlass and even PMSI. In these benchmarks, reuse of shared data
is minimal as uncache-shared approach has a slowdown of only about 1.35× compared to
MESI. Hence, acccessing the shared data from main memory is better than using a cache
(that causes invalidation and write back to memory when requested by another core),
resulting in better performance of uncache-shared.

When compared to PMSI, HourGlass(ALL-DD) incurs on average a 30% increase in ex-
ecution time compared to PMSI. HourGlass(ALL-DD) considers all cores to be of the same
criticality level and dedicates a slot for each core. It holds the cache lines in private caches
for a time duration (1 TDM period in this evaluation). Although SPLASH-2 benchmarks
exhibit data reuse and locality, the data reuse do not occur within the timer duration.
Hence, cores hold on to cache lines for a duration where they may not be reused, and un-
necessarily stall cores requesting for the same cache line. SPLASH-2 benchmarks include
synchronization of threads in the form of barriers that result in HRT cores waiting for FRT

or SRT cores to satisfy the synchronization condition. Hence, the timers, with calls to
synchronization routines in SPLASH-2 benchmarks, results in HourGlass(ALL-DD)’s perfor-
mance to be worse than PMSI. For similar reasons, HourGlass(H-DD-NWC) also performs
worse than PMSI with 16% increase in execution time compared to PMSI. Though Hour-
Glass(H-DD-NWC) is criticality-aware, due to synchronization, the HRT cores are dependent
on the completion of requests from FRT or SRT cores and hence with timers, it incurs a
slowdown of 1.73× compared to MESI protocol.

HourGlass(H-DD-WC) uses work-conserving arbitration, allowing FRT cores to utilize the
slack slots. As a result, HourGlass(H-DD-WC) performs better than HourGlass(H-DD-NWC)
with 8% decrease in execution time. Almost all SPLASH-2 benchmarks partition the data
across cores such that there is minimal sharing, and have high data reuse resulting in high
cache hit rates. Hence, there are abundant slack slots for FRT cores to satisfy their memory
requests, thereby improving performance when work-conserving arbitration is used. For
SPLASH-2 benchmarks, it is observed that the maximum utilization of a HRT slot by a
HRT core to broadcast its requests is only about 30%, indicating that it results in a large

92

1.
10 1.
13

0.
98

0.
99

1.
26

1.
00

0.
98

0.
99

1.
56

0.
99

0.
99 1.
081.
10 1.
13

0.
98

0.
99

1.
26

1.
00

0.
98

0.
99

1.
56

0.
99

0.
99 1.
08

1.
30 1.
32

1.
01

1.
01

1.
31

1.
03

1.
01

1.
01

1.
62

1.
02

1.
01 1.
13

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

Sp
ee
du
p

HourGlass(H-DD-NWC)(1) HourGlass(H-DD-WC)(1) HourGlass(H-DD-WC-0)(1)

Figure 9.6: Speedup compared to PMSI protocol - Synchrobench.

number of slack slots.

SRT cores are not required to have a guaranteed bound, but only benefit from perfor-
mance. In such an application that has SRT cores, HourGlass(H-DD-WC-0) is used. Hour-
Glass(H-DD-WC-0) does not allocate slots for SRT cores. From the evaluation, it is seen that
HourGlass(H-DD-WC-0) performs slightly better than PMSI. It decreases execution time by
2% on average over PMSI. Due to synchronization of threads, HourGlass(H-DD-WC-0) re-
sults in comparable execution times to PMSI for the SPLASH-2 benchmark suite. If the
calls to synchronization routines are eliminated, then the HRT cores could complete earlier
in the HourGlass than in PMSI.

For Synchrobench and AutoBench 2.0 benchmarks, all versions of HourGlass perform
better than PMSI. Figure 9.6 compares the performance of HourGlass with PMSI for Syn-
chrobench benchmark. I set the intial timer values for all configurations as 1 TDM period,
denoted as HourGlass(arb) (1), where arb is one of the criticality-aware arbitration schemes:
H-DD-NWC, H-DD-WC or H-DD-WC-0. All versions of HourGlass perform either comparable
to PMSI or better than PMSI. I show only few instances of Synchrobench in Figure 9.6. On
average, HourGlass(H-DD-NWC) and HourGlass(H-DD-WC) have 1.08× speedup over PMSI.
HourGlass(H-DD-WC-0) performs 13% better than PMSI. This shows that in Synchrobench,
the FRT and SRT cores benefit from the use of timers and also reduced arbitration latency
due to reduced number of slots allocated in the TDM schedule.

93

1.
02

0.
93 0.
99

0.
94 1.
03

0.
95 0.
981.
07

1.
07

1.
03

1.
04

1.
10

1.
08

1.
06

1.
09

1.
10

1.
05

1.
05

1.
12

1.
11

1.
09

0

0.2

0.4

0.6

0.8

1

1.2

Sp
ee
du
p

HourGlass(H-DD-NWC)(1) HourGlass(H-DD-WC)(1) HourGlass(H-DD-WC-0)(1)

Figure 9.7: Speedup compared to PMSI protocol - AutoBench 2.0.

1.
30 1.
33

1.
33

1.
26

1.
26 1.

43

1.
29 1.
31

1.
29

1.
53 1.
59

1.
45 1.
47

1.
43

1.
29 1.

43

1.
42

1.
74 1.
79

1.
56

1.
47

1.
46

1.
41 1.

54

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Synth1 Synth2 Synth3 Synth4 Synth5 Synth6 Synth7 Geomean

Sp
ee
du
p

HourGlass(H-DD-NWC)(1) HourGlass(H-DD-WC)(1) HourGlass(H-DD-WC-0)(1)

Figure 9.8: Speedup compared to PMSI protocol - Synthetic benchmarks.

94

In Figure 9.7, I compare the performance of HourGlass with PMSI when AutoBench
2.0 benchmark is used. For AutoBench 2.0, HourGlass(H-DD-NWC) performs worse than
PMSI by 2% increase in execution time on average. However, HourGlass(H-DD-WC) and
HourGlass(H-DD-WC-0) perform 6% and 9% better than PMSI. This shows that they benefit
from the use of slack slots.

I also use synthetic benchmarks to stress HourGlass and observe its benefits. Figure 9.8
provides a comparison of HourGlass with PMSI for synthetic benchmarks with initial timer
values for HourGlass set as 1 TDM period. With Synthetic benchmarks that have high
locality of requests from HRT and FRT or SRT cores, it is observed that the timers improve
performance of HourGlass compared to PMSI. HourGlass(H-DD-NWC) performs 1.31× bet-
ter than PMSI. HourGlass(H-DD-WC), due to the use of slack slots, perform even better
with 1.43× speedup compared to PMSI. HourGlass(H-DD-WC-0) has a speedup of 1.54×
compared to PMSI. Since no slots are allocated for SRT cores in HourGlass(H-DD-WC-0), it
results in tighter arbitration latency and hence further decrease in execution time.

9.5 Effect of timers on the performance of {FRT,SRT}
cores

Recall that timing guarantees are necessary only for HRT cores. FRT and SRT cores,
on the other hand, do not require timing guarantees but it is desirable to improve their
performance. This is because applications running on FRT or SRT cores may have high
locality and hence high execution throughput. With HourGlass, improved performance can
be achieved for FRT or SRT cores at the expense of increasing the WCL bound for HRT

cores.

The performance of FRT or SRT cores can be improved by increasing the time duration
these cores hold data. However, this results in an increase in the WCL bound for HRT cores.
One major contribution of HourGlass is the support for varying the timer configurations
to provide trade-offs between performance of FRT and SRT cores and WCL bound for
HRT cores. Increasing the timer values for HRT cores, v(hrt, hrt) and v(hrt, frt) or v(hrt, srt),
increases the WCL bound for HRT cores. However, this decreases the interference from FRT

or SRT cores on HRT cores, as HRT cores have higher priority. This results in degraded
performance for FRT or SRT cores as it provides more opportunities for HRT cores to
prioritize requests from FRT or SRT cores broadcasted in slack slots.

For performance improvement of FRT or SRT cores, the timers for these cores, v(cl2, hrt)
and v(cl2, cl2) where cl2 is frt or srt, should be varied. Varying v(cl2, cl2) affects the number

95

of cache hits and hence performance, when there are requests only from cl2 cores. However,
with requests from HRT cores, if v(cl2, hrt) is low, then the timer in cl2 core expires earlier
and thus it has to wait for its next slot for further accesses to the same data. In this
evaluation, I focus on varying the initial value for v(cl2, hrt) and observe its effect on
the performance of cl2 cores and WCL bound of HRT cores. Higher values of v(cl2, hrt)
increases the WCL of HRT cores. This is because a request to shared data that is present
in the private cache of cl2 cores has to wait for a maximum of v(cl2, hrt) before completing
its request. However, increasing v(cl2, hrt) allows cl2 cores to hold the data longer and
thus increases the number of cache hits on shared data in their private caches. This
leads to performance improvement. I observe the effect on performance and WCL by
varying v(cl2, hrt) for all versions of HourGlass. I use a synthetic benchmark that shows an
improvement in performance of FRT or SRT cores.

0
500

1000
1500
2000
2500
3000
3500
4000

150 300 450 600 750 900 1050120013501500

W
CL

 (c
yc

le
s)

v(frt,hrt) (cycles)

(a) WCL of HRT cores.

0

500

1000

1500

2000

2500

150 300 450 600 750 900 1050 1200 1350 1500

W
CL

 (c
yc

le
s)

v(frt,hrt) (cycles)

(b) WCL of FRT cores.

6000
8000

10000
12000
14000
16000
18000

150 300 450 600 750 900 1050 1200 1350 1500

To
ta

l m
em

or
y l

at
en

cy

(c
yc

le
s)

v(frt,hrt) (cycles)

(c) Total Memory access latency of FRT cores.

Figure 9.9: Effect of timers in HourGlass(H-DD-NWC).

96

9.5.1 Effect on HourGlass(H-DD-NWC)

Figure 9.9 shows the effect of varying v(frt, hrt) on WCL bound of HRT and FRT cores and
total memory latency of requests from FRT cores. From Chapter 8, we know that the WCL
bounds for HRT and FRT cores depend on v(frt, hrt). v(frt, hrt) is varied in terms of TDM
period, which is Ns×SW = 150 for HourGlass(H-DD-NWC). The other timer configurations
are kept constant. Figures 9.9a and 9.9b show an increase in observed WCL for HRT and
FRT cores with increasing v(frt, hrt). Though the observed WCL for FRT cores is increased,
the total memory access latency for FRT cores is decreased. This total memory latency
is given by the latency incurred by all memory requests from FRT cores. Increasing the
timer duration, increases the number of cache hits and thus the total latency is decreased.
As a result, the average-case performance of FRT cores is improved. Depending on the
WCL requirements of HRT cores of the application, one can set the timer values to obtain
improved performance for FRT cores.

0

500

1000

1500

2000

2500

3000

150 300 450 600 750 900 1050 1200 1350

W
CL

 (c
yc

le
s)

v(frt,hrt) (cycles)

(a) WCL of HRT cores.

0

500

1000

1500

2000

2500

150 300 450 600 750 900 1050 1200 1350 1500

W
CL

 (c
yc

le
s)

v(frt,hrt) (cycles)

(b) WCL of FRT cores.

4000
6000
8000

10000
12000
14000
16000
18000

150 300 450 600 750 900 1050 1200 1350 1500

To
ta

l m
em

or
y l

at
en

cy

(c
yc

le
s)

v(frt,hrt) (cycles)

(c) Total memory access latency of FRT cores.

Figure 9.10: Effect of timers in HourGlass(H-DD-WC).

97

0

200

400

600

800

1000

1200

100 200 300 400 500 600 700 800 900 1000

W
CL

 (c
yc

le
s)

v(srt,hrt) (cycles)

(a) WCL of HRT cores.

15000

15400

15800

16200

16600

17000

100 200 300 400 500 600 700 800 900 1000

To
ta

l m
em

or
y l

at
en

cy

(c
yc

le
s)

v(srt,hrt) (cycles)

(b) Total memory access latency of SRT cores.

Figure 9.11: Effect of timers in HourGlass(H-DD-WC-0).

9.5.2 Effect on HourGlass(H-DD-WC)

Figure 9.10 shows the effect of varying v(frt, hrt) on WCL bound of HRT and FRT cores

and total memory latency of FRT cores using HourGlass(H-DD-WC). Here, N frt
s is non-zero

for the arbitration and hence FRT cores have a WCL bound. From Figures 9.10a, 9.10b
and 9.10c, we see that increasing v(frt, hrt), increases the number of cache hits for FRT

cores, and hence the total memory latency decreases. However, this also increases the
observed WCL for HRT and FRT cores. For the same benchmark and same variation in
timer values, HourGlass(H-DD-WC) has improved performance compared to HourGlass(H-
DD-NWC) as total memory latency is further decreased in case of HourGlass(H-DD-WC).
This is because, HourGlass(H-DD-WC) also benefits from the use of slack slots.

9.5.3 Effect on HourGlass(H-DD-WC-0)

In H-DD-WC-0 arbitration, N frt
s = 0 and hence SRT cores do not have a guaranteed bound.

Figure 9.11 shows the effect of varying v(srt, hrt) on WCL bound of HRT and SRT cores
and the memory access latency of SRT cores using HourGlass(H-DD-WC-0). Figures 9.11a
and 9.11b show the effect on observed WCL of HRT cores and total memory latency of
SRT cores with increasing v(srt, hrt). Thus, the timers in HourGlass provide both bounds on
WCL for HRT cores, and performance benefits for SRT cores at the expense of increasing
the WCL of HRT cores.

98

9.6 Scalability

In this section, I analyze the effects of varying the number of HRT and FRT or SRT cores
on the WCL of HRT and FRT cores, when HourGlass is used. The dependence of WCL
bounds on the number of cores vary for different criticality-aware arbitration schemes. I
show the effect on WCL bounds by varying the number of HRT cores and FRT or SRT

cores for each protocol version. For this evaluation, I use one of the synthetic benchmarks
to distinctly highlight the trends as the synthetic benchmarks have more sharing of data
across the cores.

9.6.1 Effect on HourGlass(H-DD-NWC)

0

500

1000

1500

2000

2500

1 2 3 4

W
C

L
(c

yc
le

s)

Number of HRT cores

Arbitration latency Coherence latency Total latency

(a) Observed WCL for HRT cores.

0

500

1000

1500

2000

2500

3000

1 2 3 4

W
C

L
(c

yc
le

s)

Number of HRT cores

Arbitration latency Coherence latency Total latency

(b) Observed WCL for FRT cores.

0

500

1000

1500

2000

2500

1 2 3 4

W
C

L
(c

yc
le

s)

Number of FRT cores

Arbitration latency Coherence latency Total latency

(c) Observed WCL for HRT cores.

0
500

1000
1500
2000
2500
3000

1 2 3 4

W
C

L
(c

yc
le

s)

Number of FRT cores

Arbitration latency Coherence latency Total latency

(d) Observed WCL for FRT cores.

Figure 9.12: Effect of scalability in HourGlass(H-DD-NWC).

In HourGlass(H-DD-NWC), the WCL bound of HRT cores depend on the number of HRT

cores and also on the number of FRT cores depending on the timer duration. Figure 9.12a

99

and 9.12b show the variation in WCL bounds of HRT and FRT cores respectively by increas-
ing the number of HRT cores and keeping the number of FRT cores constant. The number
of dedicated slots allocated for FRT cores is also kept constant. In Figure 9.12a, the WCL
bound for HRT cores increase with increase in number of HRT cores. The arbitration la-
tency is proportional to the TDM period, and since each HRT core is allocated a dedicated
slot, increase in number of HRT cores increases the TDM period. The coherence latency
increases quadratically with increase in HRT cores, as there is an increased number of HRT

cores that cause interference. The total WCL latency is dominated by coherence latency.
The WCL bounds for FRT cores also increase with increase in number of HRT cores. The
number of HRT cores affect the TDM period, which in turn affects the arbitration latency
of FRT cores. The coherence latency of FRT cores also depend on the number of HRT cores
interfering with the requests from FRT cores. This is shown in Figure 9.12b.

The effect of varying the number of FRT cores has a different impact on the WCL
bounds of HRT and FRT cores. Since the number of dedicated slots for FRT cores remain
the same, the TDM period remains constant with increase in the number of FRT cores.
Hence arbitration latency of HRT cores remains constant with increase in number of FRT

cores. Coherence latency, on the other hand, depends on the maximum number of FRT

cores that can interfere with requests from HRT cores (N ′frt as discussed in Chapter 8). In
the scenario where one slot is allocated to FRT cores and the timer duration of HRT cores
is set to 1 TDM period, N ′frt can be 2 at the maximum. Hence in Figure 9.12c, there is
an increase in coherence latency, and thus total latency, of HRT cores when the number
of FRT cores increase from 1 to 2. Afterwards, as the number of FRT cores increase more
than N ′frt, it has no effect on the WCL bounds of HRT cores. Figure 9.12d shows the
WCL trends of FRT cores with increase in the number of FRT cores. Since the number
of dedicated slots for FRT cores is kept constant, increase in number of FRT cores results
in increase in the arbitration latency for FRT cores. The coherence latency of FRT cores
also depends on the number of FRT cores and hence it varies quadratically with increase
in number of FRT cores. This also increases the total latency of FRT cores quadratically.

9.6.2 Effect on HourGlass(H-DD-WC)

Figure 9.13 shows the variation in WCL of HRT and FRT cores with variation in the number
of HRT and FRT cores, when HourGlass(H-DD-WC) with N frt

s 6= 0 is used. The trend in
WCL variation is similar to the trend when HourGlass(H-DD-NWC) is used. Figures 9.13a
and 9.13b show the effect of increasing the number of HRT cores on WCL of HRT and FRT

cores respectively. The WCL of both HRT and FRT cores increase with increase in number
of HRT cores, as discussed for HourGlass(H-DD-NWC). From Figures 9.13c and 9.13d, I

100

0

500

1000

1500

2000

2500

3000

1 2 3 4

W
C

L
(c

yc
le

s)

Number of HRT cores

Arbitration latency Coherence latency Total latency

(a) Observed WCL for HRT cores.

0
500

1000
1500
2000
2500
3000
3500

1 2 3 4

W
C

L
(c

yc
le

s)

Number of HRT cores

Arbitration latency Coherence latency Total latency

(b) Observed WCL for FRT cores.

0

500

1000

1500

2000

2500

3000

1 2 3 4

W
C

L
(c

yc
le

s)

Number of FRT cores

Arbitration latency Coherence latency Total latency

(c) Observed WCL for HRT cores.

0
500

1000
1500
2000
2500
3000
3500

1 2 3 4

W
C

L
(c

yc
le

s)

Number of FRT cores

Arbitration latency Coherence latency Total latency

(d) Observed WCL for FRT cores.

Figure 9.13: Effect of scalability in HourGlass(H-DD-WC).

observe that WCL bound of FRT cores increase with increase in number of FRT cores.
However, the WCL for HRT cores remain constant after the maximum number of FRT

cores that can interfere with HRT cores is reached. This is given by the TDM period and
the timer configuration for HRT cores.

9.6.3 Effect on HourGlass(H-DD-WC-0)

In HourGlass(H-DD-WC-0), no slots are allocated for SRT cores and hence the SRT cores
do not have a guaranteed bound. Recall that the WCL of HRT cores is dependent on the
number of HRT cores, and independent of the number of SRT cores, when this arbitration
is used. In Figure 9.14a, the WCL of HRT cores increases with increase in the number
of HRT cores. In particular, the arbitration latency is proportional to the TDM period,
which is a function of number of HRT cores, and the coherence latency depends on the
timer values, which in turn are fixed in terms of TDM periods. In addition, the coherence

101

0

500

1000

1500

2000

2500

3000

1 2 3 4

W
C

L
(c

yc
le

s)

Number of HRT cores

Arbitration latency Coherence latency Total latency

(a) Observed WCL for HRT cores.

0
100
200
300
400
500
600
700
800

1 2 3 4

W
C

L
(c

yc
le

s)

Number of SRT cores

Arbitration latency Coherence latency Total latency

(b) Observed WCL for HRT cores.

Figure 9.14: Effect of scalability in HourGlass(H-DD-WC-0).

latency increases quadratically with increase in the number of HRT cores, and dominates
the total coherence latency. However, from Figure 9.14b, the WCL of HRT cores does not
increase with the number of SRT cores. However, increasing the number of SRT cores may
affect the performance for SRT cores, as they contend for slack slots of the HRT cores.

102

Chapter 10

Conclusion and Future Work

In this thesis, I propose a predictable time-based cache coherence protocol, HourGlass. I
also discuss criticality-aware bus arbitration schemes that can be used for HourGlass re-
sulting in three versions of the protocol: HourGlass(H-DD-NWC), HourGlass(H-DD-WC) and
HourGlass(H-DD-WC-0). HourGlass is also included with timer mechanisms to allow a core
to hold valid cache lines in its private cache for a certain time duration, that is set ini-
tially. This helps to improve the performance of FRT or SRT cores, while still providing
guarantees for HRT cores. The timer configurations are set based on the requirements of
HRT and FRT or SRT tasks of the application. It provides a trade-off between the WCL
bounds for HRT cores and performance of FRT and SRT cores. Based on the requirements,
the criticality-aware bus arbitration scheme is chosen. SRT cores are not required to have
any guaranteed bounds, and so H-DD-WC-0 can be used for applications that haave SRT

tasks.

As a future work, HourGlass can be extended to support all three levels of time-critical
tasks. HourGlass currently considers two levels of time-criticality where tasks are either HRT
and FRT or HRT and SRT. SRT tasks do not require guaranteed WCL bounds and only
focus on improved average-case performance. So the arbitration policy can be extended
to three level, where all HRT tasks are allocated dedicated slots, FRT tasks are allocated
few dedicated slots and also slack slots of HRT tasks, and no slots for requests from SRT

tasks. The SRT tasks can thus use only the slack slots if there are no pending requests from
HRT and FRT tasks. To this end, HourGlass requires modifications to ensure it responds
differently to requests from three different criticality levels.

HourGlass incurs a hardware overhead of 133 bits per cache line. However, this is compa-
rable to the overhead incurred by other time-based cache coherence protocols. Moreover,

103

if the timer values are aligned to TDM periods, then the overhead is reduced to 13 bits per
cache line. HourGlass (all versions) performs better than the real-time approaches uncache-
all and uncache-shared and experiences a 1.73× and 1.71× slowdown compared to the
conventional unpredictable MSI and MESI cache coherence protocols for the SPLASH-2
benchmarks. HourGlass(H-DD-WC-0) performs better than the other versions and pro-
vides tighter WCL bounds for HRT cores, with no bounds for SRT cores. This is due to
the presence of slack slots that are used by SRT cores. HourGlass(H-DD-NWC) and Hour-
Glass(H-DD-WC) exhibit increase in total execution times compared to the state-of-the-art
real-time cache coherence protocol PMSI for SPLASH-2 benchmarks. This is due to the
fact that SPLASH-2 do not have frequent shared data reuse and hence the use of timers
are detrimental. HourGlass(H-DD-WC-0) performs slightly better than PMSI due to the use
of slack slots. HourGlass is a predictable cache coherence protocol designed for mixed-time-
criticality systems and it is useful where data is shared across different criticality levels.
Most current work disable sharing of data across different criticality levels due to interfer-
ence of FRT or SRT tasks on HRT tasks leading to unpredictability. However, HourGlass is
a predictable approach that provides improved average-case performance for FRT or SRT

cores, while still guaranteeing WCL bounds for HRT cores.

104

References

[1] Autobench 2.0 - performance suite for multicore automotive processors. http://www.
eembc.org/autobench2/index.php.

[2] Sarita V. Adve, Vikram S. Adve, Mark D. Hill, and Mary K. Vernon. Comparison of
hardware and software cache coherence schemes. In Proceedings of the 18th Annual
International Symposium on Computer Architecture, ISCA ’91, 1991.

[3] ARM. Cortex-R5 and Cortex-R5F Technical Reference Manual. 2011.

[4] ARM. ARM Architecture Reference Manual ARMv8. 2013.

[5] Sanjoy Baruah, Haohan Li, and Leen Stougie. Towards the design of certifiable mixed-
criticality systems. In Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), 2010 16th IEEE, pages 13–22. IEEE, 2010.

[6] Sanjoy K Baruah, Alan Burns, and Robert I Davis. Response-time analysis for mixed
criticality systems. In Real-Time Systems Symposium (RTSS), 2011 IEEE 32nd, pages
34–43. IEEE, 2011.

[7] Nathan Binkert and et al. The Gem5 Simulator. SIGARCH Comput. Archit. News,
2011.

[8] Alan Burns and Robert Davis. Mixed criticality systems-a review. Department of
Computer Science, University of York, Tech. Rep, 2013.

[9] J. M. Calandrino and J. H. Anderson. On the design and implementation of a cache-
aware multicore real-time scheduler. In 21st Euromicro Conference on Real-Time
Systems (ECRTS), 2009.

105

http://www.eembc.org/autobench2/index.php
http://www.eembc.org/autobench2/index.php

[10] Micaiah Chisholm, Namhoon Kim, Bryan C Ward, Nathan Otterness, James H An-
derson, and F Donelson Smith. Reconciling the tension between hardware isolation
and data sharing in mixed-criticality, multicore systems. In Real-Time Systems Sym-
posium (RTSS). IEEE, 2016.

[11] B. Cilku, A. Crespo, P. Puschner, J. Coronel, and S. Peiro. A TDMA-based arbitration
scheme for mixed-criticality multicore platforms. In 2015 International Conference on
Event-based Control, Communication, and Signal Processing (EBCCSP), June 2015.

[12] B. Cilku, B. Frmel, and P. Puschner. A dual-layer bus arbiter for mixed-criticality
systems with hypervisors. In 2014 12th IEEE International Conference on Industrial
Informatics (INDIN), July 2014.

[13] Leonardo Ecco, Sebastian Tobuschat, Selma Saidi, and Rolf Ernst. A mixed critical
memory controller using bank privatization and fixed priority scheduling. In Embed-
ded and Real-Time Computing Systems and Applications (RTCSA), 2014 IEEE 20th
International Conference on, pages 1–10. IEEE, 2014.

[14] Georgia Giannopoulou, Nikolay Stoimenov, Pengcheng Huang, and Lothar Thiele.
Scheduling of mixed-criticality applications on resource-sharing multicore systems. In
Embedded Software (EMSOFT), 2013 Proceedings of the International Conference on,
pages 1–15. IEEE, 2013.

[15] Manil Dev Gomony, Jamie Garside, Benny Akesson, Neil Audsley, and Kees Goossens.
A globally arbitrated memory tree for mixed-time-criticality systems. IEEE Transac-
tions on Computers, 66(2):212–225, 2017.

[16] Giovani Gracioli and Antônio Augusto Fröhlich. On the design and evaluation of a
real-time operating system for cache-coherent multicore architectures. SIGOPS Oper.
Syst. Rev., 2016.

[17] Vincent Gramoli. More than you ever wanted to know about synchronization: syn-
chrobench, measuring the impact of the synchronization on concurrent algorithms. In
ACM SIGPLAN Notices, volume 50, pages 1–10. ACM, 2015.

[18] D. Hardy, T. Piquet, and I. Puaut. Using bypass to tighten WCET estimates for
multi-core processors with shared instruction caches. In 30th IEEE Real-Time Systems
Symposium (RTSS), 2009.

106

[19] M. Hassan and H. Patel. Criticality- and requirement-aware bus arbitration for multi-
core mixed criticality systems. In IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2016.

[20] M. Hassan, H. Patel, and R. Pellizzoni. A framework for scheduling dram memory
accesses for multi-core mixed-time critical systems. In 21st IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2015.

[21] Mohamed Hassan, Anirudh Kaushik, and Hiren Patel. Predictable cache coherence
for multi-core real time systems. In Proceedings of the IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2017.

[22] Intel. Intel 64 and IA-32 architectures software developers manual. Volume 3A: System
Programming Guide, Part, 1(64), 64.

[23] Leonidas I Kontothanassis and Michael L Scott. Software cache coherence for large
scale multiprocessors. In High-Performance Computer Architecture, 1995. Proceed-
ings., First IEEE Symposium on, pages 286–295. IEEE, 1995.

[24] Benjamin Lesage, Damien Hardy, and Isabelle Puaut. Shared data caches conflicts
reduction for WCET computation in multi-core architectures. In 18th International
Conference on Real-Time and Network Systems (RTNS), 2010.

[25] Marco Paolieri and et al. Hardware support for WCET analysis of hard real-time
multicore systems. In Proceedings of the 36th Annual International Symposium on
Computer Architecture (ISCA), 2009.

[26] A. Pyka, M. Rohde, and S. Uhrig. Extended performance analysis of the time pre-
dictable on-demand coherent data cache for multi- and many-core systems. In Inter-
national Conference on Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS XIV), 2014.

[27] Keun Sup Shim, Myong Hyon Cho, Mieszko Lis, Omer Khan, and Srinivas Devadas.
Library cache coherence. 2011.

[28] Inderpreet Singh, Arrvindh Shriraman, Wilson WL Fung, Mike O’Connor, and Tor M
Aamodt. Cache coherence for gpu architectures. In High Performance Computer
Architecture (HPCA2013), 2013 IEEE 19th International Symposium on, pages 578–
590. IEEE, 2013.

107

[29] Daniel J Sorin, Mark D Hill, and David A Wood. A primer on memory consistency
and cache coherence. Synthesis Lectures on Computer Architecture, 2011.

[30] Sanket Tavarageri, Wooil Kim, Josep Torrellas, and P Sadayappan. Compiler support
for software cache coherence. In High Performance Computing (HiPC), 2016 IEEE
23rd International Conference on, pages 341–350. IEEE, 2016.

[31] S. C. Woo and et al. The SPLASH-2 programs: Characterization and methodological
considerations. In Proceedings 22nd Annual International Symposium on Computer
Architecture (ISCA), 1995.

[32] Xiangyao Yu and Srinivas Devadas. Tardis: Time traveling coherence algorithm for
distributed shared memory. In Parallel Architecture and Compilation (PACT), 2015
International Conference on, pages 227–240. IEEE, 2015.

[33] H. Yun, R. Pellizzon, and P. K. Valsan. Parallelism-aware memory interference delay
analysis for COTS multicore systems. In 27th Euromicro Conference on Real-Time
Systems (ECRTS), 2015.

[34] Qingling Zhao, Zonghua Gu, and Haibo Zeng. Hlc-pcp: A resource synchronization
protocol for certifiable mixed criticality scheduling. IEEE Embedded Systems Letters,
6(1):8–11, 2014.

108

	List of Tables
	List of Figures
	Introduction
	Related Work
	Real-time systems
	Mixed time-criticality systems
	Bus arbitration
	Time-based coherence protocol

	Background
	Cache coherence
	Coherence protocol

	Mixed time-criticality multi-core systems
	Arbitration schemes

	System Model
	Bus Arbitration schemes
	Dedicated slots for all cores (ALL-DD)
	Dedicated slots for HRT cores with Non work conserving arbitration (H-DD-NWC)
	Dedicated slots for HRT cores with Work-conserving arbitration (H-DD-WC)

	Use of Criticality-aware Bus Arbitration and Timers - an Illustration
	HourGlass
	Architectural Modifications
	Architectural modifications to shared bus
	Architectural modifications to cache controllers
	Hardware overhead

	Cache Coherence Protocol Modifications
	Modifications for Criticality awareness
	Support for Timers
	Illustrative Examples

	Timing Analysis
	Timing Analysis for HourGlass(H-DD-NWC)
	Bound for HRT cores
	Bound for FRT cores

	Timing Analysis for HourGlass(H-DD-WC)
	Bound for HRT cores
	Bound for FRT cores

	Evaluation
	Data correctness and protocol verification
	Bounding memory access latencies
	Comparison of per request WCL bounds of HourGlass with other approaches
	Comparison with other approaches
	Effect of timers on the performance of {FRT,SRT} cores
	Effect on HourGlass(H-DD-NWC)
	Effect on HourGlass(H-DD-WC)
	Effect on HourGlass(H-DD-WC-0)

	Scalability
	Effect on HourGlass(H-DD-NWC)
	Effect on HourGlass(H-DD-WC)
	Effect on HourGlass(H-DD-WC-0)

	Conclusion and Future Work
	References

