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Abstract

Theoretical neuroscience is fundamentally concerned with the relationship

between biological mechanisms, information processing, and cognitive abil-

ities, yet current models often lack either biophysical realism or cognitive

functionality. This thesis aims to partially fill this gap by incorporating geomet-

rically and electrophisologically accurate models of individual neurons into

the Neural Engineering Framework (NEF). After discussing the relationship

between biologically complex neurons and the core principles/assumptions of

the NEF, a neural model of working memory is introduced to demonstrate the

NEF’s existing capacity to capture biological and cognitive features. This model

successfully performs the delayed response task and provides a medium for

simulating mental disorders (ADHD) and its pharmacological treatments. Two

methods of integrating more biologically sophisticated NEURON models into the

NEF are subsequently explored and their ability to implement networks of

varying complexity are assessed: the trained synaptic weights do realize the

core NEF principles, though several errors remain unresolved. Returning to the

working memory model, it is shown that bioneurons can perform the requisite

computations in context, and that simulating the biophysical effects of phar-

macological compounds produces results consistent with electrophysiological

and behavioral data from monkeys.
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Chapter 1

Introduction

1.1 Biological Plausibility and the NEF

1.1.1 Goals

Theoretical neuroscience seeks theories of information processing in the brain

built upon techniques, mathematics, and data from numerous scientific disci-

plines. From a top-down perspective, the goal of computational neuroscience

is to understand how cognition results from the computations performed in the

brain and to explain how networks of neurons realize these functional capabil-

ities. From a bottom-up perspective, the goal of computational neuronscience

is to explain the functional relevance of particular neurobiological features

and to describe how they interact to realize distributed computation. Although

vast amounts of neural and behavioral data have been gathered in pursuit of

these goals, the field still lacks broadly-accepted theories that consolidate this

knowledge into a coherent description of the functional brain, leading some to

describe the field as “data rich but theory poor” (Churchland and Sejnowski,

2016).

The Neural Engineering Framework, or NEF (Eliasmith and Anderson,

2003), is an attempt to unify neuroscientific data, engineering methods, and

computational simulation into a coherent theory of brain function. The NEF

provides tools that translate high-level, algorithmic descriptions of the brain’s
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Chapter 1. Introduction

computational processes into low-level neurobiological parameters. For in-

stance, the NEF can be applied to translate the differential equations describing

an integrator, a theoretical system that accumulates inputs and maintains the

result over time, into synaptic weights of a recurrently-connected population

of neurons. The resulting neural network realizes a working memory, a neu-

ral system that actively maintains information over short time periods and is

capable of performing behavioral tasks.

The NEF also respects a number of biological constraints: it uses spiking

neurons with limited firing rates and exponential synaptic filters; the number of

neurons and their connectivity respect parameters of the relevant brain area(s);

and learning rules rely on spike-timing dependent plasticity and/or error

signals from perceptual systems. However, the NEF does not aim to explain all

of the brain’s biological features. This raises the question, “Which features are

sufficiently (computationally) relevant to be included in the theory?” Although

the features currently utilized by the NEF are generally regarded as functionally

significant by the computational neuroscience community, some have argued

that the NEF does not include enough biological detail to constitute a “brain

model” (Sanders, 2013). Implicit in this statement is the assertion that NEF

models lack certain biological mechanisms that are needed to understand the

brain’s cognitive capabilities or match certain classes of empirical data. This

is a valid concern, but must be weighed against the dangers of introducing

complexity for its own sake, i.e., incorporating features whose functional

significance is unclear or whose mechanisms do not increase the theory’s

explanatory power.

1.1.2 Motivation

There are three principal reasons why the NEF will benefit from increased

biological realism, specifically the development of tools to simulate biologically

2



1.1. Biological Plausibility and the NEF

realistic neurons. First, it is important to show that networks of complex

artificial cells can represent information and perform computations on that

information. Existing NEF models generally use analytically-tractable neuron

models that reduce the complexity of biological cells down to a few essential

equations, then utilize mathematical tools to implement representation and

computation (two essential attributes of cognitive brains) by parameterizing

neural networks populated with these cells. It is an open question whether

these methods, and the models that have been built using them, will work

when simple neuron models are replaced with biologically realistic ones. If the

extensions introduced in this thesis are successful, it will advance the claim

that the NEF is capable of engineering functional neural systems built from a

biologically realistic neural substrate.

Second, explicitly modeling the geometry and electrophysiology of neurons

will allow researchers to investigate how low-level biophysical and neural

mechanisms/perturbations affect higher-level cognitive functions. In addition

to being theoretically valuable, these tools can be used to simulate and study

biophysically-grounded mental disorders such as Parkinson’s Disease, which

cause suffering for millions of people worldwide. Our current understanding of

these disorders relies heavily on animal experiments which face severe scientific

and ethical limitations. For instance, primate studies have small sample sizes,

require expensive animal care, and take years to execute, while current tech-

nology limits simultaneous data collection at multiple scales. Computational

neuroscience is a promising alternative. Simulations are quick, inexpensive,

and reproducible, and the data they generate can be measured with arbitrary

precision at multiple scales, allowing researchers to develop a more integrated

picture of disorders. Furthermore, if computational models are sufficiently

detailed to capture the underlying mechanisms of mental disorders (and have

been convincingly validated), researchers can design and test drug treatments

3



Chapter 1. Introduction

by perturbing these models to simulate pharmacological or behavioral treat-

ments. This methodology is potentially more ethically responsible and more

experimentally targeted than clinical trials on animals. However, existing

models rarely include both biological detail and functional capabilities, which

makes them ill-suited for the multifaceted study of mental disorders. One goal

of this extension is to develop models that capture a broader set of these low-

and high-level features, including enough biophysical detail to simulate the

underlying causes of mental disorders and drug treatments, enough neural

detail to produce data that can be externally validated, and enough functional

detail to conceptually describe why brain systems break down with mental

disorders.

Finally, new classes of computation and behavior may become available

with the use of biologically realistic cells. For example, it has been argued

that nonlinear functions may be computed in dendritic trees, increasing the

computational significance of individual neurons (London and Häusser, 2005).

Similarly, neuromodulators, neurotransmitters that have regulatory effects

on the post-synaptic cell, may allow novel forms of neural control, including

the emotional modulation of cognition and behavior by structures such as

the amygdala (Hermans et al., 2014; Phelps, 2004; Pessoa, 2008). Cognitive

neuroscience currently lacks quantitative theories for how these biological

features relate to these functional operations. Formulating and validating such

a theory requires a simulation environment that connects the biophysical to

the functional: the proposed extension to the NEF aims to fill this gap.

1.1.3 Outline

This thesis is structured as follows. The remainder of Chapter 1 is devoted to

introducing the NEF, discussing its simplifying assumptions, and examining

how neuron models built from NEURON can reintroduce biological complexity.

4



1.2. Neural Engineering Framework (NEF)

Chapter 2 explores how some of these biological features can be approximated

using existing NEF methods (i.e., without introducing realistic neurons) using a

model of working memory that reproduces electrophysiological and behavioral

data from monkeys. Chapters 3 and 4 explore two methods for incorporat-

ing biologically realistic NEURON models (hereafter bioneurons) into the NEF,

which involves training synaptic weights on the bioneurons’ dendrites such

that their resulting spiking behavior implements the core principles of the NEF.

Finally, Chapter 5 applies these methods back to the working memory model

of Chapter 2, discusses their limitations, and proposes extensions for future

research.

1.2 Neural Engineering Framework (NEF)

1.2.1 Three Principles

In order to understand the brain from a functional or cognitive perspective, a

theory must first describe how the brain internally represents information about

the external world. The first principle of the NEF, representation, describes

how neurons’ spiking activity represents, or encodes, incoming information.

To ensure a quantitative foundation for the theory, the NEF assumes that this

information can be described in terms of an N -dimensional, time-varying,

vector-valued signal x(t). Using vectors as a basis for representation has

numerous strengths, including the general and flexible characterization of

a representational hierarchy (i.e., the representation of quantities ranging

from scalars and vectors through functions and vector fields (Eliasmith and

Anderson, 2003)), the implementation of cognitive operations such as binding

(Plate, 1995) and winner-take-all competition (Stewart and Eliasmith, 2011),

and the application of powerful engineering techniques like control theory

(DeWolf et al., 2016).
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Chapter 1. Introduction

FIGURE 1.1: Example tuning curve showing the firing rate of
single cells from (A) the primary visual cortex of a macaque
monkey, as a function of the angle of rotation of a bar in the
monkey’s visual field; and (B) nuclei prepositus hypoglossi (a
brain area that controls eye position) as a function of the position
of the eye from midline. Error bars indicate standard deviation,
and dotted lines are the best-fit of a LIF neuron model to the
data. Figure reproduced from Eliasmith et al. (2012) with data

from Dan Marcus and Kathleen E. Cullen.

To understand how neurons encode vector-valued information, the NEF

utilizes neurons’ preferred direction vectors. A neuron will respond (fire

action potentials) most strongly when presented with this vector, and will

respond less strongly to stimuli that are increasingly dissimilar from this

vector. For example, a neuron that detects vertical bars in an animal’s visual

field will fire at its maximum rate when the animal perceives an image of

a vertical line, and will fire less strongly as that line is rotated towards a

horizontal orientation, as in Figure 1.1. A neuron’s tuning curve quantifies

this relationship by comparing a neuron’s steady-state activity to the vector

being represented. Preferred direction vectors and tuning curves have been

widely used in the neuroscience literature as a useful way of characterizing

neural representation (e.g., Georgopoulos et al., 1982).

In the NEF, each neuron i is assigned an N -dimension preferred direction

vector, or encoder, ei. To produce a variety of tuning curves and firing rates

that match the observed electrophysiological variance, neurons are also as-

signed a gain αi and bias current βi. These quantities determine how strongly

6



1.2. Neural Engineering Framework (NEF)

the incident vector x(t) drives the neuron:

Iin(t) = αi ∗ (ei · x(t)) + βi (1.1)

where Iin(t) is the current flowing into the neuron and (·) is the dot product

between the encoder and input vector. The relationship between the neuron’s

firing rate and this input current is determined by the neuron model Gi[·],

which describes the internal dynamics (of voltage, current, etc.) of the cell:

ai(t) = Gi[Iin(t)]. (1.2)

The NEF can be applied to a wide variety of neuron models, including sigmoid,

rectified linear, rate- and spike-based leaky-integrate-and-fire neurons (LIF,

discussed below), Izhikevich neurons, and others. So long as there is a well-

defined relationship between the input current and the resulting firing rate,

Gi[·] defines a tuning curve, the neuron’s activity can be said to represent the

vector x(t), and the NEF methods below can be applied. For spiking neurons,

the output spikes are filtered using a lowpass filter h(t), an operation that

approximates the biophysical process in which incident spikes (individual

receptor binding events) are translated to post-synaptic current (a continuous

value):

ai(t) = δi(t− t′) ∗ h(t) (1.3)

where δi(t− t′) is a delta-function that rises (with unit area) each time t′ that

the neuron spikes, (∗) denotes convolution with the lowpass filter, and the

filter is governed by a simple exponential decay:

h(t) = e(−t/τ) (t > 0). (1.4)

A distributed representation, or population encoding, extends this notion of

7



Chapter 1. Introduction

neural encoding: if the vector is fed into multiple neurons, each with a unique

tuning curve, then each neuron will respond with a unique ai(t), and the

collection of all activities will represent the signal x(t) with greater robustness

and precision than a single neuron.

For neural encoding to be meaningful, there must be methods to recover,

or decode, the original vector from the neurons’ activities. The first principle

of the NEF describes how to compute neural decoders di that perform this

recovery. The second principle extends these methods to calculate decoders

dfi that compute arbitrary functions of the vector, f(x(t)). This functional

decoding allows networks of neurons to transform the signal into a new state

x̂(t), which is essential for performing computational operations within a

cognitive system. To do so, a linear decoding is applied to the activities of the

neural population:

x̂(t) =
neurons∑

i

ai(t) ∗ dfi , (1.5)

where the hat notation indicates that the vector decoded from the neural

activities is an imperfect estimate of the desired state due to various sources

of noise (see Eliasmith and Anderson (2003)). The challenge now becomes

finding decoders dfi that will compute the desired function. This can be framed

as a least-squared optimization problem, with the objective of minimizing the

error between the target value x(t) and the decoded estimate x̂(t) over the

signal.

E =
1

2

∫ T

0

(x(t)− x̂(t))2dt

Since a minimization over time is ill-defined (time-varying inputs can

continuously change as t→∞), the NEF utilizes a rate-approximation when

calculating decoders: if a constant input x is fed into a neuron, its activity will

settle to a steady-state firing rate ai. Using this assumption, the optimization

8



1.2. Neural Engineering Framework (NEF)

can be reframed as a minimization over all values of x:

E =
1

2

∫ xmax

xmin

(f(x)− x̂)2 dx (1.6)

=
1

2

∫ xmax

xmin

(f(x)−
neurons∑

i

ai ∗ dfi )
2 dx. (1.7)

Instead of integrating over all x, the space is divided into S sample points, and

ai is computed at each value of ei · x using the neurons’ tuning curves. It can

be shown (Eliasmith and Anderson, 2003) that the solution which minimizes

E is given by

dfi = Γ−1Υ (1.8)

Γ =
1

S
ATA (1.9)

Υ =
1

S
ATf(x), (1.10)

where A is the matrix of neural activities (the firing rate of each neuron at each

sampled x value) and f(x) is the function that the decoders should compute

(to recover the input signal, f(x) is the identity function).

In nengo, the software package used to build and simulate neural models

specified using the NEF, the calculation of decoders using Equation 1.8 is

handled using a solver. The solver takes as arguments the target values

f(x) and the associated activities A and returns the decoders. As discussed

below, these target values and activities are by default the static sample points

taken from the tuning curves, but the method also accepts time-varying signals

(f(x(t)),A(t)) gathered from a previous simulation.

The third principle of the NEF, dynamics, allows neural networks to im-

plement linear systems of the form ẋ(t) = Ax(t) +Bu(t), as well as nonlinear

systems ẋ = F (x,u, t). This expands the scope of computations possible with

NEF networks to include control-theoretic systems. To do so, the matrices A

and B (not to be confused with the activities matrix A above) must be modified

9



Chapter 1. Introduction

to account for the dynamics that naturally occur when using neurons. If an

input u(t) is fed into a neural population representing x(t), and this population

is recurrently connected such that x(t) feeds back to itself, the dynamics of the

represented state are

ẋ(t) = A′x(t) +B′u(t) (1.11)

sX(s) = A′X(s) +B′U(s) (1.12)

where A′ and B′ are the connection weight matrices on the feedforward and

feedback connections, respectively, and the second line is the Laplace transform

of the first. In the NEF, the dynamics coupling the inputs to the state change are

governed by the synaptic filter, which is a lowpass filter by default, H(s) = 1
1+sτ

.

Substituting this into the above and equating with the non-neural form of the

equation, A′ and B′ can be calculated using the simple transformation

A′ = 1 + τA (1.13)

B′ = τB. (1.14)

When using nengo to construct a neural model that implements a desired

dynamical system ẋ(t) = Ax(t) + Bu(t), one simply specifies the function

f(x) = B′u on the connection into a population of neurons (feedforward)

and f(x) = A′x on the recurrent connection (feedback). At build time, the

solver computes the decoders dfi that implement these functional transforma-

tions. Nonlinear systems can be similarly handled: see Appendices E and F of

Eliasmith and Anderson (2003).

1.2.2 LIF Neurons

Before incorporating biologically realistic neurons into the NEF, it will be

helpful to review the leaky-integrate-and-fire (LIF) neuron model used in most
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1.2. Neural Engineering Framework (NEF)

nengo models. The LIF neuron is designed to simulate neurons’ internal voltage

dynamics while producing artificial spikes with plausible statistics. When it

comes to engineering neural systems, the LIF neuron is “a convenient and

fruitful mixture of realism and simplicity” (Eliasmith and Anderson (2003)): it

approximates the behavior of many types of biological neurons under a range

of conditions and physiological parameters; it has been shown to be a limiting

case for more complex neuron models such as the canonical Hodgkin-Huxley

model (Partridge, 1966); and it goes beyond rate-based neuron models by

capturing neural spikes, a critical feature of representation in biological brains.

LIF neurons are point neurons, a term used to describe artificial neurons

which have no spatial extent. Point neurons have a single set of state vari-

ables, most importantly voltage V (t), that represents the associated physical

quantities across the entire cell. Point neurons can be contrasted with com-

partmental neurons, which (a) include numerous sections that each contain a

set of state variables and (b) specify equations that govern how state variables

in adjacent sections affect one another.

The LIF equations governing V (t) describe voltage changes in the soma,

the cell’s central compartment, in response to inputs from presynaptic neurons

and passive properties of the soma itself. These equations have three main fea-

tures. The first is integration, which describes how neurons sum presynaptic

inputs over time. These inputs may be excitatory, causing V (t) to increase,

or inhibitory, causing V (t) to decrease. The second feature is leak, which

describes the relaxation of V (t) back to an equilibrium state, Veq ' −65 mV. A

variety of interconnected biophysical mechanisms contribute to this leak but

are lumped into a single decay rate in the LIF approximation. The final feature

is firing, the generation of a spike that is subsequently transmitted to other

neurons across synapses, the intercellular structures that connect neurons. In

the LIF model, when voltage accumulates to a threshold V (t) ≥ Vthr, a delta

function representing the spike is generated, and the voltage is immediately

11
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reset to Vreset for some refractory period τref . This procedure resembles the

generation of (and recovery from) an action potential, a rapid rising and

settling of somatic voltage that propagates down the axon, the elongated

portion of a neuron that conducts electrical impulses towards the synapse. The

complex biophysical kinetics of action potential generation are ignored in the

LIF model in favor of simplicity and rapid simulation.

For a complete justification and derivation of the LIF equations, see Elia-

smith and Anderson (2003). Under the assumption that Iin(t) changes slowly

compared to the interspike interval, the steady-state firing rate of a neuron ai

can be computed by passing the input through the neuron model G[·],

ai = Gi[Jin]

=
1

τref − τrc log(1− Ithr
Iin

)

=
1

τref − τrc log(1− Ithr
αi(x·ei)+βi )

, (1.15)

where τrc is a time constant that accounts for the neuron’s membrane resistance

and capacitance. This equation is used to calculate the tuning curves for LIF

neurons, which are in turn used to calculate decoders according to Equation

1.8.

1.2.3 Assumptions

The equations written above make several important assumptions about neu-

rons that reduce biophysical complexity in favor of analytical tractability:

1. Multiple input signals x0(t) . . .xn(t) are linearly combined to compute

the postsynaptic current that drives the neuron model (Equations 1.1 and

1.2)
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2. Equivalent filters h(t) are applied to each presynaptic spike when calcu-

lating the firing rate (Equation 1.3)

3. A neuron’s steady-state firing rate is well defined for all values of a driving

input signal x (Equation 1.6)

These assumptions hold true only for non-adapting point neurons: as

discussed below, the spatial and electrical properties of biological neurons lead

to nonlinear, time-dependent filtering of presynaptic inputs. One of the core

questions of this thesis is whether the NEF can still be effectively applied if

these assumptions are relaxed, i.e., if LIF neurons are replaced with biologically

plausible neurons in which rate approximations, equivalent filters, and linear

input summations are invalid.

1.3 Introduction to Biologically Realistic Neurons

This section demonstrates the biological realism of neuron models constructed

using NEURON and introduces the challenges associated with their integration

into the NEF.

1.3.1 NEURON

The NEURON simulation package is designed for modeling individual neurons

and networks of neurons in a numerically sound, computationally efficient,

and empirically constrained manner. It is particularly well-suited to building

models that involve cells with complex anatomical and biophysical properties

(Carnevale and Hines, 2006). NEURON simulates compartmental neurons in

which each section’s variables are governed by biophysically accurate differen-

tial equations such as the cable equation, which describes how current passes

between spatial sections (e.g., down the axon) based on their relative voltages

13
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and geometries. NEURON permits the meticulous construction of neural mor-

phology, allowing the user to build cells that closely resemble those taken from

particular brain regions (e.g., layer 5 pyramidal neurons). Geometry becomes

particularly important when considering the interactions of synaptic inputs,

which must be filtered through dendrites, the highly-branched neuronal struc-

tures onto which presynaptic neurons connect, before reaching the soma. This

filtering causes nonlinear summation of presynaptic inputs, violating the LIF

assumption that inputs can be added together using a weighted sum.

NEURON also simulates ion channels, structures within the membranes of

biological cells that permit the influx and efflux of positively charged molecules

such as sodium, postassium, and calcium. In biological cells, ion channels

are ligand-gated, meaning that they open and close when presynaptic neuro-

transmitters bind to receptors on the postsynaptic cell. Ion channels are also

voltage-gated, meaning that they open and close in response to changes in

the cell’s voltage. The nonlinear interaction between ion channels’ kinetics

produces action potentials when excitatory input is sufficiently large (relative

to inhibitory inputs and leak channels). However, the threshold for spike

generation is not as clear-cut as the LIF model would suggest: it depends on

the cell’s ion channel composition its recent spiking activity, a phenomenon

referred to as adaptation that violates the rate-mode approximation. NEURON

allows the user to specify the distribution of ion channels within each section

of a cell; it also simulates conductance-based synapses, which approximate

changes in a cell’s membrane conductances induced by receptor-binding and

thereby determine the kinetics of the postsynaptic current. To the extent that

these synapses, and the dendrites on which they reside, vary between neurons,

the NEF assumption of equivalent filtering is also violated.

14
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1.3.2 Realistic NEURON Models

Taken together, these features permit the creation and simulation of biologically

realistic neurons. Perhaps the best examples of this are the NEURON models

created by the Human Brain Project, a large European collaboration that

simulates sections of cortical tissue with unprecedented biological accuracy.

The HBP uses cellular and synaptic experimental data to reconstruct detailed

anatomy, electrophysiology, and connectivity of 55 morphological and 207

electrical neuron subtypes (Markram et al., 2015). When simulated, these

neurons reproduce an array of in vivo experiments; they also permit the

investigation of relationships between biophysical and network properties, such

as the spontaneous emergence of neural synchrony as a function of calcium

levels and network connectivity. The HBP’s NEURON models are available online

through the NMC portal.

The extreme realism of the HBP’s NEURON models comes at the expense

of simulation speed and neuron-type generality, motivating the selection of

a reduced geometry NEURON model developed by Bahl et al. (2012) for this

thesis. This model was developed using a three-step algorithmic strategy

for optimizing compartmental neurons, reducing the number of parameters

needed to simulate dendritic morphology while maintaining key aspects of

geometry, voltage responses, dendritic calcium spikes, and somatic-dendritic

coupling. The result is a reduced model of layer 5 pyramidal neurons that

closely reproduces experimental data. It includes 7 key anatomical sections

(soma, basal dendrites, apical dendrite, apical dendritic tuft, axon initial

segment, axon hillock, and axon) simulated using 20 connected compartments

whose geometries are derived from a detailed reconstruction by Zhu (2000).

See Figure 1.2 for a diagram of the reduced model’s geometry. The model

also includes 9 ion channels (hyperpolarization-activated cation; transient and

persistent sodium; fast, slow, muscarinic, and calcium-dependent potassium;
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FIGURE 1.2: Morphology and passive electrophysiology for a
detailed reconstruction of a layer 5 pyramidal neuron (a, Stuart
and Spruston (1998)) and the reduced model (b, Bahl et al.
(2012)). The remaining figures demonstrate that the reduced
model reproduces the complex model’s internal responses to
various applied current injections, including (c) the steady-state
voltage at different locations in response to a constant current
injected at the soma, (d) the somatic impedance (a function of
oscillations in cellular currents and potentials) in response to
an oscillatory current injected at the soma, and (e) the somatic
potential’s phase shift in response to the same oscillator input.

Reproduced from Bahl et al. (2012).

slow and pumped calcium), which were selected and distributed based on

experimental findings and modeling studies. See (Bahl et al., 2012) for a

more detailed description of geometric and electrophysiological matching with

experimental data. The optimized reduced neuron model(s) are available for

download on ModelDB.
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1.3.3 Integration with the NEF

In order to successfully achieve integration with the NEF, bioneurons must

meet two general requirements. First, the spiking activity of a population

of bioneurons must encode information that can subsequently be decoded.

More specifically, bioneurons should implement some form of tuning curve:

when fed a vector-valued input, the bioneurons’ resulting spike rate must vary

over this vector space. Preferably, this encoding would be (a) spike-agnostic,

such that identical state-space inputs encoded in distinct presynaptic spike

trains would produce similar bioneuron responses; (b) continuous, such that

nearby points in state-space would produce similar bioneuron responses; and

(c) heterogeneous, such that presynaptic inputs would produce a different

response in each bioneuron. If these criteria are met, the bioneurons’ activites

will be said to represent the information. Second, the tools used to decode the

state-space information from the bioneuron activities must be able to compute

arbitrary functions from these spikes. In the standard NEF, this is achieved by

manipulating the decoders using a least-squares optimal method, but these

techniques may not be as straightforward for bioneurons. If such decoding is

discovered, it will be possible to implement functional transformations and

dynamical systems using the bioneurons.

A number of theoretical challenges for NEF incorporation are immediately

obvious. One difficulty is that bioneurons built using NEURON may only take

spikes as inputs. While this is clearly a biological necessity, neural communi-

cation in nengo typically utilizes a form of dimensionality reduction in which

decoding, filtering, summing, and encoding happen in a particular sequence.

As depicted in Figure 1.3 (top), nengo models first encode the state-space

signal x(t) into a neuron-space signal
∑

i,t′ δi(t− t′), then decode a new state-

space estimate x̂(t) by filtering, weighting, and summing these spikes, and
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finally feed this vector into the encoders of neurons in the postsynaptic popula-

tion. Essentially, for every connection, a full encoding and decoding between

state-space and neuron-space occurs, such that each postsynaptic neuron has

access to the state-space estimate recovered from all the presynaptic activities

at t = t′. In contrast, the synapse objects ExpSyn in NEURON models receive

unweighted spikes, then perform weighting and filtering in a single step, and

finally send the resulting spikes to other bioneurons without explicit decoding.

Because each ExpSyn receives input from only a single presynaptic neuron, the

state-space representation x̂(t) is not directly available to the neurons. Essen-

tially, bioneurons operate entirely in neuron-space, see Figure 1.3 (bottom).

This difference is crucial because it is no longer possible to calculate firing

rate from state-space input using a formula like Equation 1.15 that utilizes a

time-invariant x: instead, firing rate depends on the relative arrival times of

input spikes, which change with the properties of the presynaptic neurons (i.e.,

gain, bias, seed, etc.). As mentioned above, nengo calculates decoders using

solvers that take as input a sample of state-space values and corresponding

firing rates from the neural population. For LIF neurons, these samples are

static evaluation points that tile the N -dimensional state-space, and the firing

rates are analytically calculated at each evaluation point using Equation 1.15.

In essence, this method uses the fixed tuning curves of a LIF population to

calculate the decoders before the simulation proper begins. With bioneurons,

the notion of state-space values and instantaneous firing rate are more sub-

tle due to adaptation and spiking inputs. Instead of using fixed evaluation

points, the state-space samples xtarget(t) can only be realized in comparison to

a time-varying input signal u(t). Similarly, the instantaneous firing rate must

be approximated by feeding the input (which has somehow been converted to

spikes) to the bioneurons then collecting and smoothing their spikes. However,

to collect targets and bioneuron spikes, the network must be simulated for a
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FIGURE 1.3: Order of operations for encoding, filtering, and
decoding in nengo (top) vs NEURON (bottom) networks. Each
circle represents an individual neuron or bioneuron soma and
the dashed vertical lines represent a connection between popula-
tions. Top: the equations governing the nengo progression are
Equations 1.1 (encoding), 1.15 (LIF neuron model), 1.3 (filter-
ing), and 1.5 (decoding). Note that all neurons in this scheme
receive state-space inputs u(t), and that the state-space estimate
x̂(t) is decoded from the neuron space before projection to the
following neural population. Bottom: the equations governing
the NEURON progression include a conductance-based exponen-
tial synapse model that simultaneously weights and filters input
spikes (Equations 3.1–3.2), a multi-channel, multi-compartment
neuron model that induces dendritic filtering, and adaptive so-
matic dynamics. Note that bioneurons only send and receive
spikes, and hence operate entirely in the neuron space: Equa-
tions 1.3 and 1.5 are only used to decode the state-space estimate

when projecting to LIF populations or reading out the state.
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period of time before the simulation proper begins. To ensure good representa-

tion, this period must be long enough that (a) u(t) covers the entire state space,

(b) the smoothed bioneuron activity begins to coalesce for each region of the

state space, even after accounting for (c) adaptation and nonlinear dendritic

filtering. The following chapters explore a number of techniques for overcom-

ing these challenges, then examine the fidelity of bioneurons’ representation

and dynamics in canonical NEF networks.
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Chapter 2

Neurobiology, Working Memory,

and the NEF

2.1 Introduction

This chapter applies standard NEF techniques to a create a spiking neural

network model of working memory (WM) and action selection applied to a

mnemonic cognitive test, the spatial delayed response task (DRT). In doing

so, it demonstrates the NEF’s ability to capture a broad set of low- and high-

level features: the model approximates enough neural detail to describe the

underlying causes of mental disorders and typical treatments, enough electrical

detail to respect biological constraints and produce data that can be externally

validated, and enough functional detail to provide a conceptual description of

WM systems and their disorder-induced deficits. After describing this model

and its results, the integration of biologically detailed neurons into the NEF

is reconsidered. In addition to familiarizing the reader with NEF models,

this chapter thus lays the groundwork for Chapter 5, which incorporates the

bioneurons developed in Chapters 3 and 4 into the model and compares its

performance with the aforementioned approximations.

21



Chapter 2. Neurobiology, Working Memory, and the NEF

2.2 Working Memory

Working memory (WM) is a central component of cognitive systems that is

required for temporary information storage during the execution of complex

tasks. It is an ideal example system for this thesis because it draws upon several

brain areas, coordinates complex cognitive functions, and has been the subject

of numerous quantitative studies at multiple levels of analysis. Furthermore,

WM is impaired by a variety of mental disorders including Attention Deficit

Hyperactivity Disorder (ADHD) (Scahill et al., 2014), raising questions about

how the system’s neurobiological processes are disrupted by WM disorders

(Avery et al., 2000) and how they can be treated through pharmacological

interventions acting on the brain’s neurobiological substrate.

2.2.1 Previous Models

Although computational models are well-suited to the task of simulating WM,

existing models rarely provide both biological detail and a functional architec-

ture capable of generating behavioral predictions. For example, models such

as CoJACK (Dancy et al., 2015) and Gunzelmann et al. (2009) are concerned

with how high-level cognitive abilities like mental arithmetic, perception, and

tactical planning relate to low-level details like caffeine or sleep loss, but must

implement these low-level details through the models’ symbolic plans and

production rules rather than through neural perturbations. ACT-R/φ (Ritter

et al., 2012) also investigates low-level details (e.g., epinephrine levels) us-

ing a mathematical model of physiology, but does not yet simulate neurons

explicitly. On the other hand, the Human Brain Project (Markram et al., 2015)

simulates cortical microcircuits with unprecedented biological accuracy, but

lacks a theoretical framework that relates model activity to high-level cognitive

abilities like perception, decision-making, and WM. New theories and models
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are needed to unify these approaches and characterize the complex relation-

ships between the pharmacological, neurobiological, and cognitive aspects of

WM.

2.2.2 Neurology

WM is at least partly realized in the prefrontal cortex (PFC), a brain region

whose prominent size in primates suggests its importance in complex cog-

nitive tasks that require a flexible mental workspace. The PFC represents

information that is temporarily held in mind, used to guide behavior and

decision-making, and maintained through recurrent excitatory connections

between neurons with similar tuning properties (Goldman-Rakic, 1995). Com-

putationally, this recurrence realizes an extended temporal integration that

preserves the represented item without external stimulation (Singh and Elia-

smith, 2006). Therefore, the core requirement in a neural model of WM is that

a population of neurons can maintain its state over time. That is, given a brief

input, the internal connectivity should cause the neural activity pattern that

results from that input to persist after the input has stopped. This persistence

will not be perfect: over time the neural activity will drift away from its initial

value.

2.2.3 Delayed Response Task

A standard behavioral test of working memory is called the spatial delayed

response task (DRT). In this task, a monkey fixates on a point in the center

of the screen, then is briefly presented a visual cue on the left or right (cue

period, 1 s). The cue is removed, then comes a delay period (2 s, 4 s, 6 s, or 8 s),

during which the monkey has to represent and maintain the cue’s location in

working memory. After the delay period, the monkey recalls the cue’s location

and responds by pressing a button on the left or right.
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2.2.4 Disorders and Pharmacological Treatments

The stable representation of items stored in WM is sensitive to the synaptic

connections of intra-PFC loops and the biochemical environment of PFC neu-

rons. Impairments in the dopamine and norepinephrine system are closely

associated with WM disorders such as ADHD (Arnsten and Lombroso, 2000;

Chandler, Waterhouse, and Gao, 2014), and the drugs used to treat them

target these impaired systems biophysically (Avery et al., 2000; Scahill et al.,

2014). Specifically, drugs prescribed for ADHD affect PFC neurons that express

Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) ion channels (Fra-

nowicz et al., 2002). HCN channels are located on neurons’ dendritic spines

and are open at rest, shunting synaptic input by permitting nonspecific cations

to flow out of the cell, as shown in Figure 2.1. These channels control the

excitability of pyramidal neurons by modulating dendritic summation and the

cells’ resting potentials (Magee, 1999; Poolos, Migliore, and Johnston, 2002);

when the neuromodulator norepinephrine binds to the α2A-adrenoreceptor

(α2A-AR), it activates a cAMP-mediated intracellular signalling cascade that

ultimately closes HCN channels. The result is reduced shunting and increased

excitability of the neuron.

The drugs guanfacine (GFC) and phenylephrine (PHE) are an agonist and

an antagonist of the α2A-AR respectively; GFC is prescribed to alleviate WM

deficits in patients with ADHD (Scahill et al., 2014) while PHE reproduces

many of the disorder’s symptoms (Levy, 2008; Arnsten and Leslie, 1991). A

study by Wang et al., 2007 showed that GFC increased (and a compound

similar to PHE decreased) the firing rate of PFC neurons with weak mnemonic

tuning in the direction of the cue presented in the DRT, while having no effect

on cells tuned in the opposite direction, Figure 2.2 (top). These results are

consistent with monkeys’ increased (decreased) performance on DRT when

injected with GFC (or PHE) (Mao, Arnsten, and Li, 1999; Ramos et al., 2006),
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FIGURE 2.1: Diagram of GFC’s biophysical interactions with PFC
neurons. Excitatory post-synaptic currents induced by presynap-
tic glutamate release are shunted from dendritic spines via open
HCN channels, leading to minimal postsynaptic potentiation.
When norepinephrine or its agonist GFC binds the α2A-AR, HCN
channels close, increasing the efficacy of cortical inputs. Image

reproduced from Wang et al. (2007).

Figure 2.2 (bottom). A reasonable hypothesis is that GFC raises the firing rate

of neurons with cue-aligned encoders, slowing the decay of information stored

in the PFC neural integrator and increasing performance on the DRT.

2.3 Model

This model, reported previously in Duggins et al. (2017), extends existing NEF

models of WM to perform the DRT using the architecture shown in Figure 2.3.

The location of the DRT cue, x(t) ∈ {−1,+1} for left and right respectively,

is fed into the network and represented by a population of neurons labeled

input (100 neurons). Each neuron i has a preferred direction, in this case the

cue location ei ∈ (−1, 1), for which it fires most strongly. When driven by x(t),

each neuron’s firing rate ai(t) represents the cue’s location; these activities can

be decoded with the least-squares optimal decoders di to recover an estimate

of the cue’s location, x̂(t). input connects feedforward to a working memory

population labeled WM (100 neurons) that represents the same information.

However, the recurrent connections within WM must dynamically stabilize this

representation by maintaining the neural activities over time, such that when
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FIGURE 2.2: Top: Guanfacine increases (Yohimbine decreases)
the activity of neurons that are spatially tuned to the cue’s lo-
cation in the DRT, but have a negligible effect on nonpreferred
direction neurons. Data were obtained from neurons in area 46
of dorsolateral PFC that displayed spatial tuning during control
conditions. GFC and Yohimbine were applied iontophoretically
to the monkeys during DRT performance (Wang et al., 2007).
Yohimbine and PHE are both antagonists for the α2A-AR, so their
neural and behavioral effects are expected to be similar. Bot-
tom: DRT accuracy vs. delay period length in monkeys injected
with saline, GFC, and PHE (Mao, Arnsten, and Li, 1999). The
blue line represents the baseline forgetting curve, a measure of
how quickly the monkey forgets the cue’s location. The outlier
datapoint, GFC at t = 4 s, probably arises from the small sam-
plesize of the dataset: a single (unique) monkey was used for
each experimental condition, though each line represents 800 to
1200 DRT trials from that animal. Error in the original data were

negligible so are not plotted here.
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the cue input x(t) is removed, the WM representation remains. Using the

dynamics principle of the NEF, this neural integrator is build using A′ = (1+ τ)

and B′ = τ . The result is a population of spiking neurons that maintains its

activity over time, and has been the basis of multiple WM models (Singh and

Eliasmith, 2006; Choo and Eliasmith, 2010).

To simulate a “forgetful” WM population, a second dimension is incorpo-

rated into the input vector x(t): the first dimension x0(t) is the value (cue

location) to be remembered, and the second dimension x1(t) is the amount

of time it has been remembered for. Empirical and modeling evidence are

consistent with the claim that PFC neurons explicitly encode the passage of

time (Lewis and Miall, 2006; Bekolay, Laubach, and Eliasmith, 2014). For

example, some PFC neurons start firing only after a given amount of time has

passed, while others gradually decrease their firing rate over time (Romo et al.,

1999). These positive monotonic and negative monotonic neurons are sensitive

to both the value being represented and the amount of time the memory has

been held; in other words, these are spatial mnemonic neurons with large

values in the first and second dimensions of ei. Other neurons may only be

sensitive to one or the other dimension (i.e., have small ei values for one of

those two dimensions). This variability in ei matches well to the observed

variability in WM tuning curves (Singh and Eliasmith, 2006).

During the simulation, the cue’s location is fed as a stimulus through input

into WM for the duration of the cue period (1 s) then is removed; after this, the

memory must be maintained by feedback activity. Two sources of instability are

introduced to simulate forgetting during the delay period. First, external noise

approximating the stochastic variability found in the brain is injected into WM

neurons using a bias current. Second, the constant passage of time, encoded as

x1(t), steadily increases the firing rate of positive monotonic WM neurons until

they saturate. Once a significant portion of the neurons saturate, decoding

the cue value from the population’s activity becomes noisy and inaccurate.
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FIGURE 2.3: Schematic of the spiking neuron model of the
delayed response task. Circles represent neural populations,
rounded boxes represent nodes that output vectors, and square
boxes represent subnetworks containing several connected neural

populations.

Without these instabilities, the information stored in WM is stable for a very long

time (minutes to hours), but when they are present, the information decays

over tens of seconds, consistent with decay rates of human WM (Choo and

Eliasmith, 2010).

To produce a response, the model must access the value stored in WM

and produce one of two outputs ∈ {−1,+1}. A basal ganglia subnetwork

BG decodes the cue information from the neural activity of WM neurons, then

decides whether the result is most similar to −1 or 1. This basal ganglia

model (Stewart, Choo, and Eliasmith, 2010; Stewart and Eliasmith, 2011)

has previously been used to simulate several cognitive tasks that require

reading information stored in working memory, such as action selection and

procedure following. Furthermore, the basal ganglia’s structure, function, and

parameters are biologically plausible. When the value stored in WM become

indistinguishable from 0 to this noisy decision procedure, the model randomly

outputs −1 or 1, leading to low DRT accuracy.
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There are four important free parameters in this model: ktime controls

the rate of interference due to elapsed time; noiseWM interferes with the cue

representation and noiseBG controls the accuracy of the decision procedure;

and the probmis gives the likelihood that the model fails to perceive the cue in

the first place (x0(t) = 0). The two noise parameters were fixed biologically-

plausible values, noiseWM = 0.005 and noiseBG = 0.025, then remaining

parameters were tuned until the baseline forgetting curve was approximated,

probmis = 0.05 and ktime = 0.4. The fit reported in Duggins et al. (2017)

is tighter due to a greater number of neurons and an alternative decision

procedure; it is likely that additional fine-tuning of model parameters (noise,

neuron tuning properties, etc.) could further improve the fit. However, because

the goal of this chapter is to demonstrate that the drug perturbations affect a

baseline forgetting curve in a qualitatively accurate (rather than quantitatively

exact) manner, this fine-tuning is left as an exercise for future work.

2.4 Results

This section describes three drug simulations, each of which approximates the

effects of GFC and PHE on the model at a different scale. These approximations

perturb standard NEF quantities such as encoders, decoders, gains, and biases

to emulate biological mechanisms that (until Chapter 5) are too low-level to

simulate directly. At the highest level, it explores how the drugs functionally

alter forgetting rates in WM by manipulating the recurrent connection weights.

Next, it investigates how injecting a constant current into all WM neurons biases

their resting states, changing their firing rates and the population’s ability to

maintain information. Finally, it examines the underlying causes of these firing

rate changes by manipulating the LIF neurons’ inherent properties (αi and βi)

to approximate the effects of α2A-AR (in)activation.
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2.4.1 Functional Simulation

To simulate the high-level, functional effects of GFC and PHE on working

memory, the weights in the WM recurrent connection are multiplied by a constant

kf , with the expectation that kf > 1 will increase feedback and promote

remembering, whereas kf < 1 will increase decay and promote forgetting.

Under normal conditions, as the model forgets the original stimulus, the cue

value of x̂0(t) decoded from WM decays exponentially. When the strength of the

recurrent connection is increased (kf = 1.03), a higher value of x̂0(t) is fed

back as input to WM, increasing the firing rate of cue-aligned neurons and more

strongly encoding the cue’s location. As shown in Figure 2.4 (top), the cue

representation rises and its decay lengthens compared to control. This makes it

easier for the decision procedure to distinguish the decoded cue location from

noise, which shifts the forgetting curve up, Figure 2.4 (bottom). Conversely,

weakening the recurrent connection (kf = 0.985) quickens the decay rate and

shifts the forgetting curve down. The model’s response qualitatively matches

the forgetting curves of monkeys injected with these drugs (Mao, Arnsten, and

Li, 1999). Reported results were averaged over 1000 model realizations with

randomized cues, neuron properties, and noise.

2.4.2 Electrical simulation

Although the functional simulation is conceptually simple and produces a

decent empirical match, it is unrealistic because GFC and PHE do not physically

transform the synaptic connections between neurons. One hypothesis is that

these drugs alter the firing rate of PFC neurons in a way that later manifests

functionally as improved or impaired forgetting. This experiment introduces

a global increase (decrease) in somatic current to all WM neurons through

current: IGFC = 0.5 and IPHE = −0.2. Importantly, even though Wang et al.,

2007 showed that, in vivo, an increase in activity was only observed for neurons
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FIGURE 2.4: Empirical and model data for the functional drug
simulation. Top: the cue location decoded from the spiking
activity of WM neurons. Bottom: the forgetting curve, which
describes the percentage of correct responses as a function of
delay period length. Both for monkeys and the model, accuracy
decreases steadily from 2 s to 6 s then drops sharply at 8 s. Con-
sistent with behavioral data from monkeys performing the DRT,
applied GFC increases task accuracy while PHE decreases it. Gray

regions represent 95% confidence intervals.
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whose preferred direction was aligned with the stimulus being remembered,

this simulated drug effect is applied to all the neurons in WM, then afterwards

the neurons with encoders within a certain range are observed. While this

seems counter-intuitive, the network effects of the recurrent connections are

sufficient to cause the differential response observed by Mao, Arnsten, and Li,

1999. In other words, GFC initially increases the firing rate of all neurons, but

only cue-aligned neurons that are already firing (because they are representing

the cue location) will feedback excitation to themselves and effectively multiply

this increase in activity.

Figure 2.5 shows the normalized firing rate of neurons before and after

the simulated application of GFC and PHE. As with the empirical data, the

electrical drug simulation for GFC increases (PHE decreases) the firing rate of

simulated preferred-direction neurons while having little effect on neurons in

the nonpreferred direction. This differential activation of preferred direction

neurons in turn allows the integrator to maintain a coherent representation of

the cue’s location for a longer duration, shifting the forgetting curve up, Figure

2.6. These electrophysiological and behavioral results are consistent both with

the functional drug simulation and with empirical data, Figure 2.2.

2.4.3 Neural Simulation

The final experiment approximates GFC and PHE at the individual neuron

level by altering the inherent properties of model neurons. At rest, HCN

channels allow positive ions to flow into the cell, so closing HCN effectively

induces a negative current, lowering the resting membrane potential. This

effect is here modeled by lowering the bias current βi of each LIF neuron in WM.

Additionally, closing HCN channels modulates neurons’ dendritic summation

such that small, desynchronized dendritic spikes more strongly influence the

somatic membrane potential. This effectively increases neurons’ responses to
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FIGURE 2.5: Firing rate of simulated neurons with encoders in
the preferred vs. nonpreferred directions in response to injected
current. The neurons chosen for plotting were tuned to the
preferred direction during control conditions, as per their hypoth-
esized importance in representing the cue’s location during the
delay period. Wang et al., 2007 failed to provide a precise defini-
tion of “weak spatial mnemonic tuning” or their procedure for
choosing such neurons, so model neurons were selected based on
the magnitude of their encoders (0.3 < |ei| < 0.6). They also did
not discuss their method of calculating “normalized firing rate,”
so the WM neurons’ properties were not fine-tuned to match the

absolute rates reported in Figure 2.2
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FIGURE 2.6: Cue representation and forgetting curve for the
electrical drug simulation.

a given synaptic input, which is here modeled by increasing the gain αi of

each neuron. This approximation was validated using a study in mice (Nolan

et al., 2004) that showed that closing HCN channels decreases neurons’ resting

membrane potentials and increases their gains in the subthreshold regime,

Figure 2.7.

After initializing the neural model to perform least-squares optimal integra-

tion (i.e., distributing neurons’ initial gains, biases, encoders, and decoders),

the gains of all WM neurons are shifted by adding a constant δα = 0.1 for

GFC (δα = −0.1 for PHE), and the biases of all WM neurons by δβ = −0.025

(δβ = 0.025). The impact of these perturbations on the equilibrium membrane

potential and steady-state firing rate of an example LIF neuron is depicted in

Figure 2.8: with a constant input current, increases (decreases) in gains over-

whelm decreases (increases) in biases, causing GFC-affect neurons to exhibit

hiring firing rates for all values in the state space. (Note that this validation

was qualitative; reproducing the equilibrium state of a complex biological

mouse neuron by fitting non-adapting LIF neuron with solely the gain and bias
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2.5. Discussion

FIGURE 2.7: Subtheshold resting membrane potential as a func-
tion of applied current for normal mice (left) vs. mice with HCN
channel genes artificially inactivated (right). Closing HCN chan-
nels lowers the neuron’s resting potential (lower value of Em
at I = 0) while increasing the neuron’s response to subsequent
input (higher slope of Em vs. I). Image reproduced from Nolan

et al. (2004).

parameters is not feasible.)

In the context of recurrently connected WM neurons, simulated GFC should

therefore increase neurons’ overall activity, while simulated PHE should do

the opposite. Figure 2.9 confirms that this neural simulation reproduces the

empirical drug-induced change in PFC neurons’ activities, though the effect

is less pronounced than in Figure 2.5 or in Duggins et al. (2017). Again, this

simulation is applied to all neurons in WM population, so the network effects

from the recurrent connection are responsible for the differential response of

preferred vs. nonpreferred direction neurons. The neural intervention also

alters cue encodings in WM and shifts the forgetting curve in a manner consistent

with the behavioral data and the previous drug simulations, Figure 2.10.

2.5 Discussion

This chapter presented a spiking neuron model of WM and the DRT, then

used this model to investigate the underlying causes of WM disorders and

their treatments through the simulated application of GFC and PHE. The

model extends classical works on WM dynamics (Brunel and Wang, 2001) by
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FIGURE 2.8: Subtheshold resting voltage (left) and steady-state
firing rate (right) as a function applied current for a LIF neuron
subjected to the neural perturbation. Simulated GFC (green)
decreases the bias, shifting the equilibrium curve right, but also
increases the gain, increasing the curve’s slope. The result is
a more depolarized resting state for currents greater than 0.25,
which translates to greater firing rates with larger effective inputs.

Simulated PHE (red) does the opposite.

FIGURE 2.9: Firing rate of simulated neurons for the neural drug
simulation.
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FIGURE 2.10: Cue representation and forgetting curve for the
neural drug simulation.

incorporating the NEF, an approach that allows for (a) the principled encoding

and decoding of information in large-scale spiking neural networks, and (b)

the manipulation of these networks at levels ranging from the neural to the

functional. The model further utilized the NEF to investigate interactions

between WM and two drugs that reduce and enhance WM deficits in ADHD,

showing that these interactions could be explained from a functional, electrical,

or neural perspective. Three distinct drug simulations, each computationally

realizing one of these perspectives by perturbing a different part of the model,

all produced similar, and empirically accurate, effects on electrophysiology and

task performance. This result unifies these seemingly-disparate descriptions of

the drugs’ interaction with WM systems.

However, the model and experiments relied heavily on the use of LIF neu-

rons. Although LIF neurons are a widely accepted approximation of neural

behavior across multiple contexts and brain areas, they limit the biological

plausibility of the model and constrain the bottom-up investigation of biophys-

ical disorders and pharmacological treatments. It is unclear whether the NEF
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can engineer functional neural systems (e.g., compute recurrent connection

weights that maintain WM representations) if the simulated neurons have

electrophysiological adaptation or presynaptic connections spread across a

dendritic tree. Furthermore, to simulate ADHD and GFC/PHE application, the

model relied on assumptions about the relationship between HCN channels

and LIF activities. This was possible largely because existing work had already

classified the relationship between GFC application and firing rate (Wang et al.,

2007). Though this chapter’s approximations were successful in reproducing

the empirical data, this approach cannot necessarily be generalized to simulate

other bottom-up biophysical manipulations.

A more robust approach for incorporating low-level biological features into

NEF models is to replace LIF neurons with biologically detailed neurons. As

discussed in Chapter 1, simulated bioneurons include explicit ion channels

that can be directly manipulated by drugs, expanding the range of biochemical

processes that can be simulated without detailed foreknowledge. Chapters

3 and 4 present two methods of resolving the challenges associated with

incorporating bioneurons into the NEF, then Chapter 5 applies these methods

with the goal of incorporating bioneurons into the WM model explored above.
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Chapter 3

Bioneurons with Spike-Match

Training

3.1 Introduction

Recall that, in order to achieve neural representation using the NEF, there must

be a well-defined relationship between the information fed into bioneurons and

their resulting activities. The approach introduced in this chapter manipulates

bioneurons’ parameters until their responses align with predefined tuning

curves. Although any parameters accessible through NEURON could in principle

be altered to reach this end, many of the geometric and electrophysiological

parameters are fixed by the Bahl et al. (2012) NEURON model, and changing

them would compromise aspects of its biological realism.

Instead, this thesis trains the synaptic weights that connect spikes sent

from presynaptic neurons to the bioneurons’ dendrites. Synaptic weight refers

to a collection of biophysical features that vary between neurons and over time,

including the number of presynaptic neurotransmitter vesicles, the density of

postsynaptic neurotransmitter receptors, the surface area of the postsynaptic

dendrites, and more. Because these quantities are too low-level even for simu-

lation in NEURON, they are lumped together into the abstract quantity “weight”.

Manipulating synaptic weights is a reasonable method for training bioneurons
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because (a) synapses link incoming information directly to bioneurons’ post-

synaptic responses and indirectly to their firing rate, (b) connection weights

have traditionally been used to compute functions in the NEF and deep neural

networks, and (c) synaptic plasticity is considered one of the brain’s primary

learning mechanisms (Abbott and Nelson, 2000; Bekolay and Eliasmith, 2011).

What defines an “ideal” tuning curve, the desired target of synaptic weight

training? There are two potential criteria. The first criteria is functional:

bioneurons must be able to dynamically represent and transform information.

For a population of bioneurons to accurately represent an input, each bioneu-

ron’s firing rate should vary discernibly over the state-space, and the collection

of all bioneurons’ tuning curves should cover the state-space evenly (with

sufficient redundancy for the accurate representation of the encoded vector).

The second criteria is electrophysiological: the voltage and spike dynamics

exhibited by bioneurons should agree with recordings taken from biological

neurons. The vast diversity of spiking behaviors across neuron types means that

many potential electrophysiological targets exist; choosing among them will

depend on the goals of the model and the morphology and electrophysiology

of neurons in the brain area being modeled.

The methods in this chapter compromise functional and electrophysiological

criteria by choosing the activity of a spiking LIF population as the target

behavior. LIFs are functionally desirable because their tuning curves (a) can

be computed analytically and adjusted with a few theoretically-motivated

parameters and (b) have successfully represented information in numerous

NEF models. LIFs are also electrophysiologically desirable for the reasons

highlighted in Chapter 1: they approximate the firing rate of neurons found

in various brain areas, are the limiting case of more complex neuron models,

and capture spiking, the critical neuron nonlinearity. LIFs are widely used

in computational neuroscience and represent a solid baseline from which

more complex behaviors, such as bursting and adaptation, can be added as

40



3.2. Methods

extensions. However, it should be stressed that the methods introduced in this

chapter can be applied to any electrophysiological target aideal(t), be it another

neuron model (e.g., Izhikevich neurons (Izhikevich, 2003)) or spike trains

measured from biological cells using standard neuroscientific techniques (e.g.,

single-cell recordings under specific experimental conditions).

3.2 Methods

The bioneurons’ spike-match training proceeds as follows. First, the NEURON

objects are initialized. The cell geometry is created according to the template

provided by Bahl et al. (2012), and voltage probes are placed in the somatic

compartment to record the initiation of action potentials (defined as the voltage

rising above Vthr = −20 mV). Connections from the presynaptic neuron to

the bioneuron utilize NEURON’s conductance-based exponential synapse ExpSyn

with event-based spike delivery. The current flowing into the postsynaptic

neuron Isynin (t) from a single synapse, or postsynaptic current (PSC) is given by

Isynin (t) = gsyn(t)(Vsyn(t)− Esyn) (3.1)

where Vsyn(t) is the membrane voltage at the synapse’s location and Esyn is

the synapse’s reversal potential (Esyn=−80 mV for inhibitory synapses and

Esyn=0 mV for excitatory synapses). gsyn(t) is a time-varying synaptic con-

ductance the represents the opening and closing of ligand-gated ion channels

(those that respond when a neurotransmitter binds to a receptor on the postsy-

naptic dendrite). When an ExpSyn receives a spike, gsyn instantly rises by the

(trained) synaptic weight wsyn, then decays according to the exponential

˙gsyn(t) = −gsyn(t)

τsyn
(3.2)
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where τsyn is the synaptic time constant, which represents the rate at which neu-

rotransmitters undergo reuptake (unbinding from receptors and reabsorbtion

into the cell) and thereby return the ligand-gated channels to rest (gsyn(t)⇒ 0).

The bioneuron’s ExpSyn are distributed randomly along the length of the apical

dendrite. Synaptic weights are randomly chosen in the range −1× 10−3 µS to

1× 10−3 µS and rarely stray outside this range during training.

Figure 3.1 depicts the network used to train the bioneurons and calculate

readout decoders. A state-space input signal u(t) originates in a node labeled

stim and is fed into a pre ensemble consisting of 100 LIF neurons. u(t) may

either be sinusoid with frequency fsin = 2πf and an amplitude of amp = 1.0,

or an white noise signal, which has equal power at all frequencies below the

cutoff frequency fmax = 5 Hz and an amplitude of RMS = 0.5. Both equal-

power and prime-sinusoid have the advantage of spanning the state-space

while incorporating a range of smooth dynamics.

The spikes produced by pre are then fed into the ideal population, which

consists of LIF neurons whose individual properties, including gains α, biases

β, and encoders e, determine their tuning curves. The spikes from ideal are

recorded, then smoothed with a lowpass filter to produce the activities aideal(t)

corresponding to the state-space input u(t). This is the electrophysiological

target. The pre spikes are also fed into the bioneuron ensemble bio, where

they are transmitted to the weighted synapse objects of each cell. NEURON

handles the internal dynamics of the bioneurons and records the spikes, which

are passed back to nengo and smoothed using the same lowpass filter as was

used for ideal spikes, resulting in abio(t) corresponding to u(t). This is the

electrophysiological result.

To train the synaptic weights such that abio(t)→ aideal(t), several stochas-

tic optimization algorithms were employed, including Hyperopt (Bergstra,

Yamins, and Cox, 2013) and a “1 + λ evolutionary strategy”, with the root-

mean-squared-error between abio(t) and aideal(t) as the loss metric. Both these
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FIGURE 3.1: Schematic of the network used to train the bioneu-
ron spikes abio(t) to match the ideal LIF tuning curves aideal(t).

strategies achieved reasonable spike matching within 100 evaluations for most

experiments; reported below are the results from the evolutionary strategy.

Finally, u(t) is also fed into a special node referred to as oracle, which

analytically computes the function specified on the connection between pre and

bio (and between pre and ideal) and outputs the state-space target xtarget(t).

Using a standard nengo least-squares decoder, the readout decoders for bio are

computed from xtarget(t) and abio(t). This method for computing decoders can

be called the oracle method: it extends the NEF notion of static evaluation

points and associated rate-mode-approximated firing rates to bioneurons while

addressing many of the challenges introduced in Chapter 1. Notably, the

oracle method accounts for spiking inputs, which take place in continuous

time, and is more robust to strange electrophysiological dynamics like bursting

and adaptation. Once decoders have been calculated for connections out of

bio, the state-space representation of the bioneurons can be read out and

assessed for accuracy, as well as transmitted onward to other LIF or bioneuron

ensembles.
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3.3 Results

This section applies the spike-match training described above to a population

of 100 bioneurons and examines the resulting differences between abio(t) and

aideal(t). It then explores the accuracy of the bioneurons’ state-space represen-

tation in various networks where the connections into and out of bio compute

the types of functions that are needed to construct the WM network presented

in Chapter 2.

3.3.1 Attenuation and Nonlinearities

Before attempting to train synaptic weights, it is worth investigating how PSCs

interact as they travel to the soma. Though Figure 1.2 and other figures in

(Bahl et al., 2012) explore questions related to direct current injection, they do

not address the interaction of PSCs induced by spikes at different points in the

apical dendrite. Figure 3.2 shows the peak change in somatic voltage (from

rest) induced by a single spike fed to a synapse at a distance d from the soma.

This feedforward attenuation is normalized by division with ∆V (d = 0) and is

well fit by a linear regression, demonstrating that the somatic voltage induced

by a single PSC scales approximately linearly with synaptic distance from the

soma.

However, this result is a misleading indicator of dendritic nonlineari-

ties, which result primarily from the interaction of multiple PSCs induced

by synapses at different locations and at different times. To demonstrate this,

bioneurons are initialized with synaptic weights equal to the standard NEF

connection weights, wij = dj · ei. To account for the feedforward voltage

attenuation reported in Figure 3.2, these weights are then scaled by location

using the linear fit. Figure 3.3 shows the tuning curves of two bioneurons and

their ideal LIF counterparts in response to a sinusoidal input. The slopes and

intercepts of these curves are qualitatively similar, indicating the bioneurons’
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FIGURE 3.2: Somatic voltage as a function of synaptic location
(distance from soma) when a single spike is fed into the synapse.
Although the distance attenuation likely follows some exponen-
tial curve, a linear regression is a reasonable fit for this NEURON
model, indicating linear encoding and decoding methods may be
applied with minimal errors. The stepped nature of the simulated
voltage ratios results from the apical dendrite being divided into

nseg = 20 discrete compartments.

encoders, gains, and biases are working as expected, but the curves are quanti-

tatively dissimilar, differing in firing rate by 100 Hz or more for some regions

of state space. Adding more synapses, additional input connections, or more

dimensions exacerbates these differences. The mismatch between the ideal

LIF and untrained bioneuron tuning curves supports the claim that nonlinear

interaction of postsynaptic currents occurs in the dendrites, and motivates a

training procedure that fine-tunes synaptic weights to give a more exact match

to the ideal tuning curves.

3.3.2 Spike Matching

The simplest bioneuron network consists of a stimulus node stim that outputs

a sinusoidal signal to pre, whose LIF neurons convert the signal into spikes.

These spikes are transmitted to ideal and bio, whose activities are probed

45



Chapter 3. Bioneurons with Spike-Match Training

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
x e

0

50

100

150

200

fir
in

g 
ra

te

Tuning Curves

ideal
untrained bioneuron 0, RMSE=35.8
trained bioneuron 0, RMSE=5.0
ideal
untrained bioneuron 1, RMSE=45.0
trained bioneuron 1, RMSE=19.3

FIGURE 3.3: Comparison of the ideal LIF tuning curves to the
untrained and trained bioneurons. Tuning curves are calculated
from each population’s time-varying inputs and activities: the
one-dimensional state-space is divided into 20 bins, and the times
when u(t) falls within each bin are recorded. The mean and
standard deviation of the neural activities at each time within
each bin are calculated, giving an indication of the range of
activities associated with each stimulus value. Accuracy improves
with number of synapses, training generations, and training time.

and compared. Figure 3.3 shows approximate tuning curves of two neurons

from ideal and bio before training and after 20 generations of training using

the 1 + λ evolutionary algorithm. A visual comparison confirms the significant

drop in RMSE between abio(t) and aideal(t) as a result of training. This indicates

the spike-match training is capable of tuning bioneurons’ synaptic weights to

reproduce simple electrophysiological targets. The training takes about 1 h on

a standard workstation.

3.3.3 Representation

To assess the bioneurons’ representational capacity, the synaptic weights be-

tween pre and bio are trained using the spike-match approach, then the

represented state is estimated using readout decoders. The connection from
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stim to oracle in Figure 3.1 is set to compute the identity function, which

is often referred to as a feedforward communication channel. Figure 3.4 re-

ports four estimates of the target signal calculated with different bioneuron/LIF

activities and oracle/static decoders.

• x̂bio, oracle(t): abio(t) decoded with doracle. To prevent overfitting and

ensure that the oracle decoders generalize to new signals, the synaptic

weights are first trained as above, then the network is stimulated with

a training signal, the activities and targets are collected, and the oracle

decoders are computed. This extra step is required to perform real-time

oracle decoding (i.e., to transmit x̂bio(t) to other populations during

the test simulation), since doracle are only available after a simulation

has completed. If the chosen training signal activates the appropriate

dynamics and covers the state space, these decoders should perform

almost as well as oracle decoders generated on the test signal.

• x̂bio, static(t): abio(t) decoded with dideal, the readout decoders from the

ideal LIF population. “Static” refers to the static evaluation points used

by the solver to calculate x̂lif, static(t), as in Equation 1.8. If the spike-

match training perfectly reproduced the LIF tuning curves, this estimate

would be equivalent to x̂lif, static(t); as abio(t) diverges from alif (t) (due to

ineffective training), this decoding will become increasingly inaccurate.

• x̂lif, oracle(t): alif (t) decoded with doracle. The oracle decoders for the LIF

population are calculated using the same procedure as for x̂bio, oracle(t),

but with alif (t) replacing abio(t). These two oracle estimates should be

compared to assess the representational capacity of bioneurons and LIFs

when applying this novel decoding scheme.

• x̂lif, static(t): alif (t) decoded with dideal. This is the standard NEF decod-

ing and default reference for representational accuracy in this thesis.
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As expected, given imperfect spike-match training and the oracle’s extra

information about x̂target(t), the bioneuron oracle decoding x̂bio, oracle(t) is

slightly more accurate than x̂bio, static(t). In contrast x̂lif, static(t) and x̂lif, oracle(t)

are equally accurate, indicating that the oracle method can decode novel signals

about as effectively as standard NEF decoding methods. Most importantly, the

bioneuron decodings have higher error than the LIF decodings, indicating that

representation is more difficult in bioneurons than in LIF neurons. However,

the bioneuron representations are still quite accurate, demonstrating that

the spike-match training can effectively encode information in bioneuron

spike trains and that various decoding schemes can be used to recover this

information. Therefore, bioneurons can realize the NEF-style representation.

It is important to note that the bioneuron decodings have a systematic

error that does not appear in the LIF decodings: x̂bio, oracle(t) and x̂bio, static(t)

are phase-shifted left and fail to reach the peak magnitude of x̂target(t). The

source of this error is related to the bioneurons’ adaptive properties as is

explored in Chapter 4.

3.3.4 Computing Linear and Nonlinear Functions

In standard NEF connections, functions and transformations are computed by

multiplying decoders, altering the state-space representation that is fed into

the postsynaptic population. This is problematic in bioneurons because these

state-space scaling methods may translate nonlinearly to postsynaptic changes

in bioneurons. To circumvent these issues, the desired function is applied to

the connection from pre to ideal and from stim to oracle, such that aideal(t)

and xtarget(t) account for the transformed signal, even though the spike train

fed into bio remains unchanged. The same spike-training and oracle-decoding

method are then applied to this network.

Figure 3.5 shows the decoded outputs of bio and ideal when a linear
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FIGURE 3.4: Comparison of the target signal x̂target(t) to es-
timates obtained from decoding bioneuron and LIF spikes us-
ing oracle and static decoders in a feedforward communication
channel. The training and testing signals are identical for this

preliminary plot: utrain(t) = utest(t) = cos (2πt).

transform of T = −0.5 is applied to these connections, and Figure 3.6 shows

the decoded outputs when a nonlinear function, the Legendre Polynomials

of order 1 to 4, are applied to these connections. The resulting RMSEs for

x̂bio(t) are comparable to those of the ideal ensemble for the linear transform

and lower-order polynomials, but diverge for higher-order polynomials. This

demonstrates that the spike-match training can effectively compute linear and

simple nonlinear functions on connections, but that the technique fails to

capture complex nonlinearities. What’s more, training and testing on different

signals exacerbates the systematic error mentioned above: the phase-shift and

magnitude errors of the bioneuron estimates are more pronounced.

Multiple inputs presents another potential difficulty for bioneurons, as the

PSCs induced from two presynaptic spike trains may add together nonlinearly.

The following experiment adds stim2 and pre2 to the network shown in Figure

3.1, then connects both pre and pre2 to bio and ideal. The connection weight

matrices are trained sequentially. For comparison, stim and stim2 are also

49



Chapter 3. Bioneurons with Spike-Match Training

0.0 0.2 0.4 0.6 0.8 1.0
time (s)

0.2

0.1

0.0

0.1

0.2

x(
t)

bio, rmse=0.041
lif, rmse=0.006
oracle

FIGURE 3.5: Comparison of the target signal, bioneuron estimate,
and LIF estimate when computing a linear transform of T =
−0.5. Here, and in future plots, the training and testing signals
differ to ensure that the trained weights and decoders generalize:

utrain(t) = cos (2πt), utest(t) = cos (4πt).
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FIGURE 3.6: Comparison of the target signal, bioneuron estimate,
and LIF estimate when computing a nonlinear function, the nth

order Legendre Polynomial. Given equal training time, RMSE
increases with the nonlinearity of the computed function.
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FIGURE 3.7: Comparison of the target signal, bioneuron es-
timate, and LIF estimate when two inputs, u1(t) = cos (2πt),
u2(t) = cos (4πt), are fed into the network. State-space additiv-
ity is only partially preserved: feeding two spike trains into the
bioneurons results in greater error than feeding in one spike train

representing the combined inputs.

fed into pre_combined, which is fed into a separate bio_combined. Figure 3.7

shows that the trained weights implement feedforward communication, but

that feeding two spike trains (which represent the individual inputs) into bio is

not identical to feeding in a single spike train (which represents the combined

inputs) into bio_combined. The greater phase and magnitude errors in the

former case indicate that the spike-matching method only partially preserves

state-space additivity.

3.3.5 Dynamical Systems and the Neural Integrator

To confirm that bioneuron-to-bioneuron connections work as expected, two

bioneuron populations are connected in a feedforward communication channel.

This preliminary experiment ensures that the spikes coming from one bioneu-

ron population can viably be used to train a second bioneuron population

before introducing the complex dynamics inherent in recurrent connections.
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FIGURE 3.8: Comparison of the target signal, bioneuron estimate,
and LIF estimate from the second population in a feedforward
chain. A transform of T = −0.5 is applied to the connection
between the first and second ensembles to ensure bioneuron-to-

bioneuron connections can correctly compute functions.

As expected, Figure 3.8 shows that the spike matching approach can compute

functions on bioneuron-to-bioneuron connections, though errors are more

significant in the bio2 decode.

The final network puts all these features together to construct an integrator,

in which a recurrently connected bio accumulates feedforward stimulus from

pre while maintaining its currently represented value through feedback con-

nections. As shown in Figure 3.9, the bioneurons’ decoded spikes approximate

the integrator, but the representational error is significantly higher than for

the LIF neurons, with the decoded signal drifting away from the ideal signal

over time. Using the oracle method to compute readout decoders instead of

using the ideal LIF decoders partially cancels this drift, reducing this error by a

factor of 3, but leads to other inaccuracies (not shown). The recurrent training

also requires a greater number of synapses and longer training times than the

feedforward training to find suitable synaptic weights.
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FIGURE 3.9: Comparison of the target signal, bioneuron estimate,
and LIF estimate for a recurrently-connected integrator network.
As in Chapter 2, the required transforms are A′ = 1 and B′ = τ ,
but the dynamics introduced by the recurrent connection pose an
additional difficulty for the spike-match training, leading to poor
estimates. Using oracle decoders to estimate the bioneuron’s
representation reduces the error by a factor of 3 (not shown).

3.3.6 Scaling

The last two experiments assess how the bioneurons’ representational accuracy

scales with the number of neurons and the training time. In both experi-

ments, RMSE between the neural decode and xtarget(t) was calculated in a

feedforward network. Figure 3.10 shows that RMSE falls with the number of

generations in the 1+λ ES. Future work seeking to improve the spike-matching

training algorithm should compare this training course with other stochastic

optimization methods. Figure 3.11 shows that the RMSEs for the bioneuron

and LIF estimates scale comparably with the number of neurons, supporting

the claim that bioneurons can serve as an effective representational substrate in

large-scale neuron models. However, for nneurons > 30, the bioneuron decode

consistently has an RMSE approximately 7 times larger than the LIF decode

due to the phase shift.

53



Chapter 3. Bioneurons with Spike-Match Training

0 5 10 15 20 25 30
generations

0.02

0.04

0.06

0.08

0.10

0.12

0.14

rm
se

pop
bio
lif

FIGURE 3.10: Root-mean-squared-error between the bioneuron
representation and the target decoding as a function of training
time (number of evolutionary generations). Shaded areas repre-
sent 95% bootstrapped confidence intervals over 10 realizations.
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FIGURE 3.11: Root-mean-squared-error between the bioneu-
ron/LIF representations and the target decoding as a function
of the number of neurons in the respective populations. Shaded
areas represent 95% bootstrapped confidence intervals over 10

realizations.

54



3.4. Discussion

3.4 Discussion

This chapter sought to integrate bioneurons into the NEF by training their

synaptic weights until the cells’ responses matched a set of ideal spike trains.

This approach has two strengths. First, any empirical or simulated spike

train can be used as the target of training, allowing the bioneurons to, in

principle, exhibit any electrophysiological behavior (though different NEURON

models reflecting different morphologies would likely be necessary). Second,

any method for optimizing weights can be applied to achieve this goal. The

choice to match the spiking behavior of LIF neurons was motivated by their

simplicity, generality, and representational ability. It was relatively easy to

reproduce LIF spikes using a simple evolutionary algorithm, though training

time could undoubtedly be shortened, and generalizability improved, using

more advanced techniques.

Bioneurons trained using this method were also able to accurately represent

and transform state-space information in feedforward networks. However, the

training was less successful at finding synaptic weights on recurrent connec-

tions, as evidenced by the bioneurons’ inability to integrate an incoming signal

over time. These shortcomings likely result from a failure of the trained weights

to generalize to novel signals or dynamics, a problem that may be fundamental

to the spike-matching approach itself. This method may also be criticized

on the grounds that it (a) requires long and irregular training regimes, (b)

necessitates the choice of ideal spiking behavior, which may constrain the range

of electrophysiological behaviors that the bioneurons can exhibit, and (c) does

not fully utilize the NEF notion of encoders and decoders to help structure the

training.

Chapter 4 addresses this last concern by developing a new training method.

This technique more fully incorporates the NEF by decomposing the synaptic

weights into decoders and encoders, then using the least-squares solvers, in
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conjunction with the oracle method and optimized readout filters, to train the

weights with the explicit goal of minimizing representational error in dynamical

systems. Although this method does not explicitly address electrophysiological

realism, it does perform NEF-inspired neural computation more effectively.
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Bioneurons with Oracle Training

4.1 Introduction

This chapter develops an alternative method for training bioneurons which

more fully utilizes the theoretical tools available with the NEF. Unlike the

spike-matching approach, which prioritizes the neuron-space, the goal here is

to specify synaptic weights and readout filters such that bioneurons optimally

perform representations, transformations, and dynamics in the state-space.

When training with the oracle method, synaptic weights are decomposed

into encoders and decoders, which are handled separately during initialization

and training:

wij = di · ej (4.1)

where wij is the weight on the ExpSyn connecting presynaptic neuron i to

bioneuron j, di is the presynaptic neuron’s decoder for the pre to bio connec-

tion, and ej is the bioneuron’s encoder. The di’s are computed using standard

NEF techniques, while the ej ’s are chosen randomly, with the constraint that

the resulting wij produce a heterogeneous spiking response (to different points

in state-space and across the population) when a time-varying input is fed to

the bioneurons. Once the input signal is encoded in the bioneurons’ spikes,

the burden of training falls on the oracle method, which is applied to calculate
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the output, or readout, decoders that minimize the bioneurons’ representa-

tional error. After discussing the new methods for setting bioneurons’ synaptic

weights, this chapter assesses the state-space accuracy of bioneurons trained

with the oracle method on all the networks introduced in Chapter 3.

4.2 Methods

The initialization of NEURON objects proceeds as before, except for a few dif-

ferences related to the synaptic weight decomposition. Each bioneuron is

assigned an encoder ej, gain αj, and bias βj from uniform distributions (the

same distributions used to choose these parameters for the ideal LIF neurons

in Chapter 3). Each synaptic weight is computed according to Equation 4.1:

for LIF-to-bio connections, di is calculated using a nengo least-squares solver

(which minimizes the representational error when computing the function spec-

ified on the pre to bio connection); for bio-to-bio connections, di is calculated

using the oracle method described below. The weights are then multiplied by

αj and added with a bias term wi,βj .

The bias term emulates baseline bioneuron activity by converting the βj

LIF parameter, which is equivalent to a current injected directly into the soma,

into equivalent perturbations of the synaptic weight matrix. To realize this

perturbation in a more biologically-plausible manner, a constant bias is decoded

off of pre’s activities. The necessary decoders are calculated using a nengo

solver, where the input activities are pre’s tuning curve rates and the targets

are the bias value. These decoders essentially decode a constant value off

of any activity coming from pre: as long pre is connected to bio, this extra

component of the synaptic weight matrix should effectively inject a constant

current βj into bioneuron j.

Although choosing e, α, and β in this manner does not ensure LIF-like

tuning curves, these parameters play the same theoretical roles as in LIF
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neurons (i.e., α controls magnitude of response to a fixed input and β controls

baseline activity), and their distribution guarantees that each bioneuron will

have a unique spiking response to inputs (see Figure 4.1).

As in Chapter 3, a white noise or sinusoidal signal u(t) is sent to (a) an

oracle that analytically computes the connection’s desired function xtarget(t)

and (b) a pre population of LIF neurons that generates spikes representing

that signal. These spikes are transmitted to the synapses of bio, whose weights

have been initialized using the decoders implementing the desired function.

Importantly, even though weights are decomposed into decoders and encoders,

the signal from pre is not decoded to state-space then encoded back to neuron-

space: as in Chapter 3, spikes are transmitted directly from pre to bio (recall

the bottom of Figure 1.3). NEURON simulates the internal dynamics of the

bioneurons, whose spiking output is recorded and smoothed with a filter,

producing the activities abio(t) corresponding to xtarget(t). A lowpass filter, the

nengo standard for converting spikes to activities, is initially used to calculate

abio(t). Finally, the oracle method is applied to compute the bioneuron decoders

from abio(t) and xtarget(t). These decoders are used to estimate (readout) the

current state-space representation in bio, x̂bio(t), and to calculate the synaptic

weights on bioneuron-to-bioneuron connections.

4.2.1 Tuning Curves and Representation

In order for the oracle method to successfully implement the three principles

of the NEF, bioneurons must have heterogeneous tuning curves. Using the

same feedforward communication channel as in Chapter 4, and drawing the

bioneuron parameters e, α, and β from standard nengo distributions, the

effective tuning curves in response to a white noise input are shown in Figure

4.1. Although the synaptic weights are no longer trained to ensure LIF-like

tuning, these curves nonetheless display heterogeneity in preferred direction,
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FIGURE 4.1: Bioneuron tuning curves with randomly distributed
encoders, gains, and biases. Tuning curves are calculated from
each population’s time-varying inputs and activities: the one-
dimensional state-space covered by −1 < u(t) < 1 is divided
into n = 20 bins, and the times when u(t) falls within each bin
are recorded. The mean and standard deviation of the neural
activities at each time within each bin are calculated, giving an
indication of the range of activities associated with each stimulus

value.

slope, and intercept. This establishes the necessary variety in abio(t) for decoder

calculation using the oracle method. That said, it appears that varying the

synaptic weights tends to produce tuning curves centered around one of two

prototypical curves (x-intercept around ±0.2 and pseudo-linear slope). Future

work could benefit from incorporating more variance into the bioneurons

themselves, presumably through varying their geometric or electrophysiologic

parameters in NEURON, so as to manifest more diverse tuning curves.

4.2.2 Representation

The same network as shown in Figure 3.1 is used to examine basic represen-

tation with the oracle method. To demonstrate generality, the training and

testing signals are switched from the sinusoids used in Chapter 3 to white noise
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FIGURE 4.2: Comparison of the state-space estimates x̂bio(t),
x̂ideal(t) , and x̂adapt(t) to the target signal xtarget(t) for a feed-
forward communication channel when training synaptic weights
using the oracle method. Both the bioneurons and adaptive LIF
neurons exhibit phase-shift errors to signals (especially those
with higher frequency), indicating that the neurons’ internal

adaptive dynamics may be responsible.

signals with unique training and testing seeds (but identical cutoff frequencies,

starting values, and RMS). Figure 4.2 shows the oracle-decoded output of

bio. The estimate x̂bio(t) is a reasonable representations of the target signal

xtarget(t), but the phase and magnitude errors remain. The oracle method’s

ability to decode bioneuron activity is unsurprising given the heterogeneity

of abio(t) demonstrated in Figure 4.1 and the decoding abilities of the oracle

method established in Chapter 3. Still, the persistence of the phase shift under

this decoding scheme indicates that these errors originate in the bioneurons’

internal dynamics, rather than the synaptic weight distribution or readout

decoding.
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4.2.3 Eliminating the Phase Shift

Additional methods must be applied to address this error. Interestingly, adap-

tive LIF neurons (ALIF, green in Figure 4.2) exhibit the same phase shift

phenomenon; their simplicity may illuminate sources of the problem and sug-

gest solutions that can be applied to the bioneurons. ALIFs’ effective firing

rates change over time in a manner that approximates biological neurons’

adaptation, the changes in firing rate in response to a constant input that

result from ion channel interactions over longer timescales. ALIFs function like

their LIF counterparts except that an adaptation state n is subtracted from the

input current. n is incremented every time the neuron spikes and its dynamics

are given by

ṅ = −n/τn. (4.2)

In a feedforward network, this adaptation effectively causes ALIF neurons to

begin firing sooner than their LIF counterparts, but afterwards exhibit very

similar rate dynamics. Neither the static nor the oracle decoders are capable of

linearly weighting these activities in a manner that aligns with the target signal:

the best they can do (in terms of minimizing RMSE between the estimate and

the target) is to produce an estimate that has shape and magnitude similar to

the target, but is aligned with the earlier onset of the ALIF spikes, producing a

phase shift to the left.

4.2.4 Additional Inputs

The adapting neurons appear to respond more quickly to changes in the target

signal by approximating the signal’s derivative and using it to “predict” future

input values. One potential solution to the phase shift problem is to drive the

adapting neurons with additional inputs in order to align their spikes with the

signal, in some senses canceling the adaptation. To achieve this, the dimension

of the bioneuron and ALIF populations is increased by 1, and the derivative of
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FIGURE 4.3: Comparison of the state-space estimates x̂bio(t),
x̂ideal(t) , and x̂adapt(t) to the target signal xtarget(t) for a feed-
forward communication channel when u̇(t) is fed into the bioneu-
rons and ALIF neurons. This extra information reduces phase-

shift errors significantly.

the input signal u̇(t) is fed into this new dimension. The motivation behind

this choice is that feeding this information into the neurons should oppose

the neurons’ predictive tendencies through interaction with the ExpSyn filter,

the nonlinear dendritic filters, and the system dynamics. Figure 4.3 shows

that the oracle method finds decoders that better estimate the signal when

neurons have access to this extra information. Although various combinations

of u(t)’s derivatives and integrals (orders 0 to 3) were shown to improve the fit,

an exploration of how the bioneurons’ inherent dynamics interact with these

inputs is beyond the scope of this thesis (though potentially a fruitful avenue

for future work).

4.2.5 Training Readout Filters

Another potential solution is to utilize more complex filters to readout the

state represented by the bioneuron spikes. Up until this point, a lowpass filter,
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whose transfer function is given by

H(s) =
1

1 + τs
, (4.3)

has been used to smooth spikes into neural activities. The persistence of

the phase shift with both static and oracle decoders indicates that no linear

combination of activites smoothed this way will successfully estimate the target.

With this new method, both the decoders and the readout filter are adapted

to account for the bioneuron/ALIF internal dynamics. To do this, the 1 + λ

evolutionary algorithm is applied to optimize the parameters governing an

arbitrary filter, which can be written in the standard transfer-function notation

as

H(s) =
bms

m + bm−1s
m−1 + · · ·+ b1s+ b0

ansn + an−1sn−1 + · · ·+ a1s+ a0
(4.4)

or expressed in pole-zero notation as

H(s) =
N(s)

D(s)
= K

(s− z1)(s− z2) . . . (s− zm−1)(s− zm)

(s− p1)(s− p2) . . . (s− pn−1)(s− pn)
(4.5)

where z1...m are the roots of the numerator and the zeros of the transfer

function, p1...m are the roots of the denominator and the poles of the transfer

function, and K is the gain. The optimization proceeds by choosing zeros,

poles, and gain, simulating the network, collecting bio spikes, smoothing them

into a∗bio(t) with the chosen filter, calculating oracle decoders d∗bio from a∗bio(t)

and xtarget(t), and estimating the state using equation 1.5 with d∗bio and a∗bio(t).

Figure 4.4 shows that the evolved filters and computed decoders together

reduce the phase shift and faithfully estimate the target signal; Table 4.1

reviews the relative accuracies of the four training methods. Figure 4.5 shows

that the impulse response of the evolved filters (both for the bioneurons and

the ALIFs) bears a strong resemblance to the lowpass filter. Testing indicates

that combining both the derivative and filtering techniques does not lead to
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TABLE 4.1: Relative accuracies of the bioneuron training meth-
ods. Reported RMSEs reflect error in a feedforward network
when trained and tested on the same pair of white noise signals

(training and testing seed differ).

Method RMSE

spike match 0.0795
vanilla oracle 0.0435
derivative oracle 0.0251
filter oracle 0.0096

compounded improvements, so only the filtering method is utilized to eliminate

the phase shift for the remainder of this chapter.

4.3 Results

4.3.1 Computing Linear and Nonlinear Functions

A linear and nonlinear transform are applied to the pre-to-bio connection

to establish functional decoding. Because synaptic weights are composed of

encoders and decoders in the oracle training, standard NEF techniques can be

used to compute the di that optimally implement these transforms, and these

functional decoders can be used to calculate synaptic weights. As shown in

Figure 4.6 and 4.7, this technique successfully computes the desired functions.

Two inputs are also fed into bio1 to ensure linear addition of state-space

inputs; Figure 4.8 demonstrates the oracle method again successfully finds

readout decoders. In all three cases, the RMSE is proportionally smaller than

the spike-match decodes in Chapter 3 (and absolutely smaller when training

and testing on sinusoids, not shown).
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FIGURE 4.4: Comparison of the state-space estimates x̂bio(t),
x̂ideal(t) , and x̂adapt(t) to the target signal xtarget(t) for a feed-
forward communication channel when an evolved filter with 1
zero (z0 = −41.8) and 2 poles (p0 = −26.8, p1 = −8.9) is used to
decode the bioneuron and ALIF spikes. This specialized filtering,
in conjunction with the oracle decoders, totally eliminates the

phase shift.

4.3.2 Dynamical Systems and the Neural Integrator

Next, two bioneuron populations are connected in a feedforward communi-

cation channel. To compute the synaptic weights that connect bio1 and bio2,

the oracle method must be used to calculate the decoders out of bio1 with

the appropriate functional transform (in this case, identity). This requires

two successive simulations of the network. In the first, abio1(t) and xtarget1(t)

are gathered and the dbio1 are computed using the oracle method. In the

second, the synaptic weights wbio1−bio2 = dbio1 · ebio2 are computed, then the

simulation is run, abio2(t) and xtarget2(t) are gathered, and the representation

in bio2 is calculated from dbio2 (oracle method again). Figure 4.9 shows

that dbio1 can be used, in conjunction with e, α, and β, to compute synaptic

weights on bioneuron-to-bioneuron connections in a manner that preserves

(and transforms) the state-space representation in bio1.
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FIGURE 4.5: Impulse response of a typical filter evolved using
the revised oracle method. Preliminary testing indicated that
transfer functions with one zero and two poles were a decent
compromise between filter complexity (ability to smooth the
bioneuron spikes to match arbitrary target signals) and biological
realism (similarity to a lowpass filter, a standard approximation
for synaptic filtering). The plotted filter is the same used in

Figure 4.4.
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FIGURE 4.6: Comparison of the target signal, bioneuron estimate,
and LIF estimate when computing a linear transform of T = −0.5.
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FIGURE 4.7: Comparison of the target signal, bioneuron estimate,
and LIF estimate when computing a nonlinear function, the nth

order Legendre Polynomial. RMSEs of the bioneuron estimates
are smaller than the spike-match trained decodes by a factor of 4

to 7.
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FIGURE 4.8: Comparison of the target signal, bioneuron estimate,
and LIF estimate when two inputs (two white noise signals) are
fed into the network. This decode does not exhibit problems with
state-space additivity as did the spike match approach, Figure

3.7
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FIGURE 4.9: Comparison of the target signal, bioneuron estimate,
and LIF estimate from the second population in a feedforward
chain. A transform of T = −0.5 is applied to the connection
between the first and second ensembles to ensure bioneuron-to-

bioneuron connections can correctly compute functions.

Finally, bio is recurrently connected to construct an integrator. However,

several extra steps are needed to compute the decoders and filters for this

feedback connection. Because the choice of decoder now affects the bioneurons’

activities (through Equation 4.1, which in turn affects what the oracle method

computes as the optimal decoder (drecurrent = solver(abio(t),xtarget(t))), it is

no longer possible to do one-shot learning like in the feedforward networks.

Oracle Spike Feedback

As a first attempt to train the recurrent bioneuron decoders, the spikes from

bio are not transmitted directly back to bio. Instead, during training, xtarget(t),

is used as the ideal state-space recurrent signal. Because bioneurons may only

receive spikes, this ideal signal must first be translated to spikes by passing

it through an intermediary population inter, which plays an analogous role

to pre for the feedback signal. In the training step, the direct bio-to-bio

connection is removed so that the bioneurons only see the “ideal” spikes
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as recurrent inputs. To ensure the spikes from inter (during training) will

align as closely as possible with the recurrent bio spikes (during testing), the

evolved readout filter is applied on the connection into inter. The intention

here is to filter xtarget(t) as it passes into inter in a manner resembling the

bioneurons’ dendritic filters. The final training network is thus ideal →

(evolved filter) inter → (lowpass) bio, where the terms in parentheses are

the applied presynaptic filters.

The training proceeds as follows. First, a feedforward pass of the network is

simulated (inter-bio and bio-bio connections removed, and xtarget(t) = u(t)),

and the readout filters are evolved. Recall that these filters translate the phase-

shifted bio spikes back to an aligned state-space representation. In the second

step of training, these filters are applied on the ideal-inter connection, with

the intention that the signal from ideal will be similarly translated, and that

the inputs to inter will resemble (in state-space) the misaligned recurrent

spikes that bio will produce during testing. Because ideal feeds inter with

xtarget(t) and inter connects to bio during this training stage, bio will receive

training spikes that resemble the ideal state-space feedback signal and account

for the bioneurons’ nonlinearities. In the final training step, the above network

is simulated, the spike from bio are collected, and a new set of d∗bio and readout

filters are evolved. During testing, the inter-bio connection is removed,

and d∗bio is used to calculate the synaptic weights on the recurrent bio-bio

connection, while the new readout filters and decoders are used to filter spikes

and estimate the bioneuron’s output state, x̂bio(t). The number of neurons was

increased to 300 for the integrator network.

Figure 4.10 compares the bioneuron and LIF state estimates to the ideal

value for the integrator network. Although the above training method was

quite successful in decoding the training signal (RMSE = 0.03 for bioneurons

and ALIF, not shown), it was only somewhat successful when decoding novel

signals: both the ALIF and bioneurons capture many dynamical features of the
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FIGURE 4.10: Comparison of the target signal, bioneuron esti-
mate, ALIF estimate, and LIF estimate for a recurrently-connected
integrator network trained using spiking feedback from the ora-
cle. This training method finds recurrent synaptic weights and
readout decoders/filters that approximate the desired dynamical
system for the adapting neurons, but longer training is needed

to reduce the bioneurons’ error to acceptable levels.

ideal integrator, but frequently drift away from the target signal and display

incorrect magnitudes. Test accuracy did not improve significantly with addi-

tional training, suggesting that some aspect of this training method hampers

generalization. Unfortunately, time constraints prohibited the exploration of

training regimes based on this method; with luck, future work can reduce the

remaining discrepancies with more exhaustive training.

Evolved Decoders Feedback

As an alternative method to train the recurrent decoders, the oracle feedback

through inter is removed, and the recurrent decoders are optimized separately

using the usual evolutionary approach. In the first pass of training, readout

filters and decoders are evolved for a feedforward communication channel

(no recurrent connection on bio, xtarget(t) = u(t)). In the second step, a new
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evolutionary algorithm trains the recurrent bioneuron decoders: fitness is de-

termined by simulating the network with the specified decoders, collecting the

bioneuron spikes, estimating the state using the previously optimized readout

decoders and filters, and computing the RMSE between the estimate and the

target. Figure 4.11 shows that this method successfully computes recurrent

decoders in a network populated with ALIF neurons, and that this method gen-

eralizes to the test signal better than the previous method (RMSEinter = 0.0346

vs. RMSEevolve = 0.2003 for ALIFs, despite similar RMSEs on the training

signals). Interestingly, initializing the evolutionary population by mutating

copies of the readout decoders led to significantly faster evolution than when

using uniformally-distributed random decoders. This suggests that feeding

back a neuron-space signal which resembles (in terms of weighting) the target

state-space signal produces the desired integration (as we would expect from

the NEF), but that slight modifications to the decoders are necessary to account

for adaptation and bioneuron nonlinearities. Future work should compare

the properties of NEF, readout, and recurrent decoders, looking especially at

differences in the state-space estimates they produce.

4.4 Discussion

This chapter sought to integrate bioneurons into the NEF by decomposing

synaptic weights into decoders, encoders, gains, and biases, then using least

squares solvers to compute the optimal decoders while filtering the bioneu-

ron spikes with an evolved readout filter. This approach has two strengths.

First, encoding and decoding on bioneurons’ spikes permits straightforward

translation between neuron space and state space. Second, the training is

focused on state-space accuracy, which results in better implementation of the

three NEF principles: representation, transformation, and dynamics. For these

reasons, the oracle method is chosen to be the training method in Chapter
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FIGURE 4.11: Comparison of the target signal, bioneuron esti-
mate, ALIF estimate, and LIF estimate for a recurrently-connected
integrator network trained using evolved recurrent decoders.
This training method also finds recurrent synaptic weights and
readout decoders/filters that implement the desired dynamical
system for the adapting neurons. However, longer training and
larger bioneuron ensembles (here, 30 bioneurons for 1 genera-

tion) are needed to ensure this result is robust.
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5, which returns to the WM model presented in Chapter 2 and applies this

method when substituting bioneurons into the WM population. It then presents

several experiments that simulate ADHD and its pharmacological treatments

by biophysically perturbing the neurons in a manner that was not possible with

LIF neurons.
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Chapter 5

Applications and Conclusions

5.1 Applying Bioneurons to the WM Model

The previous chapters demonstrated that populations of bioneurons could

represent and dynamically transform information with reasonable accuracy,

indicating their suitability for use in arbitrary NEF models. However, the

additional challenges imposed by substitution into interconnected networks,

including increased noise and poorly-defined target behavior, make this final

test of neural capability far from trivial. To assess the bioneurons’ functionality

within the context of a larger brain model, the 100 LIF neurons in the WM

population of the Chapter 2 model were replaced with bioneurons; all other

aspects of the model remained unchanged.

5.1.1 Training the Bioneuron WM

The major difficulty with applying bioneurons to the WM model is training

the recurrent and readout decoders. Recall that Figure 4.10 and 4.11 showed

that the bioneuron integrator often has significant generalization errors on

differently-seeded white noise signals. Even worse, the testing signals in the

DRT model are either constant or zero in their respective dimensions, meaning

their statistics and dynamics differ significantly from the signals previously used

for training. To minimize these difficulties, an “extra information” training
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regime is used to give the bioneuron WM the best possible opportunity to

function in context. This training signal is very similar to the test signal:

utrain(t) = [cue(t), 0] and utest(t) = [cue(t), ktime]. This produces a target

signal whose first dimension represents perfect integration of the cue stimulus,

xtarget(t) = x0(t), but whose second “time” dimension, x1(t), is not trained at

all. Futhermore, the training signal only lasts 4 s, meaning that the final 5 s of

the test simulation is unfamiliar to the WM bioneurons: they must rely on the

trained recurrent decoders to keep the representation active. The logic behind

this training regime is that (a) the bioneurons will have enough training data

to store and maintain the cue location, but not enough to perfectly decode

the cue location over the whole testing period, and (b) feeding an input

into the untrained time dimension will destructively interfere with the cue

representation.

5.1.2 Simulating the DRT and Biophysical Perturbations

The recurrent and readout decoders are trained as above, then the model is

initialized with bioneurons populating the WM population. To simulate the

effects of GFC and PHE in a biophysically accurate manner, the conductance of

the Ih channel in the NEURON model, ḡIh, is multiplied by a constant kg. Recall

from Chapter 2 that these channels, which correspond to the HCN channels in

pyramidal PFC neurons, are open at rest, and that agnositic binding by GFC

closes them (antagonistic binding by PHE opens them further), altering the

cell’s excitability. Preliminary tests indicated that the default ḡIh corresponds

to nearly all HCN channels being open, making it impossible to test the effects

of further channel opening via PHE. To compensate for this, the default con-

ductance is increased by multiplying ḡIh with kg = 500, which effectively closes

a larger portion of the Ih channels when the cell is at rest (control condition).

kg = 100 is chosen for the PHE condition and kg = 1000 for the GFC condition.
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Figure 5.1 shows the WM representation and DRT accuracy as a function

of delay period length for the biophysical perturbation. As with the figures

in Chapter 2, the WM stores and maintains the cue location at the start of

the delay period, but as noise and imperfect recurrence take their toll, the

representation decays to zero, introducing errors into the decision procedure.

The shape of the bioneuron WM decay differs from previous results, with

the representation remaining near |x̂0(t)| = 1 until around 4 s, then decaying

linearly rather than exponentially. This is likely related to the training period

duration of 4 s and to the different sources of interference. Nonetheless, the

biophysical GFC and PHE perturbations had the expected effects, leading to

different WM decay curves. Unfortunately, time constraints prevented a full

round of model simulations (50 bioneuron realizations compared to 1000 LIF

realizations), making it difficult to assess the accuracy of the forgetting curves.

Given the differences in the WM decay curves between control, GFC, and PHE,

it is reasonable to suspect that the forgetting curves would follow the trends of

Chapter 2, given more realizations.

Simulated GFC and PHE also differentially altered the firing rates of bioneu-

rons with cue-aligned encoders in a manner qualitatively similar to the elec-

trical and neural perturbations of LIF neurons, Figure 5.2. This is interesting

given that bioneurons’ encoders only act indirectly through the decomposition

of synaptic weights, rather than directly transforming the state space inputs as

with LIF neurons.

5.1.3 Discussion

The results of applying bioneurons to the WM memory model are not incontro-

vertible: specialized training was required to capture the desired WM decay,

and insufficient model data exists to make statistically confident conclusions.

An optimistic outlook is that with additional training and further refinements
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FIGURE 5.1: Cue representation and forgetting curve for the
bioneuron WM under the biophysical drug simulation. The noise
in the bottom plot reflects the low number of realizations simu-

lated with the bioneurons (50) due to time constraints.

FIGURE 5.2: Firing rate of simulated bioneurons for the biophys-
ical drug simulation.
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of the Chapter 4 methods, the bioneurons will more robustly perform integra-

tion and instantiate an effective WM. Ideally, this would demonstrate more

conclusively that bioneurons’ have cognitive potential in the context of larger

models. Efforts towards meeting this objective are currently underway.

5.2 Conclusions

Engineering artificial neural systems that both respect biology and behave

cognitively is a difficult task. Recent work has shown that networks of neuron-

like objects can be networked together and trained to perform sophisticated

functions: Google DeepMind’s “AlphaGo” has mastered the game of “Go” with

deep neural networks (Silver et al., 2016), while the Computational Neuro-

science Research Group’s “Spaun” has performed symbolic pattern matching

and memory tasks using the Neural Engineering Framework (Eliasmith et al.,

2012). However, for reasons of computational and analytical tractability, these

simulations ignore many neurobiological features, raising questions about their

biological plausibility. Recent work has also shown that our understanding of

neuroscience is now sufficiently deep to digitally reconstruct sections of brains

that, when simulated, produce data that are consistent with electrophysiologi-

cal, geometric, and connectomic experiments (Markram et al., 2015). However,

these reconstructions have not yet been applied to functional tasks that require

the representation and manipulation of information, raising questions about

their cognitive plausibility.

This thesis attempted to unify these two domains by building neurocompu-

tational systems that can be more widely acknowledged as “brain models”. The

basic approach was to incorporate biologically realistic neuron models into the

NEF; that is, to take biophysically complex models of individual neurons and

substitute them for the simplified neuron models hitherto used in a functional

architecture. Although nengo, the software package written to implement
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NEF models, supports the substitution of arbitrarily complex neuron models,

there are several underlying assumptions in the NEF about neural connectivity

that make this incorporation theoretically difficult. Chapter 1 discussed these

limitations by introducing the NEF, discussing the LIF neuron model typically

used to construct NEF models, and contrasting it with the biologically realistic

NEURON models that were used through the remainder of the thesis.

Before tackling the theoretical and practical difficulties with NEF/NEURON

integration, Chapter 2 concretely motivated the importance of biological plau-

sibility by introducing a spiking neural model of working memory, the delayed

response task, and related mental disorders/pharmacological treatments. The

DRT is an exemplar task because (a) the neurons that implement the underly-

ing computations must perform all three NEF principles, (b) DRT performance

is quanitifiably affected by ADHD and the drugs used to treat it, and (c) these

pharmacological perturbations affect the relevant brain areas at a biophysi-

cal level that is normally inaccessible to cognitive models. The DRT model,

built using LIF neurons and other standard NEF techniques, replicated electro-

physiological and behavioral data from monkeys performing this task. When

perturbed using simulated interventions that approximated the functional,

electrical, and neural aspects of drug treatments, the model data continued

to agree with empirical data. This suggested a multi-level theory of WM that

coherently connects biological, electrical, and functional descriptions. However,

the model was built upon on biological simplifications and expert knowledge

that will not generally be available when constructing biologically realistic

models, motivating a more accurate and generalizable approach to biological

integration.

Chapters 3 and 4 comprised the main theoretical contribution of this thesis,

presenting two alternative methods for incorporating NEURON models into NEF

networks. In each case, the main challenge was to find connection weights

for synapses distributed randomly along the bioneurons’ dendrites such that,

80



5.2. Conclusions

when the cells were driven with input spike trains representing vector-valued

information, the NEF could be used to accurately represent and dynamically

transform that information.

In the first method, synaptic weights were trained so that the bioneurons’

effective tuning curves matched the tuning curves of an ideal LIF population,

whose representational and dynamical properties were known to be compatible

with NEF methods. Chapter 3 showed that a simple evolutionary strategy could

achieve a decent match to the behavior of spiking LIFs – good enough that the

decoders calculated for the ideal population could reliably convert from the

neuron space back to accurate state space estimates. However, this decoding

became problematic when bioneurons were recurrently connected, since any

discrepancy between the ideal and bioneuron spike trains became amplified

in a feedback network.

Problems with feedforward phase shifts and feedback drift motivated the

methods in Chapter 4, which trained synaptic weight and readout filters with

the explicit goal of maximizing representational and dynamical accuracy. This

chapter advanced the oracle method, which utilized solvers to calculate de-

coders that minimized the error between a state space representation decoded

from bioneuron activities and the target state. Though these tools are usually

applied to static evaluation points, this chapter used time-varying spike trains

and target signals to compute decoders for both reading out the bioneurons’

state space representation and for connecting bioneurons to one another. These

methods met with greater success than the spike-match trained bioneurons,

requiring shorter training times and producing lower representational error.

Because this method was tied more closely with the NEF notion of encoders

and decoders, other NEF tools were also leveraged to boost accuracy. Notably,

the use of evolved readout filters to decode the bioneurons spikes was essential

in eliminating the phase and magnitude errors. Unfotunately, even the refined

oracle method currently struggles to produce decoders which give accurate
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estimates of novel signals in recurrently connected systems.

To complete the investigation of biologically realistic neuron models and

the NEF, Chapter 5 returned to the WM model of Chapter 2, substituting

bioneurons for LIF neurons by applying the methods of Chapter 4. Given

the aforementioned difficulties with the bioneuron integrator, several liberties

were taken with training this network to maximize the likelihood that the

bioneurons would function properly in context. The bioneurons were able to

store and maintain the location of the DRT cue in WM over an extended period,

and the model appeared to replicate the baseline forgetting curve, though more

realizations are required to make definite conclusions. Next, the application

of GFC and PHE were induced in the most biologically realistic manner yet:

by manipulating the conductance constant for the hyperpolarization-activated

cation channel in the NEURON model. As expected, this biophysical manipula-

tion induced a differential change in the firing rate of cue-aligned neurons,

which in turn altered the representation stored in the bioneuron WM and

led to changes in the forgetting curve. The consistency between these results

and the experiments in Chapter 2 makes a strong case for the biophysical,

electrophysiological, and functional realism of this model. Furthermore, the

successful application of bioneurons to a standard NEF model demonstrates

that the theory advanced in Chapters 3 and 4 can be fruitfully applied to exist-

ing models, not only to support claims of biological realism, but to investigate

a host of low-level phenomenon previously outside the perview of the NEF.

Future work may take this research in several directions. Most obviously,

the training regime for the bioneuron integrator should be further developed

to improve generalizations to novel signals. In general, it would be useful

to begin explicitly utilizing nonlinearities within the bioneurons to help with

representation, computation, and dynamics rather than try to cancel them

using linear decoding. Another avenue of extension is to experiment with
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other NEURON models, either by introducing cell-to-cell variance with the cur-

rent NEURON model, or by investigating new models that have fully complex

geometries. New strategies for synaptic weight training may be necessary in

highly branched dendrites, and further revisions of the oracle method may be

necessary to account for more extreme attenuation and adaptation. A more

user-friendly software interface would also make training and perturbing NEF

models built with bioneurons more accessible.

Unsurpisingly, millions of years of evolution have settled upon a better

neurocompuational system than the one presented here. Still, this thesis

represents an important first step in the ongoing effort to build biologically

plausible, cognitively capable brain models. The author believes that this

methodology profitably unifies bottom-up and top-down approaches to the

central questions of computational neuroscience, and hopes that its extensions

will prove fruitful in expanding our understanding of the human mind.
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