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Abstract

Bioinformaticians have been working on peptide sequencing with tandem mass spec-
trometry (MS/MS) for decades. However, the results are still not perfect. A lot of research
have been carried on two peptide sequencing methods, database search and de novo se-
quencing. However, due to the quality of spectra and the inherent difficulty of this problem
itself, both methods are having problem improving their results further better.

The publishing of the NIST peptide library in May 2014 brought fresh ideas into this
long lasting problem. This peptide library contains a large amount of MS/MS spectra
and their corresponding peptide sequences. Taking advantage of this high-quality dataset,
more and more researches have started to find internal patterns in MS/MS spectra since
then.

In this thesis, we are going to look more into this peptide library and use statistical and
machine learning ideas to find new features to help improve peptide sequencing results.
Two main contributions have been made.

First, a general scoring feature is presented that can be incorporated in the scoring func-
tions of other peptide sequencing software. The scoring feature is based on the intensity
ratios between two adjacent y-ions in the spectrum. A method is proposed to obtain the
probability distributions of such ratios, and to calculate the scoring feature based on the
distributions. To demonstrate the performance of the method, this new feature is incor-
porated with X!Tandem [1][2] and Novor [3] and significantly improved their performances
on testing data, respectively.

Second, a machine learning model to predict the appearances of internal fragment ions
in MS/MS spectra is presented. Even though this is the first model on this topic to the
best of our knowledge, it achieves fairly good results. Several possible applications of this
model are also discussed to show that this topic is valuable for peptide sequencing and
thus worth further research.
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Chapter 1

Introduction

1.1 Motivation

Peptide sequencing from tandem mass spectrometry (MS/MS) data is a central task in
proteomics. It is a problem to determine the amino acid sequence of a peptide. The accu-
racy and sensitivity of this task directly impacts the performance of protein identification,
as well as other downstream protein analysis.

Two of the most common computational approaches for peptide sequencing are de
novo sequencing [5][6][3][7] and database search [8][9][10][11][12]. De novo sequencing de-
rives the peptide sequence directly from the MS/MS spectrum, whereas a database search
queries a sequence database for the best peptide to explain the peaks in a MS/MS spec-
trum. Researchers have been working on these two methods for decades. However, due to
the difficulty of the problem itself and the limitation of experiment equipments, peptide
sequencing results could still be improved .

Recently, more and more novel approaches came up to look for a breakthrough. Some of
them are following the hot topic, machine learning. One of the first efforts in this direction
is the Percolator program[13]. It collects peptide spectrum matches (PSMs) outputted from
database search softwares such as Mascot[9], SEQUEST[8] and X!Tandem[1][2] along with
some additional information and then use a semi-supervised learning model (support vector
machine model, to be more specific) to re-rank all those PSMs. Also for de novo sequencing,
Frank et al. used a logistic regression model to combine several features together to estimate
the correctness of PepNovo’s de novo sequencing results [6].

One reason why peptide sequencing results are not perfect is because, due to the limita-
tion of experiment equipments, spectra to be sequenced can never contain every necessary
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information without any noises. This means there will always be some information missing
for peptide sequencing software. However, because of the lack of quantitative understand-
ing of the complex peptide fragmentation process in MS/MS, there are also a lot of other
valuable information that are not being utilized. These information may also be helpful to
improve peptide sequencing results. Sun et al. took a step in this area predicting the re-
lateive intensity ratio of adjacent y-ions peaks in MS-Simulator software [4]. However, not
many researches follow up on finding more such information due to the lack of high-quality
data.

The publication of NIST peptide library in May 2014 brought new insight into this
area [14]. This library contains a large amount of high-quality peptide spectrum matches
(PSMs). More and more researchers are moving forward on finding internal patterns of
MS/MS spectra taking advantage of this dataset. Novor was the first software to make
full use of this library. It used this library to train a decision tree model combining 169
features, some of which are newly found, to give confidence scores to sequenced amino
acids [3].

This peptide library provides us with a lot of valuable information of MS/MS spectra.
Peptide sequencing tools can benefit a lot if more information about MS/MS is found and
more features to help improve peptide identification results are proposed.

1.2 Research Objectives and Contributions

The purpose of this thesis is to find new features from existing peptide-spectrum match
(PSM) database for peptide sequencing software, mainly by using machine learning ideas
and techniques.

These newly found features from the spectrum library are preferred to be independent
from any specific peptide sequencing software and algorithms. In this way, they can incor-
porate with all of them working as post processes. These new features can be used to build
separate score functions, other than the confidence score given by either database search or
de novo sequencing software. These scores can be combined together afterwards to re-rank
all peptide sequences candidates for a spectrum and then find the best one. Being capable
of working with all software makes these new features more flexible and valuable.

Our contribution contains two parts of work, both related to find internal patterns in
spectra and use machine learning techniques to improve peptide sequencing results.

The first one focuses on the intensity ratio between two adjacent y-ions in the spectrum.
A method is proposed to obtain the probability distributions of such ratios. Based on
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these distributions, a general scoring feature is presented which can be incorporated in the
scoring function of all other peptide sequencing software. This scoring feature is proved in
this thesis to improve both database search and de novo sequencing results significantly.
Further more, a logistic regression [15] model designed specifically for Novor [3] is provided.
This model can improve the performance of Novor even further.

The second one shows that the appearances of internal fragment ions in spectra are
predictable. A prediction model using random forest is provided along with its possible
applications and some discussion. To the best of our knowledge, this is a pilot work on
this specific topic, and it shows that it is worth further study.

1.3 Thesis Overview

This thesis is constructed in the following chapters.

In Chapter 2, some basic proteomics background is reviewed, such as the relationship
between protein, peptide and amino acids, mass spectrometry and the peptide sequencing
methods. In Chapter 3, preliminary works are introduced such as software that are being
optimized. Chapter 4 focuses on the intensity ratio of adjacent y-ions, our first contribution,
and how it used to improve peptide identification results. Chapter 5 talks about internal
fragment ions prediction and its applications. In the end, we will have a conclusion in
Chapter 6.

Part of the work in Chapter 4 is submitted to The Sixteenth Asia Pacific Bioinformatics
Conference.
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Chapter 2

Background

2.1 Protein, Peptide and Amino Acid

Proteins, from the Greek proteios, meaning first, are a class of organic compounds which
are present in and vital to every living cell. In the form of skin, hair, callus, cartilage,
muscles, tendons and ligaments, proteins hold together, protect, and provide structure
to the body of a multi-celled organism. In the form of enzymes, hormones, antibodies,
and globulins, they catalyze, regulate, and protect the body chemistry. In the form of
hemoglobin, myoglobin and various lipoproteins, they effect the transport of oxygen and
other substances within an organism.

Proteins are also called polypeptides. This is because proteins are either very long
peptides or combinations of several peptides. Peptides are naturally occurring biological
molecules. They are found in all living organisms and play a key role in all manner of
biological activity. [16]

The hydrolysis of proteins yields several peptides and further hydrolysis of peptides
yields a set of amino acids. Amino acids are organic compounds containing amine (-NH2)
and carboxyl (-COOH) functional groups, along with a side chain (R group) specific to
each amino acid. Twenty standard amino acids are used to make the body’s proteins.
Table. 2.1 shows all these 20 amino acids. This thesis will mostly use 1-letter code to
present amino acids.

There are two termini on both ends of a peptide, which are N-terminus and C-terminus.
The N-terminus is the start of a protein or peptide referring to the free amine group (-NH2).
While the C-terminus is the end of an amino acid chain (protein or peptide), terminated
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Amino Acid 1-letter 3-letter Chemical Monoisotopic Average
code code formula(-H2O) mass(-H2O) mass(-H2O)

Alanine A Ala C3H5OH 71.03711 71.0788
Arginine R Arg C6H12ON4 156.10111 156.1875

Asparagine N Asn C4H6O2N2 114.04293 114.1038
Aspartic Acid D Asp C4H5O3N 115.02694 115.0886

Cysteine C Cys C3H5ONS 103.00919 103.1388
Glutamic Acid E Glu C5H7O3N 129.04259 129.1155

Glutamine Q Gln C5H8O2N2 128.05858 128.1307
Glycine G Gly C2H3ON 57.02146 57.0519

Histidine H His C6H7ON3 137.05891 137.1411
IsoLeucine I Ile C6H11ON 113.08406 113.1594

Leucine L Leu C6H11ON 113.08406 113.1594
Lysine K Lys C6H12ON2 128.09496 128.1741

Methionine M Met C5H9ONS 131.04049 131.1926
Phenylalanine F Phe C9H9ON 147.06847 147.1766

Proline P Pro C5H7ON 97.05276 97.1167
Serine S Ser C3H5O2N 87.03203 87.0782

Threonine T Thr C4H7O2N 101.04768 101.1051
Tryptophan W Trp C11H10ON2 186.07931 186.2132

Tyrosine Y Tyr C9H9O2N 163.06333 163.176
Valine V Val C5H9ON 99.06841 99.1326

Table 2.1: Standard Amino Acids Table.

by a free carboxyl group (-COOH). By convention, peptide sequences are written from
N-terminus to C-terminus [17].

Not all amino acids in proteins are listed in Fig. 2.1. Some of the missing ones are
formed by post-translational modifications (PTMs), which are modifications on those listed
amino acids after translation during protein synthesis. PTMs will change the mass of these
amino acids as well as some of their behaviours [18].

5



2.2 Mass Spectrometry

Mass spectrometry (MS) is an analytical technique that sorts ions based on their mass-
to-charge ratio. It works by ionizing chemical compounds to generate charged molecules
and measuring their mass-to-charge ratios. The mass is usually measured in Dalton (Da),
which is 1/12 of the mass of a carbon atom, and is approximately the mass of a hydrogen
atom. A mass spectrum is a plot of the ion signal as a function of the mass-to-charge
ratio, which is used for analyzing the elemental composition of a sample or molecule, and
for elucidating the chemical structures of molecules, such as peptides and other chemical
compounds. Among a lot of MS techniques, orbitrap is one of the most wildly used MS
procedure in protein and peptide analysis [19]. The process using orbitrap to generate MS
spectra is shown in Fig. 2.1 [20].

Figure 2.1: Basic instructions of a mass spectrometer (orbitrap).

Tandem mass spectrometry, also MS/MS, involves multiple steps of mass spectrometry
selection, with some form of fragmentation happening in between the stages [21]. In a
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tandem mass spectrometer, ions are generated in the ion source and separated by the mass-
to-charge ratio in the first stage of mass spectrometry (MS1). Ions of a particular mass-to-
charge ratio (precursor ions) are selected and fragment ions (product ions) are created by
other physicochemical processes such as collision with argon atoms. The resulting ions are
then separated and detected in the second stage of mass spectrometry (MS2). A simple
sample of mass spectrum produced by such procedure is shown in Fig. 2.2.

Figure 2.2: A Sample of mass spectrum.

Mass spectrometry is a very big topic to cover and details can be referred to [22].
However, only very limited knowledge is needed to understand this thesis. Getting rid of
most bioinformatics background, a mass spectrum can be regarded as a set of key-value
pairs, where key is a mass-to-charge ratio (m/z) showing which ion it presents and value
is the abundance of this ion signal.
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2.3 Y-ions and B-ions

The most common fragment ions observed in mass spectra are y-ions and b-ions.

Y-ions appear to extend from the carboxyl terminus, or C-terminus. The fragment
containing only the carboxyl terminal amino acid is termed y1. The fragment containing
the first two amino acids from C-terminus is term y2 and so forth [23]. The y-ion series for
an example peptide MNSLQTDDTAK is illustrated below in Fig. 2.3.

Figure 2.3: Y-ion series for example peptide MNSLQTDDTAK.

B-ions are similar with y-ions but in the reverse direction which appear to extend from
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the amino terminus, or N-terminus (see Fig. 2.4) [23]. In most of the cases, y-ions have
higher peak intensities (more abundance) in mass spectra than b-ions.

Figure 2.4: B-ion series for example peptide MNSLQTDDTAK.

Y-ions are b-ions are the two most significant and common fragment ions in MS/MS
spectra, therefore, peptide sequencing algorithms are usually built based on them.

However, there all still some other types of ions in peptide mass spectra. One of them
is internal fragment ion which refers to ions that contains neither the original C- or N-
terminal residues. Ballard et al. first pointed out the existence of this type of ions back
into 1991 [24]. However, no peptide sequencing software is taking advantage of this type
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of ions yet.

2.4 Peptide Sequencing

Peptides are usually sequenced with tandem mass spectrometry. Researchers have been
working on automatic algorithms to do this for decades.

Fig. 2.3 and 2.4 tell us that each peptide fragment in a series (either y-ions or b-ions)
differs from its neighbour by one amino acid assuming the complete series is presented.
In principle, it is therefore possible to determine the amino acid sequence by considering
the mass difference between neighbouring peaks in a series of y-ions or b-ions. However,
the difficulty lies in the fact that the information in MS/MS spectra is often not complete
and that intervening peaks, which might or might not belong to the series, can confuse the
analysis. This peptide sequencing method by looking solely at the spectra is called de novo
sequencing. The name de novo comes from Latin which means from the very beginning.
The success of de novo sequencing crucially depends on the quality of the data, in terms
of both the mass accuracy and the presences and absences of the ions. Two well-known de
novo sequencing software are PEAKS[5] and Nover[3].

At the beginning of the 1990s, researchers realized that the peptide sequencing problem
could be converted to a database matching problem, which would be simpler to solve. The
reason database searching is easier than de novo sequencing is that only an infinitesimal
fraction of the possible peptide amino acid actually occur in nature. A peptide spectrum
might therefore not contain sufficient information to unambiguously derive the complete
amino acid sequence, but it might still have sufficient information to match it uniquely to a
peptide sequence in the database on the basis of the observed and expected fragment ions.
Some example software are X!Tandem[1][2], PEAKS DB[12], Mascot[9] and SEQUEST [8].

Database search methods usually have better results and are more tolerant on the
quality of spectra. Meanwhile, de novo sequencing is more flexible as it does not rely
on any previous results. Database search used to be faster than de novo sequencing, al-
though this is being challenged with the development of the Novor software [3]. Due to
their distinct capabilities, both approaches have traditionally been used in different cir-
cumstances. De novo sequencing has been mostly used to sequence endogenous peptides
[25][26], characterize mutations in antibodies [25], perform proteomics analysis for organ-
isms with no or incomplete protein databases [26][27][28], and to help sequence an entire
protein [29][30][31][32]. While database search is widely used to study any organisms with
a complete or partial protein sequence database. In real peptide sequencing processes, two
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methods are usually combined together to fully sequence all spectra: de novo is applied to
sequence the spectra where database search finds no or only low confidence matches.

For a very long time, these two approaches are developing separately. However, re-
cently, the bioinformaticians have started to blur the boundaries of those approaches. The
sequence tag approach uses de novo sequencing to identify confident partial sequences,
and search a sequence database for identifying the exact or approximate sequence of the
target peptide [12][33][34][35]. Also, de novo sequencing has been used to improve the
speed of database search [12] and blind or unspecified PTM search ([33][34]). The PEAKS
DB algorithm compares the de novo sequencing results with database search results, and
uses the similarity to boost the confidence of the database search result [12]. The combi-
nation of multiple approaches within a single algorithm usually leads to more significant
improvement than using different algorithms separately on different subsets of the data.

2.5 Target Decoy and Decoy Fusion

The output of database search programs indicates the best theoretical peptide matches
to the input spectra, which are then used to infer the source peptide that was present in
the biological sample. However, those matches are not always correct. Unfiltered sets of
peptide identifications produced in this manner are necessarily imperfect for three reasons:
(1) not all peptide species in a sample are represented in the search space; (2) spectra
derived from background non-peptide species will often be given a peptide assignment; and
(3) incorrect candidate peptide sequences occasionally may outscore correct sequences. For
many search engines, nearly all input MS/MS spectra will be assigned a peptide match
if there are any that lie within the supplied mass tolerance. Thus, the primary task of
proteomics researchers is to distinguish incorrect from correct peptide assignments [36].

The “target-decoy” search strategy is a simple yet powerful way to deliver false positive
estimations and can be applied to nearly any MS/MS workflow. Also, it is wildly used in
proteomics to evaluate peptide sequencing performances. Here, we brief introduce some
basic ideas about this well-known strategy.

One deceptively simple way to estimate false positives is to manufacture “decoy” se-
quences that do not exist in nature, and then allow the search engine to consider these
alongside “target” sequences derived from the peptide database being studied. Necessarily,
incorrect decoy hits should be similar to incorrect but unknown hits derived from target
sequences in terms of length, amino acid composition, mass accuracy, and search engine-
assigned scores. Therefore, knowing the proportion of decoy versus target sequences in
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the search space allows one to estimate the number of incorrect target sequences in a
reasonably large collection of peptide spectrum matches (PSMs).

Target-decoy searching strategy is used to evaluate peptide identification performances
in this thesis in the following steps:

1. Construct decoy peptide sequences and put them into the target database, marking
decoy sequences with a text flag in their annotation.

Ideal decoy sequences should have the following characteristics:

• Similar amino acid distributions as target protein sequences.

• Similar protein length distribution as target protein sequence list.

• Similar numbers of proteins as target protein list.

• Similar numbers of predicted peptides as target protein list.

• No predicted peptides in common between target and decoy sequence lists.

Following these characteristics, several widely used decoy sequences are: reversed
protein sequences, shuffled protein sequences and random protein sequences. They
are theoretically fit the above requirements, although not perfectly, and very are
easy to construct. To simplify calculation, the number of these decoy sequences are
typically the same as the target ones and this is the approach that is used in this
paper.

2. Use a search engine to identify input spectra using target-decoy sequence database.

Once a target-decoy sequence database has been generated, the analysis of a set of
spectra can begin. The generally accepted means to do this is to supply the search
engine with a single protein sequence database consisting of both target and decoy
sequences. For each spectrum, the search engine must then choose between target
and decoy sequences. Correctly sequenced peptides will exclusively be selected from
target protein sequences, while incorrect peptide matches will be randomly drawn
from target and decoy sequences. In this thesis, the length of generated decoy proteins
are the same with target proteins, so there should be a one-to-one correlation between
target and decoy sequences among incorrect identifications.

3. Evaluate search engine’s performance under specific false discovery rate (FDR).

The number of correct sequenced peptide spectrum matches is the most important
factor to evaluate search engine’s performance. However, most of their sequencing
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results are not 100% sure. Therefore, false discovery rate is needed to show the
quality of results.

The false discovery rate is defined to be
#False Positive

#True Positive + #False Positive
. This can

be phrased as how many incorrect results can be tolerant in the outputs. Usually in
proteomics, FDR is set to be 1%, or 0.1% if really high-quality results are needed.

In this way, different methods are compared according to how many PSMs they can
output under such FDR. To be more specific, those methods will output PSMs in
this following way,

(a) Sort all PSMs output by score, descending.

(b) Check PSMs one by one, record the last index satisfies that

#Decoy

#Decoy + #Target
≤ FDR

(c) Output all PSMs before this index, presuming they are correct.

According to the discussion before, the number of decoys should be the same as the
number of false positive results in all discoveries. Therefore, only FDR portion of the
output are incorrect. All those PSMs outputed using this method are called valid
PSMs in this thesis. The number of valid PSMs is used to evaluate the performance
of peptide sequencing methods.

There is a small problem when using target decoy during a multi-stage search procedure,
where target decoy can make it biased toward underestimating the FDR [37][38][39]. It is
mainly because in the protein shortlisting step, such search procedures may select more
target proteins than the decoy proteins. This causes the false identifications in later steps
to fall in the target proteins with a higher probability.

To solve this problem, Zhang et al. provides a new similar method called decoy fusion.
Instead of adding decoy as separate protein sequences in the database, decoy fusion con-
catenates the target and decoy sequences of the same protein together as a single entry in
the database [12]. While all other steps remain the same.
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Chapter 3

Related Works

3.1 X!Tandem

Database search is a commonly used method to identify proteins in tandem mass spec-
trometry. It is a process that requires search algorithms to compare observed spectra
against protein databases and identify potential matches. A number of programs exist for
performing this search, examples can be found in 2.4. Among them the most popular one
is an open source program, X!Tandem[1][2].

X!Tandem’s major innovation is to conduct the search in two phases. In the first phase,
a rapid survey identifies candidate proteins that are approximate matches to the input
spectra. In this phase, perfect cleavage is assumed, and no post-translational modifications
are allowed. In the second phase, a new search is conducted against only the candidates
identified in the first phase, this time permitting refinements such as missed cleavages
and post-translational modifications, which greatly increase the complexity of the search.
Performing this refined search against the smaller population of candidates from the first
phase significantly reduces search time.

To further improve its performance, X!Tandem has revised versions running on cluster
computer systems, which are called Parallel X!Tandem [40] and X!!Tandem [41]. Even
though X!Tandem is a open source software, it is under very good maintenance. All
documentations can be found in http://www.thegpm.org/tandem/ and new versions are
pushed very frequently. It has a version for MacOS where our most experiments run.
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3.2 Percolator

The first step in analyzing a mass spectrometry dataset is to match the harvested spectra
against a target database using database search engines such as SEQUEST[8] and Mascot[9]
and X!Tandem[1][2], a process that returns a list of peptide-spectrum matches. However,
it is not trivial to assess the accuracy of these identifications.

In order to filter out incorrect results, target-decoy strategy is used to find a threshold
score under specific FDR. However, because most database search algorithms return mul-
tiple scores (for example, XCorr, Sp, and ∆Cn for SEQUEST), most proteomics studies
apply separate thresholds to each score. Using multiple orthogonal score criteria is useful
for eliminating false discoveries that might exceed one threshold but not another. However,
in most cases these orthogonal scores are considered independently, ignoring the benefits
that can be obtained if the features are considered jointly.

Percolator[13] provides a solution to this problem. It uses a software post-processor
that can be appended to any existing database search algorithm. Percolator uses a semi-
supervised learning method that eliminates the need to construct a manually curated
training set. The PSMs derived from searching a decoy database consisting of shuffled
protein sequences are used as negative examples for the classifier, and a subset of the high-
scoring PSMs derived from searching the target database are used as positive examples.
Percolator trains a machine learning algorithm called a support vector machine (SVM) [42]
to discriminate between positive and negative PSMs. One benefit of the semi-supervised
learning paradigm is that the classifier is free to exploit a variety of specific features of the
data, without overfitting to a particular type of spectrum. Percolator represents each PSM
using a rich vector of 20 features.

In their original paper, percolator was used to optimize results from SEQUEST and
Mascot. It increased correctly sequenced PSMs (or valid PSMs) by 17% in their experi-
ments. In later versions, it supports more software such as X!Tandem, which was used in
our later experiments.

3.3 Novor

Before the publishing of Novor [3], database search method were more widely used than de
novo sequencing due to the consideration of both speed and accuracy. De novo sequencing
is mostly used when there is no protein database to search against.
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When a protein database is available, de novo sequencing can be used to assist database
search to increase its sensitivity and accuracy by confirming its results [12], and to speed
up database search by using de novo sequence tags as a filter [12][33][34][35]. However,
these uses are often diminished by the relatively slow speed of previous de novo sequencing
software. Besides the speed, the accuracy of existing de novo sequencing is not ideal. This
is primarily due to the inherent difficulty of de novo sequencing but there is still room to
improve.

Novor attempts to address these challenges and develop new software to achieve a
real-time de novo sequencing speed with much improved accuracy over the previous ones.

In Novor, a large scale machine learning experiment was conducted using a decision tree
model. Up to 169 features were used, and the decision tress with thousands of branching
nodes were automatically generated from the training data automatically. Part of the
decision tree Novor trained is shown in Fig. 3.1.

Figure 3.1: A small portion of decision tree learned by Novor [3].
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In their experiments, Novor significantly improved the de novo sequencing accuracy and
is more than an order of magnitude faster. More than 300 MS/MS spectra can be sequenced
by Novor on a laptop computer per second, which opens the possibility to develop a fast
speed protein identification method using de novo results.

3.4 Spectrum Prediction

To sequence peptides with tandem mass spectrometry, many software tools rely on the
comparison between an experimental spectrum and a theoretically predicted spectrum.
Consequently, the accurate prediction of the theoretical spectrum from a peptide sequence
can potentially improve the peptide identification performance and is an important problem
for mass spectrometry based proteomics.

Spectrum prediction is proven to be theoretically possible in [43]. However, the ac-
curate spectrum prediction is still a challenging problem due to the lack of quantitative
understanding of the complex peptide fragmentation process in MS/MS. To circumvent
this difficulty, most of available database searching tools employ certain oversimplified
models. For example, the widely used SEQUEST software assigns artificially determined
fixed intensities to different types of ions [8]. This oversimplification usually incurs a sig-
nificant deviation between the experimental spectrum and the prediction and may lead to
compromised peptide identification performance [43].

A pioneer research in the computational prediction of a peptides spectrum was the
MassAnalyzer program [43][44]. On the basis of the mobile proton hypothesis, a kinetic
model was proposed to simulate the peptide fragmentation process. The model includes
most fragmentation pathways listed in the literatures and additional pathways observed
by the author. A total of 236 parameters were trained from the spectra of known peptides
and used in the computer simulation algorithm for predicting the spectra of new peptides.
The model was first developed for peptides with a net charge of +2 [43] and then extended
to spectra with more than 2 charges [44]. Besides MassAnalyzer, there have been other
works for studying the relationship between peak intensities and peptide sequences, with-
out explicitly predicting the spectrum [45][46][47][48][49][50]. Different from the kinetic
model, another program, PeptideART[51], uses a machine learning approach to predict
the probability that a specific ion is observed.

Recently, a new software called MS-Simulator is proposed by Sun et al. [4]. Instead of
predicting all the peak intensities simultaneously in MassAnalyzer, the new model focuses
on the accurate prediction of the relative intensity ratio between every two adjacent y-
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ion peaks. Also in this paper, they showed that the prediction of this ratio is a closed-
form equation that involves up to five consecutive amino acids nearby the two y-ions
and the two peptide termini. Compared with another existing spectrum prediction tool
MassAnalyzer, MS-Simulator not only simplifies the computation, but also improves the
prediction accuracy. The ratios predicted by MS-Simulator can also be used to derive a
theoretical spectrum. The work flow briefly shows in Fig. 3.2.

Figure 3.2: MS-Simulator’s work flow to generate a theoretical spectrum. [4].

18



Chapter 4

Adjacent Y-ion Ratio Score Function

4.1 Introduction

In today’s proteomics research, bioinformatics software has been routinely used to identify
peptides from tandem mass spectrometry data. The software programs in use can be clas-
sified in three categories: database search [8][9][10][11][12], de novo sequencing [5][6][7][3],
and spectral library search [52]. In each of these software programs, a good scoring function
is critical in order to rank the correct peptide on top of the incorrect ones.

Developing a scoring function is a nontrivial task and has a profound impact to the
performance of the software program. Some of the earlier software programs used empir-
ically designed scoring functions. For example, SEQUEST used an XCorr score [8]. For
a given pair of peptide and experimental spectrum, SEQUEST computes the theoretical
spectrum of the peptide with a simple empirical rule. Then the experimental spectrum is
displaced by a mass shift and the dot product of the theoretical spectrum and the displaced
experimental spectra is denoted with Rτ . The difference between R0 and the average of Rτ

for −75 ≤ τ ≤ 75 is used as the XCorr score. The de novo sequencing tool PEAKS used
an empirical scoring function to evaluate the significance of the matched fragmentation
peaks at each fragmentation site of the peptide. Then the sum of the fragmentation sites
is used as the peptide score [5].

Other programs relied on simple statistics to weigh different matching events. For
example, in the Sherenga program [53], two probabilities, p and q, are first counted with
spectra of known peptides. The probability p is of that a fragment peak with certain
ion type appears in the spectrum. And the probability q is of that a peak appears in a
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random m/z value of the spectrum. The log likelihood ratio, log
p

q
, is then used as the

score contribution of a peak matching a fragment ion with the selected ion type. The total
of all matching peaks with all concerned ion types is used as the de novo peptides score.

The database search program X!Tandem followed SEQUEST and Mascot, combining
three important attributes from each through the calculation of an expectation value. The
expectation value is a probabilistic assessment of the correlation of an experimental and
theoretical spectrum (similar to XCorr in SEQUEST) and how much better a peptide
match is than a stochastic match [54].

More recent programs started to adopt the machine learning method in developing scor-
ing functions. One of the first efforts in this direction is the Percolator program that used
a Support Vector Machinery (SVM) method in machine learning to combine 20 features.
Percolator significantly improved other database search engines results by re-ranking their
results with Percolators new scoring function. In another work, Frank et al. [55] used a
logistic regression model to combine several features together to estimate the correctness
of the de novo sequencing results of PepNovo [6]. Novor used a decision tree method to
combine 169 scoring features in determining the correctness of an amino acid in a de novo
peptide [3]. Machine learning has demonstrated great success in designing good scoring
functions due to its ability to combine scoring features that are independently designed.
In this chapter, we study the use of the intensity ratio between two adjacent y-ions as the
scoring feature.

As we mentioned before, in an earlier study, the relative ratio of two adjacent y-ions
has been used to predict the spectrum of a peptide from the amino acid sequence [4]. In
that paper, Sun et al. demonstrated that the ratio between two adjacent y-ions is mostly
determined by the few surrounding amino acids. A closed-form formula was proposed to
predict this ratio from four surrounding amino acids. Then the ratios of all adjacent y-
ions are used together to predict the y-ion intensities in the spectrum. Compared to the
original spectrum prediction method proposed by Zhang [43], Suns method is significantly
simpler and achieved satisfactory performance in the prediction. In the Novor software,
the adjacent y-ion ratio is also used for scoring an amino acid’s confidence.

In the previous studies, the adjacent y-ion ratio is treated as a constant once the
surrounding amino acids are given. However, in reality, the ratio forms a probability
distribution and may change from one peptide to another. Therefore, in this chapter we
present a way to obtain such probability distributions through non-parametric statistics
[56], and the use of such distributions in scoring feature to improve the scoring functions
of database search and de novo sequencing, respectively.
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The remainder of this chapter is presented as follows: Section 2 introduces how to
generate the probability distributions mentioned above and show that they are valuable
for peptide identification methods. Section 3 introduces y-ion ratio score function and
how to apply it as a score feature to database search (X!Tandem) and de novo sequencing
(Novor). Sections 4 presents the results of these experiments and these results show that
this score function can be easily applied to improve both performances.

4.2 Adjacent Y-ion Ratio Distributions

Spectrum libraries contain a lot of valuable information. This chapter will focus on the
intensity ratios of y-ion peaks on both sides of a residue. These y-ion peaks are also called
adjacent y-ions in this chapter. For example, in Fig. 4.1, y1 and y2 are on both sides of
amino acid S, so they are adjacent y-ions.

Figure 4.1: Y-ions for an example peptide.

Sun et al. [4] found that these ratios can be mostly determined by several more con-
secutive amino acids near this residue itself. Rather than use a fixed ratio value in [4], a
probability distribution is generated to describe this pattern for every specific consecutive
amino acid combination in this chapter.

Furthermore, as these distributions for different consecutive amino acids vary a lot,
peptide identification algorithm can benefit from a scoring feature based on this.

4.2.1 Distributions Generation

The spectrum library released on May 29, 2014 from NISTs website (chemdata.nist.gov)
was used to generate those distributions. In the spectrum library, there are data of spectra
and those corresponding peptides. It consists of 340, 357 spectra measured with Ion-trap
and all of them are used for generation.
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As we mentioned before, adjacent y-ion peak intensity ratios can be mostly determined
by several surrounding residues. In this chapter, four consecutive amino acids (4-mer) are
used to present the pattern of these ratios. It is because, first, four residues can already
mostly determine this ratio, and second, there are only 204 = 160, 000 combinations which
can still be easily stored and accessed.

Furthermore, if a 4-mer is using to determine the ratio, it is better to have two more
amino acid on the left and one more amino acid on the right [43][44]. This is slightly better
than the opposite way, having two more amino acids on the right.

Here are the steps for generating an adjacent y-ion ratio distribution for a given 4-mer.

1. All y-ions from those spectra are traversed. Every time we met this specific 4-mer,
let’s say A1A2A3A4, y-ion intensity at the right-hand side of A3(yi) and y-ion intensity
at the left-hand side of A3(yi+1) are taken for further calculation. Intensities of y-
ions are computed as the sum of peaks intensities for both charge 1+ and 2+ in the
corresponding spectrum. If any peak intensity is less than 2% of the highest y-ion
peak intensity in this spectrum, it will be regarded as noise and this peak intensity
will be 0.

2. All those adjacent y-ion pairs (yi and yi+1) are used to calculate in formula

180

π
· arctan(

yi
yi+1

) (4.1)

as a data point (or a y-ion ratio in this chapter) to generate the distribution for this
4-mer. It would be a degree between 0 and 90 (both included). The use of arctan
function converts the ratio from range 0 to∞ to a constant interval, making it more
convenient to carry out the statistics.

3. All those data points with value 0 or 90, which means one of the adjacent y-ions is
missing, will be processed separately as outliers.

For each different 4-mer, the probabilities of the y-ion ratio being 0 or 90 degrees are
calculated using a classical probability model. More specifically, the probability of
the y-ion ratio being 0 degree is the total number of 0 degree out of the number of
all y-ion ratios. And the same for those ratios of 90 degree.

After this step, the distributions of other data points are drawn. Take 4-mer VPDL
as an example, the distribution of adjacent y-ion ratios looks like the bar chart in Fig.
4.2. This frequency distribution cannot fit into any typical probability distribution
model such as normal distribution.
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4. In order to easily present this distribution for further use, smoothing is a necessary
step. In this case, non-parametric statistics[56][57] is a used as follows. For each 4-
mer, each data point (y-ion ratio) is used to generate one normal distribution N(µ, σ),
where µ equals to this ratio and σ equals to 10 degrees. To aggregate those distribu-
tions, a new distribution is generated by averaging all the normal distributions. The
smoothed distribution is shown as the line chart in Fig. 4.2. Probabilities for 0 and
90 degrees calculated in step 3 will be attached to this distribution after this step.

Figure 4.2: Frequency of all data points and the distribution after smooth for 4-mer VPDL.

After all those steps, a distribution for this 4-mer is generated presenting the proba-
bilities of any potential y-ion ratio values. Also, to simplify this probability distribution,
only probabilities for integer degrees are stored. Probabilities between integers will be
calculated by linear interpolation.

Here the algorithm is used to generate distributions for 4-mers. However, for some
4-mers there are too few data points to show a pattern. Therefore, besides all 4-mers
(A4A3A2A1), distributions for 3-mers (A3A2A1) and 2-mers (A2A1) are also generated and
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stored. In all circumstances, y-ion intensity on both sides of A2 are always used to calculate
the ratios.

When looking up a specific 4-mer (say A4A3A2A1) for a probability, its 4-mer distribu-
tion will be checked first. If there are only less than 50 y-ion ratios, which we think may
not be sufficient to show the pattern, the 3-mer distribution (for A3A2A1) will be checked.
If the number of y-ion ratio entries is still less than 50, the 2-mer distribution (for A2A1)
will be checked. Once data points are sufficient to show the pattern, probability of the
degree in this distribution will be returned.

Besides all these distributions, we have a distribution named “global”. This “global
distribution” put all y-ion ratios in the whole spectrum library into one distribution re-
gardless of the 4-mers. This can be regarded as a global setting for this human library and
will be used to calculate likelihood which will be introduced in section 4.3.

4.2.2 Different Distributions Comparison

Four probability distributions for four different 4-mers (AAAA, EEEE, VPDL and SNPS)
are presented in Fig. 4.3 and 4.4. Fig. 4.3 shows the smoothed distribution without
probabilities of 0 or 90 degree while Fig. 4.4 shows those probabilities for 0 or 90 degree
alone.

These distributions are very different from each other. Therefore, it is valuable to take
y-ion ratio into consideration when doing peptide identification.

This procedure is also run using other libraries from other species. However, they
all generated almost the same distributions. Thus, even though all the distributions are
generated from human spectrum library, they can be easily applied to sequence peptides of
all species. This means our score function discussed below can be commonly used regardless
of the species.

4.3 Y-ion Ratio Score Function

In this section, our y-ion ratio score function is introduced as well as experiment details
carried on both X!Tandem [1][2] and Novor [3].
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Figure 4.3: Different distributions for different 4-mers.

Figure 4.4: Different 0 and 90 degree probabilities different 4-mers.
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4.3.1 Score Function

For each single residue in a peptide, a score called y-ion ratio score is proposed in this
chapter. This score is calculated based on both peptide sequence and its corresponding
spectrum (i.e. peptide sequence match, or PSM). These PSMs can come from any peptide
identification software.

Given a residue Al in a peptide, two residues before Al and one residue after Al are
fetched to form a 4-mer, i.e. Al−2Al−1AlAl+1 , and the y-ion ratio around this given amino
acid Al is calculated.

Then, the distribution of this 4-mer is checked for the probability of this y-ions ratio
under this distribution, i.e.

P1 = Pr[ratio|Al−2Al−1AlAl+1] (4.2)

Also, the probability of this y-ions ratio under the global distribution is calculated, i.e.

P2 = Pr[ratio|Global] (4.3)

Finally, the likelihood of this y-ions ratio being under this specific 4-mers distribution
rather than the global distribution is calculated as our y-ion ratio score.

Y-ion Ratio Score = log
P1

P2

(4.4)

Note if two neighbor y-ions of this amino acid are both missing in the spectrum, the
y-ion ratio score will be 0. Also, y-ion ratio score will always be 0 when it comes to N
terminus or C terminus.

We have two experiments showing our scoring function has a significant improvement for
both database search approach (X!Tandem [1][2]) and de novo sequencing (Novor[3]). In the
first experiment, y-ion ratio scores of every amino acid in the peptide are summed up as a
score for the whole peptide spectrum match (PSM) and used in conjunction with X!Tandem
score to improve its performance on peptide identification. In the second experiment, scores
are given to each single residues to better predict its correctness with Novor’s confidence
scores.
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4.3.2 X!Tandem Optimization

After we had all these distributions, we first tried it to optimize database search based
peptide sequencing. X!Tandem [1][2] is chosen because it is one of the most famous free
software in this area. It is under good maintenance and it also has a version for MacOS.

Briefly, by having a new y-ion ratio score along with X!Tandem score, two different
scores are given for one single PSM. A new score is calculated by simply linear combin-
ing those two scores and this new score is used to re-rank all those PSMs outputted by
X!Tandem.

Datasets

Two public data sets downloaded from proteomeXchange Datasets are used to search
against a human peptide database. They are:

• U2OS

This dataset was downloaded from the proteomeXchange data repository (ID: PXD001220).
The data was produced by Kirkwood et al. in their study of native protein com-
plexes and protein isoform variation in human osteosarcoma (U2OS) cells[58]. We
only used one file, PT1541S1F16.raw, which contains 36169 MS/MS spectra, for the
experiment.

• Iris

This dataset was downloaded from the proteomeXchange data repository (ID: PXD002194).
The data was produced by Zhang et al. in their study of human iris, ciliary body,
retinal pigment epithelium, and choroid [59]. We combined from 0orHDJ8h-2509-
01.mgf to 0orHDJ8h-2509-12.mgf as a whole spectrum file to run the experiment
which containing 87,489 MS/MS spectra.

The database we searched against is downloaded from UniProt. The proteome ID is
UP000005640. There are 70,225 proteins in the database.

Decoy-fusion

Before running X!Tandem, in order to evaluate its performance, a decoy database is needed.
As X!Tandem is using a multi-stage database search algorithm, decoy-fusion [12] works
better than target-decoy.
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In order to do decoy-fusion on the target database, reverse of every protein sequence
are appended to this protein itself. So, the newly generated database contains the same
number of protein entries, while the length of each protein is doubled. This new generated
database are used for X!Tandem to search against. Target and decoy identifications form
X!Tandem are separated by checking whether they are from the first half or the second half
of that new protein sequence. Note X!Tandem will output some same peptide sequences
from several different proteins in the database. In this situation, if one of those peptides
are from the first half of that protein, we will treat it as a target, if none, decoy.

If the C-terminal amino acid of the target protein is not an enzyme cleavage site, then
appending a decoy sequence to its end may prevent the search engine from considering
the C-terminal peptide of the target protein. A normal way to solve this problem is to
add a special letter J between target and decoy sequences as the separator [12]. However,
X!Tandem cannot deal with invalid amino acid letter like J, which it will change to other
valid letter. So, instead of adding J, we added XXXXXXXXXX (10 Xs) between target
and decoy. Also, we changed our way to identify target or decoy a little bit. If one peptide
falls into the area of 10 Xs, it will be treated as neither target nor decoy.

Benchmark and Comparison Baselines

How many PSMs can be outputted under 1% false discovery rate (FDR) is used as a
benchmark for the performances of different methods. In this chapter, number of valid
PSMs is defined to be #target PSM − #decoy PSM when FDR equals to 1%.

First comparison was between using X!Tandem score only and the combination of
X!Tandem score and y-ion ratio score. The version we used for X!Tandem is PILEDRIVER,
released on 2015.04.01. The hyperscore X!Tandem outputted for each PSM is used as
Tandem score.

In order to avoid over-fitting, a linear function is used to combine X!Tandem score and
y-ion ratio score. To find the best parameter, we first run this process on a test dataset
and drew a scatter plot for both scores.

According to Fig. 4.5,

Tandem score + 2× Y ion Ratio Score

is used as our final score after some observation.

This final score will be used to re-rank all the PSMs outputted by X!Tandem and the
number of valid PSMs is calculated again based on this score.
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Figure 4.5: X!Tandem score vs. y-ion ratio score scatter plot.
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Second comparison will be our revised X!Tandem score against percolator. Percolator
uses a semi-supervised machine learning to discriminate correct from incorrect peptide-
spectrum matches, and calculates accurate statistics such as q-value (FDR) and posterior
error probabilities [13]. Percolator was downloaded from Github and used with its plugin
command to transfer X!Tandem results to tab-delimited file format which is the input
format for percolator. Percolator also needs another input which contains X!Tandem results
against a totally decoy database as the negative labeled data points to do semi-supervised
learning. For this decoy database, we shuffled every peptide entry in the decoy-fusion
database we made and put them in another file. In this way, percolator interpreted every
peptide in our previous decoy-fusion database is target and it outputted a percolator score
for each PSM X!Tandem got. However, whether a peptide is a target or decoy can still be
told by searching this peptide in the original database before we did decoy-fusion. Still,
the number of valid PSMs is used as benchmark here.

Percolator has a very good interface where a feature could be easily added into its SVM
model by simply revising its input file. Since features in percolator and y-ion ratio score
are trying to do the same thing, y-ion ratio score can be treated as a feature in percolator
as well. After those two comparisons, y-ion ratio score is added into percolator as a new
feature and compared which feature contributed the most to the result. This was done by
deleting features one by one and see which made the number of valid PSMs drop the most.

4.3.3 Novor Optimization

Y-ion ratio score function can not only be used to optimize database search results but
also de novo sequencing results. Novor is a state-of-art de novo sequencing software and
it is free to use in academia. For every peptide spectrum match, Novor gives confidence
scores to each residue it predicts.

In database search, even if we have some peaks missing, there will still be some adjacent
y-ions to provide y-ion ratio scores so we can sum them up as a score for the whole peptide.
However, it is not the case here in Novor. If the peaks around an amino acid are both
missing, our y-ion score will be zero all the time. In order to distinguish different situations
where our new method cannot give a score and make sure our y-ion ratio score can still
contribute, a slightly complicated model is brought up.

A logistic regression model is proposed to solve this problem. Logistic regression is a
simple classification model wildly used in both academia and industry nowadays [15]. It
was first developed by statistician David Cox in 1958 [60]. The binary logistic model we
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were using here is used to estimate the probability of a binary response based on one or
more predictor features. Our model contains features in table 4.1.

Feature Name Explanation
Novor Score The score Novor gave on an amino acid

Y-ion Ratio Score Score we are introducing in this chapter
Missing 1 If at least one of the y-ions is missing

around this amino acid
Missing 2 If both y-ions are missing around

this amino acid
Is N term If this amino acid is at N terminus
Is C term If this amino acid is at C terminus

Table 4.1: Features in Novor Optimization Model.

Missing 1 and Missing 2 are two features showing that how many y-ion peaks are miss-
ing around this residue. Due to the property of logistic regression model, setting this into
two features with each can be 0 or 1 is better than setting this into only one feature with
possible value 0,1,2. These two features helped us to make up the model when y-ion ratio
score cannot provide enough information (or y-ion ratio score is set to 0.0 by default).

Also, in more specific cases, N terminus and C terminus should be treated differently
since our y-ion ratio score will always give 0 to termini.

This model has two labels, 0 and 1, where 0 means this residue is not correctly sequenced
and 1 means it is correct. As it is logistic regression, this model will output the probability
of the prediction to be 0 and 1 separately. The probability of the prediction to be 1 is
treated to be the confidence score of our model.

Our logistic regression model was implemented using scikit-learn package (version 0.17.0)
in Python [61].

A normal way to make full use of de novo sequencing is to run both database search
software and de novo sequencing software. If a spectrum can be sequenced by database
search software under 1% FDR, we will output this peptide as sequencing results. If it
cannot, output de novo result as the final sequenced peptide.

Therefore, one workflow to use our new method is

1. Run a database search based peptide sequencing software (like PEAKS[5] and X!Tandem)
to get PSMs they outputted under 1% FDR (or less) and regard them as ground truth
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2. Run de novo sequencing software (like Novor) and get peptide for every spectrum

3. For those outputted both in (1) and (2), compare those peptides to distinguish
residues that are correctly and incorrectly sequenced in de novo. Then use them
to train our logistic regression model.

4. For those peptides only outputted in (2), use our new model based on y-ion ratio
score is used to predict the result. If the prediction is true, we will also output this
residue.

In this way, both outputs can be fully used and the residues that are correctly sequenced
from the spectrum can be maximized. However, since all our features in the logistic
regression model are instrument independent, the model can still be trained in advance
and used to predict for all de novo results. Our experiments are also carried out in this
way.

Datasets

Four datasets in [3] are used to replay the experiments. They are:

• C. elegans

Similar to NIST human library, this dataset is the C. elegans ion trap peptide library
(released date May 24, 2011), downloaded from the NIST website. It consists of
67,470 spectra and was produced with the same procedure as the human peptide
library.

• Ubiquitin

This dataset was extracted from a larger dataset recently published at the Mas-
sIVE database (ID: MSV000078991). The dataset was produced by Coyaud et
at. in their study for E3 ubiquitin ligase [62]. Out of the 80 experiment (Con-
trol BioID no bait A v1) was chosen in this study. The peptide identification results
submitted together with the data were also downloaded, and the ones with a prob-
ability score of 95% or above were extracted and used as the ground truth. If a
peptide was identified by multiple MS/MS spectra with the same charge state, only
the spectrum with the highest score was kept. After this filtration process, 3398
non-redundant PSMs remained in the final list for benchmarking.
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• UPS2

This dataset was the data file MSups 15ul.RAW.gz in dataset 13 of the MS/MS data
repository (www.marcottelab.org/MSData/) at Marocttes lab at the University of
Texas, Austin. The data were generated by Vogel et al. for confirmation purposes
in their previous study of mRNA and protein concentration [63]. To produce the
data, the standard UPS2 sample was digested with trypsin, and measured with a
LTQ Orbitrap. There are 9466 MS/MS spectra in the data file.

• U2OS

This dataset is the same one we described in section 2.2.

As we mentioned before, these experiments are mainly redoing the experiments in [3],
more details can be found in their original paper.

Benchmark and Comparison Baseline

As the experiments in [3], we firstly retrieved the results from both Novor and PEAKS[5]
(ver. 7.0, Bioinformatics Solutions Inc.).

A residue x in the real peptide is considered as correctly sequenced if the de novo
sequence reports a residue y with the similar residue mass at approximately the same
prefix mass position. More specifically, both of the following two conditions need to be
satisfied:

1. |mass(x)−mass(y)| ≤ 0.1Da

2. the total mass before x and before y differ by at most 0.5 Da

The reason to only require approximate match of the mass is because the mass accuracy
in low resolution mass spectrometers is not sufficient to distinguish residue pairs such as I
versus L, K versus Q, and Oxidized M versus F.

Peptides sequenced by PEAKS DB [12] are used as ground truth. For each dataset,
80% of the PSMs outputted by PEAKS DB are randomly picked and used to train the
logistic regression model and then those remaining data are used to test the model.

Novor outputs a confidence score between 0 and 100, and meanwhile our logistic regres-
sion outputs a confidence score (i.e. the probability of the prediction to be 1) between 0 to
1. To compare these two, we draw two precision-recall curves, one for Novor and the other
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for logistic regression model, for each dataset. Basically, the higher the precision-recall
curve is, the better this score function is.

Precision-recall curves are draw as following way, take Novor score as an example. Let
N be the total number of residues in the real peptide sequences. For any given score
threshold t, let denovo(t) be the number of residues with scores of at least t in the de novo
sequences; and correct(t) be the number of residues that are correctly sequenced with score
at least t. Then, the precisions and recalls of the algorithm at score threshold t are defined
as,

recall(t) =
correct(t)

N
(4.5)

precision(t) =
correct(t)

denovo(t)
(4.6)

By traverse all possible thresholds t, we will get several points at a 2D space. The plot
drew from those points will be treated as the precision-recall curve.

4.4 Experiments Results

In this section, the results of two experiments mentioned above are presented as well as
some analysis on the results.

4.4.1 X!Tandem Optimization

U2OS Dataset

In U2OS dataset, there are 36,169 spectra. X!Tamdem outputted 18,191 PSMs, 17,655
of them were target in the meanwhile 536 of them were decoy. Under 1% FDR, 15,030
target PSMs were outputted with minimum score 28.3. Since 1% of them could be decoy
according to the definition of target-decoy method, the number of valid PSMs was 14,880,
which was 41.14% of the total number of spectra.

However, if our y-ion ratio scores and X!Tandem are combined together and used to
re-rank all PSMs, 16,472 target PSMs were outputted. The number of valid PSMs should
be 16472 × 0.99 = 16307 PSMs, which counted for 45.06% of the total number of spectra.

34



Furthermore, we tested this dataset with percolator. Under 1% FDR, 16360 target
PSMs were outputted with minimum score -0.667. The number of valid PSMs were 16196,
which counted for 44.77% of the total number of spectra.

In conclusion, for this dataset, our new score function can help X!Tandem output 1,427
more valid PSMs than X!Tandem itself. This number means it improves X!Tandem by
9.59%. Also, our new score with only two features (X!Tandem score and y-ion ratio score)
beats percolator, which run SVM on 12 features, by 111 valid PSMs.

Iris Dataset

We combined all 12 different spectra files together so it is large enough to do our experiment.
However, it also resulted in the low quality of the whole data comparing to selected ones
from the middle of an experiment.

There are 87,489 spectra in our file totally. Using the same way as before, X!Tandem
outputted 26,186 valid PSMs, which counted for 29.93% of the number of all spectra.

If our y-ion ratio score and X!Tandem score are combined together, the number of
valid PSMs went to 30,044, which counted for 34.34%. So our new score function can help
X!Tandem output 3,858 valid PSMs more. This means we improved X!Tandem on this
dataset by 14.74%.

By using 12 scoring features, Percolator outputted 37.26% of all the spectra for this
dataset. This is better than the linear combination of the two scoring features Hyper score
and Y-ion ratio score. However, by adding the Y-ion ratio score as an additional scoring
feature to Percolator, Percolator was able to identify 38.19% of all the spectra for this
dataset. This indicates that our y-ion ratio score feature can be used to further improve
Percolator, despite that it already uses so many features.

It is informative to compare the relative contribution of each of the 13 features used
by Percolator in order to achieve this 38.19% identification rate. For such purpose, we run
Percolator 13 times. In each time, one of the 13 features are not used. The identification
rate of each time is given in Table 4.2. Note that the line “None” indicates the inclusion
of all 13 features. The relative performance drop of deleting a feature is a good indication
on how important a feature is.

For the features in percolator, length means the length of the sequenced peptide; enzInt,
enzC, enzN are enzymatic information about this PSM; Charge 3 is the charge state; dM
and absdM are the differences in calculated and observed mass; Frac ion y and Frac ion b
are realted to ions we got in the spectrum; Delta score is p-value X!Tandem used to rule
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Features Missing Percentage of valid PSM
None 38.19%

Y-ion Ratio Score 37.26%
Length 38.21%
enzInt 37.83%
enzC 38.09%
enzN 38.02%

charge3 38.19%
absdM 37.84%

dM 37.88%
mass 38.06%

frac ion y 38.21%
frac ion b 38.24%

Delta score 37.78%
Hyper score 38.23%

Table 4.2: Percolator results without each single feature.

out unlikely PSMs; Hyper score is the score X!Tandem give. It is still unknown why the
percentage increases when some of the features are missing, one possible guess is that there
is some redundancy in those features.

From the chart, the percentage dropped the most when the SVM model did not have
y-ion ratio score as a feature. This means that y-ion ratio score plays one of the most
important roles in this model.

In conclusion of two datasets, y-ion ratio score has the ability to improve X!Tandem
results by about 10%. It can even beat percolator in some cases. In all cases, percolator
can benefit a lot from adding y-ion ratio score as a new feature.

We tried to look into why y-ion ratio score did relatively better in U2OS than Iris. We
found that the results of U2OS contains less missing y-ions than the other one. Recall that
if two adjacent y-ions are both missing, y-ion ratio score of this residue cannot be provided.
The more this case exists, the less information that y-ion ratio score of this peptide can
provide. Therefore, our new score function performed relatively worse. In conclusion, even
if our new score function performed well on both dataset, sequencing results with less
missing y-ions can still benefit more from it.
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4.4.2 Novor Optimization

The logistic regression model we proposed was run against 4 different datasets. Four
precision-recall curves were drawn to compare the results between Novor and our new
logistic regression model. Those curves are shown in Fig 4.6 4.7 4.8 4.9.

In those figures, our logistic regression model is presented by red connected triangles
while the result of Novor is presented by blue connected dots.

Recall that this precision-recall curve was draw by setting a series of threshold t and
calculate the recall and precision function mentioned before. In general, two curves in one
figure both comes from point (0,1) to a same point. This is because even if we brought
up a new model, this model still used the same results from Novor, so when drawing the
point with threshold t approaches to 0, they were all considering the same results.

These curves show that our logistic regression model has a significant better precision
under the same recall value almost all the time. This means no matter what trade-off
people are using between recall and precision, our model is always a better one to use.

These precision-recall curves may be slightly different from the ones in [3]. This is
because only 20% of the whole dataset are randomly picked to test and draw these curves.
Our recall function was calculated against those 20% dataset, so it is not a contradiction
if those recall value went beyond 0.2.

Also, it takes linear time for logistic regression to do both training and predicting [15].
Therefore, this logistic regression model is not time consuming at all in the whole peptide
sequencing workflow. We tested it on a MacBook Pro laptop computer (Retina, Mid-2015,
2.2 GHz Intel Core i7, 16 GB RAM) against U2OS, where PEAKS DB gave 9857 PSMs.
It took 75 seconds to both train 80% of dataset and test on the remaining 20%.

In conclusion, this logistic regression model provides a significant improvement for
Novor almost all the time under those 4 datasets. Also, it is not time consuming comparing
to the whole de novo sequencing method. Even though we only test our model in Novor,
since the only thing this model used is the results outputted, our model can be applied to
any de novo sequencing software.

4.5 Further revised model for Novor

Since a logistic regression model is already deployed and it achieved a very good result, it
is straightforward to do one more step: adding several more features related to Novor itself
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Figure 4.6: Optimization results for dataset C. elegans.

38



Figure 4.7: Optimization results for dataset Ubiquitin.
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Figure 4.8: Optimization results for dataset UPS2.
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Figure 4.9: Optimization results for dataset U2OS.
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into a new logistic regression model to achieve better results. Unlike the previous one, this
model is specifically designed to Novor and is instrument dependent. Therefore, the best
way to use this model is following the four steps mentioned in 4.3.3.

Features in this further revised novor optimization model shows in table Fig. 4.3.

Feature Name Explanation
Novor Score The score Novor gave on an amino acid

Y-ion Ratio Score Score we are introducing in this chapter
Missing 1 If at least one of the y-ions is missing

around this amino acid
Missing 2 If both y-ions are missing around

this amino acid
Is N term If this amino acid is at N terminus
Is C term If this amino acid is at C terminus

Peptide average score The average Novor confidences of all residues
in this peptide

Max neighbour score The maximal Novor confidence of two neighbours
of this residue

Min neighbour score The minimal Novor confidence of two neighbours
of this residue

Residue mass diff Mass difference between the mass of two neighbor y-ions
and theoretical residue mass

Yions diff Minimal mass difference of two neighbor y-ions between
theoretical mass and observed mass

Table 4.3: Features in Further Revised Novor Optimization Model.

The first six features are the same with the previous model.

Recall that Novor gives confidence scores to each residue. Peptide average score is the
average of confidence scores for all residues in this predicted peptide. This shows how
confident Novor feels about this whole peptide spectrum match. If Novor gave a high
average confidence for the whole peptide, residues in this peptide are more likely to be
correctly sequenced.

Max neighbour score and Min neighbour score are the confidence scores on both neigh-
bour residues. If the neighbours of this residue are correctly sequenced, this residue will
have a high probability to be correct. Minimum and maximum scores are used instead of
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left and right because scores themselves are more important than the relative position. For
example, confidence 20 at left and confidence 80 at right contributes the same with 80 at
left and 20 at right.

The remaining two features are showing the mass differences between theoretical and
experiment observed values. These two features will be set to 0.0 is there are at least one
neighbour y-ion is missing (i.e. Missing 1 is True). Also, these two features only take
y-ions with charge 1 into consideration.

Residue mass diff is the difference between the theoretical mass of this residue and the
observed mass (i.e. the difference between two observed y-ions around this residue). For
these two adjacent y-ions, their observed m/z values will also have some deviations from
their theoritical m/z values. So there are two deviations for two y-ions on both sides of
this residue, and Yions diff is the minimal one of them. Note here only one deviation is
recorded in the model because the other one can be calculated by Residue mass diff and
this Yions diff.

Still, logistic regression model is used because it is simple and fast. This model is imple-
mented by Scikit-learn (sklearn, version 0.17) [61] and tested on a dataset called thermo
collected from a different (more precise) instrument other than all datasets mentioned
above. The experiment is carried out the same way in 4.3.3 and precision-recall curves
were drew to compare. As this instrument is more precise than others, the requirements
for a residue x is correctly sequenced to y changed to:

1. |mass(x)−mass(y)| ≤ 0.05 Da, and

2. the total mass before x and before y differ by at most 0.05 Da

Two precision-recall curves are shown in Fig. 4.10, red curve with triangles presents
our new logistic regression model while blue curve with dots presents Novor results. The
precision-recall curve of the previous model’s optimized results was also drawn which almost
coincided with Novor’s original curve. Therefore, for this dataset, the previous model can
only slightly improve the results because they are already very good. However, this further
revised model can still improve it significantly which shows the value of this model.
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Figure 4.10: Optimization results with further revised Novor optimization model for
dataset thermo.
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Chapter 5

Internal Fragment Ions Prediction

5.1 Introduction

Most of the significant ions separated and detected by MS/MS are y-ions and b-ions,
however, there are still other ones.

Recall that y-ions always end in the rightmost side of peptides (C-terminus) and b-ions
always start from the leftmost side of the peptides (N-terminus). All other ions that do
not include either the N-terminus or the C-terminus will be called internal fragment ions
[24]. These internal fragment ions of protonated peptides arise by charge retention on a
portion of the structure excised from the peptide chain. MS/MS can also detect some of
these internal fragment ions.

Even though Ballard found internal fragment ions in MS/MS back into 1990s [24],
there is no research working on prediction of fragment ions’ appearances to the best of our
knowledge. This is possibly because internal fragment ions are usually not as significant as
y-ions and b-ions, so due to the limitation of MS/MS equipment, it’s hard to distinguish
internal fragment ions from random noises.

As MS/MS equipment develops fast recently, it is easier today to distinguish valuable
ion peaks from random noises. Therefore, it is time to bring internal fragment ions into
consideration to help peptide identification.

This chapter will focus on analysing the pattern whether a internal fragment ion will
appear in spectrum. Further more, a prediction model will be presented with more than
60% precision under 60% recall. This model performs much better than random guess
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which achieves 8% precision under 8% recall. Also, discussion is followed about how peptide
identification can benefit from this prediction model.

5.2 Internal Fragment Ions Statistics

In this chapter, WATERS antibody light chain database is used for our analysis. Corre-
sponding peptide prediction results are provided by Novor. In order to keep the data clean,
only hand-picked high confident results are kept for further use.

Among all these hand-picked peptide spectrum matches, all possible internal fragments
are traversed to see if there is corresponding peak in the spectrum. To be more specific, for
every peptide sequences, a start point and a end point are enumerated to form a possible
internal fragment. This start point begins its loop from the second left residue and the end
point finishes its loop at the second right residue to avoid both y-ions and b-ions. Also,
only fragments with length equal or greater than 2 are considered.

In this way, we found 53,109 internal fragment ions detected while other 605,291 frag-
ments are not detected. By these numbers, best random guess strategy is predicting

internal fragment ions appear with Pr =
53109

53109 + 605291
≈ 1

13
. This strategy can provide

1

13
precision under

1

13
recall. Since there are not many research carried on this topic, this

strategy is the best available and will be used as benchmark in this chapter.

5.3 Prediction Model

1

13
precision under

1

13
recall is far away from satisfaction. In order to better predict

whether an internal fragment will appear, a machine learning model will be presented in
this section.

An internal fragment can be treated as two cuts on a peptide. After some trial and
error, it is found that residues next to both cuts have influence on the appearance of this
internal fragment. To be more specific, in peptide · · ·X1X2A BY1Y2 · · ·YtC DZ1Z2 · · · , if
the fragment was obtained from cuts between A and B, C and D, all A,B,C,D are important
for prediction. Besides these residues, N-terminus and C-terminus also have influence on
the result, so they are included as well.
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Also, it is believed that charge is a very important factor in this prediction. Therefore,
the charge of this peptide spectrum match is taken as a feature to train the model. There
are three amino acids that have basic side chains at neutral pH which are tending to gain
a positive charge. They are arginine (Arg, R), lysine (Lys, K), and histidine (His, H). The
numbers of these amino acids are also used as feature in our model.

1 PSM charge the charge of this peptide spectrum match
2 #K in fragment number of K in this fragment
3 #R in fragment number of R in this fragment
4 #H in fragment number of H in this fragment
5 #K in peptide number of K in the whole peptide
6 #R in peptide number of R in the whole peptide
7 #H in peptide number of H in the whole peptide
8 length length of the fragment
9 N-term amino acid at the N-term of this peptide
10 C-term amino acid at the C-term of this peptide
11 A amino acid at position A as mentioned before
12 B amino acid at position B as mentioned before
13 C amino acid at position C as mentioned before
14 D amino acid at position D as mentioned before

Table 5.1: Features in Internal Fragment Ions Prediction Model.

There are 14 features in total in our machine learning model as listed in Table 5.1. To
simplify our model and optimize our results, all post-translational modifications (PTMs) on
amino acids (or termini) will be treated as new (completely different) amino acids. PTM
on amino acids usually change some behaviours of amino acids themselves. Therefore,
considering them as different amino acids can address these changes and thus improve the
prediction results.

A random forest regression model [64] is applied as our prediction model. Random
forests or random decision forests are an ensemble learning method for classification, re-
gression and other tasks, that operate by constructing a multitude of decision trees at
training time and outputting the class that is the mode of the classes (classification) or
mean prediction (regression) of the individual trees.

In our specific situation, regression models are needed because we want flexible pre-
cision and recall trade off and regressions models can provide a confident score for each
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prediction. Comparing to decision tree regression model, random forest provides more
possible confident score values. This means using random forest model will provide more
trade-off options and make the precision recall curve more smooth. Also, random forest
models usually have better prediction results than a simple decision tree model.

5.4 Experiment Results and Important Features

Recall that there are 53,109 positive (internal fragment ions detected) samples and 605,291
negative (fragments not detected) samples in the WATERS antibody light chain database.
90% of them are randomly picked as training data, while the other 10% are used to test
and draw a precision recall curve.

Python is used to implement this experiment including data processing, training and
testing. Scikit-learn (sklearn, version 0.17) is as the random forest regression model [61].

Training and testing takes less than 5 minutes on a MacBook Pro laptop computer
(Retina, Mid-2015, 2.2GHz Intel Core i7, 16 GB RAM).

5.4.1 Experiment Results

Fig. 5.1 shows the precision recall curve of this random forest model. Recall that the
area under the precision recall curve can be used as a measurement for performance of the
model. Our model can reach nearly 60% precision under 60% recall. This curve covers
about 5 times of areas against the best random guess strategy, whose precision-recall curve

is a constant line with precision equals to
1

13
.

Even though it is not perfect, this result, which achieved by such simple model and
in such short time, can still show us that the appearances of internal fragment ions are
predictable.

5.4.2 Important Features

In addition to the test results, feature importances of the model are also recorded to provide
valuable to researchers.

• Among all those features, length of the fragment is the most important one, the
longer the fragment is, the more likely it tends to be detected.
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Figure 5.1: Internal fragment ion prediction model precision-recall curve.
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• Also, the charge of the spectrum and the number of amino acid KRH in the fragment
are very important.

• If the N-terminus amino acid is S or D, or the C-terminus amino acid is K, this
peptide will have higher probability to generate internal fragment ions.

• An amino acid P near any one of the cuts causes more internal fragment ions, espe-
cially at the position B we mentioned before.

• Generally speaking, residues at position A and B are more important than residues
at C and D. This means the start of the internal fragment ions are more important
for their appearances.

Not all of these knowledge has research papers to support it by far. However, they can
still provide a brief idea to researchers about the patterns of internal fragments ions.

5.5 Applications and Discussions

As this model performs much better than random guesses, it can already contribute to
peptide identification. A score feature can be built using this model, and it can work
similar as y-ion ratio score to re-rank both database search and de novo sequencing results.

For peptide sequencing results from database search methods, given a peptide spectrum
match, a new score feature base on whether internal fragment ions are presented can
be provided. Basically, for each single internal fragment, this score will increase if our
prediction matches the appearance of this internal fragment, while it will decrease if they
do not match. Since we have O(n2) of internal fragments where n is the length of peptide,
this score function can ignore some less confident predictions and only take highly confident
ones into consideration.

De novo sequencing usually have some candidates for one residue. After de novo al-
gorithms determine some more confident residues, our new score function can help to
determine those less confident ones. Since there are already some residues, inserting a
new one will composite more internal fragments. Therefore, candidates can be re-ranked
according to the appearances of internal fragments composited by themselves. If our pre-
diction model match most of the appearances of new composited internal fragments, this
corresponding candidate is more possible to be the correct one.
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However, there are some limitations on this model. First of all, the precision recall
curve is not perfect and there is still room to improve. Also, this model only predict
internal fragment ions’ appearances, so it is only a binary results. A prediction of ion
peak abundances might be more helpful. However, both absolute abundances and relative
abundances can be influenced by a lot of factors, so they are extremely hard to predict.

Also, appearances of internal fragment ion depend on MS/MS equipments. So this
machine learning model only works when predicting spectrums obtained from the same (or
similar) experiment equipments. Each time predictions are needed for a new experiment
environment, previous peptide sequencing results are needed to train a new model.

In conclusion, despite some limitations, we provided a machine learning model to predict
whether an internal fragment ion will appear in a corresponding spectrum.This model
can be used to improve peptide sequencing results, for both database search and de novo
algorithms. By providing such a model, we showed that internal fragment ions’ appearances
are predictable. As a pilot work, this also shows that this problem is valuable and is worth
further research.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

Peptide sequencing is a long lasting problem In this thesis, we are trying to improve peptide
sequencing results using machine learning ideas and techniques, taking advantage of the
high-quality spectrum library. As main results, two new features that can help peptide
identification are introduced.

Our first contribution is about adjacent y-ion ratios. We presented a method to ob-
tain the adjacent y-ion ratio distributions and use it as a scoring feature to improve the
scoring functions for peptide identification. The experimental results demonstrate that the
inclusion of this scoring feature could significantly improve the performance of X!Tandem
and Novor, for database search and de novo sequencing, respectively. The scoring feature
is general enough to be incorporated in other peptide sequencing software. At the same
time, based on this scoring feature, we proposed a new machine learning model for Novor
and it achieves even better results.

The other contribution is about internal fragment ions. We proposed a prediction model
for the appearances of internal fragment ions. To the best of our knowledge, this is a pilot
work on this problem and it proves that they are indeed predictable. As nowadays most
peptide sequencing software only take y-ions and b-ions into consideration, this work will
provide them with more options and information. Similar as adjacent y-ion ratio score, this
model can also be used to build a score function and help all peptide sequencing software,
but the details are left for future work.
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6.2 Future Works

In this thesis, only adjacent y-ion ratios are introduced. It is straightforward to apply this
idea to b-ions. However, a larger peptide library may be needed to obtain sufficient b-ions
data to run a similar process as adjacent y-ions.

Also, the qualify differences of spectra in the spectrum library is not considered when
running the statistics. All of the spectra are treated equally even though some spectra
might have significantly higher quality. For example, spectra with relatively high absolute
ion abundances should be more important than other ones. A simple solution to this
problem would be have a weighing function to all of these spectra, however, details about
the function is still missing.

As the prediction of internal ions’ appearances is only a pilot work, there are a lot of
future work could be carried on this topic. Finding more important features and revising
the model to obtain higher precision is definitely one of them. And as mentioned in
Chapter 5, our model only predict the ions’ appearances while the prediction of ion’s
abundances could be more helpful. Also, details about applying this prediction model to
de novo sequencing are still missing. The method mentioned before is a depth-first search
algorithm and may face exponential explosion if the peptide is too long. Greedy algorithm
may be useful but its performance still needs to be tested.
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