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Abstract

The calculation of thermochemical properties is an important goal of quantum chemistry. Calcula-

tion techniques are well established for stable molecules. They are used routinely to calculate Gibbs

energy (G) for stable isomers, Gibbs energy difference (∆G) for reactions and also to obtain activa-

tion energies in the context of transition state theory. Practical calculations use harmonic oscillator

(H.O.), Rigid Rotor (RR) and ideal gas approximations to obtain thermodynamic contributions.

This approach works well for many systems, but breaks down for systems with multiple low-lying

electronic states. Examples of such systems are found among radicals, systems containing transition

metal atoms, and open-shell states when spin-orbit coupling is considered. Systems of this type are

better described by vibronic models acting through a small manifold of electronic states.

In this work we describe a path integral Monte Carlo (PIMC) approach that, for vibronic models,

will obtain the partition function (Z) and thermodynamic properties as a function of temperature.

Investigation of model systems demonstrates that the partition function and internal energy can be

obtained in an efficient manner.
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Chapter 1

Introduction

1.1 Motivation

Determining the properties of Quantum Mechanical (QM) systems is well understood in theory

1. Express the Hamiltonian (Ĥ) of a system in its eigenbasis Ψ

ĤΨ = EΨ (1.1)

2. Calculate the partition function (Z) by tracing over the eigenvalues Ei

Z =
∑

i

e−βEi (1.2)

The macroscopic properties of a QM system can be expressed in terms of the partition function (Z).

The microscopic properties of a QM system can be expressed in terms of the system’s eigenvalues

[1, p. 693]. In practice, however, calculating these functions is impossible for sizable systems.

“Consider for example mapping the PES by calculating Ee for every 0.1 Å over say a

1 Å range (a very coarse mapping). With three atoms there are three internal coordinates,

giving 103 points to be calculated. Already four atoms produces six internal coordinates,

giving 106 points, which only can be done by a very determined effort. Larger systems

are out of reach. Constructing global PESs for all but the smallest molecules is thus

impossible.” ([2, p. 4])
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The space necessary to store a Hamiltonian for QM systems of interest grows exponentially propor-

tional to the number of modes as showen in Figure 1.1. This mathematical constraint is commonly

referred to as the curse of dimensionality.
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If one is interested in solving practical systems, it is clear that there is a need for a more efficient

approach. There is a real-world need to calculate properties of physical materials and systems, on

human time scales and with an everyday amount of computational power. Computational chemistry

is the study of practical computation of just this type of problem. Efficient computation of chemical

properties can provide researchers with data from which they can gain insight and understand

the behaviour of a large class of molecules and systems. A key aspect of computational chemistry

is validating the use of a method for a particular system or model. The choice of a method may

depend on the properties to be calculated. The choice of computational methods, must therefore be

examined with respect to the desired properties.

1.2 Macroscopic properties

We are interested in calculating macroscopic properties of QM systems in thermal equilibrium. In

particular, we would like to accurately calculate the Gibbs energy (G), a thermodynamic potential

that is minimized when a system under constant pressure and temperature reaches chemical
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equilibrium. From G a number of system properties such as equilibrium constants (Keq), and rate

constants (k) can be obtained. Understanding G and reaction pathways is important in a diverse

range of fields such as the petrochemical industry [3], synthetic chemistry [4], and hydrogen energy

storage [5].

The Gibbs energy difference (∆G) determines the preference of reaction pathways due to their

spontaneity and therefore it determines the feasibility of prospective catalysts. Reaction pathway

preference and speed are important in the research and development of high-tech materials for

products such as solar cells, catalysts, and batteries. The development of alternative catalysts is

important because of the scarcity of rare metal complexes commonly used as catalysts, as well as

their unwanted byproducts [6, 7].

1.3 Nonadiabatic systems

In theory, macroscopic properties can be obtained by solving the Schrodinger Equation (SE) eq. (1.1)

and directly calculating Z. This approach is not feasible in practice. Several approximations have

been employed to overcome this difficulty: Born-Oppenheimer (BO), harmonic oscillator (H.O.),

Rigid Rotor (RR), and ideal gas approximation. These are standard approaches to thermochemistry

and are widely used because they are very accurate in describing single surface systems.
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Figure 1.2: Approximating a PES with two H.O.s

The standard approach breaks down when

there are multiple low-lying electronic states

that are very close in energy. Consider the exam-

ple in Figure 1.2, which shows two close-lying

states that can be fairly well approximated by

harmonic oscillators. Approximating these sur-

faces using only harmonic oscillators may be

a reasonable approximation in the case of Fig-

ure 1.2, but a more accurate and flexible method

is desirable. Our systems of interest are more

complex, having multiple surfaces with large

anharmonicities. Systems that contain radicals
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and those containing transition metal atoms are two examples. In addition, these surfaces can

be multidimensional and can interact, sometimes crossing, in many different planes [8]. This is

evident from the system in Figure 1.3.

Figure 1.3 illustrates the complexity present in just a single subregion.
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Figure 1.3: Representative PES

Surfaces can have drastically different cur-

vature, intersect other surfaces, and may be

absent in our defined regions. The com-

plexity of describing these surfaces with a

computational model arises from the mix-

ing of different electronic states as a re-

sult of small vibrations. This effect is

called vibronic coupling, and models that de-

scribe such systems are thus called vibronic

models. Modeling these complex potential

energy surfaces (PESs) is commonly done

within adiabatic or diabatic representations [9,

p. 2].

The general form of a system with two electronic surfaces (a) in the adiabatic representation is

Ĥ =



T̂11 T̂12

T̂21 T̂22


+



U11(R) U12(R)

U21(R) U22(R)


 (1.3)

where R represents the nuclear positions. In eq. (1.3) T is a dense matrix and U is a matrix that is

diagonal in the electronic surfaces. The off-diagonal components of T are the vibronic coupling

terms. In the adiabatic representation, calculation of these terms is computationally expensive. They

are commonly treated as zero under the assumption that they are small enough to be neglected. In

systems where surfaces are very close or intersect, this approximation is not valid.
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An alternative representation is the diabatic representation whose general form is

Ĥ =



T̂11

T̂22


+



U11(R) U12(R)

U21(R) U22(R)


 (1.4)

In eq. (1.4) T is a matrix that is diagonal in the electronic surfaces, and U is a dense matrix. In the

diabatic representation, the off-diagonal components of U are the vibronic coupling terms. The

calculation of the vibronic coupling terms in the diabatic representation is preferable to those in

the adiabatic representation for two reasons. First, in the adiabatic representation, the off-diagonal

terms T̂12, T̂21 contain first and second derivatives in both the nuclear and electronic Degrees of

Freedom (DoF), while in the diabatic representation these terms are zero. Second, the PES in the

diabatic representation is smooth and is easily represented by a Taylor series, while the PES in the

adiabatic representation can have irregularities, such as cusps, which pose numerical difficulties.

Systems with strong vibronic coupling are commonly termed nonadiabatic systems. The approx-

imations in Figure 1.2 are not sufficient to describe nonadiabatic systems. Nonadiabatic systems

and their effects are of interest in many different areas of science such as photo-chemistry, biology,

quantum information processing, and electro-chemistry. For example, the primary photochemical

event in human vision is the photoisomerization of retinal in the protein rhodopsin: this confor-

mational change can only be described through nonadiabatic effects [10]. A second example, the

stability of deoxyribonucleic acid (DNA) under ultraviolet photon bombardment, commonly from

exposure to the sun, is also a nonadiabatic effect. After being electronically excited, DNA undergoes

thermal relaxation; this nonadiabatic process does not emit photons, which would otherwise be

harmful to surrounding DNA molecules [11]. Nonadiabatic effects can both promote and prevent

photo-chemistry, and are important to the survival and propagation of life.

Vibronic models are widely used in computational studies. Most often they are used to model

dynamical phenomena or spectroscopy. In this thesis we will use similar vibronic models, but our

goal is to model thermal properties of systems with multiple low-lying electronic states. For our

purpose, the use of quadratic potentials will be adequate to describe systems of interest. Because

common approximations such as BO, H.O., and RR break down in nonadiabatic systems, other

methods are required to obtain our desired macroscopic properties.
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1.4 Path Integrals

Path integral (PI) methods are commonly used to investigate large systems or systems with

complex PESs, such as protonated methane CH5
+[12]. Recently there has been much interest in

the application of PI methods to nonadiabatic systems[13–16]. PI methods involve discretizing

the continuous quantum problem such that classical equations can be solved to obtain exact QM

properties in the limit of infinite partitionings.

A natural extension of PI is path integral Monte Carlo (PIMC). Given some distribution %we can

find the expectation value of a QM operator
〈
Â
〉

by sampling from the distribution %. This process

is straightforward if % is a simple distribution; however the distribution is not simple for most

systems. In cases where sampling from % is computationally expensive, more intelligent approaches

are required. A few examples include partial chain movement, importance sampling [17], and

rejection sampling [18, 19]. Our methodology makes use of importance sampling, which will be

discussed in further detail in Section 2.2.2. The use of PI methods allows us to study nonadiabatic

systems otherwise considered too expensive to explore.

1.5 Scope & organization of the thesis

In this thesis we present a PIMC method for calculating thermodynamic properties. Our path

integral Monte Carlo (PIMC) method can be applied to nonadiabatic systems possessing regions

with well-defined neighbourhoods. In Chapter 2 we derive a PI expression for Z. We introduce the

concept of importance sampling, and derive thermodynamic estimators using a finite difference

approach. In Chapter 3, four model systems are used to test the limits of our PIMC method.
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Chapter 2

Theory & Methods

Our overall goal is to obtain thermodynamic properties for nonadiabatic systems. In order to

achieve this we will derive an expression for the partition function (Z), given a vibronic model

describing these systems. The vibronic model used by our method is assumed to have been

previously obtained from electronic structure calculations [20]. We do not further address these

electronic structure calculations in this thesis.

We derive a path integral expression for the partition function in a product basis of nuclear and

electronic Degrees of Freedom (DoF). Acting with our Hamiltonian is computationally prohibitive,

so we use the Trotter theorem [21] to factorize our Hamiltonian into two partitions ĥo and V̂.

Directly evaluating the integrals in our PI expression is computational expensive for sizeable

systems; to overcome this we approximate these integrals using a statistical technique, Monte Carlo

Integration [22]. The mathematical forms we used to calculate the path integral are described later

in this thesis. Estimators for the internal energy (U ) and heat capacity (Cv) will also be derived.

2.1 Path Integral formulation

The canonical partition function is obtained from the trace of the Boltzmann operator

Z = Tr
[
e−βĤ

]
(2.1)

7



where β = (kBT )−1 is the reciprocal temperature and the trace is taken over the states that span

the electronic and nuclear DoF. We define N to be the number of nuclear DoF. The resolution of the

identity for this space can be expressed as

I =

∫
dR

A∑

a=1

|R, a〉 〈R, a| (2.2)

where R is a vector of length N representing the nuclear positions, and a represents the electronic

surfaces. Repeated insertion of this completeness relation yields a PI discretization of Z 1

Z =

∫
dRP

A∑

a

P∏

i=1

〈Ri, ai| e−τĤ
∣∣Ri+1, ai+1

〉
(2.3)

where P is the number of imaginary time-slices, also known as “beads”, and τ = β/P .

We make use of the compact notation

A∑

a

=

A∑

a1=1

A∑

a2=1

· · ·
A∑

aP=1

(2.4)

and ∫
dRP =

∫
dR1

∫
dR2 · · ·

∫
dRP (2.5)

2.1.1 Structure of Hamiltonian

The structure of a vibronic Hamiltonian in the diabatic representation is

Ĥ = T̂ + Û (2.6)

We partition our Hamiltonian operator into a harmonic operator ĥo and a coupling operator V̂:

Ĥ = ĥo + V̂ (2.7)
1For the derivation of the path integral discretization of the partition function, see Appendix A.

8



We define V̂ ho through its matrix representation, which is diagonal in the electronic surfaces and

can be modeled by harmonic oscillators.

V ho
aa′ = Uhoaa′δaa′ (2.8)

We define the harmonic operator ĥo as all terms in Ĥ that can be modeled by harmonic oscillators.

Note the exact composition of ĥo is flexible, based on the form of the harmonic oscillators, allowing

for optimizations to specific implementations.

ĥo = T̂1+ V̂ ho (2.9)

By construction ĥo is diagonal in the electronic surfaces a.

〈R, a|ĥo|R
′
, a′〉 = 〈R, a|ĥo|R

′
, a〉 δa,a′ (2.10)

We define the coupling operator V̂ as the remaining components of Û.

V̂ = Û − V̂ ho (2.11)

By construction V̂ is diagonal in the nuclear positions R.

〈R, a|V̂ |R′
, a′〉 = 〈R, a|V̂ |R, a′〉 δ(R −R

′
) (2.12)

Next we use the Trotter theorem to factorize our Hamiltonian into ĥo and V̂ [21].

2.1.2 Trotter factorization

Inserting our Hamiltonian from eq. (2.7) into our expression for Z from eq. (2.3)

Z =

∫
dRP

A∑

a

P∏

i=1

〈Ri, ai| e−τ(ĥo+V̂) ∣∣Ri+1, ai+1

〉
(2.13)
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We choose a symmetric splitting of the Hamiltonian:

Z = lim
P→∞

∫
dRP

A∑

a

P∏

i=1

〈Ri, ai| e−
τ
2
ĥoe−τV̂e−

τ
2
ĥo
∣∣Ri+1, ai+1

〉
(2.14)

Applying the symmetric Trotter factorization gives us: [23] 2

Z = lim
P→∞

∫
dRP

A∑

a

P∏

i=1

〈Ri, ai| e−τĥo
∣∣Ri+1, ai

〉 〈
Ri+1, ai

∣∣ e−τV̂
∣∣Ri+1, ai+1

〉
(2.15)

We can clearly see that the harmonic operator ĥo links different nuclear positions R, and the

coupling operator V̂ links different electronic surfaces a. By factoring our Hamiltonian we can

evaluate the harmonic operator ĥo independently of the coupling operator V̂ . We will show later

that this can be done analytically.

Note that a finite choice of P results in a systematic error in the Trotter approximation. For

readability, we suppress this approximation for the remainder of this thesis as follows:

Z =

∫
dRP

A∑

a

P∏

i=1

〈Ri, ai| e−τĥo
∣∣Ri+1, ai

〉 〈
Ri+1, ai

∣∣ e−τV̂
∣∣Ri+1, ai+1

〉
(2.16)

As our calculations use finite values for P , this error is present in all of the work that follows. This

approximation is acceptable because the error becomes negligble for sufficiently large P values.

Additionally we define g (R) as the probability density function (PDF) for our system:

g (R) =
A∑

a

P∏

i=1

〈Ri, ai| e−τĥo
∣∣Ri+1, ai

〉 〈
Ri+1, ai

∣∣ e−τV̂
∣∣Ri+1, ai+1

〉
(2.17)

such that

Z =

∫
dRP g (R) (2.18)

2For the derivation of the Trotter factorization, see Appendix B.
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2.2 Evaluating the partition function

We have derived a general PI expression for Z in nuclear coordinates R and electronic surfaces a.

However we don’t want to directly evaluate the integrals over R due to the computational cost; we

will use a stochastic method, Monte Carlo Integration, to approximate the integral.

2.2.1 Monte Carlo Integration

For a continuous random variableX having a probability density function (PDF), p(x), the expected

value of a function f(x) is:
〈
f(x)

〉
p

=

∫
p(x)f(x) dx∫
p(x) dx

(2.19)

We define a Monte Carlo estimator as the mean of f(x) over N samples from p(x), (x1, . . . , xN ).

f̃(x) =
1

N

N∑

i=1

f(xi) (2.20)

This ratio of integrals can be approximated using the Central Limit Theorem [24, pp. 278-281]

∫
p(x)f(x) dx∫
p(x) dx

=
1

N

N∑

i=1

f(xi)±
(
σ2

N

) 1
2

(2.21)

〈
f(x)

〉
p

= lim
N→∞

1

N

N∑

i=1

f(xi) (2.22)

Note that the second term in eq. (2.21) is inversely proportional to
√
N . Therefore to obtain an

effective estimate, a small variance σ2 or a large sample size is required. A reduction in the variance

of a sample distribution is computationally advantageous as smaller sample sizes result in shorter

run times.

Using Monte Carlo Integration we can obtain properties of our system, such as U :

〈
U(R)

〉
g

=

∫
dRP g (R)U(R)∫

dRP g (R)
≈ 1

N

N∑

i=1

U(Ri) (2.23)

However we are not yet able to obtain Z without directly evaluating the integrals. Importance

sampling will allow us to calculate Z and reduce our variance.
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2.2.2 Importance sampling

Importance sampling is a statistical method that can reduce the variance σ2 of sampling. Certain

values of the input random variables in a simulation have more impact on the parameters being

estimated than others. If these important contributions are emphasized by sampling more frequently,

then the estimator variance is reduced. The principle of importance sampling is that sampling

from a new distribution % is equivalent to sampling with weight %g from our original distribution g,

biasing the sample obtained towards g [24, pp. 284-286]. The reduction in variance leads to more

efficient calculation of parameters of interest, since fewer samples are needed for convergence. In

addition, we can choose the new distribution % so that it is more efficient to sample from.

We use importance sampling to define an expression for the partition function of the Hamilto-

nian of our system (ZH ) in terms of the distribution %:

ZH =

∫
dRP g (R) (2.24)

ZH =

∫
dRP % (R)

g (R)

% (R)
(2.25)

ZH∫
dRP % (R)

=

∫
dRP % (R) g(R)

%(R)∫
dRP % (R)

(2.26)

ZH∫
dRP % (R)

=

〈
g (R)

% (R)

〉

%

(2.27)

ZH =

〈
g (R)

% (R)

〉

%

(∫
dRP % (R)

)
(2.28)

We define the partition function of a system with the PDF % (R):

Z% =

∫
dRP % (R) (2.29)

We define Zf as the estimate of the coupling contribution to ZH

Zf =

〈
g (R)

% (R)

〉

%

(2.30)

Resulting in a more compact representation for the partition function of our Hamiltonian

ZH = ZfZ% (2.31)
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We will show that our choice of the distribution % can be sampled without rejection and can be ana-

lytically evaluated. Calculating ZH is therefore the product of an estimator obtained using Monte

Carlo Integration, Zf , and an analytical term Z%. Next we will derive the matrix representations for

g (R) and % (R).

2.2.3 Propagator forms

Given our PI formulation of Z:

Z =

∫
dRP

A∑

a

P∏

i=1

〈Ri, ai| e−τĥo
∣∣Ri+1, ai

〉 〈
Ri+1, ai

∣∣ e−τV̂
∣∣Ri+1, ai+1

〉
(2.32)

We introduce the following notation for the matrix representation of the harmonic and coupling

propagators. We define the matrices through their individual matrix elements

O
(
Ri,Ri+1

)
a,a′

=
〈
Ri, a

∣∣e−τĥo
∣∣Ri+1, a

′〉 δa,a′ (2.33)

M (Ri)a,a′ =
〈
Ri, a

∣∣e−τV̂
∣∣Ri, a

′〉 (2.34)

We can express g (R), eq. (2.17), in terms of the matrices O and M

g (R) =
A∑

a

P∏

i=1

〈Ri, ai| e−τĥo
∣∣Ri+1, ai

〉 〈
Ri+1, ai

∣∣ e−τV̂
∣∣Ri+1, ai+1

〉
(2.35)

= TrA

[
P∏

i=1

O(Ri,Ri+1)M(Ri)

]
(2.36)

where the trace is over the electronic DoF. The PDF g (R) represents a system with surface coupling.

For most systems this PDF is computationally difficult to evaluate. We define our PDF % (R) for a

system with no surface coupling and therefore M(Ri) = 1

% (R) = TrA

[
P∏

i=1

O(Ri,Ri+1)

]
(2.37)

In general this PDF will be less complex than g (R) and will be computationally efficient to evaluate.

It also has the important property of being a Gaussian mixture distribution [25]. In essence, this
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means that g (R) can be represented by A multi-dimensional harmonic oscillators, and sampling

from g (R) is as simple as sampling from the Gaussians representing these harmonic oscillators.

This property of % (R) is key to our PIMC method.

We proceed by outlining our method for calculating O and M.

2.2.4 H.O. propagator

Consider a propagator 〈x1| e−τĥo |x2〉 where ĥo has the form of a one-dimensional quantum har-

monic oscillator in natural length coordinates. 3 The time-independent form of the Mehler

Kernel [26] is an analytical expression for this propagator

K(x1, x2, ~ω) =

(
1√

2π sinh(~ωτ)

)
exp

(−1

2

[ (
x2

1 + x2
2

)
cosh(~ωτ)− 2 csch(~ωτ)x1x2

])
(2.38)

Using this form we can define an analytical expression for the matrix element O(Ri,Ri+1)a,a

O(Ri,Ri+1)a,a =
N∏

j

Ka
j (Ri,Ri+1, ~ω) (2.39)

= Ka
N (Ri,Ri+1, ~ω) (2.40)

and then the matrix O

O(Ri,Ri+1) =




K1
N (Ri,Ri+1, ~ω)

. . .

KA
N (Ri,Ri+1, ~ω)




(2.41)

2.2.5 Coupling propagator matrix form

We define the matrix form V of the coupling operator V̂ with eigenvalues εa and eigenvectors Ua

V (Ri) = Ua(Ri)εa(Ri)U
ᵀ
a (Ri) (2.42)

3Nondimensionalization of the quantum harmonic oscillator is shown in Appendix C.
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Giving us the expression for M:

M(Ri) = U(Ri)




e−τε1(Ri)

. . .

e−τεA(Ri)




Uᵀ(Ri) (2.43)

We have dervied a PI expression for Z eq. (2.31) as the product of two terms Zf and Z% which can

be expressed in terms of matricies O and M.

Next we outline our approach for calculating thermodynamic properties, such as the internal

energy (U ), and heat capacity (Cv).

2.3 Obtaining thermodynamic properties

To obtain thermodynamic properties, we derive expressions for the first and second β derivatives

of ZH . The structure of our vibronic Hamiltonian makes the coupling operator V̂ complicated,

and consequently the direct computation of the β derivatives of V̂ is one we would like to avoid;

hence the first and second β derivatives are obtained using finite difference. Starting with Z from

eq. (2.24), evaluated at a temperature β

Z(β) =

∫
dRP g (R, β) (2.44)

∂Z(β)

∂β
=

∫
dRP ∂

∂β
g (R, β) (2.45)

=

∫
dRP %(R, β)

(
1

%(R, β)

)
∂

∂β
g (R, β) (2.46)

We evaluate the β derivative by finite difference

∂

∂β
g (R, β) ≈

(
1

2∆β

)[
g(R, β + ∆β)− g(R, β −∆β)

]
(2.47)

=

(
1

2∆β

)[
δ∆β [g] (R, β)

]
(2.48)
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Obtaining the first symmetric derivative of Z(β)

∂Z(β)

∂β
≈
∫

dRP %(R, β)

(
1

2∆β

)
δ∆β [g] (R, β)

%(R, β)
(2.49)

In the same fashion we obtain the second symmetric derivative of Z(β)

∂2Z(β)

∂β2
≈
∫

dRP %(R, β)

(
1

∆β2

)[
g (R, β + ∆β)− 2g (R, β) + g (R, β −∆β)

%(R, β)

]
(2.50)

=

∫
dRP %(R, β)

(
1

∆β2

)
δ2

∆β [g] (R, β)

%(R, β)
(2.51)

It is important to note that g (R, β + ∆β) and g (R, β −∆β) are present in both eq. (2.50) and

eq. (2.47). During a PIMC simulation these terms are only calculated once per sample point, because

they are equivalent given a fixed ∆β. The second derivative can be obtained for no additional

computational cost after calculating the first derivative. The finite difference method is therefore

computationally advantageous.

2.3.1 Thermodynamic estimators

The internal energy of our system defined in terms of the partition function is

UH = − ∂

∂β
ln(ZH) (2.52)

Expanding ZH eq. (2.31) and using the properties of the natural logarithm we can show

UH = Uf + U% (2.53)

The internal energy of our system is therefore the internal energy obtained from our PIMC sampling,

Uf , plus %’s internal energy U%, which is calculated analytically. The Uf can be considered the

correction term for a coupled system, as Uf = 0 for a purely harmonic system.

To obtain Uf

Uf =

(−1

Zf

)
∂

∂β
Zf (2.54)
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We evaluate the first β derivative of the partition function by finite difference 4

∂

∂β
Zf ≈

(
Z+
f − Z−f
2∆β

)
(2.55)

Giving us the estimator for UH

UH ≈ U% +

(−1

Zf

)(
Z+
f − Z−f
2∆β

)
(2.56)

The heat capacity of our system defined in terms of the partition function is

CHv =

(
1

kBT 2

)
∂2

∂β2
ln(ZH) (2.57)

Expanding ZH eq. (2.31) and using the properties of the natural logarithm we can show

CHv = Cfv + C%v (2.58)

The heat capacity of our system is therefore the heat capacity obtained from our PIMC sampling,

Cfv , plus %’s heat capacity, C%v , which is calculated analytically. The Cfv can be considered the

correction term for a coupled system, as Cfv = 0 for a fully harmonic system.

Given the form of Cfv

Cfv =
1

kBT 2

[(
1

Zf

)
∂2

∂β2
Zf − (Uf )2

]
(2.59)

We evaluate the second β derivative of the partition function by finite difference 5

∂2

∂β2
Zf ≈

(
Z+
f − 2Zf + Z−f

∆β2

)
(2.60)

Giving us the Cv estimator

CHv ≈ C%v +

[
1

kBT 2

][(
1

Zf

)(
Z+
f − 2Zf + Z−f

∆β2

)
− (Uf )2

]
(2.61)

4For the full derivation of the internal energy estimator see Appendix D.
5For the full derivation of the heat capacity estimator see Appendix E.
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2.4 Implementation

In Chapter 3, PIMC results are plotted with standard error bars. Calculating U and its standard

error requires a statistical technique known as Jackknife [27]. Jackknife allows us to estimate

averages of non-linear functions of averages. It also corrects for the (relatively small) sampling

bias. Understanding our results and overall methodology does not require an understanding

of Jackknife. The essential difference is that a small amount of post-processing is performed on

the expectation values resulting from a PIMC calculation. The computational cost of this post-

processing is negligible. The derivation of the Jackknife estimators is listed in the appendix.

6

2.4.1 Additional Details

We now briefly outlineour implementation of the PIMC sampling. The basic action of the algorithm

involves taking the mean of a function f(R) over a range of values Ri ∈ {R1, · · · ,RX}. In general

this process can be grouped into three phases. Sample points Ri are drawn from the distribution %.

Function means f(R) are calculated by evaluating functions f(R) over the sampled points. Finally,

an estimate of Z, U , or Cv is calculated using one or more function means.

For example if we wanted to estimate UH with sampling distribution %, we would

• Sample X points Ri from %

• Evaluate Zf (R), Z+
f (R), and Z−f (R) with those sampled points using eq. (D.10)

• Construct ∂
∂βZf from Z+

f (R), and Z−f (R) using eq. (2.55)

• Construct Uf from ∂
∂βZf and Zf (R)

• Calculate U% analytically

Giving us UH as the sum of Uf and U%

6For the derivation of the Jackknife estimators see Appendix F.
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Chapter 3

Challenging Model Systems

To investigate the effectiveness of our PIMC method, four systems were constructed: Superimposed,

Displaced, Elevated, and Jahn-Teller. The nuclear coordinates for these systems are normal mode

coordinates. To allow for numerical analysis such as sum-over-states (SOS), each system was

restricted to two normal modes and two electronic surfaces. Each system has a single tunable

parameter with a range of six values. PES plots and simulation results are presented over this range

to demonstrate the behaviour of our PIMC method in different extremes. Note that all graphics are

labelled with the associated tunable parameter in the upper right hand corner, and PIMC results

are labelled with the associated choice of % in the top left hand corner. A consistent colour scheme

is used to denote the two adiabatic PES and the harmonic oscillators comprising %, as seen in

Figures 3.2 to 3.5. In this chapter the two properties of interest are: τ convergence of PIMC results

relative to the Trotter results, and suitability of % (R) as a sampling distribution for g (R).

For each system the Hamiltonian is shown, followed by the system’s parameter values, a

paragraph describing the behaviour of the system over the range of the tunable parameter, and a

static 3D plot of the system’s two adiabatic PESs. This is followed by three 2D projections of the

system over the tunable parameter range. The first plot is an elevation map of the lower PES: this

plot uses a colour gradient to represent elevation of the PES in eV. The minima of the harmonic

oscillators comprising % are represented by a diamond (�) and a cross (+). Around each minima is a

circle of radius 6σ, where σ is the standard deviation of its respective harmonic oscillator. All PIMC

calculations were carried out with one million samples. Therefore we expect all but 3.4 of these

samples to be located inside the circle. This 2D visual representation of the harmonic oscillator can
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be used to reason about the suitability of the distribution %; these circles represent the limit from

within which all samples are drawn.

The second and third 2D projections of each system show the behaviour of all PESs along the

first and second normal mode dimension. The grid used to plot the PESs has an odd number of

points: both 2D normal mode slices are located at the origin of this grid, q1 = 0 for the q2 slice and

q2 = 0 for the q1 slice. A summary of the PIMC results is followed by τ convergence plots of Z

and U for the simplest choice of % as ho. Then we discuss an alternate choice of % and reason about

its validity using three 2D projections of the system for both choices of %. Finally we compare τ

convergence plots of Z and U for both choices of %.

Using Figure 3.1 as an example we will highlight the information present in the τ convergence

plots.
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Figure 3.1: Example plot of τ convergence

We begin with the choice of our y axis, which is defined as

y(x) =

(
x− ZH
ZH

)
(100) (3.1)

ZH is calculated by SOS using 80 harmonic oscillator basis functions, for both normal modes, in the
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second quantization formalism. Immediately a few important details are evident. If % is chosen

to be ho then both analytical results will lie on top of each other. Conversely when an alternative

% is chosen, as is the case in Figure 3.1, they will be distinct lines and one can make inferences

about the suitability of % based on the relative distance from our SOS result and analytical ho result.

Additionally it is important to realize that the sign in these plots is only representative of which

parameter, (x, ZH), is larger.

Some plots have discontinuous axes. Figure 3.1 has two discontinuities, one above ≈ 11% and

one below ≈ −1%. They are indicated by pairs of black lines which extend into the graph. These

discontinuities were added to preserve the y scaling that presents useful information about the

behaviour of the PIMC results near the Trotter results, and yet keep the graphs at a reasonable size.

Without them the y scale would be too coarse and remove detail from the associated plots.

Our PIMC method has four sources of error, not including the inevitable floating-point error

associated with carrying out real-number calculations on a computer.

i) The choice of a finite P introduces systematic error due to the Trotter factorization,eq. (2.16)

ii) The choice of a sampling distribution % (R) that is different from the true distribution g (R)

iii) Drawing a finite number of samples X from % with which we evaluate our estimators

iv) The choice of a non-zero ∆β when evaluating the first and second β derivatives of Z

The most accurate estimate of a property that we can calculate for a fixed choice of P includes the

error from the Trotter factorization (i). This is a formal error that we cannot eliminate. However,

the other three sources of error ii, iii, iv can be mitigated and reduced. We can differentiate between

these sources of error by comparing our PIMC results to SOS calculations that include the Trotter

error, which are represented by black lines in the τ convergence plots. This is the key information

that τ convergence plots provide. The Trotter result is the most accurate result we can obtain. Our

goal is to minimize the difference between our PIMC results and the Trotter results.

All temperature dependent results were calculated at 300K and the finite difference calculations

were performed with ∆β = 2.0× 10−4. The symbol ho = 1
2

∑
i
ωi
(
q̂2
i + p̂2

i

)
is used in each system’s

Hamiltonian. No results forCv are presented due to issues with the implementation of the estimator,

and lack of confidence in the validity of plots. Results for Cv require more investigation.
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3.1 Superimposed system

This system is described by the following Hamiltonian:

Ĥ = ĥo + V̂ (3.2)

=

[
Ea + ho + λq̂1 0

0 Eb + ho + λq̂1

]
+

[
0 γq̂2

γq̂2 0

]
(3.3)

Table 3.1: Superimposed system parameters

Parameter Value/eV Parameter Value/eV

Ea 0.0996 γ1 0.00
Eb 0.1996 γ2 0.04
ω1 0.02 γ3 0.08
ω2 0.04 γ4 0.12
λ 0.072 γ5 0.16

γ6 0.20

q1 −5

0

5

q2

−5

0

5

eV

0

1

2

Figure 3.2: Static 3D image of Superimposed system

Results are analyzed as a func-

tion of γ, the coupling term. At

γ1 the two PESs are superim-

posed. As we increase γ they

are displaced along the q2 axis,

as shown in Figure 3.3, and Fig-

ure 3.5. There should be no

change in the q1 direction, which

is evident in Figure 3.4. The Su-

perimposed system is designed

to show the effect of a system’s

coupling strength on our PIMC

method.
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Figure 3.4: q1 slices of Superimposed system
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PIMC results

The Superimposed system is purely harmonic for γ1, therefore the analytical, SOS, and Trotter

results should be equal. This is what we observe in Figure 3.6. Note that there is a non-zero

difference due to floating point error; this difference is on the order of 10−15 and has no noticeable

effect. The PIMC method exactly reproduces these results for all bead values.

The Trotter and PIMC results are a better approximation than the analytical results for γ2, and

their relative accuracy improves as the coupling term increases. This is shown by the discrepancy

between the SOS and analytical lines. For γ2 the analytical result is ∼ 35% off, whereas for γ3 the

difference is ∼ 89%.

We begin to see relatively small discrepancies between the Trotter and PIMC results for γ3 and

larger discrepancies for γ4. Looking at Figure 3.3 we see that a double well in the q2 direction is

slowly forming, and the H.O. description of the system is beginning to suffer in the outer q2 region.

For γ5 and γ6 we can see a barrier is now present in Figure 3.3. The coupling in the q2 direction

is strong and cannot be neglected. A proper description of the full distribution requires inclusion

of these effects. The choice of %, which does not include these effects, is a poor description of the

distribution, as evident in Figure 3.7. The PIMC results are no longer converging to our SOS results

as τ → 0. Instead they are converging towards the analytical result for the purely harmonic portion

of the system ho. We can see that the choice of our distribution % is critical to the success of our

PIMC method.

The energy is harder to analyze, which to some degree is expected as the estimator is a non-

linear function of averages. The overall τ convergence of our PIMC results appears to follow

our SOS results. However, there is a lot of noise in the low τ region. It is important to take into

consideration that the standard PI energy estimator suffers from similar variance in the low τ

regime [28]. Modified estimators have been used to remedy this statistical fluctuation; however

adapting their form for our PIMC is complicated by our Hamiltonian’s electronic DoF. At this

time we have not been able to derive a modified estimator to reduce this variance. In general, we

see the same effects on the energy as we did with the partition function. From γ1 to γ4, % (R) is a

reasonable approximation to g (R) and the PIMC results match the SOS results. For γ5 and γ6 the

approximation is clearly poor as the error in the PIMC results is on the order of 40 kJ mol−1.
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Alternative sampling distributions

It is evident that our original choice of %



Ea + ho + λq̂1 0

0 Eb + ho + λq̂1


 (3.4)

is a poor description of the Superimposed system for γ5 and γ6. As we increase the coupling

parameter γ, the contribution from the q2 mode increases and we push the system farther into

the nonadiabatic regime. The obvious modification to our distribution is to include a q2 term. We

choose a new distribution, using the same values, but including a q2 term:



Ea + ho + λq̂1 + γq̂2 0

0 Eb + ho + λq̂1 − γq̂2


 (3.5)

We refer to our 2D projections of this new distribution %1 to analyze the effectiveness of our

modification. Figure 3.10 indicates that %1 is a better distribution than %0. Very clearly we see

in Figure 3.11 that we are now capturing the q2 effects. This figure also shows us how %0 was

overweighting the local maximum at q2 = 0 and underweighting the local minimums at q2 ≈ ±5.

In Figure 3.10 we see that our new distribution captures the q2 effects for γ5 and γ6. We therefore

expect that the PIMC results for Z and U will show noticeable improvement.

Figure 3.14 shows an amazing improvement of the stochastic error compared to Figure 3.13.

With our improved distribution %1 the error has been reduced from approximately 100% to 1% ∼ 2%.

This shows that the choice of the sampling distribution dominates the statistical error present in

our method. We see similar results for the energy when comparing Figure 3.16 and Figure 3.15.

There is an error reduction from 50% ∼ 100% to approximately 1%. However, along with this error

reduction is an energy shift discrepency. A fit of the PIMC results follows the same trend as the

Trotter results. The absolute values, however, are off by approximately 2 kJ mol−1. It is not certain

if this is an error in our method or in our implementation at this time. More investigation of this

energy shift is needed.
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3.2 Displaced system

This system is described by the following Hamiltonian:

Ĥ = ĥo + V̂ (3.6)

=

[
Ea + ho + λq̂1 0

0 Eb + ho− λq̂1

]
+

[
0 γq̂2

γq̂2 0

]
(3.7)

Table 3.2: Displaced system parameters

Parameter Value/eV Parameter Value/eV

Ea 0.0996 γ1 0.00
Eb 0.1996 γ2 0.04
ω1 0.02 γ3 0.08
ω2 0.04 γ4 0.12
λ 0.072 γ5 0.16

γ6 0.20
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Figure 3.17: Static 3D image of Displaced system

Results are analyzed as a func-

tion of γ, the coupling term. At

γ1 the two PESs are displaced

along the q1 axis. As we increase

γ they are displaced along the

q2 axis, as shown in Figure 3.18,

and Figure 3.20. There should be

no change in the displacement

along the q1 direction, which is

evident in Figure 3.19. The Dis-

placed system highlights the ef-

fect on both the accuracy and ef-

ficiency of sampling when there

are multi-modal displacements. It is expected that this system should be more difficult to sample

than the Superimposed system at higher γ values.
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PIMC results

The Displaced system is purely harmonic for γ1, therefore the analytical, SOS, and Trotter results

should be equal in all τ regimes. This is what we observe in Figure 3.21. Again, there is a non-zero

difference due to floating point error. The PIMC method exactly reproduces these results for all

bead values.

The Trotter and PIMC results are better approximations than the analytical H.O. for γ2, and

their relative accuracy improves as the coupling term increases. This is shown by the discrepancy

between the SOS and analytical lines. Comparing these results with the ones from the Superimposed

system, we see that the analytical H.O. method is less suitable in the Superimposed model. For γ2

the analytical result is ∼ 8% off compared to ∼ 35% off for the Superimposed model. For γ3 the

analytical result is ∼ 36% off compared to ∼ 90% off for the Superimposed model. This difference

is due to the interaction between the q1 and q2 displacements.

We begin to see relatively small discrepancies between the Trotter and PIMC results for γ3 and

larger discrepancies for γ4. Despite these discrepancies, the PIMC results very clearly converge

to our SOS results. Looking at Figure 3.18 the H.O.s comprising %0 are a very good model of the

system in the {γ1, γ4} range. For γ5 the %0 distribution is less reasonable, and only gets worse for

γ6. As we saw in the Superimposed system, a better choice of our distribution % is necessary in the

nonadiabatic regime.

The results for the energy are very similar to the Superimposed model. The overall τ conver-

gence of our PIMC results appears to follow our SOS results. Similar noise in the low τ regime is

present. In general we see the same effects on the energy as we did with the partition function.

From γ1 to γ4 the %0 distribution is a reasonable model of the system, and the PIMC results match

the SOS results. For γ5 and γ6 the approximation is clearly poor, as the error in the PIMC results is

on the order of 40 kJ mol−1.
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Figure 3.21: PIMC calculation of Z for Displaced system over γ1 − γ3 range
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Figure 3.23: PIMC calculation of E for Displaced system over γ1 − γ3 range
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Figure 3.24: PIMC calculation of E for Displaced system over γ4 − γ6 range
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Alternative sampling distributions

It is evident that our original choice of %



Ea + ho + λq̂1 0

0 Eb + ho + λq̂1


 (3.8)

is a poor description of the Displaced system for γ5 and γ6. As we increase the coupling parameter

γ, the contribution from the q2 mode increases and we push the system farther into the nonadiabatic

regime. The obvious modification to our distribution is to include a q2 term. If the system is in

a nonadiabatic regime, then the q2 mode should be the most important contribution. However,

because of the mixing of the modes, adding only a q2 term is suboptimal. By looking at Figure 3.18

we can see that a q1 displacement in addition to the q2 displacement would not be the best model

for the Displaced system in the γ5 and γ6 regime. We therefore choose a new distribution, replacing

the q1 term with a q2 term: 

Ea + ho + γq̂2 0

0 Eb + ho− γq̂2


 (3.9)

Figure 3.25 shows that our new distribution %1 captures the q2 effects in the γ5 and γ6 regime.

In Figure 3.26 we see that our new sampling distribution %1 is a significantly better model of

the Displaced system along the q2 mode. Figure 3.27 shows that along the q1 mode %0 is a better

model of the Displaced system. Due to the importance of the q2 mode, the reduced accuracy in the

description of the q1 mode should not have a noticeable effect on our results. We predict that τ

convergence of Z and U will be improved by using sampling distribution %1 instead of %0.

Figure 3.29 shows an amazing reduction of the stochastic error compared to Figure 3.28. With

our improved distribution %1, the error has been reduced from approximately 100% to 1% ∼ 4%.

This shows that the choice of the sampling distribution dominates the statistical error present in our

methodology. We see similar results for the energy when comparing Figure 3.31 and Figure 3.30.

There is an error reduction from approximately 80% to 1% ∼ 2%. Again we see a energy shift

discrepency in out PIMC results. However, the PIMC results and the Trotter results still follow the

same trend.

48



-6

-3

0

3

6

q 1

γ5%0 γ6%0

-6 -3 0 3 6
q2

-6

-3

0

3

6

q 1

γ5%1

-6 -3 0 3 6
q2

γ6%1

-0.40 -0.30 -0.19 -0.09 0.02 0.12 0.23 0.33 0.44 0.54 0.65 0.75
eV

Figure 3.25: Elevation map of lower surface of Displaced system for two choices of %
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Figure 3.28: PIMC calculation of Z using %0 for Displaced system over γ5 − γ6 range
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Figure 3.29: PIMC calculation of Z using %1 for Displaced system over γ5 − γ6 range
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Figure 3.30: PIMC calculation of E using %0 for Displaced system over γ5 − γ6 range
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3.3 Elevated system

This system is described by the following Hamiltonian:

Ĥ = ĥo + V̂ (3.10)

=

[
Ea + ho + λq̂1 0

0 Eb + ho− λq̂1

]
+

[
0 ∆ + kq̂2

∆ + kq̂2 0

]
(3.11)

Table 3.3: Elevated system parameters

Parameter Value/eV Parameter Value/eV

Ea 0.416 87 ∆1 0.0
Eb 0.216 87 ∆2 0.3
ω1 0.02 ∆3 0.6
ω2 0.04 ∆4 0.9
λ 0.12 ∆5 1.2
k 0.0008 ∆6 1.5
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Figure 3.32: Static 3D image of Elevated system

Results are analyzed as a func-

tion of ∆, a shift in the en-

ergy. At ∆1 the two PESs are

displaced along the q1 axis and

the E axis. As we increase

∆ the displacement in the E

axis increases, as shown in Fig-

ures 3.34 and 3.35. In the pre-

vious systems the H.O.s loca-

tions hindered sampling. The El-

evated system’s H.O.s are placed

in favourable locations for sam-

pling, evident in Figure 3.33, so

we expect the sampling to be less hindered than we saw in the first two systems. This system

highlights the effect of a local maximum on the sampling procedure.
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PIMC results

The Elevated system has weak coupling in ∆1 and is not purely harmonic. We expect the PIMC

and Trotter results to converge to the SOS result, as well as to exhibit some difference between the

analytical and SOS results. This is what we observe in Figure 3.36.

The Trotter and PIMC results are a better approximation than the analytical results for ∆2, and

their relative accuracy improves as the coupling term increases. This is shown by the discrepancy

between the SOS and analytical lines. The analytical system cannot describe the partition function

for all non-zero values of ∆.

There are some discrepancies between the Trotter and PIMC results for ∆4, but the convergence

of the PIMC results is still acceptable. A simple weighted linear fit of the PIMC results would

closely match the Trotter results. It appears the PIMC results begin to converge under our SOS

results for ∆5 and ∆6. Looking at Figure 3.33, this trend of converging below the SOS results can

be attributed to the flattening of the region between the two oscillators.

As expected, the simple choice of % as ĥo for the Elevated system preforms much better than

the respective choices for the Superimposed and Displaced models. The PIMC results converge

extremely far below the target value for both the Superimposed system shown in Figure 3.7, and

the Displaced system shown in Figure 3.22. In comparison the Elevated system’s convergence is

favourable, evident in Figure 3.37.

The results for the energy are very similar to our previous two models. The overall τ conver-

gence of our PIMC results appears to follow our SOS results. Similar noise in the low τ regime is

present. In general, we see the same effects on the energy as we did with the partition function. A

key difference between the Elevated system and the the Superimposed and Displaced systems is a

smaller standard error for the majority of the PIMC results for U . We hypothesise this reduction in

error is due to the reduced complexity of the PES in the Elevated system.

60



−0.5

0.0

0.5

%
D

iff
er

en
ce
Z
H

∆1%0

300K Value PIMC

300K - SOS H

300K - Analytical %

300K - Trotter - 80BF

300K - Analytical ho

0

50

100

150

200

250

%
D

iff
er

en
ce
Z
H

∆2%0

−88.82−88.82

0

100

200

%
D

iff
er

en
ce
Z
H

∆3%0

100

τ (eV−1)

−99.98−99.98

Figure 3.36: PIMC calculation of Z for Elevated system over ∆1 −∆3 range

61



0

100

200

%
D

iff
er

en
ce
Z
H

∆4%0

300K Value PIMC

300K - SOS H

300K - Analytical %

300K - Trotter - 80BF

300K - Analytical ho

−100−100

0

100

200

%
D

iff
er

en
ce
Z
H

∆5%0

−100−100

0

100

200

%
D

iff
er

en
ce
Z
H

∆6%0

100

τ (eV−1)

−100−100

Figure 3.37: PIMC calculation of Z for Elevated system over ∆4 −∆6 range

62



−8.30

−8.25

−8.20

−8.15

E
( k

J
m

o
l)

∆1%0

300K Value PIMC

300K - SOS H

300K - Analytical %

300K - Trotter - 80BF

300K - Analytical ho

−25

−20

−15

−10

E
( k

J
m

o
l)

∆2%0

0.5 1.0 1.5 2.0 2.5

τ (eV−1)

−50

−40

−30

−20

−10

E
( k

J
m

o
l)

∆3%0
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Alternative sampling distributions

The default choice of % 

Ea + ho + λq̂1 0

0 Eb + ho + λq̂1


 (3.12)

is a fairly good description for the Elevated system over the entire range of ∆. We are interested in

how important the off-diagonal terms are in this system. Does increasing the energy shift parameter

∆ push the system into a nonadiabatic regime? In the previous systems, adding or replacing a

term was sufficient to generate significant improvement. However, here the oscillators are already

placed in reasonable locations. So we consider a new distribution where we include the weak q̂2

effects: 

Ea + ho + λq̂1 + kq̂2 0

0 Eb + ho− λq̂1 − kq̂2


 (3.13)

λ, k and ω have the same values, but we choose Ea = 0.53 eV, Eb = 0.31 eV. The energy shifts

are chosen so that the zero of energy of the distribution is 0 eV. Our new distribution for ∆5 and

∆6 is shown in Figure 3.40. The inclusion of the q2 mode appears to have made no significant

change. When examining ?? and ?? we seen similar miniscule effects. We expect that the PIMC

results for Z and U should be similar for both distributions %0 and %1. This is what we see when

comparing Figure 3.43 and Figure 3.44 as well as Figure 3.45 and Figure 3.46. Again, we see a

energy shift discrepency in our PIMC results. What we see here is that simply modifying the H.O.s

that comprise % is not always effective.
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Figure 3.44: PIMC calculation of Z using %2 for Elevated system over λ5 − λ6 range
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Figure 3.45: PIMC calculation of E using %0 for Elevated system over λ5 − λ6 range
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3.4 Jahn-Teller system

This system is described by the following Hamiltonian:

Ĥ = ĥo + V̂ (3.14)

=

[
E + ho + λq̂1 0

0 E + ho− λq̂1

]
+

[
0 λq̂2

λq̂2 0

]
(3.15)

Table 3.4: Jahn-Teller system parameters

Parameter Value/eV Parameter Value/eV

E1 −0.029 99 λ1 0.00
E2 −0.003 33 λ2 0.04
E3 0.076 66 λ3 0.08
E4 0.209 99 λ4 0.12
E5 0.396 67 λ5 0.16
E6 0.631 35 λ6 0.20
ω1 0.03 ω2 0.03
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Figure 3.47: Static 3D image of Jahn-Teller system

Results are analyzed as a func-

tion of λ, the linear term. E was

chosen so that the ground state

energy ≈ 0. For λi where i > 1,

this system has the form of an

inverted second Hermitian poly-

nomial rotated around the origin.

As we increase λ, the curvature

of the well increases, as shown

in Figure 3.49 and Figure 3.50.

Note that for λ2 and λ3 in Fig-

ure 3.48, the apparent lack of a

well is a byproduct of the 2D pro-

jection and the choice of axes. In Figure 3.49 and Figure 3.50 the well is clearly present.
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Figure 3.49: q1 slices of Jahn-Teller system

75



0

1

2

3

eV

λ1

lower diabatic surface

upper diabatic surface

1st harmonic oscillator

2nd harmonic oscillator

λ2

0

1

2

3

eV

λ3 λ4

-6 -3 0 3 6
q2

0

1

2

3

eV

λ5

-6 -3 0 3 6
q2

λ6
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PIMC results

The Jahn-Teller system is purely harmonic for λ1, therefore the analytical, SOS, and Trotter results

should be equal in all τ regimes. This is what we observe in Figure 3.51. Again, there is a non-zero

difference due to floating point error. The PIMC method exactly reproduces these results for all

bead values.

The Trotter and PIMC results are a better approximation than the analytical results for λ2, and

their relative accuracy improves as the coupling term increases. This is shown by the discrepancy

between the SOS and analytical lines.

For λ3, the PIMC results begin to get noisy, but the overall convergence is appropriate. For λ4

there are sizable discrepancies between the Trotter and PIMC results, and it appears to converge

below the SOS result. Looking at Figure 3.48, the H.O.s comprising %0 are a very good model of the

system in the {λ1, λ3} range. In the λ4 case, however, we see that ≈ 35% of the lower well (−0.1 eV)

is not covered by the 6σ of our oscillators. This matches the results we see in Figure 3.52. For λ5 the

H.O. system is less reasonable, and only gets worse for λ6. As we saw before, a better choice of our

distribution % is necessary.

The trend of the PIMC results for the energy are very similar to our previous models. One

interesting difference is the discrepancy between the PIMC results and the Trotter results. For the

previous systems they followed the same trend over the tunable parameter range, but in Jahn-Teller

system this is not the case, as seen in Figure 3.54. It appears that the PIMC results are shifted

slightly above the Trotter results. In general, we see the same effects on the energy as we did with

the partition function. From λ1 to λ2 the PIMC results match the Trotter results, but they begin to

suffer for λ3 and they are very poor for λ4 to λ6.
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Figure 3.51: PIMC calculation of Z for Jahn-Teller system over λ1 − λ3 range
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Figure 3.52: PIMC calculation of Z for Jahn-Teller system over λ4 − λ6 range
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Figure 3.53: PIMC calculation of E for Jahn-Teller system over λ1 − λ3 range
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Figure 3.54: PIMC calculation of E for Jahn-Teller system over λ4 − λ6 range
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Alternative sampling distributions

Our original choice of % is a poor description of the Jahn-Teller system for λ5 and λ6. The main

problem with %0 is the lack of coverage of the lower surface. More than 50% of the well for λ6 can

never be sampled. We therefore create two additional choices of % with increased coverage, using

four surfaces, %1, and eight surfaces, %2. All energy, ω, and λ values are the same.

The matrix form for %1

E + ho +




+λq̂1

+λq̂2

−λq̂1

−λq̂2




(3.16)

The matrix form for %2

E + ho +




λq̂1

λq̂2

−λq̂1

−λq̂2

λˆ̀
1

λˆ̀
2

−λˆ̀
1

−λˆ̀
2




(3.17)

where

ˆ̀
1 =

q̂1 + q̂2√
2

ˆ̀
2 =

q̂1 − q̂2√
2

(3.18)

Our new distributions for λ5 and λ6 are shown in Figure 3.55. We expect %1 to be an improve-

ment over %0 due to the increased coverage of the lowest area of the well. Remember that the

density of sampled points will decrease the farther we are from the minima of each oscillator.

We therefore expect %2 to provide a significant improvement over %1. This is what we observe in

Figure 3.59 and Figure 3.60. We see a significant decrease in the error of the energy in Figure 3.63.

Again, we see a energy shift discrepency in out PIMC results.
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Figure 3.56: q1 slices of Jahn-Teller system for three choices of %
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Figure 3.57: q2 slices of Jahn-Teller system for three choices of %
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Figure 3.58: PIMC calculation of Z with %0 for Jahn-Teller system over λ5 − λ6 range
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Figure 3.59: PIMC calculation of Z with %1 for Jahn-Teller system over λ5 − λ6 range
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Figure 3.60: PIMC calculation of Z with %2 for Jahn-Teller system over λ5 − λ6 range
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Figure 3.61: PIMC calculation of E with %0 for Jahn-Teller system over λ5 − λ6 range

89



−30

−25

−20

−15

−10

−5

0

5

E
( k

J
m

o
l)

λ5%1

300K Value PIMC

300K - SOS H

300K - Analytical %

300K - Trotter - 80BF

300K - Analytical ho

0.5 1.0 1.5 2.0 2.5

τ (eV−1)

−60

−40

−20

0

20

40

60

E
( k

J
m

o
l)

λ6%1

Figure 3.62: PIMC calculation of E with %1 for Jahn-Teller system over λ5 − λ6 range
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Figure 3.63: PIMC calculation of E with %2 for Jahn-Teller system over λ5 − λ6 range
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Chapter 4

Conclusions and Future work

The importance of choosing an appropriate % (R) was demonstrated repeatedly in Chapter 3. We

showed that our PIMC method’s deviation from finite basis Trotter calculations was systematic

with respect to the choice of % (R). The accuracy of % (R) as a model of g (R) has a greater effect on

the accuracy of our method than the sample size. Increasing the accuracy of % (R) will allow for a

reduction in number of samples drawn, making our method more computationally efficient. We

saw extremely good results for the estimation of Z with only simple improvements to our choice of

% (R). Our results for the U with improved % (R) showed a large reduction in the variance of our

estimator. However, the presence of a unexpected energy shift raises some questions. Due to time

constraints we were not able to determine the cause of these energy shifts. It is likely that this effect

is an artefact resulting from our implementation of the PIMC method.

Future Work

No work was done in this thesis on the construction of vibronic models. However, given that

the average scientist does not know how to construct vibronic models, it would be useful if the

software package we make available contains the tools for a scientist to construct a vibronic model

using only their knowledge of their molecule. There are many technical aspects of our methodolgy

which can be improved and provide valuable insight into the behaviour of our estimators. These

aspects are primarily statistical or numerical in nature. Fortunately many of them are well-known

problems in their respective fields; literature discussing approaches to these problems is plentiful.
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Regarding plans for future work: first and foremost the energy shift will be investigated. This

work will consist primarily of isolated unit tests to determine if the plot is representative of the

data. If there is an issue with the data, it is likely that the error occurs in the calculation of U%. This

can be determined by investigating a purely harmonic model system which includes quadratic

terms where % (R) only contains linear terms.

A lot of research has been conducted on estimators, such as higher-order estimators and the

virial estimator, to improve the variance of PI methods. It seems evident that we should utilize

this work to improve our method. As previously mentioned in Section 3.1, deriving modified

estimators that include our electronic DoF is of interest. A formulation for a virial-like estimator for

the energy would hopefully reduce the erratic behaviour in the low τ regime.

In Chapter 3, we showed the convergence of our PIMC method using a dense range of P values.

In practice, the efficiency of such an approach should utilize fitting schemes and a sparse range

of P values to achieve similar results. A broad comparison of fitting schemes in high and low τ

regimes would be useful.

Our current SOS implementation could be modified to calculate β derivatives by finite difference.

More insight into the behaviour of our method could be gained by separating the finite difference

error from the sampling error. Analysis of the choice of ∆β as a function of temperature could be

performed.

For larger and more complex systems where the PES is not fully known, single-point calculations

of local minima and maxima could be used to determine the location of harmonic oscillators that

comprise % (R).

The use of Graphics Processing Units (GPUs) in our implementation is highly desirable due to

the highly parallel nature of our PIMC method. It is of interest to study the possible computational

gains that can be realized through the use of GPUs.
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Appendix

Appendix A: Path Integral Formulation

We start with

Z = Tr
[
e−βĤ

]
(A.1)

=

∫
dR1

A∑

a1=1

〈R1, a1| e−βĤ |R1, a1〉 (A.2)

Add two resolutions of the identity

Z =

∫
dR1

A∑

a1=1

[
〈R1, a1| e−βĤ/3

(∫
dR2

A∑

a2=1

|R2, a2〉 〈R2, a2|
)

×
(
e−βĤ/3

)(∫
dR3

A∑

a3=1

|R3, a3〉 〈R3, a3|
)
e−βĤ/3 |R1, a1〉

] (A.3)

Combine the integrals

Z =

∫
dR1

∫
dR2

∫
dR3

A∑

a1=1

[
〈R1, a1| e−βĤ/3

(
A∑

a2=1

|R2, a2〉 〈R2, a2|
)

×
(
e−βĤ/3

)(
A∑

a3=1

|R3, a3〉 〈R3, a3|
)
e−βĤ/3 |R1, a1〉

] (A.4)

Combine the sums

Z =

∫
dR1

∫
dR2

∫
dR3

A∑

a1

A∑

a2

A∑

a3

[
〈R1, a1| e−βĤ/3

(
|R2, a2〉 〈R2, a2|

)

×
(
e−βĤ/3

)(
|R3, a3〉 〈R3, a3|

)
e−βĤ/3 |R1, a1〉

] (A.5)
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Condense the propagators

Z =

∫
dR1

∫
dR2

∫
dR3

A∑

a1

A∑

a2

A∑

a3

[
3∏

i=1

〈Ri, ai| e−
βĤ/3

∣∣Ri+1, ai+1

〉
]

(A.6)

Giving us the following general equation after inserting P − 1 resolutions of the identity where P

is the number of imaginary time-slices, also known as “beads”, and τ = β/P

Z =

∫
dR1 · · ·

∫
dRP

A∑

a1

· · ·
A∑

aP

[
P∏

i=1

〈Ri, ai| e−τĤ
∣∣Ri+1, ai+1

〉
]

(A.7)

In a more compact form

Z =

∫
dRP

A∑

a

P∏

i=1

〈Ri, ai| e−τĤ
∣∣Ri+1, ai+1

〉
(A.8)

where we make use of the compact notation

A∑

a

=

A∑

a1=1

A∑

a2=1

· · ·
A∑

aP=1

(A.9)

and ∫
dRP =

∫
dR1

∫
dR2 · · ·

∫
dRP (A.10)
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Appendix B: Trotter Factorization

Now consider the following illustrative example:

〈R1, a1| e−
τ
2
ĥoe−τV̂e−

τ
2
ĥo |R2, a2〉 (B.1)

Insert two resolutions of the identity

〈R1, a1| e−
τ
2
ĥo



∫

dRk

A∑

ak=1

|Rk, ak〉 〈Rk, ak|




×
(
e−τV̂

)

∫

dR`

A∑

a`=1

|R`, a`〉 〈R`, a`|


 e−

τ
2
ĥo |R2, a2〉

(B.2)

Pull out the integrals

∫ ∫
dRkdR` 〈R1, a1| e−

τ
2
ĥo




A∑

ak=1

|Rk, ak〉 〈Rk, ak|




×
(
e−τV̂

)


A∑

a`=1

|R`, a`〉 〈R`, a`|


 e−

τ
2
ĥo |R2, a2〉

(B.3)

Pull out the sums

∫ ∫
dRkdR`

A∑

ak=1

A∑

a`=1

〈R1, a1| e−
τ
2
ĥo |Rk, ak〉 〈Rk, ak| δa1,ak

×
(
e−τV̂

)
|R`, a`〉 〈R`, a`| e−

τ
2
ĥo |R2, a2〉 δa`,a2

(B.4)

By definition of ĥo: (diagonal in electronic surfaces a)

∫ ∫
dRkdR`

A∑

ak=1

A∑

a`=1

〈R1, a1|e−
τ
2
ĥo |Rk, a1〉 〈Rk, a1|

×
(
e−τV̂

)
|R`, a2〉 〈R`, a2| e−

τ
2
ĥo |R2, a2〉

(B.5)

More compactly

∫ ∫
dRkdR` 〈R1, a1| e−

τ
2
ĥo |Rk, a1〉 〈Rk, a1| e−τV̂ |R`, a2〉 〈R`, a2| e−

τ
2
ĥo |R2, a2〉 (B.6)
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By the definition of V̂, (V is diagonal in R)

∫ ∫
dRkdR` 〈R1, a1| e−

τ
2
ĥo |Rk, a1〉 〈Rk, a1| e−τV̂ |R`, a2〉 δ(Rk−R`) 〈R`, a2| e−

τ
2
ĥo |R2, a2〉 (B.7)

=

∫
dRk 〈R1, a1| e−

τ
2
ĥo |Rk, a1〉 〈Rk, a1| e−τV̂ |Rk, a2〉 〈Rk, a2| e−

τ
2
ĥo |R2, a2〉 (B.8)

And we can relabel Rk → R
′
1

=

∫
dR

′
1

〈
R1, a1

∣∣∣ e− τ2 ĥo
∣∣∣R′

1, a1

〉〈
R

′
1, a1

∣∣∣ e−τV̂
∣∣∣R′

1, a2

〉〈
R

′
1, a2

∣∣∣ e− τ2 ĥo
∣∣∣R2, a2

〉
(B.9)

Giving us the following general formula

Z ≈ lim
P→∞

∫
dRP

A∑

a

P∏

i=1

〈
Ri, ai

∣∣∣ e− τ2 ĥo
∣∣∣R′

i, ai

〉〈
R

′
i, ai

∣∣∣ e−τV̂
∣∣∣R′

i, ai+1

〉〈
R

′
i, ai+1

∣∣∣ e− τ2 ĥo
∣∣∣Ri+1, ai+1

〉

(B.10)

≡ lim
P→∞

∫
dRP

A∑

a

P∏

i=1

〈Ri, ai| e−τĥo
∣∣Ri+1, ai

〉 〈
Ri+1, ai

∣∣ e−τV̂
∣∣Ri+1, ai+1

〉
(B.11)
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Appendix C: Nondimensionalization of the H.O.

The Schrodinger Equation for a one-dimensional time-independent H.O. is

Ĥψ(x) = Eψ(x) (C.1)
(
− ~2

2m

d2

dx2
+

1

2
mω2x2

)
ψ(x) = Eψ(x) (C.2)

We can reformulate equation eq. (C.2) in dimensionless coordinates x̃:

let x̃ ≡ x

xc
then ψ(x) = ψ(x̃xc) = ψ(x(xc)) = ψ̃ (x̃)

(
− ~2

2m

1

x2
c

d2

dx̃2
+

1

2
mω2x2

c x̃
2

)
ψ̃ (x̃) = Eψ̃ (x̃) (C.3)

(
− d2

dx̃2
+
m2ω2x4

c

~2
x̃2

)
ψ̃ (x̃) =

2mx2
cE

~2
ψ̃ (x̃) (C.4)

Define
m2ω2x4

c

~2
= 1 =⇒ xc =

√
~
mω

(C.5)

eq. (C.4) becomes (
− d2

dx̃2
+ x̃2

)
ψ̃ (x̃) = Ẽψ̃ (x̃) where E ≡ ~ω

2
Ẽ (C.6)

Our final equation for the H.O. with energy in units of ~ω and distance in units of
√

~/mω

~ω
2

(
− d2

dx̃2
+ x̃2

)
ψ̃ (x̃) = Eψ̃ (x̃) (C.7)

The following form is more commonly used when discussing normal mode coordinates

~ω
2

(
p̂2 + q̂2

)
ψ = Eψ (C.8)

Aside

It is straightforward to show
~ω0

2
q2 +

~ω1

2
p2 (C.9)
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can be re-expressed in the form of a dimensionless H.O.

~ω3

2

(
p2 + q2

)
(C.10)

We define

q2 = q2

(√
ω1√
ω0

)
=⇒ p2 = − d2

dq2
2

= − d2

dq2
2

(√
ω0√
ω1

)
(C.11)

Choose ω3 =
√
ω1ω0

~ω0

2
q2 +

~ω1

2
p2 =

~ω3

2

(
q2 + p2

)
(C.12)
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Appendix D: Energy estimator

Evaluate the β derivative using first order symmetric difference

∂

∂β
Zf ≈

(
1

2∆β

)
[Zf (β + ∆β)− Zf (β −∆β)] (D.1)

=

(
1

2∆β

)[
ZH(β + ∆β)

Z%(β + ∆β)
− ZH(β −∆β)

Z%(β −∆β)

]
(D.2)

Supposing we multiply eq. (D.2) by 1 =
Z%
Z%

=

(
1

2∆β

)[
Z%

Z%(β + ∆β)

ZH(β + ∆β)

Z%(β)
− Z%(β)

Z%(β −∆β)

ZH(β −∆β)

Z%(β)

]
(D.3)

For convenience we define

α+ =
Z%(β)

Z%(β + ∆β)
α− =

Z%(β)

Z%(β −∆β)
(D.4)

Rewriting eq. (D.3)

=

(
1

2∆β

)(
1

Z%

)[
(α+)ZH(β + ∆β)− (α−)ZH(β −∆β)

]
(D.5)

=

(
1

2∆β

)(
1

Z%

)[∫
dRP (α+)g (R, β + ∆β)− (α−)g (R, β −∆β)

]
(D.6)

=

(
1

2∆β

)(
1

Z%

)[∫
dRP % (R, β)

(α+)g (R, β + ∆β)− (α−)g (R, β −∆β)

% (R, β)

]
(D.7)

=

(
1

2∆β

)〈
(α+)g (R, β + ∆β)− (α−)g (R, β −∆β)

% (R, β)

〉

%

(D.8)

=

(
1

2∆β

)〈
(α+)g (R, β + ∆β)

% (R, β)

〉

%

−
(

1

2∆β

)〈
(α−)g (R, β −∆β)

% (R, β)

〉

%

(D.9)

We define

Z±f =

〈
(α±)g (R, β ±∆β)

% (R, β)

〉

%

(D.10)

Simplifying eq. (D.9)
∂

∂β
Zf ≈

(
Z+
f − Z−f
2∆β

)
(D.11)
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Finally

UH = Uf + U% (D.12)

=

(−1

Zf

)
∂

∂β
Zf + U% (D.13)

≈
(−1

Zf

)(
Z+
f − Z−f
2∆β

)
+ U% (D.14)
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Appendix E: Heat capacity estimator

Where

Cfv =

(
1

kBT 2

)[(
1

Zf

)
∂2

∂β2
Zf − (Uf )2

]
(E.1)

Evaluate the β derivative using second order symmetric difference

∂2

∂β2
Zf ≈

(
1

∆β2

)
[Zf (β + ∆β)− 2Zf (β) + Zf (β −∆β)] (E.2)

Applying the same approach as the energy estimator gives us

∂2

∂β2
Zf ≈

(
1

∆β2

)(
1

Z%

)∫
dRP % (R, β)

[
(α+)g (R, β + ∆β)− 2g (R, β) + (α−)g (R, β −∆β)

% (R, β)

]

(E.3)

Which simplifies to
∂2

∂β2
Zf ≈

(
Z+
f − 2Zf + Z−f

∆β2

)
(E.4)

Finally

CHv = Cfv + C%v (E.5)

=

(
1

kBT 2

)[(
1

Zf

)
∂2

∂β2
Zf − (Uf )2

]
+ C%v (E.6)

≈
(

1

kBT 2

)[(
1

Zf

)(
Z+
f − 2Zf + Z−f

∆β2

)
− (Uf )2

]
+ C%v (E.7)
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Appendix F: Jackknife estimators

For this derivation I attempt to use similar notation as in [27, p. 10] so that the reader may reference

that document and gain a better understanding of the approach.

We define three expectation values:

µZ ≡ 〈Z〉 µ∂Z ≡
〈
∂Z(β)

∂β

〉
µ∂2Z ≡

〈
∂2Z(β)

∂β2

〉

We express the three desired quantities, (Z, E, Cv)

fZ (µZ) = µZ (Z%) (F.1)

fE (µ∂Z , µZ) =
−µ∂Z
µZ

(F.2)

fCv (µ∂2Z , µ∂Z , µZ) =
1

kBT 2

[
µ∂2Z
µZ
− µ2

∂Z

µ2
Z

]
(F.3)

The estimate of the true partition function fZ (µZ) is clearly fZ
(
Z
)

, with error

√
σ2

N
. We need not

use any statistical technique to obtain the standard error of the partition function. The energy fE

and heat capacity fCv are non-linear functions of averages and therefore require more care. Using

the Jackknife approach detailed in [27, p.12 15] we can express the unbiased energy as

fE (µ∂Z , µZ) = N
〈
f(∂Z,Z)

〉
− (N − 1)

〈
fEJ

〉
+O

(
1

N2

)
(F.4)

〈
fEJ

〉
is defined as 1

N

N∑
i=1

fEJi where

fEJi =

( −1

2∆β

)
(

1

N − 1

)∑
j 6=i

δ∆β [f ]
(
Rj , β, β

′
)

(
1

N − 1

)∑
j 6=i

f
(
Rj , β

) (F.5)
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Therefore the energy fE (µ∂Z , µZ) is

(N)

〈
δ∆β [f ] (R, β, β′)

〉
%〈

f (R, β)
〉
%

−
(
N − 1

N

) N∑

i=1

fEJi (F.6)

The expanded form looks like this:

(N)




N∑
j=1

[
δ∆β [f ]

(
Rj , β, β

′
) ]

N∑
j=1

f
(
Rj , β

)


−

(
N − 1

N

) N∑

i=1




∑
j 6=i

δ∆β [f ]
(
Rj , β, β

′
)

∑
j 6=i

f
(
Rj , β

)




Similarly we express the unbiased heat capacity estimator

fCv (µ∂2Z , µ∂Z , µZ) = N
〈
f(∂2Z, ∂Z,Z)

〉
− (N − 1)

〈
fCJ

〉
+O

(
1

N2

)
(F.7)

〈
fCJ

〉
is defined as 1

N

N∑
i=1

(
1

kBT 2

)
fCJi where

fCJi =




(
1

N − 1

)∑
j 6=i

δ2
∆β [f ]

(
Rj , β, β

′
)

(
1

N − 1

)∑
j 6=i

f
(
Rj , β

) −

(
1

N − 1

)2
(
∑
j 6=i

δ∆β [f ]
(
Rj , β, β

′
))2

(
1

N − 1

)2
(
∑
j 6=i

f
(
Rj , β

))2




(F.8)

Therefore our heat capacity estimator fCv (µ∂2Z , µ∂Z , µZ) is

(
N

kBT 2

)



〈
δ2

∆β [f ] (R, β, β′)
〉
%〈

f (R, β)
〉
%

−

〈
δ∆β [f ] (R, β, β′)

〉2

%〈
f (R, β)

〉2

%


−

(
N − 1

NkBT 2

) N∑

i=1

fCJi (F.9)
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The expanded form looks like this:

(
N

kBT 2

)




N∑
j=1

δ2
∆β [f ]

(
Rj , β, β

′
)

N∑
j=1

f(Rj , β)

−

(
N∑
j=1

δ∆β [f ]
(
Rj , β, β

′
))2

(
N∑
j=1

f(Rj , β)

)2




−
(
N − 1

NkBT 2

) N∑

i=1




∑
j 6=i

δ2
∆β [f ]

(
Rj , β, β

′
)

∑
j 6=i

f
(
Rj , β

) −

(
∑
j 6=i

δ∆β [f ]
(
Rj , β, β

′
))2

(
∑
j 6=i

f
(
Rj , β

))2




(F.10)
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