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Abstract 

 This work was focused on understanding the pyrolysis of Typha latifolia. Kinetics, 

thermodynamics parameters and pyrolysis reaction mechanism were studied using 

thermogravimetric data. Based on activation energies and conversion points, two regions of 

pyrolysis were established. Region-I occurred between the conversion rate 0.1 to 0.4 with peak 

temperatures 538K, 555K, 556K at the heating rates of 10 Kmin-1, 30 Kmin-1, and 50 Kmin-1, 

respectively. Similarly, the Region-II occurred between 0.4 to 0.8 with peak temperatures of 

606K, 621K, 623K at same heating rates. The best model was diffusion mechanism in Region-I. 

In Region-II, the reaction order was shown to be 2nd and 3rd. The values of activation energy 

calculated using FWO and KAS methods (134-204 kJ mol-1) remained same in both regions 

reflecting that the best reaction mechanism was predicted. Kinetics and thermodynamic 

parameters including E, ∆H, ∆S, ∆G shown that T. latifolia biomass is a remarkable feedstock 

for bioenergy. 

Keywords: Typha latifolia; thermogravimetric study; reaction mechanism; bioenergy; low-cost 

biomass 
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1. Introduction 

 At present, energy requirements of the world are met through fossil fuels. Owing to their 

non-renewable nature, fossil fuel deposits may be completely exhausted from Earth in 70 years 

from now. Alternatively, biomass is believed to be a reliable future energy source along with 

solar, wind and hydrothermal. Among all the energy resources worldwide, biomass provides up 

to 10 %, with an annual increase of 2.5% (Edrisi and Abhilash, 2016). In the USA and Brazil, 

almost 80 percent of the fuel comes from renewables, specifically maize and sugarcane, which 

are not only expensive but have also created a food versus fuel dilemma. Alternatively, non-

edible plants produced on non-arable lands offer a low-cost alternative without any direct or 

indirect competition with food or land (Ahmad et al., 2017a). Here, the problem is not the 

availability of the biomass, but rather the cost-effective and efficient retrieval of the energy 

stored in the biomass. Several processes have been developed to retrieve the biomass energy 

including direct combustion, thermochemical and biological conversion, where pyrolysis and 

biological fermentation are the cleanest methods to convert the biomass into valuable products. 

However, the latter is a tedious, expensive and time-consuming process, mainly due to the 

recalcitrant nature of the biomass. While, the thermal transformation of biomass into various 

products including solid, liquid and gasses often under an inert environment is called pyrolysis. 

Moreover, pyrolysis process leaves almost no waste, and all converted components can be used 

for one or another purpose ranging from energy (heat, bio-oil) through agricultural (char) and 

industrial chemicals (gases).  However, the pyrolysis process depends upon various factors 

including nature of the biomass, particle size and temperature parameters. Hence, for an efficient 

conversion of any biomass, it is essential to understand its pyrolysis behavior to design an 

optimized pyrolytic process. 

 Thermogravimetric analyses performed under controlled conditions are practically 

feasible to understand the pyrolytic behavior and to determine the optimum pyrolytic conditions 

of any biomass (Di Blasi, 2009; Kow et al., 2014). The thermochemical conversion has 

dominance over biological processes because it has higher efficiency (Zhang et al., 2006). 

However, a clear understanding of the pyrolytic conditions is required for any biomass prior to 

feeding this biomass to any commercial thermal plant. Artificial Neural Networks (ANN) are 
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models which are developed based on the functionality of a human brain in which neurons 

transfer data from synapses on the way to axons through chemicals called neurotransmitters. 

Similarly, ANNs are composed of multiple neuron layers including input layers, hidden layers, 

and output layer to learn the relationship between them for further problem-solving approaches 

between experimental and predicted data (Kalogirou, 2003). Consequently, ANNs have been 

proven to be a useful tool to predict the reaction chemistry (Conesa et al., 2004; Yıldız et al., 

2016) and has been employed on thermal data for estimation from several standpoints through 

training, validation and testing of experimental data (Chen et al., 2017; Uzun et al., 2017). 

 Previously, several grasses including Camel grass (Mehmood et al., 2017), Corn cobs, 

Miscanthus, wheat straw (Álvarez et al., 2016) and Sorghum weeds (Rezende and Richardson, 

2017), along with microalgae (Maurya et al., 2016), red-peppers waste (Maia and de Morais, 

2016) and rice-husk (Zhang et al., 2016) were previously studied for their bioenergy potential 

using thermogravimetric analyses. The Napier Grass is already being used to produce fuel on the 

commercial thermal plant (He et al., 2017). The present study was focused on understanding the 

pyrolytic behavior, reaction chemistry and bioenergy potential of Typha latifolia via 

thermogravimetric analyses for the very first time. T. latifolia occurs across the globe including 

Asia, Africa, Americas and Europe. It is a perennial grass produced on marginal lands and is a 

famous wetland species and can be grown in brackish or polluted water, hence is a low-cost 

biomass resource. While cultivating on polluted or brackish water, its bioremediatory action can 

remove pollutants developing a bitter taste making it unsuitable for food or feed. It has higher 

energy potential and can produce 25 units more energy when compared to fossil fuel (Ussiri and 

Lal, 2017). To date, there is no study available on pyrolytic behavior using Artificial Neural 

Network Approach of T. latifolia, studying the reaction mechanism of the thermal degradation. 

Generally, the reaction order model is considered as a suitable reaction mechanism of the 

biomass as it confirms its viability throughout the pyrolysis process. High precision 

thermogravimetric and kinetic analyses of devolatilization process (Trninić et al., 2012) are also 

applied in this study. 
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2. Materials and Methods 

2.1 Elemental composition and proximate analyses 

The biomass of T. latifolia was collected from soil affected by salinity which was being 

irrigated with underground brackish water. Collected sample was washed under a tap and left to 

dry in air for several days. Air dried biomass was crushed using a manual crusher and put into an 

oven for 48 h, and was grounded to get particles of size ranging from 150-200 µm. Sun dried 

crushed biomass was subjected to proximate analyses to determine volatile matter (VM %), ash 

(%) moisture content (%) using the standard methods as described in ASTM (E872-&82 2006, 

E871-82 2006, E1755-01 2007). The fixed carbon (FC %) was calculated using the equation: 

��	�%� = 100 − ���ℎ	������� + �� +���������. To determine the VM and moisture 

content, known mass was put in oven-dried at 380K in triplicate for 16-24 h to get a constant 

mass. The loss in mass reflected the moisture content. Similarly, known mass from the oven 

dried sample was put into pre-weighed ceramic crucibles in triplicate and left at 775K in a 

Muffle furnace for 3-4 h to get a constant mass. Where, loss in mass reflected the volatile matter 

(VM) and residual mass reflected the ash content. The composition of organic elements 

including Carbon (C), Hydrogen (H), Sulphur (S), Nitrogen (N) and Oxygen (O) in the sample 

was estimated by an elemental analyzer (Vario EL Cube, Germany). During analyses, the Argon 

(Ar) was used as a carrier gas. 

The High Heating Value (HHV) indicates the amount of energy to be evolved from a 

biomass. However, the experimental procedures to determine the HHV (MJ kg-1) are expensive 

and may give undesired experimental faults (Nhuchhen and Salam, 2012). Hence, previously 

several correlation models were developed to calculate HHV. Here, the most appropriate model 

established to date was used to calculate the HHV as described (Nhuchhen and Salam, 2012).  
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2.2 TGA-DSC Experiment 

TGA-DSC analyses were performed using an STA-409, NETZSCH-Gerätebau GmbH, 

Germany. After calibration (as described in the instruction manual), almost ten mg (10) of milled 

biomass (150-200 µm particle size) was put into the alumina crucibles and constantly heated 

from ambient temperature to 1275 K. Where, constant heating at the rate of 10, 30 and 50 Kmin-1 

was used. An inert environment was maintained using the nitrogen gas flow (100 mL min-1) into 

the reaction chamber.  

2.3 ANN Model Development 

 An Artificial Neural Network (ANN) model was established to govern weight loss as 

output data, using heating rate and temperature as input variables. The feed-forward Levenberg-

Marquardt back-propagation algorithm was selected in MATLAB® R2014b for data prediction. 

The model depicts the input, hidden and output layers of the multi-layer network. Two neurons 

were included in the input layer; heating rate and temperature. In contrast, the output layer had a 

single neuron, the temperature dependent weight loss. 1,021 data points were used in this 

analysis which were divided among the training (70%), validation (15%) and testing (15%) 

phases. The epoch number was set to 52 and 6 validation checks were applied. The Mean Square 

Error (MSE) function, as seen in Equation 1, was used as an error function to evaluate the 

performance of each phase. The network model was optimized based on the target (t) and output 

values (o), as expressed in Equation 2.  

��� = �
��∑ � !"#!�$%

!&' (         (1) 

where λi: experimental values; βi: predicted values; n: number of data points 

)* = 1 − +∑ �,!-.!�$!
∑ �.!�$!

/         (2) 

2.4 Mathematical model development for thermogravimetric analyses 

A mathematical model was derived from analyzing the data obtained from the TGA-DSC 

experiments. In isoconversional methods, the disintegration rate of the sample is depicted as: 
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01
0, = 23�4�          (3) 

Where;  

4	 = 	 ��. −�,�/	��. −�6�       (4) 

Here 	
�. is the initial mass, �, is change in the mass, and �1 is the residual mass 

Using 2	, equation (3) was re-written as follows; 

01
0, = 7 �89 :− ;

<=> 3�4�           (5) 

Where 
A is pre-exponential factor (s-1) 

E is activation energy : ?@
A.B> 

T is temperature in Kelvin (K) 

R is Universal gas constant �8.314 @
?.A.B� 

t is the time in sec 

 

Later, the heating rate G = 0=
0,  and the conversion function, 3�4� = �1 − 4�	were intrudced by 

which following equation was obtained; 

01
0= =

H
# �89 :−

;
<=> �1 − 4�                                                                            (6)     

Then, equation (6) was integrated for the initial conditions, α = 0,  at I =	IJ , and after some 

mathematical manpulation, the following equation was obtained; 

K�4� = 	L M4 �1 − 4�⁄1
J =	7)I* G�⁄ O1 −	2)I �⁄ Q�89	�− ;

<=�   (7) 

K	is the integral conversion function. 

Equation 7 was rearranged, as the quantity 2)I �⁄  was negligible when compared with unity, 

hence it was ignored (Coats and Redfern, 1964), which resulted in following equation; 
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K�4� = 	 �7)I* G�⁄ ��89�−� )I⁄ �                                                                           (8) 

2.5 Calculation of kinetic and thermodynamic parameters  

Kinetic parameters of the pyrolysis reaction are vital to understanding the thermal 

degradation behavior of the sample under study. Here, these parameters were calculated using 

the isoconversional models as described by FWO (Flynn-Wall-Ozawa) and KAS (Kissenger-

Akahira-Sunose) (Akahira and Sunose, 1969; Flynn and Wall, 1966; Ozawa, 1965). A model-

fitting method named Coats-Redfern (Coats and Redfern, 1964) was used to describe the reaction 

mechanism which includes an order of reaction, diffusional, and the contracting geometry (White 

et al., 2011). Accordingly, activation energy could be determined by using 3�4� OR K�4� that 

was further compared with the results found from KAS and FWO methods to predict the most 

accurate reation mechanism. 

The equation 8 was rearranged after taking logarithm on both sides to get following equation; 

ln : #
=$> = T��7) �K�4�⁄ � −	� )I⁄       (9) KAS method 

Moreover, equation 6 was subjected to integration using the initial conditions, α = 0,  at I =	IJ. 

Later, Doyle’s approximation was introduced followed by a few mathematical modifications 

(Doyle, 1961), which gave equation (10); 

ln	�G� 	= 	T�	�7�/)K�4��	– 	�/)I      (10) FWO method 
 

The Coats and Redfern (CR) Method relies on asymptotic approximation 
*<=
; → 0, giving 

following equation; 
 

ln	�W�1�=$ � 	= 	T�	�7)/G��	– 	�/)I      (11) CR Method 

 
The left side of each equation (9, 10 and 11) was plotted (y-axis) against the inverse of pyrolysis 

temperature (x-axis), for selected conversion point (α) to calculate kinetic parameters. The 

conversion point (α) was used to calculate the pre-exponential factors (7	�-�� using the 

conversion points plotted between ln	� #=$�, ln	�G� and  ln :W�1�=$ > against 1/T which gave a straight 

line. The activation energy values were calculated from the slopes (E). Moreover, the 
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thermodynamic parameters including ∆Y (enthalpy), ∆Z (Gibbs free energy) and ∆� (entropy) 

were calculated as described previously (Kim et al., 2010; Xu and Chen, 2013). 

7 =	 OG. ��89�� )IA⁄ �Q [)IA* \⁄        (12) 

∆Y = 	� − )I          (13) 

∆Z = 	� + )IAln	�]^IA ℎ7�⁄        (14) 

∆� = 	∆Y −	∆Z IA⁄          (15) 

Where: 

]^	  Boltzmann Constant (1.381 ∗ 10-*`	a/]� 

ℎ		Plank Constant �6.626 ∗ 10-`ca�� 

IA	DTG peak temperature, K 

 

3 Results and Discussion 

 

3.1 Physicochemical parameters  

The  T. latifolia biomass contained C, H, N, S, and O as 44.00%, 6.09, 2.45%, 0.34%, 

and 32.34%, respectively. The sample was shown to contain 71% volatile matter, 19.5% fixed 

carbon and 8.8% alkali. The lower nitrogen (<2.45%) and sulfur content (<0.34%) in the sample 

indicated that there is a lower risk of emission of toxic gases (NOx, SOx) from its pyrolysis. The 

range of volatile content (%) in the was shown to be within the range exhibited by the 

established bioenergy crops including Miscanthus gigantus and Arduno donax (Jeguirim et al., 

2010).  

The HHV indicates the amount of energy available from the biomass upon combustion. 

The estimated HHV of the sample was shown be 18.32 MJ kg-1 which is reasonably higher than 

the HHVs of several well-known energy crops including A. donax (Giant reed), M. gigantus, 

Phalaris arundinacea (Reed canarygrass), Salix spp. (Willow), Para grass and Camel grass, 

which had shown the HHVs as 17.2, 17.80, 16.30, 15.03 (Howaniec and Smolinski, 2011; 
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Jeguirim et al., 2010; Paulrud and Nilsson, 2001), 15.10 (Ahmad et al., 2017b), and 15.00 MJ kg-

1 (Mehmood et al., 2017), respectively. The estimated HHV indicate the remarkable energy 

potential of the T. latifolia when compared to recognized bioenergy crops. However, the HHV of 

T. latifolia biomass was shown to be lower when compared to HHV of sweet sorghum, i.e. 20-25 

MJ kg-1 (Monti et al., 2008; Yan et al., 2016).  

 

3.2 Analyses of TG-DTG curves 

Thermogravimetric analyses exhibit the loss in biomass in response to increasing reaction 

temperature. Where lost mass is converted into various products. The curves obtained during this 

analysis (TG-DTG curves) indicate the thermochemical conversion of the subjected biomass into 

solids, liquids and gaseous products (Maia and de Morais, 2016). For the sample under study, the 

curves showed typical trend of thermal degradation of lignocelluloses when compared to the TG-

DTG curves (Fig. 1) found for Switchgrass, Cardoon leaves, Elephant grass, Camel grass, rice 

husk, and red pepper waste (Biney et al., 2015; Braga et al., 2014; Maia and de Morais, 2016; 

Mehmood et al., 2017; Xu and Chen, 2013).  

The characteristic temperatures associated with the mass loss during thermal degradation, 

are shown in Tables 1 and 2. The rate of thermal conversion of the sample was shown to be 

increased with the increased heating rate (Tables 1 and 2). The thermal conversion of the sample 

was shown to comprise of three stages with two zones during stage-II. The first stage started 

from ambient temperature to 485-495 K for all heating rates, with the loss of 7.42-8.32 % in 

mass, which indicates the release of retained moisture content within intercellular spaces or 

intracellular compartments. The second stage ranged from 485-660 K taking all heating rates into 

account, where most of the mass loss occurred (i.e. 51%). This stage was shown to contain two 

zones for all heating rates, where zone-I occurred between 485-591 K while zone-II appeared 

between 568-660 K. The third stage occurs from 660-1275 K, where almost 17% of the total 

mass was lost. The biomass containing lesser that 10 % retained moisture, is considered feasible 

for combustion, which makes this sample suitable for pyrolysis and combustion (Braga et al., 

2014).  However, thermal transformation showed the typical pattern of lignocellulosic biomass. 
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Where, most of the thermal conversion happened during stage-II, indicating the degradation of 

hemicellulose, cellulose, and pectin where the typical temperature for their degradation ranges 

from 485K through 660 K (Xu and Chen, 2013). The temperature range associated with the third 

stage followed by the long tail reflects lignin degradation and char formation (Braga et al., 2014). 

Most of the thermal transformation happened up to 700 K where 58%-62% loss of the mass 

happened. Hence, the thermal conversion of the T. latifolia biomass into various products may be 

optimized within this temperature range, using lower heating rate in an energy efficient manner. 

These values indicated the advantage of using T. latifolia for pyrolysis and combustion, when 

compared to the previously studied biomass samples including rice husk, water hyacinth, and 

elephant grass (Biney et al., 2015; Braga et al., 2014; Huang et al., 2016). Biochar yields of 

24.59, 25.45 and 23.67% were observed up to 660 K at three heating rates, which were 

comparable to the biochar yields obtained from the pyrolysis of straw (23.68%) and bran 

(25.17%) of rice plant (Xu & Chen, 2013), and lower than Para grass (31.5%) (Ahmad et al., 

2017b), and Camel grass (30.46%) (Mehmood et al., 2017). These values indicated the 

appropriateness of the sample for biochar production.  

3.3 Heat flow during pyrolysis reaction 

The DSC curves showed a direct connection between the heating temperature and the 

flow of heat (mWmg-1) because most of the pyrolysis reaction indicated an active reaction 

mechanism (Fig. 2). However, ending stages showed a decreasing heat flow. The reaction rate 

was steadily enhanced from ambient temperatures to 589, 754 and 799 K at 10, 30 and 50 Kmin-

1, respectively, which reflects exothermic reactions. These differences in heat flow may be due to 

the poor thermal conductivity of the biomass at various heating rates. The DSC curves started 

shifting towards x-axes at higher temperatures, which indicates the reaction to cease due to 

depletion of reactant (the biomass) or the change of reaction mechanism due to changing 

composition of the residual biomass. Because most of the volatiles were lost above 700 K, 

leading towards a different heat flow into the changing composition of the residual biomass. 

These curves exhibited parallel trend when compared to the DSC curves observed for bamboo 

leaves (Kow et al., 2016), the Potamogeton crispus and Sargassum thunbergii, where former is a 

freshwater plant and later is a marine macroalga (Li et al., 2012). 
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3.4 Kinetics and thermodynamic parameters 

Figure 3 shows the linear fit plots to determine the activation energy values using KAS 

and FWO methods. These slopes and derived equations were used to calculate the conforming 

values of E and A as shown in Table 3. The average E-values were 184 kJ mol-1 and 182 kJ mol-1 

as evaluated by both (KAS and FWO) methods. Moreover, a plot between E-values and 

conversion points (α) indicated that both methods have nearly same values at each conversion 

point. The relationship of activation energies, temperature and conversion points is described in 

Table 4. The observed range of E is lower than E-values (118-257 kJ mol-1) of tobacco plant 

waste (Wu et al., 2015), rice husk (221-229 kJ mol−1), cellulose (191 kJ mol−1) and elephant grass 

(218-227 kJ mol−1) (Braga et al., 2014; Sanchez-Jimenez et al., 2013) and this range was 

approximately same as Para grass (Ahmad et al., 2017b) and  shown to be higher than 

switchgrass (Biney et al., 2015). This correspondence of E-values of T. latifolia makes it suitable 

for co-pyrolysis with several other biomass feedstocks.  

The difference between the activation energy values and enthalpies reflects the likelihood 

of the pyrolysis reaction to occur. Where lower difference indicates that product formation would 

be favorable. A difference of ~5 kJ mol-1 was observed between the E and ∆H values that 

indicated that there is little potential energy barrier to achieve the product formation, reflecting 

that product formation would be easier to achieve (Vlaev et al., 2007). Moreover, pre-

exponential factors (A-values) explain the reaction chemistry, which is critically important to 

know while optimizing the pyrolysis of biomass. While lower A-values (<109 s-1) show largely a 

surface reaction. However, if the reaction is not surface dependent, then lower A-values also 

designate a closed complex. Alternatively, higher A-values (≥ 109 s-1) show a simpler complex 

(Turmanova et al., 2008). For the sample under study, the A-values ranged from 5.53x1010 ̶ 

3.02x1015 s-1 and 7.61x1009 ̶ 7.93x1015 s-1 as obtained from KAS and FWO methods, respectively 

(Table 3) that indicated the complexity of biomass. Moreover, A-values of sample were higher 

when compared to A-values of red-peppers waste (3.80 x 100 to 2.80 x1012 s-1), rice straw (1.70 

x1007 to 9.35 x1012  s-1), rice bran (1.00 x1007 and 1.58 x1010  s-1) and were lower when compared 

to switchgrass (3.70 x1003-1.65 x1021 s-1) (Maia and de Morais, 2016). Gibbs free energy (∆G) 

reflects the amount of energy which become available from that biomass upon pyrolysis. Here, 
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the ∆G values were shown to be ranging from 173-175 that are higher when compared with the 

∆G values of the rice bran (167.17 kJ mol-1), rice straw (164.59 kJ mol-1) and waste from red-

peppers (139.4 kJ mol-1) (Maia and de Morais, 2016; Xu and Chen, 2013). It indicated that the 

pyrolysis of the T. latifolia will provide more energy when compared to the rice bran, rice straw 

and red-peppers waste.  

3.5 Reaction mechanism of the pyrolysis 

 The CR method was devised on thermogravimetric data at three different heating rates to 

obtained E-values based on various reaction mechanisms (Table 5). Plots between  ln :W�1�=$ > 

against 1/T were produced on various reaction mechanism functions as shown in Fig. 4. There 

were two regions formed based on conversion of the sample on three different heating rates. 

Region-I was defined when α ranged from 0. 1 ≤ 4 ≤ 	0.4 and Region-II was defined when α 

ranged from 0. 4 ≤ 4 ≤	0.8, where the major part of decomposition occurred. If the average 

activation energy values obtained from these mechanism functions at different heating rates are 

nearly equal to the energy values obtained from KAS and FWO methods, it shows this 

mechanism function should be the best-fit reaction of that region. 

 It was shown that in region-I the average E values are different in different reaction 

mechanism functions under three different heating rates. For reaction order model, the average E 

values of three heating rates ranged from 5.75 to 95.79 kJ mol-1, whereas in diffusional stage 

these values ranged from 177.14 to 192.25 kJ mol-1 which were closest to the values obtained 

from KAS and FWO methods. It indicates that during the reactions displayed in Region-I, the 

diffusion played a key role (A. Khawam, 2006). In contraction geometry, the average E-values 

were too small and ranged from 88 to 91 kJ/mol. Similarly, in Region-II the average E-values 

depended upon 2nd and 3rd order reaction model and ranged from 116 to 200 kJ mol-1 which 

shows that E-values obtained from KAS and FWO methods are in between these values. 

Therefore, reaction order mechanism is classified as diffusion type followed by the 2nd and 3rd 

order reaction which is proportional to the concentration, total or residual amount of reactant(s) 

in a certain reaction (A. Khawam, 2006).  

3.6 Prediction of pyrolytic behavior by ANN model 
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 ANN model was applied to predict and validate the pyrolysis experiment at three 

different heating rates to simulate the predicted results with experimental data to further 

understand the pyrolytic behavior of T. latifolia. First, one hidden layer was created to have a 

simpler ANN model but three different breakdown stages resulted in sharp changes in data which 

complicated behavior of the sample. The best network performance was achieved with two 

hidden layers. Moreover, error distribution was analyzed at each step to ensure the accuracy of 

the network. The regression of each step was carried out during the optimization of the network 

that showed good correlation between targets and the output values, as shown in the Fig. 5. 

Moreover, the histogram error distribution diagram appears to be normally distributed for the 

major part of the obtained dataset. The R2 value for the model fit at all stages appeared to be very 

close to 1, signifying a very good fit of the model to the experimental data (Fig. 5). Additionally, 

all these errors fall within a relatively narrow range; thus, indicating a good model fit. Here, 52 

iterations were carried out by MATLAB and the best performance was observed at the 46th 

iteration with the minimum MSE (i.e. 0.53478). The obtained best performance results, as 

generated by MATLAB, are shown in Fig. 6. This finding indicates that ANN may be frequently 

applied to understand and envisage the pyrolysis of the biomass.  

Conclusion 

Major pyrolysis products of T. latifolia can be achieved at 485-660K. The E and ∆G values 

ranged from 182-184 kJmol-1 and 171-175 kJmol-1, respectively. The HHV value (18.32 MJ kg-1) 

was shown to be higher than several established energy crops. Moreover, best-fit plots were 

obtained by comparing experimental data with the predicted data points obtained from ANN 

simulation. The reaction mechanism showed the pyrolysis to contain two regions. Region-I 

(0.1 ≤ 4 ≤	0.4) and Region-II (0.4 ≤ 4 ≤	0.8). The best reaction model in Region-I was 

diffusion while in Region -II the best model was built on the 2nd to 3rd order reaction. 
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Fig. 1 TG-DTG curves indicating percent mass loss of Typha latifolia 
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Fig. 2 DSC curves indicating heat flow across the biomass 
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Fig.3 Linear fit plots to determine the activation energy values using KAS and FWO methods 
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Fig.4 CR Plots of for pyrolysis of T. latifolia. Region-I (. 1 ≤ 4 ≤	.4) and Region-II (. 4 ≤ 4 ≤
	.8) 
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Fig.5 Regression of train, validate and testing steps together with histogram diagram 
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Fig.6 Best performance Mean Square Error (MSE) vs Targets  
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Table 1 Characteristic temperatures associated with the mass loss 

 

Heating rate 

(Kmin
-1

) 

Temperature (K) 

Tmin T1 T2 T3 T4 T5 Tmax 

10  
298 

485 538 568 606 644 
1300 30 499 555 584 621 654 

50 495 556 591 623 660 
 

Table 2 

Mass loss during different stages of decomposition with increasing temperature 

 

Stages Temperature 
Heating rate (Kmin

-1
) 

10 30 50 

Stage-I, WL (%) Tmin-T1 7.45 7.46 8.32 
Stage-II, 
WL (%) 

Region-I T1-T3 19.65 20.58 21.62 
Region-II T3-T5 30.83 30.30 30.17 

Stage-III, WL (%) T5-Tmax 17.48 16.21 16.22 
Final residues at 1075-
1275K (%) 

-- 24.59 25.45 23.67 
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Table 3 Kinetic and thermodynamics parameters of T. latifolia  

α 
Ea 

kJmol
-1 

R² 
∆H 

kJmol
-1 

A 

s
-1 

∆G  

kJmol
-1 

∆S 

Jmol
-1 

Ea 

kJmol
-1 

R² 
∆H 

kJmol
-1 

A 

s
-1 

∆G 

kJmol
-1 

∆S 

Jmol
-1 

KAS method FWO method 

0.1 147.20 0.99 142.04 5.53E+10 175.37 -53.67 134.78 0.99 129.62 7.61E+09 173.18 -70.16 

0.15 173.56 0.98 168.40 1.08E+13 174.51 -9.85 173.31 0.99 168.15 1.71E+13 171.88 -6.01 

0.2 183.84 0.98 178.68 8.34E+13 174.22 7.18 183.32 0.99 178.16 1.25E+14 171.59 10.57 

0.25 190.85 0.98 185.68 3.37E+14 174.02 18.78 190.15 0.99 184.98 4.88E+14 171.41 21.87 

0.3 189.93 0.99 184.76 2.80E+14 174.05 17.25 189.12 0.99 183.96 3.98E+14 171.43 20.17 

0.35 201.89 0.99 196.73 3.02E+15 173.73 37.02 204.18 0.99 199.01 7.93E+15 171.04 45.05 

0.4 185.30 0.99 180.14 1.12E+14 174.18 9.60 188.97 0.99 183.81 3.86E+14 171.44 19.92 

0.45 171.24 0.99 166.07 6.77E+12 174.58 -13.71 172.40 0.98 167.24 1.42E+13 171.91 -7.52 

0.5 201.89 0.99 196.73 3.02E+15 173.73 37.02 200.18 0.99 195.02 3.59E+15 171.14 38.46 

0.55 193.13 0.99 187.96 5.30E+14 173.96 22.54 196.03 0.99 190.87 1.57E+15 171.25 31.60 

0.6 197.73 0.99 192.57 1.32E+15 173.84 30.16 196.55 0.99 191.39 1.74E+15 171.23 32.45 

0.65 186.65 0.99 181.49 1.46E+14 174.14 11.83 187.22 0.99 182.06 2.73E+14 171.49 17.02 

0.7 198.37 0.99 193.21 1.50E+15 173.82 31.21 196.39 0.99 191.23 1.69E+15 171.24 32.19 

0.75 196.05 0.98 190.89 9.48E+14 173.89 27.38 190.75 0.98 185.58 5.50E+14 171.39 22.86 

0.8 153.94 0.99 148.78 2.14E+11 175.13 -42.44 153.00 0.99 147.84 2.95E+11 172.53 -39.76 

0.85 188.69 0.99 183.53 2.19E+14 174.08 15.22 190.75 0.99 185.58 5.50E+14 171.39 22.86 

0.9 177.61 0.99 172.45 2.41E+13 174.40 -3.13 158.36 0.99 153.20 8.62E+11 172.35 -30.84 

Avg. 184.58 0.99 179.42 -- 174.22 -- 182.67 0.99 177.51 -- 171.64 -- 
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Table 4 Relationship between conversion (α), pyrolysis temperature (T) and activation energies 
(E)  

 

Conversion 

range (α) 

Temperature 

range (K) 
Reactions 

Activation energy 

(E) 

α ≤ 0.1 273-485 

Release of retained water 
moisture and degradation of 
small and simple sugar 
molecules  

Increased from starting 
point to 147 kJ mol-1 

0.1 ≤ α ≤ 0.4 485-591 
Thermal conversion of 
cellulose and pectin 

Increased from 147 to 185 
kJ mol-1 

0.4 ≤ α ≤ 0.8 591-660 
Degradation of hemicellulose 
and lignin 

Increased from 185 to 196 
kJ mol-1 

0.1 ≤ α ≤ 1.0 660-1200 
Residual lignin decomposition 
and formation of char 

Decreased from 196 to 
177 kJ mol-1 
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Table 5: Activation Energy values and reaction mechanism based on Coats-Redfern method  
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Region 
Reaction 

Model 
g(α) 

10 Kmin
-1

 30 Kmin
-1

 50 Kmin
-1

 Average values 

Ea 

kJmol
-1

 
R² 

Ea 

kJmol
-1

 
R² 

Ea 

kJmol
-1

 
R² 

Ea 

kJmol
-1

 
R² 

I Reaction Order 

 Zero-order (F0) α 5.52 0.99 5.67 0.98 6.05 0.97 5.75 0.98 

 
First-order (F1 

) −ln�1 − 4� 82.50 0.97 82.81 0.99 83.46 0.99 82.92 0.98 

 nth-order (Fn) O1 − �1 − 4�¯¹/−1Q 94.97 0.99 95.21 0.95 97.18 0.96 95.79 0.97 
  O1 − �1 − 4�¯²/−2Q 15.31 0.88 17.23 0.98 18.54 0.96 17.03 0.94 
  O1 − �1 − 4�¯³/−3Q 25.55 0.96 27.67 0.99 29.33 0.98 27.52 0.98 
 Diffusion 

 1-D 4² 174.48 0.99 177.70 0.99 179.23 0.99 177.14 0.99 
 2-D �1 − 4�T��1 − 4� + 4 182.38 0.99 183.21 0.98 185.93 0.99 183.84 0.99 
 3-D (Jander) O1 − �1 − 4�⅓Q² 190.82 0.98 191.83 0.99 194.11 0.98 192.25 0.98 

 
3-D (Ginstling-

Brounshtein) 1 − 2/34 − �1 − 4�⅔ 185.19 0.96 186.22 0.97 188.73 0.97 186.71 0.97 

 Contracting Geometry 

 Cont. Area 1 − �1 − 4�½ 88.58 0.99 90.01 0.90 87.51 0.98 88.70 0.96 
 Cont. Volume 1 − �1 − 4�⅓ 90.67 0.84 91.41 0.89 93.85 0.88 91.98 0.87 

II Reaction Order 

 Zero-order (F0) 4 34.69 0.95 35.61 0.96 36.59 0.96 35.63 0.96 
 First-order (F1) −T��1 − 4� 67.27 0.97 68.34 0.97 70.37 0.98 68.66 0.97 
 nth-order (Fn) O1 − �1 − 4�¯¹/−1Q 48.61 0.98 50.51 0.98 49.40 0.99 49.51 0.98 
  O1 − �1 − 4�¯²/−2Q 116.59 0.99 115.43 0.99 118.49 0.99 116.84 0.99 
  O1 − �1 − 4�¯³/−3Q 197.37 0.96 200.71 0.98 202.51 0.97 200.20 0.97 
 Diffusion 

 1-D 4² 79.64 0.99 81.45 0.99 83.83 0.98 80.97 0.99 
 2-D �1 − 4�T��1 − 4� + 4 97.13 0.94 98.91 0.96 100.40 0.93 98.81 0.94 
 3-D (Jander) O1 − �1 − 4�⅓Q² 120.01 0.81 124.23 0.84 127.82 0.80 124.02 0.82 

 
3-D (Ginstling-

Brounshtein) 
1 − 2/34 − �1 − 4�⅔ 104.66 0.99 108.55 0.99 110.17 0.99 107.79 0.99 

 Contracting Geometry 

 Cont. Area 1 − �1 − 4�½ 49.26 0.99 51.12 0.89 54.32 0.92 51.57 0.93 
 Cont. Volume 1 − �1 − 4�⅓ 55.68 0.79 58.59 0.76 61.48 0.72 58.58 0.76 
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• The Typha latifolia offers low-cost biomass from poor soils across the globe 

• Its biomass was subjected to pyrolysis and thermogravimetric study  
• Pyrolytic behavior and reaction mechanism is described  

• The biomass has bioenergy potential comparable to well-known bioenergy crops 

 


