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ABSTRACT 

The secondary amines found in b-PIBSI dispersants prepared by attaching two 

polyisobutylene chains to a polyamine core via two succinimide moieties were reacted with 

ethylene carbonate (EC). The reaction generated urethane bonds on the polyamine core to 

yield the modified b-PIBSI dispersants (Mb-PIBSI). Five dispersants were prepared by 

reacting two molar equivalents (meq) of polyisobutylene terminated at one end with a succinic 

anhydride moiety (PIBSA) with one meq of hexamethylenediamine (HMDA), 

diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA), 

and pentaethylenehexamine (PEHA) to yield the corresponding b-PIBSI dispersants. 

Characterization of the level of secondary amine modification for the Mb-PIBSI dispersants 

with traditional techniques such as FTIR and 1H NMR spectroscopies was greatly 

complicated by interactions between the carbonyls of the succinimide groups and unreacted 

secondary amines of the Mb-PIBSI dispersants. Therefore, an alternative procedure was 

developed based on fluorescence quenching of the succinimides by secondary amines and 

urethane groups. The procedure took advantage of the fact that the succinimide fluorescence 

of the Mb-PIBSI dispersants was quenched much more efficiently by secondary amines than 

by the urethane groups that resulted from the EC modification of the amines. While EC 

modification did not proceed for b-PIBSI-DETA and b-PIBSI-TETA certainly due to steric 

hindrance, 60 and 70% of the secondary amines found in the longer polyamine core of b-

PIBSI-TEPA and b-PIBSI-PEHA had reacted with EC as determined by the fluorescence 

quenching analysis. Furthermore, the ability of the Mb-PIBSI dispersants to adsorb at the 

surface of carbon black particles used as mimic of the carbonaceous particles typically found 

in engine oils was compared to that of their unmodified analogs. 
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INTRODUCTION 

Dispersants have been extensively used as oil additives since the 1950s. They are designed to 

improve engine oil performance and decrease fuel consumption and pollution emission.1-3 

Their purpose is to decrease soot aggregation, a process that can thicken the oil to the point 

where it generates sludge that prevents the flow of oil. Soot and sludge are carbon-rich and/or 

metallic in nature and result from the incomplete oxidation of fuel during ignition. Soot or 

ultrafine particles (UFPs) are smaller than 100 nm in diameter, but they aggregate over time 

into large particles (LPs) with a diameter on the order of 1 µm to minimize exposure of their 

polar surface to the oil.4,5 The formation of LPs can cause engine failure through wear and oil 

blockage. Dispersants adsorb onto the surface of UFPs, stabilizing them by a steric or 

electrostatic mechanism which reduces the aggregation of UFPs into LPs.1,5,6 

Metallic and ashless dispersants are two types of commonly used oil additives. Metal-

containing dispersants have a good dispersancy capacity but the presence of metals can lead 

to the production of insoluble solids upon degradation. These solid salts actually add to the 

sludge problem. The other type of dispersant is referred to as ashless dispersant. Unlike 

metallic dispersants, ashless dispersants do not leave any ashes or embers in the engine.1 

Polyisobutylene succinimide (PIBSI) dispersants are the most common ashless dispersants 

used in the oil industry today and they were initially developed in 1966.7-10 They are 

constituted of a polyamine head and PIB-stabilizing tail. For a given succinimide dispersant, a 

higher number of secondary amines in the polyamine head results in a better adsorption of the 

dispersant onto the polar surface of UFPs but the basic polyamine linker of PIBSI dispersants 

compromises their compatibility with the fluorocarbon elastomers  that are used  as engine  

seals and this issue represents a challenging problem to the industry.3,6,11,12 
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A number of approaches have been introduced to reduce the basicity of dispersant 

amines such as their modification with boric acid or ethylene carbonate.12-14 Although such 

capping agents generally improve compatibility of the dispersants with engine seals and  the  

other compounds of the oil formulation, capping makes the dispersants less efficient. The 

preparation of modified bis-polyisobutylene succinimide dispersants (Mb-PIBSI) begins by 

generating the non-modified PIBSI dispersant as follows. Reaction of a polyisobutylene chain 

terminated at one end with a succinic anhydride group (PIBSA)9,15-17 with a polyamine 

terminated at  both  ends with two primary amines  in a 1:2 polyamine:PIBSA ratio generates 

bis-PIBSI (b-PIBSI) dispersants.18,19 The b-PIBSI dispersants can be post-modified with 

reactants such as boric acid or ethylene carbonate to generate Mb-PIBSI. While these 

reactions have been reported in the literature for decades, a recent report has established that 

characterization of b-PIBSI dispersants remains challenging with techniques based on FTIR  

or 1H NMR spectroscopies due to complications caused by interactions generated between the 

succinimide groups and secondary amines of b-PIBSI dispersants.20 

Interestingly the same study also found that the inherent fluorescence of the 

succinimide groups in the b-PIBSI dispersants was efficiently quenched by secondary and 

tertiary amines, and that the quenching efficiency increased linearly with increasing number 

of secondary amines in the polyamine linker used to prepare the b-PIBSI dispersants. Since 

chemical post-modification of b-PIBSI dispersants is common practice in the oil additive 

industry, and considering the challenges associated with the characterization of the chemical 

composition of b-PIBSI dispersants with traditional techniques, this report investigates the 

extent to which fluorescence quenching of the succinimide groups found in b-PIBSI 

dispersants could provide information about the chemical composition of Mb-PIBSI 

dispersants. To this end, Mb-PIBSI dispersants were prepared by ethylene carbonate post-
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modification of b-PIBSI dispersants and the ability of FTIR, 1H NMR, and fluorescence at 

providing quantitative information about their chemical composition was assessed. In 

particular, fluorescence was used as an analytical method to characterize the level of 

modification of Mb-PIBSI dispersants in terms of the number of unreacted secondary amines 

per gram of dispersant. This characterization method took advantage of the fluorescence of 

the succinimide moieties found in the Mb-PIBSI dispersants and the fact  that they  are  being  

quenched with a different efficiency by secondary amines and urethane groups.20,24-27 

The chemical composition and structure of the dispersants are known to influence the 

reduction in sludge formation. The adsorption isotherms analysis can provide information on 

how effectively different dispersants bind onto the surface of carbon black particles (CBPs) 

used as mimics of UFPs.18,21-23 The adsorption isotherms of a series of PIBSI dispersants have 

been determined in apolar hexane earlier and the results showed an increase in the association 

strength of the dispersant with increasing number of secondary amines in the polyamine 

core.18 The present study compares the adsorption isotherms in dodecane of b-PIBSI and Mb-

PIBSI dispersants onto CBPs by using the inherent fluorescence of the succinimide groups.  

The results indicate that EC-post-modification of b-PIBSI dispersants lowers their ability to 

bind onto CBPs. It confirms that a trade-off must be reached between the reduction in 

secondary amine basicity through EC modification of b-PIBSI dispersants and their ability to 

latch onto the surface of UFPs.  

EXPERIMENTAL 

Chemicals. Acetone (HPLC grade, Caledon), hexane (HPLC grade, Caledon), xylene (reagent 

grade, 98.5%, EMD), deuterated chloroform (CDCl3, 99.8%, Cambridge Isotope Laboratories, 

Inc.), tetrahydrofuran (THF, HPLC grade, Caledon), dodecane (anhydrous, 99%, Sigma-
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Aldrich), ethyl ether (anhydrous, 99% Sigma-Aldrich), ethyl acetate (HPLC, 99.7% Sigma-

Aldrich), and 2-dodecanone (GC grade, 97%, Sigma-Aldrich) were used as received. The 

chemicals hexamethylenediamine (HMDA, 98%), diethylenetriamine (DETA, 99%), 

triethylenetetramine (TETA, 97%), tetraethylenepentamine (TEPA, technical grade), 

pentaethylenehexamine (PEHA, technical grade), dibutylamine (DBA, 99.5%), octylamine 

(99%), N-methylsuccinimide (N-MSI, 99%), butylamine (BUA, 99%), diethylamine (DEA, 

99.5%), triethylamine (TEA, 99.5%), ethylene carbonate (EC, 98%), magnesium sulfate 

anhydrous (97%), and activated charcoal (100 mesh) were purchased from Sigma-Aldrich and 

were employed without further purification. Polyisobutylene succinic anhydride (PIBSA) was 

supplied by Imperial Oil. The chemical composition of this sample was characterized by 

NMR, GPC, and FTIR analysis and found to contain on average one SA unit per 52 ± 2 

isobutylene monomers. Assuming one SA moiety per chain, this PIBSA sample would have 

an Mn of 3,012 g.mol equivalent to a total acid number (TAN) of 37.2 mg of KOH per gram 

of PIBSA. 

Proton Nuclear Magnetic Resonance (1H NMR). A Bruker 300 MHz high resolution NMR 

spectrometer was used to acquire the 1H NMR spectra with a polymer concentration of about 

10 mg/mL in CDCl3. 

Fourier Transform Infrared (FTIR). A Bruker Tensor 27 FTIR spectrometer was used to 

acquire all FTIR spectra with an absorbance smaller than unity to avoid saturation of the 

detector. Polymer solutions prepared in CDCl3 were deposited drop wisely onto the NaCl 

FTIR cell. The solvent was evaporated under a stream of nitrogen leaving behind a thin 

polymer film. 
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UV-Visible Spectrophotometer. Absorbance measurements were conducted on a Cary 100 

UV-Visible spectrophotometer. Absorption spectra were acquired between 200 and 600 nm 

with quartz cells having path lengths of 0.1, 1, or 10 mm.  

Steady-State Fluorescence. A Photon Technology International (PTI) LS-100 steady-state 

fluorometer was used to acquire the fluorescence spectra. The instrument was equipped with 

an Ushio UXL-75Xe Xenon arc lamp and a PTI 814 photomultiplier detection system. The 

emission spectra were excited at 360 nm and acquired from 365 to 600 nm. 

Time-Resolved Fluorescence. All solutions were excited at 360 nm with a 340 nano-LED 

light source fitted onto an IBH time-resolved fluorometer to acquire their fluorescence decays 

at 428 nm. Fluorescence decay analysis included light scattering and background corrections. 

The sum of exponentials shown in Equation 1 was applied to fit the fluorescence decays of 

the b-PIBSI dispersants. 

nexp 

i(t) ai  exp(t / i )    (1)  
i1 

In Equation 1, nexp represents the number of exponentials used in the decay analysis 

and the parameters ai and i represent the amplitude and decay time of the ith exponential, 

respectively. The decay fits were deemed satisfactory if the 2 value was smaller than 1.30 

and the residuals and the autocorrelation of the residuals were randomly distributed around 

zero. 

Synthesis of 2-Hydroxyethyl N,N-Dibutylcarbamate. 2-Hydroxyethyl N,N-dibutylcarbamate 

(HEDBC) was prepared by reacting one molar equivalent of dibutylamine (DBA) with a  

slight excess of ethylene carbonate (EC) according to Scheme 1. 
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NH3C CH3 + NH3C CH3H O 

O O 

OH 

Scheme 1. Reaction of dibutylamine (DBA) and ethylene carbonate (EC). 

DBA (4.0 g, 31 mmol) and EC (2.8 g, 32 mmol) were added in a two neck round 

bottom flask capped with a water condenser. The reaction was carried out without solvent 

under nitrogen at 110C for 20 hours. The product mixture was dissolved in 100 mL of 

diethyl ether and extracted with 100 mL of HCl (1 M) solution. Unreacted EC partitioned into 

the aqueous layer whereas the carbamate products stayed in the organic layer. Magnesium 

sulfate anhydrous was used to dry the ether fraction and was removed by filtration. Column 

chromatography with silica gel was performed to isolate the desired product. A 1:1 ratio of  

hexane and ethyl acetate solution was used as the eluent and the products were separated. 

Three different compounds were found in the organic layer. The 1H NMR spectrum of the 

desired compound obtained after separation via column chromatography is shown as 

supporting information (SI) in Figure S1. 

Comparison of the spectra of DBA and HEDBC indicates that the peak of the 

methylene protons 1 of the butyl groups next to the nitrogen shifted from 2.5 to 3.15 ppm. 

Proton 1 of HEDBC is also broader due to hindered rotation about the C-N bond of the 

carbamate group in HEDBC. New peaks appeared at 2.8, 3.8, and 4.2 ppm. The triplet at 2.8 

ppm represented the alcohol proton while the peaks at 3.8 and 4.2 ppm were assigned to the 

methylene protons α and β to the alcohol, respectively.  
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Synthesis of the Polyisobutylene Succinimide (PIBSI) Dispersants. The polyisobutylene 

succinimide (b-PIBSI) dispersants were prepared from the reaction of one molar equivalent 

(meq) of different polyamine derivatives with two meq of PIBSA as described in Scheme 2. In 

the current study, hexamethylenediamine (HMDA), diethylenetriamine (DETA), 

triethylenetetramine (TETA), tetraethylenepentamine (TEPA), and pentaethylenehexamine 

(PEHA) were used as polyamines and their chemical structure is given in Table 1. All b-

PIBSI dispersants were synthesized according to Scheme 2 based on a procedure that has 

been described in detail in an earlier publication.18,20 

Table 1. Chemical structures of the amine derivatives used to prepare the b-PIBSI 

dispersants. 

Polyamine Chemical Structure 

Hexamethylenediamine (HMDA) H2N-(CH2CH2)3-NH2 

Diethylenetriamine (DETA) H2N-(CH2CH2-NH)2-H 

Triethylenetetramine (TETA) H2N-(CH2CH2-NH)3-H 

Tetraethylenepentamine (TEPA) H2N-(CH2CH2-NH)4-H 

Pentaethylenehexamine (PEHA) H2N-(CH2CH2-NH)5-H 
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Scheme 2. Synthesis and modification of succinimide dispersants. 

Successful reaction was confirmed by comparison of the FTIR absorption of de-

hydrated PIBSA (Trace A) with that of the b-PIBSI dispersant (Trace B) in Figure 1. PIBSA 

was dehydrated before the reaction since SA is much more reactive than succinic acid toward 

the nucleophilic attack by the primary amine end-groups of the polyamines. The FTIR 

spectrum of PIBSA shows an absorption band at 1785 cm−1 due to the carbonyl groups of 

succinic anhydride (SA). After reaction, the absorption at 1785 cm−1 disappeared and a new  

peak appeared at cm in Trace B due to the succinimide carbonyls. 
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A) 

B) 

C) 

Figure 1. FT-IR spectra of A) dehydrated PIBSA, B) b-PIBSI-PEHA, and C) Mb-PIBSI-

PEHA. 

Modification of the Polyisobutylene Succinimide (Mb-PIBSI) Dispersants. The post-

modification of all b-PIBSI dispersants was conducted in the same manner and is described in 

detail for b-PIBSI-PEHA. b-PIBSI-PEHA (0.50 g, 77 mol) and EC (0.14 g, 1.54 mmol) were 

mixed with a 1:5 excess molar ratio of secondary amines-to-EC. The mixture was then 

dissolved in xylene (1.00 g, 1.14 mL) and TEA (0.50 g, 0.69 mL). The modification reaction 

was carried out in a sealed reaction vessel since EC tends to evaporate at the temperature used 

for the modification reaction. Furthermore, the reaction mixture was degassed with nitrogen 

for 15 minutes before the reaction and after each sampling of the reaction mixture made to 

monitor the reaction progress. After degassing, the mixture was heated to 160 oC and kept at 

this temperature for 24 h. Aliquots were withdrawn over time through a rubber septum tightly 

fastened to the reaction vessel to follow the reaction progress. After completion, the reaction 
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product was washed with 20 mL of distilled water three times. Finally the product was dried 

in a vacuum oven at 70 oC overnight. The main features of its FTIR spectrum shown as Trace 

C in Figure 1 will be discussed later. 

Gel Permeation Chromatography (GPC). A Viscotek GPC max VE 2001 instrument 

equipped with a Viscotek TDA 305 triple detector array comprised of a refractive index, 

viscosity, and light scattering detector was used. The samples were passed through a 

divinylbenzene mixed bed Polyanalytik column. Tetrahydrofuran (THF) was used as the 

solvent at a flow rate of 1.0 mL/min. All samples were filtered using a 0.2 μm Millipore 

polytetrafluoroethylene (PTFE) filter before injection and the sample concentration was less 

than 10 mg/mL. Due to their low molecular weight (< 6,000 g.mol), the polyisobutylene 

samples used in this study did not scatter light strongly enough to yield a reliable light 

scattering signal and the light scattering detector of the GPC instrument could not be used to 

determine their absolute molecular weight. Instead the GPC instrument determined the 

apparent molecular weight of the polyisobutylene samples as it was calibrated with 

polystyrene standards. 

The GPC trace obtained for PIBSA, b-PIBSI-PEHA, and Mb-PIBSI-PEHA are shown 

in Figure S2. PIBSA eluted at an elution volume (Vel) of 25 mL. GPC analysis of the product 

of the reaction between 1 molar equivalent (meq) of a polyamine like PEHA and 2 meq of  

PIBSA yielded a main peak in Figure S2 that was shifted to a lower elution volume (Vel = 23 

mL) compared to PIBSA reflecting the expected increase in molecular weight. From the 

overlaying of the GPC traces obtained for b-PIBSI-PEHA (trace B) and Mb-PIBSI-PEHA 

(trace C) in Figure S2, it could be concluded that modification of the PIBSI dispersants with 

EC did not affect their molecular weight distribution. 
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RESULTS AND DISCUSSION 

Proton Nuclear Magnetic Resonance (1H NMR). PIBSA was used as the starting material in 

the synthesis of Mb-PIBSI. PIBSA was reacted with DETA, TETA, TEPA, and PEHA to 

produce a series of b-PIBSI dispersants which were post-modified with EC to generate Mb-

PIBSI. The 1H NMR spectra of PIBSA, b-PIBSI-TEPA, and Mb-PIBSI-TEPA are shown in 

Figure S3. In the spectrum of PIBSA presented in Figure S3A, the peaks at 2.6 and 3.3 ppm 

represent the protons in the succinic anhydride ring. After reaction with a polyamine, these 

peaks shifted to 2.5 and 3.0 ppm in Figure S3B, and new peaks appeared at 2.8 and 3.5 ppm 

representing the ethylene protons in the polar core of the b-PIBSI dispersant. In all polymer 

samples, the peaks at 1.1 and 1.4 ppm (not shown in Figure S3) represent, respectively, the 

methylene and the methyl protons of the PIB backbone obtained in a 1:3 ratio. The peak at 5.5 

ppm was found for all polymer samples and might be due to the presence of vinyl groups 

generated during the Alder-ene reaction of PIBSA as inferred from a detailed  NMR  

characterization of PIBSA samples.17 The sharp peaks at 2.25 and 2.3 ppm in Figure S3C are 

due to traces of xylene. The assignment of the 1H NMR spectrum of Mb-PIBSI-TEPA (Figure 

S3C) was done by comparing it to that of HEDBC (Figure S1). The two peaks at 3.8 and 4.2 

ppm found in the 1H NMR spectrum of Mb-PIBSI-TEPA correspond to the methylene 

protons in the carbamate side chain, with a same chemical shift as that found in the 1H NMR 

spectrum of HEDBC in Figure S1. In the spectrum of MbPIBSITEPA, the peak at 2.8 ppm 

was reduced and the peak at 3.5 ppm was enlarged as the environment of the methylene 

protons in the α position to the central carbamate became similar to that of the methylene 

protons in the α position to the succinimide groups. Based on 1H NMR, modification of b-

PIBSI-DETA and b-PIBSI-TETA was inefficient, showing no peak at 3.8 and 4.2 ppm after  
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reaction with EC as shown in Figures S4A and S4B. The fact that modification was successful 

with b-PIBSI-TEPA and b-PIBSI-PEHA (Figures S4C and S4D) which both have a longer, 

and thus more accessible, polyamine spacer suggests that the absence of reaction observed 

with b-PIBSI dispersants having a shorter linker might be the result of steric hindrance.  

In an ideal case, when all secondary amines have reacted, 1H NMR spectroscopy can 

be used to determine the exact yield of the modified dispersants. But in practice, there remain 

some unreacted secondary amines in the polyamine linker that might cause aggregation due to 

H-bonding between the secondary amine protons and the succinimide carbonyls, and lead to 

distortion by broadening of the 1H NMR peaks due to slower tumbling. Equation 2 was 

applied to calculate the modification yield of b-PIBSI dispersants by using the number of 

urethane moieties (NUR) generated in the polyamine linker per number of isobutylene 

monomers (NIB). 

NUR( )RealNIBYield%  (2)  
NUR( )IdealN IB 

According to our previous paper,20 the ratio of succinimide moiety to NIB in a b-PIBSI 

molecule equals 1:52 for b-PIBSI dispersants, but distortion of the 1H NMR spectra due to 

aggregation of the dispersants resulted in an apparent 1:32 ratio based on integration of the 1H 

NMR peaks. Thus (NUR/NIB)Ideal in Equation 2 equals m (NSI/NIB) where m represents the 
2 

number of secondary amines in the polymer linker and NSI/NIB equals 1:52 or 1:32 assuming 

that aggregation of the dispersants does not or does occur, respectively. Assuming no 

aggregation, reaction yields of 106 ± 2 % and 95 ± 1 % were calculated for Mb-PIBSI-TEPA 
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and Mb-PIBSI-PEHA, respectively, suggesting complete modification of the secondary 

amines of the polyamine linker. On the other hand, reaction yields of 66 ± 2 % and 62 ± 2 % 

were calculated for Mb-PIBSI-TEPA and Mb-PIBSI-PEHA, respectively, assuming 

aggregation of the dispersant and using the apparent NSI/NIB ratio equal to 1:32. As it turns 

out, fluorescence quenching experiments described later on demonstrate unambiguously that 

complete modification of the secondary amines did not occur, but that partial modification of 

the secondary amines took place in a proportion similar to what was determined by 1H NMR 

assuming aggregation of the modified dispersants. 

Fourier Transform Infrared (FTIR). FTIR spectra were obtained for the b-PIBSI and Mb-

PIBSI dispersants. The peak at 1705 cm characteristic of the succinimide or carbamate 

carbonyls was monitored in terms of its band intensity Imax (with respect to the signal at 1390 

cm) and full width at half maximum (FWHM). The results presented in Table 2 showed that 

b-PIBSI-DETA, b-PIBSI-TETA, b-PIBSI-TEPA, and b-PIBSI-PEHA have a larger Imax and 

FWHM in comparison to b-PIBSI-HMDA due to intermolecular aggregation induced by H-

bonding between the secondary amines of the spacer and the succinimide carbonyls (Figure 1 

and Table 2).20 Furthermore, the FTIR results for Mb-PIBSI-DETA and Mb-PIBSI-TETA did 

not show any changes in Imax and FWHM within experimental error when compared to their 

unmodified analogs as expected since 1H NMR analysis indicated that EC modification did 

not proceed with these two samples. The FTIR results for Mb-PIBSI-TEPA and Mb-PIBSI-

PEHA indicated that Imax and FWHM for the peak at 1705 cm became larger after 

modification (Figure 1 and Table 2). This analysis confirmed the successful modification of 

the b-PIBSI dispersants prepared with a longer polyamine linker observed by 1H NMR. The 

increase in Imax and FWHM results from the increased number of carbonyl groups found in 
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the polar core of these dispersants after EC modification. The summary of the Imax and 

FWHM values for the b-PIBSI dispersants before and after modification is shown in Table 2. 

-1I (1705 cm )
Table 2. Maximum peak intensity ( max 

-1 ) and full width half max (FWHM) values 
I (1390 cm )max 

calculated from FTIR spectrum.  

Polymer 
)(1390 cmI 

)(1705 cmI 
-1 

max 

-1 
max FWHM Polymer 

)(1390 cmI 

)(1705 cmI 
-1 

max 

-1 
max 

FWHM 

b-PIBSI-HMDA 0.35 13 

b-PIBSI-DETA 0.54 14 Mb-PIBSI-DETA 0.49 15 

b-PIBSI-TETA 0.53 16 Mb-PIBSI-TETA 0.51 16 

b-PIBSI-TEPA 0.49 16 Mb-PIBSI-TEPA 0.64 26 

b-PIBSI-PEHA 0.52 20 Mb-PIBSI-PEHA 0.65 35 

Steady-State and Time-Resolved Fluorescence Measurements. Fluorescence was applied to 

estimate the level of modification of the Mb-PIBSI dispersants. The intrinsic fluorescence of 

the succinimide groups has been shown to be efficiently quenched by the secondary amines of 

the polyamine spacer of b-PIBSI dispersants.20 Since the EC modification of PIBSI 

dispersants replaces the secondary amines of the b-PIBSI polyamine linker by urethane 

functions, the ability of a urethane group to quench the fluorescence of succinimide moieties 

was determined by monitoring the fluorescence of N-methylsuccinimide (N-MSI) as a 

function of 2-hydroxyethyl N,N-dibutylcarbamate (HEDBC) concentration in THF. Figure 2A 

for the steady-state fluorescence spectra and Figure 2B for the time-resolved fluorescence 

decays showed that addition of up to 0.3 M HEDBC to the N-MSI solution resulted in a 

smaller than 50% decrease in the fluorescence intensity (I) and number average lifetime 

<>.20 By comparison, quenching of the fluorescence of N-MSI by 0.3 M diethylamine (DEA) 
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would have resulted in a much more pronounced 88% decrease in I and a 78% reduction in 

<>.20 The pre-exponential factors and decay times retrieved from the multiexponential 

analysis of the fluorescence decays are reported in Table S1 in SI. The spectra and decays  

shown in Figures 2A and 2B were then used to determine the ratios I0/I and <>0/<> which 

were then plotted as a function of HEDBC concentration in Figure 2C. I0 and <>0 represent 

the fluorescence intensity and number average lifetime of N-MSI in the absence of HEDBC. 

The trends obtained in Figure 2C with I0/I and <>0/<> yield similar straight lines which 

suggested that little static quenching occurred contrary to what was observed for the 

quenching of N-MSI by DEA.20 The similar lines observed for the I0/I and <>0/<> trends 

reflect the absence of static quenching and thus aggregation between MSI and HEDBC. It also 

indicates that the propensity of the hydroxyl proton of HEDBC to H-bond with the carbonyls 

of N-MSI is much weaker than the amine proton of DEA. The slope obtained for <>0/<> in 

Figure 2C can be used to determine the quenching rate constant (kQ) found to equal 2.5 ± 

0.2×108 M.s, 7 times smaller than the kQ value of 17.4 ± 0.2×108 M.s obtained for the 

quenching of N-MSI by DEA indicating that the urethane moiety of HEDBC constitutes a 

much weaker quencher for N-MSI compared to the secondary amine of DEA. The substantial 

reduction in quenching observed from DEA to HEDBC should lead to obvious changes in the 

fluorescence response of the succinimide moieties found in the b-PIBSI dispersants after 

modification of their secondary amines by EC. 
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HEDBC 

DEA 

Figure 2. A) Steady-state fluorescence spectra and B) fluorescence decay of N-MSI quenched 

with HEDBC in THF. C) Stern-Volmer plot for the quenching of N-MSI with HEDBC ((■) 

I0/I and (●) <>0/<>) and DEA ((□) I0/I and (○) <>0/<>) in THF. From top to bottom: 

The HEDBC concentrations in Figure 2A and 2B varied from 0 M to 0.3 M. (CNMSI 0.45 

mol/L, ex = 360 nm, em = 428 nm). 

This was indeed observed in Figures 3A and B where the fluorescence intensity 

increased after modification of the b-PIBSI dispersants with EC. Beside transforming the 

strongly quenching secondary amines into weakly quenching urethanes, EC modification of 

the secondary amines of the b-PIBSI dispersants strongly reduced the ability of the Mb-PIBSI 

dispersants to aggregate, and thus the ability of the unreacted secondary amines to quench the 

fluorescence of the SI units of the dispersants. These combined effects associated with EC 

modification led to the partial recovery of the fluorescence of the SI units in Figures 3A and 

B. However the increase in fluorescence intensity shown in Figures 3A and B was quite 

minor compared to what would have been expected based on the reduction in fluorescence 

quenching observed in Figure 2C upon replacing a secondary amine by a urethane group. In 

fact, the complete modification of the secondary amines in the linker into urethane groups 

should have resulted in an increase in the fluorescence intensity of MbPIBSITEPA and 
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Mb-PIBSI-PEHA corresponding to 81% and 77% of the fluorescence intensity of b-PIBSI-

HMDA shown as a reference in Figure 3. The fact that this was not observed led to the 

conclusion that not all secondary amines in b-PIBSI-TEPA and b-PIBSI-PEHA had been 

modified upon reaction with EC. This conclusion was further supported from the visual 

inspection of the fluorescence decays of MbPIBSI-TEPA and Mb-PIBSI-PEHA which 

showed hardly any difference with the dispersants before modification.   

The fluorescence spectra and decays shown in Figures 3A–D were analyzed to 

determine the corresponding fluorescence intensity I and number average lifetime <> for 

Mb-PIBSI-TEPA and Mb-PIBSI-PEHA. The pre-exponential factors and decay times 

retrieved from the decay analysis have been listed in Table S2.  Using b-PIBSI-HMDA as a 

reference for the I0 and <>0 values of unquenched succinimide groups in b-PIBSI dispersants 

as done in an earlier publication,20 the ratios  I0/I and <>0/<> for the two modified  

dispersants were plotted in Figure 4 as a function of the number of secondary amines in the 

linker, along the I0/I and <>0/<> ratios which were obtained earlier for the unmodified 

dispersants b-PIBSI-DETA, b-PIBSI-TETA, b-PIBSI-TEPA, and b-PIBSI-PEHA.20 The same 

trends were obtained in dodecane, THF, and dodecanone. The <>0/<> ratios showed minor 

differences for the dispersants before and after modification. The I0/I ratios showed more 

substantial changes but took values that were much larger than unity contrary to what was 

expected if the EC modification had been complete.   
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A) 

b-PIBSI-HMDA 

b-PIBSI-TEPA 

Mb-PIBSI-TEPA 

B) 
b-PIBSI-HMDA 

b-PIBSI-PEHA 

Mb-PIBSI-PEHA 

C) 

b-PIBSI-HMDA 

b-PIBSI-TEPA 
= 

Mb-PIBSI-TEPA 

D) 

b-PIBSI-HMDA 

b-PIBSI-PEHA 
= 

Mb-PIBSI-PEHA 

Figure 3. Steady-state fluorescence spectra (A and B) and time-resolved fluorescence decays 

(C and D). From top to bottom A) and C): b-PIBSI-HMDA, Mb-PIBSI-TEPA, and b-PIBSI-

TEPA dispersants in dodecane and B) and D): b-PIBSI-HMDA, Mb-PIBSI-PEHA, and b-

PIBSI-PEHA dispersants in dodecane. (λex = 360 nm, em = 428 nm) 
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Figure 4. (●) I0/I and (■) <>0/<> of b-PIBSI dispersants and (○) I0/I and (�) <>0/<> of 

Mb-PIBSI dispersants versus number of secondary amines, in A) dodecane, B) THF, C) 

dodecanone. 

The poor recovery in fluorescence signal observed after the EC modification of the 

polyamine linkers was attributed to the incomplete transformation of the secondary amines in 

the linker into urethane groups. In turn, the unreacted secondary amines could H-bond 

effectively with the carbonyls of the succinimide and urethane groups, resulting in a 

substantial static quenching as observed from the different I0/I and <>0/<> ratios. The I0/I 

ratio probes both the static and dynamic quenching of the succinimide groups and its 

expression is provided in Equation 3. Because I0/I responds to both types of quenching, it is 

much more sensitive than the ratio <>0/<> that is influenced by dynamic quenching only. 

Therefore, the I0/I ratio was selected to probe the effect that EC modification of the PIBSI  

secondary amines would have on the efficiency of quenching. 
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I M0 1 ( K [Q]  (1 ) K [Q] ) (3)  SV 0 SV 0 

I 

In Equation 3, I0 and I represent the fluorescence intensity of b-PIBSI-HMDA and that 

of the modified dispersants, respectively. The constants KSV (=  KS+KD) and KM
SV are the  

Stern-Volmer constants resulting from dynamic (KD) and static quenching (KS) of the 

unmodified and modified dispersants, respectively. [Q]0 corresponds to the local concentration 

of secondary amines in the unmodified b-PIBSI dispersant and is equal to m/Vcore where m 

and Vcore are, respectively, the number of secondary amines (m) in the polyamine spacer of the 

dispersant and the core volume (Vcore) which is assumed to be the same for our dispersants. 

The fraction α represents the molar fraction of unreacted secondary amines in the polyamine 

linker remaining after EC modification. The fraction α after EC modification was retrieved by 

rearranging Equation 3 into Equation 4. 

I K K M K0 SV SV SV1  m(  (1 ) )  m(  (1 ) K ') (4)  
V K VI core SV core 

K
In Equation 4, SV is the slope of the plot I0/I versus the number of amines obtained 

Vcore 

K
for unmodified dispersants shown in Figure 4. SV was found to equal 0.96 ± 0.01 for the 

Vcore 

K M 

b-PIBSI dispersants in  THF, but the ratio  SV in Equation 4 is unknown. Therefore,  K’ 
KSV 

whose expression is given in Equation 5 was used to calculate α. K’ can be approximated by 

HEDBC DEAtaking the ratio of for HEDBC to for DEA obtained in THF whose values K SV K SV 
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have been listed in Table 3. This derivation takes advantage of the similarity in chemical 

composition between DEA and the secondary amines in the polyamine linker of the b-PIBSI 

dispersants on the one hand and between HEDBC and the urethane groups on the other hand. 

Based on the data listed in Table 3, the K’ value was found to equal 0.079 ± 0.001. 

M HEDBCK KSV SVK '   (5)  
K K DEA 

SV SV 

Table 3. Ksv constants obtained from Stern-Volmer plot resulting from quenching of N-MSI 

by DEA, TEA, and HEDBC in THF. 

Name KSV (M1) 

DEA 25.17 ± 0.01 

TEA 25.08 ± 0.02 

HEDBC 1.98 ± 0.02 

Application of this procedure to the I0/I ratios shown in Figure 4 for Mb-PIBSI-TEPA 

and Mb-PIBSI-PEHA yielded an α value in Equation 4 of 0.4 and 0.3, respectively, 

suggesting that 60± 1 and 70 ± 1 % of the secondary amines had reacted (Table 4). 

Incidentally, this conclusion agrees remarkably well with the findings by 1H NMR that 66 ± 2 

and 62 ± 2 % of all secondary amines in the polyamine linker of, respectively, Mb-PIBSI-

TEPA and Mb-PIBSI-PEHA had reacted when assuming that dispersant association took 

place in solution and assuming an apparent NSI/NIB ratio of 1:32. The fact that none of the one 

and two secondary amines in the linker of, respectively, b-PIBSI-DETA and b-PIBSI-TETA 

reacted with EC, and that about one of the three secondary amines of b-PIBSI-TEPA and one 

of the four secondary amines of b-PIBSI-PEHA did not react with EC strongly suggests that 

steric hindrance as well as H-bonding with succinimide carbonyls must contribute to lowering 
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the extent of EC modification. This conclusion agrees with all experimental evidence obtained 

thus far such as the difficulty in using 1H NMR and FTIR to determine the extent of 

modification in the Mb-PIBSI dispersants due to the existence of strong H-bonds, and the 

fluorescence quenching experiments that clearly demonstrate that not all secondary amines 

have reacted with EC. The higher reactivity of the secondary amines of Mb-PIBSI-PEHA is 

attributed to their better accessibility to, and thus better reactivity with EC. 

Table 4. Number of unreacted secondary amines and level of modification for Mb-TEPA and 

Mb-PEHA in THF determined by fluorescence quenching measurements. 

Dispersant # of unreacted secondary 
amines 

Level of Modification 

Mb-PIBSI-TEPA 1.21 ± 0.04 60 ± 1% 

Mb-PIBSI-PEHA 1.13 ± 0.03 70 ± 1% 

Adsorption of b-PIBSI Dispersants onto Carbon Black Particles. After having characterized 

the extent of EC modification applied to the b-PIBSI dispersants, the adsorption of the oil-

soluble dispersants b-PIBSI-DETA, b-PIBSI-TEPA, b-PIBSI-PEHA, Mb-PIBSI-TEPA, and 

Mb-PIBSI-PEHA onto carbon black particles (CBPs) used as models for the ultrafine 

particles (UFPs) generated in engine oil was investigated in dodecane. Since the construction 

of adsorption isotherms always requires the knowledge of the quantity of unbound ligand, 

earlier reports used the absorption of a pH-indicator to determine the concentration of 

secondary amines, and thus dispersant molecules in the solution.18,19 But since pH-indicators 

are usually water-soluble weak acids or bases that cannot dissolve in hexane, the procedure 

required a change of solvent from hexane where the adsorption measurements were conducted 
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to THF where the unbound dispersant concentration was determined from the absorption 

response of the pH-indicator. This procedure also limited the choice of a workable apolar 

solvent since it needed to be evaporated off to be replaced by more polar THF where the pH 

indicator was soluble. By contrast, fluorescence of the succinimide groups of the dispersants 

offers a means to determine the concentration of unbound dispersant in the same solvent 

where the adsorption measurements were carried out, down to extremely low dispersant 

concentrations by taking advantage of the extraordinary sensitivity of fluorescence. 

A number of precautions needed to be taken when conducting these fluorescence 

experiments. First, while absorption is an absolute measurement, fluorescence only provides 

quantitative information with respect to a reference. Consequently, all fluorescence 

measurements on dispersant solutions were benchmarked against the fluorescence signal of a 

standard which was a 2.8×10 M 1-pyrenemethanol solution in methanol that was degased, 

sealed, and kept in the dark for the duration of these experiments. Second, a small fraction of 

the succinimide chromophore was found to photobleach upon irradiation in the 

spectrofluorometer. While photobleaching could not be detected after acquisition of a single 

fluorescence spectrum, repeated irradiation for successive acquisition of the fluorescence 

spectra led to a noticeable decrease in fluorescence intensity. Consequently, each dispersant 

solution was discarded after acquisition of its fluorescence spectrum.  

Following this procedure, calibration curves were generated by plotting the 

fluorescence intensity of the solution normalized to that of the standard against the 

concentration of PIBSI dispersant. The calibration curves are shown in Figure S5. The slope 

of these lines could be used as a massic fluorescence coefficient (MFC) to retrieve the 

concentration of an unknown b-PIBSI dispersant. Table 5 lists the values  of the MFCs  

24 



 

 

  

   

  

  

 

 

 

 

  

  

  

 

 

  

   

   

 

  

 

obtained for the b-PIBSI dispersants. As the secondary amine content of the spacer increased, 

the MFC decreased as expected since secondary amines were found to quench the 

succinimide fluorescence.20 EC modification increased the MFC of the modified dispersants 

Mb-PIBSI-TEPA and Mb-PIBSI-PEHA to a level close to that of bPIBSI-DETA. This result 

is reasonable since those two modified dispersants were found to retain one unreacted 

secondary amine (Table 4) making their secondary amine content similar to that of b-PIBSI-

DETA. 

Table 5. Summary of the massic fluorescence coefficients (MFC) calculated from steady-

state measurements in dodecane. (λex = 360 nm) 

Polymer 
MFC 

(L. g1) 
Polymer 

MFC 
(L.g1) 

b-PIBSI-DETA 16.6 ± 0.5 

b-PIBSI-TEPA 14.1 ± 0.2 Mb-PIBSI-TEPA 17.1 ± 0.0 

b-PIBSI-PEHA 8.6 ± 0.1 Mb-PIBSI-PEHA 15.5 ± 0.7 

The MFCs could be used to determine the concentration of unbound dispersants in the 

adsorption experiments which were conducted as follows. A 3 g/L dispersant solution was 

prepared in dodecane and masses of 0.01 to 0.4 g of CBPs were added to the solutions. The 

solutions were agitated at room temperature for 24 h, long enough for the solutions to reach 

equilibrium.18 The solids were then filtered through 0.2 m Millipore Teflon filters and each 

sample was weighed to determine the solution volume from the known density of dodecane 

(0.78 g.mL1). The fluorescence emission of the b-PIBSI and Mb-PIBSI dispersant solutions 

were measured at 420nm and it was converted to the concentration of unbound dispersant Ceq 
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using the corresponding MFC value. The amount of adsorbed dispersant at equilibrium per 

unit surface of CBPs () expressed in mol/m2 was calculated using Equation 6, 

(Co  Ceq)  V 
Γ  (6)  

m  A 

where C0 and Ceq represent the initial dispersant concentration and the equilibrium 

concentration of unbound dispersant after adsorption, respectively, V is the volume of the 

solution, m is the mass of CBPs, and A (= 764 m2/g) is the surface area of the CBPs.18 

Two concentration regimes could be identified for the adsorption isotherms of the 

bPIBSI dispersants onto the CBPs as shown in Figure 5. At low Ceq, binding of dispersant 

molecules occurs at single sites on the CBPs surface. As those sites become occupied, 

additional surfactant molecules adsorb on top of already adsorbed dispersant molecules 

leading to multilayer coverage of the CBPs that is associated with the precipitous increase in 

 observed for larger Ceq values (Ceq > 400 mmol/m3) in Figure 5. Consequently, the binding 

equilibrium constant of the b-PIBSI dispersants onto single sites at the surface of CBPs could 

be determined from the analysis of the  values in the concentration regime corresponding to 

the low Ceq values.19,25 

The binding isotherms Γ of  b-PIBSI-DETA, b-PIBSI-TEPA, and b-PIBSI-PEHA are 

shown in Figure 5 where Γ was plotted  as a function  of  Ceq to study the contribution of the 

different polyamine spacers on adsorption. For all three dispersants, the adsorption isotherm 

or the amount of dispersant adsorbed onto the CBPs increased as more dispersant was added 

to the solutions. For a given concentration of free dispersant in dodecane, b-PIBSI-DETA had 
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the largest amount of dispersant adsorbed onto the CBPs, followed by b-PIBSI-TEPA and b-

PIBSI-PEHA. 

Figure 5. Adsorption isotherms in dodecane of (●) b-PIBSI-PEHA, (○) Mb-PIBSI-PEHA, 

(♦) b-PIBSI-TEPA, (◊) Mb-PIBSI-TEPA, and (■) b-PIBSI-DETA dispersants onto CB 

particles. [dispersant] = 3 g.L 

Comparison of the adsorption isotherms of the different PIBSI dispersants was 

conducted with the Langmuir model, which only handles the binding of the dispersants at low 

coverage of CBPs. To this end, Equation 7 was applied. In Equation 7, Γmax is the maximum 

amount of dispersant adsorbed per unit area and K is the binding constant of the adsorption 

process. 

maxKCeq
     (7)  

1 KCeq 
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Γmax and K were retrieved by rearranging Equation 7 into Equation 8. The simple 

Langmuir model could not fit the whole concentration range shown in Figure 5 for b-PIBSI-

DETA, b-PIBSI-TEPA, and b-PIBSI-PEHA since multiple binding regimes were observed 

from the low to high end of the Ceq range. Therefore, Equation 8 was only used to fit the 

linear region of Figure 6A corresponding to the larger 1/Ceq values as shown in Figure 6B. 

1 1 1
     (8)  

  KCeq max max 

A) B) 

Figure 6. Plot of 1/Γ versus 1/Ceq over A) the entire range of dispersant concentrations and B) 

the linear part corresponding to the lower dispersant concentrations fitted to Equation 8 for 

(●) b-PIBSI-PEHA, (♦) b-PIBSI-TEPA, and (■) b-PIBSI-DETA dispersants in dodecane. 

The Γmax and K values retrieved by fitting the data shown in Figure 6B with Equation 8 

are listed in Table 6. The results indicate that the binding constant K increased strongly with 

the number of secondary amines in the polar core of b-PIBSI dispersants. The amount of 

dispersant needed to saturate the adsorption sites Γmax decreased with increasing number of 
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amines. Based on the K values, these trends indicate that the dispersants bind more strongly to 

the CBPs when the dispersants contain a higher number of secondary amines. 

Table 6. Γmax and K values retrieved by fitting the data shown in Figures 6 and 7 with 

Equation7. 

Dispersant Solvent Γmax×1010 (mol/m2) K (m3/mol) 

b-PIBSI-DETA dodecane 464 ± 29 54 ± 1 

b-PIBSI-TEPA dodecane 233 ± 6 268 ± 1 

b-PIBSI-PEHA dodecane 211 ± 6 412 ± 1 

Mb-PIBSI-TEPA dodecane 260 ± 1 239 ± 1 

Mb-PIBSI-PEHA dodecane 307 ± 8 130 ± 1 

The binding isotherms of b-PIBSI-TEPA and b-PIBSI-PEHA were also compared to 

those given in Figure 7 for Mb-PIBSI-TEPA and Mb-PIBSI-PEHA, respectively. The results 

in Table 6 indicate that the binding constant K decreased for b-PIBSI-TEPA and b-PIBSI-

PEHA after modification. Urethane groups were found to decrease the drive for Mb-PIBSI 

dispersants to adsorb on the surface of CBPs. Since Mb-PIBSI-PEHA had a higher fraction of 

modified secondary amines, the decrease was more pronounced for Mb-PIBSI-PEHA than for 

Mb-PIBSI-TEPA. The amount of dispersant needed to saturate the adsorption sites Γmax 

increased after modification. In effect, EC modification of b-PIBSI-TEPA and b-PIBSI-

PEHA generated dispersants whose adsorption onto CBPs was more akin to that of b-PIBSI-

DETA with smaller K and larger Γmax values compared to the values obtained with the non-

modified dispersant analogues. Overall, these trends indicate that the binding of the 
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dispersants onto CBPs is more efficient before modification as expected, since the purpose of 

the modification is to decrease the basicity of the solution and not increase the ability of the 

dispersants to adsorb onto carbonaceous particulate matter. 

A) B) 

Figure 7. Plot of 1/Γ versus 1/Ceq for A) (♦) b-PIBSI-TEPA and (◊) Mb-PIBSI-TEPA, and B) 

(▲) b-PIBSI-PEHA and (Δ) Mb-PIBSI-PEHA dispersants in dodecane. Inserts: Linear part of 

the plot in Figures 7A) and B) corresponding to the lower dispersant concentrations fitted to 

Equation 8 for A) (♦) b-PIBSI-TEPA and (◊) Mb-PIBSI-TEPA and B) (▲) b-PIBSI-PEHA 

and (Δ) Mb-PIBSI-PEHA dispersants in dodecane. 

CONCLUSIONS 

Four b-PIBSI dispersants were prepared and the secondary amines in their polyamine core 

were modified by reaction with ethylene carbonate (EC). Successful modification of the 

dispersants was assessed by visual inspection of the 1H NMR and FTIR spectra, but 

quantitative analysis of these spectra to extract the extent of secondary amine modification 

was complicated by inherent distortions of the spectra due to H-bonding between unreacted 
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secondary amines and succinimide carbonyls. The existence of unreacted secondary amines in 

the polyamine core of the Mb-PIBSI dispersants was unambiguously demonstrated by 

fluorescence measurements. As demonstrated in an earlier report,20 secondary amines quench 

the fluorescence of succinimide groups very efficiently. However, quenching of succinimide 

moieties by urethane groups is much less efficient. Consequently, complete modification of 

secondary amines with EC was expected to result in a substantial increase in succinimide 

fluorescence for the Mb-PIBSI dispersants. This increase in fluorescence intensity would have 

been 216 and 271 % for Mb-PIBSI-TEPA and Mb-PIBSI-PEHA, respectively. Instead, a 

rather low 42 and 71 % increase in fluorescence intensity was observed for Mb-PIBSI-TEPA 

and Mb-PIBSI-PEHA, respectively. This result led to two conclusions. First, a substantial 

fraction  of secondary amines did not react with EC during the modification reaction. 

Second, fluorescence quenching experiments with the succinimide moieties should enable the 

determination of the level of modification of the b-PIBSI dispersants. 

With this in mind, the fluorescence signal retrieved from the partially modified Mb-

PIBSI dispersants was analyzed to account for the reduction in fluorescence quenching 

experienced by the succinimide pendants when secondary amines were replaced by urethane 

groups. This analysis took advantage of the similarity in chemical structure between small 

organic molecules (DEA and HEDBC) and the secondary amines and urethane species found 

in the polyamine linker. The Stern-Volmer (KSV) constants obtained for the quenching of N-

methyl succinimide by DEA and HEDBC were used to estimate the KSV constant for the 

quenching of succinimide groups in Mb-PIBSI dispersants by urethane functions.  In turn, this 

information was used to determine that 60 and 70% of the secondary amines of b-PIBSI-

TEPA and b-PIBSI-PEHA had reacted with EC. This result was in good agreement with an 
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estimate of the level of secondary amine modification obtained by 1H NMR assuming 

association of the Mb-PIBSI dispersants in solution. The partial reaction of the secondary 

amines was attributed to steric hindrance due to the presence of the bulky succinimide and 

urethane groups as well as H-bonding between secondary amine protons and succinimide 

carbonyls. 

After having quantified the extent of modification in the Mb-PIBSI dispersants, their 

ability to adsorb onto the surface of carbon black particles (CBPs), used as mimics of the 

carbonaceous ultrafine particles (UFPs) found in engine oils, was compared to that of their 

unmodified analogs. The binding constants retrieved for the Mb-PIBSI dispersants were 

smaller than those of the unmodified dispersants suggesting that the modification had reduced 

their ability to act as colloidal stabilizers in oil. Together, these results illustrate that 

fluorescence quenching experiments can be employed to quantify the level of EC 

modification in b-PIBSI dispersants and how this modification affects the ability of 

dispersants to stabilize the UFPs generated in engine oils. 
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FTIR and 1H MNR spectra of PIBSA, b-PIBSI, and Mb-PIBSI dispersants, 1H MNR spectra 

of dibutylamine (DBA) and 2-hydroxyethyl N,N-dibutylcarbamate (HEDBC), steady-state 

calibration curve of PIBSA, b-PIBSI, and Mb-PIBSI dispersants in dodecane and tables of 

pre-exponential factors and decay times retrieved from the analysis of the fluorescence decays 

32 



 

  

 
 
 
 
 

 

    

 

  

  

 

  

 

 

 

 

 

with a sum of exponentials. This information is available free of charge via the Internet at 

http://pubs.acs.org. 
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