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Abstract 

Over 60 proteins have been detected in the tear film and among these lysozyme has attracted 

the greatest attention. Several techniques for elucidating the identity, quantity and 

conformation of lysozyme deposited on soft contact lenses have been developed. Lysozyme 

also deposits on the newly introduced silicone hydrogel (SH) lens materials, but in extremely 

low levels compared to conventional hydrogel lenses. Hence, a major analytical complication 

with the study of the SH contact lens materials relates to the minute quantity of deposited 

lysozyme.  

 

The first project of this thesis involved the development of a method whereby lysozyme mass 

extracted from SH lens materials would be preserved over time and would be compatible 

with an optimized Western blotting procedure. This methodological development was 

incorporated into a clinical study (CLENS-100® and Silicone Hydrogels – CLASH study) 

wherein the difference in the degree of total protein, the difference in lysozyme deposition 

and activity recovered from lotrafilcon A SH lens material when subjects used surfactant 

containing rewetting drops (CLENS-100®) versus control saline was investigated. The 

remaining experiments were in vitro experiments wherein the lenses were doped in artificial 

lysozyme solution containing 125I-labeled lysozyme. These experiments were performed to 

gain insight into the kinetics of lysozyme deposition on SH lens materials and also the 

efficacy of a reagent in extracting lysozyme from SH lens materials. 
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A protocol was developed whereby the percentage loss of lysozyme mass found on 

lotrafilcon A SH lenses was reduced from approximately 33% to <1% (p<0.001), following 

extraction and resuspension. The results from the CLASH study demonstrated that when 

subjects used a surfactant containing rewetting drop instead of a control saline drop total 

protein deposition (1.2±0.7 µg/lens versus 1.9±0.8 µg/lens, p<0.001), lysozyme deposition 

(0.7±0.5 µg/lens versus 1.1±0.7 µg/lens, p<0.001) and percentage lysozyme denaturation 

(76±10% versus 85±7%, p=0.002) were all reduced. The results from the kinetics study 

demonstrated that lysozyme accumulated rapidly on etafilcon A lenses (1 hr, 98±8 µg/lens), 

reached a maximum on the 7th day (1386±21 µg/lens) and then reached a plateau (p=NS). 

Lysozyme accumulation on FDA Group II and SH lenses continued to increase across all 

time periods, with no plateau being observed (p<0.001). The results from the extraction 

efficiency study showed that 0.2% trifluoroacetic acid/ acetonitrile was 98.3±1.1% and 

91.4±1.4% efficient in extracting lysozyme deposited on etafilcon A and galyfilcon lenses, 

while the lysozyme extraction efficiency was 66.3±5.3 % and 56.7±3.8% for lotrafilcon A 

and balafilcon lens materials (p<0.001).  

 

The results from these studies re-emphasize that novel SH lens materials are highly resistant 

to protein deposition and demonstrate high levels of biocompatibility.  
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1 Introduction 

The use of artificial materials (or “biomaterials”) within the body as replacement 

prostheses 1 has seen a rapid rise over the past fifteen years. As a consequence, the study 

of interactions between implantation materials and body tissues has become increasingly 

important. Once inserted, the “biomaterial” undergoes various interactions with the host 

biological environment and the “biocompatibility” of the given material depends upon 

many factors, related to both the host and implanted material. To date, the biomaterial to 

receive the greatest clinical exposure is the soft contact lens.  

 

Contact lenses suffer from the same problems of deposition that other biomaterials 

exhibit, being rapidly coated with a variety of proteins, lipids and mucins. 2-9 The first 

event observed at the interface between a contact lens and tear fluid is protein 

adsorption.10, 11 Of late, the study of interaction of tear proteins with contact lenses has 

become an important field of research, following the widespread use of contact lenses in 

many physiological and pathological conditions. Tears have a rich and complex 

composition, allowing a wide range of interactions and competitive processes. Protein 

adsorption on contact lenses is the overall result of various types of interactions between 

the different components present, i.e. the chemical composition and the surface charge, 

the structure of the protein molecules, the nature of the medium (tears) and many other 

solutes present in tears. 

 

Several techniques for elucidating the identity, quantity and conformation of deposits on 

soft contact lenses have been developed. Using these methods, many studies have 
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demonstrated that lysozyme is the principal soilant on the lens surface. Lysozyme also 

deposits on the newly introduced silicone hydrogel (SH) lens materials, but in extremely 

low levels compared to conventional hydrogel lenses. 12-14 Hence, a major analytical 

complication with the study of the SH contact lens materials relates to the minute 

quantity of deposited lysozyme.  

 

This thesis is partially focused on optimization of existing analytical techniques, such that 

the lysozyme deposits extracted from SH contact lenses can be accurately and sensitively 

analyzed. This project will also involve the use of 125I labeled-lysozyme to gain insight 

into the kinetics of lysozyme deposition on SH lens materials and also the efficacy of a 

reagent in extracting lysozyme from SH lens materials. Finally, this thesis will also 

investigate the impact on protein deposition by treating SH lenses with a novel rewetting 

agent, following collection of lenses from carefully controlled clinical studies. 

 

With a greater understanding of protein deposition on contact lens materials, further 

enhancements in contact lens materials can be made. This will aid practitioners in 

prescribing the correct contact lens material for their patients. 
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2 Literature Review 

2.1 Contact lenses 

Contact lenses are one of the most widely used biomedical devices in the world. 9 They 

have been studied extensively with respect to their level of deposition, primarily due to 

their non-invasive use and easy recovery compared to other biomaterials in contact with 

biological fluids. 1 Contact lens materials can broadly be classified into two types, (a) 

water-containing soft (hydrogel) and (b) non-water containing rigid gas-permeable (RGP) 

materials.  

 

2.1.1 Conventional contact lens materials 

Hydrogels are water-absorbing, hydrophilic polymeric materials. The amount of water 

adsorbed by the hydrogel is described by the term “equilibrium water content” (EWC) 

and this factor strongly influences the polymer’s surface, mechanical and transport 

properties. 15 The first successful material of this type (poly-2-hydroxyethyl methacrylate 

[polyHEMA]) was developed by Wichterle and Lim in the late 1960’s as a general 

purpose surgical material. 15 Over 90% of contact lens wearers use hydrogel lenses, due 

to their increased initial comfort and reduced sensation of dryness. 16  

 

The corneal metabolic requirements of patients vary with each individual 17 and some 

patients with higher prescriptions, may exhibit corneal edema and develop chronic 

hypoxic complications if fitted with low water content materials, due to the increased 

thickness of the lenses. 18, 19 These patients require high water content hydrogels to 
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reduce such complications. Two principal strategies are available to increase the water 

content of hydrogels above that of polyHEMA. Small quantities of charged groups such 

as methacrylic acid or larger amounts of hydrophilic, neutral groups such as polyvinyl 

alcohol or N-vinyl pyrrolidone are added to polyHEMA or methyl methacrylate to raise 

their equilibrium water contents to 60% or greater.     

 

Commercially available contact lens materials can be divided into various groups 

depending on their charge and water content. The FDA currently classifies contact lens 

materials into four groups, depending upon their charge and water content (Table 2.1). 

 

Table 2.1 FDA classification of hydrogel contact lens materials 

FDA Classification Group I Group II Group III Group IV 

Water Content Low High Low High 

Charge Non-Ionic Non-Ionic Ionic Ionic 

Low = < 50% water; High = > 50% water; Ionic = Charged; Non-Ionic = No charge  

 

There are several different wearing modalities utilized for hydrogel lenses. They are as 

follows: 

1. Daily wear (DW) lenses are cleaned and removed each night and are discarded 

after a period of time. This period varies from one day to one year, but usually 

after 30 days or less. 

2. Extended wear (EW) contact lenses are worn for 7 days and 6 nights, with the 

lens disposal occurring after this time-frame. 
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3. Continuous wear (CW) modality is a relatively new modality, which requires 

little, if any, lens maintenance. Under this modality, contact lenses remain on the 

ocular surface for up to 30 days and nights without removal, after which they are 

discarded. 

 

In order to prevent corneal infection, the corneal tissues require sufficient oxygen to 

function without compromising cellular processes. Clearly, this is more difficult under 

closed-eye conditions, when the lid severely limits oxygen transport to the cornea. In 

order to provide a healthy ocular surface under EW and CW conditions it is important 

that the lens material provides a substantial amount of oxygen to the ocular surface. This 

has been achieved through the recent development of novel silicone hydrogel contact lens 

materials. 
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2.1.2 Silicone hydrogel contact lens materials 

Preliminary attempts (in the 1970’s and early 1980’s) to use silicone within hydrogel 

lenses in the silicone elastomers failed due to the exposure of hydrophobic silicone on the 

surface of the lens material. This resulted in increased lens binding to the cornea, 

enhanced lipid deposition and decreased in-eye wettability of the lens. 20 In order to cope 

with this problem a surface modification process was required, which would increase the 

hydrophilicity of the lens surface and make the surface more wettable and hence more 

biocompatible. 21 Additionally, the surface treatment should maintain a stable tear film 

layer, be non-irritating, provide low bacterial adherence and minimize deposition of 

substances from tears. 22  

 

Consequently, these silicone hydrogel (SH) lenses were developed and were first 

introduced into the market in 1999. 23 The addition of silicone to the lens increases the 

material’s oxygen transmission, while the hydrogel component allows for fluid transport 

and lens movement. The combination of these two components allows for safe, extended 

wear of lenses when compared to conventional lens materials. 20, 24 These lens materials 

transmit 5-6 times more oxygen than the conventional polyHEMA-based lenses and 

hence could provide safe overnight wear for up to 30 continuous nights. 24  

 

Currently four silicone hydrogel lenses are available in the North American market. 

Table 2.2 summarizes the differences between the four SH materials.  
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Table 2.2 Characteristics of currently available silicone hydrogel lenses 

Proprietary name 
 Focus® Night 

& Day™  
PureVision™ 

Acuvue® 

Advance™ 
O2 Optix 

Manufacturer CIBA Vision 
Bausch & 

Lomb 
Vistakon CIBA Vision

Water content (%) 24 36 47 33 

Oxygen 

Permeability (Dk) 
140 99 60 110 

Centre thickness 

(mm) -3.00D 
0.08 0.09 0.07 0.08 

Oxygen 

Transmissibility 

(Dk/t) at 35˚C 

175 110 86 138 

FDA group I III I I 

USAN Lotrafilcon A Balafilcon A Galyfilcon A Lotrafilcon B

Stiffness (g/mm2) 130 110 55 100 

Base Curve (mm) 8.4, 8.6 8.6 8.3, 8.7 8.6 

Total Diameter 

(mm) 
13.8 14 14 14.2 

Year of introduction 1999 1999 2003 2004 

 
The oxygen permeability of a material is referred to as the Dk. The units of 10 -11 cm2/s 
ml O2/ml X mm Hg are often omitted for convenience. Dk value is a physical property of 
a contact lens material and describes its intrinsic ability to transport oxygen. “D” is the 
diffusion coefficient – a measure of how fast dissolved molecules of oxygen move within 
the material and “k” is a constant representing the solubility coefficient or the number of 
oxygen molecules dissolved in the material. 
  
Oxygen transmissibility is referred to as Dk/t, with units of 10 -9 cm/s ml O2/ml X mm 
Hg. Here “t” is the thickness of the lens or sample of the material, and “D” and “k” are as 
defined above. 
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The surfaces of the lotrafilcon (A and B) lenses are permanently modified in a gas plasma 

reactive chamber to create an ultrathin (25 nm), high refractive index, continuous 

hydrophilic surface. 23, 25 Balafilcon lenses are surface treated in a gas plasma reactive 

chamber, which transforms the silicone components on the surface of the lenses into 

hydrophilic silicate compounds. 23, 26 This results in glassy, discontinuous silicate islands 

and the hydrophilicity of these areas bridges over the underlying hydrophobic balafilcon 

material. Galyfilcon lenses incorporate a long chain, high molecular weight molecule 

called Hydraclear™, which maintains flexibility and moisture. This wetting agent is 

present throughout the lens and hence no surface treatment is required for these lenses. 27  

 

With the introduction of these novel SH lens materials, hypoxia and oedema related 

problems have been solved; however, as will be discussed in the following sections, the 

problems such as tear related deposition and wettability still remain unsolved. 
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2.2 Contact lens deposits 

One of the major problems with hydrophilic contact lenses is that they are susceptible to 

spoilage from constituents of the tear film, which include a wide variety of proteins, 

lipids and mucins. 2-9 At extreme levels of build-up, these deposits are associated with 

diminished visual acuity 28 and a feeling of dryness and discomfort. 29 Deposits can 

ultimately lead to more serious clinical conditions such as hypersensitivity reactions and 

giant papillary conjunctivitis. 30-33 Moreover, these deposits potentially increase the risk 

of bacterial attachment by providing a solid substrate and shelter. 34-36  

 

The adsorption of tear derived substances at the contact lens interface is highly complex 

and dependent upon a number of factors. Notable amongst these are the material’s 

equilibrium water content (EWC), 3 surface charge, 37 protein size/ charge 38 and age of 

the lens material. 29 However, the relative importance of the different components of 

deposited films to these clinical effects remains largely unknown.  

 

As already mentioned, the newly introduced SH contact lenses have significantly 

increased oxygen transmission due to the incorporation of siloxane groups. 14, 39, 40 The 

incorporation of silicone results in an increased degree of hydrophobicity, which results 

in increased lipid deposition compared with other non silicone-containing materials. 24 

However, these lens materials do deposit extremely low levels of protein compared to 

conventional hydrogel lenses, with typical levels being in the < 20 µg/lens range. 12-14 

Among the conventional lens materials, Group I lenses typically attract less than 10 µg of 
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protein, Groups II and III lenses approximately 30 µg, and Group IV lenses 1000 µg or 

more. 2, 3, 5, 7, 37, 41-49 

 

2.2.1 Protein deposits on contact lenses 

Proteins primarily are deposited onto the contact lenses from the tear fluid. Table 2.3 lists 

the average concentration of some important tear proteins. Proteins deposit on the contact 

lenses as films and these protein films are invisible during the early stages of the 

spoilation process, but with the advancement of time, the protein denatures and they 

assume a thin, translucent, whitish appearance. 50 These protein deposits remain primarily 

on the surface, but in high water content lenses they may penetrate into the lens matrix. 51 

All proteins in the tear film have the potential to form contact lens deposits, although, 

several factors ultimately influence the type, quantity and structure of such deposits.  

 

 

Figure 2.1 Protein deposits on contact lens. 

(Picture courtesy of Dr. Lyndon Jones) 
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Table 2.3 Average concentration of some important tear proteins 52 

Component 
Average concentration 

(mg/100ml) 

Total Protein 751 

Lysozyme 236 

Lactoferrin 184 

Tear specific pre-albumin 123 

Albumin 130 

Immunoglobulin A 30 

IgG 12.6 

IgM 0.086 

IgE 0.01 

 

 
 
Protein deposition onto hydrogel lens materials is a highly complex process, depending 

upon the charge and size of the protein, environmental pH, charge and water content of 

the substrate and competition between the various tear film constituents that are present. 

2, 41, 53 Protein has been the major focus of both identification and quantitation studies of 

contact lens deposits. Estimates of the total amounts vary but fall within a reasonably 

well-defined range. Group I lenses typically attract less than 10 µg of protein, Groups II 

and III lenses approximately 30 µg, and Group IV lenses 1000 µg or more. 2, 3, 5, 7, 37, 41-49
  

Silicone hydrogel lens materials deposit extremely low levels of lysozyme compared to 

conventional hydrogel lenses, with typical levels being in the < 20 µg/lens range. 12-14 
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Tear film proteins frequently detected on hydrogel contact lenses include lysozyme, 

lactoferrin and albumin, 45, 50, 53 and among these lysozyme has been the most widely 

studied. 2, 7, 38, 54, 55      
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2.3 Lysozyme 

Lysozyme (also called Muramidase) is a bacteriolytic enzyme that was discovered by 

Fleming in 1922. 56 It is found in mammalian urine, saliva, tears, milk, cervical mucus, 

leukocytes and kidneys. 52 Tear lysozyme is derived from the acinar and ductal epithelial 

cells of both main and accessory lacrimal glands. 57, 58  

 

2.3.1 Lysozyme structure 

Lysozyme is a compact globular protein molecule with a molar mass of 14,500 D. 58 It 

has a slightly ellipsoidal shape, and its dimensions are 45 X 30 X 30 Å. It is a compact 

protein of 129 amino acids which folds into a compact globular structure. 59 The 129 

amino acid sub-units are cross-linked by four disulphide bridges. 60 There is a close 

cluster of basic groups (Arginine 45 and 68 in one region, Arginine 61 and 73 in a second 

and Arginine 5, 125 and 128 in a third) which form the highly positively charged surface 

regions of lysozyme, which give it a very high isoelectric point of 11.1. The polypeptide 

chain forms five helical segments, a 3 stranded anti-parallel Beta sheet that comprises one 

wall of the binding cleft.  A deep cleft contains the active site (described later in Section 

2.3.1.3) which divides the molecule into two domains. These domains are linked by 

alpha-helix residues.  One domain consists of residues that have Beta Sheet structure; the 

other domain has in its residues that are helical in nature. 59   
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2.3.1.1 Structural aspects of lysozyme – from the viewpoint of an antibody 

Lysozyme, in its native globular state contains two fragments which have immunologic 

activity and encompass two independent antigenic determinants. 61 One of these 

immunologically active fragments consists of two peptides, derived from the NH2-

terminus and the COOH-terminus of lysozyme linked together by a disulphide bond. The 

second immunologically active component isolated was a large fragment derived from 

the region located between residues Leucine 57 and Arginine 107 of the lysozyme 

sequence. 61 This peptide which contains two disulphide bridges, is also capable of 

binding to anti-lysozyme antibodies. Similar structure was obtained for lysozyme in 

further experiments conducted using epitope mapping. 62, 63  The location of these regions 

in the three-dimensional structure of lysozyme in shown in Figure 2.2. 
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Figure 2.2 Schematic drawing of the main chain conformation of lysozyme. 59 

 

2.3.1.2  Structural comparison of human lysozyme versus hen egg lysozyme 

X-Ray crystallographic studies 60, 64 and far-UV circular dichroism studies 65, 66 suggest 

that the two enzymes namely, human lysozyme and hen egg lysozyme have very similar 

secondary structures. Even though the sequences in these two lysozymes are different, 67 

sizable numbers of substitutions are non-conservative; hence the structures and functions 

are highly similar. 59 Moreover, if the ionic strength was maintained constant within a 

certain range (pH 5 to 9), the activity of both these enzymes were found to be same. 59, 68   
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2.3.1.3 Structure – Activity Relationship (SAR) 

Lysozyme is instrumental in destroying certain species of bacteria which are gram-

positive. These gram-positive bacteria possess an outer coat of a peptideglycan (sugar) 

polymer (or peptidoglycan), which, in gram-negative bacteria, is only transiently stained 

since those bacteria are covered by a second, outer lipid membrane. 69  

 

Lysozyme hydrolyzes or breaks up the glycan (sugar polymer) components of the 

peptidoglycan of gram-positive bacteria. Specifically, lysozyme breaks β-1,4 glycosidic 

bond of the oxygen bridge between the repeating glycan units of N-acetylmuramic acid 

(NAM) and N-acetylglucosamine (NAG), which is responsible for its anti-bacterial 

properties.   

 

 

Figure 2.3 Cut-away diagram of a gram-positive bacterium. 69 

The gram-positive bacterium has two boundary layers: a bilipid layer (membrane) and a peptidoglycan 

layer (outer coat).  
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A portion of the bacterial peptidoglycan is able to fit in a groove on the outer surface of 

the enzyme that contains the active site (Figure 2.4). The active site contains two amino 

acid components (Glutamine and Aspartic Acid) whose carboxylate groups participate in 

the hydrolysis. 59 The molecular mechanism of lysozyme catalysis at the active site 

involves multiple steps, in which a proton is donated by an uncharged Glutamine residue 

at the active site by breaking the glycosidic bond. 69 At completion, the original forms of 

the enzymes are regenerated and the hydrolyzed chains of the peptidoglycan leave the 

active site of the enzyme. 

 

 

Figure 2.4 Outline diagram of a lysozyme molecule. 69 

The enzyme is a globular polypeptide that has a groove (darker area near the top of the enzyme) into which 

the carbohydrate units of the peptidoglycans of bacteria can fit. Hydrolysis of the peptidoglycan units 

occurs here. 
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2.3.2 Lysozyme and contact lenses 

The major proteins that are deposited on contact lenses include lysozyme, lactoferrin and 

albumin, 45, 50, 53 and among these lysozyme has been the most widely studied. 2, 7, 38, 54, 55 

Karageozian first reported that the principal component of deposits that presented 

problems with contact lens wear was lysozyme, which may be selectively adsorbed and 

denatured on the lens surface. 70
 Many others have since confirmed the predominance of 

lysozyme in lens deposition. 7, 42, 44-46, 71, 72   

 

Lysozyme is a major component in tears and of contact lens deposits. It accounts for 

approximately 40% of total protein found in tears and is the major protein (approximately 

36 to 95% depending on lens type) deposited on hydrogel contact lenses. 73, 74 In addition 

to its bactericidal properties (described earlier), lysozyme is also reported to have anti-

inflammatory properties in the tear film, although the mechanism through which this 

action occurs is unknown. 75 Exploration of lysozyme deposition (quantity and 

conformation) on a number of different traditional and silicone hydrogel surfaces is of 

growing interest due to observations that patients using silicone hydrogel lenses are prone 

to develop papillary conjunctivitis, 76-78 possibly due to the denaturation of lysozyme on 

the lens materials.  

 

Lysozyme is a positively charged molecule and this, coupled with its small size, results in 

its increased adsorption onto negatively charged substrates such as FDA group IV contact 

lens materials. 3, 7, 38, 55, 79 However, silicone hydrogel lens materials deposit extremely 
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low levels of lysozyme compared to conventional hydrogel lenses, with typical levels 

being in the < 20 µg/lens range. 12-14 

 

In order to measure the low levels of lysozyme deposited on SH lens materials an 

accurate method to quantify protein levels in nanogram quantities is required. The 

following section discusses the options available to quantify such low levels of protein. 
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2.4 Methods to quantify proteins deposited on contact lenses 

Several microscopic, photometric and imaging techniques have been used to investigate 

protein deposits on contact lenses. 5, 41, 44, 80, 81 The major limitation of microscopic and 

imaging techniques is that they are generally not suitable for accurate quantitation 

purposes. 9 Various biochemical assays including Enzyme-Linked Immunosorbent Assay 

(ELISA), High Performance Liquid Chromatography (HPLC) and Sodium Dodecyl 

Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) are useful because of their 

increased sensitivity, accuracy and ability to target specific proteins.   

 

2.4.1 Enzyme-linked immunosorbent assay (ELISA) 

Enzyme-linked immunosorbent assay (ELISA) is a widely used method for investigation 

of tear film proteins. ELISA utilizes antibodies bound to solid surfaces, such as plastic or 

polystyrene micro-titre plates to quantify protein of interest. 82 ELISA relies on antibody 

recognition of the protein of interest in solution. A colorimetric, fluorescent or 

chemiluminescent reaction is used to quantify the amount of protein bound to the well, 

followed by detection of the specific signal. 82 

 

The major advantage of ELISA is the ability to process high number of samples (up to 

96) at the same time and this method also reduces the need for handling the sample. The 

disadvantage with this method is that it can cross-react with non-targeted proteins, or the 

interaction between antibody and target can be disrupted by other sample components. 83   
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2.4.2 High Performance Liquid Chromatography (HPLC) 

HPLC separates proteins based on molecular size in a column support through a tightly 

packed matrix (such as glass, plastic or silica beads) under high pressure. There are 

several types of HPLC and Size Exclusion HPLC is the widely used method for 

quantifying individual proteins in solution. The major advantage of HPLC is that several 

proteins can be quantified from a single experiment. However, Fullard (1988) found an 

unusually high absorbance for lysozyme, which may decrease the accuracy of the assay 

and could lead to erroneous conclusions. 84 

 

2.4.3 Sodium dodecyl sulphate - Polyacrylamide gel electrophoresis followed 

by Immuno blotting 

Sodium dodecyl sulphate - Polyacrylamide gel electrophoresis (SDS-PAGE) is a specific 

type of gel electrophoresis that uses sodium dodecyl sulphate (SDS) as a detergent to 

confer a negative charge to a protein and polyacrylamide as a matrix to separate proteins 

according to size. Electrophoresis refers to the migration of charged molecules in solution 

in response to an electric field. Electrophoresis is simple, rapid and highly sensitive and 

can be used to study the properties of a single charged species, and as a separation 

technique. 85 Once physically separated, proteins are visualized using antibodies and 

chromogenic, fluorescent or chemiluminescence is used to quantify the binding of the 

antibodies to the protein. Resolution of proteins that migrate together in the gel is 

accomplished by the specificity of the antibody; a single antibody will recognize a small 

portion of the protein of interest, thereby reducing the potential of visualizing co-

migrating tear film components. In addition immunological visualization allows 
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identification of variations in protein conformation, such as unexpected polymerization or 

interaction with other proteins. 86, 87 

 

2.4.3.1 PhastSystem™   

The PhastSystem™ (Amersham Pharmacia Biotech, Baie d’Urfe, QC, Canada) is an 

automated mini-gel system that combines both electrophoresis and immunoblotting into a 

single apparatus. This system is different from that of traditional larger gel 

electrophoresis systems, in that it utilizes pre-cast, extremely small (4.5 cm X 5 cm) SDS 

gels for protein separation. These extremely small SDS gels confer increased sensitivity 

with a minute sample volume requirement, compared to other electrophoresis and 

immunoblotting systems. (Figure 2.5)  

 

 

Figure 2.5 The Phast System™ 

 

Unlike other gel electrophoresis systems, the protein-containing loading buffer, in 

volumes from 0.3 µl to 1 µl, is applied to well combs with up to 12 lanes rather than 
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directly into wells cut into a gel. These disposable well combs are then automatically 

applied to the mini-gel for electrophoretic separation. The temperatures, voltage, current 

and power are automatically regulated throughout the separation process. Western 

blotting is similarly automated and simplified by the PhastSystem™. The small size of 

the gels and the small sample volume applied to the gel make the PhastSystem™ unique 

among all other systems. The low sample volumes and small pre-cast gels also provide an 

added level of sensitivity and flexibility, especially for proteins in low concentrations. 88, 

89 Several researchers have used the PhastSystem™ to detect extremely low 

concentrations of tear film proteins. 88-90 

 

Whilst the methods such as HPLC or ELISA can provide other advantages such as 

enhanced efficiency in quantifying several proteins at the same time (HPLC) or provide 

greater sample throughput (ELISA), electrophoretic separation followed by 

immunoblotting using the PhastSystem™, provides us with the best tool for quantifying 

individual proteins in extremely low concentrations, while at the same time allowing 

visualization of the protein to assess cross-reactivity between the antibody and protein of 

interest and possible aggregation or polymerization of the protein. Using this technique, a 

method has been optimized to quantify lysozyme deposition on SH lenses. 13 

 

The following section discusses the possible difficulties associated with the analysis of 

lysozyme deposited on SH lenses through this optimized procedure, which primarily 

arises due to its deposition in low quantities.  
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2.5 Difficulties associated with contact lens deposit analysis 

2.5.1 Lysozyme and its stability in contact lens deposit analysis 

Lysozyme is a relatively stable protein when compared to most other proteins. 7 The 

properties of lysozyme do not change at pHs between 1 and 8. 91 A study by Ikeda and 

colleagues (1967) showed that lysozyme denatures only when the pH is above 12. 92 The 

thermal stability of lysozyme in various solutions was studied by Hamaguchi and Sakai 

(1965) and they found that its structure is not affected by heat up to 55˚ C. 93 Moreover, 

by increasing the temperature only the internal fold of lysozyme is disrupted and no 

changes occur in the helical part at high concentrations of organic solvents.  

 

Despite its stability, lysozyme might undergo changes in its conformation during the 

process of contact lens deposit analysis. In the optimized procedure developed in our lab, 

the various steps involved include extraction of deposits using an extraction buffer, 

lyophilization, storage and resuspension. 13 Any of these steps could potentially alter the 

native conformational state of lysozyme and could result in failure to be recognized by 

the antibody.  

 

To-date, no study has been conducted on the effect of storage on lysozyme deposits that 

have been extracted from contact lens materials. In two recent studies undertaken on tear 

and salivary samples, it was demonstrated that a reduction in lysozyme quantity occurs as 

a function of storage time. 94, 95 Preliminary results in our laboratory have demonstrated 

that lysozyme deposits extracted from SH contact lens materials also demonstrate a loss 

in total mass after lyophilization and resuspension, as a function of storage time when 
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assessed by Western blotting. These data (unpublished) indicate that this loss in mass is 

particularly problematic with lysozyme deposition on lotrafilcon A lens materials. This 

loss represents a potential source of error when quantifying total lysozyme deposition. 

Moreover, the amount of lysozyme extracted from SH materials is very low, such that 

even a minimal loss would be significant in the interpretation of the total amount of 

lysozyme deposited. Hence there is a need to devise a method whereby lysozyme mass 

extracted from SH lens materials would be preserved over time and would be compatible 

with the optimized Western blotting procedure. 13 
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2.5.2 Elution of proteins from contact lens materials 

To-date, elution of proteins from the material remains the best option to quantify specific 

proteins deposited onto contact lenses. 6, 41, 42, 96 The accurate quantification of a protein 

deposited on a surface requires that all or at least a known percentage of the protein of 

interest be removed. Hence the ability of an extraction buffer to extract the proteins for 

analysis is a focus of major interest.  

 

The most common method for protein extraction involves the use of a combination of 

detergents and reducing agents to break chemical bonds between the adsorbed proteins 

and the contact lens surface. Some of the agents that have been incorporated in elution 

mixtures include sodium dodecyl sulphate (SDS), dithiothreitol (DTT), urea, NaOH, 

ethylene diamine tetraacetic acid (EDTA) and Tris-HCL. 5, 7, 29, 41, 42, 45, 46, 53, 97-101  

 

2.5.2.1 Review of various extraction procedures in the literature 

One of the significant earlier works on deposit removal was conducted by Wedler in 

1977. 45 He considered the removal of deposits on contact lenses by various chemical 

reagents including urea, guanidine hydrochloride, potassium thiocyanate, potassium 

perchlorate, hydroxylamine, EDTA, SDS and DTT. However, he found that the deposits 

were most effectively removed from the lenses by the combination of heat, SDS and 

DTT.  
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Many other researchers have used these techniques since then, particularly SDS. 5, 29, 41, 42, 

46, 53, 97-99 SDS, a stong detergent and DTT, which cleaves the disulphide bonds between 

and within the proteins, are required to break apart chemical bonds and solubilize 

proteins for quantification. Urea, a hydrogen bond cleaving agent, is used for the 

denaturation of proteins and as a mild solubilization agent for insoluble or denatured 

proteins. EDTA is a chelating agent that binds metal ions; however some studies 

demonstrate that EDTA is not effective in extracting protein deposits. 45 Tris-HCL is a 

buffering agent that maintains the pH of the extraction solution. In addition to chemical 

“mixtures” to extract proteins, heat and sonication have been utilized to increase the 

efficiency of protein extraction, theoretically by agitating the biomaterial in the extraction 

solution and helping to break apart the bonds. 102, 103 However, it became apparent from 

the study by Yan and co-workers (1993) that these common extraction procedures may 

fail to remove even 75% of the total material on lenses. 46 

 

Keith and co-workers (1997) developed a quick, simple and efficient extraction 

technique. 74 They used an extraction solvent consisting of 50:50 mix of 0.2% 

trifluoroacetic acid and acetonitrile. Extraction efficiency for lysozyme from laboratory 

deposited group IV lenses was found to be approximately 100%. A similar extraction 

procedure has been adopted by many other researchers since then. 12, 104 However, the 

efficacy of this technique in extracting lysozyme from SH lens materials has not been 

reported.  

 

  27



2.5.3 Radiotracer technique to determine extraction efficiency  

For studies where proteins are eluted from lenses it is vital to ensure that the protein 

extraction method is effective. Some researchers have utilized the UV spectrophotometer 

to assess protein extraction efficiency. 13, 105 Using this technique, it is possible to 

determine the extraction efficiencies of lenses with no UV blocking properties such as 

etafilcon A. However, it is not possible to use this method on SH lenses as, unlike 

etafilcon A lenses (Group IV), SH lenses deposit extremely low levels of lysozyme, 

making UV spectrophotometry too insensitive.  

 

Hence, a more sensitive method to estimate the efficiency of lysozyme removal from SH 

lenses has to be employed. One of the positive avenues is the use of radioactively labeled 

lysozyme. The isotope 125I has been used to radioactively label lysozyme and other 

proteins in previous studies. 2, 48, 103, 106, 107 The isotope is incorporated into the protein 

and radioactivity can be used to assess the level of protein binding. Thus, I sought to 

quantify the percentage of lysozyme extracted by 0.2% trifluoroacetic acid/ acetonitrile 

from SH and Group IV contact lens materials by artificially doping lenses with 125I-

labeled lysozyme. 
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2.6 Kinetics of lysozyme deposition  

Following insertion onto the eye, hydrogel contact lenses rapidly adsorb components 

from the tear film, particularly protein, 2, 3, 7, 37, 47, 48
 lipid, 5, 29, 79, 96, 108

 and mucin. 8
  A 

number of studies have investigated the kinetics of protein or lipid deposition on contact 

lens materials in vitro, 8, 38, 48, 54, 109-113 and in vivo 41, 42, 44, 79, 98, 104, 114, 115 on conventional 

hydrogel lens materials. However, to-date no study has investigated the kinetics of 

protein or lipid deposition on SH lens materials.  

 

Since deposition is a time-dependent process, empirically derived values will be highly 

dependent upon the age of lenses tested. Previous studies show that lenses recovered 

within the first few minutes of wear demonstrate coatings of some degree and the process 

of deposition continues over time. 41, 42, 116, 117
 Sack and co-workers (1996) found that 

lysozyme gets deposited on Group IV lenses at a constant rate of 2.2 µg/ minute during 

the initial part of open-eye wear; this later leveled to a steady state. 98 Lin and co-workers 

(1991) showed that accumulation of components is not consistent, with some entities 

showing faster binding rates. 42 Keith and co-workers (2003) have accurately plotted the 

medium term build-up of lysozyme on Group IV lenses. 104 They found a mean 

concentration of 55 µg/ lens after 15 minutes of wear, which reached a maximum at 

around 1300 µg/ lens after six days of wear and also that the time to reach plateauing 

varied from day four to eleven between subjects. 104 Consistent with this study, Jones and 

co-workers (2000) determined that surface deposition on Group IV lenses plateaued on 

day one, with intramatrix deposition continuing to increase up to seven days. 118 Surface 

protein on Group II lenses also peaked within one day, but total protein accumulation 
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continued for up to 30 days. 118
   The concept of plateauing is also supported by Richards 

(1992) and Tripathi (1992). 44, 119 In comparing the deposition on Group II lenses, Jones 

and co-workers (1996) found an increase in lipid by 80% and of protein by 152% at three 

months compared with one month of wear. 29
 Gellatly and co-workers (1988) noted that 

only 3% of patients whose lenses had been worn for an estimated total of 2600 hours or 

less showed a significant visible deposition, whereas 80% of patients whose lenses were 

older than 2600 hours showed this degree of deposition. 28 Maissa and co-workers (1998) 

observed more surface proteins on ionic materials after three months compared with one 

month of wear, but no change over this time for non-ionic materials. 79 Jones and co-

workers (2000) observed that lipid accumulation ceased by the end of day one on Group 

IV lenses but continued unabated for at least four weeks for Group II lenses. 118 Lin and 

co-workers (1991) observed that lysozyme accumulation as measured by SDS-PAGE, 

increased with wearing times up to one week on Acuvue® lenses (Group IV), but after 24 

hours wear lysozyme accumulation did not increase on the SeeQuence lens (Group I). 42 

 

It is widely recognized that the adsorption of proteins at the contact lens surface is 

complex and depends upon a number of factors. Notable among these are material water 

content and surface charge. 3, 7, 37, 42, 46, 47, 79, 96, 120 Knowing the rate of protein deposit 

accumulation and at what point in lens wearing time the accumulation reaches either a 

maximum or a plateau level could be clinically relevant to patient symptoms and be 

helpful in designing clinical investigations of hydrogel lenses and associated lens care 

products. As the most abundant tear protein, lysozyme approximates 90% of the protein 

found on group IV contact lens and is therefore often used as the prototypical marker for 
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protein accumulation. 7, 74, 98  Although, the quantity and conformation of lysozyme 

deposited on SH lens materials have been reported, 12-14 no study has looked at the 

deposition of lysozyme as a function of time in SH lens materials. 

 

2.6.1 Advantages of in vitro experiments and radiotracer technique 

Soft lenses are not always obtained for analysis from clinical sources. A number of 

studies have found artificial tear solutions an attractive option in determining the binding 

affinity of different components and the mechanisms involved in such binding. 110, 121-129 

The principal advantages are that many experimental variables are eliminated, 

quantitation can be enhanced by labeling the species fluorometrically or radiometrically, 

and simple hypotheses can be tested without having to engage in a resource consuming 

clinical trial. 

 

A number of quantitative protein methods have been applied to the analysis of protein 

deposits on contact lenses. However, many of these techniques require complex 

extraction procedures which may not be 100% efficient. The radiochemical assay is:  

1. Quantitative and reproducible with a low detection limit. 

2. Able to assess a large number of samples. 

3. Compatible with all contact lens materials. 

4. Not dependent on complex extraction techniques. 

5. Able to detect surface as well as bulk protein. 
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Hence in this thesis, I wanted to gain insight into the kinetics of lysozyme deposition 

on SH lenses and compare it with Group II and Group IV conventional hydrogel lens 

materials using the radiotracer technology. 
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2.7 Influence of rewetting drops on protein and lysozyme deposition  

In addition to oxygen transmission, adequate contact lens wettability is critical to 

achieving long-term physiological compatibility and successful, problem-free contact 

lens wear. 130
 With conventional lens materials, wettability reduces over the wearing 

period and replacing a lens frequently results in the maintenance of a more wettable, 

“cleaner” surface. 29, 131, 132 When it comes to in-eye wettability, SH lenses are inherently 

hydrophobic and hence, as already discussed, require a surface modification process to 

provide a hydrophilic, wettable surface. 23, 25 Of additional concern is the fact that SH 

materials deposit greater quantities of lipid than conventional materials, 12
 which may act 

to negate the impact of the surface treatment and result in a hydrophobic surface. To-date, 

no work has been published that examines the wettability of SH lenses in eye. 

 

One of the means of modifying the lens surface to enhance wettability is to treat the lens 

with a wetting agent such as a surfactant. Surfactant-containing contact lens care systems 

are extensively used within the contact lens care industry for cleaning purposes. 

However, because of the ability of surfactants to associate at interfaces, it can be 

expected that surfactants will also adsorb onto the surface of hydrogels and thus 

potentially influence the surface wetting characteristics. These effects may have 

significant implications in terms of perceived patient comfort on both initial insertion and 

at the end of the wearing period. Surface modification by the addition of surfactants, 

which has until now been neglected, may be more important to the patient than any 

cleaning action. To date, only one study has examined this effect, 133
 and this provided 

confirmation that surfactants can positively influence initial lens comfort.  
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An appreciation of the physicochemical basis behind lens wettability may enable targeted 

development of solutions, whose sole function is to produce enhanced lens comfort 

through in-eye surface modification of materials. Hence it is important to investigate the 

impact of treating SH lenses during their wearing period with a novel rewetting agent that 

has been specifically developed to reduce in-eye deposition. Hence, this thesis will also 

investigate the effect of a surfactant containing rewetting drop on protein deposition on 

one type of SH lens material, following its collection from a carefully controlled clinical 

study. 

 

 

  34



3 Thesis Objectives 

This thesis will involve the analysis of contact lenses following their collection from 

carefully controlled clinical trials and also by artificially soiling lenses to fulfill four 

objectives: 

 

1. To devise a method whereby lysozyme mass would be preserved over time and 

would be compatible with the optimized Western blotting procedure. 

2. To determine the efficiency of 0.2% trifluoroacetic acid/ acetonitrile in extracting 

lysozyme from SH and Group IV contact lens materials by artificially doping 

lenses with 125I labeled lysozyme. 

3. To determine lysozyme deposition as a function of time in Group IV, Group II 

and SH contact lens materials by artificially doping lenses with 125I labeled 

lysozyme.  

4. To determine the difference in the degree of total protein, the difference in 

lysozyme deposition and activity recovered from lotrafilcon A SH lens material 

when subjects used a surfactant containing rewetting drop (CLENS-100®) versus 

a saline control, following its removal from a carefully controlled clinical study.  
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4 Materials and Methods 

4.1 Stabilization study 

The sample variables examined in this study included: (1) the presence or absence of gel 

loading buffer (GLB); (2) temperature (-20°C and -70°C); (3) composition of two 

reconstitution buffers (RB and MRB) and (4) the presence or absence of a biomolecule 

stabilizing agent (BioStab™ Biomolecule Storage Solution). These six conditions with 

the two buffers (see Figure 4.1) were examined systematically as described below. Each 

trial was conducted in triplicate, resulting in a total of 60 samples being measured. 

 

4.1.1 Reagents and materials 

All PhastSystem™ pre-cast gels, buffer strips, well combs, filter paper and ECL-Plus™ 

kits were purchased from Amersham Pharmacia Biotech (Baie d'Urfe, QC, Canada).   

Immuno-Blot® PVDF (polyvinylidene difluoride) membrane was purchased from Bio-

Rad Laboratories (Mississauga, ON, Canada). Polyclonal rabbit anti-human lysozyme 

was purchased from Cedarlane Laboratories (Hornby, ON, Canada) and goat anti-rabbit 

IgG-HRP was purchased from Sigma (St. Louis, MO, USA). Human lysozyme 

(neutrophil) was purchased from Calbiochem (La Jolla, CA, USA). A product developed 

specifically for stabilizing proteins and enzymes (BioStab™ Biomolecule Storage 

Solution – BioStab) was purchased from Sigma-Aldrich (St. Louis, MO, USA). All other 

reagents purchased were analytical grade and obtained from Sigma (St. Louis, MO, 

USA). 
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4.1.2 Protein deposit extraction from contact lenses 

Twelve lotrafilcon A (Focus® Night & Day™ CIBA Vision, Atlanta, GA) SH contact 

lenses were collected following 4 weeks of daily wear use, during which subjects had 

disinfected the lenses with AOSept (CIBA Vision). Lenses were aseptically collected 

using non-powdered surgical gloves and placed in individual glass vials containing 1.5 

ml extraction solution consisting of a 50:50 mix of 0.2% trifluoroacetic acid and 

acetonitrile (ACN/TFA). 74 The lenses were incubated in darkness at room temperature 

for 24 hours. Two 0.6 ml aliquots of ACN/TFA was transferred to sterile eppendorf tubes 

and lyophilized to dryness in a Savant Speed Vac (Halbrook, NY, USA). Dried protein 

pellets were stored at –70oC prior to reconstitution. 

 

4.1.2.1 Sample processing following extraction 

Figure 4.1 describes the sample processing following resuspension of the lyophilized 

sample extracts. Four 600 µl aliquots (2 X 600 µl from the right eye lens and 2 X 600 µl 

from the left eye lens of the same subject) of lyophilized lens extracts were taken and 

three of them were resuspended in 20 µl of either a standard reconstitution buffer (RB - 

10mM Tris-HCl; 1mM EDTA, pH 12) or a modified reconstitution buffer (MRB - 10mM 

Tris-HCl; 1mM EDTA, 0.9% saline, pH 12). Three of these 20 µl aliquots were pooled to 

total 60 µl and this volume was added to the fourth 600 µl aliquot of lyophilized Focus® 

Night & Day™ (FND) lens extract.  
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Figure 4.1 Schematic of lysozyme processing following its extraction from lotrafilcon A lens material, 

lyophilization and resuspension. 
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4.1.2.2 Addition of enzyme stabilizer 

0.5 µl of the initial stock was taken and checked for neutrality using pH paper (Hydrion 

Papers, Micro Essential Laboratory, Brooklyn, NY, USA). Once neutrality was 

confirmed, 4 µl of the sample was added to 10 polypropylene sample tubes (Axygen 

MAXYMmum Recovery ™, Axygen Scientific, INC, CA, USA). 2.5 µl of BioStab was 

added to five samples and the same quantity of MilliQ water was added to the remaining 

five samples, which acted as the control group. 

 

4.1.2.3 Addition of gel loading buffer  

Six of the 10 samples were diluted with gel loading buffer (GLB - 5% SDS; 100 mM 

Tris, pH 7.4; 30% Glycerol; 1 mM EDTA; 0.02% bromophenol blue). The remaining 

four samples were stored under various conditions without gel loading buffer. 

 

4.1.2.4 Storage 

One set of samples were run without storage (fresh) and further samples were stored for 

48 hours, under various conditions (Figure 4.1). 

 

4.1.2.5 Lysozyme standard range  

Human lysozyme standard curves were run on each Western blot so that four points 

falling within the linear range of detection were produced, to facilitate regression analysis 

of sample extracts. Standards were prepared fresh on the day of analysis from a 0.2 
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µg/µL working solution of purified human neutrophil lysozyme. Standards were diluted 

with dilution buffer and then mixed with gel loading buffer (5% SDS; 100 mM Tris, pH 

7.4; 30% Glycerol; 1 mM EDTA; 0.02% bromophenol blue). The optimal set of 

concentrations for lysozyme quantification was determined to be 20, 10, 5 and 2.5 ng/µL.  

 

4.1.2.6 Electrophoresis and immunoblotting  

Prepared sample extracts and standards were boiled for three minutes after which 1 µL of 

each was loaded directly onto 8 X 1µl combs. All samples were subjected to SDS-PAGE 

on 10-15% gradient gels with a 13 mm stacking zone and 32 mm gradient zone on an 

automated minigel system (Amersham Pharmacia Biotech PhastSystem™) using the 

manufacturer’s specified conditions.   

 

Once separated, proteins were analyzed via Western blotting. PVDF membranes, that had 

been previously activated by soaking in 100% methanol for 60 seconds followed by 

transfer buffer (20 mM Tris, 150 mM glycine; 10% (v/v) methanol) for 25 minutes, were 

placed on the separation section of the gels for transfer in the PhastSystem™ using 

manufacturer’s specified conditions. Once transfer was complete, PVDF membranes 

were blocked for 2 hours in 20% blocking buffer [Tris-buffered saline (TBS) (50 mM 

Tris; 100mM NaCl pH 7.4); 20% (w/v) skim milk powder; 0.05% (v/v) Tween®-20]. 

Following blocking, membranes were washed 3 times, each 10 minutes in duration in 50 

mL of TBS with 0.05% Tween-20 (TBS-Tw). The membranes were then incubated at 

room temperature in 5% blocking buffer containing 1:1000 polyclonal rabbit anti-human 
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lysozyme for 1 hour and placed overnight at 4°C. Post washing, blots were incubated in 

5% blocking buffer for 1 hour at room temperature with 1:10 000 goat anti-rabbit IgG-

HRP conjugated secondary antibody. Following 2 washes/10 minutes each with TBS-Tw 

and one wash of 10 minutes with TBS, bound antibody was visualized by enhanced 

chemiluminescence (ECL Plus®). Optical density data was gathered by surrounding each 

of the eight bands with a fixed dimension box and was quantified on a Storm840® 

Imaging System (Molecular Dynamics, Sunnyvale, CA, USA) (Figure 4.2) set at 800V, 

high sensitivity and ImageQuant 5.1 software (Molecular Dynamics, Sunnyvale, CA, 

USA). 

 

 

Figure 4.2 Molecular Dynamics Storm840® Imaging System 

 

4.1.2.7 Quantification of densitometric data 

Quantification of lysozyme concentration found in each lens extract was carried out by 

densitometric analysis. Optical density (OD) was measured from digitized images of the 

PVDF membranes using ImageQuant 5.1 software. The OD of the four points derived 

from the lysozyme standard curve was graphed versus the concentration loaded.  Linear 
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regression was performed and the equation of the line-of-best-fit was used to calculate 

the lysozyme concentration in the sample extracts. The OD obtained from the digitized 

images of the sample extracts was substituted into the equation: 

                                                         x = (y – b)/m 

where y is the OD of the sample extract, m is the slope of the line calculated by linear 

regression, b is the y intercept as calculated by linear regression, and x is the 

concentration of purified lysozyme. A single digitized image contained 8 bands, 4 bands 

representing purified lysozyme and 4 bands representing sample extracts. Lysozyme 

bands migrated to a position representing a molecular weight of 14 kDa on the gels.  All 

samples were analyzed on duplicate gels to account for loading errors. 

 

Comparison of lysozyme band intensity in stored versus fresh samples enabled 

calculation of percentage mass loss of lysozyme. 

 

4.1.2.8 Negative controls - Testing for BioStab cross-reactivity in Western 

blotting 

In order to test if the enzyme stabilizer itself had any possible cross-reactivity during the 

Western blotting procedure, BioStab in conjunction with buffer alone was subjected to 

SDS-PAGE and Western blotting to PVDF membranes using the PhastSystem™, as 

described above.  
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4.2 Extraction Efficiency Study 

4.2.1 Reagents and materials 

The lenses that were used in the study are described in Table 4.1.  

Table 4.1 Lens parameters used in extraction efficiency study 

Proprietary name 
 Focus® Night 

& Day™  
PureVision™ 

Acuvue® 

Advance™ 
Acuvue ® 

Manufacturer CIBA Vision 
Bausch & 

Lomb 
Vistakon Vistakon 

Water content (%) 24 36 47 58 

Oxygen 

Permeability (Dk) 
140 99 60 22 

Centre thickness 

(mm) -3.00D 
0.08 0.09 0.07 0.07 

Oxygen 

Transmissibility 

(Dk/t) at 35˚C 

175 110 86 31 

FDA group I III I IV 

USAN Lotrafilcon A Balafilcon A Galyfilcon A Etafilcon A 

Stiffness (g/mm2) 130 110 55 35 

Base Curve (mm) 8.4, 8.6 8.6 8.3, 8.7 8.4, 8.7 

Total Diameter 

(mm) 
13.8 14 14 14 

 

 

Chicken egg white lysozyme was purchased from Sigma-Aldrich (St. Louis, MO, USA). 

Sterile, 5ml non-pyrogenic, polypropylene round bottom tubes were purchased from 
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Falcon (Franklin Lanes, NJ, USA). All other reagents purchased were analytical grade 

and obtained from Sigma (St. Louis, MO, USA).  

 

4.2.2 Doping of lenses in artificial lysozyme solution 

Figure 4.3 describes this experiment in a graphical format.    

Prepare lysozyme solution at a  

concentration of 1.9mg/ml  

Add 125I labeled lysozyme  

Dope the lenses in 1 mL of 

lysozyme solution for 28 days 

 

Figure 4.3 Schematic of protocol adopted to determine the extraction efficiency of 0.2% TFA/ACN in 

extracting lysozyme from Group IV and SH lenses. 

Count lenses 

(Total DPM)
Place lenses in the extraction 

buffer for 24 hrs in darkness 

Remove extract & determine 

radioactive counts (Extract DPM)
Remove lens & determine 

radioactive counts (Lens DPM) 
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Artificial lysozyme solution was prepared at a concentration of 1.9 mg/ml using 

Phosphate Buffered Saline (PBS), pH 7.4. Lysozyme labeled with 125I was used as the 

isotopic tracer to quantify protein adsorption to new contact lenses. 125I labeled lysozyme 

was added to unlabeled solution such that the samples had a counting rate of 105 

disintegrations per minute/ml (DPM/ml).  

 

As soon as the lenses were opened from the blister pack, they were initially rinsed with 

Phosphate Buffered Saline (PBS), pH 7.4 to ensure that the packaging solution did not 

enter the artificial lysozyme solution. The lenses were then placed in 1ml of the labeled 

lysozyme solution and were allowed to incubate at a temperature of 37° C with constant 

rotation for 28 days. The labeled lysozyme solution was replaced with identical quantity 

and counting rate every seven days, to simulate the process of replenishment of the tears.    

 

Following 28 days of doping, the lenses were aseptically collected using forceps and 

were rinsed briefly in saline to remove unbound protein sticking on to the lenses. The 

lenses were then placed in sterile, 5ml (12 X 75 mm), non-pyrogenic, polypropylene 

round bottom tubes and were counted in the Beckman Gamma 5500 Counter (Figure 

4.4). This count gave the total quantity of labeled protein that was deposited on the lens 

(Total DPM). 
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Figure 4.4 Beckman Gamma Counter 

 

4.2.3 Extraction of proteins from contact lenses 

The lenses were then placed in individual glass vials containing 1.5 ml of an extraction 

solution of 50:50 mixture of 0.2% trifluoroacetic acid and acetonitrile. 74 The lenses were 

incubated in darkness at room temperature for 24 hours. Following this the lenses were 

carefully removed from the vials and were placed in sterile, 5ml (12 X 75 mm), non-

pyrogenic, polypropylene round bottom tubes and the lenses were counted in the Gamma 

Counter (Beckman Gamma 5500). This count gave the total quantity of labeled protein 

that was remaining on the lens following its extraction (Lens DPM). Apart from 

measuring the lens DPM, the extract was also counted which gave counts of the extracted 

protein (Extract DPM). The percentage of lysozyme extracted from the lens was 

calculated by the formula used by Prager and co-workers, 122 

% extracted = Total DPM – Lens DPM/ Total DPM X 100 
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4.3 Kinetics Study 

4.3.1 Reagents and materials 

Chicken egg white lysozyme was purchased from Sigma-Aldrich (St. Louis, MO, USA). 

The lenses that were used in the study included three types of SH lenses and two types of 

conventional hydrogel lenses. The SH lenses included  Focus® Night & Day™  (Ciba 

Vision, Atlanta, GA, USA), PureVision™  (Bausch & Lomb, Rochester, NY, USA) and 

Acuvue® Advance™ (Vistakon, Johnson & Johnson, Jacksonville, FL, USA) (Table 

2.2). The conventional hydrogel lens materials that were used in this study are described 

in Table 4.2. Sterile, 5ml non-pyrogenic, polypropylene round bottom tubes were 

purchased from Falcon (Franklin Lanes, NJ, USA). All other reagents purchased were 

analytical grade and obtained from Sigma (St. Louis, MO, USA).  

 

Table 4.2 Conventional hydrogel lens materials evaluated in the kinetics study 

 Acuvue ® Soflens 66 

Water Content 58 % 66 % 

Monomers HEMA/ MA HEMA/ NVP 

USAN Etafilcon A Alphafilcon A 

Manufacturer Vistakon Bausch & Lomb 

FDA category Group IV Group II 

ISO category Filcon 1b Filcon 4a 

Manufacture Moulded Moulded 

Back Optic Zone Radius 8.7 mm “Medium” 

Total Diameter 14 mm 14.2 mm 

Center thickness 0.07 mm 0.10 mm 

HEMA, poly(2-hydroxyethyl methacrylate); MA, methacrylic acid; NVP, N-vinyl 
pyrrolidone. 
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Figure 4.5 describes this experiment in a graphical format. 

 
Prepare lysozyme solution at a concentration of 1.9mg/ml  

 
 

Add 125I labeled lysozyme  
(105 DPM/ml)  

 
 

Dope the lenses  
5 lens types 

 
(PV, FND, AA, SofLens 66 and AV) 

 
 
 
 

Silicone Hydrogels  
 
 

1 hr, 6 hr
days, 7 

 
 

    ½ day, 1 day, 2 days, 3 days, 5 days, 7 
days, 14 days, 21 days & 28 days 

 
 )  
 
 
   
 

Remove the lenses and rinse briefly w
 
 

Place the lens in the gamma counter and determi
 

Figure 4.5 Schematic of protocol adopted to determine the kinetics 
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4.3.2 Doping of lenses in artificial lysozyme solution 

Artificial lysozyme solution was prepared at a concentration of 1.9 mg/ml using 

Phosphate Buffered Saline (PBS), pH 7.4. Lysozyme labeled with 125I was used as the 

isotopic tracer to quantify protein adsorption to new contact lenses. 125I labeled lysozyme 

was added to unlabeled solution such that the samples had a counting rate of 105 

disintegrations per minute/ml (DPM/ml).  

 

As soon as the lenses were opened from the blister pack, they were initially rinsed with 

Phosphate Buffered Saline (PBS), pH 7.4 to ensure that the packaging solution did not 

enter the artificial lysozyme solution. The lenses were then placed in 1ml of the labeled 

lysozyme solution and were allowed to incubate at a temperature of 37°C with constant 

rotation for different time periods (Figure 4.5). The labeled lysozyme solution was 

replaced with identical quantity and counting rate, once in seven days in order to simulate 

the process of replenishment of the tears.   

 

Following the specified days of doping (Figure 4.5), the lenses were aseptically collected 

using forceps and were rinsed briefly in saline to remove unbound protein sticking on to 

the lenses. The lenses were then placed in sterile, 5ml (12 X 75 mm), non-pyrogenic, 

polypropylene round bottom tubes and were counted in the Gamma Counter (Beckman 

Gamma 5500). The amount of protein adsorbed to the lenses was calculated by dividing 

the counts on the lenses by the specific activity of the protein. 48 
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4.3.3 Data Analysis 

All data are reported as mean ± SD. Analysis of Variance was used to determine 

statistically significant differences between deposition across various time points and 

differences between materials at any time point. Post hoc multiple comparison testing 

was undertaken using Bonferroni test. In all cases, a p value of <0.05 was considered 

significant. 
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4.4 Influence of rewetting drops on protein and lysozyme deposition 

4.4.1 Collection of human worn contact lenses 

One type of contact lens [lotrafilcon A, (Focus® Night & Day™ (FND), CIBA Vision] 

was collected from a clinical study within the Center for Contact Lens Research at the 

University of Waterloo, following completion of specified wear and care regimens. The 

study was conducted as a 2-month prospective clinical trial, using a randomized cross-

over design. Participants wore a pair of FND lenses on a daily wear basis. Each 

participant was issued one care system (OPTI-FREE® EXPRESS®) which was used in 

accordance with the manufacturer’s specifications. All participants were assigned to use 

either CLENS-100® (Alcon) or an unpreserved saline drop MINIMS sodium chloride 

(Bausch and Lomb) four times a day. After the first wearing period of 28 days, the lenses 

were replaced with a new set and the second drop was used.  

 

Upon completion of the 28-day wearing period, lenses were collected aseptically (using 

non-powdered surgical gloves) and placed in individual, sealed glass vials. The right eye 

lens was placed in 1.5ml of 50:50 mix of 0.2% trifluoroacetic acid and acetonitrile (ACN/ 

TFA). All lenses collected in ACN/TFA were maintained in the dark at room temperature 

for 24 hours. 74  

 

4.4.2 Reagents and materials 

All PhastSystem™ pre-cast gels, buffer strips, well combs, filter paper and ECL-Plus™ 

kits were purchased from Amersham Pharmacia Biotech (Baie d'Urfe, QC, Canada).   
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Immuno-Blot® PVDF (polyvinylidene difluoride) membrane was purchased from Bio-

Rad Laboratories (Mississauga, ON, Canada). Polyclonal rabbit anti-human lysozyme 

was purchased from Cedarlane Laboratories (Hornby, ON, Canada) and goat anti-rabbit 

IgG-HRP was purchased from Sigma (St. Louis, MO, USA). Human lysozyme 

(neutrophil) was purchased from Calbiochem (La Jolla, CA, USA). Chicken egg 

lysozyme and lyophilized Micrococcus lysodeikticus cells were purchased from Sigma 

(St. Louis, MO, USA). All other reagents purchased were analytical grade and obtained 

from Sigma (St. Louis, MO, USA). 

 

4.4.3 Protein deposit extraction from contact lenses 

Lenses collected in ACN/TFA were incubated in the dark at room temperature for 24 

hours. Two 0.70 ml aliquots of ACN/TFA was transferred to sterile eppendorf tubes and 

lyophilized to dryness in a Savant Speed Vac (Halbrook, NY, USA). Dried protein pellets 

were stored at –70oC prior to reconstitution. 

 

4.4.4 Sample processing following extraction in ACN/TFA-based extraction 

buffer 

Preliminary results in our laboratory demonstrated that lysozyme deposits extracted from 

silicone hydrogel contact lens materials demonstrated a loss in total mass as a function of 

storage time when assessed by Western blotting. This loss represents a potential source of 

error when quantifying total lysozyme deposition.  
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Hence, prior to electrophoresis, lyophilized protein pellets were reconstituted in modified 

reconstitution buffer (10 mM Tris-HCl; 1 mM EDTA, with 0.9% saline) pH 12.0 and 

BioStab™ Biomolecule Storage Solution (Sigma Aldrich). Reconstituted samples were 

used for Western blot, lysozyme activity analysis and total protein.  

 

4.4.4.1 Lysozyme standard range  

Human lysozyme standard curves were run on each Western blot so that four points 

falling within the linear range of detection were produced, to facilitate regression analysis 

of sample extracts. Standards were prepared fresh on the day of analysis from a 0.2 

µg/µL working solution of purified human neutrophil lysozyme. Standards were diluted 

with dilution buffer and then mixed with gel loading buffer (5% SDS; 100 mM Tris, pH 

7.4; 30% Glycerol; 1 mM EDTA; 0.02% bromophenol blue). The optimal set of 

concentrations for lysozyme quantification was determined to be 0.01, 0.005, 0.0025, 

0.001 µg/µL.  

 

4.4.5 Electrophoresis and immunoblotting 

Once prepared, samples were subjected to SDS-PAGE followed by Western blotting to 

PVDF membranes using the PhastSystem™ (Amersham-Pharmacia Biotech) as 

described earlier (Section 4.1.2.6) and also in a previously published paper. 13 

 

Lysozyme was identified using a rabbit anti-human lysozyme polyclonal antibody 

(Calbiochem), followed by a peroxidase conjugated goat anti-rabbit secondary antibody 
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(Sigma-Aldrich). Individual standard curves of purified human neutrophil lysozyme 

(Calbiochem) were run on each gel to facilitate regression analysis. Immunoreactivity 

was visualized by incubating with ECL Plus chemiluminescent substrate (Amersham-

Pharmacia Biotech). Optical densities of the resulting bands were quantified from 

digitized images created with a Molecular® Dynamics Storm™ 840 Imager using 

ImageQuant™ 5.1. 

 

4.4.5.1 Negative control - extraction and western blot analysis of unworn lenses 

Three new, unworn FND lenses were extracted in ACN/TFA solution and were subjected 

to SDS-PAGE and Western blotting, as described above. 

 

4.4.6 Measurement of lysozyme activity 

The extracts were assayed for lysozyme activity using a fresh suspension of Micrococcus 

lysodeikticus for each sample. Two milligrams of desiccated micrococcyl cells were 

weighed out and suspended in a volume of 50 mM sodium phosphate buffer (pH 6.3) 

such that an initial optical density (OD) of 0.9-1.0 was achieved at 450 nm (Multiskan 

Spectrum ELISA Plate Reader, fitted with a micro-cuvette, ThermoLabsystems). 1 ml of 

buffered micrococcyl solution was used for each sample tested. Each 1 ml volume was 

placed in a 1.5 ml cuvette and incubated in the cuvette housing at 30o C. All samples were 

compared to the results of 0.1 µg human neutrophil lysozyme standard added to a 1 ml 

volume from the same batch of buffered micrococcyl solution. The initial optical density 

at 450 nm (OD450), was taken for all samples (time=0) as well as at 30 second intervals 
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for a length of five minutes after the addition of the appropriate volume of sample (added 

in a volume of no more than 10 µl). The deviation in OD450 between each time point 

from time zero was calculated and plotted.  

 

Linear regression analysis was then applied to the curve. Experiments with R2 values 

higher than 0.98 were only used. The equation of the regression line was calculated to 

give the slope. Specific activity (SA) for the standard and each sample tested was then 

determined using the equation:  

SA = slope x 1000/mg of lysozyme used 

 

As both the standard and sample specific activities were known (and were determined 

from the same micrococcyl stock solution), one could directly compare the effects of the 

same quantity of lysozyme on the micrococcyl solution. Finally, to determine the amount 

of lysozyme from the lens extract still in native form, the following formula was 

employed:  

Native lysozyme = total lysozyme (sample SA / standard SA) 

where total lysozyme was pre-determined via Western blot analysis as described above.  

 

The denatured lysozyme component was derived by:  

Denatured lysozyme = total lysozyme – native lysozyme 

 

The final calculation was the percent of denatured lysozyme:  

% denatured total lysozyme = (denatured lysozyme / total lysozyme) x100 

 55



4.4.7 Measurement of total protein deposition 

Amido Black Dot Blot Protein Assay was used to determine the total protein deposited on 

the lenses. In this method, Nitrocellulose membrane (Bio-Rad Laboratories, CA, USA) 

was pre-treated with 15% (v/v) phosphoric acid and 10% (v/v) methanol for one minute. 

This pre-treated membrane was blotted between two sheets of filter paper and air-dried at 

room temperature. This membrane was placed in water briefly and was positioned into 

the Bio-Dot ® Microfiltration Apparatus (Bio-Rad Laboratories). A fresh set of protein 

standards was prepared by diluting 2.0mg/ml BSA stock standard in Phosphate-buffered 

saline (PBS) at pH 7.2. Protein solutions (concentrations ranging between 0.5 and 16 

µg/ml) were applied to membrane in 50 µl volumes. Following the application of stock 

and the sample solutions, all the wells were rinsed with 100µl of PBS. After rinsing, the 

membrane was air-dried and was immersed in 1.5% glutaraldehyde for 5 minutes. Then 

the membrane was washed twice with 1N NaOH to remove glutaraldehyde and then with 

0.05% (v/v) HCl solution to neutralise NaOH. The membrane was then immersed in 

Amido Black Stain [0.1% (w/v) amido black, 5% (v/v) methanol, 10% (v/v) glacial acetic 

acid]. The membrane was then destained with large volumes of 40% (v/v) methanol, 10% 

(v/v) glacial acetic acid and was dried at room temperature. Stained protein dot-blots 

were imaged on the Syngene® with GeneSnap™ using white light and were quantified 

using Gene Tools™.  

 

 56



4.4.8 Data Analysis 

All data are reported as mean ± SD. All data were tested for normality using 

Kolmogorov-Smirnov test. If the data proved to be parametric, then student t-test was 

used to determine statistically significant differences between the two care regimens. If 

the data proved to be non-parametric in nature, then a non-parametric Wilcoxon signed 

rank-sum test was used. In all cases, significance level was taken as p < 0.05. 
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5 Results 

5.1 Stabilization study 

Table 5.1 shows the percentage of lysozyme loss when the lyophilized sample extracts 

were resuspended in the “standard” reconstitution buffer, stored with and without the 

addition of BioStab, gel loading buffer and under the two storage temperatures (-20º C 

and -70º C).  The addition of BioStab significantly reduced the amount of lysozyme mass 

loss. 

 

Table 5.1 Percentage loss of lysozyme after 48 hours of storage when the samples were resusupended 

in the Standard Reconstitution Buffer. 

-20°C -70°C 

 
No Biostab With 

Biostab 
p No Biostab With 

Biostab p 

With GLB 32.9% ± 0.6 14.3% ± 2.5 < 0.001 31.3% ± 1.1 13.1% ± 1.9 < 0.001 

Without 
GLB 33.5% ± 0.7 15.1% ± 1.5 < 0.001 31.7% ± 1.3 13.1% ± 1.3 < 0.001 

 

 

Table 5.2 shows the percentage of lysozyme loss when the lyophilized sample extracts 

were resuspended in the “modified” reconstitution buffer, stored with and without the 

addition of BioStab, gel loading buffer and under the two storage conditions (-20º C and  

-70º C).  
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Table 5.2 Percentage loss of lysozyme after 48 hours of storage when the samples were resusupended 

in the Modified Reconstitution Buffer. 

-20°C -70°C 

 
No Biostab With 

Biostab 
p No Biostab With 

Biostab p 

With GLB 19.2%  ± 4.5 0.9% ± 0.8 < 0.001 17.1% ± 2.8 0.6% ± 0.8 < 0.001 

Without 
GLB 19.5%  ± 4.3 1.4% ± 1.3 < 0.001 18.2% ± 1.9 1.1% ± 1.4 < 0.001 

 

 

A four way analysis of variance was performed for all the data. The results indicated that 

buffer composition (p<0.001), storage temperature (p=0.04) and addition of BioStab 

(p<0.001) were all important in controlling loss of mass of lysozyme over time. 

However, no significant difference was found when the samples were stored with and 

without the addition of gel loading buffer (p=0.373). 

 

No signal was seen on negative control Western blots run with BioStab, indicating that 

the enzyme stabilizer itself is not cross reactive with the Western blotting procedure used 

in this experiment. 
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5.2 Extraction efficiency study 

The extraction efficiency for different lens types using the 0.2% TFA/ACN extraction 

buffer is detailed in Figure 5.1. 
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Figure 5.1 Percentage of lysozyme extracted by 0.2% TFA/ACN from different lens types 

 

Analysis of Variance was performed for all the data. The results indicated that there were 

significant differences between etafilcon and lotrafilcon A (p<0.001) and etafilcon and 

balafilcon lens materials (p<0.001). Post hoc analysis by Tukey test showed that there 

was no significant difference between etafilcon and galyfilcon lens materials (p=NS). 
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5.3 Kinetics Study 

Figures 5.2 and 5.3 show the kinetics of lysozyme deposition on alphafilcon and etaficon 

lens materials, while Figure 5.4 shows the kinetics of lysozyme deposition on the three 

types of SH lens materials.  
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Figure 5.2 Lysozyme deposition curve for Alphafilcon A (Group II) lens material 
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Figure 5.3 Lysozyme deposition curve for Etafilcon A (Group IV) lens material 

 

Etafilcon lens material deposited significantly more lysozyme than all other lens 

materials (p<0.001). In the Group IV lens material, the amount of lysozyme increased 

significantly between days 1 and 7 (p<0.001) and then reached a plateau, with no further 

increase occurring (p>0.05). 
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Figure 5.4 Lysozyme deposit curve on FND, PV and AA (SH) lens materials  

 

With the Group II and SH lens materials there was a significant increase in lysozyme 

deposition across all time points (p<0.001). At 7 days, lotrafilcon A lenses deposited 

1.8±0.4 µg of lysozyme per lens while balafilcon and galyfilcon lenses deposited 5.9±2 

and 3.6±1 µg of lysozyme respectively. After 28 days of doping, lotrafilcon A lenses 

deposited 4.2±1 µg of lysozyme per lens while balafilcon and galyfilcon lenses deposited 

19.4±3 and 16.8±4 µg of lysozyme respectively.  
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There was a significant difference in lysozyme deposition between the conventional lens 

materials and all the three SH lens materials across all time periods (p<0.001). Between 

SH lens materials, Bonferroni post-hoc analysis showed that there were no significant 

differences between lotrafilcon A, balafilcon and galyfilcon lens materials until 3 days 

(p>0.05). There were significant differences in lysozyme deposition between balafilcon 

versus galyfilcon (p<0.05), lotrafilcon A versus balafilcon lenses (p<0.001) and 

lotrafilcon A versus galyfilcon lenses (p<0.001) across all time periods after 5 days.  
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5.4 Influence of rewetting drops on protein and lysozyme deposition 

5.4.1 Western blot quantification of lysozyme deposition 

Lysozyme standard curves gave a range of R2 values between 0.97 and 0.99, as 

demonstrated in Figure 5.5. Table 5.3 details the lysozyme deposition on FND lenses 

when subjects used an unpreserved saline drop versus a rewetting drop (CLENS-100®). 

The results demonstrate that lysozyme deposition was greater when subjects used 

unpreserved saline instead of CLENS-100® (p<0.001).  
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Table 5.3 Summary of lysozyme deposition data (N = 25). 

MINIMS NaCl CLENS-100® 

Lysozyme 
(µg/lens) Range (µg/lens) Lysozyme 

(µg/lens) Range (µg/lens) 

p value 
(between 

care 
regimens) 

1.14 ± 0.7 0.53 to 3.13 0.73 ± 0.5 0.34 to 2.14 < 0.001 

 

 

5.4.2 Assessment of lysozyme activity 

A summary of the lysozyme activity results is presented in Table 5.4. The percentage of 

denatured lysozyme was reduced when subjects used CLENS-100® drops when 

compared with the control drops (p=0.002). 

 

Table 5.4 Summary of lysozyme activity data (N = 25) 

MINIMS NaCl CLENS-100® 

% Denaturation 
per lens Range (%) % Denaturation 

per lens Range (%) 

p value 
(between 

care 
regimens) 

85 ± 7 71 to 98  76 ± 10 64 to 97  0.002 
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5.4.3 Total protein 

Table 5.5 details the total protein deposition found on FND lenses. Total protein 

deposited on FND lenses was significantly greater when MINIMS Sodium Chloride was 

used than when CLENS-100® was used (p<0.001).  

 

Table 5.5 Summary of total protein deposition data (N = 25) 

MINIMS NaCl CLENS-100® 

Total protein 
(µg/lens) Range (µg/lens) Total protein 

(µg/lens) Range (µg/lens) 

p value 
(between 

care 
regimens) 

1.86 ± 0.8 0.7 to 3.6 1.17 ± 0.7 0.5 to 2.8  < 0.001 
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6 Discussion and conclusions 

There are over 60 proteins that have been detected in the tear film 134 and among these 

lysozyme has attracted the greatest attention. 2, 7, 38, 54, 55 Several studies have reported that 

lysozyme is the predominant tear film protein deposited on hydrogel lenses 7, 42, 44-46, 71, 72 

and also that it plays an important role  in ocular immunology. 30-33, 135, 136  Hence I chose 

to focus on the analysis of lysozyme deposited on SH lenses and also on its extraction 

and deposition as a function of time on SH lenses and compare it with what is seen on 

conventional hydrogel lens materials.  

 

A method has been optimized in our laboratories to quantify the minute quantities of 

lysozyme deposited on SH lens materials. 13 One of the objectives of this thesis was to 

enhance this existing technique, such that the deposits extracted from SH contact lenses 

could be accurately and sensitively analyzed. Thus, the first project of this thesis involved 

the development of a method whereby lysozyme mass extracted from SH lens materials 

would be preserved over time and would be compatible with the optimized Western 

blotting procedure. This methodological development was incorporated into a clinical 

study wherein the difference in the degree of total protein, the difference in lysozyme 

deposition and activity recovered from lotrafilcon A SH lens material when subjects used 

surfactant containing rewetting drop (CLENS-100®) versus control saline was 

investigated. 
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The remaining studies were in vitro experiments wherein the lenses were doped in 

artificial lysozyme solution containing 125I-labeled lysozyme. These experiments were 

performed to gain insight into: 

 

1. the efficiency of extraction of the 50:50 mix of 0.2% trifluoroacetic acid and 

acetonitrile (ACN/TFA) (as this extraction reagent has been fully validated for 

traditional hydrogel lenses, but not for SH lenses) 

2. the kinetics of lysozyme deposition on SH lenses and compare it with Group IV 

and Group II lens materials. 
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6.1 Stabilization Study 

Preliminary work in our laboratories has shown that there is a substantial loss in 

lysozyme mass following extraction from SH lenses and subsequent processing 

(lyophilization, resuspension and storage). This is particularly true for lotrafilcon-based 

materials. Such loss in lysozyme mass has been previously reported by other groups 

looking at tears 94 and saliva, 95 but in these cases the concentration of lysozyme was 

significantly higher than that typically found on lotrafilcon-based hydrogel lenses, which 

typically deposit <5µg of lysozyme per lens. 12-14 An alternative reason for this loss in 

lysozyme mass is that lysozyme may undergo dimerization 99 or aggregation, 137 resulting 

in failure to be recognized by the antibody used in our Western blotting assay. However, 

preliminary work in our lab suggests that dimerized lysozyme would be detected with the 

polyclonal antibody used in this assay. Thus, my goal was to devise a protocol to reduce 

the degree of lysozyme loss, as this would serve as a significant tool for many research 

areas in which the examination of small amounts of lysozyme, in either solution or on the 

surface of biomaterials, is important. 

 

Lysozyme is a globular protein which is relatively stable when compared to most other 

proteins found in tears. However, in the quantitation of lysozyme deposited on a contact 

lens, (which, depending on the quantification method, may require a significant degree of 

initial processing such as extraction, lyophilization, resuspension and storage), it is 

possible that the conformational state of any protein, including lysozyme, could be 

significantly altered. Altered conformation has significant implications if the quantitative 

technique being employed uses an antibody to recognize the protein of interest (for 
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example Western blotting or ELISA) and may be more critical than if the protein is being 

quantified by a method that does not involve antibody recognition (for example, High 

Performance Liquid Chromatography).  

 

The stability of proteins in solution has been a major concern for biotechnologists and the 

pharmaceutical industry. Several studies have been conducted and it has been recognized 

that long term stability of proteins can be improved by adding substances such as sugars 

(eg Dextran, 138-140 Trehalose, 141-143 Sucrose 143, 144), salts 145-149 and polyols such as 

Sorbitol. 150, 151 The current understanding of protein stabilization has been achieved by 

thermodynamic measurements of interactions and micro-environmental changes 

occurring upon addition of a stabilizing compound and also through Nuclear Magnetic 

Resonance Spectroscopy (NMR), Differential Scanning Calorimetry (DSC) and Circular 

Dichroism (CD). It is believed that the stabilizing phenomenon is a complex one and no 

single mechanism is responsible for stabilization.  

 

This project set out to develop a protocol that would reduce the loss in lysozyme mass 

over time from an elute from a SH contact lens. The two potential protein stabilizers that 

were used in this study were 0.9% saline and a proprietary product developed for protein 

stabilization (BioStab™ Biomolecule Storage Solution). The presence of buffer or salt 

solution is believed to maintain the native conformational state of lysozyme. 148 The 

stabilizing effects of salts have been attributed mainly to their ability to mask the protein 

of interest from the surrounding solvents. The exclusion of harsh solvents from the 

protein surface leads to ‘preferential hydration’ of the protein or ‘preferential exclusion’ 
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of the additive from the protein surface, limiting their denaturing effect. BioStab™ 

Biomolecule Storage Solution is a solution which is free of DNAses, RNAses and 

proteases. This product is an aqueous solution which contains a non-ionic detergent and 

is non toxic. The producers and distributors of the product claim that this product 

increases storability of biomolecules such as enzymes, antibodies and DNA. Despite 

repeated attempts to obtain the exact chemical composition of the product, I was unable 

to obtain any further information and thus am unable to ascertain what components were 

exactly responsible for imparting such a protective effect during our analysis. However, 

examination of Tables 5.1 and 5.2 clearly demonstrate that this product has a marked 

influence in controlling the loss of lysozyme mass over storage time, with no apparent 

impact on its ability to be recognized by a suitable antibody.  

 

The samples were tested by storing them with and without the addition of gel loading 

buffer in order to determine whether any of the components in the gel loading buffer was 

responsible for altering the structure of lysozyme. One of the major components in the 

gel loading buffer is glycerol (at a concentration of 30%). Glycerol itself has a potential 

stabilizing effect on protein molecules, 151, 152 however, we did not find any significant 

difference when the samples were stored with and without the addition of gel loading 

buffer.  

 

6.1.1 Conclusion 

A procedure has been optimized using a modified reconstitution buffer, BioStab™ 

Biomolecule Storage Solution and storage at -70°C in which the percentage loss of 
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lysozyme following extraction from lotrafilcon A contact lenses has been reduced from 

approximately 33% to less than 1%. This revised protocol will be of significant value for 

researchers interested in studying the deposition of proteins onto substrates in both ocular    

and non-ocular research areas.    

 

This study was conducted on deposited lysozyme recovered from only one type of SH 

contact lens material. Further work must be undertaken to examine the impact of this 

protocol on other proteins and on proteins recovered from other types of SH lens 

materials.  
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6.2 Extraction Efficiency Study 

This study specifically investigated the efficacy of the removal of lysozyme from 

etafilcon and three types of SH lens materials (lotrafilcon A, balafilcon and galyfilcon) 

using an in vitro deposition model. This technique was sensitive enough to investigate the 

extraction efficiency from SH lens materials, which deposit very low quantities of 

lysozyme. Extraction of proteins from hydrogel lenses using 0.2% TFA/ ACN is a 

commonly reported technique 12, 74, 104, 122, 153 and this buffer has been used previously for 

extraction of deposits from SH materials. 12, 13, 27 However, only one study has discussed 

the efficacy of removing lysozyme by the acid-based extraction technique and has 

compared that with SDS-based methods for SH lens materials. 13  

 

The results from this study demonstrate that the method developed by Keith and 

colleagues based upon TFA and ACN is 100% efficient in removing lysozyme from 

artificially spoiled etafilcon lens materials, which is consistent with the data from Keith 

and colleagues. 74 The mechanism for protein removal by this solution is thought to be 

due in part to an ion exchange interaction between the solution, protein and lens, along 

with strong solvation properties of the acetonitrile-trifluoroacetic acid mixture. 74 As the 

solution is acidic, it readily provides protons to interact with negative sites in the lenses. 

This can occur as an ionic interaction at an open negative site or as an exchange at an 

existing ionic bond between protein and lens. 154  In addition, the solution has strong 

solvation properties for proteins, in that it has ionic, aqueous and organic properties. 

Thus, the combination of these two properties provides a means of removing protein from 

lenses and readily solubilizing and maintaining it in solution. 154 However, the efficacy of 
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this method in extracting lysozyme from SH lens materials is lower. Although the current 

method could extract 91.4 ± 1.4 % of the lysozyme deposited on artificially spoiled 

galyfilcon lenses, it could extract only 66.3 ± 5.2 % and 56.7 ± 3.8 % from lotrafilcon A 

and balafilcon lenses respectively.  

 

The possible reason for this reduced extraction efficiency from these two lens types could 

be due to the surface modification process that is involved with these lens materials. The 

surfaces of the lotrafilcon lenses are permanently modified in a gas plasma reactive 

chamber 23, 25 while the balafilcon lenses are surface treated in a gas plasma reactive 

chamber, which transforms the silicone components on the surface of the lenses into 

hydrophilic silicate compounds. 23, 26 No surface treatment is required for etafilcon and 

galyfilcon lenses. Hence this surface modification process in lotrafilcon A and balafilcon 

lens types could interfere with the buffer’s ability to break the bonds between deposited 

lysozyme and the lens surface resulting in decreased extraction from these two lens 

materials. 

  

It is a well established fact that lysozyme deposition is affected by the water content and 

the ionicity of lens materials. 2, 3, 5, 7, 37, 47, 79, 120, 155 However, it is not known if these 

factors affect lysozyme removal or if the extraction buffers are strong enough to 

overcome these effects. The ability of the components of an extraction buffer to break 

chemical bonds and encapsulate proteins for removal from the contact lens surface is 

determined by the extraction efficiency. Each type of protein deposited on a material may 
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have a different set of bonds and steric constraints, allowing it to remain on the surface. 

The extraction buffer should have the ability to break these interactions.  

 

It is clear that SH lenses will still deposit significantly less lysozyme compared to 

traditional hydrogels. To overcome this issue of inefficiency, a new buffer has to be 

developed which has the capability to remove 100% of lysozyme from SH lenses, which 

will have minimal effect on lysozyme conformation and will be compatible with current 

and future methodologies used to quantify lysozyme concentration and conformation. 

Hence, the development of an efficient method to extract lysozyme from SH lens 

materials will be a valuable step in the investigation of the interaction of these contact 

lens materials with the human tear film. 
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6.3 Kinetics Study 

Although radiochemical analysis offers great sensitivity for quantitation of small amounts 

of material, it has been used infrequently to measure deposition of tear components on 

contact lenses. Lysozyme was selected for these studies because it is a recognized 

prominent lens soilant and a significantly greater quantity of lysozyme binds to ionic, 

high-water-content (Group IV) lenses than to other types of lenses and is therefore often 

used as the prototypical marker for protein accumulation. 7, 74, 98 It is widely recognized 

that the adsorption of proteins at the contact lens surface is complex and depends upon a 

number of factors. Notable among these are material water content and surface charge. 3, 

7, 37, 42, 46, 47, 79, 96, 120
  This is the first study to look at the kinetics of lysozyme deposition 

on SH lens materials and compare it with Group IV and Group II lens materials. 

 

Examination of Graph 5.3 shows that etafilcon A lenses (Group IV) attracted substantial 

quantities of protein, which was significantly greater than that measured on the 

alphafilcon A (Group II) and SH lenses (p < 0.001). This finding is in accordance with all 

other previous studies examining protein and lysozyme deposition on different lens 

groups. 2, 3, 5, 7, 47, 79, 156 This is because methacrylic acid imparts a negative charge to the 

material and thus thermodynamically favors the deposition of lysozyme which is a 

positively charged species. Lysozyme accumulated rapidly on Group IV lenses (1 hr, 

98±8 µg/lens), reached a maximum on the 7th day (1386±21 µg/lens) and then reached a 

plateau, with no further increase occurring (p=NS). 
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Previously published in vitro studies investigating the kinetics of protein deposition on 

conventional hydrogel contact lens materials, most of which use lysozyme 38, 54, 104, 112, 113, 

122 or albumin-containing 48, 109, 110 artificial tear solutions, indicate that the initial 

accumulation of protein on hydrogel materials is rapid, occurring within minutes of 

exposure to a protein-containing solution. 38, 48, 109, 110, 112, 122 The kinetics of lysozyme 

adsorption on Group IV lenses broadly follows a three-phase process, with initial 

adsorption, followed by a rapid increase in which saturation occurs rapidly, and finally a 

plateau. 38, 54, 110, 111, 113 They also indicate that the ionic binding capacity, water content, 

and chemical composition of the underlying polymer has a significant impact on the type 

and extent of protein deposited. 38, 48, 110, 113    

 

In the group II and SH lens materials, lysozyme deposited was significantly less than that 

seen with the group IV lenses. The amount of lysozyme deposition increased gradually 

across all time points and no plateau was achieved (p<0.05) (Figures 5.2 and 5.4). Hence, 

the kinetics of lysozyme deposition pattern in SH lenses were similar to that of Group II 

lenses in that no plateauing was seen even after 28 days of doping. At 7 days, FND lenses 

deposited 1.8±0.4 µg of lysozyme per lens while PV and AA lenses deposited 5.9±2 and 

3.6±1 µg of lysozyme respectively. After 28 days of doping, FND lenses deposited 4.2±1 

µg of lysozyme per lens while PV and AA lenses deposited 19.4±3 and 16.8±4 µg of 

lysozyme respectively. Results from this study also clearly demonstrates that SH contact 

lens materials deposit significantly less lysozyme compared to traditional hydrogel 

materials. Obvious potential factors relate to the differences in surface treatment and bulk 

composition between the currently available SH lenses. 
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SH contact lens materials represent a new family of biomaterials that have properties 

unlike any other previously developed for contact lens use. In addition to differences in 

surface modification, there are fundamental differences in the bulk chemistry of the 

polymers. The surfaces of the three (of the four commercially available SH lenses) are 

surface treated in an attempt to improve the wettability of the materials and to reduce the 

degree of deposition. 25 Galyfilcon lenses incorporate a long chain, high molecular weight 

molecule called Hydraclear™, which maintains flexibility and moisture. This wetting 

agent is present throughout the lenses and hence no surface treatment is required for these 

lenses. 27 Because of their unique surface and bulk properties, these newly developed SH 

lens materials are highly resistant to protein deposition. It is difficult to predict and 

explain the process of deposition in these newly developed SH lens materials.  

 

6.3.1 Conclusions 

To-date this is the first study to look at the kinetics of lysozyme deposition on SH lens 

materials. Radiochemical analysis is a sensitive and effective technique to determine the 

small quantities of lysozyme deposited on SH lenses. The kinetics of contact lens 

deposition depends on the chemical structure of lens material under consideration. 

Lysozyme deposition occurs rapidly with Gp IV materials before reaching a maximum, 

while SH and Gp II materials progressively accumulate lysozyme, with no plateau 

occurring. 

 

The kinetics of material build-up on lenses has ramifications for both lens replacement 

frequency and the regularity of care and maintenance. Elucidating the apparent 
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differences between studies that do and do not show plateauing may be an important 

feature in relating deposition to symptomatology. Examination of methodology, 

differences in lens materials, denaturation of protein, and changes of the inflammatory 

state of the eye over longer wearing periods may explain these findings. All results 

analyzing the role of deposition in successful contact lens wear should be viewed against 

the background of lens age.  

 

6.3.2 Future directions 

One of the biggest drawbacks of this study was that the lenses were doped in a solution 

containing only one type of protein, namely lysozyme. An important factor to consider in 

the process of deposition relates to whether other substances from the tear film (for 

example mucins or other proteins) concurrently deposit onto the material surface at 

different rates. Hence it is necessary to look at the kinetics of deposition using a complex 

artificial tear solution and to look at the protein-protein, protein-lipid and protein-mucin 

interactions. It is clear that SH lenses only deposit small amounts of lysozyme and 

previously published studies suggest that much of this lysozyme is denatured. 12, 13 Hence 

it would be interesting to look at the activity of lysozyme recovered at various time 

points. In addition to looking at kinetics of deposition, the kinetics of denaturation and 

how they relate to wearing period, the influence of various care regimens, and the degree 

to which other tear proteins denature also require investigation.  
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6.3.3 Comparison of in vitro experiments to in vivo studies 

Soft lenses are not always readily obtained for analysis from clinical sources. A number 

of studies have found artificial tear solutions an attractive option in determining the 

binding affinity of different components and the mechanisms involved in such binding. 

110, 121-129 The principal advantages are that many experimental variables are eliminated, 

quantitation can be enhanced by labeling the species fluorometrically or radiometrically, 

and simple hypotheses can be tested without having to engage in a resource consuming 

clinical trial.  

 

However, the real world provides a complex array of variables that cannot be excluded 

from having an influence in clinical lens spoilage. Such effects include the cycle of 

evaporative drying and wetting created by the blinking action, the mechanical aspect of 

shear forces during blinking, differences in tear film protein and lipid composition, 

structure of the tear film, replenishment rate and volume of tears, wearing times, wearing 

conditions (for example outdoor or air-conditioned environments and proximity to 

chemical agents), ultraviolet light exposure, wearing mode (extended wear versus daily 

wear), interactions between the items under test and other tear film components, and the 

influence of external contaminants. Moreover, some evidence suggests that deposit 

formation is caused in part by the thinning and drying of the tear film, resulting in the 

lipid layer directly collapsing onto the lens surface and partitioning into the dry lens 

surface. 157, 158 Hence, in vitro results may not be directly transferable to the in vivo state. 

However, these in vitro studies will provide valuable guidance for further in vivo studies. 
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6.4 Influence of rewetting drops on protein and lysozyme deposition 

A number of studies have investigated the effect of surfactants on hydrogel lens 

materials. 36, 105, 128, 159-166 To-date, this study is the first of its type which has examined 

the potential use of surfactant-containing rewetting drops with silicone hydrogel lenses. It 

is a well established fact that the major problem associated with silicone hydrogel lens 

wear is dryness and associated discomfort that develops over the course of the day. This 

study investigated the impact of treating SH lenses during their wearing period with a 

novel rewetting agent that has been specifically developed to reduce in-eye deposition on 

polyHEMA-based materials. 

  

The results from this study demonstrate that total protein deposition (Table 5.5), 

lysozyme deposition (Table 5.3) and lysozyme denaturation (Table 5.4) were all 

significantly reduced when subjects used CLENS-100® compared with the control saline 

drop. The components of CLENS-100® include a surfactant designed to remove protein, 

lipids and debris, named Polyethylene glycol -11 lauryl ether carboxylic acid (also called 

RLM-100, a patented product); and the other important component is a substance that 

guards lenses against future protein build-up, named poloxamine. One other component 

is Tetronic® 1304, which helps the lenses to retain moisture and also helps to shield the 

lens from future protein build-up. Hence the total protein deposition and lysozyme 

deposition recovered from the lenses were significantly lower (p<0.001) when the 

subjects used CLENS-100® instead of MINIMS sodium chloride.  
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Generally, surfactants are used by the manufacturers, and include in them high molecular 

weight substances such as poloxamine (or poloxamer) or a lower molecular weight 

substance named tyloxapol. 167 Theoretically, it has been suggested that surfactants would 

alter the interfacial chemistry at the molecular layer between the contaminant and lens. 

Following this, polar micelles would form and they would entrap the debris and enable 

them to be rinsed away. Clinically, solutions containing a surfactant have been reported 

to promote mechanical cleaning as well as provide ongoing cleaning during wear. 166, 168, 

169
  

 

Table 5.4 indicates that the amount of denatured lysozyme recovered from lotrafilcon A 

lenses was 76 ± 10% when the subjects used CLENS-100® which was significantly 

lower than when subjects used MINIMS sodium chloride (85 ± 7%). The degree to which 

protein denaturation occurs is mediated by a number of factors, including contact time 

with the substrate, chemical composition of the substrate, protein type, surrounding pH, 

and temperature. Proteins are most likely to denature when exposed to strongly 

hydrophobic surfaces. 38, 170-174 The use of a surfactant containing rewetting drop could 

have probably increased the hydrophilicity of the contact lens surface. This would lead to 

lysozyme deposited on lenses getting exposed to a lesser hydrophobic surface resulting in 

lower denaturation.  

  

Given the known link between protein deposition and immunological changes induced 

during lens wear, it is possible that reduced protein deposition and a reduction in 

denatured lysozyme could result in improved vision, reduced mucous discharge and 

palpebral lid changes. The results from this study were remarkably consistent and 
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strongly suggest that practitioners should consider prescribing surfactant-containing 

rewetting drops to patients who use lenses on a continuous wear basis. Silicone hydrogel 

chemistry is unique - new conditioning/ rewetting products will likely be needed as the 

popularity of this material grows. The results obtained would provide valuable 

information about the potential for surface modification of these polymers in-situ. 
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6.5 Summary  

1. A procedure has been optimized using a modified reconstitution buffer, 

BioStab™ Biomolecule Storage Solution and storage at -70°C in which the 

percentage loss of lysozyme following extraction from lotrafilcon A contact 

lenses has been reduced from approximately 33% to less than 1%. This revised 

protocol will be of significant value for researchers interested in studying the 

deposition of proteins onto substrates in both ocular and non-ocular research 

areas.  

2. The results from the extraction efficiency study showed that 0.2% trifluoroacetic 

acid/ acetonitrile was not 100% efficient in extracting lysozyme deposits from 

lotrafilcon A and balafilcon lens materials. However, it was efficient in extracting 

lysozyme deposited on etafilcon and galyfilcon lens materials. 

3. The kinetics of lysozyme deposition on SH lenses was determined using an in 

vitro model. These results demonstrate that the kinetics of lysozyme deposition is 

material dependent and reiterates that SH lenses deposit very low amounts of 

lysozyme compared to conventional lenses.  

4. The impact of treating SH lenses during their wearing period with a novel 

rewetting agent that has been specifically developed to reduce in-eye deposition 

was also investigated. The results from this study demonstrate that total protein 

deposition, lysozyme deposition and lysozyme denaturation were all reduced 

when subjects used a surfactant containing rewetting drop instead of a control 

saline drop.   
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