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Abstract

Two global optimization methods are proposed in this thesis. They are the multi-

canonical basin hopping (MUBH) method and the basin paving (BP) method.

The MUBH method combines the basin hopping (BH) method, which can be

used to efficiently map out an energy landscape associated with local minima, with

the multicanonical Monte Carlo (MUCA) method, which encourages the system to

move out of energy traps during the computation. It is found to be more efficient

than the original BH method when applied to the Lennard-Jones systems containing

150–185 particles.

The asynchronous multicanonical basin hopping (AMUBH) method, a paral-

lelization of the MUBH method, is also implemented using the message passing

interface (MPI) to take advantage of the full usage of multiprocessors in either

a homogeneous or a heterogeneous computational environment. AMUBH, MUBH

and BH are used together to find the global minimum structures for Co nanoclusters

with system size N ≤ 200.

The BP method is based on the BH method and the idea of the energy land-

scape paving (ELP) strategy. In comparison with the acceptance scheme of the

ELP method, moving towards the low energy region is enhanced and no low energy

configuration may be missed during the simulation. The applications to both the

pentapeptide Met-enkephalin and the villin subdomain HP-36 locate new configu-

rations having energies lower than those determined previously.

The MUBH, BP and BH methods are further employed to search for the global

minimum structures of several proteins/peptides using the ECEPP/2 and ECEPP/3

force fields. These two force fields may produce global minima with different struc-

tures. The present study indicates that the global minimum determination from

ECEPP/3 prefers helical structures. Also discussed in this thesis is the effect of the

environment on the formation of beta hairpins.
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Chapter 1

Introduction

1.1 Global Optimization Methods

Global optimization of a multi-variable problem has long been an intensive subject

of research in many fields and is an important issue in the characterization of

complex systems [1, 2]. Obvious applications with significant importance include

the design of integrated circuits [3] such as microprocessors, the prediction of protein

structures [1, 4, 5], ab initio computation of nano-size atomic structures [1, 2,

6, 7] and optimization in transportation systems [8]. From a physical point of

view, global optimization can be interpreted as a global minimization procedure of

physical systems, when they can be effectively described by multivariable functions,

even though these functions may have very complex forms. The global optimization

will then be performed on such functions. By treating the targeted function as

an effective “potential energy”, and the dependent variables as the coordinates of

particles, searching the global optimum is equivalent to locating the classical ground

state of a physical system.

For a physical system, the potential energy function is often very complicated,

making it impossible to obtain the global minimum analytically. Numerical solution

of the system will then be the only feasible way thanks to the power and availability

of modern computers. Since most of the global minimization procedures are time

consuming, efficient algorithms are required in practical applications. The develop-

1



CHAPTER 1. INTRODUCTION 2

ment of efficient algorithms for global minimization is still quite active because of

this requirement. The algorithms of optimization can be classified into four over-

lapping categories [9, 10, 11]: (1) deterministic methods, (2) stochastic methods,

(3) heuristic methods, and (4) smoothing methods. Most of the techniques exhibit

varying degrees of success in applying to the corresponding physical systems, for

which the numerical techniques are specifically designed. The main difficulty in

global minimization is associated with the fact that multiple local minima may

exist, with locations separated from each other by high energy barriers. Most nu-

merical procedures are effective in finding a minimum; however, not all numerical

procedures are efficient in finding the global minimum.

Methods that employ the Monte Carlo procedure, which belong to the second

category, are based on the statistical aspect of a physical problem and have be-

come one of the major branches in the field of optimization. For complex systems

where a large number of energy minima exist, these methods are effective. Since

the first appearance of the Monte Carlo method half a century ago [12], there

have been many different implementations for various fields of applications. Of

central importance to all the Monte Carlo methods is the statistical weight associ-

ated with each point of the system coordinate, depending on the potential energy

of the system. The simulated annealing (SA) method [3] is the most commonly

used algorithm in which a Boltzmann weight has been adopted, where temperature

plays a pivotal role in determining the thermodynamic properties. Initially, system

configurations are generated at high temperature, simulating the melted state of

the system. Following a prescribed cooling schedule, the temperature is lowered in

stages until the system freezes at a low-temperature solid state, corresponding to

an energy minimum. A well chosen cooling strategy encourages the simulation to

yield a crystalline state close to the global energy minimum. However, because of

the fluctuation nature of the thermodynamics, SA cannot give the precise value of

the global energy minimum. Furthermore, it is also possible that the system can

be trapped in an undesirable local energy minimum.

The introduction of non-Boltzmann weighting schemes into Monte Carlo meth-

ods by Torrie and Valleau [13] offered a new strategy in the traditional MC method,

which partially resolved the trapping issue. The basic idea behind a re-weighting
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scheme is to introduce a statistical weight other than the canonical Boltzmann one,

to ensure a more extensive searching of the low energy space to improve the chance

of reaching the global minimum. An ideal choice of the weight is the inverse of

the density of states (DoS) of energy, which would lead to the desired uniform ran-

dom walk trajectory over the entire energy space. However, the density of states

is unknown a priori. First generating an approximation to the weight, and hence

the density of states, the multicanonical Monte Carlo (MUCA) method improves

the estimate iteratively using statistics accumulated during a pre-defined number

of MC steps [14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. The approximate location of the

energy minimum will then be determined by further MC iterations based on the

multicanonical weight just obtained.

There are other Monte Carlo based methods that can be used to pin down the

precise value of the energy minima. The basin hopping (BH) method [2], which is

in principle the same as the “Monte Carlo Minimization” (MCM) method of Li and

Scheraga [24], is the combination of a Monte Carlo method based on the Boltzmann

weight with a deterministic local minimization procedure. The original configura-

tion is replaced by its nearest local minimum configuration, precisely computed

from a deterministic procedure. Using the local minimum rather than the original

energy potential, such a scheme maps the energy landscape into a staircase form

where plateaus are the local energy minima. A Boltzmann weight is then used to

move the system from plateau to plateau, in the transformed energy space.

Both MUCA and BH have been shown to be successful in their applications

to finding stable structures of crystalline clusters [1, 2, 25, 26, 27, 28, 29] and

predicting protein native structures [1, 19, 21, 23, 24, 30]. MUCA, inasmuch as

SA, has some difficulties in locating the energy minimum accurately because of the

thermodynamic nature of the methods. In BH, though each new energy minimum is

precisely determined, the hopping between the energy minima can still be trapped

in a deep minimum area for a long time, which is an inherited problem of the

finite-temperature Monte Carlo method. When the system size is large, it becomes

difficult to reach the global minimum within a reasonable computational time.

To overcome this deficiency, we introduce in Chapter 2 a new optimization al-

gorithm, the multicanonical basin hopping (MUBH) method [6], that incorporates
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a multicanonical weight into the basin-hopping method. Instead of using the Boltz-

mann weight that relies on a fixed temperature, MUBH takes the main idea from

MUCA by using the multicanonical weight but this weight, as in BH, is based on the

nearby local minimum of each configuration visited, calculated deterministically. In

other words, MUBH is a MUCA method based on the reduced energy landscape of

BH. As will be demonstrated in Chapter 2, this new algorithm shows substantial

improvement in efficiency over BH for relatively large clusters when applied to the

Lennard-Jones (LJ) systems. Success is mainly the result of avoiding the potential

pitfalls in the original MUCA and BH methods.

Beyond the improvement of computational algorithms, we can also take ad-

vantage of the distributed computation environment that can carry out a single

computational task on multiple processors. A typical Monte Carlo algorithm is a

Markov-chain procedure in which every new step is generated from the previous

step. The acceptance or rejection of a step is determined by the relative weight

generated from the current step in comparison with that from the previous step,

according to a selection rule, such as the Metropolis criterion. Our approach is

based on several different simultaneous Markov-chains [31, 32, 33]. Starting with

different initial (random) conditions for multiple Markov-chains, each Markov-chain

runs independently on one processor. Because of the stochastic nature of these op-

timization methods, this would multiplicatively increase the probability of finding

the final result; hence the computational time would be shortened. The replica ex-

change method (REM) [32], also referred to as the parallel tempering method [34],

is a good example of the multiple Markov-chain application. We will present the

asynchronous multicanonical basin hopping (AMUBH) method [7] in Chapter 3,

which is a parallel implementation of the MUBH method. A single computation

is carried out over multiple processors, each carrying out one independent compu-

tation starting from a different initial condition. AMUBH combines the statistical

histograms collected from all processors for occasional update of the multicanoni-

cal weight, which is then distributed to each processor for continuing calculations.

Running threads are not required to finish synchronously for the update.

Recently, the Energy Landscape Paving (ELP) method, a novel approach to the

global optimization problem that combines ideas from tabu search [35, 36, 37] and
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energy landscape deformation [38, 39] was proposed by Hansmann and Wille [40].

ELP has very general applicability. The central idea is to perform low-temperature

Monte Carlo simulations, but with a modified energy expression designed to steer

the search away from regions that have already been visited. When applied to

the X-ray structure determination of organic molecules [41], it was shown that

ELP outperforms the simulated annealing method, and when it was utilized for the

simulation of the heptapeptide deltorphin [42], the ELP method was proven to be

more effective in sampling the low energy region of conformational space than the

multicanonical (MUCA) method. In fact, any Monte Carlo method that updates

its weight based on the collected histograms in previous steps can be considered

as a typical implementation of the ELP method. Hence, the generalized ensemble

methods (MUCA, entropic sampling, histogram reweighting, etc.) are all different

implementations of the ELP method. Hansmann’s implementation in Ref. [40]

used the simplest functional form of the energy dependent histogram. Just as

the SA method and the MUCA method discussed earlier, ELP cannot obtain the

exact minima value as well, since the temperature cannot be set to absolute zero

to eliminate all the thermal fluctuations. Similar to the MUBH method, we will

introduce the local minimization procedure into the ELP method, i.e., combine

BH with ELP. This combination is also expected to have good efficiency for global

optimization problems. In our actual implementation of the combination procedure,

a modification is introduced to the acceptance criteria for a new MC step so that no

lower energy configurations would be missed. Its implementation will be discussed

in detail in Chapter 4 as the basin paving (BP) method. Being a more general

global optimization method, BP can be applied to both cluster crystallization and

protein folding problems.

1.2 Cluster Crystallization

The study of nanoclusters composed of either metallic atoms, nonmetallic atoms

or their mixtures is of fundamental importance [2, 26, 27, 43, 44, 45, 46, 47, 48, 49]

to nanotechnology where unusual physical and chemical properties depend strongly

on cluster size N . Even changing a single atom in the cluster may dramatically
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alter the nanocluster properties, such as the specific heat and the magnetic suscep-

tibility [44, 46, 47]. Cluster systems have been widely studied both theoretically

and experimentally. The crystal structure of a cluster depends on the interaction

between particles. For inert gas atoms, e.g. Ar, He and Ne, a Lennard-Jones

potential is often employed to describe the interaction between any two atoms

of the system. We call a system described solely by Lennard-Jones interactions

between any pair of particles the Lennard-Jones cluster. For Lennard-Jones clus-

ters, global minima have been computationally obtained with size N up to 1 000

[2, 50, 51, 52, 53, 54, 55, 56]. However, only Ref. [2] performed an unbiased con-

figuration search utilizing the basin hopping algorithm to system size up to 150.

The other studies are based on lattice models, which are only fast in determin-

ing configurations based on lattices already constructed. If the global minimum

configuration of a cluster is different from all the known lattice structures, it may

never be located using lattice based methods. For example, by using the unbiased

BH method, a new Leary’s tetrahedral structure was recently determined for the

Lennard-Jones cluster of size N = 98, which had never been found by any lattice-

based method previously. With the new proposed unbiased MUBH method, we

were able to perform large system simulations within a reasonable time. This is

illustrated by the comparison of MUBH and BH in Chapter 2. Other than the

Lennard-Jones potential, there are other potentials, such as the Morse potential

and the Gupta potential, that are often used for cluster system studies. The Gupta

potential [57, 58], which was first proposed for studying metal surface relaxation,

is now mainly adopted to study metal clusters [26, 45, 48, 52, 58]. In Chap-

ter 3, cobalt nanoclusters will be studied using the Gupta potential. This study

is a general purpose global minimum searching procedure based on BH, MUBH

and AMUBH. For small size clusters (2 ≤ N ≤ 150), the BH method is efficient

enough; MUBH is applied when the system size is in the range of 150 < N ≤ 180,

since in this range, the efficiency of MUBH is dramatically improved in comparison

with BH alone; for systems with much larger sizes (180 < N ≤ 200), AMUBH, the

asynchronous parallelized version of MUBH, is adopted for the purpose of saving

computational time with the usage of multiple processors in a computer network.
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1.3 Protein Folding

Proteins are one of the most important and common macromolecules that make up

the primary constituents of life. From a chemical point of view, they are unbranched

chains joined by some or all of the twenty naturally occurring amino acids. A protein

is only functional when it folds into a typical spatial structure, which is called

the native state. The three dimensional (3D) configuration of a protein is solely

determined by its amino acid sequence. Protein folding problems, which predict

the spatial structure and the corresponding function of a protein from its amino

acid sequence alone, are then critical in biological studies. When proteins cannot

fold correctly, there can be serious diseases caused. Alzheimer’s, Parkinson’s, mad

cow diseases and many cancers are believed to be caused by the misfolding of

proteins [59, 60].

Experimental techniques often used in determining a protein’s native structure

are X-ray crystallography [61, 62] and nuclear magnetic resonance (NMR) [61, 63].

Although these experimental methods can provide high-resolution structural infor-

mation about some proteins, computer simulations can be used to obtain valuable

information that cannot be obtained experimentally. Furthermore, the folding dy-

namical, kinetic and stochastic properties of the folding procedure can be studied

as well.

Comparative modeling methods [5, 64, 65] predict the protein structures based

on the fact that there are obvious similarities between the 3D structures of some

proteins. It consists of four sequential steps to predict the structure [65]: (1) Tem-

plates, which are the known structures related to the target sequence, must be first

found usually from a database in this step. (2) The target sequence is aligned with

the templates. (3) Based on the alignment, a three dimensional (3D) model for the

target protein will be constructed. (4) The model will be evaluated for its folding

correctness and overall model accuracy. If the model is not satisfactory, these four

steps are repeated until an acceptable model is obtained. Comparative modeling

can generate structures with high accuracy. However, at least one known structure

is required for its successful application.

Calculations from “first principles” can also predict the native structure of a
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protein, although its accuracy and reliability are inferior to comparative methods.

According to the thermodynamic hypothesis [66, 67], the native structure of a

protein lies at the global minimum of free energy, which can further be approximated

by the global energy minimum. Predicting the native state of a protein can then

be interpreted as a global minimization procedure. Most of the existing global

optimization techniques can be used for the protein folding problem. In this thesis,

the recently proposed MUBH and BP method will be applied to search for the

lowest energy structures of different proteins/peptides.

For the present simulations, two empirical force fields ECEPP/2 [68, 69] and

ECEPP/3 [70] are employed to describe the interatomic interactions of the system

studied. After the introduction of the BP algorithm in Chapter 4, we will apply

it to locate the lowest energy structures of the pentapeptide Met-enkephalin and

the villin subdomain HP-36 systems. MUBH, BP, and BH methods are used in

Chapter 5 to study several proteins/peptides. The study covers the formation of

alpha helix, beta hairpin and random coil structures. As we will notice later in the

chapter, simulations using the ECEPP/2 and ECEPP/3 force fields generate differ-

ent structures even for the same system. By comparing the difference between the

structures located, the effects introduced by the difference between the potentials

to the folding mechanism of the proteins will be discussed. Environmental interac-

tions have close relationships with the final folded structures. The formation of a

beta sheet often requires the presence of solvent or “background” proteins. Such

environmental effects will also be studied in Chapter 5 of this thesis.

Finally, in Chapter 6, we summarize the results obtained in this thesis and

provide a list of suggestions for future work.

We include in Appendix A a brief review on protein folding and list the 20 amino

acids that occur in proteins in Appendix B. The acronyms used in this thesis are

summarized in Appendix C.



Chapter 2

Multicanonical Basin Hopping

Method

As mentioned in Chapter 1, global optimization plays a very important role in many

fields. A large number of computational algorithms have been developed to perform

the optimization in the past years. A practical system can often be described by a

“potential energy” function, which could be very complicated in general. A typical

searching strategy will be applied to the complex “potential energy surface” (PES)

with the expectation of locating the global “energy minimum” during a reasonable

computational time. From the PES’s point of view, a searching procedure can be

based on the original energy surface or on a transformed energy surface for the

purpose of simplifying the original one, which may result in the improvement of

efficiency to reach the global minimum (optimum). From the searching procedure’s

point of view, the simulation often follows two directions. One uses the molecular

dynamics (MD) method. By solving the equations of motion for each particle in

a classical system according to Newton’s second law F = m d2r
dt2

, MD simulation

computes the trajectory that the system follows starting from given initial condi-

tions. The MD method is a good choice for investigating the kinetic properties of

the system studied. However, MD is only applicable to systems of small size at

the present stage because of the intensive computational resources it requires. If

only the global minimum is of interest, it is generally not the best choice. The

9
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other direction uses the Monte Carlo (MC) method. For the MC method, instead

of following the real trajectory as MD does, it relies on the statistical aspect of a

physical system. By assigning a statistical weight to each state visited, for example

the Boltzmann weight exp(−E/kBT ) with E the energy of the state, the acceptance

of a new step is decided by the comparison of the weight with that of its previous

step. Even though the trajectory for a MC simulation is not the dynamical one

that the system will follow, the statistical quantities can still be extracted when

the simulation is performed long enough. This method cannot give as much infor-

mation as MD can. However, it is generally more efficient than the MD simulation.

When obtaining the global minimum is the main purpose, the MC method is often

the first choice.

The Metropolis Monte Carlo method [12] is the most common MC method used

in obtaining the statistical quantities of the system studied. For this algorithm, the

simulation starts from a randomly generated initial configuration r0, with energy

E(r0) and the Boltzmann weight w(r0) = exp[−E(r0)/kBT ], where kB is the Boltz-

mann constant and T is the simulation temperature. A random deviation ∆r is

then performed so that the system reaches a new configuration r1 = r0 + ∆r, with

the energy E(r1) and the weight w(r1) = exp[−E(r1)/kBT ]. The acceptance of the

new configuration is determined by comparing the weight of the two configurations,

w(r1)

w(r0)
= e−(E(r1)−E(r0))/kBT = e−∆E/kBT , (2.1)

with ∆E = E(r1) − E(r0). If ∆E < 0, the new configuration r1 is accepted

unconditionally; if ∆E > 0, r1 is accepted with probability P = exp(−∆E/kBT ).

In the latter case, a random number ξ, where 0 ≤ ξ < 1, will be generated:

if ξ ≤ P , the trial configuration is accepted; otherwise, it is rejected and the

simulation keeps the old configuration. Since the probability of finding ξ having a

value less than P is P , this procedure guarantees that an appropriate probability is

generated. The state in which the system now resides will be treated as the initial

configuration for the next MC step. The procedure is repeated iteratively until the

pre-set terminating conditions are satisfied. In a practical simulation, however, the

Metropolis MC method is not efficient in finding the global minimum because its

population distribution is bell-shaped, as will be mentioned in Section 2.2. This
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kind of distribution discourages the simulation from going to the lower energy

region, which results in the insufficient sampling of lower energy configurations,

and the difficulty of surpassing high energy barriers, which are often the main

problems for most Monte Carlo methods to overcome.

The simulated annealing (SA) method is probably the most widely used MC

method for global minimization since it was first proposed in 1983 by Kirkpatrick

et al. [3]. SA is based on the Metropolis MC method by introducing a variable tem-

perature to simulate the slow cooling (annealing) procedure of a physical system.

A practical example is the crystal growing process. The system is first equilibrated

at a high temperature, which corresponds to the gaseous state, and then slowly

cooled down to a very low temperature close to zero, in analogy with the transition

from the gaseous state to the liquid state and then to the solid state. If the cooling

scheme is well chosen, this procedure will ensure that the system cools down to

the crystal state, which gives the global minimum. Otherwise, the system may be

stuck in a glassy state, a local minimum, and will never be able to reach the crystal

state. The annealing scheme affects the success of locating the global minimum and

the convergence speed directly. Other than the conventional annealing schedule, in

which the temperature is controlled simply by Tk+1 = cTk with k the annealing step

and c the annealing ratio satisfying 0 < c < 1, there are some other schedules pro-

posed as well, for instance, Cauchy annealing, Boltzmann annealing, and adaptive

simulated annealing (ASA) [71, 72]. Amongst them, ASA draws much attention

due to the fact that it is suitable for less known systems and has been proven to

be more robust than other annealing techniques when applied to complex problems

with multiple local minima.

As just illustrated, the efficiency of a MC method when applied to the global

minimization problem is mainly determined by its ability of surpassing high energy

barriers and visiting lower energy regions in more detail. Different MC implemen-

tations adopt different techniques to solve this problem, which results in different

application efficiencies. The basin hopping (BH) method [2] achieves this goal by re-

moving the energy peaks via a local minimization procedure in each MC step, while

generalized ensemble methods overcome the difficulties by setting different weights

for different energy regions. We will give a detailed review of these two methods
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in the following sections, since our new proposed method, the multicanonical basin

hopping (MUBH) method, is based on them.

2.1 Review of Basin Hopping Method

Consider the potential energy of a system, E(r), which is a function of all molecu-

lar coordinates, r. The dotted curve in Fig. 2.1 schematically shows the presence

of multiple minima of the system. Initially, a random configuration r is chosen

as the starting point, from which the configuration of the local minimum, rmin,

is determined numerically from a minimization procedure, such as the conjugate

gradient method [73]. Then rmin is given a small trial “move” to a new configu-

ration r′ not far from rmin, and a new local minimum r′min is again obtained from

the minimization procedure. One determines the acceptance of this new mini-

mum configuration according to the Metropolis scheme [12] by considering a Boltz-

mann weight exp(−∆Emin/kBT ), where ∆Emin is the energy difference between the

new minimum and the minimum already found at the previous step. This proce-

dure is repeated to search for the next local minimum. Computationally the local

minimization procedure is the bottleneck of the BH method. We found that the

limited-memory quasi-Newton optimization method [74] shows better performance

in comparison with other techniques discussed in Ref. [73]. Any small improvement

at this step would see repeated saving of the multi-iteration computational time.

Conceptually, the local-minimum searching step in the above algorithm is equiv-

alent to transforming the energy landscape, represented by the dotted curve in

Fig. 2.1, to a new reduced energy landscape, which consists of plateaus of energy

minima only:

Ẽ(r) = min{E(r)} = E(rmin) (2.2)

where min{...} represents an energy minimization process by using r as the initial

condition and rmin is the configuration of the local minimum obtained from r [2].

The energy maxima of the original function are discarded in the reduced energy

landscape and are no longer of concern, as only the structure of the “basins”,

represented by the solid curve in Fig. 2.1, is examined.
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Figure 2.1: A schematic illustration of the concept of the basin-hopping energy transformation in one-dimension.

The dotted curve shows an original function under consideration and the steps drawn by the solid line represent

the local minima of the original curve, under the transformation in Eq. (2.2). The transformed energy landscape

can be described by the energy spectrum to the left. Also shown is the division of the energy axis into various

bins considered in the multicanonical procedure.
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The reduced energy landscape is now a multi-step function that has values of

the local energy minima only. As can be seen in Fig. 2.1, there still exist energy

barriers in the new landscape, where the new maxima, which are actually the local

minima of the original function, separate deeper minimum wells. The Monte Carlo

part of the BH algorithm is used to handle the hopping of the system from one

plateau to another under a thermal energy kBT . The hopping probability depends

highly on the reduced-energy difference between the plateaus of the two consecutive

steps and the choice of kBT . Hence, simulations can still be trapped in the reduced

energy landscape.

The basin-hopping method has been demonstrated to be superior to other tech-

niques when applied to small size Lennard-Jones systems [2]. However, as remarked

in [2], the efficiency of the approach “could doubtless be improved by combining it

with various other techniques”. One such improvement would be to use an anneal-

ing schedule to induce a temperature reduction process — a simulated annealing

and BH method; the other possibility would be to employ a non-Boltzmann weight

in the Monte Carlo part of the simulation, as will be shown below.

2.2 Multicanonical Monte Carlo Method

In a canonical ensemble, configurations at temperature T are weighted by the Boltz-

mann factor

wB(E) = e−βE (2.3)

where β = (kBT )−1. The resulting probability distribution of the energy, experi-

enced by the system in the simulation, takes the form

PB(E, T ) ∝ ρ(E)wB(E) (2.4)

where ρ(E) is the density of states, which increases with energy rapidly. In the low

energy harmonic region and for a single minimum, ρ(E) ∝ (E − E0)nF /2, where

nF is the system degrees of freedom and E0 its ground state energy [75]. The

Boltzmann factor decreases with energy exponentially for a given temperature.

Thus PB(E, T ) is strongly peaked at the average energy of the system corresponding
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to that temperature. Ideally, one uses a very low T to search for configurations near

the ground state. However, a low T prevents the actual simulation from moving

efficiently between the energy wells and barriers. Berg [16] has shown that PB(E, T )

cannot be computed accurately due to the poor sampling in a canonical system.

The multicanonical ensemble, on the other hand, is designed differently, where

the weight function used in the Monte Carlo simulation is directly related to the

density of states by

wmu(E) ∝ 1/ρ(E) . (2.5)

The resulting probability distribution of the energy is

Pmu(E) ∝ ρ(E)wmu(E) = const, (2.6)

i.e., the system is expected to move throughout the entire energy space by a random

walk.

Without loss of generality, we simply set the constant of proportionality to

unity in Eq. (2.5) because only relative probabilities are required in the Metropolis

scheme. However, the density of states of a physical system, and thus the mul-

ticanonical weight, is unknown a priori, and needs to be estimated via iterated

numerical simulations. The starting iteration, the zeroth iteration, is usually per-

formed by adopting the Boltzmann weight as the initial guess for wmu(E), w
(0)
mu(E) ≡

wB = exp(−β(0)E) where β(0) = (kBT
(0))−1 with T (0) a given initial temperature,

and an energy histogram H (1)(E) is constructed from the Monte Carlo sampling.

Because we expect that H (1)(E) ∝ w
(0)
mu(E)ρ(E) so that ρ(E) ∝ H (1)(E)/w

(0)
mu(E),

Eq. (2.5) shows that an improved estimate of the multicanonical weight can be

obtained from w
(1)
mu(E) = 1/ρ(E) ≈ w

(0)
mu(E)/H (1)(E). This procedure is repeated

so that at the nth iteration, the simulation is carried out with the estimated weight

w
(n)
mu(E), which yields a distribution H (n+1)(E) for E, collected within the nth it-

eration. A new estimate for the statistical weight

w(n+1)
mu (E) ≈ w(n)

mu(E)/H (n+1)(E) (2.7)

is then used in the (n+ 1)th iteration.

In practice, one estimates an energy lower bound E0 and an energy upper bound

EL from the first MC run, and divides the energy region of interest into L bins
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having a bin width ∆. Each bin carries a label i and is characterized by its upper

energy Ei. We further define the zeroth bin for energy E ≤ E0 and the (L + 1)th

bin for energy E > EL. The statistics can now be collected for each bin, and

H(n+1)(Ei) can be numerically defined as the number of states appearing in the ith

bin during the nth iteration.

To use the histogram effectively in the next iteration in which a smooth w
(n+1)
mu (E)

is required, the system entropy S(E) ≡ − lnwmu(E) in the ith bin can be parame-

terized, following Berg’s scheme [17, 18, 19], as

Si(E) = βiE − αi for Ei−1 < E ≤ Ei, (2.8)

where β is the derivative of entropy S(E) with respect to energy E, with discrete

expression

βi =
Si+1(Ei+1)− Si(Ei)

∆
. (2.9)

βi and αi in Eqs. (2.8) and (2.9) stand for β(Ei) and α(Ei), respectively, in bin i.

By inserting the entropy equivalent of Eq. (2.7), i.e. S(n+1)(E) = S(n)(E) +

lnH(n+1)(E), into Eq. (2.9), we will be able to obtain an iterative expression for βi

at the (n + 1)th step,

β
(n+1)
i,0 =

S
(n+1)
i+1 (Ei+1)− S(n+1)

i (Ei)

∆

=
S

(n)
i+1(Ei+1)− S(n)

i (Ei)

∆
+

lnH
(n+1)
i+1 − lnH

(n+1)
i

∆

= β
(n)
i +

lnH
(n+1)
i+1 − lnH

(n+1)
i

∆
(2.10)

Due to the statistical uncertainty and fluctuation of the collected histograms, a

subscript “0” has been used in the previous equation to denote that β
(n+1)
i,0 is not

the final estimator yet. A correction needs to be performed to obtain the final

β
(n+1)
i .

The variance of Eq. (2.10) can be estimated as

σ2[β
(n+1)
i,0 ] = σ2[β

(n)
i ] +

σ2[lnH
(n+1)
i+1 ] + σ2[lnH

(n+1)
i ]

∆
. (2.11)
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Since β
(n)
i is a fixed quantity obtained from the nth step and it does not fluctuate,

we have σ2[β
(n)
i ] = 0. The fluctuation of β

(n+1)
i,0 is then only governed by the

sampled histograms. Using the fact that σ2[H
(n+1)
i ] ∼ H

(n+1)
i [76], and further

σ2[lnH
(n+1)
i ] ∼ σ2[H

(n+1)
i ]/(H

(n+1)
i )2 ∼ 1/H

(n+1)
i , Eq. (2.11) can then be written as

σ2[β
(n+1)
i,0 ] =

c

H
(n+1)
i+1

+
c

H
(n+1)
i

(2.12)

with c an unknown constant. The statistical weight of the contribution of β
(n+1)
i,0 to

the final estimator β
(n+1)
i is inversely proportional to the variance. By choosing a

convenient factor of proportionality, c = 1, we obtain the statistical weight

g
(n+1)
i =

H
(n+1)
i+1 H

(n+1)
i

H
(n+1)
i+1 +H

(n+1)
i

. (2.13)

Now, the final estimator for the (n + 1)th step can be obtained as a weighted

average, which is based on β
(n+1)
i,0 together with the accumulated weights that were

involved in calculating β
(n)
i in the previous n iterations,

β
(n+1)
i = (1− ĝ(n+1)

i )β
(n)
i + ĝ

(n+1)
i β

(n+1)
i,0 (2.14)

with ĝ
(n+1)
i the accumulated variance weight

ĝ
(n+1)
i =

g
(n+1)
i∑n+1
k=1 g

(k)
i

. (2.15)

Retaining the constant c in Eq. (2.13) would yield the same ĝ
(n+1)
i . Combining

Eqs. (2.10) and (2.14) together, we are able to write the final estimator as a function

of the weighted histograms,

β
(n+1)
i = β

(n)
i + ĝ

(n+1)
i

lnH
(n+1)
i+1 − lnH

(n+1)
i

∆
(2.16)

The major advantage of the improved parameter determination in the above equa-

tion, compared to Eq. (2.10), is that it leads to more stable simulating results.

Once β
(n+1)
i is determined, we will be able to obtain the parameter αi in Eq. (2.8)

for the (n + 1)th step. Considering two neighboring bins i + 1 and i, the en-

tropy at their shared boundary energy Ei should be continuous at each step, i.e.,



CHAPTER 2. MULTICANONICAL BASIN HOPPING METHOD 18

S
(n+1)
i+1 (Ei) = S

(n+1)
i (Ei) for step n + 1. It can be further expressed in the param-

eterized form as β
(n+1)
i+1 Ei − α(n+1)

i+1 = β
(n+1)
i Ei − α(n+1)

i based on Eq. (2.8). Hence,

αi can be obtained iteratively

α
(n+1)
i = α

(n+1)
i+1 + [β

(n+1)
i − β(n+1)

i+1 ]Ei (2.17)

with the definition of αL = 0 in every step.

We have used the improved expression of βi, Eq. (2.16), together with Eq. (2.17),

for i = 0, 1, ..., L − 1 to determine the multicanonical weight in this work. For

i ≥ L, we always let β
(n+1)
i = β(0) and α

(n+1)
i = 0. Initially, β

(0)
i = β(0) and α

(0)
i = 0

for all i. The updating procedure proceeds from the high energy bins towards the

low energy bins, and if either H (n+1)(Ei+1) = 0 or H (n+1)(Ei) = 0, g
(n+1)
i = 0 from

Eq. (2.13) and we set β
(n+1)
i = β

(n)
i . The weight for the (n+ 1)th iteration is then

calculated according to

w(n+1)
mu (E) = e−β

(n+1)
i E+α

(n+1)
i (2.18)

for E belonging to the ith bin.

2.3 Multicanonical Basin Hopping Method

MUCA is a very promising method that has particularly facilitated the exploration

of the low energy landscape of various complex systems in the calculation of ther-

modynamic properties at low temperatures [14, 15, 17, 19, 20, 21, 23]. Because

MUCA contains an effective temperature Ti = (kBβi)
−1 which is not identically 0

for the lowest energy bin, thermal fluctuations deter the system from descending

into the global energy minimum as many low energy configurations still contribute

prominently. To this extent, it suffers from the same problem as the simulated

annealing method, and can only be used to give an estimate, but not the exact

value, of the ground state energy. Considering the BH’s merit in rapidly locating

a minimum precisely and the MUCA’s ability to surmount high energy barriers,

these two methods are complementary to each other.

The main idea of MUBH is to handle the hopping between the plateaus in the

reduced energy landscape with a probability function determined by the energy
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spectrum that contains all reduced-energy plateaus. The targeted multicanonical

weight, wmu(E), in the original MUCA is replaced by wmu(Ẽ) = 1/ρ(Ẽ) with ρ(Ẽ)

the density of minimal states, where Ẽ is defined by Eq. (2.2).

MUBH contains the following steps. The first iteration is identical to the original

BH procedure by carrying out a limited run that contains M canonical Monte Carlo

steps for the transformed energy landscape, as described in Sec. 2.1. To do so, an

initial temperature T (0) needs to be selected, and the sensitivity of this selection

on the efficiency of the algorithm will be addressed below. Upon finishing the first

iteration, we collect the histogram of the reduced energy defined in Eq. (2.2), and

start to consider a multicanonical Monte Carlo procedure for the acceptance of

a new hopping. Most equations in Sec. 2.2 remain applicable, provided that the

energies E in these equations are replaced by the reduced counterparts Ẽ.

For a given system, we first select a lower bound E0, chosen close to the best

estimate of the lowest energy, and establish an upper bound EL by identifying it

with a value close to which the histogram attains its maximum in a limited MC run

with the initial temperature T (0). The range [E0, EL] is then divided into L equal

segments with an increment ∆. Because we are only concerned about the energy

plateaus in Fig. 2.1, in which the energy spectrum is represented schematically

on the left hand side, the statistics collected during the simulation represents the

frequency of visited plateaus. The statistical weight is characterized by the values

of αi and βi obtained for the ith bin. For Ẽ > EL, the Boltzmann weight wB(Ẽ) =

exp(−Ẽ/kBT (0)) is used. In this weighting strategy, the final histogram distribution

is expected to be smooth, if not completely flat, within [E0, EL]. The program flow

chart for the MUBH method is shown in Fig. 2.2.

2.4 Application to Lennard-Jones Clusters

The Lennard-Jones cluster consisting of N particles (LJN) forms a crystal structure

corresponding to an energy minimum. The LJN cluster was originally selected

to demonstrate the effectiveness of the BH method. Further, the global energy

minimum for each given N has been relatively well determined [2, 52, 53]. Even
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Figure 2.2: The flow chart for the multicanonical basin hopping method.
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for a system with cluster size as small as N = 98 [25], there are of the order of

1040 minima, so that Lennard-Jones clusters are sophisticated enough for testing

algorithms. Actually, the Lennard-Jones system has recently become a benchmark

for checking the efficiency and accuracy of global optimization methods.

The energy of the LJN system is given by

E = 4ε

N∑

i>j

[(
σ

rij
)12 − (

σ

rij
)6] (2.19)

where rij is the distance between particles i and j, ε and 21/6σ are the equilibrium

well depth and separation, respectively, for a pair of particles. Hereafter, we employ

reduced units such that ε = σ = kB = 1. We performed both BH and MUBH

simulations on various LJN systems for comparison.

For the BH method, all of the calculations were performed with the temper-

ature T = 0.8. The MC displacement step size was initially set to 0.4, and was

adjusted automatically during the simulations to maintain an acceptance ratio of

50%, averaged over every 100 MC steps. As for the MUBH calculations, two groups

of runs based on different initial temperatures were performed. For T (0) = 2.0, the

multicanonical update was performed after every M = 2 000 basin-hopping MC

steps; while for T (0) = 5.0, the update was after every M = 1 000 basin-hopping

MC steps. In a typical MUBH run, the entire energy range was divided into 12

bins — 10 bins between E0 and EL, together with two additional bins [−∞, E0]

and [EL, +∞]. E0 was chosen to be close to the global energies provided in [53].

For the lower initial temperature runs, T (0) = 2.0, the value of EL will be smaller

than that of the higher initial temperature runs, T (0) = 5.0. Runs with a lower

initial temperature had a narrower MUBH energy range.

Table 2.1 shows the results of BH and MUBH simulations on LJN . In the table,

the number of runs failed (F) to find the global minimum after a given number

of steps, and the total number of runs (T ) are both shown. For any given system

size N , Lmax represents the maximal MC steps permitted in the simulation in

case of any failed runs, or the actual maximal MC steps used to reach the global

minimum if all runs are successful. For all the successful runs, the global energy

minima obtained in our BH and MUBH calculations are identical to those reported
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BH(T (0) = 0.8) MUBH(T (0) = 2.0) MUBH(T (0) = 5.0)

N Ave S.D. Lmax F/T Ave S.D. Lmax F/T Ave S.D. Lmax F/T
150 20,114 4,522 100,000 1/15 13,967 4,394 69,166 0/15 9,862 1,573 22,641 0/15

155 62,674 17,964 500,000 1/16 35,027 8,004 500,000 1/15 22,799 4,789 73,832 0/20

160 157,940 80,003 1,500,000 5/16 58,327 15,871 253,582 0/16 39,294 8,149 200,000 1/16

165 635,236 124,619 2,000,000 4/16 92,362 18,704 300,000 1/16 141,610 25,654 500,000 1/18

170 333,800 85,854 1,400,000 1/16 119,980 32,125 1,300,000 2/16 51,200 8,180 200,000 2/20

175 290,970 106,290 1,268,539 0/16 81,277 29,282 500,000 1/16 52,306 15,685 1,400,000 1/14

180 234,310 77,099 2,000,000 1/15 127,800 27,984 400,000 1/15 47,353 9,478 200,000 1/15

181 259,620 54,799 816,121 0/16 132,740 27,636 2,000,000 1/16 54,762 6,342 92,671 0/14

182 265,280 59,801 1,500,000 2/16 137,510 28,219 2,000,000 4/16 64,606 15,709 600,000 1/18

183 1,000,972 206,894 2,603,728 0/16 217,200 54,835 1,000,000 1/16 207,690 49,353 650,000 2/18

185 1,194,140 170,688 4,000,000 1/16 357,920 92,595 1,594,614 0/18 419,380 91,730 2,000,000 2/19

Table 2.1: The average number of MC steps to reach the global minimum for each N (Ave) and their standard

deviation (S.D.) in both BH and MUBH methods. F gives the number of runs failed to reach the global minimum

after Lmax steps and T is the total number of runs conducted. If F = 0, Lmax represents the maximal number

of steps to reach the global minimum among the T runs.
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in Ref. [53]. The average MC steps to reach the global minimum listed in the

table are plotted in Fig. 2.3 as a function of N . Compared to BH, MUBH requires

less MC steps by factors of 2 to 5 in the global minimum exploring process. The

figure also demonstrates that as N increases the reduction in computational time

for finding the global minimum becomes more significant. The exact improvement,

however, depends on the physical systems and hence cannot be quantified easily.

The improvement of MUBH over BH for systems of size N < 150 is not noteworthy,

as for smaller systems, the energy landscape is relatively simple. In some cases,

MUBH can even give worse results than BH, because BH is already a very efficient

method especially for low barrier cases, and it takes only several thousand MC steps

to find the global minima for these systems, long before MUBH can reach a stable

multicanonical weight. For example, we have tested both methods for systems of

size N = 100 to 150, and could not find any significant saving in computational

time in MUBH in comparison with BH.

The intrinsic capability of overcoming energy barriers in MUBH is the reason

for the improvement in computational time. Figures 2.4 (a) and (b) show the time

trajectories of Ẽ for both BH and MUBH, respectively. It is visible from Fig. 2.4 (a)

that the BH run can be trapped in a local minimum for a long computational time.

In comparison, Fig. 2.4 (b) shows that the computation in MUBH proceeds very

differently. The trajectory covers a much wider energy range and the MUBH run

rarely gets trapped in a local energy minimum. Hence, in comparison with BH,

MUBH encourages better navigation in the reduced energy landscape in search of

the global energy minimum.

One important parameter that influences the MUBH search efficiency is the

initial temperature T (0). This is already apparent in Fig. 2.3 for the two choices

of T (0). Using N = 150 and N = 170 as examples, we have further performed

independent MUBH runs for a number of different choices of T (0). The average

number of MC steps for finding the global minimum as a function of T (0) are listed

in Table 2.2 and plotted in Fig. 2.5. Also shown in Table 2.2 are the corresponding

values of EL. From both the table and the figures, it is clear that when the initial

temperature is low, it requires more MC loops on the average for systems to reach

their global minima. When T (0) is high, less MC loops will be needed. A low
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Figure 2.3: The average Monte Carlo steps of the BH and MUBH methods in finding global minima. The circles

represent BH results, while the crosses and diamonds are MUBH results for T (0) = 2.0 and 5.0, respectively.

The error bar represents the standard deviation of the T runs for each N .
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Figure 2.4: Typical searching trajectories of (a) BH with T = 0.8 and (b) MUBH

with T (0) = 5.0 for N = 185.
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N = 150 N = 170

T (0) EL Ave S.D. Lmax F/T EL Ave S.D. Lmax F/T
1.0 -870.4 13,765 4,053 64,361 0/15 -1,006.8 216,214 96,763 1,300,000 2/16

1.5 -870.4 13,880 3,544 53,988 0/15 -1,004.8 89,855 17,056 300,000 2/16

2.0 -870.4 13,967 4,394 69,166 0/15 -1,002.8 119,980 32,125 1,300,000 2/16

2.5 -868.4 11,714 2,158 29,893 0/15 -1,001.8 92,336 18,558 500,000 1/16

3.0 -868.4 13,881 3,022 41,495 0/15 -1,000.8 84,459 22,656 380,530 0/16

3.5 -865.4 10,410 1,459 26,616 0/15 -999.8 66,016 9,763 140,733 0/16

4.0 -865.4 10,324 1,258 21,957 0/15 -998.8 62,312 12,321 202,025 0/16

4.5 -864.4 12,529 1,950 27,077 0/15 -997.8 80,160 24,820 416,724 0/16

5.0 -863.4 9,862 1,573 22,641 0/15 -995.8 51,200 8,180 200,000 2/20

0.8(BH) —— 20,114 4,522 100,000 1/15 —— 333,800 85,854 1,400,000 1/16

Table 2.2: The average number of MC steps correspond to different initial temperatures for the LJ clusters

with N = 150 and N = 170. Ave, S.D., Lmax and F/T are the same as those of Table 2.1. EL stands for the

multicanonical upper bound energy with the unit of ε.
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Figure 2.5: Initial temperature dependence of the average number of MC steps to

locate the global minimum using MUBH for (a) N = 150 and (b) N = 170. The

points represented by diamonds at T (0) = 0.8 are the BH results. The error bar

corresponds to the standard deviation for each run.
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T (0) produces a low EL which discourages the anticipated navigation to the high

energy region. This potential pitfall becomes less serious as we use a higher T (0),

resulting in a higher EL. However, computationally, it is not always true that

a higher T (0) necessarily leads to better efficiency. Indeed, the energy range is

widened for the search with a high initial T (0); consequently it also requires a

larger MC displacement step. We find that such increase would demand a longer

computational time for the convergence of the local minimization procedure, in

every MC step in MUBH. The ideal case would be to select a T (0) that corresponds

to an EL just above the energy barriers in the system — a largely unknown factor

for any given complex system. Empirically, we find that T (0) in the range of 3.0

to 4.0 is probably optimal for conducting MUBH simulations for the N = 150

and 170 LJN systems, as can be seen from Fig. 2.5. We have also developed the

following strategy in selecting T (0). Before performing a production MUBH run, we

try several short BH runs of one or two thousand MC steps for each of the several

values of T (0). If all these runs for a T (0) give similar histogram distributions, this

T (0) become one of the candidates. After we obtain several candidates of T (0), we

choose the one with lowest value.

Yet another important parameter that influences the MUBH efficiency is the

total MC steps, M , between each multicanonical update for α and β. A reduction of

M would effectively reduce multiple steps of the local minimization implementation

in our algorithm. On the other hand, enough statistics for the energy bins should

be accumulated before each update. For our study of the LJN systems, 1 000–

2 000 MC steps between multicanonical update samplings on the 10+2 bins gave

satisfactory results. In general, the number of bins and the number of MC sweeps

in each MUCA iteration should be carefully chosen.

2.5 Summary

A new Monte Carlo method, the multicanonical basin-hopping (MUBH) method, is

developed as a practical global optimization approach. This method is a combina-

tion of the multicanonical Monte Carlo method and the basin hopping method in

order to make use of the advantages of both of them. To ascertain its efficiency, we
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have implemented it on benchmark systems of Lennard-Jones clusters. For small

systems, N < 150, the MUBH method gives no obvious improvement over the

BH method because the reduced potential energy surface is relatively simple, so

that BH could locate the global energy minimum before MUBH becomes effective.

When the system size is increased to N > 150, the improvement of MUBH over BH

is dramatic. These observations suggest that MUBH is suitable for large systems.

The efficiency of MUBH comes from the fact that not only can it “hop” between

the local minima directly, an advantage from the basin-hopping method, but it

can also easily overcome the energy barriers in the transformed energy landscape

using the non-Boltzmann scheme of the multicanonical method. It thus solves the

problem of energy barriers in the reduced energy landscape of basin-hopping, and

the insufficient sampling of the low energy landscape of the multicanonical method.

The simulation results also show that the initial temperature setting is very im-

portant for the method. A suitable initial temperature will result in much better

performance.



Chapter 3

Asynchronous Multicanonical

Basin Hopping

Computers are becoming more and more importance in scientific research recently.

Numerical simulation, in which global optimization is included, is one of the fields

that relies dramatically on the development of computing abilities. Time spent

in simulation is always the biggest problem that scientists and engineers have to

face in their research. Much effort has been spent in saving computational time

since the appearance of the first computer. The efforts can mainly be classified

into several categories. One direct way is to improve the computational power of

the CPU, which approximately obeys Moore’s law. In the past years, we have

been fortunate enough to witness the progress of information technology, which

includes the development of CPUs. However, progress far less meets the increasing

computational power required for computer simulations. Further, it is confined

by the present manufacture science and technology and out of control of the most

majority of scientists.

Another way is to simplify the description of the target system, which includes

many techniques, such as getting rid of all the non-essential interactions between

system components, using a simplified functional expression to approximate the

original complicated interactions, and combining system components together into

units while ignoring the internal interactions in each unit. Such approximation

30
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techniques are widely used in nearly all the simulations and some well-known ap-

proximations are even commonly accepted as standards in solving related problems.

By assuming that the electronic motion and the nuclear motion in molecules can

be separated, and hence that the electron needs no reaction time to follow the

movement of the nuclei, based on the fact that the nuclear mass is far greater than

the electronic mass, the Born-Oppenheimer approximation becomes nearly the only

feasible way in simulating quantum molecular interactions. The Lennard-Jones po-

tential is a simple functional expression developed originally for approximating the

van der Waals interactions between inert gas atoms. Even the hard sphere approx-

imation for atoms can generate satisfactory results in some situations. There are

some other empirical potentials, such as the Morse potential and the Gupta po-

tential, that are used for different systems to study their physical properties. The

results are often in good agreement with experiment. An example given in this

chapter is the simulation results of cobalt clusters obtained using the Gupta poten-

tial. In the protein folding study, the empirical force fields adopted, which include

the Amber [77, 78, 79, 80, 81, 82], CHARMM [83, 84], ECEPP [85, 68, 69, 70],

OPLS [86, 87, 88] force fields etc., are all approximations to the atomic interac-

tions of the protein or peptide system based on the experimental observations and

the ab initio calculations of small systems, which in turn is based on the Born-

Oppenheimer approximation. All these force fields have proven to be good descrip-

tions at different levels and in different situations.Researchers are studying system

dynamical and/or stochastic properties by adopting molecular dynamics or Monte

Carlo simulations based on them. An even much simpler approximation, the Gō

model [89], is often used to study the dynamical properties of protein systems.

Once the system to be studied, which includes the approximate or exact de-

scription of the system, and the computational resources available are determined,

an inevitable step is to select or develop the right computational algorithm for the

study. Different algorithms may result in dramatic differences in performance and

accuracy. One of the best algorithms ever proposed is the fast fourier transform

(FFT), which improves the computational efficiency from order O(N 3) for the dis-

crete fourier transform (DFT) to order O(N logN). When only Monte Carlo simu-

lations are considered, we have also seen some milestones in algorithm development.
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The Metropolis algorithm [12] proposed in 1953 introduced importance sampling

into computer simulation. Simulated annealing (SA), in 1983 by Kirkpatrick et

al. [3], started the wide application of Monte Carlo methods in solving global opti-

mization problems. The umbrella sampling method proposed in 1977 by Torrie and

Valleau [13] introduced a non-Boltzmann weight and the reweighting technique to

MC. Further improvements of the histogram technique, the reweighting technique

and simulation efficiency were realized with the proposing of the histogram reweight

method in 1988 by Ferrenberg and Swendsen [90], the multicanonical Monte Carlo

method in 1991 by Berg and Neuhaus [14, 15] and the Entropic sampling method in

1993 by Lee [22]. The recently appeared Wang-Landau algorithm, in 2001 [91, 92],

was claimed to be more efficient than the multicanonical Monte Carlo method, and

is becoming more and more extensively applied in many fields.

The work we did in the previous chapter also represents algorithm development.

The MUBH method we proposed shows obvious efficiency improvements in appli-

cations to the global minimization of large systems. However, when the system size

becomes much larger, MUBH requires very long computational times to perform the

simulation as well. Because no algorithm with much greater efficiency improvement

has appeared recently and the computational power of single CPU is limited, we had

to seek a different solution, namely parallel computing, which organizes the CPUs

in a computer network to solve the same problem simultaneously by distributing

parts of the work to different CPUs for computing and re-organizing them when

finished. This is a CPU for time strategy. When all other efforts are not applicable,

parallel computing will be left as the only feasible way to save computational time.

After a brief review of parallel techniques for Monte Carlo methods in the next

section, we shall discuss in Sec. 3.2 the parallelization of the MUBH method in-

troduced in the previous chapter to AMUBH, which stands for asynchronous mul-

ticanonical basin hopping. AMUBH, together with BH and MUBH, will then be

applied to Co nanoclusters to obtain their global minimum structures in Sec. 3.3,

and a fast global minimum locating approach, the structure mapping method, will

be proposed in Sec. 3.4 when analyzing the the structures of the Co nanoclusters.
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3.1 Parallel Computing and Monte Carlo Method

For a typical Monte Carlo procedure, each new step is generated by making a small

trial move from the present state. The acceptance of the current move is determined

by the relative weight of the new state in comparison with that of the present one,

according to a selection rule, such as the Metropolis criterion. This procedure is

performed iteratively, thereby generating a typical Markov-chain. According to how

many Markov-chains are generated in a simulation, there are two main directions

in which parallelization of the Monte Carlo method can be implemented: single

Markov-chain parallelization or multiple Markov-chain parallelization.

Intrinsically, a Markov-chain procedure is a serial task that is mostly suitable

for linear processing. However, depending on the physical systems studied, the cal-

culation could still be parallelized for single Markov-chain computing. For systems

with very short-range potentials, e.g. the hard sphere model as a limiting case,

or with nearest neighbor interactions only, e.g. the Ising model, it is possible to

parallelize the simulation procedure by dividing the system into subdomains. Thus,

one can simulate each subdomain on separate CPUs and then collect the calculated

results together to determine the configuration weight of this step. Due to the

system interacting characteristic, there are few interactions between the divided

subdomains, and hence communications between the CPUs will not be significant:

this is important for improving the efficiency of CPU usage. Simulations performed

on lattice particles (“spins”) by Pawley et al. [93] was one of the first successful

applications of domain decomposition to parallelize the Monte Carlo method. Once

long-range interactions exist between system particles, the domain decomposition

method will no longer be applicable.

When it is possible to divide the system energy, including the long-range inter-

actions, into different parts, parallel energy calculation seems to be the only method

that intrinsically speeds up every Monte Carlo move [94]. In this case, the system

energy can be divided into different parts, and each part can assigned to a CPU.

The total energy is obtained by collecting and summing up all the partial energies

from the individual CPUs. The system weight will then be determined by the total
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energy. In Ref. [95], Jones and Goodfellow discussed the energy parallel approach

and proposed an improved scheme for a better arrangement of communications

in order to minimize CPU idle time. Using the PVM (Parallel Virtual Machine)

package, Hayryan et al. [94] parallelized the ECEPP [85, 68, 69, 70] force fields im-

plemented in the program package SMMP [96], and performed MUCA simulations

to small peptides.

Since the working objective of the parallelization approaches just discussed is

the simulated system itself, rather than the Monte Carlo algorithm, parallelization

using either the domain decomposition method or the parallel energy calculation

scheme depends only on the system studied. Once the system is decomposable, no

matter by domain or by energy, most algorithms, MC included, can be adopted

to perform the distributed computing. While this kind of MC parallelization is

not easy to implement, it follows nearly the same trajectory as its corresponding

sequential code. The efficiency speedup is also strongly system dependent.

There is still another Monte Carlo method, the hybrid Monte Carlo (HMC)

method [97], that uses the parallel techniques developed for MD simulations. Each

MC iteration in HMC contains four steps: (1) random velocity selection for each

particle according to Gaussian distribution; (2) a short MD simulation; (3) calcula-

tion of the Boltzmann factor for the new configuration; and (4) acceptance criterion

checking for the MD move just performed. All the parallel algorithms developed

for MD simulation can be applied straightforwardly in step (2).

Perhaps the most effective way of parallelizing the MC method is by adopting

the multiple Markov-chain scheme. In fact, multiple Markov-chain implementation

of the MC method was quite active over the past few years and several algorithms

based on this technique have been proposed. By setting the initial conditions the

same in every aspect except for seeds of the random number generator, such as the

implementation in Ref. [31], ensemble data from the parallel MC simulation can be

averaged over all processors, which yields better statistics than a single simulation

of the same duration. This is the most obvious way to parallelize the MC methods.

However, it can simply be replaced by running several sequential simulations and

accumulating all the data obtained.

The replica exchange method (REM) [98] (also referred to as parallel temper-
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ing [34], replica Monte Carlo method [99], or multiple Markov-chain method [100]),

simulates several, say M , noninteracting copies (or replicas, in the language of

REM) of a system at M different temperatures. Each copy corresponds to one

temperature and vice versa. Simulations are performed in the canonical ensemble

which means that the Boltzmann weight is applied directly and no weight determi-

nation step as in the generalized ensemble is required. After every pre-set number

of MC steps, pairs of replicas (or equivalently pairs of simulation temperatures) are

exchanged with a specified transition probability. The exchanged process under-

goes a random walk in the temperature domain, which in turn induces a random

walk in the energy domain. Hence a wide configuration space can be sampled dur-

ing the simulation. By assigning each replica to a separate CPU of a computer

cluster and switching the replicas between CPUs when required, REM can easily

be parallelized with no additional effort. A sample implementation can be found

in Ref. [101], which maintained 20 copies on 20 nodes in simulating the protein

folding problem. REM has been extended to the replica exchange multicanoni-

cal (REMUCA) method [102], the replica exchange simulated tempering (REST)

method [103], and the multicanonical replica exchange method (MUCAREM) [102].

In the parallelization of the MUBH method, we shall use the multiple Markov-

chain technique to minimize the CPU idle time, which is inevitable for parallel

computing. Moreover, it is easier to implement than other techniques.

3.2 Asynchronous Multicanonical Basin Hopping

The multicanonical basin hopping (MUBH) method contains two key points, as il-

lustrated in detail in Section 2.3: the local minimization for each trial move, and the

new state selection criterion based on the multicanonical weight, processes inher-

ited from the basin hopping method and the multicanonical Monte Carlo method,

respectively.

In each MC step, a small trial move ∆r is performed on the original configuration

rmin, which is a local minimum obtained from r in the previous step, and the
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Figure 3.1: A schematic illustration of energy transformation in two dimensions for

a basin-hopping-related method.
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system reaches a new configuration r′ = rmin +∆r. A local minimization procedure

started from r′ is then performed to determine the new local minimum, r′min. The

acceptance of r′min is determined by the multicanonical weights of state r′min and the

previous state rmin. This iteration procedure only ends when the pre-set terminal

condition is satisfied. The minimization procedure is equivalent to transforming

the original energy landscape, denoted by E(r), to a reduced one, denoted by Ẽ(r),

which contains only the local minima of the original one,

Ẽ(r) = min{E(r)} = E(rmin) . (3.1)

Figure 3.1 shows a two dimensional (2D) illustration of the energy landscape trans-

formation: panel (a) illustrates the original potential energy surface (PES), and

panel (b) its contour map. After the energy transformation by determining all of

the local minima of the system configurations, the original PES will be transformed

into staircase-like plateaus as shown in panel (c), with its contour map shown in

panel (d). Panel 3.1 (f) shows the regions of the contour map that were converted

to different plateaus by overlapping of the contour maps shown in panels 3.1 (b)

and (d). The parallelization can be performed in this step. However, as the parallel

energy calculation method we mentioned in the last section is system dependent,

its application to a new system will possibly require new coding. Further, it is hard

to balance the data distribution for the best CPU usage in order to reduce the CPU

idle time during message communication.

The Monte Carlo weight determination step in MUBH is the same as in the

MUCA method, except that the energy Ẽ(r) used here is the reduced energy instead

of the original energy E(r). To determine the multicanonical weight wmu(Ẽ), we

adopted the recursive scheme of Berg and Neuhaus [14, 15] and Berg [17, 16, 18],

which is a stable method for determining wmu(Ẽ) iteratively. When the system

entropy S(Ẽ) ≡ ln ρ(Ẽ) = − lnwmu(Ẽ) is parameterized as

Si(Ẽ) = βiẼ − αi , for Ei−1 < Ẽ ≤ Ei , (3.2)

then the main iteration equations that are used for determining the system entropy,

and hence the multicanonical weight, are

β
(n+1)
i = β

(n)
i + ĝ

(n+1)
i

lnH
(n+1)
i+1 − lnH

(n+1)
i

∆
, (3.3)
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and

α
(n+1)
i = α

(n+1)
i+1 + [β

(n+1)
i − β(n+1)

i+1 ]Ei . (3.4)

Details of the definition of the parameters, the division of the energy bins and the

derivation of the equations can be found in Secs. 2.2 and 2.3.

After each iteration update of αi and βi, the multicanonical weight within bin

i is calculated from

wmu,i(Ẽ) = e−Si(Ẽ) = e−(βiẼ−αi), for Ei−1 < Ẽ ≤ Ei . (3.5)

Once the multicanonical weight has been determined, the normal Monte Carlo

iterations can then be performed using this weight. The final histogram distribution

is expected to be flat in the energy range that uses the multicanonical weight.

To this end, we propose the asynchronous multicanonical basin hopping (AMUBH)

method, which is a parallel implementation of the MUBH method utilizing the mul-

tiple Markov-chain technique. A single computation is carried out over multiple

processors, with each processor carrying out one independent computation starting

from a different initial condition, which is the initial configuration in our imple-

mentation. Panel (e) of Fig. 3.1 illustrates several Markov-chains in searching a

2D configuration space. Additional searching routes along different Markov-chains

at the same time will allow more space to be visited during a limited simulation

time. AMUBH combines the statistical histograms collected from all processors for

occasional update of the multicanonical weight, which is then distributed to each

processor for continuing calculations. Because running threads are not required to

finish synchronously for the update, the CPU idle time is minimized.

Another crucial aspect of any algorithm is its portability to variable compu-

tational environments, in particular, to differently structured computer clusters.

The present program has been implemented using the Message Passing Interface

(MPI) with C bounding, since MPI is accepted as the future message passing stan-

dard [104] and is widely available. There is no need to modify the source parallel

codes when porting from one platform to another, so long as it supports MPI. To

ensure that the code can make full usage of various types of processors in a cluster,

we have designed the code such that faster CPUs would not need to wait for slower

CPUs to finish a certain segment of computation.
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Figure 3.2 shows the flow chart for the AMUBH algorithm. Suppose there areNp

processors. After the input of all the parameters for the system in the initialization

step, jobs are distributed to each of the Np processors. A simulation begins in a

processor with a random configuration obtained by providing the random number

generator a distinct seed, which results in uncorrelated random number sequences

across the cluster. From these initial conditions, Np different Markov-chains are

generated simultaneously in the simulation. Except for the weight updating step,

all other steps in each processor are carried out identically to those in a stand-alone

sequential MUBH calculation. When the weight updating step (MUCA update) is

reached, the main node, which we call CPU0, sends a request to all the other CPUs

to ask for their collected histograms and waits for their answers. Upon receiving

such a request, each CPU sends its histogram collection to CPU0 once the current

Monte Carlo step has been completed — a minimal amount of delay for CPU0

because each Monte Carlo step takes only a short CPU time. After the arrival

of all histograms, CPU0 combines them with its own and uses the resulting tally

to calculate βi and αi according to Eqs. (3.3) and (3.4). Then the updated βi

and αi are sent back to the other CPUs to continue on the next iteration using

the multicanonical weight of Eq. (3.5) until another request for histogram update

arrives. In implementing this scheme, the only idle time occurs at CPU0 during the

period between sending out the MUBH update request and receiving the histograms

from the last CPU. All other CPUs keep on running after sending out the histograms

to CPU0, in case a new global minimum is found before the updated βi and αi from

CPU0 arrive. Of course the histogram information collected during this “waiting

period” by these CPUs cannot be used for the next update since the old weight

is still being used. For a large system, the idle time of CPU0 is inconsequential

compared to the total time required for the computation.

The main feature of AMUBH is that the convergence in estimating β and α

can be obtained approximately Np times faster than that in a sequential code. If

we need M Monte Carlo steps in sequential MUCA to update the weight, we may

need only Mp = M/Np Monte Carlo steps on average to obtain the new βi and

αi. The sooner the multicanonical weight converges, the earlier AMUBH offers the

probability for the system to visit the rare configurations, although the real time
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N MUBH AMUBH Np F/T MUBH/AMUBH

165 92 362 43 667 4 2/8 2.12

170 119 980 30 047 6 1/8 3.99

185 357 920 106 416 8 2/8 3.36

Table 3.1: The speedup table for AMUBH compared with MUBH when applied

to the Lennard-Jones clusters. Columns MUBH and AMUBH are the average MC

steps for the simulations to reach the global minima. Np is the number of CPUs

used in each AMUBH simulation. F gives the number of runs that failed to reach

the global minimum in the pre-defined number of steps for each system size for a

total of T simulations performed.

required to locate the global minimum may not scale linearly with the number of

processors.

To demonstrate the improvement, AMUBH was applied to finding the minimum

energy configurations of Lennard-Jones particles of size N = 165, 170 and 180, with

initial temperature T (0) = 2.0. The results were compared with those obtained from

sequential MUBH presented in Sec. 2.4, as shown in Table 3.1. For each AMUBH

run, the job was stopped when a global minimum obtained in Sec. 2.4 was found.

The tests were run on a homogeneous computer cluster, and we took the MC steps

of the CPU that found the global minimum as the MC steps of the entire run. In

Table 3.1, we have listed the average AMUBH steps needed to find the minimum

in successful runs. To present the statistics more faithfully, we have also listed F ,

the number of runs in which the job met a pre-set upper limit of MC steps without

finding the global minimum, and T , the total number of runs conducted. The upper

limit of total MC steps was set at 8×104, 1.5×105, and 2×105 for N = 165, 170 and

180, respectively. We can see from the table that there is substantial improvement

of the performance of AMUBH over MUBH.
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3.3 Crystal structure of the Cobalt Nanoclusters

Recently, the size distribution of monodispersed Co nanoclusters on a single crystal

Si3N4 film at room temperature has been experimentally determined [43]. Thus

it is of interest to determine theoretically the energy and structure of the global

minima of Co clusters and compare them with experimental results.

Empirical many-body potentials have played an important role in computer

simulations of the thermodynamic and structural properties of physical clusters.

The Gupta potential [57] has been successfully applied to metal clusters [26, 48,

27, 45], even though it was originally proposed for studying lattice relaxation at a

metal surface. The N -body Gupta potential energy is given by

E =

N∑

i

[Vr(i) + Vd(i)] . (3.6)

where, Vd(i) is a many-body potential for particle i based on the tight-binding

model, which has the form

Vd(i) = −ζ
{∑

j 6=i
exp[−2q(rij/r0 − 1)]

}1/2

, (3.7)

with r0 the equilibrium nearest-neighbor inter-atomic distance in the bulk. The

excluded-volume nature of the cluster is represented by a short range repulsive

potential Vr(i),

Vr(i) = ξ
∑

j 6=i
exp[−p(rij/r0 − 1)] , (3.8)

where ζ, q in Eq. (3.7) and ξ, p in Eq. (3.8) are parameters for different metallic

clusters. For Co clusters, ζ = 1.4880 eV, q = 2.286, ξ = 0.0950 eV, and p =

11.604 [58]. Using data from Ref. [57], r0 is determined to be 2.497 Å even though

this parameter is not needed in our simulation, as interatomic distances can be

measured in units of r0, which is what we used in our calculation.

Using the BH, MUBH and AMUBH methods, we are able to locate the global

minima of Co clusters with system size N up to 200. As discussed in Chapt. 2,
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BH is sufficiently efficient for small clusters, so that for cluster size N ≤ 150, we

simply used BH to calculate the global minima. For 150 < N ≤ 180, MUBH is

utilized to improve the sampling efficiency. When the system becomes even larger,

180 < N ≤ 200, MUBH will take too long to locate the global minimum in a

single simulation, and only AMUBH, the asynchronous parallel version of MUBH,

is capable of locating the global minima within a reasonable computational time

by utilizing several processors. In most of our runs, we used 8 processors.

We summarize the results of the global minima of Co clusters with N up to

200 in Table 3.2, obtained from the BH, MUBH, or AMUBH methods as discussed

above. It is possible that there may still exist global minima which we are unable to

locate. Even for a “small” Lennard-Jones system of N = 98, it has been estimated

that there are of the order of 1040 local energy minimum states [25]. It is only re-

cently that a new configuration, Leary’s tetrahedron structure [25], was discovered

with lower energy minimum than previously found. Technically, it is impossible for

Monte Carlo methods, no matter how efficient they are, to browse over all the sys-

tem configurations in a reasonable time, especially for large systems. Nonetheless,

we believe that the great majority of the energy minima listed in Table 3.2 are true

global minima.

3.4 Analysis and Discussion

3.4.1 Most Stable Structures

The global minimum energies by themselves do not provide too much information

about the structural changes in the system. To observe how particularly stable

clusters stand out from the average trend, we first fitted the energies in Table 3.2

to a smooth background

Efit(N) = aN + bN 2/3 + cN1/3 + d. (3.9)

The following parameters have been numerically obtained: a = −4.439 eV, b =

2.966 eV, c = −0.314 eV, and d = 1.069 eV. Then, the differences between the
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N Sym∗ E(eV) N Sym∗ E(eV) N Sym∗ E(eV) N Sym∗ E(eV) N Sym∗ E(eV)

2 D∞h -3.15065179 42 Cs -150.3537320 82 C1 -307.8073682 122 C1 -468.7835333 162 Cs -631.4892354

3 D3h -6.13875890 43 Cs -154.3956285 83 C2v -311.8078868 123 Cs -472.9077116 163 Cs -635.6974681

4 Td -9.53815918 44 C1 -158.0644979 84 C1 -315.5917003 124 Cs -477.1200398 164 C1 -639.6651744

5 D3h -12.80265501 45 Cs -162.0863246 85 C1 -319.6053737 125 Cs -481.1192842 165 Cs -643.6312979

6 Oh -16.34438847 46 C2v -166.2913580 86 C3 -323.7154810 126 Cs -484.8936404 166 Cs -647.4269926

7 D5h -19.72589196 47 C1 -169.9535267 87 Cs -327.6080333 127 C2v -489.1059691 167 Cs -651.4852810

8 D2d -23.02759620 48 Cs -173.9503669 88 Cs -331.8011735 128 Cs -493.2284031 168 C3v -655.6716875

9 C2v -26.51110143 49 C3v -178.1544651 89 C3v -335.9802365 129 Cs -497.4405058 169 C2 -659.7610012

10 C3v -30.07287786 50 Cs -181.8220828 90 Cs -339.9817382 130 Cs -501.5615395 170 C2v -663.9368866

11 C2v -33.61576383 51 C2v -185.9350749 91 Cs -343.9809747 131 C2v -505.7734388 171 Cs -668.0163456

12 C5v -37.49841062 52 C3v -190.1403866 92 Td -347.9778980 132 C1 -509.4321859 172 C5v -672.2252676

13 Ih -41.81920702 53 C2v -194.3327986 93 C1 -351.7684938 133 Cs -513.5564800 173 C5v -676.4334607

14 C3v -44.93586980 54 C5v -198.5240012 94 C1 -355.7718467 134 C3v -517.7680506 174 Cs -680.4455188

15 C2v -48.52567444 55 Ih -202.7136225 95 C1 -359.7710265 135 Cs -521.9794548 175 Cs -684.4569924

16 Cs -52.06297312 56 C3v -206.0150172 96 C1 -363.7165452 136 Cs -526.1908129 176 Cs -688.4678220

17 C2 -55.60429192 57 Cs -209.5442434 97 C2v -367.7878938 137 C3v -530.4021224 177 C5v -692.4785721

18 Cs -59.31543520 58 C3v -213.5703311 98 Cs -371.9770018 138 C3v -534.5374680 178 C5v -696.4876286

19 D5h -63.55030713 59 C1 -217.2824524 99 C2v -376.1518497 139 C2v -538.7473477 179 Cs -700.5051534

20 C2v -67.02968998 60 Cs -221.2802030 100 Cs -380.1500888 140 C1 -542.9571615 180 Cs -704.7117734

21 C1 -70.52209797 61 C2v -225.2668703 101 C2v -384.1472457 141 C5v -547.1669337 181 C1 -708.8456888

22 Cs -74.18441246 62 Cs -228.9027576 102 C2v -388.0998555 142 C1 -551.3764942 182 Cs -713.0250346

23 D3h -78.29682896 63 C1 -232.8947610 103 Cs -392.1510857† 143 C2v -555.5860117 183 C2v -717.2330494

24 C2v -81.76435353 64 Cs -236.8781886 104 C2v -396.1596140† 144 C3v -559.7954535 184 Cs -721.0009837

25 C3 -85.47990015 65 C2 -240.5201760 105 C2 -399.9681259 145 C2v -564.0048189 185 C1 -725.0514853

26 Td -89.36830977 66 C1 -244.5103568 106 C1 -403.9771201 146 C5v -568.2141412 186 C1 -729.1129869

27 C2v -92.98960595 67 C2 -248.4964196 107 Cs -408.1348622 147 Ih -572.4234175 187 Cs -733.3760918

28 T -96.92113165 68 C1 -252.2877445 108 Cs -412.3059832 148 C1 -575.7201251 188 Cs -737.5849134

29 C3 -100.4998608 69 C1 -256.3507509 109 C1 -416.3057218 149 Cs -579.4663803 189 Cs -741.7933500

30 Cs -104.1809983 70 C5v -260.5151508 110 Cs -420.3045440 150 C3v -583.5955478 190 D5h -746.1251704

31 C3 -107.9263613 71 C5 -264.6524350 111 Cs -424.2282150 151 C1 -587.4533875 191 C5v -750.3333012

32 D3 -111.9588267 72 Cs -268.2437968 112 Cs -428.3068888 152 Cs -591.4342513 192 D5h -754.5413203

33 C1 -115.7226628 73 Cs -272.2334494 113 Cs -432.4790340 153 C3v -595.3992438 193 C2v -758.3111302

34 Cs -119.4265968 74 C5v -276.3986522 114 Cs -436.6473857 154 C2v -599.2114317 194 Cs -762.3625498

35 C2 -123.2227072 75 D5h -280.6061534 115 C5v -440.8130358 155 Cs -603.2419487 195 C2v -766.3703440

36 Cs -127.2020270 76 Cs -284.2813802 116 C5v -444.9823350 156 Cs -607.4238848 196 C2v -770.3240955

37 C1 -131.0021454 77 C2v -288.2933742 117 C1 -448.6415848 157 C2v -611.6331535 197 Cs -774.3435029

38 Oh -135.2399864 78 C1 -291.9663639 118 Cs -452.6837657 158 Cs -615.6036022 198 C2 -778.3467808

39 C5v -139.1262062 79 C2v -295.9790500 119 Cs -456.7668376 159 C2v -619.5716762 199 C1 -782.4498541

40 Cs -142.8153124 80 C1 -299.7861918 120 C1 -460.4312295 160 C1 -623.3105715 200 C1 -786.4906393

41 Cs -146.4701197 81 C2 -303.8053980 121 C1 -464.5711039 161 C1 -627.3149921

Table 3.2: The lowest minimum energies found for Co clusters. ∗ Symmetry class of the clusters determined

from Ref. [105]. † Results from the structure mapping of the corresponding Lennard-Jones configurations; BH

gives -391.9370759 eV for N = 103 and -395.9359667 eV for N = 104.
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energy minima and the empirical fitting as a function of system size N are shown

in Fig. 3.3 (dots connected by a black solid line). It is clear from the figure that the

clusters with N = 13, N = 55 and N = 147 have the lowest relative energies com-

pared to their neighbors, which is a signature that they have the most stable crystal

structures. This corresponds to the fact that 13, 55 and 147 are the magic numbers

for systems which have closed-shell icosahedral structures. In addition, there are

other structures which are relatively more stable than their close neighbors. It is

easy to see that N = 19, 75, 116 are amongst them.

3.4.2 Structure Mapping

For clusters with binary interaction between particles, the relative potential range

and shape determine the most stable structure for a typical cluster size N . The in-

teraction potential between any two atoms in a cluster is repulsive at short distance

due to the strong coulomb repulsion when electron clouds of the atoms overlap, and

is attractive at long distance because of induction and dispersion effects, so that

there is a potential well with a minimum at the two-atom equilibrium separation.

Model potentials such as the Lennard-Jones potential, the Morse potential and the

Gupta potential all share these general features. The similarity of the potentials

will give rise to similar physical properties, which may include the lowest energy

structure. In Fig. 3.4, we compared the Lennard-Jones potential with the Gupta

potential for two atoms, and we can see that they are very similar to one another.

Taking data from the Cambridge Cluster Database [52] and from Ref. [53], we plot

in Fig. 3.5 the relative energy E(N) − Efit(N) for Lennard-Jones clusters up to

N = 200. Eq. (3.9) is taken again as the fitting function, but with a new set of

parameters: a = −8.595/ε, b = 15.15/ε, c = −4.681/ε and d = −2.935/ε with

ε the pair equilibrium well depth of the Lennard-Jones potential. From Fig. 3.3

and Fig. 3.5, we observe that the trend of the relative energy of the Co and the

Lennard-Jones clusters are similar.

Based on the LJ configurations provided by the Cambridge Cluster Database [52]

for size up to 150, we first scaled the interatomic distances in the clusters by the

ratio of the equilibrium distance of the Co Gupta potential to the LJ equilibrium
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Figure 3.3: The Co cluster energy minima relative to the smooth background Efit(N) obtained from a four-

parameter fit to the energy minima (dots connected by a black solid line). Clusters having more stable structures,

i.e., lower energies, can be identified with the dips in the plot. The crosses connected by a red line denote the

mapped energies from the Lennard-Jones clusters.
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Figure 3.4: The Lennard-Jones potential (a) and the Gupta potential (b) between two atoms.
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Figure 3.5: The differences of the global minima of the Lennard-Jones clusters with their corresponding fitted

energies E
(LJ)
fit (N).
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121 123 126 128 130 133

134 135 136 137

Figure 3.6: The global minimum structures which are different from their Lennard-

Jones mapped siblings for N ≤ 150.

distance and map all of the structures to the Co cluster. We then carried out a

single energy minimization to obtain the stable structures for Co, which we called

the mapped structures. For the mapped structures, we also plotted their energy

differences with Efit(N) in Fig. 3.3 (crosses connected by a red solid line) for com-

parison with the minimum energies obtained from the BH method. Here we note

that for N = 103 and 104, the unbiased BH method failed to locate the decahedral

structure, which is the structure of the global minima for these Co clusters obtained

from structure mapping. Note that the energies listed in Table 3.2 for N = 103

and 104 are obtained from structure mapping. For N = 102, we found the dec-

ahedral structure in our first BH try, but all subsequent searches (more than 10)

failed. In addition to N = 102, 103 and 104, there are 52 clusters (for N ≤ 150)

which have minimal energy structures different from their Lennard-Jones mapped

siblings. These structures are shown in Fig. 3.6. N = 98 is amongst them, which

means that Leary’s tetrahedron is no longer the global minimum for the 98-atom

Co cluster. Nevertheless, a collection of all the structures obtained from simple

model potentials may provide a shortcut in determining the most stable structure

of any cluster system.
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3.4.3 Comparison with Experiment

Recently, Gwo et al. reported the formation of monodispersed Co nanoclusters

on a single-crystal Si3N4 dielectric film at room temperature [43]. Since the en-

ergy difference between the lowest energy state and the second lowest energy state

(−392.151085 eV and −391.9370759 eV respectively, for N = 103) is far greater

than kBT ≈ 0.026 eV at room temperature, we can compare our computed lowest

energy structure with the room temperature experimental results. It is convenient

to plot the discrete second derivative of E(N) defined by

∆2E(N) = E(N + 1) + E(N − 1)− 2E(N) (3.10)

as a function of cluster size N , as shown in Fig. 3.7. A large positive ∆2E(N)

thus represents a stable cluster with size N . We also included the ranges of sta-

ble structures determined in the experiment [43] in the figure, and we found that

peaks can be located within most of these ranges. There is only one exception,

at N = 55 for which the closest experimental range is 51 − 54. Since N = 55 is

a magic number indicating a closed-shell structure, it should be more stable than

its neighbors. The cluster size of the experimental result was obtained from the

droplet volume, measured using scanning tunneling microscopy (STM), and the

atom number density, which was estimated by assuming that all atoms are packed

together following the hexagonal close packed (hcp) structure in the droplets [106].

Our calculation shows that most of the stable structures are icosahedral. While

the density of the hcp and icosahedral structures are not the same, an icosahedron

can be considered to consist of twenty tetrahedra packed around common vertex

with minor distortion [107], so that the density difference between the icosahedral

and the hcp structures is small. Thus comparison between the experimental and

our calculated results remains valid. Our results and experiment agree very well

for most of the stable structures, which in turn shows that the Gupta potential is

reliable for modeling Co nanoclusters.
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Figure 3.7: The discrete second derivative of E(N) for Co nanoclusters in the range of 5–120. The numbers

beside the high peaks stand for the stable structures corresponding to the experimental results of Ref. [43]. An

exception here is N = 55.
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3.5 Summary

In this chapter, we proposed the AMUBH method, an asynchronous parallelization

of the multicanonical basin hopping method, by adopting the multiple Markov-chain

technique. The method was found to be efficient when applied to large systems

that the sequential MUBH method finds difficulty to process. The BH, MUBH and

AMUBH methods were utilized to determine the structures of Co nanoclusters with

system size N from 2 to 200. Most of the stable structures we found agree well with

those determined experimentally. This agreement in turn illustrates that the Gupta

potential we employed describes Co clusters well. Mapping the structures of the

known Lennard-Jones systems to Co clusters helped us locate the real global minima

for N = 103 and 104. Even though there remain differences in the mapped and

actual lowest-energy structures, configuration mapping provides a useful method

for fast global minimum determination.



Chapter 4

Basin Paving Method

Monte Carlo methods based on histogram accumulation are widely applied in com-

puter simulations these days. By dividing the energy space, for example, into

regions (bins), and accumulating the visiting frequency of each energy region, one

will gain much direct knowledge of the simulation procedure. Adjustment can then

be performed to guide the simulation in the desired direction. Hence, improvement

of efficiency is expected from such approaches. In general, these methods often need

to examine the histogram distribution in the range studied, which is closely related

to the probability distribution. The desirable histograms are expected to cover a

wide (energy) range and to have a relatively flat distribution. Consequently, the

simulation process will be able to visit wider regions of configuration space and to

overcome the (energy) barriers of a rugged potential energy surface. In practice, this

is often realized by estimating the system density of states (DoS), which is unknown

a priori. To determine DoS first, one needs to perform long pre-production MC

runs, which can sometime take up to 40% of the total simulation time [20]. When

global optimization is considered, the characteristic of the histogram methods may

improve the chance of locating the global optimum.

Nowadays, many algorithms applying the histogram accumulation schedule have

been proposed and they have proven to be powerful. The histogram method [90,

108] of Gerrenberg and Swendsen proposed in 1988 is an early introduction of the

histogram schedule into the Monte Carlo method. A reweighting scheme has also

54
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been used to extract thermodynamic information from a single MC simulation. The

broad histogram method (BHM) [109, 110, 111, 112] first proposed by de Oliveira

et al. in 1996 was believed by the authors to provide an exact determination of the

density of states, even though there are systematic errors in their simulation results

for a 32× 32 lattice Ising model in Refs. [109] and [111]. Recently, they were able

to reduce the error near Tc to a small value as shown in Ref. [113]. Questioning

the correctness of the BHM random walk dynamics [114, 115], Wang and Lee [116]

proposed a flat histogram method (FHM) in 2000, which is an improved histogram

MC method based on the same equations and starting point as BHM. Their test on

the 32× 32 two dimensional Ising model showed the superiority of FHM to BHM.

To our knowledge, there is no application of these methods to global optimization

problems.

The multicanonical Monte Carlo (MUCA) method, proposed in 1991 by Berg

and Neuhaus, is another histogram-based MC method. The detail of the method

has been discussed in Chapter 2. MUCA has gained much popularity in recent

years. For a MUCA simulation, the density of states is not required to be known

accurately as long as the histogram distribution is relatively flat and the simulation

covers a large energy region. Then one can overcome the energy barriers, and the

subsequent reweighting step does not rely on the accuracy of the DoS [92]. The

efficiency has been proven by its successful application to the study of first-order

phase transitions [14, 15] and protein folding problems [20, 21, 117]. The entropic

sampling (ES) method, proposed independently in 1993 by Lee [22], is basically

equivalent to MUCA [118]. MUCA has been used in attempts to find the global

energy minimum in protein folding by Hansmann and Okamoto [20, 21]. It has

also been employed in the study of clusters by Bhattacharya and Sethna [119] even

though their result is not favorable to MUCA. Further, it has been combined with

the simulated annealing method [29], for example, for rapid location of the system

global minimum.

Recently, Wang and Landau [91, 92, 120] proposed an efficient multiple-range

random walk algorithm for accurate estimation of the DoS, generally known as

the Wang-Landau algorithm (WLA). The WLA performs a random walk in energy

space to obtain a very accurate estimate of the DoS iteratively. Starting from an
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approximation of the DoS, the simulation procedure will modify the DoS at each

step, according to a control parameter f , so that a relatively flat energy histogram

distribution can be generated. By updating f according to a well chosen strategy,

an improved update of the DoS will be generated when a new flat histogram distri-

bution is obtained. The DoS will converge to the true value quickly, even for large

systems, after several iterative modifications of f . Once the DoS is determined,

one can estimate thermodynamic quantities at any temperature by taking canon-

ical averages. A bonus of WLA is that one can directly estimate the Gibbs free

energy and entropy through the accurately determined DoS. As the authors have

claimed [91, 92, 120], “this algorithm is especially useful for complex systems with

a rough landscape since all possible energy levels are visited in the same probabil-

ity.” What is really interesting is that, while the authors emphasized that WLA

could offer substantial advantages over existing approaches, one of which is the

flat histogram method, Wang and Swendsen performed a comparison between the

algorithms on 2D Ising models [121], and found that more accurate results can be

obtained using the FHM method with the same number of Monte Carlo steps (106

steps). However, with only this comparison, we cannot say that FHM is superior to

WLA since the largest size of the Ising model that they employed is only 50× 50,

while the WLA was claimed to be efficient and accurate for large systems. Further,

the control parameter f they used in their simulations may not be well chosen since

f is quite flexible and the convergence speed of a simulation is sensitive to it. The

WLA has been applied to optimization problems and found to be efficient [122].

The histogram approaches just mentioned above have all been developed with

the initial intention of obtaining thermodynamic quantities by enhancing the vis-

iting frequency of the extreme energies through the guidance of the collected his-

tograms. This ability substantially enables the simulation procedure to visit lower

energy regions more frequently and to overpass high energy barriers between local

minima. These approaches are good candidates for global optimization problems.

Due to thermal fluctuations as we mentioned in Chapter 2, however, they are not

able to locate system minima precisely, which may result in failing to find the global

minimum. The basin hopping method [2], on the other hand, can locate the local

minima precisely with a deterministic procedure in each MC step. With transition
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rates determined by the Boltzmann weight, it may still fail to overpass high reduced

energy barriers (which is the de facto local minima of the original energy surface).

Our most recently proposed multicanonical basin hopping (MUBH) method [6, 7],

which has been described in detail in Chapter 2, solves this difficulty by introducing

the multicanonical weight to the basin hopping method to control the acceptance of

each step. Its application to Lennard-Jones clusters shows dramatic improvement

over BH in obtaining the global energy minima for large systems.

Recently, Hansmann and Wille proposed a new algorithm based on histogram

accumulation, which they called the energy landscape paving (ELP) method [40].

Unlike the other methods that we have mentioned, which were developed for the

purpose of thermodynamic studies by approximating the DoS, ELP was designed

solely for global optimization problems, which makes it substantially more efficient

in such applications. Hsu et al. employed the energy landscape paving method

and the simulated annealing (SA) method to determine the crystal structure of an

organic compound from simulated X-ray diffraction data comprised of integrated

intensities [41]. Their results indicated that ELP is more efficient than SA in finding

the crystal structure by an order of magnitude [41]. Arkın and Çelik investigated

the performance of ELP and MUCA in finding the lowest energy configurations of

the heptapeptide deltorphin [42]. Their conclusion is that very long computational

times are required for MUCA simulations because the probability weight factors

are unknown a priori and have to be determined by iterations of trial simulations,

as we have discussed. The ELP simulations, on the other hand, are more effective

in sampling the lower energy region and studying the low energy structures.

The MUBH method simplifies the energy landscape and adopts the multicanon-

ical weight to realize a relatively flat sampling in the reduced energy space, which

also enables it to overcome the energy barriers in the transformed space. The trans-

formation of the energy landscape sacrifices one of MUCA’s attractions in obtaining

thermodynamic quantities by the reweighting scheme through a single simulation.

Further, the procedure for determining the density of (reduced) energy states will

inevitably affect its efficiency. ELP, on the contrary, was developed solely for global

optimization, and thus needs no prior running steps. The combination of ELP and

BH will then have nothing to lose, but may only benefit from one another.
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After the review of the ELP method in the next section, the basin paving (BP)

method will be proposed in Sec. 4.2. BP is derived from BH and ELP with some

modification in the weight determination procedure to catch all the lower energy

samplings so that the lowest energy minimum can be sampled as soon as possible.

Its application to pentapeptide Met-enkephalin and protein villin HP-36 will be

presented in Sec. 4.3.

4.1 Energy Landscape Paving Method

The energy landscape paving method is designed by combining the core idea from

energy space deformation [38, 39] and the tabu search [35, 36, 37] to escape entrap-

ment in local minima, and to direct the search towards unexplored regions. The

key characteristic of ELP is to perform a Monte Carlo simulation with a modified

energy expression, which is updated with the simulation time to maintain a short-

term memory (by histogram collecting) of the states already visited, to steer the

search away from those states.

Specifically, ELP can be considered as a Monte Carlo method with the statistical

weight of a state [40] given by

w(ε) = e−ε/kBT , (4.1)

where T is the temperature and kB is the Boltzmann constant. ε is the replacement

of the configuration energy E

E → ε = E + f(H(q, t)) , (4.2)

where f(H(q, t)) is a function of the histogram H(q, t) according to a pre-chosen

“order parameter” q, and t is the simulation time or specifically the MC step.

The histogram is updated at each MC step, so that H(q, t) is time dependent.

Consequently, the simulation procedure keeps track of the frequency of the prior

exploration of a particular region described by the order parameter q. Searching is

then discouraged from exploring that region again since the “memory”, recorded

in the histograms, will be reflected by the change of the weight.
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For a ELP simulation, T is often set to a low temperature so that the sampling

is biased towards the local energy region. In this case, the probability for escaping

from a local minimum depends mainly on the height of the surrounding energy

barriers. Within ELP, the histogram covering the region around the local mini-

mum will be paved up, hence the weight of the states around the local minimum

decreases with time. Consequently, the probability for escaping the entrapment of

local minima increases. After the simulation has escaped from the local entrap-

ment, the paved histogram discourages it from going back again but guides it to

other states. For an equally paved histogram H(q, t), the searching procedure will

favor low energies because of the initial low temperature, and hence no unphysi-

cally high energies are sampled. The paving process deforms the original energy

landscape and forces the simulation either to fall in a new local minimum or to walk

through higher energy regions. In the latter case, the histograms in the high energy

region will be paved up so that the simulation will be able to explore down to the

lower energy region again. The histogram “memory” prevents the searching proce-

dure from falling back to the region already explored. However, revisitation is not

completely forbidden with the time evolvement when the old “memory” is mixed

with new “memories”. In other words, the initial low temperature ensures the low

energy exploration, while the histogram paving guarantees that the simulation can

escape the local entrapment.

The choice of the histogram function f(H(q, t)) is quite flexible. Obviously, ELP

will reduce to a generalized ensemble approach when f(H(q, t)) = f(H(q)). For

instance, f(H(q, t)) ∝ ln(H(E)) will reduce the ELP method to the multicanonical

sampling method. Different choices of the order parameter q in setting up the

histogram and different functional expressions of f(H(q, t)) determine the diversity

of the ELP implementations. The simplest option is to choose the energy E as

the “order parameter” and f(H(q, t)) proportional to the histogram distribution

at each step directly, i.e., f(H(q, t)) = cH(E, t), with c a constant having energy

units. Hence, the statistical weight of a state with energy E sampled at time t is

w(E, t) = e−(E+cH(E,t))/kBT . (4.3)

Hansmann and Wille performed the optimization of the pentapeptide Met-enkephalin

using the above weight with the parameter c simply set to 1 kcal/mol [40]. Arkın
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and Çelik applied the same weight expression to the simulation of the heptapep-

tide deltorphin and compared ELP with MUCA [42]. In Ref. [123], Schug et al.

studied the sampling efficiency for different values of c and for different simulation

temperatures T applied to the Trp-cage protein system. They found that the value

c = 0.05 kcal/mol gave the best performance. The optimal temperature in their

study was T = 5 K, and no obvious efficiency difference was found when T > 50 K.

Hansmann and Wille proposed another histogram function that is proportional

to the histogram determined by both the configuration energy E and the helicity

parameter nH for the study of villin HP-36 protein [40]. nH is defined as the number

of residues that are part of an α helix structure in a peptide or a protein. For a

residue, if the pair of backbone dihedral angles (φ, ψ) takes a set of values in the

range of (−70 ◦ ± 20 ◦,−37 ◦ ± 20 ◦), it will be considered as helical. f(H(q, t)) can

then be replaced by cH(E, nH , t) now, so that the ELP weight will be

w(E, nH , t) = e−(E+cH(E,nH ,t))/kBT . (4.4)

In Ref. [123], they tested the efficiency for different factors c and temperatures T .

Again, c = 0.05 kcal/mol and T = 5 K were found to provide the lowest energy.

Further, introduction of the helicity parameter nH leads to lower sampled energies

and faster sampling of the lower energy region. However, we have to clarify here that

the helicity parameter is only applicable to helix-rich secondary structures, such as

the HP-36 and Trp-cage proteins. For a system with a native configuration that

lacks helical content, the introduction of nH may reduce the probability of sampling

the neighborhood of the native structure, and hence worsen the convergence speed

or cause failure in locating the global minimum structure. When the experimental

native structure of a protein is unknown, nH should not be adopted in simulations

in order to avoid over-sampling of uninteresting regions.

The ELP method was applied by Hsu et al. to determine the X-ray structure of

organic molecules [41], and they compared its efficiency with the SA method, as we

mentioned at the beginning of this chapter. The weight comparison strategy they

employed is different than that described above. Suppose that the old configuration

has energy Eold, with collected histogram H(Eold), and the new configuration has

energy Enew and histogram H(Enew) at step t. The acceptance probability is then
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defined as

P ≡ w(Enew)

w(Eold)
= e−∆ε(Enew,Eold,t)/kBT (4.5)

with

∆ε(Enew, Eold, t) = (Enew − Eold) + c
H(Enew, t)−H(Eold, t)

H(Enew, t) +H(Eold, t)
. (4.6)

In the above expression, the weight parameter c is chosen to be of order O(nF ),

with nF being the number of degrees of freedom of the molecules. Their results

showed that ELP is more efficient than SA by an order of magnitude.

4.2 Basin Paving Method

A successful optimization technique should be able to overcome two difficulties for

general simulations: the local entrapment problem and insufficient low energy ex-

ploration. Most Monte Carlo simulations may be able to solve one difficulty or

another successfully, but may not be able to provide a thorough solution to both

of them. Those MC methods based on histogram accumulation, including the ELP

method we just discussed, are all able to move out of the local energy wells to

escape from local entrapment. By the non-Boltzmann weight accumulated from

histogram update, simulations are pushed to the low energy region as well. How-

ever, these approaches have boundary problems, which means that at the lower or

higher energy end, simulation either provides biased statistical information or the

visiting frequency is not sufficient for statistical consideration. For example, the

MUCA method often has difficulty in sampling the lowest energy region enough to

provide an unbiased weight for the last few energy bins. Schultz et al. discussed

the boundary problems in the application of the Wang-Landau algorithm [124]. If

only the system minimum is of interest, one may not have to worry about the upper

boundary. However, the low energy region sampling must still be improved. The

MUBH method provides a solution to this difficulty by adopting a local minimiza-

tion procedure to pin down the bottom of an energy “basin”, while adopting the

multicanonical weight to avoid local entrapment. The ELP method can sample

the low energy region in some detail while paving up the histogram due to the
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low initial temperature setup. However, once it moves out of the local energy re-

gion, the simulation takes some time to sample the high energy region due to the

recorded “memory”. The simulation refuses to move back to the low energy region

even when a lowest energy configuration is sampled, as it lies in a region recently

visited.

To this end, we introduce a new optimization algorithm, the basin paving (BP)

method, which is based on the idea of the ELP method and the energy landscape

transformation by a local minimization procedure as in BH and MUBH. The local

energy minimization makes sure that the movement of each step is from the bottom

of one potential well to the bottom of another one. The high energy barriers of

the original energy landscape are all neglected. Configuration space is divided

into bins as in ELP for paving up so that sampling can leave deeper basins (low

energy) to shallower basins (relatively high energy). However, once a deeper basin

is located again, the simulation procedure will definitely accept it so that no lower

energy configuration will be missed. By making this critical modification to the

ELP method, lower energy region sampling is further enhanced.

Just as in MUBH, each Monte Carlo step in BP requires a local minimization

process. Consider a physical system described by a potential function E(r) with

r the multidimensional coordinates. Simulation is started from a random initial

configuration r. The local minimum rmin, which have the energy E(rmin), is then

determined precisely by a local minimization procedure such as the quasi-Newton

optimization method [125]. Then, a small trial “move” from rmin to a new configu-

ration r′ is achieved. The local minimum configuration r′min and its energy E(r′min)

are obtained by reperforming local minimization. Acceptance of the move from

rmin to r′min is determined by their weights. This procedure is performed iteratively,

and is equivalent to transforming the potential energy landscape E(r) to a new one

Ẽ(r) which contains only the local minima of E(r), i.e.,

Ẽ(r) = min{E(r)} = E(rmin) (4.7)

From now on, we will write Ẽ(r) as Ẽ and Ẽ(r′) as Ẽ ′ for simplicity. It should be

understood that they are configuration dependent functions.

If the Boltzmann weight is employed to determine the acceptance, it is obviously
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the BH method, while the multicanonical weight will lead to the MUBH method.

The acceptance criterion for BP used here is similar to that of the ELP method,

except that a modification is made to catch all the lower energy moves. If the

reduced energy Ẽ ′ of the new configuration r′ is smaller than the original reduced

energy Ẽ of configuration r, this step is surely accepted. Otherwise, the ELP

weight based on the deformed energy expression will be applied. The acceptance

probability of a new step can be expressed as

P (Ẽ, Ẽ ′, t) =

{
1, if Ẽ ′ < Ẽ ,

w(ε(q′,t))
w(ε(q,t))

, if Ẽ ′ ≥ Ẽ ,
(4.8)

where ε(q, t) and ε(q′, t) are the deformed energies taking account the histogram

accumulation at step t according to the order parameter q and q ′, respectively. The

general expression of ε(q, t) can be written as

ε(q, t) = Ẽ + f(H(q, t)) (4.9)

with the corresponding weight

w(ε(q, t)) = e−ε(q,t)/kBT . (4.10)

As we will show later, this bias does not overly exaggerate the sampling of the

low energy simulation. Further, this small bias meets our requirement of searching

the low energy space intensively while keeping the ability to surpass high energy

barriers. In principle, it could improve the simulation efficiency.

Similar to the ELP method, the BP weight is quite flexible, due to the diversity

of the functional expression of f(H(q, t)) and the order parameter q. For the BP

applications discussed in the following sections, we will adopt the simplest format

based on the distribution of the energy histogram, i.e.,

w(ε(Ẽ, t)) = e−ε(Ẽ,t)/kBT = e−(Ẽ+cH(Ẽ,t))/kBT (4.11)

for the weight of the simulation procedure having reduced energy Ẽ at step t.

H(Ẽ, t) stands for the value of the histogram at the location of Ẽ, with the visiting

frequency accumulated from the start of the simulation to the present time t. c is

the histogram weighting parameter in units of energy.
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4.3 Application to Protein Molecules

We next apply the BP method to study two examples of the protein molecules: the

pentapeptide Met-enkephalin and the villin subdomain HP-36. The empirical force

fields ECEPP/2 [68, 69] and ECEPP/3 [70] implemented in a software package

SMMP (Simple Molecular Mechanics for Protein) [96] are employed here to de-

scribe the interatomic interactions of the systems studied. More details on protein

structures, protein models and empirical force fields will be given in Appendix A.

4.3.1 Application to Met-enkephalin

Met-enkephalin is an endogenous opioid pentapeptide found in the human brain,

pituitary and peripheral tissues, and is involved in a variety of physiological pro-

cesses. It has the residue sequence of TYR-GLY-GLY-PHE-MET. In practical sim-

ulation, NH2 and COOH are often chosen as the N-terminus and C-terminus neutral

groups, respectively. The pentapeptide consists of totally 75 atoms described by

24 independent backbone and side chain dihedral angles. Even this small pep-

tide gives rise to a very complex conformational space and the total number of

local minima was estimated to be more than 1011 [126]. It has been intensively

studied, and the lowest energy configuration is known with both the ECEPP/2

potential [24, 126, 127, 128, 129] and the ECEPP/3 potential [128, 130]. Local

minima with energies not much higher than the global minimum were sampled and

classified by Freyberg and Braun [127] using the ECEPP/2 potential, and by Eisen-

menger and Hansmann [128] using both the ECEPP/2 and ECEPP/3 potential,

but with the peptide dihedral angle ω fixed at 180 ◦. Nowadays, Met-enkephalin

has become a benchmark model frequently used for testing new algorithms because

of the complexity in its configuration space, yet still small enough to be studied ex-

tensively using available computational resources. We list its known global minima

(or lowest energies ever found) in Table 4.1.

In our study of the Met-enkephalin, BP was employed to obtain the lowest

energy configurations in all four cases: ECEPP/2 and ECEPP/3 with the peptide

angle ω fixed or relaxed. For the BP simulations, the simplest weight expression of
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Energy (kcal/mol) Force Field

-12.91 ECEPP/2 [24, 126, 127, 129]

-10.72 ECEPP/2 with ω fixed at 180 ◦ [128]

-11.71 ECEPP/3 [130]

-10.85 ECEPP/3 with ω fixed at 180 ◦ [128]

Table 4.1: The lowest energies obtained in previous studies of Met-enkephalin.

Eq. (4.11) with the factor c = 1 kcal/mol is used. The lowest energies we obtained

and their configurations expressed in internal coordinates are listed in Table 4.2. In

the table, the labels EII and EIII are used to stand for the configurations obtained

using the ECEPP/2 and ECEPP/3, respectively. If the peptide dihedral angle ω

is fixed at 180 ◦, a prime will be added to the labels. The structures obtained are

also shown in Fig. 4.1 1 from (a) to (d) correspond to cases E ′II, EII, E
′
III, and EIII,

respectively. We are able to reproduce the global minima under the ECEPP/2

potential no matter whether ω is fixed or relaxed. For case E ′III, i.e. when the

ECEPP/3 potential with ω fixed is used, we found a new lowest energy minimum

configuration, which has the energy E = −10.90 kcal/mol, about 0.05 kcal/mol

lower than the one found in Ref. [128], denoted as E
′(a)
III . The difference between

their structures can be obviously seen from Fig. 4.1 (c) and (e), and their internal

coordinates in Table 4.2. For the ECEPP/3 potential with ω relaxed, we found the

lowest energy configuration to be similar to the one found in Ref. [130], labeled as

E
(b)
III in Table 4.2, except that our energy value is different from theirs. The difference

in energies comes from the fact that there is some difference in the force field

used. For the ECEPP/3 force field used in Ref. [130], two extra terms, the cystine

loop-closing term and the cystine torsional term, are included in the potential.

From Table 4.2, and also from Fig. 4.1 (b) and (d), it is also obvious that the

configurations of both the ECEPP/2 and ECEPP/3 potential with ω relaxed are

very close to one another, even though their potential energies have some difference.

In the simulation, we tested the influence of temperature to the convergence

1All the figures of the protein/peptide structures drawn in this thesis have been generated

using PyMOL [131].



CHAPTER 4. BASIN PAVING METHOD 66

Torsion E ′II EII E ′III EIII E
′(a)
III E

(b)
III

1, TYR χ1 -179.8 -172.6 59.9 -173.2 -174.2 -173.2

χ2 68.6 -101.3 94.1 -100.7 -85.2 -100.5

χ6 -34.7 14.1 -21.3 13.7 2.8 13.6

φ -86.3 -85.8 168.1 -83.1 -162.7 -83.5

ψ 153.7 156.2 0.9 155.8 -41.7 155.8

ω 180.0 -176.9 180.0 -177.1 180.0 177.2

2, GLY φ -161.5 -154.5 126.8 -154.2 65.8 -154.3

ψ 71.1 83.7 -21.2 85.8 -87.0 86.0

ω 180.0 168.6 180.0 168.5 180.0 168.5

3, GLY φ 64.1 83.7 83.7 83.0 -157.3 83.0

ψ -93.5 -73.9 -61.6 -75.0 34.9 -75.1

ω 180.0 -170.1 180.0 -170.0 180.0 -169.9

4, PHE χ1 179.8 58.8 58.6 58.9 52.4 58.8

χ2 -100.0 -85.4 92.9 -85.5 -96.0 -85.5

φ -81.7 -137.0 -128.2 -136.8 -158.8 -136.9

ψ -29.2 19.3 18.8 19.1 159.5 19.1

ω 180.0 -174.1 180.0 -174.1 180.0 -174.1

5, MET χ1 -65.1 52.8 55.7 52.9 -66.1 52.9

χ2 -179.2 175.3 -178.6 175.3 -179.6 175.3

χ3 -179.3 -179.8 177.0 -179.9 -179.9 -179.9

χ4 -179.9 61.4 -179.3 -178.6 60.1 61.4

φ -80.7 -163.6 -162.1 -163.4 -82.4 -163.5

ψ 143.5 160.4 7.5 160.8 134.1 161.0

ω 180.0 -179.7 180.0 -179.8 180.0 -179.8

E (kcal/mol) -10.72 -12.91 -10.90 -12.43 -10.85 -11.71

Table 4.2: The global minimum structures of Met-enkephalin in internal coordi-

nates. The labels EII and EIII denote that the structures are obtained using the

ECEPP/2 and ECEPP/3 potentials, respectively. A prime on the label means that

the peptide angles ω of the structure are fixed at 180 ◦. Superscripts (a) and (b)

indicate results obtained in Ref. [128] and [130], respectively.
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(a) ECEPP/2 with ω = 180 ◦ (b) ECEPP/2 with relaxed ω

(c) ECEPP/3 with ω = 180 ◦ found using BP (d) ECEPP/3 with relaxed ω

(e) ECEPP/3 with ω = 180 ◦ reported in Ref. [128].

Figure 4.1: The lowest energy structures of Met-enkephalin.
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speed of the BP method. In the test, we only used the ECEPP/3 potential with

ω-fixed case. The temperatures we used are 5 K, 50 K, 500 K, 1 000 K and 2 000 K.

For all these tests, we cannot see any obvious difference in efficiency caused by

the temperature T . Hence, the simulation temperature in the BP method seems

not as important as in other Monte Carlo methods. This is because that the

histogram paving process can easily push the simulation from the lower energy

region to the high energy region and vice versa. The initial temperature setting

only dominates the first several MC steps. Figure 4.2 shows an example of the

histogram distribution obtained after 20 000 Monte Carlo steps at the temperatures

used. Also shown in this figure is the distribution obtained using the BH method

at T = 2 000 K. To demonstrate the effect introduced by accepting all the moves to

the low energies as in Eq. 4.8, we combined BH and ELP together directly, which

we call the BH+ELP method. It is an ELP simulation on the reduced energy

surface obtained by performing a local minimization procedure at each step. The

acceptance probability for BH+ELP is simply

P (Ẽ, Ẽ ′, t) ≡ w(ε(q′, t))

w(ε(q, t))
(4.12)

for all the energies Ẽ and Ẽ ′, with the symbols here having the same meaning as

those in Eq. (4.8). For the present simulation, the weight in the above expression

takes the form of Eq. (4.11) with c = 1 kcal/mol. The histogram distribution of

BH+ELP with temperature T = 50 K is plotted in Fig. 4.2 as well. Both the plots

for BH and BH+ELP are also the snapshots after 20 000 MC steps. It is obvious

from the figure that BP can “uniformly” visit the low energy region compared

to BH, and has improved low energy visiting frequency compared to BH+ELP.

Meanwhile, it keeps the ability of sweeping the high energy region for overcoming

energy barriers, but has the trend of going back to low energy regions so that the

simulation should not waste too much computational time, compared to BH+ELP,

in the high energy region.

A further illustration of the ability of the BP method to cover a wide energy

range is shown in Fig. 4.3. We can see from the MC trajectories that it takes nearly

no time for the BP method to gain the ability of searching both the low and the high

energy regions, no matter what the temperature is. Specifically, for the trajectories
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Figure 4.2: Histogram distributions obtained using BP at various temperatures,

BH at T = 2 000 K and BH+ELP at T = 50 K.
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Figure 4.3: Typical searching trajectories of the BP method with temperature (a) T = 5 K and (b) T = 2 000 K.
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Figure 4.4: Detailed illustration of the searching trajectories at the beginning of the simulations with temperature

(a) T = 5 K and (b) T = 2 000 K.
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in Fig. 4.3, it takes less than 700 MC steps for the low temperature (T = 5 K)

simulation to reach the very high energy regions. With a high temperature at

T = 2 000 K, the simulation immediately gains the ability of sampling both high

and lower energy regions. More detail is shown in Fig. 4.4, which illustrates the

trajectories of the first 3 000 MC steps.

4.3.2 Application to Villin HP-36

The villin subdomain HP-36, which contains 36 residues with a total of 597 atoms [40],

is one of the smallest proteins that can fold automatically. It is the stable subdo-

main formed by the C-terminus residues of the “headpiece”, which in turn is the

C-terminus 76-amino acid domain of the actin-bundling protein villin from chick-

ens [132]. The high thermal stability of the villin is largely determined by the

subdomain HP-36. HP-36 contains only naturally occurring amino acids which

can fold automatically into a unique and thermally stable structure and does not

require disulfide bonds, oligomerization or ligand binding to retain its stable struc-

ture. Its melting temperature is about 70 ◦C in adequate solution at pH 7.0 [132].

It is believed to be one of the fastest folding proteins, with folding time determined

to be about 4.3 µs at 300 K using the laser temperature-jump method [133], and on

the time scale of 10 µs using dynamic line-shape analysis [134]. The experimental

structure deposited in the Protein Data Bank [135, 136] with PDB code 1vii is

obtained from nuclear magnetic resonance (NMR) studies [132], which reveal three

short helices as shown in Fig. 4.5 (d). Starting from the N-terminus, residues 4 to

8 form helix 1, residues 15 to 18 form helix 2, and residues 23 to 30 form helix 3.

The helices are connected by a loop from residues 9 to 14 and a turn from residues

19 to 22. Since the protein can fold fast and is small enough to be applicable to the

present computers, there have been many simulations performed for HP-36 both

by molecular dynamics methods as reported in Ref. [137, 138, 139], and by Monte

Carlo methods as reported in Ref. [40, 101, 140, 141]. Duan and Kollman probably

performed the first computational simulation of HP-36 using a parallel molecular

dynamics method [137]. They simulated the protein folding procedure with explicit

water which contains about 3 000 water molecules for 1 µs.
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The BP approach was applied to study the folding of HP-36 in this thesis. We

perform simulations in vacuo under the ECEPP/2 force field with the peptide an-

gle ω fixed at 180 ◦ for convenience of comparing with the result from Ref. [101].

The functional expression of f(H(q, t)) is chosen to be the same as that used in

optimizing the Met-enkephalin peptide. Note here, that unlike the simulation per-

formed in Ref. [40], no helicity parameter nH is included in the expression. Since

nH-dependent histogram distributions will favor α helix structures, while HP-36

has a rich helix native configuration as obtained from the experiment and previous

simulations, the inclusion of nH will improve the sampling in the helical region and

bias the folding procedure toward the experimental structure. One of our purposes

is to check BP’s ability to study the folding of general sequences here, so that nH

is not considered in this simulation.

Figures 4.5 (a), (b) and (c) show the configurations obtained by BP simulation

of HP-36 in vacuo with energy E < −205.0 kcal/mol. Figure 4.5 (a) has the

lowest energy EII = −209.65 kcal/mol. Its energy is lower than that reported

in Ref. [101], −209.2 kcal/mol, even though the energy difference between them

is not too large, less than 0.5 kcal/mol. For both the lowest energy structure

of Fig. 4.5 (a) and the structure from Ref. [101] (refer to as PTRS, the Parallel

Tempering Reference Structure), there are obvious low helicities. In fact, there is

only one short helix formed by residues 28–33 for the lowest energy structure. For

PTRS, which we failed to locate, the single short helix is located between helices

23 and 28. Their structures have less similarity compared to the NMR structure

shown in Fig. 4.5 (d). The difference can also be reflected by their backbone root-

mean-square deviation (RMSD), Rrmsd = 7.04 Å for the structure of Fig. 4.5 (a)

and Rrmsd = 7.4 Å for PTRS. Note here that all the RMSD values we mention

in this section are obtained by comparing the simulated structures with the NMR

one. Figure 4.5 (b), with EII = −206.78 kcal/mol, is the second lowest energy

configuration that we obtained (the third lowest if the PTRS is counted), and is

similar to the NMR structure. It consists of three helices as in the NMR structure

although their locations are a little different. The first helix is formed by residues

2–7 and the second helix consists of residues 11–17, while in the NMR structure, the

helices are formed by residues 4–8 and 15–18, respectively. The third helix is the
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(a) EII = −209.65 kcal/mol

Rrmsd = 7.04 Å

(b) EII = −206.78 kcal/mol

Rrmsd = 7.82 Å
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(c) EII = −205.82 kcal/mol

Rrmsd = 6.00 Å

(d) EII = −176.1 kcal/mol

NMR structure

Figure 4.5: Low energy configurations of HP-36. (a)–(c) Configurations obtained

using BP simulation with EII < −205.0 kcal/mol; (d) NMR structure with PDB

code 1vii. All the configurations are drawn with the N-terminus at the left hand

side.
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Configuration helix 1 helix 2 helix 3 EII (kcal/mol) Rrmsd (Å)

(a) — — 28–33 -209.65 7.04

PTRS — — 23–28 -209.2 7.4

(b) 2–7 11–17 24–33 -206.78 7.82

(c) — 12–17 27–33 -205.82 6.00

NMR (d) 4–8 15–18 23–32 -176.1 —

Table 4.3: The location of the helices for the configurations shown in Fig. 4.5. PTRS

stands for the configuration obtained in Ref. [101] using the parallel tempering

method.

longest one, and consists of residues 24–33 for the BP simulated result, in contrast

with the residues 23–32 for the NMR conformation. The most obvious difference

between the two structures is the connecting turns and loops between helices, which

result in a relatively large RMSD, Rrmsd = 7.82Å. The structure (c) has the smallest

RMSD in all the structures shown; however, its energy is higher than all the others,

which include the structures (a), (b) and the PTRS. The residues forming the α

helices are 12–17 and 27–33, which correspond to helix 2 and helix 3 of the NMR

structure, respectively. Table 4.3 lists in detail the helix positions of the structures

we just discussed.

Considering the fact that the present simulations are performed in vacuo while

the PDB structure is determined in the solvent environment, we believe that the

difference between them is inevitable. Nevertheless, by employing the BP optimiza-

tion method, we have obtained some low energy configurations, and one of them

shows similarities to the NMR structure. Furthermore, a structure with lower en-

ergy than the one obtained using the parallel tempering method in Ref. [101] has

been located. Considering the fact that we have not located the structure of PTRS,

we believe that it is quite possible that we have missed some other low energy config-

urations. in our limited samplings. A more detailed study of the HP-36 subdomain

in vacuo with the ECEPP force fields, especially in the low energy region, is still

required for comparison with the folding in solution to study how the solvent can

affect the dynamics of protein folding.
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4.4 Summary

In summary, we have introduced a new Monte Carlo global optimization method,

the basin paving method, in this chapter. The basin paving method essentially

performs an energy landscape paving procedure on the reduced energy landscape

generated by a local minimization procedure at each MC step. However, BP spe-

cially tunes up the paving process for the purpose of fine sampling the low energy

region by catching every low energy move. The paving steps deform the reduced

energy landscape by keeping a short “memory” of the states just visited, so that the

next sampling steps are discouraged from going back to the region just visited. The

BP method retains the ability of surpassing high energy barriers, which is inherited

from the ELP method. The local minimization procedure ensures that MC moves

only “hop” between local minima. The exact value of the global minimum will be

obtained once it is located, unlike the approximate value obtained from the canoni-

cal or generalized ensemble Monte Carlo methods due to thermal fluctuations. The

BP method has been applied to the Met-enkephalin peptide, and a new configu-

ration with lower energy has been located using the ECEPP/3 potential with the

peptide angle ω fixed at 180 ◦. Its further application to villin subdomain HP-36

protein in vacuo, with the ECEPP/2 force field, found a configuration with energy

lower than the one previously obtained, and a low energy structure which is similar

to the experimentally determined one.



Chapter 5

Protein Folding Simulations

In the previous chapter, the basin paving (BP) global optimization method was ap-

plied to the Met-enkephalin peptide and the villin subdomain HP-36 protein. New

lower energy minima were obtained, and hence new configurations were located, for

both systems. In this chapter, the multicanonical basin hopping (MUBH) method,

the basin paving method, together with the basin hopping (BH) method for small

systems, will be employed to search for the global minima of several different pep-

tides/proteins. As in Chapter 4, two empirical force fields ECEPP/2 [68, 69] and

ECEPP/3 [70] implemented in the software package SMMP [96] will be used for

these studies. In all the following applications, the amino group NH2 and the

carboxyl group COOH are used as the neutral N-terminus and C-terminus, respec-

tively. Unless stated explicitly, all peptide angles ω will be fixed at 180 ◦.

5.1 Polyalanine

The polyalanine peptide is well-known for its helical structure and has been exten-

sively studied by Poland and Scheraga [142] and many other groups [21, 141, 143,

144, 145, 146, 147, 148, 149]. The global minimum structures of the polyalanine

peptides with different length of residues will be studied using both the ECEPP/2

and ECEPP/3 force fields and denote the energies obtained by EII and EIII, respec-

tively. We denote a peptide containing N alanine residues as (ALA)N .

78
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(a) (ALA)5: EII = 7.34 kcal/mol (b) (ALA)5: EIII = 4.69 kcal/mol

(c) (ALA)6: EII = 5.71 kcal/mol (d) (ALA)6: EIII = 2.37 kcal/mol

(e) (ALA)7: EII = 3.96 kcal/mol (f) (ALA)7: EIII = 0.09 kcal/mol
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(g) (ALA)10: EII = −2.64 kcal/mol (h) (ALA)10: EIII = −7.39 kcal/mol

Figure 5.1: The global minimum configurations of the polyalanine peptides. EII and

EIII denote the energies obtained using the ECEPP/2 and ECEPP/3 force fields,

respectively.

The ECEPP/2 force field was first employed to study folding of the polyalanine

peptide. For N = 5, 6, 7 and 10, the minimum structures obtained are shown in

Fig. 5.1 (a), (c), (e), and (g), respectively. It is obvious from these figures that

(ALA)N begin to show the helical structure when N ≥ 7. The ECEPP/3 potential

was also applied to obtain the global minimum structures of (ALA)N , shown in

Fig. 5.1 (b), (d), (f) and (h) for N = 5, 6, 7 and 10, respectively. Although it is not

as clear as the N > 7 cases, the ALAN peptides begin to have the appearance of a

helical structure for smaller values of N , namely, N = 5 and N = 6. The difference

in the structures for small peptides of the same amino acid sequence indicates that

using the ECEPP/2 and ECEPP/3 force fields may result in different low energy

configurations. There are difference between the two potentials in generating the

low energy landscape. From their applications in studying the polyalanine peptides,

it seems that simulations using the ECEPP/3 potential prefer helical structures,

which will be further studied using some other protein/peptide systems.

There were mainly three modifications introduced when updating the ECEPP/2

potential with the ECEPP/3 potential [128]: (1) The standard geometry and some

energy parameters for prolyl and hydroxyprolyl have been updated with more recent

experimental findings; (2) The partial atomic charges of backbone atoms have been

recalculated; (3) Charges carried by the terminal groups were re-organized to avoid
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possible artifacts for different types of terminal groups. The first modification

should not affect a polyalanine peptide and the third modification does not seem to

contribute too much to the helical formation. Hence, the change of the backbone

charge enhanced the appearance of the α helical structure when using the ECEPP/3

potential compared to the ECEPP/2 potential.

To further illustrate the minimum configuration change induced by the modi-

fication of the force field, both potentials are employed to find the lowest energy

minimum of an artificial peptide, A10G5A10, which contains two ten-alanine pep-

tides connected by a five-glycine peptide. Its structural transition has been studied,

and the lowest energy configuration was located in Ref. [141] using the ECEPP/2

potential. In this study, the lowest energy structure for both the ECEPP potentials

were located, and they are shown in Fig. 5.2. The minimum structure obtained us-

ing the ECEPP/2 potential, Fig. 5.2 (a), is the same as that obtained in Ref. [141],

which is an anti-parallel structure of two helices (formed by alanine residues), con-

nected by a coil (formed by the glycine residues). When the ECEPP/3 potential

is employed for the study, there is only one long helix for the minimum structure,

shown in Fig. 5.2 (b), which means that the glycine residues are part of the he-

lix now. The U-turn-like structure similar to the one obtained using ECEPP/2

(Fig. 5.2 (a)) can still be obtained; however, it has an energy higher than the

long helical structure. This application further proves that ECEPP/3 favors helical

structures more than ECEPP/2.

In these calculations, BH is applied to all the (ALA)N peptides, and BP is also

employed in obtaining the global minimum for the peptide (ALA)10. Both MUBH

and BP are used to find the global minimum of the artificial peptide A10G5A10. The

structures shown in Fig. 5.2 have been obtained using BP with peptide dihedral

angles ω fixed at 180 ◦. The global minima with ω relaxed are EII = −47.46 kcal/mol

and EIII = −47.04 kcal/mol, which are calculated using the MUBH method. Their

minimum structures are similar to the ω-fixed case.
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(a) EII = −45.55 kcal/mol

(b) EIII = −46.20 kcal/mol

Figure 5.2: The minimum configurations of A10G5A10. (a) was obtained using the

ECEPP/2 force field; (b) was obtained using the ECEPP/3 force field.
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5.2 Trp-cage

The twenty-residue peptide Trp-cage is by far the fastest folding protein known,

which was recently designed by Neidigh et al. [150, 151]. It has the residue sequence

of NLYIQ WLKDG GPSSG RPPPS, and its native structure contains an α helix

from residues 2 to 8 and another helix from residues 11 to 14. The sixth residue,

Trp6, is caged by the C-terminus polyproline stretch. Qiu et al. provided direct

experimental evidence that the folding time of the protein in room temperature

is about 4 µs [152]. Due to its small size, high thermal stability and fast folding

characteristics, many numerical calculations have been performed to study this

miniprotein [153, 154, 155, 156, 157, 158, 159, 160].

In this study, the BP method and the ECEPP/3 force field are employed to ob-

tain the minimum structure of the Trp-cage protein, in vacuo, from a fully stretched

configuration. The lowest energy configuration obtained is shown in Fig. 5.3 in

green. The other one also drawn in the figure in violet is the NMR determined

structure [151] deposited in the Protein Data Bank [135, 136] with PDB code

1L2Y. The NMR configuration shown in the figure is the 16th native structure

which has the smallest backbone root-mean-square deviation (RMSD) from the

simulated configuration, Rrmsd = 2.24 Å. For the simulated structure, there is only

one helix formed by residues 2 to 8. No second helix appears in the structure ob-

tained, which results in the main difference between the present simulation results

and the NMR structure.

5.3 VGV peptide

Similar to the polyalanine peptide, a polyvaline peptide in vacuo was believed to

have a helical structure as its ground state as well [21]. However, the ground state

is difficult to reach in a numerical simulation, because the large side chains induce

high energy barriers around it [21]. Since the optimal number of hydrogen bonds

will be established in a helical structure, the polyvaline peptide will still prefer an

alpha helix structure. However, the structure can be changed if a flexible turn is

introduced in the middle of the peptide.
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Figure 5.3: The minimum configuration of Trp-cage. The structure in green is the

simulation result, and the one in violet is obtained from the Protein Data Bank

with PDB code 1L2Y, which is a native state structure determined using the NMR

technique [151]. Their RMSD is: Rrmsd = 2.24 Å.
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An artificial model peptide, the VGV peptide, which has the amino acid se-

quence of (VAL)7–(GLY)2–(VAL)7, was studied by searching for its global optimum

structure. The simulation was performed in vacuo using the BP method with the

ECEPP/2 potential. Figure 5.4 shows four low energy configurations that stand for

four kinds of different structures. Fig. 5.4 (a) shows the lowest energy configuration

obtained, with EII = −9.23 kcal/mol, which has the beta hairpin structure. The

VGV peptide also has the chance of having helical content, e.g. Fig. 5.4 (b) and

(c), and their energies are not too much higher than that for the hairpin structure

(< 0.7 kcal/mol). Random coil structures, such as the one shown in Fig. 5.4 (d) with

its energy only higher than the global minimum structure by about 1.0 kcal/mol,

also occur often in the low energy configurations. In a small energy range of less

than 1 kcal/mol, all the three essential structures, i.e. alpha, beta, and coil, and

their mixtures (Fig. 5.4 (b) is the combination of helix and coil), appear as possi-

ble low energy configurations. Hence, the VGV peptide should be quite flexible at

room temperature, where kBT is about 0.6 kcal/mol.

Once again, simulations were performed using the ECEPP/3 force field as well.

Just as the ECEPP/2 case, four lower energy configurations are chosen and shown in

Fig. 5.5. They stand for four kinds of possible structures appeared in the simulation.

Figure 5.5 (a) shows a full helical structure which has the lowest energy. The helix-

coil-helix structure, Fig. 5.5 (b), has higher energy and can evolve easily to the full

helix structure shown in (a). The random coil-helix structure, Fig. 5.5 (c), appears

very frequently in the low energy configurations. In contrast to the situation when

the ECEPP/2 force field is used, beta hairpin structures have much higher energy

than the alpha and coil configurations. The configuration shown in Fig. 5.5 (d)

is the lowest energy hairpin structure obtained in the simulations, and its energy

EIII = −10.16 kcal/mol is higher than the global minimum by more than 6 kcal/mol.

For a beta hairpin in vacuo, only half of the possible hydrogen bonding of

the backbone can be formed, by comparison with an alpha helix structure of the

same peptide. If there is solvent present, the unbonded hydrogen atoms and the

oxygen atoms of the backbone can combine with the solvent molecules to form

new hydrogen bonds. Hence, generally speaking, a protein/peptide in vacuo is not

favorable to forming a beta structure, while the solvent environment will provide
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(a) EII = −9.23 kcal/mol (b) EII = −8.60 kcal/mol

(c) EII = −8.58 kcal/mol (d) EII = −8.29 kcal/mol

Figure 5.4: The four lowest energy minima of the VGV peptide obtained using the

BP method with the ECEPP/2 force field.



CHAPTER 5. PROTEIN FOLDING SIMULATIONS 87

(a) EIII = −16.31 kcal/mol (b) EIII = −11.28 kcal/mol

(c) EIII = −12.51 kcal/mol (d) EIII = −10.16 kcal/mol

Figure 5.5: The four lowest energy minima of the VGV peptide obtained using the

BP method with the ECEPP/3 force field.



CHAPTER 5. PROTEIN FOLDING SIMULATIONS 88

more opportunities. It is difficult to obtain beta structures without the participation

of solvent molecules. However, if the energy penalty introduced by the reduction

of the hydrogen bonding can be compensated by the relaxation of the backbone

dihedral angles and other interactions, the formation of a relatively stable beta

hairpin in vacuo is possible.

5.4 EKAYLRT peptide

EKAYLRT is a sequence of amino acids that often appears in naturally occur-

ring proteins [161, 162]. It can be involved in both the alpha helix and the beta

sheet formation. This peptide may provide a platform for studying the mechanism

of structural transitions between the alpha helix and beta sheet structures. For

convenience, the peptide will be referred to as Ekay in this section.

The present study is performed with no solvent present. For the Ekay peptide

itself, its most stable structure is an alpha helix when using the ECEPP/3 poten-

tial, as shown in Fig. 5.6 (a), while just a random coil when using the ECEPP/2

potential, as shown in Fig. 5.6 (b). Their corresponding energies are presented

below the figures. The difference shows again that the ECEPP/3 potential prefers

alpha helix structures than ECEPP/2.

In general, the formation of a stable beta structure often occurs in the case that

the protein has contact interaction with the environment, so that the unbonded

atoms can interact with the environmental atoms to lower the free energy of the

system. Otherwise, beta structures would not be stable, or even no beta structure

can be formed. The VGV artificial peptide just discussed is an exception. The

solvent effect and the interactions with other surrounding proteins/peptides are

the main sources of environmental interactions. The solvation effect in protein

structure formation has attracted a lot of interest in past years, and further studies

are still required. Interactions introduced by other environmental contacts are

relatively not so widely studied. In studying the prion-like folding pathways, Chen

et al. [59] introduced a flat hard wall to simulate the “background” structures, which

interact with the front structure. Hansmann and co-workers [161, 162] studied the
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(a) EIII = −28.05 kcal/mol (b) EII = −24.69 kcal/mol

Figure 5.6: The lowest energy configurations of the Ekay peptide.

Ekay peptide folding by introducing another Ekay peptide fixed as a beta strand,

and connecting it to the C-terminus of the original Ekay peptide by a four-glycine

peptide chain. The rigid beta strand introduced was to simulate the environmental

interactions.

In this study, we follow Hansmann’s approach by introducing an extra Ekay

peptide for the background interaction. Hence, the long peptide considered now

is NH2–EKAYLRT–GGGG–EKAYLRT–COOH, denoted as peptide “EGE” below.

The N-terminus Ekay peptide will be chosen as the rigid beta strand in this study

by fixing its backbone dihedral angles at ψ = 140 ◦ and φ = −140 ◦. The dihedral

angle ω for the whole peptide is fixed at 180 ◦ to reduce the dimensionality for

fast simulation. Simulations are performed in vacuo with both the ECEPP/2 and

ECEPP/3 force fields.

Figure 5.7 shows three low energy configurations obtained using the BP method

with the ECEPP/3 force field. For the global minimum structure, Fig. 5.7 (a),

the free folding part at the C-terminus formed an alpha helix similar to the global

minimum structure of the Ekay peptide as shown in Fig. 5.6 (a). However, there are

low energy configurations having the structures as beta hairpins. Figure 5.7 (b) has

the lowest energy among the beta hairpin structures obtained, while Fig. 5.7 (c) has
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(a) EIII = −61.99 kcal/mol

(b) EIII = −58.77 kcal/mol

(c) EIII = −56.96 kcal/mol

Figure 5.7: The low energy configurations of the “EGE” peptide obtained using

the ECEPP/3 potential.
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(a) EII = −56.73 kcal/mol

(b) EII = −55.42 kcal/mol

(c) EII = −54.89 kcal/mol

Figure 5.8: The low energy configurations of the “EGE” peptide obtained using

the ECEPP/2 potential.
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the most residues contribute to the beta strands. Both the alpha and beta structures

have high population during the simulation, even though beta conformations are

not as energy favorable as the alpha helical structures.

When the ECEPP/2 is used to model the peptide, we obtained both alpha helix

and beta hairpin structures at low energy as well. Random coil structures also ap-

pear often in the simulation. Figure 5.8 (a) is the lowest energy structure obtained,

which contains the helix conformation, and (c) has the lowest energy among all

the beta hairpin structures. For the structure shown in Figure 5.8 (b), the freely

moving part of the “EGE” peptide condensed to a random coil structure, which

has energy even lower than the beta hairpin shape. The low energy conformations

contain all the three structures, i.e. alpha, beta and coil, in high population.

From the simulation we can see that the introduction of the rigid beta strand

improves the formation of beta conformations. Without the rigid strand, the Ekay

peptide can only be stable in the appearance of an alpha helix, under the ECEPP/3

potential, or a random coil, under the ECEPP/2 potential. When the rigid beta

strand is introduced as the environment interactions, high populations of beta hair-

pin structures appear. Further, since there are low energy coil structures when us-

ing the ECEPP/2 force field while only alpha helix and beta hairpin structures can

have low energies when using the ECEPP/3 force field, the result agrees well with

our analysis in the previous applications that ECEPP/3 enhanced the hydrogen

bonding interactions when the protein chain coiled together. Hence, the energy

landscape under ECEPP/3 will have higher energy barriers and be more rugged

than ECEPP/2. Simulations using ECEPP/3 may require more effort to escape

local entrapment.

5.5 Summary

In this chapter, the MUBH and BP methods, together with the BH method, are

applied to study the protein folding problems. For the polyalanine systems, we

have been successful in locating the helical structures. The A10G5A10 peptide has

different structures with the ECEPP/2 and ECEPP/3 force fields. Another artifi-

cial peptide, the VGV peptide, shows a beta hairpin structure as the lowest energy
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conformation when using the ECEPP/2 force field, while an alpha helix structure

when using the ECEPP/3 force field. Further, for the “EGE” peptide with its

N-terminus fixed as a beta strand, lower energy configurations obtained using the

ECEPP/2 potential have high population appearing as coils, while those obtained

using the ECEPP/3 potential can only take the form of either the helix or the beta

hairpin structures. All the studies suggest that the ECEPP/3 potential, as an im-

provement of the ECEPP/2 potential, enhanced the hydrogen bonding interactions,

which dominates the formation of the alpha helix and the beta sheet structures.

However, present studies imply that the enhancement might be too much. Simu-

lations might be biased towards the helical structures when using the ECEPP/3

force field. Furthermore, we obtained the minimum structure of the miniprotein

Trp-cage, which is one of the fastest folding proteins known. The lowest energy

configuration obtained has the RMSD of 2.24 Å when compared with the NMR

structure with PDB code 1L2Y. The agreement of our simulated results with pre-

vious studies proves that the MUBH and BP methods we recently proposed are

effective in studying protein folding problems.



Chapter 6

Conclusions and Future Work

6.1 Review and Conclusions

In this thesis, we have focused mainly on the development of global optimization

methods and their applications to atomic cluster crystallization and protein folding

problems. The two global optimization methods presented in this thesis are the

multicanonical basin hopping (MUBH) method and the basin paving (BP) method.

The MUBH method, described in Chapter 2, is a combination of the multicanon-

ical Monte Carlo (MUCA) method and the basin hopping (BH) method. During

a simulation, the local minimum of a system configuration just reached is located

precisely by a local minimization procedure at each step, as in the BH method. Ac-

ceptance of the present local minimum configuration is determined by comparison

of its multicanonical weight with that of the last local minimum. In other words,

the MUBH method is equivalent to a multicanonical method applied on a reduced

energy surface that contains only plateaus of the local minima of the original energy

surface. For the procedure of determining the multicanonical weight, Berg’s iter-

ation scheme [17, 18, 19] was employed in order to obtain more stable simulation

results.

To ascertain its efficiency, MUBH was applied to the benchmark system of

Lennard-Jones clusters. When the system is small, N < 150, MUBH shows no

94
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obvious improvement in efficiency in comparison with the BH method. This is

because the reduced energy surface of a small system is relatively simple, and the

BH method could locate the global energy minimum before the MUBH method is

able to obtain a stable multicanonical weight. When the system size is increased

to N > 150, the MUBH method begins to show its effectiveness. The improve-

ment in efficiency of MUBH over BH is dramatic when we compare the average

number of MC steps taken to attain the global minimum. The improvement comes

from the intrinsic capability that MUBH inherited from the MUCA method. When

“hopping” between the plateaus of the reduced energy surface, the simulation pro-

cedure may still meet high energy barriers that BH fails to overcome, since it uses

the Boltzmann weighting scheme. By contrast, a MUBH simulation will not be

entrapped in a local minimum because of the multicanonical weight it adopts. Fur-

ther, the local minimization procedure in each MC step is able to locate the precise

value of the local minimum and thereby avoid thermal fluctuations, which solves

the difficulty that MUCA will meet when used as the global optimization sched-

ule. In the applications, the influence of the initial temperature was also tested.

The results indicate that a proper initial temperature setting is important to the

performance of the MUBH method.

Beyond the improvement of computational algorithms, we can also take ad-

vantage of distributed computing by carrying out parallel calculations on a single

problem to save the simulation time. The MUBH method was further parallelized

to the asynchronous multicanonical basin hopping method (AMUBH) in Chapter 3

using the message passing interface (MPI) for the study of large systems. In the

implementation, a message is sent out by the main node to ask for the histograms

collected at all the involved nodes. After receiving the required data, the new mul-

ticanonical weight is calculated and sent back to the slave nodes. After answering

the main node’s request by sending out their collected data, the slave nodes will

continue to run using the old weight until the new weight is received for the next

iteration. The parallelization improves the multicanonical weight updating speed.

Further, having different nodes work on different regions of the configuration space

dramatically improves the chances of finding the global minimum.

BH, MUBH and AMUBH methods were employed together to determine the
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crystalline structure of Cobalt nanoclusters with system size N from 2 to 200. For

small size clusters, N ≤ 150, the BH method was applied to calculate the global

minima. For 150 < N ≤ 180, the MUBH method was utilized to improve the

sampling efficiency. When the system becomes even larger, 180 < N ≤ 200, both

BH and MUBH would take too long to locate the global minima; hence AMUBH

was applied to save computational time by using multiple CPUs for a single run.

The global minima obtained agrees well with the experimental results.

Based on the similarity of the binary potentials of different clusters, a structure

mapping method was also proposed in Chapter 3 for rapid determination of the

unknown minimum structure of a cluster from the existing database of cluster con-

figurations. By mapping the global minimum configurations of the Lennard-Jones

clusters to the Cobalt nanocluster systems for N < 150, we were able to find two

global minimum structures, N = 103 and 104, that the ab initio calculations failed

to locate. If a configuration database can be setup, the structure mapping approach

will provide a useful method for rapid determination of the global minimum.

Another global optimization approach, described in Chapter 4 of this thesis, is

the basin paving (BP) method, which comes from the combination of the basin

hopping method and the core idea of the energy landscape paving (ELP) method.

As in the BH and MUBH methods, the Monte Carlo (MC) simulation is performed

on the reduced energy landscape, which is obtained by performing a local mini-

mization procedure at each MC step. The acceptance of a new state is governed

by the weight based on a function of the histogram accumulated. The histogram

can be updated after every MC step. By choosing a suitable functional form of

the histograms, the simulation will be able to steer away from the state already

visited, by keeping a “memory”, to less frequently visited states so as to avoid local

entrapment problems. The simulation procedure will still be able to go back to the

state already visited once the old “memories” are mixed with the new “memories”.

If a new state has a lower energy than the present state, the new state will be

surely accepted to avoid missing any low energy configurations. The bias towards

the lower energy configuration is the main difference between the BP method and

the ELP method in the acceptance determination procedure. This bias enhances

sampling of the low energy regions and avoids the sampling of the unphysically high
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energy regions, while still retaining the ability to move out of any local entrapment

due to the weighting scheme based on the accumulated histograms.

When the BP method was applied to locate the global minimum structure of

the pentapeptide Met-enkephalin, a new configuration with lower energy than the

previous reported result was found when the ECEPP/3 force field was employed

with the peptide dihedral angle ω fixed at 180 ◦. The simulation can also reproduce

all the other local minimum structures of the peptide under different conditions.

When further applied to the villin subdomain HP-36 protein in vacuo, BP was

able to locate a structure having an appearance similar to the NMR structure. A

configuration having an energy lower than the previously reported minimum was

also located.

Several protein/peptide systems based on the ECEPP/2 and ECEPP/3 force

fields were studied in Chapter 5. Small size polyalanines and the Ekay peptide can

form helix structures as lowest energy configurations when the ECEPP/3 potential

is used, while only a random coil structure appears when the ECEPP/2 potential

is employed. The lowest energy configuration of the A10G5A10 peptide has the

structure of a U-turn-like shape formed by two helices connected by a turn when

using the ECEPP/2 force field. When ECEPP/3 is used, the corresponding struc-

ture is simply a long helix. Further, the VGV peptide can form a beta-hairpin as

the global minimum configuration when the ECEPP/2 potential is employed, but

prefers helical structures when the ECEPP/3 potential is employed. The difference

between the low energy configurations derives from the fact that the ECEPP/3

potential uses a different parameter set than that associated with the ECEPP/2

potential. The change of the partial charges carried on by the backbone atoms

is the main source causing the difference, resulting in the bias towards the helical

structure when the ECEPP/3 is employed in simulations.

Environmental interactions can affect the folding mechanics of a protein. The

artificial peptide “EGE” has been studied in this thesis by fixing its N-terminus

Ekay peptide to a beta strand to mimic the “background” proteins. For both the

ECEPP/2 and ECEPP/3 potentials used in the simulation, the lowest energy struc-

tures of “EGE” are all combination of a beta strand, which is the fixed part, and

an alpha helix, which is the freely moving part. However, beta hairpin structures
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are formed in both cases with high populations, even though a single Ekay peptide

cannot have a stable beta strand structure. The “background” interactions help

the forming of beta structures.

The lowest energy structure of the fastest folding miniprotein Trp-cage was also

obtained using the ECEPP/3 potential in Chapter 5. Compared with the NMR

structure with PDB code 1L2Y, its RMSD is Rrmsd = 2.24 Å. The simulated result

was able to reproduce the first helix of the N-terminus and the polyproline stretch

of the C-terminus successfully as in the NMR structure. The residues that connect

them together provides the main structure difference.

From the studies of cluster crystallization and protein folding problems, both

the recently proposed MUBH and BP methods have been shown to be efficient

and effective. They will be useful tools for studying global optimization problems

numerically.

6.2 Future Work

In following up the present work, there are several future directions worth investi-

gating:

1. When using the structure mapping method for rapid determination of the

cluster structures with binary interactions between particles, a database that

contains known structures as completely as possible will be required. Without

a good database, the structure mapping method may not be able to locate

the lowest energy structure of a cluster. Collecting all the known structures

and constructing a database based of them is one of the projects to be carried

out in order to make the structure mapping method a truly powerful tool.

2. The Lennard-Jones and Cobalt cluster systems studied in this work contain

only one kind of atom. Systems containing two or more kinds of atoms, such

as the nano-alloys, which are bimetallic nanoclusters, have a large variety of

potential applications. Such systems can certainly be studied using the global

optimization algorithms described in this thesis.
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3. At the present stage, the protein folding simulations performed have all based

on the ECEPP/2 and ECEPP/3 force fields. Even though they are effective

most of the time, we cannot ignore that fact that they were built more than 10

years ago (for ECEPP/2, it is more than 20 years). New experimental results

and computational results are not included, which makes them inaccurate in

some cases. The use of new force fields, such as Amber and CHARMM, for

future studies should be considered.

4. All-atom force fields can give the best description of the system studied.

However, the computational time it takes to calculate the interactions with

all atoms included is by no means an easy task. For some systems, a coarse-

grained model can also provide a good approximation. In future studies on

relatively large systems, a united-atom or bead model may also be considered.

5. In this work, all the protein foldings were performed in vacuo. Environmental

interactions play important roles in forming a stable structure. Solvents will

be introduced in future studies of protein folding simulations.



Appendix A

Protein Folding

Proteins are one of the most important and common macromolecules that make up

the primary constituents of life. They are essential to both the structure and the

function of cells, the building blocks of living systems. From a chemical point of

view, proteins are unbranched necklace chains joined by some or all of the twenty

naturally occurring amino acids in their typical sequence that can fold into unique

three dimensional (3D) structures. These amino acids are joined by the peptide

bonds between them. The amino acid linear sequence of a protein is always referred

to as the primary structure. It reveals no direct information about how the amino

acids are arranged spatially. Different regions of the sequence will form a locally

defined secondary structure as an alpha (α) helix or a beta (β) strand, which is

highly patterned, or a coil, which assumes no stable shape. The tertiary structure

refers to the 3D conformation of the entire polypeptide chain or a domain of it.

The final protein complex may contain more than one peptide chain arranged in

3D to form a quaternary structure.

Most proteins can perform their specific functions only when they fold into

typical tertiary structures. A variety of diseases, such as the prion diseases, and

many cancers, are caused by the misfolding of proteins [59, 60]. The function of a

protein relies on its tertiary structure, which in turn is determined by the primary

structure. Hence the protein folding problem, which predicts the 3D configuration

and the corresponding function of a protein solely from the knowledge of its amino

100
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acid sequence, is critical in biochemical studies. Not surprisingly, the importance

of the protein folding problem has raised considerable interest. Many promising

studies have been carried out over the past years, even though there is not a com-

plete solution yet. While it is relatively easy to determine the amino acid sequence

experimentally, it is a big challenge to discover the spatial structure of a protein

by X-ray crystallography or nuclear magnetic resonance (NMR) techniques. Fur-

thermore, the kinetic, dynamical and stochastic properties of a folding procedure

need to be studied as well. Computer simulation can often provide a feasible way,

sometime the only way, to study the folding mechanism by adopting some suitable

approximations.

There are mainly two directions to theoretically determine the 3D structure1 and

study the physical characteristics of a protein with a typical amino acid sequence

from “first principles”: the molecular dynamics (MD) method and the Monte Carlo

(MC) method. The MD method is based on Newton’s second law to solve the

equations of motion for each atom in a protein. If the system configuration and the

speed of each atom are known at time t, and the relevant forces that are exerted on

each atom can also be obtained, the movement of atoms after a small time interval

∆t will be determined by solving Newton’s equations of motion numerically. The

forces exerted on each atom at time t+ ∆t can also be computed. This procedure

is repeated iteratively, and the simulated trajectory should be able to reproduce

the real one if the time interval is chosen small enough. MD is a good choice for

investigating the kinetic properties of the folding problem. However, because of

the small time step and the limited simulation time, MD is generally not able to

sample a wide enough configuration space for calculating the thermodynamics of

the folding procedure. The Monte Carlo (MC) method, on the other hand, can

adopt moving schemes that allow larger step size, for instance the dihedral angle

moving scheme, to make a substantially bigger change of the system conformation,

so that the simulation can sample wider configuration space. MC allows bigger

configuration changes because it considers only the relative weight between the old

and new states, w(rnew)/w(rold). From this perspective, the MC method is more

1Unless stated explicitly, the words structure, conformation and configuration in this part refer

to the secondary or tertiary but not the primary structure.
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efficient than the MD method.

According to the thermodynamic hypothesis [66, 67], the native state, which is

the operative or functional structure of a protein, lies at the global minimum of

the free energy, which can be further approximated by the global energy minimum.

Once the global minimum structure has been determined, the native structure of a

protein will be obtained and its functionality can then be studied, which is especially

useful in drug design and the study of diseases. Both MD and MC approaches can

be employed to search for the global minimum, even though only MC methods have

been employed in this thesis.

A.1 Protein — Polypeptide Chain

We already know that a protein is one or several unbranched sequences of amino

acid chains joined together by peptide bonds. All the twenty amino acids have in

common a central carbon atom, conventionally labeled as Cα, to which is attached

a hydrogen atom H, a carboxyl group COOH and an amino group NH2. What

distinguishes one amino acid from another is the side chain attached to the central

Cα atom. Twenty different side chains specify twenty amino acids. They are each

assigned a genetic code, which can be represented by one letter or three letters.

Appendix B lists the structures of the twenty amino acids and their corresponding

genetic codes.

Amino acids are joined end-to-end by the formation of peptide bonds. By

dropping the OH from the carboxyl group of the first amino acid, and the atom H

from the amino group from the second one, a bond is formed between them. This

process is repeated to form a long chain. The peptide unit, which starts from the

Cα atom of the first amino acid and ends at the Cα atom of the next one with the

CO and NH groups part of it, is quite rigid. The peptide dihedral angles rotating

around the C—N bond, often denoted as ω, can only take values very close to

180 ◦. Hence, in computer simulations, they are often fixed at 180 ◦ to reduce the

degrees of freedom. Only the rotations around the bond formed by atom Cα and

the carbon atom of the carboxyl group, labeled as C, and the bond formed by atom
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Cα and the nitrogen atom of the amino group, labeled as N, of the backbone are

left free. Conventionally, the dihedral angles of rotation around the Cα—C bonds

are denoted by ψ while the angles of rotation around N—Cα are denoted by φ. The

peptide chain folded together will generate a 3D structure such as alpha helices,

beta strands, random coils or their combinations connected by turns.

A.2 Protein Models

To study the properties of a protein numerically, one must first set up a model that

reveals the interactions between the atoms, the components and the environment.

The ideal case is to solve the many-body Schrödinger equation for the potential

energy function that describes the system. However, it is impossible to solve the

equation for relatively large systems. Hence, simplified models are always employed

in protein folding studies.

Probably the simplest model that has played important role in theoretical stud-

ies of protein folding is the hydrophobic-polar (HP) lattice model [163, 164, 165],

which was first proposed in 1985 by Dill. The HP model considers of only two

kinds of amino acids, which are either hydrophobic or polar (also referred to as

hydrophilic) monomers, labeled as H or P, respectively. The amino acid sequence

of a protein is abstracted as a binary sequence of monomers connected by a string,

which can be colored with either H or P. They can only occupy the vertices of a

two or three dimensional square lattice. One vertex allows the occupation of one

monomer or none at all; and the adjacent amino acids in a real protein will occupy

adjacent vertices too. The quality of a folding is scored by the number of hydropho-

bic monomer pairs that are adjacent in lattice but not adjacent in the amino acid

sequence of the protein. Hence, the effective energy of a HP model can be defined

as [166]

E =
∑

i<j

Eσiσj∆ij , (A.1)

where σi, σj stand for the monomer type, which can only be H or P. Hence we have

three kinds of interactions with the contact energy EHH = 1, EHP = 0 and EPP = 0.

∆ij is the contact matrix element whose value depends on the relative position of
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monomer i and j. If i and j occupy two nearest neighbor vertices on the lattice but

not adjacent along the monomer chain (the protein), ∆ij = 1, otherwise, ∆ij = 0.

In spite of the simplicity of the HP model, the folding process illustrated by

the model has behavioral similarities with that of a real protein. There have been

many successful applications of the model to predict the native conformation of

proteins [167, 168, 169, 170]. The discrete property of the configurations makes it

easier to sample wider conformation space, hence the main features of the protein

folding problem can be better captured than the relatively insufficient sampling of

the configuration space of more complex models.

Other than the HP model, there are some coarse-grained models specially de-

signed to study the folding dynamics [171], with the Gō-like model as a represen-

tative. The Gō model [89] was first introduced to study protein folding, unfolding

and fluctuations in silico by representing the protein as a chain of one-bead amino

acids, whose structure was intentionally biased towards the native structure of the

proteins studied. This was realized by adjusting the repulsive and attractive pa-

rameters for non-bonded beads so that the native-like configuration could have the

lowest energy. This extreme simplified representation dramatically smoothed the

energy landscape to a weakly rugged funnel pointing towards the native structure,

while still keeping the ability of reproducing some thermodynamic and kinetic prop-

erties of the protein. The model has been made more sophisticated recently, so that

it can be used to study the meta-stable states in the folding process, which cannot

be described by the original extremely simple implementation due to the relatively

smooth surface and hence the loss of some intermediate states. When more energy

terms are considered, new intermediate states will appear with the funnel getting

more rugged. Clementi et al. introduced an all atom Gō model [172] which was

employed to simulate the folding of protein L and protein G. Their results showed

that not only the overall folding mechanism of the proteins was qualitatively re-

covered, but also that the roles of some specific residues were qualitatively and

correctly reproduced [172]. The solvation effect can also be considered in building

the Gō model as Kaya and Chan [173] and Cheung et al. [174] did. The inclusion

of the solvent interactions with the chain of beads (protein) resulted in the appear-

ance of partially desolvanted-partially folded intermediate states in Ref. [173] and
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a near-native intermediate with a partially solvated hydrophobic core in Ref. [174].

Unlike the Gō-like models which are specifically designed with bias towards

protein native configurations, coarse-grained models for general folding dynamics

have been developed as well. These models are not designed for studying a specific

protein but for as many proteins as possible. Hopefully, one set of well designed

parameters will be able to reproduce most of the kinetic and dynamic properties

of different proteins. Even though there have been applications of one-bead mod-

els [175, 176], which adopts a single bead to represent an amino acid, using more

beads in the representation is generally required to take into account the generic

effect of the size, type, geometry and conformation of an amino acid. Introducing

more beads in a model means more fitting parameters can be adopted and more

general characteristics of proteins and amino acids can be studied. Hence a closer

representation of the interactions between the beads to those between the amino

acids of a practical protein will be capable of being realized.

Two-bead models have been employed to study general dynamics [177], struc-

ture prediction [178, 179] and peptide binding [180]. In these models, the Cα atom

of each residue is conveniently chosen as one bead. The second bead is used to

represent the side chain group, whose position is often set on the centroid of the

side chain where the most distinctive interactions are subject to it [177], so that

the side chain-side chain interactions and side chain-backbone interactions can be

included in a simulation. Even though there is an extra “peptide” bead located

midway between two Cα atoms in the united-residue (UNRES) force field proposed

by Scheraga and co-workers [181, 182, 178, 179], the position of this bead is solely

determined by the Cα atoms without introducing any extra degree of freedom, and

it can be classified as a two-bead model [171].

For each residue, if all the heavy atoms of the backbone, which are Cα, N and

the CO group, are represented by three beads explicitly, and the side chain group

is represented by one bead again, a four-bead model will be constructed for protein

folding studies once a proper set of parameters has been determined [183, 184, 185,

186]. With the CO group of the backbone further represented as two beads and

the atom H bonded to the atom N of the backbone counted in as one bead as

well, one will have a six-bead model [187, 188, 189]. The structures predicted using
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these models match very well with the corresponding native structures determined

experimentally [183, 184, 185, 186, 187, 188, 189, 190, 191].

Despite the success of these reduced models, they lack precision when the details

of structural transitions are required. Further, the parameters they employ are of-

ten derived from a typical group of proteins, so that they are only reliable when the

new protein shares the general properties of the protein groups that have provided

the information for fitting the parameters. To predict a more reliable structure,

obtain more detailed information about state transition, and distinguish the con-

figurations close to the native state, a more general description, an all-atom model,

of the proteins is required. Actually, some all-atom models [85, 68] appeared even

earlier than many of the coarse grained models. The interactions between atoms

are described by an empirical potential, commonly referred to as a force field, with

parameters obtained from experiment and ab initio calculations of small systems

by solving the many-body Schrödinger equation. With the appearance of new ex-

perimental and numerical results, the parameter set of a force field will be updated

so that it can approximate the most general situations as best as it can.

A.3 Empirical Force Fields

The development and application of the empirical force field lies on the validity of

several assumptions [64]. The Born-Oppenheimer approximation is probably the

first and the most important one, which assumes that the electrons need no reaction

time to follow the movement of the nuclei based on the fact that the nuclear mass is

far greater than the electronic mass. Without this approximation, it is impossible

to express the energy as a function of the nuclear coordinates. Transferability is

another key issue for the application of a force field. It assumes that the force field

parameters obtained from small molecules, and tested on a limited number of cases,

can be applied to study much larger molecules and a much wider range of systems.

Moreover, the system potential is interpreted as simple models of interactions,

which can be further approximated with rather simple functions that describe the

main contributions.
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Most of the force fields widely used these days can be described in terms of

four components: the bond stretching, angle bending, torsional, and non-bonded

interactions. Several sophisticated force fields may contain more terms in addition

to these four terms. The non-bonded interaction often includes the electrostatic,

the van der Waals and/or the hydrogen bonding interactions. For the first three

terms, they can be expressed conveniently as functions of bond lengths, bond angles

and the rotation of bonds, respectively, while the non-bonded interaction part will

be functions of the relative distance between atoms. Energy penalties are associated

with conformational deviations from their equilibrium positions.

One commonly used functional form of the protein force field incorporates a

relatively simple potential energy function [192]

V (r) =
∑

bonds

kb(b− b0)2

+
∑

angles

kθ(θ − θ0)2

+
∑

dihedral
angles

Vn
2

(1 + cos(nχ− γ))

+
∑

non-bonded
pairs (i,j)

[
qiqj
rij

+
Aij
r12
ij

− Cij
r6
ij

]
(A.2)

in which the first three terms are summations over bond stretches (1–2 interaction),

bond angles (1–3 interaction) and dihedral angles (1–4 interaction, the improper

dihedral angles can also be included in). The fourth term includes all non-bonded

interactions (all pairs but not the 1–2, 1–3 and 1–4 interactions), and sometime the

1-4 interactions with rescale factors. qi and qj are the partial charges on atoms i and

j, respectively. The van der Waals interaction is represented by the Lennard-Jones

6-12 potential.

There are many different implementations of force fields, and they have proven

to be successful in different applications. Of particular importance among them

are the ECEPP potentials proposed by Scheraga’s group [85, 68, 69, 70], which has

provided an invaluable starting point for the development of force fields, while the

most popular force fields used for organic and biomolecular systems are probably
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the Amber [77, 78, 79, 80, 81, 82], CHARMM [83, 84] and OPLS [86, 87, 88] force

fields.

In this thesis, several protein folding simulations have been performed using the

ECEPP/2 [68, 69] and ECEPP/3 [70] force fields. The most obvious difference be-

tween the ECEPP force fields and the other force fields (Amber, CHARMM, OPLS

and most others), is that the bond stretchings and bond angles in the ECEPP force

fields are fixed at experimental values due to the fact that they are relatively rigid

in protein conformations. Both ECEPP force fields contain the electrostatic term,

the Lennard-Jones interaction term, and the hydrogen-bond term between pairs

of atoms, together with the torsion term for all torsional angles. Their potential

function can be expressed as:

Etot = EES + ELJ + EHB + Etor , (A.3)

with

EES =
∑

(i,j)

332 qiqj
ε rij

(A.4)

ELJ =
∑

(i,j)

(
Aij
r12
ij

− Bij

r6
ij

)
(A.5)

EHB =
∑

(i,j)

(
Cij
r12
ij

− Dij

r10
ij

)
(A.6)

Etor =
∑

l

Ul(1± cos(nlχl)) , (A.7)

in which rij is the distance in Å between the atoms i and j. χl is the torsion angle

with its dihedral multiplicity nl for the chemical bond l. qi and qj, in units of

electronic charges, are the partial charges on atoms i and j, and ε is the dielectric

constant of the environment. The value ε = 2 will be used in our simulations,

which corresponds to the space inside the protein molecules for the case of study

without solvent. The factor 332 in Eq. (A.4) is a constant used to express the

electrostatic energy in kcal/mol. The parameters Aij, Bij, Cij, Dij, and Ul are

calculated from the crystal structures of amino acids. As the bond lengths and bond

angles are fixed, and no out-of-plane deformation of the peptide bonds is allowed,
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the only independent variables remaining are the backbone dihedral angles φ and

ψ, the peptide dihedral angles ω and the side chain dihedral angles χ. The main

difference between ECEPP/2 and ECEPP/3 is that they use different parameter

sets. ECEPP/3 uses a revised parameter set based on more recent experimental

findings and the recalculation of partial charges.



Appendix B

Twenty Amino Acids in Proteins

There are 20 naturally occurring amino acids in total that can be used to build

proteins. They have in common a carboxyl group COOH, an amino group NH2, a

central carbon atom Cα with a hydrogen atom H attached to it, and a side chain

to distinguish different amino acids. An exception is the amino acid proline, which

shares the backbone atom Cα and N as part of a ring. The structures of the 20

amino acids in ball-and-stick model and their genetic codes in both three-letter and

single-letter format are listed in the following figures. They have all been drawn

with the backbone atoms located at the bottom of each figure. Balls in different

colors stand for different atoms: green → Carbon (C), blue → Nitrogen (N), grey

→ Hydrogen (H), red → Oxygen (O), and orange → Sulphur (S).
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Alanine

(ALA/A)

Arginine

(ARG/R)

Lysine

(LYS/K)

Cysteine

(CYS/C)

Glutamine

(GLN/Q)

Glutamic acid

(GLU/E)

Glycine

(GLY/G)

Isoleucine

(ILE/I)

Phenylalanine

(PHE/F)

Histidine

(HIS/H)
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Tyrosine

(TYR/Y)

Tryptophan

(TRP/W)

Asparagine

(ASN/N)

Proline

(PRO/P)

Serine

(SER/S)

Threonine

(THR/T)

Aspartic acid

(ASP/D)

Methionini

(MET/M)

Leucine

(LEU/L)

Valine

(VAL/V)



Appendix C

Acronyms Used in Thesis

2D two dimensional

3D three dimensional

Amber Assisted Model Building with Energy Refinement

AMUBH Asynchronous MUlticanonical Basin Hopping

BH Basin Hopping

BHM Broad Histogram Method

BP Basin Paving

CHARMM Chemistry at HARvard Molecular Mechanics

CPU Central Processing Unit

DoS Density of States

DFT Discrete Fourier Transform

Ekay EKAYLRT

ECEPP Empirical Confirmational Energy Program for Peptides
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EGE NH2-EKAYLRT-GGGG-EKAYLRT-COOH

ELP Energy Landscape Paving

ES Entropic Sampling

FHM Flat Histogram Method

FFT Fast Fourier Transform

hcp Hexagonal-Close-Packed

HMC Hybrid Monte Carlo

HP Hydrophobic-Polar

LJ Lennard-Jones

MC Monte Carlo

MCM Monte Carlo Minimization

MD Molecular Dynamics

MPI Message Passing Interface

MUBH MUlticanonical Basin Hopping

MUCA MUltiCAnonical Monte Carlo

MUCAREM MUltiCAnonical Replica Exchange Method

NMR Nulcear Magnetic Resonance

OPLS Optimized Potentials for Liquid Simulations

PDB Protein Data Bank

PES Potential Energy Surface

PTRS Parallel Tempering Reference Structure
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PVM Parallel Virtual Machine

REM Replica Exchange Method

REMUCA Replica Exchange MUltiCAnonical

REST Replica Exchange Simulated Tempering

RMSD Root-Mean-Square Deviation

SA Simulated Annealing

SMMP Simple Molecular Mechanics for Proteins

STM Scanning Tunneling Microscopy

UNRES UNited-RESidue

WLA Wang-Landau Algorithm
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