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Abstract 

Events of extreme precipitation have a huge influence on society. They cause flooding, erosion, 

and threaten infrastructure, transportation, and safety. Precipitation extremes have increased over 

the last century (Alexander et al., 2006; Westra et al., 2014), and these changes are the outcome 

of anthropogenic climate change (Min et al., 2011). 

Precipitation extremes are expected continue their increase as the climate warms 

(Trenberth et al., 2003; Groisman et al., 2005, Emori and Brown, 2005). Precipitation extremes 

are expected to increase primarily because a warmer atmosphere can absorb more moisture. The 

increase in the moisture capacity of the atmosphere occurs at a rate given by the Clausius-

Clapeyron relation (CCR)—approximately 7% per degree Celsius of temperature increase. The 

present study combines atmospheric thermodynamics, temporal trends, and interpolated 

physiographic parameters to forecast extreme precipitation. This provides a new paradigm that 

characterizes rainfall series, is sensitive to environmental attributes, and thus reflects climate 

change. 

This model is called the Waterloo Interpolator – Topography, Temperature, Time 

(WIT3). The model preserves a linear time trend from the Regional Trend Analysis (RTA) that 

Soulis et al. (2016) previously developed. WIT3 is compared with observations from the 

Meteorological Service of Canada (MSC). It is also compared to existing models, such as RTA 

and Ontario Climate Change Data Portal (OCCDP) models, for the historical period of 1960-

2010. In these comparisons, WIT3 best matches the empirical distribution of Ontario weather 

stations. The extreme precipitation is forecasted up to 2099 using the WIT3 model, and is 

downscaled and bias corrected with temperature data from Global Climate Models (GCMs). 
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I have also considered different Representative Concentration Pathways (RCP), or greenhouse 

gas (GHG) scenarios, to assess the inherent uncertainty of prediction using various GCM-RCP 

ensembles. 

Results revealed that, in the future, the frequency of the current design storms will almost 

double for all recurrence intervals and durations. Precipitation trends show an increase, 

especially after 2070. The increase in precipitation intensity is greater for smaller events, 

especially for the 5 y and 10 y storms, relative to the more severe storm events, such as the 50 y 

and 100 y storms. 
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Chapter 1: Introduction 

1.1 State of Art: 

An increase in extreme hydro-meteorological disasters such as hurricanes, typhoons, floods, and 

droughts, has led to devastating losses and suffering. The uncertainty of climate change, and the 

new extremes it brings, makes these challenges even more significant. Changes in climate 

conditions observed over the last decades are considered the cause of dramatic modifications in 

both the magnitude and frequency of the occurrence of extreme events (IPCC 2013). Changes in 

extreme rainfall events require new standards for infrastructure design and for the reconstruction 

and upgrade of existing infrastructure. Current design standards are based on historic climate 

information. A dam designed to control a 100 y flood event, by 1960 standards, provides a 

significantly lower level of protection if the intensity and duration of the 100 y flood event 

increases over the ensuing five decades. Incorporating the expected changes in planning and 

design of hydraulic structures will reduce unseen future uncertainties, (Srivastav, Schardong, & 

Simonovic, 2014). 

Addressing the effects of climate change, and the development of disaster management 

plans, is a priority for many governments and institutions. Anthropogenic global climate change 

has stimulated considerable research focused on the prediction of climate scenarios, and its effect 

on Earth. An important aspect of these studies is the characterization of possible changes in 

climate extremes such as floods, droughts, and high winds. 

Several studies explore the trends in heavy precipitation intensities in a global warming 

scenario. Historic records show an increase in heavy and very heavy precipitation intensities over 

the 20th Century in several regions of the world (Groisman et al., 2005). A major part of the 
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available scenario simulations of future climate, using Global Circulation Models (GCMs) and 

Regional Climate Models (RCMs), show an increase in the heavier precipitation intensity and 

decreasing lighter precipitation (Allen and Ingram, 2002; Meehl et al., 2005; Sun et al., 2007). 

Possible processes that influence the increase in extreme precipitation intensities include changes 

in the atmospheric circulation (Emori and Brown, 2005; Berg et al.., 2009). Further influences 

include changes in the large-scale distribution of atmospheric aerosols and their effect on the 

distribution of energy in the troposphere and on the surface, and the intensification and 

invigoration of the cloud and precipitation formation process (Allen and Ingram 2002). For the 

latter of these processes, it is argued that a rise in surface temperature will enhance the intensity 

of heavy precipitation events through an increase in atmospheric moisture, which feeds a 

precipitation event through low-level moisture convergence (Trenberth et al., 2003). The Fifth 

Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) indicates a 

global surface temperature increase of 0.3 to 4.8 °C by the year 2100, compared to the reference 

period 1986–2005, with greater change in the Tropics and Subtropics than in the mid-altitudes. 

Researchers expect that rising temperatures will have a major impact on the magnitude and 

frequency of extreme precipitation events in some regions (Barnett et al., 2006; Wilcox and 

Donner, 2007; Allan and Soden, 2008; Solaiman et al., 2011). The hypothesis is that 

precipitation intensity will increase alongside atmospheric temperature due to the latter’s greater 

capacity for moisture as temperatures rise. 

Many researchers and practitioners focus on the potential change of frequency, intensity, 

and volume of extreme rainfall that climate change causes. Existing drainage systems are 

designed to the extremes that past records of rainfall events define, which in most cases makes 

them insufficient to accommodate future extremes. The development of appropriate present and 



3 

future Intensity–Duration–Frequency (IDF) curves helps address this, and assists in hydrological 

studies of urban drainage system performance analysis, design, and operation. 

IDF curves describe the extreme rainfall patterns of a location. They define the 

probability that a storm of a given intensity and duration will occur in a given year. This 

probability is called a return period. Simply put, on average, a 2 y storm occurs every two years, 

a 5 y storm occurs once every five years, and so on. IDF curves summarize this annual 

probability of exceedance of storm intensity 𝑃(𝑅, 𝜏) given a storm’s duration, 𝜏 (h). 𝑃 is also 

known as the probability function. The return period, 𝑇, is defined by: 

 𝑇 = 1/𝑃(𝑅, 𝜏) (1) 

Equation (2) expresses the commonly assured relation between, rainfall intensity and duration 

for a given return period, T: 

 𝑅 = 𝐴𝜏𝐵 (2) 

where: 

 𝑅 = 𝐷/𝜏 (3) 

 𝐴 = coefficient for rainfall intensity in mm/h that reflects the variation 

in location and return period, 

 𝐵 = dimensionless coefficient that reflects the variation in location and 

return period, 

 𝑅 = rainfall intensity (mm/h), 

 𝐷 = rainfall depth (mm), 

 𝜏 = event duration (h), and 

 𝑇 = return period (y). 
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Equation 2 is also known as the IDF curve. The IDF curve power-law interpolates 

intensity values between the common durations of 5 min, 10 min, 15 min, 30 min, 60 min, 2 h, 6 

h, 12 h, and 24 h. The Regional Trend Analysis (RTA) model uses the two-parameter, 𝐴𝐵 

model, which is the same method that the Meteorological Service of Canada (MSC) uses for the 

calculation of IDF curves.  

Figure 1 is an example of an IDF curve calculated for the St. Catharines A weather 

station in Ontario. 

 

Figure 1: Sample MSC IDF curve for St. Catharines A (MSC 2014) 

Hydrologic design of storm sewers, culverts, detention basins, and other elements of 

storm water management systems are typically performed based on specified design storms 

derived from the IDF curves (Solaiman and Simonovic, 2010). The main assumption in this 

process is that the historical series are stationary, and therefore can be used to represent the 

future extreme conditions. This assumption is questionable under rapidly changing conditions, 

and therefore IDF curves that rely only on the historical observations, will misrepresent future 
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conditions (Milly et al., 2008). GCMs are one of the ways to explicitly incorporate changing, 

non-stationarity climate conditions for future periods.  

1.2 Motivation: 

Generally, GCM outputs are used for regional climate change impact assessments. GCMs 

provide temporal trends of global climate variables, such as sea level pressure, temperature, and 

specific humidity, based on different emission global scenarios of greenhouse gas (GHG) 

emissions. GCM outputs do not capture rapidly changing fields, such as precipitation. A 

combined examination of climate model simulations using GCMs based on multiple emission 

scenarios, and observation-based data sets, suggests more intense and frequent precipitation 

extremes under 21st-century warming scenarios. The intensifying trend of precipitation extremes 

has quantifiable impacts on IDF curves (Zhu, Forsee, Schumer, & Gautam, 2013; Kao and 

Ganguly 2011). Future research must improve regional estimates of precipitation extremes from 

higher resolution models, and locally develop regional- and local-scale IDF curves, which do not 

depend upon the stationarity assumption. 

A preliminary analyses of high resolution datasets, such as the database from Pacific 

Climate Impact Consortium (PCIC) that is statistically downscaled to 10 km resolution, was 

performed for the historical period of 1960-2010. The empirical distribution of centered and 

time-adjusted PCIC data was plotted for 177 stations. The same was also done with MSC data. 

Figure 2 presents the comparison between the two. The PCIC data has a significantly lower 

standard deviation than that of the historical data, which results in upper quantiles (90 %, 95 %, 

etc.) that are lower than those of the observed historical data. This supports the claim that 



6 

precipitation forecasts based on downscaled climate scenarios are unsuitable for IDF curve 

forecasts, which is the basis for this research.  

 

Figure 2: Probabilistic precipitation estimate comparison of PCIC data (blue) with 

historical MSC extreme precipitation data (red) 
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1.3 Objective: 

As seen in previous section, precipitation forecast directly through downscaled GCMs are 

ineffective and are likely to lead to erroneous outcomes. Temperature predictions for future 

climate, on the other hand, are very good, as Chapter 4 details. An increase in global average 

temperature directly impacts precipitation because it drives evapotranspiration rates, and 

increases the concentration of water vapor in the atmosphere. With these facts in mind, this 

research develops an extreme precipitation forecast based on atmospheric thermodynamics, 

using future temperature forecasts. This study also combines already established regional 

temporal trends of precipitation with local topography. To prepare for future changes in the 

climate, and to avoid the dangers of under-designed infrastructure, we must review and update 

the current standards for water management infrastructure design. As climate change is 

dynamically changing the environment, so does the need of varying and nonstationary IDF 

curves. Thus, another objective of this research is to, refine IDF curves for Ontario. This may 

help, prevent water management infrastructure from performing below the designated guidelines 

in the future (Prodanovic and Simonovic, 2007). This study was funded by the Ontario Ministry 

of Environment and Climate Change (MOECC). Its main objective was to refine IDF curves, and 

come up with best possible probabilistic forecast of extreme precipitation for Ontario using 

temperature as a surrogate to hind-cast annual daily maximum precipitation for future years, and 

to evaluate the impact of climate change on IDF curves. 
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1.4 Organisation of Thesis: 

The contents of this thesis are organized into the following chapters: 

Chapter 2 provides a review of studies that posed the need of nonstationary design 

guidelines, in view of climate change, especially IDF values, while forecasting future extreme 

precipitation. The RTA approach which initiated nonstationary prediction of IDF curve is also 

discussed here. Brief overview is also done on precipitation and temperature relationship studies, 

especially the CCR and its application in forecasting extreme precipitation. This chapter also 

overviews GCMs, RCMs, and GHG emission scenarios. 

 Chapter 3 describes model database preparation and model development methodology. 

Chapter 4 presents the model performance in comparison with existing models and also 

gives insight into future projections of extreme precipitation. 

Chapter 5 identifies the risk and uncertainty areas pertaining to future predictions  

Chapter 6 summarizes the results, and highlights some of the limitations and areas for 

future work. 

Chpater 7 covers references. 

Appendix-A briefly describes the application of WIT 3 predicted IDF values and extreme 

rainfall intensity.  

Appendix-B shows sample nonstationary IDF curves developed for St. Catharines. 
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Chapter 2: Literature Review 

2.1: Nonstationarity in the context of climate change:  

Extreme climatic events are growing more severe and frequent. This observation calls into 

question how prepared our infrastructure is to deal with these changes. A precondition for 

traditional frequency analysis of precipitation is the assumption of stationarity. This assumption 

is that the controlling environmental factors, such as climate and land cover, act in the same way 

in the past, present and future (Gilroy and McCuen, 2012; Katz, 2013; Benyahya et al., 2014; 

Charles and Patrick, 2014). Studies show that, in some places, hydrological records exhibit some 

type of nonstationarity in the form of increasing or decreasing trends (e.g Olsen et al., 1999; 

Strupzewski et al., 2001; Sarhadi and Soulis, 2017; Douglas et al., 2000; Lins and Slack, 1999). 

Anthropogenic activities, such as change in land use, urbanization, deforestation, and 

commercial agriculture are some of the leading causes of changes in the hydrologic cycle, 

affecting precipitation (Konrad and Booth, 2002; Villarini et al., 2009b; Hejazi and Markus, 

2009; Vogel et al., 2011; Pielke et al., 2007). Some of the observed changes in hydrological 

records are from the effect of natural climatic variability. The variability results particularly from 

low-frequency components of climate variability such as the El Niño Southern Oscillation 

(ENSO), and decadal and multi decadal oscillations such as the Pacific Decadal Oscillation 

(PDO) and the Atlantic Multidecadal Oscillation (AMO). These large-scale forcing exert in-

phase and out-of-phase oscillations in the magnitude of hydrologic events such as extreme 

precipitation, extreme floods, droughts, and extreme sea levels (e.g., Mantua et al., 1997; Jain 

and Lall, 2000, 2001; Enfield et al., 2001; McCabe and Wolock, 2002; Franks and Kuczera, 

2002; Keim et al., 2003; Park et al., 2010, 2011). 
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The concept of nonstationarity is also important in the context of climate change, due to 

ascending levels of GHGs in the atmosphere. Studies (IPCC 2013) are pinpointing towards 

change in the recurrence interval, severity, and spatial coverage of extreme events, under 

elevated levels of temperature. Event return period, or recurrence interval, and the associated risk 

of occurrence are also critical considerations in the management of water resources, especially 

regarding design and operation of hydraulic structures. To tackle non-stationarity of hydrologic 

extremes, several approaches have been proposed in the literature, such as frequency analysis 

methods, in which the parameters (or moments such as the mean and variance) of a given 

distribution (e.g., the Gumbel) may vary in accordance with time (Soulis et al., 2016).  

One approach of handling nonstationarity is using probability distributions with temporal 

trend to identify changes in parameters, or mean variance (Strupczewski et al.. 2001; El Adlouni 

et al., 2007; Cooley, 2013; Katz, 2013; Sarhadi and Soulis, 2017). Another approach uses 

stochastic models with shifting patterns (Sveinsson et al., 2005). Finally, some models have also 

used covariates (Katz et al., 2002; Griffis and Stedinger, 2007). 

This research uses the RTA method, established by Soulis et al. (2016) , which uses local 

topography as independent variables to establish temporal trends for extreme precipitation. 

Soulis et al. (2016) carried out the time trend analysis using observations from 1960 to 2014. A 

linear trend was observed and extrapolated from this period to 2060. The analysis combined the 

datasets from all stations and determines their collective historical trend. The projections were 

extrapolations based on historical trends and assumed that the rate of change, m, will stay 

constant. 
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The formula for future IDF curve intensities, 𝑅𝑡’ for year 𝑡’ > 2010, uses the following 

equation: 

 𝑅𝑡′ = 𝐴2010 ∙ 𝜏𝐵 + 𝑚 ∙ (𝑡′ − 2010) (4) 

There are seven independent variables (longitude, latitude, barrier height to west, slope in east-

west direction, slope in north-south direction, proximity to water, and elevation) for which 

multiple linear regressions are performed using the equation below. 

 𝑌 ⃗⃗  ⃗ = 𝑋𝛽 + 𝜀  (5) 

Here, �⃗�  is the natural log of 𝐴 parameters generated from the regression analysis, 𝑋 is the matrix 

of the independent physiographic characteristics, 𝛽  is the partial regression coefficient vector, 

and lastly 𝜀  is the error vector from the analysis. 

With least squares fit, 𝛽  is found with: 

 𝛽 = (𝑋𝑇 𝑋)−1 𝑋𝑇 �⃗�  (6) 

The normalized error, ε, for the mean response is derived with the following formulas: 

 𝜀1 = 𝑆𝐸1  ∙ 𝜏𝐵√1 +
1

𝑛1
 (7) 

 𝜀2 = 𝑆𝐸2  ∙ √
1

𝑛2
 (1 + 

(2010− �̅� )2

𝜎𝑡
2 ) (8) 

 𝜀 =  √𝜀1
2 + 𝜀2

2 (9) 

in which, 𝑆𝐸1 is the root-mean-square deviation of the residuals from the regression of 𝐴 

parameters against physiographic characteristics, 𝑆𝐸2 is the rate of change of the rainfall rate per 

year, and 𝑡̅ is the mean calendar year in the dataset for each storm duration.  
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 Temporal variation in the precipitation intensity was observed, and based on that, linear 

regional precipitation trend was identified by Soulis et.al. (2016). This is the first step, and 

evidence from Sarhadi and Soulis (2017) exemplified that, time is major driving factor in future 

precipitation forecast, not necessarily linear. Therefore, results in the study are adequate for 

interpolation in time and should be used with caution, for extrapolation.  

 Upcoming chapters show, how extreme precipitation values, are sensitive to elevated 

temperatures and other climate change effects using climate scenarios. 

2.2: Relationship between temperature and precipitation: 

The CCR states that the saturation partial pressure of water vapor increases with exponential 

function of temperature. The observed water vapor content of the atmosphere, also follows this 

approximate exponential relation with respect to surface temperature (Stephens 1990). The CCR 

also predicts the partial pressure increases at a rate of about 6% K−1 at 300 K and 15% K−1 at 200 

K.  

Trenberth et al. (2003) found a fractional rate of increase in saturation specific humidity 

of ~7% K−1 to be representative based on consideration of the CCR and global-mean 

temperatures at pressures of 700 and 850 hPa. Similarly, column water vapor varies with surface 

temperature at a rate of ~9% K−1 in observations over tropical oceans. This relates to CCR 

scaling, assumes a constant rate of change with respect to a lower-tropospheric temperature, and 

relates the lower-tropospheric and surface temperature variations using a constant factor related 

to the moist-adiabatic lapse rate (Wentz and Schabel, 2000). 

Increases in the amount of atmospheric water vapor under global warming are of climatic 

importance because of water vapor’s role in energy transport by latent heat fluxes, patterns of 
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precipitation and evaporation, radiative transfer, and freshwater exchange with the ocean 

(Peixoto and Oort, 1992). The increase in the amount of water vapor for a given temperature 

change is strongly constrained by the CCR. This gives a fractional rate of change of saturation 

vapor pressure that varies substantially over the range of typical tropospheric temperatures from 

∼6% K−1 at 300 K to ∼15% K−1 at 200 K. It is also believed that increased capacity of water 

vapor at given temperature, results in short term extreme rainfall and ultimately flash flooding. 

Studies show that, it is difficult to predict rainfall and temperature at a time, as a strong 

correlation exist between them (Shukla and Mishra, 1977; Moise et al., 2012; Tanarhte et al., 

2012). Aldrian and Dwi Susanto (2003), confirmed the sensitivity of Indonesian rainfall 

variability with sea-surface temperature variability. Black (2005), associated east Africa rainfall 

with Indian Ocean surface temperature, while Rajeevan et al. (1998), and Huang et al. (2009) 

found a negative correlation between rainfall and temperature. 

The preliminary analysis for this study found that precipitation changes with change in 

temperature. This study uses saturated vapor pressure, computed based on CCR, which is 

computed from annual maximum temperature. The basic assumption made over here is, saturated 

vapour pressure is indirectly related with, extreme precipitation.  

2.3 Overview of General Circulation Models (GCMs), Downscaling Methods (DSMs), and 

Emission Scenarios (RCPs) 

The IPCC defined GCMs as numerical models that represent physical processes in the 

atmosphere, ocean, cryosphere, and land surface. These are the most advanced tools currently 

available (IPCC 2013) for simulating the response of the global climate system to increasing 

GHG concentrations.  
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The GCMs simulate the atmospheric patterns on larger grid scales (>100 km), whereas, 

regional climate models (RCM) are developed to incorporate the local-scale effects and have 

smaller grid scales (25 to 50 km). Both GCM and RCM models, however, have large grid scales 

when compared to the size of most watersheds. Downscaling is one of the techniques to link 

these GCM and RCM grid scales with the local study areas. These are broadly classified into 

dynamic downscaling and statistical downscaling. The dynamic downscaling procedure uses 

higher resolution GCMs to simulate the local conditions (Mandal et al., 2016), whereas the 

statistical downscaling procedure is based on transfer functions which relate the GCMs with 

local study areas (Li et al., 2010). Statistical downscaling procedures are widely used when 

compared to the dynamic models because of their lower computational requirements and 

availability of outputs for a wider range of emission scenarios. 

A number of studies uses, station downscaled GCMs or RCMs to update the IDF curves 

(Mailhot et al., 2007; Nguyen et al., 2007; Solaiman and Simonovic, 2011; Kao and Ganguly, 

2011; Peck et al., 2012; Mirhosseini et al., 2013; Hassanzadeh et al., 2013). However, GCMs 

contain biases relative to observed data because of their parameterization systems and large grid 

size. At the regional scale, this is sometimes acceptable, but not at the basin scale. 

 The IPCC generated Assessment Report 5 (AR5) is based on the Coupled Model Inter-

Comparison Project Phase 5 (CMIP5) ensemble projections, which are quality-checked data. 

CMIP5 make use of Representative Concentration Pathways (RCPs), which are designed to 

provide plausible future scenarios (IPCC, 2013) of anthropogenic forcing spanning a range from 

a low emission scenario, characterized by active mitigation (RCP 2.6), through two immediate 

scenarios (RCP 4.5 and 6.0), to a high emission scenario (RCP 8.5). Each RCP is associated with 

plausible combinations of projected population growth, economic activity, energy intensity, and 
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socio-economic development. The RCP scenarios were named based on their total radiative 

forcing by 2100. 

RCP 2.6 represents a peak in net radiative forcing at approximately 3W/m2 by mid-

century, before declining to 2.6 W/m2 by 2100. RCP 4.5 and 6.0 represent stabilization (without 

overshoot) in net radiative forcing at 4.5 W/m2 and 6.0 W/m2 post-2100. RCP 8.5 represents a 

rise in radiative forcing to 8.5 W/m2 in 2100. 

 These RCP scenarios serves as input to Earth System Models (ESMs), which simulate the 

climate system response and resulting conditions (IPCC 2013). In this study, two GCMs 

(CanESM 4.2 and MPIESM) and three RCP scenarios (RCP 2.6, 4.5, and 8.5) are considered. 

The following chapter describes the factors, database, and methodology used to develop the 

model. 
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Chapter 3: Methodology 

3.1 Model Database Preparation: 

3.1.1 Local topography data: 

The physiographic parameters that this study uses are adopted from the RTA developed by 

Soulis et al. in 2016. The RTA uses seven parameters as predictors of IDF curve values. This 

method is based on Waterloo Multiple Physiographic Parameter Regression (WATMAPPR). 

(Seglenieks, 2009). RTA establishes a linear regional temporal trend for annual daily maximum 

precipitation, and enables the prediction of nonstationary IDF curve values for Ontario. 

The WATMAPPR technique uses these seven physiographic parameters: 

• Elevation – The average elevation of the grid square(m). 

• Latitude – The latitude of the grid square (degree). 

• Longitude – The longitude of the grid square(degree). 

• East/west slope – The difference in elevation between the grid squares on either side of 

the station grid square, divided by the horizontal distance between the grid squares in 

both the east/west direction. 

• North/south slope – The same as the east/west slope, but in a north/south orientation. 

• Distance to water – the distance between that point and closest large body of water (i.e. 

Hudson Bay, or one of the Great Lakes including Georgian Bay, but not Lake Nipigon, 

Lake Nipissing, or Lake Simcoe) (m). 

• Barrier height to the west - The difference between the elevation of the grid square and 

the highest elevation towards the west, reset at large bodies of water (m). 
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3.1.2 Precipitation: 

The station data for this study come from the Environment Canada National Climate Data 

Information Archive (MSC, 2014). The data set includes 147 stations from Ontario, of which 

only 133 are used in this study, while the remaining stations were removed as outliers because 

they were outside the 95% confidence limits. The MSC stations have the greatest concentrations 

in Southern Ontario. For the 133 stations used, the record lengths vary from 5 years to 53 years, 

with an average record length of 26 years. Only station records from 1960 and later are used, 

with 2013 as the final year as it is the most recent year with published data. 

 

3.1.3 Temperature: 

The daily maximum, minimum, and mean temperature values are from Environment and Climate 

Change Canada’s (ECCC) Historical Climate Data in the National Climate Data Information 

Archive. Of 133 stations across Ontario, 22 are not used as their temperature and precipitation 

data values do not temporally overlap with each other. The remaining 111 stations have 

temporally overlapped precipitation and temperature values. They are analyzed with the statistics 

program, R, to filter out annual maximum and mean temperature values. 

ECCC divides the temperature database into three categories: minimum, mean, and 

extreme daily temperature. For this study, only mean daily temperature is considered 

representative. Mean daily temperature values are first used to determine monthly maximum 

values. The highest value in that 12-month set was chosen as the annual daily maximum 

temperature for a station for that calendar year.  

To determine the annual mean temperature, daily mean values are averaged for each 

month. This yields the monthly mean temperature value. The average of the 12-month mean 
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temperature values for a given year is termed as annual mean temperature. For simplicity, the 

annual mean temperature is referred to simply as the mean for the remainder of this thesis. 

Annual daily maximum temperature values, were used to compute annual maximum 

saturated vapour pressure using following relationship (Dingman, 2002): 

 𝑒∗ = 0.611 ∙ 𝑒𝑥𝑝(
17.3∙𝜃

𝜃+237.3
) (10) 

where: 

 𝜃 = annual daily maximum temperature (°C), and 

 𝑒∗ = saturated vapour pressure (kPa). 

3.2: Model Development 

The physiographic parameters from section 3.1.1, are supplemented with saturated vapour 

pressure, annual mean temperature values, and time anomaly ([year] – [base year]; where base 

year = 2010), for a total of ten independent variables. Multiple linear regressions are performed, 

using annual daily maximum rainfall intensity as the dependent variable.  

A backward selection procedure was implemented to select an optimal linear model first 

by eliminating insignificant model terms. In each iteration of the selection procedure, the p-

values of the various parameters are examined, and the parameter with the largest p-value 

(lowest significance) is dropped from the model. This process was repeated until no parameters 

remain with p-values greater than 0.05. 

Two exceptions are made to this procedure. The mean temperature was kept as a 

predictor, despite being slightly above the p-value threshold, since temperature increases the 

model’s nonstationary potential. Temperature, unlike the other physiographic variables, is also 

tied to climate change, so it has the greatest potential as a predictor. The second exception to the 
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procedure is the selection of barrier height to the west as a predictor, rather than distance to 

water, despite a slightly higher p-value. Barrier height to the west, relative to distance to water, 

has a weaker correlation with the other variables, and thus has greater use in the spatial 

interpolation. 

The result is an expression that relates the value of the maximum precipitation with time, 

annual mean temperature, saturated vapour pressure, barrier height to the west, and 

latitude/longitude, for any location in Ontario. This equation calculates the expected value of the 

daily maximum precipitation for a given calendar year at respective stations in Ontario. Table 1 

shows values and statistics of the model coefficients. The standard error of the model is 0.786. 

Table 1: Model Statistics 

 Coefficients 
Standard 

error 
t-stat P-value 

Intercept 2.270 0.631 3.600 0.000325 

Year-2010 (∆𝒕) 0.00551 0.00147 3.760 0.000175 

Mean temperature (�̅�) 0.0260 0.0135 1.922 0.0547 

Saturated vapour pressure (𝒆∗) -0.0705 0.0316 -2.231 0.0258 

Longitude (𝑰𝟏) -0.0139 0.00612 -2.268 0.0234 

Latitude (𝑰𝟐) -0.0279 0.0123 -2.274 0.0231 

Barrier height to west (𝑰𝟑) -0.000819 0.000401 -2.044 0.0411 
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The final equation is: 

𝑅𝑛(𝑡|𝜏 = 24) = 𝐵0 + 𝐵1 ∙ ∆𝑡 + 𝐵2 ∙ �̅�(t) + 𝐵3 ∙ 𝑒
∗(t) + 𝐵4 ∙ 𝐼1 + 𝐵5 ∙ 𝐼2 + 𝐵6 ∙ 𝐼3 + 𝜀 (11) 

where: 

 𝑅𝑛(𝑡|𝜏 = 24) = 24 h rainfall intensity in year t (mm/h), 

 𝐵0  = intercept, 

 𝐵1, 𝐵2, 𝐵3, 𝐵4, 𝐵5, 𝐵6 = coefficients, 

 ∆𝑡 = Time anomaly (𝑡 − 𝑡0) (y), 

 �̅�(𝑡) = mean temperature in year t (°C), 

 𝐼1 = longitude (decimal degree), 

 𝐼2 = latitude (decimal degree), 

 𝐼3 = barrier height to west (m), 

 𝑒∗(𝑡) = saturated vapour pressure in year t (kPa), 

 𝑡0 = base year, 2010, 

 𝑛 = station ID, and 

 𝜀 = random component (reflected in the residuals of the regression) 

An analysis of the residuals revealed that, they follow a Gumbel distribution, as shown in  

Figure 3. 
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Figure 3: Residual analysis 

In the classical stationary IDF curve analysis, Hogg et al., (1989) use the following 

equation for each duration to determine station quantiles: 

 𝑅𝑛(𝑇, 𝜏) = 𝑅𝑛(𝜏)̅̅ ̅̅ ̅̅ ̅̅ + 𝐾(𝑇)𝑆𝑛(𝜏) (12) 

where:  

 𝑅𝑛(𝑇, 𝜏) = storm intensity for the station, 

 𝑅𝑛(𝜏)̅̅ ̅̅ ̅̅ ̅̅  = long-term average extreme rainfall, 

 𝐾(𝑇) = Gumbel frequency factor for the return period, 

 𝑆𝑛(𝜏) = long-term standard deviation of the extreme rainfall for the period 

of record, 

 𝑇 = return period, 

 𝜏 = duration, and 

 𝑛  = station identification. 
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Soulis et al., (2016) use Equation (12), to estimate 𝑅𝑛(𝑇, 𝜏), which varies yearly. Thus, in 

nonstationary form, Equation (13) gives the design rainfall intensity for a given return period and 

year. 

 𝑅𝑛(𝑇, 𝑡, 𝜏) = 𝑅𝑛(𝑡, 𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝐾(𝑇)𝑆𝑛(𝜏) (13) 

where 𝑅𝑛(𝑡, 𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the expected value from the precipitation-temperature model (Equation 11) for 

station 𝑛 and year 𝑡. 

Thus, the final equation, which estimates the design rainfall intensity of a 24 h storm for a 

given return period is: 

𝑅𝑛(𝑇, 𝑡|𝜏 = 24) = (𝐵0 + 𝐵1 ∙ ∆𝑡 + 𝐵2 ∙ �̅�(𝑡) + 𝐵3 ∙ 𝑒
∗(𝑡) + 𝐵4 ∙ 𝐼1 + 𝐵5 ∙ 𝐼2 + 𝐵6 ∙ 𝐼3) +

𝐾(𝑇) ∙ 𝑆𝑛  (14) 

where: 

 𝑅(𝑇, 𝑡|𝜏 = 24) = estimated 24 h rainfall intensity for station 𝑛 in year 𝑡 for given 

return period, 

 𝐵0  = intercept, 

 𝐵1, 𝐵2, 𝐵3, 𝐵4, 𝐵5, 𝐵6 = coefficients, 

 ∆𝑡 = (𝑡 − 𝑡0) (y), 

 �̅�(𝑡) = mean temperature in year t (°C), 

 𝐼1 = longitude (decimal degree), 

 𝐼2 = latitude (decimal degree), 

 𝐼3 = barrier height to west (m), 

 𝑒∗(𝑡) = saturated vapour pressure in year t (kPa), 

 𝐾(𝑇) = Gumbel frequency factor for the return period, 

 𝑛 = station ID, 
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 𝛵 = return period (y), and 

 𝑆𝑛 = residual standard error of the linear regression. 

The difference between Equation 11 and Equation 14 is that 𝜀 is replaced by 𝐾(𝑇) ∙ 𝑆𝑛. 

To calculate return period rainfall intensities for durations other than 24 h, Equation 2 can be 

rearranged into the following form: 

 𝑅𝑛(𝑇, 𝑡, 𝜏) = 𝑒𝑙𝑛[𝑅𝑛(𝑇,𝑡|𝜏=24)]+𝐵(𝑙𝑛 𝜏−𝑙𝑛24) (15) 

where: 

 𝑅𝑛(𝑇, 𝑡, 𝜏 = 24) = 24 h storm intensity for a given year and return period 

 𝐵 = slope of the IDF curve, generally equal to -0.699 

 τ = storm duration 

This model is named as Waterloo Interpolator-Time, Topography, Temperature (WIT3). WIT3 

has advantage of being nonstationary, in its dependence upon GCM-predicted temperature θ, and 

e*sat ,which makes it sensitive to varying climate change conditions, covering temperature effects 

and accommodating the regional temporal trend, established using RTA (Soulis et al., 2016). 

The following chapter evaluates, efficiency of WIT3 in predicting Annual Maximum 

Precipitation (AMP) for historical period 1960-2010, by comparing it with, actual observations 

(MSC) and predictions by other stationary and nonstationary methods. The chapter also covers 

probable estimates of precipitation intensities for future years across Ontario. 
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Chapter 4: Model Performance Comparison and Future Projections 

4.1: Model Performance Comparison 

This study compares WIT3 with two other models (tools), along with the actual annual daily 

maximum precipitation observations from MSC. The RTA model is sensitive to local 

topography, and establishes linear temporal trends of annual maximum precipitation. Thus, it is 

nonstationary and sensitive enough to accommodate local physiography, and orographic effect. 

The same is already used by the Ontario Ministry of Transportation (MTO) via its online IDF 

Look-up Tool. Another is the GCM-based model that the Ontario Climate Change Data Portal 

(OCCDP) uses. The additional advantage of the OCCDP model is its use of GCMs, which 

account for future demography, radiation, land use pattern, GHG emission levels, and several 

other factors, to replicate climate change. Unfortunately, the OCCDP is not bias-corrected. WIT3 

combines the benefits of both models, and combines local topography and temporal trends along 

with accommodations of GCMs and three GHG emission scenarios. WIT3 has an added 

advantage in that, it considers temperature and resulting atmospheric thermodynamics. The 

following section compares the three methods. 

 

4.1.1: Database Selection for Comparison and Results: 

The WIT3 model uses the historic relationship between temperature and precipitation in Ontario 

to refine extreme precipitation projections. For the historical comparison, 56 stations were 

selected that have a minimum of 20 years of records in total. The stations were also required to 

have historic temperature and precipitation records that overlap each other by 10 or more years. 

The average record year for each station was then identified.  
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4.1.1: Model Outcome and Comparison: 

The results from WIT3 and the RTA model were then time corrected to each station’s average 

years for accurate comparisons alongside the each other and the OCCDP data. Figure 4 shows 

the geographic distribution of eight stations selected from across Ontario for the comparison of 

extreme rainfall intensity with corresponding return periods, while Figure 5 shows the results. 

Note that, due to the nature of the data available for the OCCDP, those results cannot be time-

adjusted, as they are given as a stationary value for the years 1960 to 1990. 

 

Figure 4: Geographic distribution of sample stations 
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Figure 5: Comparison of 24 h rainfall intensity return period estimates for eight stations across 

Ontario for period, 1960-2010 for a) Armstrong, b) Cambridge Galt MOE, c) Cornwall, d) Hamilton 

RBG CS, e) Kenora A, f) North Bay, g) St. Catharines A, and h) Sudbury A 
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Model quantiles were compared to the quantiles of the Gumbel-fitted MSC data, which was 

selected as the best estimate of the true distribution of actual station data. This is a Gumbel 

distribution, which has been parameterized for each station using the station mean and the 

standard deviation of the overall MSC dataset. This overall standard deviation was used under 

the assumption of a constant standard deviation across Ontario. 

The same procedure was carried out for the remaining 48 stations, for a total of 56. The 

comparison was made on the 2, 5, 10, 25, 50 and 100 y return period rainfall intensity values for 

the 24 h storm. Figure 6 presents the statistics on the differences (deltas) in these return period 

values, in mm/h, between the MSC Gumbel and the three models. Figure 6 (a) to (c) shows the 

difference between the MSC Gumbel and modeled results for the 24 h annual maximum rainfall 

intensity at the 99th percentile (100 y return period). Since, for ease of communication, the scales 

are not consistent between comparisons, the histogram in Figure 6 (d) illustrates the distribution 

of the deltas on a common scale. 

As the histogram shows, the WIT3 model has the largest number of observations near 

zero. This indicates that the WIT3 model represents the historical data with the least discrepancy 

between actual observations and WIT3 generated model output. Although the WIT3 quantiles 

tend to slightly underestimate those of the MSC Gumbel for higher return period values, as 

Figure 6 shows, the difference is negligible. 
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Figure 6: The difference in time-corrected rainfall intensity for the 100 y rainfall (99th 

percentile) between the empirical MSC data and results from a) the WIT3 model, b) the 

RTA model, and c) the OCCDP model. A histogram d) the distribution of the deltas 

The RTA quantiles were also found to match those of the MSC Gumbel quite closely, but 

show potential for refinement as they, on average, tend to overestimate the historical quantiles. 

The OCCDP values, which represent the median IDF curve estimate from the AR4:A1B 

scenario, generally significantly overestimate the historical quantiles. 
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When compared, the WIT3 model has the closest match with the quantiles of historic 

data, and is therefore assumed to have the most accurate representation of future extreme 

precipitation scenarios. From Figure 4, Figure 5, and Table 2 one sees that the RTA predictions 

are better than OCCDP predictions, but looks slightly conservative, as compared to WIT3, which 

is extension of RTA. 

 

Table 2: Mean differences between empirical MSC results and the modeled results for 

the 24 h storm, compared over 56 Ontario MSC station locations. 

 
Mean difference from MSC 

Standard deviation of difference 

from MSC 

Return period (y) WIT3 RTA OCCDP WIT3 RTA OCCDP 

2 0.03 0.20 0.58 0.15 0.37 0.37 

5 0.01 0.26 0.77 0.15 0.47 0.47 

10 0.00 0.30 0.89 0.15 0.53 0.53 

25 -0.01 0.34 1.05 0.15 0.62 0.62 

50 -0.02 0.37 1.17 0.15 0.69 0.69 

100 -0.03 0.40 1.29 0.15 0.76 0.76 

4.2 Future Projections Comparison: 

To project the expected value of precipitation for future events, and using the year 2010 as a 

base, the input parameters required were annual daily maximum temperature and annual mean 

temperature. Various options were considered for future temperature data, such as GCM-based 

outputs, RCM-based temperature data, and different ensemble based temperature data. GCM 
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output is coarse as it has large gridded climate data, and needs to be downscaled using either 

dynamic or statistical methods for its output to be used in the temperature-precipitation model. 

Downscaling methods have different biases that affect the end data. RCM outputs are finer than 

GCM outputs, which mean their grid sizes are much smaller than GCM outputs, but RCM 

methods also have biases that affect output. Often, an ensemble approach is adopted to 

compensate for these different biases and to compensate for systematic errors. The IPCC used an 

ensemble approach to develop the best possible climate impact studies for future years. The 

IPCC’s AR5, released in 2014, uses the data from CMIP5 that was also released in 2014. CMIP5 

is the source of a quality assessed, reliable database used for scientific studies. 

This study uses two sources for temperature inputs for future years: Ontario Climate 

Change Data Portal (OCCDP) and PCIC. OCCDP uses the Providing Regional Climate for 

Impact Studies (PRECIS) model, under the A1B emissions scenario and the RCM, under the 

RCP 8.5 emissions scenario. For this study, PRECIS data was selected for analysis. PRECIS is 

an ensemble of five GCMs, developed by the Hadley Centre for Meteorological Studies, in the 

United Kingdom. The GCMs use the A1B climate change scenario for future projections. The 

output from the OCCDP is downscaled to a 25 km resolution without bias correction, and is not 

continuous. The output is grouped into the 30 y periods of 1960-1990, 2015-2045, 2035-2065, 

and 2065-2095. PCIC output is historical daily gridded climate data based on an ensemble of 12 

GCMs. PCIC contains historical data as well as future projections based on the IPCC’s RCP 2.6, 

4.5 and 8.5. The data are quality checked as they are based on CMIP5. The data are bias 

corrected and statistically downscaled to a 10 km resolution using two methods: Bias Correction 

Spatial Disaggregation (BCSD), and Bias Correction/Constructed Analogues with Quantile 
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mapping reordering (BCCAQ). BCCAQ is a hybrid method that combines results from BCCA 

(Maurer et al., 2010) and quantile mapping (QMAP) (Gudmundsson et al., 2012). 

Observed historical data from ten randomly selected Environment Canada stations were 

used to compare the historical maximum temperature data from OCCDP and PCIC outputs from 

1960-1990. Figure 7 shows the output for two stations, Hamilton and Kenora. The comparison of 

these ten sites revealed that PCIC data more closely matches the historical observed data. This is 

likely because the projections under AR4 at OCCDP were not bias-corrected. 
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Figure 7: MSC (EC), OCCDP and PCIC extreme temperature comparisons for a) 

Hamilton, Ontario, and b) Kenora, Ontario. 

Figure 8: Empirical distribution function for historical extreme temperature and MPI-

ESM-LR-RCP 8.5 standardized by station mean, 1960-2010. 

Figure 8 shows the results of an empirical distribution fitting exercise performed on 

observed data and PCIC data from 1960-2010. As in Figure 8, the data for each station were 

adjusted to equivalent 2010 values with a fitted linear trendline, and subsequently standardized 

by subtracting the station mean. This exercise revealed that the PCIC temperature database 

matches the distribution of observed data. It was determined that downscaled GCM temperature 

projections from the PCIC database are suitable for use as input into a precipitation forecast 

model. As discussed above, PCIC uses an ensemble of 12 GCMs. The authors adopted Cannon’s 

(2015) approach, a method that orders GCM scenarios to provide the widest spread of projected 

climate scenarios for smaller subsets of the full ensemble. Table 3 shows the top five GCMs by 

region. 
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Figure 8: Empirical distribution function for historical extreme temperature and MPI-

ESM-LR-RCP 8.5 standardized by station mean, 1960-2010. 
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Table 3: Model ensembles and Giorgi-Francisco regions 

Order 

Western North 

America 

(WNA) 

Alaska (ALA) 

Central North 

America 

(CAN) 

Eastern North 

America 

(ENA) 

Greenland 

(GRL) 

1 CNRM-CM5-r1 
CSIRO-Mk3-6-

0-r1 
CanESM2-r1 

MPI-ESM-LR-

r3 

MPI-ESM-LR-

r3 

2 CanESM2-r1 
HadGEM2-ES-

r1 
ACCESS1-0-r1 INMCM 4-r1 INMCM 4-r1 

3 ACCESS1-0-r1 INMCM 4-r1 INMCM 4-r1 CNRM-CM5-r1 CanESM2-r1 

4 INMCM4-r1 CanESM2-r1 
CSIRO-Mk3-6-

0-r1 

CSIRO-Mk3-6-

0-r1 
CNRM-CM5-r1 

5 
CSIRO-Mk3-6-

0-r1 
ACCESS1-0-r1 MIROC5-r3 

HadGEM2-ES-

r1 
ACCESS1-0-r1 

 

As Giorgi and Francisco (2000) define, Ontario falls into three subcontinental regions: 

Central North America (CNA), Greenland (GRL), and Eastern North America (ENA). The top 

models for Ontario were CanESM and MPI-ESM. Consequently, downscaled temperature 

projections were downloaded for both GCMs. Each GCM output had three RCPs to choose from: 

RCP 2.6, RCP 4.5, and RCP 8.5. The author downloaded all three RCPs for both GCMs, 

resulting in a total of six climate scenarios. The temperature values were used as input into 

Equation (14), as described in Chapter 3, to generate extreme precipitation values. Equation (15) 

was then used to determine the corresponding return period rainfall intensity for arbitrary storm 

durations. 

Starting with base year 2010, future 1 h, and 24 h rainfall intensity projections were made 

for years 2060 and 2090, using both the RTA and WIT3 models. The RTA model was based on 

the temporal variation of extreme precipitation with consideration of physiographic factors, while 

the WIT3 model forecasts extreme precipitation based on physiography, temperature, and time. 

Figure 9 and Figure 10 show the difference between the 100 y return period rainfall intensity 

values for the 1 h and 24 h storms, as predicted by WIT3 and RTA, for two GCMs: CanESM and 
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MPI-ESM. The RCP 8.5 scenario was chosen for comparison, as this is the most severe climate 

change scenario considered in this study. 

Table 4 presents statistics on the difference in 1 h and 24 h extreme precipitation 

projections between RTA and WIT3 models for 55 weather stations. 

 

Table 4: Mean differences between WIT3 and RTA precipitation projections for the 

100 y return period rainfall events 

  1 h storm 24 h storm 

GCM 

scenario 
Year 

Mean 

(mm/h) 

Standard 

deviation 

(mm/h) 

Mean 

(mm/h) 

Standard 

deviation 

(mm/h) 

CanESM 

RCP 8.5 

2010 -2.84 1.70 -0.43 0.19 

2060 -1.72 1.69 -0.45 0.19 

2090 -0.96 1.96 -0.46 0.22 

MPI-ESM 

LR RCP 8.5 

2010 -2.48 1.73 -0.39 0.20 

2060 -1.37 1.72 -0.42 0.19 

2090 -0.73 1.96 -0.44 0.22 

 

Incorporating projected temperature into the forecast resulted in an overall decrease in 

projected precipitation over the next 70 years, with the difference decreasing with time for the 1h 

storm. WIT3 design rainfall values for the 100 y, 1 h storm are, on average, 1.7 mm below those 

of RTA. The one exception is in Eastern Ontario, as Figure 9 shows, where 1 h storm intensities 

from the WIT3 model surpass those of the RTA model. While the risk in these areas appears 

minor, it does warrant further investigation. These differences could have significant 
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implications for climate change related risk and vulnerability assessments depending on the types 

of facilities and infrastructure. 

The next chapter covers risk analysis based on future forecast of extreme precipitation 

and uncertainty analysis of future precipitation forecast based on ensemble methods. This 

analysis looks at variation in forecast of extreme precipitation values based on different GCM 

and RCP combination.  
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Chapter 5: Risk and Uncertainty Analysis 

5.1: Risk Analysis: 

Figure 11shows a time series of expected annual maximum 24 h rainfall, the 100 y return period 

value, and the values produced by six different downscaled GCM and RCP combinations for St. 

Catharines Airport in Ontario. The red and black series have relatively small standard deviations 

because they represent precipitation quantiles. The green data series, with their much larger 

deviations, represents a GCM run. Chapter 1 shows how GCM precipitation predictions for 

historical runs are messy, with very low efficiency for precipitation predictions. Figure 11also 

demonstrates how precipitation intensity for the 24 h 100 y return period that WIT3 predicts 

successfully accommodates the peaks drawn by GCMs with various climate change scenarios.  

 

Figure 11: Time series of annual maximum 24 h rainfall, St. Catharines A, ON 

Figure 11shows that time is the main driver of change in precipitation intensity in WIT3, 

while temperature contributes to mild fluctuations on top of the main linear trend. Figure 12 to 
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Figure 19 have similar fluctuations, which show the daily and hourly precipitation intensities that 

WIT3 predicts over the next century for various return periods and GCM-RCP combinations, at 

eight stations across Ontario. As Figure 12 to Figure 21, and Table 5 to Table 6 show, fluctuation 

in precipitation intensity prediction vary from 0.7 to 4.5%, which seems marginal as compared to 

percentage increase in precipitation intensities. Table 5 shows the percent increase in 

precipitation intensities by 2099 for eight stations across Ontario, with 2010 as base year, for 

various GCM-RCP combinations. 

Table 5 and Table 6 show the percentage increase of precipitation intensities for eight 

sample stations from the 2010 base year to 2099. The 2 y return period ranges from 17% to a 

maximum of 34% for all GCMs and RCPs and for all durations. Similarly, the 100 y return 

period estimated increases in precipitation intensity ranges from 8% to 12% for all GCMs and 

RCPs and for all durations. Interestingly, the increase in future precipitation intensity for smaller 

storms (2 y) is greater than heavy storms (50 y, 100 y). This shows how smaller storms are 

expected to be more severe in future. 
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Table 5: Per cent increase in precipitation intensities by year 2099, with 2010 as base year 

 

    CanESM 

2.6 (%) 

CanESM 

4.5 (%) 

CanESM 

8.5 (%) 

MPIESM 

2.6 (%) 

MPIESM 

4.5 (%) 

MPIESM 

8.5 (%) 

Maximum 

Precipitation 

Intensity (mm/h) 

 

Minimum 

Precipitation 

Intensity (mm/h) 

Fluctuation 

(%) 

A
rm

st
ro

n
g
 

1h 2y 37.41 19.74 24.75 24.39 24.41 17.35 24.78 23.99 3.27 

1h 5y 27.35 14.86 18.54 18.22 18.34 14.88 31.36 30.57 2.57 

1h 10y 23.22 12.77 15.91 15.61 15.75 12.60 35.71 34.93 2.25 

1h 25y 19.50 10.84 13.48 13.21 13.37 11.32 41.22 40.43 1.94 

1h 50y 11.32 17.42 9.75 12.11 11.86 12.02 45.30 41.22 9.91 

1h 100y 10.28 15.76 8.87 11.00 10.77 10.92 49.35 48.57 1.62 

C
o
rn

w
a
ll

 

1h 2y 20.82 26.66 25.85 22.12 25.58 23.50 24.73 24.22 2.13 

1h 5y 15.69 19.91 19.36 16.64 19.07 17.69 31.31 30.79 1.67 

1h 10y 13.49 17.06 16.60 14.30 16.32 15.20 35.67 35.15 1.47 

1h 25y 11.46 14.44 14.07 12.14 13.81 12.90 41.17 40.65 1.27 

1h 50y 10.31 12.96 12.63 10.91 12.39 11.60 45.25 44.74 1.15 

1h 100y 9.38 11.77 11.48 9.92 11.25 10.55 49.31 48.79 1.06 

C
a

m
b

ri
d

g
e 

1h 2y 20.69 26.24 22.88 22.14 22.76 20.63 25.82 24.86 3.87 

1h 5y 15.77 19.85 17.40 16.88 17.17 15.78 32.40 31.44 3.06 

1h 10y 13.62 17.09 15.02 14.59 14.78 13.65 36.75 35.79 2.69 

1h 25y 11.62 14.54 12.81 12.45 12.56 11.67 42.26 41.84 1.00 

1h 50y 10.48 13.09 11.54 11.23 11.30 10.53 46.34 45.38 2.12 

1h 100y 9.55 11.91 10.52 10.23 10.28 9.60 50.39 49.43 1.95 

S
u

d
b

u
ry

 

1h 2y 20.71 28.58 22.14 21.33 25.09 18.73 24.76 24.41 1.43 

1h 5y 15.63 21.30 16.72 16.12 18.76 14.20 31.34 30.99 1.13 

1h 10y 13.45 18.23 14.38 13.87 16.08 12.24 35.69 35.34 0.99 

1h 25y 11.43 15.42 12.22 11.80 13.62 10.42 41.20 40.85 0.85 

1h 50y 10.29 13.83 11.00 10.62 12.23 9.39 45.28 44.93 0.78 

1h 100y 9.36 12.55 10.01 9.66 11.10 8.55 49.33 48.98 0.71 
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Table 6: Per cent increase in precipitation intensities by year 2099, with 2010 as base year 
 

 

CanESM 

2.6 (%) 

CanESM 

4.5 (%) 

CanESM 

8.5 (%) 

MPIESM 

2.6 (%) 

MPIESM 

4.5 (%) 

MPIESM 

8.5 (%) 

Maximum 

Precipitation 

Intensity (mm/h) 

 

Minimum 

Precipitation 

Intensity (mm/h) 

Fluctuation 

(%) 

S
t.

 C
a
th

a
ri

n
es

 1h2Y 20.86 25.35 23.40 23.10 22.84 21.29 25.77 24.93 3.37 

1h5Y 15.87 19.18 17.77 17.58 17.25 16.25 32.35 31.51 2.67 

1h10Y 13.70 16.51 15.33 15.17 14.84 14.05 36.71 35.87 2.34 

1h25Y 11.68 14.05 13.07 12.94 12.62 12.00 42.21 41.37 2.03 

1h50Y 10.53 12.65 11.78 11.66 11.35 10.82 46.29 45.45 1.85 

1h100Y 9.59 11.51 10.72 10.63 10.33 9.86 50.35 49.51 1.70 

N
o
rt

h
 B

a
y
 

1h2Y 22.59 28.54 23.32 20.68 24.96 18.65 24.99 24.48 2.09 

1h5Y 17.01 21.32 17.61 15.68 18.69 14.16 31.57 31.06 1.65 

1h10Y 14.63 18.26 15.15 13.52 16.02 12.21 35.93 35.41 1.45 

1h25Y 12.42 15.46 12.88 11.51 13.57 10.40 41.43 40.92 1.25 

1h50Y 11.17 13.88 11.59 10.37 12.19 9.37 45.51 45.00 1.14 

1h100Y 10.16 12.60 10.54 9.44 11.07 8.53 49.57 49.05 1.05 

K
en

o
ra

 

1h2Y 22.64 29.96 21.15 24.17 21.40 17.33 25.97 24.85 4.52 

1h5Y 17.23 22.54 16.18 18.37 16.31 13.22 32.55 31.43 3.58 

1h10Y 14.88 19.36 14.01 15.86 14.09 11.43 36.91 35.78 3.14 

1h25Y 12.69 16.43 11.97 13.52 12.03 9.76 42.41 41.29 2.72 

1h50Y 11.44 14.78 10.81 12.18 10.85 8.80 46.49 45.37 2.48 

1h100Y 10.42 13.43 9.85 11.10 9.88 8.02 50.55 49.42 2.27 

H
a

m
il

to
n

 

1h2Y 21.00 25.86 23.42 22.86 23.01 20.87 25.60 24.65 3.84 

1h5Y 15.94 19.53 17.76 17.37 17.32 15.91 32.18 31.23 3.03 

1h10Y 13.75 16.80 15.32 14.99 14.89 13.75 36.53 35.58 2.66 

1h25Y 11.72 14.29 13.04 12.78 12.64 11.73 42.04 41.09 2.30 

1h50Y 10.56 12.86 11.75 11.51 11.37 10.58 46.12 45.17 2.10 

1h100Y 9.61 11.70 10.70 10.49 10.33 9.64 50.17 49.22 1.92 
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Figure 12: Daily precipitation intensity variation at a) Armstrong, b) Cambridge 
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Figure 13: Daily precipitation intensity variation at c) Cornwall, d) Sudbury 
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Figure 14: Daily precipitation intensity variation at e) St. Catharines, f) North Bay 
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Figure 15: Daily precipitation intensity variation at g) Kenora h) Hamilton 
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Figure 16: Hourly precipitation intensity variation at a) Armstrong, b) Cambridge 
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Figure 17: Hourly precipitation intensity variation at c) Cornwall, d) Sudbury 
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Figure 18: Hourly precipitation intensity variation at e) St. Catharines, f) North Bay 
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Figure 19: Hourly precipitation intensity variation at g) Kenora h) Hamilton 
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5.2: Sources of Uncertainty: 

Predictions of the timing and magnitude of any future extreme event are associated with 

uncertainties in estimating future anthropogenic emissions of GHGs, land use changes, changes 

in the temperature, changes in the carbon cycle—especially the uptake of carbon in the 

oceans—and the challenges of understanding the relevant mechanisms, such as those from 

clouds and Ocean currents. 

Different sources can help interpret the inherent uncertainties of climate models. 

‘Forcing uncertainty’ uses future elements and aspects that are not a part of the climate system, 

but have the potential to affect it. One form of forcing uncertainty arises when one uses climate 

model simulations based on different scenarios for the concentrations of atmospheric GHGs, 

which depend entirely on the actions taken to control the GHG emissions (Cubasch et al., 

2001). In this study, they are incorporated as Representative Concentration Pathways (RCPs), 

as described in AR5. ‘Initial condition uncertainty’ involves uncertainty that arises from an 

initial state (Boundary conditions) or ensemble of states (Stainforth et al., 2007) applied to the 

climate models.  

Sciences, Hailegeorgis, & Burn (2009) mentioned that the main sources of uncertainties 

in assessing the impacts of climate change on extreme precipitation events can be from: 

• GCMs; GHG scenarios; 

• Downscaling techniques; and 

• Impact assessment uncertainties: 

• Model parameters: estimation of model parameters; and 

• Data: data quality and sampling uncertainties. 
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Xu, Booij, & Tong, 2010, portrayed different sources of uncertainty in statistical modeling of 

extreme hydrological events. The results show that the uncertainty that originated from DSM is 

the largest, and could be 40% for a return period of 200 y. Similar results were found by 

(Mandal, Breach, & Simonovic, 2016). Using four GCMs, three RCPs, and six downscaling 

methods (DSMs). With the Campbell River basin in British Columbia as a case study, they 

showed that the selection of a downscaling method provides the largest amount of uncertainty 

when compared to the choice of GCM and emission scenario. The choice of GCM, however, 

provides a significant amount of uncertainty if downscaling methods are not considered. 

The present study considers database from two global climate models, and three RCPs 

using one DSM, due to computational limitations. The study thus handles six different GCM-

RCP ensemble outputs, for 111 stations across Ontario, and compares variability amongst 

them.  From historical data, a temporal linear trend was identified, which forms the basis of this 

study, and it is assumed that the same linear trend is applicable in future (next century) as well, 

which may not be true for future. Thus, this is the limitation and source of uncertainty for the 

present study. 

5.3: Uncertainty Analysis: 

As Table 5 and Table 6 shows, the fluctuations in various GCM and RCP combinations vary 

from 2% to 4%. While this may seem small, consider that the maximum and minimum values 

of storm intensities for various return periods are large enough to overlap each other. This 

means that the minimum predicted value of rainfall intensity for the year 2075 may become the 

maximum possible rainfall intensity for the year 2050, due to variation in GCM and RCP 

selection.  
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Figure 20 and Figure 21shows non-exceedance probability of hourly precipitation 

intensities for eight stations across Ontario for the years 2010, 2025, 2050, 2075, and 2099. It 

also includes the maximum and minimum range of precipitation intensities predicted through 

six GCM-RCP ensembles. The maximum range of the 25 y storm overlaps the minimum 

precipitation intensity range of the 75 y storm. This indicates the non-stationarity in normal 

values, and the effect of climate change on extreme precipitation values. 

Figure 12 to Figure 19 show reduction in recurrence interval, and increase 

(approximately double) in frequency of high intensity events, such as the 50 y and 100 y 

storms. The 100 y event will become the 50 y event, and the 50 y event will become the 25 y 

event after 2060. The doubling confirms that the intensity of extreme rainfall is increasing over 

the century, while the non-exceedance probability of a particular storm event is decreasing. For 

example, for St. Catharines, the probability that the precipitation intensity will not increase 30 

mm/hr was 87-88% in 2010. In 2099, it will range from 67-70% depending on the GCM and 

RCP scenarios used.  

Above results shows the necessity to build the climate resilient infrastructure, which 

again poses the need of best possible simulation of climate condition for future, which is 

dynamic in nature, and makes it almost mandatory to have design guidelines (here in this case 

IDF values) nonstationary. WIT3 serves this purpose by predicting nonstationary values of 

extreme precipitation intensities along with incorporation of three climate scenarios, which 

simulates best possible climate conditions for future years.  

The next chapter summarizes the results, along with brief description about limitations 

of WIT3. It also covers future scope for extending this research. 
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Figure 20: Non-exceedance probability of hourly precipitation intensities for four 

Ontario sites: a) Hamilton; b) St. Catharines; c) North Bay; and d) Kenora. 
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Figure 21: Non-exceedance probability of hourly precipitation intensities for four 

Ontario sites: e) Sudbury; f) Cornwall; g) Cambridge; and h) Armstrong. 
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Chapter 6: Summary and Future Scope of Study 

6.1 Summary: 

Global anthropogenic climate change has stimulated a variety of research focused on predicting 

future climate, and its effect on the earth. One of the most important aspects of these studies is 

to characterize possible changes in climate extremes (e.g., floods, droughts, high winds, etc.) 

The present study refines IDF curves for Ontario to provide new design guidelines MTO and 

MOECC. 

Precipitation outputs are available for the future, from the CMIP5 database, that use 

different downscaling methods, and are available through PCIC and OCCDP. The resolutions 

of these outputs are 10 km and 25 km respectively. Although the database provided by PCIC is 

statistically downscaled and bias corrected, when precipitation intensity and its distribution was 

compared with actual precipitation data, for historical period 1960-2010, it did not match. 

Earlier studies (Soulis, Princz, & Wong, 2015) identified the regional temporal trend for 

extreme precipitation across Ontario. The only limitation of that study was absence of 

parameter, reflecting climate change. This study uses the same temporal trends, in association 

with local physiography, and temperature to forecast extreme rainfall. The new stochastic 

method of forecasting extreme precipitation, WIT3, has been developed to estimate the 

distribution of extreme rainfall events for Ontario locations. WIT3 is compared with existing 

RTA method, as well as the median IDF curve estimates from the OCCDP under the AR4:A1B 

scenario, and downscaled GCM data from PCIC. When comparisons were made during the 

historical period of 1960-2010, it was determined that WIT3 has the closest match of the 

empirical distribution of Ontario weather stations. 
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Forecasts of IDF curves were created until 2099, using temperature projections from 

two GCM models, namely CanESM and MPI-ESM, under three different RCP scenarios, RCP 

2.6, RCP 4.5, and RCP 8.5.  

Risk analyses of present studies use eight sites across Ontario, and future extreme 

rainfall predictions are made up to the year 2099. The study reveals that, percentage increases 

in rainfall intensities over the next century, are greater for short return periods, and lesser for 

heavy storm events. It also shows that the prediction of extreme rainfall intensities is sensitive 

to selection of GCM and RCP scenarios. The variation amongst the predictions is 

approximately 3 to 6 %, which seems small, but it is large enough to overlap the higher storm 

events. In many cases, the maximum hourly precipitation events for 50 y are overlapped with 

the 75y minimum hourly precipitation intensity curve after 2070 (see Figure 20 and Figure 21).  

This study raises the need of a new normal, and the acceptance of non-stationarity in the 

context of varying climate. WIT3 will be incorporated into an online lookup tool, and should be 

tested for possible incorporation into the design standards of Ontario’s infrastructure. 

6.2: Limitations: 

Although WIT3 represents the closest match with actual observations, there are times when it 

deviates. For short return periods, such as 2 y and 5 y, WIT3 slightly over-predicts results, 

while for higher return periods it sometimes under-predicts. WIT3 uses two GCMs, and one 

statistical downscaling method. This shows the potential for accommodating more GCMs and 

downscaling methods to reduce uncertainty, and more rigorous and accurate ensemble 

prediction, which was difficult in this study due to computational limitation. As this was a 
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regional study, the database was significantly large, which restricted the possibility of 

considering more GCMs and DSMs. 

 The present research assumes, linear temporal trend for future precipitation forecast, 

based on Soulis et.al(2016). It also considers that, precipitation distribution pattern would 

remain same, which means, standard error for the model remains same over the future years, 

and mean would increase, based on temporal trend and global warming. 

6.3 Future Scope of Study: 

The present study includes two GCMs and RCPs. More GCMs can reduce the uncertainty and 

improve the results. WIT3 is developed for Ontario. This study could be extended for the whole 

country to come up with best probable forecast for extreme rainfall over Canada, which can 

raise the country’s resiliency to climate change by adapting to new nonstationary normal. 
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Appendix-A: Application of IDF and Extreme Rainfall Values 

The IDF curves act as a design tool for most urban and rural infrastructure. High flood levels 

define the plinth levels of all structures. These high flood levels, shown in Figure A-1, are 

drawn based on the maximum expected runoff in that area. Different structures are built with 

varying lengths of design life. Highways and bridges are built with a minimum life span of 75 

to 100 years, whereas sewer lines are designed for minimum 10 to 25 years, depending on its 

scale and importance. Rainfall-runoff models consider total rainfall intensity as an input, 

develop a hyetograph based on a design storm and its recurrence interval, prepares a 

hydrograph based on rainfall and site conditions, and gives runoff as an output. This helps 

compute storm water runoff and its management, which is a major concern for almost all the 

cities across Canada. 

  

Figure A-1: High Flood Levels 

When rain falls on an urban area, some rainwater falls on impervious surfaces, which 

wets the surface, fills depression areas, partly evaporates, and finally turns into surface runoff. 

The rainwater that falls on pervious surface with vegetation is stored in stems and leaves, or in 

the absence of vegetation contributes to groundwater. Water that infiltrates soil may move 
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laterally through the upper soil horizons towards the stream as interflow. Water that percolates 

the lower soil horizons becomes ground water.  

The transport of surface runoff in urban catchments starts with overland flow and 

quickly joins the storm water drain network. The formation of runoff may be graphically 

presented by plotting hydrographs. Such hydrographs represent integrated effects of rainfall 

and catchment characteristics, such as the area, shape surface cover, depression and infiltration 

capacities, land use, drainage patterns, surface and drainage slopes, sewer, channel, and stream 

characteristics. The magnitudes of peak discharges, and the shapes of these hydrographs, are of 

interest for the layout of urban drainage systems. Figure A-2 summarizes the principles of 

storm water runoff development, and its possible superimposition with dry weather flow.  

In this research, nonstationary IDF values, and extreme rainfall intensities are predicted 

across Ontario. For each station, we can develop hyetograph and hydrograph, based on WIT3 

output, which are valuable and basic inputs for rainfall-runoff models. These models are used 

for flood prediction and the drawing of flood lines. This is one of the major inputs in 

infrastructure design such as highways, bridges, and dams. Storm water runoff computation is 

also useful for designing capacity of waste water treatment plants in areas with combined sewer 

systems. 

It is very important to have extreme rainfall forecast to be sensitive and accurate enough 

to be able to adapt with varying climate conditions. WIT3 has not only forecasted nonstationary 

extreme precipitation intensities, but also tied it up with future land use change, socio-

economic conditions (using RCP) along with local topography and temperature change over the 

next century.  
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Figure A-2: Development of storm water runoff and flow in storm water sewer 

systems (source: Manual on drainage in urbanized areas,Vol:1)
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Appendix-B: IDF Curve Projections for St. Catharines A, Ontario 

 

(a) CanESM RCP 2.6 

 

(b) CanESM RCP 4.5 

 

(c) CanESM RCP 8.5 
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(d) MPI-ESM RCP 2.6 

 

(e) MPI-ESM RCP 4.5 

 

(f) MPI-ESM RCP 8.5 


