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Abstract

Real-time assisted classification of cancerous and healthy human tissue is useful to sur-
geons since visual classification of cancer boundaries is almost impossible to the naked eye.
Raman spectroscopy can be used to quantify the inelastic scattering of light in molecules by
analyzing the interaction of photons with the vibrational modes of biological tissue. Raman
spectroscopy can therefore serve as a tool to uniquely identify the presence of certain types
of cells and their respective pathologies. In particular, Raman spectroscopy can be used
to detect cancer cells in-vivo in affected human tissue by using various machine-learning
algorithms. We showed that preprocessing steps have a significant impact on classification
results and that the IModPoly algorithm performed similarly to the Zhang algorithm how-
ever the IModPoly algorithm had signficantly faster runtimes, which is more suitable for
real-time classsification. We studied the performance of different classifiers on Raman spec-
trums acquired from human brain and prostate. We compared the performance of support
vector machines, convolutional neural networks and multi-layer perceptrons. We’ve shown
that a convolutional neural network and support vector machines have similar performance
metrics when applied to pre-processed Raman spectrums acquired from human prostates
when using a K-fold cross validation scheme, with mean ROC AUC 0.941 ± 0.017 and
0.943 ± 0.018 respectively, and that these outperform the MLP with an AUC of 0.935 ±
0.021. We show that data-reduction through PCA and AutoEncoders allow for similar,
but overall worse, classification performance through data reduction of up to 2.5 times and
that using the raw input as a feature space results overall in higher AUC across classifiers.
On the smaller brain dataset, we found that the SVM outperformed the ConvNet and MLP
with respective AUCs of 0.955 ± 0.029, 0.941 ± 0.036 and 0.846 ± 0.130. Using ConvNets
and K-fold cross-validation, we were able to achieve an average accuracy, sensitivity and
specificity of 0.921, 0.785, and 0.947 on the prostate dataset and 0.891, 0.944 and 0.825
respectively on the brain dataset. We show that classification metrics drop significantly
when using a leave-one-patient-out approach compared to K-fold and show examples of
clustering among patients within datasets, suggesting that data collection ensuring more
uniform signal collection is of higher priority for robust performance over the choice of clas-
sifiers. We studied the use of transfer learning from one dataset to another, and showed
limited increase in performance when training the classifier on the prostate dataset before
applying it to the brain dataset. We showed a clear distinction using t-SNE in the feature
space of brain and prostate datasets, demonstrating the clear biological differences that
can be captured using Raman spectroscopy. Future work needs to address the shortcoming
of the leave-one-patient-out approach compared to K-fold and the apparent clustering of
patient data. It is imperative to determine if the source of clustering is inherent to patients
or a result of bias in current protocols. The possibility of calibrating or fine-tuning data in
real-time during clinical procedures should also be explored in future work as well as more
refined preprocessing procedures.
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Chapter 1

Introduction

Cancer is currently the number one cause of death worldwide. The World Health Organi-
zation estimates that in 2015, 8.8 million deaths were related to cancer and accounted for
nearly 1 in 6 deaths globally [48]. In 2012, prostate cancer was the fourth most frequently
diagnosed cancer, and accounted for approximately 8% of cancer diagnosis worldwide [21].
In 2015, 26% of all cancer cases diagnosed in males in the United States were related to
prostates and resulted in over 27 000 deaths [54]. Cancer in the brain accounted for nearly
2% of cancer diagnoses worldwide [21]. In 2012, it was diagnosed at a rate of 250 000
annually worldwide and caused approximately 189 000 deaths [2]. Intensive amounts of
research have been dedicated to find better treatments and improve survival and remission
rates for those diagnosed with various forms of cancer.

In this thesis, we explore real-time cancer diagnosis of cells in-vivo in the human body
using Raman spectroscopy, specifically in the human brain and prostate. This knowledge
is of particular importance in the context of surgical tumor removal. When operating on
human tissue to remove tumors, surgeons know the location of tumors prior to surgery
using non-invasive imaging techniques. Despite the usefulness of the pre-operative imaging
techniques, during surgery is is not always clear where the strict border of the tumour is
versus where healthy tissue is. When removing the bulk of a brain tumor, for example, a
surgeon currently has no way of knowing in real-time exactly where the cancer cell borders
are and must instead rely solely on pre-operative images as a guide. This is of critical
importance since the volume of residual cancer cells after surgery directly impacts survival
rates [30]. Removal of healthy brain tissue can cause deterioration of basic motor skills
(impaired memory, vision etc.). Visually, this distinction is almost impossible to make
with the naked eye. This motivates the need for a diagnostics tool to be used by surgeons
in-vivo in real-time during surgery, allowing surgeons to probe localized and specific regions
of various tissues for cancer cells and aiding them in their decision making when removing
tissue.

Raman spectroscopy for cancer detection in human tissue in-vivo is an emerging tech-
nology and has shown promise in previous studies [28] [29] [2] [26]. Raman scattering
occurs when photons interact inelastically with molecules in a specific medium. The Ra-
man spectrum of a tissue consists in the frequency response of the inelastic scattering of
monochromatic light (generally from a laser) resulting from the interaction with vibra-
tional modes in biological molecules. It has been shown that the subtle Raman spectrums
can be used as a type of cellular fingerprint and that it is possible to classify pathology
of tissues based on the response of the cells to incident light [26] [2] [28]. Advancement in
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laser and computing technology allows affordable and real-time measurements to be made
by surgeons during surgery and offer a non-invasive diagnostics tool.

We focus our study on data acquired from human prostates and brains. A handheld
probe which consists of a near-infrared spectrum-stabilized laser operating at a wavelength
of 785 nm capable of single-point submilimeter precision with a circular laser spot of radius
0.2 mm2 was used for data collection. For the prostate dataset, Raman signals originating
from prostates of 32 patients following radical prostatectomy are studied. For each patient,
a number of samples are measured at various regions of interest on the affected tissue.
Samples are measured directly on the prostates and histopathology results of the areas
under study are used as labels for classification. The brain dataset comprises of signals
measured from 12 distinct human brains in-vivo by a neurosurgeon during surgery. Raman
spectrums were collected from various regions of interest during surgery and the same
sampled locations were sent to histopathology for labelling. The equipment used for the
brain dataset and setup is very similar to the setup used for the prostate dataset.

By working on the data provided by ODS Medical INC., we seek to provide a deeper
insight in to the processing steps and machine-learning algorithms used to identify cancer
in real-time, in-vivo. We focus our attention on the classification of already acquired
signals in each dataset. Particularly, we are interested in studying the preprocessing steps
involved prior to classification as well the strengths and drawbacks of different classifiers,
such as support vector machines (SVM), multi-layer perceptrons (MLP) and convolutional
neural networks (ConvNet). We are the first, as far as we know, to explore using ConvNets
as a classifier on data acquired in-vivo in humans from Raman spectroscopy. We also
explore the use of data reduction through autoencoders (AE) and principal component
analysis (PCA) and the implications of data reduction. We study different cross-validation
(CV) methods and metrics to evaluate the performance of the various classifiers and the
various architectures they may have. We aim to also study the effectiveness of a leave-one-
spectrum-out (LOSO) approach traditionally used in literature compared to other forms of
cross-validation such as K-fold cross-validation and leave-one-patient-out (LOPO) schemes.
We are particularly interested to understand how networks perform when they have not
encountered signals from a patient in the dataset. One problem with our current Raman
spectroscopy datasets is that they are very limited in quantity, due to the very nature of
the procedure. We explore transfer learning and fine-tuning by using the information from
one tissue and applying it to another and study the effect of data augmentation to seek
ways of improving classification from limited datasets.

1.1 Contributions to the field

We focus our attention on data gathered from human brains and prostates in-vivo using
Raman spectroscopy. Prior studies done in this field have shown that MLP could outper-
form boosted trees algorithms in brain cancer classification task with accuracy ≥ 90% [29]
[30]. Other studies have demonstrated that SVM combined with PCA could yield sensi-
tivity and specificity results ≥ 85% [62]. One major challenge in the classification task is
the limited quantity of available data. We contribute to the field in the following ways:

• We show that preprocessing steps have a significant impact on classification results
and present those that are best suited for real-time Raman spectroscopy
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• We show that SVM and ConvNet consistently outperform MLP on our datasets

• We explore the use of data augmentation on our datasets and show negligible im-
provements

• We explore the use of dimensionality reduction using PCA and AE and show that
while PCA is better suited than AE, classification results are optimal on the original
feature space

• We explore transfer learning, and show that there is marginal improvement in using
one organ to fine-tune the weights of a classifier on a different organ

• We show evidence of clustering within patients in our datasets suggesting that metrics
acquired using LOSO in literature can be inherently biased and overly optimistic and
that LOPO should be used to avoid bias

One important result is that classification metrics across different classifiers did not
vary significantly. This suggests that the separability of the data is inherently limited by
artifacts in the data such as noise, variability across patients etc. This suggests that future
work should be concentrated on ensuring as little variability as possible in data gathering
protocols across patients, and on more refined preprocessing steps. Obtaining more data is
also critical since our datasets are currently limited in size and additional data could allow
the training of more robust classifiers.
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Chapter 2

Background Information

In this chapter, background information on fundamental theory related to Raman spec-
troscopy and classification techniques is provided to help understand the classification of
cells using Raman spectrums in the human body. This chapter gives a high-level overview
of the many concepts explored in this thesis and should be considered as a condensed
summary of the relevant information needed to the reader prior to reading further in to
the thesis. Sources are provided should the reader want to explore further on given topics.

2.1 Spectroscopy

Spectroscopy studies radiation as a function of its wavelength, and can be used to study all
types of electromagnetic radiation [55]. A classic example, as demonstrated by Netwon in
the 17th century, would be the use of a prism to separate a polychromatic source of lighting
such as the light from the sun in to its different wavelength components [53]. This simple
experiment demonstrates that white light is actually made up of a continuous spectrum of
colors. In the 19th century, it was shown that colors from the sunlight were not distributed
evenly. In fact, different sources of lighting exhibit different color distributions based on
the nature of the source of light emitting them. Thus, light will scatter differently depend-
ing on the medium it originates from based on its atomic and molecular makeup. This
guiding principle has allowed the study of atomic and molecular structures of microscopic
objects. In this sense, spectroscopy has had a tremendous impact on the advancement of
molecular physics, chemistry and molecular biology [16]. Infrared (IR) spectroscopy, for
example, deals with the vibration of atoms and molecules in the IR region of the electro-
magnetic spectrum. By analyzing the absorption pattern as a function of wavelength, it
is possible using IR spectroscopy to identify different chemicals and molecules that make
up a material, since different molecules will have different resonant frequencies that will
absorb at characteristic wavelengths. These resonant frequencies are generally those which
match the vibrational frequencies of a molecule and are related directly or indirectly to
their underlying structure. [50]

2.1.1 Raman spectroscopy

When electromagnetic radiation interacts with matter, the energy of the radiation E =
hv, where h is Planck’s constant and v is the frequency of the incident photon, can be
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be absorbed, transmitted or scattered by the molecule it interacts with. If the photon
collides elastically with the molecule, there is no energy transfer. The scattered photon
has the same wavelength as the incident photon and the rotational and vibrational energy of
molecules remain unchanged in this process. This process is known as Rayleigh Scattering.
In the case of inelastic scattering, the incident photon may gain or lose energy based on the
interaction with a molecule, which would itself lose or gain energy such as to not violate
the conservation of energy laws of thermodynamics. For an incident photon of energy hv0
and scattered energy hvm, the change in energy absorbed or transmitted by the molecule,
∆E, will be:

∆E = hvo − hvm

This shift in energy, which will result in a shift in frequency (and thus in wavelength) of
the scattered photon, is a process known as Raman Scattering and was first experimentally
observed by Indian physicist Sir Chandrasekhara Venkata Raman in 1928. The changes in
energy will appear at wavelenghts corresponding to the vibrational and rotational energy
levels of electrons in the molecules the photons are interacting with. When ∆E > 0, the
molecule gains energy and the scattered photon has a longer wavelength (lower frequency
and lower energy) than the incident photon, and when analyzed by a spectrometer, will
give rise to what is known as a Stokes line or Stokes shift on the spectrogram. In the
case where ∆E < 0, the molecule looses energy and the scattered photon will have a
shorter wavelength. This is known as an anti-Stokes shift and occurs when the molecule
is not originally in its ground energy-state. When the photon interacts with the molecule,
the molecule is brought to a higher, unstable energy state (a virtual state), and can then
drop back to its ground energy state, scattering the photon with higher energy than it
originally had. When considering vibrational quantum energy states for a molecule, a
Raman transition can only shift by ∆v = ±1 [13]. Figure 2.1 demonstrates a Jablonski
diagram summarizing the different processes of elastic and inelastic scattering.

Figure 2.1: Example of elastic (Rayleigh) scattering, and inelastic (Raman) scattering with
energy shifts. Image source [6]

Scattered photons due to Raman scattering can then be collected by a spectrometer
and viewed as an intensity spectrum. The intensity will vary as a function of the Raman
shift, i.e. the frequency change of the incident light, which is typically expressed in units of
cm−1. Since incident light is statistically likely to interact with all of the molecules present,
the Raman spectrum collected will typically be representative of a combination of all of the
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molecules’ vibrational modes. Since each molecular type is unique in its set of vibrational
modes, Raman spectroscopy can therefore serve as a tool to uniquely identify the presence
of certain molecules. The Raman spectrum of each molecular type will generally consist of
a series of peaks corresponding to the vibrational frequencies of those molecules [26]. Figure
2.2 gives an example of the molecular fingerprint of cholesterol, a prominent molecule in
the human body. The characteristic Raman peak of cholesterol appears at around 1400
cm−1, and corresponds to the CH2 and CH3 vibrational modes of the molecule. If a tissue
under study consists in part of cholesterol, it would thus be possible to identify certain of
its characteristic peaks.

Figure 2.2: Example of a Raman spectrum for cholesterol. Different peaks correspond to
the different excitation modes of chemical bonds in the molecule. Image source [26]

While Raman spectroscopy is useful as an identifier of single molecules by identifying
prominent peaks, it can also be applied to biomedical problems such as the study of organic
tissue. When considering a tissue, one can model the Raman response as a combination of
the response of many complex molecules, and can provide insight into important biochem-
ical changes due to diseases. If a disease causes changes in the molecular makeup of cells,
Raman spectroscopy can be used to detect these subtle changes which might otherwise be
invisible to microscopes. It is also possible to identify constituents of cells in tissue samples
using Raman spectroscopy [26].

2.1.2 Fluorescence

Fluorescence is a radiative process in which the energy of a photon is absorbed by a
molecule if the energy of the photon matches the energy difference between states of the
electrons’ energy levels in a molecule. Once in its excited state, the molecule can re-emit
some of the energy as fluorescence. This process is different from Raman scattering in
that the photon energy is completely absorbed by the molecule and not directly scattered.
That is, fluorescence is a resonant process while Raman scattering is non-resonant. Raman
scattering is an almost instantaneous process relative to fluorescence [65]. Autofluorescence
is a process by which biological tissue emits light naturally through fluorescence and both
autofluorescence and Raman scattering can occur simultaneously [46]. When considering
Raman spectroscopy applications, it is thus important to have a meaningful way to separate
between signals due to autofluorescence and Raman spectroscopy. The algorithms used to
achieve this separation will be further explored in the Methodology chapter.
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2.2 Classifiers

A classifier is a type of algorithm which allows classification of data into different categories
[36]. For example, when looking at pictures of cats and dogs, a classifier might be tasked
with distinguishing between ’cat’ and ’dog’ correctly. In the context of this thesis, classifiers
are used to classify Raman spectrums basesd on their experimentally determined patholo-
gies. There are many different types of classifiers that exist and choosing a specific classifier
for a given task is not trivial. In the context of this thesis, three particular classifiers will
be introduced and compared, Support Vector Machines (SVM), Multi-layer Perceptrons
(MLP) and Convolutional Neural Networks (ConvNet). These aforementioned classifiers
fall under the category of supervised machine learning, which means that ground-truth
labels accompany all of the different spectrums to be classified. The classifiers are first
provided with a training set of examples accompanied with labels to train on. The various
classifiers’ performances are then copmared using metrics evaluated on an independent la-
belled test set [36]. Validation methods and metrics will be discussed in the methodology
chapter of this thesis.

2.2.1 Support Vector Machines

Support vector machines are used in supervised learning. The method consists of finding
hyperplanes in a feature space that establish the optimal decision boundaries between
classes, such that the margin of separation between classes is maximized [5]. In a simple
2-feature example, a line can be used as a separation boundary between classes. If the
data is linearly separable, there exists a line that that maximizes the margin of error, with
points directly on that line known as support vectors [5]. An example of this is shown in
Figure 2.3.

Figure 2.3: Example of a decision boundary for an SVM in a 2-feature space. The black
and white dots correspond to 2 different classes, and the circled dots represent the support
vectors on the optimal line. Image source [5]

The mathematical formulation for support vector machines is as follows: consider a
2-class classification problems with features x such that each sample xi has an associated
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label yi such that yi ε {-1,1} . The algorithm searches for an optimal set of weights w and
a bias term b such that the distance between support vectors and the optimal hyperplan
(the margin) is maximized. In a linearly separable case, this can be formulated as setting
the constraints

xi · w + b ≥ 1 if yi = +1

xi · w + b ≤ 1 if yi = −1
(2.1)

which is equivalent to solving

yi(xi · w + b)− 1 ≥ 1 ∀ i (2.2)

It can be shown using this formulation that the margin of separation is 1/ ‖w‖. Thus,
to maximize the separation between classes, it is necessary to minimize ‖w‖2. This can
be achieved using unconstrained Lagrange multipliers, turning the problem in to a convex
quadratic programming problem to allow to solve for non-linear cases [5]. In the case where
the data itself is non-separable in the feature space given (i.e. if there is no hyperplane
that can separate the data in the gieven feature space), soft margins are used to accept
classification error as a possiblity and this is done by introducing positive slack variables
[36]. It is also possible to map the data in to a transformed feature space and turn the
original non-linear separation into a linearly separable space in the new feature space
[36]. Once an SVM has been fitted to training data, the class of an unknown sample is
determined by evaluating where it lies with respect to the optimal hyperplanes, which can
be done by evaluating sgn (w · x+ b).

SVMs have been shown to be a useful classifier for disease diagnosis using Raman
spectroscopy. It has been used to diagnose and predict castration-resistant prostate cancer
in patients with prostate cancer [62]. It was also used to diagnose and identify glycated
hemoglobin levels in-vivo [61].

2.2.2 Multi-layer Perceptron

Multi-layer Perceptrons (MLP) are a set of classifiers which seek to map an input x to an
output y, which could be related by some function f* (x)=y, by approximating a function
f such that f(x; θ) ≈ y, where θ is a set of parameters. The goal of the MLP is to find
an optimal solution to f by optimizing parameters θ by using a feedforward approach [24].
A feedforward approach maps all of the inputs x, to the output y, through one forward
pass, but does not feedback the opposite way, from y to x. MLP are a type of Artificial
Neural Network (ANN), which have been inspired and modeled around the way axons in
biological brains are connected [22]. Figure 2.4 shows an example of what an MLP might
be sketched up to look like.

The hidden layer can be composed of multiple layers stacked in series, hence the
name ’Multi-layer Perceptron’. Each layer can be considered as an independent func-
tion mapping, such that f(x) can be modeled as a series of functions g, h, i such that
f(x) = i(h(g(x))). The input, x, is thus fed through the first layer, g, and iteratively
through all layers until the final output layer which approximates a value for y. The inter-
mediate layers are each referred to as hidden layers and each layer can have its own width
which is directly related to its dimensionality. The number of hidden layers is referred to
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Figure 2.4: Example of a Feedforward Multi-Layer Perceptron. The input nodes are con-
nected to the output nodes by a series of parameters and map a certain function f*. Image
source [23]

as the depth of the network. An MLP is considered to be a fully-connected network since
each node of every layer is connected to each node in the following layers.

For each hidden layer, a set of weights, w, and biases, b, are learned by the network
in order to optimize its performance. Therefore, a layer g(x;w, b) would learn a linear
mapping such that g(x) = xTw + b. It can be shown that when only linear mappings are
used, any multi-layer perceptron could be reduced to a single layer perceptron. What makes
multi-layer perceptrons especially useful is that they allow to insert non-linear functions
φ in to our models, known as activation functions, between each layer. We can therefore
represent each layer as a non-linear mapping g(x) = φ(xTw + b). The collection of non-
linear functions allows MLPs to approximate extremely non-linear functions [22]. There
are many different models for activation functions. A commonly used activation function
in MLP is the rectified linear activation function (ReLu) which is defined as

ReLu(x) =

{
0 if x < 0
x if x ≥ 0

(2.3)

MLPs are used in the context of supervised learning, such that each input x is accom-
panied by a target label y. A loss function L is defined as a measure to quantitatively
assess how well a network estimates a function f ∗, and is usually averaged over all of the
training samples the network has seen such that L = 1

N

∑
i Li where N is the number

of training examples seen by the network. The loss function is typically defined such as
to make its derivative numerically easy to compute. The way to define the loss function
for a particular problem is generally task-dependent. One type of loss commonly used for
labeled data belonging to different categories is categorical cross-entropy. It is defined as

L = −
∑
i

y′i log yi (2.4)

where yi is the predicted output of the network and y′i is the ground truth. In the case where
the labels are categorical, y′i is typically represented as a one-hot vector of dimension 1xM
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where M is the number of labels. Each position in y′i corresponds to a specific class, and
the network learns to predict the probability of an input x belonging to each class through
its prediction yi. Since the output yi should be a probability distribution, it should sum
to 1 and all values should be greater than zero. It should attribute the highest value to
the most likely class. A softmax function σ is typically applied to the output layer of the
MLP in order to achieve this, which is defined as

σ(z)j =
ezj∑M
k=1 e

zk
, j = 1, ..,M (2.5)

Once the loss function has been defined, the aim of the MLP is to minimize the loss
function by finding optimal parameters to f . The network is trained with a series of mini-
batches (sampled at random from the training set) of labeled training data. At the end
of every mini-batch, the loss is calculated and weights are updated by an optimization
method known as stochastic gradient-descent using the backpropagation algorithm. The
process is said to be stochastic because of the random nature of the mini-batch selection.
During backpropagation, the gradient of the loss function is calculated with respect to
the parameters of the network and gradient-descent updates the weights and biases of the
MLP at every iteration. The process is repeated until terminated by a user-defined criteria
(usually when the loss of training and validation sets reach a minimum) [47].

Apart from the numerous parameters θ that need to be optimized in the network, there
are a variety of hyper-parameters that can be tweaked to improve the performance of a
neural network. For example, these hyper-parameters can include the number of hidden
layers, the number of hidden units per layer, the activation function used, the weight
initialization, etc. [3].

2.2.3 Convolutional Neural Networks

Convolutional neural networks (ConvNets) are a specific type of neural network and share
very similar properties to MLPs. Most of the terminology and methods discussed in the
MLP section are very similar to those associated to neural networks. The main difference
between a ConvNet compared to an MLP is that an MLP is a fully-connected model,
such that each node in a layer is connected to the nodes in the following layer through
learned weights, whereas a ConvNet has filters of much smaller size that are convolved
with each previous layer to make up the following layer. ConvNets have been ubiquitous
in machine learning since 2012, when a ConvNet outperformed by a significant margin
all other classifiers at the ILSVRC competition at the task of image recognition. A deep
ConvNet, AlexNet, was used and consisted of 5 convolutional layers and 2 fully connected
layers [37]. Since then, they have shown promise in many classification problems such as
digit recognition, face recognition, speech recognition etc. [40].

For a 1-dimensional discrete signal, as is the case in Raman spectroscopy, a convolution
is defined by equation 2.6:

y[n] = x[n] ∗ h[n] =
∞∑

k=−∞

x[k] · h[n− k] (2.6)
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In equation 2.6, h[n] is considered to be a filter of finite size. The goal of the ConvNet
is to learn the weights associated to different kernels and feed that information forward
through several layers in order to reach the targeted output. This is done through stochastic
gradient descent as was dicsussed in the MLP section. In highly-correlated input spaces,
such as the data obtained in Raman Spectrumxs samples, local correlations can be exploited
to classifying signals more accurately by forcing the extraction of features to a local space
and imposing locality to the field of hidden units [39].

2.3 Dimensionality Reduction

Dimensionality reduction is a means by which the feature space of some input space is
reduced in a way that maintains important information from the samples under consider-
ation. For example, if we consider N samples, each of respective size 1xM , dimensionality
reduction would seek a transformation such that all N samples would be reduced to a
dimension of 1xK such that K < M . We will explore how to transform a given signal in a
different space to reduce its dimension. There are different ways in which dimensionality
reduction can be achieved. One can employ feature selection, in which specific features are
retained from an input space and others ignored. Subsampling would be a good example of
feature selection. Another method, feature extraction, seeks to learn new representations
of the original feature space through some transformation [8]. Dimensionality reduction
can allow the use of simpler network architectures, involve the training of less weights and
limit the potential for overfitting. It can also reduce run-time during classification and
avoid fitting on noise models.

The advantage of using either PCA or AE for dimensionality reduction is that they
are both unsupervised learning methods and can thus be trained on unlabeled data that
can not be classified by histopathology. Histopathology is time-consuming and expensive
compared to sampling measurements.

2.3.1 Principal Component Analysis

Principal Component Analysis (PCA) is a form of unsupervised feature extraction. It is
considered unsupervised since it does not require any labeling of the data prior to feature
extraction. PCA attempts to reduce the number of features representing a certain input
while maximizing the variance of the dataset. This is done by searching for the dimensions,
i.e. the principal components, which offer maximum variation of the data [51]. Mathemat-
ically, PCA can be defined as follows: considering a matrix X of zero-mean, with I rows
and J columns, PCA seeks to represent the data from X to a linear projection ti such that

ti = Xwi (2.7)

Where wi is a set of p weights such that each ti is defined by its associated wi and
‖wi‖ = 1. PCA seeks to find values for wi such as to maximize the variance of ti, var(ti)
[4]. Mathematically, this can be formalized as trying to solve

argmax var(ti) = argmax tTi ti (2.8)
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Using equation 2.7, we therefore need to solve

argmax wT
i X

TXwi (2.9)

It can be shown that the maximum value of 2.9 is obtained by setting wi as the eigen-
vector corresponding to the largest eigenvalue of 2.9 [4]. By finding ti where i=1, we can
find the first principal component. Subtracting tiwi from X from the remaining values, we
can iteratively find all the remaining components that maximize the variance successively.
The amount of total components to use are problem-dependant and depend on the variance
of the datasets considered. One main advantage of PCA is that it is a linear representation
of the data and can sometimes facilitate data representation and visualization [60].

2.3.2 Autoencoders

An autoencoder is a neural network that learns how to output a copy of the input it was
provided with. While the output of an autoencoder might be of little importance since
the input is already known, it can be designed in an hour-glass shape such that the waist
of the hour-glass becomes a condensed representation of the original input and contain
as much information as possible from the original input. This is represented in Figure
2.5. A typical autoencoder passes the input x through a series of encoder functions f(x)
and decoder functions g(x) while trying to minimize the loss L(x,g(f(x)). The output f(x)
can be designed to have a much smaller dimensional space than x, leading to dimension
reduction.

Figure 2.5: Example of an autoencoder. The original input is compressed by the encoder
function to a representation of smaller dimension learned by the network. The decoder
then reconstructs the image to minimize the reconstruction error. Image source [33]

It can be shown that when an autoencoder consists of a single layer, is linear and the
loss function used is the mean-squared error, an autoencoder can be used to approximate
PCA [24]. Autoencoders with nonlinear encoder functions and nonlinear decoders can
learn more powerful nonlinear forms of PCA and can result in better dimension reduction
representations [24].

2.3.3 Conclusion

We have presented in this chapter the core information needed to understand the funda-
mentals behind classification of Raman spectrums. We have explored the very nature of
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Raman spectroscopy and the competing phenomena that are observed when measuring
Raman spectrums. We have summarized the important theory behind classifiers that we
will be using to classify our signals and the different dimensionality reduction algorithms
that we will be using throughout this thesis. This section is meant to serve as a high-level
overview of the different theories involved.
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Chapter 3

Related Work

Raman spectroscopy as a diagnostics tool has been explored extensively in many previous
works [28][2][26]. Research in the field has been facilitated and accelerated by the techno-
logical advancement of commercially available and powerful lasers and spectrometers over
the past few decades [26]. The advancement of computing power has also lead the path to
much more sophisticated statistical analysis tools allowing the processing and interpreta-
tion of complex and highly correlated data such as a Raman spectrums, paving the way
to more efficient diagnostics. This section will highlight related works and studies that
have been done in the past concerning Raman spectropscopy with a particular attention
to diagnostics applications and its use in clinical settings, in-vivo and ex-vivo.

3.1 Raman spectroscopy and Disease detection

Many aspects of Raman spectroscopy make it an attractive solution as a real-time diagnos-
tics tool. Firstly, it does not require exogenous contrast agents as would be required in other
imaging techniques like in Magneic Resonance Imaging and PET-scans [28]. Advances
in the technology in the instrumentation in Raman spectroscopy allow faster acquisition
times (in the milliseconds) paving the way for real-time diagnostics [28] [2]. Advances in
edge-computing devices allow fast processing of complex signals needed to discern different
diseases. This is of particular use in in-vivo applications where surgeons might require real-
time feedback to make important medical decisions. Spectrometers and lasers are small
enough that they can be housed in mobile units and edge-computing devices are powerful
enough to work offline, facilitating deployment in operating rooms. Handheld ergonomic
probes adapted for Raman spectroscopy have already been tested and developed [30].

3.1.1 Brain

Brain cancers are diagnosed at a rate of 250 000 annually worldwide and cause approxi-
mately 189 000 deaths [2]. Current operating procedures involve targeting of the tumor
using magnetic resonance imaging (MRI) and neurosurgical microscopes. Once located, a
neurosurgeon then surgically removes the tumor from patients. One problem that typi-
cally arises in current procedures is that it is not possible to diagnose at a cellular level the
boundaries of the tumor. While finding and removing the majority of the tumor is a well-
established process, it is visually impossible to distinguish in real-time which neighboring
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cells are cancerous or healthy with current pre-operative imaging modalities. This can
lead to residual cancerous cells left behind after surgery which can in turn lead to relapse
post-surgery and affect survival rates of patients. The caveat is that removing healthy
brain-tissue unnecessarily can impact basic motor functions in patients’ brains. It is thus
necessary to find a means to diagnose cells in real-time in the brain for surgeons to guide
their decision making process.

Extensive work has been done in brain cancer detection using Raman spectroscopy.
Many studies have looked at specific applications in rodents and in ex-vivo brain tissue.
Mizuno et al. have shown that grey and white matter could be differentiated in rats
using near infrared Raman spectroscopy using a 1064 nm excitation wavelength [45]. This
paved the way for studying brain tissue contents in-vivo using Raman spectroscopy by
showing that common spectral bands could correspond to the tissue’s molecular structure.
Koljenovic et al. showed that adajcent brain structures could be differentiated using Raman
spectroscopy in pig brains. They analyzed the spectrums from 7 sliced pig brains ex-vivo
The pig brains were sliced and a 719 nm laser was used. The spectrums were reduced using
PCA and hierarchical cluster analysis combined with a euclidean distance measurement
were used to distinguish between various brain tissues [35]. In Kast et al. [31] it was
shown that Raman spectroscopy could distinguish healthy grey matter and white matter
from glioblastomas (cancer) in human brains ex-vivo. They used a 785 nm laser and
analyzed spectrums of 40 frozen brain tissues with a particular focus on 3 bands of the
Raman spectrum [31].

Figure 3.1: Setup used by Kirsch et al. to detect tumours in mice in-vivo. Image source:
[34]

In Kirsch et al, it was shown as proof of concept that Raman spectroscopy could be
used in-vivo in mice to detect brain tumors. A 785-nm laser was used to probe a square
area of the brain of a mouse was probed. Using a K-means clustering algorithm, a map of
the tumorous regions was drawn and overlayed on top of the corresponding brain structure
and shown to correspond to the tumor location in the mice brain as shown in 3.2 [34].
Figure 3.1 shows the setup that was used in the study.

In Jermyn et al., an intra-operative Raman spectroscopy probe is used in-vivo to dis-
tinguish healthy cells from cancer cells, and reported a sensitivity and specificity of >90
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Figure 3.2: In figure (a), the mouse brain is shown and the tumor is visible to the naked
eye. Raman spectrums are taken over the area of the brain and a color map is drawn using
the k-means clustering algorithm to find the tumor (b). This is overlayed to the original
image in (c). Image source: [34]

% using a leave-one-spectrum-out validation. The study was conducted on 17 patients
with World Health Organization (WHO) grade 2-4 gliomas over 161 samples. The sam-
ples were classified in to three categories ; normal brain (no cancer cells present), normal
brain infiltrated with invasive cancer cells (< 90% cancer cells present) and dense cancer
(> 90% cancer cells present). A surgeon uses a handheld probe equipped with a Raman
spectrometer to acquire signals in-vivo during surgery. Samples are sent to histopathology
for labelling [30]. Figure 3.3 shows an example of the probe being used in humans in-vivo.

Using a boosted trees algorithm, they reported an AUC of 0.96 and an accuracy of
> 90% using a leave-one-specturm-out approach [30]. In a subsequent study on the same
dataset, it was shown that an MLP performed much better than the boosted tree algo-
rithm when taking light artifacts in to consideration from within the operating room. It
was shown that using a leave-one-spectrum-out cross-validation (CV) technique, the MLP
achieved accuracy, sensitivity and specificity of 90%, 91% and 89% respectively compared
to boosted trees which achieved 71%, 84% and 51%. The boosted trees algorithm was
severely impacted by ambient light effects and was shown to not be a suitable candidate
as a classifier for intraoperative procedures. An MLP consisting of 2 layers was used with
a sigmoidal activation function between the layers, shown in Figure 3.4 [29].

It was further shown in the same study that MLPs outperformed the boosted trees
algorithm when classifying grey matter from white matter in calve brains acquired ex-vivo.
3 calf brains were analyzed and a total of 330 spectrums were collected. In this case,
all spectrums from a given brain were used as a test set while the other spectrums were
used as training sets. Once again, when taking ambient lights in to consideration, the
MLP outperformed the boosted trees algorithm. The MLP achieved grey matter detection
accuracy and white matter detection accuracy of 98% and 97% respectively, compared to
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Figure 3.3: Example of the probe which can be used in real-time by surgeons. Image source
[17]

89% and 81% for boosted trees.

3.1.2 Prostate

Prostate cancer is the most common cancer in males and the second deadliest cancer world-
wide [9]. 1 in 10 cancer related deaths in males is a result of prostate cancer complications,
and 1 in 6 males will be diagnosed with prostate cancer in their lifetime [54] [18]. The
advent of prostate specific antigen (PSA) testing, a test allowing to measure the amount
of PSA in blood, allows for earlier detection and treatment of prostates. There are various
possible treatments for patients diagnosed with prostate cancer depending on a physician’s
risk assessment, including active surveillance, radiation therapy, hormone therapy, and
surgery [56]. In the case that surgery is needed, one procedure available is radical prosta-
tectomy (RP) [18]. In such a procedure, the entire prostate gland and seminal vesicles are
removed. It is considered a minimally invasive approach, and it is approximated that 40%
of RP are robot-assisted [18]. Despite being minimally invasive, RP is not without risk
and can lead to erectyle dysfunction and urinary incontinence [63].

During RP, the surgeon seeks to remove the entirety of the prostate while preserving
surrounding nerves and tissues. The prostate is then further studied ex-vivo by histopathol-
ogists to determine whether the cancer cells were confined to the prostate (negative positive
margin) or whether cancer may have spread to surrounding tissue (positive surgical mar-
gin). Figure 3.5 illustrates the difference between the two scenarios. In the case of positive
surgical margin, further compmlications are expected and can lead to patient relapse. The
surgeon thus has to cut as much surrounding tissue as possible to ensure no cancer cells
remain, however cutting sensitive surrounding tissue could lead to other complications like
erectile dysfunction. The time between surgery and histopathology is considerable and the
feedback is not instantaneous and can take from hours to days or weeks. Patients with a
positive surgical margin have to therefore worry about additional treatment following RP.
RP is believed to occur in 1 in 5 patients and is strongly correlated to disease recurrence.
Positive surgical margin is associated to a 55% survival rate over 10 years. Histopathology
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Figure 3.4: Example of the MLP used in Jermyn et al. in the study of cancer detection in
human brains. Image source: [29]

is expensive and lengthy, and other imaging modalities, such as ultrasounds and MRI, do
not provide adequate sensitivity and specificity for proper diagnosis of the cancer bound-
ary. Raman spectroscopy has shown high potential for real-time in-vivo margin assessment
in prostates, and is of particular interest because the technique is small enough to allow
to it to be retrofitted to current surgically-assisting robots and does not cause any nerve
damage [32].

Figure 3.5: On the left, the cancer is completely removed (negative surgial margin). On
the right, cancer is not localized completely within the prostate and cancer recurrence is
very likely. Image source: [7]

Wang et al. have demonstrated that Raman spectroscopy can be used to diagnose
castration-resistant prostate cancer ex-vivo. They show that by using a leave-one-spectrum-
out cross-validation on 50 patients, they could achieve a sensitivity of 88.2% and specificity
of 88.9%. They used a combination of PCA and SVM to achieve separation [62]. Crow et
al. have shown that they were able to determine pathologies within the prostate by using a
least-squares fit approach. They did this by analyzing the spectra of pure biochemical con-
stituents. They used their method on 34 prostates for a total of 381 spectrums, and used
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constituents such as cholesterol, DNA, and collagen. Their acquisition was done ex-vivo
with acquisition times of 20 seconds. The acquired spectrums were then approximated as
a sum of its biochemical constituents. They have shown that cancerous prostates show
an increase in DNA content as the tissue progressed from normal to malignant, which is
consistent with tumor diagnostics. They also showed an increase in cholesterol levels when
evolving from benign to malignant [59].

3.1.3 Conclusion

This section highlights past and present state-of-the-art approaches in the field for using
Raman spectroscopy as a real-time cancer diagnostics tool. We have highlighted the work
done primarily on brain and prostates as this is the subject matter of this thesis. Advance-
ment in technology behind lasers, spectrometers and computation power pave the way for
real-time diagnostics. We seek to contribute to the field by presenting our results on data
acquired on human brain and prostates.

19



Chapter 4

Methodology

This chapter outlines the methodology and procedures used in the classification of Raman
spectrums sampled from human prostates in the context of this thesis work. The key
steps involved are data collection, data processing and classification. The data collection
involves the collection of signals ex-vivo directly from human prostates after radial pros-
tectomy and in-vivo during surgery for brain, the design and implementation of a system
to collect and store the relevant spectral data for later processing, as well as the classi-
fication by histopathology of the different samples collected to be used as ground truth
for classification. Data processing involves all the pre-processing and post-processing steps
taken before actual classification of the signal. This involves noise subtraction, machine
calibration, autofluorescence removal, signal smoothing and normalization of the signals.
Classification looks at the different means by which to classify the data by comparing the
performance of various classifiers. This involves using different validation schemes to study
the robustness of classifiers and to justify their use in real-time clinical settings.

4.1 Data Collection

Collecting the data in an efficient and methodical way is a critical first step. If the signals
collected are corrupted by ambient factors this can make the classification problem more
difficult. Another problem could be a low signal to noise ratio due to short exposure times,
however considerations must also be taken to ensure that the system can operate in real-
time and avoid longer exposure times. Health considerations also need to be taken into
account such as to not affect tissues that are exposed to the laser. It is thus important
that measurements be taken in a relatively small time frame and that the signal to noise
ratio be kept high [28].

4.1.1 Handheld Raman spectroscopy Probe

The handheld probe used consists of a near-infrared spectrum-stabilized laser operating at
a wavelength of 785 nm capable of single-point submilimeter precision with a circular laser
spot of radius 0.2 mm2. This corresponds to a tissue area of 0.5 mm diameter. The depth
the laser can reach is of approximately 1 mm and the acquisition time is of 0.2 s [30]. Fiber
optic cables relay the signal to a charged coupled device (CCD) array and the spectrum
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can be collected and analyzed in real-time. The CCD used has a spectral resolution of 1.6
to 2.1 cm−1 and operates in the range of 381 to 1653 cm−1. The Rayleigh scattering of the
laser on the tissue can be several orders of magnitudes higher than the Raman scattering
of the signal. In order to filter out most of the Rayleigh scattering as well as the inelastic
scattering resulting from the instrument itself which both contaminate the Raman signals
of interest, the probe was fitted with micrometer-scale in-line filters. A combination of a
band-pass filter and low-pass filter were used to attenuate the signal resulting from the
elastic scattering [30]. A schematic of the system used is shown in Figure 4.1.

Figure 4.1: Schematic of the laser and CCD setup used for the collection of Raman spec-
trums. The 785-nm laser is gathered on to a CCD and the data is collected on a server for
later processing. [30]

The laser is embodied in a solid frame (the probe) which can be handheld by a surgeon
for real-time use. The probe uses 7x300µ m cores. Those, along with the lenses to converge
the laser light and filters, are housed inside a 2.1 mm stainless steel needle tube for the
surgeon to guide during measurements. Figure 4.2 shows the probe used by a surgeon
during brain-tumor removal.

Figure 4.2: Example of the probe which can be used in real-time by surgeons. Image source
[17]

4.1.2 Histopathology

Tissue sampling and labelling is a critical step in the classification of Raman spectrums.
This process is especially difficult in the case of in-vivo applications since the ground-truth
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labelling is usually done externally in a separate laboratory dedicated to histopathology
assessment of tissue. This makes it difficult to correlate a measurement directly taken in-
vivo to a measurement taken ex-vivo by the pathologists. Part of this difficulty arises from
the size of the probe used and the error that can be attributed to the position of the probe
and the subsequent position of the biopsy tool. It is also difficult to determine exactly how
deep the laser penetrates within a given tissue and therefore how much sampling depth and
volume should be removed from the tissue under consideration by pathologists. Another
factor which is important to consider is the heterogeneity within tissue sample [28]. It
is possible for a given measurement to contain signals from cells which are healthy and
cancerous simultaneously. Since protocols in clinical pathology generally report the worst
assessment of a conglomeration of cells, it is possible for a sample to come back labelled as
cancerous even though it represents a very small fraction of the Raman Signal, and could
be considered a false negative by the classifier. With respect to gathering labelled data for
a real-time Raman spectrum classifier, one alternative is to make ex-vivo measurements
on fresh tissue samples within a few hours of removal [28].

The tissues sent to pathology are classified into different categories based on the tissue
under examination. For example, when considering prostate tissue, a Gleason score is
usually given for a sample based on the assessment done by the pathologist. Scores indicate
the severity of the detected cancer and are used as a referential prognosis. Gleason scores
can range between 2 and 10. Lower Gleason scores are associated with a healthier prognosis
[25].

4.2 Data Processing

Data processing is critical when analyzing Raman spectrums. This is mainly due to the
fact that the Raman portion of the signal is generally several orders of magnitude smaller
than other portions of the signal such as autofluorescence and elastic scattering. It is
also necessary to ensure that all the equipment used is calibrated regularly. Environmental
factors, such as ambient lights, temperature, etc. as well as instrument-dependent artifacts
can lead to different results when comparing spectrums [17] [11]. It is particularly necessary
to have a baseline accross instruments in the case of deploying this system across many
operation rooms. This section will outline the steps taken with regards to data processing
prior to the classification of signals. This includes machine calibration, autofluorescence
estimation and removal as well as signal smoothing and rescaling. A sketch of the pipeline
used is represented in Figure 4.3. All data processing was done using MatLab and Python.

4.2.1 Machine Calibration

Before taking any measure, it is imperative to calibrate the spectrometer according to
the guidelines provided by the National Institute of Science and Technology (NIST). A
measurement of acetaminophen is used to calibrate the x-axis of the spectrometers as
described in [17]. The relative intensity correction is then performed to correct for the
system response using a measurement of a NIST 2241 Standard Reference Material (SRM).
The SRMs have the property that they emit a broadband (200 cm−1 to 4000 cm−1)
luminescence pattern when shined on by the Raman excitation laser. Their response should
be smooth, photostable and have low absorbance in the range of the exciation laser to avoid
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Figure 4.3: General outline of the data processing pipeline used for the processing of Raman
signals prior to classification.

temperature dependent responses. The spectrum obtained with the SRM on our machine
is used as a baseline and compared to NIST standards to correct the impulse response of
the device which could vary based on temperature, lighting conditions, etc. The baseline
is corrected such that the curve generated by our spectrometer be identical to the curve
proposed by the polynomial fit proposed by NIST by satisfying equation 4.1 [NIST]

C(∆ν) = I(∆ν)/Sbench(∆ν) (4.1)

where C(∆ν) is the correction curve, Sbench(∆ν) is the raw signal obtained from the bench-
marked material and I(∆ν) is the known benchmarked polynomial response provided by
NIST. Formally, I(∆ν) is defined as

I(∆ν) = A0 + A1(∆ν)1 + A2(∆ν)2 + ...A5(∆ν)5 (4.2)

where A0...A5 are defined by NIST in [11]. All subsequently measured Raman spectrums
Smeas(∆ν) are then intensity corrected using the correction curve obtained in 4.1 such that
the signals obey equation 4.3

Scorr(∆ν) = C(∆ν) · Smeas(∆ν) (4.3)

4.2.2 Data Acquisition

When acquiring the data, the probe collects multiple samples in each region, or samples
from multiple regions. Multiple Raman spectrums are recorded with an integration time
of 0.05 s and are averaged to reduce noise. A measurement is also taken with the laser off
to use as a background noise model at every location. The subsequent measurement used
consists of the mean of all signals with the laser on minus the background measurement to
correct for ambient factors.
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4.2.3 Autofluorescence estimation and removal

Autofluorescence is the process by which biological tissue will emit fluorescence as a result
of ambient light sources. When analyzing Raman spectrums to classify cancer cells in the
context of this thesis, we want to focus primarily on the Raman response of cancer cells.
We thus need to remove the autofluorescence from the signal in a systematic manner across
spectrums. Since fluorescence is typically orders of magnitude higher than autofluorescence,
a typical approach consists of fitting a model to the background and removing it from the
original signal such that the more subtle Raman variations are emphasized. We present in
this section algorithms which are used for autofluorescence removal prior to classification.

4.2.4 Zhang fit

The first method explored, which we will refer to as the "Zhang Fit", is based on the
method proposed by Zhang et al. in [64]. Consider an original signal xi of length 1xm. We
are seeking to approximate an autofluorescence signal, zi, also of length 1xm, such that
the Raman portion of the signal, ri, can be approximated as:

ri = xi − zi (4.4)

The method consists of seeking for a zi which minimizes a cost function, Q, which takes in
to account the fidelity of zi to xi and the roughness of zi. The fidelity of the signal, S, is
defined as the sum of squared error of zi and xi such that:

S =
m∑
i=1

(xi − zi)
2 (4.5)

The roughness of the estimated signal, R, seeks to penalize sharp increases in zi, and can
be thought of as a regularizer that forces zi to adopt a smooth behaviour by penalizing
curvature. R can be expressed as:

R =
m−1∑
i=2

(zi − zi−1)2 (4.6)

Combining equations 4.5 and 4.6, and introducing a parameter λ, we can write Q as:

Q = S + λR = ||xi − zi||2 + λ||Dzi||2 (4.7)

λ can be user-defined and can be thought of as how much the fit should prioritize fidelity
to the original signal as opposed to smoothness. D acts as the derivative to the identity
matrix such that D can be represented as:

D =


−1 1 0 ... 0 0 0
0 −1 1 0 ... 0 0
0 0 −1 1 0 ... 0
0 ... 0 −1 1 0 0
0 0 ... 0 −1 1 0
0 0 0 ... 0 −1 1

 (4.8)
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Since we are looking to minimize Q in 4.7, we are looking to find a solution to

∂Q

∂zi
= 0 (4.9)

Applying 4.9 to 4.7, we get

(I + λDD′)zi = xi (4.10)

where we consider I to be the identity matrix. Thus, to find zi, we simply need to solve

zi = (I + λDD′)−1xi (4.11)

We apply this method iteratively, such that after a first iteration from solving 4.11, we
define a binary mask vector wi, such that values of wi are either 0 or 1. We use a rule that

wi =

{
1 if xi < zi

0 otherwise
(4.12)

and define a matrix W which has wi along its main diagonal. We then redefine the fidelity
parameter S, to consider the binary mask such that

S =
m∑
i=1

wi(xi − zi)
2 (4.13)

This leads to a new expression for Q, and therefore solving for ∂Q
∂zi

= 0 now yields

zi = (W + λDD′)−1Wxi (4.14)

Note from 4.14 that the λ term can also be user-defined and can be different from the λ
value in 4.7.

Let us look at an example of this autofluorescence removal in practice. Figure 4.4 shows
an example of a Raman Spectrum after being corrected using the NIST reference. We use
the first iteration of the Zhang algorithm that we have described and find the relevant
binary mask.

We then use the values from the binary mask to re-approximate zi to obtain our aut-
ofluorescence approximation. Finally, we subtract zi from xi and recuperate the Raman
portion of the signal. This is shown in Figure 4.5.

One signficant drawback from the Zhang method is that it requires calculating the
inverse of a large matrix at every iteration. Compared to the I-Mod-Poly method, the
Zhang method is considerably slower. Seeing as we seek to implement our system in real-
time, the Zhang method is therefore not an ideal candidate compared to the I-Mod-Poly
method which will be explored further in the next section.
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Figure 4.4: First iteration of Zhang AF removal with a binary mask

Figure 4.5: Second iteration of Zhang AF removal and the resulting signal

4.2.5 IModPoly

One method widely used in biological applications is the polynomial fitting (polyfit) method
[65]. It is both relatively simple to implement and has been shown to be an effective means
of autofluorescence removal. Simply put, the polyfit method seeks to fit a polynomial pi
of degree n to the original signal xi and removes that polynomial from the original signal
to remove autofluorescence and be left only with an approximation of the Raman signal,
zi, such that

pi(ν) = a0 + a1(ν)1 + a2(ν)2 + ...an(ν)n (4.15)

zi = xi − pi (4.16)

The polyfit method, while attractive in its simplicity and efficiency, has some drawbacks.
It is dependent both on the spectral range ∆ν and on the degree of the polynomial n. An
example of this difference is shown in Figure 4.6, where the order and the range of the
polynomial is varied for the same spectrum.
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Figure 4.6: Example of how the polyfit method can disagree based on degree order of the
polynomial (n) and spectral range ∆ν. Image source: [42]

An alternative to the polyfit method, modpoly, is proposed in [43]. Modpoly is an
iterative method which compares the polynomial fit values to the original spectrum values
and selects the lower values between the two, and refits a polynomial to the new concate-
nated signal. While this is an improvement upon the original polyfit method, the ModPoly
method does not deal with noise in any manner, can introduce artificial peaks that are
falsely detected as Raman peaks and could take many iterations before converging to an
appropriate fit which is impractical for real-time spectroscopy [42].

Improved modpoly (IModPoly) is an adaptation of the polyfit and modpoly fit methods
which seeks to address the noise issue by modelling it on the standard deviation of the
difference between the polyfit and the original signal. To do so, a Residual, R(ν) is,
defined as

R(ν) = O(ν)− P (ν) (4.17)

where O(ν) is the original signal and P (ν) is the polyfit computed. The standard deviation
of R(ν) is then computed such that

DEV = std(R(ν)) =

√√√√ N∑
i

R(νi)−R
N

(4.18)

where R is the mean of the Residual and DEV is a measure quantifying the noise levels
in the spectrums. Thus, for a region to be considered a peak, it must be greater than
the standard deviation of the overall signal and the fit at a current point. The process
is repeated iteratively and is stopped by some user-based criteria, which could be either
the number of iterations or an insignificant change from one fit to the next. The entire
IModPoly process is outlined in Figure 4.7.
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4.2.6 Savitsky-Golay Filtering

When dealing with any kind of device to record real-world observations, noise inherent
from the recording device is almost always present in the measurements. It is generally
recommended to use long time-averaging of a signal to suppress noise [12]. However, in
the context of real-time Raman spectroscopy, time is a limiting factor and other noise-
suppression methods should be considered. While many steps can be taken to mitigate the
noise effects and increase the signal to noise ratio, it is necessary in most signal processing
applications to remove noise digitally through the use of various filtering techniques by
trying to reduce noise while preserving the signal of interest [38]. This is usually done by
convolving the input signal x[n], with a filter h[n], such that the smoothed signal, y[n], is
related by equation 4.19:

y[n] = x[n] ∗ h[n] =
∞∑

k=−∞

x[k] · h[n− k] (4.19)

Other methods, such as filtering out high-frequency components, have also been suggested.
The following section will discuss methods of noise reduction and its application in Raman
spectroscopy. A widely used method for smoothing Raman signals is Savitsky-Golay filter-
ing. A polynomial of degree d is fitted across 2m+ 1 points centered about a given signal
measurement x[i]. The method for solving the polynomial fit is the least-squared method.
In their original paper, Savistky and Golay show that by using appropriate coefficients
which can be derived analytically, the exact solution to the least square approximation for
polynomials of low-degrees can be obtained [52]. In equation 4.20, the coefficients Ck can
be looked up from existing tables and used to smooth Raman signals. This allows for a
very fast and robust implementation of the smoothing signal.

y[n] =
m∑

k=−m

x[n+ k] · Ck (4.20)

The amount of points used, as well as the degree of the polynomial fitted are user-defined
settings and are application-dependent.

4.2.7 Normalization

The signals are then standardized and normalized using the standard-normal-variate scheme
such that the condition in equation 4.21 is satisfied. This is a critical step so that classifiers
can be trained on signals of the same orders of magnitudes and such that the non-linear
activation functions used for classification operate in their intended ranges.

SSNV (∆ν) = (Smeas(∆ν)− Smeas)/
√
var(Smeas) (4.21)

4.3 Classification

In this work, we seek to evaluate the performance of various classifiers on Raman spec-
trums. We focus particularly on three classifiers: support vector machines (SVM), multi-
layer perceptrons (MLP) and convolutional neural networks (ConvNet). Each of these are
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supervised learning algorithms and are trained on the available labelled data. In the case
of cancer classification in humans, access to data is often the limiting factor and this is
especially true in Raman spectroscopy. Since we are dealing with smaller datasets, we must
use metrics and algorithms that allow us to compare the performance of our classifiers in
an unambiguous and clear way. For example, considering only accuracy as an only met-
ric of evaluation might be a poor choice when dealing with an unbalanced dataset, since
simply outputting one classification result over another might result in very high accuracy
but very poor disease detection. It is therefore important to monitor other metrics and
find more robust means of evaluations which consider unbalanced datasets, and take into
account the importance of sensitivity and specificity of a classifier. We introduce in this
section different cross-validation methods and their implicatoins, as well as useful metrics
that will be used to compare the classifiers in the next sections.

4.3.1 Cross-Validation

Cross-validation methods are a means of assessing how well a certain classification model
might generalize when applying it to a new, independent data set. Cross-validation is
especially important in the context of predictive analysis and assesing how accurate or
precise the model truly is. cross-validation can be used for both model assessment and
model selection. In the case of model assessment, one seeks to identify which models work
best, by comparing for example the performance of different classifiers. Model assessment
seeks for the best parameters that will make a given classifier optimal [20].

The data is generally split into subsets following user-defined and case-specific rules.
Subsets of the data are left out once for testing and the remaining data is separated into
a training and validation set. A set percentage of each training set is used as a validation
set on every iteration. During training of the classifier, only the training data is used by
the classifier. Upon each iteration of training, the classifier is deployed on the validation
set and an evaluation metric such as a loss function is evaluated and recorded. The model
is trained for a certain number of iterations until the evaluation metric reaches a minimum
on the validation set. The model is then evaluated on the test set and the performance of
the model is recorded.

4.3.2 K-fold Cross-Validation

The data is split into K random, evenly distributed, unique and non-overlapping subsets,
spanning the entire dataset. The distribution of labels is thus similar in the K individual
subsets compared to the origial dataset. K-fold CV has the advantage that each sample
is evaluated once as part of a testing set. This process is repeated K times and the
performance over each test set is compared. When comparing classifiers, it is important
to set the randomness as ’fixed’, or as pseudo-random. This means that the distribution is
chosen at random once, but the same distribution is then used across classifiers to ensure
a fair validation process.The results from the separated K folds are then interpolated and
used as a metric to determine the performance of the classifier.
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4.3.3 Leave-One-Patient-Out

A leave-one-patient-out (LOPO) Validation scheme is also used and compared to K-fold
cross-validation. The datasets are labelled according to a unique identifier (UID) and it
is therefore possible to split up samples per patient. Each patient is left out once for
testing, and the remaining patients are used as training and testing sets. There are no
fixed protocols while retrieving patient data and it is therefore possible that one patient
have only one class of label associated to his name. Drastically different results to K-fold
validation might indicate clustering of the data within patients and suggest that the models
might be learning noise models as opposed to qualitative features to discriminate between
hisotpathologies.

4.3.4 Leave-One-Spectrum-Out

A leave-one-spectrum-out (LOSO) approach leaves an individual spectrum out and uses
the remaining data as training and validation sets. Since there can be many samples, it
can be time-consuming and computationally expensive to evaluate every spectrum. LOSO
can be done on a representative subset of samples and statistics can then be generalized.
One drawback of LOSO is that similar samples (i.e. from a same patient in taken from a
similar location) might give the system a bias towards a solution which it otherwise might
not be able to discern (in the case of a never-before-seen patient, for example). It is also
possible tor LOSO to model noise models as opposed to useful information.

4.3.5 Confusion Matrix

Consider a classifier that takes a sample as input xi and returns one of a possible N
diagnoses yi for a given situation associated to a ground truth label li. We can build
a matrix, M, initialized as an NxN matrix of zeros, such that for each xi, the element
M[li, yi] is incremented by one unit. After iterating through every sample, the resulting M
will be what is known as a confusion matrix [15]. It maps the relationship between ground
truth labels and predictions. Let us consider a binary classification problem in which our
classifier must distinguish between 2 classes, one consisting of healthy specimens, h, and
infected specimens, i. We consider a diagnosis as negative when the classifier returns a
healthy diagnostic and positive when the classifier returns an infected diagnosis. There are
four possible outcomes to the classification:

• The system classifies a healthy specimen (negative) as healthy (negative). This is
considered a True Negative (TN)

• The system classifies a healthy specimen (negative) as infected (positive). This is
considered a False Positive (FP)

• The system classifies an infected specimen (positive) as infected (positive). This is
considered a True Positive (TP)

• The system classifies an infected specimen (positive) as healthy (negative). This is
considered a False Negative (FN)
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The resulting 2x2 confusion matrix is shown in Table 4.1. Note that TP +FN +FP +
FN is equal to the number of samples diagnosed. The confusion matrix helps understand
trends in the classification process and can help identify strenghts and weaknesses of our
classifier.

Table 4.1: Example of a confusion matrix for a 2-class binary classification problem.

Prediction
Healthy Infected

Ground Truth Healthy TN FP
Infected FN TP

4.3.6 Evaluation Metrics

There are different metrics to evaluate how well a classifier performs on a specific dataset.

• Accuracy (ACC), measures the proportion of samples that we’re properly diagnosed,
both positive and negative. This is calculated from the confusion matrix as:

ACC =
(TP + TN)

(Positives+Negatives)
=

(TP + TN)

(TP + FP + TN + FN)
(4.22)

• Sensitivity, or the true positive rate (TPR), measures the proportion of samples that
we’re diagnosed as positive (infected) that are ground-truth positive (infected). This
is calculated from the confusion matrix as:

TPR =
TP

Positives
=

TP

(TP + FN)
(4.23)

• Specitivity (SPC), measures the proportion of samples that we’re diagnosed as neg-
ative (healthy) that are ground-truth negative (healthy). This is calculated from the
confusion matrix as:

SPC =
TN

Negatives
=

TN

(TN + FP )
(4.24)

• False positive rate (FPR), measures the proportion of negative samples that we’re
diagnosed as positive. This is calculated from the confusion matrix as:

FPR =
FP

Negatives
=

FP

(TN + FP )
= 1− SPC (4.25)

4.3.7 Receiver Operating Characteristic

A receiever operating characteristic (ROC) curve helps combine the evaluation metrics
explained in the previous section into a visual and quantifiable means of analysis in order to
compare the performance of classifiers based on different criterias and trade-offs [19]. ROC
curves are used extensively in the biomedical field to assess the performance of classifiers,
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specifically because of their utility in unbalanced classes [19] [1]. ROC curves combine
sensitivity and specificity of a classifier as a single point on a graph. These metrics are
attractive in the medical field since high sensitivity is useful to rule out disease and high
specificity is useful to diagnose disease [1]. ROC curves are generated by plotting the TPR
(y-axis) as a function of the FPR (x-axis). Figure 4.8 shows an example of ROC points
plotted using different classifiers.

The dashed line in Figure 4.8 represents the expected performance of a classifier built
on random performance. Points lying northwest of the dotted line are generally considered
to perform better [19]. A classifier at point (0,0) would represent a classifier outputting a
negative result regardless of the input, whereas a point at (1,1) would represent classifiers
always outputting a positive result.

Classifiers like neural networks and SVMs can be architectured to output a real-valued
number, between 0 and 1, representing the confidence of the network that a certain sample
belongs to one class or another. While these numbers can in some cases be strict proba-
bilities, they can also represent uncalibrated scores where a higher score means a higher
probability of belonging to a class. In the case where outputs correspond to probabilities,
it is natural to set a threshold T=0.5 such that a result is negative if the predicted value is
smaller than T and positive if the predicted value is larger than T. However, a threshold
T=0.5 might be a sub-optimal decision threshold in the case of uncalibrated scores [19]. It
is therefore useful, for a given classifier, to evaluate the TPR and FPR at various thresholds
T, and plot the resulting pairs of FPR and TPR points for a single classifier. Of course,
by varying T in the range [0,1], we guarantee that (TPR,FPR) for T=0 will be (0,0) and
for T=1 (1,1). What we are interested in is how the (TPR,FPR) trend varies between
these points. As a rule of thumb, if the ROC curve tends more towards the point (1,0), its
performance is considered better than other classifiers.

Figure 4.9 shows an example in which two algorithms are compared on a given binary
classification task. The area under the curve (AUC) of each ROC curve of each of the
algorithms is calculated and used as a metric to quantify which algorithm performed best.
An AUC of 0.5 corresponds to a classifier built on random guessing, and an AUC of 1
corresponds to a perfect classifier. Typically, a higher AUC score is considered as a better
performance, however, as noted in [1], the AUC gives equal importance to FPR and TPR
when in practice one metric might be of higher value than another. In the case of K-fold
cross-validation, we generate K ROC curves and linearly interpolate through the K curves
to obtain a mean ROC curve and compute the AUC of the curve [27].

4.3.8 Data Augmentation

Some classification algorithms require large amounts of data for training. Neural net-
works are known to be particularly data intensive. Data augmentation consists in inflating
a dataset artificially by exploiting transformations of the data in a manner that doesn’t
affect the labelling of the data. For example, transformations such as cropping and transla-
tions can be used on images to enhance a dataset [37]. Another form of data-augmentation
can be the injection of noise in to the original data [41]. Since Raman signals are inher-
ently weak to begin with, adding noise to the original signal would unlikely cause labels
to change and might increase the classification performance. One means of data augmen-
tation that is explored is the use of different averaging schemes. When Raman signals
are collected, multiple spectrums are collected and averaged to reduce noise. The classic
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averaging scheme consists of equally weighting all of the spectrums, such that if there are
N spectrums recorded per position, each individual spectrum would contribute to 1/N of
the final spectrum, such that sample xi would be given by:

xi =
1

N

N∑
j

xji (4.26)

However, data augmentation can be performed such that different signals contribute
with different weightings, determined stochastically from a uniform distribution, and equa-
tion 4.26 would then become:

xi =
N∑
j

cjx
j
i (4.27)

where cj is a random, positive coefficient in the interval [0,1], and
∑
cj = 1.

4.3.9 Conclusion

In this chapter, we highlight the important steps in the methodology involved in the clas-
sification of Raman spectrums. We look in detail at the steps involved in data collection,
the type of probe used and histopathological assessment, as well as the steps involved in
calibration of spectrums, and estimation/removal of fluorescence signals. We also look
at noise filtering and normalization of signals and different cross-validation schemes and
metrics to evaluate classification results.
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Figure 4.7: IModPoly iterative algorithm detailed in a step by step manner. Image source:
[42]
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Figure 4.8: Example of a ROC plot generated for discrete points from different classifiers,
A-E [19]

Figure 4.9: Example of a ROC curve generated for different algorithms at different thresh-
olds T, Image source: [15]
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Chapter 5

Experiments and Results

5.1 Prostate Dataset

The prostate dataset comprises of signals measured from 32 distinct human prostates
ex-vivo following radical prostatectomy. The prostate removed from each patient was
immediately sent to histopatholgy. A pathologist cut a slice approximately 1 cm thick
which was sent to the lab for RS measurements to be taken within 60 minutes to ensure
that the tissue was still fresh and simulating in-vivo measurements. Figure 5.1 shows an
example of a prostate being measured on with the probe after RP.

Figure 5.1: Example of a prostate ex-vivo after RP ready for measurements using RS

The Raman probe was used to acquire Raman spectra from a multitude of points by
placing it in contact with the tissue and performing an acquisition. Each interrogated spot
was labeled with ink and numbered. Each slice was then returned for histopathological
assessment of all interrogated spots with a pathologist returning a diagnosis corresponding
to the three defined classes in our dataset: benign, malignant, and extraprostatic. Some
samples have no label due to inaccuracies or uncertainties from histopathology reports.
Table 5.1 shows the distribution of classes in our dataset. The data is not uniformly
distributed across labels. There are roughly five times more benign samples than there are
malignant samples and relatively few extraprostatic samples.
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Table 5.1: Data distribution in the prostate dataset

Label # of samples
Benign 771
Malignant 149
Extraprostatic 25
No Label 337

The data is also not uniformly distributed across patients. Some patients have many
more samples than others and some patients only have a single type of category of sample.
Figure 5.2 shows the distribution of labeled data across patients, for the malignant and
benign categories for patients 10 through 41. Patients are referred to using numvers to
maintain anonymity. Since our objective is to distinguish cancerous from healthy tissue,
only malignant and benign labels are considered in our classification, turning the problem
into a binary classification problem.

Figure 5.2: Distribution of the benign and malignant samples per patient in the prostate
dataset

5.1.1 Calibration

The CCD is first calibrated along its x-axis using a sample of acetaminophen (Tylenol). To
do so, the probe records the signal of acetaminophen powder sample and it is overlayed to
a known benchmark reference spectrum of acetaminophen. Peaks are identified manually
and lined up such that the Raman shift in cm−1 is known for the CCD. Figure 5.3 shows
this step of the calibration process.

For each measurement of the prostate, 10 spectrums were recorded and a background
measurement is also recorded. Each signal is a discrete spectrum obtained using a CCD
camera array of a resolution of 1x1024. An example of a single raw acquisition signal is
shown in Figure 5.4. We can see from Figure 5.4 that the laser does not operate fully in
the spectral range of the CCD. Positions 0-380 do not record any meaningful data for our
analysis. This is a physical limitation of the CCD and we disregard signals before position
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Figure 5.3: Calibration step of the x-axis on the CCD using acetaminophen

385. This leaves us with an input signal xt of size 1xM where M = 1024 − 384 = 640.
Figure 5.5 shows what the raw signal looks like in the region of interest, and with the
proper x-axis labelled on the signal.

Figure 5.4: Example of a raw signal collected in the prostate dataset. 10 such signals are
collected per location on a prostate

For each patient, a calibration measure, zstand, of a known benchmarked material is
taken before measurements are taken. This allows to calibrate the signal from the spec-
trometer to its known original values. Figure 5.6 shows all 32 correction curves retrieved
before measurements of each of the 32 patients.

Figure 5.6 demonstrates that the correction curves, while similar in their shape, can
vary in intensity and in overall shape. Variation across correction curves demonstrates
the importance of proper calibration prior to measurement. Each recorded signal is then
corrected as outlined in equation 4.1. Before correction, the 10 measurements are averaged
together to reduce the noise from a single measurement. The background measurement,
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Figure 5.5: Example of a raw signal collected in the prostate dataset considering only the
operating range of the CCD and the calibrated x-axis

Figure 5.6: Example of a calibration measure, zstand, used to calibrate the system response
to known benchmarks

collected before each 10 measurements, is subtracted from the averaged signals. The re-
sulting signal is then corrected using the procedure outlined in [11]. An example of a
background corrected retrieved signal is shown in Figure 5.7.

5.1.2 AF removal

Once the raw signal is obtained, it is necessary to subtract the autofluorescence from
the signal. We compare two methods, the Zhang method and the IModPoly method, as
outlined in section 4.2.3. Specifically, we use λ = [1, 20, 50] in equation 4.5 for the Zhang
method, and we use a varying polynomial degree order, d = [3, 4, 5, 6], for the polynomial
fit for the IModPoly method. Figure 5.8 shows the approximation of the autofluorescence
using these different methods in different spectral regions.

It is difficult to estimate empirically which fit is working best by visual inspection. We
see that, as expected, by setting λ to smaller values, the autofluorescence estimation tries
to reconstruct the original signal, and that by setting λ to higher values, the estimation
learns the overall shape of the curve. However, there seems to be regions of overlap between
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Figure 5.7: Example of a corrected signal using the correction procedure outlined in [11]

Figure 5.8: Autofluorescence estimation using the Zhang and IModPoly methods

the Zhang and IModPoly estimations, suggesting that one method might not be necessarily
better than the other. One significant drawback from the Zhang method is the runtime,
compared to the runtime for the IModPoly method. The runtime of IModPoly is, on av-
erage, of 0.0012 seconds per spectrum while the runtime for Zhang is of 0.23 seconds per
spectrum. The Zhang method takes several orders of magnitude longer than the IModPoly,
which is a very important consideration for real-time measurements. It is therefore impor-
tant to assess how the Zhang performance overall compares to the IModPoly performance
overall and if its costly run-time is justifiable.

The estimated fluorescence signal is then subtracted from the original signal. We are
left with a relatively noisy signal, that we smooth using a Savistky-Golay Filter of Window-
length of 21 and order of 3 as outlined in the Methods section. We then apply a standard-
normal-variate (SNV) scheme to the signals to ensure that all signals are more or less within
the same range and so that the classifiers do not try classifying on absolute intensities, since
those were not controlled during signal gathering.

We compare the estimated Raman portion of the signal when using the Zhang AF
removal method compared to the IModPoly AF method in Figure 5.9. We can see that most
of the peaks can be seen whether using one method or the other, but that the polynomial
fit seems to push them up or down at various locations while the Zhang method seems to
keep them all around the same height. This is due to inherent differences in the way these
algorithms were desgined. This suggests that local variations might be more important to
focus on during classification as opposed to direct peak analysis. This also suggests the
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importance of sticking to a well-defined protocol for Autofluorescence removal in eventual
clinical use. Edges of the AutoFluorescence in Zhang and in IModPoly are also prone to
divergence from the original signal, as seen in Figure 5.8 and this suggests ignoring portions
of the signal close to the edges.

Figure 5.9: From top to bottom: Autufluorescence is estimated (top), removed from the
original signal (middle), and the signal is smoothed using Savitsky-Golay filtering and
Normalized using an SNV scheme (bottom). On the left, Zhang AF estimation using λ =
50 and on the right, PolyFit using a degree of 6.

Figure 5.10 compares the average of the signals separated by category (benign vs. ma-
lignant) using the Zhang AF removal compared to the IModPoly removal. While differences
exist in both, it is difficult to determine which will perform best at the task of classification.
We need a quantifiable means of differentiation between the different methods. To do so,
we use the AUC of ROC curves for 10-fold cross-validation in the next section.

5.1.3 Evaluation of AutoFluorescence

We will first determine which AutoFluorescence (AF) removal method to consider for
further analysis by determining which one works best using a single classifier. K-fold
validation will be used as a scheme to evaluate the performance of the AF removal. K-
fold validation is advantageous in this case because we only need to run the iterations K
times, as opposed to N times where N would be the total number of samples we have if
we resorted to using the Leave-one-spectrum-out approach. The data is split into K=10
random, unique and non-overlapping subsets, spanning the entire dataset, such that each
individual signal is left out exactly once for evaluation once. Each subset is left out once for
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(a) Zhang, λ = 50 (b) IModPoly

Figure 5.10: The means of all signals, separated by categories, after AF removal. On the
left, AF was removed using Zhang’s method with λ = 50, on the right IModPoly using a
degree 6 polynomial.

testing and the remaining data is separated into a training and validation set. 10% of each
training set is used as a validation set on every iteration. The data in the training set is
duplicated such that the classes are approximately balanced during training. This is done
to avoid the local minima consisting of a single prediction due to the class imbalance. This
process is repeated K times and a mean receiving operating characteristic (ROC) curve
is generated by plotting the True Positive Rate (TPR) as a function of the False Positive
Rate (FPR) at different threshold values for every fold. The area under curve (AUC) of
the ROC-curve is used as a metric to determine performance metrics such that a higher
AUC indicates better classification performance. The AUC is computed across each fold
and an average AUC is used to compare one method to another.

The classifier used in this case is a fully-connected MLP consisting of 2 layers, similar
to the one used in [30]. The first and second layers consists of 40 activations each. A
ReLu activation is used after each layer. The final layer consists of a Softmax activation
returning the probability of classification. The network is trained using stochastic gradient
descent on mini-batches. The mini-batches consist of signals chosen at random from the
training set. After all signals from the training set have been seen by the network once (one
epoch), the network is deployed on the validation set. The network is trained for a number
of epochs and the weights from the epoch with highest performance on the validation set is
used for evaluation on the test set. This avoids selecting for a network which might overfit
on the training set.

We iterated through λ = [1, 10, 50, 100, 200, 500] for Zhang’s method and deg = [4, 5, 6]
for the IModPoly method. We then compare their respective AUC scores. Table 5.2 shows
the results of the AUC found for all the different values of λ and deg and shows that λ = 100
is a local maximum of the AUC for the Zhang method, and deg = 6 is a local maximum of
the IModPoly method. Since IModPoly and Zhang AF removal scored similarly, at best,
with respective average AUCs of 0.925 ± 0.035 and 0.920 ± 0.019, and since, as discussed
earlier, the IModPoly offers much quicker runtime than the Zhang implementation, we will
focus all future results and discussions around using the IModPoly method with degree 6
for AF removal.
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Table 5.2: Mean AUC score for the Zhang and IModPoly AF removal methods

Method AUC
Zhang (λ =)

1 0.797 ± 0.042
10 0.898 ± 0.029
50 0.914 ± 0.031
100 0.920 ± 0.019
200 0.906 ± 0.046
500 0.890 ± 0.049

IModPoly (Deg =)
4 0.913 ± 0.038
5 0.918 ± 0.026
6 0.925 ± 0.035

5.2 K Fold cross-validation

We will use the same K-fold cross-validation method discussed in the previous section to
evaluate different classifiers and parameters, particularly focusing on multi-layer percep-
trons (MLP), support vector machines (SVM) and convolutionnal neural networks (CNN).
We will use the same K-fold cross-validation scheme used in the previous section to split up
the data in to 10 independent test sets, using the same pseudo-random scheme every time
across classifiers to ensure consistency, and use the mean AUC as our evaluation metric.

5.2.1 MLP

We will now look more in depth at the layer sizes and hyper-parameters of the MLP used
in the previous section. We use Keras with theano in the backend to train our neural
networks [10]. We inspire ourselves on the architecture of the MLP from Jermyn et al.
in which they use a 2-layer MLP to classify Raman spectrums sampled in-vivo from the
brain [29]. Their layers consist of sizes l1 = 20 and l2 = 10 respectively. We base ourselves
on this network to iterate between layer sizes l1 = [40, 20, 30, 10] and l2 = [40, 20, 30, 10]
with the condition that l1 ≥ l2 to ensure that our network is only down-sampling and not
up-sampling. We summarize the results of the AUC for different layer sizes in Table 5.3.

Table 5.3: AUC scores for varying layer sizes using a 2-layer MLP

l2
10 20 30 40

10 0.925 ± 0.023 - - -
l1 20 0.932 ± 0.018 0.933 ± 0.017 - -

30 0.928 ± 0.021 0.932 ± 0.019 0.930± 0.021 -
40 0.932 ± 0.024 0.932 ± 0.017 0.925 ± 0.022 0.926 ± 0.025

We can observe from Table 5.3 that varying the network layer sizes does not have a
tremendous effect on the AUC suggesting that the MLP is able to adjust to our data under
different conditions.
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Dropout One common method to avoid overfitting of an MLP and improve classification
results is to use dropout. Upon each iteration of the backpropagation algorithm, a user-
defined percentage of weights are masked (or dropped) from the rest of the network. This
inhibits the network from learning complex patterns from the data which might be mean-
ingless in the real-world [57]. We compared the network performance without dropout, and
with values of dropout d = [0.1, 0.15, 0.2, 0.25, 0.5] and computed the AUC for layer sizes
l1, l2 = [20, 20] and l1, l2 = [40, 40] . Table 5.4 shows the AUC obtained in the different
cases. We see that a slight amount of dropout (d=0.1) may benefit larger networks but
does not seem to have much of an effect on the smaller network, and that they both score
similarly in terms of AUC, with the larger network performing slightly better acording to
the AUC metric. We will consider from now on the network l1, l2 = [40, 40] with d = 0.1
as a basis for comparison to other classifiers.

Table 5.4: AUC results for different values of dropout. We see that the network performs
optimally for a value of d = 0.1

Dropout l1, l2 = (40, 40) l1, l2 = (20, 20)
(d =) (AUC=) (AUC=)

0 0.926 ± 0.025 0.933 ± 0.017
0.1 0.935 ± 0.021 0.923 ± 0.019
0.15 0.932 ± 0.020 0.920 ± 0.019
0.2 0.932 ± 0.019 0.927 ± 0.015
0.25 0.930 ± 0.017 0.925 ± 0.016
0.5 0.924 ± 0.021 0.915 ± 0.020

5.2.2 Convolutional Neural Network

In this section, a Convolutional Neural Network (ConvNet) is used as a classifier. Our
Convolutional Neural Network will comprise of 1 convolutional layer, in which convolution
filter weights will be learned, followed by a fully-connected layer operating on the flattened
output from the convolution layer. There are more parameters to define when training a
ConvNet. We need to choose the length of the 1-Dimensional kernels, lkern that we would
like to learn. The stride, nstrides, also needs to be defined (i.e. how many values to disance
each filter application by) and determines the downsampling occuring within the signal.
The number of filters to learn, lconv, will also be focused on. We then need to choose
the layer size for the fully-connected layer, lfc. There are more parameters involved than
in the MLP. We will experiment with varying parameters and use the AUC from K-fold
validation as a metric for comparison. We will study, for example, the difference between
using large kernels vs thin kernels and strides. The network complexity (i.e. the number
of weights that will need to be learned) will be directly influenced by the aforementioned
parameters. We will evaluate different architectures by presenting various combinations
of [lkern, nstrides, lconv, lfc]. We will focus more on the length of the kernels, lkern as well as
the number of strides, nstrides, as they are the backbone of the convolution operation and
are likely to hold more importance in the classification task. The hyper-parameters will
also have an impact on these performances, but will be kept fixed throughout the varying
network architectures, with dropout at 0 and the learning rate, lr, at 0.01. The ReLu
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activation function is used between every layer. We show the results of different AUC for
the same K-fold scheme in Table 5.5

Table 5.5: AUC results for different values of the network parameters,
[lkern, nstrides, lconv, lfc], for the ConvNet classifier

[lkern, nstrides, lconv, lfc] AUC

[64, 32, 20, 8] 0.922 ± 0.019
[64, 64, 20, 8] 0.913 ± 0.015
[64, 32, 20, 16] 0.931 ± 0.019
[64, 64, 20, 16] 0.921 ± 0.017
[128, 64, 20, 8] 0.933 ± 0.015
[128, 128, 20, 8] 0.931 ± 0.014
[128, 64, 10, 16] 0.922 ± 0.019
[128, 64, 20, 16] 0.935 ± 0.014
[128, 128, 20, 16] 0.934 ± 0.012
[128, 64, 40, 16] 0.934 ± 0.021
[128, 64, 20, 32] 0.930 ± 0.018
[256, 64, 20, 16] 0.931 ± 0.021
[256, 128, 20, 16] 0.928 ± 0.016
[256, 128, 20, 8] 0.924 ± 0.017

It is difficult to evaluate empirically from Table 5.5 what parameters seem to influence
the AUC most, however it seems that a kernel size lkern = 128 seems to offer better
performance. Other parameters, such as stride and number of filters, don’t seem to have
as great of an impact on the AUC overall.

Dropout Just like with the MLP, we compare the network performance with dropout
values of d = [0, 0.1, 0.15, 0.2, 0.25, 0.5] and computed the AUC. Table 5.6 shows the AUC
obtained in the different cases. We see that dropout benefits peak at d = 0.25 and use
this from this point onward as our dropout value for the ConvNet. The gains related to
dropout were not as significant as with the MLP in this case.

Table 5.6: AUC results for different values of dropout. We see that the network performs
optimally for a value of d = 0.1

Dropout (d =) AUC

0 0.935 ± 0.014
0.1 0.935 ± 0.017
0.15 0.939 ± 0.018
0.2 0.939 ± 0.018
0.25 0.941 ± 0.018
0.5 0.940 ± 0.014

Learning Rate Another hyper-parameter we can tune when building our ConvNet is the
learning rate applied during stochastic gradient descent, which will determine the influence
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of backpropagation over time in our algorithm on the weights learned by the network. A
higher learning rate value will have higher impact on variation between weight values after
a mini-batch, whereas a lower learning rate will allow the network to converge slowly over
time. We iterate through the learning rates lrate = [0.5, 0.1, 0.01, 0.05, 0.001] in Table 5.7.
We see that the learning rate has more important effect on the performance of the network
than dropout. We found the optimal learning rate to be at lrate = 0.01

Table 5.7: AUC results for different values of the learning rate. We see that the network
performs optimally for a value of lrate = 0.01

Learning rate (lrate =) AUC

0.5 0.910 ± 0.019
0.1 0.927 ± 0.019
0.01 0.941 ± 0.017
0.02 0.936 ± 0.015
0.05 0.932 ± 0.017
0.001 0.885 ± 0.023

5.2.3 Support Vector Machines

We now look at using Support Vector Machines (SVM) as a classifier and compare its
performance to the previous MLP and ConvNet. We use the SciKit-learn implementation
of SVM which uses libsvm in its backend [49]. We use the same K-fold CV training and
test sets used to train the ConvNet and MLP. There are two parameters that we seek to
optimize: C which is the penalty parameter of the error term, and the type of kernel used.
We consider C = [0.001, 0.01, 0.1, 1, 5, 10] and the ’Linear’ and ’Radial Basis Function’
(RBF) kernels.

Table 5.8: AUC results for different values of C and using differnt Kernels for SVM. We
see that the network performs optimally for a value of C = 1 and using an RBF Kernel

RBF Linear
C Kernel (AUC=) Kernel (AUC=)

0.001 0.863 ± 0.026 0.914 ± 0.024
0.01 0.862 ± 0.026 0.933 ± 0.017
0.1 0.903 ± 0.025 0.912 ± 0.023
1 0.943 ± 0.018 0.892 ± 0.033
5 0.936 ± 0.016 0.892± 0.033
10 0.932 ± 0.016 0.892 ± 0.033

Table 5.8 shows the results of the AUC for different parameters of the SVM implemen-
tation. We see a maximum for C = 1 using the RBF kernel and will use these parameters
in future comparisons between classifiers.
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5.2.4 K-fold discussion

Comparing the performance of SVMs, MLP and ConvNets using the K-fold cross-validation
method, we summarize the best results for optimal conditions found in Table 5.9. To have a
better understanding for how well the classifiers are performing, we use a threshold of 0.5 to
evaluate the confusion matrices for each classifier and use them to evaluate their respective
accuracy, sensitivity and specificity. It should be noted that varying the threshold would
vary these results, which is the point of computing the AUC and not comparing direct
classification results for a given threshold. Showing these results is nonetheless informative
as to what classification results might actually look like for K-fold validation. The confusion
matrices are shown in Table 5.10.

Table 5.9: Best performances noted for K-fold validation across classifiers

MLP ConvNet SVM
(AUC=) (AUC=) (AUC=)

0.935 ± 0.021 0.941 ± 0.017 0.943 ± 0.018

We notice that the ConvNet and SVM score similarly in terms of AUC and they both
surpass the MLP in performance. At the threshold of 0.5, the ConvNet had slightly better
accuracy, specificity and sensitivity than the SVM. We notice from the confusion matrices
in Table 5.10 that the accuracy, sensitivity and specificity metrics don’t seem to differ much
from each other across classifiers. This suggests that overall the classifiers are performing
similarly and we cannot determine with certainty that one classifier performs significantly
better or worse overall at the task of cancer classification in the prostate dataset using K-
fold validation. This suggests that there might be a fundamental limit as to how well the
data provided can be separated and that the choice of classifier will not have a tremendous
effect on classification results.

Prediction
Benign Malignant Accuracy: 0.908

MLP Benign 724 47 Specifitiy: 0.939
Malignant 38 111 Sensitivity: 0.744

Prediction
Benign Malignant Accuracy: 0.921

ConvNet Benign 730 41 Specifitiy: 0.947
Malignant 32 117 Sensitivity: 0.785

Prediction
Benign Malignant Accuracy: 0.913

SVM Benign 724 47 Specifitiy: 0.939
Malignant 33 116 Sensitivity: 0.780

Table 5.10: Confusion matrices and metrics using K-fold CV evaluated at a threshold of
0.5 for the optimal architectures of MLP,ConvNet, and SVM

Figure 5.11 shows the classification results for both the SVM and ConvNet per patient
per label using K-fold validation. This allows us to compare how different classifiers score
across patients. We notice many similarities in the overall classification, suggesting that
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perhaps the data we are analyzing is fundamentally limited due to factors such as experi-
mental error, the possibility of disparity in labelling of spectrums compared to the actual
ground truth, the limited amount of available data and the imbalance between benign and
malignant specimens. It should also be noted that the K-fold validation scheme did not
separate folds based on patient information, in order to best recreate results of prior works
in which a Leave-One-Spectrum-Out approach was used [29][30][14][62]. K-fold is used over
LOSO in the prostate dataset because of the larger scale of the dataset (N ≥ 700 samples)
and the costly computing associated to running the experiments N times compared to K
times since K�N. Presumably, LOSO should perform at least better than K-fold CV since
the data associated to each patient except one sample will be available during training by
the classifier. We will explore in the following sections the impact of leaving out an entire
patients’ data during training of the classification algorithm.

(a) ConvNet (b) SVM

Figure 5.11: Classification results per patient per label for SVM and ConvNet using K-fold
CV

5.3 Data Augmentation

In this section, we explore data augmentation and its impact on classification results. In
the prostate dataset, each location probed on the prostate was measured for a total of 10
times. In the previous sections, we averaged the sampled signals and considered the average
to be one signal. In order to augment the data, we use aug randomly weighted sums over
the 10 signals as presented in equation 4.27 to artificially create aug times more signals
for the classifiers to train on. We augment the dataset by aug = [5,10] using this scheme
and record the AUC of the ROC curves using K-fold CV with the same pseudo-random
scheme used previously, ensuring that signals associated to the same sample are assigned
to the same training/validation/testing sets.

Table 5.11 summarizes the results of data augmentation using K-fold CV. We notice no
impact on the SVM performance. This is expected since in a sense we are simply adding
noise to our signals and barely affecting the overall distribution of the features, which in
turn has little or no effect on the selection of support vectors. In the case of the ConvNet,
data augmentation does not suggest any difference in AUC as well. In the case of MLP,
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this method of data augmentation seems to be detrimental overall, suggesting that perhaps
the MLP is more sensitive to noise and would be less robust for clinical use.

Table 5.11: AUC of the ROC curves for K-fold validation across classifiers after data
augmentation

MLP ConvNet SVM
aug (AUC=) (AUC=) (AUC=)

1 0.935 ± 0.021 0.941 ± 0.017 0.943 ± 0.018
5 0.921 ± 0.019 0.943 ± 0.024 0.943 ± 0.018
10 0.914 ± 0.035 0.937 ± 0.016 0.940 ± 0.016

5.4 Dimensionality Reduction

In the previous sections, we’ve been looking at classification results by using the Raman
spectrum directly as an input. In this section, we explore the use of dimensionality reduc-
tion and its effect on classification. We will look at different methods for feature extraction
to transform the data from higher-dimensionality space to lower-dimensionality space while
trying to retain as much information as possible. Two unsupervised learning approaches
will be compared: Principal Component Analysis (PCA) and autoencoders (AE). They are
unsupervised since their implementation does not depend on the labels from the dataset.
We will use the same K-fold validation scheme used in the previous sections to see how
results contrast and compare to classification of the original input from prior sections.
One reason to use dimensionality reduction is to attempt to remove uninformative data
from the input and classify only the meaningful portion of the data, to avoid for example
overfitting to noise and to leverage classification of a smaller feature space. We use the
same classifiers found in the previous section which gave the highest AUC for the MLP,
ConvNet and SVM. In the case of the ConvNet, we reduced the kernel size from 128 to 32
when the encoding dimension was less than 128 for implementation reasons.

5.4.1 Autoencoders

The AE seeks to find a lower-dimensional representation of the data by squeezing it through
intermediate layers and reconstructing it at its output. In this case, we use one intermediate
layer, and the mean squared error as the loss function. The size of the intermediate layer
will determine how compressed the data will be. We vary the size of the compression
layer with values lsize = [64, 128, 256, 512] and use the same SVM, MLP and ConvNet
classifiers as in the previous section to achieve classification. We exclude all of the test
samples from the AE when estimating it to avoid overfitting. Figure 5.12a shows what an
encoded signal looks like for lsize = 256. Each point corresponds to a feature in the new
feature space. Figure 5.12 shows the difference between the reconstructed signal after being
encoded and decoded by the AE compared to the original signal. We see that while the
reconstruction isn’t perfect (which is expected since information is lost through encoding),
the overall shape is recognizable from the reconstruction and the major peaks are still
distinguishable. This suggests that most of the information is properly captured by the
encoder of the AE.

49



(a) Output of the encoding layer for the AutoEn-
coder with lsize = 256. This is the new feature
space used by the classifiers

(b) Comparison between the original Raman
Spectrum and the reconstructed Raman spec-
trum after going through an autoencoder with
lsize = 256

Figure 5.12

Table 5.12: AUC results for different sizes of the encoding layer size lsize using an autoen-
coder for dimensionality reduction

Encoding MLP ConvNet SVM
dimension (lsize =) (AUC=) (AUC=) (AUC=)

32 0.815 ± 0.043 0.866 ± 0.024 0.862 ± 0.028
64 0.848 ± 0.045 0.871 ± 0.035 0.885 ± 0.034
128 0.890 ± 0.042 0.911 ± 0.019 0.917 ± 0.029
256 0.920 ± 0.019 0.919 ± 0.021 0.927 ± 0.022
512 0.928 ± 0.018 0.934 ± 0.017 0.931 ± 0.023
None 0.934 ± 0.021 0.941 ± 0.017 0.943 ± 0.018

Table 5.12 shows the results of the AUC using the same K-fold distribution as in the
prior sections, allowing us to compare metrics. We see that as we reduce the size of the
encoding layer, the AUC scores decrease. However, we find that we are able to achieve
similar AUC, 0.919 ± 0.021 compared to 0.941 ± 0.017, for the ConvNet, and similarly for
the MLP and SVM, by reducing the feature space from 640 to 256, which corresponds to
approximately 2.5 times reduction in the feature space. We observe once again that the
ConvNet and SVM perform similarly and that both perform in general better than the
MLP.

5.4.2 Principal Component Analysis

PCA reduces the data by selecting for a combination of features which maximizes variance
across features. We used the same values of dimension reduction as with the AE by going
through all values lsize = [64, 128, 256, 512] and use the same SVM, MLP and ConvNet
classifiers as in the previous section to achieve classification. We excluded all of the test
samples from the PCA estimation when estimating it to avoid overfitting. Figure 5.13a
shows what an encoded signal looks like for lsize = 256. Each point corresponds to a feature
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in the new feature space. Figure 5.13 shows the difference between the reconstructed signal
after being encoded and decoded by PCA compared to the original signal. Compared to
the the reconstruction with the AE, PCA reconstruction is much less noisy and appears
to reproduce the signal with higher fidelity. This is in part due to the mathematical
formulation of PCA which captures the highest variation from the data.

(a) Output of the encoding layer for PCA with
lsize = 256. This is the new feature space used
by the classifiers

(b) Comparison between the original Raman
Spectrum and the reconstructed Raman spec-
trum after going through PCA with lsize = 256

Figure 5.13

Another thing to notice when comparing dimensionality reduction of PCA to AE is
that the distribution of intensities in the AE feature space seems uniform whereas most
of the intensities of features are concentrated in the first few features in PCA. This is
once again due to the mathematical formulation of PCA, which seeks features of highest
variance as primary features, compared to AE which seek to learn a good representation
based on stochastic rules. An interesting consequence of this is that plotting the first few
PCA features against each other reveal interesting patterns. This is shown in Figure 5.14,
where the first few PCA components from a sample training set from K-fold validation are
plotted. We observe some clustering of the data in both graphs, but it is not clear exactly
how to separate this data simply using planes. This corroborates with the results in the
previous sections as to why linear kernels did not work as well as the RBF kernels in SVMs,
and motivates the use of non-linear mappings for classification. Table 5.13 summarizes the
different values of the AUC found when using PCA.

Table 5.13: AUC results for different sizes of the encoding layer size lsize using an PCA for
dimensionality reduction

Encoding MLP ConvNet SVM
dimension (lsize =) (AUC=) (AUC=) (AUC=)

32 0.908 ± 0.031 0.911 ± 0.028 0.868 ± 0.036
64 0.924 ± 0.032 0.918 ± 0.029 0.897 ± 0.031
128 0.924 ± 0.026 0.929 ± 0.022 0.925 ± 0.022
256 0.917 ± 0.035 0.922 ± 0.022 0.942 ± 0.016
512 0.928 ± 0.020 0.928 ± 0.021 0.944 ± 0.018
None 0.934 ± 0.021 0.941 ± 0.017 0.943 ± 0.018
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(a) 3D plot of the first second and third PCA
components based on patient labels

(b) 3D plot of the second, third and fourth PCA
components based on patient labels.

Figure 5.14

5.4.3 Discussion

When comparing the AUC after using PCA and AE, we notice that with AE, reducing the
dimension meant a reduced AUC across classifiers. This is corroborated with the fact that
reconstruction of the signals were noisy, suggesting that useful information from the signal
was lost upon AE transformation, however the AUC did not suffer dramatically, even with
reductions of the feature space up to 2.5x. It appears that reducing data through PCA
by 2.5x barely affects the SVM classifier, whereas it has a more noticeable effect on the
ConvNet and MLP. This is possibly in part due to the fact that the SVM seeks the best
hyperplane separations, whereas ConvNets are trying to learn kernel representations which
might be harder to distinguish in PCA space. This suggests that using an SVM as a clas-
sifier is more robust when considering dimensionality reduction. It might also be that the
ConvNet structure is less adaptive than the SVM, which was optimized for a higher feature
space. We notice that when compared to the AE, the results don’t decrease as steadily
when decreasing the encoding dimension with comparable AUC to the original input space.
We notice that SVMs behave significantly worse when considering a much smaller feature
space (lsize = 32) while ConvNets and MLP perform similarly with dimension reductions
of up to 20 times. This suggests that using PCA for data reduction is more efficient than
using AE, however, it also demonstrates that overall the classifiers perform better when
considering the raw spectrums as opposed to reduced feature spaces. We compare the
classification results per patient of SVMs for the regular feature space and for an encoding
dimension of 256 in Figure 5.15. We notice little variation in classification error between
the two, suggesting that most of the information is retained when applying PCA. We no-
tice in some cases, for example with patient 11, that the original feature space has higher
sensitivity compared to the reduced feature space, but that specificity is decreased. This
might suggest combining the results of both feature spaces to be used as a classifier could
help increase detection.
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(a) Original Raman spectrum as input with SVM
classifier

(b) PCA with lsize = 256 as input with SVM
classifier

Figure 5.15: Classification results per patient per label for SVM using K-fold CV on the
raw input (left) and PCA dimensionality reduction (right)

5.5 Leave-One-Patient-Out

We’ve looked in the previous section at a K-fold validation approach to differentiate be-
tween classifier performances. In this section, we explore a leave-one-patient-out (LOPO)
approach, in which all the spectrums of an individual patient are left out for testing, while
the remainder of the data is used for training and validation purposes. We use the same
classifiers and architectures used in the previous sections, i.e. MLP, ConvNet, and SVM
for classification. LOPO enables us to explore how the system would perform in real-life
scenarios when a new patient is introduced since no prior information from that patient
would be available in the training set. Drastically different results to K-fold validation
might indicate clustering of the data within patients and suggest that the models might be
learning irrelevant features such as noise models as opposed to qualitative features discrim-
inating between hisotpathologies. This would also suggest that using patient priors for a
pre-training of the network might be a good idea: for example, scanning certain regions of
the brains that the surgeon can with confidence assert are malignant and/or benign, and
fine-tuning the classifiers on those regions. Because of the imbalance between patients,
and because some patients might have only a single type of label associated to them (i.e.
only benign), metrics such as the AUC used in the previous section cannot be used per
patient since calculating the TPR might incur divisions by zero (i.e. in the case of perfect
classification of a patient with only benign classes, TP+FN = 0). Instead we present the
confusion matrices overall in Table 5.14 for a threshold of 0.5 and figures of classification
results per patient per label in Figure 5.16.

Figure 5.16 compares results per patient of a LOPO approach compared to the K-fold
approach, using the same classifiers, and Table 5.14 presents the respective confusion ma-
trices and metrics of the LOPO approach for a threshold of 0.5. We observe that the
overall sensitivity and accuracy are consistently much worse in the case of LOPO, while
the overall specificity seems to be barely affected. This seems to suggest that classification
results suffer tremendously without prior information of patients and that the classifiers
have a bias towards classifying samples as benign. This seems to suggest that introduc-
ing known classification results of a patient to the training set will improve classification
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significantly. This also seems to suggest that the data might be clustered within patients,
and the assumption that Raman spectrums share commonalities across patients might not
be entirely valid. This also sheds light on the foundation of classification results in litera-
ture when the validation method used is a Leave-One-Spectrum-Out approach, if multiple
spectrums from a same patient are used during training of the classifier.

One way to verify these claims is by using the t-Distributed Stochastic Neighbor Embed-
ding (t-SNE) method to the reduced data via PCA [44]. t-SNE allows the representation
of highly-dimensional data in 2D by grouping similar objects in hyper-dimensional space
together and dissimilar objects further apart. Figure 5.17 visualizes the data per patient
and per label. We can clearly distinguish clusters of patients in Figure 5.17. We can also
corroborate those clusters with the results from Figure 5.16: we observe that within a
patient cluster, if the data appears separable using the t-SNE method, it seems to perform
well in K-fold and seems to perform poorly otherwise. For example, patient 36 has what
looks to be a linearly separable cluster in Figure 5.17 and performs well in both the K-fold
and LOPO scheme as seen in Figure 5.16. Patient 30 and 40 also demonstrate a cluster
which in this case seem visually hard to draw boundaries between labels, and the classifier
struggles to correctly label the malignant samples in both LOPO and K-fold, in this case
due to the prevalence of benign samples otherwise present in the area. This suggests that
taking samples of known pathology during surgery could lead to an increase in classification
performance.

Prediction
Benign Malignant Accuracy: 0.842

MLP Benign 699 72 Specifitiy: 0.907
Malignant 73 76 Sensitivity: 0.510

Prediction
Benign Malignant Accuracy: 0.842

ConvNet Benign 702 69 Specifitiy: 0.910
Malignant 76 73 Sensitivity: 0.489

Prediction
Benign Malignant Accuracy: 0.876

SVM Benign 722 49 Specifitiy: 0.936
Malignant 65 84 Sensitivity: 0.564

Table 5.14: Confusion matrix for K-fold using a 2-Layer MLP for Fold 7 (best AUC), Fold
0 (worst AUC) and overall performance across folds
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(a) K-fold CV with MLP classifier (b) LOPO with MLP classifier

(c) K-fold CV with ConvNet classifier (d) LOPO with ConvNet classifier

(e) K-fold CV with SVM classifier (f) LOPO with SVM classifier

Figure 5.16: Classification results per patient per label for all classifiers. Figures on the
left use a K-fold CV scheme and on the right use a LOPO CV scheme
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5.6 Brain Dataset

The brain dataset comprises of signals measured from 12 distinct human brains in-vivo
by a neurosurgeon during surgery. Raman spectrums were collected from various regions
of interest during surgery and the same sampled locations were sent to histopathology
for labelling. The equipment used for the brain dataset and setup is very similar to the
setup used for the prostate dataset, and the same pre-processing steps are used for the
brain dataset as were used in the prostate dataset. The dataset comprises of a total of
152 samples. There are 3 types of labels returned from histopatology in the brain dataset:
benign, infiltrated and malignant. In the context of brain tumor removal, differentiating
between ’Benign’ and ’Infiltrated’ is the priority, since ’Malignant’ samples often lie in the
visible tumorous region while infiltrated regions are invisible to the surgeon and could lead
to residual cancer after surgery, significantly impacting survival rate. Removing critical
benign brain tissue could cause serious functional damage within patients. Figuring out
where the limits are between infiltrated cells and healthy cells is thus more important and
will be the focus of this section, turning once again the problem into a binary classification
problem, focusing on the ’Benign’ and ’Infiltrated’ classess. Table 5.15 shows the distribu-
tion of samples per label, and Figure 5.18 shows the distribution of labels per patient. As
in the prostate dataset, the data is not equally distributed among patients, however the
data is more balanced than in the prostate dataset. There is also apprixmately 10x less
data in the brain dataset compared to the prostate dataset.

Table 5.15: Data distribution

Label # samples
Benign 71
Infiltrated 57
Malignant 24

Figure 5.18: Distribution of benign and malignant samples per patient in the brain dataset

Similar methods we’re used for calibration of the x-axis and the same reference ma-
terial was used for curve correction before measurements. The same parameters used in
the prostate dataset for AF removal and SG filtering are used on the brain dataset for
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consistency. The same spectral range was selected from the brain dataset to match the
spectral range of the prostate dataset and signal lengths were kept consistent between sets
so that classifiers across datasets would still be relevant. Figure 5.19 shows the means of
all the signals across labels.

Figure 5.19: The means of all signals, separated by categories, after AF removal, on the
brain dataset

We will proceed using the same analysis as in the previous section, first deploying our
classifiers using a K-fold cross-validation method, using K=10, and then use a leave-one-
patient-out approach to see how the method generalizes when new patients are introduced
within the set. The same types of classifiers will be used in this section as were used in the
prostate section, i.e. an MLP, a ConvNet and an SVM. Since we are operating in the same
spectral range, using the same AF removal and noise filtering methods, and using as inputs
signals of the same dimensions, we can assume that the structures of the classfiers found
to be most efficient in the prostate dataset will be just as efficient in the brain dataset. We
once again use the AUC of the ROC curves as a metric to differentiate between classifier
performance.

5.6.1 K-fold cross-validation

Just like with the prostate dataset, we use a K-fold cross-validation approach by splitting
the data into K=10 unique, randomly distributed non-overlapping sets. Every set is left
out once for evaluation as a test set, using the remaining data as a training and validation
set. The classifier is trained on the training set, and evaluated on the validation set at
every epoch. Table 5.16 summarizes the results using an MLP, ConvNet and SVM.

Table 5.16: Best performances noted for K-fold validation across classifiers

MLP [20,20] MLP [40,40] ConvNet SVM
(AUC=) (AUC=) (AUC=) (AUC=)

0.939 ± 0.033 0.846 ± 0.130 0.941 ± 0.036 0.955 ± 0.029

We notice once more that the ConvNet and SVMs perform similarly in terms of AUC,
while in this case the MLP with layer size l1=l2=40 performs significantly worse. This
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could be explained by the complexity of the MLP model versus that of the ConvNet model,
and the reduced amount of data available in the brain dataset compared to the prostate
dataset. The architecture of the MLP consists of approximately 5x more weights than the
ConvNet, explaining the disparity in both the prostate and brain datasets between the
MLP and the other classifiers. When using an MLP with l1=l2=20, we observe similar
performance between the ConvNet and MLP. In the brain dataset, the SVM scores higher
than either of the neual networks in terms of AUC. We notice that when considering a
threshold of 0.5, the confusion matrices shown in Table 5.17 do not vary much in terms
of classification results between the ConvNet and SVM. While the ConvNet shows higher
specificity, the SVM offers higher sensitivity. We notice that the MLP with l1=l2=40
scores significantly worse in terms of accuracy, sensitivity and specificity, and that while the
MLP with l1=l2=20 has better accuracy and specificity overall than its MLP counterpart,
it scored much lower in sensitivity. This suggests once more that the SVM and ConvNet
are better suited at the task of classification than the MLP. Figure 5.20 illustrate these
same results per patient per label for both ConvNet and SVMs, and we see similar results
per patient per label for both methods.

Prediction
Benign Infiltrated Accuracy: 0.836

MLP [20,20] Benign 69 2 Specifitiy: 0.972
Infiltrated 19 38 Sensitivity: 0.667

Prediction
Benign Infiltrated Accuracy: 0.797

MLP [40,40] Benign 63 8 Specifitiy: 0.887
Infiltrated 18 39 Sensitivity: 0.684

Prediction
Benign Infiltrated Accuracy: 0.891

ConvNet Benign 67 4 Specifitiy: 0.944
Infiltrated 10 47 Sensitivity: 0.825

Prediction
Benign Infiltrated Accuracy: 0.883

SVM Benign 64 7 Specifitiy: 0.901
Infiltrated 8 49 Sensitivity: 0.860

Table 5.17: Confusion matrices for K-fold CV and associated metrics for MLP, ConvNet
and SVM

We notice from Table 5.17 that using the K-fold approach, the SVM obtains better
sensitivity scores while the ConvNet obtains better specificity scores. This suggests that
using multiple classifiers in an ensemble method might be beneficial to classification per-
formance and is worthwhile exploring in future work. Figure 5.20 shows the classification
results per patient per label for both the SVM and ConvNet. The fact that both classifiers
scored similarly across patients even though they operate very differently from one another
from an algorithmic point of view also seems suggests that they are both capturing similar
features for classification and that perhaps fundamentally either some of the labels are
inconsistent or some of the measurements erroneous due to experimental error or simply
due to subtle changes in procedure that were overlooked. Having access to larger amounts
of data would definitely help answer these questions, however data collection is limited due
to the very nature of the procedure.
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(a) ConvNet (b) SVM

Figure 5.20: Classification results per patient per label for SVM and ConvNet using the
K-fold CV scheme

5.6.2 Leave-One-Patient-Out

Just like with the prostate dataset, we use a LOPO scheme for the brain dataset and
compare it to results using K-fold CV. Using a LOPO apporach mimics how the system
would perform in a clinical setting on a new patient without any priors from that patient,
since K-fold validation could potentially overfit on priors of a patient. Significantly different
results to K-fold CV would indicate that the learned features are perhaps not able to
generalize across patients.

Table 5.18 summarizes the confusion matrices and metrics obtained using the LOPO
CV scheme and a threshold of 0.5, while Figure 5.21 compares the performance per patient
per label of the different classifiers using K-fold and LOPO. While we observe a decrease
in the overall performance across metrics, the drop in sensitivity is not nearly as important
as it was in the prostate dataset. Looking closer at Figure 5.21, we notice that the drop
in specificity, the ability to identify the ’Benign’ category correctly, is mainly attributed
to patient 47 in the case of the SVM and the ConvNet, and that the classifiers also had a
harder time classifying this patient in the K-fold CV approach. This might suggest that
something in the procedure of the data collection for that patient might have been slightly
different and could potentially be attributed to experimental or human error.

We once more use the t-SNE approach on the brain dataset, which we have reduced via
PCA, to see if we observe the same level of clustering per patient as we did in the prostate
dataset. Figure 5.22 shows the projection both per patient and per label. We notice
some clustering per patient once more in the brain dataset, however in this case, there
also seems to be clustering with respect to the labels, and a clearer separation between
labels using only the first 2 components of PCA reduction. We notice for some patients,
for example patients 52 and 53, clustering occuring in both regions of the diagram, such
that the samples labelled as benign cluster together in one region and the samples labelled
as infiltrated cluster in another region. This seems to agree with the classification results
from Figure 5.21, where patients 52 and 53 have samples of both labels and classification
results are good. In the case of patient 47, which had bad classification results overall both
using ConvNets and SVM classifiers, we notice from Figure 5.22.(a) that the patients’ data
seems scattered throughout and inconsistently with respect to its label. This might, once
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Prediction
Benign Infiltrated Accuracy: 0.75

MLP [20,20] Benign 66 5 Specifitiy: 0.923
Infiltrated 27 30 Sensitivity: 0.526

Prediction
Benign Infiltrated Accuracy: 0.742

MLP [40,40] Benign 54 17 Specifitiy: 0.761
Infiltrated 16 41 Sensitivity: 0.719

Prediction
Benign Infiltrated Accuracy: 0.844

ConvNet Benign 62 9 Specifitiy: 0.873
Infiltrated 11 46 Sensitivity: 0.807

Prediction
Benign Infiltrated Accuracy: 0.836

SVM Benign 61 10 Specifitiy: 0.859
Infiltrated 11 46 Sensitivity: 0.807

Table 5.18: Confusion matrices and metrics using a LOPO CV scheme and different clas-
sifiers in the brain dataset

again, indicate that this patients’ data might be an outlier and could be due to a myriad
of factors.
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(a) K-fold CV with MLP classifier (b) LOPO with MLP classifier

(c) K-fold CV with ConvNet classifier (d) LOPO with ConvNet classifier

(e) K-fold CV with SVM classifier (f) LOPO with SVM classifier

Figure 5.21: Classification results per patient per label for SVM and ConvNet using the
K-fold CV scheme (left) and LOPO CV scheme (right) in the brain dataset
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5.7 Transfer Learning

In both the brain and prostate datasets, one of the main limitations is the amount of
data available for analysis. In the case of prostates, obtaining more samples per patient
is more feasible since the data is currently probed ex-vivo directly after RP and the main
limitation is simply how many samples can be acquired before the prostate dries up. In
the case of the brain data, samples are acquired at the neurosurgeons’ discretion while
operating thus substantially limiting how many signals can be acquired per patient. It
would be of great value if we could find common features from one organ to another,
i.e. from the brain to the prostate, in order to train on an extensive set of signals and
complement the limited dataset with the information obtained from the plentiful dataset.
Since the Raman spectrums are a result of the excitation of certain molecules, it is not
unreasonable to hypothesize that there might be similarities between datasets. In order to
explore this hypothesis, we combined the data of the brain and prostate datasets together.
To do so, we aligned the x-axes according to the calibration results of each dataset and
used the same preprocessing algorithms and parameters to ensure that the signals be as
closely related as possible and avoid sources impacting signal divergence. We then reduced
the combined data via PCA and used t-SNE to visualize if clustering occurred between
datasets. If the data shows clear clusters between sets, then this suggests that the feature
space might be inherently different in both cases and that transfer learning might not be
adequate.

Figure 5.23: t-SNE applied to the combination of the brain and prostate datasets reduced
via PCA

Figure 5.23 shows the t-SNE representation of the combined brain and prostate datasets.
t-SNE allows us to visualize a clear separation between the brain and prostate datasets
with what appears to be a linearly separable plane. This suggests that the data appears to

64



Table 5.19: AUC of the ROC on the brain dataset complemented with prostate training
data using K-fold CV

MLP ConvNet SVM
(AUC=) (AUC=) (AUC=)

0.907 ± 0.037 0.906 ± 0.061 0.948 ± 0.030

Table 5.20: AUC of the ROC on the brain dataset when using the weights from the prostate
dataset as a starting point using K-fold CV

MLP ConvNet
(AUC=) (AUC=)

0.928 ± 0.034 0.955 ± 0.030

contain mutually exclusive information in terms of their PCA components. Thus, simply
augmenting the dataset by complementing the brain dataset with prostate data or vice-
versa would likely not contribute to any meaningful performance. To test this hypothesis,
we complemented the brain dataset with prostate data such that the brain training sets
were augmented with the prostate data. We used the same K-fold scheme as in the previ-
ous sections for the brain dataset and computed the AUC of the ROC curves. Results are
presented in Table 5.19.

We noticed a significant performance drop in the ConvNet, while the SVM performance
seems less affected by the addition of prostate data to the brain dataset, which might
indicate that support vectors were found by discriminating the prostate data from the brain
data. Furthermore, we notice a performance boost with the MLP for the brain dataset
compared to the original MLP on the brain dataset. This suggests that the complexity of
the MLP model used might simply be too high to capture any meaningful representation
from the smaller brain dataset compared to the larger prostate dataset when compared
to the SVM and ConvNet. This also suggests that augmenting the training set by simply
injecting data from another organ does not increase classification results in any meaningful
way.

Alternatively, in the case of MLP and ConvNets, it is possible to use the weights learned
by the ConvNets and MLP from the prostate dataset as a starting point for learning
features on the brain dataset. By doing so, we attempt to get the network to learn a
representation for the data from a local minima instead of initializing the weights from a
pseudo-random state as was done in the previous sections. To do so, we used the prostate
dataset in its entirety to train a ConvNet and MLP, and used the resulting weights as
the initialization to our ConvNet and MLP on the brain dataset. We then used the same
K-fold CV scheme used previously and compute the AUC of the ROC and the same LOPO
approach to compare performances. Table 5.20 summarizes the AUC of the brain dataset
using transfer learning and a K-fold scheme. We saw a significant gain in the MLP and
we also noticed some gain in the ConvNet in terms of AUC. Transfer learning appears
to increase the AUC in the case of the ConvNet and MLP when compared to its initial
performance on the brain dataset and the ConvNet AUC matches SVM performance which
was found to be highest in the previous sections.

Tables 5.21 and 5.22 show the confusion matrices and metrics when using both K-
fold CV and LOPO approaches for a threshold of 0.5. We notice that once again, the
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Prediction
Benign Infiltrated Accuracy: 0.867

MLP Benign 64 7 Specifitiy: 0.901
Infiltrated 10 47 Sensitivity: 0.825

Prediction
Benign Infiltrated Accuracy: 0.891

ConvNet Benign 66 5 Specifitiy: 0.930
Infiltrated 9 48 Sensitivity: 0.842

Table 5.21: Confusion matrices and metrics using a K-fold CV scheme and different clas-
sifiers in the brain dataset

confusion matrices metrics are better when using the K-fold CV approach compared to
the LOPO approach, and that these are comparable to what was obtained without use of
transfer learning in the previous sections. This seems to suggest that the feature spaces of
different organs are independent, and that while transfer learning might help the network
to converge quicker, it does not offer a significant boost to the overall metrics. This also
suggests that obtaining more data for a given organ is of more importance than obtaining
data from another organ to improve training.

Prediction
Benign Infiltrated Accuracy: 0.813

MLP Benign 61 10 Specifitiy: 0.859
Infiltrated 14 43 Sensitivity: 0.754

Prediction
Benign Infiltrated Accuracy: 0.828

ConvNet Benign 63 8 Specifitiy: 0.887
Infiltrated 14 43 Sensitivity: 0.754

Table 5.22: Confusion matrices and metrics using a LOPO CV scheme and different clas-
sifiers in the brain dataset
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Chapter 6

Conclusions

In this thesis, we explore cancer diagnosis of cells in-vivo in the human body in real-time
using Raman spectroscopy. The need for such a method arises when surgically removing
tumors to aid surgeons in determining the boundaries of cancer cells, since residual cancer
cells directly impact survial rates. We focused on the preprocessing steps involved and
on classification results using different classifier architectures, metrics and cross-validation
schemes. We focused on data obtained clinically from human brain and prostates.

We studied different AF removal methods and showed that the Zhang and IModPoly
methods resulted in similar classification results using K-fold CV on the prostate dataset,
with AUC of 0.920 ± 0.019 and 0.925 ± 0.035 respectively, the IModPoly method was
orders of magnitude faster to implement and thus more appropriate for any real-time
implementation.

We then studied the performance of classifiers on the prostate dataset in distinguishing
between malignant and benign cells. MLP, ConvNet and SVM were compared using the
AUC of the mean ROC from K-fold cross-validation as a means to select for the best pa-
rameters and hyper-parameters of each classifier. We showed that in the prostate set, MLP
structure didn’t have significant impact on the performance of the classifier, and found a
maximum AUC score for a newtork consiting of layer size l1=l2=40 and dropout d = 0.1.
ConvNets were found to be optimal for kernel size lkern=128 and dropout rate of 0.25.
SVM were found to be optimal using an RBF kernel. Overall, SVM and ConvNet per-
formed similarly in terms of AUC, with AUC of 0.943±0.018 and 0.941±0.017 and slightly
outperformed MLP with AUC of 0.935±0.021. For all three classifiers, using a threshold of
0.5, we found that the sensitivity was worse overall than the specificity of the system. The
ConvNet achieved an accuracy, specificity and sensitivity of 0.921, 0.947, 0.785 respectively,
while the SVM achieved 0.913, 0.939 and 0.780 respectively and the MLP achieved 0.908,
0.939 and 0.744. We’ve shown that augmenting the data directly in the original feature
space by varying averaging coefficients did not improve classification results. We’ve shown
that PCA is more robust than AE when implementing dimensionality reduction and have
shown that we can obtain comparable classification results when reducing the datasets by
2.5x using both PCA and AE, however classification results were better overall when using
the original spectrum as input. We’ve also shown the effect of using a LOPO CV scheme
and noted significantly worse sensitivity metrics when employing a LOPO approach over
a K-fold CV approach, suggesting clustering within patients, and have shown visually us-
ing t-SNE evidence of said clustering. This suggests that more robust protocols during
signal acquisition might be needed and that pre-training of the network during surgery
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with signals acquired from regions of known pathology by the surgeon might help improve
sensitivity and overall performance of the system.

In the brain dataset, we studied the performance of classifiers at distinguishing between
benign and infiltrated regions of the brain. We have also shown that ConvNet and SVM
perform similarly and overall and that in the brain dataset, the architecture of MLP had
more of an effect on the overall performance, likely due to the much smaller dataset size.
We also show that LOPO results are worse than K-fold CV results, as was the case in the
prostate dataset, suggesting once more that evaluation metrics should take in to account
patient ID and cross-validation methods should account for patient groups. However,
clustering within patients was not as obvious when employing t-SNE as in the prostate
dataset, suggesting that the protocols involved during brain data acquisition were subject
to less variability from patient to patient. We also studied the prospect of using transfer
learning by leveraging the information in the prostate dataset on the brain dataset. We
have shown that simply complementing the brain dataset with prostate signals decreased
performance for both SVM and ConvNet. We also showed that using transfer learning,
i.e. using the weights learned from the prostate set as a starting point to train the brain
networks, in the case of both the ConvNet and MLP, K-fold results performed slightly
better, suggesting that pre-training the weights on another dataset can slightly improve
calssification accuracy, however this demonstrates that obtaining more data for a given
organ is more important than leveraging existing data from another organ.

6.1 Contributions to the field

We focused our attention on data gathered from human brains and prostates in-vivo using
Raman spectroscopy. Our contributions to the field are as follows:

• We’ve shown that preprocessing steps have a significant impact on classification re-
sults and presented those that are best suited for real-time Raman spectroscopy

• We’ve shown that SVM and ConvNet consistently outperform MLP on our brain and
prostate datasets

• We’ve explored the use of data augmentation on our datasets and have shown negli-
gible improvements on classification metrics

• We’ve explored the use of dimensionality reduction using PCA and AE and have
shown that while PCA is better suited than AE, classification results are optimal on
the original feature space

• We’ve explored transfer learning, and shown that there was marginal improvement
in using one organ to fine-tune the weights of a classifier on a different organ

• We’ve shown evidence of clustering within patients in our datasets suggesting that
metrics acquired using LOSO in literature can be inherently biased and overly opti-
mistic and that LOPO should be used to avoid bias and to mimic clinical settings
applications
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Overall, we’ve shown that the choice of classifier does not have significant impact on
classification in the limited datasets that we have. Clustering of the data in both datasets
suggests that having robust protocols for data acquisition and processing are necessary
and perhaps even more important than intricate classifiers. In fact, in both the prostate
and brain datasets, SVM seem to generalize well and seem to be well suited for the task
of classification when applied directly to the original feature space. Future work should
focus on collecting more data and seeing if the results presented in this thesis still hold
on larger amounts of data. If clustering still occurs, studying in depth the ramification
of LOPO versus K-fold CV and LOSO is necessary, since high performance of K-fold and
low performance of LOPO can lead to poor performance when deployed clinically. Future
work should also focus on real-time pre-training of networks from spectrums acquired by
the surgeon in regions of known or obvious pathology.

In conclusion, Raman spectroscopy shows promise as a real-time diagnostics tool in the
brain and prostate, however there are still limitations to classification performance and
improvements that need to be made before it can be implemented for real-time clinical
use. The lack of available data, due to the very nature of the procedures, make classifi-
cation more challenging and perhaps exploring developing models as opposed to training
supervised learning algorithms could complement current classification results and prove
to be beneficial in the long-run.
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