
  

Development of Hydroarylation and Dehydration 

Methods for Conjugated Polymers 

 

by 

 

Luke Vanderzwet 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Master of Science 

in  

Chemistry 

 

 

 

 

Waterloo, Ontario, Canada, 2017 

 

© Luke Vanderzwet 2017 



ii 
 

Author’s Declaration 

 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, 

including any required final revisions, as accepted by my examiners. 

 

 

I understand that my thesis may be made electronically available to the public.  



iii 
 

Abstract 

 

Conjugated polymers represent an important next step for solar cell, field effect 

transistor, and light emitting diode technologies. However, there are several drawbacks 

to the current syntheses of this class of polymer that limit the field. The current routes to 

access conjugated polymers suffer from one or more of: synthetic complexity of the 

monomers, poor heteroaromatic tolerance or toxic by-products. Here we present two new 

methods to address these issues. First, a hydroarylation reaction to access poly(arylene 

vinylene)polymers and, second, a dehydration reaction of thiazole N-oxides for 

poly(heteroarene) polymers. 
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1.0 Introduction 

1.1.0 Conjugated Polymers 

 

The history of modern conjugated polymer research traces its origin to the studies 

performed in 1977 by Alan J. Heeger, Alan G. MacDiarmid, and Hideki Shirakawa, where 

it was discovered that polyacetylene possessed atypically high conductivity for a polymer 

upon doping,1 and were awarded the Nobel Prize in 2000 for their contributions.2 Interest 

in this class of material continues to be driven by their wide variety of applications which 

take advantage of their unique combination of optoelectronic and polymeric properties. 

These applications include incorporation into organic photovoltaics (OPVs), light emitting 

diodes (OLEDs), and field effect transistors (OFETs).3 Due to the fact that these materials 

are polymeric, rather than inorganic, several attractive properties become achievable: 

mechanical flexibility, impact resistance, optical transparency, improved processability to 

reduce costs, and tunability of the polymers by modification of the repeating units.3 

 

Scheme 1. Delocalization of electrons along a conjugated polymer’s backbone. 
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In many applications, it is accepted that polymer-based devices may never be able 

to outperform traditional electronic devices.3 However, interest in these materials remains 

because their unique properties could allow them to be used in scenarios where silicon-

based material cannot. Firstly, the deposition of transparent conjugated polymeric thin 

films on window panes convert them to low-efficiency solar cells, indistinguishable from 

regular window panes.4 Their flexibility has allowed them to be implemented into curved 

displays that have found use in consumer products, as well as artistic and architectural 

applications.5 Also, their reduced cost of manufacturing has allowed them to be used in 

transistor applications where requirements for device performance were not demanding.6 

Even though these examples show that the potential of these materials has begun 

to be harnessed, much of it remains unrealized. This is due in large part to limited 

reactions that provide defect-free polymerization reactions that tolerate a good range of 

heteroaromatic rings and functional groups. A further drawback to the current syntheses 

is the synthetic complexity required to access the monomers increases the cost of 

production. By developing new polymerization strategies that resolve these issues, it 

would allow for a greater variety of high performing materials to be synthesized and 

studied at an increased pace.  
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The synthetic tools available to researchers are of great importance because they 

allow for control over one of the most important traits of conjugated polymers: their 

tunability. When designing conjugated polymers, there are several elements that must be 

considered: the length of the polymer, the electronic properties of the π-systems and 

substitutions, twist angle between π-groups, and solubility in organic solvents. 

 

 

Figure 1. Conjugated polymer incorporating common design features. 

 

To a point, the length of the chains affect the polymer’s electronic properties by 

increasing the number of π-bonds that can be in conjugation where longer chains tend to 

lower the LUMO of the polymer and increase the charge carrier mobility. However this 

effect has shown saturation dynamics where there is a maximal effective conjugated 

length that can be achieved.7 Above this effective conjugated length, the bandgap energy 

ceases to be affected by increasing the length of the polymer.  
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The relevant values for characterizing of the length of a polymer are the number 

average molecular weight (Mn), the weight average molecular weight (Mw), and the 

polydispersion index (PDI). In brief, the Mn is the average molecular weight in which the 

number of chains above and below it are equal. Whereas the Mw is the average molecular 

weight in which the mass of chains above and below it are equal. Because longer chains 

have a heavier mass, Mw is always greater than or equal to Mn. Thus the PDI, defined as 

Mw/Mn, is always greater than or equal to 1. The PDI functions much like a measurement 

of standard deviation in molecular weights to express the uniformity, or lack thereof, in 

chain length; the closer the PDI is to 1, the more monodisperse the polymer.8 

 

 

Figure 2. Graph illustrating the distribution of molecular weights amongst polymer 
chains. 
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Because there are a large variety of conjugated polymers that are used in wide 

range of applications, it is difficult to prescribe a precise number on what the desired 

molecular weight is best for device performance. However, for poly(thiophene), some 

studies suggest that an Mw of ~25kDa should be achieved to ensure reproducibility and 

that the effective conjugated length is met.9  

One of the main advantages of conjugated polymers is their tunability. Even simple 

substitutions of the side chains of polymers used in LEDs will alter the colours emitted 

(Figure 3)10 and substitutions of the side chains of polymers used in solar cells will shift 

the range of light absorbed.11  

 

Figure 3. Effect of substitutions to the repeating on the colour of light emitted in 
polymeric LEDs. 
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The electronics can be further tuned by the choice of aromatic rings incorporated 

in the polymer backbone. For example, the polymer poly(thiophene) has a band gap (Eg) 

of 1.8 to 2.2 eV whereas poly(pyrrole) has an Eg of 2.9 to 3.2 eV.12 Furthermore, by 

designing the repeating unit to contain alternating donor (electron rich) and acceptor 

(electron poor) rings, the HOMO-LUMO gap is significantly reduced.3  

For the polymer to have conductive properties, there must be little to no twisting in 

the backbone such that the p-orbitals can overlap and allow delocalization along the 

chain. Consider poly(p-phenylene) (Figure 4), which has steric interactions between 

adjacent rings: the angle between benzene units are ~40˚ and thus the material is 

insulating (Eg of 4.0 eV).13 Whereas poly(p-phenyl vinylene) has vinyl groups which limits 

the steric interactions that inhibit coplanarity of the rings and allows for p-orbital overlap.14 

In poly(thiophene), the five-membered rings adopt an orientation that avoid steric 

interactions of the hydrogens at the 3 and 4 positions to achieve high coplanarity along 

the chain.15 Twisting thus depends on steric effects which must be kept to a minimum. 

This is often in direct competition with solubility (and thus processability) of the polymer 

because the primary method to increase solubility is to add large alkyl chains to the 

repeating units. 
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Figure 4. PPP16 is twisted compared to PPV17 and PT12. 

 

 In addition to these properties that, to some degree, can be rationally pursued by 

design of the repeating unit, performance depends significantly on the solid state packing 

of the polymer which is very difficult to predict and control.3 As a result of this, and the 

previously presented aspects that can be tuned, a large amount of effort must be invested 

by chemists to synthesize a large number and wide scope of polymers. Thus, 

advancements in the field greatly rely on developing robust and streamlined synthetic 

strategies. 
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1.2.0 Synthesis of Poly (p-Phenyl Vinylene)-Type Polymers 

Conjugated polymers composed of alternating aromatic and alkene in the 

repeating units, such as poly(p-phenylenevinylene) (PPV) and the more general structure 

known as poly(arylenevinylene) (PAV) are of particular importance in the field of 

optoelectronic organic materials.18 Historically, their importance comes from being the first 

polymers to exhibit electroluminescence, the phenomenon exploited in light-emitting 

diodes, in 1990 by Burroughes et al.19 However, research in this type of polymer has 

stagnated as compared to other conjugated polymers, in large part due to lack of recent 

innovation in synthetic methods used for accessing them. 

There are currently two general approaches to synthesizing PPV-type polymers: 

the precursor routes, which proceed through p-quinodimethane monomers, and the 

polycondensation routes, which employ cross-coupling and olefination reactions.18,20 The 

precursor routes most widely used today are the Gilch polymerization (Scheme 2), which 

results in many defects (Scheme 3), the Wessling polymerization (Scheme 4), and the 

dithiocarbamate polymerization (Scheme 5). A variety of cross-coupling and olefination 

reactions have been investigated, including the Wittig reaction, the Knoevenagel reaction, 

the Heck, Suzuki, and Stille couplings (Scheme 6).21 Such reactions will be referred to as 

polycondensations. 
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The first reported synthesis of a PPV occurred in 1966 when Gilch and 

Wheelwright showed the polymerization of a symmetrical α,α’-dichloro p-xylylene 

precursor (1).22 This reaction is considered a precursor route because the reactive 

monomer that is being polymerized (2) is generated via a 1,6-E2 elimination by treating 1 

with base.23 The mechanism is presented in Scheme 2. Polymerization initiated by the 

dimerization of 2 to produce an α,ω-biradical (3) which will ultimately result in a tolane-

bis-benzyl (TBB) in the chain. Subsequent to initiation, the chain then propagates through 

radical polymerization to form the PPV-precursor polymer (4) which is converted in situ 

to PPV (5) (if an excess of base was used) or can be converted in a separate step if not.24 

Conjugated polymers typically have poor solubility in organic solvents. As a result, the R-

groups incorporated into the precursor are usually long alkyl chains to increase solubility. 

 
 

Scheme 2. Gilch approach to PPV. 
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A major problem with the Gilch route is that the resulting polymer incorporates 

many defects. The polymer inherently contains a TBB defect due to the initiation 

mechanism and, furthermore, the undesired head-to-head and tail-to-tail additions lead 

to TBB (8) and alkynyl (9) defects, respectively (Scheme 3). These structural defects that 

accumulate in significant amounts severely compromise the Gilch polymerization’s 

synthetic usefulness in electronic devices which require virtually defect-free polymers.25 

 

 

Scheme 3. Defect resulting from head to head polymerization. 

 

 Another precursor route is the Wessling polymerization (Scheme 4), which was 

developed in 1968.26 Again, the precursor is converted to a reactive monomer through an 

E2 like 1,6-elimination. However, in this route the precursor is a 1,4-bis-

(dialkylsulfoniomethyl)-benzene salt (10). The ionic functional groups also serve as 

hydrophilic solubilizing groups that allow for the polymerization to occur in water and can 

be removed by treating the polymer with heat.  
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Scheme 4. The Wessling method to synthesize PPV. 

 

 The previous two methods discussed, the Gilch and Wessling polymerizations, 

have another significant drawback: they tolerate heterocyclic aryl rings poorly, which are 

extremely important in organoelectronic materials.18 This limitation has been overcome 

with the development of the dithiocarbamate route (e.g. Scheme 5).27 However, this 

method still has the structural defect problems of the other precursor routes listed 

above.28 

 
Scheme 5. Synthesis of poly(thienylvinylene) (PTV) via the dithiocarbamate route. 

 

 Although these precursor routes offer polymers of relatively high molecular weights 

(mass average molar mass, Mw, up to 250 kDa) and relatively low molecular weight 

distribution (polydispersity index, PDI, of 1.4-2.1), they lack the control over design of the 

polymer that polycondensation reactions (Scheme 6) can provide. Due to the step-growth 

nature of polycondensation reactions, strictly alternating copolymers can be synthesized. 

In many electronic applications, this becomes vital because alternating donor-acceptor 

units lead to low band gaps, excellent light-harvesting abilities, and high charge mobility.29 

Unfortunately, PAVs synthesized by polycondensation reactions have low Mw (8 to 25 

kDa).20  
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Scheme 6. Access to PPV via polycondensation reactions. 

 

In all of the routes discussed thus far, another disadvantage is the fact that the 

monomers are highly functionalized and require several steps to produce which adds to 

the synthetic complexity and decreases the efficiency of the overall synthesis. In Scheme 

7, it can be seen that the precursor for the Gilch route requires at least three synthetic 

steps in addition to any steps that are required for installing the solubilizing R groups.30 

Furthermore, the precursors in the Wessling and dithiocarbamate routes require another 

step to access them. Similarly, in the polycondensation routes, both monomers need to 

be functionalized to a significant degree to create reactive carbon-heteroatom bonds. 

Often, these heteroatoms produce stoichiometric waste molecules that may be difficult to 

separate from the desired polymers.  
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Scheme 7. General synthetic approach to the various monomers. 
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1.3.0 Synthesis of Poly(hetero)arene-Type Polymers 

The first syntheses of poly(thiophene)s, one of the most important 

poly(hetero)arene-type polymers, were achieved through electrochemical and oxidative 

polymerization techniques.30 However, completely unmodified poly(thiophene) suffers 

from poor solubility do its rigid rod morphology. To overcome this, a solubilizing chain is 

placed on the 3-position of the thiophene units, such as a hexyl group. In these two 

polymerization techniques, there is little to no regiocontrol and thus many head-to-head 

and tail-to-tail defects occur instead of the desired head-to-tail repeating unit.31 

 
Scheme 8. Oxidative polymerization leads to head-to-head and tail-to-tail defects. 

 

Highly regioregular poly(3-alkylthiophene)s can be achieved by LDA lithiation of 2-

bromo-3-alkylthiophene followed by metal-catalyzed Kumada cross-coupling of 

thiophene Grignard reagents (McCullough’s method).32 Alternatively, selective oxidative 

addition of zinc followed by a Negishi cross-coupling reaction (Reike’s method) can be 

used.
33 Both methods can afford highly regioselective products, and they are illustrated 

in Scheme 9.  
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The reason that regioregularity is important is that compared with their 

regiorandom counterparts, UV-Vis absorption wavelength (λ max) of regioregular poly(3-

alkylthiophene)s have red-shifts of 40 to 90 nm. This indicates a reduction of the bandgap 

compared to the regiorandom polymers, which is important in many applications.32,33 

 
Scheme 9. (A) McCullough’s and (B) Reike’s method for synthesizing regioregular 

poly(thiophene). 

However, these aforementioned routes do not allow for incorporating the complex 

heteroaromatic rings typically observed in high performance materials. To access these 

repeating units, such as the one in PBDB-T (Scheme 10), which has the current power-

conversion efficiency world record, the Stille route has been extensively used.34 It has the 

advantages of working for a large scope of heteroaromatic systems, granting access to 

alternating donor-acceptor motifs, and can achieve high molecular weights. However, one 

of the drawbacks is that synthesizing these monomers can be rather laborious, in part 

due to incorporating the stannyl groups. 
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Scheme 10. Development of complex, high-performing conjugated polymer PBDB-T 
through a Stille strategy. 

  

A recent approach to reduce synthetic complexity is to employ transition metal 

catalyzed reactions that can directly activate carbon-hydrogen (C-H) bonds. This 

eliminates steps that convert hydrogens into halides, metals, or other heteroatoms that 

are typically required for carbon-carbon bond forming reactions. One example of C-H 

bond activations is the direct arylation transformation presented in Scheme 11, which 

allows for couplings that would normally necessitate an extra synthetic step for the 

installation of highly toxic alkyltin.35 It has been shown that direct arylation polymerization 

has been able to streamline the monomer synthesis while retaining the key strengths of 

the Stille coupling route. A further benefit of this route is that the tin byproduct of the 

reaction was eliminated. 
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Scheme 11. Comparison of the Stille coupling and direct arylation as polymerisation 

reactions. 

 

 The above example, from the Leclerc group at the University of Laval,35 

demonstrated a high performance polymer, 22, being made both by the Stille and DArP 

methods. In using the DArP strategy, the monomer synthesis was streamlined due to the 

fact that both (23) and (24) were isolated synthetic intermediates towards the monomers 

(20) and (21) used in the Stille route.  
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Scheme 12. Direct arylation example incorporating thiazoles into the polymer. 

 

A heteroaromatic ring of great importance in conjugated polymers that has 

demonstrated high performance in several key properties is thiazole.36 Incorporation of 

such heteroaromatic rings would be difficult without the Stille and DArP routes (Scheme 

12), thus demonstrating that two relatively recent advances in these polymerization 

methods has been key to advancing organic device performance. 
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2.0.0 Results and Discussion 

2.1.0 Hydroarylation Polymerization 

2.1.1 Optimization of the AB Homopolymerization 

With the desired structural aspects of the repeating units and the desired traits of 

polymerization reactions outlined, this thesis presents two robust synthetic strategies that 

reduce synthetic complexity of monomers, incorporate heteroaromatic rings, and limit 

toxic by-products. First, we present a hydroarylation reaction strategy, the formal addition 

of an arene C-H bond across an alkyne, for accessing PAVs (Scheme 13) as an 

alternative polymerization. The advantages we were aiming for with this approach over 

previous routes for PAVs are that it will be atom-efficient, not generate toxic by-products, 

and have a high tolerance to functional groups and heteroaromatic rings. With the 

emerging field of conjugated polymers, developing new synthetic tools with such traits will 

be essential for their continued growth in efficiency. 

 
Scheme 13. Proposed hydroarylation polymerization 

 

From examining a Fagnou et al. hydroarylation paper, we had a clear idea of initial 

conditions and substrates to investigate for the purpose of polymerization. We imagined 

that this rhodium catalysed transformation reported for small molecule reactions could be 

extended to polymerization because many of the compounds undergo hydroarylation in 

very high yield, which would be vital in synthesizing high molecular weight polymers 

(Scheme 14).37 Another attractive trait of this small molecule reaction was that it 
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proceeded in high regioselectivity, with only the regioisomer that resulted in linear π-

conjugation being observed.  

 

 
Scheme 14. Small molecule reaction to be adapted to polymerization reaction with 

partial scope presented. 

 

 This hydroarylation reaction is proposed to proceed through the mechanism 

shown in Scheme 15. 37 The catalytic cycle begins with the directed metalation 2-

position of the indole resulting in C-H bond cleavage by rhodium. It is in this elementary 

step that the carbomoyl group performs its role; as a directing group it guides the 

rhodium to the 2-position by interacting with the rhodium to form a 5-membered ring. 

This is followed by the migratory insertion of the alkyne and finally protonolysis to expel 

the 2-vinyl indole product and regenerate the rhodium catalyst. 
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Scheme 15. Mechanism for the hydroarylation reaction. 37 

 

 For our purposes of extending this reactivity to a polymerization reaction, the initial 

monomer investigated for optimization was a 6-alkynyl indole (30) because the carbomoyl 

capped indole showed remarkable reactivity in the literature small molecule reaction and 

because of its ease of preparation (Scheme 16). Another reason for selecting this as our 

model monomer is that AB polymerization (AB referring to the two functional groups 

involved in the transformation reaction being on the same monomer) required the 

synthesis of only one monomer and this assures that the reactive C-H and alkyne are 

present in an exact one-to-one ratio. The commercially available 6-bromoindole (29) had 

the carbamoyl group installed through previously reported conditions.37 Subsequently, a 
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Sonogashira reaction was performed to couple the alkyne at the 6-position to produce 30 

in acceptable yield (Scheme 16). With 30 in hand, various conditions were then screened 

and optimized to produce the polymer 31 (Scheme 17).  

 

 
Scheme 16. Synthesis of the AB monomer (30). 

 

 
Scheme 17. General polymerization conditions investigated and optimized 

 

 Our original attempt to transfer the literature conditions to this AB monomer did not 

result in anything more than small oligomers that we did not bother to isolate (Table 1, 

line 1). The monomer 30 required the addition of catalytic CsOPiv to produce polymers 

large enough to be isolated by precipitation in methanol. The rationale for the addition of 

this CsOPiv was that a base may aid in the C-H bond cleavage taking place in the directed 

metalation step of the hydroarylation and that specifically CsOPiv would be good due to 

PivOH already being the acid present for the protonolysis step.37 Loading of CsOPiv at 
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5% was found to produce the highest molecular weight polymers (Table 1, line 2). Next, 

a fairly typical screening of the concentration of the monomer in THF took place. There 

appeared to be a local maximum at 0.25 molar but its effect was not very pronounced 

(Table 2). 

 

Table 1. CsOPiv screening 

CsOPiv  
(mol%) 

THF  
[M] 

PivOH  
(eq.) 

Temp  
(oC) 

Time  
(h) 

Mn  
(kDa) 

Mw  
(kDa) 

PDI 

0 0.33 5 90 22 NA NA NA 
5 0.33 5 90 22 6.7 12.5 1.6 

10 0.33 5 90 22 6.9 11 1.6 
20 0.33 5 90 22 NA NA NA 
50 0.33 5 90 22 NA NA NA 

 

Table 2. Solvent concentration screening 

CsOPiv  
(mol%) 

THF  
[M] 

PivOH  
(eq.) 

Temp  
(oC) 

Time  
(h) 

Mn  
(kDa) 

Mw  
(kDa) 

PDI 

5 0.33 5 90 22 7.6 12.2 1.6 
5 0.25 5 90 22 8.6 12.8 1.5 
5 0.22 5 90 22 7.7 12.5 1.6 
5 0.20 5 90 22 7.2 12 1.7 

 

Next the amount of pivalic acid (PivOH) used was screened. This was shown to 

have a significant effect on the molecular weight. The number average molecular weight 

(Mn) was found to almost double when changing from the original 5 equivalents to 10 

equivalents (Table 3). 
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Table 3. PivOH screening 

CsOPiv  
(mol%) 

THF  
[M] 

PivOH  
(eq.) 

Temp  
(oC) 

Time  
(h) 

Mn  
(kDa) 

Mw  
(kDa) 

PDI 

5 0.25 5.0 90 22 8.6 12.8 1.5 
5 0.25 7.5 90 22 9.0 15.3 1.7 
5 0.25 10.0 90 22 15.9 18.8 1.2 
5 0.25 15.0 90 22 10.8 21.2 2.0 

 

Our next investigation into optimizing the reactions was a fairly standard 

temperature screening. Investigations included determining whether the use of an oil bath 

for an overnight reaction or running the reactions in a microwave reactor (MW) for 4 hours 

was more effective. It was found that increasing the temperature to 110 ºC in an oil bath 

resulted in the highest molecular weights (Table 4). Above this temperature, the 

molecular weights achieved diminished. 

 

Table 4. Temperature Screening 

CsOPiv  
(mol%) 

THF  
[M] 

PivOH  
(eq.) 

Temp  
(oC) 

Time  
(h) 

Mn  
(kDa) 

Mw  
(kDa) 

PDI 

5 0.25 7.5 90 (MW) 4 9.3 13.8 1.5 
5 0.25 7.5 100 22 16.5 22.4 1.4 
5 0.25 7.5 100 (MW) 4 13.0 20.0 1.5 
5 0.25 7.5 110 22 18.4 29 1.6 
5 0.25 7.5 110 (MW) 4 11.0 18.9 1.7 
5 0.25 7.5 120 22 17.1 23.0 1.3 
5 0.25 7.5 130 (MW) 4 10.6 19.5 1.8 

5 0.25 7.5 150 (MW) 4 9.6 17.6 1.8 

 

 The optimal conditions to date for the homopolymerization are presented below in 

Scheme 19. In addition to the 6-alkynylindole that had been investigated for the 

optimization screenings, a 5-alkynylindole was also polymerized. 
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Scheme 18. Optimized homopolymerization conditions using a single addition of the 

rhodium catalyst. 

 

Our MW reactor in the lab has a robotic arm, which allows for reaction mixtures to 

be queued. During our screening efforts, we found that samples earlier in the queue 

routinely resulted higher molecular weights and reactions that were third in queue or later 

would fail to polymerize. This led us to believe that the deactivation of the rhodium catalyst 

may be limiting the molecular weights obtained. Following this observation, new 

conditions were devised to attempt to polymerize monomer 30. Rather than add all 5% 

mol of the rhodium catalyst at the beginning of the reaction, 2.5% mol was added at the 

start of the reaction then an additional 2.5% mol was added after 4 hours. The reasoning 

behind the choice of 4 hours was that because a reaction that was in the microwave 

queue for 4 hours failed to react, the catalyst must be deactivated and rendered ineffective 

by that time when in the reaction medium. The results from this 2 x 2.5% addition 

experiment were very promising. For the first time, the reaction mixture was pushed to 
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the point insolubility, a phenomenon that occurs when the polymer reaches sufficiently 

large molecular weight. Optimizing the reaction time subsequent to the second addition 

were performed where it was found that the optimal time was found to be 3 hours, with 

the polymers resulting in molecular weights of Mn of 34 kDa and an Mw of 43 kDa. No 

further optimization took place after this, because higher molecular weight could not be 

achieved beyond the molecular weights that are still soluble in THF and, at this time, we 

did not want to pursue solubilizing chains other than the octyl chain in these screenings 

(such as the branched 2-ethyl hexyl which may have increased polymer solubility).  

This hydroarylation reaction formed C-C bonds through the formal addition of a C-

H bond at the 2-position of an indole across an internal alkyne to access PAV polymers. 

Optimization efforts brought molecular weights of this AB polymer from small oligomeric 

products to a relatively large molecular weights Mn = 34, Mw= 43 kDa (Scheme 19). 

Solutions to low reactivity under the original conditions inspired by the source literature’s 

small molecule reaction included the addition of catalytic CsOPiv, raising the equivalents 

of PivOH additive, and doing portionwise additions (two 2.5 mol% loadings) of the 

rhodium catalyst. With optimized polymerization conditions identified, the scope of the 

reaction was examined through AA BB polymerization strategies. 

 
Scheme 19. Optimized polymerization conditions for the 6-position derivative using 

multiple additions, at reduced molar equivalence, of the rhodium catalyst. 
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2.1.2 Scoping of the AA BB Homopolymerization 

With the optimized reaction conditions for the AB polymerization completed, 

attention turned to extending reactivity to an AA BB polymerization strategy (Scheme 20), 

where two monomers, one possessing two alkynes, was reacted with another monomer 

possessing two reactive C-H bonds. To access the dialkyne monomers, Sonogashira 

reactions were used to couple terminal alkynes to dibromo arenes (Scheme 21 

A). The terminal alkyne that was chosen was didodecyne because it allowed for 

the incorporation of a solubilizing chain to the repeating unit. Next, for the monomer 

containing two reactive C-H bonds, diindole species were designed for their simplicity to 

synthesize through Suzuki-Miyaura coupling reactions (Scheme 21B). The amidated 6-

bromoindole (29) was converted to the pinacol boronate ester (34) and this product was 

isolated in 96% yield. The motivation for isolating the boronate ester instead of doing a 

one-pot synthesis of diindole was that the boronate ester could be further used to 

incorporate arenes that are common in conjugated polymers, such as thiophenes, 

benzothiodiazoles, and fluorenes. 

 
Scheme 20. General reaction equation for an AA BB homopolymerization via the 

hydroarylation reaction.  
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Scheme 21. (A) A Sonogashira coupling strategy for dialkyne monomers and (B) 
Suzuki-Miyaura coupling strategies for diindole monomers. 
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Monomers synthesized through these two strategies are summarized in Scheme 

22. The arenes included in the scope of the dialkynes investigated were an electron-

neutral benzene (36), an electron-poor terephthalate ester (37), and an electron-rich 

thiophene (38). These strategies proved to be efficient, facile routes to access the 

monomers upon which we were able to test the scope of the polymerization reaction 

conditions that were developed. The various dialkynes were then reacted with the various 

diindoles and the results are summarized in Table 5. In addition to the diindoles that were 

investigated, a pyrrole monomer that possessed carbonyl directing groups on the 3 and 

4 positions was also tested for reactivity. 

 Generally, reactivity transferred well to AA BB polymerizations with Mn’s up to 23 

kDa. However, the limiting phenomenon of gelation was encountered at much lower 

molecular weights than in the AB polymerizations due to the larger repeating units. This 

was especially notable for the monomers with the spacer arene between the diindoles. 

Other appreciable trends are that the thiophene and the terephthalate dialkynes had 

decreased reactivity compared to the phenyl species.  
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Scheme 22. Monomer synthesis yields for AA BB hydroarylation polymerizations. 
Dialkynes in blue and diindoles in red. 
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Table 5. AA BB hydroarylation polymerizations results 

 

Compound Mn 
(kDa) 

Mw 
(kDa) 

PDI 

 

23 37 1.6 

 

10 12 1.2 

 

10 17 1.7 

 

10 19 1.9 

 

10 16 1.6 
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8 13 1.6 

 

7 11 1.6 

 

11 19 1.9 

 

10 19 1.9 

 

8 12 1.5 
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11 22 2.0 

 

These examples incorporated heteroaromatic rings such as thiophene and 

benzothiazole, and other aromatic systems such as fluorenes and terephthalate esters in 

the repeating unit of the polymer. Advantages of this C-H activation reaction are that it 

can incorporate a variety heteroaromatic rings, synthesize polymers of relatively high 

molecular weights, and greatly reduces synthetic complexity towards access of conjugate 

polymers. However, an area for further improvement to this method is that the lack of 

diversity in C-H bonds that it can effectively activate. Only the 2-position on indoles were 

able to be polymerized through our efforts. 
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2.2.0 Dehydration Polymerization 

2.2.1 Initial Discovery, Optimization, and Scope 

This thesis also presents the first dehydrative technique discovered for the 

synthesis of conjugated polymers. Two of the most industrially important polymers, nylon 

6,6 and poly(ethylene terephthalate), are annually synthesized on megaton scale through 

dehydration reactions that produce an equivalent of water as their sole bypoduct for each 

new bond formed in the polymeric backbone (Scheme 23).38 Development of an efficient 

dehydration reaction for conjugated polymers would represent an important and elusive 

advance of synthetic tools. 

 
Scheme 23. Examples of industrially important polymers formed by dehydration reactions. 

 

 The dehydration reaction described in this thesis (Scheme 24) results in the 

carbon-carbon bond formation from two thiazole N-oxides. In this reaction, the two 

thiazole N-oxides react to form a biaryl system through the loss of the hydrogens at the 

reactants’ 2-position and one of the N-oxide oxygens, giving a formal loss of one 

equivalent of water, as catalyzed by base. We also investigated if this dehydration 

reaction discovered in our group could be extended to a polymerization reaction that could 

afford conjugated polymers (Scheme 25). 
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Scheme 24. Dehydration dimerization developed in the Schipper Group 

 

 

Scheme 25. The dehydration reaction can yield either small molecules or high 
molecular weight conjugated polymers. 

 

The mechanism that we propose (Scheme 26) for this transformation begins with 

deprotonation at the 2-position the thiazole N-oxide (53) The resulting metalated thiazole 

(55) performs a nucleophilic attack on the 2-position of the other equivalent of the thiazole 

N-oxide (53), this sequence could be considered a directed metalation reaction.. 

Following this attack, formal loss of H2O from 57 through an E1cb mechanism is 

envisioned to obtain 54. 

  

Scheme 26. Proposed mechanism for the dehydration dimerization. 
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Initial discovery and optimization of the reaction conditions are both summarized 

in Table 6. The reaction was discovered using toluene at 90 ºC with NaOtBu. Lowering 

the temperature to 50 ºC improved yields but lower than this had diminishing returns when 

the reaction was performed in toluene. However, switching to an ethereal solvent and 

lowering the temperature to room temperature significantly increased the yield to 70%. 

Base screening also revealed that LiOtBu promoted the reaction well. Further 

optimization found that switching to dropwise addition of LiOtBu in THF at 0 ºC then 

warming room temperature increased the yield of the reaction yet again. 

Table 6. Summary of the optimization of the dehydration reaction. 

Solvent Base Temp. 
(ºC) 

Time 
(min) 

Yield 
(%) 

Tol. NaOtBu 90 30 25 

Tol. NaOtBu 50 30 63 

Tol. NaOtBu rt 30 25 

Tol. LiOtBu 90 30 83 

Et2O NaOtBu rt 30 70 

THF LiOtBu 0 30 77 

THF LiOtBu 0rt 5 88 

 

To investigate the scope of these dehydration conditions on the small molecule 

scale, a series of thiazoles had to be synthesized while keeping the 2-position open for 

the dehydration reaction. Direct arylation reactions for thiazoles is known to be 

regioselective for the 5-position.45 This fact was used to design a library of thiazoles to 

investigate the scope of the reaction by coupling various aryl bromides to thiazole and 4-

methyl thiazole, two commercially available compounds (Scheme 27).  
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Scheme 27. Synthesis of 5-aryl thiazoles via direct arylation. 

 

 With this library of thiazoles in hand, the next step of the project was to oxidize 

them to form the thiazole N-oxides required for the dehydrations. A variety of oxidation 

conditions were tested, but mCPBA proved to be the most viable oxidant. When R1 at the 

4-position was a hydrogen, the oxidation proceeded in prohibitively low yields for most 

derivatives other than 69 and 70. However, when R1 was a methyl group (71, 72), yields 

significantly improved but were still low for many derivatives (eg 74, 76, 77). Longer alkyl 

chains at the 4-position, such as the 4-nonyl thiazole (68) example did not seem to have 

lower oxidation yields as compared to 4-methyl thiazole (68). Another important trend to 

note, derivatives where the aryl ring that has been coupled to the thiazole is a thiophene 

(76, 77), the yield of the oxidation also significantly lower than when it is a phenyl ring.  
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Scheme 28. Summary of thiazole oxidation results. 

 

 With the N-oxides that were able to be isolated, dehydrations reaction conditions 

that were optimized for 4,5-dimethylthiazole were performed on the various N-oxide 

thiazoles (Scheme 29). Separate to this thesis, work in the Schipper lab is being 

performed to provide alternative, higher yielding routes to thiazole N-oxides. 
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Scheme 29. Summary of thiazole N-oxides dehydrative coupling results. 
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 It was shown that a variety of 5-phenylthiazole derivatives (80-86) were well 

tolerated in the dehydration reactions with yields of over 80%. Thiazoles coupled to 

thiophene groups (87, 88) performed worse. The apparent trend amongst the alkyl 

derivatives (54, 78, 79) was that the removal of a 5-substitution was detrimental to the 

reaction, as was increase in chain length at the 4-position. 
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2.2.2 Extending reactivity to a polymerization strategy 

 The first route to a monomer is described in Scheme 30a. With N-oxides on either 

ends of the molecule, the compound should be able to polymerize via the dehydration 

reaction developed. The branched 2-ethylhexyl groups on the fluorene ring between the 

thiazoles were selected because they are effective solubilizing chains. The 4-

methylthiazole (89) and the dibromofluorene (90) derivative are both commercially 

available compounds. A direct arylation with similar conditions as the reactions performed 

for the small molecules was effective at forming the bisthiazole system present in the 

monomer. The oxidation reaction proceeded with significant challenges: the yield of the 

di-N-oxide product 92 was very low and it was difficult to isolate due to its high polarity, 

despite its long, branched solubilizing chains such as the two geminal 2-ethylhexyl 

groups. Ultimately, a flash column with 20% methanol in ethyl acetate as the mobile phase 

followed by a celite plug afforded pure 92 in 28% yield. The same conditions used in the 

small molecule dehydration reactions (with extended reaction time) transferred well and 

produced a high molecular weight polymer; Mn = 37, Mw = 80 kDa (Scheme 30b). 
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Scheme 30. Route used to access a fluorene-based monomer and its dehydration 
polymerization conditions. 

 

With this successful route to the first polymer synthesized, attention turned 

towards further investigating the scope the polymerization. Of particular interest was 

synthesizing a polymer that had a third heteroaromatic system between the thiazoles. 

Scheme 30 represents our first attempt at incorporating a thiophene in the repeating 

unit of the polymer. For this monomer (97), the location of the solubilizing chain was 

moved from the middle ring system to the thiazoles by using 4-nonylthiazole as our 

starting material in the direct arylation reaction. This proceeded well, but unfortunately 

the oxidation did not proceed to the di-N-oxide species. The only products isolated were 

the starting material and the mono-N-oxide. 
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Scheme 31. First attempt at accessing a thiophene-based monomer. 

 

Two theories as to why this oxidation of 96 did not proceed well were conjectured: 

typically, the oxidation yields for the thiophene-coupled thiazoles were significantly lower 

than the phenyl-coupled thiazoles (Scheme 27) and, additionally, it was hypothesized 

that the nonyl chains at the 4-position of the thiazoles were hindering the reaction due to 

steric effects. Thus, our next prospective monomers were designed to avoid either of 

these potential issues. Scheme 31 shows our route to a monomer with nonyl chains 

remaining on the thiazole, but replacing the thiophene with a phenyl ring. Scheme 32 

shows our route to a monomer where the solubilizing chains have been moved to the 

thiophene ring. 
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Scheme 32. Attempts to isolate a monomer with solubilizing chains on the 4-position. 

 

Unfortunately, our route to 100 proved unsuccessful, though the desired product 

could be observed by NMRs of the crude reaction mixture and through TLC-MS analysis, 

it could not be purified and isolated off a column due to its high polarity. Lyophilisation 

and reverse-phase chromatography also proved fruitless. Thus, this pursuit of 100 was 

terminated and attempts to test the polymerization reaction with a monomer bearing 

solubilizing chains thiazoles were never performed. However, when the solubilizing 

chains were moved to the thiohphene ring (Scheme 33) a small amount of 102 could be 

isolated from the oxidation reaction. Though the yield of the oxidation was low, it did 

provide enough di-N-oxide to test our polymerization conditions on a thiophene-

containing monomer – a commonly seen heterocycle in conjugated polymers. The 

corresponding polymerization proceeded well with Mn = 17, Mw = 46 kDa. 
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Scheme 33. Succesful attempts at isolating and polymerizing a thiophene containing 
monomer. 

 

 Our final attempts to successfully synthesize a third monomer was using 4-

methylthiazole (89) and 1,4-dibromo-2,5-bis(dodecyloxy)benzene (104) as the starting 

materials. Though the direct arylation proceeded in uncharacteristically low yield, enough 

product (105) could be carried through to the oxidation reaction. With the long decyl 

solubilizing chains, the monomer could be isolated in decent yield from flash 

chromatography. Attempts to polymerize this monomer (106) proceeded well (Scheme 

34), with an Mn similar to that of the fluorene-incoporated polymer, though the PDI was 

relatively high.  
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Scheme 34. Successful attempt at synthesizing and polymerizing a 
bis(dodecyloxy)benzene monomer. 
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3.0 Conclusion 

 The paucity of reactions to synthesize conjugated polymers has been limiting 

advances for the related applications and devices. The aim of these projects were to 

develop new synthetics tools for producing conjugated polymers of sufficiently large 

molecular weight, functional group and heteroaromatic ring tolerance, and reducing toxic 

by-products. In this thesis, we aimed to develop reactions that would allow access to 

conjugated polymers in streamlined, efficient manners. To this end, we presented work 

relating to the optimization and application of a C-H activating hydroarlyation 

polymerization reaction for the synthesis of 12 PAV-type polymers. This strategy 

possessed beneficial traits such as readily accessed monomers, incorporation of 

heteroaromatic rings, and avoiding stoichiometric organometallic by-products. Also in this 

thesis, we presented the initial discovery and optimization of a thiazole N-oxide 

dehydration reaction, through which 12 small molecules and 3 polymers were 

synthesized. Reactants for this transformation were accessed through a straightforward 

2-step route, neither of which had organometallic by-products. 

 The first reaction developed was a hydroarylation reaction that formed bounds 

through the formal addition of a C-H bond at 2-position of several indoles examples across 

an internal alkyne to access PPV-type polymers. Optimization efforts brought molecular 

weights of an AB polymer from small oligomeric products to a relatively large Mn = 34, 

Mw= 43 kDa. Solutions to low reactivity under the original conditions inspired by the 

source literature’s small molecule reaction included the addition of catalytic CsOPiv, 

raising the equivalence of PivOH additive, and doing two 2.5 mol % loadings of the 

rhodium catalyst.  



48 
 

 With optimized polymerization conditions identified, the scope of the reaction was 

examined through AA BB polymerization strategies. In total, 11 AA BB polymers were 

synthesized through this approach. These examples incorporated heteroaromatic rings 

such as thiophene and benzothiazole, and other aromatic rings such as fluorenes and 

terephthalate esters in the repeating unit of the polymer. Though the molecular weights 

of these polymers were lower than the AB polymer, they were still large enough to be 

seen as a success. Advantages of this C-H activation reaction are that it can incorporate 

a variety heteroaromatic rings, synthesize polymers of relatively high molecular weights, 

and greatly reduces synthetic complexity towards access of conjugate polymers. A 

significant limitation that still remains for to this method is that the lack of diversity in C-H 

bonds that it can effectively activate. Namely, only the 2-position on indoles has been 

shown to work for polymerization reactions. 

 Another approach to simplifying the synthesis of conjugated polymers presented 

in this thesis was a dehydration reaction that forms C-C bonds between sp2-hybridized 

carbons. Initial discovery, optimization, and scoping investigation of a dimerization 

reaction was presented. The first attempts at extending this reactivity to a polymerization 

method were successful but were significantly limited by the ability to access the di-N-

oxide monomers required. Any monomers that we could access readily polymerized in 

high molecular weights. To substantially increase the impact of this reaction on the field 

of conjugated polymer synthesis, improvements on the oxidation reaction must be made. 

To this end, there is ongoing work in the Schipper group to improve oxidation yield and 

scope through exploring protecting groups on the 2-position of the thiazoles.  
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 The scope of this thesis was limited to the development of the synthetic tools to 

access these conjugated polymers. With that in mind, this thesis presents significant 

breakthroughs that provide chemists with two new polymerization reactions to access 

conjugated polymers of high molecular and heteroaromatic ring tolerance. Both reactions 

represent major steps forward for each class of conjugated polymers: a C-H activation 

reaction for poly(p-phenyl vinylene)-type polymers and a transition-metal-free reaction for 

poly(hetero)arene-type polymers. 
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4.0.0 Experimental Procedures 

4.1.0 General Methods: 

Unless otherwise specified all reactions were run without regard to exclusion of ambient 

air or moisture. All starting materials were purchased from Aldrich. The mCPBA used was 

< 77% purity and obtained through Sigma-AldrichTM. Dry THF, DCM, Tol, and 

trimethylamine were obtained from a JC MeyerTM solvent purification system when 

needed. DMA and DCE were not distilled, and only partially dried by storing over 4A 

sieves. 1H and 13C NMR spectra were recorded in CDCl3 solutions on a Bruker AVANCE 

300 spectrometer. The chemical shift data are reported in units of δ (ppm) and were 

reported relative to residual CHCl3 (1H: CHCl3 was reference to 7.26 ppm; 13C: CHCl3 was 

referenced to 77.0 ppm). Number-average (Mn) and weight-average (Mw) molecular 

weights are relative to polystyrene standards and were determined by size exclusion 

chromatography using a Viscotek GPC MAX VE2001 at 35 °C equipped with a VE 3580 

RI detector and two PAS-104 Styrene-Divinylbenzene gel columns. The flow rate was 

fixed at 1.0 mL/min using tetrahydrofuran (THF) as the eluent. All GPC samples were 

prepared nominally at 2 mg/ml in THF and filtered through a 0.22µM PTFE filter into a 1 

mL chromatography vial. High resolution mass spectra (HRMS) were obtained via 

electrospray ionization (ESI) which were measured on a Thermo Scientific Q ExactiveTM 

Plus Hybrid Quadrupole-OrbitrapTM at the University of Waterloo Mass Spectrometry 

Facility.  
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4.2.0 Hydroarylation Project 

6-Bromo-N,N-dimethyl-1H-indole-1-carboxamide (29) 

 

A round bottomed flask was charged with 6-bromoindole (1.47 g, 7.50 mmol, 1.0 eq.), 

Bu4N.HSO4 (253 mg, 0.75 mmol, 0.1 eq.) and NaOH (747 mg, 18.7 mmol, 2.5 eq.). The 

flask was then fitted with a reflux condenser and flushed with argon. CH2Cl2 (30 mL) and 

dimethylcarbamylchloride (1.61 g, 15.0 mmol, 2.0 eq.) were added to the flask and the 

resulting solution was refluxed for 2-3 hours until the reaction was complete as judged by 

TLC. The reaction was quenched with 30 mL of saturated NH4Cl solution. The layers were 

partitioned and the aqueous phase was extracted (2 x 30 mL) with CH2Cl2. The organics 

were combined, dried (MgSO4), concentrated and the residue was purified by flash 

chromatography. This product was obtained in 97% yield, 1.94 g. 

1H NMR (300 MHz, CDCl3): 7.87 (d, J = 0.8 Hz, 1H), 7.46 (d, J = 8.4 Hz, 1H), 7.31 (m, 

2H), 6.58 (dd, J = 3.5, 0.6 Hz, 1H), 3.11 (s, 6H); 

13C NMR (300 MHz, CDCl3): 154.6, 136.2, 128.2, 126.7, 125.1, 122.1, 117.2, 116.6, 

105.6, 38.4; 

HRMS: calculated for C11H12BrN2O (M+H)+ = 267.0128; found = 267.0128. 
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6-(Dec-1-yn-1-yl)-N,N-dimethyl-1H-indole-1-carboxamide (30) 

 

A round bottomed flask was charged with 29 (1.00 g, 3.74 mmol, 1 eq.) and flushed with 

argon. Next, to the round bottomed flask was added, in this order, degassed triethylamine 

(37.5 mL), 1-decyne (673 mg, 4.87 mmol, 1.3 eq.), Pd(dppf)Cl2.CH2Cl2 (152 mg, 0.187 

mmol, 0.05 eq.), and copper (I) iodide (71.2 mg, 0.374 mmol, 0.1 eq.). The solution was 

refluxed for 2-3 hours until the reaction was complete as judged by TLC. The reaction 

was quenched with 60 mL of saturated NH4Cl solution. The layers were partitioned and 

the aqueous phase was extracted (2 x 60 mL) with CH2Cl2. The organics were combined, 

dried (MgSO4), concentrated and the residue was purified by flash chromatography. This 

compound was obtained in 83% yield, 1.01 g. 

1H NMR (300 MHz, CDCl3): 7.65 (d, J = 1.3 Hz, 1H), 7.47 (d, J = 8.1 Hz, 1H), 7.30 (d, J 

= 3.5 Hz, 1H), 7.21 (dd, J = 8.1 Hz, 1.3 Hz, 1H), 6.53 (d, J = 3.4 Hz , 1H), 3.05 (s, 6H), 

2.40 (t, J = 7.0 Hz, 2H), 1.61 (tt, J = 7.3, 7.3 Hz, 2H), 1.45 (tt, J = 7.3, 7.0 Hz, 2H) 1.29 

(m, 8H), 0.88 (t, J = 6.6 Hz, 3H); 

13C NMR (300 MHz, CDCl3): 154.8, 135.1, 128.8, 127.1,125.4,120.7, 119.1, 116.6, 105.8, 

89.5, 81.4, 38.4, 31.9, 29.2, 29.2, 29.0, 28.9, 22.7, 19.5, 14.1; 

HRMS: calculated for C21H29N2O (M+H)+ = 325.2274; found = 325.2278. 

 

  



53 
 

Poly [6-(Dec-1-yn-1-yl)-N,N-dimethyl-1H-indole-1-carboxamide] (31) 

 

To a microwave vial, the indole 30 (64.9 mg, 0.200 mmol, 1 eq.), CsOPiV (2.3 mg, 0.01 

mmol, 0.05 eq.), and PivOH (204 mg, 2.00 mmol, 10 eq.) were dissolved in THF (0.8 mL). 

To the stirred solution, Cp*Rh(MeCN)3 (4.16 mg, 0.005 mmol, 0.025 eq.) was added, the 

vial was sealed, and the reaction was heated to 110 ºC. After the 4 hours, the reaction 

was cooled to room temperature, the seal was removed and an additional Cp*Rh(MeCN)3 

(SbF6)2 (4.16 mg, 0.005 mmol, 0.025 eq.) was added. The vial was then sealed again and 

the reaction was resumed at 110 ºC. After three hours, the polymer was purified by 

precipitation into methanol and isolated by filtration. 

1H NMR (300 MHz, CDCl3): 7.55 (d, J = 8.2 Hz, 1H), 7.37 (br, 1H), 7.15 (d, J = 8.0 Hz, 

1H), 6.85 (br, 1H) 6.67 (br, 1H), 3.40-2.60 (m, 8H), 1.75-1.20 (m, 12H), 0.92 (br, 3H). 

 

N,N-Dimethyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole-1-

carboxamide (34) 

 

A round bottomed flask was charged with 29 (1.00 g, 3.74 mmol, 1 eq.), 

bis(pinacolato)diboron (1.04 g, 4.11 mmol, 1.1 eq.), KOAc (1.10 g, 11.2 mmol, 3.0 eq.), 

Pd(dppf)Cl2.CH2Cl2 (91.2 mg, 0.112 mmol, 0.03 eq.). The flask was then fitted with a reflux 

condenser and flushed with argon. DMF (20 mL) was added to the flask and the resulting 

solution was stirred at 100 ºC until the reaction was complete (16 hours) as judged by 
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TLC. To the reaction was added 50 mL of EtOAc and 50 mL of saturated NaCl solution. 

The layers were separated and the aqueous phase was extracted (2 x 50 mL) with EtOAc. 

The organics were combined, dried (MgSO4), concentrated and the residue was purified 

by flash chromatography. This compound was obtained in 96% yield, 1.13 g. 

1H NMR (300 MHz, CDCl3): 8.11 (d, J = 0.7 Hz, 1H), 7.65 (dd, J = 7.9, 0.8 Hz, 1H), 7.61 

(dd, J = 7.9, 0.7 Hz, 1H), 7.38 (d, J = 3.5 Hz, 1H), 6.61 (dd, J =3.5, 0.7 Hz, 1H), 3.11 (s, 

6H), 1.38 (s, 12H);  

13C NMR 300 MHz, CDCl3): 154.9, 135.1, 131.9, 127.6, 127.4, 120.3, 119.8, 105.5, 83.6, 

38.4, 24.9, one overlapping signal as one peak is missing even with prolonged scans;  

HRMS: calculated for C17H24BN2O (M+H)+ = 315.1874; found = 315.1862. 

 

N1,N1,N1',N1'-Tetramethyl-1H,1'H-[6,6'-biindole]-1,1'-dicarboxamide (35) 

 

A round bottom flask under inert atmosphere was charged with 29 (334 mg, 1.25 mmol, 

1.0 eq.), 34 (471 mg, 1.50 mmol, 1.2 eq.), K3PO4 (531 mg, 2.50 mmol, 2.0 eq.), and SPhos 

(10.3 mg, 0.025 mmol, 0.02 eq.). The flask was then flushed with argon and 10:1 

toluene:water (5 mL), which was sparged with nitrogen,  was added. To the stirred 

solution, Pd(OAc)2 (2.80 mg, 0.0125 mmol, 0.01 eq.) was added. The reaction was stirred 

at 100 ºC for 16 hours before 10 mL of EtOAc and 10 mL of saturated aqueous NaCl 

solution were added. The layers were partioned and the aqueous phase was extracted 

(2 x 10 mL) with EtOAc. The organics were combined, dried (MgSO4), concentrated and 

the residue was purified by flash chromatography to isolate the pure product. Compound 

35 was isolated in 92% yield, 430 mg. 
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1H NMR (300 MHz, CDCl3): 7.94 (d, J = 0.8 Hz, 2H), 7.66 (dd, J = 8.2, 0.5 Hz, 2H), 7.54 

(dd, J = 8.2, 1.6 Hz, 2H), 7.36 (d, J = 3.5 Hz, 2H), 6.64 (dd, J = 3.5, 0.7 Hz, 2H), 3.14 (s, 

12H);  

13C NMR (300 MHz, CDCl3): 155.1, 137.9, 136.1, 128.4, 126.6, 122.1, 121.0, 112.3, 

105.5, 38.5; 

HRMS: calculated for C22H23N4O2 (M+H)+ = 375.1816; found = 375.1815. 

General Diindole Synthesis 

A round bottom flask under inert atmosphere was charged with the dibromo arene (1.25 

mmol, 1.0 eq.), 34 (943 mg, 3.00 mmol, 2.4 eq.), K3PO4 (1.06 g, 5.00 mmol, 4.0 eq.), and 

SPhos (20.5 mg, 0.05 mmol, 0.04 eq.). The flask was then flushed with argon and 10:1 

toluene:water (10 mL), which was sparged with nitrogen, was added. To the stirred 

solution, Pd(OAc)2 (5.61 mg, 0.025 mmol, 0.02 eq.) was added. The reaction was stirred 

at 100 ºC for 16 hours before 20 ml of EtOAc and 20 ml of saturated aqueous NaCl 

solution were added. The layers were partitioned and the aqueous phase was extracted 

(2 x 20 ml) with EtOAc. The organics were combined, dried (MgSO4), concentrated and 

the residue was purified by flash chromatography to isolate the pure product. 

 

6,6'-(Thiophene-2,5-diyl)bis(N,N-dimethyl-1H-indole-1-carboxamide) (39) 

 

Compound 39 was synthesized through the general diindole synthesis procedure to 

isolate the product in 74% yield, 422 mg. 
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1H NMR (300 MHz, CDCl3): 7.98 (s, 2H), 7.62 (d, J = 8.2 Hz, 2H), 7.54 (d, J = 8.2, 1.6 

Hz, 2H), 7.35 (m, 4H), 6.62 (d, J = 3.5 Hz, 2H), 3.15 (s, 12 H);  

13C NMR 300 MHz, CDCl3): 154.9, 144.1, 136.0, 130.3, 128.9, 126.9, 123.8, 121.3, 120.2, 

110.5, 105.7, 38.5; 

HRMS: calculated C26H25N4O2S (M+H)+ = 457.1693; found = 457.1693. 

 

6,6'-(Benzo[c][1,2,5]thiadiazole-4,7-diyl)bis(N,N-dimethyl-1H-indole-1-

carboxamide) (40) 

 

Compound 40 was synthesized through the general diindole synthesis procedure to 

isolate the product in 96% yield, 610 mg. 

1H NMR (300 MHz, CDCl3): 8.31 (s, 2H), 7.85 (s, 2H), 7.81 (d, J = 8.2 Hz, 2H), 7.74 (d, J 

= 8.2 Hz, 2H), 7.42 (d, J = 3.5 Hz, 2H), 6.67, (d, J = 3.5 Hz, 2H), 3.16 (s, 12H);  

13C NMR (300 MHz, CDCl3): 155.0, 154.4, 135.8, 133.6, 133.0, 129.5, 128.4, 127.3, 

123.2, 121.0, 114.6, 105.6, 38.6; 

HRMS: calculated for C28H25N6O2S (M+H)+ = 509.1754; found = 509.1755. 
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6,6'-(9,9-Bis(2-ethylhexyl)-9H-fluorene-2,7-diyl)bis(N,N-dimethyl-1H-indole-

1-carboxamide) (41) 

 

Compound 41 was synthesized through the general diindole synthesis procedure to 

isolate the product in 94% yield, 865 mg. 

1H NMR (300 MHz, CDCl3): 7.99 (d, J = 4.5 Hz, 2H), 7.80 (d, J = 7.8 Hz, 2H), 7.71-7.67 

(m, 6H), 7.54 (d, J = 7.8 Hz, 2H), 7.35 (d, J = 4.5 Hz, 2H), 6.65 (d, J = 4.4 Hz, 2H), 3.11 

(s, 12H), 2.15 (br, 4H), 0.91 (m, 18H), 0.65 (m, 12H); 

13C NMR 300 MHz, CDCl3): 155.1, 151.2*, 140.1, 140.0, 137.9, 136.1*, 128.5, 126.7*, 

126.5, 123.1*, 121.7, 121.1*, 119.8, 111.9, 105.5, 44.6, 38.5, 34.7, 33.9, 28.2*, 27.0*, 

24.8, 22.7, 14.0, 10.4*; 

* denotes peaks that appear as multiplets due to the presence of diastereomers; 

HRMS: calculated for C51H63N4O2 (M+H)+ = 763.4946; found = 763.4940. 
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General Dialkyne Synthesis 

In a round bottom flask, the dibromoarene (10.0 mmol, 1.0 eq.) was dissolved in NEt3 

(200 mL). To this, triphenyl phosphine (262 mg, 1.00 mmol, 0.1 eq.), 1-dodecyne (4.92 

mL, 23.0 mmol, 2.3 eq.), copper (I) iodide (190 mg, 1.00 mmol, 0.1 eq.), and Pd(PPh3)2Cl2 

(351 mg, 0.500 mmol, 0.05 eq.) were added, in that order, to the reaction. After 16 hours 

of stirring at 50 ºC, 200 mL of EtOAc and saturated aqueous 200 mL of NH4Cl solution 

were added. The layers were partitioned and the aqueous phase was extracted (2 x 200 

mL) with EtOAc. The organics were combined, dried (MgSO4), concentrated and the 

residue was purified by flash chromatography to isolate the pure product. 

 

1,4-Di(dodec-1-yn-1-yl)benzene (36) 

 

Compound 36 was synthesized through the general dialkyne synthesis procedure to 

isolate the product in 28% yield, 1.14 g. 

1H NMR (300 MHz, CDCl3): 7.25 (s, 4H), 2.38 (t, J = 7.2 Hz, 4H), 1.60-1.20 (m, 32H), 

0.86 (t, J = 7.3 Hz, 6H); 

13C NMR (300 MHz, CDCl3): 131.3, 123.3, 91.8, 80.5, 32.0, 29.7, 29.6, 29.4, 29.2, 28.9, 

28.8, 22.7, 19.5, 14.1; 

HRMS: calculated for C30H47 (M+H)+ = 407.3672; found = 407.3671. 
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Dimethyl 2,5-di(dodec-1-yn-1-yl)terephthalate (37) 

 

Compound 39 was synthesized through the general dialkyne synthesis procedure to 

isolate the product in 15% yield, 784 mg. 

1H NMR (300 MHz, CDCl3): 7.96 (s, 2H), 3.90 (s, 6H) 2.45 (t, J = 7.0 Hz, 4H), 1.56 (tt, H- 

7.2, 7.1 Hz, 4H), 1.50-1.15 (m, 28H), 0.86 (t, J = 6.9 Hz, 6H); 

13C NMR (300 MHz, CDCl3): 165.8, 135.9, 134.2, 123.1, 98.4, 78.4, 52.4, 31.9, 29.6, 

29.5, 29.3, 29.2, 29.0, 28.6, 22.7, 19.9, 14.1; 

HRMS: calculated for C34H51O4 (M+H)+ = 523.3782; found = 523.3779. 
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2,5-Di(dodec-1-yn-1-yl)thiophene (38) 

 

Compound 40 was synthesized through the general dialkyne synthesis procedure to 

isolate the product in 27% yield, 1.11 g. 

1H NMR (300 MHz, CDCl3): 6.89 (s, 2H), 2.38 (t, J = 7.2 Hz, 4H), 1.60-1.20 (m, 32H), 

0.86 (t, J = 7.3 Hz, 6H); 

13C NMR (300 MHz, CDCl3): 130.5, 124.4, 94.8, 73.6, 32.0, 29.7, 29.6, 29.4, 29.2, 29.0, 

28.6, 22.8, 19.8, 14.2; 

HRMS: calculated for C28H45S (M+H)+ = 413.3237; found = 413.3237. 

General procedure for AA BB polymerization: 

To a microwave vial, the diindole (0.100 mmol, 1 eq.), the diyne (0.100 mmol,1 eq.), 

CsOPiV (2.34 mg, 0.01 mmol, 0.05 eq.), and PivOH (102 mg, 1.00 mmol, 10 eq.) were 

dissolved in THF (0.8 mL). To the stirred solution, Cp*Rh(MeCN)3 (SbF6)2 (8.32 mg, 0.01 

mmol, 0.05 eq.) was added, the vial was sealed, and the reaction was heated to 110 ºC. 

After the 22 hours or once the solution became too viscous to stir. The polymer was 

purified by precipitation into methanol and isolated by filtration. 
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Poly[2-(1-(4-(dodec-1-en-1-yl)phenyl)dodec-1-en-2-yl)-N1,N1,N1',N1'-

tetramethyl-1H,1'H-[6,6'-biindole]-1,1'-dicarboxamide] 

 

This polymer was synthesized via the general procedure for AA BB polymerization to a 

molecular weight of Mn=23, Mw=37 kDa. 

1H NMR (300 MHz, CDCl3): 7.70-7.35 (m), 6.80-6.70 (m), 3.50-2.50 (m), 1.60-1.20 (m), 

0.90 (br). 

 

Poly[dimethyl 2-(2-(1,1'-bis(dimethylcarbamoyl)-1H,1'H-[6,6'-biindol]-2-

yl)dodec-1-en-1-yl)-5-(dodec-1-en-1-yl)terephthalate] 

 

This polymer was synthesized via the general procedure for AA BB polymerization to a 

molecular weight of Mn=10, Mw=12 kDa. 

1H NMR (300 MHz, CDCl3): 8.01 (br), 7.70-7.35 (m), 6.80-6.70 (m), 3.90 (br), 3.50-2.75 

(m), 2.50 (br), 1.60-1.20 (m), 0.90 (br). 
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Poly[2-(1-(4-(dodec-1-en-1-yl)thiophenyl)dodec-1-en-2-yl)-N1,N1,N1',N1'-

tetramethyl-1H,1'H-[6,6'-biindole]-1,1'-dicarboxamide] 

 

This polymer was synthesized via the general procedure for AA BB polymerization to a 

molecular weight of Mn=10, Mw=17 kDa. 

1H NMR (300 MHz, CDCl3): 7.70-7.40 (m), 7.00 (br), 6.86 (br), 6.71 (br), 3.50-2.50 (m), 

1.60-1.20 (m), 0.90 (br). 

 

Poly[6-(5-(1-(dimethylcarbamoyl)-2-(1-(4-(2-dodec-1-en-1-yl)phenyl)dodec-1-

en-2-yl)-1H-indol-6-yl)thiophen-2-yl)-N,N,2-dimethyl-1H-indole-1-

carboxamide] 

 

This polymer was synthesized via the general procedure for AA BB polymerization to a 

molecular weight of Mn=10, Mw=19 kDa. 

1H NMR (300 MHz, CDCl3): 7.70-7.35 (m), 6.75 (br), 6.67 (br), 3.50-2.50 (m), 1.60-1.20 

(m), 0.90 (br). 
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Poly[6-(5-(1-(dimethylcarbamoyl)-2-(1-(4-(2-dodec-1-en-1-

yl)thiophenyl)dodec-1-en-2-yl)-1H-indol-6-yl)thiophen-2-yl)-N,N,2-dimethyl-

1H-indole-1-carboxamide] 

 

This polymer was synthesized via the general procedure for AA BB polymerization to a 

molecular weight of Mn=10, Mw=16 kDa. 

1H NMR (300 MHz, CDCl3): 7.70-7.35 (m), 7.02 (br), 6.75 (br), 6.67 (br), 3.50-2.50 (m), 

1.50-1.20 (m), 0.86 (br). 

 

Poly[6-(5-(1-(dimethylcarbamoyl)-2-(1-(4-(2-dodec-1-en-1-yl)phenyl)dodec-1-

en-2-yl)-1H-indol-6-yl)benzothiodiazole-2-yl)-N,N,2-dimethyl-1H-indole-1-

carboxamide] 

 

This polymer was synthesized via the general procedure for AA BB polymerization to a 

molecular weight of Mn=8, Mw=13 kDa. 

1H NMR (300 MHz, CDCl3): 8.00-7.50 (m), 7.36 (br), 6.80-6.70 (m), 3.50-2.50 (m), 1.60-

1.20 (m), 0.90 (br). 
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Poly[dimethyl 2-(2-(1-(dimethylcarbamoyl)-6-(7-(1-(dimethylcarbamoyl)-1H-

indol-6-yl)benzo[c][1,2,5]thiadiazol-4-yl)-1H-indol-2-yl)dodec-1-en-1-yl)-5-

(dodec-1-en-1-yl)terephthalate] 

 

This polymer was synthesized via the general procedure for AA BB polymerization to a 

molecular weight of Mn=7, Mw=11 kDa. 

1H NMR (300 MHz, CDCl3): 8.00-7.75 (m), 7.21 (br), 7.36 (br), 6.80-6.70 (m), 3..44 (br) 

3.20-3.00 (m), 1.76 (br), 1.40-1.20 (m), 0.84 (br). 

 

Poly[6-(5-(1-(dimethylcarbamoyl)-2-(1-(4-(2-dodec-1-en-1-

yl)thiophenyl)dodec-1-en-2-yl)-1H-indol-6-yl) benzothiodiazole -2-yl)-N,N,2-

dimethyl-1H-indole-1-carboxamide] 

 

This polymer was synthesized via the general procedure for AA BB polymerization to a 

molecular weight of Mn=11, Mw=19 kDa. 

1H NMR (300 MHz, CDCl3): 8.00-7.50 (m), 7..02 (br), 6.89 (br), 6.76 (br), 3.50-2.50 (m), 

1.60-1.20 (m), 0.86 (br). 
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Poly[6-(7-(1-(dimethylcarbamoyl)-2-(-1-(4-(2-methyldodec-1-en-1-

yl)phenyl)dodec-1-en-2-yl)-1H-indol-6-yl)-9,9-bis(2-ethylhexyl)-9H-fluoren-2-

yl)-N,N,2-dimethyl-1H-indole-1-carboxamide] 

 

This polymer was synthesized via the general procedure for AA BB polymerization to a 

molecular weight of Mn=10, Mw=19 kDa. 

1H NMR (300 MHz, CDCl3): 7.70-7.35 (m), 6.80-6.70 (m), 3.50-2.50 (m), 2.00 (br), 1.60-

1.20 (m), 0.86 (br), 0.58 (br). 

 

 

Poly[dimethyl 2-(2-(1-(dimethylcarbamoyl)-6-(7-(1-(dimethylcarbamoyl)-1H-

indol-6-yl)-9,9-bis(2-ethylhexyl)-9H-fluoren-2-yl)-1H-indol-2-yl)dodec-1-en-1-

yl)-5-(dodec-1-en-1-yl)terephthalate] 

 

This polymer was synthesized via the general procedure for AA BB polymerization to a 

molecular weight of Mn=8, Mw=12 kDa. 

1H NMR (300 MHz, CDCl3): 8.10-7.35 (m), 6.80-6.70 (m), 3.95-3.75 (m), 3.50-2.50 (m), 

2.10 (br), 1.60-1.20 (m), 0.86 (br), 0.60 (br). 
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Poly[6-(7-(1-(dimethylcarbamoyl)-2-(-1-(4-(2-methyldodec-1-en-1-

yl)thiophenyl)dodec-1-en-2-yl)-1H-indol-6-yl)-9,9-bis(2-ethylhexyl)-9H-

fluoren-2-yl)-N,N,2-dimethyl-1H-indole-1-carboxamide] 

 

This polymer was synthesized via the general procedure for AA BB polymerization to a 

molecular weight of Mn=11, Mw=22 kDa. 

1H NMR (300 MHz, CDCl3): 7.70-7.45 (m), 7.01 (br), 6.86 (br), 6.73 (br), 3.50-2.50 (m), 

2.08 (br), 1.60-1.20 (m), 0.86 (br), 0.58 (br). 
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4.3.0 Experimental Procedures of the Dehydration Project 

1-Bromoundecan-2-one 

 

1-Bromoundecan-2-one was prepared according to a previously reported procedure.39 

1H NMR (300 MHz, CDCl3): 3.88 (s, 2H), 2.65 (t, J = 7.3 Hz, 2H), 1.62 (tt, J = 7.3, 7.0 Hz, 

2H), 1.26 (m, 12H), 0.88 (t, J = 6.9 Hz, 3H). 

 

4-Nonylthiazole (89) 

 

4-Nonylthiazole was synthesized according to a previously reported procedure.40  

1H NMR (300 MHz, CDCl3): 8.73 (s, 1H), 6.91 (s, 1H), 2.81 (t, J = 7.6 Hz, 2H), 1.72 (tt, J 

= 7.6, 7.6 Hz, 2H), 1.40-1.20 (m, 12H) , 0.86 (t, J = 7.0 Hz, 3H). 

General Direct Arylation Procedure:  

The 5-aryl thiazoles were synthesized following literature procedure.41 K2CO3 (4.14 g, 

30.0 mmol, 1.5 eq.), Pd(OAc)2 (89.8 mg, 0.400 mmol, 0.02 eq.), PCy3·HBF4 (294 mg, 

0.800 mmol, 0.04 eq.), and PivOH (612 mg, 6.00 mmol, 0.30 eq.) were weighed to air 

and placed in a screw-cap vial equipped with a magnetic stir bar. The thiazole (30.0 mmol, 

1.5 eq.) and the aryl bromide (20.0 mmol, 1 eq.) were added at this point if solids. The 

vial was purged with argon, and DMA (65 mL) was added. The thiazole (30.0 mmol, 1.5 

eq.) and the aryl bromide (20.0 mmol, 1 eq.) were added at this point if liquids. The 

reaction mixture was then vigorously stirred at 100 °C for 20 hours. The solution was 

cooled to room temperature, diluted with 200 mL of EtOAc, washed (3 x 200 mL) with 

saturated aqueous NH4Cl, dried over MgSO4, filtered, and evaporated under reduced 
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pressure. The mixtures were then purified via silica gel column chromatography to afford 

the corresponding product in 40-95% yield. 

5-Phenylthiazole (58) 

 

5-Phenylthiazole was synthesized according to the general direct arylation procedure to 

give the product in 92% yield, 2.97 g, and exhibited identical data to previously reported.42  

1H NMR (300 MHz, CDCl3): 8.76 (s, 1H), 8.09 (s, 1H), 7.59 (dd, J = 7.1, 1.6 Hz, 2H), 7.50-

7.30 (m, 3H). 

 

5-(4-Methoxyphenyl)-thiazole (59) 

 

5-(4-Methoxyphenyl)-thiazole was synthesized according to the general direct arylation 

procedure to give the product in 46% yield, 1.76 g, and exhibited identical data to 

previously reported.42 

1H NMR (300 MHz, CDCl3): 8.70 (s, 1H), 7.98 (s, 1H), 7.51 (d, J = 8.8 Hz, 2H), 6.95 (d, J 

= 8.8 Hz, 2H), 3.85 (s, 3H). 
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4-Methyl-5-phenylthiazole (60) 

 

4-Methyl-5-phenylthiazole was synthesized according to general direct arylation 

procedure to give the product in 73% yield, 2.56 g, and exhibited identical data to 

previously reported.43 

1H NMR (300 MHz, CDCl3): 8.50 (s, 1H), 7.48-7.23 (m, 5H), 2.49 (s, 3H). 

 

5-(4-Methoxyphenyl)-4-methylthiazole (61) 

 

5-(4-Methoxyphenyl)-4-methylthiazole was synthesized according to the general direct 

arylation procedure to give the product in 71% yield, 2.91 g, and exhibited identical data 

to previously reported.43 

1H NMR (300 MHz, CDCl3): 8.74 (s, 1H), 7.34 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 8.3 Hz, 

2H), 3.82 (s, 3H), 2.52 (s, 3H). 
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4-Methyl-5-(naphthalen-2-yl)thiazole (62) 

 

4-Methyl-5-(naphthalen-2-yl)thiazole was synthesized according to the general direct 

arylation procedure to give the product in 64% yield, 2.88 g. 

1H NMR (300 MHz, CDCl3): 8.72 (s, 1H), 7.95-7.79 (m, 4H), 7.60-7.45 (m, 3H), 2.60 (s, 

3H); 

13C NMR (300 MHz, CDCl3): 150.5, 148.9, 133.3, 132.7, 132.1, 129.4, 128.5, 128.4, 

128.1, 127.8, 127.2, 126.7, 126.6, 16.3; 

HRMS: calculated for C14H12NS (M+H)+ = 225.0685; found = 226.0674. 

 

4-Methyl-5-(4-trifluoromethylphenyl)thiazole (63) 

 

4-Methyl-5-(4-trifluoromethylphenyl)thiazole was synthesized according to the general 

direct arylation procedure to give the product in 75% yield, 3.65 g, and exhibited identical 

data to previously reported.44 

1H NMR (300 MHz, CDCl3): 8.65 (s, 1H), 7.61 (d, J = 8.1 Hz, 2H), 7.48 (d, 8.0 Hz, 2H), 

2.48 (s, 3H). 
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5-(4-Hexylphenyl)-4-methylthiazole (64) 

 

5-(4-Hexylphenyl)-4-methylthiazole was synthesized according to the general direct 

arylation procedure to give the product in 79% yield, 4.10 g. 

1H NMR (300 MHz, CDCl3): 8.63 (s, 1H), 7.33 (d, J = 7.9 Hz, 2H), 7.21 (d, J = 7.8 Hz, 

2H), 2.62 (t, J = 7.7 Hz, 2H), 2.52 (s, 3H), 1.71-1.55 (m, 2H), 1.43-1.23 (m, 6H), 0.88 (t, J 

= 6.3 Hz, 3H); 

13C NMR (300 MHz, CDCl3): 149.8, 148.1, 142.8, 131.9, 129.0, 128.6, 35.6, 31.6, 31.2, 

28.9, 22.5, 16.0, 14.0, one overlapping signal as one peak is missing even with prolonged 

scans; 

HRMS: calculated for C16H22NS (M+H)+ 260.1467; found = 260.1460. 

 

5-(5-Hexylthiophen-2-yl)-4-methylthiazole (65) 

 

5-(5-Hexylthiophen-2-yl)-4-methylthiazole was synthesized according to the general 

direct arylation procedure to give the product in 53% yield, 2.81 g. 

1H NMR (300 MHz, CDCl3): 8.51 (s, 1H), 6.90 (d, J = 3.3 Hz, 1H), 6.69 (d, J = 2.9 Hz, 

1H), 2.77 (t, J = 7.6 Hz, 2H), 2.56 (s, 3H), 1.75-1.56 (m, 2H), 1.44-1.20 (m, 6H), 0.86 (t, J 

= 6.3 Hz, 3H); 

13C NMR (300 MHz, CDCl3): 149.2, 148.2, 147.0, 130.4, 126.7, 126.0, 124.5, 31.4, 30.0, 

28.9, 23.6, 22.5, 16.4, 14.0; 

HRMS: calculated forC14H20NS2 (M+H)+ 266.1032; found = 266.1033. 
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5,5'-(3,4-Dihexylthiophene-2,5-diyl)bis(4-methylthiazole) (66) 

 

5,5'-(3,4-Dihexylthiophene-2,5-diyl)bis(4-methylthiazole) was synthesized in 26% yield, 

1.16 g, according to the general direct arylation procedure with the exception of employing 

only 0.5 equivalents (10 mmol) of the dibromothiophene instead 1 equivalent of the aryl 

bromide. 

1H NMR (300 MHz, CDCl3): 8.78 (s, 2H), 2.50-2.40 (m, 10H), 1.70-1.20 (m, 16H), 0.85 (t, 

J = 6.8 Hz, 6H); 

13C NMR (300 MHz, CDCl3): 152.3, 152.2, 143.1, 127.1, 123.5, 31.5, 30.6, 29.5, 28.1, 

22.6, 16.1, 14.1; 

HRMS: calculated for C24H35N2S3 (M+H)+ 447.1957; found = 447.1956. 

 

5,5’-(9,9-Bis(2-ethylhexyl)-9H-fluorene-2,7-diyl)bis(4-methylthiazole) (91) 

 

5,5’-(9,9-Bis(2-ethylhexyl)-9H-fluorene-2,7-diyl)bis(4-methylthiazole) was synthesized in 

94% yield, 5.50 g, according to the general direct arylation procedure with the exception 
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of employing only 0.5 equivalents (10 mmol) of the dibromofluorene instead 1 equivalent 

of the aryl bromide. 

1H NMR (300 MHz, CDCl3): 8.65 (s, 2H), 7.71 (d, J = 7.8 Hz, 2H), 7.48-7.32 (m, 4H), 2.54 

(s, 6H), 2.11-1.91 (m, 4H), 0.90-0.44 (m, 30H); 

13C NMR (300 MHz, CDCl3): 151.0*, 149.9, 148.2*, 140.3, 132.4, 130.2*, 128.2*, 124.9*, 

119.8, 55.1, 44.4, 34.6, 33.7*, 28.1*, 26.9*, 22.5, 16.0*, 13.8, 10.2*; 

* denotes peaks that appear as multiplets due to the presence of diasteromers; 

HRMS: calculated for C37H49N2S2 (M+H)+ 585.3332; found = 585.3329. 

 

5,5'-(2,5-Bis(decyloxy)-1,4-phenylene)bis(4-methylthiazole) (105) 

 

5,5'-(2,5-bis(decyloxy)-1,4-phenylene)bis(4-methylthiazole) was synthesized in 31% 

yield, 1.813 g, according to the general direct arylation procedure with the exception of 

employing only 0.5 equivalents (10 mmol) of dibromobenzene derivative instead 1 

equivalent of the aryl bromide. 

1H NMR (300 MHz, CDCl3): 8.73 (s, 2H), 6.91 (s, 2H), 3.89 (t, J = 6.5 Hz, 4H), 2.47 (s, 

6H), 1.68 (tt, J = 6.9, 6.7 Hz, 4H), 1.23 (m, 28H), 0.85 (t, J = 6.8 Hz, 6H); 

13C NMR (300 MHz, CDCl3): 151.2, 150.2, 150.0, 126.8, 121.7, 116.2, 69.5, 31.8, 29.4, 

29.2, 29.1, 29.0, 25.9, 22.6, 16.4, 14.0, one overlapping signal as one peak is missing 

even with prolonged scans; 

HRMS: calculated for C34H53N2O2S2 (M+H)+ 585.3554; found = 585.3541. 
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General Oxidation Procedure:  

The thiazole (5.00 mmol, 1 eq.) was dissolved in reagent grade dichloroethane (15 mL). 

To this solution was added mCPBA (1.68 g, 7.50 mmol,1.5 eq.) portion-wise. Once all of 

the mCPBA had been added, the reaction was stirred for 2-4 h. The N-oxides were then 

purified via silica gel column chromatography using a gradient of 0-15% MeOH/EtOAc as 

the eluent to afford the corresponding product in 10-90% yield. 

 

4,5-Dimethylthiazole 3-oxide (53) 

 

4,5-Dimethylthiazole 3-oxide was synthesized according to the general oxidation 

procedure in 90% yield, 581 mg, and exhibited identical data to previously reported.45 

1H NMR (300 MHz, CDCl3): 8.06 (s, 1H), 2.39 (s, 3H), 2.30 (s, 3H). 

 

4-Methylthiazole 3-oxide (67) 

 

4-Methylthiazole 3-oxide was synthesized according to the general oxidation procedure 

in 22% yield, 127 mg, and exhibited identical data to previously reported.45 

1H NMR (300MHz, CDCl3, 293K): 8.20 (d, J = 3.1 Hz, 1H), 7.05 (d, J = 2.1 Hz, 1H), 2.38 

(s, 3H). 
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4-Nonylthiazole 3-oxide (68) 

 

4-Nonylthiazole 3-oxide was synthesized according to the general oxidation procedure in 

40% yield, 455 mg. 

1H NMR (300 MHz, CDCl3): 8.24 (d, J = 3.1 Hz, 1H), 6.96 (d, J = 3.1 Hz, 1H), 2.70 (t, J = 

7.7 Hz, 2H), 1.64 (tt, J = 7.7, 7.3 Hz, 2H), 1.25-1.00 (m, 12H), 0.81 (t, J = 6.9 Hz, 3H); 

13C NMR (300 MHz, CDCl3): 149.8, 130.2, 112.5, 31.7, 29.3, 29.2, 29.1, 29.0, 26.5, 22.5, 

14.0, one overlapping signal as one peak is missing even with prolonged scans; 

HRMS: calculated for C12H22NOS (M+H)+ 228.1422; found = 228.1417. 

 

5-Phenylthiazole 3-oxide (69) 

 

5-Phenylthiazole 3-oxide was synthesized according to the general oxidation procedure 

in 10% yield, 88.6 mg. 

1H NMR (300 MHz, CDCl3): 8.22 (s, 1H), 7.89 (s, 1H), 7.45 (m, 5H); 

13C NMR (300 MHz, CDCl3): 139.2, 134.1, 131.6, 130.8, 129.8, 128.3, 126.4; 

HRMS: calculated for C9H8NOS (M+H)+ 178.0321; found = 178.0321. 
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5-(4-Methoxyphenyl)thiazole 3-oxide (70) 

 

5-(4-Methoxyphenyl)thiazole 3-oxide was synthesized according to the general oxidation 

procedure in 28% yield, 290 mg. 

1H NMR (300 MHz, CDCl3): 8.15 (s, 1H), 7.80 (s, 1H), 7.35 (d, J = 6.5 Hz, 2H), 6.88 (d, J 

= 6.8 Hz, 2H), 3.80 (s, 3H); 

13C NMR (300 MHz, CDCl3): 161.0, 137.6, 131.4, 129.2, 127.4, 121.2, 114.7, 55.3; 

HRMS: calculated forC10H10NO2S (M+H)+ 208.0427; found = 208.0427. 

 

4-Methyl-5-phenylthiazole 3-oxide (71) 

 

4-Methyl-5-phenylthiazole 3-oxide was synthesized according to the general oxidation 

procedure in 60% yield, 574 mg. 

1H NMR (300 MHz, CDCl3): 8.24 (s, 1H), 7.54-7.40 (m, 5H), 2.46 (s, 3H); 

13C NMR (300 MHz, CDCl3): 141.4, 130.9, 130.6, 129.4, 129.2, 128.6, 128.4, 11.8; 

HRMS: calculated for C10H10NOS (M+H)+ 192.0478; found = 192.0477. 
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5-(4-Methoxyphenyl)-4-methylthiazole 3-oxide (72) 

 

5-(4-Methoxyphenyl)-4-methylthiazole 3-oxide was synthesized according to the general 

oxidation procedure in 51% yield, 564 mg. 

1H NMR (300 MHz, CDCl3): 8.19 (s, 1H), 7.35 (d, J = 8.7 Hz, 2H), 6.99 (d, J = 8.7 Hz, 

2H), 3.85 (s, 3H), 2.42 (s, 3H); 

13C NMR (300 MHz, CDCl3): 160.5, 140.7, 130.8, 129.9, 127.9, 122.8, 114.6, 55.4, 11.7; 

HRMS: calculated for C11H12NO2S (M+H)+ 222.0583; found = 222.0583. 

 

4-Methyl-5-(naphthalen-2-yl)thiazole 3-oxide (73) 

 

4-Methyl-5-(naphthalen-2-yl)thiazole 3-oxide was synthesized according to the general 

oxidation procedure in 45% yield, 543 mg. 

1H NMR (300 MHz, CDCl3): 8.29 (s, 1H), 7.99-7.87 (m, 4H), 7.62 (m, 3H), 2.54 (s, 3H); 

13C NMR (300 MHz, CDCl3): 141.7, 133.3, 133.1, 131.1, 129.2, 129.0, 128.3, 128.2, 

127.9, 127.4, 127.2, 125.6, 12.0, one overlapping signal as one peak is missing even with 

prolonged scans; 

HRMS: calculated for C14H12NOS (M+H)+ 242.0634; found = 242.0634. 
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4-Methyl-5-(4-trifluoromethylphenyl)thiazole 3-oxide (74) 

 

4-Methyl-5-(4-trifluoromethylphenyl)thiazole 3-oxide was synthesized according to the 

general oxidation procedure in 30% yield, 389 mg. 

1H NMR (300 MHz, CDCl3): 8.27 (s, 1H), 7.76 (d, J = 8.2 Hz, 2H), 7.58 (d, J = 8.2 Hz, 

2H), 2.28 (s, 3H); 

13C NMR (300 MHz, CDCl3): 142.5, 134.1, 131.4 (q, J = 33.2 Hz), 129.1, 129.0, 128.9, 

126.2 (q, J = 3.6 Hz), 123.5 (q, J = 272.3 Hz), 11.8; 

HRMS: calculated for C11H9F3NOS (M+H)+ 260.0351; found = 260.0351. 

 

5-(4-Hexylphenyl)-4-methylthiazole-3-oxide (75) 

 

5-(4-Hexylphenyl)-4-methylthiazole-3-oxide was synthesized according to the general 

oxidation procedure in 55% yield, 760 mg. 

1H NMR (300 MHz, CDCl3): 8.26 (s, 1H), 7.30-7.20 (m, 4H), 2.57 (t, J = 7.7 Hz, 2H), 2.37 

(s, 3H), 1.56 (tt, J = 7.6, 7.1 Hz, 2H), 1.24(m, 6H), 0.80 (t, J = 6.7 Hz, 3H); 

13C NMR (300 MHz, CDCl3): 150.3, 149.2, 148.0, 143.0, 130.2, 129.2, 128.8, 35.7, 31.7, 

31.4, 29.0, 22.6, 16.0, 14.1; 

HRMS: calculated for C16H22NOS (M+H)+ 276.1417; found = 276.1406. 
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5-(5-Hexylthiophen-2-yl)-4-methylthiazole 3-oxide (76) 

 

5-(5-Hexylthiophen-2-yl)-4-methylthiazole 3-oxide was synthesized according to the 

general oxidation procedure in 29% yield, 408 mg. 

1H NMR (300 MHz, CDCl3): 8.21 (s, 1H), 7.04 (d, J = 3.6 Hz, 1H), 6.78 (d, J = 3.6 Hz, 

1H), 2.82 (t, J = 7.7 Hz, 2H), 2.513 (s, 3H), 1.68 (tt, J = 7.6, 7.1 Hz, 2H), 1.32 (m, 6H), 

0.88 (t, J = 6.7 Hz, 3H); 

13C NMR (300 MHz, CDCl3): 149.0, 140.4, 128.8, 127.9, 127.3, 125.3, 124.9, 31.4, 30.0, 

28.6, 22.4, 13.9, 11.9; 

HRMS: calculated for C14H20NOS2 (M+H)+ 282.0981; found = 282.0981. 

 

4-Methyl-5-(5-(4-methylthiazol-5-yl)thiophen-2-yl)thiazole 3-oxide (77) 

 

4-Methyl-5-(5-(4-methylthiazol-5-yl)thiophen-2-yl)thiazole 3-oxide was synthesized 

according to the general oxidation procedure, with the exception of employing 3 

equivalents of mCPBA. The product was obtained in 25% yield, 578 mg. Note: the di-N-

oxide (102) was also produced and isolated from this reaction. 

1H NMR (300 MHz, CDCl3): 8.80 (s, 1H), 8.44 (s, 1H), 2.50-2.40 (m, 7H), 2.35 (s, 3H), 

1.50-1.10 (m, 16H), 0.85 (t, J = 5.5 Hz, 6H); 
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13C NMR (300 MHz, CDCl3): 152.5, 152.2, 144.1, 143.3, 130.9, 128.7, 127.8, 124.7, 

123.1, 122.5, 31.3, 30.6, 30.2, 29.3, 29.2, 28.0, 27.8, 22.4, 15.8, 13.9, 12.0; 

HRMS: calculated for C24H35N2OS3 (M+H)+ 463.1906; found = 463.1906. 

 

5,5'-(3,4-Dihexylthiophene-2,5-diyl)bis(4-methylthiazole 3-oxide)) (102) 

 

5,5'-(3,4-Dihexylthiophene-2,5-diyl)bis(4-methylthiazole 3-oxide)) (102) was synthesized 

according to the general oxidation procedure, with the exception of employing 3 

equivalents of mCPBA. The product was obtained in 10% yield, 239 mg. Note the mono-

N-oxide (77) was also produced and isolated from this reaction. 

1H NMR (300 MHz, CDCl3): 8.37 (s, 2H), 2.48 (tt, J = 8.1, 7.7 Hz, 4H) 2.33 (s, 6H), 1.50-

1.10 (m, 16H), 0.84 (t, J = 6.7 Hz, 6H); 

13C NMR (300 MHz, CDCl3): 144.6, 144.5, 130.1, 126.4, 122.3, 31.3, 30.6, 29.3, 27.9, 

22.4, 13.9, 12.0; 

HRMS: calculated for C24H35N2O2S3 (M+H)+ 479.1855; found = 479.1855. 
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5,5'-(9,9-Bis(2-ethylhexyl)-9H-fluorene-2,7-diyl)bis(4-methylthiazole 3-oxide) 

(92) 

 

The general oxidation procedure was followed with the following deviations: 3 eq of 

mCPBA was added instead of 1.5 eq. Additionally, after 2 hours of stirring, another 3 eq 

of mCPBA was added to the reaction. The product (92) was afforded in 28% yield, 864 

mg. 

1H NMR (300 MHz, CDCl3): 8.26 (s, 2H), 7.85 (d, J = 8.1, 2H), 7.47-7.43 (m, 4H), 2.46 

(s, 6H), 2.05 (m, 4H), 0.90-0.40 (m, 30H); 

13C NMR (300 MHz, CDCl3): 151.8*, 141.4, 141.3, 131.2, 129.3*, 128.3, 127.8*, 124.3, 

120.8*, 55.5, 44.4, 34.8, 33.9*, 28.2*, 27.0*, 22.6, 13.9, 11.8*, 10.2*; 

* denotes peaks that appear as multiplets due to the presence of diasteromers; 

HRMS: calculated for C37H49N2O2S2 (M+H)+ 617.3230; found = 617.3227. 

 

5,5'-(2,5-Bis(decyloxy)-1,4-phenylene)bis(4-methylthiazole 3-oxide) (106) 

 

The general oxidation procedure was followed with the following deviations: 3 eq of 

mCPBA was added instead of 1.5 eq. Additionally, after 2 hours of stirring, another 3 eq 

of mCPBA was added to the reaction. Compound 106 was afforded in 19% yield, 586 mg. 
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1H NMR (300 MHz, CDCl3): 8.43 (s, br, 2H), 6.90 (s, 2H), 3.93 (t, J = 6.5 Hz, 4H), 2.39 

(s, 6H), 1.71 (tt, J = 6.9, 6.7 Hz, 4H), 1.23 (m, 28H), 0.85 (t, J = 6.8 Hz, 6H); 

13C NMR (300 MHz, CDCl3): 150.1, 150.1, 126.8, 120.9, 115.4, 69.6, 31.8, 29.6, 29.4, 

29.2, 29.1, 29.0, 25.9, 22.6, 14.0, 12.4, one overlapping signal as one peak is missing 

even with prolonged scans 

HRMS: calculated for C34H53N2O4S2 (M+H)+ 617.3441; found = 617.3441. 

 

General Dehydration Procedure:  

The N-oxide (0.1 mmol, 1 eq.) was dissolved in reagent grade THF (0.4 mL) and the 

solution was cooled in an ice bath. To this cold solution was added 1.0M LiOtBu in THF 

(150 µL, 0.15 mmol, 1.5 eq.) dropwise which usually resulted in a significant color change. 

After consumption of starting material (5-15 minutes), the mixture was poured into an 

extraction funnel containing CH2Cl2 and saturated NH4Cl. The aqueous phase is washed 

with CH2Cl2 (2 x 15 mL) and the organics are combined, dried with MgSO4, filtered and 

concentrated under reduced pressure. The products were generally analytically pure after 

work up and did not need further purification in 55-98% yield. 

 

4,4',5,5'-Tetramethyl-[2,2'-bithiazole] 3-oxide (54) 

 

4,4',5,5'-Tetramethyl-[2,2'-bithiazole] 3-oxide was synthesized according to the general 

dehydration procedure in 88% yield, 10.6 mg. 

1H NMR (300 MHz, CDCl3): 2.38 (m, 6H), 2.35 (s, 3H), 2.30 (s, 3H); 

13C NMR (300 MHz, CDCl3): 149.1, 148.4, 140.9, 137.8, 128.1, 123.5, 14.7, 13.0, 11.2, 

10.4; 

HRMS: calculated for C10H13N2OS2 (M+H)+ 241.0464; found = 241.0463. 
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4,4’-Dimethyl-[2,2'-bithiazole] 3-oxide (78) 

 

4,4’-Dimethyl-[2,2'-bithiazole] 3-oxide was synthesized according to the general 

dehydration procedure in 72% yield, 7.54 mg. 

1H NMR (300 MHz, CDCl3): 7.07 (s, 1H), 7.06 (s, 1H), 2.50 (s, 3H), 2.42 (s, 3H); 

13C NMR (300 MHz, CDCl3): 153.6, 152.7, 145.4, 140.1, 115.8, 111.7, 17.2, 12.7; 

HRMS: calculated for C8H9N2OS2 (M+H)+ 213.0151; found = 213.0142. 

 

4,4’-Dinonyl-[2,2'-bithiazole] 3-oxide (79) 

 

4,4’-Dinonyl-[2,2'-bithiazole] 3-oxide was synthesized according to the general 

dehydration procedure in 57% yield, 12.4 mg. 

1H NMR (300 MHz, CDCl3): 7.08 (s, 1H), 7.01 (s, 1H), 2.83 (m, 4H), 1.74 (m, 4H), 1.26 

(m, 24H), 0.87 (m, 6H); 

13C NMR (300 MHz, CDCl3): 158.6, 152.5, 149.7, 140.5, 115.0, 111.0, 31.9, 31.9, 31.5, 

29.6, 29.5, 29.5, 29.3, 29.3, 29.3, 26.8, 26.6, 22.7, 22.7, 14.1, overlapping signals as 

multiple peaks are missing even with prolonged scans; 

HRMS: calculated for C24H41N2OS2 (M+H)+ 437.2655; found = 437.2655. 
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5,5'-Diphenyl-[2,2'-bithiazole] 3-oxide (80) 

 

5,5'-Diphenyl-[2,2'-bithiazole] 3-oxide was synthesized according to the general 

dehydration procedure but required flash column chromatography to purify using 40% 

EtOAc/Hexanes to afford the product in 81% yield, 13.6 mg. 

1H NMR (300 MHz, CDCl3): 8.19 (s, 1H), 8.01 (s, 1H), 7.70-7.3 (m, 10H);  

13C NMR (300 MHz, CDCl3): 151.1, 140.6, 139.6, 139.2, 135.7, 131.9, 131.0, 130.4, 

129.5, 129.2, 128.7, 128.7, 126.9, 126.0; 

HRMS: calculated for C18H13N2OS4 (M+H)+ 337.0464; found = 337.0463. 

 

5,5'-Bis(4-methoxyphenyl)-[2,2'-bithiazole] 3-oxide (81) 

 

5,5'-Bis(4-methoxyphenyl)-[2,2'-bithiazole] 3-oxide was synthesized according to the 

general dehydration procedure in 81% yield, 16.1 mg. 

1H NMR (300 MHz, CDCl3): 8.08 (s, 1H), 7.91 (s, 1H), 7.62 (d, J = 7.5 Hz, 2H), 7.52 (d, J 

= 7.5 Hz, 2H), 7.01 (d, J = 7.0 Hz, 2H), 6.97 (d, J = 7.0 Hz, 2H), 3.85 (s, 3H), 3.84 (s, 3H);  

13C NMR (300 MHz, CDCl3): 161.4, 160.1, 140.7, 139.15, 138.2, 132.2, 130.9, 128.3, 

127.5, 123.7, 121.3, 115.0 114.8, 113.6, 55.5, 55.4; 

HRMS: calculated for C20H17N2O3S2 (M+H)+ 397.0675; found = 397.0676. 
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4,4'-Dimethyl-5,5'-diphenyl-[2,2'-bithiazole] 3-oxide (82) 

  

4,4'-Dimethyl-5,5'-diphenyl-[2,2'-bithiazole] 3-oxide was synthesized according to the 

general dehydration procedure in 92% yield, 16.8 mg. 

1H NMR (300 MHz, CDCl3): 7.60-7.30 (m, 10H), 2.59 (s, 3H), 2.55 (s, 3H); 

13C NMR (300 MHz, CDCl3): 149.9, 148.8, 140.9, 139.2, 133.8, 131.9, 130.4, 129.5, 

129.3, 129.2, 129.1, 128.7, 128.5, 127.9, 16.4, 11.8; 

HRMS: calculated for C20H17N2OS2 (M+H)+ 365.0777; found = 365.0777. 

 

5,5'-Bis(4-methoxyphenyl)-4,4'-dimethyl-[2,2'-bithiazole] 3-oxide (83) 

 

5,5'-Bis(4-methoxyphenyl)-4,4'-dimethyl-[2,2'-bithiazole] 3-oxide was synthesized 

according to the general dehydration procedure in 92% yield, 19.5 mg. 

1H NMR (300 MHz, CDCl3): 7.50-7.40 (m, 4H), 7.10-6.95 (m, 4H), 3.88 (s, 3H), 3.87 (s, 

3H), 2.58 (s, 3H), 2.53 (s, 3H); 

13C NMR (300 MHz, CDCl3): 160.7, 159.6, 149.5, 148.3, 140.2, 138.9, 133.7, 130.5, 

130.0, 129.1, 124.3, 122.8, 114.9, 114.4, 55.5, 55.4, 16.5, 11.9; 

HRMS: calculated for C22H21N2O3S2 (M+H)+ 425.0988; found = 425.0986. 
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4,4'-Dimethyl-5,5'-di(naphthalen-2-yl)-[2,2'-bithiazole] 3-oxide (84) 

 

4,4'-Dimethyl-5,5'-di(naphthalen-2-yl)-[2,2'-bithiazole] 3-oxide was synthesized according 

to the general dehydration procedure in 98% yield, 22.8 mg. 

1H NMR (300 MHz, CDCl3): 8.02-7.87 (m, 8H), 7.69-7.52 (m, 6H), 2.70 (s, 3H), 2.66 (s, 

3H); 

13C NMR (300 MHz, CDCl3): 150.3, 149.3, 141.3, 139.5, 134.1, 133.5, 133.4, 133.3, 
132.8, 129.5, 129.5, 129.4, 128.7, 128.5, 128.4, 128.4, 128.3, 128.0, 127.9, 127.9, 
127.6, 127.4, 127.0, 126.9, 126.7, 125.7, 16.8, 12.2; 

HRMS: calculated for C28H21N2OS2 (M+H)+ 465.1090; found = 465.1090. 

 

4,4'-Dimethyl-5,5'-bis(4-(trifluoromethyl)phenyl)-[2,2'-bithiazole] 3-oxide (85) 

 

4,4'-Dimethyl-5,5'-bis(4-(trifluoromethyl)phenyl)-[2,2'-bithiazole] 3-oxide was synthesized 

according to the general dehydration procedure in 88% yield, 22.0 mg. 

1H NMR (300 MHz, CDCl3): 7.80 (s, 2H), 7.72 (m, 2H), 7.66 (s, 4H), 2.62 (s, 3H), 2.59 (s, 

3H); 

13C NMR (300 MHz, CDCl3): 150.5, 150.0, 142.1, 139.6, 135.6, 134.0, 132.3, 131.6 (q, J 

= 32.6 Hz), 130.0 (q, J = 33.5 Hz), 129.4, 129.0, 127.8, 126.4 (q, J = 3.5 Hz), 125.8 (q, J 

= 3.5 Hz), 123.9 (q, J = 272.1 Hz), 123.6 (q, J = 272.2 Hz), 16.5, 12.0; 

HRMS: calculated for C22H15F6N2OS2 (M+H)+ 501.0525; found = 501.0524. 
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5,5'-Bis(4-hexylphenyl)-4,4'-dimethyl-[2,2'-bithiazole] 3-oxide (86) 

 

5,5'-Bis(4-hexylphenyl)-4,4'-dimethyl-[2,2'-bithiazole] 3-oxide was synthesized according 

to the general dehydration procedure in 86% yield, 22.9 mg. 

1H NMR (300 MHz, CDCl3): 7.50-7.40 (m, 4H), 7.35-7.20 (m, 4H), 2.75-2.40 (m, 10H), 

1.66 (m, 4H), 1.34 (m, 12H), 0.90 (m, 6H); 

13C NMR (300 MHz, CDCl3): 148.5, 144.8, 143.1, 140.6, 134.0, 129.4, 129.3, 129.2, 

129.1, 129.1, 128.9, 128.4, 127.8, 35.8, 35.7, 31.7, 31.7, 31.3, 31.2, 29.0, 29.0, 22.6, 

16.5, 14.1, 11.9, overlapping signals as multiple peaks are missing even with prolonged 

scans; 

HRMS: calculated for C32H41N2OS2 (M+H)+ 533.2655; found = 533.2655. 

 

5,5'-Bis(5-hexylthiophen-2-yl)-4,4'-dimethyl-[2,2'-bithiazole] 3-oxide (87) 

 

5,5'-Bis(5-hexylthiophen-2-yl)-4,4'-dimethyl-[2,2'-bithiazole] 3-oxide was synthesized 

according to the general dehydration procedure in 56% yield, 15.3 mg. 

1H NMR (300 MHz, CDCl3): 7.13 (d, J = 3.5 Hz, 1H), 7.07 (d, J = 3.5 Hz, 1H), 6.82 (d, J 

= 3.5 Hz, 1H), 6.78 (d, J = 3.5 Hz, 1H), 2.84 (m, 4H), 2.66 (s, 3H), 2.62 (s, 3H), 1.71 (m, 

4H), 1.45-1.20 (12H, m), 0.90 (6H, m); 
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13C NMR (300 MHz, CDCl3): 149.4, 148.5, 148.5, 147.7, 139.7, 137.8, 130.9, 129.2, 

128.3, 127.4, 126.9, 125.2, 125.0, 123.8, 31.6, 31.5, 30.2, 30.2, 29.7, 28.8, 28.8, 22.7, 

22.6, 22.6, 17.0, 14.2, 14.1, 12.1; 

HRMS: calculated for C28H37N2OS4 (M+H)+ 545.1783; found = 545.1782. 

 

5,5'-Bis(3,4-dihexyl-5-(4-methylthiazol-5-yl)thiophen-2-yl)-4,4'-dimethyl-[2,2'-

bithiazole] 3-oxide (88) 

 

5,5'-Bis(3,4-dihexyl-5-(4-methylthiazol-5-yl)thiophen-2-yl)-4,4'-dimethyl-[2,2'-bithiazole] 

3-oxide was synthesized according to the general dehydration procedure in 78% yield, 

36.4 mg. 

1H NMR (300 MHz, CDCl3): 8.81-8.75 (m, 2H), 2.65-2.30 (m, 20H), 1.42 (m, 8H), 1.23 

(m, 24H), 0.85 (m, 12H); 

13C NMR (300 MHz, CDCl3): 152.5, 152.1, 151.3, 144.2, 143.6, 143.5, 143.1, 143.0, 

140.1, 128.9, 127.3, 127.0, 125.8, 124.7, 121.6, 31.4, 31.3, 31.3, 30.7, 30.4, 30.3, 30.3, 

29.3, 29.2, 29.2, 27.9, 27.9, 22.4, 22.4, 16.1, 15.9, 13.9, 12.0, overlapping signals as 

multiple peaks are missing even with prolonged scans; 

HRMS: calculated for C48H67N4OS6 (M+H)+ 907.3634; found = 907.3623. 
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General Dehydration Polymerization Procedure:  

The di-N-oxide (0.20 mmol, 1 eq.) was dissolved in reagent grade THF (0.6 mL) and the 

solution was placed in an ice bath. To this cold solution was added 1.0M LiOtBu in THF 

(300 µL, 0.30 mmol, 1.5 eq.) which usually resulted in a significant color change. The 

mixture was allowed to warm to room temperature and was stirred for 3 hours. The 

solution was then concentrated and precipitated in methanol and isolated through 

filtration.  

 

Poly[5-(9,9-bis(2-ethylhexyl)-7-(4-methylthiazol-5-yl)-9H-fluoren-2-yl)-4-

methyl-3-(λ1-oxidaneyl)-3λ4-thiazole] (95) 

 

95 was synthesized according to the general polymerization procedure in quantitative 

yield, Mn = 37, Mw = 80 kDa.  

1H NMR (300 MHz, CDCl3): 7.84 (br, 2H), 7.59 (m, 4H), 2.75-2.50 (m, 6H), 2.20-1.90 (m, 

4H), 0.90-0.40 (m, 30H). 
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Poly[5-(2,5-bis(decyloxy)-4-(2,4-dimethylthiazol-5-yl)phenyl)-4-

methylthiazole 3-oxide] (110) 

 

110 was synthesized according to the general polymerization procedure in quantitative 

yield, Mn = 43, Mw = 110 kDa.  

1H NMR (300 MHz, CDCl3): 6.96 (s, 2H), 3.93 (br, 4H), 2.25 (br, 6H), 1.80 (br, 4H), 1.24 

(m, 28H), 0.85 (br, 6H). 

 

Poly[5-(3,4-dihexanoyl-5-(4-methylthiazol-5-yl)thiophen-2-yl)-4-

methylthiazole 3-oxide] (106) 

 

106 was synthesized according to the general polymerization procedure in quantitative 

yield, Mn = 17, Mw = 46 kDa.  

1H NMR (300 MHz, CDCl3): 2.65-2.30 (br, 10H), 1.50-1.10 (m, 16H), 0.85 (br, 6H). 

  



91 
 

References 

1. Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. J. 

Chem. Soc. Chem. Commun. 1977, 16, 578. 

2. Shirakawa, H. Angew. Chem. Int. Ed. 2001, 40, 2575. 

3. Facchetti, A. Chem. Mater. 2011, 23, 733. 

4. Lipomi, D. J.; Lee, J.A.; Vosgueritchian, M.; Tee, B. C.-K.; Bolander, J. A.; Bao, 

Z. Chem. Mater., 2012, 24, 373. 

5. Facchetti, A. Chem. Mater. 2011, 23, 733. 

6.  Organic Electronics: Materials,Manufacturing, and Applications; Klauk, H., Ed.; 

Wiley-VCH: Weinheim, Germany, 2006. 

7. Rissler, J. Chem. Phys. Lett., 2004, 395, 92. 

8.  Odian, G. Principles of polymerization, 2nd ed., Wiley-Interscience, New York, 

1981. 

9.  Hamilton, R.; Bailey, C.; Duffy, W.; Heeney, M.; Shkunov, M.; Sparrowe, D.; 

Tierney, S.; McCulloch, I.; Kline, R. J.; DeLongchamp, D. M.; Chabinyc, M. Proc. 

SPIE–Int. Soc. Opt. Eng. 2006, 6336, 158. 

10.  (a) Wudl, F.; Srdanov, G. United States Patent 5,189,136, 1993. (b) Kim, S. T.; 
Hwang, D. H.; Li, X. C.; Grüner, J.; Friend, R. H.; Holmes, A. B., Shim, H. 
K. Adv Mater 1996, 8, 979. (c) Spreitzer, H.; Becker, H.; Kluge, E.; Kreuder, W.; 
Schenk, H.; Demandt, R.; Schoo, H. Adv. Mater. 1998, 10, 1340–1343. (d) 
Johansson, D. M.; Srdanov, G.; Yu, G.; Theander, M.; Inganäs, O.; Andersson, 
M. Macromolecules 2000, 33, 2525. 

11.  (a) Yamamoto, T.; Sanachika, K.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1983, 
56, 1497. (b) Leclerc, M.; Bergeron, J. Y. Synth. Met. 1993, 55, 287. 

12.  Mintmire, J. W.; White, C. T.; Elert M.L. Synth. Met. 1988, 25, 109. 

13.  Brédas, J. L.; Street, G. B.; Thémans, B.; André, J. M. J. Chem. Phys. 1985, 83, 
1323. 

14.  Colak, D. G.; Egbe, D. A. M.; Birckner, E.; Yurteri, S.; Cianga, I.; Tekin, E.; 
Schubert, U. S.; Yagci, Y. Eur. Poly. J. 2009, 45, 940. 

15.  Zade, S. S.; Bendikov, M. Chem. Eur. J. 2007, 13, 3688. 

                                            



92 
 

                                                                                                                                             
16.  Grimme, J.; Kreyenschmidt, M.; Uckert, F.; Müllen, K.; Scherf, U. Adv. Mater. 

1995, 7, 292. 

17.  Liu C.-L. et al. Polymer 2005, 46, 4950. 

18.  Junkers, T.; Vandenbergh, J.; Adriaensens, P.; Lutsen, L.; Vanderzande, D. 
Polym. Chem. 2012, 3, 275. 

19.  Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; MacKay, K.; 
Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature. 1990, 347, 539. 

20.  Pang, Y. Poly(phenylenevinylenes). In Design and Synthesis of Conjugated 
Polymers; Leclerc, M., Morin, J.-F., Eds; Wiley-VCH: Weinheim, 2010; pp 147. 

21.  (a) Maryanoff, B.E.; Reitz, A.B. Chem. Rev. 1989, 89, 863-927. (b) Alcelrud, L. 

Orig. Poly. Sci. 2003, 28, 875. (c) Li, H.; Li, Y.; Zhai, J.; Cui, G.; Liu, H.; Xiao, 

S.; Liu, Y.; Lu, F.; Jiang, L.; Zhu, D. Chem. Eur. J. 2003, 9, 6031. (d) Mitchell, 

T.N. Synthesis, 1992, 803. (e) Lopez, L.C.; Strohriegl, P.; Stübinger, T. 

Macromol. Chem. Phys. 2002, 1926. 
 

22.  (a) Gilch, H.G.; Wheelwright, W.L. J. Polym. Sci., Part A-1 1966, 4, 1337; (b) 

Becker, H.; Spreitzer, H.; Ibrom, K.; Kreuder, W.; Macromolecules 1999, 32, 

4925; (c) Wiesecke, J.; Rehahn, M.; Polym. Prepr. 2004, 45, 174. 
 

23.  Wiesecke, J.; Rehahn, M.; Angew. Chem. Int. Ed. Engl. 2004, 45, 174. 
 

24.  Swatos, W. J.; Gordon, B. Polym. Prepr., 1990, 31, 505. 
 

25.  Becker, H.; Speritzr, H.; Kreuder, W.; Kluge, E.; Schenck, H.; Parker, I.; Cao, Y. 

Adv. Mater., 2000, 12, 42. 
 

26.  Wessling, R. A. J. Polym. Sci., Polym. Symp., 1985, 72, 55.  
 

27.  Henckens, A.; Colladet, K.; Fourier, S.; Cleij, T. J.; Lutsen, L.; Gelan J.; 

Vanderzande, D. Macromolecules, 2005, 38, 19. 

 

28.  Henckens, A.; Duyssens,I.; Lutsen, L.; Vanderzande, D.; Cleij, T. J. Polymer, 

2006, 47, 123. 
 

29.  Liao, Q.; Cao, J.; Xiao, Z.; Liao, J.; Ding, L. Phys. Chem. Chem. Phys., 2013, 

15, 19990. 
 

30.  (a) Meyer, V. Chem. Ber. 1883, 16, 1465. (b) Lin, J. W.-P.; Dudek, L. P. J. Poly. 

Sci. Part A: Poly. Chem. 1980, 18, 2869. 

 



93 
 

                                                                                                                                             
31.  Roncali, J. Chem. Rev. 1997, 97, 173. 
 

32.  McCullough, R. D.; Tristram-Nagle, S.; William, S. P.; Lowe, R. D.; Jayaraman, 

M. J. Am. Chem. Soc. 1993, 115, 4910. 

 

33.  Chen, T.-A.; Wu, X.; Rieke, R. D. J. Am. Chem. Soc. 1995,117, 233. 

 

34.  Xu, S.; Kim, E. H.; Wei, A.; Negishi, E. Sci. Technol. Adv. Mater. 2014, 15, 

44201. 
 

35.  Kimbrough, R.D. Environ Health Perspect. 1976, 14, 51-56. 

 

36.  Wakioka, M.; Ishiki, S.; Ozawa, F. Macromolecules, 2015, 48, 8382. 
 

37.  Schipper, D.J., Hutchinson, M., Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6910. 
 

38.  (a) Dave, D. IHS Chemical PEP Review 2015-06 Polyamide 6 and 66 Process 

Summary https://www.ihs.com/products/report-pepreview-2015-06-polyamide-

nylon-6-and-66.html (accessed March 31, 2017). (b) Merchant Research & 

consulting https://mcgroup.co.uk/news/20140117/global-pet-supplyexceed-

2439-mln-tonnes-2015.html (accessed March 31, 2017). 
 

39.  Guo, X.; Fan, H.; Zhang, M.; Huang, Y.; Tan, S.; Li, Y. J. Appl. Polym. Sci. 

2012, 124, 847. 
 

40.  Guo, Q.; Wu, D.; You, J. ChemSusChem, 2016, 9, 2765. 
 

41.  Lapointe, D.; Markiewicz, T.; Whipp, C.J.; Toderian, A.; Fagnou, K. J. Org. 

Chem. 2011, 76, 749. 
 

42.  Primas, N.; Bouillon, A.; Lancelot, J.-C.; El-Kashef, H.; Rault, S. Tetrahedron, 

2009, 65, 5739. 
 

43. Liu, X.-W.; Shi, J.-L.; Yan, J.-X.; Wei, J.-B.; Peng, K.; Dai, L.; Li, C.-G.; Wang, 

B.-Q.; Shi, Z.-J. Org. Lett. 2013, 15, 5774. 

 

44. Forgione, P.; Brochu, M.-C.; St-Onge, M.; Thesen, K. H.; Bailey, M. D.; 

Bilodeau, F. J. Am. Chem. Soc. 2006, 128, 11350. 

 


