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ABSTRACT 
 
A series of studies was undertaken at Plastic Lake-1 (PC1) to determine the sources and controls 

on S cycling in small headwater catchments on the Precambrian Shield in south-central Ontario.  

Two observations were made about the S cycle in this region: (1) all streams exhibit highly 

coherent temporal patterns in SO4 concentrations and export, and (2) most catchments exported 

more SO4 in stream water than is received in bulk deposition during the past 2 decades.  

Synchronous temporal patterns in annual SO4 concentrations in both upland and wetland-draining 

streams were related to changes in climate, specifically those factors that determine catchment 

dryness. The number of days with no stream flow or stream flow below a critical threshold was a 

good predictor of the average stream SO4 concentration in a particular year. Sulphate chemistry in 

the PC1 outflow is highly dependent on processes occurring in a conifer Sphagnum swamp 

located immediately upstream of the chemical sampling station.  Hydrologic inputs to the swamp 

during the summer determine whether S is retained or released from peat on an annual basis. 

Drying and re-wetting of Sphagnum-derived peat caused a substantial increase in soluble SO4 in 

laboratory experiments, which was slightly enhanced at higher temperature, but alternating 

moisture conditions had no immediate effect on Sphagnum. Despite large inter-annual changes in 

SO4 release, over the long-term (i.e. 20-years) SO4 inputs and exports from the swamp are in 

approximate balance. In contrast, the upland portion of PC1 (i.e. PC1-08) consistently exports 

more SO4 than is input in bulk deposition in every year of record. Even when inputs are increased 

to account for potential underestimates in dry deposition or weathering, the majority of 

catchments in this region exhibit net export in many years. Two internal sources are suggested to 

account for negative budgets: desorption and mineralization. Adsorption/desorption reactions 

respond directly to changes in SO4 input concentration, and lysimeter data indicate the 

importance of these processes for buffering short-term changes in SO4 concentration in LFH 

percolate.  Desorption may be the primary direct response of upland soil to decreasing SO4 inputs 
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in deposition and may substantially extend the period of net SO4 export in catchments that have 

large adsorbed SO4 pools such as PC1. However, the adsorbed pool may be sustained by 

continuous net release from mineralization, and should also be considered in budget calculations.  

Mineralization was shown to be responsive to drying and re-wetting events and temperature, 

although results varied among different materials. Sulphate release from mineral soil did not 

appear to be influenced by changing moisture, temperature or deposition chemistry in laboratory 

experiments, although adsorption/desorption reactions may have largely masked small changes in 

SO4 release via mineralization. The magnitude of organic S storage in mineral soil indicates that 

this pool could be an important source of export over the long-term.  While it is unknown why (or 

if) mineralization is a net source of SO4 to drainage streams, changes in climate and/or deposition 

could potentially influence SO4 release from organic compounds.  Soil moisture and temperature 

are important controls on microbial processes in soil, and changes in climate that bring about 

changes in soil moisture or temperature conditions could affect decomposition and mineralization 

processes.  Similarly, historically high inputs of S and N in deposition may have brought about 

slow shifts in litter quality (i.e. decreased C:N, C:S) which could also potentially influence 

decomposition and mineralization rates. In order to predict the future response of surface water 

chemistry to changes in SO4 (and N) deposition, it is important to consider not only the magnitude 

of S pools in soil, but also the potential for SO4 cycling between pools. Likewise, models that 

predict changes in stream SO4 by adsorption isotherm data alone will underestimate the 

importance of desorption unless the potential for continual replenishment of the adsorbed pool 

through the relatively slower process of mineralization is also considered. In general, predictions 

of recovery from S deposition can only be made from a complete understanding of S pools, 

transformations, and the effects of climate, which are superimposed upon the long-term trend in 

deposition. 
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CHAPTER 1:  INTRODUCTION 

 

The atmospheric deposition of acidic sulphur (S) compounds in eastern North America has 

greatly declined over the past two decades in response to environmental regulations and 

agreements which restrict industrial emissions. Since the early 1980s, sulphate (SO4) deposition 

in the northeastern United States has declined by at least 25% whereas the decrease in eastern 

Canada over the same time period was around 40% (EPA, 1999; Environment Canada, 1997).  In 

the Muskoka-Haliburton region of south central Ontario, which is the location of this study, SO4 

deposition declined by around 45% between 1980 and 2000 (Watmough and Dillon, 2001).   

 

These large reductions in SO4 deposition were expected to bring about proportional declines in 

SO4 concentrations in surface waters, and ultimately increased pH and alkalinity.  However, a 

number of reports have indicated that many lakes and streams in eastern North America have not 

responded as expected to changes in deposition. For example, of 202 lakes considered in 

southeastern Canada which included 35 lakes in the Muskoka-Haliburton region, Clair et al. 

(1995) reported that 51% exhibited statistically significant decreases in SO4 concentrations from 

the early 1980s to the mid 1990s, whereas 48% had no trend and 1% had increasing SO4. In 

contrast, only 33% of lakes had increased pH or ANC, whereas 56% were stable, and 11% had 

acidified further. Similarly, although SO4 concentrations in many surface waters in the 

northeastern United States have decreased in recent decades, the rate of decline has not been 

proportional to the change in deposition (Driscoll et al., 1998; Stoddard et al., 1999).  

 

The covered catchment studies in Norway (RAIN) and Sweden (Gårdsjőn) also reported a delay 

(up to 8 yr) in the response of SO4 concentrations in runoff following the installation of roofs that 

completely excluded anthropogenic deposition (Skeffington et al., 1998). Results from these 

studies suggested that delayed responses in percolate chemistry were due to the release of SO4 
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stored in soil and highlighted the importance of internal processes for determining the response of 

catchments to changes in deposition. 

 

Similar net SO4 release has been reported at a number of sites in southeastern Canada and the 

northeastern United States, where mass budgets indicate that catchment export of SO4 exceeds 

inputs in deposition (Hornbeck et al., 1997; Houle and Carignan, 1995; Mitchell et al, 1996; 

Rochelle et al., 1987). A number of sources have been proposed to account for catchment S 

imbalances including underestimated inputs through weathering or dry deposition, or release of 

SO4 from internal pools through desorption, mineralization or oxidation (Driscoll et al., 1998; 

Houle et al., 2001; Likens et al., 1996). Dry deposition was originally suggested as the cause of 

budget imbalances at the Hubbard Brook Experimental Forest (HBEF, Likens et al., 1990), 

although more recent reports suggest net mineralization might be a more important source of SO4 

export at the HBEF (Alewell et al., 1999; Mitchell et al., 2001).  

 

Dry deposition is a notoriously difficult parameter to quantify but can be a large source of SO4 

input, particularly in high elevation catchments, and at sites located close to SO2 emission sources 

(Baumgardner et al., 2002; Lovett et al., 1997; Sirois et al., 2002).  However, at sites that are 

remote from point sources of emissions, S inputs via dry deposition are generally low compared 

to wet inputs. For example, Baumgardner et al. (2002) recently estimated that dry deposition 

contributed 7% and 22% of total SO4 deposition at forested sites in New Hampshire and Maine, 

respectively, which are located relatively distant from major SO2 emission sources.  Similarly, 

Sirois et al. (2002) recently estimated that dry deposition constituted approximately one-third of 

total S inputs at the Turkey Lakes watershed in central Ontario.   

 

Weathering inputs are also difficult to quantify on a catchment-scale but are generally considered 

to be small in catchments with slowly weathered igneous or metamorphic rock that has a low S- 
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content (Mitchell et al., 1992a). Such rock types characterize much of the Canadian Shield region 

of southeastern Canada and the northeastern United States where net catchment export has been 

reported.  For example, weathering was estimated to contribute approximately 4% (0.62 kg 

S/ha/yr) of S export in stream water at the Hubbard Brook Experimental Forest, NH (Alewell et 

al., 1999). Similarly, Houle and Carignan (1995) estimated that SO4 release due to weathering 

constituted only a small (~ 0.05 kg S/ha/yr) portion of annual S losses in stream flow (9-15 kg 

S/ha) in the Lac Laflamme catchment, QC.  Nevertheless, weathering can be an important source 

of SO4 in catchments that have metal sulphide, gypsum or carbonate mineral deposits, and 

weathering inputs should always be considered when evaluating S mass budget data.  

 

Net SO4 losses from catchments that are both remote from SO2 emission sources, and have 

negligible weathering inputs must therefore be due to release from internal pools. Driscoll et al. 

(2001) reported a strong positive relationship between wet SO4 deposition and total S 

concentrations in the forest floor of red spruce stands, and suggested that net SO4 losses are a 

legacy of past decades of atmospheric S deposition and resultant S accumulation in forest soils. 

The release of SO4 that was previously accumulated in catchments will delay the recovery of 

surface waters in response to SO2 emission controls (Driscoll et al., 1998).  It is imperative to 

quantify the processes that govern SO4 generation and SO4 retention in catchments in order to 

predict the response of catchments to future changes in deposition, and to evaluate whether 

further reductions in emissions are necessary.  

 

Mechanisms of S retention in catchments 

While SO4 is considered a ‘mobile anion’ and its movement through soil drives the leaching of 

base and acid cations, SO4 may also be retained in soil through both biotic and abiotic processes. 

Biological mechanisms of SO4 retention include vegetation uptake and microbial immobilization 

(assimilatory SO4 reduction) in upland soil, and microbial dissimilatory SO4 reduction (DSR) in 
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lowland regions. In anaerobic zones, such as saturated riparian areas and wetlands, SO4 reducing 

bacteria transform SO4 into the highly reactive H2S, which may then degas to the atmosphere, or 

react with available iron (Fe) and organic matter to form relatively immobile iron sulphide or 

organo-sulphide compounds (Spratt and Morgan, 1990; Wieder and Lang, 1988). Sulphate may 

also be assimilated by wetland vegetation such as Sphagnum mosses, and thereby accumulate in 

slowly decomposing peat deposits (Urban et al., 1989). However, uptake and metabolism of 

dissolved SO4 (i.e. via DSR) and subsequent reaction with organic matter is the major route of S 

incorporation into peat (Brown and MacQueen, 1985).  

 

Soil is the dominant site of S storage in most upland forested systems, and vegetation constitutes 

only a small (<12%) fraction of the total S content of the ecosystem (e.g. Mitchell et al., 1992a). 

The majority of total S in forest soil (>75%) generally is present in organic forms.  Carbon-

bonded S compounds (C-S) constitute the majority, and ester sulphates (C-O-S) normally account 

for less than 25% of total organic S (David et al., 1983; Mitchell et al., 1992c). Annual S uptake 

by vegetation generally is balanced by SO4 return to the forest floor in litter and root exudates on 

an annual scale, and so forest vegetation is not considered to be an important net source or sink 

for S except in actively harvested stands (Johnson, 1984; Reuss and Johnson, 1986). However, 

sulphate uptake by trees and transformation to organic-S compounds and subsequent return to the 

forest floor in litter and roots (exudates/sloughing) may be an important source of organic-S 

compounds to soil.  Microbial immobilization is also an important biological mechanism of SO4 

retention in well-aerated upland forest soil, and may account for a large fraction of total 

ecosystem retention in some catchments. For example, at the Coweeta Experimental Watershed in 

North Carolina, it was estimated that as much as 30 kg S/ha could be microbially incorporated 

into organic forms annually (Swank & Fitzgerald 1983). Immobilization of added SO4 is 

apparently rapid, and may be proportional to SO4 concentrations in soil solution (Fitzgerald et al., 

1982; Strickland and Fitzgerald, 1984). Therefore, microbial retention of S in soil may also be 
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responsive to changes in deposition. In addition, the balance between SO4 immobilization and 

mineralization may be influenced by the S content of soil, such that SO4 is accumulated when the 

S content of soil is low, whereas net mineralization occurs in soils rich in S (Chapman, 1997; 

Scherer, 2001). The total C:S ratio provides a rough guide to the S status of organic soil, with a 

C:S > 400 generally indicating S limiting conditions which favour net immobilization, whereas 

net mineralization predominates at a C:S < 200; apparently, either process can occur when the 

ratio falls between 200 and 400 (Freney, 1986). Other authors have suggested that the C:S ratio of 

recently added organic matter (i.e. litter), is a more important determinant of the potential for 

immobilization or mineralization than the C:S ratio of the soil itself (Chapman, 1997; Eriksen, 

1997).  

 

In acidic soils, the primary abiotic controls on SO4 retention are adsorption and precipitation, 

although precipitation of SO4 minerals (generally with Al) is apparently only important in 

extremely acid soils (pH <3) that have high inorganic Al concentrations (Khanna et al., 1987). 

Sulphate adsorption is the primary abiotic mechanism of inorganic SO4 retention in most forest 

soils in eastern North America (Fuller et al., 1985; Neary et al., 1987). Hydrous oxides of Fe and 

Al and edges of aluminosilicate clays are generally believed to be responsible for SO4 adsorption 

in soil (Bohn et al., 1986; Johnson and Todd, 1983). Hydrous oxides may occur freely in soil or 

as coatings on clay minerals, and SO4 adsorption to oxides is related to their specific surface area 

and density of surface OH groups (Bohn et al., 1986). Iron and Al in mineral soil are generally 

found in one of 3 operationally defined forms including organically bound, amorphous and 

crystalline. A number of reports have attempted to relate adsorbed SO4 to a specific form of Fe or 

Al in soil; however, results have been variable (e.g. Fuller et al., 1985; Harrison et al., 1989; 

Johnson and Todd, 1983). Amorphous forms of Fe and Al might be expected to have greater 

adsorption capacity due to their higher specific surface areas, although Johnson and Todd (1983) 
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reported that crystalline Fe was most highly correlated with adsorbed SO4 in a survey of soil at 

various sites in the US. 

 

The majority of catchments in the northeastern US and southeastern Canada that have exhibited 

net SO4 losses are dominated by soils of the podzolic soil order (Rochelle et al., 1987).  The 

process of podzolization results in the dissolution and leaching of Fe and Al down the soil profile 

to lower mineral soil where they are subsequently deposited. As podzolization continues, Fe and 

Al hydrous oxides become relatively enriched in subsurface soil, and as a consequence older, 

more weathered soils of the southeastern US (oxisols/ultisols) have higher Fe and Al oxide 

contents than the northeastern US and southeastern Canada, where glaciation has “reset the 

pedogenic clock” (Rochelle et al., 1987; Shanley, 1992).  Sulphate adsorption is therefore 

considered a more important mechanism of retention in the southeastern US, and input-output 

budgets for these catchments are typically positive (i.e. net SO4 retention) despite high rates of 

SO4 deposition (Johnson et al., 1982; Shanley, 1992).   

 

Sulphate adsorption is also influenced by the SO4 concentrations in soil solution, pH and organic 

matter content.  For example, a negative relationship exists between SO4 adsorption and both soil 

pH and organic matter content. As pH decreases, protonation of negative functional groups on 

organic acids (i.e. hydroxyl, carboxylic, phenolic) and clays results in the creation of additional 

sites for anion adsorption and greater SO4 retention. Increased nitrification due to forest 

harvesting and a subsequent decline in soil pH was shown to increase SO4 adsorption at the 

HBEF (Mitchell et al., 1989; Nodvin et al., 1988).  Organic acids generally decrease SO4 

adsorption by coating adsorption surfaces in soil, or by competing with SO4 for anion adsorption 

sites (Courchesne and Landry, 1994; Gobran and Nilsson, 1988).  
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The concentration dependency of SO4 adsorption has been described mathematically using 

isotherm equations. The two most commonly used equations to describe adsorption are the 

Langmuir and Freundlich equations. The principal difference between the two is that the latter 

does not have an adsorption maximum. Both generally demonstrate that SO4 adsorption increases 

with increased SO4 concentration, but that the rate of SO4 adsorption declines at higher 

concentrations (Chao et al., 1962).  In contrast, Nodvin et al. (1986) found that at the SO4 

concentration range normally observed in soil solution, adsorption is best described by a simple 

linear partitioning model, or the IM (initial mass) isotherm. The slope of the IM isotherm is 

indicative of the ability of a soil to retain SO4, with a slope of 1.0 indicating complete or 100% 

retention, and values close to 0 suggesting negligible SO4 adsorption (Shanley, 1992). The x-

intercept of the SO4 adsorption/desorption curve indicates the SO4 concentration in soil solution 

at which SO4 is neither adsorbed nor desorbed and therefore provides information on the potential 

for SO4 release or retention under current or predicted conditions.  

 

Mechanisms of S release in catchments 

It is becoming increasingly apparent that S storage in catchment soil is not necessarily a 

permanent phenomena, and SO4 that had been previously retained may be gradually released to 

surface waters, delaying their response to changing deposition (Driscoll et al., 1998; Harrison et 

al., 1989). Mineralization and desorption are the primary mechanisms by which stored S is 

released from upland forest soil. In wetlands, declines in water table level can result in the 

exposure and mineralization of organo-S compounds in peat and oxidation of metal sulphides, 

and subsequent release of SO4 from wetlands (Bayley et al., 1986; Dillon et al., 1997; LaZerte, 

1993).  

 

Adsorbed SO4 is in kinetic equilibrium with SO4 in soil solution, and therefore a decrease in SO4 

inputs to soil through declining deposition is expected to cause the release of SO4 from soil 
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surfaces given enough time for reaction (Chao et al., 1962; Reuss and Johnson, 1986). Studies 

that have examined desorption from soil using soil leachate or de-ionized water amended with 

varying concentrations of SO4 have shown that more SO4 is released from soil at lower SO4 

concentrations in solution (Gobran et al., 1998). Hern (1994) for example, showed that nearly 3-

times as much SO4 was released from Plastic Lake soil (equilibrium pH of ~ 5) at an initial SO4 

concentration of 5 mg/l compared to 10 mg/l.  

 

While many soils appear to contain some ‘irreversibly adsorbed SO4’ (i.e. adsorbed SO4 that is 

not liberated in H2O extractions), Chao et al. (1962) demonstrated that as much as 45% of SO4 

that was initially adsorbed could be recovered in a single water extraction. Similarly, Harrison et 

al. (1989) found that while 29 out of 36 North American forest soils exhibited some irreversible 

adsorption, up to 2/3 of the initially adsorbed SO4 could be recovered quantitatively by water 

extraction. Generally, soils that have a greater adsorption capacity contain more irreversibly 

adsorbed SO4; however, Shanley (1992) found that even soils which exhibit 100% SO4 adsorption 

(i.e. slope of IM isotherm of 1.0) release considerable SO4 (~30%) in water extractions. Alewell 

and Matzner (1993) suggest that soils with large adsorbed SO4 pools will respond more slowly to 

decreases in deposition because of their large potential for release. Accordingly, thin, organic-rich 

soils with low initial storage of adsorbed SO4 should therefore respond more rapidly to changes in 

deposition, as has been demonstrated at the covered catchment studies in Norway and Sweden 

(e.g. Hultberg et al., 1998; Wright et al., 1988).  Similarly, Prechtel et al. (2001) recently reported 

that German catchments which have deeply weathered soils and high SO4 storage capacity 

responded more slowly to deposition decreases over the past decade than catchments in the Czech 

Republic/Slovakia and Scandinavia, respectively which have thin soils and relatively small SO4 

storage.  Net release of SO4 from soil in German catchments maintained relatively high SO4 

fluxes in stream water despite large decreases in deposition, and therefore ‘delayed’ their 

response to changes in deposition.  
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Model simulations indicate that discrepancies in catchment S budgets and patterns in surface 

water SO4 concentrations cannot be entirely explained by soil desorption (Driscoll et al., 1998a; 

Houle and Carignan, 1995). However, these simulations have considered the adsorbed SO4 pool 

to be independent of other S pools in soil, which is unlikely since SO4 released through 

mineralization or weathering could also be retained or subsequently released through 

adsorption/desorption reactions (Bohn et al., 1986).  

 

Several recent studies have discussed the potential contribution of mineralization to net SO4 

export from catchments (e.g. Driscoll et al., 1998; Houle and Carignan, 1995; Zhang et al., 1997). 

The mechanisms involved in the mineralization of S are less well understood than for desorption. 

It has been suggested that the microbial release of S from organic matter may be either coincident 

to decomposition (biological mineralization), or it may occur to satisfy microbial requirements for 

that element (biochemical mineralization; McGill and Cole, 1981). Mineralization rates are 

highest in the forest floor and decrease with depth in mineral soil, as might be expected from the 

distribution of soil microbes and organic matter (Atlas and Bartha, 1993). The involvement of soil 

microbes is indicated by studies that demonstrate the inhibition of SO4 mineralization by the 

addition of antimicrobial agents such as sodium azide or erythromycin to soil. However, opposing 

results have also been reported (Strickland et al., 1984), likely due to the ubiquitous presence of 

sulphatase (sulphohydrolase) enzymes in soil, which are produced extracellularly by microbes 

and plant roots and are therefore not directly affected by antimicrobial chemicals.  Synthesis of 

sulphatase enzymes however, may be inhibited by the addition of SO4 to soils (end-product 

inhibition) (Fitzgerald, 1976); it is unknown whether the opposing process also holds true, but if 

so, decreasing deposition could influence mineralization rates by enhancing sulphatase enzyme 

production.  
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It is generally believed that approximately 1-3% of the total organic S in agricultural soil is 

released through mineralization each year (Freney, 1986), and presumably a smaller fraction 

would be released annually in undisturbed forest soil. However, given the size of the organic S 

pool in most forest soils (generally > 1000 kg S/ha; Mitchell et al., 1992a), even a small annual 

turnover could account for the magnitude of net S losses measured in some catchments. For 

example, Houle and Carignan (1992) calculate that only a small annual loss of 0.4% of the 

organic S reservoir (1230 kg S/ha) would be sufficient to explain annual net SO4 losses from the 

Lac Laflamme catchment. In order for net export of S from the organic pool to occur, net 

accumulation of S in soil organic matter must have occurred at some point in the past. Mitchell et 

al. (1989) suggested that the large organic S reservoir in B-horizon soil may have accumulated 

slowly over time through the deposition of soluble organic S compounds originally leached from 

the forest floor. Indeed organic matter leaching appears to be an important mechanism for the 

translocation of S to mineral soil (Schoenau and Bettany, 1987).  

 

Few studies have investigated the potential shift from net S accumulation to net loss that must 

have occurred if mineralization is now sustaining net SO4 export from catchments. However, 

Bailey et al. (2001) calculated S budgets for the entire country of Northern Ireland between 1940 

and 1990, and found that while S initially accumulated in soil (1940-1965), budgets became 

negative from the late 1970s onwards. Reduced S inputs in fertilizers and deposition were 

suggested to have stimulated organic matter decomposition and subsequent release of SO4 

through mineralization (Bailey et al., 2001).  Eriksen (1997b) similarly found that S budgets in 

Danish soils shifted from positive to negative between the 1960s and 1980s, which coincided with 

a period of dramatic decrease in S inputs in both deposition and fertilizer.  Increased 

mineralization in response to decreased S input is contrary to previous laboratory studies, which 

have shown that S mineralization is generally inhibited under conditions of low S availability 

(Chapman, 1997; Scherer, 2001).  While the above studies were conducted in predominantly 
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grassland catchments, similar processes may occur in forested catchments; although, further work 

would be required to determine the potential effects of changing S deposition on immobilization 

and mineralization in undisturbed forest soil. Factors that affect the biological cycling of S are of 

critical importance due to the large size of the organic S pool in soil (i.e. potential source of net 

export), and the magnitude of biological transformations (e.g. David and Mitchell 1987). 

Furthermore, while SO4 deposition has declined in recent decades, nitrogen (N) deposition has 

remained unchanged (Stoddard et al., 1999). Nitrogen is normally considered the limiting nutrient 

in terrestrial systems, and the addition of N may act as a fertilizer in some systems, stimulating 

rates of organic matter breakdown and possibly the release of SO4 through mineralization (Berg 

and Matzner, 1996).  Therefore, the potentially stimulatory effect of N deposition should also be 

considered in S budget studies. 

 

Climate effects on S release 

The 1980s and 1990s were 2 of the warmest decades on record, and were also marked by a 

number of extreme climatic events (NOAA, 2000).  Since the mid-1970s for example, El Niño 

events have been both more frequent and more persistent (Francis and Hengeveld, 1998). El Niño 

episodes are normally associated with dry, mild winters in continental Canada; however, in the 

Muskoka-Haliburton region El Niños are linked with warm, dry summer conditions and reduced 

stream flow.  Elevated stream SO4 concentrations are also associated with El Niño years, 

particularly in wetland-draining streams (Dillon et al., 1997). It has been suggested that 

reductions in wetland water table levels during summer droughts allow the exposure and 

oxidation of reduced S compounds in peat. When normal hydrologic conditions resume, newly 

produced SO4 is flushed into drainage streams producing spikes in SO4 concentration (Bayley et 

al., 1986; Devito et al., 1999; Dillon et al., 1997). In contrast, SO4 tends to be retained in 

wetlands during intervening wet years, when water tables remain at or above the peat surface 
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(LaZerte, 1993). Similar patterns of SO4 release have been reported in European wetlands and 

ponds following drought (Van Haesebroeck et al. 1997, Van Dam, 1988).   

 

Changes in climate may also affect mineralization rates, and laboratory and field studies have 

demonstrated a stimulatory effect of both temperature and drying on SO4 release from soil (David 

et al., 1983; Foster, 1989; Jaggi et al., 1999; Williams, 1967). The balance between SO4 

immobilization and mineralization may be influenced by changes in temperature and 

precipitation, which affect soil moisture and microbial activity.  Changes in climate might affect 

S release from catchments in other ways; for example, higher inputs of SO4 to a high-altitude lake 

were attributed to temperature-related increases in the weathering of S-bearing minerals 

(Sommaruga-Wögrath et al., 1997). Webster et al. (2001) reported that SO4 concentrations in 

Wisconsin lakes were higher in warm dry years when reduced stream flow into lakes and greater 

evaporation resulted in elevated concentrations of SO4 (and other chemicals). Finally, Wilby 

(1994) reported higher SO4 concentrations in a British stream during a 3-year dry period and 

attributed these to an intensification of the existing hydrological regime, which likely altered flow 

paths and may have also enhanced oxidation of sulphides in dry soils. 

 

Most long-term monitoring stations in North America which have reported net SO4 export, have 

data sets extending back to the late 1970s or 1980s, which coincides with a period of relatively 

extreme weather (Francis and Hengeveld, 1998; Wilby, 1994). While climate appears to be 

responsible for part of the inter-annual variability in surface water SO4 concentrations, it is 

unclear whether climatic variations alone can explain negative S budgets on a regional scale. In 

order to reduce the uncertainty in the predicted response of SO4 to changes in atmospheric 

deposition, it is therefore necessary to consider a number of interrelated biological, physical and 

chemical processes, as well as the overriding influence of climate.   
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Study Site 

This project was designed to investigate S cycling in catchments located in the Muskoka-

Haliburton region of south-central Ontario (Figure 1). This region has received historically high 

inputs of SO4 deposition, and is also characterized by acid sensitive terrain (Dillon et al., 1987; 

1988). A long-term monitoring programme to assess the affects of acid deposition was initiated in 

a number of catchments in this region in the late 1970s by the Ontario Ministry of Environment 

(OMOE).  Data collected through this program indicated that surface waters had higher SO4 

concentrations than predicted, and that SO4 export in catchment drainage waters generally 

exceeded inputs in bulk deposition. Furthermore, it was also apparent that wetland-draining 

streams exhibited large inter-annual changes in SO4 concentration that appeared to be climate 

related (Devito et al., 1999; Dillon et al., 1997).  The goal of this project was therefore to 

investigate the response of this region to changes in deposition by examining S cycling in an 

individual catchment.  

 

The Plastic Lake-1 (PC1) catchment (45˚11’N 78˚50’W) was chosen for this study because it has 

been the focus of a number of previous biogeochemical and hydrological investigations, which 

have produced a wealth of background data. Furthermore, the catchment is well instrumented for 

further study. The 23.3 ha PC1 catchment (Figure 1) contains a relatively large (2.2 ha) conifer-

Sphagnum swamp directly upstream of the catchment outflow where stream chemistry is 

monitored. More than 80% of the runoff from the catchment drains through this wetland before 

discharging to Plastic Lake.  Stream flow at PC1 has been continuously gauged since 1980, and 

stream chemistry was measured at least weekly or more frequently during periods of high flow 

over the same time period. An entirely upland 3.45 ha sub-catchment of PC1 (PC1-08) drains into 

the swamp from the northeast (Figure 1). Stream chemistry and stream flow have been measured 

in the PC1-08 catchment since 1983 and 1986, respectively. Soil percolate has been collected for 

chemical analyses at 3 zero-tension (ZT) lysimeters located in the hillslope adjacent to the PC1-



 14 

08 stream channel, and an additional 3 ZT lysimeters are located immediately outside of the PC1-

08 sub-catchment (Figure 2). All lysimeters were installed in 1986/87, and percolate was 

collected when sample was available between 1987 and 1995.  Similarly, monitoring of PC1-08 

stream flow and chemistry was temporarily halted in 1995, but both lysimeter and stream flow 

measurements were reinitiated in the spring of 1999 for this project. Bulk deposition, 

precipitation depth and other climate variables have been continuously monitored at a site just 

outside of the PC1 catchment since the late 1970s.  

 

Time-averaged deposition and climate parameters are calculated as the mean of data collected at 

4 (until 1995), or 3 (from 1996 to present) meteorological stations that are located within a 50 km 

radius of Plastic Lake. Methods of deposition collection and meteorological measurements are 

described in detail in Dillon et al. (1988) and Scheider et al. (1983). 

 
 
Study design 

A number of experiments and data analyses were performed to further examine 2 initial 

observations: 

 

1. Patterns of SO4 concentration are similar among a number of physiographically different 

catchments in the Muskoka-Haliburton region (i.e. both upland and wetland) 

2. Sulphate export in stream water generally exceeds input in bulk deposition and this 

apparent net export is particularly great in certain years 
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Figure 1.  Location of the study site (not to scale).   
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The remainder of this thesis is organized into a series of chapters which each describe a specific 

hypothesis related to the 2 observations above. The final chapter provides a synopsis of relevant 

results and general conclusions.  

 

Chapter 2 describes the similar patterns of annual SO4 chemistry and export observed in 8 

headwater streams and discusses the apparent influence of climate (specifically temperature and 

precipitation) on temporal patterns of SO4 release.  In addition, SO4 input/output budgets are 

calculated for the 8 catchments, and potential causes of net export are discussed. 

 

Chapter 3 compares long-term decreases in SO4 deposition with SO4 concentrations in lakes and 

their inflows. Higher than expected SO4 concentrations in lakes are attributed to net SO4 export 

from the surrounding catchment, and the importance of catchment processes for determining the 

chemistry of drainage waters is highlighted.  

 

Chapter 4 describes S cycling in an upland, forested catchment that exhibits net S export.  

Imbalances in the catchment S budget are investigated, and patterns of SO4 chemistry in soil 

percolate and upland streamwater are compared with patterns in deposition and climate.  

 

Chapter 5 describes a laboratory experiment which tested directly the effects of increased 

temperature and changing moisture conditions on SO4 release from upland (mineral soil, organic 

soil) and wetland (Sphagnum, peat) material. The purpose of this study was to determine whether 

climate-related changes could explain inter-annual variations in SO4 concentrations observed in 

upland and wetland-draining catchments.   

 

Chapter 6 describes the results of laboratory experiments that investigated the importance of SO4 

adsorption and desorption reactions in mineral soil.  The potential for increased SO4 desorption in 
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response to declining SO4 inputs in deposition is discussed, as well as the potential contributions 

of desorption to negative S budgets. 

 

Chapter 7 describes variations in the natural abundance of S isotopes in SO4 inputs and exports 

from the PC1 catchment over a 2-year period, and discusses possible biological processes 

involved in S cycling.  A second part of this chapter describes a stable S isotope addition 

experiment, which involved application of 34S to various parts of the catchment in order to 

determine the transit time of S and factors affecting its retention or release. 

 

Chapter 8 describes a laboratory experiment that tested the effect of changing deposition 

chemistry (SO4 and N concentrations) on SO4 release or retention (i.e. mineralization or 

immobilization) from organic and mineral soil.  

 

Chapter 9 describes the elements of the sulphur mass balance calculation, and discusses the 

complexities in estimating specific inputs and outputs. Budget calculations are presented for a 

number of catchments in the Muskoka-Haliburton region. 

 

Chapter 10 provides a summary of important results and general conclusions. 
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CHAPTER 2: CLIMATE EFFECTS ON SULPHATE FLUX FROM FORESTED 

CATCHMENTS IN SOUTH-CENTRAL ONTARIO 

(published in Biogeochemistry,2002 vol. 61, 337-355) 

 

ABSTRACT 

Net export of sulphate from watersheds may delay the response of surface waters to changes in 

acid deposition. Long-term (18-yr) sulphate budgets were calculated for 8 headwater streams 

located in the acid-sensitive region of Muskoka-Haliburton, south central Ontario.  Sulphate 

deposition in this region has decreased by almost 40% over the last 2 decades, and sulphate 

export from catchments has also generally declined over time, but most catchments are still a net 

source of sulphate to drainage streams. Net export of sulphate occurred in the majority of 

catchments in most years of record, but was particularly large following dry, warmer than average 

summers, when stream flow ceased for up to several weeks at a time. In years with warm dry 

summers, such as occurred in 1983/84 and between 1987/88 and 1990/91, inclusive, stream 

export from most catchments was between 1.5 and 2-times greater than was input via bulk 

deposition. Annual average sulphate concentrations in streams were strongly correlated with 

stream dryness, and were greater in years in which streams were dry for longer periods of time. 

Temporal patterns of annual sulphate concentrations and export were highly coherent among the 

8 streams, and net sulphate export occurred in both wetland-draining and predominantly upland 

streams. Climate variables, specifically temperature and precipitation act on a regional scale and 

are likely responsible for similar temporal patterns of sulphate retention among these 8 

physiographically different catchments.  Net sulphate export from catchments may delay the 

recovery of acid impacted surface waters, despite reductions in industrial SO2 emissions. 
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INTRODUCTION 

 

Sulphur (S) loadings in eastern North America have decreased substantially over the past 2 

decades in response to SO2 emission reductions (Clair et al. 1995; Dillon et al. 1997; Stoddard et 

al. 1999). While sulphate levels in many lakes and streams have also declined, the magnitude and 

rate of decline were considerably less than anticipated from atmospheric deposition (Driscoll et 

al. 1995; Jeffries et al. 1995) and decreases in sulphate concentration have not consistently 

resulted in improvements in pH and alkalinity in surface waters (e.g. Clair et al. 1995; Dillon and 

Evans 2000; McNicol et al. 1998; Stoddard et al. 1999).  

 

Retention of deposited sulphate within the terrestrial catchment can modify the effect of acid 

deposition on surface waters, and may explain why some surface waters have shown a delayed, or 

only a modest response to changes in acid deposition. Sulphate retention in forested catchments 

may occur through vegetation uptake or microbial immobilization, or through adsorption to the 

soil matrix or precipitation as Al-sulfate minerals. These processes collectively regulate sulphate 

leaching or export via streamflow, which in turn regulates the flux of basic and acidic cations 

from forest ecosystems to surface waters. Loss of base cations, particularly Ca2+ and Mg2+ from 

upland soils (Fuller et al. 1985), also has important implications for soil fertility and long-term 

forest health (Likens et al. 1998).  

 

Mass balance measurements from a number of long-term studies of whole catchments have 

indicated a net imbalance between sulphur inputs and exports (e.g. Alewell et al. 1999; Driscoll et 

al. 1998; Feger et al. 1990; Houle et al. 1997; Mitchell et al. 1996a), such that many catchments 

are currently acting as a S source to drainage waters. A number of sources may account for this 

additional S output, including desorption from soils of sulphate that had been adsorbed when 

anthropogenic deposition was higher (Driscoll et al. 1995; Mitchell et al. 1996a), weathering of 
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S-containing minerals (Baron et al. 1995), mineralization of S in soil organic matter (Driscoll et 

al. 1998), underestimation of dry deposition (Edwards et al. 1999; Likens et al. 1990), and 

drought-related oxidation and release of S stored in wetlands (Dillon and LaZerte 1992, Dillon et 

al. 1997).  Identification of the sources of S contributing to export is necessary for the prediction 

of ecosystem response to changes in sulphate deposition. The wide variety of explanations 

suggested previously would suggest that sources of S export are catchment-specific; however, the 

potential for regional trends or patterns to exist in sulphate export and retention should also be 

considered (Driscoll et al. 1998).  

 

One factor that acts on a regional scale, and has been shown to affect sulphur cycling in 

catchments, is climate. For example, drought effects on S-export from wetlands have been 

reported (Bayley et al. 1986, Van Dam 1988, Devito and Hill 1999), and increases in lake-

sulphate concentrations have been found following drought-related exposure and mineralization 

of S-stored in the littoral sediment of contaminated lakes (Keller et al. 1992; Yan et al. 1996; 

Dillon and Evans 2000). Drought may also influence lake chemistry by disconnecting lakes from 

sources of solute inputs, such as groundwater (Webster and Brezonik 1995; Carvalho and Moss 

1999).  

 

Long-term measurements in small catchments are particularly useful for evaluating changes in the 

biogeochemical cycling of elements (e.g. Mitchell et al. 1996b). A number of catchments located 

in the acid-sensitive region of Muskoka-Haliburton in south central Ontario have been studied 

since the mid-1970’s. This region has been subject to high rates of S deposition for decades 

(Dillon et al. 1988), and has many lakes that have been acidified to the extent that biological 

damage is evident (Dillon et al. 1987).  Sulphate concentration and alkalinity in many of the lakes 

in this region have not responded as expected to recent decreases in sulphate deposition (Jeffries 
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et al. 1995; Dillon and Evans 2000) which suggests that S export from catchments may be 

retarding their recovery.   

 

In this paper, we have compared sulphate export patterns among 8 physiographically- distinct 

catchments located within a ~30 km radius of the Dorset Environmental Science Centre (DESC). 

Trends in sulphate export over time were compared among catchments in order to determine 

whether regional patterns in sulphate retention exist and to identify some of the factors 

contributing to sulphate loss from catchments. Sulphate retention is defined here as the fraction of 

sulphate input to the catchment that was retained and not lost via stream discharge in a given 

year.  In addition, we compared sulphate retention in individual catchments over time to 

determine whether sulphate export was greater than input in certain years and to identify potential 

relationships with climate.    

 

METHODS 

Study Site 

Sulphate budgets were calculated using stream chemistry for 8 headwater catchments (Table 1) 

draining into 5 lakes, from 1980/81 (June 1 to May 31 hydrologic year) through 1993/1994 (Blue 

Chalk 1, BC1), or from 1980/81 through 1997/1998 (Dickie 5, DE5; Dickie 6, DE6; Harp 4, HP4; 

Harp 6, HP6; Harp 6A, HP6-A, Plastic 1, PC1; and Red Chalk 1, RC1). All 8 streams are located 

in the District of Muskoka or County of Haliburton, south central Ontario, Canada.  This region is 

situated in the southern portion of the Boreal ecozone, and the climate is described as humid 

continental with long cool summers (Dfb), according to the Köppen Climatic Classification 

System (Ahrens 1991). Total annual precipitation over the 18-year study period ranged from 786 

mm (1997/98) to 1213 mm (1982/83), with approximately 30% falling as snow. The average July 

and December temperatures are 18.4 and -11°C, respectively, and the mean annual temperature 

over the 18-year period was 5.0°C (range 3.5 – 6.4). 
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Catchments range in size from 10 ha (HP6) to 133.6 ha (RC1), and are either entirely upland 

(BC1, RC1, HP6), or have significant wetland coverage (e.g. DE5, DE6) as reflected by the 

proportion of organic soil in the catchment (Table 1). Average glacial till depths in the 8 

catchments range from less than 1 m (DE5, DE6, PC1) to more than 1 m (HP4, BC1).  Dominant 

soils types in the area are acidic brunisols and podzols that have formed on non-carbonate, 

generally coarse-grained glacial till, with moderate to well-drained slopes (Jeffries and Snyder, 

1983).  Organic soils (including gleysols) are the dominant soil type in poorly drained regions, 

such as the stream riparian zone and bedrock depressions. All streams flow through forested 

(mainly coniferous or mixed hardwood) catchments, with no agricultural development, although 

some lakes (i.e. Dickie and Harp) have large cottage (seasonal and permanent) populations. 

 

Chemical sampling and analysis 

Stream samples were collected approximately weekly, or every other week between 1980 and 

1998, although samples were collected more frequently during periods of high discharge. All 

samples were filtered (80 µm Nitex mesh) into pre-rinsed bottles, and transported to the 

laboratory in temperature-controlled containers. Water samples were analyzed for sulphate by ion 

chromatography (Ontario Ministry of Environment 1983). Although the majority of S in natural 

well-mixed (oxygenated) surface and soil waters is in the form of inorganic sulphate (SO4
2-), 

organo-sulphur compounds may be important in some highly organic streams. In order to address 

this issue, water samples from all 8 streams were analyzed for both inorganic sulphate (ion 

chromatography) and total (i.e. inorganic + organic) sulphur (UV-irradiation) over an 11-month 

period beginning in March 1990. Following a method used for the determination of total 

dissolved nitrogen in water (Henriksen 1970), total sulphur in samples was photo-oxidized to 

inorganic sulphate using a Hg-vapour lamp and peroxide catalyst, and sulphate was then analyzed 

by ion-chromatography (IC). The precision of the IC for the sulphate ion was 1.0 µeq/l.  
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Table 1: Description of the eight study catchments (From Jeffries and Snyder, 1983 and Dillon et 

al. 1991). Shallow surficial deposits (glacial till + soil) are < 1m in depth, deep surficial deposits 

are > 1m depth.  

Catchment Area 

(ha) 

Grade 

(%) 

% organic % shallow surficial 

deposits 

% deep surficial 

deposits 

Red Chalk 1 134 1 5 41 54 

Blue Chalk 1 20 7 0 6 94 

Plastic 1 23 6 13 76 11 

Harp 6 10 8 0 55 45 

Harp 6-A 15 10 9 85 6 

Harp 4 119 5 5 39 56 

Dickie 6 22 2 22 78 0 

Dickie 5 30 1 25 75 0 

 

Hydrology 

Stream stage was continuously monitored at a V-notched weir or flume located at the base of 

each catchment using Leopold Stevens A-71 water level recorders.  Stage was converted to flow 

using established stage-discharge relationships derived for each stream (Scheider et al. 1983). 

Sulphate fluxes were calculated using integrated daily estimates of discharge and concentration 

values, and were summed for each hydrologic year (June 1 – May 31).  Export  (flux per unit 

area) was calculated from the annual data.  

 

Meteorological data 

Temperature (°C) and precipitation (mm) were measured at 4 meteorological stations located 

within a 30 km radius of the Dorset Environmental Science Centre (DESC), and were used to 

obtain regional estimates of seasonal and annual precipitation and temperature. Average sulphate 

deposition (meq/m2) to the region was calculated using sulphate concentrations measured at 4 
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(1980-1995) or 3 (1995-1998) bulk deposition collectors located at the meteorological stations. 

Details on methods and instrumentation used for the collection of bulk deposition are given in 

Scheider et al. (1979). Although bulk collectors may underestimate total sulphate deposition in 

some regions (e.g. Likens et al. 1990; Edwards et al. 1999; Novak et al. 1996), bulk deposition 

collectors are generally suitable in areas remote from point sources.  Furthermore, comparisons of 

wet-only, and bulk sulphate deposition in the Muskoka-Haliburton area, indicated that wet 

sulphate deposition measurements were approximately 15-20% less than bulk estimates, a 

difference that was similar to dry deposition estimates from modelling calculations (Dillon et al. 

1988). Therefore, for the purpose of this analysis we assume that sulphate deposition measured in 

collections of bulk deposition adequately represents total (i.e. wet + dry) sulphate deposition. 

  

Statistical comparisons among streams 

The degree of similarity in year-to-year patterns among streams (synchrony or coherence) was 

quantified as the Pearson product-moment correlation coefficient (r), with observations paired by 

year (Webster et al. 1999).  Sulphate retention, or the fraction of sulphate input to the catchment 

that was retained and not lost via stream discharge in a given year was calculated as input in bulk 

deposition (meq/m2/yr) minus stream export (meq/m2/yr), expressed as a fraction of input.  

Pearson correlation and linear regression analyses were used to compare annual sulphate export 

and mean concentrations (volume-weighted) among streams, and to investigate relationships with 

climate (temperature, precipitation) and hydrologic variables (zero-streamflow). In addition, 

annual sulphate export and stream sulphate concentration were standardized using Z-scores 

(annual observation minus the 18-year mean, all divided by the standard deviation) in order to 

facilitate comparisons among the 8 streams. In order to determine whether organo-sulphur 

compounds contributed to net sulphur export in streams, inorganic sulphate and total-S 

concentrations measured in each stream over an 11-month period were compared using a paired 

2-sample t-test for means.  Differences between means at p<0.05 were considered significant. 
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RESULTS 

 

Atmospheric Deposition 

Bulk sulphate deposition in the Muskoka-Haliburton region decreased substantially between 

1976/77 and 1997/98, although the greatest decrease in deposition occurred at the beginning of 

the monitoring period, between 1976/77 and 1983/84, and since then deposition has declined 

more gradually (Figure 1). For example, after 1993 sulphate deposition to the area has been 

relatively constant (between 40 and 50 meq/m2/yr). Extremely low deposition measured in 

1997/98 (~30 meq/m2) is a result of unusually low precipitation (786 mm) in that year (Figure 1).   

 

Figure 1.  Total annual precipitation (bars) and sulphate deposition (line) in each hydrologic year 

(June 1- May 31) between 1976-77 and 1997-98. 
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Figure 2. Mean annual discharge weighted sulphate concentration in each of the 8 study streams: 

1980-81 through 1997-98.  
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Figure 3. Annual sulphate concentration expressed as a Z-score (annual observation minus the 20-

year mean, all divided by the standard deviation) in each of the 8 study streams. 
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Sulphate concentration patterns in streams 

 

Sulphate concentration in streams was extremely variable between years (Figure 2), and did not 

appear to follow changes in bulk deposition (Figure 1). Although sulphate deposition varied 

between years, the magnitude of difference in deposition between years was less than year-to-

year differences in stream sulphate-concentrations. For example, between 1986/87 and 1987/88, 

the average sulphate concentration in HP6-A increased from 118 µeq/l to 266 µeq/l – a difference 

of 125%. Between the same two years, sulphate deposition to the region increased from 49 

meq/m2 to 57 meq/m2 – a difference of 16%.  Sulphate concentrations in streams (Figure 2) were 

always higher than in bulk deposition, which ranged between 75 µeq/l in 1981/82 and 37 µeq/l in 

1996/97. 

 

Although streams differed in their annual average sulphate concentrations, patterns in sulphate 

concentration among streams were remarkably synchronous over the 18-year study period (Table 

2), considering their differences in catchment physiography (Table 1).  For example, year-to-year 

changes in stream sulphate concentration were highly correlated (r = 0.91, p<0.05) in BC1 and 

HP6-A, which drain an upland catchment with thick till deposits and a conifer wetland, 

respectively.   

 

There was a tendency for sulphate concentrations in streams to decline over the study period, 

although large peaks in concentration were observed in certain years. For example, peaks in 

sulphate concentration in the majority of streams occurred in 1983/84 and 1987/88, whereas the 

lowest mean sulphate concentrations occurred in 1986/87 (Figure 2).  The general decline in 

sulphate concentration, which occurred in all streams between 1983/84 and 1986/87 was reversed 

in 1987/88, when concentrations rose to levels that were in some cases more than double the 

previous year (e.g. PC1, HP6-A, DE6). Sulphate concentrations in most streams declined steadily 
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between 1987/88 and 1996/97, but in 1997/98 sulphate levels in many streams increased once 

more (Figure 2). For example, in HP6-A the mean volume-weighted sulphate concentration in 

1997/98 was 210 µeq/L compared with 105 µeq/L in 1996/97. Sulphate concentrations in DE5 

(range 30 - 80 µeq/L) were always lower than the other 7 streams (range 35 – 265 µeq/L), and 

year-to-year changes were less pronounced. However, when sulphate concentrations were 

standardized among streams (Z-scores), the temporal pattern in sulphate concentration in DE5 

was similar to the other streams (Figure 3).  

 

Table 2: Correlation coefficients (r) for the relationship in annual mean volume weighted sulphate 

concentration in the 8 study streams. Correlations marked with an asterisk are significant at 

p<0.05. 

 RC1 BC1 PC1 HP6 HP6A HP4 DE6 

BC1 *0.81       

PC1 *0.75 *0.86      

HP6 *0.87 *0.85 *0.85     

HP6-A *0.81 *0.91 *0.97 *0.88    

HP4 *0.87 *0.91 *0.87 *0.94 *0.88   

DE6 *0.71 *0.82 *0.89 *0.74 *0.91 *0.74  

DE5 *0.60 *0.66 *0.62 0.45 0.51 *0.66 0.54 

 

Total (UV-digested) and inorganic sulphate concentrations were measured concurrently in each 

stream between March 1990 and January 1991 in order to determine the importance of organic-S 

export. Average concentrations of total-S in DE5, DE6, RC1 and HP6-A were significantly 

greater than the level of inorganic sulphate (Table 3). While the difference between total-S and 

sulphate concentrations was minor (<5%) in RC1 and HP6-A, organo-sulphur export may 

account for as much as 15% (DE6) to 23% (DE5) of total S export in the Dickie streams. Greater 
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export of S in organic forms may also account for the generally poorer relationships observed 

between sulphate concentrations in DE5 and DE6 and the 6 remaining streams (Table 2). 

 

Table 3: Comparison of total sulphur (UV-digestible) and inorganic sulphate concentrations in the 

8 study streams. Values are mean ± SD. Values marked with asterisks are significantly different 

at p<0.05. 

 
Stream n t-statistic Total (UV) sulphur (mmol/L) Sulphate (mmol/L) 

BC1 28 1.28 0.106 ± 0.018 0.104 ± 0.017 

RC1* 32 3.43 0.098 ± 0.028* 0.094 ± 0.028* 

PC1 74 -0.91 0.098 ± 0.051 0.099 ± 0.047 

HP4 86 0.97 0.088 ± 0.002 0.088 ± 0.002 

HP6 38 1.04 0.109 ± 0.035 0.116 ± 0.051 

HP6-A* 32 -2.07 0.114 ± 0.058* 0.110 ± 0.054* 

DE5* 36 4.84 0.033 ± 0.020* 0.027 ± 0.018* 

DE6* 82 5.53 0.086 ± 0.084* 0.075 ± 0.081* 

 

Sulphate export 

Changes in stream sulphate concentration were reflected in changes in catchment export.  A high 

degree of synchrony was observed in year-to-year patterns of sulphate export in many of the 

streams (Table 4), although patterns were generally less clear (Figure 4) as export is also a 

function of streamflow, which varies considerably from year-to-year. Again, when sulphate 

export is standardized among streams the similarity in their patterns becomes clear (Figure 5). All 

8 catchments exhibited minimum sulphate export values in 1986/87 and 1997/98, which were 

generally more than 1 standard deviation less than average (Figure 5). In contrast, sulphate export 

in 1987/88 was substantially greater, and was in some cases more than double the previous year. 

For example, sulphate export in PC1 increased from 40 meq/m2 in 1986/87 to 120 meq/m2 in 

1987/88 (Figure 4).  
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Figure 4. Mean annual sulphate export from each of the 8 study catchments: 1980-81 through 

1997-98.  
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Figure 5. Annual sulphate export expressed as a Z- score (annual observation minus the 20-year 

mean, all divided by the standard deviation) in each of the 8 study catchments. 
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Figure 6. Annual sulphate retention in the 8 study catchments.  Sulphate retention is defined as 

the proportion of sulphate input to the catchment in deposition that is not exported via 

streamflow.  
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Figure 7. Total summer (June – August) precipitation and mean summer temperature in the 

Dorset region: 1980-81 through 1997-98.  Dashed lines represent the 18-year average summer 

precipitation and temperature, respectively.  
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Although stream export of sulphate was quite variable over time, in most years sulphate export 

from catchments exceeded input via bulk deposition. Sulphate retention (defined as input from 

the atmosphere minus stream export expressed as a proportion of input) in most catchments was 

therefore negative or near zero (Figure 6). For example, in 1983/84 and between 1987/88 and 

1990/91, sulphate retention in most catchments was between –0.5 and –1.0 (Figure 6), indicating 

that catchments exported between 1.5 and 2-times more sulphate than was input via bulk 

deposition. Only in the DE5 catchment, and occasionally DE6, was sulphate export continually 

less than input, and there was net retention within the catchment. However, export of sulphur in 

organic forms was not included in budget calculations because total S concentrations in streams 

were only measured over an 11-month period. In the majority of the long-term monitored streams 

in this region, inorganic sulphate is the dominant form of S export (Dillon, unpublished), and so 

measurement of sulphate concentrations in streams is adequate for determining S-export from 

most catchments. However, measurement of total-S concentrations may be necessary in order to 

approximate the magnitude of S flux in high DOC streams that drain wetland-dominated 

catchments such as DE5 and DE6.  

 

Table 4: Correlation coefficients (r) for the relationship in sulphate export among the 8 study 

catchments. Correlations marked with an asterisk are significant at p<0.05. 

 RC1 BC1 PC1 HP6 HP6-A HP4 DE6 

BC1 *0.83       

PC1 *0.68 0.60      

HP6 *0.79  0.55  0.46     

HP6-A *0.85  *0.77  *0.91  *0.73    

HP4 *0.75  0.62  0.43  *0.84  *0.71   

DE6 0.54  0.52 *0.91  0.36  *0.80  0.24  

DE5 0.54  0.56 0.40  0.36  0.56  *0.76  0.23 
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Climate effects 

The potential relationship between climate (precipitation and temperature) and sulphate flux from 

catchments was explored using linear regression analysis. The best predictors of annual sulphate 

concentrations in streams were summer (Jun-Aug) precipitation and temperature (Table 5).  

 

Table 5. Correlation coefficients (r ) for the relationship between mean annual volume weighted 

sulphate concentration in each of the 8 study streams and average summer (June-August) 

precipitation and temperature. Correlations marked with an asterisk are significant at p<0.05. 

 RC-1 BC-1 PC-1 HP-6 HP6-A HP-4 DE-6 DE-5 

Precipitation -0.60* -0.62* -0.66* -0.60* -0.69* -0.45 -0.61* -0.26 

Temperature 0.47* 0.76* 0.63* 0.42 0.55* 0.37 0.51* 0.33 

 

Correlations were not very strong for some streams; however, this is likely partly a function of 

comparing annual average sulphate concentrations with precipitation and temperature averages 

for a 3-month period. Catchments generally exhibited greater net sulphate export, or more 

negative retention (Figure 6) in years having summers that were drier and warmer than average 

(18-year mean) (Figure 7).  

 

Streamflow, however, is a better indicator of dry conditions in catchments than either 

precipitation or temperature. Due to the predominantly thin till which dominates most of the 

catchments (Table 1), the majority of streams cease to flow for variable lengths of time during the 

summer months when conditions are generally warmer and drier than other months (Figure 8). Of 

the 8 catchments considered in this study, streamflow is only continuous year-round in HP4, 

which has significant glacial till deposits that maintain elevated groundwater levels adjacent to 

the stream (Hinton et al. 1993). The other 7 streams tended to be dry (zero discharge) for a 

greater number of days in years with warmer and drier than average summers (Figures 7 & 8). 
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Figure 8. Total number of days with zero discharge for each of the 7 study streams that exhibit 

variable flow during warm, dry summers. HP4 flows continuously.   
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Correlation coefficients between zero-streamflow and sulphate concentration in these 7 streams 

ranged from r = 0.69 (DE5) to r = 0.87 (PC1) (all at p<0.05). For example in the PC1 and HP6-A 

catchments, standardized average sulphate concentrations and zero-streamflow followed very 

similar patterns over time (Figure 9). In contrast, there was no significant relationship between 

zero discharge and sulphate concentration in HP4 (r = 0.13, p>0.05) because groundwater 

connections maintain continuous baseflow in this stream (Hinton et al. 1993). Nevertheless, it is 

likely that dry conditions similar to the other catchments existed in much of the HP4 catchment in 

1983/84 and from 1987/88 through 1990/91, and temporal patterns of sulphate concentration were 

similar in HP4 compared to the other streams (Table 2).  
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Figure 9.  Z-scores of mean annual sulphate concentration (closed diamonds), and number of days 

with zero-discharge (open circles) for PC1 (r =0.87, p<0.05) and HP6-A (r =0.85, p<0.05).  
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DISCUSSION 

 

Patterns in stream chemistry 

The fact that all 8 streams exhibited similar patterns in both sulphate concentration and export, 

despite their physiographic differences, suggests that large-scale, or basin-wide processes such as 

climate are involved. Although specific regions may be characterized as having a particular 

climate type (e.g. Köppen Climatic Classification System) based on their long-term patterns in 

average temperature and precipitation, climate over the short-term (year-to-year) may be very 

variable. For example, El Niño events occur with a frequency of approximately 4 to 7 years, and 

can significantly affect global precipitation and temperature (see Philander 1990).Four of the 

strongest El Niño events since 1900 occurred during the monitoring period (1982/83, 1986/87, 

1991/92 and 1997/98). In our study area, summers following El Niño events generally had lower 

than average precipitation, and temperatures that were higher than average, which often results in 

complete cessation of stream flow. The summer of 1992/93 did not follow this pattern, however, 

possibly due to the eruption of Mount Pinatubo in the Philippines in June 1991, which had globe-

wide effects on climate (Hansen et al. 1996).  Dry conditions persisted between 1987 and 1990, 

as both total annual and summer precipitation depths (892 - 949 mm, and 119-175 mm, 

respectively) in each of these 4 years were below the 18-year averages (1015 and 230 mm, 

respectively). Drought conditions during this period were also reported in England (Wilby 1994), 

Europe (Van Dam 1988) and much of the northeastern United States (Webster et al. 2000), and 

were related to changes in surface water chemistry. For example, Wilby (1994) reported a 

substantial increase in surface water acidity between 1988 and 1990, a period which was ranked 

as having the 3rd most severe drought since records began in 1698. They further noted that a 

major effect of the extreme climate experienced during this period was an enhancement of the 

existing hydrologic regime, such that summer low- and zero-flow periods were extended (Wilby 

1994).  
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In the Muskoka Haliburton region, sulphate concentrations in all streams were higher than 

average in years with dry, warm summers (e.g. 1987/99 through 1990/91).  Increases in sulphate 

concentration (Figure 3) were translated into substantial increases in sulphate export (Figure 5), 

and were therefore not simply a product of lower flow volumes during dry years. Average 

sulphate concentration in streams and catchment export of sulphate were as much as 2-times 

greater in years having warm, dry summers.  Although most catchments exhibited net sulphate 

export throughout the monitoring period, net losses were particularly large following drought 

events, and represent a substantial increase in S-export to downstream lakes.  

 

Wetlands (swamps, beaver ponds) are a common landscape feature in this region, and depending 

on their location within the catchment, may significantly affect the S-chemistry of drainage 

streams through redox-related processes (Devito et al. 1999). For example, large conifer-

Sphagnum swamps located near the catchment outflows of PC1 and HP6-A funnel the majority of 

drainage water from upland soils, and the patterns of sulphate export in these 2 catchments are 

very similar (r = 0.91, p<0.05). During dry periods, water table drawdown and aeration of 

previously submerged wetland soil causes re-oxidation of stored sulphides to sulphate, which is 

flushed into drainage streams when normal hydrologic conditions resume (e.g. Bayley et al. 1986; 

Van Dam 1988; Devito et al. 1999). The Dickie catchments (DE5, DE6) have extensive wetland 

coverage, and DE6 exhibits a similar pattern of sulphate export compared to PC1 and HP6-A 

(Figure 4), although the magnitude of sulphate export in DE6 is generally less.  In contrast, the 

DE5 catchment exports the least sulphate on an area basis, and appears to retain sulphate in many 

years. However, S-export from DE5 and DE6 may be underestimated, as total (inorganic + 

organic) S-concentrations in these streams were on average higher than inorganic sulphate 

concentrations by as much as 23% (Table 3). Dissolved organic carbon (DOC) concentrations in 

the Dickie streams are generally very high (annual average concentration range: DE5 13.6 – 23.1 
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mg/L; DE6 18.7 – 26.1 mg/L). Houle et al. (1995) found that the contribution of dissolved 

organic sulphur (DOS) to total S concentrations in Quebec lakes was greater in lakes having 

higher DOC concentrations, as DOS is part of dissolved organic matter. Export of S in organic 

forms may therefore be important in the DE streams.  

 

In other catchments, however, wetlands are either not present (BC1), or occupy a small 

proportion of the total catchment area (HP4, RC1). Furthermore, any wetlands in the HP4 and 

RC1 catchments are located more than 500 m upstream of the water sampling stations, and their 

effect on stream chemistry is therefore less pronounced. In catchments without wetlands, other 

processes must be responsible for the net export of sulphate observed in certain years (Figure 6). 

The BC1, RC1 and HP4 catchments have substantial deposits of thick (>1m) till and soil profiles 

are consequently deeper, and more well developed (Jeffries and Snyder 1983). The sulphate 

adsorption capacity of soils in these catchments may therefore be greater than in catchments with 

predominantly thin till and soil, such as PC1 (e.g. Rochelle et al. 1987).  Desorption of sulphate 

that was previously adsorbed when deposition was higher, and a shift toward what Reuss and 

Johnson (1986) refer to as a new ‘equilibrium state’ in response to reduced atmospheric S-

loading, may explain the net export of sulphate from upland soils observed in BC1, HP4 and RC1 

(e.g. Driscoll et al. 1995). While historically high atmospheric deposition is likely the ultimate 

source of stored S in these catchments, the fact that temporal patterns in sulphate concentrations 

in BC1, RC1 and HP4 are similar to patterns in zero-discharge over time suggest that climate 

variations are also important determinants of sulphate retention in these predominantly upland 

catchments. For example, variations in temperature and precipitation may affect the biological 

mineralization of organic-S compounds in upland soils, and therefore cause changes in sulphate 

retention in catchments (Driscoll et al. 1998). Sulphur cycling in a representative upland 

catchment (PC1-08) is currently being investigated, and preliminary results indicate that drying 

and re-wetting events increase the release of sulphate from organic surface horizons in upland 
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soils. Indeed, drying of soils followed by re-wetting has been shown to cause a flush in carbon 

and nitrogen mineralization (e.g. Cabrera 1993; Leiros et al. 1999) and can also stimulate the 

release of sulphate from organic forms (Williams 1967).  Temperature can also exhibit a 

stimulatory effect on organic matter breakdown (Kirschbaum 1995) and mineralization (Leiros et 

al. 1999). 

 

Other possible sources of net S-export 

Although weathering may be an important source of S in some catchments (e.g. Turk et al. 1992), 

and temperature-related increases in mineral weathering have been reported (Sommaruga-

Wögrath et al. 1997), weathering is unlikely to be a significant source of S to catchments in the 

Muskoka-Haliburton region due to very low S concentrations in bedrock and soils (Jeffries and 

Snyder 1983; Neary et al. 1987). The other possible source of additional S is dry deposition, 

however the contribution of dry deposition to total S-input in Muskoka Haliburton is likely very 

low given its remote location. Furthermore, sulphur dioxide (0.75-2µg/m3) and particulate 

sulphate concentrations (1-2µg/m3) measured in this region are low relative to areas in the eastern 

United States, where many of the previous studies on dry deposition were conducted 

(Environment Canada 1997; USEPA 1999). Dry deposition is a notoriously difficult parameter to 

measure, and rather than increase our bulk deposition estimates by some arbitrary enrichment 

factor, we justified the use of bulk deposition as a surrogate of total sulphate deposition based on 

previous measurements and modelling calculations which took into account the low SO2 and 

particulate SO4 levels measured in this region (Dillon et al. 1988).  Furthermore, the amount of 

additional dry deposition that would be required to balance the magnitude of net sulphate export 

would be unrealistically high (i.e. bulk deposition would have to be doubled in some years; see 

Figure 6). At most, Sirois and Barrie (1988) estimated that dry deposition could constitute 22% of 

the total sulphur deposition in southeastern Ontario, and their estimates were made using data 

collected between 1979 and 1982 - a time period when deposition was notably higher. 
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Furthermore, the magnitude of dry deposition would have to vary greatly between years in order 

to account for the large differences measured in net retention between contiguous years. These 

reasons combined suggest that dry deposition alone cannot explain either the magnitude of net 

export, or the variations in net export over time. 

 

Conclusions 

The possible linkage between sulphate export and climate conditions has a number of important 

implications. Firstly, the net export of sulphate following summer droughts is substantial, and 

represents a major increase in sulphate input to downstream lakes.  As many of the lakes in the 

Muskoka-Haliburton region are currently acid-stressed (Dillon et al. 1987; McNicol et al. 1998), 

large changes in sulphate input to these lakes could have serious consequences for both their 

chemical and biological recovery. Secondly, changes in industrial emissions and subsequent acid 

deposition under conditions of varying climate may not be directly translated into changes in 

stream and lake chemistry. Sulphate concentrations in a number of long-term monitored surface 

waters have not decreased as much as predicted given recent reductions in industrial emissions, 

nor have measurable improvements in pH and alkalinity been achieved (Driscoll et al. 1998; 

McNicol et al. 1998; Stoddard et al. 2000).  While many catchments may currently be exhibiting 

some form of ‘delayed response’ to reductions in acid deposition due to the time required for soils 

to achieve a new equilibrium with lowered inputs (Reuss and Johnson 1986; Driscoll et al. 1998), 

in this region climate conditions appear to have an important influence on S-retention and export. 

Thus, predicted future changes in climate including a greater frequency of extreme events such as 

drought (e.g. IPCC 1995) may have important implications for S biogeochemistry, and for the 

recovery of acid-impacted terrestrial and aquatic systems.   
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CHAPTER 3:  LONG-TERM (18-YEAR) CHANGES IN SULPHATE 

CONCENTRATIONS IN 2 ONTARIO HEADWATER LAKES AND THEIR INFLOWS 

IN RESPONSE TO DECREASING DEPOSITION AND CLIMATE VARIATIONS  

(Submitted to Hydrological Processes to be part of a special issue from the Spring 2001 

American Geophysical Union meeting, Boston, MA) 

 

ABSTRACT 

Sulphate concentrations in two headwater lakes and their major inflows were evaluated over an 

18-year period (1980-1998) during which time sulphate bulk deposition declined by 

approximately 43%. The two lake catchments represent either end of the spectrum of acid 

sensitivity in the Muskoka-Haliburton region of Ontario.  Between 1980 and 1998, SO4 

concentrations in Harp and Plastic lakes decreased, but the decrease was much less than expected 

(28 and 21%, respectively) given the magnitude of change in deposition. Sulphate export in 

streams draining into the lakes greatly exceeded SO4 deposition to catchments in most years, and 

quantitatively explains the response of lake-SO4 concentration. Furthermore, temporal patterns in 

mean annual SO4 concentrations in streams were similar, and appeared to be related to climate 

factors.  Specifically, catchment export of SO4 was greater, and stream-SO4 concentrations were 

higher, in years that had warm, dry summers, when stream flow in many catchments ceased for 

up to several weeks.  Increased SO4 export from catchments resulted in higher SO4 concentrations 

in lakes, but the response of lake SO4 was not as immediate or dramatic as the response of stream 

SO4 to changes in catchment dryness due to the effect of the lake water residence time. Factors 

that affect SO4 retention or export in catchments exert a strong influence on SO4 concentrations in 

lakes and streams and need to be considered when evaluating the response of surface water 

chemistry to changes in sulphate deposition.  
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INTRODUCTION 

 

Recently, a number of reports have suggested that widely observed delays in the response of SO4 

concentrations in surface waters to changes in SO4 deposition (Jeffries et al. 1995; Dillon et al. 

1997) may be due to the net export of SO4 from the terrestrial catchment (Driscoll et al. 1995; 

Mitchell et al. 1996; Houle et al. 1997; Alewell et al. 1999). Net export of SO4 from catchments 

could delay the chemical and biological recovery of acid-impacted lakes and streams and lead to 

continued soil acidification. Therefore factors affecting SO4 export from catchments must be 

considered when making predictions of the response of surface waters to further decreases in SO4 

deposition.   

 

Sulphur may be retained in catchments through either biological uptake or chemical adsorption 

and precipitation reactions in the soil.  Adsorption is an important mechanism of sulphate 

retention in soils rich in Fe and Al hydrous oxides (Johnson et al. 1982), however, adsorbed 

sulphate generally comprises less than 30% of the total S pool in soils located north of the most 

recent continental glaciation (Rochelle et al. 1987; Mitchell et al. 1992; Houle et al. 1995). 

Precipitation of aluminum hydroxy sulfate minerals may also be an important means of SO4 

retention in extremely acidic soils subject to high levels of S-input (Adams and Rawajfih 1977; 

Khanna et al. 1987). The dominant form of S in most soils however, is organic (>75% of total S) 

(Mitchell et al. 1992).  For example, at the Plastic Lake catchment in the Muskoka-Haliburton 

region, the total S pool in soil is approximately 910 kg S/ha, of which 67% is organic and the 

remainder is adsorbed SO4 or soluble SO4 (33%) (Neary et al., 1987). Sulphate is incorporated 

into soil organic matter through both microbial assimilation and by plant uptake via the roots or 

stomata. While total S concentrations are usually greatest in the forest floor (LFH) (Neary et al. 

1987), the mineral soil constitutes the largest S pool in soil due to its greater mass (Houle and 

Carignan 1992; Mitchell et al. 1992). Wetlands are also important storage sites for S within 
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catchments (Devito 1995), and wetlands are a common feature on the Precambrian Shield. The 

generally anoxic conditions in wetlands favour microbial reduction of SO4 to sulfide species, 

which may then react with iron or humic material to form relatively stable organic-S or Fe-S 

compounds (Urban et al. 1989; Wieder and Lang 1988).  

 

Sulphate retention, however, is not always a permanent phenomenon, and S may be released from 

internal catchment sources through desorption from mineral soil (Fuller et al. 1985; Harrison et 

al. 1989), mineralization of organic-S compounds (David and Mitchell 1987), or in response to 

declines in wetland water tables which allow oxidation of reduced S compounds (Bayley et al. 

1986; Devito and Hill 1999; LaZerte 1993). Release of stored sulphate may prevent the recovery 

of acid-impacted soils and drainage waters, especially if the S-content of soil is high (Alewell and 

Matzner 1993).  

 

The Muskoka-Haliburton region is an important tourist and cottage district in south-central 

Ontario located on the Canadian Shield. Although this region is relatively remote from S-

emission sources, bulk deposition measurements since the late 1970s indicated that SO4 

deposition to the area was high (peak 87 meq/m2 in 1977/78) and prompted the initiation of a 

number of long-term surface water monitoring projects by the Ontario Ministry of Environment 

(OMOE).  Of the 33 lakes included in the OMME monitoring program, Harp Lake (HP) and 

Plastic Lake (PC) are considered to be one of the least sensitive, and most sensitive to acid 

deposition respectively.  The terrestrial catchment draining into Harp Lake contains variable 

amounts of relatively thick glacial till deposits, and the lake is consequently moderately well 

buffered relative to other lakes in the region (alkalinity ~70µeq/l). In contrast, soils in the PC 

catchment are generally thin (average ~40cm) and till is either absent, or is present in thin 

localized deposits (<1m) (Jeffries and Snyder 1983). During the late 1970s and the 1980s, the 

alkalinity of Plastic Lake declined to almost zero (Dillon et al. 1987), and is currently less than 20 
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µeq/l. Extensive negative chemical, and biological effects of acidification have been documented 

in Plastic Lake (Dillon et al. 1987; Stephenson and Mackie 1989).  The objective of this study 

was to evaluate changes in SO4 concentrations in HP and PC over an 18-year period during which 

SO4 deposition declined, and to compare trends in lake water chemistry with those in major 

inflow streams to better understand the effect of catchment processes on lake response.  

 

METHODS 

 
Site Description 

Harp (45˚23’N 79˚07’W) and Plastic (45˚11’N 78˚50’W) lakes are headwater lakes located in the 

Muskoka-Haliburton District of south central Ontario near the southern edge of the Boreal 

ecozone (Fig. 1, Table 1). The current (1999/2000) volume weighted average pH of HP is 

approximately 6.3, whereas the pH of PC is around 5.8.  

 

Harp Lake is fed by 6 inflows (Fig. 1) that drain catchments ranging in size from 10 ha (HP6) to 

191 ha (HP5) (Table 2). In total, runoff from 80% of the terrestrial catchment draining into Harp 

Lake is continuously measured. Sugar maple (Acer saccharum Marsh), beech (Fagus grandifolia 

Ehrh.) and eastern hemlock (Tsuga canadensis L.) generally dominate upland parts of the 

catchments, whereas in lowland regions, black spruce (Picea mariana Mill.), yellow birch (Betula 

alleghaniensis Britt.) and white cedar (Thuja occidentalis L.) are more common. Wetlands, 

including swamps, beaver ponds and riparian wetlands are present in all of the HP catchments 

(Table 2).  Soils are underlain by Precambrian metamorphic silicate bedrock, containing variable 

amounts of biotite, hornblende gneiss, amphibolite and schist.  Till deposits, which vary in 

thickness are the dominant surficial characteristics of the HP catchment (Table 2). Soils are 

mainly brunisols and podzols, of variable thickness, although soils in the HP catchment are 

significantly deeper (up to 2 m depth) than those at Plastic Lake.  
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Figure 1. Map of Harp and Plastic Lake catchments. Shaded areas indicate wetlands (not to 

scale). 
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Table 1. Selected physical characteristics of Harp and Plastic Lakes. 

 Lake area 

(ha) 

Catchment area 

(ha) 

Mean, max. depth 

(m) 

Flushing time1 

(yr) 

Harp Lake (HP) 71 471 13, 38 3.4 

Plastic Lake (PC) 32 93 8, 16 4.1 

1 Flushing time is calculated as lake volume/lake outflow 

 

Table 2. Characteristics of the 6 sub-catchments of Harp Lake, and of the PC1 sub-catchment of 

Plastic Lake. Data are from Dillon et al., 1991 and Devito et al.,1999. 

 Sub-

catchment 

area (ha) 

Avg. slope 

(%) 

Dominant 

vegetation 

Wetland 

coverage (%) 

Area with minor 

till (>1m) (%) 

Harp-3 (HP3) 26 4 M 13 76 

Harp-3A (HP3A) 20 8 M 3 97 

Harp-4 (HP4) 119 5 M 15 56 

Harp-5 (HP5) 191 3 M 13 35 

Harp-6 (HP6) 10 8 M 10 34 

Harp-6A (HP6A) 15 10 M 8.5 7 

Plastic-1 (PC1) 23 6 WP, H 9 10 

M = Maple spp., B= beech, WP = white pine, H = hemlock 

 

 Plastic Lake is fed by 7 small streams, 6 of which flow intermittently. Stream flow is 

continuously gauged at the base of the largest (23 ha) sub-catchment (PC1; Figure 1) which flows 

year-round except in very dry years.  PC1 represents approximately 25% of the total catchment 

area draining into Plastic Lake. Twelve years of monitoring data (1980 – 1992) from all 7 of the 

inflows to Plastic Lake showed that SO4 concentrations and temporal variations in SO4 

concentration measured in PC1 were similar to levels in the other 6 streams, indicating that 
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chemical changes measured in PC1 were representative of the entire terrestrial catchment (Dillon, 

unpublished).   In contrast to HP, the forest at PC is primarily coniferous, and is dominated by 

white pine (Pinus strobus L.) and eastern hemlock. Swamps and beaver ponds are common in all 

of the PC sub-catchments, and white cedar, black spruce and alder (Alnus spp.) generally 

dominate swamps. Sphagnum species are common groundcover.  Metamorphic silicate bedrock 

(biotite hornblende gneiss) is overlain by thin, discontinuous sandy basal till; bedrock outcrops 

are common. Soils are generally shallow (< 1m), weakly developed acidic podzols and brunisols.  

 

Sampling Methods 

Bulk deposition, precipitation depth and other climate variables were measured at 4 (until 1995), 

then 3 (from 1996 to present) meteorological stations during the study period; all are located 

within a 50 km radius of the lakes. Methods of deposition collection and meteorological 

measurements are described in detail in Dillon et al. (1988).  

 

Lakes and streams were sampled weekly, or bi-weekly, or more frequently during spring snow 

melt, and SO4 concentrations were determined by ion chromatography (Ontario Ministry of 

Environment 1983). Lake sampling was done using peristaltic pumps or Van Dorn bottles. During 

the period of thermal stratification, lake water was sampled from different strata in each thermal 

layer (epi-, meta- and hypolimnion) in proportion to the volume of lake water in those strata. 

Whole-lake, composite concentration data were then obtained by combining results from the 3 

different layers in proportion to each layer’s total volume. During the spring and fall overturn 

periods, sub-samples collected from all strata were combined to produce a single sample for 

analysis.  

 

Stream water level or stage was monitored continuously at V-notch or H-flume weirs located at 

the catchment outflows, and stage was converted to flow using established stage-discharge 
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relationships (Ontario Ministry of the Environment 1994). Annual data were calculated for the 

hydrologic year (June 1 to May 31).  Sulphate fluxes in stream water were calculated by 

multiplying the concentration for each sample interval (generally <7d) by the stream discharge for 

that interval, and these were expressed as areal fluxes (Dann et al., 1986).  Annual average 

volume-weighted stream SO4 concentrations were obtained by dividing total annual flux of SO4 

by annual stream discharge.  

 

Sulphate Budgets 

Sulphate input-output budgets were calculated for each of the 7 study catchments. Sulphur input 

via weathering was assumed to be negligible given the low S content and low-weathering 

capacity of bedrock in the region (Jeffries and Snyder 1983; Kirkwood and Nesbitt 1991; 

Watmough and Dillon 2001). Therefore for the purpose of this analysis, SO4 input to catchments 

was assumed to be derived entirely from atmospheric deposition. We estimated SO4 input to 

catchments using measurements of bulk deposition, which in some cases can greatly 

underestimate total deposition (Dillon et al. 1982; Lindberg et al. 1986). However, in regions that 

are remote from point sources of pollution, such as the Muskoka-Haliburton region of central 

Ontario, the contribution of dry deposition to total deposition is generally less (Sirois and Barrie 

1988).  Furthermore, Dillon et al. (1988) compared wet-only and dry-only measurements of 

deposition with bulk values and found that bulk deposition of SO4 was approximately 15-20% 

greater than wet-only, a difference that was similar to modeling estimates of dry deposition (17-

18%). Therefore, in order to calculate SO4 retention in each catchment we assumed that measured 

bulk deposition was representative of total SO4 input to the catchment. As such, net SO4 retention 

(or export) in each catchment was calculated for each hydrologic year using the following 

formula:   

[(bulk deposition – stream export)/bulk deposition] x 100% 

 



 49 

Negative numbers imply net SO4 export and positive numbers reflect SO4 retention in the 

catchment.  

 

Data analysis 

In order to facilitate the comparison of temporal trends in discharge and SO4 concentration, 

respectively among streams that drain catchments that vary greatly in size (i.e. 9 ha to 191 ha) 

annual average data were standardized as Z-scores. For example, Zt = (xt – xx) / SDx, where t = 

hydrologic year, xx = 18-year average flow or SO4 concentration, respectively and SDx = standard 

deviation around the long-term average value. Pearson correlation analysis of Z-scores was used 

to evaluate coherence in stream flow and SO4 concentrations, respectively among catchments.  

 

RESULTS & DISCUSSION 

 
Deposition 

Sulphate deposition declined substantially during the study period from an average of 75 meq/m2 

in the early 1980s (1980/81-1982/83) to an average of 42 meq/m2 in the late 1990s (1995/96-

1997/98), a decrease of approximately 43% (Fig. 2). Deposition was particularly low in 1997/98 

(30 meq/m2) due to extremely low precipitation in that year (1997/98 = 786mm, long term 

average = 1010mm).  Sulphate deposition has increased since then (data not shown), and was 

between 40 and 45 meq/m2 in the last 2 years of measure (1998/99-1999/00). The greatest decline 

in SO4 deposition occurred before 1983/84, and after this time year-to-year variations in SO4 

deposition were generally less than 20% (Fig. 2). 
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Figure 2. Bulk sulphate deposition (meq/m2) in the Muskoka-Haliburton region, 1980-1998.  
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Figure 3. Whole-lake, volume-weighted average SO4 concentrations (µeq/l) in Harp, and Plastic 

Lakes: 1980-1998. 
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Lakes 

Sulphate concentrations in Harp (HP) and Plastic (PC) lakes decreased over the study period (Fig. 

3). The SO4 level in HP declined from a high of 173 µeq/l in 1981/82 to 124 µeq/l in 1997/98, 

whereas in Plastic Lake SO4 concentrations decreased from 139 µeq/l in 1980/81 to 110 µeq/l in 

1997/98 (Fig. 3). However the magnitude of decline in lake SO4 concentration over the 18-year 

period in both of the lakes (HP 28%, PC 21%) was less than predicted given the magnitude of 

decline in deposition over the same time period and the flushing rates of the 2 lakes (Table 1). For 

example, using a steady state mass balance model that assumes SO4 input is from bulk deposition 

only and that SO4 behaves conservatively in the catchments, SO4 concentrations in HP and PC in 

1997/98 were predicted to be 102 and 82 µeq/l, respectively, compared to their measured values 

of 124 and 110 µeq/l.  Furthermore, the temporal pattern of SO4 concentration in lakes did not 

follow changes in deposition. In both lakes, SO4 concentrations increased during the mid-1980s as 

SO4 deposition declined, and remained elevated until the early 1990s, after which time they 

declined once more, although sulphate concentrations in both lakes rose slightly in 1997/98 (Fig. 

3). In HP for example, SO4 concentrations increased from 149 µeq/l in 1986/87 to a high of 157 

µeq/L in 1991/92.  A slightly different pattern in SO4 concentration was observed in PC (Fig. 3). 

Sulphate concentrations began to increase after 1987/88, peaked in 1988/89 and remained high 

through 1991/92. 

 

Streams  

 
Harp Lake Inflows 

Sulphate concentrations were quite variable among HP streams over time, although all streams 

exhibited similar highs and lows in SO4 concentration in certain years (Fig. 4a). For example, SO4 

concentrations generally decreased between 1983/84 and 1986/87, but then increased markedly in 

1987/88 by as much as 125% (HP6A) relative to the previous year.   
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Figure 4a. Annual average volume-weighted SO4 concentrations (µeq/l) in 6 inflows to Harp 

Lake (HP3, HP3A, HP4, HP5, HP6 and HP6A): 1980-1998.  
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Figure 4b. Annual average volume-weighted SO4 concentration (µeq/l) in PC1: 1980-1998. 
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Figure 4c. Standardized annual average SO4 concentrations (Z-scores) in the 6 HP inflows and 

PC1: 1980-1998. The y-axis is in units of SD relative to the 18-year mean annual SO4 

concentration in each stream.   
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In comparison, SO4 concentrations in HP5, the largest inflow to Harp Lake increased by 72% 

between 1986/87 (107 µeq/l) and 1987/88 (185 µeq/l). Sulphate concentrations in all streams 

remained high until 1991/92, but then tended to decline through 1996/97. Sulphate levels 

increased again in all streams in 1997/98. 

 

Plastic Lake Inflow 

Sulphate concentrations in PC1 were extremely variable over time, however PC1 exhibited 

distinct high and low SO4 concentrations in the same years as inflows to HP (Fig. 4b). For 

example, the low SO4 level of 88 µeq/l measured in 1986/87 was followed by a large increase in 

concentration in the following year (261 µeq/l) - a difference of almost 200%. The only HP 
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inflow that increased by a similar magnitude (125%) was HP6A, a relatively minor inflow (15.3 

ha) to HP. Sulphate concentrations in PC1 generally began to decline following 1987/88, but like 

the HP streams, rose slightly in 1997/98. The similarity among streams is even more evident 

when SO4 concentrations are standardized as Z-scores, and temporal patterns in standardized 

annual average SO4 concentrations among all 7 streams were highly coherent (r=0.83 to r=0.97, 

p<0.01) (Fig. 4c). For example, all 7 streams had SO4 concentrations that were at least 0.5 

standard deviations (SD) below the long-term average in 1986/87, and concentrations were at 

least 1 SD greater than the 18-year average in the following year (Fig. 4c).  

 

While SO4 concentrations in all streams increased drastically in 1987/88, the response in lake 

chemistry was not as immediate. In PC, SO4 levels increased in 1988/89, whereas in HP the 

increase was more gradual, although SO4 concentrations in both lakes remained high until 

1991/92 (Fig. 3). In order to understand the effect of changes in stream SO4 concentration on the 

magnitude of SO4 inputs to the lake, and therefore lake-SO4 concentrations, it is necessary to 

evaluate SO4 export from each of the catchments.  

 

Sulphate Export 

Export of SO4 from each of the 6 HP catchments and from PC1 generally declined between 1980 

and 1998 (Fig. 5). Temporal patterns in stream export of SO4 did not completely mirror changes 

in SO4 concentration because export is a function of both SO4 concentration and stream 

discharge. Stream flow was synchronous among all catchments (Fig. 6), and all catchments 

exhibited low flow during the mid- to late 1980s. For example, between 1986/87 and 1989/90, 

flow in each of the HP catchments was between 0.5 and 1.5 standard deviations less than the 18-

year average value.  
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Figure 5. Annual stream export of SO4 (meq/m2) in the 6 HP inflows and PC1: 1980-1998. 
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Figure 6. Standardized annual stream flow (Z-scores) in the 6 HP inflows and PC1: 1980-1998. 

The y-axis is in units of SD relative to the 18-year average of annual flow in each stream.  
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Particularly low stream flow during the period in which SO4 concentrations were elevated (late 

1980s; Fig. 4a, 4b) explains why export patterns were not as pronounced as patterns in SO4 

concentration.  Nevertheless, the increase in stream export of SO4 between 1986/87 and 1987/88 

represents a substantial increase in SO4 input to the lakes.  However due to the lakes’ flushing 

times (Table 1), year-to-year differences in catchment export should not cause immediate and 

dramatic changes in lake SO4 concentrations. Sustained high SO4 concentrations in stream 

outflows and consequently greater sulphate export between 1987/88 and 1990/91 resulted in 

higher SO4 concentrations in HP and PC until 1991/92. Furthermore, these data suggest that 

temporal variations in catchment export of SO4, particularly net export can have significant 

effects on long-term lake chemistry.  

 

Sulphate Retention 

Sulphate input-output budgets were calculated to assess the difference in retention (or net export) 

both among catchments and over time. Weathering inputs of S are negligible in this region and so 

deposition is the only external source of SO4 to these catchments (Jeffries and Snyder 1983).  

Sulphate retention was generally negative in all 7 of the study catchments in most years, 

indicating that catchments were exporting more SO4 in stream flow than they were receiving in 

bulk deposition (Fig. 7).  

 

Only in 1986/87 when SO4 export was extremely low, did most of the HP catchments appear to 

be in approximate balance between SO4 input and stream export (<30% net export) (Fig. 7). Of 

the 6 HP catchments, HP4 exhibited the least amount of year-to-year variation in SO4 retention, 

whereas HP6A had the greatest year-to-year fluctuations, varying from net retention (12%) in 

1986/87 to 112% net export in 1983/84 (Fig. 6a).  Similarly, SO4 retention in the PC1 catchment 

was extremely variable over time, ranging from net retention of SO4 in 1986/87, to 120% net 

export in 1989/90 (Fig. 7).  
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Figure 7.  Sulphate retention (%) in the 6 HP sub-catchments and in PC1: 1980-1998. Sulphate 

retention, or net export in each year is calculated as: [(export – bulk deposition)/bulk deposition)] 

x 100%. 
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Explanation of patterns in stream [SO4] 

The fact that temporal patterns in SO4 concentration were very similar among the inflows to both 

PC and HP, two lakes that differ greatly in their catchment physiography (Table 2) and acid 

sensitivity, suggests that geographically-broad scale factors are involved. Two factors that act on 

a wide geographic scale and might influence SO4 chemistry are deposition and climate. Although 

the general decline in SO4 concentration and export from catchments is almost certainly related to 

decreasing deposition, the between-year variations in stream SO4 concentration are both too large 

in magnitude, and of a completely different pattern to be related to deposition. Instead, we 

suggest that variations in climate, specifically those that determine catchment dryness are 

influencing SO4 levels in streams. A number of studies have suggested that drought events can 

influence the acid-base chemistry of surface waters (Wilby 1994; Webster & Brezonik 1995; 
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Dillon et al. 1997; Dillon and Evans 2002). Indeed, SO4 concentrations in all catchments were 

highest in years with low stream flow (Fig. 8a). For example, the concentration of SO4 in PC1 

was greater in years in which stream flow ceased completely and the number of days with zero 

stream- flow (Q=0) was highly correlated with annual average SO4 concentration (Fig. 8a; r = 

0.86, p<0.05).  A very similar relationship was found in the HP3, HP6 and HP6A catchments, 

where zero-stream flow is strongly correlated (r=0.78 to r=0.85, p<0.05) with annual stream SO4 

concentration (Fig. 8a). These 4 catchments have little groundwater supply to maintain flow 

during warm dry summers, which characterized the late 1980s. Specifically, 1987/88 through 

1991/92 inclusive had summers that were on average 1°C higher than the 18-year average 

temperature of 17.5°C, and summer precipitation in these years was as low as 118mm (1990/91), 

compared to the 18-year average of 230mm. Wetting and drying events are known to stimulate 

both the decomposition of organic matter (Kirschbaum 1995; Leiros et al. 1999) and 

mineralization of sulphur in soil (Williams 1967; Foster 1989). Warmer temperatures may 

enhance mineralization rates through stimulation of enzyme activity (Strickland et al. 1984; 

Kirschbaum 1995), and drying and re-wetting of organic soil can result in a flush of microbial 

activity (Davidson et al. 2000) and release of organic S, C and N-compounds (Williams 1967; 

Ryan et al. 1998; Pulleman and Tietema 1999). Furthermore, water table levels in wetlands with 

weak groundwater connections decline during dry periods, allowing exposure and oxidation of 

reduced sulphur compounds, and consequent release of SO4 upon resumption of normal 

hydrologic conditions (Bayley et al. 1986; Devito and Hill 1999).  

 

Although the relationship between catchment dryness and SO4 production appears clear in PC1, 

HP3, HP6 and HP6A, the remaining three streams, HP3A, HP4 and HP5 rarely cease to flow, 

even under extremely dry conditions. In these catchments, groundwater supply from deep till 

sustains flow during all seasons (e.g. Hinton et al. 1997), and continuous flow at the weir is not 
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indicative of moisture conditions in the entire catchment. For example, year-round stream flow in 

HP4 is sustained by groundwater reservoirs in particularly deep glacial till deposits (up to 15 m) 

upstream of the catchment outflow. Similarly, the HP3A stream is ephemeral through the 

majority of its reach, but groundwater flow from an area just 100m upstream of the catchment 

outflow maintains continuous flow at the weir (Hinton et al. 1997). Year-round flow in the large 

HP5 catchment is likely maintained in a similar way - via multiple source areas that include 

relatively deep till deposits (Fig. 1).  

 

In order to make a comparison between catchments exhibiting continuous flow and the ephemeral 

catchments described earlier, we chose a critical value of daily summer flow for each stream, and 

selected the number of days with stream flow less than the critical value as an indicator of 

catchment dryness. A critical level of daily flow for each stream was chosen by comparing 

summer hydrographs for each stream between 1988/89 and 1995/96, two years that had the 

lowest, and highest summer flow, respectively during the study period. 

 

In this way, cutoff values of daily summer flow of 50, 100 and 10m3/day were selected for HP5, 

HP4 and HP3A, respectively.  These values of daily stream flow were commonly exceeded in wet 

summers, such as occurred in 1995/96, but were frequently not met in the particularly dry 

summers that typified the late 1980s.  The choice of a critical daily summer flow value was 

obviously arbitrary, but allowed us to obtain an indicator of catchment dryness, and to examine 

the possible relationship between moisture conditions in the catchment and SO4 production in 

streams with continuous groundwater connections.  
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Figure 8a. Annual average SO4 concentration (lines) and number of days with zero-stream flow 

(bars) in HP6A, HP6, HP3 and PC1: 1980-1998. 
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Figure 8b. Annual average SO4 concentration (lines) and number of days with stream flow less 

than the critical value (bars) in HP3A , HP4 and HP5. 
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Stream flow in HP3A, HP4 and HP5 never ceased completely through the dry years of the late-

1980s, however temporal patterns of SO4 concentration in these streams were very similar to 

those in HP3, HP6 and HP6A, as well as in PC1 (Fig. 4c). Stream flow in HP3A, HP4 and HP5 

was also less in these years, and the number of days that had flow less than the critical value was 

significantly related (r=0.43 to r=0.67, p<0.05) to annual SO4 concentration in each of these 

catchments (Fig. 8b). The relationship between the number of days with flow less than the critical 

value and SO4 concentration was not as strong as that between days with zero-flow and average 

SO4 levels in PC1, HP3, HP6 or HP6A - likely due to the arbitrary choice of a critical flow value 

chosen to reflect catchment dryness, and the fact that some parts of the catchment will not dry 

completely. Nevertheless, we hypothesize that while groundwater supply may have sustained 

flow in these streams, that dry conditions within the catchment as a whole would have created 

conditions that were favourable for SO4 production (greater frequency of drying and re-wetting 

events, declines in wetland water tables etc.).  

 

Summary 

Release of SO4 from internal pools within catchments likely explains why lakes have not 

responded to changes in deposition as expected. Sulphate export from catchments is a function of 

both SO4 concentration and flow, although SO4 levels in stream water appear to be strongly 

related to climate variables. High annual average SO4 concentrations in streams were associated 

with warm, dry summer conditions that caused flow to cease completely in streams with 

negligible groundwater inputs. The size of the organic S pool compared to the adsorbed SO4 pool, 

and the relationship with climate suggests that release from organic forms is contributing to the 

net export of SO4 from catchments. Furthermore, climate related export of SO4 must be 

considered when predicting the response of surface waters to declining sulphate deposition.  
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CHAPTER 4:  SULPHATE FLUX FROM AN UPLAND FORESTED CATCHMENT IN 

SOUTH-CENTRAL ONTARIO, CANADA 

 
ABSTRACT 

 
Net SO4 export from forested catchments will delay the response of downstream surface waters to 

changes in S-deposition. In the Muskoka-Haliburton region of south-central Ontario, net SO4 

export from wetland-dominated catchments is largely explained by release of stored S from 

swamps. Similar net export from upland catchments requires an alternate explanation. To 

investigate possible sources and controls of SO4 export in upland systems, SO4 input-output 

budgets were calculated for a small (3.45 ha) upland, forested catchment in Haliburton County 

over an 8-year period.  Temporal patterns of SO4 concentrations in soil percolate were 

significantly correlated with patterns in stream water, but expected relationships with deposition 

were weak. Instead, SO4 concentrations in surface soil percolate (LFH) appeared to be related to 

changes in soil moisture, and SO4 concentrations in LFH percolate increased dramatically in the 

summer, when warm dry periods were broken by rainstorms.  Higher SO4 concentrations in 

organic surface soils were translated vertically down the soil profile; however, SO4 concentrations 

at the base of the soil profile (B-horizon) were much less variable than in the LFH, and appear to 

be modified by processes occurring in the mineral soil, likely adsorption/desorption reactions. 

Deposition is the major source of SO4 to catchments in this region, but SO4 export in stream water 

exceeded input via bulk deposition by at least 40% in every year of record. Net SO4 export from 

upland catchments appears to be a result of SO4 release through mineralization of organic 

compounds and desorption from subsurface mineral soil.  
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INTRODUCTION 

 
Sulphate (SO4) deposition has declined in many regions in response to decreased emissions from 

industrial and power generation sources (Driscoll et al. 2001). Long-term monitoring data from a 

number of catchments located in acid-sensitive areas in eastern North America indicate that SO4 

concentrations in surface waters are declining, although the rate and magnitude of decline have 

not been as great as anticipated given the change in deposition (Driscoll et al. 1998; Jeffries et al. 

1995).  Furthermore, a number of catchments appear to be exporting more sulphate that is 

received via deposition (Eimers & Dillon 2002; Hornbeck et al. 1997; Houle et al. 1997; Mitchell 

et al. 1996).  A number of sources may account for this apparent net export, including desorption 

of SO4 that had previously been adsorbed when deposition was higher (Mitchell et al., 1996); 

weathering of S-bearing minerals (Baron et al. 1995), underestimated dry deposition (Likens et 

al. 1990, Edwards et al. 1999) or mineralization and release of SO4 from organic forms (Alewell 

et al. 1999; Houle & Carignan 1995). In regions that are remote from point sources, dry 

deposition of SO4 often accounts for only a small (<20%) part of total deposition (Sirois et al. 

1988), and release of SO4 from weathering is generally only important in areas with significant 

mineral S-deposits (Fitzhugh et al. 2001; Mitchell et al. 1992).  Most recent reports of net SO4 

export have pointed to either SO4 desorption or organic-S mineralization as probable internal 

sources of SO4 to drainage waters (Driscoll et al. 1998; Houle et al. 2001; Mitchell et al. 2001). 

However, the relative importance of these two processes and the factors that influence net SO4 

release are still not completely understood. 

 

Sulphate deposition in the Muskoka-Haliburton region of south-central Ontario, Canada has 

declined markedly since the late 1970s, although SO4 concentrations in many lakes and streams 

are currently higher than predicted given the change in deposition. Previous reports have 

indicated that many catchments in this region are currently exporting more sulphate than they 
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receive, as measured by bulk deposition (Eimers & Dillon 2002), and this net export may explain 

why SO4 levels in surface waters are higher than expected. Furthermore, temporal patterns of 

stream SO4 concentrations and export are synchronous among a range of physiographically 

different catchments, and this synchrony has been related to climate factors (Eimers & Dillon 

2002). In wetland-dominated catchments, SO4 concentrations and export in drainage streams were 

greater in years with prolonged summer droughts, and this was attributed to the re-oxidation of 

stored S compounds in wetland soil when water tables declined (Devito et al. 1999, Dillon & 

LaZerte 1992; Dillon et al. 1997). However, temporal patterns of stream SO4 concentrations and 

export are synchronous between both upland and wetland-dominated catchments, and therefore 

other factors must be invoked to explain climate-related patterns of SO4 concentration in streams 

draining uplands. In this study, S cycling in a representative upland forested catchment in the 

Muskoka-Haliburton region was examined in detail, in order to determine both the source(s) of 

net SO4 export, and the possible climate controls on SO4 generation in an upland system.  

 

METHODS 

Study Site 

Plastic Lake (45˚11’N 78˚50’W) is a 32 ha Precambrian Shield headwater lake located in 

Haliburton County, south-central Ontario, at the southern edge of the Boreal ecozone. The lake is 

fed by 1 major stream (PC1), and 6 ephemeral streams, which together drain an area of 

approximately 90 ha.  PC1 (Plastic Lake-1) is the largest sub-catchment (23 ha) in the watershed 

(Figure 1). The forest at PC1 is primarily coniferous, dominated by white pine (Pinus strobus, 

43% of total basal area) and eastern hemlock (Tsuga canadensis, 19% of total basal area) in the 

upland part of the catchment, and by white cedar (Thuja occidentalis) and black spruce (Picea 

mariana) in the swamp regions (Watmough and Dillon 2001).  
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Figure 1.  Plastic Lake-1 (PC1) catchment. 
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A large (2.2 ha) conifer-Sphagnum swamp is located approximately 50 m above the catchment 

outflow and more than 85% of runoff from the PC1 catchment drains through the swamp before 

discharging to Plastic Lake. As a consequence of its location, processes occurring in the swamp 

strongly affect the chemistry of PC1. A short (<250 m) ephemeral stream (PC1-08) drains the 

northeastern part of PC1 before discharging into the swamp, and data for this study were 

collected from this upland sub-catchment (PC1-08; 3.45 ha). Soils in PC1-08 are generally thin 

(average ~40 cm), acidic ferro-humic and humo-ferric podzols, developed over granitic gneiss 

bedrock; shallow (<1 m) sandy basal till deposits are present in some low lying regions.  Average 

annual precipitation to the catchment over the last 20 years was ca. 1000 mm (±130 mm), of 

which approximately 30% falls as snow. The mean air temperature for the same time period was 

5°C; July is the warmest month (20-year average, 18.6 °C), and January has the lowest average 

temperature (-11.1 °C).   

 

Hydrology 

Stream stage in PC1-08 is continuously monitored at a V-notch weir using a Leopold Stevens A-

71 water level recorder, and stage measurements are converted to hydrologic flow using 

established stage-discharge relationships (Scheider et al. 1983). The weir was installed in 1986 

and stream flow was monitored continuously until 1995, at which time hydrological monitoring 

of the stream ceased, but was reactivated in the spring of 1999. The PC1-08 stream flows semi-

continuously; on average, the stream is dry 95/365 days of the year, mainly during the summer 

months.  

 

Lysimeters and tensiometers 

Soil percolate chemistry is monitored at 3 zero-tension lysimeters in the PC1-08 catchment 

(ZT05, ZT06, ZT07), and at 3 additional lysimeters located just outside of the catchment (ZT01, 
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ZT02, ZT04) (Figure 1).  Lysimeters were installed beneath the LFH, Ae and B-horizons (B1, 

B2) in areas with maximal soil development (Findeis et al. 1993), and soil percolate was collected 

between 1987 and 1995, and again starting in the spring of 1999. Depth ranges of the LFH, Ae, 

B1 and B2 horizons (if all are present) at PC1-08 are generally from 0-8 cm, 8-11 cm, 11-30 cm 

and 30-60 cm, respectively (Findeis et al. 1993; LaZerte & Scott 1996). In many areas, one or 

more of the above horizons are not present, and bedrock outcrops cover approximately 10% of 

the catchment area (Lozano et al., 1987). Drainage water from the sandy Ae horizon was also 

collected, but will not be discussed here because there was little difference in SO4 concentrations 

between the LFH and the thin Ae horizons. The chemical data for lysimeter samples presented 

here are the averages of 6 zero-tension lysimeters. Lysimeter pits were heated during the spring 

melt period to prevent freezing and blockage of drainage tubes. Details of lysimeter plate 

construction and installation can be found in Findeis et al. 1993. Tensiometer nests were also 

installed in 1986 at 3 depths (15cm, 30cm and 45cm) near each of the lysimeter stations, and 

measurements of soil tension (KPa) were recorded whenever lysimeters were sampled; however, 

only monthly average soil tension data are available between 1986 and 1992 (Findeis et al. 1993). 

Soil tension data were used to investigate possible relationships between average monthly soil 

moisture conditions and SO4 concentrations in LFH and B-horizon percolate, respectively.  

 

Sample collection and chemical analysis 

Stream and soil percolate samples were collected approximately weekly, or when sample was 

available between 1987 and 1995, although samples were collected more frequently during 

periods of high discharge. Sampling was re-initiated in the catchment in 1999. All water samples 

were filtered (80 µm Nitex mesh) into pre-rinsed bottles, and transported to the laboratory in 

insulated containers. Water samples were analyzed for sulphate and chloride by ion 

chromatography (Ontario Ministry of Environment 1983). On average, 35, 25, 30 and 10% of 

lysimeter samples were collected in the spring, summer, autumn and winter seasons, respectively 
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and 37, 13, 27, 23% of PC1-08 stream samples for chemical analysis were collected in the same 

seasons. Stream flows in the spring, summer, autumn and winter seasons comprise 59, 1, 23 and 

16% of total annual flow in PC1-08, respectively.  

 

Stream and hillslope SO4 export 

Sulphate fluxes in stream water were calculated by multiplying daily discharge (l/day) by weekly 

concentration values (mg/l), and were summed for each hydrologic year (June 1 – May 31).  

Export  (flux per unit area; kg/ha) was calculated from the annual data.   

 

Meteorology and deposition 

Bulk deposition and meteorological variables (temperature and precipitation depth) are measured 

continuously at 3 stations located within a 30 km radius of the Dorset Research Centre (DESC). 

Average SO4 deposition (kg/ha) to the region was calculated using SO4 concentrations in bulk 

deposition and deposition volume measurements.  

 

Statistical analyses 

The degree of similarity in year-to-year patterns in SO4 concentrations among stream water, soil 

percolate and deposition was quantified as the Pearson product-moment coefficient (Benson et 

al., 2000; Webster et al. 2000). Pearson correlation and linear regression analyses were used to 

investigate relationships between SO4 concentrations in drainage waters (stream and soil 

percolate) and climate variables (mean summer and annual precipitation and temperature) or soil 

moisture. In addition, SO4 concentrations were standardized using Z-scores (annual observation 

minus the long-term mean, all divided by the standard deviation) in order to facilitate 

comparisons among different stations (lysimeters, stream water, deposition).  Data from 1999-00 

to 2000-01 were not included when calculating standardized concentrations because of the length 

of the interval between the 2 monitoring periods (1995-1999) which lacked data.  
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RESULTS & DISCUSSION 

 
Temporal patterns 

 
•  Deposition 

Annual SO4 deposition varied greatly during the monitoring period from a minimum of 15.1 kg 

SO4/ha in 2000/01 to a maximum of 27.4 kg SO4/ha in 1987/88, largely as a function of changes 

in precipitation (Figure 2). Between 1986/87 and 2000/01 there was a general decline in 

deposition of approximately 30%, however, during the period of lysimeter operation (1986/87 – 

1994/95), SO4 loads were relatively constant and fluctuated around 24 kg/ha/yr (Figure 2). 

Sulphate concentrations in deposition ranged from a high of 2.9 mg/l in 1987/88 to a low of 1.8 

mg/l in 1996/97. 

 

•  Soil Percolate  

LFH 

Annual average SO4 concentrations in percolate from the surface organic horizon (average of 6 

zero-tension lysimeters) varied greatly between years, but were generally higher in the late 1980’s 

(Figure 3). The highest average concentration of 10.5 mg/l occurred in 1987/88 whereas 1993/94 

had the lowest annual SO4 concentration of 5.1 mg/l (Figure 3).   

 

Standardized annual SO4 concentrations in LFH percolate were significantly related to annual 

average SO4 concentrations in deposition (r = 0.74, p<0.05; rcrit = 0.71), since deposition is the 

primary source of SO4 to catchments in this region (Figure 4).  
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Figure 2. Annual bulk SO4 deposition (kg/ha) and precipitation (mm), 1986/87 – 2000/01. 
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Figure 3. Annual average SO4 concentration (mg/l) in LFH lysimeter percolate. Bars indicate ± 

SD.  
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B-horizon 

Annual average SO4 concentrations in B-horizon percolate (average of 6 lysimeters), collected 

near the base of the soil profile did not vary greatly between consecutive years, although 

concentrations were generally higher in the late 1980’s and were lowest in the last 2 years of 

measure (Figure 5a). Temporal patterns of average annual SO4 concentrations in B-horizon 

percolate were significantly correlated with patterns in the LFH (r = 0.80, p<0.05), but not with 

deposition (r = 0.57; Figure 4). Mean annual SO4 concentrations in B-percolate were more 

variable than in the LFH (CVs varied from 24% to 35% compared to 7% to 22%), likely due to 

differences in plate depth among lysimeters, which varied from 24 cm in ZT07 to 65 cm in ZT05. 

Soil depth can affect SO4 adsorption if physical (e.g. soil texture) and chemical parameters (e.g. 

organic matter or Fe and Al-oxide content) vary with depth (Hern 1990; Singh 1984). The 

distribution of macropores, roots and stones above B-horizon plates also likely varies among 

lysimeters, and could affect the movement of soil water and consequently percolate chemistry. In 

contrast, the LFH lysimeter plates were located immediately below the forest floor which did not 

vary greatly in depth and so the chemistry of leachate among the 6 LFH lysimeters was expected 

to be more similar. Annual average SO4 concentrations in B-percolate were higher than in the 

LFH in all years except 1987/88 (10.3 mg/l in LFH compared to 9.7 mg/l in B-percolate), 

although this was not significant due to high variability among B-horizon lysimeters (Figures 3 

and 5a).  

 

•  PC1-08 Stream 

Average SO4 concentrations in stream water were very similar to concentrations measured in B-

horizon percolate in each year of record (Figure 5a). Chloride concentrations were also very 

similar between B-horizon percolate and stream water, suggesting that little evapoconcentration 

occurs between the hillslope and the stream channel and that SO4 concentrations measured in B-

horizon percolate are representative of subsurface discharge to the stream channel (Figure 5b).  
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Table 1. Selected physical characteristics of soil at PC1-08. Data are from Lozano et al., 1987 and 

Neary et al., 1987. 

 LFH B 

%Sand 0 90 

%Silt 0 9 

%Clay 0 1 

%Organic carbon 41 5 

Bulk Density (g/cm3) 0.014 0.67-0.87 

Porosity 0.86 0.40 

Average Depth (range; cm) 10 (5-15) 24 (0-60+) 

Total S (mg/kg) 1000-2000 300-600 

Adsorbed S-SO4 (mg/kg) 0-20 100-200 

 

Due to the thin, sandy nature of soils at PC1-08 (Table 1) and moderate slopes (<10%), the 

majority of rainfall that reaches the forest floor passes vertically through the soil profile and then 

laterally over the impermeable bedrock surface to the stream channel (Renzetti et al. 1992; Peters 

et al. 1995; Buttle and Turcotte 1999). Previous hydrologic studies have demonstrated that 

macropore flow along the soil/bedrock interface is a major contributor to stream flow at PC1-08 

(Renzetti et al. 1992; Peters et al.1995), and it is therefore not surprising that stream and B-

horizon SO4 and Cl concentrations are similar. However, similar SO4 concentrations in stream 

water and soil percolate respectively, indicate that SO4 export calculated using stream flow and 

stream SO4 measurements is representative of export from upland soil.  
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Temporal patterns of SO4 concentrations in PC1-08 were synchronous with patterns of SO4 in 

both LFH (r = 0.89, p<0.01) and B-horizon percolate (r = 0.77, p<0.05) but were not significantly 

related to changes in deposition loads (r = 0.69) (Figure 4).  Standardized annual SO4 

concentrations in the wetland-draining PC1 stream were also synchronous with patterns in soil 

percolate (LFH: r = 0.95, p<0.01; B: r = 0.75, p<0.05), but not with deposition (r = 0.67) (Figure 

4).  

 

Synchronous patterns in SO4 concentrations and export among both upland and wetland-draining 

catchments in the Muskoka-Haliburton region were previously related to inter-annual variations 

in summer precipitation and temperature (Dillon et al. 1997; Chapter 2). In wetland-draining 

catchments, such as PC1, changes in summer precipitation and temperature influence wetland 

water table levels, and SO4 concentrations and export are greatest in years with warm dry 

summers, when wetland water tables are low allowing exposure and re-oxidation of stored S 

compounds in organo-S rich peat sediment (Devito et al., 1999; Dillon and LaZerte 1992). 

Conversely, in years with average or wet summers SO4 concentrations and export are lower, and 

net SO4 retention or an approximate balance between inputs and outputs occurs (Devito and 

Dillon 1995; LaZerte 1993). However, while the wetland was identified as the source of higher 

SO4 concentrations in PC1, the relationship between summer precipitation and temperature and 

SO4 levels in the upland PC1-08 stream is less clear. In order to investigate the possible 

relationship between moisture conditions and SO4 concentrations in upland soil percolate (and 

consequently stream water), we compared soil tensiometer data with SO4 concentrations in LFH 

and B-horizon percolate.  
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Figure 4. Standardized annual average SO4 concentrations in deposition, B-horizon percolate, 

LFH percolate, and PC1-08 and PC1 stream water.  

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

1987/88 1989/90 1991/92 1993/94

St
an

da
rd

iz
ed

 [S
O

4]
 

Z Dep

Z LFH

Z B

Z PC108

Z PC1

 

Figure 5a. Annual average SO4 concentrations (mg/l) in B-horizon percolate and PC1-08 stream 

water. Bars indicate ± SD. 
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Figure 5b. Average annual Cl concentrations (mg/l) in B-horizon percolate and PC1-08 stream 

water. Bars indicate ± SD.   
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Figure 6a. Average monthly SO4 concentration (mg/l) in LFH percolate and soil tension at 15 cm 

(KPa). 

0

10

20

30

40

50

60

70

80

May-88 Oct-88 Mar-89 Aug-89 Jan-90 Jun-90 Nov-90 Apr-91 Sep-91

T
en

si
on

 (K
Pa

) a
t 1

5c
m

0

2

4

6

8

10

12

14

16

18

20

SO
4 

(m
g/

l)

KPa at 15cm SO4



 77 

Figure 6b. Ratio of monthly average SO4 and Cl concentrations in LFH percolate and soil tension 

at 15cm.   
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Figure 7.   Daily SO4 concentrations (mg/l) in LFH and B-horizon percolate, respectively at a  

zero-tension lysimeter in the PC1-08 sub-catchment. 
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Soil percolate chemistry and soil moisture – LFH 

Sulphate concentrations in LFH percolate were highest immediately following periods of elevated 

soil tension (i.e. dry soil conditions), when soils were re-wet (Figure 6a). While no information on 

the variability in monthly tensiometer data is available (i.e. standard deviations were not 

published), the sandy well-drained soils in the PC1 catchment respond quickly to wetting and 

drying forces, and so soil moisture may fluctuate widely within a given month, particularly during 

the summer and fall.  

 

Part of the increase in SO4 concentration in LFH percolate following dry periods may be due to 

evapoconcentration effects, particularly in months when peaks in SO4 concentration coincided 

with peaks in soil tension (Figure 6a). However, the increase in SO4 concentration between a 

consecutive wet and dry month (range 0.1 – 42 mg/L) was always greater than the relative 

increase in Cl concentration (0.1-7.4 mg/L), and the association between soil moisture and SO4 in 

LFH percolate is evident even when SO4 is weighted by Cl (Figure 6b).  The relationship between 

SO4 release in LFH percolate and changes in soil moisture would be clearer if we had daily 

measurements, rather than monthly means to compare. Annual average SO4 concentrations in 

LFH percolate were always 2.3 (1991/92 or 1992/93) to 3.6 (1987/88) times greater than the 

concentration of SO4 in deposition in the same year. In this region approximately 50% of the total 

annual precipitation is evapo-transpired and the remainder is manifested as runoff; therefore on an 

annual scale, SO4 concentrations in LFH percolate should be a maximum of 2 times greater than 

deposition, given that evapoconcentration effects extend deeper than the surface organic horizon. 

Sulphate concentrations in LFH percolate that are greater than predicted from evapoconcentration 

effects could be due to mineralization and release of SO4 from organic S compounds, or to 

unmeasured dry deposition.  
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Similar increases in SO4 concentration have been reported in PC1 following dry periods and these 

were inferred to be due to release from peat (Dillon et al. 1997). High SO4 concentrations in LFH 

percolate following dry conditions may similarly be explained by release of SO4 through 

mineralization. The sandy, well-drained soils that characterize the PC1-08 catchment respond 

rapidly to changes in precipitation, and stream flow often ceases entirely in summer months when 

evapotranspiration demands exceed precipitation inputs. Summer dry periods however are often 

interrupted by flashy summer storms, or by the return of normal fall precipitation. A number of 

studies have reported an increase in microbial activity following drying events, and fluctuations 

in soil moisture have been shown to stimulate organic matter breakdown and induce a flush in C 

and N (Davidson et al. 1998; Leiros et al. 1999; Pulleman & Tietema 1999) and P (Grierson et al. 

1998) mineralization. Peaks in SO4 concentration may reflect the immediate response of the 

microbial community to available moisture, greater surface area of detritus due to physical and 

invertebrate breakdown of dry litter, or to turnover of the dead microbial biomass produced 

during the dry period (Grierson et al. 1998; Magid et al., 1999; Pulleman & Tietema 1999). 

Drying alone was shown to cause SO4 mineralization and conversion of carbon-bonded forms of 

S to ester SO4 (David et al. 1982). However, increases in SO4 concentrations in soil percolate 

following drying and re-wetting have been demonstrated in both field and laboratory experiments, 

suggesting that dry deposition is not the sole contributing factor. 

 

The relationship between SO4 concentrations in LFH percolate and soil moisture may explain 

why SO4 concentrations in PC1-08 stream water follow the same temporal pattern as PC1, a 

wetland-draining stream. However, SO4 produced in upland surface soil must first pass through 

the underlying mineral soil before reaching the stream, and therefore processes occurring in the 

B-horizon must also be considered when interpreting patterns of SO4 chemistry in stream water.   
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Soil chemistry and soil moisture – B-horizon 

While inter-annual changes in SO4 concentrations are synchronous among LFH and B-horizon 

percolate, daily SO4 concentrations in LFH percolate are highly variable compared to 

concentrations in percolate collected at the base of the soil profile. For example, daily SO4 

concentrations measured in water draining the B-horizon in ZT04 over the entire period of record 

were remarkably constant and ranged from 7.5 to 11.7 mg/l (Figure 7). In contrast, daily SO4 

concentrations in the LFH were extremely variable and ranged from 0.45 to 22 mg/l in ZT04, and 

the majority of LFH samples had lower SO4 concentrations than the respective B-horizon sample 

from the same day (Figure 7). However, both high and low SO4 concentrations in LFH percolate 

were accompanied by relatively constant levels in B-percolate (Figure 7), indicating that 

processes occurring in the B-horizon, possibly adsorption/desorption reactions are modifying the 

magnitude of SO4 release from organic surface soil. Houle and Carignan (1995) similarly found 

that SO4 concentrations in soil solution were strongly buffered during percolation through the B-

horizon at the Lac Laflamme catchment in Quebec. Sulphate adsorption at mineral soil surfaces is 

known to buffer drainage waters to high SO4 inputs in deposition (Fuller et al. 1987; Rochelle et 

al. 1987).  

 

However, SO4 adsorption is not always a permanent phenomenon, and a number of researchers 

have suggested that soils may release previously adsorbed SO4 in response to decreasing inputs in 

deposition (e.g. Harrison et al., 1986). These suggestions are based on the premise that SO4 

concentrations in soil solution tend toward equilibrium with the adsorbed pool (Reuss and 

Johnson, 1986). Thus if SO4 concentrations in soil solution decrease, adsorbed SO4 may be 

released from soil particles to compensate, and vice versa. This reversal between adsorption and 

desorption may explain why SO4 concentrations in B-horizon percolate are so constant over time 

relative to concentrations in the LFH (Figure 7).  
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Table 2. Sulphate input in bulk deposition, gross export in stream water and net export: 1987/88-

1994/95 and 1999/00-2000/01 

Hydro. year 

(Jun1-May31) 

Bulk dep. 

(kg/ha) 

Flow 

(m3/y) 

Gross SO4 

export (kg/ha) 

Net export (gross-

dep.)(kg/ha) 

% Net export (gross-

dep./dep. x 100) 

1987/88 27.4 16,300 44.8 17.3 63.1 

1988/89 24.5 16,864 45.6 21.1 86.1 

1989/90 22.2 17,621 43.7 21.5 96.7 

1990/91 25.6 21,713 53.0 27.5 107.5 

1991/92 25.6 16,174 38.7 13.1 51.1 

1992/93 23.8 21,290 47.4 23.6 99.3 

1993/94 20.9 12,729 28.6 7.6 36.4 

1994/95 21.4 16,604 36.4 15.0 70.1 

1999/00 23.3 22,476 43.24 19.9 85.6 

2000/01 15.1 11,830 25.2 10.1 66.6 

 

Sulphate Mass Budget for PC1-08 

Net SO4 release through either mineralization or organic S compounds and/or desorption from 

subsurface mineral soil may explain why SO4 export in PC1-08 stream water greatly exceeds 

input in bulk deposition, in every year of record (Table 2). Net export (as a proportion of input) 

varied from as much as 108% in 1990/1991 to 36% in 1993/94. There was no clear trend in net 

export over time, and the amount of excess SO4 export in stream water varied greatly between 

years, primarily due to changes in stream flow (Table 2). Clearly, the magnitude of annual net 

export from PC1-08 and variability in net export among years is too great to be explained by 

unmeasured dry deposition. Additional dry deposition to at least double bulk deposition inputs 

would be required to balance the magnitude of net SO4 export from PC1-08 measured in certain 

years. However, we acknowledge that dry deposition may contribute to some of the calculated net 

export, and Sirois et al. (2001) recently estimated that dry deposition could account for as much 

as one-third of the total S deposition at the Turkey Lakes Watershed (TLW) - a site that has 
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similar annual bulk deposition to PC1. Although Beall et al. (2001) found that SO4 concentrations 

in wet-only deposition reported by Sirois et al. (2001) were 85% of their values in bulk 

deposition, suggesting that bulk deposition collectors did measure a portion of dry deposition at 

TLW.  Assuming wet deposition ≈ 0.66(total) (Sirois et al., 2001), and wet = 0.85(bulk) (Beall et 

al., 2001), then bulk = 0.78(total), and bulk deposition estimates should be increased by an 

additional 22% to account for unmeasured dry deposition. Dillon et al. (1988) similarly found 

that SO4 inputs in wet-only deposition were approximately 85% of inputs in bulk deposition in 

the Muskoka-Haliburton region.  Another possible source of SO4 to stream water is mineral 

weathering, and weathering can be an important source of S in regions with significant deposits 

of S-bearing minerals (Fitzhugh et al. 2001; Mitchell et al. 1992). However S-levels in granitic 

gneiss bedrock in this region are negligible (Jeffries & Snyder 1983) and Houle & Carignan 

(1995) estimated that weathering of granite in Quebec would only supply around 0.15 kg SO4/ha 

to annual export. Bulk deposition, therefore was considered to be the dominant source of SO4 to 

the PC1-08 catchment.  The magnitude of annual net export calculated in this study (7.6 – 27.5 kg 

SO4/ha/yr) is indicative of net export from a number of catchments in this region, including Lac 

Clair, QE (13 kg SO4/ha/yr) (Houle et al. 1997), Huntington Forest, NY (14 kg SO4/ha) (Mitchell 

et al. 1996) and Hubbard Brook, NH (10-15 kg SO4/ha/yr) (Hornbeck et al., 1997).   

 
Possible source(s) of net sulphate export at PC1-08 

The adsorbed SO4 pool in upland soils at PC1-08 is around 290 kg S-SO4/ha, which is large 

enough to sustain net SO4 export of the magnitude currently measured (average 18 kg SO4/ha/yr) 

for almost 50 years.  However, the organic S pool in mineral soil at PC1-08 is even larger, and is 

estimated to be around 580 kg S/ha, and net losses of 18 kg SO4/ha/yr would constitute only a 3% 

loss from the organic S pool per year. Further work is required to determine the relative 

importance of desorption compared to mineralization for net SO4 export from upland soils. 

Results of this study suggest that the processes of adsorption-desorption and mineralization-
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immobilization may in fact work together, such that higher SO4 concentrations in LFH percolate 

(because of greater mineralization/less immobilization or root uptake and/or higher deposition) 

are balanced by increased adsorption in underlying mineral soil. Similarly, when SO4 levels in 

LFH percolate are lower due to decreased inputs in deposition or less microbial mineralization (or 

greater immobilization), then SO4 may be desorbed from mineral soil until a new equilibrium is 

reached. Obviously the relative importance of biological versus abiotic retention may vary 

seasonally, and will depend on factors such as temperature and hydrology. For example, if 

periods of high microbial mineralization are followed by flashy summer storms, released SO4 may 

bypass adsorption sites in the mineral soil due to primarily overland flow or macropore routing 

through the soil. 

 
Summary 

In summary, changes in soil moisture, brought about by variations in precipitation and 

temperature appear to be responsible for similar temporal patterns of SO4 chemistry between 

upland-draining and wetland-draining streams. However, unlike wetland-draining streams, such 

as PC1, which vary between annual net retention or net export depending on hydrologic 

conditions, SO4 export from the upland PC1-08 catchment consistently exceeds SO4 input from 

bulk deposition, in every year of record. The constancy of SO4 concentrations in B-horizon 

percolate indicates that processes occurring in subsurface mineral soil, likely adsorption and 

desorption reactions, are able to modify the magnitude of SO4 exported from surface soils, and in 

effect, modify the response of soil and stream waters to changes in deposition. Together, the 

processes of mineralization and immobilization in surface organic soil, and adsorption and 

desorption in subsurface mineral soil, appear to be responsible for the observed net export of SO4 

from upland forested catchments in the Muskoka-Haliburton region. Understanding both the 

source(s) and controls of net SO4 losses from forest soils is necessary to predict the response of 

catchments to future changes in deposition and climate.  
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CHAPTER 5:  THE EFFECTS OF DRYING AND RE-WETTING AND INCREASED 

TEMPERATURE ON SULPHATE RELEASE FROM UPLAND (FOREST FLOOR, 

MINERAL SOIL), AND WETLAND (PEAT, SPHAGNUM) MATERIAL 

 

ABSTRACT 

 
Long-term catchment studies in south central Ontario have shown that SO4 concentrations in 

upland and wetland-draining streams are elevated following summer droughts. The objective of 

this laboratory study was to determine the effects of drying and re-wetting and temperature, 

respectively on the release of SO4 from wetland (Sphagnum and peat) and upland (LFH and 

mineral soil) material collected from the PC1 catchment in Haliburton County, and from 

catchment S50 in the Turkey Lakes Watershed.  Soil or plant material was either air-dried and 

subsequently re-wet or was kept at its initial moisture content, and samples were incubated at 

18°C and 25°C, respectively for 30 d with periodic sampling for SO4 (24 h, 48 h, 7 d, 14 d, 21 d, 

30 d). Peat exhibited the most marked response to drying of the 4 materials considered, and 

within 24 h of re-wetting dried peat from both catchments released 3 to 4 times more SO4(NH4Cl) 

(0.13-0.36 mg g-1) than continuously moist peat (0.050 mg g-1), although temperature had only a 

marginal effect on SO4 concentrations. There was no immediate response of Sphagnum to either 

drying or temperature, and although SO4 concentrations in Sphagnum tended to increase from 

initial levels (~0.060 mg g-1) over the 30-d incubation (maximum 0.13 mg g-1), they were 

generally less than concentrations in dried peat.  Sulphate concentrations in LFH material from 

both catchments were highest at the start of the incubation (24 h) in all treatments, although LFH 

material that was dried and/or incubated at 25°C tended to show the largest increase over 

background levels. In contrast, neither temperature nor drying appeared to affect SO4 release from 

mineral soil collected from either site. Results of laboratory incubations suggest that increases in 

SO4 concentration that have been reported in wetland-draining streams immediately following 
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summer dry periods are likely explained by drying and re-wetting of peat rather than increased 

mineralization in Sphagnum. Similarly, higher SO4 concentrations that have been measured in 

LFH percolate following fluctuations in soil moisture may be in part be due to drying and re-

wetting of the forest floor. In contrast, while the mineral soil constitutes a large pool of total S, it 

does not appear to be responsive to changes in moisture or temperature in the short-term (<30 d), 

although small changes in SO4 release from organic S compounds may have been partly obscured 

by adsorption/desorption reactions in mineral soil.  

 

INTRODUCTION 

  

In the Muskoka-Haliburton region of south central Ontario, increased SO4 concentrations and 

export have been measured in both wetland-draining and entirely upland catchments following 

summer droughts (Devito et al., 1999; Dillon and LaZerte, 1992; Eimers and Dillon 2002). 

Higher SO4 concentrations were also reported in a wetland-draining stream in the Turkey Lakes 

watershed (S50), north of Sault Ste. Marie following extended dry periods (Jeffries et al., 2001). 

Increased SO4 concentrations in wetland-draining streams occurred following declines in wetland 

water table levels and were inferred to be due to the oxidation of reduced S compounds in 

wetland soil (Dillon et al., 1997). In uplands, SO4 concentrations in soil percolate draining the 

forest floor (LFH) were highest during the summer and fall, immediately following rainstorms 

that broke previous dry periods, and fluctuating moisture conditions and increased mineralization 

were suggested as the probable cause (see Chapter 4).  However, in both cases, higher SO4 

concentrations occurred in summers that were both warmer, and drier than average, and the 

potentially confounding effect of higher temperatures during dry periods was not considered 

(Davidson et al., 1998). Furthermore, while enhanced mineralization may explain higher SO4 

concentrations and export following dry periods, this has never been directly tested, and SO4 
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mineralization rates in upland or wetland soil are not available to compare with measured export 

in drainage streams.  

 

The objectives of this study were to quantify the effects of drying and re-wetting and temperature, 

respectively on the release of SO4 from mineral soil, forest floor, peat and Sphagnum, and to 

determine the contribution of changes in moisture and temperature to temporal variations in 

stream SO4 chemistry. Two catchments were included in this study – the extremely acid-sensitive, 

coniferous Plastic Lake catchment #1 (PC1), and the moderately acid-sensitive, deciduous S50 

catchment, which drains into Batchawana Lake, and is part of the greater Turkey Lakes 

watershed. Sulphate release (mg g-1) from peat, Sphagnum, mineral soil (B-horizon) and forest 

floor material (LFH), respectively that was dried and subsequently re-wet was compared to SO4 

release in continuously moist material, in a laboratory incubation experiment. Experiments were 

replicated at 18°C and 25°C to test separately the effect of temperature.  

 

MATERIALS & METHODS 

 
Material used in this study was collected from 2 headwater stream catchments - Plastic Lake #1 

(PC1; 45°11’N 78°50’W) in Haliburton County, south-central Ontario, and S50 (47°04’N 

84°23’W) located in the Turkey Lakes Watershed, in Algoma District north of Sault Ste. Marie, 

Ontario. Both catchments are undisturbed and are located on the Canadian Shield. Soils at the 23 

ha PC1 catchment are generally thin (average 40 cm), acidic (Table 1), humo-ferric or ferro-

humic podzols, which directly overly bedrock (granitic gneiss) or thin (<1m) sandy, basal till 

deposits. Soils in the 12 ha S50 catchment are generally thicker and less acidic (Table 1), poorly 

developed sombric brunisols and humo-ferric and ferro-humic podzols (Canadian System of Soil 

Classification, 1998). White pine (Pinus strobus) and hemlock (Tsuga canadensis) dominate the 
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upland forest at PC1, whereas the forest cover at S50 is primarily composed of sugar maple (Acer 

saccharum) and yellow birch (Betula alleghaniensis). 

 

In each catchment, surface forest floor material (LFH: litter, fermentation and humus horizons) 

and underlying mineral soil (B-horizon) was collected from 3-4 upland sites, and samples from 

the same horizon from the individual pits were combined in the field. Soil from the B-horizon 

was collected from a depth range of 10-30 cm beneath the base of the LFH (Table 1).  

 

Both PC1 and S50 contain Sphagnum-dominated swamps, which have previously been identified 

as probable sources of SO4 peaks measured in stream water following summer droughts (Devito 

et al., 1999; Dillon et al., 1997; Jeffries et al., 2001). Similar to upland sites, peat and Sphagnum 

samples (entire live plants plus associated fibric material) were collected at 3-4 sites in each 

swamp and pooled in the field. Completely humified peat was sampled at a depth of 20-40 cm 

beneath the base of Sphagnum plants. Water level fluctuations of at least 20-40 cm relative to the 

peat surface are common in the PC-1 swamp during dry summers (Devito and Hill, 1997). Similar 

detailed hydrologic studies have not been conducted in the S50 swamp, but it was assumed that 

similar changes in water table height could occur in dry summers, due to reported peaks in SO4 

concentration in the S50 stream following dry periods (Jeffries et al., 2001).  

 

All upland and wetland samples were sealed in plastic bags for transport to the laboratory.  

Samples were sorted in the laboratory, and rocks (>5mm), twigs, roots and other debris were 

removed by hand, because moist soil could not be easily sieved without physical disturbing the 

samples. After sorting, soils were stored at 4°C prior to the start of experiments, which occurred 

within 1 week of sample collection. 
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Experimental design  

In the laboratory, mineral soil, LFH, peat and Sphagnum collections were divided in two, and one 

half was left open to air dry while the other half was kept sealed in plastic bags to preserve its 

initial moisture content. Prior to dividing materials into dry and wet treatments, sub-samples of 

each material were removed for the determination of initial SO4 concentrations and moisture 

content.  Both continuously wet soil and soil that was air-dried were kept in a constant 

temperature 18°C incubator for up to 1 week, or until soils in the dry treatment were visibly 

dehydrated – which generally corresponded to a decrease of 20% - 40% of their initial moisture 

contents (Table 1). Mineral soil, LFH and Sphagnum material tended to lose moisture more 

rapidly than peat, which required the full 1-week period to lose sufficient moisture (Table 1). Air-

dried soils were subsequently re-wet with deionized-H2O to increase their water contents to 

approximately their initial values (hereafter referred to as DRY) (Table 1). Both continuously 

moist (hereafter referred to as WET) and DRY samples were divided into 4 (PC) or 3 (S50) 

replicates per temperature treatment. Individual replicates were placed in clear, plastic 1.2-l stand-

up Zip Lock bags. In total, 16 bags (2 temperature treatments x 2 moisture treatments x 4 

replicates) were prepared for each material (LFH, mineral soil, peat and Sphagnum) from PC1, 

and 12 bags were similarly prepared for materials collected in S50. Bags were not sealed to allow 

air exchange, but were placed in closed cardboard boxes with a humidity source to reduce 

moisture losses. Half of the replicates of each material were then transferred to either a 25°C 

incubator, or an 18°C incubator, respectively, where they were kept in darkness for the duration 

of the 30-day experiment. Soils were sampled at 6 times over the 30-day period, at 24 h, 48 h, 7 d, 

14 d, 21 d and 30 d, following re-wetting of the air-dried samples.  Bag weights were recorded 

prior to incubation, and at each time of sampling to monitor weight changes due to moisture loss. 

If necessary, slight moisture loss during incubation was corrected by additions of water to the 

original weight. Initial SO4 concentrations in materials prior to incubation (T=0) are indicated as 
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dashed line on figures, and net SO4 mineralization at each time interval was assessed as the 

difference in SO4 concentration from the beginning of the incubation (i.e. CT – C0). The 4 

temperature/moisture treatments are labeled as HD (25°, dry), LD (18°C, dry), HW (25°C, wet) 

and LW (18°C, wet) on all figures. 

 

Table 1. Moisture contents and pH [initial/pre-drying (WET), post-drying and post re-wetting 

(DRY)] in peat, Sphagnum, LFH and mineral soil. Range in total S concentrations in PC1 

material also given. 

 PC peat PC Sphagnum PC LFH PC mineral soil 

 Init air 

dry 

Rewet 

 

Init air 

dry 

Rewet 

 

Init air 

dry 

Rewet 

 

Init air 

dry 

Rewet 

 

% H2O 89 70 84 94 75 94 80 60 79 37 25 36 

pH 3.5  3.5 3.5  3.5 3.4  3.4 4.0  4.0 

Tot. S 
(mg/kg 

2000-6000 1000-1400 1100-1700 350-500 

 TL peat TL Sphagnum TL LFH TL mineral soil 

 Init air 

dry 

Rewet 

 

Init 

 

air 

dry 

Rewet 

 

Init air 

dry 

Rewet 

 

Init air 

dry 

Rewet 

 

% H2O 85 68 84 92 75 92 84 66 84 40 25 36 

pH 4.0  3.8 4.0  4.1 4.0  3.9 4.0   

 

Analysis 

Sulphate was extracted from organic material (LFH, Sphagnum and peat) using 0.01 M NH4Cl 

and from mineral soil (B-horizon) using 0.03 M NaH2PO4 (1000 mg P l-1) in a 1:5 soil-to-solution 

ratio. Maynard et al. (1987) recommend using a weak salt such as NH4Cl instead of H2O for 

extracting soluble SO4 from organic material because H2O may liberate some organic SO4 (i.e. 

ester sulphates) and produces inconsistent results. Samples were shaken with the appropriate 

extraction solution in 250-ml Erlenmeyer flasks for 1 hour, and were then centrifuged and filtered 

(Whatman 42). Extracts were further syringe filtered (0.45 µm) prior to analysis for SO4 by ion 
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chromatography (Dionex). All samples were extracted ‘field’ moist, and were not air- or oven-

dried prior to analysis to avoid changes in SO4 release due to additional drying. To correct for 

differences in soil moisture between replicates additional sub-samples were removed at each time 

of sampling for determination of moisture content.  All SO4 concentrations are presented per 

gram dry weight of material.  

 
RESULTS 

 
Peat 

Sulphate release from peat increased markedly following drying, and the effect of drying was 

immediate (24 h) (Figure 1). Sulphate concentrations in peat increased from initial values of 

~0.05 mg g-1 at T0 to between 0.14 mg g-1 (S50) and 0.21 mg g-1 (PC1) within 24 h of re-wetting 

(Figure 1). Sulphate concentrations continued to generally increase in DRY PC1 peat incubated at 

25°C, indicating an additional stimulatory effect of temperature, whereas SO4 concentrations in 

DRY peat incubated at 18°C were relatively constant over the entire incubation period (Figure 1). 

In contrast, temperature exhibited a negligible effect on SO4 release from S50 peat, as SO4 

concentrations were similar in the HD and LD, and HW and LW treatments, respectively (Figure 

1). Drying appeared to be the dominant control on SO4 release from S50 peat, however SO4 

concentrations in DRY S50 peat (0.13-0.19 mg g -1) were always less than in DRY peat from PC1 

(0.21– 0.37 mg g-1).   

 

Sulphate concentrations in continuously moist peat were similar to or less than initial levels in 

S50 peat throughout the 30-d incubation, potentially indicating some immobilization or SO4 

reduction had occurred. Similarly, SO4 concentrations in WET peat from PC1 did not differ 

significantly from initial levels (HW) or increased slowly over time (0.003 mg g-1day-1) to a 

maximum concentration of 0.15 mg g-1on the final day of incubation (LW).  

 



 91 

Figure 1.  Sulphate concentrations (mg/g) in peat from PC1 (upper) and S50 (lower) in the 4 

temperature/moisture treatments (HW, HD, LW and LD) over a 30-d incubation period. 
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Sphagnum 

There was no immediate effect of drying or temperature on SO4 release from Sphagnum in either 

catchment (Figure 2). In fact, SO4 concentrations in Sphagnum decreased from initial levels 

(~0.060 mg g-1) during the first 7 (S50) to 14 d (PC1) of incubation, indicating some potential 

immobilization or plant uptake of initially present SO4 (Figure 2). Sphagnum plants in the WET 

treatments appeared healthy and maintained their initial turgor and colour throughout the 

incubation.  In contrast, Sphagnum plants in the DRY treatments generally became more wilted 

and less green over time.  Nevertheless, SO4 concentrations in both WET and DRY Sphagnum 

increased after 1 (S50) or 2 weeks (PC1) incubation, to maximum SO4 concentrations of 0.13 mg 

g-1 (S50) and 0.11 mg g-1 (PC1) at 30 d.   

 

Temperature appeared to be the primary cause of increased SO4 over time in Sphagnum from 

PC1. For example, SO4 concentrations remained at or below their original levels in the LD and 

LW treatments, but were approximately double their initial concentrations in the HD and HW 

treatments after 30 d incubation (Figure 2).  In contrast, the highest SO4 concentrations in S50 

Sphagnum occurred in the HD and LD treatments, indicating drying had a more important 

influence on SO4 release from Sphagnum at the Turkey Lakes catchment.  

 

LFH 

Initial SO4 concentrations were slightly less in coniferous forest floor material from PC1 (0.036 ± 

0.004 mg g-1) compared to deciduous LFH from S50 (0.048 ± 0.005 mg g-1). Within 24 h of 

incubation, SO4 concentrations in LFH material in all treatments increased markedly from their 

initial levels in both catchments, however the relative magnitude of increase was much larger in 

deciduous forest floor material from S50. For example, after 24 h SO4 concentrations in PC1 LFH 

increased to a maximum of ~0.091 mg g-1 (HD), compared to 0.36 mg g-1 (HW) at S50 (Figure 3).  

The initial increase in SO4 concentration measured after 24 h of incubation in all treatments may  
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 Figure 2.  Sulphate concentrations (mg/g) in Sphagnum from PC1 (upper) and S50 (lower) in the 

4 temperature/moisture treatments (HW, HD, LW and LD) over a 30-d incubation period. Bars 

indicate SD. 
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Figure 3.  Sulphate concentrations (mg/g) in LFH from PC1 (upper) and S50 (lower) in the 4 

temperature/moisture treatments (HW, HD, LW and LD) over a 30-d incubation period. Bars 

indicate SD. 
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have been partly due to physical disturbance of LFH material during handling. However, SO4 

concentrations were consistently highest in the HD treatment at PC1, and were significantly 
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higher (t-test, p<0.05) than concentrations in the LW and HW treatments at most sample times 

(i.e. 24 h, 7d-30d). Furthermore, SO4 concentrations in PC1 LFH in the HD and LD treatments 

were consistently between 0.01 and 0.02 mg g-1 greater than concentrations in the HW and LW 

treatments, respectively after 48 h incubation (Figure 3). Sulphate concentrations in LFH from 

S50 were highest in the HD and HW treatments during the first 48 h, perhaps in part due to a 

temperature effect, although differences were not statistically significant (Figure 3). 

 

The initial increase in SO4 concentration in LFH material was brief, and concentrations decreased 

between 24 h and 48 h, and were slightly higher than (S50) or in some cases less than their initial 

levels (PC1) after 7+d incubation (Figure 3). Similar to Sphagnum, a decrease in SO4 

concentration in LFH material must have been due to microbial immobilization, as plant uptake 

would be negligible since living plants were not present in LFH samples. Sulphate 

immobilization was apparently greater in continuously moist PC1 LFH material, since SO4 

concentrations in LFH extracts generally increased in the order of HD>LD>HW>LW after 7 d 

incubation. While SO4 concentrations declined between 24 h and 7 d incubation in S50 LFH, they 

increased again after 7 d to values that were 2- (LD) to 4-times (HD) higher than initial 

concentrations at 30 d (Figure 3).  

 

Patterns in SO4 concentration over time were generally similar in LFH material from S50 and 

PC1, respectively, although SO4 concentrations were always higher in deciduous, compared to 

coniferous LFH, respectively during the entire incubation period (Figure 3).  In addition, S50 

LFH always showed net mineralization (i.e. concentrations were consistently greater than initial 

levels), whereas SO4 concentrations in PC1 LFH were occasionally less than initial levels, 

indicating SO4 immobilization in forms that could not be liberated by NH4Cl.  
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Figure 4.  Sulphate concentrations (mg/g) in mineral soil (B-horizon) from PC1 (upper) and S50 

(lower) in the 4 temperature/moisture treatments (HW, HD, LW and LD) over a 30-d incubation 

period. Bars indicate SD. 
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Mineral soil 

Neither temperature nor drying had a marked effect on SO4(NaH2PO4) concentrations in mineral soil 

from either catchment. At PC1, SO4 concentrations in all treatments increased slightly over initial 

levels (0.40 mg g-1) during the first 24-h of incubation to between 0.43 mg g-1 (HW) and 0.51 mg 

g-1 (HD, LD).  In contrast, SO4 concentrations in mineral soil from S50 increased greatly during 

the first 24 h (HD, LD) or 48 h (HW, LW) of incubation, by approximately 50% (LD) to 300% 

(HW) over initial levels. After some initial variability, SO4 concentrations were relatively 

constant over time in mineral soil from both PC1 and S50 and were similar to initial levels 

(Figure 4). The decrease in SO4 concentration measured in S50 mineral soil after 48-h suggests 

that initially released SO4 was subsequently retained in forms that could not be liberated by 

NaH2PO4 extraction.  

 
Mineral soil at PC1 had substantially higher SO4 concentrations than soil at S50, and at any one 

sample-time concentrations in a respective temperature/moisture treatment were between 3.5 and 

13-times greater in PC1 soil compared to S50 (Figure 4).  Adsorbed SO4 concentrations measured 

in this study are similar to those reported earlier for both catchments. For example, Neary et al 

(1987) found adsorbed SO4 concentrations at PC1 to be between 0.30 and 0.50 mg g-1, and Foster 

et al. (1986) reported adsorbed SO4 concentrations of 0.014 to 0.056 mg g-1 in B-horizon soil at 

the nearby S31 catchment in the Turkey Lakes Watershed.  Sulphate concentrations in mineral 

soil at PC1 (0.28 - 0.51 mg g-1) were generally greater than in PC1 peat, which released the most 

SO4 post-drying of the 3 organic materials tested. However, LFH material generally had the 

highest SO4 concentration of the 4 materials considered at S50.  
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DISCUSSION 
 
Temperature & moisture effects on SO4 release from wetland soil 

Drying had a large effect on SO4 release from peat, supporting earlier suggestions that higher SO4 

concentrations in wetland-draining streams following summer droughts are due to release from 

peat  (Devito et al., 1999; Dillon et al., 1997; Jeffries et al., 2001). Of the 4 materials considered 

in this study, peat exhibited the largest, most consistent and immediate response to drying. At a 

given temperature, the relative increase in SO4 release from DRY versus WET peat at PC1 was 

between 150% and 900%, and in S50 peat the difference was around 300%. At the PC1 

catchment, SO4 release from dry peat was further stimulated by increased temperature, although 

ultimately, drying was a more important and immediate control on SO4 release. Similarly, drying 

enhanced SO4 release from S50 peat, although temperature had no effect, which suggests that 

post-drought increases in SO4 in S50 stream water are likely due to drying of peat and are 

probably not a direct function of increased temperature. However, in the field situation, higher 

temperatures could enhance moisture losses through evapotranspiration, and so temperature could 

contribute indirectly to SO4 release from peat. Furthermore, this experiment only considered a 

maximum temperature of 25°C, whereas in central Ontario maximum daily temperatures may 

reach 30°C or higher in the summer (OMOE, unpublished data).  

 

Relatively low SO4 concentrations in the WET peat treatments, which were generally similar to 

initial levels (i.e. T0) indicate that SO4 was neither released nor retained from continuously moist 

peat. The WET treatments were intended to replicate field moisture conditions that would occur 

when the water table is at or above the wetland surface. Under wet conditions, SO4 is known to be 

retained in wetlands through microbial SO4 reduction (Bayley et al., 1986; LaZerte 1993; Urban 

et al., 1989). For example, SO4 is retained in the PC1 swamp in years that have average or high 

summer precipitation, when stream flow from the swamp is continuous and the water table is 

maintained near the wetland surface (Devito et al., 1999; LaZerte 1993). However, peat in the 
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WET treatments had a moisture content of 85-89% and was not completely saturated (Table 1).  

Stable or marginally increasing SO4 concentrations in the WET treatments may therefore be 

explained by slightly aerated conditions in peat that did not favour SO4 reduction.    

 
In contrast, the initial response of Sphagnum to incubation appeared to be SO4 retention, through 

either immobilization or plant uptake, since SO4 concentrations were actually less than initial 

levels during the first 1-2 weeks of incubation. Sulphate concentrations in Sphagnum gradually 

increased over time, but even the maximum concentration observed after 30 d incubation was less 

than concentrations measured in DRY peat after 24 h in either catchment.  The gradual increase in 

SO4 concentration over time that occurred in both PC1 and S50 Sphagnum may have been due to 

the progressive breakdown of plant material and release of associated SO4. Rates of Sphagnum 

decomposition are known to be extremely slow due to the presence of readily leached phenolic 

compounds in Sphagnum cell wall material, that are extremely resistant to decomposition and 

also have antibiotic properties (Verhoeven and Toth, 1995).  However, SO4 concentrations 

increased at similar rates in both DRY and WET Sphagnum, despite the fact that WET Sphagnum 

appeared healthy throughout the incubation, whereas DRY Sphagnum became progressively more 

brown and wilted over time. Nevertheless, results of this study indicated that SO4 release from 

Sphagnum could potentially approach levels measured in peat over a sufficient length of 

incubation. However, the length of time required for SO4 release from Sphagnum to reach levels 

that were measured in dried peat within 24 h of re-wetting suggests that SO4 peaks observed in 

PC1 and S50 stream water immediately following dry periods are primarily due to release from 

peat, rather than Sphagnum. 

 
Temperature & moisture effects on SO4 release from upland soil 

Sulphate concentrations in upland-draining streams may also increase following summer dry 

periods, and lysimeter measurements in the upland part of the PC1 catchment have shown that 

SO4 concentrations in LFH percolate are higher during rain events that follow periods of low soil 
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moisture (see Chapter 4). A number of studies have shown that C, N and P mineralization rates in 

forest floor material are sensitive to changes in soil moisture, and increase following drying and 

re-wetting (Davidson et al., 1998; Grierson et al., 1998; Pulleman and Tietema, 1999). Results 

from this laboratory study generally confirm field measurements, and indicate greater SO4 release 

from dried coniferous LFH (PC1) compared to continuously moist LFH, which is slightly 

enhanced at higher temperatures. In contrast, deciduous LFH from S50 did not respond 

consistently to either drying or temperature, and while SO4 concentrations were highest in the 

HW and HD treatments within the first 48 h of incubation, there was little difference among 

treatments throughout the remainder of the study.  In an earlier laboratory study using material 

from the Turkey Lakes watershed, Foster (1989) reported a significant increase in S-

mineralization in F material of the LFH horizon with temperature, which was manifested early in 

the incubation (<7 d). The use of entirely F material, as opposed to a mixture of L, F and H 

material consisting of litter in various degrees of decomposition, may explain part of the 

difference between these two studies. Nevertheless, the average SO4 concentration in S50 LFH 

after 30 d incubation at 25°C (0.19 mg g-1), was identical to that reported by Foster (1989) for F 

material that was incubated at 20°C for the same length of time (~0.19 mg g-1). It is also possible 

that the difference between temperatures that were considered in this study (7°C), was not large 

enough to elicit the same clear response as reported by Foster (1989), who compared SO4 

mineralization rates at 10°C, 20°C and 30°C.  We chose 18°C and 25°C because they fall within 

the range of summer temperatures commonly experienced in the Muskoka-Haliburton region. A 

number of studies have shown that decomposition processes are sensitive to changes in 

temperature. For example, Kirschbaum (1999) used the Q10 function to summarize literature 

reports of the temperature dependence of soil organic matter decomposition, and found that 

decomposition rates in upper latitudes (north of 40°latitude) more than double with a 10°C 

increase in temperature. Presumably a 7°C difference in temperature should have been large 
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enough to effect measurable changes in SO4 release, and indeed, SO4 concentrations in dry peat, 

Sphagnum and coniferous LFH at PC1 were generally significantly higher in the 25°C treatments. 

It should also be noted that differences in SO4 release between 18°C and 25°C were likely easier 

to detect in coniferous LFH, which had substantially lower SO4 concentrations than deciduous 

LFH from S50.  

 

Temperature & moisture effects on SO4 release from mineral soil 

Sulphate release from mineral soil showed no consistent response to drying or temperature at 

either study catchment. This was not surprising, since microbial activity is highest in the top 10 

cm of soil where organic matter is most concentrated (Atlas and Bartha, 1993), and B-horizon soil 

was sampled at a depth of 10-30 cm.  However, the majority (~2/3) of total S in mineral soil at 

PC1 consists of organic S compounds (Neary et al., 1987), as is the case for most upland forest 

soils (Mitchell et al., 1992). Therefore it was expected that SO4 release from organic-S 

compounds in mineral soil would respond to changes in moisture and/or temperature. Instead, the 

lack of response to either temperature or drying suggests that biological processes are not 

important controls of short-term (i.e. daily) SO4 dynamics in mineral soil. However, the initial 

flush in SO4 concentration, which occurred in S50 mineral soil and to a lesser extent PC1 mineral 

soil during the first 24 h of incubation may indicate a brief release of SO4 from organic sources, 

likely due to soil handling (Magid et al., 1997).  Similarly, the subsequent decrease in SO4 

concentration must have been due to biological immobilization, since the NaH2PO4 extract would 

have liberated all subsequently adsorbed SO4 from mineral soil (e.g. Fuller et al., 1985; Johnson 

and Todd, 1983). While the mineral soil appears to be biologically active, the majority of organic 

S compounds in mineral soil may be relatively recalcitrant, and therefore less readily mobilized in 

short-term incubations.  Certainly, a number of studies have shown that carbon-bonded S 

compounds account for the bulk (>75%) of organic S in mineral soil (Mitchell et al., 1992). 

Carbon-bonded S compounds are apparently associated with humic substances, and are relatively 
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resistant to degradation as indicated by their resistance to chemical extractants (David et al., 

1982; Freney 1986; McGill and Cole, 1981). Houle et al. (2001) recently proposed that the large 

accumulation of organic S in mineral soil at Lac Laflamme, QC, is due to incomplete 

decomposition of LFH material and subsequent translocation of soluble organic S compounds 

down the soil profile to where they are adsorbed by mineral soil particles. Again, this study would 

suggest that the mineral soil is more important for S storage than for S immobilization or 

mineralization, at least in the short-term, however, over the longer term), net SO4 release from 

mineral soil could provide an important source of SO4 to drainage waters.  

 

A lack of response in SO4 release from mineral soil to changes in moisture or temperature may 

also in part be an artifact of the method of SO4 extraction from mineral soil. A salt (NaH2PO4) 

rather than a water extract was used to remove all inorganic SO4 from soil, including any newly 

released SO4 that may have been subsequently re-adsorbed by soil minerals. However, adsorbed 

SO4 is present in large excess of soluble SO4 (~20:1) in mineral soil at PC1 (Neary et al., 1987). 

Therefore small changes in soluble SO4 due to release from organic S compounds may have been 

difficult to detect by monitoring changes in the relatively large adsorbed pool. Nonetheless, 

adsorbed SO4 concentrations in S50 soil are relatively low, and are similar to H2O-soluble SO4 

concentrations (see also Foster et al., 1989), yet there was no significant effect of either 

temperature or drying on SO4 release from S50 soil over the 30-d incubation.  

 

Comparison of laboratory results with field measurements 

Previous reports have indicated substantial net SO4 export occurs from both upland and wetland-

draining catchments in the Muskoka-Haliburton region, and that net export is particularly large 

following dry summers (Eimers and Dillon, 2002). However, the source(s) and controls of net 

export or the causes of inter-annual variations in SO4 export have never been directly determined. 

Annual net SO4 export from the 23.3 ha wetland-draining PC1 catchment ranges from –4.3 to +31 
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kg ha-1 yr-1. Net SO4 retention generally occurs in years with wet summers, and highest net export 

occurs following particularly dry summers, although between 1980 and 1999, only 3 years 

showed a net retention of SO4 (Dillon et al., 1997; Eimers and Dillon, 2002).  

 
In an effort to place laboratory results in quantitative perspective with annual catchment flux, the 

average net SO4 concentration measured after 24 h in DRY peat (i.e. 0.16 mg g-1) from PC1 was 

extrapolated to the field situation. The following assumptions were made for this calculation: (i) 

the 1-week drying period corresponded to a water table decline of 40 cm in the PC1 swamp 

(depth of peat exposed in a typical dry summer), (ii) the re-wet phase corresponded to a 40 cm 

rise in water table height (iii) the entire 2.2 ha swamp contributes to SO4 cycling. Using these 

assumptions and a peat bulk density of 0.12 g cm-3 (Lozano et al., 1987), it was calculated that 

~250 kg SO4 would be released from peat that was dried to a moisture content of 70% and 

subsequently re-wet. To put this number in perspective, LaZerte (1993) reported that the PC1 

swamp exported ~370 kg SO4 during a 6 month period (September-February) that followed a 

particularly dry summer in 1987 when stream flow ceased for 89 contiguous days. These results 

indicate that a seemingly small decline in peat moisture content of ~20% can result in substantial 

SO4 release from peat upon re-wetting. In addition, total S storage in the PC1 swamp is large 

compared to the magnitude of net SO4 export following dry periods.  For example, assuming an 

average S concentration in peat of 4000 mg kg-1 and a peat depth of 2 m (LaZerte 1993), total S 

storage in the 2.2 ha PC1 wetland was estimated to be at least 9500 kg S ha-1. Therefore a net 

export of 250 kg SO4 (83 kg S) as was calculated for dried peat at PC1, would only correspond to 

a 0.4% loss from the total S pool in the wetland.  

 
In contrast to the wetland, which exhibits net SO4 retention or export depending on the hydrologic 

conditions, the upland part of the PC1 catchment (PC1-08; 3.45 ha), consistently exports more 

SO4 in stream discharge than is input to the catchment in bulk deposition in every year of record, 

in the range of 10 to 28 kg SO4 ha-1 yr-1 (see Chapter 4). A number of long-term monitored 
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catchments have been reported to show net SO4 export, and mineralization has been proposed as a 

potential source (e.g. Alewell et al., 1999; Hornbeck et al., 1997; Houle and Carignan, 1995; 

Mitchell et al., 1996; Prietzel et al., 2001). However, results of this study indicated that following 

an initial flush in SO4 release, SO4 was actually retained in PC1 LFH material, whereas SO4 

release from mineral soil was not affected by changes in moisture or temperature.  However, if 

the maximum net SO4 concentration measured in LFH material (HD: 0.055 mg g-1) is 

extrapolated to the catchment scale, assuming an average depth of 10 cm and bulk density of 

0.014 g cm-3, then a total of 2.7 kg SO4 could be released from dried LFH within 24 h of re-

wetting (at 25°C).  Presumably more than 1 cycle of drying and re-wetting of the forest floor 

would occur at PC1-08 each year, and so over an annual cycle, drying and re-wetting of the forest 

floor could contribute to net SO4 release from the catchment. Sulphur storage in the forest floor at 

the 3.45 ha PC1-08 catchment amounts to approximately 20 kg S/ha (at 1400 mg S kg-1) and 

therefore a release of 2.7 kg SO4 (0.9 kg S) corresponds to a loss of 4.5% from the total S pool in 

the LFH horizon. Given the magnitude of net export normally measured in PC1-08 and the 

relatively small S pool in the forest floor, it is unlikely that SO4 release from LFH material is the 

sole source of net catchment export. However, the magnitude of SO4 release following drying of 

LFH material is large enough to explain increases in SO4 concentration that have been measured 

in LFH percolate immediately following periods of low soil moisture, and therefore SO4 release 

from surface organic soil may contribute to inter-annual differences in SO4 export in the PC1-08 

stream (see Chapter 4).  

 
The other possible source of net SO4 export in upland stream water is desorption from mineral 

soil, which may increase in response to declining SO4 inputs in deposition (Harrison et al., 1989; 

Reuss and Johnson, 1986). The adsorbed SO4 pool in upland soil is certainly large enough to 

sustain the magnitude of net SO4 export that is measured in PC1-08. For example, assuming an 

average depth of 25 cm, a bulk density of 0.77 g cm-3 (Lozano et al., 1987), and an average 
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SO4NaH2PO4 concentration of 0.45 mg g-1, then the adsorbed SO4 pool in B-horizon soil at PC1-08 

is approximately 290 kg S-SO4/ha.  Total S storage in the B-horizon is even larger (~870 kg 

S/ha), and although results of this 30-d incubation study showed that SO4 release from mineral 

soil was not responsive to changes in moisture or temperature, the organic S pool in mineral soil 

is large compared to annual net export, and may therefore be an important source of SO4 to 

drainage waters over the long-term. Additional work would be required to investigate the 

potential importance of organic-S in mineral soil as a source of net SO4 export in drainage water, 

and the controls on net release.  

 

Conclusions 

Results of this laboratory study indicated that cycles of drying and re-wetting have a substantial 

effect on SO4 release from organic material, particularly peat. Increases in SO4 concentration that 

have been reported in wetland-draining streams immediately following summer dry periods are 

likely explained by drying and re-wetting of peat rather than increased mineralization in 

Sphagnum. Similarly, higher SO4 concentrations that have been measured in LFH percolate 

following fluctuations in soil moisture may be in part be due to drying and re-wetting of the forest 

floor. Although mineral soil constitutes a large pool of total S, it does not appear to be responsive 

to changes in moisture or temperature in the short-term (<30 d), although small changes in SO4 

release from organic S compounds may have been partly obscured by adsorption/desorption 

reactions in mineral soil.  Furthermore, over longer time periods, SO4 release from mineral soil 

may become important, particularly given the large pool of organic S storage in mineral soil.  
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CHAPTER 6:  SULPHATE ADSORPTION AND DESORPTION IN TWO ACIDIC 

PODZOLS IN THE MUSKOKA-HALIBURTION REGION, SOUTH-CENTRAL 

ONTARIO 

 

ABSTRACT 

 
The short-term effect of increasing and decreasing soil-solution sulphate (SO4) concentration on 2 

podzolic mineral soils was examined in a laboratory batch experiment using forest floor percolate 

amended with varying amounts of SO4.  Soil from Plastic Lake (PC1-08) had a substantially 

higher native adsorbed SO4 concentration (~650 mg SO4/kg) compared to Harp 6 (HP6; 16 mg 

SO4/kg). However, both soils were capable of adsorbing additional SO4 when the SO4 

concentration in a forest floor percolate was increased, and both released SO4 at lower SO4 

concentrations.  For PC1-08, the critical SO4 concentration at which SO4 was neither retained nor 

released occurred around 19 mg/l, whereas for HP6 the concentration was much lower at 5 mg/l.  

These results suggest that SO4 should be consistently released from soil at PC1-08 at SO4 

concentrations that are currently (1999-01) measured in forest floor percolate in the field (range 

0.3 – 10.4 mg/l), whereas SO4 adsorption and desorption should be in approximate balance at 

HP6. The observed relationship between initial SO4 concentration and retention or release could 

be described equally well by both a Langmuir and Initial Mass isotherm. According to the 

Langmuir formulation, soil from PC1-08 had a greater potential for additional SO4 adsorption 

(Kmax ≈ 360 mg/kg) than soil at HP6 (Kmax= 125 mg/kg). Initial Mass isotherm calculations 

indicated that 33% of SO4 inputs should be retained through adsorption reactions in PC1-08 soil 

compared to only 13% at HP6. These results suggest that streamwater draining upland catchments 

that have high native adsorbed SO4 concentrations may take longer to respond to changes in SO4 

deposition, than catchments with less strongly adsorbing soils.  However, a number of other 

factors may influence SO4 retention or release in catchments, and adsorption/desorption results 
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should be put into context by considering soil depth and primary hydrologic pathways as they 

determine the ‘horizon of last contact’ for soil drainage water prior to entering the stream 

channel. Other internal sources of SO4 such as mineralization should also be considered when 

inferring the potential contribution of desorption to net catchment SO4 export, since SO4 

generation from organic S compounds may continuously replenish the adsorbed pool. 

 

INTRODUCTION 

 
Sulphate adsorption in soil can ameliorate the effects of S deposition by decreasing the amount of 

H+
 and cations leached from soil in drainage waters. The reversibility of SO4 retention has 

become a question of concern, since desorption of SO4 that was adsorbed when deposition was 

higher may delay the response of downstream surface waters to recent decreases in S deposition. 

Studies in Europe where deposition has been historically higher, but where recent declines in 

emissions have been much larger compared to North America have highlighted the importance of 

adsorption in soil as a temporary sink for SO4. The covered catchment studies in Norway and 

Sweden, for example showed that SO4 levels in soil drainage water and streams remained high for 

several years following installation of roofs which completely removed anthropogenic SO4 inputs 

(Hultberg et al., 1998; Wright and Jenkins, 2001). These studies demonstrated that SO4 release 

from soil could delay the response of catchments to decreases in deposition.   

 

In addition, a number of catchments in both Europe and eastern North America have reported SO4 

losses in drainage water that exceed inputs in deposition (i.e. net export) and have suggested the 

presence of an internal, as yet unaccounted for S source (Driscoll et al., 1998; Feger 1995; Houle 

and Carignan, 1995; Mitchell et al., 1996).  A number of possible sources have been proposed to 

account for net SO4 losses, including the adsorbed SO4 pool in mineral soil (e.g. Lofgren et al., 

2001; Mitchell et al., 1996).  
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Sulphate that is adsorbed to soil particles is in equilibrium with SO4 in soil solution (Chao et al., 

1962). It has been suggested that if SO4 concentrations in soil solution decline in response to 

lower deposition, then SO4 may be released from mineral soil to compensate until a new 

equilibrium between adsorbed and solution SO4 is achieved (Reuss and Johnson, 1986).  In the 

Muskoka-Haliburton region, SO4 concentrations in deposition declined by almost 50% between 

the start of monitoring in the late 1970s and the present time, 2002.  

 

A number of studies have attempted to determine the reversibility of SO4 adsorption in mineral 

soil, and to assess the potential for SO4 desorption due to decreased deposition (e.g. Harrison et 

al., 1989).  The majority of these studies have treated mineral soil with varying concentrations of 

SO4 in distilled water, or simulated rainfall (e.g. Fuller et al., 1985; Harrison et al., 1989). 

However, in natural systems, soil percolate that comes into contact with subsurface mineral soil 

contains organic acids (among other chemicals), due to the passage of deposition through the 

forest floor.  The presence of organic acids is known to decrease SO4 adsorption, through either 

competition for binding sites or by altering the nature of Fe and Al oxides (Gobran and Nilsson, 

1988).  Soil pH may also affect SO4 adsorption, and adsorption is generally greater at lower pH 

due to increased protonation of hydroxyl sites on Fe and Al oxides (Chao et al., 1962; Kaiser and 

Kaupenjohann, 1998).   

 

In this study, the potential for SO4 adsorption and desorption in acidic podzols was determined 

using a forest floor percolate that was amended with varying concentrations of SO4.  Soils from 2 

catchments were considered in this study – PC1-08, and HP6, because earlier reports indicated 

that soils from PC1-08 and another sub-catchment of Harp Lake, HP4 had adsorbed SO4 

concentrations that differed by a factor of 10 (Neary et al., 1987). The objective of this study was 

to determine whether SO4 release from mineral soil occurs at SO4 concentrations that are 
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currently measured in forest floor percolate, and to speculate on the potential contribution of SO4 

desorption to apparent net SO4 losses (i.e. stream export > bulk deposition) in these 2 catchments.   

 

METHODS 

 
Study sites 

Soils used in adsorption/desorption experiments were collected from the Plastic Lake 1-08 (PC1-

08; 3.4 ha) and Harp Lake-6 (HP6; 10 ha) catchments, respectively located in the Muskoka-

Haliburton region, south-central Ontario. Soils in these Precambrian Shield catchments are 

classified as orthic humo ferric or orthic ferro humic podzols, according to the Canadian soil 

classification system (Agriculture Canada Expert Committee on Soil Survey, 1998). Further 

details on the soil profiles and physiography at PC1-08 and HP6 can be found in Devito et al. 

(1999), Dillon et al. (1991) and Neary et al. (1987).  The forest at PC1-08 is dominated by white 

pine (Pinus strobus; 43% basal area) and eastern hemlock (Tsuga canadensis; 19% BA), whereas 

sugar maple (Acer saccharum; 41% BA) and eastern hemlock (23% BA) are more common at 

HP6 (Watmough and Dillon, 2002). Sulphate deposition in the Muskoka-Haliburton region is 

currently around 20 kg/ha/year (~2 mg/l), but was greater than 40 kg/ha/year (~4 mg/l) in the late 

1970s (Dillon et al., 1988).  

 

Sampling 

At PC1-08, B-horizon mineral soil was collected from a depth of 10-20 cm (B1) and 30-40 cm 

(B2), respectively beneath the base of the Ae horizon. Soil was collected in this manner from 3 

adjacent pits and soils from individual pits from the same depth were combined. At HP6, B-

horizon soil was similarly collected from 3 pits, but from one depth only: 10-15 cm beneath the 

base of the H or Ae horizon.  In the lab, soils were coarse sieved (5 mm), and roots, pebbles and 

other debris were removed. Sub-samples of each soil were removed at this time and dried at 65°C 
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for 48 h to determine the moisture content.  Soils were stored at 4°C in the dark prior to use in 

experiments. The pH (0.01 M CaCl2) of the different soils was determined using a 1:5 

soil:solution ratio. 

 

Table 1.  Selected chemical properties of the 6 SO4 treatment solutions 

 pH SO4 (mg/l) DOC (mg/l) 

Treatment 1-FFL 4.7 0.77 9.8 

Treatment 2 4.7 1.7 9.8 

Treatment 3 4.7 7.5 9.8 

Treatment 4 4.7 32.5 9.8 

Treatment 5 4.7 42.0 9.8 

Treatment 6 4.7 65.2 9.8 

 

Sulphate treatment solution 

Forest floor leachate (FFL) was used as the base for SO4 treatment solutions. Organic leachate 

was obtained by shaking field-moist coniferous litter material (LFH) from PC1-08 in de-ionized 

water for 2 hours (1:10 ratio). The leachate obtained was filtered (Whatman 1) and then amended 

with varying amounts of Na2SO4 to produce 5 different SO4 concentrations (Table 1).  The same 

leachate (i.e. from PC1-08 LFH) was used in experiments with both PC1-08 and HP6 soil. The 

range in concentrations used in experiments was chosen to cover the range in SO4 concentrations 

measured in LFH percolate at lysimeters in PC1-08 and HP4 (0.2 - 42 mg/l) (LaZerte and Scott, 

1996).  All 5 SO4 solutions were adjusted to pH 4.7 using HCl (Table 1), which is typical of 

forest floor percolate at PC1-08, whereas the pH of LFH percolate at HP4 (and presumably HP6) 

is slightly higher (average pH at 6 zero-tension lysimeters: 5.1 ± 0.3, n=944; Findeis et al., 1993).  

The dissolved organic carbon (DOC) content was measured using a Shimadzu total organic 
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carbon analyzer (TOC-5000). The DOC concentration in FFL (Table 1) was less than the average 

DOC concentration measured in LFH percolate at PC1-08 (35 ± 17 mg/l; 1999-01); however, 

DOC concentrations in water draining the LFH horizon are highly variable and range from 2 to 

70 mg/l (LaZerte and Scott, 1996).  

 

Adsorption/Desorption experiments 

In order to measure the amount of SO4 released or retained by mineral soil, 25 ml of the 

appropriate FFL-SO4 solution was shaken for 1-hour with a mass of field moist mineral soil that 

was equivalent to 5 g dry-weight. Experiments were conducted in quadruplicate. Field-moist soils 

were used in all experiments in order to prevent unintentional SO4 release due to drying, and 

experiments were performed in the dark at 4°C to limit the potential for biological activity. After 

shaking, soil slurries were centrifuged and pH (glass electrode) of the supernatant was recorded.  

Supernatants were then sequentially filtered through Whatman 42 disks, followed by 0.45 µm 

syringe filters prior to analysis by ion chromatography (Dionex 600). Net SO4 retained or released 

was calculated by subtracting the amount of SO4 added in FFL solutions from the amount of SO4 

remaining in soil solutions after shaking for 1 hr and SO4 concentrations in soil were expressed 

per unit dry weight. Native adsorbed concentrations in soils were determined in a similar manner 

by shaking the equivalent of 5 g (dwt) soil with 25 ml 0.03 M NaH2PO4 for 1 hr. Water-soluble 

SO4 was measured in PC1-08 soil only, by substituting de-ionized water for NaH2PO4 in the 

procedure above. The functional relationship between solution and adsorbed SO4 is known as the 

sulphate adsorption isotherm (Reuss and Johnson, 1986). Langmuir (e.g. Chao et al., 1962) and 

Initial Mass (e.g. Nodvin et al., 1986) adsorption isotherms for PC1-08 and HP6 soil were 

calculated using STATISTICA 5.1 (StatSoft, Inc.).  
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RESULTS & DISCUSSION 

 

PC1-08 - Sulphate fractions 

Water soluble SO4 concentrations in B1 and B2 soil were 42 ± 3 and 30 ± 4 mg SO4/kg, 

respectively, and were less than 10% of native adsorbed SO4 concentrations (669 ± 43 and 631 ± 

34 mg SO4/kg, respectively). Adsorbed SO4 concentrations in PC1-08 soil used in this experiment 

were higher than the maximum concentration reported by Hern (1990) of 300 mg SO4/kg. Neary 

et al. (1987) determined an average adsorbed SO4 concentration of 331 ± 200 mg SO4/kg in 8 

profiles they examined at PC1, although concentrations ranged from 23 to 660 mg SO4/kg. Soil 

chemistry is highly spatially heterogeneous, and soils used in these experiments were collected 

from 3 adjacent pits. Therefore, adsorbed SO4 concentrations measured in this study are not 

representative of the entire catchment, and high values in this analysis relative those obtained by 

Neary et al. (1987) should not be interpreted as evidence of increased adsorption over time. 

Indeed, a survey of soil chemistry at various sites within the PC1-08 catchment in 1999 indicated 

that the average adsorbed SO4 concentration in B-horizon soil was 278 ± 203 mg SO4/kg (range 

74 to 743 mg/kg; n=20). Given the high degree of variability associated with soil measurements it 

is impossible to assess temporal changes in the adsorbed SO4 pool.  In order to evaluate potential 

changes in adsorbed SO4 over time, the original soil pits that were investigated by Neary et al. 

(1987) would have to be re-visited and sampled in an identical manner, so that data could be 

analyzed using a repeated-measures test. 

 

Adsorbed SO4 may also vary with depth, and Hern (1990) found that adsorbed SO4 

concentrations in mineral soil 10-20 cm beneath the base of the LFH were ~25-30% greater than 

those in soil 30-40 cm beneath the organic horizon.  In contrast, the difference in adsorbed SO4 

between upper and lower B-horizon soil used in this experiment was only 5% over the same 
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depth interval.  Sulphate adsorption within a podzol profile depends on the distribution of Fe and 

Al oxides and organic matter with soil depth, as well as pH, which normally increases toward the 

bedrock interface (Johnson and Todd, 1982).  However, we did not evaluate the Fe or Al oxide or 

organic matter content of B1 and B2 soil, and Hern (1990) did not present these data. The pH of 

B1 and B2 soil was similar (4.4 and 4.6, respectively), although due to the logarithmic pH scale, a 

difference of 0.2 pH units corresponds to a 1.6X increase in H+ concentration. Therefore slightly 

higher adsorbed SO4 concentrations in B1 compared to B2 soil (1.1X) may in part be due to the 

creation of additional sites for anion adsorption through increased protonation (Hern 1990; Singh 

1984).  

 
Despite the large degree of variability in adsorbed SO4 estimates, NaH2PO4-extractable SO4 

concentrations in soil at PC1-08 are relatively high compared to other catchments in southeastern 

Canada and the northeastern US that have the same soil type. For example, adsorbed SO4 levels 

in podzols at Lac Laflamme, QC are on average 25 mg SO4/kg (Houle and Carignan, 1995), and 

are less than 100 mg/kg at the Hubbard Brook, NH (Fuller et al., 1985). Foster et al. (1986) 

reported adsorbed SO4 concentrations of 14 - 56 mg SO4/kg in B-horizon soil at the Turkey Lakes 

Watershed. In the northeastern US and southeastern Canada, where recent glaciation has “reset 

the pedogenic clock” (Shanley, 1992), catchments are generally considered to have a low SO4 

adsorption potential due to their relatively unweathered profiles with low Fe and Al 

concentrations and high organic content (Rochelle et al., 1987). Nevertheless, adsorbed SO4 

concentrations at PC1-08 are similar to values reported at sites in the unglaciated southeastern 

US, where oxisols (ultisols) retain the majority of SO4 in deposition (e.g. Harrison et al., 1989). 

For example, Shanley (1992) reported adsorbed SO4 concentrations in oxisols at Panola 

Mountain, GA to be less than 265 mg SO4/kg.  However, soil depth also affects total SO4 

retention by adsorption on a watershed scale, and soils in the southeastern US generally have 

thicker mineral soil horizons compared to more recently de-glaciated sites of the northeastern US 
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and southeastern Canada (Rochelle et al., 1987). The total pool of adsorbed SO4 at sites in the 

southeastern US is therefore likely to be substantially greater than that at PC1-08 (average soil 

depth ~37 cm), and accounts for their generally positive SO4 budgets (i.e. net retention). Using 

adsorbed SO4 concentrations and bulk densities reported by Neary et al. (1987), the adsorbed SO4 

pool in soil at PC1-08 was estimated to be around 290 kg S-SO4/ha, which is equivalent to 

approximately 36 years of bulk deposition (@8 kg S/ha/yr). 

 
Differences in adsorbed SO4 concentrations among catchments in the same climatic and geologic 

zone may also be attributed to differences in forest type. Coniferous litter is more acidic than 

deciduous litter, and greater leaching and eluviation of Fe and Al is observed under coniferous 

canopies (Brady, 1990).  Subsequent illuviation of Fe and Al oxides in subsurface soil results in 

the creation of anion adsorption sites. Fuller et al. (1985) found that soil at a coniferous site had 

3-times higher adsorbed SO4 concentrations than soil at a neighbouring deciduous site at the 

Huntington Forest, NY.  

 

HP6-Sulphate fractions 

Mineral soil from HP6 had a native adsorbed SO4 concentration of 16 mg SO4/kg, which is 

substantially less than at PC1-08. However, previous surveys of soil chemistry at another sub-

catchment of Harp Lake - HP4, indicated that adsorbed SO4 concentrations in HP soils are low, 

and are on average 65 mg SO4/kg, although a minimum of 13 mg/kg was measured in one profile 

(Neary et al., 1987).  Adsorbed SO4 concentrations at HP6 are comparable to concentrations 

reported in podzols at sites in the northeastern US and southeastern Canada (Fuller et al., 1986; 

Johnson and Todd, 1983), which are purportedly less efficient at retaining SO4 via adsorption 

reactions. Assuming a constant SO4 concentration of 16 mg SO4/kg over the entire ~1m depth of 

the B-horizon (Watmough and Dillon, 2002), the adsorbed pool at HP6 is estimated to be around 

43 kg S-SO4/ha, which is equivalent to approximately 5 years of bulk deposition.  
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PC1-08 - Sulphate adsorption 

The addition of SO4 to soil in FFL at concentrations greater than 18-20 mg SO4/l resulted in the 

net retention of SO4 by PC1-08 soil, whereas SO4 was released from soil at lower concentrations 

(Figure 1). Adsorption/desorption reactions are the most plausible explanation for changes in SO4 

retention or release from soil at varying levels of SO4 input. Biological activity would have been 

low under the conditions of the experiment (4°C, complete darkness), and therefore biological 

retention (immobilization) or release of SO4 (mineralization), were likely not important factors. 

In addition, results from HP6 (see below) indicated that soil acidity was constant among the 5 

FFL-SO4 treatments following equilibration with soil, and soil pH was therefore not responsible 

for the relationship between SO4 retention and the amount of SO4 applied.  Another factor that 

may influence SO4 retention or release is DOC. The effect of DOC in FFL on SO4 adsorption 

could not be determined because only one concentration of DOC was considered in this 

experiment (Table 1). Gobran and Nilsson (1988) found that SO4 adsorption was completely 

inhibited at SO4 concentrations in FFL that were less than 750 mg SO4/l, whereas SO4 retention 

increased linearly at SO4 concentrations in distilled water that were between 0 and 1500 mg 

SO4/l. However, the DOC concentration in FFL used in the aforementioned experiment was very 

high (728 mg/l) compared to this study (10 mg/l). If DOC in FFL used in this experiment had a 

negative effect on SO4 adsorption, then the effect of the added DOC may have been to shift the x-

intercept to a higher SO4 concentration; whereas the limit between adsorption and desorption may 

have occurred at a lower SO4 concentration in a distilled water solution. However, the purpose of 

using FFL in this experiment was simply to provide a more realistic base solution for SO4 

treatments.  Since the DOC concentration in FFL used in this experiment (~10 mg/l) was low 

compared to average concentrations in LFH at PC1-08 or HP4 (2-70 mg/l), it is likely that the 

actual limit between SO4 adsorption and desorption occurs at a higher SO4 concentration than that 

determined here.  
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Figure 1.  Relationship between SO4 (mg/l) in treatment solution and SO4 removed or released 

(mg/kg) in PC1-08 upper and lower B-horizon mineral soil, respectively (Langmuir adsorption 

isotherm). 
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Figure 2.  Histogram of SO4 concentration (mg/l) in LFH percolate at PC1-08. Data collected 

between 1987 and 1995 (OMOE, unpublished).  
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Both the Freundlich and Langmuir adsorption isotherms are commonly used to describe the 

relationship between concentrations of an adsorbate and adsorption by an adsorbent. If the data 

indicate an adsorption maximum, then the Langmuir equation is more appropriate, whereas the 

Freundlich isotherm is suitable in the absence of a maximum (Chao et al., 1962). Because of the 

logarithmic form of the Freundlich relationship, negative values of SO4 desorption could not be 

modeled using the Freundlich equation (e.g. Nodvin et al., 1986), and so we instead applied the 

Langmuir isotherm to soil data from PC1-08. Furthermore, the slightly curvilinear relationship 

between SO4 adsorption/release and SO4 concentration in FFL indicated the potential for an 

adsorption maximum in PC1-08 soil (Figure 1). The form of the Langmuir equation is: 

 

ss

s
a CK

CK
C

+
×

= max  

where Ca is the adsorbed SO4 concentration (mg/kg) and Cs is the SO4 concentration in solution. 

Kmax and Ks are constants, representing the maximum adsorption (mg/kg) (additional to native 

adsorbed SO4) and the concentration at which Cs is equal to one-half Kmax, respectively. The 

maximum amount of additional SO4 (Kmax) that could be adsorbed in PC1-08 soil was calculated 

to be 388 mg/kg in B1 (upper B) and 338 mg/kg in B2 (lower B), and the half-saturation 

constants (Ks) were 211 mg/l and 134 mg/l in B1 and B2, respectively. Since the maximum SO4 

concentration measured in LFH percolate at PC1-08 is less than 50 mg SO4/l (Figure 2), the 

adsorption maximum would likely never be reached in PC1-08 soil. However, these results 

indicate that there is a substantial capacity for additional SO4 adsorption in PC1-08 soil.   

 

While the Langmuir function appeared to statistically fit adsorption data from PC1-08, Nodvin et 

al. (1986) explain that at low concentrations, such as those used in this experiment, the Langmuir 

relationship between adsorption and adsorbate concentration is linear.  Linear ‘initial mass’ 

isotherms (IM) are consistent with the Langmuir isotherm at low adsorbate concentrations, and 
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are useful for describing systems where removal and release processes occur in one experiment 

(Kaiser and Kaupenjohann, 1998; Nodvin et al., 1986). Likewise, there was a statistically linear 

relationship between SO4 retention/release and SO4 concentration in B1 and B2 soil at the low 

SO4 concentrations used in this experiment (Figure 3). The slope of the IM isotherm reflects the 

ability of a soil to retain SO4 (i.e. % of input SO4 retained by adsorption), and can be used to 

compare SO4 adsorption potentials among soils. 

 

In general, despite a high native adsorbed SO4 concentration, the slope of the initial mass 

isotherm for PC1-08 (0.29-0.35) was slightly less than that published for podzols at Hubbard 

Brook, NH (slope = 0.51) (Nodvin et al., 1986), but was similar to podzolic soil in NE Bavaria, 

Germany (0.10-0.49) (Kaiser and Kaupenjohann, 1998). In contrast, deeply weathered soils 

(oxisols) in the southeastern US have IM isotherm slopes that are close to unity, indicating almost 

100% adsorption (Rose 1996; Shanley 1992).   

 

HP6 - Sulphate adsorption  

Similar to PC1-08, the amount of SO4 removed from solution increased as the concentration of 

SO4 in FFL increased, whereas SO4 was released from soil at lower concentrations (Figure 4). 

However, the limit (x-intercept) between net adsorption and release was substantially lower in 

HP6 soil compared to PC1-08, and occurred at around 5 mg SO4/l (Figure 4).  Greater SO4 

retention at higher SO4 additions in the HP6 experiments was not a result of increased soil acidity, 

because soil pH following equilibration with SO4 solutions was similar among all 5 treatments 

(Table 2). Gobran and Nilsson (1988) similarly found that the addition of SO4 to soil at 

concentrations as high as 1500 mg SO4/l did not affect soil pH likely due to strong buffering by 

Al and organic acids. 
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Figure 3.  Relationship between SO4 applied (mg/kg) and SO4 removed or released (mg/kg) in 

PC1-08 upper (solid) and lower (dashed) mineral soil, respectively (Initial Mass isotherm).  
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Figure 4. Relationship between SO4 (mg/l) in treatment solution and SO4 removed or retained 

(mg/kg) in HP6 mineral soil (Langmuir adsorption isotherm).  

 

-60

-40

-20

0

20

40

60

80

0 10 20 30 40 50 60 70 80

SO4 application (mg/l)

SO

4  r
em

ov
ed

 o
r 

re
le

as
ed

 (
m

g/
kg

)

HP6

 



 120 

Figure 5. Relationship between SO4 applied (mg/kg) and SO4 removed or released (mg/kg) in 

HP6 soil (Initial Mass isotherm).  
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Figure 6. Histogram of SO4 concentration (mg/l) in B-horizon percolate at PC1-08. Data collected 

between 1987 and 1995 (OMOE, unpublished).  
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Application of the Langmuir adsorption isotherm to HP6 soil yielded estimates of Kmax and Ks of 

125 mg/kg and 129 mg/l, indicating that similar to PC1-08, soil at HP6 is capable of adsorbing 

more SO4 if inputs were to increase. The adsorption maximum at HP6 is approximately 1/3 of 

that at PC1-08, but both PC1-08 and HP6 have substantially higher adsorption maximums than 

soil at Lac Laflamme, QC (Kmax = 45 mg/kg) (Houle and Carignan 1995).  The slope of the initial 

mass isotherm for HP6 soil (0.13) was lower than at PC1-08, indicating that despite a potentially 

high capacity for additional SO4 adsorption that the proportion of SO4 retained by soil at HP6 per 

unit SO4 addition (i.e. 13%) is relatively small (Figure 5).   

 

Table 2.  Measured pH in HP6 soil filtrates. Soils were shaken for 1-h with SO4 solutions of 

varying concentration, centrifuged and then filtered. Averages are of 4 replicates, +/- SD. 

 pH of filtrate 

Treatment 1-FF 4.44 ± 0.05 

Treatment 2 4.43 ± 0.01  

Treatment 3 4.53 ± 0.09 

Treatment 4 4.41 ± 0.01  

Treatment 5 4.42 ± 0.09 

Treatment 6 4.32 ± 0.02 

 

 

PC1-08 - Sulphate desorption 

The limit between adsorption and desorption in soil at PC1-08 (x-intercept) occurred at 18 mg/l in 

the lower B (B2) and at 20 mg SO4/l in the upper B (B1) (Figure 1). In comparison, the average 

current (1999/00-2000/01) SO4 concentration in LFH percolate at PC1-08 is 5.3 ± 2.8 mg/l, with 

a range over this period of 0.3 to 10.4 mg/l. In previous years of monitoring (1987-1993), a 
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maximum of 42 mg SO4/l in LFH percolate was measured, although concentrations were 

generally less than 20 mg/l (Figure 2).  According to these results, SO4 should be consistently 

released from B soil at SO4 concentrations that are currently measured in LFH percolate. For 

example, at an input SO4 concentration of ~ 6 mg/l in LFH solution, approximately 19 mg SO4/kg 

should be released from the lower B (B2), and ~ 30 mg/kg should be released from B1 (Figure 1).  

These values constitute approximately 4 and 3% of their respective adsorbed levels in lower and 

upper B soil. Hern (1990) similarly found that SO4 was consistently released from PC1-08 soil at 

SO4 additions less than 10 mg SO4/l, and Foster (1986) reported that an input SO4 concentration 

of >12 mg/l was required to initiate SO4 retention in Bhf1 soil (4-7 cm beneath the LFH) at the 

Turkey Lakes watershed.  

 

Some authors have suggested that the y-intercept of the adsorption curve is a reflection of the 

amount of soluble SO4 present in soil (Shanley 1992). Water-extractable SO4 concentrations in 

B1 and B2 soil at PC1-08 were identical to the y-intercepts of the B1 and B2 adsorption curves 

(42 mg/kg and 30 mg/kg, respectively), because the lowest SO4 concentration in FFL treatment 

solution (0.8 mg/l) was almost zero (Figure 1). However, if the amount of SO4 released at 0 mg 

SO4/l is expressed in mg/l of soil water, then an average of 89 mg SO4/l is calculated, which is 

much higher than SO4 concentrations typically measured in B-horizon percolate at PC1-08 

(Figure 6).  It is more likely that water liberates part of the weakly adsorbed SO4 that is retained 

by electrostatic forces in soil (Fuller et al., 1985; Sharpley et al., 1992). Sulphate concentrations 

measured in water extracts, therefore, may not be representative of dissolved SO4 in soil solution. 

Furthermore, if SO4 measured in water extracts is indicative of native soluble SO4, then 

presumably all soluble SO4 should be liberated in a single water extraction. However, Neary et al. 

(1987) reported that SO4 continued to be released from PC1-08 mineral soil after 6 sequential 

distilled water extractions, whereas SO4 concentrations in water extracts of LFH and Ae material 

declined to below detection after 3 or 4 successive washes. They concluded that distilled water 
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may be capable of removing part of what is considered to be adsorbed SO4 (Neary et al., 1987). 

Van Stempvoort et al. (1992) similarly found that SO4 concentrations calculated per liter soil 

water were substantially higher than SO4 concentrations in soil percolate, and suggested that part 

of the ‘excess’ water-soluble SO4 was non-specifically bound SO4, which was released due to the 

change in ionic strength brought about by the addition of de-ionized water to soil.  

 

HP6 - SO4 desorption  

While the chemistry of soil percolate is not currently measured at HP6, lysimeter data from the 

near by HP4 catchment are available from 1987-1992. The average SO4 concentration in LFH 

percolate over this period was 4.9 ± 3.4 mg SO4/l, with a maximum and minimum of 24.4 and 

0.40 mg/l, respectively (Ontario Ministry of Environment, unpublished data).  If we assume that 

HP4 and HP6 have similar LFH chemistry, and that the current SO4 concentration in LFH 

percolate is comparable to the previous average of 4.9 mg/l, then SO4 release from B-horizon soil 

should be in approximate balance with current inputs (i.e. no net release). It is more likely 

however, that SO4 concentrations in LFH percolate at HP4 (and by inference HP6) have 

decreased since 1992 (see Chapter 4 for temporal trend in LFH [SO4] at PC1-08), and are 

currently lower than 5 mg/l.  These results predict that SO4 is desorbed from mineral soil at HP6 

at SO4 concentrations in LFH percolate less than 5 mg/l.  

 

Comparison of desorption results with current net export of SO4 from catchments 

Mass balance budgets for a number of catchments in the Muskoka-Haliburton region indicate that 

SO4 export in drainage water exceeds input in bulk deposition in most years of record by 1 to 37 

kg SO4/ha/year (Chapter 2). Assuming that this apparent net export is at least partly from an 

internal S source, and is not entirely due to the underestimation of inputs through dry deposition 

or weathering, then SO4 desorption is a plausible explanation.  In most forested catchments, more 

than 90% of the total S storage is present in soil, and a substantial amount of S in soil may occur 
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as adsorbed SO4 (Mitchell et al., 1992). At PC1-08, it was estimated that adsorbed SO4 

constitutes approximately 1/3 of the total S found in the B-horizon, with the remainder present in 

organic forms (Neary et al., 1987).  Given the large size of the adsorbed S pool (~290 kg S-

SO4/ha) at PC1-08 relative to annual SO4 inputs in deposition (6-8 kg S-SO4/ha/year), and the 

relationship between decreased SO4 concentrations and SO4 release from soil, the adsorbed pool 

at PC1-08 represents an important potential source of SO4 export.  

 

It should be noted, that PC1-08 soil used in this experiment had a native adsorbed SO4 

concentration which was at the upper limit of the range of adsorbed SO4 concentrations 

previously measured in this catchment (e.g. Neary et al., 1987).  In addition, samples were only 

collected from 3 pits and, as such, these results cannot be interpreted as representative of the 

entire catchment. However, it may be argued that adsorption/desorption isotherms are only useful 

for predicting SO4 export in streams if soil samples are collected from the ‘horizon of last 

contact’ (O’Brien and Hendershot, 1993), and therefore represent the last horizon that soil water 

percolates through prior to discharging to the stream.  Very few adsorption/desorption studies 

however, have used such as sampling strategy, making it difficult to extrapolate results published 

in the literature to the field situation (e.g. Gobran and Nilsson, 1988; Harrison et al., 1989; Houle 

and Carignan, 1995). Similarly, the sampling strategy used in this study was not structured to 

evaluate the adsorption/desorption properties of soils at the terminus of the soil percolate 

pathway. Nevertheless, in order to get a rough approximation of the magnitude of SO4 desorption 

that would occur from PC1-08 soil with a high native adsorbed SO4 content, we extrapolated the 

Initial Mass isotherm results to the catchment scale using the current average SO4 concentration 

in LFH percolate (6 mg/l) and an annual runoff value of 0.5 m (Scheider et al., 1994). Assuming 

100% of the runoff passes through the LFH horizon, approximately 103.5 kg SO4 would be input 

to the B-horizon. If 103.5 kg SO4 were to fully mix with soil in the B-horizon (200 kg/m2), this 

would result in a SO4 input of ~15 mg/kg.  Applying this value to the Initial Mass isotherm 
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equation for lower PC1-08 B-horizon soil (Figure 3), approximately 22.4 mg SO4/kg should be 

desorbed from soil at this level of input, which translates to a flux of 45 kg SO4/ha from the 

catchment.  Annual net SO4 export estimates for PC1-08 are generally less than 45 kg/ha/yr (7-28 

kg SO4/ha/yr; see also Chapter 4), and net export was 10 kg/ha in 2000/01.  Differences between 

measured and predicted SO4 export, respectively may in part be due to the fact that soil samples 

used in this study were relatively enriched in adsorbed SO4 compared to previous reports, and 

likely don’t represent soil from the horizon of last contact. Soil with a lower native adsorbed SO4 

content would release less SO4 through desorption at a given level of SO4 input.  

 

Less is known about S storage in soil at HP6, although soils in this catchment are generally 

deeper than at PC1-08 (Dillon et al., 1991; Watmough and Dillon, 2002). Nevertheless, it was 

estimated that the adsorbed pool at HP6 was approximately 1/5 of that at PC1-08 although the 

magnitude of net SO4 export from HP6 is similar to, or greater than that estimated for PC1-08 

(Chapter 2).  It should be remembered, however, that pool estimates for HP6 are based on 

adsorbed SO4 measurements at only 3 pits within the 10 ha catchment, and as such are highly 

uncertain. Similar to PC1-08, isotherm calculations were extrapolated to the catchment scale 

assuming a current SO4 concentration in LFH percolate at HP6 of 3 mg/l.  Using a similar 

calculation to that presented for PC1-08 above, and a runoff value of 0.5 m/yr, it was estimated 

that ~150 kg SO4 would be input to the B-horizon annually in LFH percolate. Assuming complete 

mixing with mineral soil (600 kg/m2 -average soil depth at HP6 ≈ 3X PC1-08), 150 kg SO4 would 

correspond to an input of 2.5 mg/kg to the B-horizon.  Application of this value to the Initial 

Mass isotherm equation for HP6 (Figure 5) predicts a net release of –2.34 mg/kg from HP6 soil, 

which translates to an annual net export of 14.1 kg/ha.  This value is substantially lower than field 

estimates of HP6 net export (average 25 kg/ha/yr, see also Chapter 2). Similar to PC1-08, 

extrapolated values from HP6 experiments do not approximate field estimates, which implies that 

laboratory results do not adequately describe sorption reactions likely due to simplifications 
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associated with such extrapolations, and because soils used in experiments were not 

representative of the soils which affect stream chemistry. In addition, other internal sources, such 

as the organic-S pool, may contribute to net SO4 export via mineralization reactions.  Indeed, a 

number of authors have argued that although the adsorbed pool is responsive to changes in input 

SO4 concentration, that SO4 release through mineralization of the relatively large organic S pool 

is also an important long-term source of SO4 export from catchments (e.g. Driscoll et al., 1998; 

Feger 1995; Houle and Carignan, 1995). Certainly at PC1-08, the organic S pool is approximately 

2-times larger than adsorbed SO4, and while we do not have any data on total S concentrations at 

HP6, it is assumed that organic S storage is similarly large in this catchment.   

 

In order to achieve a more realistic assessment of the contribution of desorption to net SO4 export 

from catchments, we suggest that soils should be sampled from the horizon of last contact, or the 

soil horizon through which percolate passes immediately prior to discharging to the stream. 

Previous hydrological studies in the PC1-08 upland have shown that the majority of storm flow in 

the late spring and fall is produced from water that passes vertically through the soil profile to the 

soil/bedrock interface, where it then flows laterally to the stream channel (Peters et al. 1995; 

Renzetti et al., 1992). As water percolates through mineral soil, SO4 may be retained or released 

depending upon the physical and chemical characteristics of the particular horizon of contact.  

Therefore at PC1-08, soil at the bedrock interface would be the ‘horizon of last contact’ and the 

adsorption/desorption properties of these soils may be the most important for determining SO4 

export in drainage waters.  It should be noted however, that the horizon of last contact may not 

always correspond to the deepest soils, but will depend on the primary hydrologic flow paths 

within a catchment. For example, soils located adjacent to the stream riparian zone or on lower 

slopes may be particularly important for determining whether SO4 in upland soil drainage 

contributes to SO4 export in stream flow (e.g. Dail and Fitzgerald, 1999). Furthermore, if intense 

storm events generate mainly surface flow - which tends to occur following dry periods when the 
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forest floor is hydrophobic (Biron et al., 1999), then runoff will completely by-pass adsorption 

sites in the mineral soil.  This discussion indicates that simple interpretation of 

adsorption/desorption isotherms will not be sufficient for predicting the response of mineral soil 

to changes in deposition, and acidification models must also consider the effect of varying 

hydrology (flowpaths, rainfall patterns) on chemical exports from mineral soil.  Of further note, is 

that mineralization of organic-S compounds in both surface and mineral soil may provide a 

continuous input to the adsorbed SO4 pool (Bohn et al., 1986), and further complicate predictions 

of SO4 retention or release through adsorption/desorption reactions.  

 

In conclusion, results of these experiments indicate that SO4 release and retention in soil from 

both PC1-08 and HP6 are responsive to changes in input SO4 concentration. According to 

adsorption isotherms, SO4 should be consistently released from B-horizon soil at PC1-08 and 

likely also HP6 at the range of SO4 concentrations encountered in the field, and soils are not in 

equilibrium with current SO4 input (Figures 1 and 4).  Furthermore, HP6 soil that has a relatively 

small pool of adsorbed SO4 may release less SO4 in response to reduced SO4 inputs (i.e. through 

deposition), and respond more rapidly to changes in deposition than soils with a high native 

adsorbed SO4 content such as PC1-08. These experiments, however, were based on a limited 

collection of soil that was not spatially representative of each catchment, and more sampling 

would be necessary to adequately characterize adsorption reactions and pools at each catchment. 

Nevertheless, the magnitude of potential desorption calculated for HP6 and particularly PC1-08 

indicates that desorption may be an important source of SO4 export in Muskoka-Haliburton 

catchments and should be considered when predicting the response of catchments to changes in 

deposition.  
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CHAPTER 7:  SULPHUR ISOTOPE RATIOS IN A CANADIAN SHIELD CATCHMENT 

 
ABSTRACT 

 
The isotopic composition of SO4 in bulk deposition, soil percolate and streams flowing into, and 

draining a conifer-Sphagnum swamp were monitored over a 12-month period in a forested 

catchment in south-central Ontario. After 12-months, a 34S-enriched tracer was applied to plots 

within the upland and wetland parts of the catchment, and monitoring of the tracer’s fate 

continued for another 12-months. The isotopic composition of bulk deposition did not vary 

greatly over the entire monitoring period and was on average, +5.2 ± 0.6‰. Prior to tracer 

application, the isotopic signature of soil percolate (+4.4 ± 0.4‰) was similar among horizons, 

and tended to be slightly lower than in deposition. Similarly, before the tracer was applied, the 

isotopic composition of upland-draining stream water did not vary greatly over time, but was 

slightly higher than in deposition or soil percolate (+5.7 ± 0.7‰). Small differences in isotopic 

composition among bulk deposition, soil percolate and stream water, respectively, indicate that 

there is little isotopic fractionation associated with S-transformations in the upland catchment.  In 

contrast, S-isotope signatures in stream water draining the swamp were more variable over time, 

and were higher than in precipitation (average +8.6 ± 2.6‰). Higher δ34SO4 values in the swamp 

outlet compared to deposition and the upland-draining inflow to the swamp are likely a result of 

kinetic isotope effects associated with dissimilatory sulphate reduction in peat. Consistently lower 

SO4 concentrations in the swamp outflow (average 4.5 ± 1.9 mg/l) compared to the upland-

draining inflow (average 7.2 ± 0.8 mg/l) are consistent with the prevalence of reducing conditions 

in saturated peat.  The application of a 34S-enriched tracer (total 1 mg 34S) to plots within the 

swamp had no effect on the δ34SO4 of the swamp outflow, likely due to isotope dilution in the 

large S pool in peat. In contrast, the δ34SO4 signature in soil percolate and stream water increased 

(maximum +14.7‰) following application of 34S to plots in the hillslope and streambed, although 

the effect was temporary, and S-isotope signatures in soil percolate returned to pre-tracer values 
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within 1 month of tracer application, whereas enriched δ34SO4 values were measured in stream 

water for at least 2 months following the application.   

 

INTRODUCTION 

 
Stable S isotopes ratios can be used to investigate biogeochemical processes involved in S-

cycling in catchments (e.g. Krouse and Tabatabai, 1986; Mitchell et al., 2001). Two types of 

approaches have been used; the first involves the application of S with an isotopic composition 

that is distinct from S sources and pools within the system of study, whereas the other involves an 

evaluation of changes in the natural abundance of S isotopes both among system components, or 

over time. Studies of the former type have generally involved the application of large quantities 

of isotopically distinct S, because most readily available S tracers (e.g. gypsum) have δ34S 

signatures that are only ~5-25‰ higher than ambient deposition or geologic sources of S. For 

example, Prietzel et al. (1995) added S (δ34S = +28‰) at a maximum rate of 87 kg S-SO4/ha, 

whereas Gieseman et al. (1995) applied fertilizers with δ34S values of +10.2 and +13.7‰ at a rate 

of 170 kg S-SO4/ha to sites in southern Germany, where deposition has an average  δ34S of 

+7.4‰ (Mayer et al., 1995). Tracer applications have been used to evaluate the residence time of 

S in systems and to follow the fate of S applied in simulated deposition.  

 

Changes in the natural abundance of S-isotopes can be used to elucidate S-transformations and 

sources in catchments, since the S-isotopic composition of a particular ecosystem component is a 

product of the isotopic composition of sources (and their mixing ratios), and fractionation 

processes that occur during S-transformations (Alewell et al., 1999; Hesslein et al., 1988).  Some 

S transformations result in negligible fractionation (adsorption, desorption, precipitation) (e.g. 

Van Stempvoort et al., 1990), whereas others have been shown to be selective for the lighter 32S. 

For example, plant uptake, or assimilatory sulphate reduction (ASR) might be slightly preferential 
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to 32S, resulting in δ34S values in plant tissue that are 1 to 2‰ lower than the reactant SO4 (Novak 

et al. 2001). Some studies have suggested that the microbial processes of immobilization and 

mineralization may also be slightly preferential to 32S (Fuller et al., 1986; Mayer et al., 1995; 

Zhang et al., 1998). Immobilization and mineralization would tend to have opposing effects on 

the isotopic composition of SO4 in soil solution, since immobilization should produce 32S-

enriched organic-S compounds in soil and leave residual reactant SO4 in soil solution relatively 

enriched in 34S (i.e. higher δ34S), whereas preferential mineralization of 32S-enriched organic-S 

should release SO4 with a lower δ34S signature.  However, isotopic fractionations associated with 

immobilization and mineralization, respectively are generally small, and differences in δ34S 

signatures between reactants and products are normally only ~1-4 ‰ (Mayer et al., 1992). In 

contrast, dissimilatory sulphate reduction (DSR), which occurs under anaerobic conditions, 

results in marked isotopic fractionation between the 32S-enriched product (lower δ34S) and 34S-

enriched reactant SO4 (higher δ34S), because bacteria preferentially reduce the lighter 32S (Krouse 

and Tabatabai, 1986). Therefore saturated peat generally has a lower (or more negative) δ34S 

signature than SO4 in bog porewaters, although substantial shifts in δ34S signatures in wetland 

outflows may occur following periods of water table drawdown and subsequent exposure of 

previously submerged peat (Mandernack et al. 2000).   

 

In the Muskoka-Haliburton region, S-inputs through weathering are negligible due to the low S-

content of granite bedrock, and slow weathering rates (Jeffries and Snyder, 1983; Watmough and 

Dillon, 2001), and therefore deposition is the primary input of S to catchments. The aim of this 

study was to compare the isotopic composition of deposition to isotope ratios in soil percolate, 

upland stream water, and stream water exiting a conifer Sphagnum swamp in the Plastic Lake-1 

catchment, to determine whether there was evidence of DSR in the upland and wetland, 

respectively.  In addition, a 34S-enriched (99.8%) SO4 tracer was applied in simulated rainfall to 
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plots within the upland hillslope, streambed and wetland, respectively in order to investigate the 

transit time for atmospherically-deposited SO4 in different parts of the catchment. In contrast to 

other tracer applications, only a very small application of 34S was required to alter the isotopic 

composition of material within plots, because the 34S content of the tracer (i.e. 99.8% 34S) was 

substantially higher than that of naturally present S, or of S in deposition (~4.4% 34S).  

 

METHODS 

 
Study Site 

The study was conducted in the 23.3 ha Plastic Lake-1 (PC1) catchment, located in Haliburton 

County, south-central Ontario. The catchment is underlain by granitic gneiss bedrock, and is 

covered by thin surficial deposits (<1 m) and generally thin (average 40 cm), coarse-textured 

(90% sand) humo-ferric and ferro-humic podzols. The forest at PC1 is primarily coniferous, and 

is dominated by white pine (Pinus strobus) and eastern hemlock (Tsuga canadensis). The PC1 

catchment is drained by a first-order stream (PC1) which passes through a 2.2 ha swamp before 

discharging into Plastic Lake (Figure 1). White cedar (Thuja occidentalis) and black spruce (Picea 

mariana) dominate the swamp, with extensive Sphagnum ground cover. More than 85% of the 

runoff draining PC1 passes through this swamp prior to exiting into the lake, and as a 

consequence, within-swamp processes exert a strong control on the chemistry of the PC1 stream 

(Devito and Hill, 1999).  A separately gauged intermittent stream drains an entirely upland sub-

catchment of PC1 (PC1-08, 3.45 ha) before entering the swamp along its north-east border 

(Figure 1).  
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Figure 1. Plastic Lake-1 (PC1) study catchment.  Location of lysimeters and tracer application 

plots are indicated. 
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Four, zero-tension lysimeters (installed in 1987) are located at various locations in the upland part 

of PC1 (Figure 1), and were used to collect soil percolate from beneath the LFH, Ae and B- 

horizons for chemical and isotopic analyses.  

 

As part of a separate study, a 34S-enriched tracer (99.8% 34S) was applied in synthetic rainfall to 2 

plots in the upland, and to 3 plots in each of the stream bed and swamp on August 15, 2000. An 

earlier application date was originally planned for (June), however wet conditions in the swamp 

and upland stream during June and July necessitated a delayed application date. The chemistry of 

the synthetic rainfall was similar to the current deposition at PC1, and the pH was adjusted with 

HCl to ~4.7 (Table 1). The objective of the tracer application was to assess the transit time of 

atmospherically deposited SO4 at ambient levels. In total, 0.33 mg of 34S was applied as SO4 to 

each of 2, 2.4 m2 plots on the hillslope, directly overlying lysimeter plates, to 2, 0.073 m2 plots in 

the PC1-08 streambed, and to 2, 0.073 m2 plots in the wetland (Figure 1). A higher dose (4.1 mg 

34S-SO4) was applied to 1 additional plot in each of the streambed and wetland (Figure 1). In 

total, 3L of labeled synthetic rainfall was applied to each lysimeter plot (equivalent to a 1.25 mm 

rain event), and 0.5L was applied to each stream or swamp plot (equivalent to a 6.8 mm rain 

event), containing either 0.33 mg 34S-SO4 or 4.1 mg 34S-SO4. Due to the very small mass of 34S 

added relative to the size of the natural S pools in plots, the tracer was not expected to have a 

substantial or long-lasting effect on the δ34SO4 signature of soil percolate or stream water. The 

range in S concentrations in forest floor (LFH), B-horizon mineral soil and peat at PC1 are 1000-

2000mg S/kg, 300-600 mg S/kg and 2000-7000 mg S/kg, respectively. For example, assuming 

complete mixing of 0.33 mg 34S-SO4 in the top 10cm of peat in a 0.073m2 plot (bulk density = 

0.13 g/cm3), and a background δ34S signature in peat of +2‰ at 4000 mg S/kg, the expected δ34S 

in peat following application of the tracer would be +4.1 ‰.  It was for this reason that a higher 

application of 34S (4.1 mg) was added to 1 plot in each of the stream and wetland.   
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Table 1.  Major element concentrations (µeq/l) in synthetic rainfall used in tracer application, 

compared to bulk deposition chemistry at PC1. The pH of synthetic rainfall was adjusted to 4.7 

using HCl.  

 SO4 Ca Mg NH4-N NO3-N pH 

Synthetic Rainfall 42 26 15 38 38 4.7 

Bulk deposition (average 1993-1998) 42 12 3.2 28 36 4.4 

 

 

 

Table 2. Average seasonal volume-weighted sulphate concentrations (µeq/l) in deposition at PC1  

 1999-00 2000-01 

Summer (June-August) 54 33 

Fall (September-November) 46 64 

Winter (December-February) 25 23 

Spring (March-May) 50 52 

 

At the time the tracer was applied to plots in the streambed, the water table in the stream was at 

least 19 cm below the sediment surface at the weir, and there was zero flow. In contrast, the 

stream exiting the swamp (PC1) flowed nearly continuously during the summer of 2000. The 

wetland plots were located near the swamp perimeter in order to avoid areas with ponding, or 

lateral flow, however the water table in the swamp plots was generally within 5-8 cm of the peat 

surface throughout the monitoring period.  
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Table 3. Mean (±SD, n) monthly δ34S signatures in bulk deposition, and in soil percolate from  

control and treatment lysimeters. Soil percolate averages for August 2000 are for samples 

collected prior to application of the tracer on Aug.15. 

 Bulk 

deposition 

LFH Ae B 

  Treatment Control Treatment Control Treatment Control 

Jun-99 4.82 ±  

0.52 (2) 

4.45 ± 

0.35 (2) 

4.7 4.70 ± 

0.21 (4) 

3.75 ± 

1.06 (2) 

4.45 ± 

0.21 (2) 

na 

Jul-99 4.7  4.27 ±  

0.10 (2) 

Na 4.41 na 4.60 na 

        

Aug-00 5.09 ±  

0.10 (3) 

5.01 4.62 4.35 4.45 4.69 ± 

0.69 (2) 

4.31 

Sept-00 4.85 ±  

0.61 (5) 

7.14 ±  

0.86 (2) 

5.79 7.85 ± 

3.04 (2) 

5.87 na na 

Oct-00 5.34 na Na na 3.02 na na 

Nov-00 5.66 4.88 ± 

0.78 (5) 

4.57 4.88 ± 

0.45 (3) 

4.65 4.3 na 

 

Table 4. Total precipitation and average temperature in the summers (June-September) of 1999 

and 2000, and number of days with zero stream flow, compared to the long-term averages at PC1 

(20-year) and PC1-08 (7-year).  

 1999-00 2000-01 Long-term 

average 

Summer precipitation (mm) 274 331 235 

Summer temperature (°C) 17.4 14.7 17.4 

Number of contiguous days with zero 

stream flow at PC1 weir 

8 0 30 

Number of contiguous days with zero 

stream flow at PC1-08 weir 

17 45 76* 
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Sample Collection and Analysis 

Bulk deposition was collected less than 30 m away from the PC1 catchment boundary at a 

meteorological site maintained by the Ontario Ministry of Environment (Dorset), which also 

monitors precipitation depth and temperature.  At least 2 L of deposition were required to produce 

enough SO4 for isotope analysis, and samples from individual rain or snowfall events were 

occasionally bulked to provide sufficient sample for SO4 extraction.  Stream water samples for 

isotopic and chemical analyses were collected from the upland-draining PC1-08 and the wetland-

draining PC1 stream, and soil percolate was collected from the 4 zero-tension lysimeters when 

there was sufficient sample for analysis. Water samples were analyzed for SO4 by ion 

chromatography at the Ontario Ministry of Environment Dorset Research Centre.  

 

Peat cores (60 cm) were extracted from 3 sites within the PC1 swamp in October 1999, using a 

Russian Peat Corer, and cores were sectioned into 10 cm depth intervals.  Peat from different 

depth intervals was air-dried, and then ground in a Wiley Mill to obtain a fine powder.  Samples 

were sent to the University of Waterloo Environmental Isotope Laboratory for δ34S analysis.   

Sulphate in filtered water samples (Whatman GF/F) was concentrated using BioRad AG 1-X8 ion 

exchange resin (100-200 mesh Cl- form). Resin was first conditioned in 0.5 M NaCl and then 

rinsed with de-ionized water prior to packing in 2-cm diameter, 10-cm long plastic disposable 

columns (Evergreen Scientific Ltd.). A square of glass wool was placed at the resin surface to 

reduce resin dispersal and/or compaction while passing samples through the columns. Samples 

were poured into 2-L separatory funnels that were attached to columns via Tygon tubing, and a 

0.45 µm filter was placed in-line between the funnel and column.  Sample solutions were passed 

though anion exchange columns by gravity drainage, at a rate determined by filtration through the 

0.45 µm filter, which was always less than 20 mL/min. Retained SO4 was eluted from resin using 

50 mL 0.5 M NaCl, followed by 100 ml de-ionized water.  The eluent was acidified to pH<4.0 
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with HCl, and SO4 was precipitated as BaSO4 by the addition of excess BaCl2 (0.5 M). Samples 

were heated and stirred for 10 minutes over a hot plate to promote precipitation of BaSO4. The 

overlying solution was decanted to waste, and the remaining BaSO4 precipitate was washed at 

least 3 times (ddH2O) and oven dried (65°C) to a constant weight. All isotopic analyses were 

carried out at the University of Waterloo Environmental Isotope Laboratory, using a Micromass 

IsoChrom MG/EA isotope ratio mass spectrometer. Sulphur isotope ratios are expressed in the 

standard δ34S notation as parts per thousand enrichment or depletion in the ratio of 34S:32S relative 

to the CDT standard: 

1000
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//
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32343234

34 ×
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dardssample
sample SS

SSSS
Sδ  

 

Monthly average δ34S signals in deposition and stream water were weighted by the mass of SO4 

in deposition or stream water, respectively over the same time period. Isotope signals in soil 

percolate were not mass weighted since accurate estimates of percolate volume were not 

available.  

RESULTS & DISCUSSION 

 
Bulk deposition 

The S-isotopic composition of deposition at PC1 was fairly constant over the 1999/00-2000/01 

monitoring period and δ34SO4 ratios in individual measurements ranged from +4.0 to +6.8‰. 

Monthly averages varied between +4.0 and +6.2‰, with an overall mean of 5.1 ± 0.6‰ (Figure 

2). Deposition δ34SO4 ratios measured in this study were similar to those reported by Van 

Stempvoort et al. (1991), who measured δ34SO4 values of +3 to +5‰ in precipitation at PC1 

between 1986 and 1988. The isotopic composition of deposition appears to be fairly consistent in 

areas of eastern North America that are not influenced by marine sources. For example Hesslein 

et al. (1988) reported that the 3-year mean δ34SO4 in precipitation at the Experimental Lakes Area 
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in northwestern Ontario was +4.8‰, and the mean δ34SO4 signature of deposition at the Hubbard 

Brook watershed in New Hampshire is around +4.4‰ (Alewell et al. 2000).  Passage of 

deposition through the forest canopy (throughfall) does not appear to affect the isotopic 

composition of SO4 (Torssander and Morth, 1998), and δ34SO4 values in deposition and 

throughfall at Plastic Lake are similar (Van Stempvoort et al., 1992). 

 

Although monthly average δ34S values in bulk deposition fell within a fairly narrow range (~+4 to 

+6‰), there was a tendency toward lower δ34S values in summer compared to winter months 

(Figure 2). A similar seasonal pattern in δ34S in deposition at sites in the Great Lakes basin has 

been reported by Nriagu and Coker (1978), who suggested that lower δ34S values in summer 

deposition may be due to the greater relative contribution of biogenic compounds (i.e. reduced S 

gases from wetlands) during the growing season. Gaseous S emissions from the PC1 wetland 

have not been measured, but due to the generally wet conditions and high water table levels in the 

summers of 1999 and 2000, SO4 reduction rates in the PC1 swamp and other local wetlands may 

have been high (see PC1 section below). Sulphate concentrations in bulk deposition at PC1 

(collector located < 100 m from wetland) and at 2 other collectors in the region (Harp, Heney) 

were relatively constant over the 2-year period, and monthly averages (volume-weighted) ranged 

from 1.3 to 2.8 mg/l.  Sulphate concentrations in deposition were lower in the winter of both 

years, but concentrations were not always highest in the summer (Table 2).  
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Figure 2. δ34S ratios (‰) in bulk deposition (top), upland-draining PC1-08 stream water (middle) 

and the PC1 swamp outflow (bottom) over a 2 year period in the PC1 catchment.  Dashed lines 

indicate the range in δ34S measured in bulk deposition.  
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Therefore other factors might contribute to lower δ34S values in summer deposition, and Alewell 

et al. (2000) suggested that the temperature dependence of the isotopic shift during SO4 formation 

in the atmosphere may explain lower δ34S values in summer deposition at the Hubbard Brook 

Experimental Forest. 

  

Isotopic composition of upland and wetland drainage waters prior to 34S- tracer application 

 
•  Soil Percolate 

The isotopic composition of soil solution collected by lysimeters was similar among all soil 

horizons prior to application of a 34S-enriched tracer in August 2000, and was on average +4.4 ± 

0.4‰ (Table 3). Van Stempvoort et al. (1990) reported a similar isotopic composition of soil 

seepage water at PC1 (+4.8 ± 1.2‰).  The range in average monthly δ34SO4 ratios in soil 

percolate prior to application of the tracer (+3.8 to +4.7‰) was not significantly lower than the 

corresponding range in δ34SO4 ratios in deposition (Table 3).  Although the period of soil 

percolate monitoring prior to tracer application is too brief to allow interpretation of isotope 

signals, it is useful to speculate on the potential for S-isotope fractionation in upland soils. For 

example, previous authors have reported a slight fractionation (-1 to -2‰) in δ34S due to plant 

assimilation (e.g. Novak et al. 2001) and Van Stempvoort et al. (1991) reported δ34S ratios in 

foliage, litter and humus at PC1 of 3.7, 3.7 and 3.5‰, respectively.  Assuming lower values in 

plant material are due to preferential uptake of 32SO4, then residual SO4 in soil percolate should be 

correspondingly enriched in 34S. However, if plant (or microbial) assimilation results in slightly 

lower δ34S ratios in organic material, then decomposition and mineralization of S in litter and soil 

organic matter should release SO4 with lower δ34S values, which would counter the enrichment of 

34S in residual SO4 due to plant uptake. Presumably the isotopic composition of SO4 in soil 

solution could vary seasonally, particularly if the magnitude of SO4 uptake or release by plants 

and soil microbes is large compared to the soluble SO4 pool in soil, which would further 
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complicate the interpretation of isotope ratios. However, Alewell et al. (1999) found that 34SO4 

ratios in stream water at the Hubbard Brook Watershed were consistently at least 1‰ lower than 

in bulk precipitation and suggested mineralization might be responsible. While lower δ34SO4 

values in soil percolate compared to annual averages in deposition at PC1 may indicate that part 

of the SO4 in soil water is derived from the mineralization of organic S compounds, without a 

longer sample record it is difficult to make generalizations. It should also be noted that δ34S 

signals in deposition are generally lowest during the summer months when the biological 

processes which are reported to favour the release of 32S (i.e. mineralization) are most active. In 

summary, due to the relatively small isotopic fractionations associated with immobilization or 

plant uptake and mineralization, S-isotope ratios appear to be unsuitable for distinguishing among 

S-transformations in aerobic upland soils. Van Stempvoort et al. (1992) came to a similar 

conclusion from their analyses of δ34S signatures in the PC1 catchment and another site in 

southwestern Ontario.  

 

•  Upland-draining stream (PC1-08) 

Prior to application of a 34S tracer to plots within the hillslope and streambed, the δ34SO4 

signature in PC1-08 stream water ranged between +4.7 and +7.4‰, and was on average +5.8 ± 

0.7‰ (Figure 2). Similarly, the concentration of SO4 in PC1-08 did not vary greatly over time 

(5.0 – 8.6 mg/l), and was on average 6.6 ± 0.8 mg/l during the monitoring period. Upland stream 

water δ34SO4 ratios were higher than in soil percolate from the B-horizon (Table 3), despite 

similar SO4 concentrations in B-percolate and PC1-08 (see Chapter 4). PC1-08 stream water 

δ34SO4 ratios were also slightly higher than in bulk deposition (+5.1 ± 0.6‰) (Figure 2). Again, 

due to the paucity of soil percolate samples prior to tracer application it is difficult to attribute 

statistical significance to differences in δ34S values between percolate and upland stream water; 

however, they are suggestive of fractionation processes occurring in the streambed. Microbially 
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mediated dissimilatory sulphate reduction (DSR), which favours the incorporation of 32S in 

reduced products and leaves reactant SO4 relatively enriched in 34S could be responsible for 

higher δ34S values in PC1-08 stream water. Furthermore, negative δ34S values have been 

measured in subsurface stream sediment (Table 5), which is consistent with the occurrence of 

DSR in the streambed.  Total S and organic matter concentrations in stream sediment are also 

high compared to upland mineral soil (Table 5).  

 

Table 5.  Loss on ignition, total carbon and sulphur concentrations and δ34S ratios in upland 

mineral soil and stream bed sediment at PC1-08.  

Site Depth interval OC (g/kg) S (mg/kg) δ34S (‰) 

Upland  10-30 cm beneath 

LFH 

43 350 5.2 

Stream 

channel 

0-10 cm beneath 

LFH 

419 900 -0.03 

Stream 

channel 

10-40 cm beneath 

LFH 

162 680 -4.9 

 

However, despite the prevalence of generally wet and cool conditions, stream flow in PC1-08 

ceased for 17, and 45 days in the summer/fall seasons of 1999/00 and 2000-01, respectively 

(Table 4). Previous work has shown that the water table in the PC1-08 streambed must be at least 

19 cm below the sediment surface at the weir before stream flow ceases. Given the average soil 

depth in the streambed at PC1-08 is around 60 cm, a water table decline of 19 cm amounts to a 

substantial exposure of stream sediment which has a low or negative δ34S signature. It was 

therefore expected that δ34S values in stream water would decrease and SO4 concentrations would 

rise following dry periods because of the release of 32S-enriched SO4. However, this was not the 

case, and δ34S values in PC1-08 stream water were fairly consistent over time despite large 

variations in flow and there was no apparent relationship between δ34S and stream SO4 
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concentration (Figure 3a). For example, following a 9-day dry period in July 1999 with zero flow, 

the δ34SO4 in PC1-08 immediately following resumption of flow was +5.2‰. One possible 

explanation for these inconsistencies is that DSR occurs primarily in pockets of deep sediment 

that remain saturated except during extremely dry periods with large water table draw downs. 

However, we currently do not have the data to confirm this hypothesis.   

 

Wetland-draining stream (PC1) 

In contrast to the upland-draining PC1-08 stream, the isotopic composition of stream water 

draining the conifer Sphagnum swamp (PC1) was variable and δ34S ratios in PC1 were generally 

higher than in deposition (Figure 2). Prior to addition of a 34S enriched tracer to plots within the 

wetland, the δ34SO4 signature in the swamp outflow ranged from +4.8 to +13.5‰, and was on 

average +8.6 ± 2.6 ‰ (Figure 2).  The mean SO4 concentration in the swamp outflow was 4.5 ± 

1.9 mg/l and ranged from 0.45 to 8.6 mg/l over the same period. Similar to PC1-08, there was no 

apparent relationship between δ34S ratios in PC1 stream water and SO4 concentrations (Figure 

3b). 

 

In contrast to the upland-draining PC1-08 stream, isotopic fractionations associated with DSR can 

explain high δ34SO4 ratios in the swamp outflow.  While stream flow ceased in PC1-08 in both 

1999 and 2000, flow in PC1 was maintained almost continuously except for 8 days in 1999 (Jul. 

29-30, Aug. 3, Sept. 1-5) (Table 4). The relationship between water table height in the swamp and 

daily flow in PC1 indicates that the water table was within 6 cm of the peat surface at flow rates 

greater than 10,000 l/d (Figure 4a). Therefore, only the top several centimeters of peat would 

have been exposed to air in either year (Figure 4b), and peat would have remained saturated for 

the majority of time.  
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Figure 3a.  δ34S-SO4 (‰) in PC1-08 stream water versus SO4 concentration (mg/l) 
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Figure 3b.  δ34S-SO4 (‰) in PC1 stream water versus SO4 concentration (mg/l) 
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Figure 4a. Relationship between daily flow in PC1 (l/day) and water table height in the wetland 

relative to the peat surface (cm).  
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Figure 4b. Daily flow in PC1 (l/day) through the entire monitoring period. 
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Waterlogged conditions in the swamp that favour SO4 reduction, likely explain the generally low 

SO4 concentrations and high δ34SO4 ratios in PC1 compared to PC1-08 (Figure 2). Similarly, 

δ34SO4 ratios in the swamp outflow were consistently higher than in deposition, except for 2 

specific occasions.  

 

On Sept.7, 1999 and Aug.1, 2000, δ34SO4 ratios in PC1 were less than +6‰, and were within the 

range measured in deposition and the swamp inlet (Figure 2). The first occasion followed a brief 

dry period when stream flow in PC1 ceased (Figure 4b), and the water table in the swamp may 

have declined to more than 8 cm below the peat surface (Figure 4a). Exposure of S-rich peat that 

has a generally lower δ34S signature could have resulted in the export of isotopically light SO4. 

For example, analysis of 3 cores within the PC1 swamp indicated that δ34S ratios in the top 60 cm 

of peat were less than +6‰, and are between –1.5 and +3.2‰ in the top 20 cm (Figure 5a). 

Sulphur concentrations in peat cores were high (2180-6560 mg/kg), indicating substantial S 

storage in the wetland (Figure 5b). There was no apparent relationship between S isotope ratios 

and S concentrations in peat, which might be expected if S reduction resulted in preferential 

storage of 32S (e.g. Morgan, 1995). However, cores were extracted in a hydrologically active part 

of the swamp, and lateral flow, as well as groundwater upwelling (Devito and Hill, 1999) would 

influence the pattern of isotope ratios with depth.  In addition, expected decreases in δ34S with 

depth may not occur in peatlands such as PC1 that undergo substantial changes in water table 

height due to variable redox conditions in surface peat (Novak et al., 1994). Lower δ34SO4 ratios 

in PC1 following the Sept.1-5 period of zero stream flow were not accompanied by an increase in 

SO4 concentration, which was expected had substantial S-oxidation occurred. For example, the 

SO4 concentration in PC1 on Sept. 7. 99 was 3.6 mg/l compared to 6.3 mg/l in the PC1-08 inflow. 

However, SO4 concentrations in PC1 were even lower (~0.8 mg/l) in the final week of August as 
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Figure 5a. δ34S values (‰) with depth (cm) in 3 cores extracted from PC1 swamp. 
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Figure 5b. Total S concentrations (%) with depth (cm) in 3 cores extracted from PC1 swamp.  
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stream flow declined. Therefore while the SO4 concentration in PC1 following resumption of flow 

on Sept.7 was low compared to PC1-08, it was 4.5-times higher than the concentration measured 

prior to the dry period, possibly due to S oxidation in peat.  The second occasion of a relatively 

low δ34SO4 signature in PC1 (+4.9‰) occurred on Aug.1 2000 (Figure 2).   

 

The previous day was marked by a particularly large storm event (116 mm), which resulted in 

substantial overland runoff from the catchment, and discharge in PC1 spiked to 106 l/d on Aug.1 

(Figure 4b). The δ34SO4 signatures in PC1, and also PC1-08 (+5.1‰) following this large storm 

event were remarkably similar to the δ34SO4 of the event itself (+5.0‰), and may simply be a 

result of the isotopic composition of deposition dominating the signature in stream water.  

However, the swamp was also relatively dry prior to the Jul.31 event (Figures 4a, b), and 

therefore part of the decrease in δ34SO4 in the swamp outflow on Aug.1 may be due to the export 

of isotopically-light SO4 following S-oxidation in peat. Indeed, the 4.7-fold increase in SO4 

concentration between Jul.27 (1.1mg/l) and Aug.1 (5.2 mg/l), suggests that at least part of the 

decrease in δ34SO4 in PC1 stream water was due to enhanced release from peat.  High lateral 

runoff through soluble SO4-rich surface organic horizons during this large storm event may have 

also contributed to higher SO4 concentrations in storm water.  

 

Isotopic composition of upland and wetland drainage waters following tracer application  

 
Soil percolate 

Following application of a 34S-enriched tracer to soil above 2 treatment lysimeters, the δ34S signal 

increased to more than +7‰ in LFH and Ae percolate in September 2000 (Table 3). However, by 

November 2000 δ34SO4 signals in soil percolate from control and treatment lysimeters were less 

than +5‰, and were similar to values measured prior to application (Table 3). These results 

indicate that either, a) the tracer had been flushed from the upland plots by this time, or b) mixing 



 149 

of the tracer with ambient S in plots had diluted the tracer signal to below detection. Although all 

surface vegetation was removed from plots prior to tracer application, it is also possible that roots 

of trees from outside the plots could have accumulated some of the enriched 34SO4. The most 

direct way to assess within-plot retention of the tracer would have been to measure δ34S signals in 

soil samples from the treatment plots. However, this was not possible because soil could not be 

analyzed directly without prior extraction due its low S, and high inorganic content.   

 

Another way of interpreting the change in δ34S in soil percolate is to calculate the mass of 34S that 

would have had to be lost from treatment plots in order to account for the relatively high δ34S 

values measured in LFH and Ae percolate in September 2000 (Table 3). In order to do this 

calculation both the volume of soil percolate and the concentration of SO4 in percolate are 

required.  Between the time of tracer addition (August 15 2000) and the subsequent collection of 

soil percolate (September 11 2000), a total of 38.3 mm rain fell on the PC1 catchment. A single 

rain event on September 10 constituted 1/3 (13.5 mm) of this total (Figure 6).  Smaller events 

which occurred between August 15 and September 10 were not large enough to generate soil 

percolate at the treatment lysimeters. LFH and Ae percolate collected on September 11 contained 

approximately 5 mg SO4/l.  If we assume that the entire 13.5 mm rain event of September 10 

generated an equal amount of runoff (i.e. the unlikely situation of zero evapotranspiration or 

storage), and assuming only vertical flow, then a total percolate volume of ~32 L would have 

been produced through each plot, corresponding to a flux of 160 mg S. Given a background δ34S 

in control percolate of +5.8‰, an additional 0.042 mg 34S must have been present in percolate 

from treatment plots in order to increase the δ34S to 7.5‰.  A total of 0.33 mg 34S was applied to 

each lysimeter plot, and so the amount of 34S estimated to have been present in percolate from the 

Sept.10 event would account for only ~13% of the total tracer added.  
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Figure 6. Daily precipitation (mm) between the date of tracer application (Aug.15.00) and 

Nov.15.00 (first PC1-08 stream sample following tracer application which had a background δ34S 

value).  
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Figure 7. Daily stream flow (l/day) (solid diamonds) and SO4 flux (g/d) (open diamonds) in PC1-

08 between Aug.15.00 and Nov.15.00  
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Conditions were relatively dry until November (October 2000 precipitation was 24 mm compared 

to the 20-year average of 105 mm), and the subsequent isotope sample was collected on 

November 11, following a week of daily rainfall (a total of 51 mm fell between November 7 and 

November 15) (Figure 6).   

 
The isotopic composition of percolate from control and treatment lysimeters was similar on this 

date, and values were within the range measured prior to application of the tracer (Table 3). 

Background δ34S ratios in soil percolate from treatment lysimeters on November 7 are likely due 

to dilution of the tracer in ambient SO4 in percolate and/or retention in the plots (in soil or plants) 

however, due to analytical limitations the latter explanation could not be assessed. Increased δ34S 

signals in soil percolate immediately following tracer application indicated that some of the 34S 

passed through the soil with little interaction, although the remainder may have been retained. 

 

•  Upland-draining stream (PC1-08) 

Maximum δ34SO4 values in PC1-08 were measured immediately following the application of a 

34S-enriched tracer to sites within the upland hillslope and stream bed (Figure 2). Elevated δ34S 

ratios were measured in PC1-08 stream water between August 16 and October 10 inclusive, but 

by November 15 2000, isotope signatures had returned to pre-application values (Figure 2).  

Similar to upland soil percolate, it is difficult to assess whether the return of δ34S ratios in stream 

water to pre-application values is due to the complete flushing of the tracer from the catchment, 

or to a gradual mixing and dilution of the isotope signal over time. However, it is possible to 

roughly calculate the mass of 34S exported in stream water over the period during which δ34S 

values were elevated, and to compare this estimate with the actual amount of 34S added to 

treatment plots. Using daily flow measurements at the PC1-08 weir, and weekly SO4 chemistry 

data, it was estimated that approximately 460 g SO4 was exported from the catchment between 

August 16 and November 14, 2000 inclusive (Figure 7).  Using an average δ34S in stream water 
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during this period of 12‰ and a pre-application δ34S of +5.7‰, it was calculated that an 

additional 39 mg 34S would have had to be present in stream water to increase the δ34S from +5.7 

to +12‰. However, only 5.1 mg 34S was applied to stream plots, which is much less than the 

mass required to increase the δ34S signature of 460 g SO4 to 12‰. Even if we assume that the 

entire hillslope application of 0.66 mg 34S was transported to the stream, the sum (5.76 mg 34S) 

still does not approach the amount of 34S estimated in stream water.  However, the assumption 

that the δ34S signature in PC1-08 was 12‰ for the entire period between August 16 and 

November 14 may be an overestimate, because there were no isotope measurements in PC1-08 

between the last enriched sample on October 10 (+13.5‰) and the subsequent ‘background’ 

sample on November 15 (+6.1‰). The calculation of the mass of 34S in stream water required to 

produce a signal of 12‰ is highly dependent on the estimate of SO4 flux in stream water over the 

same time period (Figure 7). Furthermore, the majority of the SO4 flux (360 g, or 80%) actually 

occurred during a period of high flow between November 10 and 14 (Figure 7). If we instead 

assume that the isotopic composition of stream water was only enriched in 34S between August 16 

and November 9 - which corresponds to an export of 90 g SO4 in stream water, a much lower 

estimate of 7.6 mg 34S is obtained. This value is much closer to the total mass of 34S applied to 

plots in the stream and hillslope (5.76 mg 34S). It is difficult to precisely identify the timing of 

isotope flushing (or signal dilution) in the catchment given the lack of isotope samples between 

October 10 and November 15, 2000.  However, despite the very small addition of enriched 34S to 

PC1-08 (total 5.76 mg 34S) relative to annual S inputs in bulk deposition (~7 kg S/ha/year), the 

isotope signature in stream water was elevated for as long as 3 months following tracer 

application (Figure 2).  These results may indicate that atmospherically deposited SO4 in PC1-08 

is not transported conservatively through the catchment, but is at least temporarily retained – 

although the mechanisms of retention could not be determined in this study. 
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Wetland-draining stream (PC1) 

The application of a 34SO4 tracer (5.1 mg 34S in total) to plots within the swamp did not appear to 

affect the isotopic composition of PC1 stream water. The range in δ34SO4 in PC1 prior to tracer 

application was similar to the range measured after August 15 (+5.9 to +12.2 ‰). This was not 

surprising, since the pool of soluble SO4 in the 2.2 ha swamp is large - around 8 g S/m2 in the top 

42 cm (Lozano et al., 1987), which represents a substantial potential for isotope dilution. In 

addition, treatment plots within the swamp were at least 100 m away from the weir where isotope 

samples are collected, in contrast to PC1-08, where tracer plots were located immediately 

upstream (within 5 m) of the weir (Figure 1). Even assuming that the entire mass of 34S applied in 

the PC1-08 streambed and hillslope was flushed into the swamp, this mass was tiny (5.76 mg 34S) 

compared to the pool of soluble SO4 (8 g S/m2) or total S storage in peat (150 g S/m2 in the top 

40cm; Devito, 1995).  

 
Conclusions 

Although differences in isotopic composition among bulk deposition, upland stream water and 

soil percolate were not great, δ34S values generally increased in the order of soil 

percolate<deposition<PC1-08. Isotopic fractionations associated with uptake and mineralization 

in upland soil, and dissimilatory sulphate reduction in stream sediment might contribute to 

differences in δ34SO4 signatures among upland compartments. In general however, S-isotope 

ratios do not appear to be well suited to identifying S-transformations in upland systems.  In 

contrast, δ34SO4 ratios in stream water draining a conifer Sphagnum swamp were generally higher 

than in deposition or the inlet stream, and are likely a result of dissimilatory SO4 reduction in 

peat. The application of a 34S-enriched tracer to small plots within the upland and wetland had no 

effect on the isotopic composition of the swamp outflow, but increased δ34SO4 ratios in soil 

percolate and upland stream water for at least 2 months, indicating that current deposition inputs 

are not immediately lost in upland drainage water.  
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CHAPTER 8:  EFFECT OF SO4 AND N (NH4NO3) ADDITIONS ON SOLUBLE SO4 

CONCENTRATIONS IN LFH AND MINERAL SOIL 

 

ABSTRACT 

 
Net S mineralization may be affected by a number of factors including changes in S and N 

deposition.  Net mineralization may contribute to the apparent net export of SO4 that has been 

observed at a number of long-term monitored catchments in eastern North America, including 

Plastic Lake (PC1) in the Muskoka-Haliburton region of south-central Ontario. In this study, the 

effect of varying concentrations of SO4 or N (NH4NO3) on net SO4 release in LFH and mineral 

soil was measured in a laboratory incubation experiment using material collected from the PC1 

catchment. Soluble SO4 concentrations in LFH and mineral soil were measured before and after 

incubation with varying concentrations of SO4 (0 to 417 µeq/l) or N (NO3 + NH4; 0 – 607 µeq/l), 

respectively at 18°C for 24 h.  Soluble SO4 concentrations in LFH increased in all SO4 treatments 

following incubation; however, the magnitude of increase was greatest in LFH incubated with 

low SO4.  For example, soluble SO4 concentrations increased from 0.61 meq/kg to between 1.1 

and 1.3 meq/kg following incubation with SO4 at a concentration less than 42 µeq/l, which is the 

current level of SO4 in bulk deposition in Muskoka-Haliburton. In contrast, soluble SO4 

concentrations were between 0.86 and 0.93 meq/kg in LFH incubated with high SO4 (>190 

µeq/l). These results indicate that SO4 release from LFH tended to be greater under conditions of 

low SO4 availability, which may be due to either enhanced mineralization or decreased 

immobilization, or both. In contrast, N additions had no effect on SO4 retention or release in 

either LFH or mineral soil, and soluble SO4 concentrations in LFH treated with N-only were 

identical to those in LFH treated with SO4. These results may indicate that SO4 release from 

mineralization is stimulated under conditions of lower SO4 availability, which could occur due to 

decreasing S deposition. However, the fact that SO4 was released from LFH material within 24 h 
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incubation regardless of whether S or N was added indicates that S mineralization is rapid, and 

may be an important source of S to drainage waters independent of changing deposition.  

 

INTRODUCTION 

 
Changes in deposition inputs of S and N may affect mineralization and nutrient cycling in forest 

soils (Kuperman, 1999).  A number of reports in eastern North America and Europe have 

suggested that net mineralization may account for at least part of the apparent imbalance between 

SO4 input in deposition and SO4 export in streamwater (Alewell et al., 1999; Driscoll et al., 1998; 

Houle and Carignan, 1995). However, the factors controlling net mineralization are not well 

defined. Net S mineralization is the difference between immobilization and gross mineralization, 

which occur simultaneously in soil. At steady state, immobilization will equal mineralization, 

however at any given point in time the relative balance between these 2 processes could change, 

for example due to changes in climate or management, or possibly due to changes in S 

availability. Sulphur deposition could affect mineralization through changes in the exogeneous 

supply of SO4 (i.e. availability in soil solution), and/or by longer-term effects on substrate quality 

(i.e. endogeneous S concentration). Sulphate immobilization increases in response to greater SO4 

availability (Fitzgerald et al., 1983), and there is also evidence that S enzyme activity is inhibited 

at higher SO4 concentrations (Freney et al., 1986). If the opposing reactions of decreased 

immobilization and enhanced enzyme activity under conditions of lower SO4 availability are also 

true, then net SO4 mineralization could increase in theory in response to decreased deposition.  A 

decline in S immobilization due to lower SO4 availability could also result in an apparent increase 

in net mineralization if gross mineralization rates are unchanged. 

 

Nitrogen inputs in atmospheric deposition may have a large effect on organic matter 

decomposition, particularly in systems that are limited by N (e.g. Berg and Matzner, 1996). 
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Nitrogen is normally the limiting nutrient in forest systems, and catchments in the Muskoka-

Haliburton region retain more than two-thirds of N-input in atmospheric deposition, indicating 

that their capacity for N retention has not yet been satisfied (Dillon and Molot, 1990; Watmough 

and Dillon, 2002). In contrast to S-deposition, atmospheric inputs of N have remained relatively 

constant over recent decades (Dillon et al., 1988; Stoddard et al., 1999). Some authors have 

suggested that as N accumulates in soil, the C:N ratio will decline possibly stimulating 

decomposition (Aber et al., 1989). Ghani et al. (1992) found that S mineralization was greater 

following additions of N, and therefore SO4 release from organic material might respond 

positively to increasing N-deposition.  However, both stimulatory and retarding effects of N 

deposition on decomposition and mineralization have been reported (Berg and Matzner, 1996; 

Fog 1988).  Nitrogen availability might also have indirect effects on S cycling. For example, 

nitrification has been shown to increase SO4 retention in mineral soil because the H+ release that 

accompanies this process increases SO4 adsorption. However, retention of SO4 through 

adsorption reactions is only important in subsurface mineral soil and is not an important 

mechanism of SO4 retention in surface horizons that are rich in organic acids and have low Fe and 

Al oxide contents (e.g. Neary et al, 1987).  

 

The purpose of this study was to evaluate the effect of variable SO4 and N (NH4NO3) additions on 

net SO4 mineralization in soil collected from the PC1catchment. The effect of N-additions on SO4 

release from both forest floor material (LFH) and mineral soil (B horizon) was considered; 

whereas the effect of SO4 additions was only measured in LFH, because adsorption-desorption 

reactions were expected to be more important short-term controls on SO4 in mineral soil.   
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METHODS 

Study Site 

Surface organic material (LFH) and mineral soil were collected from the 23 ha PC1 catchment, 

which drains into Plastic Lake near Dorset, Ontario.  The forest at PC1 is primarily coniferous, 

and is dominated by white pine (Pinus strobus) (42% of basal area), eastern hemlock (Tsuga 

canadensis) (19%) and red maple (Acer rubrum) (10%) (Watmough and Dillon 2001). The LFH 

horizon varies in depth, but is on average ~10 cm, and is composed of 3 visibly distinct layers: 

LFH (L), which contains readily identified plant material, a more decomposed F layer, and a 

completely humified H layer (Canadian System of Soil Classification, 1998). The average depth 

of the underlying B-horizon is ~ 30 cm. Soils at PC1 are classified as either ortho humo-ferric or 

ortho ferro-humic podzols (Lozano et al., 1987), and are coarse textured (~90% sand) and acidic. 

The pH (CaCl2) of the LFH and B-horizons are approximately 3.5 and 4.0, respectively.  

 

Sample collection 

Forest floor (0-10 cm) and B-horizon mineral soil (collected from ~20 cm below base of LFH) 

were collected from 3 different plots in the upland part of the PC1 catchment in late October 

2001, and materials from different plots were combined. The carbon contents of LFH and B-

horizon soil were ~40% and 5%, respectively. LFH material was mixed by hand to produce a 

homogeneous sample containing both recently deposited foliage and more decomposed humus. 

Roots, twigs and stones were removed. Similarly, mineral soil from the 3 different plots was 

sorted and homogenized by hand, and then sieved (5 mm).  LFH and mineral soils used in 

experiments were treated field-moist to avoid unintentional SO4 release due to drying (David et 

al., 1983). The moisture content of soils was determined by weighing before and after drying sub-

samples at 65°C for 48 h.  Sub-samples of LFH and mineral soil were also removed at this time to 

determine initial (i.e. time=0) soluble SO4, NO3 and NH4, and adsorbed SO4 concentrations.  

Soluble SO4 and N was extracted from field-moist LFH by shaking the equivalent of 
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approximately 5 g (dwt) LFH with 25 ml de-ionized water for 1 hour. Initial concentrations of 

both adsorbed SO4 and soluble SO4 and N were determined in mineral soil using a similar 

procedure, except that 25 ml 0.03 M NaH2PO4 was substituted for de-ionized water to liberate 

adsorbed SO4. After shaking, soil slurries were centrifuged, and supernatants were filtered 

(Whatman 42, followed by 0.45 µm syringe filter) and then analyzed by ion chromatography 

(Dionex 6000).  

 

Experimental design 

Sulphate solutions were produced by serial dilution of a stock SO4 (Na2SO4) solution in de-

ionized water. In this way, a series of 5 test concentrations was produced, ranging from 0 

(control) to 417 µeq/l (Table 1). Similarly, 5 solutions of varying N concentration were produced 

by serial dilution of a stock N (NH4NO3) solution (Table 1).  Solutions were prepared 

immediately prior to use in experiments. 

 

Sets of 200 g (fresh wt.) of LFH were thoroughly mixed with 200 ml of the appropriate SO4 

solution in 10-L plastic basins. LFH in the control treatment was mixed with 200 ml of de-ionized 

water (DIH2O). At the time of sampling (i.e. late October), a fresh weight of 200 g LFH 

corresponded to a dry weight of ~71 g (65% moisture), and so solutions were applied at a 

solution-to-LFH ratio of 2.8:1; this ratio was chosen to approximate the LFH:deposition ratio 

expected in a low autumn precipitation event (4 mm).  Application of 200 ml solution to LFH 

material only increased the moisture content from 65% to 80% (dwt).  

 

Following application of the appropriate SO4 solution, sub-samples of approximately 50 g LFH 

were removed and placed in food-grade polyethylene bags, such that 4 replicates were produced 

per SO4 treatment.  In a similar way, 125 g (fresh wt) of mineral soil was mixed with 25 ml of 

each SO4 and N solution, respectively and sub-samples of approximately 30 g were apportioned 
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into 4 replicates per treatment.  The initial moisture content of mineral soil was 28%, and so SO4 

and N solutions were applied to mineral soil at a 0.28:1 solution-to-soil ratio.  

 

Unsealed bags (to allow air exchange) containing LFH or mineral soil were placed in a closed 

box containing a humidity source to maintain initial moisture conditions. The box was then 

placed in a temperature-controlled room (18°C) for 24 h; 18°C is the average summer (June-

August) temperature in Muskoka-Haliburton. A relatively brief (24 h) incubation was used since 

results of the drying and re-wetting experiment (Chapter 5) indicated that variations in SO4 

release among treatments were manifested within 24 h.  At the end of the incubation period, sub-

samples from each treatment were removed and extracted moist in de-ionized water (1 part soil to 

5 parts DIH2O), following the same procedure as outlined above. All concentrations are expressed 

per unit dry weight of soil.  

 

Data treatment 

Soluble SO4 and N concentrations in each treatment were calculated as the difference between the 

total measured concentration and the amount added in each treatment solution. The significance 

of differences among treatments (p<0.05) was assessed by ANOVA (Statistica), and differences 

among means were identified by Tukey’s Honest Significance test.  

 

RESULTS 

 
Effect of added SO4 on net soluble SO4 concentrations in LFH 

Soluble SO4 concentrations in LFH prior to incubation (i.e. time=0) were 0.61 ± 0.05 meq/kg 

(Figure 1). After 24 h, net soluble SO4 concentrations in LFH incubated with low SO4 (i.e. 0-42 

µeq/l) increased to approximately double their initial concentrations (1.1 – 1.3 meq/kg), 

indicating substantial net mineralization. For reference, 42 µeq/l corresponds to the current SO4 
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concentration in deposition in Muskoka-Haliburton. However, the ultimate concentration of 

deposition-derived SO4 in LFH solution is a function of both solution volume and processes that 

consume or produce SO4
 in the LFH horizon. For example, since approximately 50% of incoming 

deposition in the study region is evapo-transpired on an annual basis (i.e. ~0.5 m), average annual 

SO4 concentrations in LFH solution should be at least double concentrations in deposition.  

Indeed, the initial soluble SO4 concentration in LFH (0.61 meq/kg) was high compared to the 

amount of SO4 added in treatments A through D (Table 1).  Therefore, although SO4 additions 

used in treatments A through D were low compared to current ambient deposition, they only 

corresponded to small increases over initial soluble SO4 levels in LFH material. Small increases 

in SO4 input in the 4 low treatments (A-D) relative to initial soluble SO4 levels in LFH (<20%; 

Table 1) likely explains why there was no statistical difference in mean soluble SO4 

concentrations among treatments A-D (Figure 1). Specifically, SO4 additions in these treatments 

may not have been large enough to effect statistically significant changes in net mineralization. 

Nevertheless, these results indicate that at low SO4 applications, net SO4 mineralization may 

increase soluble SO4 concentrations in LFH by a factor of 2. 

 

In contrast, net mineralization was lower and soluble SO4 concentrations were significantly less 

in LFH incubated with high SO4 concentrations (>208 µeq/l), that corresponded to 5, or 10-times 

current deposition (Figure 1) and represented increases of 97 and 192%, respectively over initial 

levels (Table 1). Lower soluble SO4 concentrations in the 2 highest treatments may be attributed 

to either increased SO4 immobilization or decreased gross mineralization under conditions of 

greater SO4 availability. Lower net SO4 concentrations in the high SO4 treatments are likely not 

due to increased adsorption, since SO4 adsorption in organic horizons is negligible due to low 

levels of Fe and Al oxides and the interfering effect of organic acids on SO4 adsorption (Neary et 

al., 1987). 
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Table 1. Sulphate and inorganic N (NO3 + NH4) concentrations in treatment solutions A through 

F (µeq/l); their corresponding soluble concentrations in LFH and mineral soil (meq/kg), and the 

% increase that N and S additions in treatment solutions represented over initial soluble 

concentrations in LFH and mineral soil.   

SO4-treatment: LFH A  B C D E F 

[SO4] in application solution 

(µeq/l) 

0 4 21 42 208 417 

Resultant [SO4] addition to 

LFH (meq/kg) 

0 0.012 0.059 0.117 0.59 1.17 

% increase over initial SO4 

(0.61 ± 0.05 meq/kg) 

- 2 10 19 97 192 

N-treatment: LFH A  B C D E F 

Inorganic [N] in application 

solution (µeq/l) 

0 6 30 61 304 607 

Resultant inorganic [N] 

addition to LFH (meq/kg) 

0 0.017 0.085 0.17 0.85 1.70 

% increase over initial 

inorganic N (3.4 ± 0.5 

meq/kg) 

- 0.5 2.5 5 25 50 

N-treatment: mineral soil A  B C D E F 

Inorganic [N] in application 

solution (µeq/l) 

0 6 30 61 304 607 

Resultant inorganic [N] 

addition to mineral soil (B) 

(meq/kg) 

0 0.0017 0.0084 0.017 0.084 0.17 

% increase over initial 

inorganic N (0.080 ± 0.02 

meq/kg) 

- 2 10 21 105 211 
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Effect of added N on net soluble SO4 concentrations in LFH 

Soluble SO4 concentrations in LFH increased over initial levels following 24-h incubation with 

N, however there was no significant difference among N-treatments and final soluble SO4 

concentrations in all N-treatments ranged from 1.1 ± 0.1 to 1.5 ± 0.2 meq SO4/kg (Figure 2). 

For reference, the average N concentration in current deposition in the Muskoka-Haliburton 

region is around 60 µeq N/l.  However, similar to the argument presented above for SO4, it may 

be more relevant to compare N additions to initial soluble inorganic N levels in LFH (see Table 

1).  

 

After 24h incubation, soluble SO4 concentrations in LFH treated with N were comparable to those 

in LFH treated with low SO4 and were approximately double initial soluble SO4 concentrations in 

LFH (Figures 1 and 2). Soluble SO4 concentrations appeared to be slightly higher in the 

maximum N treatment (1.49 ± 0.10 meq/kg); however, they were not significantly different from 

concentrations in treatment C (1.34 ± 0.12 meq/kg), which corresponded to a N application of 

only 2.5% above the initial level of soluble N in LFH (Table 1).  

 

Fate of nitrogen added to LFH 

Initial soluble inorganic N concentrations in LFH prior to incubation were around 3.4 ± 0.5 

meq/kg made up of 3.1 ± 0.3 meq/kg of N-NH4 and 0.40 ± 0.50 meq/kg N-NO3 (Figure 3). 

Interestingly, soluble N concentrations in treatment A (DIH2O) increased substantially after 24 h 

incubation at 18°C, whereas N concentrations in LFH that had been treated with N varied little 

from initial values (Figure 3). It is unknown why soluble inorganic N concentrations increased in 

the de-ionized water treatment, whereas any added N in treatments B through F was recovered in 

water-extracts following incubation, suggesting that inorganic N added to LFH was not 

metabolized. 
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Figure 1. Net soluble SO4 (meq/kg) in LFH following 24-h incubation of LFH material with 

varying concentrations of SO4 or distilled water.  Dashed lines indicate initial (i.e. prior to 

incubation) soluble SO4 levels in LFH  (95% confidence interval). Error bars are the standard 

deviation of 4 replicates.  
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Figure 2. Net soluble SO4 (meq/kg) in LFH following 24-h incubation with de-ionized water or 

varying concentrations of inorganic N. Dashed lines indicate initial soluble SO4 levels in LFH 

(95% confidence interval). Error bars are standard deviation of 4 replicates.  
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Figure 3.  Net soluble inorganic N in LFH (meq/kg) following 24-h incubation with de-ionized 

water or varying concentrations of inorganic N (NH4 + NO3 added in equal proportions). The 

dashed lines indicate initial soluble inorganic N levels in LFH.  
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Figure 4. Net soluble SO4 in mineral soil (meq/kg) following 24-h incubation of mineral soil with 

de-ionized water or varying concentrations of inorganic N. Dashed lines indicate initial soluble 

SO4 levels in mineral soil (95% confidence interval). Error bars are standard deviation of 4 

replicates. 
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Figure 5. Net soluble inorganic N (NO3 + NH4) in mineral soil (meq/kg) following 24-h 

incubation of mineral soil with distilled water or varying concentrations of inorganic N. Dashed 

lines indicate initial soluble N levels in mineral soil (95% confidence interval). Error bars are 

standard deviation of 4 replicates. 
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Soluble N in the highest N treatment following incubation was significantly lower than the initial 

level (p<0.05), possibly due to greater immobilization under conditions of increased N 

availability (Figure 3). If inorganic N was immobilized during decomposition, this could explain 

why SO4 concentrations were slightly higher in the highest N treatment (Figure 2). Changes in 

dissolved organic N were not measured in this experiment, but may have increased in the higher 

N-treatments if inorganic N additions stimulated decomposition. In comparison to the SO4 

treatments in which the maximum SO4 addition was equivalent to a 192% increase over initial 

levels, N-additions corresponded to relatively smaller increases (≤50%) over initial soluble 

inorganic N concentrations in LFH (Table 1). This may explain in part, why inorganic N 

additions appeared to have little effect on net SO4 concentrations in LFH material.  
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While the N application solutions were made up of equal parts of N-NH4 and N-NO3, following 

24 h incubation at 18°C, inorganic N in LFH extracts was dominated by NH4 (Figure 3). Nitrate-

N constituted less than 6% of the total inorganic N measured in all of the treatments except the 

control and highest N-application where N-NO3 amounted to 24% and 12% of total inorganic N 

measured, respectively (Figure 3).  However, inorganic N that was present in LFH prior to 

incubation was also dominated by NH4 (3.1 ± 0.3 meq/kg), whereas NO3 (0.40 ± 0.50 meq/kg) 

comprised approximately 11% of total inorganic N, although initial NO3 concentrations in LFH 

were extremely variable (CV 125%).  

 

Effect of added N on net soluble SO4 concentrations in mineral soil (B) 

Soluble SO4 levels in mineral soil prior to incubation were around 0.61 ± 0.02 meq/kg (Figure 4). 

Neither incubation nor the addition of N to mineral soil appeared to have an effect on SO4 release 

from mineral soil, and soluble SO4 concentrations in N-treatments A through F were similar to 

initial levels and ranged from 0.58 ± 0.06 to 0.67 ± 0.03 meq/kg (Figure 4). Initial soluble SO4 

concentrations in mineral soil and LFH were similar, but following incubation SO4 concentrations 

in LFH were approximately double those in mineral soil.   

 

Fate of nitrogen added to mineral soil 

Initial soluble inorganic N concentrations in mineral soil were around 0.080 ± 0.020 meq N/kg, 

and were less than 1% of concentrations in LFH incubated with de-ionized water (8.6 ± 1.2 meq 

N/kg) (Figure 5). Initial soluble inorganic N in mineral soil was comprised of approximately 25% 

N-NO3 and 75% N-NH4.  Nitrogen amendments to mineral soil corresponded to proportionally 

larger increases over initial concentrations than did N-additions to LFH (Table 1). Inorganic N 

concentrations in mineral soil following incubation were more variable both within and among 

treatments, and were comprised of relatively more N as NO3 compared to LFH (Figure 5). For 

example, the proportion of N present as NO3 in mineral soil extracts ranged from 13% in 
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treatment B to 65% in treatment E. There did not appear to be any relationship between added N 

and resultant soluble inorganic N concentrations in mineral soil following incubation.  

 

DISCUSSION 

 
Effect of added SO4 on net soluble SO4 concentrations in LFH 

Final soluble SO4 concentrations in all LFH treatments were higher following 24-h incubation, 

indicating that net mineralization had occurred. However, LFH material incubated with low SO4 

had a higher net soluble SO4 concentration after 24-h, indicating either increased gross 

mineralization and/or decreased immobilization in the presence of lower SO4 availability. In 

contrast, LFH incubated with SO4 at a concentration that corresponded to an increase of 2-4 times 

above initial levels had lower net SO4 release. It is difficult to attribute these responses to changes 

in either immobilization or mineralization, since both processes are known to be responsive to 

added SO4. For example, SO4 that is added to forest soil is rapidly (24-h) incorporated in organic 

matter, and immobilization shows a positive response to added SO4 (David and Mitchell, 1987; 

Strickland et al., 1986).  The opposing process of S mineralization is also sensitive to added SO4,   

and is inhibited by the addition of SO4 at levels that exceed biological demand (Cooper 1972). 

Moreover, the formation of S-mineralizing enzymes (sulphatases) is sensitive to end-product 

concentrations, and is inhibited by the addition of SO4 (Freney et al., 1986).  Presumably, the 

opposite response of greater mineralization and/or less immobilization in the presence of reduced 

SO4 availability might also occur (e.g. McGill and Cole, 1981).  Indeed, the addition of S-poor 

material to low S soil caused increased mineralization, whereas immobilization occurred if S-rich 

material, or elemental S was added to the same soil (Chapman 1997).  

 

In agricultural studies, the S nutritional status of soil is expressed by the C:S ratio (e.g. Scherer 

2001). A C:S ratio greater than 400 is generally associated with S-limiting conditions and S 
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immobilization, whereas mineralization is more common in soils with a C:S ratio of <200 

(Barrow 1967; Chapman 1997; McGill and Cole, 1981; Scherer 2001). Apparently either 

immobilization or mineralization may occur at a C:S ratio between 200 and 400, and Chapman 

(1997) identified a critical C:S ratio of 340 as the limit between net mineralization and 

immobilization in straw residues. The relatively high S content (0.16%) and correspondingly low 

C:S ratio (250) of LFH used in this study suggests that mineralization may predominate over 

immobilization in LFH at PC1. A low C:S ratio does not imply that mineralization occurs 

throughout the year, or that mineralization consistently exceeds immobilization – only that 

mineralization might be favoured to occur. A host of other temporally variable environmental 

factors such as soil moisture, temperature, microbial status and availability of nutrients such as N, 

P and labile C would also affect the balance between mineralization and immobilization. 

 

The relationship between the C:S ratio in soil and mineralization/immobilization which has been 

described in the agricultural literature implies that the S content of soils is responsive to changes 

in S-inputs.  Indeed, in areas that are affected by acid deposition, the S content of soil and plant 

material (particularly foliage) has been related to the level of atmospheric S input on both 

temporal and spatial scales.  For example, Pregitzer et al. (1992), and Kuperman (2001) found 

that S concentrations in foliage and surface soil increased along a S deposition gradient. Zhao et 

al. (1998) reported that the temporal trend in S-content in archived herbage samples from 

Rothamsted, England was very similar to the trend in SO2 emissions in the U.K over the same 

time period. These reports indicate that S accumulation by plants may respond directly to greater 

S-availability, and therefore S inputs to soil in LFH should increase correspondingly. Because 

both plant uptake and microbial immobilization are responsive to changes in SO4 inputs, in 

theory, the C:S ratio in soil at PC1 may have gradually decreased over time in response to 

historically high S-inputs in atmospheric deposition in Muskoka-Haliburton (Dillon et al., 1988). 

By comparison, weathering inputs of S would likely be small due to the low S content and slow 
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weathering rates of silicate granite bedrock in this region (Jeffries and Snyder, 1983; Watmough 

and Dillon, 2001). Therefore, past SO4 inputs in anthropogenic deposition may have accumulated 

in soil until the S content increased to a point that immobilization was no longer favoured, and the 

balance shifted to a state of net mineralization. Indeed, fertilizer studies have demonstrated that 

the addition of S-rich material to soil increases mineralization, whereas application of S-deficient 

materials stimulates immobilization (Chapman 1997; Eriksen 1997a). We do not have any 

archived soil or LFH samples from PC1 with which to evaluate the supposition of S accumulation 

over time, however the C:S ratio remains a plausible explanation for changes in immobilization 

and mineralization that may have occurred over the long-term (Scherer 2001).  

 

Contrary to what was expected there was no difference in net SO4 concentrations among the low 

SO4 treatments (i.e. <42 µeq/l).    It was hypothesized that SO4 release from LFH would increase 

in response to decreased SO4 input, possibly due to a stimulatory effect of lower SO4 availability 

on S mineralization, and/or reduced immobilization. However, differences in mineralization or 

immobilization among SO4 treatments may not have been manifested over the short incubation 

period (i.e. 24-h) used in this study. For example, Houle et al. (2001) found that SO4 

immobilization in LFH material from a balsam fir forest only reached an asymptote after 2-7 days 

incubation. In addition, due to the high concentration of native soluble SO4 in LFH relative to 

amounts added in the low SO4 treatments, as well as inherent variability associated with soluble 

SO4 concentrations, differences among treatments would have been difficult to detect. Perhaps a 

better approach would have been to wash LFH prior to use in experiments in order to remove any 

SO4 that was initially present. However, washing and excessive handling of LFH may have 

resulted in unforeseen changes in the microbial biomass, and resulted in further difficulties with 

data interpretation and extrapolation to the field situation.  Another approach would have been to 

increase the volume of treatment solution applied to LFH (i.e. >200 ml) in order to increase the 

mass of SO4 applied. However, the application of a larger volume of treatment solution to LFH 
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could cause saturated and anaerobic conditions to develop, and lead to unexpected changes in 

mineralization/immobilization.   

 

Another factor that may have influenced the results is LFH quality. Forest floor material used in 

this experiment was collected in the late fall and therefore included recently fallen litter (L).  Had 

LFH been collected at the end of the summer when it contained a greater proportion of degraded 

material (i.e. no fresh L) the results might have been different.  

 

Effect of added N on net soluble SO4 concentrations in LFH 

Mass balance budget calculations for catchments in the Muskoka-Haliburton region indicate that 

the majority of N in atmospheric deposition is retained in catchments and is not exported in 

drainage waters (Dillon and Molot, 1990; Watmough and Dillon, 2002). For example, N 

concentrations in stream water draining the upland part of PC1 (PC1-08) are among the lowest 

measured in the region (Watmough and Dillon, 2002).  Low N leaching losses in stream water at 

PC1 suggest that soils have a high capacity to retain added N. The addition of N to PC1 LFH at 

concentrations that exceed current deposition was expected to affect decomposition and 

consequently net SO4 release.  However, there was little difference in SO4 concentrations among 

N-treatments, or between LFH treated with N and LFH treated solely with SO4. A negligible 

response to N-addition is likely in part due to relatively high background N levels in LFH; even 

the maximum N treatment only corresponded to a 50% increase over initial N levels. While 

changes in the exogeneous N supply did not appear to affect mineralization, this does not 

necessarily mean that continued atmospheric inputs of N are not affecting decomposition in situ.  

Sustained inputs of N plus negligible inorganic N leaching losses imply that the N content of soil 

and/or vegetation at PC1 may have increased over time.  It has been suggested that a shift toward 

narrower C:N ratios in soil may increase rates of N leaching, and possibly decomposition and 

mineralization rates as well (Aber et al., 1989; Berg and Matzner, 1996; Kuperman, 1999). 
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Limited measurements (n=6) at PC1 indicate that the C:N ratio in LFH is currently (2001) 

between 21 and 30. 

 

The addition of DIH2O to LFH appeared to stimulate net N release from LFH, whereas initial and 

final net soluble N levels were similar in LFH that was treated with N indicating that any added N 

was recovered in water extracts.  It is difficult to explain differences in soluble N concentrations 

between treatment A (DIH2O) and LFH treated with N, but the addition of N may have stimulated 

N immobilization in LFH due to the generally N-limiting conditions at PC1. The slight shift in 

the composition of inorganic N towards greater dominance of NH4 that occurred in treatments A 

through F further indicates that N-additions caused changes in the soluble N pool within 24-h 

incubation.  

 

Effect of added N on net soluble SO4 concentrations in mineral soil (B) 

In contrast to LFH, there was negligible net S mineralization in mineral soil over the 24-h 

incubation period in any of the N-treatments. However, it is possible that any SO4 that was 

released from organic S was subsequently re-adsorbed by soil particles. We did not measure 

changes in adsorbed SO4 because adsorbed SO4 concentrations at PC1 are very high (>6 meq/kg) 

relative to soluble SO4 levels, and results from a previous experiment (Chapter 5) indicated that 

differences in S mineralization could not be assessed by monitoring the adsorbed pool.  

 

There were negligible differences in net S mineralization among N-treatments despite the fact that 

N additions to mineral soil constituted relatively large increases over background values. Again, 

SO4 release from organic compounds may have been partly masked by adsorption/desorption 

reactions.  Inorganic N concentrations in mineral soil were also 30-60 times lower than in LFH, 

although initial soluble SO4 concentrations were similar in the two materials. This was not 

expected, since most studies report higher soluble SO4 concentrations in forest floor material 
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compared to subsurface mineral soil (Neary et al., 1987). However, soluble SO4 concentrations in 

surface organic soil are both temporally and spatially variable, and depend on a number of factors 

including antecedent moisture conditions, temperature, plant and microbial activity, etc. For 

example, similar soluble SO4 levels in LFH and mineral soil may have been due to the time of 

their collection (i.e. late October). Soils were collected following a week of daily rainfall (58 mm 

over 7 days), and continuously wet and cool conditions (average 6°C) may have resulted in a 

relatively constant distribution of SO4 with depth.  

 

The majority of the microbial biomass in soil is concentrated in the surface organic horizons 

(Atlas and Bartha, 1993) and so an apparently low potential for mineralization in B-horizon soil is 

not entirely surprising. However, total S concentrations in the B-horizon at PC1 are relatively 

high (~0.4%) and two-thirds of total S storage in mineral soil is organic, with the remainder 

present as adsorbed SO4 (Neary et al., 1987). The C:S ratio in the organic fraction of mineral soil 

at PC1 is around 200, which is lower than in LFH, and so given adequate conditions for microbial 

activity (i.e. soil moisture, temperature and nutrients), S mineralization might be expected to 

occur. However, results of this and a previous study (see Chapter 5) indicated that factors which 

are expected to influence microbial activity in soil (i.e. N, temperature and moisture) had no 

apparent effect on SO4 release from mineral soil. This was despite the fact that organic S 

compounds constitute ~67% of the total S in mineral soil at PC1, although adsorbed SO4 accounts 

for the other third, and therefore adsorption-desorption reactions may have masked the release of 

SO4 from organic compounds. Nonetheless, a number of reports have suggested that carbon-

bonded S compounds, which constitute the majority of organic S present in mineral soil may be 

relatively recalcitrant to degradation (David et al., 1983; McGill and Cole, 1981; Mitchell et al., 

1992a).  Mineralization of organic S in mineral soil therefore, is likely not as important in the 

short-term (i.e. 24 h) cycling of S. In contrast, adsorption/desorptions respond directly to changes 

in SO4 input (see Chapter 6) and may be the primary immediate controls on net SO4 release from 
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mineral soil.  Over the long term (i.e. months- years) S mineralization in mineral soil could be an 

important source of SO4 to drainage waters – particularly considering the relatively large pool of 

S in mineral soil compared to LFH at PC1 (~54 keq/ha, and 1 keq/ha, respectively). In support of 

this, Houle et al. (2001) showed that the large organic-S pool in mineral soil at Lac Laflamme, 

QC is only slowly cycled, but suggested that it may be an important source of SO4 export in the 

long term. 

 

Results of these experiments indicated that net SO4 mineralization occurred in LFH in all SO4 and 

N treatments. Net SO4 mineralization was greater in the low SO4 treatments, whereas the addition 

of N to LFH or mineral soil had no effect on soluble SO4 concentrations. Greater net 

mineralization under conditions of reduced SO4 availability may have been due to increased gross 

mineralization, decreased immobilization, or both.  However, the relatively high S content and 

low C:S ratio in LFH at PC1 suggests that mineralization might be favoured to occur.  In theory, a 

system could change over time from a state of net immobilization of S in organic material to a 

state of net mineralization. This shift could be brought about by the gradual accumulation of S (or 

N) in soil and a corresponding decline in C:S (or C:N) ratio, and/or it could be a more direct 

response of mineralization or immobilization to lower S availability in soil solution, caused by 

decreasing deposition. Results of this experiment were not sufficient to evaluate either 

hypothesis, and further work is required to assess the role of mineralization in the S-budgets of 

Muskoka-Haliburton catchments.  
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CHAPTER 9: SULPHUR MASS BUDGET CALCULATION 

 

Mass budget calculations 

As part of this study, SO4 input-output budgets were calculated for 11 catchments (see Chapters 2 

and 3) in the Muskoka-Haliburton region using long-term data collected by the Ontario Ministry 

of Environment and the following basic equation: 

 

INPUTS – OUTPUTS = NET CHANGE 

 
If inputs exceed outputs, S is being retained within the catchment, whereas if S exports exceed 

inputs, the catchment is releasing S from internal sources. Complete S budget equations include S 

inputs in deposition (wet + dry) and weathering and S removals in stream drainage water and net 

S accumulation in forest biomass. Most reports of catchment S budgets assume weathering inputs 

to be negligible, and often bulk deposition is used as a surrogate of total deposition (e.g. 

Hornbeck et al., 1997; Mitchell et al., 1996). In addition, S accumulation in biomass and removal 

in harvesting are generally not considered. However, the value of budget calculations is entirely 

dependent upon the accuracy with which the various components of the budget are estimated. In 

order to interpret S budget results it is first necessary to examine the methods used to estimate the 

various components of the basic budget equation, including any associated assumptions or errors. 

The mechanisms of S storage and release from internal pools will be discussed in Chapter 10. 

 

Inputs  

Negative S budgets have been occasionally attributed to underestimated inputs in deposition, 

specifically the dry deposition component (e.g. Edwards et al., 1999; Likens et al., 1990).  

Sulphur deposition to catchments occurs via three pathways: wet (rain, snow) dry (gas, 

particulate) and cloud (fog). Fog deposition is a particularly important source of S in high 
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elevation and coastal regions (e.g. Lovett et al., 1997; Miller and Friedland, 1999). Wet 

deposition is relatively straightforward to measure using collectors that are open only during rain 

or snow events. In contrast, dry deposition is the transfer of gases or particles to land surfaces in 

the absence of precipitation, and is notoriously difficult to quantify, particularly in complex 

terrain (Lovett et al., 1997). Various methods have been used to estimate dry deposition to 

catchments, although the two most commonly used are the inferential method and throughfall 

monitoring. The inferential method involves coupling measurements of SO2 (gas) and SO4 

(particulate) concentrations in air with velocity estimates for dry deposition, which are dependent 

on the dominant land-use type and aerodynamic resistances calculated at the site (Sirois et al., 

2001). The throughfall method is based on the premise that the forest canopy is an efficient 

scavenger of dry deposition, and that precipitation falling beneath the canopy is thereby relatively 

enriched in chemicals compared to deposition in clearings. Bulk deposition collectors, which are 

continuously open offer a simple and economical means of assessing wet deposition plus a 

variable portion of the dry deposition.  Bulk deposition collectors can seriously underestimate 

total deposition in areas that are close to emission sources, where dry deposition comprises a 

larger proportion of total deposition (Dillon et al., 1982). For example, dry S deposition 

accounted for 50% of total S deposition (25-30 kg S-SO4/ha/yr; 1977/78) at the Walker Branch 

Watershed, TN, which is located within 20 km of 3 coal-fired power plants and within 350 km of 

22 power plants (Johnson et al., 1982). However, at sites remote from point sources, dry 

deposition is small compared to wet S inputs. For example, Baumgardner et al. (2001) recently 

estimated that annual dry S inputs in Vermont and Maine were less than 1 kg S/ha, compared to 

total annual deposition of 6-7 kg S/ha.  In contrast, dry S inputs in the Ohio River Valley, close to 

emission sources ranged from 3 to 8 kg S/ha/yr and total S inputs were between 12 and 17 kg 

S/ha/yr (Baumgardner et al., 2001). 
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Dry S deposition to the Muskoka-Haliburton region is assumed to be small, due to its remote 

location from major emission sources and Dillon et al. (1988) resolved that bulk samplers 

collected approximately the total (wet + dry) deposition of S.  While bulk collectors are unlikely 

to sample 100% of the S input to forested landscapes, SO2 and particulate SO4 concentrations are 

low in the study region (maximum 1-2 ug/m3, generally below detection limit of 1 µg/m3) 

compared to the Hubbard Brook (2-3 µg/m3) where dry deposition was estimated to be ~0.9 kg 

S/ha in 1993 (Lovett et al., 1997).  By comparison, bulk deposition in the Muskoka-Haliburton 

region was around 7 kg S/ha in 1993. Assuming a similar rate of dry deposition in this region as 

at Hubbard Brook, and 0% collection of dry deposition in bulk collectors, a dry input of 0.9 kg 

S/ha/yr would only constitute 11% of total S inputs at Muskoka-Haliburton (i.e. 0.9/7.9). 

Recently, Sirois et al. (2001) estimated that dry deposition constituted approximately 1/3 of total 

S deposition at the Turkey Lakes Watershed (TLW). In a related report, Beall et al. (2001) 

showed that wet deposition calculated by Sirois and others was equivalent to approximately 85% 

of their bulk S deposition estimates, and suggested that bulk deposition included a portion of the 

dry S inputs to the TLW. These 2 estimates can be used to calculate the proportion of dry 

deposition not sampled by bulk collectors, i.e.: 

 

Wet = (0.66 * total)  (Sirois et al. 2001) 

Wet = (0.85 * bulk)  (Beall et al., 2001) 

 

Therefore bulk = (0.78 * total), and an additional 22% should be added to bulk estimates to 

approximate total S deposition at the TLW. Annual bulk deposition at the TLW is very similar to 

that measured in the Muskoka-Haliburton region (Jeffries et al., 1997), and the contribution of 

dry deposition may also be comparable (Sirois and Barrie, 1988). However, forest type 

(coniferous vs. deciduous) and canopy cover (% closure) also influence dry deposition through 

changes in surface area and resultant scavenging of gases and particulates. Therefore dry 
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deposition inputs may vary among catchments in the Muskoka-Haliburton region, and dry inputs 

could constitute a larger proportion of total deposition at coniferous catchments such as PC1.  

 

Throughfall monitoring has also been conducted in the Muskoka-Haliburton region to 

approximate total S deposition. Measurements at the PC1 and HP4 catchments over a 3-year 

period (1983-1986) indicated that dry deposition could account for as much as 31% or 7%, 

respectively of total annual deposition as approximated by throughfall (Neary and Gizyn, 1994).  

Throughfall flux estimates assume that canopy coverage above throughfall collectors is 

representative of canopy coverage over the entire catchment. Treeless areas, such as stream 

channels and rock outcrops are not accounted for in these calculations. While regions with no tree 

cover may be proportionately small in many catchments, at PC1, bedrock outcrops cover 10% of 

the 23.3 ha catchment, and the swamp, which has a relatively low basal area (~18 m2/ha) covers 

another 10% (Lozano et al., 1987). Throughfall collectors may also over-estimate total deposition 

if SO4 is leached from foliage (Lovett et al., 1997).  

 

Weathering inputs of S are also inherently difficult to assess. Sulphur concentrations in rock types 

that are considered representative of the catchment combined with estimates of weathering rates 

can provide a rough approximation of S inputs via weathering.  Weathering can be a major source 

of S input in catchments with substantial S-bearing mineral deposits (Mitchell et al., 1986). For 

example, pyrite dissolution was concluded as the source of net S export in the Loch Vale 

watershed in the Colorado Rocky Mountains, where exposed bedrock covers 80% of the 

catchment area (Baron et al., 1995; Mast et al., 1990).   

 

Isotope data can be used to infer the role of lithogenic S in catchment budgets if δ34S signals in 

soil minerals are distinct from other S sources in the catchment. For example, Fitzhugh et al. 

(2001) interpreted low δ34S ratios during base flow at a site directly downstream of a mapped coal 



 178 

seam to S weathering; however, only 4% of S export from the catchment could be attributed to 

lithogenic sources. In the upland-draining PC1-08 catchment, similarities in δ34S signals among 

deposition, soil percolate and stream water were interpreted as evidence that deposition is the 

primary source of S to this catchment (Chapter 7). This interpretation relies on the assumption 

that δ34S ratios in minerals are not coincidentally similar to ratios in deposition, and we do not 

have δ34S data for till and bedrock in the study region to verify this assumption. However, Jeffries 

and Snyder (1983) summarized the geology of catchments in the Muskoka-Haliburton region and 

reported that total S concentrations are low (<0.01%) in the slowly weathered granitic silicate 

bedrock that typifies the area. Glacial tills are locally derived and have a similar chemical 

composition to bedrock (Jeffries and Snyder, 1983). Kirkwood (1990) reported that the major 

minerals at PC1 are quartz, feldspars (plagioclase, orthoclase), vermiculite, amphibole and iron 

oxides, none of which contain S, and S was below the limit of detection (100 mg/kg) in till at the 

base of the soil profile. However, the presence of minor deposits of S-bearing minerals such as 

pyrite cannot be discounted.  In an analysis of S cycling in 20 forest systems primarily located in 

the northeastern US, and including 1 in Canada (Turkey Lakes) Mitchell et al. (1992) concluded 

that weathering was an insignificant source of S compared to deposition. 

 

Houle and Carignan (1995) used a different approach to estimate S inputs via weathering in a 

Canadian Shield catchment, and suggested that SO4 concentrations in stream water due to 

weathering of S-bearing minerals should be proportional to the molar Si:S concentration in 

granite (1196:1), assuming that both elements are weathered in this proportion. They concluded 

that S weathering would contribute at most 0.05 kg S/ha to annual export from the Lac Laflamme 

catchment. If a similar calculation is made for PC1-08, which has an average stream Si 

concentration of ~3 mg/l, then only 3 µg S-SO4/l is attributable to weathering, which corresponds 

to an annual export of ~0.05 kg S/ha (assuming 17,000 m3/yr), similar to Lac Laflamme. In 
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contrast, Wilander (1994) used a charge equivalent base cation-to-sulphur ratio of 0.05 to 

estimate S weathering inputs to Swedish surface waters. They found that the S:Si ratio in granite 

published by Krauskopf (1967) and used by Houle and Carignan (1995) predicted lake SO4 

concentrations that were at least 60-times lower than measured concentrations in Swedish lakes 

unaffected by acid rain (Wilander, 1994). Furthermore, they state that since Si concentrations in 

lakes can vary seasonally due to biological processes, that the BC:S ratio provides a better 

estimate of background SO4 concentrations. Following this approach, a S weathering input of 

~0.3 kg S/ha/yr was calculated for PC1 using the base cation (Ca+Mg+K+Na) weathering value 

published by Kirkwood and Nesbitt (1991) of ~400 eq/ha/yr and a BC:S ratio of 1:0.05. A similar 

estimate (0.6 kg S/ha/yr) was calculated for the Hubbard Brook watershed, which accounted for 

less than 3% of total inputs (Likens et al., 1977).  For reference, an annual input of 0.3-0.6 kg 

S/ha/yr corresponds to <5% of annual S export in the PC1 stream. It should be noted, however, 

that Si is not present in S-bearing minerals, and few S-minerals contain base cations, therefore the 

use of ratios to predict S weathering may be unfounded (Wilander, 1994). However, ratios based 

on the elemental content of major rock types provide a means of obtaining rough weathering 

estimates for mass budget calculations.   

 

Outputs 

Sulphate export from catchments occurs in stream water and through net accumulation in 

biomass.  Gaseous losses of S may also be substantial in lowland systems. In upland systems, 

however, biogenic S emissions are thought to be small, and Andreae and Jaeschke (1992) 

estimated gaseous outputs from temperature forests to be only 0.16-0.53 kg S/ha/yr, which is 

minor compared to S export in stream water in most catchments (Mitchell et al., 1992a).   

 

A number of different methods have been used to calculate annual fluxes in stream flow, 

including discharge-weighted, regression, and period-weighted calculations, although the period-
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weighted method is most commonly applied (Dann et al., 1986; Likens and Bormann, 1995).  In 

the period-weighted method output fluxes are calculated by multiplying the stream flow between 

two consecutive sampling dates by the average SO4 concentration of the two consecutive 

samples.  This method was used to calculate SO4 export from catchments in the Muskoka-

Haliburton region, and is consistent with the method used by the OMOE Dorset Environmental 

Science Centre.   

 

While continuous concentration and discharge measurements would obviously provide the most 

accurate estimates of nutrient export, due to the high cost of intensive sampling most monitoring 

programs use a less frequent sampling interval, which generally involves collection of weekly 

grab samples. The OMOE stream chemistry data set is of particularly high quality, since the 

majority of streams have been sampled on a weekly or bi-weekly basis since the late 1970s, and 

streams are sampled more frequently (i.e. daily) during periods of high flow such as the spring 

melt. For example, between May 1980 and May 1998, 1,342 chemical samples were collected 

from the PC1 stream, which corresponds to a frequency of one sample every 5 days. The period-

weighted method can result in inaccuracies if discharge varies significantly between samples, 

however if samples are taken often enough during periods of variable flow (i.e. summer, spring), 

then this method is the most accurate method for estimating export (Dann et al., 1986).   

 

The other mechanism by which S may be retained in forest ecosystems and thereby removed from 

stream flux measurements is net tree uptake. Sulphur is an essential plant nutrient required in the 

formation of amino acids, enzymes, nucleic acids and other functional groups. If trees are 

harvested then S may be permanently removed from the catchment, otherwise S that is 

accumulated in plant biomass is eventually returned to the soil when the tree dies and decays. 

Even so, over the relatively long life span of a typical forest, accumulation of S in biomass could 

be important, particularly in a rapidly aggrading stand.  At PC1, total S storage in forest biomass 
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(above + below ground) is approximately 30 kg S/ha (Table 9-1). Given the average age of the 

stand (80 yrs), annual S accumulation by trees was estimated to be 0.4 kg S/ha (assuming annual 

S uptake is constant over the tree’s lifetime).  This uptake rate is low compared to that reported by 

Johnson et al. (1982) for a chestnut oak stand in Tennessee (2.1 kg S/ha/yr.), but was similar to 

the uptake rate calculated for a balsam fir stand in Quebec (0.4 kg S/ha/yr., assuming stand age of 

47 yr. at time of study) (Houle and Carignan, 1992).  Compared to the magnitude of annual 

stream S export in catchments in this region (up to 22 kg S/ha/yr), net annual accumulation in 

biomass appears small.   

 

Table 9-1.  Sulphur content (kg/ha) of above and below ground biomass in the PC1 forest in 

1999, and annual S input to the forest floor in litter fall (1985/86). Data from Lozano and Parton 

(1986) and Watmough (unpublished).  

 S content (kg/ha) 

Crown 7.5 

Bark 3.7 

Stem 11.6 

Above 22.8 

Below 6.5 

Total 29.3 

S in litter fall (kg/ha/yr); total mass of litter (kg/ha/yr) 2.4; 3934 

 

Furthermore, the forest biomass at PC1 did not change over the period 1983-1999, possibly due to 

nutrient limitations to forest growth brought about by acid-induced cation depletion in soil 

(Watmough and Dillon, 1999).  In a mature, non-aggrading stand, annual S requirements for litter 

production and root growth are likely supplied by internal cycling – namely litterfall and root 

exudates and mortality.  Mitchell et al. (1992) reported that vegetation represented less than 12% 

of the total S content of 20 forested systems considered in the IFS study.  At PC1, S in forest 
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biomass is only 3% of total ecosystem storage (see Tables 9-1 and 9-2), whereas at Lac Laflamme 

the proportion in vegetation is just over 1% (Houle and Carignan, 1995).  Therefore even if these 

forests were clear cut, only a small portion of total S storage in the catchment would be exported. 

The relatively small amount of S stored in forest biomass and low annual net requirements, 

indicate that S uptake by trees can largely be ignored in mass balance approximations (Johnson et 

al., 1984). However, this does not imply that trees are not important for S cycling and 

transformations (i.e. inorganic to organic forms) in catchments.  

 

Table 9-2. Total S content of a typical podzol profile at PC1 (data from Neary et al., 1987 and 

this study).  

 Depth 

(m) 

Bulk density 

(g/cm3) 

Organic C 

(mg/kg) 

Total S 

(mg/kg) 

Total S 

(kg/ha) 

Adsorbed S-

SO4 (mg/kg) 

Adsorbed S-SO4 

(kg/ha) 

LFH 0.10 0.014 290-440 920-1660 20 0 0 

Ae 0.02 0.95 18-21 110 20 0.7 0.13 

B 0.25 0.77 20-49 300-600 870 100-200 290 

Total  0.37    910  290 

 

While it is apparent that there are a number of assumptions associated with the basic mass budget 

equation, in many regions, such as Muskoka-Haliburton, bulk deposition appears to be a 

reasonable surrogate for total S input, and outputs can be approximated using stream export.  

Nonetheless, in order to be completely conservative in these calculations, various ‘correction 

factors’ can be applied to the data. For example, 22% was added to annual bulk deposition to 

bring S inputs in line with recent estimates for the TLW (Beall et al., 2001; Sirois et al., 2001). In 

addition, a further 0.6 kg S/ha/yr (estimate published for Hubbard Brook; Alewell et al., 1999) 

was added to atmospheric deposition to account for potentially unmeasured weathering inputs 

(Table 9-3). Even with these additions, it is apparent that S export exceeds input (negative values) 

in many years of record at PC1, and in nearly all years of record at HP4 (Table 9-3).  
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Table 9-3.  Mass Balance estimates for PC1 and HP4, all units in kg S/ha/yr. Weathering was 

estimated at 0.6 kg S/ha/yr. 

 

Year 

 

Bulk 

Dep. 

 

Bulk*1.22 

Total Input  

(Bulk*1.22 + 

weathering) 

Stream export  

(kg S/ha/yr) 

PC1               HP4     

Input – Export 

(kg S/ha/yr) 

PC1         HP4 

1980-81 11.8 14.4 15.0 14.6 17.1 0.4 -2.1 

1981-82 12.1 14.8 15.4 12.1 14.9 3.3 0.5 

1982-83 10.9 13.3 13.9 17.9 15.8 -4.0 -1.8 

1983-84 8.7 10.6 11.2 19.0 12.8 -7.7 -1.6 

1984-85 9.2 11.2 11.8 15.2 15.3 -3.4 -3.5 

1985-86 9.8 11.9 12.5 10.2 14.1 2.3 -1.6 

1986-87 7.9 9.6 10.2 6.5 8.6 3.7 1.6 

1987-88 9.1 11.2 11.8 18.7 13.0 -7.0 -1.3 

1988-89 8.2 10.0 10.6 17.0 12.8 -6.5 -2.3 

1989-90 7.4 9.0 9.6 16.3 12.0 -6.7 -2.4 

1990-91 8.5 10.4 11.0 17.2 14.6 -6.2 -3.6 

1991-92 8.5 10.4 11.0 11.5 11.6 -0.5 -0.6 

1992-93 7.9 9.7 10.3 10.2 13.5 0 -3.2 

1993-94 7.0 8.5 9.1 9.1 11.1 0.1 -1.9 

1994-95 7.1 8.7 9.3 9.2 12.1 0.1 -2.8 

1995-96 8.3 10.1 10.7 13.0 14.4 -2.2 -3.6 

1996-97 6.9 8.4 9.0 9.4 12.8 -0.4 -3.8 

1997-98 4.8 5.9 6.5 7.9 6.6 -1.4 -0.1 

1998-99 5.5 6.7 7.3 9.4 6.5 -2.1 0.8 

SUM 160 195 206 244 240 -38 -34 

 

Furthermore, both catchments exhibited a cumulative net export of –38 S/ha (PC1) and –34 kg 

S/ha (HP4) over the 20-year monitoring period.  It should be noted, however, that mass balance 

calculations for the PC1 Sphagnum swamp, indicate that inputs were in approximate balance with 

outputs over a 7-year period (1983-1990) that included both wet and dry years. For example, 

LaZerte (1993) calculated a total S-SO4 input of 1020 kg S per hectare of swamp surface over the 
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7-year period, compared to a total export of 1045 kg S/ha (~2% net export). Therefore, 

cumulative net export from PC1 appears to be from the upland part of the catchment (see also 

Chapter 4), although the particularly large negative export values observed in certain years (e.g. 

1987/88) are undoubtedly due to enhanced SO4 export from the swamp.  

 

Table 9-4. Estimates of annual net S retention (+) or release (-) at 8 representative catchments in 

the Muskoka-Haliburton region.  Sulphur retention or release (kg S/ha/yr) was calculated as 

[input (bulk*1.22+0.6) – stream export]. 

 RC-1 BC-1 PC1-08 HP-6 HP6-A DE-6 DE-5 CB-1 

1980-81 0.6 1.7  -5.4 -1.3 6.7 6.0 3.6 

1981-82 0.9 4.7  -9.2 0.9 7.6 11.9 4.2 

1982-83 -4.2 -4.6  -8.0 -4.7 2.7 7.9 -1.5 

1983-84 -2.4 -3.3  -8.2 -7.3 -5.6 6.4 -2.8 

1984-85 -2.9 -2.0 -6.2 -7.3 -4.2 0.0 5.5 -0.8 

1985-86 2.4 0.9 -1.4 -5.6 -0.1 7.5 8.0 3.7 

1986-87 1.8 1.7 -1.1 0.1 3.2 6.2 7.3 4.3 

1987-88 -0.3 1.5 -3.2 -5.6 -3.5 -0.6 7.4 -0.5 

1988-89 -3.0 -0.6 -4.6 -6.5 -5.5 0.4 5.4 -0.6 

1989-90 -4.3 -0.5 -4.9 -6.5 -2.5 1.3 4.0 -2.1 

1990-91 -4.7 -1.5 -6.7 -7.2 -4.5 -6.1 3.1 -3.2 

1991-92 -1.9 3.6 -1.9 -3.6 -1.4 2.6 6.9 0.6 

1992-93 -6.4 -3.9  -6.8 -1.1 4.8 6.4 -0.5 

1993-94 -1.6   -5.6 -1.2 6.0 6.3 0.7 

1994-95 -1.9   -4.8 -0.2 6.3 7.0 -0.5 

1995-96 -2.9   -6.0 -1.0 6.6 7.3 -1.6 

1996-97 -3.2   -6.4 -2.0 3.9 5.8 -2.4 

1997-98 -0.3   -2.7 -2.4 3.9 3.7 1.2 

SUM -34 -2 -30 -105 -39 54 116 2 

 

 

Clearly, negative S budgets in the Muskoka-Haliburton region cannot be entirely explained by 

additional inputs from dry deposition or weathering (see Tables 9-3 and 9-4). Data presented in 
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Chapter 2 illustrate that net SO4 export is a common feature of catchments in the Muskoka-

Haliburton region, and even if inputs are increased by ~25% to account for additional dry 

deposition and weathering, net export still occurs in most years (Table 9-4).  The Dickie Lake 

catchments are a notable exception, and retain S over the long term. Possible explanations for net 

SO4 retention in the wetland-dominated Dickie Lake catchment were outlined in Chapter 2, 

however, further work would be required to determine the unique hydrology of the Dickie 

catchment, which tends to favour S retention during both wet and dry years.  

 

The generally negative SO4 mass budgets for catchments in the Muskoka-Haliburton region 

imply that S is being exported from an internal source. Internal pools of S in upland and wetland-

draining catchments, as well as the factors driving net export are discussed further in Chapter 10.  
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CHAPTER 10: SUMMARY & CONCLUSIONS 

 
This project was designed to address the following 2 observations and related hypotheses: 

 

1. Trends in annual SO4 concentration and export are similar among a number of distinct 

catchments in the Muskoka-Haliburton region. What factor(s) is (are) responsible for 

synchronous patterns of SO4 chemistry among streams? 

2. Sulphate export from catchments exceeds input in bulk deposition in many years of record. 

What are the sources and controls of this apparent net export? Do they differ between upland, 

and wetland-draining catchments? What are the implications of (a) net SO4 export, and (b) 

changing climate on the recovery of downstream water bodies and forest soils from historic 

acid deposition? 

 

In order to address these questions, 3 approaches were taken, including (i) the analysis of existing 

long-term monitoring data (chemical, meteorological & hydrologic data), (ii) collection of 

additional monitoring data (including stable isotope data) and (iii) implementation of several 

laboratory experiments and a field experiment. Using these methods, the following conclusions 

were obtained: 

 

1. SYNCHRONOUS PATTERNS OF SO4 CHEMISTRY 

 

Analysis of existing long-term monitoring data from a number of catchments in the Muskoka-

Haliburton region revealed that temporal patterns of annual stream SO4 concentrations were 

highly coherent among streams (Chapter 2). Synchronous patterns in SO4 chemistry among a 

range of catchments which vary greatly in their physiography (till depth, soil depth & type, 

slope, wetland coverage), forest covers (coniferous, deciduous) and management (cottage 
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development, forest harvesting) indicates the involvement of large-scale, or regional factors. 

Two factors that act on a broad-scale and could therefore be responsible for synchronous 

patterns in stream SO4 concentrations are deposition and climate.  Deposition is the primary 

source of S to catchments on the Canadian Shield, which have negligible mineral S deposits 

and low weathering rates; however, temporal changes in SO4 deposition are not as strongly 

correlated to changes in stream SO4 chemistry as expected (Figure 10-1). Instead, inter-annual 

variations in climate, particularly summer precipitation and temperature, appear to be related 

to changes in SO4 concentrations and export in drainage streams, which ultimately influence 

SO4 concentrations in downstream lakes (Chapter 3).  Catchment dryness, or the number of 

days with zero stream flow (i.e. Q=0) was a particularly good predictor of annual average SO4 

concentrations in many streams (Chapters 2 & 3; Figure 10-1).  

 

Stream flow was less and streams were dry for longer in years which had summers (June-

August) that were both warmer (>18°C) and drier (<230 mm precipitation) than average.  In 

wetland-draining streams the relationship with summer climate is particularly evident – SO4 

concentrations and export increase considerably following summer droughts, and this was 

previously ascribed to changes in wetland water table level (Dillon and LaZerte, 1992; Devito 

et al., 1999; LaZerte 1993). However, SO4 concentrations in entirely upland-draining 

catchments also increase following particularly dry summers, although the magnitude of 

change between wet and dry years in upland streams is much less compared to wetland-

draining streams. Nevertheless, long-term monitoring data suggest that climate may also affect 

SO4 generation and export in upland catchments, because temporal patterns of SO4 

concentrations are synchronous in both upland and wetland-draining systems (Figure 10-1).  

Furthermore, climate variations ultimately affect SO4 concentrations in lakes through changes 

in SO4 export or retention in the terrestrial catchment.   
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Figure 10-1. Sulphate concentrations in wetland-draining (A) and upland streams (B). Lower 

graph (C) presents temporal patterns of annual average SO4 concentration in streams (average 

8 streams), lakes (average 8 lakes), deposition, and # days with zero-stream flow (average 8 

streams).
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In order to investigate the relationship between climate and SO4 generation in upland systems, 

existing soil percolate and tensiometer data from the PC1-08 catchment were explored 

(Chapter 4). It was found that SO4 concentrations in percolate from the surface organic 

horizon (LFH) were highest immediately following periods with low soil moisture. Increases 

in SO4 concentration following dry periods were not entirely due to evapoconcentration or dry 

deposition, and therefore must be a result of SO4 release from surface soil. Patterns of annual 

average SO4 concentrations in LFH and B-horizon percolate, respectively, were correlated 

(r=0.80, p<0.05). However, increases in SO4 concentration following dry periods were not as 

large in mineral soil percolate, likely due to adsorption/desorption reactions in the B-horizon 

which tend to dampen the SO4 signal from LFH percolate (i.e. decrease the amplitude of 

peaks). Consequently, these observations led to the design of 2 laboratory experiments. 

 

The first experiment was designed to test directly the effects of changing moisture conditions 

(and temperature) on SO4 generation in forest soils. The second experiment determined the 

potential for adsorption and desorption reactions to buffer SO4 concentrations in infiltrating 

LFH percolate and account for the relatively steady SO4 concentrations measured in percolate 

draining the B-horizon.  A further and more important goal of the second experiment was to 

assess the response of the adsorbed pool to changes in SO4 deposition and to evaluate the 

potential contribution of desorption to net SO4 export from upland catchments.  

 

The effect of both drying and re-wetting and temperature on SO4 generation was tested using a 

number of different materials collected from the PC1 and S50 catchments including forest 

floor (LFH), mineral soil (B-horizon), wetland soil (peat) and Sphagnum moss (Chapter 5). 

Increased SO4 concentrations in wetland and upland-draining streams have been observed 

following periods that are both dry, and warmer than average. While it was hypothesized that 
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alternating moisture conditions were the primary cause of high SO4 concentrations, 

temperature may have exerted an additional stimulatory effect, and/or contributed to dry 

conditions by enhancing moisture losses due to evapo-transpiration.  

 

The results of this experiment indicated that the effect of drying and re-wetting on SO4 release 

from peat was immediate (within 24 h of re-wetting), and that SO4 concentrations in dried and 

subsequently rewet peat were 3- (S50) to 4-times (PC1) greater than in continuously moist 

peat.  Changing moisture conditions did not have an immediate effect on Sphagnum, although 

SO4 concentrations in Sphagnum extracts tended to increase over the 30-d incubation, 

suggesting that SO4 release from Sphagnum could be important under prolonged dry/warm 

conditions. However, large and immediate increases in SO4 export that have been reported in 

wetland-draining streams following dry periods are likely due primarily to enhanced release 

from dried and subsequently re-wet peat rather than to increased mineralization in Sphagnum 

material. The mass of S in Sphagnum is also small compared to S storage in peat.  

 

Sulphate release from dried coniferous forest floor material also increased immediately 

following drying and re-wetting, and results of the laboratory experiment supported field 

measurements at PC1-08 that showed higher SO4 concentrations in LFH percolate following 

decreases in soil moisture. Increased temperature enhanced SO4 release from both peat and 

LFH, although changing moisture conditions were responsible for the majority of SO4 

generation.  Neither temperature nor drying affected SO4 release from upland mineral soil, but 

SO4(NaH2PO4) concentrations in B-horizon soil were high (~ 400 mg/kg), and these data indicate 

that the mineral soil constitutes a large pool of adsorbed SO4 in the upland part of the PC1 

catchment. 
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The second laboratory experiment assessed the potential for SO4 adsorption and desorption from 

mineral soil to respond to changes in SO4 input (Chapter 6).  Sulphate concentrations in percolate 

draining the B-horizon show little temporal variation, despite large changes in input 

concentrations of SO4 in LFH percolate (Chapter 4).  Similar patterns in lysimeters solutions at 

the Lac Laflamme catchment were hypothesized to be due to adsorption and desorption reactions 

in the mineral soil which effectively ‘buffer’ SO4 concentrations in infiltrating water (Houle and 

Carignan, 1995).  Consequently, when SO4 concentrations in LFH percolate are high, adsorption 

in the B-horizon results in lower SO4 concentrations at the base of the profile whereas low SO4 

concentrations in LFH percolate are compensated for by increased desorption from mineral soil.  

Therefore, although patterns of standardized annual SO4 concentrations in LFH and B-horizon 

percolate are significantly correlated (i.e. r = 0.80, p<0.05 at PC1-08), the amplitude of inter-

annual changes in SO4 is smaller in B-horizon percolate.  The variable response of 

adsorption/desorption reactions in mineral soil to changes in SO4 in infiltrating water suggests 

that these processes should also be responsive to changes in SO4 input in deposition.  

 

2. SOURCE(S) AND CONTROLS OF S EXPORT IN UPLAND AND WETLAND-

DRAINING CATCHMENTS 

 

While changes in climate appear to be responsible for inter-annual variations in SO4 

concentrations in upland and wetland-draining catchments, climate was further hypothesized to 

be responsible for apparent negative SO4 budgets in Muskoka-Haliburton catchments.  In 

wetland-draining catchments such as PC1, negative SO4 budgets in dry years appear to be 

explained by changes in wetland hydrology which determine whether SO4 is reduced (and 

retained) or oxidized/mineralized (i.e. released) in peat. While high SO4 concentrations and 
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export following dry periods were inferred to be due to the oxidation of reduced S species in peat 

(either metal sulphides or organic S compounds) upon exposure to air (e.g. Dillon et al., 1997), 

this has never been directly tested.  

 

Results of a laboratory experiment conducted as part of this study (Chapter 5), confirmed that 

SO4 release from peat increased in response to changes in moisture, and that Sphagnum 

mineralization was likely not a large contributor to SO4 release from wetlands.  In addition, S-

isotope ratio measurements in the hydrologic inputs (i.e. deposition, upland PC1-08 stream) and 

outputs (PC1 stream) of the PC1 swamp indicated that SO4 peaks in the PC1 stream following 

droughts are likely due to release from reduced S compounds in peat (Chapter 7). The original 

hypothesis of this study was that SO4 concentrations in PC1 would be low, and δ34S ratios in 

stream water would exceed those in inputs to the swamp during wet periods when the water table 

was at or near the peat surface. Conversely, δ34S-SO4 ratios were predicted to decrease and SO4 

concentrations in PC1 were expected to increase following sustained dry periods that resulted in a 

decline in water table height.  It should be noted that the hydrologic residence time within the 

swamp is key to the development of anaerobic conditions, and even during periods of low 

precipitation, saturated conditions that favour SO4 reduction may persist within the wetland.   

 

Above average rainfall during the summers of 1999 and 2000 maintained high water table levels 

in the PC1 swamp during the 2 years of intensive isotope monitoring (1999-2000). Sulphate 

concentrations in PC1 stream water were low (average 4.8 and 4.2 mg/l in 1999/00 and 2000/01, 

respectively) compared to the long-term (1980/81-2000/01) average of 7 mg/l.  Furthermore, δ34S 

ratios in PC1 (average +8.6 ± 2.6‰) were generally higher than in deposition (+5.1 ± 0.6‰) or 

upland stream flow (PC1-08; 5.8 ± 0.7‰), supporting the hypothesis that SO4 reduction in the 

wetland under saturated conditions causes increased δ34S-SO4 ratios in drainage water. However, 



 193 

pervasiveness of wet conditions over the 2-year monitoring period did not allow the 2nd part of the 

hypothesis to be evaluated (i.e. lower δ34S and higher SO4 concentrations following dry periods).  

Monitoring of stable isotope ratios in the PC1 catchment is continuing, however, and when 

isotope and SO4 concentration data from the relatively dry summers of 2001 and 2002 become 

available, the importance of oxidation of reduced S compounds to post-drought peaks in SO4 will 

be evaluated.  

 

Isotope measurements were also used to test the hypothesis that streambed sediment in upland 

catchments function as ‘mini wetlands’ - storing S during wet conditions, and exporting SO4 

following dry periods. This prediction was based on the fact that patterns of SO4 chemistry are 

synchronous among both upland and wetland-draining catchments, and climate apparently has a 

similar (but smaller) effect on SO4 generation in upland systems.  Riparian soil in the PC1-08 

stream channel is relatively enriched in organic matter compared to upland soil, and total S 

concentrations were generally higher in subsurface soil from the PC1-08 streambed compared to 

upland soil in the same depth interval (Table 9-1).  In addition, negative δ34S ratios indicate the 

occurrence of SO4 reduction in riparian soil, although samples from only 1 pit were analyzed 

(Table 9-1).  

 

Nonetheless, δ34S signatures in PC1-08 stream water were not significantly different from δ34S 

values in bulk deposition, indicating that SO4 reduction in stream soil was not sufficient to alter 

δ34S-SO4 ratios in the stream (Chapter 7).  In addition, while stream flow in PC1 was nearly 

continuous through the dry summers of 1999 and 2000, flow in PC1-08 ceased completely for 

almost 7 weeks in 2000/01.  Even following extended dry periods that resulted in a water table 

draw down of at least 19 cm in the streambed, δ34S ratios in PC1-08 did not decline and there was 

no evidence of re-oxidation of reduced S compounds in stream water. While these results could 
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not discount the occurrence of SO4 reduction in stream soil (certainly negative δ34S ratios in 

riparian soil are indicative of reduction), they do provide evidence that increases in SO4 

concentration in PC1-08 following dry periods are not entirely due to re-oxidation of reduced S 

compounds in stream soil.  Considered together, isotope data and results of the analysis of 

tensiometer and lysimeter data (Chapter 4), indicate that increased SO4 concentrations in upland 

streams following dry periods are more likely due to enhanced mineralization of organic S 

compounds in upland soil, caused by alternating moisture conditions and/or increased 

temperature. Further work would be required to investigate the effects of varying soil moisture 

(i.e. SO4 mineralization at different soil moisture contents), temperature and time of incubation on 

SO4 release from upland soil. Stable isotope data are unlikely to provide additional information 

on processes involved in S cycling in aerobic upland systems, since the primary processes of 

adsorption/desorption and immobilization/mineralization do not cause significant isotope 

fractionation. For example, Van Stempvoort et al. (1990) found that there was little difference 

(~0.3‰) between the δ34S values of adsorbed and dissolved sulphate in soil.  Similarly, plant 

assimilation results in only slight isotopic fractionation (<2‰), and although Alewell et al. (1999) 

suggest that mineralization was responsible for a -1‰ difference in δ34S-SO4 values in stream 

water relative to deposition at the Hubbard Brook, interpretation of such small fractionations is 

tenuous (Mayer et al., 1995).   

 

Thus far, 2 primary pools and sources of S export have been identified in catchments, namely 

peat in wetlands, and soil (organic and mineral) in upland systems. Organic S in both pools may 

be responsive to changes in catchment dryness, and inter-annual variations in climate appear to be 

largely responsible for synchronous temporal patterns in SO4 chemistry among catchments. In 

wetland-draining catchments climate variations that influence wetland hydrology can account for 

both temporal patterns of SO4 export as well as the magnitude of net export. However, upland 
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soils (e.g. PC1-08) appear to export more SO4 than they receive in bulk deposition in every year 

of record.  

 

Net export appears to be a common feature of upland catchments in regions that have received 

historically high acid deposition (e.g. Driscoll et al., 1998; Feger et al., 1995; Houle and 

Carignan, 1995; Löfgren et al., 2001; Mitchell et al., 1996; Table 10-1). The causes and sources 

of net SO4 export, however, remain unclear.  A number of explanations have been proposed in the 

literature including poorly estimated inputs (i.e. dry deposition and/or weathering), and net 

release from internal pools (desorption, mineralization) (e.g. Driscoll et al., 2001; Edwards et al., 

1999; Mitchell et al., 1986; Wilander, 2001). An increasing number of reports, however, have 

suggested that SO4 release from internal pools is responsible for negative S budgets, and that net 

export is related to decreasing deposition (e.g. Driscoll et al., 2001; Houle and Carignan, 1995; 

Mitchell et al., 2001). 

 

Net SO4 export from upland forest soil may occur from 2 potential internal sources, namely 

desorption from the adsorbed pool, and mineralization of organic S compounds. As shown in 

figure 10-2, total S input to the PC1-08 catchment over an 8-year monitoring period (1987/88-

1994/95) was 83 kg S/ha whereas export in stream water was 113 kg S/ha, which corresponds to a 

net loss of 30 kg S/ha. The forest at PC1-08 did not increase in biomass over this time period and 

no harvesting occurred in the catchment (Watmough and Dillon, 2001). Net S accumulation in 

biomass was therefore ignored in the budget calculation, assuming that the S content of 

vegetation remained constant over the same time period. Sulphate uptake by vegetation and 

subsequent return of organic S to the forest floor in litter fall, root turnover and exudates and 

throughfall, however, may be large relative to inorganic SO4 input in deposition (Figure 10-2). 

Net export of 30 kg S/ha in stream water represents a 10% loss from the adsorbed pool 
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(desorption) or 5% loss from the organic-S pool (mineralization).   The following sections will 

discuss the processes of desorption and mineralization in more detail.  

 

Table 10-1. Sulphur pools (kg S/ha) and net stream export in several long-term monitored 

catchments in North America and Europe.  

Site Organic-S  

(kg S/ha) 

Adsorbed S-SO4 

(kg S/ha) 

Net Export* 

(kg S/ha) 

Huntington Forest, NY (mixed hardwood) 

(Mitchell et al., 1996) 

1200 100 ~ -2.5 

(TF+SF-stream) 

Hubbard Brook, NH W6 (mixed 

hardwood) 

(Alewell et al., 1999; Hornbeck et al., 1997 

1576 124 -6 

(bulk-stream) 

Lac Laflamme, QC (balsam fir) 

(Houle and Caringnan, 1995) 

1230 113 -5 

(wet-stream) 

Sweden (Norway spruce) 

(Lofgren et al., 2001; Wilander, 2001) 

670-800 67-833 -4 

(‘total’-stream) 

Villingen, Germany 

(Feger, 1995) 

1200 680 -10 

Note: TF = throughfall, SF = stemflow, ‘total’ = estimated total (wet+dry) non-sea salt 

deposition + weathering; wet = wet-only deposition, bulk = bulk deposition; stream = stream 

export. 

 

Desorption 

The degree to which SO4 adsorption is reversible is an important question, which will affect the 

recovery of acid impacted surface waters and soils in response to decreases in deposition. 

Sulphate adsorption increases with SO4 concentration in soil solution (Chao et al., 1962), but it is 

not clear how catchments with SO4-adsorbing soils will respond to decreased inputs.  
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Figure 10-2.  Sum of S fluxes (kg S/ha) over an 8-year period (1987/88 through 1994/95) and 

pools (kg S/ha) in the PC1-08 catchment. Factors affecting SO4 retention or release in the 

organic-S and adsorbed SO4 pool are also indicated. Concentrations (µeq./l) are the average for 

the 8-year period. Explanation of potential fluxes in dry deposition and weathering are given in 

Chapter 9. 
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If SO4 adsorption is reversible, then soils may gradually release SO4 in response to decreasing 

deposition.  When SO4 inputs stabilize, soil solution SO4 and adsorbed SO4 should reach a new 

equilibrium, at which point inputs equal outputs with no net adsorption or desorption (Reuss and 

Johnson, 1986).  

 

Sulphate adsorption isotherms are often used to describe the partitioning of SO4 between 

dissolved and sorbed phases. According to Cosby et al. (1986), if SO4 adsorption is completely 

reversible, then desorption should follow the same curve as adsorption (i.e. curves are 

symmetric). In this case, total desorption after cessation of deposition requires a much longer time 

than total adsorption following deposition increases (Cosby et al., 1986; Houle and Carignan, 

1995). In contrast, if part or all of the adsorbed SO4 is permanently sorbed, then there is hysteresis 

in the isotherm, and the desorption/recovery time will be shorter.  

 

Most studies have reported that the majority of adsorbed SO4 is readily liberated in water 

extractions, indicating that SO4 adsorption is largely reversible (e.g. Alewell and Matzner, 1993; 

Harrison et al., 1989). Others have pointed out that since sorption reactions are kinetic, then 

desorption should be almost completely reversible given sufficient reaction time (Mitchell et al., 

1992b; Sharpley, 1990). The residence time of water in the solum and the dominant hydrologic 

flow paths will therefore influence adsorption/desorption reactions (Figure 10-2), and under high 

flow conditions SO4 partitioning will not be as predicted by adsorption isotherms.  

 

Results of this study showed that SO4 adsorption/desorption in soil from PC1 and HP6 responded 

linearly to changes in SO4 input (Chapter 6). Therefore changes in SO4 inputs to soil – ultimately 

via deposition are expected to bring about changes in the partitioning of SO4 between solution 

and soil at these catchments (Figure 10-2). The adsorbed S pool at PC1 is particularly large, and 
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further measurements of soil depth, bulk density and adsorbed SO4 (and total S) concentrations 

would be required to adequately quantify the adsorbed S (and total S) pools at other catchments in 

Muskoka-Haliburton. However, if we assume that the magnitude of S storage at other catchments 

falls within the range of values estimated at HP6 (43 kg S-SO4/ha) and PC1 (290 kg S-SO4/ha), 

then the adsorbed pool would be equivalent to 5 - 36 years bulk deposition (20-year average 8 kg 

S-SO4/ha/yr). Catchments such as PC1-08, with large pools of reversibly sorbed SO4 will de-sorb 

more SO4 in response to decreased deposition, compared to HP6 or S50 which have smaller pools 

of adsorbed SO4 (Alewell and Matzner, 1993). Therefore, soils with small pools of adsorbed SO4 

should appear to respond more rapidly to changes in deposition than catchments with large stores 

of adsorbed SO4, which may de-sorb more SO4 per unit change in deposition. This was 

demonstrated recently in a comparison of S-dynamics among European catchments. Prechtel et 

al. (2001) reported that catchments in Scandinavia and the Czech Republic/Slovakia, which have 

thin soils and relatively small SO4 storage responded more rapidly to decreased deposition than 

catchments in Germany with deeply weathered soils and high storage capacity (see also Table 10-

1).  

 

Results presented in this study demonstrated the processes of adsorption/desorption, and allowed 

the size of the adsorbed SO4 pool in soil to be approximated, however, they could not ascertain 

whether desorption is the sole contributor to net SO4 export. Current models do not permit the 

evaluation of desorption as a long-term source of net SO4 export, since they assume that the 

adsorbed pool is independent of other pools in soil (i.e. organic S pool) and that deposition is the 

sole input (e.g. Driscoll et al., 1995; Houle and Carignan, 1995). Such simulations that consider 

the adsorbed pool to be a progressively shrinking source will likely under-estimate the potential 

contribution of desorption to negative S budgets.  In reality, SO4 in soil solution is a function of 

both physico-chemical (adsorption/desorption) and biological reactions (immobilization/ 

mineralization reactions) (Figure 10-2), and the adsorbed pool may be relatively stable over time 
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if it is continuously replenished by mineralization (Bohn et al., 1986). The balance between SO4 

leaching losses and SO4 inputs through deposition and mineralization will therefore determine the 

long-term status of the adsorbed pool.  

 

Mineralization 

Mineralization of organic S in mineral soil and the forest floor is another potential source of SO4 

to surface waters (Figure 10-2). Oxygen and S isotope data from a number of catchments indicate 

that stream SO4 has been biologically cycled prior to export and differences in isotopic signatures 

between deposition and stream water are apparently consistent with a mineralization source 

(Alewell et al., 1999; Gelineau et al., 1989; Mayer et al., 1995). Slight changes in S isotope 

signatures among bulk deposition, soil percolate and upland stream water that were measured in 

this study could also be interpreted as evidence of biological processing (Chapter 7).   

 

While mineralization appears to be occurring in upland forest soils, could net mineralization be 

large enough to explain discrepancies in S budgets? Mineralization rates that exceed S inputs in 

atmospheric deposition have been measured in some studies.  For example, Houle et al., (2001) 

extrapolated laboratory incubation results and calculated that ~12 kg S/ha/yr could be released via 

mineralization of LFH material at 20°C.  Similarly, using data presented in David et al. (1983) it 

was estimated that as much as 28 kg S/ha/yr could be mobilized in the forest floor annually at 

Huntington Forest. In this study, it was calculated that as much as 0.9 kg S-SO4 could be released 

from dried coniferous LFH material at 25°C within 24-h of re-wetting (see Chapter 5). If this 

newly released SO4 were subsequently leached from the soil to the stream channel, mineralization 

could be an important contributor to stream export. For example, only 3-5 drying and re-wetting 

cycles in LFH material under these conditions would be sufficient to supply the magnitude of 

annual net S export that is measured in the PC1-08 stream (3-9 kg S/ha/yr). Given the relatively 
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small S pool in the forest floor at PC1-08 (20 kg S/ha) compared to net export estimates, it is 

unlikely that mineralization in surface organic material is solely responsible for net S export from 

catchments. However, it may not be accurate to consider the forest floor S pool as an independent 

and finite source of S, since roots which extend beneath the forest floor and in to the mineral soil 

can redistribute SO4 from subsurface soil to the forest floor via litter fall. In addition, at 

predominantly deciduous catchments such as S50 or HP6, the S pool in the forest floor and the 

relatively organic-rich A horizon (LaZerte and Scott, 1996) may be much larger compared to 

PC1-08. Therefore, mineralization in surface organic horizons may be a more important 

contributor to net export in deciduous catchments. Certainly, the results of the drying and re-

wetting experiment (Chapter 5) indicated that SO4 release in sugar maple LFH was at least 2-

times greater than in coniferous LFH.  More work would be required to evaluate S pool sizes in 

predominantly deciduous catchments such as HP6 in the Muskoka-Haliburton region.    

 

In both deciduous and coniferous catchments, however, the bulk of S storage is present in 

subsurface mineral soil (Figure 10-2). In most forest soils, the majority of total soil S is organic, 

consisting of C-bonded S compounds and ester sulphates (Mitchell et al., 1992c). While we do 

not have direct measurements of C-S and ester-SO4 concentrations in mineral soil at PC1, reduced 

inorganic S compounds are negligible in most well-drained upland soils, and so subtraction of 

adsorbed S-SO4 (290 kg S/ha) from total S numbers (870 kg S/ha) yields a reasonable estimate of 

organic S storage (i.e. ~580 kg S/ha) in mineral soil.    

 

While the pool of organic S in mineral soil is certainly large, results presented in Chapter 5 

indicated that SO4 was not released from mineral soil in response to changing moisture or 

temperature. Similarly, changes in N availability did not influence net SO4 concentrations in 

mineral soil in short-term (24h) incubations (Chapter 8). One could conclude from these tests that 

biological processes are not important for S turnover in mineral soil, and that the organic S pool is 
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relatively recalcitrant.  However, SO4 release through mineralization of organic S compounds in 

mineral soil may have been difficult to detect with the experimental design. As was indicated in 

Chapters 4 & 6, adsorption/desorption reactions are clearly important for buffering SO4 

concentrations in infiltrating LFH percolate and respond to changes in SO4 input. Therefore any 

SO4 that was released in response to changes in temperature and moisture (Chapter 5), or N-

additions (Chapter 8) may have been subsequently adsorbed by mineral soil surfaces. The time 

frame of biological S-cycling should also be considered when designing mineralization studies, 

since the net effect of immobilization/mineralization reactions may only be manifested over 

longer time periods than are typically covered in laboratory incubations (e.g. Houle et al., 2001). 

In order to assess directly the potential for mineralization in mineral soil, longer-term incubations 

or field incubations may be required, optimally using isotope tracers to label the organic S 

compounds.  

 

While results of this study could not demonstrate the process of mineralization in B-horizon soil, 

possibly due to methodological difficulties outlined above, the large organic S pool in mineral 

soil represents an important source of mineralization. Therefore the question remains as to 

whether mineralization could contribute to net S export from catchments. If mineralization is 

supplying net SO4 export, it follows that at some point in the past organic S was instead 

accumulated in soil. This would imply that immobilization and tree uptake previously exceeded 

mineralization and stream export, however at some point the balance shifted from net retention to 

net mineralization. Why would such a shift occur?  There is no evidence that such a shift would 

occur naturally over such a short time scale (i.e. decades) in the absence of changes in deposition, 

climate or management. Negative budgets have been reported over a wide geographic area, from 

eastern North America to Scandinavia and Central Europe.  These regions have all received high 

S deposition in the past, but in all cases S deposition has more recently declined (last 10-30 



 203 

years). Could net mineralization be a response to decreased deposition (a)?  Or, alternatively, 

could climate changes in part explain negative S budgets (b)? 

 

(a) Deposition effects 

Sulphur deposition could affect mineralization through changes in the exogeneous supply of SO4 

(i.e. availability in soil solution), and/or by longer-term effects on substrate quality (i.e. 

endogeneous S concentration) (Figure 10-2). Sulphate immobilization increases in response to 

greater SO4 availability (Fitzgerald et al., 1983), and there is also evidence that S enzyme activity 

is inhibited at higher SO4 concentrations (Freney et al., 1986). If the opposing reactions of 

decreased immobilization and enhanced enzyme activity under conditions of lower SO4 

availability also hold, then net SO4 mineralization could in theory increase in response to 

decreased deposition.  Indeed, data presented in Chapter 8 indicated that net SO4 concentrations 

were higher in LFH material that was incubated with low SO4 (<42 µeq/l) compared to high SO4 

(>208 µeq/l).  A different method, possibly using isotope tracers would be required to test the 

effect of variable SO4 additions on net SO4 release from mineral soil, given the potential masking 

effect of the adsorbed pool noted in Chapters 5 and 8.  

 

Sulphur release through mineralization may also be affected by the supply of N (Figure 10-2).  

While S deposition has declined markedly in many regions over the past few decades, N 

deposition has stayed constant or increased slightly, and is now almost equal to S deposition.  In 

the Muskoka-Haliburton region, N deposition is currently around 8 kg N/ha/year (57 meq/m2/yr), 

made up of ~60% N-NO3 and 40% N-NH4. Nitrogen is normally the limiting nutrient in terrestrial 

systems, and some studies have suggested that N-availability may influence rates of litter 

decomposition (Berg and Matzner, 1996; Fog, 1988). In a survey of litter decomposition rates 

across a geographical gradient of N deposition, Kuperman (1999) found that S mineralization was 

greater at sites with increased exogeneous N availability. In contrast, N additions did not appear 
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to affect net SO4 concentrations in either LFH or mineral soil from PC1 (Chapter 8).  However, 

longer-term changes in substrate quality (i.e. endogeneous N content) due to the gradual 

accumulation of N in vegetation and soil could also affect mineralization rates (e.g. Aber et al., 

1989; Berg and Matzner, 1996). Further work would be required to elucidate the interactions 

between N availability and S cycling in soil.  

 

Similar to N, long-term SO4 deposition may also result in gradual changes in substrate quality by 

altering the S content of vegetation and soil. Several studies have shown that the S content of 

foliage and the forest floor increases along a spatial deposition gradient (Driscoll et al., 2001; 

Pregitzer et al. 1992), or an historical gradient of deposition (Zhao et al., 1994). While net S 

accumulation in trees is a small part of the overall catchment S balance, Johnson (1984) reported 

that trees are able to accumulate and cycle excess S.  This apparent contradiction implies that any 

excess S is not stored in wood, but is rather concentrated in foliage (or roots) and returns to the 

forest floor in litter fall (or root turnover/exudates). Indeed, the S distribution in forest biomass 

(Table 9-2) indicates that even if the total S content of foliage (crown) were to double over a 20-

year period of elevated deposition, this would only result in an accumulation rate of 7/20, or 0.35 

kg S/ha/yr, which would be undetectable in catchment S budgets. Mitchell et al. (1989) postulated 

that the large organic S pool in mineral soil could be the result of centuries of accumulation of 

dissolved organic S compounds (DOS) in the subsurface. Root turnover and root exudates are 

also likely an important source of organic-S to soil (Figure 10-2). Leaching of organic acids from 

the forest floor is an integral component of pedogenesis, and translocation of DOS compounds via 

percolating solution to the B-horizon could easily account for the magnitude of organic S 

accumulation in mineral soil since forests were established after the last glaciation (~8,000 yrs 

b.p.) (Houle et al., 2001; Mitchell et al., 1989).  In theory, if increased S deposition resulted in a 

proportional increase in S cycling through the biomass, then organic S inputs to the forest floor in 
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litterfall and root turnover might have also increased, resulting in potentially greater DOS transfer 

(and presumably accumulation) to the B-horizon.  

 

On a related note, if the S content of litter inputs to soil have increased over time, this should 

result in a shift in the C:S ratio of surface soil toward lower values. Agricultural studies 

commonly cite the C:S ratio as an indicator of the S nutritional status of soil (e.g. Chapman, 

1997; Eriksen, 1997a). A C:S ratio of 400 or greater is indicative of S limitation and 

immobilization, whereas a C:S ratio of less than 200 indicates S present in excess of microbial 

demands and tends to favour mineralization (Scherer, 2001). Apparently either process can 

dominate at ratios between 200 and 400. The C:S ratio of forest floor material at PC1 (250) is 

close to the limit where S mineralization might be favoured to occur (Chapter 8).   

 

Organic S storage in soil is clearly large enough to sustain the magnitude of net S export that is 

currently measured in Muskoka-Haliburton catchments for decades.  While the above discussion 

indicates that deposition may have a direct (i.e. exogeneous SO4 availability) or indirect effect 

(substrate S content) on S mineralization, it is unclear whether the shift from net S accumulation 

to net export, which most certainly has occurred, was a direct response to changing deposition.  

 

Possible clues as to the cause(s) of shifts in S budgets can be gained by reviewing the few studies 

that have estimated historical changes in soil S storage. For example, reconstructed S budgets for 

the Bohemian Forest (BF, Germany) and Tatra Mountains (TM, Slovakia) were in balance until 

the 1930s, became positive during the 1950s through 1980s but then switched to negative values 

in the late 1980s (TM) or mid 1990s (BF) (Kopacek et al., 2001). Deposition over the same time 

period was relatively stable through the 1930s, increased rapidly between 1950 and 1980, reached 

a maximum in the early 1980s, but has since declined to current levels that are similar to those in 

the 1930s (BF) to 1950s (TM).  Both desorption and mineralization, respectively were suggested 
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to contribute to net export in these catchments. Adsorption/desorption processes have clear links 

to changes in deposition, however no explanation was given as to why S mineralization might 

have become a source of SO4 coincident with the period of declining deposition (Kopacek et al., 

2001).  

 

Bailey et al. (2001) similarly estimated S accumulation in soil in Northern Ireland over the period 

1940 to 1990. Sulphur budgets were apparently positive between 1940 and 1965, but became 

negative from the 1970s onwards at the same time that SO4 deposition began to decline.  The 

authors suggested that decreases in S inputs in deposition and fertilizer may have stimulated S 

mineralization, and noted that variations in rainfall S concentration were inversely coherent with 

S concentrations in stream water. The latter observation may indicate that changes in exogeneous 

SO4 supply affected net mineralization (Bailey et al., 2001).  

 

While mineralization rates may have increased in response to lower SO4 in soil solution, it is also 

possible that immobilization and plant uptake of S have declined in recent decades proportional to 

the decrease in deposition; particularly if previous microbial immobilization and plant uptake 

were greater than biological demand. Therefore, even if gross mineralization rates have remained 

constant over time, a decrease in total immobilization could result in greater net mineralization.  

 

(b) Climate effects 

Climate exerts a strong control on organic matter decomposition, and may also affect the release 

of inorganic nutrients through mineralization (Figure 10-2).  The average global temperature has 

increased by approximately 0.5°C over the past century, and is expected to increase further due to 

the continuing input of greenhouse gases into the atmosphere (Kirschbaum, 1999). Higher 

temperatures have been shown to increase N-mineralization and nitrification (Foster, 1989; 

Parker and Larson, 1962), and C respiration (Cao and Woodward, 1998; Davidson et al., 1998; 
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Leiros et al., 1999; Waksman and Gerretsen, 1931). Storage of N and C in soil was found to be 

inversely correlated with temperature (Post et al., 1982; 1985). Several studies have also 

documented a stimulatory effect of temperature on S mineralization (Foster 1989; Jaggi et al., 

1999; Kieft et al., 1987; Williams, 1967).  Sulphate mineralization is in part mediated by extra-

cellular enzymes, which apparently have different temperature activity optima (Strickland et al., 

1984).  Temperature enhanced SO4 release from dried peat in this study, and appeared to increase 

SO4 release from coniferous LFH material (Chapter 5).   

 

Extreme climatic events have also become more common in recent decades. Hurricanes, floods 

and droughts were more frequent during the 1980s and 1990s than in any other decade on record, 

and there has been a tendency towards heavier precipitation over the past 40 years (Francis and 

Hengeveld, 1998). An increase in weather intensity might be manifested in a greater frequency 

and duration of dry periods that are subsequently broken by more intense precipitation events. 

Associated fluctuations in soil moisture (i.e. drying and re-wetting) can have large effects on 

nutrient mineralization (Grierson et al., 1998; Pulleman and Tietema, 1999). Results of this study 

showed that drying and re-wetting events could have a substantial effect on SO4 release from 

organic material (Chapter 5).  

 

The El Niño phenomenon is an example of an extreme climate event that has increased in both 

frequency and persistence over the past 30 years (Francis and Hengeveld, 1998).  In an El Niño 

year, the normally strong easterly trade winds slacken, and warm water gradually returns to the 

eastern Pacific, preventing upwelling of cooler bottom waters. The consequent rise in sea surface 

temperature changes the pattern of rising and falling air masses over the equatorial Pacific Ocean, 

ultimately altering atmospheric circulation around the globe.  In south-central Ontario, El Niño 

years are associated with dry, warm summer conditions, which markedly affect stream hydrology. 

In El Niño years, flow in many streams ceases for up to months at a time, and soil moisture 
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becomes limiting in upland soils (Chapter 4). Chemical export is also affected, particularly in 

wetland-draining catchments.  Prolonged dry conditions cause wetlands to switch from net 

retainers to net sources of SO4, which can have large effects on downstream lakes (Chapter 3).   

 

Climate may have other indirect effects on SO4 cycling. For example, changes in the seasonal 

distribution of runoff, which have been reported at the Turkey Lakes Watershed (Beall et al., 

2001) could have important implications for hydrological and chemical fluxes.  For example, if 

summers become drier but fall precipitation increases there could be a greater proportion of flow 

through organic-rich surface soil, which would increase the export of many chemicals such as 

DOC and SO4.  Similarly, if rain events become more ‘flashy’, such that dry periods are 

interspersed with sudden storm events, there could be more surface runoff (thatched roof effect) 

and less flow through the soil profile. Changes in climate that influence hydrologic flow paths 

could have important implications for chemicals such as SO4 and DOC, which are found in 

relatively high soluble concentrations in the forest floor, but passage through the underlying 

mineral soil greatly reduces their concentrations in runoff mainly through adsorption reactions. 

Prolonged dry conditions could also result in greater macropore flow if drying and re-wetting 

result in soil cracking and root death. Flow via macropores would similarly allow SO4 (and DOC) 

in soil percolate to effectively bypass adsorption sites in mineral soil.  

 

The period of data collection in Muskoka-Haliburton catchments (1980-present) happens to 

coincide with a period of extreme climate. While climate is certainly responsible for inter-annual 

variations in SO4 concentrations and export, it is uncertain whether climate is entirely responsible 

for negative catchment S budgets. In wetlands such as the PC1 swamp, net retention vs. net export 

appears to be entirely a function of climate, as it affects the hydrologic balance within the 

wetland. In upland streams such as PC1-08, SO4 concentrations are also related to changes in 

catchment dryness, however net export occurs in both wet and dry years. Shifts from positive to 
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negative SO4 retention in European catchments coincided with the timing of large declines in 

atmospheric S deposition and fertilizer inputs (Bailey et al., 2001; Eriksen, 1997b; Kopacek et al., 

2001). These studies indicate a relationship between S inputs and catchment retention that could 

not be evaluated in the data record for catchments in south-central Ontario. However, given the 

timing of the 3 largest peaks in SO2 emissions in the eastern US (1943, 1977, 1979) and eastern 

Canada (1974, 1979, 1981), it is likely that S deposition in Muskoka-Haliburton was highest in 

the 1970s (Dillon et al., 1988). Similar to the European situation, a subsequent decline in 

deposition through the early 1980s may have precipitated the ‘bleeding’ of stored S from 

catchment soil, and thereby explain generally negative catchment budgets observed from the 

1980s onwards (Tables 9-3, 9-4). Results from this study cannot confirm the linkage between 

changes in deposition and net SO4 export in the field, however the adsorbed SO4 pool at PC1 is 

certainly large enough to account for net export for decades. Lower adsorbed S-SO4 storage at 

HP6 suggests that desorption is not as important for net S-export at this catchment. The relative 

importance of desorption vs. mineralization; however, is likely to vary depending on soil type, 

litter quality, hydrology, etc. It is possible, that mineralization might be a more important 

contributor to net S export at deciduous catchments such as HP6 and S50 which have relatively 

deep, organic rich A horizons (LaZerte and Scott, 1996; Lozano et al., 1987), and where SO4 

mineralization rates in the forest floor are apparently greater (Chapter 5; see also Foster, 1989). 

Further work, however, would be required to accurately quantify S pools at other Muskoka-

Haliburton catchments.  

 
In summary, a number of sources could account for the generally negative S budgets calculated 

for Muskoka-Haliburton catchments.  While dry deposition and mineral weathering likely 

account for part of the net export, budget calculations indicate excess S losses even when 

conservative estimates of these inputs are included and therefore other explanations must be 

invoked.  Desorption and mineralization likely both contribute to net export, but results presented 
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in this study do not allow the relative importance of either source to be assessed.  Rather, it is 

suggested that the physico-chemical processes of adsorption desorption and biological processes 

of immobilization and mineralization should be considered together, as the inorganic and organic 

S pools in soil are not independent.  Sulphate partitioning to mineral soil will be directly related 

to changes in SO4 in soil solution, which may be brought about by variations in SO4 deposition, 

and/or biological transformations (Figure 10-2). Biological transformations may in turn be 

affected by variations in climate that bring about changes in soil moisture and temperature. 

Adsorption/desorption reactions are likely the primary short-term (immediate) controls on SO4 

concentrations in soil, whereas mineralization and immobilization may be more important in the 

long-term (i.e. years). Fluctuating moisture conditions and changes in temperature, however, may 

increase mineralization rates and result in a greater contribution of mineralization to SO4 export 

than would be expected. If catchments are currently a net source of S it follows that at some point 

in the past S was instead accumulated. The shift between net retention and net export must have 

occurred prior to the onset of monitoring, and was possibly precipitated by large declines in S 

deposition that likely occurred between the 1970s and early 1980s. The duration of net export will 

be determined by the magnitude of S storage in catchment soil, and the time until deposition 

inputs become stable (assuming no climate variations). Catchments with large S accumulations 

will release more S-SO4 per unit change in deposition, and therefore will exhibit ‘delayed 

recovery’. Ultimately, models that couple the physico-chemical processes of 

adsorption/desorption with the biological processes of immobilization/mineralization are required 

to adequately interpret and predict catchment responses to deposition. Annual variations in 

climate are superimposed on the long-term trend of decreasing deposition, and therefore may 

mask predicted trajectories of recovery. 
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