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We search for the largest syntactic semigroups of star-free languages having n left quo-
tients; equivalently, we look for the largest transition semigroups of aperiodic finite au-
tomata with n states. We first introduce unitary semigroups generated by transforma-
tions that change only one state. In particular, we study unitary-complete semigroups
which have a special structure, and show that each maximal unitary semigroup is unitary-
complete. For n > 4 we exhibit a unitary-complete semigroup that is larger than any
aperiodic semigroup known to date. We then present even larger aperiodic semigroups,
generated by transformations that map a non-empty subset of states to a single state;
we call such transformations and semigroups semiconstant. We examine semiconstant
tree semigroups which have a structure based on full binary trees. The semiconstant tree
semigroups are at present the best candidates for largest aperiodic semigroups.

Keywords: aperiodic, monotonic, semiconstant, transition semigroup, star-free lan-
guage, syntactic complexity, unitary

1. Introduction

The state complexity of a regular language is the number of states in a complete min-

imal deterministic finite automaton (DFA) accepting the language [18]. An equiva-

lent notion is that of quotient complexity, which is the number of left quotients of the

language [1]; we prefer quotient complexity since it is a language-theoretic notion.

The usual measure of complexity of an operation on regular languages [1, 18] is the

maximal quotient complexity of the result of the operation as a function of the quo-

tient complexities of the operands. This measure has some serious disadvantages,

however. For example, as shown in [6], in the class of star-free languages all common

operations have the same quotient complexity as they do in the class of arbitrary

regular languages, with the exception of two cases discussed in [7]: reversal and a

special case of product. Thus quotient complexity fails to differentiate between the

very special class of star-free languages and the class of all regular languages.
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It has been suggested that other measures of complexity may also be useful [2],

in particular, the syntactic complexity of a regular language which is the cardinality

of its syntactic semigroup [16]. This is the same as the cardinality of the transition

semigroup of a minimal DFA accepting the language, and it is this latter represen-

tation that we use here. The transition semigroup is the set of all transformations

induced by non-empty words on the set of states of the DFA. The syntactic com-

plexity of a class of languages is the size of the largest syntactic semigroups of

languages in that class as a function of the quotient complexities of the languages.

Since the syntactic complexity of star-free languages is considerably smaller than

that of regular languages, this measure succeeds in distinguishing the two classes.

The class of star-free languages [15] is the smallest class obtained from fi-

nite languages using only boolean operations and concatenation, but no star. By

Schützenberger’s theorem [17] we know that a language is star-free if and only if

the transition semigroup of its minimal DFA is aperiodic, meaning that it contains

no non-trivial subgroups. Equivalently, a transition semigroup is aperiodic if and

only if no word over the alphabet of the DFA can induce a non-trivial permutation

of any subset of two or more states.

Two aperiodic semigroups, monotonic and partially monotonic, were studied

in [11]. That work was adapted to finite automata in [5], where nearly monotonic

semigroups were also introduced; they are larger than the partially monotonic ones

and were the largest aperiodic semigroups known to date for n 6 7. For n > 8 the

largest aperiodic semigroups known to date were those generated by DFAs accepting

R-trivial languages [4]. The syntactic complexity of R-trivial languages is n!. As to

aperiodic semigroups, tight upper bounds on their size were known only for n 6 3.

The following are the main contributions of this paper:

(1) Using the method of [14], we enumerated all aperiodic semigroups for n = 4,

and showed that maximal aperiodic semigroups have size 47, while the maximal

nearly monotonic semigroup has size 41. This may seem like an insignificant

result but it provided us with strong motivation to search for larger semigroups.

The number of aperiodic transformations is (n+ 1)n−1. For n > 4 the number

of aperiodic semigroups is very large, and so it is difficult to check them all.

(2) We studied semigroups generated by transformations, which we call unitary,

that change only one state. A transition semigroup of a DFA is unitary-complete

if it is unitary and the addition of any new unitary transition results in a semi-

group that is not aperiodic. We characterized unitary semigroups and computed

their maximal sizes up to n = 1, 000. For n > 4 the maximal unitary semigroups

are larger than the maximal nearly monotonic ones and also larger than any

previously known aperiodic semigroup.

(3) For each n we found a set of DFAs whose inputs induce semiconstant tree trans-

formations that send a non-empty subset of the set of states to a single state,

and which have a structure based on full binary trees. For n > 4, there is a semi-

constant tree semigroup larger than the largest unitary-complete semigroup. We
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computed the maximal size of these transition semigroups up to n = 500.

(4) We derived formulas for the maximal sizes of unitary-complete and semiconstant

tree semigroups. We also provided recursive formulas characterizing the max-

imal unitary-complete and semiconstant tree semigroups; these formulas lead

to efficient algorithms for computing the forms and sizes of such semigroups.

These algorithms were used in the computations of (2) and (3) above.

Our results about aperiodic semigroups are summarized in Tables 1 and 2 for small

values of n. Transformation 1 is the identity; it can be added to unitary and semi-

constant transformations without affecting aperiodicity.

Additional information about the classes of semigroups in Tables 1 and 2 is

given later. The classes are listed in the order of increasing size when n is large.

The number in boldface shows the value of n for which the size of a given semigroup

exceeds the sizes of all of the preceding ones. For example, the sizes of the largest

semigroups of finite languages exceed the sizes of the preceding semigroups for

n > 12.

There are two more classes of syntactic semigroups that have the same com-

plexity as the semigroups of finite languages: those of cofinite and reverse definite

languages. The tight upper bound ⌊e · (n− 1)!⌋ for J -trivial languages ([4]) is also

a lower bound for definite languages ([5]). An upper bound of n((n− 1)!− (n− 3)!)

has been shown to hold [13] for definite and generalized definite languages [10], but

it is not known whether this bound is tight.

Let fpm(n) be the size of the largest partially monotonic semigroups of trans-

formations of n elements; then fpm(n) is asymptotically AB2n−1

√
n

, where A and B

are constants [5]. For nearly monotonic semigroups the size is fpm(n) + n− 1.

Table 1. Large aperiodic semigroups.

n : 1 2 3 4 5 6 7 8

Monotonic
(

2n−1

n

)

1 3 10 35 126 462 1, 716 6, 435

Part. mon. fpm(n) − 2 8 38 192 1, 002 5, 336 28, 814

Near. mon. fpm(n) + n− 1 − 3 10 41 196 1, 007 5, 342 28, 821

Finite (n− 1)! 1 1 2 6 24 120 720 5, 040

J -trivial ⌊e · (n− 1)!⌋ − 2 5 16 65 326 1, 957 13, 700

R-trivial n! 1 2 6 24 120 720 5, 040 40,320

Unitary-complete with 1 − 3 10 45 270 1, 737 13, 280 121, 500

Semiconstant tree with 1 − 3 10 47 273 1, 849 14, 270 126, 123

Aperiodic 1 3 10 47 ? ? ? ?

The remainder of the paper is structured as follows. Section 2 presents our ter-
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Table 2. Large aperiodic semigroups continued.

n : 9 10 11 12 13

Monotonic 24, 310 92, 378 352, 716 1, 352, 078 5, 200, 300

Partially monotonic 157, 184 864, 146 4, 780, 008 26, 572, 086 148, 321, 344

Nearly monotonic 157, 192 864, 155 4, 780, 018 26, 572, 097 148, 321, 356

Finite 40, 320 362, 880 3, 628, 800 39,916,800 479, 001, 600

J -trivial 109, 601 986,410 9, 864, 101 108, 505, 112 1, 302, 061, 345

R-trivial 362, 880 3, 628, 800 39, 916, 800 479, 001, 600 6, 227, 020, 800

Unitary-complete with 1 1, 231, 200 12, 994, 020 151, 817, 274 2, 041, 564, 500 29, 351, 808, 000

Semiconstant tree with 1 1, 269, 115 14, 001, 629 169, 410, 932 2, 224, 759, 333 31, 405, 982, 419

Aperiodic ? ? ? ? ?

minology and notation. Our large aperiodic semigroups are defined in Section 3. The

special case of unitary semigroups is then considered in Section 4, and semiconstant

tree semigroups are the topic of Section 5. Section 6 concludes the paper.

A much abbreviated version of this work appeared in [8].

2. Terminology and Notation

Let Σ be a finite alphabet. The elements of Σ are letters and the elements of Σ∗

are words, where Σ∗ is the free monoid generated by Σ. The empty word is ε, and

the set of all non-empty words is Σ+. A language is any subset of Σ∗.

Suppose n > 1. Without loss of generality we assume that our basic set is

Q = {0, 1, . . . , n− 1}. A deterministic finite automaton (DFA) is a quintuple D =

(Q,Σ, δ, 0, F ), where Q is a finite non-empty set of states, Σ is a finite non-empty

alphabet, δ : Q × Σ → Q is the transition function, 0 ∈ Q is the initial state, and

F ⊆ Q is the set of final states. We extend δ to Q× Σ∗ and to 2Q × Σ∗ as usual.

A DFA D accepts a word w ∈ Σ∗ if δ(0, w) ∈ F . The language accepted by D

is L(D) = {w ∈ Σ∗ | δ(0, w) ∈ F}. By the language of a state q of D we mean the

language Lq(D) accepted by the DFA (Q,Σ, δ, q, F ). A state is empty (also called

dead or a sink) if its language is empty. Two states p and q of D are equivalent if

Lp(D) = Lq(D); otherwise, they are distinguishable. A state q is reachable if there

exists a word w ∈ Σ∗ such that δ(0, w) = q. A DFA is minimal if all its states are

reachable and pairwise distinguishable.

A transformation of Q is a mapping of Q into itself. Let t be a transformation of

Q; then qt is the image of q ∈ Q under t. If P is a subset ofQ, then Pt = {qt | q ∈ P}.

An arbitrary transformation can be written in the form

t =





0 1 · · · n− 2 n− 1

p0 p1 · · · pn−2 pn−1



 ,
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where pq = qt for q ∈ Q. We also use t = [p0, . . . , pn−1] as a simplified notation.

The composition of transformations t1 and t2 of Q is the transformation t1 ◦ t2 such

that q(t1 ◦ t2) = (qt1)t2 for all q ∈ Q. We write t1t2 for t1 ◦ t2.

Let TQ be the set of all nn transformations of Q; then TQ is a monoid under

composition with 1 as the identity. A permutation of Q is a mapping of Q onto

itself. For k > 2, a permutation t of a set P = {q0, q1, . . . , qk−1} ⊆ Q is a k-

cycle if q0t = q1, q1t = q2, . . . , qk−2t = qk−1, qk−1t = q0; this k-cycle is denoted by

(q0, q1, . . . , qk−1). If a transformation t of Q acts like a k-cycle on some P ⊆ Q, we

say that t has a k-cycle. A transformation of Q has a cycle if it has a k-cycle for

some k > 2.

A transformation is aperiodic if it has no cycles.

In any DFA D, each word w ∈ Σ∗ induces a transformation tw of Q defined by

qtw = δ(q, w) for all q ∈ Q. The set of all transformations of Q induced in D by

non-empty words is the transition semigroup of D, which is a subsemigroup of TQ.

The syntactic congruence ≈L of any language L is defined as follows:

x ≈L y if and only if uxv ∈ L ⇔ uyv ∈ L for all u, v ∈ Σ∗. The set Σ+/≈L of

equivalence classes of ≈L is a semigroup called the syntactic semigroup of L. A

language is regular if and only if its syntactic semigroup is finite. The syntactic

complexity of L is the cardinality of its syntactic semigroup.

If D is minimal, its transition semigroup is isomorphic to the syntactic semigroup

of the language L(D) [15, 16]. In this paper we deal only with transition semigroups.

If T is a set of transformations, then 〈T 〉 is the semigroup generated by T . If

D = (Q,Σ, δ, 0, F ) is a DFA, the transformations induced by letters of Σ are called

generators of the transition semigroup of D or simply generators of D.

3. Unitary and Semiconstant DFAs

We define a new class of aperiodic DFAs among which are found DFAs with the

largest transition semigroups known. We also study several of its subclasses.

A unitary transformation t, denoted by (p → q), has p 6= q, pt = q and rt = r

for all r 6= p. A DFA is unitary if each of its generators is unitary. A semigroup is

unitary if it has a set of unitary generators.

A constant transformation t, denoted by (Q → q), has pt = q for all p ∈ Q.

A transformation t is semiconstant if it maps a non-empty subset P of Q to a

single element q and leaves the remaining elements of Q unchanged. It is denoted

by (P → q). A constant transformation is semiconstant with P = Q, and a unitary

transformation (p → q) is semiconstant with P = {p} (or P = {p, q}). A DFA is

semiconstant if each of its generators is semiconstant. A semigroup is semiconstant

if it has a set of semiconstant generators.

For each n > 1 we shall define several DFAs. Let m, n1, n2, . . . , nm be positive

natural numbers. Also, let n = n1 + · · · + nm, and for each i, 1 6 i 6 m, define

ri by ri =
∑i−1

j=1 nj . For i = 1, . . . ,m, let Qi = {ri, ri + 1, . . . , ri+1 − 1}; thus the

cardinality of Qi is ni. Let Q = Q1 ∪ · · · ∪ Qm = {0, . . . , n− 1}; the cardinality of
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Q is n. The sequence (n1, n2, . . . , nm) is called the distribution of Q. The number

d(n) of different distributions of the n-element set Q is 2n−1.

A binary tree is full if every vertex has either two children or no children. There

are Cm−1 full binary trees with m leaves, where Cm = 1
m+1

(

2m
m

)

is the Catalan

numbera.

Let ∆Q be a full binary tree with m leaves labeled Q1, . . . , Qm from left to

right. To each node v ∈ ∆Q we assign the union Q(v) of all the sets Qi labeling

the leaves in the subtree rooted at v. With each full binary tree we can associate

different distributions. A full binary tree ∆Q with a distribution (n1, n2, . . . , nm)

of Q is denoted by ∆Q(n1, n2, . . . , nm) and is called the structure of Q, which

will uniquely determine the transition function δ of the DFAs defined below. The

number of possible structures of Q for a given n is the binomial transform of the

Catalan number Cn
b. We can denote the structure of Q as a binary expression.

For example, the expression ((3, 2), (4, 1)) denotes the full binary tree in which the

leaves are labeled Q1, Q2, Q3, and Q4, where |Q1| = 3, |Q2| = 2, |Q3| = 4, |Q4| = 1,

and the interior nodes are labeled by Q1 ∪ Q2, Q3 ∪ Q4 and Q1 ∪ Q2 ∪ Q3 ∪ Q4.

The expression (((3, 2), 4), 1) has interior nodes labeled Q1 ∪Q2, Q1 ∪Q2 ∪Q3 and

Q1 ∪Q2 ∪Q3 ∪Q4.

Definition 1 (Transformations) Suppose n > 1, (n1, n2, . . . , nm) is a distribu-

tion of Q, and ∆Q(n1, n2, . . . , nm) is a structure of Q.

Type 1: For all i = 1, . . . ,m and q, q + 1 ∈ Qi the unitary transformations (q →

q + 1) and (q + 1 → q) are Type 1 transformations.

Type 2: If 1 6 i 6 m− 1 and i < j 6 m, for each q ∈ Qi and p ∈ Qj, (q → p) is

a Type 2 transformation.

Type 3: There are m− 1 internal nodes. For each such node w, the semiconstant

transformation (Q(w) → min(Q(w))) is of Type 3.

Type 4: The identity transformation 1 on Q is of Type 4.

For a fixed i there are 2ni−2 transformations of Type 1 and ni(ni+1+ · · ·+nm)

transformations of Type 2; for m = 1 there are no transformations of Type 2.

The number of all transformations of Type 3 is m − 1. Note that the distribution

(n1, n2, . . . , nm) affects transformations of Types 1, 2, and 3, whereas the binary

tree affects only transformations of Type 3.

In the following DFAs the transition function is defined by a set of transforma-

tions and the alphabet consists of letters inducing these transformation.

Definition 2 (DFAs) Suppose n > 1.

(1) Any DFA of the form Du(n1, . . . , nm) = (Q,Σu, δu, 0, {n−1}), where δu has all

the transformations of Types 1 and 2, is a unitary-complete DFA. Note that

ahttp://en.wikipedia.org/wiki/Catalan_number
bhttp://oeis.org/A007317
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the transition semigroup of a unitary-complete DFA is unitary-complete.

(2) Dui(n1, . . . , nm) = (Q,Σui, δui, 0, {n− 1}) is Du(n1, . . . , nm) with 1 added.

(3) Any DFA Dsct(∆Q(n1, . . . , nm)) = (Q,Σsct, δsct, 0, {n− 1}), where δsct has all

the transformations of Types 1, 2 and 3, is a semiconstant tree DFA.

(4) Dscti(∆Q(n1, . . . , nm)) = (Q,Σscti, δscti, 0, {n − 1}) is Dsct(∆Q(n1, . . . , nm))

with 1 added.

The directed graph G(D) = (V,E) of a unitary DFA D is defined as follows:

V = Q, and for every unitary transformation (p → q) in D, there is an edge

(p, q) in E. A directed graph (V,E) is called a bipath (bidirectional path) [9] if

V = {v0, . . . , vk−1} for some k > 1, and for each vq, vq+1 ∈ V there are two edges

(vq, vq+1) and (vq+1, vq), and there are no other edges. In the graph of a unitary-

complete DFA the induced subgraph on Qi is isomorphic to a bipath. Also, the

graph of Du(n1, . . . , nm) of Definition 2 can be viewed as a sequence (Q1, . . . , Qm)

of bipaths, where there are additional edges from every q in Qi to every p in Qj, if

i < j.

Example 3. Figure 1 shows three examples of unitary DFAs. In Fig. 1 (a) we

have DFA Du(3), where the letter apq induces the unitary transformation (p → q).

In Fig. 1 (b) we show the graph G(Du(3)). Next, in Figs. 1 (c) and (d), we have

G(Du(3, 1)) and G(Du(2, 2, 2)), respectively. We shall return to these examples later.

(d)

0 1 2

a01 a12

0 1 2

a10 a21

(a)

(b)

a01, a21
a01, a10, a12a10, a12, a21

0 1 2

3

(c)

1

4 5

32

0

Fig. 1. Unitary DFAs: (a) Du(3); (b) G(Du(3)); (c) G(Du(3, 1)); (d) G(Du(2, 2, 2)).

Remark 4. All four types of DFAs of Definition 2 are minimal as is easily verified.

Hence the syntactic semigroup of the language of each DFA is isomorphic to the

transition semigroup of the DFA.
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4. Unitary Semigroups

We study unitary semigroups because their generators are the simplest. We begin

with three previously studied subsemigroups of unitary semigroups.

Monotonic semigroups: Monotonic semigroups were studied in [5, 11, 12]. Let �

be a total order on Q. A transformation t of Q is order-preserving if for all p, q ∈ Q,

p � q implies pt � qt. Note that the identity transformation is order-preserving, and

the composition of two order-preserving transformations is order preserving. A DFA

is monotonic if each of its input transformations is order-preserving. A semigroup

is monotonic if it has a set of order-preserving generators.

The following result of [11] is somewhat modified for our purposes:

Proposition 5 (Gomes and Howie) The set M of all
(

2n−1
n

)

− 1 order-

preserving transformations other than 1 is an aperiodic semigroup generated by

GM = {(q → q + 1) | 0 6 q 6 n− 2} ∪ {(q → q − 1) | 1 6 q 6 n− 1},

and no smaller set of unitary transformations generates M .

Corollary 6. The transition semigroup of Dui(n) is the semigroup M ∪ {1} of all

order-preserving transformations.

Note that Du has transitions of Type 1 only, and Dui has Type 1 and 4 only.

Figure 1 (b) shows Du(3) and Dui(3), if 1 is added. The transition semigroup of

Dui(3) has ten elements and is the largest aperiodic semigroup for n = 3 [5].

Note also that there are monotonic semigroups that do not have unitary gener-

ating sets; each monotonic semigroup, however, is a subsemigroup of the transition

semigroup of Dui(n) consisting of all order-preserving transformations.

Partially monotonic semigroups: A partial transformation t of Q is a partial

mapping of Q into itself. If t is defined for q ∈ Q, then qt is the image of q under

t; otherwise, we write qt = �. By convention, �t = �. The domain of t is the set

dom(t) = {q ∈ Q | qt 6= �}. Given an order � on Q, a partial transformation is

order-preserving if for all p, q ∈ dom(t), p � q implies pt � qt.

Semigroups of order-preserving partial transformations were studied by Gomes

and Howie [11] and adapted to automata in [5]. Suppose Q = {0, . . . , n−2}. We fol-

low [5] by adding state (n−1) for the undefined value � and defining (n−1)t = n−1

for all transformations. The semigroups of the obtained DFAs correspond naturally

to semigroups of partial transformations. The transition semigroup of a DFA is par-

tially monotonic if its corresponding semigroup of partial transformations has only

order-preserving transformations. A DFAs with a partially monotonic semigroup is

partially monotonic. The following is an adaptation of the results of [11]:

Proposition 7. For n > 2, the DFA Dui(n − 1, 1) = (Q,Σui, δui, 0, {n − 1}) has

the following properties:

(1) All partial transformations corresponding to the 3n− 4 generators of Dui(n −

8



August 31, 2015 12:7 WSPC/INSTRUCTION FILE AperiodicIJFCS6

1, 1) are order-preserving. Thus Dui(n− 1, 1) is partially monotonic, and hence

aperiodic.

(2) The transition semigroup of Dui(n − 1, 1) corresponds to the semigroup PMQ

of all fpm(n) order-preserving partial transformations of Q, where

fpm(n) =

n−1
∑

k=0

(

n− 1

k

)(

n+ k − 2

k

)

. (1)

(3) Each generator is idempotent, and 3n− 4 is the smallest number of idempotent

generators of the transition semigroup of Dui(n− 1, 1).

Example 8. There are eight order-preserving partial transformations of the set

Q = {0, 1}, namely: [�,�], [0,�], [1,�], [�, 0], [�, 1], [0, 0], [0, 1], [1, 1]. When we

replace � by 2, the partial transformations become total transformations [2, 2, 2],

[0, 2, 2], [1, 2, 2], [2, 0, 2], [2, 1, 2], [0, 0, 2], [0, 1, 2], [1, 1, 2]. The 9− 4 = 5 generators

of Dui(2, 1) are: (0 → 1) = [1, 1, 2], (0 → 2) = [2, 1, 2], (1 → 0) = [0, 0, 2], (1 →

2) = [0, 2, 2] and 1. The DFA of Figure 1 (c) is an example of Dui(3, 1).

For n > 4 the largest partially monotonic semigroup is larger than the semigroup

of all order-preserving transformations.

There are partially monotonic semigroups that do not have unitary generat-

ing sets; each partially monotonic semigroup, however, is a subsemigroup of the

transition semigroup of Dui(n− 1, 1).

Other previously studied aperiodic semigroups: As we mentioned in the

introduction, the syntactic complexity of five other language classes was studied

previously. Cofinite languages are complements of finite languages, and therefore

their minimal DFAs have the same transition semigroups as the DFAs of finite

languages.

The reverse wR of a word w ∈ Σ+ is w spelled backwards and εR = ε. The

reverse of a language L is LR = {wR | w ∈ L}. A language is definite if it has

the form E ∪ Σ∗F , where E and F are finite. It is reverse definite if its reverse is

definite, that is, if it has the form E ∪FΣ∗, where E and F are finite. It was shown

in [5] that the syntactic complexity of reverse definite languages is the same as that

of finite languages. The syntactic complexity of definite languages remains open.

The well known Green relations define R-trivial and J -trivial monoids (semi-

groups with an identity). IfM is a monoid, the relationR is defined by sRt ⇔ sM =

tM for s, t ∈ M . A monoid is R-trivial if sR t implies s = t. The relation J is de-

fined by sJ t ⇔ MsM = MtM, and M is J -trivial if MsM = MtM implies s = t.

Languages whose minimal DFAs have R-trivial (J -trivial) transition monoids are

also called R-trivial (J -trivial).

Syntactic complexities of R-trivial and J -trivial languages were studied by Br-

zozowski and Li [4]. Consider the natural order 6 on Q = {0, . . . , n − 1}. We say

that a transformation t is non-decreasing if q 6 qt for all q ∈ Q. Let FQ be the set

of all non-decreasing transformations. The size of FQ is n!.

9
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It was shown in [3] that L is an R-trivial language if and only if its minimal

DFA is partially ordered, or equivalently, if its transition semigroup contains only

non-decreasing transformations. Thus the largest semigroup generated by DFAs

accepting R-trivial languages is FQ.

Proposition 9. The transition semigroup of Dui(1, 1, . . . , 1) is the semigroup FQ

of all non-decreasing transformations.

Proof. DFA Dui(1, 1, . . . , 1) has only unitary transformations of Type 2. They

generate only non-decreasing transformations, since each of them preserves the

natural order. An arbitrary non-decreasing transformation has the form t =




0 1 · · · n− 2 n− 1

p0 p1 · · · pn−2 n− 1



 ,where pq > q for q = 0, . . . , n − 2. Since Dui(1, 1, . . . , 1)

contains all unitary transformations of the form (q → p) for q 6 p, all transforma-

tions tq = (q → pq) are present. One verifies that applying tn−2tn−3 · · · t1t0 results

in t.

There are semigroups with only non-decreasing transformations that do not have

unitary generating sets, but each such semigroup is a subsemigroup of FQ. Since

every J -trivial language is also R-trivial, the transition semigroups of all minimal

DFAs accepting J -trivial languages are also subsemigroups of Dui(1, 1, . . . , 1).

General unitary semigroups: A set {t0, . . . , tk−1} of unitary transformations is

k-cyclic if it has the form t0 = (q0 → q1), t1 = (q1 → q2), . . . , tk−2 = (qk−2 → qk−1),

tk−1 = (qk−1 → q0), where the qi are distinct.

Lemma 10. Let T be a set of unitary transformations.

(1) If T has a k-cyclic subset {t0, . . . , tk−1} with k > 3, then 〈T 〉 is not aperiodic.

(2) If T contains a subset T6 = {t01, t10, t12, t13, t21, t31} where ti,j = (qi → qj) and

q0, q1, q2, q3 ∈ Q, then 〈T 〉 is not aperiodic.

Proof. Without loss of generality, we can replace qi by i in both claims.

(1) Suppose that T contains t0, . . . , tk−1, where k 6 n, tq = (q, q + 1) for

q = 0, . . . , k − 2, and tk−1 = (k − 1 → 0). Then tk−2tk−3 . . . t1t0tk−1 maps

0 to 1, 1 to 2, . . . , k− 3 to k− 2, k− 2 to 0, and k− 1 to 0, and does not affect

any other states. Thus the set {0, 1, . . . , k − 2} is cyclically permuted, which

shows that 〈T 〉 is not aperiodic.

(2) If {t01, t12, t13, t10, t21, t31} ⊆ T , then the transformation t12t01t13t21t10t31
transposes q0 and q1; hence 〈T 〉 is not aperiodic.

Theorem 11. If D = (Q,Σ, δ, 0, F ) is a unitary DFA, the following are equivalent:

(1) D is aperiodic.

10
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(2) The set of generators of D does not contain any k-cyclic subsets with k > 3,

and does not contain any sets of type T6.

(3) Every strongly connected component of the graph of D is a bipath.

Proof. 1 ⇒ 2: This follows from Lemma 10.

2 ⇒ 3: Consider a strongly connected component C of the graph of D. If

|C| = 1, the claim holds. Otherwise, suppose p ∈ C and (p → q) is a transition.

Then there must also be a directed path from q to p. If the last transition in that

path is (r → p), where r 6= q, then the set of generators must contain a k-cyclic

subset with k > 3, which is a contradiction. Hence the transition (q → p) must be

present.

Next, suppose that there are transitions (p → q), (p → r), and (p → s). By

the argument above there must also be transitions (q → p), (r → p), and (r →

s). But then the set of generators contains a subset of type T6, which is again a

contradiction.

It follows that every strongly connected component is a bipath, and the graph

of the transitions of D is a loop-free connection of such bipaths.

3 ⇒ 1: Suppose that there is a transformation t with a cycle (q0, . . . , qk−1).

Every state qi from the cycle lies in a single strongly connected component, which

is a bipath. This bipath is monotonic with some order �, which must be preserved

by the transformation t restricted to the set of states of the cycle. If q0 ≺ q1, then

q1 = q0t ≺ q1t = q2, etc. Thus we reach qk−1 ≺ q0 ≺ qk−1, which is a contradiction.

Hence D is aperiodic.

Theorem 12. A maximal aperiodic unitary semigroup is isomorphic to the tran-

sition semigroup of a unitary-complete DFA Du(n1, . . . , nm), where (n1, . . . , nm) is

some distribution of Q.

Proof. We know that an aperiodic unitary DFA D is a loop-free connection of

bipaths. Let Q1, . . . , Qm be the bipaths of D. There exists a linear ordering ≺ of

them, such that there is no transformation (p → q) for q ∈ Qi, p ∈ Qj , i ≺ j. If all

possible transformations (q → p) for q ∈ Qi, p ∈ Qj, i ≺ j are present, then D is

isomorphic to Du(n1, . . . , nm). Otherwise we can add more unitary transformations

of Type 2 and obtain a larger semigroup.

For each distribution (n1, . . . , nm), we calculate the size of the transition semi-

group of Dui(n1, . . . , nm).

Theorem 13. The cardinality of the transition semigroup of Dui(n1, . . . , nm) is

m
∏

i=1







(

2ni − 1

ni

)

+

ni−1
∑

h=0





m
∑

j=i+1

nj





ni−h
(

ni

h

)(

ni + h− 1

h

)






. (2)

11
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Proof. As above Dui(n1, . . . , nm) is a loop-free connection of bipaths, and its gen-

erators are the transformations within each bipath, all transformations of the form

(p → q) where p ∈ Qi, q ∈ Qj , i < j, and 1.

In the transition semigroup of Dui(n1, . . . , nm), consider i such that 1 6 i 6 m,

and a transformation ti that

(1) acts as the identity on any state in Qj for j 6= i,

(2) maps some number h of states of Qi to Qi,

(3) maps the remaining ni − h states of Qi to some states in Qi+1 ∪ · · · ∪Qm.

It is convenient to temporarily consider the partial transformation t′i defined on Qi

which for all q ∈ Qi has the property qt′i = qti, if qti ∈ Qi and qt′i = �, otherwise.

Thus the images of the ni − h states mapped to the outside of Qi are all lumped

together into the undefined value �. The number of such partial transformations

generated by the transitions in the bipath is
(

ni

h

)(

ni+h−1
h

)

[11]; these are all the

order-preserving partial transformations of Qi that map exactly h states of Qi

to Qi.

Returning to ti, consider first the case h = ni; then t′i is the total transformation

equal to ti, and there are
(

2ni−1
ni

)

such transformations. Otherwise, ti maps ni − h

states of Qi to arbitrary states in Qi+1∪· · ·∪Qm. If k = ni+1+· · ·+nm is the number

of states in the bipaths below Qi, then for each t′i there are kni−h transformations

ti. Altogether, for a fixed bipath Qi, the number of transformations ti is

(

2ni − 1

ni

)

+

ni−1
∑

h=0

kni−h

(

ni

h

)(

ni + h− 1

h

)

. (3)

If t is any transformation of Dui(n1, . . . , nm), then it can be represented by

t = tm ◦ tm−1 ◦ · · · ◦ t1, where ti maps Qi into Qi ∪ . . . ∪Qm. Since the domains of

t1, . . . , tm are disjoint, there is a bijection between transformations t and the sets

{t1, . . . , tm}. Hence we can multiply the numbers of different transformations ti for

each 1 6 i 6 m, and the formula in the theorem results.

Note that each factor of the product in Theorem 13 depends only on ni and

on the sum k = ni+1 + · · · + nm. Hence if Dui(n1, . . . , nm) is maximal, then

Dui(n2, . . . , nm) is also maximal and so on. Consequently, we have

Corollary 14. Let mui(n) be the cardinality of the largest transition semigroup of
DFA Dui(n1, . . . , nm) with n states. If we define mui(0) = 1, then for n > 0

mui(n) = max
j=1,...,n



mui(n− j)





(

2j − 1

j

)

+

j−1
∑

h=0

(n− j)j−h

(

j

h

)(

j + h− 1

h

)







 . (4)

This leads directly to a dynamic algorithm taking O(n3) time for computing

mui(n) and the distributions (n1, . . . , nm) yielding the maximal unitary semigroups.

This holds assuming constant time for computing the internal terms in the summa-

tion and summing them, where, however, the numbers can be very large (O(nn)).

12
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The precise complexity depends on the algorithms used for multiplication, expo-

nentiation and calculation of binomial coefficients.

We were able to compute the maximal Dui up to n = 1, 000. Here is an example

of the maximal one for n = 100:

Dui(12, 11, 10, 10, 9, 8, 8, 7, 6, 5, 5, 4, 3, 2);

its syntactic semigroup size exceeds 2.1 × 10160. Compare this to the previously

known largest semigroup of an R-trivial language; its size is 100! which is approx-

imately 9.3 × 10157. On the other hand, the maximal possible syntactic semigroup

of any regular language for n = 100 is 10200.

We were not able to compute the tight asymptotic bound on the maximal size

of unitary semigroups. However, we computed a lower bound which is larger than

n!, the previously known lower bound for the size of aperiodic semigroups.

Theorem 15. For n even the size of the maximal unitary semigroup is at least

n!(n+ 1)!

2n((n/2)!)2
.

Proof. Let n be even and consider Dui(2, 2, . . . , 2) consisting of m = n/2 bipaths.

From Theorem 13 we have:

m
∏

i=1







(

4− 1

2

)

+

1
∑

h=0





m
∑

j=i+1

2





2−h
(

2

h

)(

2 + h− 1

h

)







=

m
∏

i=1

(

4(m− i)2 + 8(m− i) + 3
)

=

m
∏

i=1

((2i− 1)(2i+ 1))

= (2m− 1)!!(2m+ 1)!! = (2m− 1)!!(2(m+ 1)− 1)!!

By using the equality (2k − 1)!! = (2k)!
2kk!

we obtain:

=
(2m)!

2mm!

(2(m+ 1))!

2m+1(m+ 1)!
=

n!(n+ 2)!

2n+1(n/2)!((n/2) + 1)!

=
n!(n+ 2)(n+ 1)!

2n+1(n/2)!(n/2 + 1)(n/2)!
=

n!(n+ 1)!

2n((n/2)!)2
.

For n = 100 the bound exceeds 7.5 × 10158. Larger lower bounds can also be

found using increasing values of j in Dui(j, j, . . . , j), but the complexity of the

calculations increases, and such bounds are not tight.

5. Semiconstant Semigroups

We now consider our largest aperiodic semigroups, the semiconstant ones.

13
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Nearly monotonic semigroups: Let NMQ be the set of all transformations

corresponding to order-preserving partial transformations and all constant trans-

formations. A semigroup on Q is nearly monotonic if it is a subsemigroup of NMQ.

A DFA is nearly monotonic if its transition semigroup is nearly monotonic.

The semigroup of Dscti((n − 1, 1)) is the largest nearly monotonic semigroup

NMQ, and for n > 4 it is larger than the largest partially monotonic semigroup.

There are nearly monotonic semigroups without semiconstant generating sets, but

each nearly monotonic semigroup is a subsemigroup of the transition semigroup of

Dscti((n− 1, 1)).

Semiconstant tree semigroups: An example of a maximal semiconstant tree

DFA for n = 6 is Dscti(((2, 2), 2)); its transition semigroup has 1,849 elements. For

n > 4, the maximal semiconstant tree semigroup is the largest aperiodic semigroup

known.

First we define a new operation on DFAs.

Definition 16. Let A = (QA,ΣA, δA, qA, FA) and B = (QB,ΣB, δB, qB, FB) be

DFAs, where QA ∩QB = ∅. Let QC = QA ∪QB. The semiconstant sum of A and B

is the DFA C = (A,B) = (QC ,ΣC , δC , qA, FB). For each transition t in δA, we have

a transition t′ in δC such that qt′ = qt for q ∈ QA and qt′ = q otherwise. Dually,

we have transitions defined by t in δB. Moreover we have a unitary transformation

(p → q) for each p ∈ QA, q ∈ QB, and a constant transformation (QC → qA).

For m > 1, each Dscti(∆Q(n1, . . . , nm)) is a semiconstant sum of two smaller

semiconstant tree DFAs: Dscti(∆Qleft
(n1, . . . , nr)), defined by the left subtree of

∆Q(n1, . . . , nm), and Dscti(∆Qright
(nr+1, . . . , nm)), defined by the right subtree.

Lemma 17. The semiconstant sum C = (A,B) is minimal if and only if every state

of A is reachable from qA in A, the states of B are pairwise distinguishable, and

FB 6= ∅.

Proof. If C is minimal, then every state of C is reachable from qA in C. If q is not

reachable from qA in A, then it must be reachable in C by a word that includes

the constant transformation (QC → qA). But then q must be reachable from qA
in A. Now consider two distinct states p, q ∈ QB. Since C is minimal, p and q

are distinguishable by some word w, and no letter of w can induce the constant

transformation (QC → qA). Hence every letter of w induces a transformation that

acts on QB either as the identity or as some t′ ∈ δB. If we omit the letters that act

as the identity, we obtain a word w′ that distinguishes p and q in B.

Conversely, distinct states p ∈ QA, q ∈ QC \ FB are distinguishable as follows.

Apply a unitary transformation t that takes p to a state in FB. Since q is not

changed by t, p and q are distinguishable. If p ∈ QA and q ∈ FB then p and

q are already distinguished (by the empty word). If p ∈ QB and q ∈ QB then

they are distinguishable by assumption. Every state of A is reachable from qA in

A by assumption. Also, any state in q ∈ QB is reachable from qA by a unitary

14



August 31, 2015 12:7 WSPC/INSTRUCTION FILE AperiodicIJFCS6

transformation. Hence all the states of C are reachable, and C is minimal.

Lemma 18. If A and B are aperiodic, then their semiconstant sum (A,B) is also

aperiodic.

Proof. Suppose that 〈(A,B)〉 contains a cycle t. This cycle cannot include both a

state from A and a state from B, since the only way to map a state from B to a state

from A in (A,B) is by a constant transformation, and a constant transformation

cannot be used as a generator of a cycle. Hence all the cyclic states must be either

in QA or QB, which contradicts the assumption that A and B are aperiodic.

An DFA is complete if it is aperiodic and adding any transition to it destroys

aperiodicity. Note that the transition semigroup of a complete DFA contains all

constant transformations.

Lemma 19. If A and B are complete, their semiconstant sum (A,B) is also com-

plete.

Proof. We know from Lemma 18 that (A,B) is aperiodic. Suppose that a new

transformation t can be added to (A,B) in such away that the resulting DFA remains

aperiodic. We consider the following cases depending on the image QBt.

If |QBt ∩ QA| = 0 then t = tB ◦ u ◦ tA, where tA and tB are transformations of

the DFA (A,B) changing only the states of QA and QB, respectively, and acting as

the identity on all other states, and u only maps some of the states of QA to QB
and acts as the identity elsewhere. If t is new, then one of tB, or tA or u is new. But

we know that no new transition can be added to A or B, and we have all possible

transitions of type u.

If |QBt ∩ QA| > 0 and |QCt| = 1, then t is a constant transformation that

we have already, because we have (QB → qA), qA ∈ QA from the construction of

semiconstant sum, and each constant transformation on QA, since A is complete.

If |QBt ∩ QA| > 0 and |QCt| > 1, then let q1 ∈ QB be some state such that

q1t = p1 ∈ QA, and let q2 ∈ QC be some state such that q2t = p2, where q1 6= q2
and p2 6= p1.

If p2 ∈ QB, let c = (QB → q1); since we cannot add any transformation to B

and c is constant in B, it must be present. Otherwise, let c = (p2 → q1). Note

that c does not affect p1. Similarly, if q2 ∈ QA, let d = (QA → q2); otherwise, let

d = (p1 → q2). Note that d does not affect q1. Then the transformation t′ = t ◦ c ◦ d

is such that q1t
′ = q2 and q2t

′ = q1 and the DFA cannot be aperiodic.

Corollary 20. All semiconstant tree DFAs of the form Dscti(∆Q(n1, . . . , nm)) are

complete.

Proof. We use induction on m. For m = 1 we have Dscti(∆Q(n1)) = Dui(∆Q(n1)),

which is a bipath whose transformations preserve some order �. Suppose that we
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add a new transformation t. Because the semigroup of Dui(∆Q(n1)) is maximal

monotonic by Corollary 6, t must violate the order �. Hence we have two states

p ≺ q such that pt ≻ qt. Thus there is an order-preserving transformation s that

maps pt to q and qt to p. Now transformation ts contains the cycle (p, q). This

contradicts the aperiodicity of the semigroup resulting from the addition of t.

Now suppose that m > 1; then Dscti(∆Q(n1, . . . , nm)) is the semiconstant sum

of Dscti(∆Qleft
(n1, . . . , nr)) and Dscti(∆Qright

(nr+1, . . . , nm)). By the inductive as-

sumption and Lemma 18 Dscti(∆Q(n1, . . . , nm)) is also aperiodic; by Lemma 19 we

know that no transitions can be added.

In order to count the size of the semigroup of a semiconstant sum, we extend

the concept of partial transformations to k-partial transformations.

Definition 21. A k-partial transformation of Q is a transformation of Q into Q∪

{�1,�2, . . . ,�k}, where �1,�2, . . . ,�k are pairwise distinct, and distinct from all

q ∈ Q.

Each of the k undefined values corresponds to a different state outside Q. In

a semiconstant sum C = (A,B), where A = (QA,ΣA, δA, qA, FA) and B =

(QB,ΣB, δB, qB, FB), a |QB|-partial transformation of QA corresponds to one of

the transformations of C that is obtained from a transformation of A. Thus, the

number of the resulting transformations of C depends on the number of |QB|-partial

transformations induced by the transformations of A.

We say that a k-partial transformation t is consistent for A if there exists t′ in

the transition semigroup of A such that if qt ∈ Q, then qt = qt′ for all q ∈ Q. The

set of consistent k-partial transformations of a semigroup describes its potential for

forming a large number of transformations when used in a semiconstant sum as A.

For a fixed n > 6, there exist aperiodic semigroups with smaller cardinalities than

the maximal ones, but with larger numbers of consistent k-partial transformations

for some k. So they result in a larger semiconstant sum than that composed from

the maximal ones.

With the transition semigroup of A we associate a function fA : N → N counting

all consistent k-partial transformations for a given k. This function is a polynomial

in k of degree |QA|. For example, for k = 1, fA is the number of all consistent

partial transformations for A. For a DFA A = Dui(n1, . . . , nm), fA(1) is the size of

the transition semigroup of Dui(n1, . . . , nm, 1). From the proof of Theorem 13 we

know that the number of consistent k-partial transformations for a bipath of size n

having an identity transformation is

mbi(n, k) =

(

2n− 1

n

)

+

n−1
∑

h=0

kn−h

(

n

h

)(

n+ h− 1

h

)

.

Theorem 22. Let A = (QA,ΣA, δA, qA, FA) and B = (QB,ΣB, δB, qB, FB) be

strongly connected DFAs with n and m states, respectively. Let fA(k) and fB(k)
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be the functions counting their consistent k-partial transformations. Then the func-

tion fC counting the consistent k-partial transformations of the semiconstant sum

C = (A,B) is

fC(k) = fA(m+ k)fB(k) + n(k + 1)n((k + 1)m − km).

Proof. Suppose |QBt ∩ QA| = 0. Let t be a k-partial transformation of C. Then t

can be uniquely represented as tB ∪ tA, where is a k-partial transformation of B,

and tA is a transformation from QA to QA ∪ QB ∪ {�1, . . . ,�k}. We have fB(k)

possible tB transformations, and fA(m+ k) possible tA transformations, since each

tA corresponds to an (m + k)-partial transformation of A. So we have fA(m +

k)fB(k) different pairs of transformations tA and tB, which yield different k-partial

transformations t in this case.

If |QBt ∩ QA| > 1, then the constant generator c = (QB → qA), qA ∈ QA must

be used, since it is the only generator mapping a state from QB to a state from

QA. So the case |QBt ∩ QA| > 1 is not possible. Therefore |QBt ∩ QA| = 1, and

we denote the single element of QBt ∩ QA by p. For each state q ∈ QA either qt

is one of the k undefined values or qt = p. This yields k + 1 possible values for a

given p, and (k + 1)n possibilities in total. Also, for each state q ∈ QB either qt

is one of the k undefined values or qt = p. However, the latter case must occur

for at least one q ∈ QB. This yields (k + 1)m − km possibilities in total. Because

A is strongly connected, we have n possibilities for the selection of p. This yields

n(k + 1)n((k + 1)m − km) different k-partial transformations in this case.

Altogether, we have fA(m+ k)fB(k) + n(k + 1)n((k + 1)m − km).

Corollary 23. The number of k-partial transformations of Dscti(∆Q(n1, . . . , nm))

of size n is:

fD(k) =







mbi(n, k), if m = 1;

fDleft
(r + k)fDright

(k) + ℓ(k + 1)ℓ((k + 1)r − kr), if m > 1,

where Dleft is the DFA defined by ∆Qleft
(n1, . . . , ni), the left subtree of the tree

∆Q(n1, . . . , nm), Dright is defined by ∆Qright
(ni+1, . . . , nm), the right subtree of

∆Q(n1, . . . , nm), and ℓ, r are the numbers of states in Dleft and Dright , respectively.

Proof. This follows from Theorems 13 and 22.

Corollary 24. Let mscti(n, k) be the maximal number of k-partial transformations

of a semiconstant DFA Dscti(∆Q(n1, . . . , nm)) with n states. Then

mscti(n, k) = max











mbi(n, k)

max
s=1,...,n−1

{

mscti(n− s, s+ k)mscti(s, k)

+ (n− s)(k + 1)n−s((k + 1)s − ks)

}

.
(5)
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Proof. A semiconstant tree DFA is either a bipath, or a semiconstant sum of two

smaller semiconstant tree DFAs. Since its number of transformations depends only

on the numbers of k-partial transformations of the smaller ones, we can use the

maximal ones, and select the best split for the sum.

The size of the semigroup of DFA Dscti(∆Q(n1, . . . , nm)) is fD(0). The maximal

size of semigroups of the DFAs Dscti with n states is mscti(n, 0).

Instead of a bipath and the value mbi(n, k) we could use any strongly connected

automaton with an aperiodic semigroup. If such a semigroup would have a larger

number of k-partial transformations than our semiconstant tree DFAs for some k,

then we could obtain even larger aperiodic semigroups.

The corollary results directly in a dynamic algorithm working in O(n3) time

(assuming constant time for arithmetic operations and computing binomials) for

computing mscti(n, 0), and the distribution with the full binary tree yielding the

maximal semiconstant tree semigroup.

We computed the maximal semiconstant tree semigroups up to n = 500. For

n = 100 the syntactic semigroup of the DFA below exceeds 3.3× 10160.

Dscti = (((((((2, 2), (2, 2)), ((2, 2), (2, 2))), (((2, 2), (2, 2)), ((2, 2), 3))),

((((2, 2), 3), (3, 3)), ((3, 3), (3, 3)))), ((((3, 2), (3, 2)), ((3, 2), (2, 2))),

((2, 2), (2, 2)))), (((3, 3), (3, 2)), ((2, 2), 2))),

6. Conclusions

We have found two new types of aperiodic semigroups. Maximal semiconstant semi-

groups of type Dscti(∆Q(n1, . . . , nm)) are currently the largest aperiodic semigroups

known. A tight upper bound on the size of aperiodic semigroups remains unknown.
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