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Transient algebra is a multi-valued algebra for hazard detection in gate circuits. Se-
quences of alternating 0’s and 1’s, called transients, represent signal values, and gates
are modeled by extensions of boolean functions to transients. Formulas for computing
the output transient of a gate from the input transients are known for not, and, or

and xor gates and their complements, but, in general, even the problem of deciding
whether the length of the output transient exceeds a given bound is NP-complete. We
propose a method of evaluating extensions of general boolean functions. We study a class
of functions for which, instead of evaluating the extensions on a given set of transients,
it is possible to get the same values by using transients derived from the given ones, but
having length at most 3. We prove that all functions of three variables, as well as certain
other functions, have this property, and can be efficiently evaluated.
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1. Introduction

In 2003 Brzozowski and Ésik [2] proposed an infinite algebra as a basis for a theory

of hazards in gate circuits. The fundamental concept in this theory is that of a

“transient”, which is a nonempty alternating sequence of 0’s and 1’s representing a

series of signal values. Boolean functions that are normally used to model gates are

extended to transients. Given a boolean function f(x1, . . . , xn), and n transients

x1, . . . ,xn, the extension f(x1, . . . ,xn) of f to transients is defined as the longest

possible transient that can be obtained by considering all possible orders of changes

of the input variables. While this definition is straightforward, it involves the con-

struction of an n-dimensional directed graph in which all possible orders of input
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changes are displayed. The size of this graph is exponential in the length of the

input transients, and so this method is inefficient.

There exist simple formulas [2] for common boolean functions like not, and,

or and xor, and such formulas have been extended to functions obtained from

the set {or, xor} by complementing any number of inputs, and/or the output [3].

However, function composition does not preserve extensions [2], and the evaluation

problem remains open for general boolean functions. We study extensions of gen-

eral functions, and propose ways of evaluating them. In particular, we introduce a

method in which an arbitrary vector x of transients is replaced by a vector x̃ of

“characteristic transients” which are of length at most 3. We show that evaluating

f(x) can be reduced to evaluating f(x̃) for some functions. This makes it possible to

efficiently evaluate all the functions of three variables, and certain other functions.

The remainder of the paper is structured as follows. Transients, vectors of tran-

sients, and extensions of boolean functions are defined in Section 2. The evaluation

of functions in a certain class G is considered in Section 3, where we define the

“cost” of a transient vector x to be the difference between the number of changes

in x and the number of changes in f(x). The concept of cost is extended to paths in

digraphs and walks in boolean cubes in Section 4. Characteristic vectors are defined

in Section 5. In Section 6 we prove that all 3-variable functions can be efficiently

evaluated using characteristic vectors, and that there exists a 5-variable function

that cannot be so evaluated. Section 7 concludes the paper.

2. Transients, Vectors, and Extensions of Functions

The cardinality of a set S is |S|. For n ≥ 1, let [n] = {1, . . . , n}. If A is an alphabet,

then A∗ (A+) denotes the free monoid (free semigroup) generated by A. The length

of a word w ∈ A∗ is l(w), and the first and last letters of w ∈ A+ are α(w) and

ω(w), respectively. For boolean operations, we use x′ for complement, xy for and,

x+ y for or, and x⊕ y for xor (exclusive or).

Let B = {0, 1}; a binary word is any word in B∗. A transient is a binary word in

B+ of alternating 0’s and 1’s; thus the set T of all transients is 0(10)∗ + (01)∗01 +

(10)∗10+(10)∗1, in regular-expression notation. Transients are denoted by boldface

letters. A transient can be obtained from any nonempty binary word by contraction,

i.e., elimination of all duplicates immediately following a symbol; thus contraction

is a function from B+ to T. We denote the contraction of a word w by ←→w . For

example,
←−−−→
001000 = 010. For s, t ∈ T, s ◦ t is concatenation followed by contraction,

i.e., s ◦ t =
←→
st , where s, t ∈ T. The ◦ operation is associative.

If t = t1 · · · tm is a transient, ti ∈ B for i ∈ [m], then ∆(t) = l(t)−1 = m−1 is

the number of changes in t. A transient t is completely determined by its beginning

α(t) and the number of changes ∆(t); thus we have the representation of t which we

indicate by angle brackets: t = t1 · · · tm = 〈α(t);∆(t)〉 = 〈t1;m− 1〉. The number

of 0’s in a transient t is z(t), and the number of 1’s (“units”) is u(t).

A prefix of a transient t = t1 · · · tm is any transient u = t1 · · · ti, where i ∈ [m].
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A suffix of a transient is defined similarly. The empty word is not a prefix or suffix,

because it is not a transient. However, t is a prefix and suffix of itself. If u is a

prefix of t and l(u) < l(t), then there exists a transient v, a suffix of t, such that

t = uv. A transient s is the successor of a transient t = t1 · · · tm if and only if

s = t1 · · · tmtm+1, where ti ∈ B, for i ∈ [m+ 1], e.g., 010 is the successor of 01.

A transient vector, or simply a vector, is a tuple x = (x1, . . . ,xn) ∈ Tn. By con-

vention, if x is a vector, then xi is a component of x. The ◦ operation is extended

to transient vectors component-wise. The length of a vector x = (x1, . . . ,xn) is

l(x) =
∑n

i=1 l(xi). The number of changes of x is ∆(x) =
∑n

i=1 ∆(xi) = l(x)− n.

We also define vectors α(x) = (α(x1), . . . , α(xn)), and ω(x) = (ω(x1), . . . , ω(xn)).

A vector is completely determined by its beginning α(x) and the number of

changes ∆(xi) of each component of x; thus we have the representation x =

〈α(x);∆(x1), . . . ,∆(xn)〉. A vector u = (u1, . . . ,un) is a prefix (suffix) of vec-

tor v = (v1, . . . ,vn) if ui is a prefix (suffix) of vi for all i ∈ [n]. A vector

u = (u1, . . . ,un) is a successor of v = (v1, . . . ,vn) if ui is the successor of vi

for some i ∈ [n] and uj = vj, for all j 6= i.

Our terminology on graphs is from [1]. If f : Bn → B is a boolean function and

x = (x1, . . . ,xn) ∈ Tn is a vector, we construct the transient digraph D = Df(x) =

(V,E, ψ, λ) of f for x, where (V,E, ψ) is a digraph, V (the set of vertices) is the set

of all prefixes of x, E (the set of arcs) is E = {e = (u,v) | v is a successor of u}, ψ

(the incidence function assigning to each arc ofD an ordered pair of vertices ofD) is

ψ(e) = ψ((u,v)) = (u,v), and λ : V → B is the output function assigning the value

f(ω(v)) to every v ∈ V. Each directed path P = v1, . . . ,vm inD from v1 = α(x) to

vm = x has lengthm =
∑n

i=1 ∆(xi). We extend λ to paths: λ(P ) = λ(v1) · · ·λ(vm).

Paths are always from α(x) to x.

Definition 1. Let f(x) : Bn → B be a boolean function. The transient extension

(or simply extension) of f is a function f(x) : Tn → T, such that for any x =

(x1, . . . ,xn) ∈ Tn, f(x) =
←−→
λ(P ), where P is a path in Df (x) and

←−→
λ(P ) is of

maximal length; we call such a path P optimal.

Example 2. In Fig. 1 we show the digraph Df (010, 1010) for f = x1 + x′2, where

changes in x1 are horizontal, and in x2, vertical. The initial vertex is α(010, 1010) =

(0, 1). If the inputs are changed in the order x2, x2, x1, x2, x1 (path v1,v2, . . . ,v6),

then the binary word defined by λ is 010111, and its contraction is 0101. The longest

output is (01)3 (using the order x1, x1, x2, x2, x2), and so f(010,1010) = (01)3.

For a vector x ∈ Tn, let ϕ(x) be the number of paths in Df(x), let m = ∆(x),

and let mi = ∆(xi) for i ∈ [n]. Then ϕ(x) is the multinomial coefficient:

ϕ(x) =

(

m

m1, . . . ,mn

)

=
m!

m1! · · ·mn!
; (1)

The maximal value of ϕ(x) has the following approximation [6]:
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Fig. 1. Digraph Df (010, 1010) for f = x1 + x′

2.

ϕ(x) ≈ (2πm)
1−n

2 nm+ n

2 . (2)

We usually consider n to be small and fixed; then ϕ(x) is exponential in m. So the

obvious way to evaluate f(x) is not feasible because of the large number of paths.

3. Functions in the Class G

In contrast to the general case above, there are simple formulas for not, xor, or

and and [2]: If t = t1 · · · tm, then

t′ = (t1 · · · tm)′ = t′1 · · · t
′

m. (3)

If f(x1, . . . , xn) = x1 ⊕ · · · ⊕ xn is xor, then, for all x = (x1, . . . ,xn) ∈ Tn,

α(f(x)) = α(x1)⊕ · · · ⊕ α(xn), ω(f(x)) = ω(x1)⊕ · · · ⊕ ω(xn), (4)

l(f(x)) = 1 +

n
∑

i=1

(l(xi)− 1). (5)

If f(x1, . . . , xn) = x1 + · · ·+ xn is or, then, for all x = (x1, . . . ,xn) ∈ Tn,

α(f(x)) = α(x1) + · · ·+ α(xn), ω(f(x)) = ω(x1) + · · ·+ ω(xn), (6)

z(f(x)) =

{

0, if ∃i ∈ [n] xi = 1;

1 +
∑n

i=1(z(xi)− 1), otherwise.
(7)

If f(x1, . . . , xn) = x1 · · ·xn is and, then, for all x = (x1, . . . ,xn) ∈ Tn,

α(f(x)) = α(x1) · · ·α(xn), ω(f(x)) = ω(x1) · · ·ω(xn), (8)

u(f(x)) =

{

0, if ∃i ∈ [n] xi = 0;

1 +
∑n

i=1(u(xi)− 1), otherwise.
(9)

Using these formulas we can evaluate transient extensions of not, xor, or and

and in the time linear in the length of the input vector. For example, to evaluate

or for x ∈ Tn, we compute α(f(x)), ω(f(x)), and the number of 0’s in x.
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The class G of boolean functions was defined in [3] as follows:

Definition 3. Let G = H ∪ H̃, where H = {or, xor}, H̃ is the set of functions

obtained by complementing any number of inputs and/or the output of functions

from H, and or and xor have an arbitrary number of inputs (including one).

Note that a 1-input or or xor function is the identity function, and that G includes

all the boolean functions of two variables, except the constants 0 and 1, as well as

and, nor, nand and xnor functions with any numbers of inputs.

It was proved in [3] that functions in G can be evaluated by complementing

the input transients of any complemented arguments, and by complementing the

output transient, if the function itself is complemented. Consequently, we have

Proposition 4. Functions in G can be evaluated in the time linear in the length of

the input vector.

Example 5. If f(x1, x2) = (x1 + x′2)
′, then f(010,10) = (010 + (10)′)′ =

(010 + 01)′ = (0101)′ = 1010. However, in general, function composition does

not preserve extensions [2]. For example, by (4) and (5), 01⊕ 101 = 1010, but if we

express s⊕ t as st′ + s′t, we get 101010. So we need to consider functions that are

not in G.

As we have seen, evaluating a transient extension from the transient digraph is

not efficient. In [2] it is shown that even the problem of estimating the length of

f(x) is NP-complete. However, the concept of “cost” that we are about to define

makes the calculation feasible for some functions.

Definition 6. Let f : Bn → B be a boolean function, and f : Tn → T, its exten-

sion. Let x = (x1, . . . ,x2) = 〈α(x);∆(x1), . . . ,∆(xn)〉 be a transient vector. The

cost of x for f is cf (x) = ∆(x)−∆(f(x)) =
∑n

i=1 ∆(xi)−∆(f(x)).

The following upper bound for l(f(x)) is given in [2]: l(f(x)) ≤ 1+
∑n

i=1(l(xi)−

1) = 1+
∑n

i=1 ∆(xi) = 1+∆(x). Thus ∆(f(x)) = l(f(x))−1 ≤∆(x), and cf (x) is

a non-negative integer. If we know x and its cost cf (x), then we can easily evaluate

f(x) as follows: f(x) = 〈α(f(x));∆(x) − cf (x)〉.

A binary vector (x1, . . . , xn) with xi = 0, for all i ∈ [n] is denoted 0n. We define

non-negative subtraction m ⊖ n of integer n from integer m as m ⊖ n = m − n if

m ≥ n, and m ⊖ n = 0, otherwise. A transient t = t1 · · · tm is proper if its length

is at least 2, i.e., if it contains at least one change. A vector is proper if all of its

components are proper.

Theorem 7. If x is proper, then

cxor(x) = 0, (10)

cor(x) = (u(α(x)) ⊖ 1) + (u(ω(x)) ⊖ 1), (11)

cand(x) = (z(α(x)) ⊖ 1) + (z(ω(x)) ⊖ 1). (12)

5
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Proof. If f is xor, we have cxor = ∆(x) −∆(f(x)) =
∑n

i=1 ∆(xi) −∆(f(x)) =
∑n

i=1(l(xi)− 1)− (l(x) − 1) = 0, where we have used Equation (5).

If f is or, we consider three cases:

(1) u(α(x)) = 0. We have u(α(x))⊖ 1 = 0. Since α(xi) = 0 for all i ∈ [n], we have

α(f(x)) = 0. Let S = {i | ω(xi) = 1}, T = {i | ω(xi) = 0}. Then

∆(x) =
∑n

i=1(l(xi)− 1) =
∑

i∈S(l(xi)− 1) +
∑

i∈T(l(xi)− 1)

=
∑

i∈S(2z(xi)− 1) +
∑

i∈T(2z(xi)− 2)

=
∑n

i=1(2z(xi)− 2) + |S| = 2(z(f(x)) − 1) + u(ω(x)),

where the last equality uses Equation (7). If u(ω(x)) = 0, then ω(xi) = 0

for all i ∈ [n], and ω(f(x)) = 0. Thus we have l(f(x)) = 2z(f(x)) − 1, and

∆(x) = l(f(x))−1 = ∆(f(x)). Then cor(x) = ∆(x)−∆(f(x)) = 0 = (u(α(x))⊖

1) + (u(ω(x))⊖ 1). Otherwise, u(ω(x)) ≥ 1. Then ω(f(x)) = 1, and l(f(x)) =

2z(f(x)). Thus ∆(x) = 2(z(f(x)) − 1) + u(ω(x)) = l(f(x))− 1 + u(ω(x)) − 1

= l(f(x)) − 1 + u(ω(x)) ⊖ 1 = ∆(f(x)) + u(ω(x)) ⊖ 1.

Hence, cor(x) = u(ω(x))⊖ 1 = (u(α(x)) ⊖ 1) + (u(ω(x)) ⊖ 1).

(2) u(ω(x)) = 0. This case is symmetric to Case 1.

(3) u(α(x)) 6= 0, and u(ω(x)) 6= 0. Since x is proper, then for all i ∈ [n], we

have l(xi) ≥ 2, and there is at least one 0 in xi. Let xi = vi ◦ ui, where

ω(vi) = α(ui) = 0, v = (v1, . . . ,vn), and u = (u1, . . . ,un). Then x = v ◦ u,

and ω(v) = α(u) = (0, . . . ,0) = 0n. By Cases 1 and 2, cor(v) = u(α(x)) ⊖

1, and cor(u) = u(ω(x)) ⊖ 1. Therefore, cor(x) = cor(v) + cor(u) =

(u(α(x)) ⊖ 1) + (u(ω(x)) ⊖ 1).

By and/or duality, we have cand(x) = (z(α(x)) ⊖ 1) + (z(ω(x)) ⊖ 1).

4. Costs of Paths in Digraphs and Walks in Cubes

For n ≥ 1, the boolean n-cube is a graph Cn = (V,E, ψ), where V = Bn (vertices),

E = {e = (vi, vj) | vi, vj ∈ V and vi and vj differ in exactly one coordinate}

(edges), and ψ(e) = ψ((vi, vj)) = (vi, vj) (incidence function). For a boolean func-

tion f : Bn → B, n ≥ 1, the cube Cn
f of f is the n-cube where f(v) is assigned to

each vertex v ∈ V = Bn. If n is understood, we denote Cn
f by Cf .

In a function cube Cf , an edge e = (vi, vj) ∈ E is live if f(vi) 6= f(vj); otherwise

it is dead. A live graph of f is that subgraph Lf of Cf that consists of all the live

edges and their incident vertices.

Instead of considering paths in a digraph Df(x), we will examine walks in the

cube Cf . The size of a digraph Df (x) increases as the length of x increases, and

the length of any path in Df (x) increases accordingly. However, the size of a cube

Cf is independent of any vector x, if the dimension of x is fixed.

Example 8. The cube of f = x1+x′2 is shown in Fig. 2 (a), where a vertex is white

if f(vi) = 0, and black otherwise, and 00 stands for (0, 0), etc. The live edges of f

are shown by thick lines in Fig. 2 (b). The live graph of f is shown in Fig. 2 (c).

6
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Fig. 2. Graphs for f = x1 + x′

2: (a) Cf ; (b) live edges; (c) Lf .

We extend the concept of cost to paths in digraphs and walks in cubes. For a path

P = v1, . . . ,vm in Df(x), let c(P ) = |E=(P )|, where E=(P ) = {(vi,vi+1) | λ(vi) =

λ(vi+1), i = 1, . . . ,m− 1}. Thus c(P ) is the number of arcs in P whose endpoints

have the same λ values. For any walk W = w1, w2, · · · , wm in Cf , let c(W ) =

|E=(W )|, where E=(W ) = {(wj , wj+1) | f(wj) = f(wj+1), j = 1, . . . ,m−1}. Thus

c(W ) is the number of edges in W whose endpoints have the same f values, that

is, the number of edges in W which are not in the live graph Lf .

Definition 9. Let f : Bn → B be a boolean function, and f , its extension. Let x ∈

Tn be a vector, and P = v1, . . . ,vr, a path in Df (x) from v1 = α(x) to vr = x. Let

W (P ) be the sequence W (P ) = ω(v1), . . . , ω(vr). Conversely, let W = w1, . . . , wr

be any walk in Cf , where wi ∈ Bn, for i = 1, . . . , r. Define xi = w1 ◦ · · · ◦ wi,

for i = 1, . . . , r and let P (W ) be the sequence P (W ) = x1,x2, . . . ,xr = w1,w1 ◦

w2, . . . ,w1 ◦ · · · ◦wr.

Theorem 10. If P is a path in Df (x) then W (P ) is a walk in Cf and c(P ) =

c(W (P )). If W = w1, . . . , wr is a walk in Cf , let x = w1 ◦ · · · ◦ wr. Then P (W )

is a path in Df (x) and c(W ) = c(P (W )). Moreover, if P is a path in Df(x), then

P (W (P )) = P , and if W is a walk in Cf , then W (P (W )) = W .

Proof. If W (P ) = ω(v1), . . . , ω(vr), then ω(vi) is a vertex in Cf . Since every pair

(vi,vi+1), i = 1, . . . , r−1, is an arc in Df(x), vi+1 is a successor of vi. Thus ω(vi+1)

and ω(vi) differ in exactly one coordinate, (ω(vi), ω(vi+1)) is an edge in Cf , and

W (P ) is indeed a walk in Cf . By definition, λ(vi) = f(ω(vi)) for i = 1, . . . , r. The

endpoints of an arc (vi,vi+1) in Df (x) have the same λ value if and only if the

endpoints of the edge (ω(vi), ω(vi+1)) have the same f value. So c(P ) = c(W (P )).

Let P (W ) = x1,x2, . . . ,xr = w1,w1 ◦w2, . . . ,w1 ◦ · · · ◦wr. Clearly w1 = x1 =

α(x) is a vertex in Df (x). Suppose xi = w1 ◦ · · · ◦ wi = (xi
1, . . . ,x

i
n) is a vertex

in Df (x). Let xi+1 = w1 ◦ · · · ◦ wi ◦ wi+1 = (xi+1
1 , . . . ,xi+1

n ). Since (wi, wi+1) is

an edge in Cf , wi and wi+1 differ in exactly one coordinate, say the k-th. Then,

xi+1
j = xi

j ◦ wi+1
j = xi

j if j 6= k, and xi+1
k is a successor of xi

k. Hence xi+1 is a

successor of xi; thus, by induction on r, (xi,xi+1) is an arc in Df (x). Therefore,

P (W ) is a path in Df (x) from w1 to x. Since λ(xi) = f(ω(xi)) = f(wi), for

i = 1, . . . , r, the endpoints of (wi, wi+1) have the same f value if and only if the

endpoints of (xi,xi+1) have the same λ value. Therefore, c(W ) = c(P (W )).

7



February 10, 2011 13:8 WSPC/INSTRUCTION FILE Brzozowski˙Li˙Ye

Now suppose P = v1, . . . ,vr. By Definition 9, W (P ) = ω(v1), . . . , ω(vr). Let

xi = ω(v1) ◦ · · · ◦ ω(vi), for i = 1, . . . , r; then x1 = ω(v1) = v1. Suppose vi = xi

for some 1 ≤ i < r. Then, since (vi,vi+1) is an arc in Df (x), vi+1 is a successor of

vi; so vi+1 = vi ◦ ω(vi+1) = xi ◦ ω(vi+1) = xi+1. Thus, by induction on r, vi = xi

for i = 1, . . . , r. Therefore, P (W (P )) = P .

Finally, suppose W = w1, . . . , wr. By Definition 9, P (W ) = x1, . . . ,xr, where

xi = w1 ◦ · · · ◦ wi for i = 1, . . . , r. Since ω(xi) = wi for i = 1, . . . , r, we have

W (P (W )) = ω(x1), . . . , ω(xr) = w1, . . . ,wr = W.

A walk W is optimal if the path P (W ) is optimal.

Example 11. In Fig. 1, P = v1, . . . ,v6 is a path from v1 = α(x) to v6 = x,

and c(P ) = |{(v4,v5), (v5,v6)}| = 2. Let wi = ω(vi), for i = 1, . . . , 6; then

W (P ) = w1, . . . , w6 is a walk in Fig. 2 (a). Note that (w4, w5) and (w5, w6) are not

in the live graph Lf ; thus c(W (P )) = 2 = c(P ).

In the rest of the paper we consider walks in the n-cube Cf . A walk W =

w1, . . . , wr is a walk for a vector x if x = w1 ◦ · · · ◦wr. To evaluate f(x) we find a

walk W = w1, . . . , wr for x with minimal cost, and then f(x) = f(w1) ◦ · · · ◦ f(wr).

This approach takes the advantage of the fact that the size of the n-cube Cf is

independent of the length l(x) of the input vector x.

5. Characteristic Vectors

Now we are interested only in proper vectors. A vector is minimal if each component

has length 2 or 3. If a transient t = t1 · · · tm is proper, the characteristic transient

of t is t̃, where t̃ = t1t2 if m is even, and t̃ = t1t2t3 if m is odd. Note that t̃ is a prefix

of t, α(t̃) = α(t), ω(t̃) = ω(t), and ∆(t) ≡ ∆(̃t), where ≡ is equivalence modulo

2. If x = (x1, . . . ,xn) is a proper vector, then x̃ = (x̃1, . . . , x̃n) is the characteristic

vector of x. Also, x̃ is a prefix of x, α(x̃) = α(x), ω(x̃) = ω(x), and ∆(xi) ≡∆(x̃i),

for i ∈ [n]. The characteristic vector of any vector is minimal, and every minimal

vector is the characteristic vector of some vector. Any vector x which has x̃ as its

characteristic vector is an extension of x̃.

A function f : Bn → B depends on its k-th argument if there exist xi ∈ B,

such that f(x1, . . . , xk−1, 0, xk+1, . . . , xn) 6= f(x1, . . . , xk−1, 1, xk+1, . . . , xn). In this

section, we only consider functions that depend on all of their arguments. If f :

Bn → B depends on xk, then there exists at least one live edge e = (wi, wj) in the

cube Cf of f , where wi and wj differ only in xk.

Definition 12. A boolean function f : Bn → B that depends on all of its variables

is convenient if, for every proper vector x, the cost cf (x) of x is equal to the cost

cf (x̃) of its characteristic vector x̃.

For any vector x ∈ Tn, let ϕ̃(x) = ϕ(x̃) be the number of walks for x̃. When

∆(x̃1) = · · · = ∆(x̃n) = 2, the maximal value of ϕ̃(x) is obtained from Equation (2)

8
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by setting m = 2n, and is approximately ϕ̃(x) ≈ (4π)
1−n

2 n2n+1

2 , which is indepen-

dent of the length m of x; hence the evaluation of a particular function f can be

much more efficient if f is convenient. We first search for an optimal walk for x̃, and

get its cost c; we then compute the boolean value f(α(x)) and construct a transient

of length l(x) − c beginning with f(α(x)). With fixed n, this can be done in time

linear in the length of x.

The next claim follows immediately from Theorem 7.

Corollary 13. All functions in G are convenient.

To prove that a function f is convenient we must verify that, for every vector

x, the cost of x for f is the same as the cost of x̃ for f . Equivalently, we need to

show that, for every minimal vector x̃, the cost for f of any extension x of x̃ is the

same as the cost of x̃ for f .

An edge e in a cube corresponds to a unique coordinate xi which has complemen-

tary values in the two vertices of that edge; we say that e is an edge in coordinate

xi. An edge is incident to a walk W if it shares at least one vertex with W . A

walk W is complete if, for every coordinate, there is a live edge in that coordinate

incident to W . A vertex v in a cube Cf of a boolean function f is a focus if every

edge incident to v is live. Any walk through a focus is complete.

Proposition 14. Let f : Bn → B be a boolean function, and let Cf be its cube.

Let x be a transient vector and x̃, its characteristic vector. If an optimal walk W

in Cf for x̃ is complete, then the cost of any optimal walk for x is c(W ).

Proof. Let W be an optimal walk for x̃. Since the difference between the number

of changes in xi and in x̃i is even for any i, the additional changes in xi can be

inserted after a vertex incident to the live edge in that coordinate is reached.

6. 3-Variable Functions

Suppose f : Bn → B and g : Bn → B are boolean functions. If g(y1, . . . , yn) can

be obtained from f(x1, . . . , xn) by renaming the variables and complementing some

number of inputs and/or the output, then we write f ∼ g, where ∼ is an equivalence

relation [4, 5], and we say that f and g are in the same symmetry class. For example,

we can start with x+ y, rename y as z to get x+ z, complement z to get x+ z′, and

complement this result to get x′z. Thus x′z ∼ x + y. If we know how to evaluate

the transient extension of f , then we can also evaluate the transient extensions of

all the functions that are in the same symmetry class as f [3]. Hence we consider

only one representative function of each symmetry class.

For n = 3, there are 256 functions, which can be reduced to 14 symmetry

classes [4, 5]. Four classes, represented by 0, x, x+ y, and x⊕ y, contain degenerate

functions; these classes account for 38 functions which can all be evaluated using the

formulas in Section 2. The remaining 218 functions can be reduced to 2 symmetry

9



February 10, 2011 13:8 WSPC/INSTRUCTION FILE Brzozowski˙Li˙Ye

classes (18 functions) in G and 8 classes (200 functions) represented by the functions

shown in Fig. 3, where the circled vertices can be ignored for now.
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Fig. 3. Representatives of the eight symmetry classes of 3-variable functions.

The main result in this section is the following:

Theorem 15. All 3-variable functions are convenient.

To prove Theorem 15, it is sufficient to examine the eight functions of Fig. 3.

The next four results are useful in proving that certain walks are optimal.

Lemma 16. Let W1 and W2 be two walks from vertex u to vertex v. Then the

difference between the cost of W1 and that of W2 is a multiple of 2.

Proof. Consider a walk W from u to v. If ui 6= vi (ui = vi), then variable xi must

change an odd (even) number of times in W . If there are k components that differ

in u and v, then the total number of changes must be k + 2l for some l ≥ 0. So the

lengths of all walks from u to v have the same parity.

Now consider any two walks W1 and W2 from u to v, and let walk W ′

2 from v to

u be W2 reversed. Combining W1 and W ′

2 we get a walk W from u to itself. Since

the lengths of W2 and W ′

2 are the same, and the lengths of W1 and W2 have the

same parity, the length of W is even.

Consider the sequences f0, f1, . . . , fr−1, f r and g0, g1, . . . , gp−1, gp of function

values of the vertices in walks W1 and W2, respectively. The vertices of W have the

sequence f0, . . . , fr−1, f r = gp, gp−1, . . . , f0 = g0. The live edges in W are those

edges whose endpoints have different function values, f i 6= f i+1 or gj+1 6= gj. Since

10
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f0 = g0, there must be even number of such pairs (f i, f i+1) or (gj+1, gj), that is,

there is an even number of live edges in W . Since the length of W is even, there is

an even number of dead edges in W , which are the dead edges in W1 and W2.

Note that the cost ofW1 (W2) is the number of dead edges inW1 (W2). Therefore

c(W1) + c(W2) is even, and so c(W1)− c(W2) is also even. So the lemma holds.

Corollary 17. Let c ≥ 0 be any integer. If there is no walk from u to v of cost less

than or equal to c− 1, and there is a walk W of cost c + 1, then W is optimal. In

particular, every walk of cost 1 from u to v is optimal.

Lemma 18. For a 3-variable function and a minimal vector x, if α(x) is within

distance 1 from a focus, then there is a complete optimal walk for x.

Proof. Figure 4 shows a 3-variable cube. We use the convention that a vertex

(b1, b2, b3), with bi ∈ B, is represented by the integer 4b1 + 2b2 + b3. We enumerate

1

4

3

62

5

7

0

Fig. 4. Starting vertex at distance 1 of a focus.

all optimal walks starting from a given vertex. Since every walk from a focus is

complete, we need to consider only start vertices that are distance 1 from a focus.

Because of the symmetry of the cube, we can assume without loss of generality

that the starting vertex is 1, and 0 is a focus. Note that every minimal vector x

of three variables can be represented as 〈(x1, x2, x3),∆1,∆2,∆3〉, where xi = α(xi)

and ∆i = ∆(xi), ∆i ∈ {1, 2}. Every walk of cost 0 is optimal, and if a walk has cost

at most 1, then we know by Corollary 17 that it is optimal. Also, if a walk has cost

at most 2 and there is no walk of cost 0, then it is optimal. There are eight cases:

(1) If ∆1 = 1, ∆2 = 1, ∆3 = 1, then 1, 0, 4, 6 has cost at most 1.

(2) If ∆1 = 1, ∆2 = 1, ∆3 = 2, then 1, 0, 4, 5, 7 has cost at most 2, and no walk has

cost 0.

(3) If ∆1 = 1, ∆2 = 2, ∆3 = 1, then 1, 0, 2, 0, 4 has cost 0.

(4) If ∆1 = 1, ∆2 = 2, ∆3 = 2, then 1, 0, 2, 0, 1, 5 has cost at most 1.

(5) If ∆1 = 2, ∆2 = 1, ∆3 = 1, then 1, 0, 4, 0, 2 has cost 0.

(6) If ∆1 = 2, ∆2 = 1, ∆3 = 2, then 1, 0, 4, 0, 2, 3 has cost at most 1.

(7) ∆1 = 2, ∆2 = 2, ∆3 = 1, then 1, 0, 2, 0, 4, 0 has cost 0.

(8) If ∆1 = 2, ∆2 = 2, ∆3 = 2, then 1, 0, 2, 0, 4, 0, 1 has cost 0.

11
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Therefore, for all cases there is an optimal walk which is complete.

For any 3-variable function f , a walk v0v1v2v3v4v5 on Cf is alternating if each

subwalk vivi+1vi+2vi+3, i = 0, 1, 2, contains a change in every coordinate.

Lemma 19. Let x be a minimal vector for a 3-variable function, let U = v0v1v2v3
be any walk such that v0 = α(x), and let W = Uv4v5. If W is alternating, c(U) = 0,

and c(W ) ≤ 1, then there exists a complete optimal walk V for x.

Proof. Suppose x = 〈v0;∆1,∆2,∆3〉. If ∆1 = ∆2 = ∆3 = 1, let V = U . Then V

has all three changes since it is alternating, and so it is a walk for x. Since V has

cost 0, it is optimal. If ∆1 = ∆2 = ∆3 = 2, let V = Uv2v1v0. Then V is a walk for

x, has cost 0, and so is optimal. If exactly one of ∆1, ∆2 and ∆3 is 2, use V = Uv,

where (v3, v) is an edge in the coordinate that has two changes. The cost of this

walk is at most 1, and so it is optimal by Corollary 17. If exactly two of ∆1, ∆2 and

∆3 are 2, assume without loss of generality that ∆1 = 1 and ∆2 = ∆3 = 2. There

are two subcases: a) If (v2, v3) is an edge in the first coordinate, then V = W has

the correct changes and cost at most 1. By Corollary 17, V is optimal. b) If (v2, v3)

is in the second (third) coordinate, then take V = Uv2v, where (v2, v) is an edge in

the third (second) coordinate. The cost of V is at most 1, and so it is optimal by

Corollary 17. Since V begins with U in all cases, V is a complete walk for x.

We are now ready to give the proof of Theorem 15:

Proof. For each of the eight functions in Fig. 3, we enumerate all minimal vectors

x = 〈α(x);∆1,∆2,∆3〉, and prove that there is a complete optimal walk for each

x. The vertices that need to be considered are circled in the figure. Since there are

eight functions and each of them has eight possible starting vertices α(x) and eight

change vectors (∆1,∆2,∆3), there are 512 cases to analyze. We reduce this number

significantly by using Corollary 17, Lemmas 18 and 19, and symmetry.

To simplify the notation, we denote walks by words, rather than sequences.

We give only sketches of proofs for f4, f6, f7 and f8, and complete proofs for the

remaining four functions. The eight functions are treated as follows:

1. For f1, every vertex is within distance 1 from a focus; by Lemma 18, no vertex

needs to be considered.

2. For f2 = x1(x2 ⊕ x3), only vertices 1 and 2 are not within distance 1 of

a focus. Since f2 is symmetric in x2 and x3, we consider only one of 1 and 2,

say 2. We list the complete walks in pairs (∆1∆2∆3,W ), where W is a complete

optimal walk for 〈2; ∆1,∆2,∆3〉. There are no minimal walks of cost 0. The walks of

cost 1 are: (111, 2645), (112, 26454), (121, 26467), (122, 264676), (212, 267640), and

(221, 264673). Walks (211, 26451) and (222, 2646762) are of cost 2; by Corollary 17,

they are optimal. Each walk is complete for it goes through a focus.

3. For f3, only 0 is not within distance 1 of a focus, so we consider it. Since

every outgoing edge is dead, there are no walks of cost 0. The optimal walks

12
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of cost 1 are: (111, 0467), (112, 04676), (121, 04645), (122, 046454), (211, 04513),

(212, 045462), and (221, 046451). Walk (222, 0157640) has cost 2. By Corollary 17,

it is optimal as there are no walks of cost 0. Each of these walks is complete because

it goes through a focus, 3, 5, 6, or 7.

4. For f4 = x2x3 + x1x
′

2x
′

3, 1, 2, 3, 7 are not within distance 1 of a focus. Since

f4 is symmetric in x2 and x3, we consider only 1 and not 2. For 7, there is a walk

W = 754023, which satisfies the conditions of Lemma 19. So there is a complete

optimal walk for any minimal vector starting at 7, and we consider only 1 and 3.

5. The function f5 = x1(x2 + x3) has no focus. Since it is symmetric in x2 and

x3, we consider only 1 (and not 2) and 5 (and not 6), say. Walk 154623 satisfies the

conditions of Lemma 19, taking care of 1. So we consider 0, 3, 4, 5, and 7. For 0,

there is no minimal walk of cost 0. Walks (112, 01546), (121, 02645), (122, 045464),

(212, 015462), (221, 046451) are of cost 1. Walks (111, 0457), (211, 04573) and

(222, 0464510) are of cost 2. For 3, there is no minimal walk of cost 0. Walks

(111, 3754), (112, 37645), (121, 37646), (212, 326451), (221, 375462) are of cost 1.

Walks (122, 376457), (211, 37540) and (222, 3764573) are of cost 2. For 4, walks

(112, 15767), (121, 15754), (212, 151323), (221, 157510), (222, 1575101) are of cost

0. Walks (111, 1576), (211, 15132) and (122, 157545) are of cost 1. For 5, walks

(111, 5462), (211, 54626), (122, 546451), (221, 546264), (222, 5462645) are of cost 0.

Walks (112, 54623), (121, 54620) and (212, 546267) are of cost 1. For 7 there is no

minimal walk of cost 0. Walks (112, 76451), (121, 75462), (211, 73264), (212, 742645),

(221, 762646) are of cost 1. Walks (111, 7540), (122, 754673) and (222, 7626457) are

of cost 2. One verifies that all of these walks are complete.

6. For f6 = x1x2 + x2x3 + x3x1, there is no focus. Because f is symmetric in

all three variables, it suffices to consider 1 (and not 2 and 4), 6 (and not 3 and

5), 0 and 7. Moreover, if we complement the function, the live and dead edges are

preserved. Hence 1 and 6 are symmetric in the cube as are 0 and 7, and we consider

only 0 and 1. For 1, walk 132645 meets the conditions of Lemma 19; so we look

only at 0.

7. For f7, vertices 0, 3, 4, and 7 are symmetric in the live graph, as are 1, 2, 5,

and 6. The alternating walk 015762 takes care of 0, leaving only 1 to consider.

8. For f8, only 0 and 4 are not within distance 1 of a focus, and they are

symmetric with respect to live edges. So we examine only 0.

We now show a function which is not convenient. Let Si(x1, x2, x3, x4) be the

symmetric function of four variables that is 1 if and only if precisely i of its variables

are 1. For example, S3(x1, x2, x3, x4) = x1x2x3x
′

4+x1x2x
′

3x4+x1x
′

2x3x4+x
′

1x2x3x4.

Also, let S2,3(x1, x2, x3, x4) = S2(x1, x2, x3, x4) + S3(x1, x2, x3, x4).

Proposition 20. f = S2,3(x1, x2, x3, x4) + x0x1x2x3x4 is inconvenient.

Proof. The cube Cf is shown in Fig. 5. The left subcube C0 shows f when x0 = 0,

and the right subcube C1, when x0 = 1; the edges between the two subcubes are
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The subcube C0 of f with x0 = 0
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The subcube C1 of f with x0 = 1
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Fig. 5. The cube of an inconvenient function of five variables.

not drawn. For convenience, for each vertex with label (x0, x1, x2, x3, x4), we use

the value 16x0 + 8x1 + 4x2 + 2x3 + x4 to represent it; for example, the vertex with

label (0, 1, 1, 0, 1) is 13. Note that f has the property that, for any pair of vertices

which differ only in x0, the values of f are the same, except for the pair (15, 31).

Consider the transient extension f of f with input:

x = (0101,010,010,010,010). The initial vertex is 0, and the final one is 16.

If transient x0 = 0101 is to produce a change in the value of f , every corresponding

walk has to move from subcube C0 to subcube C1 via the live edge (15, 31). This

is the only live edge between the two subcubes. To produce the longest transient,

there are the following possibilities:

1. The optimal walk uses the live edge (15, 31) three times. Then each variable

in {x1, . . . , x4} must change exactly twice. By inspection of C0, we see that we

have to change each of x1, . . . , x4 once to reach 15. Eventually, in C1, we have to

change each of x1, . . . , x4 once again to reach 16. Since the function is symmetric in

x1, . . . , x4, the order in which we change these variables is immaterial. We see that

f changes twice in the walk from 0 to 15, and once in the walk from 31 to 16. To

show this we add the three changes caused by x0, for a total of six. The walk must

have the form 0, . . . , 15, 31, 15, 31 . . . , 16.

2. The optimal walk uses the live edge (15, 31) twice. To achieve the largest

number of changes, the walk has to go from 0 to 15; this results in two changes

in f ; and then two more changes caused by x0. The walk is now in 15, and it

remains to change each of x1, . . . , x4 to 0 and x0 to 1. The walk may stay in C0 for

a while, then change x0, and then remain in C1 to reach 16. So the walk has the

form 0, . . . , 15, 31, 15, . . . , i, j . . . , 16, where i is in C0 and j is in C1. Now consider

the walk from the second 15. One verifies that, no matter where the transition to

C1 takes place, we get two changes in f , for a total of six.
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3. The optimal walk uses the live edge (15, 31) once. Then the combined number

of changes from C0 and C1 is at most three. Adding the one from x0, we get a total

of four. This contradicts the assumption that the walk is optimal.

4. The optimal walk does not use the live edge (15, 31). Since all the variable

changes result in the same function changes in both subcubes, this is equivalent to

finding the optimal walk in C0. One verifies that the maximal number of changes

is also 6.

The characteristic vector of the input x is x̃ = (01, 010, 010, 010, 010).By Case 4

of our analysis, x̃ can also produce six changes in f . Since l(x̃) = 9, the cost of x̃

is 3. However, l(x) = 11, and the cost of x is 5. Thus f is not convenient.

7. Conclusions

The evaluation of extensions of boolean functions is simplified if we use walks in

boolean cubes instead of paths in digraphs. The evaluation of extensions of con-

venient functions can be done with characteristic vectors in polynomial time. All

3-variable functions are convenient, and there exist inconvenient 5-variable func-

tions. It remains open whether there is an inconvenient 4-variable function. The

problem of characterizing convenient functions is also open.
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